A software bus for thread objects
NASA Technical Reports Server (NTRS)
Callahan, John R.; Li, Dehuai
1995-01-01
The authors have implemented a software bus for lightweight threads in an object-oriented programming environment that allows for rapid reconfiguration and reuse of thread objects in discrete-event simulation experiments. While previous research in object-oriented, parallel programming environments has focused on direct communication between threads, our lightweight software bus, called the MiniBus, provides a means to isolate threads from their contexts of execution by restricting communications between threads to message-passing via their local ports only. The software bus maintains a topology of connections between these ports. It routes, queues, and delivers messages according to this topology. This approach allows for rapid reconfiguration and reuse of thread objects in other systems without making changes to the specifications or source code. A layered approach that provides the needed transparency to developers is presented. Examples of using the MiniBus are given, and the value of bus architectures in building and conducting simulations of discrete-event systems is discussed.
Port-O-Sim Object Simulation Application
NASA Technical Reports Server (NTRS)
Lanzi, Raymond J.
2009-01-01
Port-O-Sim is a software application that supports engineering modeling and simulation of launch-range systems and subsystems, as well as the vehicles that operate on them. It is flexible, distributed, object-oriented, and realtime. A scripting language is used to configure an array of simulation objects and link them together. The script is contained in a text file, but executed and controlled using a graphical user interface. A set of modules is defined, each with input variables, output variables, and settings. These engineering models can be either linked to each other or run as standalone. The settings can be modified during execution. Since 2001, this application has been used for pre-mission failure mode training for many Range Safety Scenarios. It contains range asset link analysis, develops look-angle data, supports sky-screen site selection, drives GPS (Global Positioning System) and IMU (Inertial Measurement Unit) simulators, and can support conceptual design efforts for multiple flight programs with its capacity for rapid six-degrees-of-freedom model development. Due to the assembly of various object types into one application, the application is applicable across a wide variety of launch range problem domains.
Visual task performance in the blind with the BrainPort V100 Vision Aid.
Stronks, H Christiaan; Mitchell, Ellen B; Nau, Amy C; Barnes, Nick
2016-10-01
The BrainPort® V100 Vision Aid is a non-invasive assistive device for the blind based on sensory substitution. The device translates camera images into electrotactile stimuli delivered to the tongue. The BrainPort has recently received the CE mark and FDA approval and it is currently marketed to augment, rather than replace, the traditional assistive technologies such as the white cane or guide dog. Areas covered: In this work, we will review the functional studies performed to date with the BrainPort and we will highlight the critical factors that determine device performance, including the technology behind the BrainPort, the impediments to assessing device performance, and the impact of device training and rehabilitation. Expert commentary: The BrainPort enables blind people to perceive light, identify simple objects, recognize short words, localize simple objects, and detect motion and orientation of objects. To achieve this, proper rehabilitation and training regimes are crucial.
MCViNE- An object oriented Monte Carlo neutron ray tracing simulation package
Lin, J. Y. Y.; Smith, Hillary L.; Granroth, Garrett E.; ...
2015-11-28
MCViNE (Monte-Carlo VIrtual Neutron Experiment) is an open-source Monte Carlo (MC) neutron ray-tracing software for performing computer modeling and simulations that mirror real neutron scattering experiments. We exploited the close similarity between how instrument components are designed and operated and how such components can be modeled in software. For example we used object oriented programming concepts for representing neutron scatterers and detector systems, and recursive algorithms for implementing multiple scattering. Combining these features together in MCViNE allows one to handle sophisticated neutron scattering problems in modern instruments, including, for example, neutron detection by complex detector systems, and single and multiplemore » scattering events in a variety of samples and sample environments. In addition, MCViNE can use simulation components from linear-chain-based MC ray tracing packages which facilitates porting instrument models from those codes. Furthermore it allows for components written solely in Python, which expedites prototyping of new components. These developments have enabled detailed simulations of neutron scattering experiments, with non-trivial samples, for time-of-flight inelastic instruments at the Spallation Neutron Source. Examples of such simulations for powder and single-crystal samples with various scattering kernels, including kernels for phonon and magnon scattering, are presented. As a result, with simulations that closely reproduce experimental results, scattering mechanisms can be turned on and off to determine how they contribute to the measured scattering intensities, improving our understanding of the underlying physics.« less
Sediment management alternatives for the port of Gulfport, Mississippi.
DOT National Transportation Integrated Search
2010-02-01
The objective of the project is to develop solutions to reduce sediment problems within the Port of Gulfport, MS and to introduce a working : simulation model to reinforce the importance of throughput within the Port of Gulfport. Sediment deposition ...
Image-guided laser projection for port placement in minimally invasive surgery.
Marmurek, Jonathan; Wedlake, Chris; Pardasani, Utsav; Eagleson, Roy; Peters, Terry
2006-01-01
We present an application of an augmented reality laser projection system in which procedure-specific optimal incision sites, computed from pre-operative image acquisition, are superimposed on a patient to guide port placement in minimally invasive surgery. Tests were conducted to evaluate the fidelity of computed and measured port configurations, and to validate the accuracy with which a surgical tool-tip can be placed at an identified virtual target. A high resolution volumetric image of a thorax phantom was acquired using helical computed tomography imaging. Oriented within the thorax, a phantom organ with marked targets was visualized in a virtual environment. A graphical interface enabled marking the locations of target anatomy, and calculation of a grid of potential port locations along the intercostal rib lines. Optimal configurations of port positions and tool orientations were determined by an objective measure reflecting image-based indices of surgical dexterity, hand-eye alignment, and collision detection. Intra-operative registration of the computed virtual model and the phantom anatomy was performed using an optical tracking system. Initial trials demonstrated that computed and projected port placement provided direct access to target anatomy with an accuracy of 2 mm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, M Pauline
2007-06-30
The VisPort visualization portal is an experiment in providing Web-based access to visualization functionality from any place and at any time. VisPort adopts a service-oriented architecture to encapsulate visualization functionality and to support remote access. Users employ browser-based client applications to choose data and services, set parameters, and launch visualization jobs. Visualization products typically images or movies are viewed in the user's standard Web browser. VisPort emphasizes visualization solutions customized for specific application communities. Finally, VisPort relies heavily on XML, and introduces the notion of visualization informatics - the formalization and specialization of information related to the process and productsmore » of visualization.« less
Industrial Control System Process-Oriented Intrusion Detection (iPoid) Algorithm
2016-08-01
inspection rules using an intrusion-detection system (IDS) sensor, a simulated Programmable Logic Controller (PLC), and a Modbus client operating...operating system PLC Programmable Logic Controller SCADA supervisory control and data acquisition SIGHUP signal hangup SPAN Switched Port Analyzer
Gas turbine system simulation: An object-oriented approach
NASA Technical Reports Server (NTRS)
Drummond, Colin K.; Follen, Gregory J.; Putt, Charles W.
1993-01-01
A prototype gas turbine engine simulation has been developed that offers a generalized framework for the simulation of engines subject to steady-state and transient operating conditions. The prototype is in preliminary form, but it successfully demonstrates the viability of an object-oriented approach for generalized simulation applications. Although object oriented programming languages are-relative to FORTRAN-somewhat austere, it is proposed that gas turbine simulations of an interdisciplinary nature will benefit significantly in terms of code reliability, maintainability, and manageability. This report elucidates specific gas turbine simulation obstacles that an object-oriented framework can overcome and describes the opportunity for interdisciplinary simulation that the approach offers.
Single-chip microcomputer application in high-altitude balloon orientation system
NASA Technical Reports Server (NTRS)
Lim, T. S.; Ehrmann, C. H.; Allison, S. R.
1980-01-01
This paper describes the application of a single-chip microcomputer in a high-altitude balloon instrumentation system. The system, consisting of a magnetometer, a stepping motor, a microcomputer and a gray code shaft encoder, is used to provide an orientation reference to point a scientific instrument at an object in space. The single-chip microcomputer, Intel's 8748, consisting of a CPU, program memory, data memory and I/O ports, is used to control the orientation of the system.
Parallelization of an Object-Oriented Unstructured Aeroacoustics Solver
NASA Technical Reports Server (NTRS)
Baggag, Abdelkader; Atkins, Harold; Oezturan, Can; Keyes, David
1999-01-01
A computational aeroacoustics code based on the discontinuous Galerkin method is ported to several parallel platforms using MPI. The discontinuous Galerkin method is a compact high-order method that retains its accuracy and robustness on non-smooth unstructured meshes. In its semi-discrete form, the discontinuous Galerkin method can be combined with explicit time marching methods making it well suited to time accurate computations. The compact nature of the discontinuous Galerkin method also makes it well suited for distributed memory parallel platforms. The original serial code was written using an object-oriented approach and was previously optimized for cache-based machines. The port to parallel platforms was achieved simply by treating partition boundaries as a type of boundary condition. Code modifications were minimal because boundary conditions were abstractions in the original program. Scalability results are presented for the SCI Origin, IBM SP2, and clusters of SGI and Sun workstations. Slightly superlinear speedup is achieved on a fixed-size problem on the Origin, due to cache effects.
New Capabilities in the Astrophysics Multispectral Archive Search Engine
NASA Astrophysics Data System (ADS)
Cheung, C. Y.; Kelley, S.; Roussopoulos, N.
The Astrophysics Multispectral Archive Search Engine (AMASE) uses object-oriented database techniques to provide a uniform multi-mission and multi-spectral interface to search for data in the distributed archives. We describe our experience of porting AMASE from Illustra object-relational DBMS to the Informix Universal Data Server. New capabilities and utilities have been developed, including a spatial datablade that supports Nearest Neighbor queries.
Boxwala, A A; Chaney, E L; Fritsch, D S; Friedman, C P; Rosenman, J G
1998-09-01
The purpose of this investigation was to design and implement a prototype physician workstation, called PortFolio, as a platform for developing and evaluating, by means of controlled observer studies, user interfaces and interactive tools for analyzing and managing digital portal images. The first observer study was designed to measure physician acceptance of workstation technology, as an alternative to a view box, for inspection and analysis of portal images for detection of treatment setup errors. The observer study was conducted in a controlled experimental setting to evaluate physician acceptance of the prototype workstation technology exemplified by PortFolio. PortFolio incorporates a windows user interface, a compact kit of carefully selected image analysis tools, and an object-oriented data base infrastructure. The kit evaluated in the observer study included tools for contrast enhancement, registration, and multimodal image visualization. Acceptance was measured in the context of performing portal image analysis in a structured protocol designed to simulate clinical practice. The acceptability and usage patterns were measured from semistructured questionnaires and logs of user interactions. Radiation oncologists, the subjects for this study, perceived the tools in PortFolio to be acceptable clinical aids. Concerns were expressed regarding user efficiency, particularly with respect to the image registration tools. The results of our observer study indicate that workstation technology is acceptable to radiation oncologists as an alternative to a view box for clinical detection of setup errors from digital portal images. Improvements in implementation, including more tools and a greater degree of automation in the image analysis tasks, are needed to make PortFolio more clinically practical.
NASA Technical Reports Server (NTRS)
Afjeh, Abdollah A.; Reed, John A.
2003-01-01
The following reports are presented on this project:A first year progress report on: Development of a Dynamically Configurable,Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation; A second year progress report on: Development of a Dynamically Configurable, Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation; An Extensible, Interchangeable and Sharable Database Model for Improving Multidisciplinary Aircraft Design; Interactive, Secure Web-enabled Aircraft Engine Simulation Using XML Databinding Integration; and Improving the Aircraft Design Process Using Web-based Modeling and Simulation.
PyEPL: a cross-platform experiment-programming library.
Geller, Aaron S; Schlefer, Ian K; Sederberg, Per B; Jacobs, Joshua; Kahana, Michael J
2007-11-01
PyEPL (the Python Experiment-Programming Library) is a Python library which allows cross-platform and object-oriented coding of behavioral experiments. It provides functions for displaying text and images onscreen, as well as playing and recording sound, and is capable of rendering 3-D virtual environments forspatial-navigation tasks. It is currently tested for Mac OS X and Linux. It interfaces with Activewire USB cards (on Mac OS X) and the parallel port (on Linux) for synchronization of experimental events with physiological recordings. In this article, we first present two sample programs which illustrate core PyEPL features. The examples demonstrate visual stimulus presentation, keyboard input, and simulation and exploration of a simple 3-D environment. We then describe the components and strategies used in implementing PyEPL.
PyEPL: A cross-platform experiment-programming library
Geller, Aaron S.; Schleifer, Ian K.; Sederberg, Per B.; Jacobs, Joshua; Kahana, Michael J.
2009-01-01
PyEPL (the Python Experiment-Programming Library) is a Python library which allows cross-platform and object-oriented coding of behavioral experiments. It provides functions for displaying text and images onscreen, as well as playing and recording sound, and is capable of rendering 3-D virtual environments for spatial-navigation tasks. It is currently tested for Mac OS X and Linux. It interfaces with Activewire USB cards (on Mac OS X) and the parallel port (on Linux) for synchronization of experimental events with physiological recordings. In this article, we first present two sample programs which illustrate core PyEPL features. The examples demonstrate visual stimulus presentation, keyboard input, and simulation and exploration of a simple 3-D environment. We then describe the components and strategies used in implementing PyEPL. PMID:18183912
Yu, Kan; Huang, De-xiu; Yin, Juan-juan; Bao, Jia-qi
2015-08-01
Three-port tunable optical filter is a key device in the all-optic intelligent switching network and dense wavelength division multiplexing system. The characteristics of the reflecting spectrum, especially the reflectivity and the isolation degree are very important to the three-port filter. Angle-tuned thin film filter is widely used as a three-port tunable filter for its high rectangular degree and good temperature stability. The characteristics of the reflecting spectrum are greatly influenced not only by the incident angle, but also by the wedge angle parameter of the non-paralleled wedge thin film filter. In the present paper, the influences of the wedge angle parameter to the reflectivity and the half bandwidth are analyzed, and the reflecting spectrum characterstics are simulationed in different wedge angle parameter and polarity. The wedge angle-tuned thin film filter with 0.8° wedge angle parameter is fabricated. The experimental results show that keeping the wedge angle the same orientation to the incident angle will worsen the reflectivity and the rectangular degree of the reflecting spectrum. However, keeping the wedge angle orientation reverse to the incident angle will enhance the reflectivity and decrease the bandwidth, which will give higher reflectivity and isolation degree to the three-port filter than that of high parallel degree angle-tuned thin film filter.
Object-oriented microcomputer software for earthquake seismology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroeger, G.C.
1993-02-01
A suite of graphically interactive applications for the retrieval, editing and modeling of earthquake seismograms have been developed using object-orientation programming methodology and the C++ language. Retriever is an application which allows the user to search for, browse, and extract seismic data from CD-ROMs produced by the National Earthquake Information Center (NEIC). The user can restrict the date, size, location and depth of desired earthquakes and extract selected data into a variety of common seismic file formats. Reformer is an application that allows the user to edit seismic data and data headers, and perform a variety of signal processing operationsmore » on that data. Synthesizer is a program for the generation and analysis of teleseismic P and SH synthetic seismograms. The program provides graphical manipulation of source parameters, crustal structures and seismograms, as well as near real-time response in generating synthetics for arbitrary flat-layered crustal structures. All three applications use class libraries developed for implementing geologic and seismic objects and views. Standard seismogram view objects and objects that encapsulate the reading and writing of different seismic data file formats are shared by all three applications. The focal mechanism views in Synthesizer are based on a generic stereonet view object. Interaction with the native graphical user interface is encapsulated in a class library in order to simplify the porting of the software to different operating systems and application programming interfaces. The software was developed on the Apple Macintosh and is being ported to UNIX/X-Window platforms.« less
Object-oriented Technology for Compressor Simulation
NASA Technical Reports Server (NTRS)
Drummond, C. K.; Follen, G. J.; Cannon, M. R.
1994-01-01
An object-oriented basis for interdisciplinary compressor simulation can, in principle, overcome several barriers associated with the traditional structured (procedural) development approach. This paper presents the results of a research effort with the objective to explore the repercussions on design, analysis, and implementation of a compressor model in an object oriented (OO) language, and to examine the ability of the OO system design to accommodate computational fluid dynamics (CFD) code for compressor performance prediction. Three fundamental results are that: (1) the selection of the object oriented language is not the central issue; enhanced (interdisciplinary) analysis capability derives from a broader focus on object-oriented technology; (2) object-oriented designs will produce more effective and reusable computer programs when the technology is applied to issues involving complex system inter-relationships (more so than when addressing the complex physics of an isolated discipline); and (3) the concept of disposable prototypes is effective for exploratory research programs, but this requires organizations to have a commensurate long-term perspective. This work also suggests that interdisciplinary simulation can be effectively accomplished (over several levels of fidelity) with a mixed language treatment (i.e., FORTRAN-C++), reinforcing the notion the OO technology implementation into simulations is a 'journey' in which the syntax can, by design, continuously evolve.
Knowledge-based simulation using object-oriented programming
NASA Technical Reports Server (NTRS)
Sidoran, Karen M.
1993-01-01
Simulations have become a powerful mechanism for understanding and modeling complex phenomena. Their results have had substantial impact on a broad range of decisions in the military, government, and industry. Because of this, new techniques are continually being explored and developed to make them even more useful, understandable, extendable, and efficient. One such area of research is the application of the knowledge-based methods of artificial intelligence (AI) to the computer simulation field. The goal of knowledge-based simulation is to facilitate building simulations of greatly increased power and comprehensibility by making use of deeper knowledge about the behavior of the simulated world. One technique for representing and manipulating knowledge that has been enhanced by the AI community is object-oriented programming. Using this technique, the entities of a discrete-event simulation can be viewed as objects in an object-oriented formulation. Knowledge can be factual (i.e., attributes of an entity) or behavioral (i.e., how the entity is to behave in certain circumstances). Rome Laboratory's Advanced Simulation Environment (RASE) was developed as a research vehicle to provide an enhanced simulation development environment for building more intelligent, interactive, flexible, and realistic simulations. This capability will support current and future battle management research and provide a test of the object-oriented paradigm for use in large scale military applications.
Modeling ground-based timber harvesting systems using computer simulation
Jingxin Wang; Chris B. LeDoux
2001-01-01
Modeling ground-based timber harvesting systems with an object-oriented methodology was investigated. Object-oriented modeling and design promote a better understanding of requirements, cleaner designs, and better maintainability of the harvesting simulation system. The model developed simulates chainsaw felling, drive-to-tree feller-buncher, swing-to-tree single-grip...
NASA Technical Reports Server (NTRS)
Steinman, Jeffrey S. (Inventor)
1998-01-01
The present invention is embodied in a method of performing object-oriented simulation and a system having inter-connected processor nodes operating in parallel to simulate mutual interactions of a set of discrete simulation objects distributed among the nodes as a sequence of discrete events changing state variables of respective simulation objects so as to generate new event-defining messages addressed to respective ones of the nodes. The object-oriented simulation is performed at each one of the nodes by assigning passive self-contained simulation objects to each one of the nodes, responding to messages received at one node by generating corresponding active event objects having user-defined inherent capabilities and individual time stamps and corresponding to respective events affecting one of the passive self-contained simulation objects of the one node, restricting the respective passive self-contained simulation objects to only providing and receiving information from die respective active event objects, requesting information and changing variables within a passive self-contained simulation object by the active event object, and producing corresponding messages specifying events resulting therefrom by the active event objects.
Etomica: an object-oriented framework for molecular simulation.
Schultz, Andrew J; Kofke, David A
2015-03-30
We describe the design of an object-oriented library of software components that are suitable for constructing simulations of systems of interacting particles. The emphasis of the discussion is on the general design of the components and how they interact, and less on details of the programming interface or its implementation. Example code is provided as an aid to understanding object-oriented programming structures and to demonstrate how the framework is applied. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Elsayed, Ayman; Shabaan Khalil, Nabil
2017-10-01
The competition among maritime ports is increasing continuously; the main purpose of Safaga port is to become the best option for companies to carry out their trading activities, particularly importing and exporting The main objective of this research is to evaluate and analyze factors that may significantly affect the levels of Safaga port efficiency in Egypt (particularly the infrastructural capacity). The assessment of such efficiency is a task that must play an important role in the management of Safaga port in order to improve the possibility of development and success in commercial activities. Drawing on Data Envelopment Analysis(DEA)models, this paper develops a manner of assessing the comparative efficiency of Safaga port in Egypt during the study period 2004-2013. Previous research for port efficiencies measurement usually using radial DEA models (DEA-CCR), (DEA-BCC), but not using non radial DEA model. The research applying radial - output oriented (DEA-CCR), (DEA-BCC) and non-radial (DEA-SBM) model with ten inputs and four outputs. The results were obtained from the analysis input and output variables based on DEA-CCR, DEA-BCC and SBM models, by software Max DEA Pro 6.3. DP World Sokhna port higher efficiency for all outputs were compared to Safaga port. DP World Sokhna position is below the southern entrance to the Suez Canal, on the Red Sea, Egypt, makes it strategically located to handle cargo transiting through one of the world's busiest commercial waterways.
Simulating complex intracellular processes using object-oriented computational modelling.
Johnson, Colin G; Goldman, Jacki P; Gullick, William J
2004-11-01
The aim of this paper is to give an overview of computer modelling and simulation in cellular biology, in particular as applied to complex biochemical processes within the cell. This is illustrated by the use of the techniques of object-oriented modelling, where the computer is used to construct abstractions of objects in the domain being modelled, and these objects then interact within the computer to simulate the system and allow emergent properties to be observed. The paper also discusses the role of computer simulation in understanding complexity in biological systems, and the kinds of information which can be obtained about biology via simulation.
DOT National Transportation Integrated Search
2017-11-01
The aim of this study is to examine the extent that freight and passenger transportation planning overlap within the context of transit-oriented developments (TODs) near ports. This study also includes a case study of New Orleans. Research questions ...
Object-oriented code SUR for plasma kinetic simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levchenko, V.D.; Sigov, Y.S.
1995-12-31
We have developed a self-consistent simulation code based on object-oriented model of plasma (OOMP) for solving the Vlasov/Poisson (V/P), Vlasov/Maxwell (V/M), Bhatnagar-Gross-Krook (BGK) as well as Fokker-Planck (FP) kinetic equations. The application of an object-oriented approach (OOA) to simulation of plasmas and plasma-like media by means of splitting methods permits to uniformly describe and solve the wide circle of plasma kinetics problems, including those being very complicated: many-dimensional, relativistic, with regard for collisions, specific boundary conditions etc. This paper gives the brief description of possibilities of the SUR code, as a concrete realization of OOMP.
Object oriented studies into artificial space debris
NASA Technical Reports Server (NTRS)
Adamson, J. M.; Marshall, G.
1988-01-01
A prototype simulation is being developed under contract to the Royal Aerospace Establishment (RAE), Farnborough, England, to assist in the discrimination of artificial space objects/debris. The methodology undertaken has been to link Object Oriented programming, intelligent knowledge based system (IKBS) techniques and advanced computer technology with numeric analysis to provide a graphical, symbolic simulation. The objective is to provide an additional layer of understanding on top of conventional classification methods. Use is being made of object and rule based knowledge representation, multiple reasoning, truth maintenance and uncertainty. Software tools being used include Knowledge Engineering Environment (KEE) and SymTactics for knowledge representation. Hooks are being developed within the SymTactics framework to incorporate mathematical models describing orbital motion and fragmentation. Penetration and structural analysis can also be incorporated. SymTactics is an Object Oriented discrete event simulation tool built as a domain specific extension to the KEE environment. The tool provides facilities for building, debugging and monitoring dynamic (military) simulations.
Progress in modeling and simulation.
Kindler, E
1998-01-01
For the modeling of systems, the computers are more and more used while the other "media" (including the human intellect) carrying the models are abandoned. For the modeling of knowledges, i.e. of more or less general concepts (possibly used to model systems composed of instances of such concepts), the object-oriented programming is nowadays widely used. For the modeling of processes existing and developing in the time, computer simulation is used, the results of which are often presented by means of animation (graphical pictures moving and changing in time). Unfortunately, the object-oriented programming tools are commonly not designed to be of a great use for simulation while the programming tools for simulation do not enable their users to apply the advantages of the object-oriented programming. Nevertheless, there are exclusions enabling to use general concepts represented at a computer, for constructing simulation models and for their easy modification. They are described in the present paper, together with true definitions of modeling, simulation and object-oriented programming (including cases that do not satisfy the definitions but are dangerous to introduce misunderstanding), an outline of their applications and of their further development. In relation to the fact that computing systems are being introduced to be control components into a large spectrum of (technological, social and biological) systems, the attention is oriented to models of systems containing modeling components.
NASA Astrophysics Data System (ADS)
Aytore, Betul; Yalciner, Ahmet Cevdet; Zaytsev, Andrey; Cankaya, Zeynep Ceren; Suzen, Mehmet Lütfi
2016-08-01
Turkey is highly prone to earthquakes because of active fault zones in the region. The Marmara region located at the western extension of the North Anatolian Fault Zone (NAFZ) is one of the most tectonically active zones in Turkey. Numerous catastrophic events such as earthquakes or earthquake/landslide-induced tsunamis have occurred in the Marmara Sea basin. According to studies on the past tsunami records, the Marmara coasts have been hit by 35 different tsunami events in the last 2000 years. The recent occurrences of catastrophic tsunamis in the world's oceans have also raised awareness about tsunamis that might take place around the Marmara coasts. Similarly, comprehensive studies on tsunamis, such as preparation of tsunami databases, tsunami hazard analysis and assessments, risk evaluations for the potential tsunami-prone regions, and establishing warning systems have accelerated. However, a complete tsunami inundation analysis in high resolution will provide a better understanding of the effects of tsunamis on a specific critical structure located in the Marmara Sea. Ports are one of those critical structures that are susceptible to marine disasters. Resilience of ports and harbors against tsunamis are essential for proper, efficient, and successful rescue operations to reduce loss of life and property. Considering this, high-resolution simulations have been carried out in the Marmara Sea by focusing on Haydarpaşa Port of the megacity Istanbul. In the first stage of simulations, the most critical tsunami sources possibly effective for Haydarpaşa Port were inputted, and the computed tsunami parameters at the port were compared to determine the most critical tsunami scenario. In the second stage of simulations, the nested domains from 90 m gird size to 10 m grid size (in the port region) were used, and the most critical tsunami scenario was modeled. In the third stage of simulations, the topography of the port and its regions were used in the two nested domains in 3-m and 1-m resolutions and the water elevations computed from the previous simulations were inputted from the border of the large domain. A tsunami numerical code, NAMI DANCE, was used in the simulations. The tsunami parameters in the highest resolution were computed in and around the port. The effect of the data resolution on the computed results has been presented. The performance of the port structures and possible effects of tsunami on port operations have been discussed. Since the harbor protection structures have not been designed to withstand tsunamis, the breakwaters' stability becomes one of the major concerns for less agitation and inundation under tsunami in Haydarpaşa Port for resilience. The flow depth, momentum fluxes, and current pattern are the other concerns that cause unexpected circulations and uncontrolled movements of objects on land and vessels in the sea.
NASA Technical Reports Server (NTRS)
Golias, Mihalis M.
2011-01-01
Berth scheduling is a critical function at marine container terminals and determining the best berth schedule depends on several factors including the type and function of the port, size of the port, location, nearby competition, and type of contractual agreement between the terminal and the carriers. In this paper we formulate the berth scheduling problem as a bi-objective mixed-integer problem with the objective to maximize customer satisfaction and reliability of the berth schedule under the assumption that vessel handling times are stochastic parameters following a discrete and known probability distribution. A combination of an exact algorithm, a Genetic Algorithms based heuristic and a simulation post-Pareto analysis is proposed as the solution approach to the resulting problem. Based on a number of experiments it is concluded that the proposed berth scheduling policy outperforms the berth scheduling policy where reliability is not considered.
Kulhánek, Tomáš; Ježek, Filip; Mateják, Marek; Šilar, Jan; Kofránek, Jří
2015-08-01
This work introduces experiences of teaching modeling and simulation for graduate students in the field of biomedical engineering. We emphasize the acausal and object-oriented modeling technique and we have moved from teaching block-oriented tool MATLAB Simulink to acausal and object oriented Modelica language, which can express the structure of the system rather than a process of computation. However, block-oriented approach is allowed in Modelica language too and students have tendency to express the process of computation. Usage of the exemplar acausal domains and approach allows students to understand the modeled problems much deeper. The causality of the computation is derived automatically by the simulation tool.
An Ada Object Oriented Missile Flight Simulation
1991-09-01
identify by block number) This thesis uses the Ada programming language in the design and development of an air-to-air missile flight simulation with...object oriented techniques and sound software engineering principles. The simulation is designed to be more understandable, modifiable, efficient and...Department of Computer Science ii ABSTRACT This thesis uses the Ada programming language in the design and development of an air-to-air missile flight
Performance Analysis of an Actor-Based Distributed Simulation
NASA Technical Reports Server (NTRS)
Schoeffler, James D.
1998-01-01
Object-oriented design of simulation programs appears to be very attractive because of the natural association of components in the simulated system with objects. There is great potential in distributing the simulation across several computers for the purpose of parallel computation and its consequent handling of larger problems in less elapsed time. One approach to such a design is to use "actors", that is, active objects with their own thread of control. Because these objects execute concurrently, communication is via messages. This is in contrast to an object-oriented design using passive objects where communication between objects is via method calls (direct calls when they are in the same address space and remote procedure calls when they are in different address spaces or different machines). This paper describes a performance analysis program for the evaluation of a design for distributed simulations based upon actors.
NASA Astrophysics Data System (ADS)
Hemker, Roy
1999-11-01
The advances in computational speed make it now possible to do full 3D PIC simulations of laser plasma and beam plasma interactions, but at the same time the increased complexity of these problems makes it necessary to apply modern approaches like object oriented programming to the development of simulation codes. We report here on our progress in developing an object oriented parallel 3D PIC code using Fortran 90. In its current state the code contains algorithms for 1D, 2D, and 3D simulations in cartesian coordinates and for 2D cylindrically-symmetric geometry. For all of these algorithms the code allows for a moving simulation window and arbitrary domain decomposition for any number of dimensions. Recent 3D simulation results on the propagation of intense laser and electron beams through plasmas will be presented.
Four-port coupled channel-guide device based on 2D photonic crystal structure
NASA Astrophysics Data System (ADS)
Camargo, Edilson A.; Chong, Harold M. H.; De La Rue, Richard M.
2004-12-01
We have fabricated and measured a four-port coupled channel-waveguide device using W1 channel waveguides oriented along ΓK directions in a two-dimensional (2D) hole-based planar photonic crystal (PhC) based on silicon-on-insulator (SOI) waveguide material, at operation wavelengths around 1550 nm. 2D FDTD simulations and experimental results are shown and compared. The structure has been designed using a mode conversion approach, combined with coupled-mode concepts. The overall length of the photonic crystal structure is typically about 39 μm and the structure has been fabricated using a combination of direct-write electron-beam lithography (EBL) and dry-etch processing. Devices were measured using a tunable laser with end-fire coupling into the planar structure.
Mission and Safety Critical (MASC) plans for the MASC Kernel simulation
NASA Technical Reports Server (NTRS)
1991-01-01
This report discusses a prototype for Mission and Safety Critical (MASC) kernel simulation which explains the intended approach and how the simulation will be used. Smalltalk is chosen for the simulation because of usefulness in quickly building working models of the systems and its object-oriented approach to software. A scenario is also introduced to give details about how the simulation works. The eventual system will be a fully object-oriented one implemented in Ada via Dragoon. To implement the simulation, a scenario using elements typical of those in the Space Station, was created.
NASA Technical Reports Server (NTRS)
Afjeh, Abdollah A.; Reed, John A.
2003-01-01
This research is aimed at developing a neiv and advanced simulation framework that will significantly improve the overall efficiency of aerospace systems design and development. This objective will be accomplished through an innovative integration of object-oriented and Web-based technologies ivith both new and proven simulation methodologies. The basic approach involves Ihree major areas of research: Aerospace system and component representation using a hierarchical object-oriented component model which enables the use of multimodels and enforces component interoperability. Collaborative software environment that streamlines the process of developing, sharing and integrating aerospace design and analysis models. . Development of a distributed infrastructure which enables Web-based exchange of models to simplify the collaborative design process, and to support computationally intensive aerospace design and analysis processes. Research for the first year dealt with the design of the basic architecture and supporting infrastructure, an initial implementation of that design, and a demonstration of its application to an example aircraft engine system simulation.
ProperCAD: A portable object-oriented parallel environment for VLSI CAD
NASA Technical Reports Server (NTRS)
Ramkumar, Balkrishna; Banerjee, Prithviraj
1993-01-01
Most parallel algorithms for VLSI CAD proposed to date have one important drawback: they work efficiently only on machines that they were designed for. As a result, algorithms designed to date are dependent on the architecture for which they are developed and do not port easily to other parallel architectures. A new project under way to address this problem is described. A Portable object-oriented parallel environment for CAD algorithms (ProperCAD) is being developed. The objectives of this research are (1) to develop new parallel algorithms that run in a portable object-oriented environment (CAD algorithms using a general purpose platform for portable parallel programming called CARM is being developed and a C++ environment that is truly object-oriented and specialized for CAD applications is also being developed); and (2) to design the parallel algorithms around a good sequential algorithm with a well-defined parallel-sequential interface (permitting the parallel algorithm to benefit from future developments in sequential algorithms). One CAD application that has been implemented as part of the ProperCAD project, flat VLSI circuit extraction, is described. The algorithm, its implementation, and its performance on a range of parallel machines are discussed in detail. It currently runs on an Encore Multimax, a Sequent Symmetry, Intel iPSC/2 and i860 hypercubes, a NCUBE 2 hypercube, and a network of Sun Sparc workstations. Performance data for other applications that were developed are provided: namely test pattern generation for sequential circuits, parallel logic synthesis, and standard cell placement.
An Object-Oriented Finite Element Framework for Multiphysics Phase Field Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael R Tonks; Derek R Gaston; Paul C Millett
2012-01-01
The phase field approach is a powerful and popular method for modeling microstructure evolution. In this work, advanced numerical tools are used to create a phase field framework that facilitates rapid model development. This framework, called MARMOT, is based on Idaho National Laboratory's finite element Multiphysics Object-Oriented Simulation Environment. In MARMOT, the system of phase field partial differential equations (PDEs) are solved simultaneously with PDEs describing additional physics, such as solid mechanics and heat conduction, using the Jacobian-Free Newton Krylov Method. An object-oriented architecture is created by taking advantage of commonalities in phase fields models to facilitate development of newmore » models with very little written code. In addition, MARMOT provides access to mesh and time step adaptivity, reducing the cost for performing simulations with large disparities in both spatial and temporal scales. In this work, phase separation simulations are used to show the numerical performance of MARMOT. Deformation-induced grain growth and void growth simulations are included to demonstrate the muliphysics capability.« less
1991-12-01
abstract data type is, what an object-oriented design is and how to apply "software engineering" principles to the design of both of them. I owe a great... Program (ASVP), a research and development effort by two aerospace contractors to redesign and implement subsets of two existing flight simulators in...effort addresses how to implement a simulator designed using the SEI OOD Paradigm on a distributed, parallel, multiple instruction, multiple data (MIMD
Callewaert, Francois; Butun, Serkan; Li, Zhongyang; Aydin, Koray
2016-01-01
The objective-first inverse-design algorithm is used to design an ultra-compact optical diode. Based on silicon and air only, this optical diode relies on asymmetric spatial mode conversion between the left and right ports. The first even mode incident from the left port is transmitted to the right port after being converted into an odd mode. On the other hand, same mode incident from the right port is reflected back by the optical diode dielectric structure. The convergence and performance of the algorithm are studied, along with a transform method that converts continuous permittivity medium into a binary material design. The optimal device is studied with full-wave electromagnetic simulations to compare its behavior under right and left incidences, in 2D and 3D settings as well. A parametric study is designed to understand the impact of the design space size and initial conditions on the optimized devices performance. A broadband optical diode behavior is observed after optimization, with a large rejection ratio between the two transmission directions. This illustrates the potential of the objective-first inverse-design method to design ultra-compact broadband photonic devices. PMID:27586852
Design of object-oriented distributed simulation classes
NASA Technical Reports Server (NTRS)
Schoeffler, James D. (Principal Investigator)
1995-01-01
Distributed simulation of aircraft engines as part of a computer aided design package is being developed by NASA Lewis Research Center for the aircraft industry. The project is called NPSS, an acronym for 'Numerical Propulsion Simulation System'. NPSS is a flexible object-oriented simulation of aircraft engines requiring high computing speed. It is desirable to run the simulation on a distributed computer system with multiple processors executing portions of the simulation in parallel. The purpose of this research was to investigate object-oriented structures such that individual objects could be distributed. The set of classes used in the simulation must be designed to facilitate parallel computation. Since the portions of the simulation carried out in parallel are not independent of one another, there is the need for communication among the parallel executing processors which in turn implies need for their synchronization. Communication and synchronization can lead to decreased throughput as parallel processors wait for data or synchronization signals from other processors. As a result of this research, the following have been accomplished. The design and implementation of a set of simulation classes which result in a distributed simulation control program have been completed. The design is based upon MIT 'Actor' model of a concurrent object and uses 'connectors' to structure dynamic connections between simulation components. Connectors may be dynamically created according to the distribution of objects among machines at execution time without any programming changes. Measurements of the basic performance have been carried out with the result that communication overhead of the distributed design is swamped by the computation time of modules unless modules have very short execution times per iteration or time step. An analytical performance model based upon queuing network theory has been designed and implemented. Its application to realistic configurations has not been carried out.
Design of Object-Oriented Distributed Simulation Classes
NASA Technical Reports Server (NTRS)
Schoeffler, James D.
1995-01-01
Distributed simulation of aircraft engines as part of a computer aided design package being developed by NASA Lewis Research Center for the aircraft industry. The project is called NPSS, an acronym for "Numerical Propulsion Simulation System". NPSS is a flexible object-oriented simulation of aircraft engines requiring high computing speed. It is desirable to run the simulation on a distributed computer system with multiple processors executing portions of the simulation in parallel. The purpose of this research was to investigate object-oriented structures such that individual objects could be distributed. The set of classes used in the simulation must be designed to facilitate parallel computation. Since the portions of the simulation carried out in parallel are not independent of one another, there is the need for communication among the parallel executing processors which in turn implies need for their synchronization. Communication and synchronization can lead to decreased throughput as parallel processors wait for data or synchronization signals from other processors. As a result of this research, the following have been accomplished. The design and implementation of a set of simulation classes which result in a distributed simulation control program have been completed. The design is based upon MIT "Actor" model of a concurrent object and uses "connectors" to structure dynamic connections between simulation components. Connectors may be dynamically created according to the distribution of objects among machines at execution time without any programming changes. Measurements of the basic performance have been carried out with the result that communication overhead of the distributed design is swamped by the computation time of modules unless modules have very short execution times per iteration or time step. An analytical performance model based upon queuing network theory has been designed and implemented. Its application to realistic configurations has not been carried out.
The effect of implied orientation derived from verbal context on picture recognition.
Stanfield, R A; Zwaan, R A
2001-03-01
Perceptual symbol systems assume an analogue relationship between a symbol and its referent, whereas amodal symbol systems assume an arbitrary relationship between a symbol and its referent. According to perceptual symbol theories, the complete representation of an object, called a simulation, should reflect physical characteristics of the object. Amodal theories, in contrast, do not make this prediction. We tested the hypothesis, derived from perceptual symbol theories, that people mentally represent the orientation of an object implied by a verbal description. Orientation (vertical-horizontal) was manipulated by having participants read a sentence that implicitly suggested a particular orientation for an object. Then recognition latencies to pictures of the object in each of the two orientations were measured. Pictures matching the orientation of the object implied by the sentence were responded to faster than pictures that did not match the orientation. This finding is interpreted as offering support for theories positing perceptual symbol systems.
PSYCHE: An Object-Oriented Approach to Simulating Medical Education
Mullen, Jamie A.
1990-01-01
Traditional approaches to computer-assisted instruction (CAI) do not provide realistic simulations of medical education, in part because they do not utilize heterogeneous knowledge bases for their source of domain knowledge. PSYCHE, a CAI program designed to teach hypothetico-deductive psychiatric decision-making to medical students, uses an object-oriented implementation of an intelligent tutoring system (ITS) to model the student, domain expert, and tutor. It models the transactions between the participants in complex transaction chains, and uses heterogeneous knowledge bases to represent both domain and procedural knowledge in clinical medicine. This object-oriented approach is a flexible and dynamic approach to modeling, and represents a potentially valuable tool for the investigation of medical education and decision-making.
Towards a general object-oriented software development methodology
NASA Technical Reports Server (NTRS)
Seidewitz, ED; Stark, Mike
1986-01-01
An object is an abstract software model of a problem domain entity. Objects are packages of both data and operations of that data (Goldberg 83, Booch 83). The Ada (tm) package construct is representative of this general notion of an object. Object-oriented design is the technique of using objects as the basic unit of modularity in systems design. The Software Engineering Laboratory at the Goddard Space Flight Center is currently involved in a pilot program to develop a flight dynamics simulator in Ada (approximately 40,000 statements) using object-oriented methods. Several authors have applied object-oriented concepts to Ada (e.g., Booch 83, Cherry 85). It was found that these methodologies are limited. As a result a more general approach was synthesized with allows a designer to apply powerful object-oriented principles to a wide range of applications and at all stages of design. An overview is provided of this approach. Further, how object-oriented design fits into the overall software life-cycle is considered.
SIMOGEN - An Object-Oriented Language for Simulation
1989-03-01
program generator must also be written in the same prcgramming languaje . In this case, the C language was chosen, for the following main reasons...3), March 88. 4. PRESTO: A System for Object-Oriented Parallel Programing B N Bershad, E D Lazowska & H M Levy Software Practice and Experience, Vol...U.S. Depare nt of Defence ANSI/ML-STD 1815A. 7. Object-oriented Development Grady Booch Transactions on Software Engineering , February 86. 8. A
Object-Oriented Scientific Programming with Fortran 90
NASA Technical Reports Server (NTRS)
Norton, C.
1998-01-01
Fortran 90 is a modern language that introduces many important new features beneficial for scientific programming. We discuss our experiences in plasma particle simulation and unstructured adaptive mesh refinement on supercomputers, illustrating the features of Fortran 90 that support the object-oriented methodology.
NASA Astrophysics Data System (ADS)
Cardall, Christian Y.; Budiardja, Reuben D.
2017-05-01
GenASiS Basics provides Fortran 2003 classes furnishing extensible object-oriented utilitarian functionality for large-scale physics simulations on distributed memory supercomputers. This functionality includes physical units and constants; display to the screen or standard output device; message passing; I/O to disk; and runtime parameter management and usage statistics. This revision -Version 2 of Basics - makes mostly minor additions to functionality and includes some simplifying name changes.
A Hybrid Parachute Simulation Environment for the Orion Parachute Development Project
NASA Technical Reports Server (NTRS)
Moore, James W.
2011-01-01
A parachute simulation environment (PSE) has been developed that aims to take advantage of legacy parachute simulation codes and modern object-oriented programming techniques. This hybrid simulation environment provides the parachute analyst with a natural and intuitive way to construct simulation tasks while preserving the pedigree and authority of established parachute simulations. NASA currently employs four simulation tools for developing and analyzing air-drop tests performed by the CEV Parachute Assembly System (CPAS) Project. These tools were developed at different times, in different languages, and with different capabilities in mind. As a result, each tool has a distinct interface and set of inputs and outputs. However, regardless of the simulation code that is most appropriate for the type of test, engineers typically perform similar tasks for each drop test such as prediction of loads, assessment of altitude, and sequencing of disreefs or cut-aways. An object-oriented approach to simulation configuration allows the analyst to choose models of real physical test articles (parachutes, vehicles, etc.) and sequence them to achieve the desired test conditions. Once configured, these objects are translated into traditional input lists and processed by the legacy simulation codes. This approach minimizes the number of sim inputs that the engineer must track while configuring an input file. An object oriented approach to simulation output allows a common set of post-processing functions to perform routine tasks such as plotting and timeline generation with minimal sensitivity to the simulation that generated the data. Flight test data may also be translated into the common output class to simplify test reconstruction and analysis.
Vaccaro, Christine M; Crisp, Catrina C; Fellner, Angela N; Jackson, Christopher; Kleeman, Steven D; Pavelka, James
2013-01-01
The objective of this study was to compare the effect of virtual reality simulation training plus robotic orientation versus robotic orientation alone on performance of surgical tasks using an inanimate model. Surgical resident physicians were enrolled in this assessor-blinded randomized controlled trial. Residents were randomized to receive either (1) robotic virtual reality simulation training plus standard robotic orientation or (2) standard robotic orientation alone. Performance of surgical tasks was assessed at baseline and after the intervention. Nine of 33 modules from the da Vinci Skills Simulator were chosen. Experts in robotic surgery evaluated each resident's videotaped performance of the inanimate model using the Global Rating Scale (GRS) and Objective Structured Assessment of Technical Skills-modified for robotic-assisted surgery (rOSATS). Nine resident physicians were enrolled in the simulation group and 9 in the control group. As a whole, participants improved their total time, time to incision, and suture time from baseline to repeat testing on the inanimate model (P = 0.001, 0.003, <0.001, respectively). Both groups improved their GRS and rOSATS scores significantly (both P < 0.001); however, the GRS overall pass rate was higher in the simulation group compared with the control group (89% vs 44%, P = 0.066). Standard robotic orientation and/or robotic virtual reality simulation improve surgical skills on an inanimate model, although this may be a function of the initial "practice" on the inanimate model and repeat testing of a known task. However, robotic virtual reality simulation training increases GRS pass rates consistent with improved robotic technical skills learned in a virtual reality environment.
MODELING DISPERSANT INTERACTIONS WITH OIL SPILLS
EPA is developing a model called the EPA Research Object-Oriented Oil Spill Model (ERO3S) and associated databases to simulate the impacts of dispersants on oil slicks. Because there are features of oil slicks that align naturally with major concepts of object-oriented programmi...
Language comprehenders retain implied shape and orientation of objects.
Pecher, Diane; van Dantzig, Saskia; Zwaan, Rolf A; Zeelenberg, René
2009-06-01
According to theories of embodied cognition, language comprehenders simulate sensorimotor experiences to represent the meaning of what they read. Previous studies have shown that picture recognition is better if the object in the picture matches the orientation or shape implied by a preceding sentence. In order to test whether strategic imagery may explain previous findings, language comprehenders first read a list of sentences in which objects were mentioned. Only once the complete list had been read was recognition memory tested with pictures. Recognition performance was better if the orientation or shape of the object matched that implied by the sentence, both immediately after reading the complete list of sentences and after a 45-min delay. These results suggest that previously found match effects were not due to strategic imagery and show that details of sensorimotor simulations are retained over longer periods.
Towards a general object-oriented software development methodology
NASA Technical Reports Server (NTRS)
Seidewitz, ED; Stark, Mike
1986-01-01
Object diagrams were used to design a 5000 statement team training exercise and to design the entire dynamics simulator. The object diagrams are also being used to design another 50,000 statement Ada system and a personal computer based system that will be written in Modula II. The design methodology evolves out of these experiences as well as the limitations of other methods that were studied. Object diagrams, abstraction analysis, and associated principles provide a unified framework which encompasses concepts from Yourdin, Booch, and Cherry. This general object-oriented approach handles high level system design, possibly with concurrency, through object-oriented decomposition down to a completely functional level. How object-oriented concepts can be used in other phases of the software life-cycle, such as specification and testing is being studied concurrently.
The use of virtual reality computer simulation in learning Port-A cath injection.
Tsai, Sing-Ling; Chai, Sin-Kuo; Hsieh, Li-Feng; Lin, Shirling; Taur, Fang-Meei; Sung, Wen-Hsu; Doong, Ji-Liang
2008-03-01
Cost-benefit management trends in Taiwan healthcare settings have led nurses to perform more invasive skills, such as Port-A cath administration of medications. Accordingly, nurses must be well-prepared prior to teaching by the mentor and supervision method. The purpose of the current study was to develop a computer-assisted protocol using virtual reality (VR) in performing Port-A cath as a training program for novice nurses. A pre-tested and post-tested control group experimental design was used in this study. Seventy-seven novice nurses were invited from one large medical center hospital in North Taiwan. Thirty-seven and forty nurses were randomly assigned to experimental and control groups. First, we designed a 40 minute port-A cath injection VR simulation. Then, the experimental group practiced this simulation two times over 3 weeks. The control group attended the traditional class. The post-test 1 was right after completion of the simulation practice. The post-test 2 was after the second simulation practice in 3 weeks. The results showed that most novice nurses lacked Port-A cath experience both in the classroom and during the period of their practice training. The knowledge score regarding the Port-A cath technique was significantly higher in the nurses that participated in the simulation training than in the control group. The novice nurses were most satisfied with the reduction in their fear of performing the Port-A cath technique and their enhanced clinical skills. VR simulation significantly reduced error rates and increased correct equipment selection, showing that nurses who participated in the simulation may be better prepared for inserting Port-A cath.
GenASiS Basics: Object-oriented utilitarian functionality for large-scale physics simulations
Cardall, Christian Y.; Budiardja, Reuben D.
2015-06-11
Aside from numerical algorithms and problem setup, large-scale physics simulations on distributed-memory supercomputers require more basic utilitarian functionality, such as physical units and constants; display to the screen or standard output device; message passing; I/O to disk; and runtime parameter management and usage statistics. Here we describe and make available Fortran 2003 classes furnishing extensible object-oriented implementations of this sort of rudimentary functionality, along with individual `unit test' programs and larger example problems demonstrating their use. Lastly, these classes compose the Basics division of our developing astrophysics simulation code GenASiS (General Astrophysical Simulation System), but their fundamental nature makes themmore » useful for physics simulations in many fields.« less
SIMSAT: An object oriented architecture for real-time satellite simulation
NASA Technical Reports Server (NTRS)
Williams, Adam P.
1993-01-01
Real-time satellite simulators are vital tools in the support of satellite missions. They are used in the testing of ground control systems, the training of operators, the validation of operational procedures, and the development of contingency plans. The simulators must provide high-fidelity modeling of the satellite, which requires detailed system information, much of which is not available until relatively near launch. The short time-scales and resulting high productivity required of such simulator developments culminates in the need for a reusable infrastructure which can be used as a basis for each simulator. This paper describes a major new simulation infrastructure package, the Software Infrastructure for Modelling Satellites (SIMSAT). It outlines the object oriented design methodology used, describes the resulting design, and discusses the advantages and disadvantages experienced in applying the methodology.
An object-oriented computational model to study cardiopulmonary hemodynamic interactions in humans.
Ngo, Chuong; Dahlmanns, Stephan; Vollmer, Thomas; Misgeld, Berno; Leonhardt, Steffen
2018-06-01
This work introduces an object-oriented computational model to study cardiopulmonary interactions in humans. Modeling was performed in object-oriented programing language Matlab Simscape, where model components are connected with each other through physical connections. Constitutive and phenomenological equations of model elements are implemented based on their non-linear pressure-volume or pressure-flow relationship. The model includes more than 30 physiological compartments, which belong either to the cardiovascular or respiratory system. The model considers non-linear behaviors of veins, pulmonary capillaries, collapsible airways, alveoli, and the chest wall. Model parameters were derisved based on literature values. Model validation was performed by comparing simulation results with clinical and animal data reported in literature. The model is able to provide quantitative values of alveolar, pleural, interstitial, aortic and ventricular pressures, as well as heart and lung volumes during spontaneous breathing and mechanical ventilation. Results of baseline simulation demonstrate the consistency of the assigned parameters. Simulation results during mechanical ventilation with PEEP trials can be directly compared with animal and clinical data given in literature. Object-oriented programming languages can be used to model interconnected systems including model non-linearities. The model provides a useful tool to investigate cardiopulmonary activity during spontaneous breathing and mechanical ventilation. Copyright © 2018 Elsevier B.V. All rights reserved.
C++ Planning and Resource Reasoning (PARR) shell
NASA Technical Reports Server (NTRS)
Mcintyre, James; Tuchman, Alan; Mclean, David; Littlefield, Ronald
1994-01-01
This paper describes a generic, C++ version of the Planning and Resource Reasoning (PARR) shell which has been developed to supersede the C-based versions of PARR that are currently used to support AI planning and scheduling applications in flight operations centers at Goddard Space Flight Center. This new object-oriented version of PARR can be more easily customized to build a variety of planning and scheduling applications, and C++ PARR applications can be more easily ported to different environments. Genetic classes, constraints, strategies, and paradigms are described along with two types of PARR interfaces.
NASA Astrophysics Data System (ADS)
Oh, Kwang Jin; Kang, Ji Hoon; Myung, Hun Joo
2012-02-01
We have revised a general purpose parallel molecular dynamics simulation program mm_par using the object-oriented programming. We parallelized the revised version using a hierarchical scheme in order to utilize more processors for a given system size. The benchmark result will be presented here. New version program summaryProgram title: mm_par2.0 Catalogue identifier: ADXP_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXP_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2 390 858 No. of bytes in distributed program, including test data, etc.: 25 068 310 Distribution format: tar.gz Programming language: C++ Computer: Any system operated by Linux or Unix Operating system: Linux Classification: 7.7 External routines: We provide wrappers for FFTW [1], Intel MKL library [2] FFT routine, and Numerical recipes [3] FFT, random number generator, and eigenvalue solver routines, SPRNG [4] random number generator, Mersenne Twister [5] random number generator, space filling curve routine. Catalogue identifier of previous version: ADXP_v1_0 Journal reference of previous version: Comput. Phys. Comm. 174 (2006) 560 Does the new version supersede the previous version?: Yes Nature of problem: Structural, thermodynamic, and dynamical properties of fluids and solids from microscopic scales to mesoscopic scales. Solution method: Molecular dynamics simulation in NVE, NVT, and NPT ensemble, Langevin dynamics simulation, dissipative particle dynamics simulation. Reasons for new version: First, object-oriented programming has been used, which is known to be open for extension and closed for modification. It is also known to be better for maintenance. Second, version 1.0 was based on atom decomposition and domain decomposition scheme [6] for parallelization. However, atom decomposition is not popular due to its poor scalability. On the other hand, domain decomposition scheme is better for scalability. It still has a limitation in utilizing a large number of cores on recent petascale computers due to the requirement that the domain size is larger than the potential cutoff distance. To go beyond such a limitation, a hierarchical parallelization scheme has been adopted in this new version and implemented using MPI [7] and OPENMP [8]. Summary of revisions: (1) Object-oriented programming has been used. (2) A hierarchical parallelization scheme has been adopted. (3) SPME routine has been fully parallelized with parallel 3D FFT using volumetric decomposition scheme [9]. K.J.O. thanks Mr. Seung Min Lee for useful discussion on programming and debugging. Running time: Running time depends on system size and methods used. For test system containing a protein (PDB id: 5DHFR) with CHARMM22 force field [10] and 7023 TIP3P [11] waters in simulation box having dimension 62.23 Å×62.23 Å×62.23 Å, the benchmark results are given in Fig. 1. Here the potential cutoff distance was set to 12 Å and the switching function was applied from 10 Å for the force calculation in real space. For the SPME [12] calculation, K, K, and K were set to 64 and the interpolation order was set to 4. To do the fast Fourier transform, we used Intel MKL library. All bonds including hydrogen atoms were constrained using SHAKE/RATTLE algorithms [13,14]. The code was compiled using Intel compiler version 11.1 and mvapich2 version 1.5. Fig. 2 shows performance gains from using CUDA-enabled version [15] of mm_par for 5DHFR simulation in water on Intel Core2Quad 2.83 GHz and GeForce GTX 580. Even though mm_par2.0 is not ported yet for GPU, its performance data would be useful to expect mm_par2.0 performance on GPU. Timing results for 1000 MD steps. 1, 2, 4, and 8 in the figure mean the number of OPENMP threads. Timing results for 1000 MD steps from double precision simulation on CPU, single precision simulation on GPU, and double precision simulation on GPU.
Effect of varying internal geometry on the static performance of rectangular thrust-reverser ports
NASA Technical Reports Server (NTRS)
Re, Richard J.; Mason, Mary L.
1987-01-01
An investigation has been conducted to evaluate the effects of several geometric parameters on the internal performance of rectangular thrust-reverser ports for nonaxisymmetric nozzles. Internal geometry was varied with a test apparatus which simulated a forward-flight nozzle with a single, fully deployed reverser port. The test apparatus was designed to simulate thrust reversal (conceptually) either in the convergent section of the nozzle or in the constant-area duct just upstream of the nozzle. The main geometric parameters investigated were port angle, port corner radius, port location, and internal flow blocker angle. For all reverser port geometries, the port opening had an aspect ratio (throat width to throat height) of 6.1 and had a constant passage area from the geometric port throat to the exit. Reverser-port internal performance and thrust-vector angles computed from force-balance measurements are presented.
Object-oriented approach for gas turbine engine simulation
NASA Technical Reports Server (NTRS)
Curlett, Brian P.; Felder, James L.
1995-01-01
An object-oriented gas turbine engine simulation program was developed. This program is a prototype for a more complete, commercial grade engine performance program now being proposed as part of the Numerical Propulsion System Simulator (NPSS). This report discusses architectural issues of this complex software system and the lessons learned from developing the prototype code. The prototype code is a fully functional, general purpose engine simulation program, however, only the component models necessary to model a transient compressor test rig have been written. The production system will be capable of steady state and transient modeling of almost any turbine engine configuration. Chief among the architectural considerations for this code was the framework in which the various software modules will interact. These modules include the equation solver, simulation code, data model, event handler, and user interface. Also documented in this report is the component based design of the simulation module and the inter-component communication paradigm. Object class hierarchies for some of the code modules are given.
Object-Oriented/Data-Oriented Design of a Direct Simulation Monte Carlo Algorithm
NASA Technical Reports Server (NTRS)
Liechty, Derek S.
2014-01-01
Over the past decade, there has been much progress towards improved phenomenological modeling and algorithmic updates for the direct simulation Monte Carlo (DSMC) method, which provides a probabilistic physical simulation of gas Rows. These improvements have largely been based on the work of the originator of the DSMC method, Graeme Bird. Of primary importance are improved chemistry, internal energy, and physics modeling and a reduction in time to solution. These allow for an expanded range of possible solutions In altitude and velocity space. NASA's current production code, the DSMC Analysis Code (DAC), is well-established and based on Bird's 1994 algorithms written in Fortran 77 and has proven difficult to upgrade. A new DSMC code is being developed in the C++ programming language using object-oriented and data-oriented design paradigms to facilitate the inclusion of the recent improvements and future development activities. The development efforts on the new code, the Multiphysics Algorithm with Particles (MAP), are described, and performance comparisons are made with DAC.
Failure Simulation Testing of the Z-1 Spacesuit Titanium Bearing Assemblies
NASA Technical Reports Server (NTRS)
de Baca, Richard C.; Juarez, Alfredo; Peralta, Stephen; Tylka, Jonathan; Rhodes, Richard
2016-01-01
The Z-2 is a candidate for NASA's next generation spacesuit, designed for a range of possible missions with enhanced mobility for spacewalks both on planetary surfaces and in microgravity. Increased mobility was accomplished through innovations in shoulder and hip joints, using a number of new bearings to allow spacesuit wearers to dip, walk, and bend with ease; all important tasks for a planetary explorer collecting samples or traveling over rough terrain. The Advanced Spacesuit Development Team of NASA Johnson Space Center requested that the NASA White Sands Test Facility (WSTF) perform a series failure simulation tests on three titanium bearing assemblies, an elemental part of the joint construction used in new spacesuit designs. This testing simulated two undetected failures within the bearings and as a result the objective of this test program was to evaluate whether a failed or failing bearing could result in ignition of the titanium race material due to friction. The first failure was an inner seal leak sufficient to pressurize the race with +99 percent oxygen. The second failure was an improperly installed or mismatched ball port that created a protrusion in the ball bearing race, partially obstructing the nominal rolling path of each ball bearing. When the spacesuit bearings are assembled, bearing balls are loaded into the assembly via a ball port. The ball port is specific and unique to each bearing assembly (matched pair). The simulated mismatched ball port is a significant source of friction, which would be caused by an assembly error. To evaluate this risk, the bearings were cycled in a simulated worst-case scenario environment, with operational loads, and potential flaw conditions. During test the amount of actuation torque required and heat generated through continuous operation were measured and the bearings were observed for sparks or burning events. This paper provides detailed descriptions of the test hardware, methodology, and results.
An after-market, five-port vertical beam line extension for the PETtrace
NASA Astrophysics Data System (ADS)
Barnhart, T. E.; Engle, J. W.; Severin, G. W.; Valdovinos, H. F.; Gagnon, K.; Nickles, R. J.
2012-12-01
Most commercial cyclotrons intended for medical isotope production provide a limited number of beam ports crowded into a minimal vault space. Taking advantage of our new lab construction, we planned and installed a beam-line on port ♯2 of our GEMS PETtrace to bring beam to an additional 5 target positions. These are oriented in the vertical plane, with the downward directed beam well suited for molten target substrates.
RF waveguide phase-directed power combiners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nantista, Christopher D.; Dolgashev, Valery A.; Tantawi, Sami G.
2017-05-02
High power RF phase-directed power combiners include magic H hybrid and/or superhybrid circuits oriented in orthogonal H-planes and connected using E-plane bends and/or twists to produce compact 3D waveguide circuits, including 8.times.8 and 16.times.16 combiners. Using phase control at the input ports, RF power can be directed to a single output port, enabling fast switching between output ports for applications such as multi-angle radiation therapy.
NASA Astrophysics Data System (ADS)
Kamili Zahidi, M.; Razali Hanipah, M.
2017-10-01
A two-stroke poppet valve engine is developed to overcome the common problems in conventional two-stroke engine designs. However, replacing piston control port with poppet valve will resulted different flow behaviour. This paper presents the model and simulation result of three-dimensional (3D) port flow investigation of a two-stroke poppet valve engine. The objective of the investigation is to conduct a numerical investigation on port flow performance of two-stroke poppet valve engine and compare the results obtained from the experimental investigation. The model is to be used for the future numerical study of the engine. The volume flow rate results have been compared with the results obtained experimentally as presented in first part of this paper. The model has shown good agreement in terms of the flow rate at initial and final valve lifts but reduced by about 50% during half-lift region.
An object-oriented forest landscape model and its representation of tree species
Hong S. He; David J. Mladenoff; Joel Boeder
1999-01-01
LANDIS is a forest landscape model that simulates the interaction of large landscape processes and forest successional dynamics at tree species level. We discuss how object-oriented design (OOD) approaches such as modularity, abstraction and encapsulation are integrated into the design of LANDIS. We show that using OOD approaches, model decisions (olden as model...
1992-03-31
the-loop, interactive training environment. Its primary advantage is that it has a long history of use and a number of experienced users. However...programmer teams. Mazda IsU ADST/WDLPr,-92.OO8O1O 2 The Object Oriented Behavioral Decomposition Approach Object oriented behavioral decomposition is
An application of object-oriented knowledge representation to engineering expert systems
NASA Technical Reports Server (NTRS)
Logie, D. S.; Kamil, H.; Umaretiya, J. R.
1990-01-01
The paper describes an object-oriented knowledge representation and its application to engineering expert systems. The object-oriented approach promotes efficient handling of the problem data by allowing knowledge to be encapsulated in objects and organized by defining relationships between the objects. An Object Representation Language (ORL) was implemented as a tool for building and manipulating the object base. Rule-based knowledge representation is then used to simulate engineering design reasoning. Using a common object base, very large expert systems can be developed, comprised of small, individually processed, rule sets. The integration of these two schemes makes it easier to develop practical engineering expert systems. The general approach to applying this technology to the domain of the finite element analysis, design, and optimization of aerospace structures is discussed.
Common arc method for diffraction pattern orientation.
Bortel, Gábor; Tegze, Miklós
2011-11-01
Very short pulses of X-ray free-electron lasers opened the way to obtaining diffraction signal from single particles beyond the radiation dose limit. For three-dimensional structure reconstruction many patterns are recorded in the object's unknown orientation. A method is described for the orientation of continuous diffraction patterns of non-periodic objects, utilizing intensity correlations in the curved intersections of the corresponding Ewald spheres, and hence named the common arc orientation method. The present implementation of the algorithm optionally takes into account Friedel's law, handles missing data and is capable of determining the point group of symmetric objects. Its performance is demonstrated on simulated diffraction data sets and verification of the results indicates a high orientation accuracy even at low signal levels. The common arc method fills a gap in the wide palette of orientation methods. © 2011 International Union of Crystallography
An after-market, five-port vertical beam line extension for the PETtrace
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnhart, T. E.; Engle, J. W.; Severin, G. W.
2012-12-19
Most commercial cyclotrons intended for medical isotope production provide a limited number of beam ports crowded into a minimal vault space. Taking advantage of our new lab construction, we planned and installed a beam-line on port Music-Sharp-Sign 2 of our GEMS PETtrace to bring beam to an additional 5 target positions. These are oriented in the vertical plane, with the downward directed beam well suited for molten target substrates.
Lorias Espinoza, Daniel; Ordorica Flores, Ricardo; Minor Martínez, Arturo; Gutiérrez Gnecchi, José Antonio
2014-06-01
Various methods for evaluating laparoscopic skill have been reported, but without detailed information on the configuration used they are difficult to reproduce. Here we present a method based on the trigonometric relationships between the instruments used in a laparoscopic training platform in order to provide a tool to aid in the reproducible assessment of surgical laparoscopic technique. The positions of the instruments were represented using triangles. Basic trigonometry was used to objectively establish the distances among the working ports RL, the placement of the optical port h', and the placement of the surgical target OT. The optimal configuration of a training platform depends on the selected working angles, the intracorporeal/extracorporeal lengths of the instrument, and the depth of the surgical target. We demonstrate that some distances, angles, and positions of the instruments are inappropriate for satisfactory laparoscopy. By applying basic trigonometric principles we can determine the ideal placement of the working ports and the optics in a simple, precise, and objective way. In addition, because the method is based on parameters known to be important in both the performance and quantitative quality of laparoscopy, the results are generalizable to different training platforms and types of laparoscopic surgery.
Integration of object-oriented knowledge representation with the CLIPS rule based system
NASA Technical Reports Server (NTRS)
Logie, David S.; Kamil, Hasan
1990-01-01
The paper describes a portion of the work aimed at developing an integrated, knowledge based environment for the development of engineering-oriented applications. An Object Representation Language (ORL) was implemented in C++ which is used to build and modify an object-oriented knowledge base. The ORL was designed in such a way so as to be easily integrated with other representation schemes that could effectively reason with the object base. Specifically, the integration of the ORL with the rule based system C Language Production Systems (CLIPS), developed at the NASA Johnson Space Center, will be discussed. The object-oriented knowledge representation provides a natural means of representing problem data as a collection of related objects. Objects are comprised of descriptive properties and interrelationships. The object-oriented model promotes efficient handling of the problem data by allowing knowledge to be encapsulated in objects. Data is inherited through an object network via the relationship links. Together, the two schemes complement each other in that the object-oriented approach efficiently handles problem data while the rule based knowledge is used to simulate the reasoning process. Alone, the object based knowledge is little more than an object-oriented data storage scheme; however, the CLIPS inference engine adds the mechanism to directly and automatically reason with that knowledge. In this hybrid scheme, the expert system dynamically queries for data and can modify the object base with complete access to all the functionality of the ORL from rules.
Object-Oriented Simulation of EW Systems.
1987-12-01
elix.- r’UATO. SY - ~ ow W ." --N I -SEL’ TD DEEICESESEC ETBLISKM - 1Eol~P7 TEST National Defense Deec ationale OBJECT-ORIENTED SIMULATION OF EW...C C- _ _ _4- 0 E (4. I o 0 ~1 . __ _ L c 0 0 i EnE- L-C( 1*c 0~~ N1 Ld 0- E, U, E 0 cu a 0* L L L C:c0 Yc 0 c aja, it) oO -.zz - VV1V 41-4- ia. ca...will retain a simultaneous capability to simulate signal processing at the pulse level. 10 ?1( N 0 .0O Ldk rW% o N1 0 4’-V - 54 - " As discussed
Northwest Ports Achievements in Reducing Emissions and Improving Performance
Case history on the status of the Northwest Ports Clean Air Strategy for the Port of Seattle, Port of Tacoma, and Port Metro Vancouver. Presents key objectives, emission and performance goals and outcomes.
Using Monte Carlo Simulation to Prioritize Key Maritime Environmental Impacts of Port Infrastructure
NASA Astrophysics Data System (ADS)
Perez Lespier, L. M.; Long, S.; Shoberg, T.
2016-12-01
This study creates a Monte Carlo simulation model to prioritize key indicators of environmental impacts resulting from maritime port infrastructure. Data inputs are derived from LandSat imagery, government databases, and industry reports to create the simulation. Results are validated using subject matter experts and compared with those returned from time-series regression to determine goodness of fit. The Port of Prince Rupert, Canada is used as the location for the study.
A Simulator Study of Deepwater Port Shiphandling and Navigation Problems in Poor Visibility.
1981-01-01
CONNECTICUT 06350 ofTIA JANUARY 1981 FINAL REPORT Document Is available to the U.S. public through the National Technical Information Service , Springfield... Service port, offshore port, inshore port, Gulf of Springfield, VA 22161 Mexico port, port approach, port navigation, port safety, navigation hazard...additional fairway traffic had been present it ,vould have bec:n handled safely. Traffic separation schemes and a traffic advisory service for deepwater
Ulloa, Antonio; Bullock, Daniel
2003-10-01
We developed a neural network model to simulate temporal coordination of human reaching and grasping under variable initial grip apertures and perturbations of object size and object location/orientation. The proposed model computes reach-grasp trajectories by continuously updating vector positioning commands. The model hypotheses are (1) hand/wrist transport, grip aperture, and hand orientation control modules are coupled by a gating signal that fosters synchronous completion of the three sub-goals. (2) Coupling from transport and orientation velocities to aperture control causes maximum grip apertures that scale with these velocities and exceed object size. (3) Part of the aperture trajectory is attributable to an aperture-reducing passive biomechanical effect that is stronger for larger apertures. (4) Discrepancies between internal representations of targets partially inhibit the gating signal, leading to movement time increases that compensate for perturbations. Simulations of the model replicate key features of human reach-grasp kinematics observed under three experimental protocols. Our results indicate that no precomputation of component movement times is necessary for online temporal coordination of the components of reaching and grasping.
Software Design for Interactive Graphic Radiation Treatment Simulation Systems*
Kalet, Ira J.; Sweeney, Christine; Jacky, Jonathan
1990-01-01
We examine issues in the design of interactive computer graphic simulation programs for radiation treatment planning (RTP), as well as expert system programs that automate parts of the RTP process, in light of ten years of experience at designing, building and using such programs. An experiment in object-oriented design using standard Pascal shows that while some advantage is gained from the design, it is still difficult to achieve modularity and to integrate expert system components. A new design based on the Common LISP Object System (CLOS) is described. This series of designs for RTP software shows that this application benefits in specific ways from object-oriented design methods and appropriate languages and tools.
Practical solutions for reducing container ships' waiting times at ports using simulation model
NASA Astrophysics Data System (ADS)
Sheikholeslami, Abdorreza; Ilati, Gholamreza; Yeganeh, Yones Eftekhari
2013-12-01
The main challenge for container ports is the planning required for berthing container ships while docked in port. Growth of containerization is creating problems for ports and container terminals as they reach their capacity limits of various resources which increasingly leads to traffic and port congestion. Good planning and management of container terminal operations reduces waiting time for liner ships. Reducing the waiting time improves the terminal's productivity and decreases the port difficulties. Two important keys to reducing waiting time with berth allocation are determining suitable access channel depths and increasing the number of berths which in this paper are studied and analyzed as practical solutions. Simulation based analysis is the only way to understand how various resources interact with each other and how they are affected in the berthing time of ships. We used the Enterprise Dynamics software to produce simulation models due to the complexity and nature of the problems. We further present case study for berth allocation simulation of the biggest container terminal in Iran and the optimum access channel depth and the number of berths are obtained from simulation results. The results show a significant reduction in the waiting time for container ships and can be useful for major functions in operations and development of container ship terminals.
Simulating storm surge inundation and damage potential within complex port facilities
NASA Astrophysics Data System (ADS)
Mawdsley, Robert; French, Jon; Fujiyama, Taku; Achutan, Kamalasudhan
2017-04-01
Storm surge inundation of port facilities can cause damage to critical elements of infrastructure, significantly disrupt port operations and cause downstream impacts on vital supply chains. A tidal surge in December 2013 in the North Sea partly flooded the Port of Immingham, which handles the largest volume of bulk cargo in the UK including major flows of coal and biomass for power generation. This flooding caused damage to port and rail transport infrastructure and disrupted operations for several weeks. This research aims to improve resilience to storm surges using hydrodynamic modelling coupled to an agent-based model of port operations. Using the December 2013 event to validate flood extent, depth and duration, we ran a high resolution hydrodynamic simulation using the open source Telemac 2D finite element code. The underlying Digital Elevation Model (DEM) was derived from Environment Agency LiDAR data, with ground truthing of the flood defences along the port frontage. Major infrastructure and buildings are explicitly resolved with varying degrees of permeability. Telemac2D simulations are run in parallel and take only minutes on a single 16 cpu compute node. Inundation characteristics predicted using Telemac 2D differ from a simple Geographical Information System 'bath-tub' analysis of the DEM based upon horizontal application of the maximum water level across the port topography. The hydrodynamic simulation predicts less extensive flooding and more closely matches observed flood extent. It also provides more precise depth and duration curves. Detailed spatial flood depth and duration maps were generated for a range of tide and surge scenarios coupled to mean sea-level rise projections. These inundation scenarios can then be integrated with critical asset databases and an agent-based model of port operation (MARS) that is capable of simulating storm surge disruption along wider supply chains. Port operators are able to act on information from a particular flood scenario to perform adaptive responses (e.g. pre-emptive relocation of equipment), as well as estimate the likely duration of any disruption to port and supply chain operation. High resolution numerical inundation modelling, coupled to accurate storm surge forecasting and an agent based port operation model, thus has the potential to significantly reduce damage and disruption costs associated with storm surge impacts on port infrastructure and systems.
Feuerstein, Marco; Mussack, Thomas; Heining, Sandro M; Navab, Nassir
2008-03-01
In recent years, an increasing number of liver tumor indications were treated by minimally invasive laparoscopic resection. Besides the restricted view, two major intraoperative issues in laparoscopic liver resection are the optimal planning of ports as well as the enhanced visualization of (hidden) vessels, which supply the tumorous liver segment and thus need to be divided (e.g., clipped) prior to the resection. We propose an intuitive and precise method to plan the placement of ports. Preoperatively, self-adhesive fiducials are affixed to the patient's skin and a computed tomography (CT) data set is acquired while contrasting the liver vessels. Immediately prior to the intervention, the laparoscope is moved around these fiducials, which are automatically reconstructed to register the patient to its preoperative imaging data set. This enables the simulation of a camera flight through the patient's interior along the laparoscope's or instruments' axes to easily validate potential ports. Intraoperatively, surgeons need to update their surgical planning based on actual patient data after organ deformations mainly caused by application of carbon dioxide pneumoperitoneum. Therefore, preoperative imaging data can hardly be used. Instead, we propose to use an optically tracked mobile C-arm providing cone-beam CT imaging capability intraoperatively. After patient positioning, port placement, and carbon dioxide insufflation, the liver vessels are contrasted and a 3-D volume is reconstructed during patient exhalation. Without any further need for patient registration, the reconstructed volume can be directly augmented on the live laparoscope video, since prior calibration enables both the volume and the laparoscope to be positioned and oriented in the tracking coordinate frame. The augmentation provides the surgeon with advanced visual aid for the localization of veins, arteries, and bile ducts to be divided or sealed.
Study on collaborative operation in Xi'an international inland port and airport
NASA Astrophysics Data System (ADS)
Jia, Guoling
2017-10-01
Xi 'an international inland port and airport are the important fulcrums for Shaanxi province to implement the strategy of "One Belt One Road" and to develop its export-oriented economy. Based on the general development situation of Xi 'an international inland port and airport and analyzing their similarities and differences, the external cause and internal cause of synergy are discussed. The contents of synergy from the strategy level, tactics level and business level are explained respectively.
Coastal Fishermen as Lifesavers While Sailing at High Speed: A Crossover Study
Fungueiriño-Suárez, Ramón; Martínez-Isasi, Santiago; Fernández-Méndez, Felipe; González-Salvado, Violeta; Navarro-Patón, Rubén; Rodríguez-Núñez, Antonio
2018-01-01
Purpose Starting basic cardiopulmonary resuscitation (CPR) early improves survival. Fishermen are the first bystanders while at work. Our objective was to test in a simulated scenario the CPR quality performed by fishermen while at port and while navigating at different speeds. Methods Twenty coastal fishermen were asked to perform 2 minutes of CPR (chest compressions and mouth-to-mouth ventilations) on a manikin, in three different scenarios: (A) at port on land, (B) on the boat floor sailing at 10 knots, and (C) sailing at 20 knots. Data was recorded using quality CPR software, adjusted to current CPR international guidelines. Results The quality of CPR (QCPR) was significantly higher at port (43% ± 10) than sailing at 10 knots (30% ± 15; p = 0.01) or at 20 knots (26% ± 12; p = 0.001). The percentage of ventilation that achieved some lung insufflation was also significantly higher when CPR was done at port (77% ± 14) than while sailing at 10 knots (59% ± 18) or 20 knots (57% ± 21) (p = 0.01). Conclusion In the event of drowning or cardiac arrest on a small boat, fishermen should immediately start basic CPR and navigate at a relatively high speed to the nearest port if the sea conditions are safe. PMID:29854735
Concept development for the ITER equatorial port visible∕infrared wide angle viewing system.
Reichle, R; Beaumont, B; Boilson, D; Bouhamou, R; Direz, M-F; Encheva, A; Henderson, M; Huxford, R; Kazarian, F; Lamalle, Ph; Lisgo, S; Mitteau, R; Patel, K M; Pitcher, C S; Pitts, R A; Prakash, A; Raffray, R; Schunke, B; Snipes, J; Diaz, A Suarez; Udintsev, V S; Walker, C; Walsh, M
2012-10-01
The ITER equatorial port visible∕infrared wide angle viewing system concept is developed from the measurement requirements. The proposed solution situates 4 viewing systems in the equatorial ports 3, 9, 12, and 17 with 4 views each (looking at the upper target, the inner divertor, and tangentially left and right). This gives sufficient coverage. The spatial resolution of the divertor system is 2 times higher than the other views. For compensation of vacuum-vessel movements, an optical hinge concept is proposed. Compactness and low neutron streaming is achieved by orienting port plug doglegs horizontally. Calibration methods, risks, and R&D topics are outlined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Yuna; Park, Yeong-Shin; Jo, Jong-Gab
2012-02-15
Microwave plasma ion source with rectangular cavity resonator has been examined to improve ion beam current by changing wave launcher type from single-port to double-port. The cavity resonators with double-port and single-port wave launchers are designed to get resonance effect at TE-103 mode and TE-102 mode, respectively. In order to confirm that the cavities are acting as resonator, the microwave power for breakdown is measured and compared with the E-field strength estimated from the HFSS (High Frequency Structure Simulator) simulation. Langmuir probe measurements show that double-port cavity enhances central density of plasma ion source by modifying non-uniform plasma density profilemore » of the single-port cavity. Correspondingly, beam current from the plasma ion source utilizing the double-port resonator is measured to be higher than that utilizing single-port resonator. Moreover, the enhancement in plasma density and ion beam current utilizing the double-port resonator is more pronounced as higher microwave power applied to the plasma ion source. Therefore, the rectangular cavity resonator utilizing the double-port is expected to enhance the performance of plasma ion source in terms of ion beam extraction.« less
Lee, Yuna; Park, Yeong-Shin; Jo, Jong-Gab; Yang, J J; Hwang, Y S
2012-02-01
Microwave plasma ion source with rectangular cavity resonator has been examined to improve ion beam current by changing wave launcher type from single-port to double-port. The cavity resonators with double-port and single-port wave launchers are designed to get resonance effect at TE-103 mode and TE-102 mode, respectively. In order to confirm that the cavities are acting as resonator, the microwave power for breakdown is measured and compared with the E-field strength estimated from the HFSS (High Frequency Structure Simulator) simulation. Langmuir probe measurements show that double-port cavity enhances central density of plasma ion source by modifying non-uniform plasma density profile of the single-port cavity. Correspondingly, beam current from the plasma ion source utilizing the double-port resonator is measured to be higher than that utilizing single-port resonator. Moreover, the enhancement in plasma density and ion beam current utilizing the double-port resonator is more pronounced as higher microwave power applied to the plasma ion source. Therefore, the rectangular cavity resonator utilizing the double-port is expected to enhance the performance of plasma ion source in terms of ion beam extraction.
Porting plasma physics simulation codes to modern computing architectures using the
NASA Astrophysics Data System (ADS)
Germaschewski, Kai; Abbott, Stephen
2015-11-01
Available computing power has continued to grow exponentially even after single-core performance satured in the last decade. The increase has since been driven by more parallelism, both using more cores and having more parallelism in each core, e.g. in GPUs and Intel Xeon Phi. Adapting existing plasma physics codes is challenging, in particular as there is no single programming model that covers current and future architectures. We will introduce the open-source
Simulation model for port shunting yards
NASA Astrophysics Data System (ADS)
Rusca, A.; Popa, M.; Rosca, E.; Rosca, M.; Dragu, V.; Rusca, F.
2016-08-01
Sea ports are important nodes in the supply chain, joining two high capacity transport modes: rail and maritime transport. The huge cargo flows transiting port requires high capacity construction and installation such as berths, large capacity cranes, respectively shunting yards. However, the port shunting yards specificity raises several problems such as: limited access since these are terminus stations for rail network, the in-output of large transit flows of cargo relatively to the scarcity of the departure/arrival of a ship, as well as limited land availability for implementing solutions to serve these flows. It is necessary to identify technological solutions that lead to an answer to these problems. The paper proposed a simulation model developed with ARENA computer simulation software suitable for shunting yards which serve sea ports with access to the rail network. Are investigates the principal aspects of shunting yards and adequate measures to increase their transit capacity. The operation capacity for shunting yards sub-system is assessed taking in consideration the required operating standards and the measure of performance (e.g. waiting time for freight wagons, number of railway line in station, storage area, etc.) of the railway station are computed. The conclusion and results, drawn from simulation, help transports and logistics specialists to test the proposals for improving the port management.
Simulation and Gaming: Directions, Issues, Ponderables.
ERIC Educational Resources Information Center
Uretsky, Michael
1995-01-01
Discusses the current use of simulation and gaming in a variety of settings. Describes advances in technology that facilitate the use of simulation and gaming, including computer power, computer networks, software, object-oriented programming, video, multimedia, virtual reality, and artificial intelligence. Considers the future use of simulation…
Concept development for the ITER equatorial port visible/infrared wide angle viewing system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reichle, R.; Beaumont, B.; Boilson, D.
2012-10-15
The ITER equatorial port visible/infrared wide angle viewing system concept is developed from the measurement requirements. The proposed solution situates 4 viewing systems in the equatorial ports 3, 9, 12, and 17 with 4 views each (looking at the upper target, the inner divertor, and tangentially left and right). This gives sufficient coverage. The spatial resolution of the divertor system is 2 times higher than the other views. For compensation of vacuum-vessel movements, an optical hinge concept is proposed. Compactness and low neutron streaming is achieved by orienting port plug doglegs horizontally. Calibration methods, risks, and R and D topicsmore » are outlined.« less
AN/SLQ-32 EW System Model: and Expandable, Object-Oriented, Process- Based Simulation
1992-09-01
CONST threshold = 0.1; timetol = 0.01; orientol = 5.8; VAR rec, recLast :BufferBeamRecType; time,power : REAL; powerl,orientation : REAL; BEGIN NEW...PulseGroup); rec:-ASK BufferBeam Removed; time: =rec. time; orientation: =rec. orientation; OUTPUT ( "ORIENREFI, orientation); recLast :=ASK BufferBeam Last...TO Add(rec); IF (rec= recLast ) EXIT; END IF; rec :=ASK BufferBeam Remove o; ELSE ASK BufferBeam TO Add(rec); IF (rec = recLast ) EXIT; END IF; rec
SciDAC Center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Zhihong
2013-12-18
During the first year of the SciDAC gyrokinetic particle simulation (GPS) project, the GPS team (Zhihong Lin, Liu Chen, Yasutaro Nishimura, and Igor Holod) at the University of California, Irvine (UCI) studied the tokamak electron transport driven by electron temperature gradient (ETG) turbulence, and by trapped electron mode (TEM) turbulence and ion temperature gradient (ITG) turbulence with kinetic electron effects, extended our studies of ITG turbulence spreading to core-edge coupling. We have developed and optimized an elliptic solver using finite element method (FEM), which enables the implementation of advanced kinetic electron models (split-weight scheme and hybrid model) in the SciDACmore » GPS production code GTC. The GTC code has been ported and optimized on both scalar and vector parallel computer architectures, and is being transformed into objected-oriented style to facilitate collaborative code development. During this period, the UCI team members presented 11 invited talks at major national and international conferences, published 22 papers in peer-reviewed journals and 10 papers in conference proceedings. The UCI hosted the annual SciDAC Workshop on Plasma Turbulence sponsored by the GPS Center, 2005-2007. The workshop was attended by about fifties US and foreign researchers and financially sponsored several gradual students from MIT, Princeton University, Germany, Switzerland, and Finland. A new SciDAC postdoc, Igor Holod, has arrived at UCI to initiate global particle simulation of magnetohydrodynamics turbulence driven by energetic particle modes. The PI, Z. Lin, has been promoted to the Associate Professor with tenure at UCI.« less
π Scope: python based scientific workbench with visualization tool for MDSplus data
NASA Astrophysics Data System (ADS)
Shiraiwa, S.
2014-10-01
π Scope is a python based scientific data analysis and visualization tool constructed on wxPython and Matplotlib. Although it is designed to be a generic tool, the primary motivation for developing the new software is 1) to provide an updated tool to browse MDSplus data, with functionalities beyond dwscope and jScope, and 2) to provide a universal foundation to construct interface tools to perform computer simulation and modeling for Alcator C-Mod. It provides many features to visualize MDSplus data during tokamak experiments including overplotting different signals and discharges, various plot types (line, contour, image, etc.), in-panel data analysis using python scripts, and publication quality graphics generation. Additionally, the logic to produce multi-panel plots is designed to be backward compatible with dwscope, enabling smooth migration for dwscope users. πScope uses multi-threading to reduce data transfer latency, and its object-oriented design makes it easy to modify and expand while the open source nature allows portability. A built-in tree data browser allows a user to approach the data structure both from a GUI and a script, enabling relatively complex data analysis workflow to be built quickly. As an example, an IDL-based interface to perform GENRAY/CQL3D simulations was ported on πScope, thus allowing LHCD simulation to be run between-shot using C-Mod experimental profiles. This workflow is being used to generate a large database to develop a LHCD actuator model for the plasma control system. Supported by USDoE Award DE-FC02-99ER54512.
An object oriented Python interface for atomistic simulations
NASA Astrophysics Data System (ADS)
Hynninen, T.; Himanen, L.; Parkkinen, V.; Musso, T.; Corander, J.; Foster, A. S.
2016-01-01
Programmable simulation environments allow one to monitor and control calculations efficiently and automatically before, during, and after runtime. Environments directly accessible in a programming environment can be interfaced with powerful external analysis tools and extensions to enhance the functionality of the core program, and by incorporating a flexible object based structure, the environments make building and analysing computational setups intuitive. In this work, we present a classical atomistic force field with an interface written in Python language. The program is an extension for an existing object based atomistic simulation environment.
Romo, Tod D.; Leioatts, Nicholas; Grossfield, Alan
2014-01-01
LOOS (Lightweight Object-Oriented Structure-analysis) is a C++ library designed to facilitate making novel tools for analyzing molecular dynamics simulations by abstracting out the repetitive tasks, allowing developers to focus on the scientifically relevant part of the problem. LOOS supports input using the native file formats of most common biomolecular simulation packages, including CHARMM, NAMD, Amber, Tinker, and Gromacs. A dynamic atom selection language based on the C expression syntax is included and is easily accessible to the tool-writer. In addition, LOOS is bundled with over 120 pre-built tools, including suites of tools for analyzing simulation convergence, 3D histograms, and elastic network models. Through modern C++ design, LOOS is both simple to develop with (requiring knowledge of only 4 core classes and a few utility functions) and is easily extensible. A python interface to the core classes is also provided, further facilitating tool development. PMID:25327784
Romo, Tod D; Leioatts, Nicholas; Grossfield, Alan
2014-12-15
LOOS (Lightweight Object Oriented Structure-analysis) is a C++ library designed to facilitate making novel tools for analyzing molecular dynamics simulations by abstracting out the repetitive tasks, allowing developers to focus on the scientifically relevant part of the problem. LOOS supports input using the native file formats of most common biomolecular simulation packages, including CHARMM, NAMD, Amber, Tinker, and Gromacs. A dynamic atom selection language based on the C expression syntax is included and is easily accessible to the tool-writer. In addition, LOOS is bundled with over 140 prebuilt tools, including suites of tools for analyzing simulation convergence, three-dimensional histograms, and elastic network models. Through modern C++ design, LOOS is both simple to develop with (requiring knowledge of only four core classes and a few utility functions) and is easily extensible. A python interface to the core classes is also provided, further facilitating tool development. © 2014 Wiley Periodicals, Inc.
Design of a Model Execution Framework: Repetitive Object-Oriented Simulation Environment (ROSE)
NASA Technical Reports Server (NTRS)
Gray, Justin S.; Briggs, Jeffery L.
2008-01-01
The ROSE framework was designed to facilitate complex system analyses. It completely divorces the model execution process from the model itself. By doing so ROSE frees the modeler to develop a library of standard modeling processes such as Design of Experiments, optimizers, parameter studies, and sensitivity studies which can then be applied to any of their available models. The ROSE framework accomplishes this by means of a well defined API and object structure. Both the API and object structure are presented here with enough detail to implement ROSE in any object-oriented language or modeling tool.
A simulation model to analyze the impact of crisis conditions on the performance of port operations.
DOT National Transportation Integrated Search
2009-08-01
We consider the supply chain for containerized items that arrive at a port in the U.S. whose final destination is also : in the U.S. Ports are important entities in global supply chains. As such, when a port cannot operate because of : a crisis, such...
A simulation model to analyze the impact of crisis conditions on the performance of port operations.
DOT National Transportation Integrated Search
2009-08-01
We consider the supply chain for containerized items that arrive at a port in the U.S. whose final destination is also in the U.S. Ports are important entities in global supply chains. As such, when a port cannot operate because of : a crisis, such a...
NASA Astrophysics Data System (ADS)
McMullen, Timothy; Liyanage, Nilanga; Xiong, Weizhi; Zhao, Zhiwen
2017-01-01
Our research has focused on simulating the response of a Gas Electron Multiplier (GEM) detector using computational methods. GEM detectors provide a cost effective solution for radiation detection in high rate environments. A detailed simulation of GEM detector response to radiation is essential for the successful adaption of these detectors to different applications. Using Geant4 Monte Carlo (GEMC), a wrapper around Geant4 which has been successfully used to simulate the Solenoidal Large Intensity Device (SoLID) at Jefferson Lab, we are developing a simulation of a GEM chamber similar to the detectors currently used in our lab. We are also refining an object-oriented digitization program, which translates energy deposition information from GEMC into electronic readout which resembles the readout from our physical detectors. We have run the simulation with beta particles produced by the simulated decay of a 90Sr source, as well as with a simulated bremsstrahlung spectrum. Comparing the simulation data with real GEM data taken under similar conditions is used to refine the simulation parameters. Comparisons between results from the simulations and results from detector tests will be presented.
Mali, Matilda; Malcangio, Daniela; Dell' Anna, Maria Michela; Damiani, Leonardo; Mastrorilli, Piero
2018-01-01
The environmental quality of Torre a Mare port (Italy) was assessed evaluating on one side, the chemical concentration of nine metals and metalloids within bottom sediments and on the other one, by exploring the impact of hydrodynamic conditions in contaminant's transport within the most polluted basins. The investigated port was selected as case study because it resulted much more polluted than it was expected based on the touristic port activities and related stressors loading on it. In order to determine the origin and fate of contaminants in the port basin, 2D numerical simulations were carried out by MIKE21 software. The hydrodynamic module (HD) based on a rectangular grid was initially used to characterize the flow field into two domains that cover the inner and offshore harbor area. Then, advection-dispersion (AD) and water quality (WQ) modules were coupled in order to simulate the simultaneous processes of transport and dispersion of hypothetical pollutant sources. The dissolved/suspended sediment particulates (DSS) were selected as contaminant tracers. The comparative analysis between simulation responses and the real metal contaminant distribution showed high agreement, suggesting that contaminants mainly come from outside port and tend to accumulate in the inner basin. In fact, hydrodynamic circulations cause inflowing streams toward the harbor entrance and the particular port morphology hampers the exit of fine sediments from the inner basin, enhancing thus the accumulation of sediment-associated contaminants within the port area. The study confirms that the quality of touristic port areas strongly depends on both pollution sources located within and outside the port domain and it is controlled mainly by the hydrodynamic-driven processes.
A conditioned visual orientation requires the ellipsoid body in Drosophila
Guo, Chao; Du, Yifei; Yuan, Deliang; Li, Meixia; Gong, Haiyun; Gong, Zhefeng
2015-01-01
Orientation, the spatial organization of animal behavior, is an essential faculty of animals. Bacteria and lower animals such as insects exhibit taxis, innate orientation behavior, directly toward or away from a directional cue. Organisms can also orient themselves at a specific angle relative to the cues. In this study, using Drosophila as a model system, we established a visual orientation conditioning paradigm based on a flight simulator in which a stationary flying fly could control the rotation of a visual object. By coupling aversive heat shocks to a fly's orientation toward one side of the visual object, we found that the fly could be conditioned to orientate toward the left or right side of the frontal visual object and retain this conditioned visual orientation. The lower and upper visual fields have different roles in conditioned visual orientation. Transfer experiments showed that conditioned visual orientation could generalize between visual targets of different sizes, compactness, or vertical positions, but not of contour orientation. Rut—Type I adenylyl cyclase and Dnc—phosphodiesterase were dispensable for visual orientation conditioning. Normal activity and scb signaling in R3/R4d neurons of the ellipsoid body were required for visual orientation conditioning. Our studies established a visual orientation conditioning paradigm and examined the behavioral properties and neural circuitry of visual orientation, an important component of the insect's spatial navigation. PMID:25512578
Using Google SketchUp to simulate tree row azimuth effects on alley shading
USDA-ARS?s Scientific Manuscript database
Effect of row azimuth on alley crop illumination is difficult to determine empirically. Our objective was to determine if Google SketchUp (Trimble Inc., Sunnyvale, CA) could be used to simulate effect of azimuth orientation on illumination of loblolly pine (Pinus taeda L.) alleys. Simulations were...
Overview of Computer Simulation Modeling Approaches and Methods
Robert E. Manning; Robert M. Itami; David N. Cole; Randy Gimblett
2005-01-01
The field of simulation modeling has grown greatly with recent advances in computer hardware and software. Much of this work has involved large scientific and industrial applications for which substantial financial resources are available. However, advances in object-oriented programming and simulation methodology, concurrent with dramatic increases in computer...
Modelling and Simulation as a Recognizing Method in Education
ERIC Educational Resources Information Center
Stoffa, Veronika
2004-01-01
Computer animation-simulation models of complex processes and events, which are the method of instruction, can be an effective didactic device. Gaining deeper knowledge about objects modelled helps to plan simulation experiments oriented on processes and events researched. Animation experiments realized on multimedia computers can aid easier…
Air flow quality analysis of modenas engine exhaust system
NASA Astrophysics Data System (ADS)
Shahriman A., B.; Mohamad Syafiq A., K.; Hashim, M. S. M.; Razlan, Zuradzman M.; Khairunizam W. A., N.; Hazry, D.; Afendi, Mohd; Daud, R.; Rahman, M. D. Tasyrif Abdul; Cheng, E. M.; Zaaba, S. K.
2017-09-01
The simulation process being conducted to determine the air flow effect between the original exhaust system and modified exhaust system. The simulations are conducted to investigate the flow distribution of exhaust gases that will affect the performance of the engine. The back flow pressure in the original exhaust system is predicted toward this simulation. The design modification to the exhaust port, exhaust pipe, and exhaust muffler has been done during this simulation to reduce the back flow effect. The new designs are introduced by enlarging the diameter of the exhaust port, enlarge the diameter of the exhaust pipe and created new design for the exhaust muffler. Based on the result obtained, there the pulsating flow form at the original exhaust port that will increase the velocity and resulting the back pressure occur. The result for new design of exhaust port, the velocity is lower at the valve guide in the exhaust port. New design muffler shows that the streamline of the exhaust flow move smoothly compare to the original muffler. It is proved by using the modification exhaust system, the back pressure are reduced and the engine performance can be improve.
Gray, David R
2016-05-01
Reducing the risk of introduction to North America of the invasive Asian gypsy moth (Lymantria dispar asiatica Vnukovskij and L. d. japonica [Motschulsky]) on international maritime vessels involves two tactics: (1) vessels that wish to arrive in Canada or the United States and have visited any Asian port that is subject to regulation during designated times must obtain a predeparture inspection certificate from an approved entity; and (2) vessels with a certificate may be subjected to an additional inspection upon arrival. A decision support tool is described here with which the allocation of inspection resources at North American ports can be partitioned among multiple vessels according to estimates of the potential onboard Asian gypsy moth population and estimates of the onboard larval emergence pattern. The decision support tool assumes that port inspection is uniformly imperfect at the Asian ports and that each visit to a regulated port has potential for the vessel to be contaminated with gypsy moth egg masses. The decision support tool uses a multigenerational phenology model to estimate the potential onboard population of egg masses by calculating the temporal intersection between the dates of port visits to regulated ports and the simulated oviposition pattern in each port. The phenological development of the onboard population is simulated each day of the vessel log until the vessel arrives at the port being protected from introduction. Multiple independent simulations are used to create a probability distribution of the size and timing of larval emergence. © 2015 Society for Risk Analysis.
JGromacs: a Java package for analyzing protein simulations.
Münz, Márton; Biggin, Philip C
2012-01-23
In this paper, we introduce JGromacs, a Java API (Application Programming Interface) that facilitates the development of cross-platform data analysis applications for Molecular Dynamics (MD) simulations. The API supports parsing and writing file formats applied by GROMACS (GROningen MAchine for Chemical Simulations), one of the most widely used MD simulation packages. JGromacs builds on the strengths of object-oriented programming in Java by providing a multilevel object-oriented representation of simulation data to integrate and interconvert sequence, structure, and dynamics information. The easy-to-learn, easy-to-use, and easy-to-extend framework is intended to simplify and accelerate the implementation and development of complex data analysis algorithms. Furthermore, a basic analysis toolkit is included in the package. The programmer is also provided with simple tools (e.g., XML-based configuration) to create applications with a user interface resembling the command-line interface of GROMACS applications. JGromacs and detailed documentation is freely available from http://sbcb.bioch.ox.ac.uk/jgromacs under a GPLv3 license .
JGromacs: A Java Package for Analyzing Protein Simulations
2011-01-01
In this paper, we introduce JGromacs, a Java API (Application Programming Interface) that facilitates the development of cross-platform data analysis applications for Molecular Dynamics (MD) simulations. The API supports parsing and writing file formats applied by GROMACS (GROningen MAchine for Chemical Simulations), one of the most widely used MD simulation packages. JGromacs builds on the strengths of object-oriented programming in Java by providing a multilevel object-oriented representation of simulation data to integrate and interconvert sequence, structure, and dynamics information. The easy-to-learn, easy-to-use, and easy-to-extend framework is intended to simplify and accelerate the implementation and development of complex data analysis algorithms. Furthermore, a basic analysis toolkit is included in the package. The programmer is also provided with simple tools (e.g., XML-based configuration) to create applications with a user interface resembling the command-line interface of GROMACS applications. Availability: JGromacs and detailed documentation is freely available from http://sbcb.bioch.ox.ac.uk/jgromacs under a GPLv3 license. PMID:22191855
Optical device terahertz integration in a two-dimensional-three-dimensional heterostructure.
Feng, Zhifang; Lin, Jie; Feng, Shuai
2018-01-10
The transmission properties of an off-planar integrated circuit including two wavelength division demultiplexers are designed, simulated, and analyzed in detail by the finite-difference time-domain method. The results show that the wavelength selection for different ports (0.404[c/a] at B 2 port, 0.389[c/a] at B 3 port, and 0.394[c/a] at B 4 port) can be realized by adjusting the parameters. It is especially important that the off-planar integration between two complex devices is also realized. These simulated results give valuable promotions in the all-optical integrated circuit, especially in compact integration.
Multiphysics Object-Oriented Simulation Environment (MOOSE)
None
2017-12-09
Nuclear reactor operators can expand safety margins with more precise information about how materials behave inside operating reactors. INL's new simulation platform makes such studies easier & more informative by letting researchers "plug-n-play" their mathematical models, skipping years of computer code development.
NASA Astrophysics Data System (ADS)
ST Fleur, S.; Courboulex, F.; Bertrand, E.; Deschamps, A.; Mercier De Lepinay, B. F.; Boisson, D.; Prepetit, C.; Hough, S. E.
2014-12-01
The Haitian earthquake of 12 January 2010 (Mw=7) caused an unprecedented disaster in Port-au-Prince as well as in smaller cities close to the epicenter. The extent of damage appears to be initially attributed to the proximity of the earthquake in Port-au-Prince, the extreme vulnerability of many structures, and a high population density. However, the damage distribution for this earthquake suggests a general correlation of damage with small-scale topographical features and local geological structure. The main objective of this work is to investigate site effects in the city of Port-au-Prince. It is also to better define the response of different sites to earthquakes and establish transfer functions between each site and a particular site defined as a reference site. Specific soil columns is determined in the vicinity of each station in order to carry out 1D simulations of soil response at these sites. About 90 earthquakes (2
PsyScript: a Macintosh application for scripting experiments.
Bates, Timothy C; D'Oliveiro, Lawrence
2003-11-01
PsyScript is a scriptable application allowing users to describe experiments in Apple's compiled high-level object-oriented AppleScript language, while still supporting millisecond or better within-trial event timing (delays can be in milliseconds or refresh-based, and PsyScript can wait on external I/O, such as eye movement fixations). Because AppleScript is object oriented and system-wide, PsyScript experiments support complex branching, code reuse, and integration with other applications. Included AppleScript-based libraries support file handling and stimulus randomization and sampling, as well as more specialized tasks, such as adaptive testing. Advanced features include support for the BBox serial port button box, as well as a low-cost USB-based digital I/O card for millisecond timing, recording of any number and types of responses within a trial, novel responses, such as graphics tablet drawing, and use of the Macintosh sound facilities to provide an accurate voice key, saving voice responses to disk, scriptable image creation, support for flicker-free animation, and gaze-dependent masking. The application is open source, allowing researchers to enhance the feature set and verify internal functions. Both the application and the source are available for free download at www.maccs.mq.edu.au/-tim/psyscript/.
Modelling robot construction systems
NASA Technical Reports Server (NTRS)
Grasso, Chris
1990-01-01
TROTER's are small, inexpensive robots that can work together to accomplish sophisticated construction tasks. To understand the issues involved in designing and operating a team of TROTER's, the robots and their components are being modeled. A TROTER system that features standardized component behavior is introduced. An object-oriented model implemented in the Smalltalk programming language is described and the advantages of the object-oriented approach for simulating robot and component interactions are discussed. The presentation includes preliminary results and a discussion of outstanding issues.
A Performance-Based Comparison of Object-Oriented Simulation Tools
1992-04-01
simulation" [Belanger 90a, 90b]. CACI Products Company markets MODSIM II as the commercial version of ModSim, which was created on a US Army contract...aim fprintf (report_file, "Line Statistics\\ nLine teller repoirt.cust interrupts; Lengt~is\
Object oriented design (OOD) in real-time hardware-in-the-loop (HWIL) simulations
NASA Astrophysics Data System (ADS)
Morris, Joe; Richard, Henri; Lowman, Alan; Youngren, Rob
2006-05-01
Using Object Oriented Design (OOD) concepts in AMRDEC's Hardware-in-the Loop (HWIL) real-time simulations allows the user to interchange parts of the simulation to meet test requirements. A large-scale three-spectral band simulator connected via a high speed reflective memory ring for time-critical data transfers to PC controllers connected by non real-time Ethernet protocols is used to separate software objects from logical entities close to their respective controlled hardware. Each standalone object does its own dynamic initialization, real-time processing, and end of run processing; therefore it can be easily maintained and updated. A Resource Allocation Program (RAP) is also utilized along with a device table to allocate, organize, and document the communication protocol between the software and hardware components. A GUI display program lists all allocations and deallocations of HWIL memory and hardware resources. This interactive program is also used to clean up defunct allocations of dead processes. Three examples are presented using the OOD and RAP concepts. The first is the control of an ACUTRONICS built three-axis flight table using the same control for calibration and real-time functions. The second is the transportability of a six-degree-of-freedom (6-DOF) simulation from an Onyx residence to a Linux-PC. The third is the replacement of the 6-DOF simulation with a replay program to drive the facility with archived run data for demonstration or analysis purposes.
An Object-Oriented Graphical User Interface for a Reusable Rocket Engine Intelligent Control System
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Musgrave, Jeffrey L.; Guo, Ten-Huei; Paxson, Daniel E.; Wong, Edmond; Saus, Joseph R.; Merrill, Walter C.
1994-01-01
An intelligent control system for reusable rocket engines under development at NASA Lewis Research Center requires a graphical user interface to allow observation of the closed-loop system in operation. The simulation testbed consists of a real-time engine simulation computer, a controls computer, and several auxiliary computers for diagnostics and coordination. The system is set up so that the simulation computer could be replaced by the real engine and the change would be transparent to the control system. Because of the hard real-time requirement of the control computer, putting a graphical user interface on it was not an option. Thus, a separate computer used strictly for the graphical user interface was warranted. An object-oriented LISP-based graphical user interface has been developed on a Texas Instruments Explorer 2+ to indicate the condition of the engine to the observer through plots, animation, interactive graphics, and text.
Molecular Dynamic Simulations of Interaction of an AFM Probe with the Surface of an SCN Sample
NASA Technical Reports Server (NTRS)
Bune, Adris; Kaukler, William; Rose, M. Franklin (Technical Monitor)
2001-01-01
Molecular dynamic (MD) simulations is conducted in order to estimate forces of probe-substrate interaction in the Atomic Force Microscope (AFM). First a review of available molecular dynamic techniques is given. Implementation of MD simulation is based on an object-oriented code developed at the University of Delft. Modeling of the sample material - succinonitrile (SCN) - is based on the Lennard-Jones potentials. For the polystyrene probe an atomic interaction potential is used. Due to object-oriented structure of the code modification of an atomic interaction potential is straight forward. Calculation of melting temperature is used for validation of the code and of the interaction potentials. Various fitting parameters of the probe-substrate interaction potentials are considered, as potentials fitted to certain properties and temperature ranges may not be reliable for the others. This research provides theoretical foundation for an interpretation of actual measurements of an interaction forces using AFM.
NASA Astrophysics Data System (ADS)
Chęciński, Jakub; Frankowski, Marek
2016-10-01
We present a tool for fully-automated generation of both simulations configuration files (Mif) and Matlab scripts for automated data analysis, dedicated for Object Oriented Micromagnetic Framework (OOMMF). We introduce extended graphical user interface (GUI) that allows for fast, error-proof and easy creation of Mifs, without any programming skills usually required for manual Mif writing necessary. With MAGE we provide OOMMF extensions for complementing it by mangetoresistance and spin-transfer-torque calculations, as well as local magnetization data selection for output. Our software allows for creation of advanced simulations conditions like simultaneous parameters sweeps and synchronic excitation application. Furthermore, since output of such simulation could be long and complicated we provide another GUI allowing for automated creation of Matlab scripts suitable for analysis of such data with Fourier and wavelet transforms as well as user-defined operations.
Faunus: An object oriented framework for molecular simulation
Lund, Mikael; Trulsson, Martin; Persson, Björn
2008-01-01
Background We present a C++ class library for Monte Carlo simulation of molecular systems, including proteins in solution. The design is generic and highly modular, enabling multiple developers to easily implement additional features. The statistical mechanical methods are documented by extensive use of code comments that – subsequently – are collected to automatically build a web-based manual. Results We show how an object oriented design can be used to create an intuitively appealing coding framework for molecular simulation. This is exemplified in a minimalistic C++ program that can calculate protein protonation states. We further discuss performance issues related to high level coding abstraction. Conclusion C++ and the Standard Template Library (STL) provide a high-performance platform for generic molecular modeling. Automatic generation of code documentation from inline comments has proven particularly useful in that no separate manual needs to be maintained. PMID:18241331
NASA Astrophysics Data System (ADS)
Cardall, Christian Y.; Budiardja, Reuben D.
2018-01-01
The large-scale computer simulation of a system of physical fields governed by partial differential equations requires some means of approximating the mathematical limit of continuity. For example, conservation laws are often treated with a 'finite-volume' approach in which space is partitioned into a large number of small 'cells,' with fluxes through cell faces providing an intuitive discretization modeled on the mathematical definition of the divergence operator. Here we describe and make available Fortran 2003 classes furnishing extensible object-oriented implementations of simple meshes and the evolution of generic conserved currents thereon, along with individual 'unit test' programs and larger example problems demonstrating their use. These classes inaugurate the Mathematics division of our developing astrophysics simulation code GENASIS (Gen eral A strophysical Si mulation S ystem), which will be expanded over time to include additional meshing options, mathematical operations, solver types, and solver variations appropriate for many multiphysics applications.
Sediment management alternatives for the Port of Bienville.
DOT National Transportation Integrated Search
2010-02-01
The objective of this report is to present economical, environmentally friendly, and effective alternatives to maintenance : dredging for the Port of Bienville and its access channels. The Port of Bienville is located in Hancock County, directly off ...
A design framework for teleoperators with kinesthetic feedback
NASA Technical Reports Server (NTRS)
Hannaford, Blake
1989-01-01
The application of a hybrid two-port model to teleoperators with force and velocity sensing at the master and slave is presented. The interfaces between human operator and master, and between environment and slave, are ports through which the teleoperator is designed to exchange energy between the operator and the environment. By computing or measuring the input-output properties of this two-port network, the hybrid two-port model of an actual or simulated teleoperator system can be obtained. It is shown that the hybrid model (as opposed to other two-port forms) leads to an intuitive representation of ideal teleoperator performace and applies to several teleoperator architectures. Thus measured values of the h matrix or values computed from a simulation can be used to compare performance with th ideal. The frequency-dependent h matrix is computed from a detailed SPICE model of an actual system, and the method is applied to a proposed architecture.
WMT: The CSDMS Web Modeling Tool
NASA Astrophysics Data System (ADS)
Piper, M.; Hutton, E. W. H.; Overeem, I.; Syvitski, J. P.
2015-12-01
The Community Surface Dynamics Modeling System (CSDMS) has a mission to enable model use and development for research in earth surface processes. CSDMS strives to expand the use of quantitative modeling techniques, promotes best practices in coding, and advocates for the use of open-source software. To streamline and standardize access to models, CSDMS has developed the Web Modeling Tool (WMT), a RESTful web application with a client-side graphical interface and a server-side database and API that allows users to build coupled surface dynamics models in a web browser on a personal computer or a mobile device, and run them in a high-performance computing (HPC) environment. With WMT, users can: Design a model from a set of components Edit component parameters Save models to a web-accessible server Share saved models with the community Submit runs to an HPC system Download simulation results The WMT client is an Ajax application written in Java with GWT, which allows developers to employ object-oriented design principles and development tools such as Ant, Eclipse and JUnit. For deployment on the web, the GWT compiler translates Java code to optimized and obfuscated JavaScript. The WMT client is supported on Firefox, Chrome, Safari, and Internet Explorer. The WMT server, written in Python and SQLite, is a layered system, with each layer exposing a web service API: wmt-db: database of component, model, and simulation metadata and output wmt-api: configure and connect components wmt-exe: launch simulations on remote execution servers The database server provides, as JSON-encoded messages, the metadata for users to couple model components, including descriptions of component exchange items, uses and provides ports, and input parameters. Execution servers are network-accessible computational resources, ranging from HPC systems to desktop computers, containing the CSDMS software stack for running a simulation. Once a simulation completes, its output, in NetCDF, is packaged and uploaded to a data server where it is stored and from which a user can download it as a single compressed archive file.
NASA Technical Reports Server (NTRS)
Russin, W. R.
1974-01-01
Tests were conducted to determine the performance of a hydrogen burner used to produce a test gas that simulates air entering a scramjet combustor at various flight conditions. The test gas simulates air in that it duplicates the total temperature, total pressure, and the volume fraction of oxygen of air at flight conditions. The main objective of the tests was to determine the performance of the burner as a function of the effective exhaust port area. The conclusions were: (1) pressure oscillations of the chugging type were reduced in amplitude to plus or minus 2 percent of the mean pressure level by proper sizing of hydrogen, oxygen, and air injector flow areas; (2) combustion efficiency remained essentially constant as the exhaust port area was increased by a factor of 3.4; (3) the mean total temperature determined from integrating the exit radial gas property profiles was within plus or minus 5 percent of the theoretical bulk total temperature; (4) the measured exit total temperature profile had a local peak temperature more than 30 percent greater than the theoretical bulk total temperature; and (5) measured heat transfer to the burner liner was 75 percent of that predicted by theory based on a flat radial temperature profile.
A Comparison of Single-, Two- and Three-Port Laparoscopic Myomectomy
Kim, Su Mi; Baek, Jong Min; Park, Eun Kyung; Jeung, In Cheul; Choi, Ji Hyang; Kim, Chan Joo
2015-01-01
Background and Objective: A recent FDA safety communication has discouraged the use of a power morcellator for myoma extraction and has called for a change in surgical techniques for myomectomy. The objective of this study was to compare surgical outcomes of laparoscopic single-, two-, and conventional three-port myomectomy and to evaluate the feasibility of contained manual morcellation for uterine myoma. Methods: This retrospective study was a review and analysis of data from 191 consecutive women who underwent single-, two-, or three-port myomectomy for the management of uterine myoma from January 1, 2009, through December 31, 2014. Results: The 3 study groups did not differ demographically. Apart from operative time, the single- and two-port groups showed operative outcomes comparable to those of the multiport group. The single-port group had significantly longer operative times (P = .0053) than the two- and three-port groups. However, in the latter half of the single-port cases, the operative time was similar to those in the three-port group. The two-port surgery group showed a consistent operative time without a learning period. Conclusion: Single- or two-port myomectomy with transumbilical myoma morcellation is feasible and safe, with outcomes comparable to those of three-port myomectomy. These results suggest the potential for minimally invasive management of symptomatic uterine myoma, without the use of a power morcellator. PMID:26648680
DOT National Transportation Integrated Search
2002-08-01
Building upon the conceptual framework developed during our year one research, a container port and multimodal transportation demand simulation model is applied. The model selects the least-cost (vessel-port-rail-truck) route from sources to markets,...
Sediment management alternatives for the Biloxi ports.
DOT National Transportation Integrated Search
2010-02-01
The objective of this project is to determine the source of sedimentation in the Ports of Biloxi and provide engineered solutions which will reduce : or eliminate the need for dredging within the ports. : The Commercial Docking Facility, Small Craft ...
Object Orientated Simulation on Transputer Arrays Using Time Warp
1989-12-01
Transputer based Machines, Grenoble, Sept 14-16 1987, Ed. Traian Muntean. [ 3 ] Muntean T., "PARX operating system kernal; application to Minix ", Esprit P1085...Simulation 3 Time Warp Simulation 8 3.1 Rollback Mechanism ........ ............................. 8 3.2 Simulation Outp,,t...23 4.3.* Importan Noc .......... ............................ 23 5 Low Level Operations 24 • 3 IIiI 5.1 Global Virtual Timne Estimiation
Urban Change Detection of Pingtan City based on Bi-temporal Remote Sensing Images
NASA Astrophysics Data System (ADS)
Degang, JIANG; Jinyan, XU; Yikang, GAO
2017-02-01
In this paper, a pair of SPOT 5-6 images with the resolution of 0.5m is selected. An object-oriented classification method is used to the two images and five classes of ground features were identified as man-made objects, farmland, forest, waterbody and unutilized land. An auxiliary ASTER GDEM was used to improve the classification accuracy. And the change detection based on the classification results was performed. Accuracy assessment was carried out finally. Consequently, satisfactory results were obtained. The results show that great changes of the Pingtan city have been detected as the expansion of the city area and the intensity increase of man-made buildings, roads and other infrastructures with the establishment of Pingtan comprehensive experimental zone. Wide range of open sea area along the island coast zones has been reclaimed for port and CBDs construction.
NASA Astrophysics Data System (ADS)
Younger, Michael; Budulas, Peter P.; Young, Stuart H.
2002-08-01
Spread spectrum communication techniques have been recognized as a viable method to gain an advantage in interference environments. Many military-oriented systems have been initiated, and some civil systems have been attempted. Spread spectrum allows the ability to hide the signal of interest below or in the noise floor, so as not to be detected. A spread spectrum system is one in which the transmitted signal is spread over a wide frequency band, much wider, in fact, than the minimum bandwidth required to transmit the information being sent. We at Army Research Lab (ARL) are proposing using the same technique on the Internet with port hopping. The information would be transmitted in data packets over multiple ports. The port used would vary per packet or per session basis. This port hopping gives you and the recipients the ability to take datagram's and spread them out over a multitude of ports. This will hide information among the Internet noise. This will allow trusted communications between the transmitter and receiver because of the port coding sequence. There are 64K possible ports to span datagram. Jamming of transmission would be limiting the ability of the sniffer/listener. Also, the listener will find it difficult to use a man in the middle attach, since the data will be spread over multiple ports and only the receiver and transmitter will know the specific port sequencing for the datagram.
RFI and SCRIMP Model Development and Verification
NASA Technical Reports Server (NTRS)
Loos, Alfred C.; Sayre, Jay
2000-01-01
Vacuum-Assisted Resin Transfer Molding (VARTM) processes are becoming promising technologies in the manufacturing of primary composite structures in the aircraft industry as well as infrastructure. A great deal of work still needs to be done on efforts to reduce the costly trial-and-error methods of VARTM processing that are currently in practice today. A computer simulation model of the VARTM process would provide a cost-effective tool in the manufacturing of composites utilizing this technique. Therefore, the objective of this research was to modify an existing three-dimensional, Resin Film Infusion (RFI)/Resin Transfer Molding (RTM) model to include VARTM simulation capabilities and to verify this model with the fabrication of aircraft structural composites. An additional objective was to use the VARTM model as a process analysis tool, where this tool would enable the user to configure the best process for manufacturing quality composites. Experimental verification of the model was performed by processing several flat composite panels. The parameters verified included flow front patterns and infiltration times. The flow front patterns were determined to be qualitatively accurate, while the simulated infiltration times over predicted experimental times by 8 to 10%. Capillary and gravitational forces were incorporated into the existing RFI/RTM model in order to simulate VARTM processing physics more accurately. The theoretical capillary pressure showed the capability to reduce the simulated infiltration times by as great as 6%. The gravity, on the other hand, was found to be negligible for all cases. Finally, the VARTM model was used as a process analysis tool. This enabled the user to determine such important process constraints as the location and type of injection ports and the permeability and location of the high-permeable media. A process for a three-stiffener composite panel was proposed. This configuration evolved from the variation of the process constraints in the modeling of several different composite panels. The configuration was proposed by considering such factors as: infiltration time, the number of vacuum ports, and possible areas of void entrapment.
Numerical simulation of film-cooled ablative rocket nozzles
NASA Technical Reports Server (NTRS)
Landrum, D. B.; Beard, R. M.
1996-01-01
The objective of this research effort was to evaluate the impact of incorporating an additional cooling port downstream between the injector and nozzle throat in the NASA Fast Track chamber. A numerical model of the chamber was developed for the analysis. The analysis did not model ablation but instead correlated the initial ablation rate with the initial nozzle wall temperature distribution. The results of this study provide guidance in the development of a potentially lighter, second generation ablative rocket nozzle which maintains desired performance levels.
NeuroManager: a workflow analysis based simulation management engine for computational neuroscience
Stockton, David B.; Santamaria, Fidel
2015-01-01
We developed NeuroManager, an object-oriented simulation management software engine for computational neuroscience. NeuroManager automates the workflow of simulation job submissions when using heterogeneous computational resources, simulators, and simulation tasks. The object-oriented approach (1) provides flexibility to adapt to a variety of neuroscience simulators, (2) simplifies the use of heterogeneous computational resources, from desktops to super computer clusters, and (3) improves tracking of simulator/simulation evolution. We implemented NeuroManager in MATLAB, a widely used engineering and scientific language, for its signal and image processing tools, prevalence in electrophysiology analysis, and increasing use in college Biology education. To design and develop NeuroManager we analyzed the workflow of simulation submission for a variety of simulators, operating systems, and computational resources, including the handling of input parameters, data, models, results, and analyses. This resulted in 22 stages of simulation submission workflow. The software incorporates progress notification, automatic organization, labeling, and time-stamping of data and results, and integrated access to MATLAB's analysis and visualization tools. NeuroManager provides users with the tools to automate daily tasks, and assists principal investigators in tracking and recreating the evolution of research projects performed by multiple people. Overall, NeuroManager provides the infrastructure needed to improve workflow, manage multiple simultaneous simulations, and maintain provenance of the potentially large amounts of data produced during the course of a research project. PMID:26528175
NeuroManager: a workflow analysis based simulation management engine for computational neuroscience.
Stockton, David B; Santamaria, Fidel
2015-01-01
We developed NeuroManager, an object-oriented simulation management software engine for computational neuroscience. NeuroManager automates the workflow of simulation job submissions when using heterogeneous computational resources, simulators, and simulation tasks. The object-oriented approach (1) provides flexibility to adapt to a variety of neuroscience simulators, (2) simplifies the use of heterogeneous computational resources, from desktops to super computer clusters, and (3) improves tracking of simulator/simulation evolution. We implemented NeuroManager in MATLAB, a widely used engineering and scientific language, for its signal and image processing tools, prevalence in electrophysiology analysis, and increasing use in college Biology education. To design and develop NeuroManager we analyzed the workflow of simulation submission for a variety of simulators, operating systems, and computational resources, including the handling of input parameters, data, models, results, and analyses. This resulted in 22 stages of simulation submission workflow. The software incorporates progress notification, automatic organization, labeling, and time-stamping of data and results, and integrated access to MATLAB's analysis and visualization tools. NeuroManager provides users with the tools to automate daily tasks, and assists principal investigators in tracking and recreating the evolution of research projects performed by multiple people. Overall, NeuroManager provides the infrastructure needed to improve workflow, manage multiple simultaneous simulations, and maintain provenance of the potentially large amounts of data produced during the course of a research project.
Hutchens, M P; Drennan, S L; Cambronne, E D
2015-06-01
Needleless connectors may develop bacterial contamination and cause central-line-associated bloodstream infections (CLABSI) despite rigorous application of best-practice. Ultraviolet (UV) light-emitting diodes (LED) are an emerging, increasingly affordable disinfection technology. We tested the hypothesis that a low-power UV LED could reliably eliminate bacteria on needleless central-line ports in a laboratory model of central-line contamination. Needleless central-line connectors were inoculated with Staphylococcus aureus. A 285 nm UV LED was used in calibrated fashion to expose contaminated connectors. Ports were directly applied to agar plates and flushed with sterile saline, allowing assessment of bacterial survival on the port surface and in simulated usage flow-through fluid. UV applied to needleless central-line connectors was highly lethal at 0·5 cm distance at all tested exposure times. At distances >1·5 cm both simulated flow-through and port surface cultures demonstrated significant bacterial growth following UV exposure. Logarithmic-phase S. aureus subcultures were highly susceptible to UV induction/maintenance dosing. Low-power UV LED doses at fixed time and distance from needleless central-line connector ports reduced cultivable S. aureus from >10(6) CFU to below detectable levels in this laboratory simulation of central-line port contamination. Low-power UV LEDs may represent a feasible alternative to current best-practice in connector decontamination. © 2015 The Society for Applied Microbiology.
DoD Modeling and Simulation (M&S) Glossary
1998-01-01
modeling and simulation. It is the group responsible for establishing the need for the ...logical data grouping (in the logical data model ) to which it belongs. (DoD Publication 8320.1-M-l and NBS Pub 500-149, (references (q) and (u)) 399...Department of the Navy Modeling and Simulation Technical Support Group Demonstration of Dynamic Object Oriented Requirements System Disk
NASA Technical Reports Server (NTRS)
Campbell, William J.; Short, Nicholas M., Jr.; Roelofs, Larry H.; Dorfman, Erik
1991-01-01
A methodology for optimizing organization of data obtained by NASA earth and space missions is discussed. The methodology uses a concept based on semantic data modeling techniques implemented in a hierarchical storage model. The modeling is used to organize objects in mass storage devices, relational database systems, and object-oriented databases. The semantic data modeling at the metadata record level is examined, including the simulation of a knowledge base and semantic metadata storage issues. The semantic data model hierarchy and its application for efficient data storage is addressed, as is the mapping of the application structure to the mass storage.
Development of a system of indicators for sustainable port management.
Peris-Mora, E; Diez Orejas, J M; Subirats, A; Ibáñez, S; Alvarez, P
2005-12-01
The 1998 project ECOPORT, "Towards A Sustainable Transport Network", developed by the Valencia Port Authority (VPA), established the bases for implementing an Environmental Management System (EMS) in industrial harbours. The use of data and information shall always be required to develop an efficient EMS. The objective of the present research (INDAPORT) study is to propose a system of sustainable environmental management indicators to be used by any port authorities. All activities performed within a port area are analysed for any potential environmental impacts and risks. An environmental analysis of port activities has been carried out with the objective of designing the indicators system. Twenty-one corresponding activities have been identified for large industrial ports. Subsequently, the same methodology developed to date will be later applied to other Spanish and European ports. The study has been developed by using an original system and a methodology, which simultaneously use stage diagrams and systemic models (material and energy flow charts). Multi-criteria analysis techniques were used to evaluate potential impacts (identification of factors and evaluation of impacts).
Multi-point objective-oriented sequential sampling strategy for constrained robust design
NASA Astrophysics Data System (ADS)
Zhu, Ping; Zhang, Siliang; Chen, Wei
2015-03-01
Metamodelling techniques are widely used to approximate system responses of expensive simulation models. In association with the use of metamodels, objective-oriented sequential sampling methods have been demonstrated to be effective in balancing the need for searching an optimal solution versus reducing the metamodelling uncertainty. However, existing infilling criteria are developed for deterministic problems and restricted to one sampling point in one iteration. To exploit the use of multiple samples and identify the true robust solution in fewer iterations, a multi-point objective-oriented sequential sampling strategy is proposed for constrained robust design problems. In this article, earlier development of objective-oriented sequential sampling strategy for unconstrained robust design is first extended to constrained problems. Next, a double-loop multi-point sequential sampling strategy is developed. The proposed methods are validated using two mathematical examples followed by a highly nonlinear automotive crashworthiness design example. The results show that the proposed method can mitigate the effect of both metamodelling uncertainty and design uncertainty, and identify the robust design solution more efficiently than the single-point sequential sampling approach.
Fernandez de Canete, J; Luque, J; Barbancho, J; Munoz, V
2014-04-01
A mathematical model that provides an overall description of both the short- and long-term mechanisms of arterial pressure regulation is presented. Short-term control is exerted through the baroreceptor reflex while renal elimination plays a role in long-term control. Both mechanisms operate in an integrated way over the compartmental model of the cardiovascular system. The whole system was modelled in MODELICA, which uses a hierarchical object-oriented modelling strategy, under the DYMOLA simulation environment. The performance of the controlled system was analysed by simulation in light of the existing hypothesis and validation tests previously performed with physiological data, demonstrating the effectiveness of both regulation mechanisms under physiological and pathological conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Xie, Hualin; Kung, Chih-Chun; Zhang, Yanting; Li, Xiubin
2012-01-01
Ecological land is like the “liver” of a city and is very useful to public health. Ecological land change is a spatially dynamic non-linear process under the interaction between natural and anthropogenic factors at different scales. In this study, by setting up natural development scenario, object orientation scenario and ecosystem priority scenario, a Cellular Automation (CA) model has been established to simulate the evolution pattern of ecological land in Beijing in the year 2020. Under the natural development scenario, most of ecological land will be replaced by construction land and crop land. But under the scenarios of object orientation and ecosystem priority, the ecological land area will increase, especially under the scenario of ecosystem priority. When considering the factors such as total area of ecological land, loss of key ecological land and spatial patterns of land use, the scenarios from priority to inferiority are ecosystem priority, object orientation and natural development, so future land management policies in Beijing should be focused on conversion of cropland to forest, wetland protection and prohibition of exploitation of natural protection zones, water source areas and forest parks to maintain the safety of the regional ecosystem. PMID:23066410
Xie, Hualin; Kung, Chih-Chun; Zhang, Yanting; Li, Xiubin
2012-08-01
Ecological land is like the "liver" of a city and is very useful to public health. Ecological land change is a spatially dynamic non-linear process under the interaction between natural and anthropogenic factors at different scales. In this study, by setting up natural development scenario, object orientation scenario and ecosystem priority scenario, a Cellular Automation (CA) model has been established to simulate the evolution pattern of ecological land in Beijing in the year 2020. Under the natural development scenario, most of ecological land will be replaced by construction land and crop land. But under the scenarios of object orientation and ecosystem priority, the ecological land area will increase, especially under the scenario of ecosystem priority. When considering the factors such as total area of ecological land, loss of key ecological land and spatial patterns of land use, the scenarios from priority to inferiority are ecosystem priority, object orientation and natural development, so future land management policies in Beijing should be focused on conversion of cropland to forest, wetland protection and prohibition of exploitation of natural protection zones, water source areas and forest parks to maintain the safety of the regional ecosystem.
Reliability database development for use with an object-oriented fault tree evaluation program
NASA Technical Reports Server (NTRS)
Heger, A. Sharif; Harringtton, Robert J.; Koen, Billy V.; Patterson-Hine, F. Ann
1989-01-01
A description is given of the development of a fault-tree analysis method using object-oriented programming. In addition, the authors discuss the programs that have been developed or are under development to connect a fault-tree analysis routine to a reliability database. To assess the performance of the routines, a relational database simulating one of the nuclear power industry databases has been constructed. For a realistic assessment of the results of this project, the use of one of existing nuclear power reliability databases is planned.
An object-oriented software for fate and exposure assessments.
Scheil, S; Baumgarten, G; Reiter, B; Schwartz, S; Wagner, J O; Trapp, S; Matthies, M
1995-07-01
The model system CemoS(1) (Chemical Exposure Model System) was developed for the exposure prediction of hazardous chemicals released to the environment. Eight different models were implemented involving chemicals fate simulation in air, water, soil and plants after continuous or single emissions from point and diffuse sources. Scenario studies are supported by a substance and an environmental data base. All input data are checked on their plausibility. Substance and environmental process estimation functions facilitate generic model calculations. CemoS is implemented in a modular structure using object-oriented programming.
Ur Rehman, Yasar Abbas; Tariq, Muhammad; Khan, Omar Usman
2015-01-01
Object localization plays a key role in many popular applications of Wireless Multimedia Sensor Networks (WMSN) and as a result, it has acquired a significant status for the research community. A significant body of research performs this task without considering node orientation, object geometry and environmental variations. As a result, the localized object does not reflect the real world scenarios. In this paper, a novel object localization scheme for WMSN has been proposed that utilizes range free localization, computer vision, and principle component analysis based algorithms. The proposed approach provides the best possible approximation of distance between a wmsn sink and an object, and the orientation of the object using image based information. Simulation results report 99% efficiency and an error ratio of 0.01 (around 1 ft) when compared to other popular techniques. PMID:26528919
Global Village as Virtual Community (On Writing, Thinking, and Teacher Education).
ERIC Educational Resources Information Center
Polin, Linda
1993-01-01
Describes virtual communities known as Multi-User Simulated Environment (MUSE) or Multi-User Object Oriented environment (MOO), text-based computer "communities" whose inhabitants are a combination of the real people and constructed objects that people agree to treat as real. Describes their uses in the classroom. (SR)
NASA Astrophysics Data System (ADS)
Douilly, Roby; Mavroeidis, George P.; Calais, Eric
2017-10-01
The devastating 2010 Mw 7.0 Haiti earthquake demonstrated the need to improve mitigation and preparedness for future seismic events in the region. Previous studies have shown that the earthquake did not occur on the Enriquillo Fault, the main plate boundary fault running through the heavily populated Port-au-Prince region, but on the nearby and previously unknown transpressional Léogâne Fault. Slip on that fault has increased stresses on the segment of Enriquillo Fault to the east of Léogâne, which terminates in the ˜3-million-inhabitant capital city of Port-au-Prince. In this study, we investigate ground shaking in the vicinity of Port-au-Prince, if a hypothetical rupture similar to the 2010 Haiti earthquake occurred on that segment of the Enriquillo Fault. We use a finite element method and assumptions on regional tectonic stress to simulate the low-frequency ground motion components using dynamic rupture propagation for a 52-km-long segment. We consider eight scenarios by varying parameters such as hypocentre location, initial shear stress and fault dip. The high-frequency ground motion components are simulated using the specific barrier model in the context of the stochastic modeling approach. The broad-band ground motion synthetics are subsequently obtained by combining the low-frequency components from the dynamic rupture simulation with the high-frequency components from the stochastic simulation using matched filtering at a crossover frequency of 1 Hz. Results show that rupture on a vertical Enriquillo Fault generates larger horizontal permanent displacements in Léogâne and Port-au-Prince than rupture on a south-dipping Enriquillo Fault. The mean horizontal peak ground acceleration (PGA), computed at several sites of interest throughout Port-au-Prince, has a value of ˜0.45 g, whereas the maximum horizontal PGA in Port-au-Prince is ˜0.60 g. Even though we only consider a limited number of rupture scenarios, our results suggest more intense ground shaking for the city of Port-au-Prince than during the already very damaging 2010 Haiti earthquake.
Tse, Chi-Shing; Kurby, Christopher A.; Du, Feng
2010-01-01
We examined the effect of spatial iconicity (a perceptual simulation of canonical locations of objects) and word-order frequency on language processing and episodic memory of orientation. Participants made speeded relatedness judgments to pairs of words presented in locations typical to their real world arrangements (e.g., ceiling on top and floor on bottom). They then engaged in a surprise orientation recognition task for the word pairs. We replicated Louwerse’s finding (2008) that word-order frequency has a stronger effect on semantic relatedness judgments than spatial iconicity. This is consistent with recent suggestions that linguistic representations have a stronger impact on immediate decisions about verbal materials than perceptual simulations. In contrast, spatial iconicity enhanced episodic memory of orientation to a greater extent than word-order frequency did. This new finding indicates that perceptual simulations have an important role in episodic memory. Results are discussed with respect to theories of perceptual representation and linguistic processing. PMID:19742388
A GUI-based Tool for Bridging the Gap between Models and Process-Oriented Studies
NASA Astrophysics Data System (ADS)
Kornfeld, A.; Van der Tol, C.; Berry, J. A.
2014-12-01
Models used for simulation of photosynthesis and transpiration by canopies of terrestrial plants typically have subroutines such as STOMATA.F90, PHOSIB.F90 or BIOCHEM.m that solve for photosynthesis and associated processes. Key parameters such as the Vmax for Rubisco and temperature response parameters are required by these subroutines. These are often taken from the literature or determined by separate analysis of gas exchange experiments. It is useful to note however that subroutines can be extracted and run as standalone models to simulate leaf responses collected in gas exchange experiments. Furthermore, there are excellent non-linear fitting tools that can be used to optimize the parameter values in these models to fit the observations. Ideally the Vmax fit in this way should be the same as that determined by a separate analysis, but it may not because of interactions with other kinetic constants and the temperature dependence of these in the full subroutine. We submit that it is more useful to fit the complete model to the calibration experiments rather as disaggregated constants. We designed a graphical user interface (GUI) based tool that uses gas exchange photosynthesis data to directly estimate model parameters in the SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes) model and, at the same time, allow researchers to change parameters interactively to visualize how variation in model parameters affect predicted outcomes such as photosynthetic rates, electron transport, and chlorophyll fluorescence. We have also ported some of this functionality to an Excel spreadsheet, which could be used as a teaching tool to help integrate process-oriented and model-oriented studies.
Computational Nuclear Physics and Post Hartree-Fock Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lietz, Justin; Sam, Novario; Hjorth-Jensen, M.
We present a computational approach to infinite nuclear matter employing Hartree-Fock theory, many-body perturbation theory and coupled cluster theory. These lectures are closely linked with those of chapters 9, 10 and 11 and serve as input for the correlation functions employed in Monte Carlo calculations in chapter 9, the in-medium similarity renormalization group theory of dense fermionic systems of chapter 10 and the Green's function approach in chapter 11. We provide extensive code examples and benchmark calculations, allowing thereby an eventual reader to start writing her/his own codes. We start with an object-oriented serial code and end with discussions onmore » strategies for porting the code to present and planned high-performance computing facilities.« less
Study on the CFD simulation of refrigerated container
NASA Astrophysics Data System (ADS)
Arif Budiyanto, Muhammad; Shinoda, Takeshi; Nasruddin
2017-10-01
The objective this study is to performed Computational Fluid Dynamic (CFD) simulation of refrigerated container in the container port. Refrigerated container is a thermal cargo container constructed from an insulation wall to carry kind of perishable goods. CFD simulation was carried out use cross sectional of container walls to predict surface temperatures of refrigerated container and to estimate its cooling load. The simulation model is based on the solution of the partial differential equations governing the fluid flow and heat transfer processes. The physical model of heat-transfer processes considered in this simulation are consist of solar radiation from the sun, heat conduction on the container walls, heat convection on the container surfaces and thermal radiation among the solid surfaces. The validation of simulation model was assessed uses surface temperatures at center points on each container walls obtained from the measurement experimentation in the previous study. The results shows the surface temperatures of simulation model has good agreement with the measurement data on all container walls.
Estimating and validating ground-based timber harvesting production through computer simulation
Jingxin Wang; Chris B. LeDoux
2003-01-01
Estimating ground-based timber harvesting systems production with an object oriented methodology was investigated. The estimation model developed generates stands of trees, simulates chain saw, drive-to-tree feller-buncher, swing-to-tree single-grip harvester felling, and grapple skidder and forwarder extraction activities, and analyzes costs and productivity. It also...
Beermann, Rüdiger; Quentin, Lorenz; Pösch, Andreas; Reithmeier, Eduard; Kästner, Markus
2017-05-10
To optically capture the topography of a hot measurement object with high precision, the light deflection by the inhomogeneous refractive index field-induced by the heat transfer from the measurement object to the ambient medium-has to be considered. We used the 2D background oriented schlieren method with illuminated wavelet background, an optical flow algorithm, and Ciddor's equation to quantify the refractive index field located directly above a red-glowing, hot measurement object. A heat transfer simulation has been implemented to verify the magnitude and the shape of the measured refractive index field. Provided that no forced external flow is disturbing the shape of the convective flow originating from the hot object, a laminar flow can be observed directly above the object, resulting in a sharply bounded, inhomogeneous refractive index field.
Data communication between Panasonic PLC and PC using SerialPort control in C#.NET environment
NASA Astrophysics Data System (ADS)
Gao, Ting; Gan, Xiaochuan; Ma, Liqun
2015-02-01
With the gradual promotion of Microsoft.NET platform, C# as an object-oriented programming language based on the platform has been widely used. Therefore, more attention is concentrated on how to achieve the communication between Panasonic PLC and PC efficiently and fast in C#.NET environment. In this paper, a method of using SerialPort control which could be used for achieving communication between PLC and PC is introduced. Meanwhile, the reason of abnormal thread when displayed the receiving data in form is analyzed and the programming method to solve the problem of thread safety is designed. Achieving the communication of Panasonic PLC and PC in C#.NET environment can give full play to the advantages of the .NET framework. It is practical, easy communication, high reliability and can combine with other measurement and calibration procedures effectively and conveniently. Configuration software is expensive and can only communicate with PLC separately, but these shortcomings can be solved in C#.NET environment. A well-designed user interface realized real-time monitoring of PLC parameters and achieved management and control integration. The experiment show that this method of data transfer is accurate and the program' running is stable.
Regenerative life support system research
NASA Technical Reports Server (NTRS)
1988-01-01
Sections on modeling, experimental activities during the grant period, and topics under consideration for the future are contained. The sessions contain discussions of: four concurrent modeling approaches that were being integrated near the end of the period (knowledge-based modeling support infrastructure and data base management, object-oriented steady state simulations for three concepts, steady state mass-balance engineering tradeoff studies, and object-oriented time-step, quasidynamic simulations of generic concepts); interdisciplinary research activities, beginning with a discussion of RECON lab development and use, and followed with discussions of waste processing research, algae studies and subsystem modeling, low pressure growth testing of plants, subsystem modeling of plants, control of plant growth using lighting and CO2 supply as variables, search for and development of lunar soil simulants, preliminary design parameters for a lunar base life support system, and research considerations for food processing in space; and appendix materials, including a discussion of the CELSS Conference, detailed analytical equations for mass-balance modeling, plant modeling equations, and parametric data on existing life support systems for use in modeling.
LOOS: an extensible platform for the structural analysis of simulations.
Romo, Tod D; Grossfield, Alan
2009-01-01
We have developed LOOS (Lightweight Object-Oriented Structure-analysis library) as an object-oriented library designed to facilitate the rapid development of tools for the structural analysis of simulations. LOOS supports the native file formats of most common simulation packages including AMBER, CHARMM, CNS, Gromacs, NAMD, Tinker, and X-PLOR. Encapsulation and polymorphism are used to simultaneously provide a stable interface to the programmer and make LOOS easily extensible. A rich atom selection language based on the C expression syntax is included as part of the library. LOOS enables students and casual programmer-scientists to rapidly write their own analytical tools in a compact and expressive manner resembling scripting. LOOS is written in C++ and makes extensive use of the Standard Template Library and Boost, and is freely available under the GNU General Public License (version 3) LOOS has been tested on Linux and MacOS X, but is written to be portable and should work on most Unix-based platforms.
NASA Technical Reports Server (NTRS)
Mclean, David R.; Tuchman, Alan; Potter, William J.
1991-01-01
Recently, many expert systems were developed in a LISP environment and then ported to the real world C environment before the final system is delivered. This situation may require that the entire system be completely rewritten in C and may actually result in a system which is put together as quickly as possible with little regard for maintainability and further evolution. With the introduction of high performance UNIX and X-windows based workstations, a great deal of the advantages of developing a first system in the LISP environment have become questionable. A C-based AI development effort is described which is based on a software tools approach with emphasis on reusability and maintainability of code. The discussion starts with simple examples of how list processing can easily be implemented in C and then proceeds to the implementations of frames and objects which use dynamic memory allocation. The implementation of procedures which use depth first search, constraint propagation, context switching and a blackboard-like simulation environment are described. Techniques for managing the complexity of C-based AI software are noted, especially the object-oriented techniques of data encapsulation and incremental development. Finally, all these concepts are put together by describing the components of planning software called the Planning And Resource Reasoning (PARR) shell. This shell was successfully utilized for scheduling services of the Tracking and Data Relay Satellite System for the Earth Radiation Budget Satellite since May 1987 and will be used for operations scheduling of the Explorer Platform in November 1991.
THYME: Toolkit for Hybrid Modeling of Electric Power Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nutaro Kalyan Perumalla, James Joseph
2011-01-01
THYME is an object oriented library for building models of wide area control and communications in electric power systems. This software is designed as a module to be used with existing open source simulators for discrete event systems in general and communication systems in particular. THYME consists of a typical model for simulating electro-mechanical transients (e.g., as are used in dynamic stability studies), data handling objects to work with CDF and PTI formatted power flow data, and sample models of discrete sensors and controllers.
Induced Stress, Artificial Environment, Simulated Tactical Operations Center Model
1973-06-01
oriented 4 activities or, at best , tre application of dor:trinal i. 14 concepts to command post exercises. Unlike mechanical skills, weapon’s...training model identified as APSTRAT, an acronym indicating aptitude and strategies , be considered as a point of reference. Several instructional...post providing visual and aural sensing tasks and training objective oriented performance tasks. Vintilly, ho concludes that failure should be
Dynamic extension of the Simulation Problem Analysis Kernel (SPANK)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sowell, E.F.; Buhl, W.F.
1988-07-15
The Simulation Problem Analysis Kernel (SPANK) is an object-oriented simulation environment for general simulation purposes. Among its unique features is use of the directed graph as the primary data structure, rather than the matrix. This allows straightforward use of graph algorithms for matching variables and equations, and reducing the problem graph for efficient numerical solution. The original prototype implementation demonstrated the principles for systems of algebraic equations, allowing simulation of steady-state, nonlinear systems (Sowell 1986). This paper describes how the same principles can be extended to include dynamic objects, allowing simulation of general dynamic systems. The theory is developed andmore » an implementation is described. An example is taken from the field of building energy system simulation. 2 refs., 9 figs.« less
NASA Technical Reports Server (NTRS)
Izygon, Michel E.
1992-01-01
This report is an attempt to clarify some of the concerns raised about the OMT method, specifically that OMT is weaker than the Booch method in a few key areas. This interim report specifically addresses the following issues: (1) is OMT object-oriented or only data-driven?; (2) can OMT be used as a front-end to implementation in C++?; (3) the inheritance concept in OMT is in contradiction with the 'pure and real' inheritance concept found in object-oriented (OO) design; (4) low support for software life-cycle issues, for project and risk management; (5) uselessness of functional modeling for the ROSE project; and (6) problems with event-driven and simulation systems. The conclusion of this report is that both Booch's method and Rumbaugh's method are good OO methods, each with strengths and weaknesses in different areas of the development process.
Mechanical characteristics of plastic base Ports and impact on flushing efficacy.
Guiffant, Gérard; Flaud, Patrice; Royon, Laurent; Burnet, Espérie; Merckx, Jacques
2017-01-01
Three types of totally implantable venous access devices, Ports, are currently in use: titanium, plastic (polyoxymethylene, POM), and mixed (titanium base with a POM shell). Physics theory suggests that the interaction between a non-coring needle (NCN, made of stainless steel) and a plastic base would lead to the stronger material (steel) altering the more malleable material (plastic). To investigate whether needle impacts can alter a plastic base's surface, thus potentially reducing flushing efficacy. A Port made of POM was punctured 200 times with a 19-gauge NCN. Following the existing guidelines, the needle tip pricked the base with each puncture. The Port's base was then examined using a two-dimensional optical instrument, and a bi-dimensional numerical simulation using COMSOL ® was performed to investigate potential surface irregularities and their impact on fluid flow. Each needle impact created a hole (mean depth, 0.12 mm) with a small bump beside it (mean height, 0.02 mm) the Reynolds number Re k ≈10. A numerical simulation of the one hole/bump set showed that the flushing efficacy was 60% that of flushing along a flat surface. In clinical practice, the number of times a Port is punctured depends on patient and treatment characteristics, but each needle impact on the plastic base may increase the risk of decreased flushing effectiveness. Therefore, the more a plastic Port is accessed, the greater the risk of microorganisms, blood products, and medication accumulation. Multiple needle impacts created an irregular surface on the Port's base, which decreased flushing efficacy. Clinical investigation is needed to determine whether plastic base Ports are associated with an increased risk of Port infection and occlusion compared to titanium base Ports.
SISSY: An example of a multi-threaded, networked, object-oriented databased application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scipioni, B.; Liu, D.; Song, T.
1993-05-01
The Systems Integration Support SYstem (SISSY) is presented and its capabilities and techniques are discussed. It is fully automated data collection and analysis system supporting the SSCL`s systems analysis activities as they relate to the Physics Detector and Simulation Facility (PDSF). SISSY itself is a paradigm of effective computing on the PDSF. It uses home-grown code (C++), network programming (RPC, SNMP), relational (SYBASE) and object-oriented (ObjectStore) DBMSs, UNIX operating system services (IRIX threads, cron, system utilities, shells scripts, etc.), and third party software applications (NetCentral Station, Wingz, DataLink) all of which act together as a single application to monitor andmore » analyze the PDSF.« less
Simulation of Physical Experiments in Immersive Virtual Environments
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Wasfy, Tamer M.
2001-01-01
An object-oriented event-driven immersive Virtual environment is described for the creation of virtual labs (VLs) for simulating physical experiments. Discussion focuses on a number of aspects of the VLs, including interface devices, software objects, and various applications. The VLs interface with output devices, including immersive stereoscopic screed(s) and stereo speakers; and a variety of input devices, including body tracking (head and hands), haptic gloves, wand, joystick, mouse, microphone, and keyboard. The VL incorporates the following types of primitive software objects: interface objects, support objects, geometric entities, and finite elements. Each object encapsulates a set of properties, methods, and events that define its behavior, appearance, and functions. A container object allows grouping of several objects. Applications of the VLs include viewing the results of the physical experiment, viewing a computer simulation of the physical experiment, simulation of the experiments procedure, computational steering, and remote control of the physical experiment. In addition, the VL can be used as a risk-free (safe) environment for training. The implementation of virtual structures testing machines, virtual wind tunnels, and a virtual acoustic testing facility is described.
Tsunami hazard assessment at Port Alberni, BC, Canada: preliminary model results
NASA Astrophysics Data System (ADS)
Grilli, S. T.; Insua, T. L.; Grilli, A. R.; Douglas, K. L.; Shelby, M. R.; Wang, K.; Gao, D.
2016-12-01
Located in the heart of Vancouver Island, BC, Port Alberni has a well-known history of tsunamis. Many of the Nuu-Chah-Nulth First Nations share oral stories about a strong fight between a thunderbird and a whale that caused big waves in a winter night, a story that is compatible with the recently recognized great Cascadia tsunami in January, 1700. Port Alberni, with a total population of approximately 20,000 people, lies beside the Somass River, at the very end of Barkley Sound Inlet. The narrow canal connecting this town to the Pacific Ocean runs for more than 64 km ( 40 miles) between steep mountains, providing an ideal setting for the amplification of tsunami waves through funnelling effects. The devastating effects of tsunamis are still fresh in residents' memories from the impact of the 1964 Alaska tsunami that caused serious damage to the city. In June 2016, Emergency Management BC ran a coastal exercise in Port Alberni, simulating the response to an earthquake and a tsunami. During three days, the emergency teams in the City of Port Alberni practiced and learned from the experience. Ocean Networks Canada contributed to this exercise with the development of preliminary simulations of tsunami impact on the city from a buried rupture of the Cascadia Subduction Zone, including the Explorer segment. Wave propagation was simulated with the long-wave model FUNWAVE-TVD. Preliminary results indicate a strong amplification of tsunami waves in the Port Alberni area. The inundation zone in Port Alberni had a footprint similar to that of the 1700 Cascadia and 1964 Alaska tsunamis, inundating the area surrounding the Somass river and preferentially following the Kitsuksis and Roger Creek river margins into the city. Several other tsunami source scenarios, including splay faulting and trench-breaching ruptures are currently being modeled for the city of Port Alberni following a similar approach. These results will be presented at the conference.
Drivers Behind the PRC’s Port Investments: Cases in Darwin and Sri Lanka
2017-12-01
Territory Government’s Port of Darwin in Australia and the Port of Hambantota in Sri Lanka. It examines whether security concerns or economic ...objectives are driving Chinese, Australian, and Sri Lankan behavior. Through a detailed analysis of available policy statements and economic data, the thesis...principally motivated by economic goals. They both lack sufficient domestic funds to accomplish their own large-scale port development goals, with Darwin
Towards The Operational Oceanographic Model System In Estonian Coastal Sea, Baltic Sea
NASA Astrophysics Data System (ADS)
Kõuts, T.; Elken, J.; Raudsepp, U.
An integrated system of nested 2D and 3D hydrodynamic models together with real time forcing data asquisition is designed and set up in pre-operational mode in the Gulf of Finland and Gulf of Riga, the Baltic Sea. Along the Estonian coast, implicit time-stepping 3D models are used in the deep bays and 2D models in the shallow bays with ca 200 m horizontal grid step. Specific model setups have been verified by in situ current measurements. Optimum configuration of initial parameters has been found for certain critical locations, usually ports, oil terminals, etc. Operational system in- tegrates also section of historical database of most important hydrologic parameters in the region, allowing use of certain statistical analysis and proper setup of initial conditions for oceanographic models. There is large variety of applications for such model system, ranging from environmental impact assessment at local coastal sea pol- lution problems to forecast of offshore blue algal blooms. Most probable risk factor in the coastal sea engineering is oil pollution, therefore current operational model sys- tem has direct custom oriented output the oil spill forecast for critical locations. Oil spill module of the operational system consist the automatic weather and hydromet- ric station (distributed in real time to internet) and prognostic model of sea surface currents. System is run using last 48 hour wind data and wind forecast and estimates probable oil deposition areas on the shoreline under certain weather conditions. Cal- culated evolution of oil pollution has been compared with some real accidents in the past and there was found good agreement between model and measurements. Graphi- cal user interface of oil spill model is currently installed at location of port authorities (eg. Muuga port), so in case of accidents it could be used in real time supporting the rescue operations. In 2000 current pre-operational oceanographic model system has been sucessfully used to evaluate environmental impacts of three different deep-port construction options in Saaremaa, NW the Baltic Sea. Intensive campaign of field measurements, consisting the high-resolution surveys of thermohaline properties of water masses (CTD) and timeseries as well horisontal structure of currents were in good agreement with model calculations. Model system well simulated the transport of pollution by surface currents originating from potential port locations at NW coast of the Saaremaa. It allowed to choose the optimum location for port and give also some hindcasts for port construction and exploitation.
The Port Security Grant Program: Good Enough, or Can it be Made Better
2016-06-01
Private Sector ...... 107 5. Core Capabilities as PSGP Objectives Must Be Revised...Goals. Source: NIPP 2013, Transportation Sector SSP. ........................................................... 42 Figure 12. Port State Control Grant...American Association of Port Authorities ACP Area Contingency Plan AIS Automated Identification System AMSC Area Maritime Security Committee AMSP
Design and Evaluation of Wood Processing Facilities Using Object-Oriented Simulation
D. Earl Kline; Philip A. Araman
1992-01-01
Managers of hardwood processing facilities need timely information on which to base important decisions such as when to add costly equipment or how to improve profitability subject to time-varying demands. The overall purpose of this paper is to introduce a tool that can effectively provide such timely information. A simulation/animation modeling procedure is described...
GPU-accelerated simulations of isolated black holes
NASA Astrophysics Data System (ADS)
Lewis, Adam G. M.; Pfeiffer, Harald P.
2018-05-01
We present a port of the numerical relativity code SpEC which is capable of running on NVIDIA GPUs. Since this code must be maintained in parallel with SpEC itself, a primary design consideration is to perform as few explicit code changes as possible. We therefore rely on a hierarchy of automated porting strategies. At the highest level we use TLoops, a C++ library of our design, to automatically emit CUDA code equivalent to tensorial expressions written into C++ source using a syntax similar to analytic calculation. Next, we trace out and cache explicit matrix representations of the numerous linear transformations in the SpEC code, which allows these to be performed on the GPU using pre-existing matrix-multiplication libraries. We port the few remaining important modules by hand. In this paper we detail the specifics of our port, and present benchmarks of it simulating isolated black hole spacetimes on several generations of NVIDIA GPU.
The objective of the geophysical surveys at the EPA Characterization Test Cell (CTC) area (Site) at Naval Base Ventura County, Port Hueneme, California is to locate geophysical anomalies indicative of metallic objects within the area of the cell. The goal was to provide backgroun...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-04
..., (1) social interactions; (2) foraging; (3) orientation; and (4) predator detection. Interference with...-strike, gear interaction, and/or entanglement), the Port shall immediately cease the specified activities...
Dshell++: A Component Based, Reusable Space System Simulation Framework
NASA Technical Reports Server (NTRS)
Lim, Christopher S.; Jain, Abhinandan
2009-01-01
This paper describes the multi-mission Dshell++ simulation framework for high fidelity, physics-based simulation of spacecraft, robotic manipulation and mobility systems. Dshell++ is a C++/Python library which uses modern script driven object-oriented techniques to allow component reuse and a dynamic run-time interface for complex, high-fidelity simulation of spacecraft and robotic systems. The goal of the Dshell++ architecture is to manage the inherent complexity of physicsbased simulations while supporting component model reuse across missions. The framework provides several features that support a large degree of simulation configurability and usability.
Vinson, David W.; Abney, Drew H.; Dale, Rick; Matlock, Teenie
2014-01-01
Three decades of research suggests that cognitive simulation of motion is involved in the comprehension of object location, bodily configuration, and linguistic meaning. For example, the remembered location of an object associated with actual or implied motion is typically displaced in the direction of motion. In this paper, two experiments explore context effects in spatial displacement. They provide a novel approach to estimating the remembered location of an implied motion image by employing a cursor-positioning task. Both experiments examine how the remembered spatial location of a person is influenced by subtle differences in implied motion, specifically, by shifting the orientation of the person’s body to face upward or downward, and by pairing the image with motion language that differed on intentionality, fell versus jumped. The results of Experiment 1, a survey-based experiment, suggest that language and body orientation influenced vertical spatial displacement. Results of Experiment 2, a task that used Adobe Flash and Amazon Mechanical Turk, showed consistent effects of body orientation on vertical spatial displacement but no effect of language. Our findings are in line with previous work on spatial displacement that uses a cursor-positioning task with implied motion stimuli. We discuss how different ways of simulating motion can influence spatial memory. PMID:25071628
Vinson, David W; Abney, Drew H; Dale, Rick; Matlock, Teenie
2014-01-01
Three decades of research suggests that cognitive simulation of motion is involved in the comprehension of object location, bodily configuration, and linguistic meaning. For example, the remembered location of an object associated with actual or implied motion is typically displaced in the direction of motion. In this paper, two experiments explore context effects in spatial displacement. They provide a novel approach to estimating the remembered location of an implied motion image by employing a cursor-positioning task. Both experiments examine how the remembered spatial location of a person is influenced by subtle differences in implied motion, specifically, by shifting the orientation of the person's body to face upward or downward, and by pairing the image with motion language that differed on intentionality, fell versus jumped. The results of Experiment 1, a survey-based experiment, suggest that language and body orientation influenced vertical spatial displacement. Results of Experiment 2, a task that used Adobe Flash and Amazon Mechanical Turk, showed consistent effects of body orientation on vertical spatial displacement but no effect of language. Our findings are in line with previous work on spatial displacement that uses a cursor-positioning task with implied motion stimuli. We discuss how different ways of simulating motion can influence spatial memory.
Real-Time Acquisition and Processing System (RTAPS) Version 1.1 Installation and User’s Manual.
1986-08-01
The language is incrementally compiled and procedure-oriented. It is run on an 8088 processor with 56K of available user RAM. The master board features...RTAPS/PC computers. The wiring configuration is shown in figure 10. Switch Modem Port MAC P5 or P6* 2, B4 3 B8 1%7 1 B10 *P6 recommended Figure 10. $MAC...activated switch. The AXAC output port is physically connected to the modem input on the switch. The subchannels are the labeled terminal connections
The three-dimensional Event-Driven Graphics Environment (3D-EDGE)
NASA Technical Reports Server (NTRS)
Freedman, Jeffrey; Hahn, Roger; Schwartz, David M.
1993-01-01
Stanford Telecom developed the Three-Dimensional Event-Driven Graphics Environment (3D-EDGE) for NASA GSFC's (GSFC) Communications Link Analysis and Simulation System (CLASS). 3D-EDGE consists of a library of object-oriented subroutines which allow engineers with little or no computer graphics experience to programmatically manipulate, render, animate, and access complex three-dimensional objects.
Avramov, Ivan D
2003-03-01
This practically oriented paper presents the fundamentals for analysis, optimization, and design of negative resistance oscillators (NRO) stabilized with surface transverse wave (STW)-based single-port resonators (SPR). Data on a variety of high-Q, low-loss SPR devices in the 900- to 2000-MHz range, suitable for NRO applications, are presented, and a simple method for SPR parameter extraction through Pi-circuit measurements is outlined. Negative resistance analysis, based on S-parameter data of the active device, is performed on a tuned-base, grounded collector transistor NRO, known for its good stability and tuning at microwave frequencies. By adding a SPR in the emitter network, the static transducer capacitance is absorbed by the circuit and is used to generate negative resistance only over the narrow bandwidth of the acoustic device, eliminating the risk of spurious oscillations. The analysis allows exact prediction of the oscillation frequency, tuning range, loaded Q, and excess gain. Simulation and experimental data on a 915-MHz fixed-frequency NRO and a wide tuning range, voltage-controlled STW oscillator, built and tested experimentally, are presented. Practical design aspects including the choice of transistor, negative feedback circuits, load coupling, and operation at the highest phase slope for minimum phase noise are discussed.
A future Outlook: Web based Simulation of Hydrodynamic models
NASA Astrophysics Data System (ADS)
Islam, A. S.; Piasecki, M.
2003-12-01
Despite recent advances to present simulation results as 3D graphs or animation contours, the modeling user community still faces some shortcomings when trying to move around and analyze data. Typical problems include the lack of common platforms with standard vocabulary to exchange simulation results from different numerical models, insufficient descriptions about data (metadata), lack of robust search and retrieval tools for data, and difficulties to reuse simulation domain knowledge. This research demonstrates how to create a shared simulation domain in the WWW and run a number of models through multi-user interfaces. Firstly, meta-datasets have been developed to describe hydrodynamic model data based on geographic metadata standard (ISO 19115) that has been extended to satisfy the need of the hydrodynamic modeling community. The Extended Markup Language (XML) is used to publish this metadata by the Resource Description Framework (RDF). Specific domain ontology for Web Based Simulation (WBS) has been developed to explicitly define vocabulary for the knowledge based simulation system. Subsequently, this knowledge based system is converted into an object model using Meta Object Family (MOF). The knowledge based system acts as a Meta model for the object oriented system, which aids in reusing the domain knowledge. Specific simulation software has been developed based on the object oriented model. Finally, all model data is stored in an object relational database. Database back-ends help store, retrieve and query information efficiently. This research uses open source software and technology such as Java Servlet and JSP, Apache web server, Tomcat Servlet Engine, PostgresSQL databases, Protégé ontology editor, RDQL and RQL for querying RDF in semantic level, Jena Java API for RDF. Also, we use international standards such as the ISO 19115 metadata standard, and specifications such as XML, RDF, OWL, XMI, and UML. The final web based simulation product is deployed as Web Archive (WAR) files which is platform and OS independent and can be used by Windows, UNIX, or Linux. Keywords: Apache, ISO 19115, Java Servlet, Jena, JSP, Metadata, MOF, Linux, Ontology, OWL, PostgresSQL, Protégé, RDF, RDQL, RQL, Tomcat, UML, UNIX, Windows, WAR, XML
Developing the port of Belawan as a modern and international port
NASA Astrophysics Data System (ADS)
Many, N.
2018-03-01
This study discusses the processes of government to pass the port development plan in Indonesia with the Port of Belawan and its port expansion as the study case. The study uses a descriptive approach by reviewing and analyzing some of relevant literature as the sources. It also reviews and examines the port development theoretical concepts and models giving attention to the international hub port models resulted from the previous studies. The international hub port aspects assessed to be further applied and compared to the actual situation of the Port of Belawan. This process draws the conclusion on which concept and model the port classified, followed by some recommendations concerning the necessary actions to be taken. The results show that: (1) The port planning regulated in port master plan is the guideline and foundation to implement the port development; (2) Spatial and zoning plan regulations are very important in the preparation, planning, and implementation of port development; (3) It has not provided the necessary facilities and criteria of the global hub port model has not been met completely. The port is strategic to be completely developed as the regional hub port to compete with the major ports of neighboring countries. Eventually, this study requires further analysis to examine the economic feasibility of the Port of Belawan in more comprehensive way functioning as an international hub port along with the ongoing development of Kuala Tanjung Port to achieve its ultimate objectives, among other things, the port effectiveness, efficiency, and competitiveness.
National Cycle Program (NCP) Common Analysis Tool for Aeropropulsion
NASA Technical Reports Server (NTRS)
Follen, G.; Naiman, C.; Evans, A.
1999-01-01
Through the NASA/Industry Cooperative Effort (NICE) agreement, NASA Lewis and industry partners are developing a new engine simulation, called the National Cycle Program (NCP), which is the initial framework of NPSS. NCP is the first phase toward achieving the goal of NPSS. This new software supports the aerothermodynamic system simulation process for the full life cycle of an engine. The National Cycle Program (NCP) was written following the Object Oriented Paradigm (C++, CORBA). The software development process used was also based on the Object Oriented paradigm. Software reviews, configuration management, test plans, requirements, design were all apart of the process used in developing NCP. Due to the many contributors to NCP, the stated software process was mandatory for building a common tool intended for use by so many organizations. The U.S. aircraft and airframe companies recognize NCP as the future industry standard for propulsion system modeling.
IMPETUS - Interactive MultiPhysics Environment for Unified Simulations.
Ha, Vi Q; Lykotrafitis, George
2016-12-08
We introduce IMPETUS - Interactive MultiPhysics Environment for Unified Simulations, an object oriented, easy-to-use, high performance, C++ program for three-dimensional simulations of complex physical systems that can benefit a large variety of research areas, especially in cell mechanics. The program implements cross-communication between locally interacting particles and continuum models residing in the same physical space while a network facilitates long-range particle interactions. Message Passing Interface is used for inter-processor communication for all simulations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Simulation of orientational coherent effects via Geant4
NASA Astrophysics Data System (ADS)
Bagli, E.; Asai, M.; Brandt, D.; Dotti, A.; Guidi, V.; Verderi, M.; Wright, D.
2017-10-01
Simulation of orientational coherent effects via Geant4 beam manipulation of high-and very-high-energy particle beams is a hot topic in accelerator physics. Coherent effects of ultra-relativistic particles in bent crystals allow the steering of particle trajectories thanks to the strong electrical field generated between atomic planes. Recently, a collimation experiment with bent crystals was carried out at the CERN-LHC, paving the way to the usage of such technology in current and future accelerators. Geant4 is a widely used object-oriented tool-kit for the Monte Carlo simulation of the interaction of particles with matter in high-energy physics. Moreover, its areas of application include also nuclear and accelerator physics, as well as studies in medical and space science. We present the first Geant4 extension for the simulation of orientational effects in straight and bent crystals for high energy charged particles. The model allows the manipulation of particle trajectories by means of straight and bent crystals and the scaling of the cross sections of hadronic and electromagnetic processes for channeled particles. Based on such a model, an extension of the Geant4 toolkit has been developed. The code and the model have been validated by comparison with published experimental data regarding the deflection efficiency via channeling and the variation of the rate of inelastic nuclear interactions.
SMI Compatible Simulation Scheduler Design for Reuse of Model Complying with Smp Standard
NASA Astrophysics Data System (ADS)
Koo, Cheol-Hea; Lee, Hoon-Hee; Cheon, Yee-Jin
2010-12-01
Software reusability is one of key factors which impacts cost and schedule on a software development project. It is very crucial also in satellite simulator development since there are many commercial simulator models related to satellite and dynamics. If these models can be used in another simulator platform, great deal of confidence and cost/schedule reduction would be achieved. Simulation model portability (SMP) is maintained by European Space Agency and many models compatible with SMP/simulation model interface (SMI) are available. Korea Aerospace Research Institute (KARI) is developing hardware abstraction layer (HAL) supported satellite simulator to verify on-board software of satellite. From above reasons, KARI wants to port these SMI compatible models to the HAL supported satellite simulator. To port these SMI compatible models to the HAL supported satellite simulator, simulation scheduler is preliminary designed according to the SMI standard.
Simulating video-assisted thoracoscopic lobectomy: a virtual reality cognitive task simulation.
Solomon, Brian; Bizekis, Costas; Dellis, Sophia L; Donington, Jessica S; Oliker, Aaron; Balsam, Leora B; Zervos, Michael; Galloway, Aubrey C; Pass, Harvey; Grossi, Eugene A
2011-01-01
Current video-assisted thoracoscopic surgery training models rely on animals or mannequins to teach procedural skills. These approaches lack inherent teaching/testing capability and are limited by cost, anatomic variations, and single use. In response, we hypothesized that video-assisted thoracoscopic surgery right upper lobe resection could be simulated in a virtual reality environment with commercial software. An anatomy explorer (Maya [Autodesk Inc, San Rafael, Calif] models of the chest and hilar structures) and simulation engine were adapted. Design goals included freedom of port placement, incorporation of well-known anatomic variants, teaching and testing modes, haptic feedback for the dissection, ability to perform the anatomic divisions, and a portable platform. Preexisting commercial models did not provide sufficient surgical detail, and extensive modeling modifications were required. Video-assisted thoracoscopic surgery right upper lobe resection simulation is initiated with a random vein and artery variation. The trainee proceeds in a teaching or testing mode. A knowledge database currently includes 13 anatomic identifications and 20 high-yield lung cancer learning points. The "patient" is presented in the left lateral decubitus position. After initial camera port placement, the endoscopic view is displayed and the thoracoscope is manipulated via the haptic device. The thoracoscope port can be relocated; additional ports are placed using an external "operating room" view. Unrestricted endoscopic exploration of the thorax is allowed. An endo-dissector tool allows for hilar dissection, and a virtual stapling device divides structures. The trainee's performance is reported. A virtual reality cognitive task simulation can overcome the deficiencies of existing training models. Performance scoring is being validated as we assess this simulator for cognitive and technical surgical education. Copyright © 2011. Published by Mosby, Inc.
NASA Astrophysics Data System (ADS)
ST Fleur, S.; Courboulex, F.; Bertrand, E.; Mercier De Lepinay, B. F.; Hough, S. E.; Boisson, D.; Momplaisir, R.
2017-12-01
To assess the possible impact of a future earthquake in the urban area of Port-au-Prince (Haiti), we have implemented a simulation approach for complex ground motions produced by an earthquake. To this end, we have integrated local site effect in the prediction of strong ground motions in Port-au-Prince using the complex transfer functions method, which takes into account amplitude changes as well as phase changes. This technique is particularly suitable for basins where a conventional 1D digital approach proves inadequate, as is the case in Port-au-Prince. To do this, we use the results of the Standard Spectral Ratio (SSR) approach of St Fleur et al. (2016) to estimate the amplitude of the response of the site to a nearby rock site. Then, we determine the phase difference between sites, interpreted as changes in the phase of the signal related to local site conditions, using the signals of the 2010 earthquake aftershocks records. Finally, the accelerogram of the simulated earthquake is obtain using the technique of the inverse Fourier transform. The results of this study showed that the strongest soil motions are expected in neighborhoods of downtown Port-au-Prince and adjacent hills. In addition, this simulation method by complex transfer functions was validated by comparison with recorded actual data. Our simulated response spectra reproduce very well both the amplitude and the shape of the response spectra of recorded earthquakes. This new approach allowed to reproduce the lengthening of the signal that could be generated by surface waves at certain stations in the city of Port-au-Prince. However, two points of vigilance must be considered: (1) a good signal-to-noise ratio is necessary to obtain a robust estimate of the site-reference phase shift (ratio at least equal to 10); (2) unless the amplitude and phase changes are measured on strong motion records, this technique does not take non-linear effects into account.
Two-Dimensional Computational Model for Wave Rotor Flow Dynamics
NASA Technical Reports Server (NTRS)
Welch, Gerard E.
1996-01-01
A two-dimensional (theta,z) Navier-Stokes solver for multi-port wave rotor flow simulation is described. The finite-volume form of the unsteady thin-layer Navier-Stokes equations are integrated in time on multi-block grids that represent the stationary inlet and outlet ports and the moving rotor passages of the wave rotor. Computed results are compared with three-port wave rotor experimental data. The model is applied to predict the performance of a planned four-port wave rotor experiment. Two-dimensional flow features that reduce machine performance and influence rotor blade and duct wall thermal loads are identified. The performance impact of rounding the inlet port wall, to inhibit separation during passage gradual opening, is assessed.
Largenet2: an object-oriented programming library for simulating large adaptive networks.
Zschaler, Gerd; Gross, Thilo
2013-01-15
The largenet2 C++ library provides an infrastructure for the simulation of large dynamic and adaptive networks with discrete node and link states. The library is released as free software. It is available at http://biond.github.com/largenet2. Largenet2 is licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License. gerd@biond.org
Bee++: An Object-Oriented, Agent-Based Simulator for Honey Bee Colonies
Betti, Matthew; LeClair, Josh; Wahl, Lindi M.; Zamir, Mair
2017-01-01
We present a model and associated simulation package (www.beeplusplus.ca) to capture the natural dynamics of a honey bee colony in a spatially-explicit landscape, with temporally-variable, weather-dependent parameters. The simulation tracks bees of different ages and castes, food stores within the colony, pollen and nectar sources and the spatial position of individual foragers outside the hive. We track explicitly the intake of pesticides in individual bees and their ability to metabolize these toxins, such that the impact of sub-lethal doses of pesticides can be explored. Moreover, pathogen populations (in particular, Nosema apis, Nosema cerenae and Varroa mites) have been included in the model and may be introduced at any time or location. The ability to study interactions among pesticides, climate, biodiversity and pathogens in this predictive framework should prove useful to a wide range of researchers studying honey bee populations. To this end, the simulation package is written in open source, object-oriented code (C++) and can be easily modified by the user. Here, we demonstrate the use of the model by exploring the effects of sub-lethal pesticide exposure on the flight behaviour of foragers. PMID:28287445
An Object Oriented Extensible Architecture for Affordable Aerospace Propulsion Systems
NASA Technical Reports Server (NTRS)
Follen, Gregory J.; Lytle, John K. (Technical Monitor)
2002-01-01
Driven by a need to explore and develop propulsion systems that exceeded current computing capabilities, NASA Glenn embarked on a novel strategy leading to the development of an architecture that enables propulsion simulations never thought possible before. Full engine 3 Dimensional Computational Fluid Dynamic propulsion system simulations were deemed impossible due to the impracticality of the hardware and software computing systems required. However, with a software paradigm shift and an embracing of parallel and distributed processing, an architecture was designed to meet the needs of future propulsion system modeling. The author suggests that the architecture designed at the NASA Glenn Research Center for propulsion system modeling has potential for impacting the direction of development of affordable weapons systems currently under consideration by the Applied Vehicle Technology Panel (AVT). This paper discusses the salient features of the NPSS Architecture including its interface layer, object layer, implementation for accessing legacy codes, numerical zooming infrastructure and its computing layer. The computing layer focuses on the use and deployment of these propulsion simulations on parallel and distributed computing platforms which has been the focus of NASA Ames. Additional features of the object oriented architecture that support MultiDisciplinary (MD) Coupling, computer aided design (CAD) access and MD coupling objects will be discussed. Included will be a discussion of the successes, challenges and benefits of implementing this architecture.
Depletion forces on circular and elliptical obstacles induced by active matter
NASA Astrophysics Data System (ADS)
Leite, L. R.; Lucena, D.; Potiguar, F. Q.; Ferreira, W. P.
2016-12-01
Depletion forces exerted by self-propelled particles on circular and elliptical passive objects are studied using numerical simulations. We show that a bath of active particles can induce repulsive and attractive forces which are sensitive to the shape and orientation of the passive objects (either horizontal or vertical ellipses). The resultant force on the passive objects due to the active particles is studied as a function of the shape and orientation of the passive objects, magnitude of the angular noise, and distance between the passive objects. By increasing the distance between obstacles the magnitude of the repulsive depletion force increases, as long as such a distance is less than one active particle diameter. For longer distances, the magnitude of the force always decreases with increasing distance. We also found that attractive forces may arise for vertical ellipses at high enough area fraction.
A Java application for tissue section image analysis.
Kamalov, R; Guillaud, M; Haskins, D; Harrison, A; Kemp, R; Chiu, D; Follen, M; MacAulay, C
2005-02-01
The medical industry has taken advantage of Java and Java technologies over the past few years, in large part due to the language's platform-independence and object-oriented structure. As such, Java provides powerful and effective tools for developing tissue section analysis software. The background and execution of this development are discussed in this publication. Object-oriented structure allows for the creation of "Slide", "Unit", and "Cell" objects to simulate the corresponding real-world objects. Different functions may then be created to perform various tasks on these objects, thus facilitating the development of the software package as a whole. At the current time, substantial parts of the initially planned functionality have been implemented. Getafics 1.0 is fully operational and currently supports a variety of research projects; however, there are certain features of the software that currently introduce unnecessary complexity and inefficiency. In the future, we hope to include features that obviate these problems.
Depletion forces on circular and elliptical obstacles induced by active matter.
Leite, L R; Lucena, D; Potiguar, F Q; Ferreira, W P
2016-12-01
Depletion forces exerted by self-propelled particles on circular and elliptical passive objects are studied using numerical simulations. We show that a bath of active particles can induce repulsive and attractive forces which are sensitive to the shape and orientation of the passive objects (either horizontal or vertical ellipses). The resultant force on the passive objects due to the active particles is studied as a function of the shape and orientation of the passive objects, magnitude of the angular noise, and distance between the passive objects. By increasing the distance between obstacles the magnitude of the repulsive depletion force increases, as long as such a distance is less than one active particle diameter. For longer distances, the magnitude of the force always decreases with increasing distance. We also found that attractive forces may arise for vertical ellipses at high enough area fraction.
Using Light Curves to Characterize Size and Shape of Pseudo-Debris
NASA Technical Reports Server (NTRS)
Rodriquez, Heather M.; Abercromby, Kira J.; Jarvis, Kandy S.; Barker, Edwin
2006-01-01
Photometric measurements were collected for a new study aimed at estimating orbital debris sizes based on object brightness. To obtain a size from optical measurements the current practice is to assume an albedo and use a normalized magnitude to calculate optical size. However, assuming a single albedo value may not be valid for all objects or orbit types; material type and orientation can mask an object s true optical cross section. This experiment used a CCD camera to record data, a 300 W Xenon, Ozone Free collimated light source to simulate solar illumination, and a robotic arm with five degrees of freedom to move the piece of simulated debris through various orientations. The pseudo-debris pieces used in this experiment originate from the European Space Operations Centre s ESOC2 ground test explosion of a mock satellite. A uniformly illuminated white ping-pong ball was used as a zero-magnitude reference. Each debris piece was then moved through specific orientations and rotations to generate a light curve. This paper discusses the results of five different object-based light curves as measured through an x-rotation. Intensity measurements, from which each light curve was generated, were recorded in five degree increments from zero to 180 degrees. Comparing light curves of different shaped and sized pieces against their characteristic length establishes the start of a database from which an optical size estimation model will be derived in the future.
ERIC Educational Resources Information Center
Potts, Gregg; Bergeron, Arthur W., Jr.
This lesson describes and discusses the U.S. Civil War Siege of Port Hudson (Louisiana). Based on the National Register of Historic Places registration file, "Port Hudson Battlefield," the lesson cites objectives and lists materials for students, and provides information for a site visit. It contains eight sections: (1) "About this…
An object-oriented simulator for 3D digital breast tomosynthesis imaging system.
Seyyedi, Saeed; Cengiz, Kubra; Kamasak, Mustafa; Yildirim, Isa
2013-01-01
Digital breast tomosynthesis (DBT) is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART) were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT) imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI) helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART) and total variation regularized reconstruction techniques (ART+TV) are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM) values.
An Object-Oriented Simulator for 3D Digital Breast Tomosynthesis Imaging System
Cengiz, Kubra
2013-01-01
Digital breast tomosynthesis (DBT) is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART) were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT) imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI) helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART) and total variation regularized reconstruction techniques (ART+TV) are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM) values. PMID:24371468
NASA Astrophysics Data System (ADS)
Lee, K. David; Colony, Mike
2011-06-01
Modeling and simulation has been established as a cost-effective means of supporting the development of requirements, exploring doctrinal alternatives, assessing system performance, and performing design trade-off analysis. The Army's constructive simulation for the evaluation of equipment effectiveness in small combat unit operations is currently limited to representation of situation awareness without inclusion of the many uncertainties associated with real world combat environments. The goal of this research is to provide an ability to model situation awareness and decision process uncertainties in order to improve evaluation of the impact of battlefield equipment on ground soldier and small combat unit decision processes. Our Army Probabilistic Inference and Decision Engine (Army-PRIDE) system provides this required uncertainty modeling through the application of two critical techniques that allow Bayesian network technology to be applied to real-time applications. (Object-Oriented Bayesian Network methodology and Object-Oriented Inference technique). In this research, we implement decision process and situation awareness models for a reference scenario using Army-PRIDE and demonstrate its ability to model a variety of uncertainty elements, including: confidence of source, information completeness, and information loss. We also demonstrate that Army-PRIDE improves the realism of the current constructive simulation's decision processes through Monte Carlo simulation.
NASA Technical Reports Server (NTRS)
Straeter, T. A.; Foudriat, E. C.; Will, R. W.
1977-01-01
The objectives of NASA's MUST (Multipurpose User-oriented Software Technology) program at Langley Research Center are to cut the cost of producing software which effectively utilizes digital systems for flight research. These objectives will be accomplished by providing an integrated system of support software tools for use throughout the research flight software development process. A description of the overall MUST program and its progress toward the release of a first MUST system will be presented. This release includes: a special interactive user interface, a library of subroutines, assemblers, a compiler, automatic documentation tools, and a test and simulation system.
Multiphysics Object Oriented Simulation Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
The Multiphysics Object Oriented Simulation Environment (MOOSE) software library developed at Idaho National Laboratory is a tool. MOOSE, like other tools, doesn't actually complete a task. Instead, MOOSE seeks to reduce the effort required to create engineering simulation applications. MOOSE itself is a software library: a blank canvas upon which you write equations and then MOOSE can help you solve them. MOOSE is comparable to a spreadsheet application. A spreadsheet, by itself, doesn't do anything. Only once equations are entered into it will a spreadsheet application compute anything. Such is the same for MOOSE. An engineer or scientist can utilizemore » the equation solvers within MOOSE to solve equations related to their area of study. For instance, a geomechanical scientist can input equations related to water flow in underground reservoirs and MOOSE can solve those equations to give the scientist an idea of how water could move over time. An engineer might input equations related to the forces in steel beams in order to understand the load bearing capacity of a bridge. Because MOOSE is a blank canvas it can be useful in many scientific and engineering pursuits.« less
NASA Technical Reports Server (NTRS)
Follen, Gregory J.; Naiman, Cynthia
2003-01-01
The objective of GRC CNIS/IE work is to build a plug-n-play infrastructure that provides the Grand Challenge Applications with a suite of tools for coupling codes together, numerical zooming between fidelity of codes and gaining deployment of these simulations onto the Information Power Grid. The GRC CNIS/IE work will streamline and improve this process by providing tighter integration of various tools through the use of object oriented design of component models and data objects and through the use of CORBA (Common Object Request Broker Architecture).
NASA Technical Reports Server (NTRS)
1982-01-01
On middeck port side, Pilot Overmyer, looks down at freefloating object. On his left, attached to port side wall, are a dessert package, a prepackaged meal, control panel ML86B, and water dispenser kit with water gun.
NASA Technical Reports Server (NTRS)
Hawthorne, P. J.
1976-01-01
The primary test objective was to define the base pressure environment of the first and second stage mated vehicle in a supersonic flow field from Mach 2.60 through 3.50 with simulated rocket engine exhaust plumes. The secondary objective was to obtain the pressure environment of the Orbiter at various vent port locations at these same freestream conditions. Data were obtained at angles of attack from -4 deg through +4 deg at zero yaw, and at yaw angles from -4 deg through +4 deg at zero angle of attack, with rocket plume sizes varying from smaller than nominal to much greater than nominal. Failed Orbiter engine data were also obtained. Elevon hinge moments and wing panel load data were obtained during all runs. Photographs of test equipment and tested configurations are shown.
A multiport MR-compatible neuroendoscope: spanning the gap between rigid and flexible scopes
Manjila, Sunil; Mencattelli, Margherita; Rosa, Benoit; Price, Karl; Fagogenis, Georgios; Dupont, Pierre E.
2017-01-01
OBJECTIVE Rigid endoscopes enable minimally invasive access to the ventricular system; however, the operative field is limited to the instrument tip, necessitating rotation of the entire instrument and causing consequent tissue compression while reaching around corners. Although flexible endoscopes offer tip steerability to address this limitation, they are more difficult to control and provide fewer and smaller working channels. A middle ground between these instruments—a rigid endoscope that possesses multiple instrument ports (for example, one at the tip and one on the side)—is proposed in this article, and a prototype device is evaluated in the context of a third ventricular colloid cyst resection combined with septostomy. METHODS A prototype neuroendoscope was designed and fabricated to include 2 optical ports, one located at the instrument tip and one located laterally. Each optical port includes its own complementary metal-oxide semiconductor (CMOS) chip camera, light-emitting diode (LED) illumination, and working channels. The tip port incorporates a clear silicone optical window that provides 2 additional features. First, for enhanced safety during tool insertion, instruments can be initially seen inside the window before they extend from the scope tip. Second, the compliant tip can be pressed against tissue to enable visualization even in a blood-filled field. These capabilities were tested in fresh porcine brains. The image quality of the multiport endoscope was evaluated using test targets positioned at clinically relevant distances from each imaging port, comparing it with those of clinical rigid and flexible neuroendoscopes. Human cadaver testing was used to demonstrate third ventricular colloid cyst phantom resection through the tip port and a septostomy performed through the lateral port. To extend its utility in the treatment of periventricular tumors using MR-guided laser therapy, the device was designed to be MR compatible. Its functionality and compatibility inside a 3-T clinical scanner were also tested in a brain from a freshly euthanized female pig. RESULTS Testing in porcine brains confirmed the multiport endoscope’s ability to visualize tissue in a blood-filled field and to operate inside a 3-T MRI scanner. Cadaver testing confirmed the device’s utility in operating through both of its ports and performing combined third ventricular colloid cyst resection and septostomy with an endoscope rotation of less than 5°. CONCLUSIONS The proposed design provides freedom in selecting both the number and orientation of imaging and instrument ports, which can be customized for each ventricular pathological entity. The lightweight, easily manipulated device can provide added steerability while reducing the potential for the serious brain distortion that happens with rigid endoscope navigation. This capability would be particularly valuable in treating hydrocephalus, both primary and secondary (due to tumors, cysts, and so forth). Magnetic resonance compatibility can aid in endoscope-assisted ventricular aqueductal plasty and stenting, the management of multiloculated complex hydrocephalus, and postinflammatory hydrocephalus in which scarring obscures the ventricular anatomy. PMID:27581309
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnaswami, Hariharan
The DISTINCT project research objective is to develop an innovative N-port power converter for a utility-scale PV system that is modular, compact and cost-effective and that will enable the integration of a high-frequency, high-voltage solid-state transformer. The novelty of the proposed research is the electrical power conversion architecture using an N-port converter system that replaces the output 60Hz transformer with an integrated high-frequency low-weight solid-state transformer reducing power electronics and BOS costs to meet SunShot goals through modularity and direct high-voltage interconnection. A challenge in direct integration with a 13.8kV line is the high voltage handling capacity of the convertersmore » combined with high efficiency operation. The front-end converter for each port is a Neutral-Point Clamped (NPC) Multi-Level dc-dc Dual-Active Bridge (ML-DAB) which allows Maximum Power Point Tracking (MPPT). The integrated high frequency transformer provides the galvanic isolation between the PV and grid side and also steps up the low dc voltage from PV source. Following the ML-DAB stage, in each port, is an inverter with H-bridge configuration or NPC configuration. N number of NPC inverters’ outputs are cascaded to attain the per-phase line-to-neutral voltage to connect directly to the distribution grid (i.e. 13.8 kV). The cascaded inverters have the inherent advantage of using lower rated devices, smaller filters and low Total Harmonic Distortion (THD) required for PV grid interconnection. Our analysis and simulation results show improved performance on cost, efficiency, service life with zero downtime and THD. A comprehensive control scheme is presented to ensure the maximum power from each port and each phase are sent to the grid. A functional prototype of a 2-port converter with ML-DAB and cascaded H-bridges has been designed, built, and tested in a laboratory setup to verify the target technical metrics. The N-port converter system due to its modular structure with individual control per port can be easily adapted to integrate functionalities that go well beyond the conventional grid support functions and mitigates impacts of forecasted fast ramp downs or ramp ups and single-fault conditions by automatic reconfiguration of the output.« less
Secured independent tools in peritoneoscopy.
Tsin, Daniel A; Davila, Fausto; Dominguez, Guillermo; Manolas, Panagiotis
2010-01-01
Secured independent tools are being introduced to aid in peritoneoscopy. We present a simple technique for anchoring instruments, powered lights, and micro machines through the abdominal wall. We used a laparoscopic trainer, micro alligator clips with one or two 2-0 nylon tails and cables for engines and lights. The above instruments were introduced via a 12-mm or 15-mm port. Clips were placed for traction, retraction and exposure, lights for illumination, and motors for potential work. A laparoscopy port closure or suture passer was introduced percutaneously to grab and extract the tails or cables outside of the simulated abdominal cavity. The engines and lights were powered by a direct electric current (DC) plugged into exteriorized cables. We used 2 to 3 clips for each, and engines performed well. This basic simulation adds independent instruments, lights, and engines. We replaced cannulas with threads or cables in an attempt to limit the number of ports. This technique further opens the door for innovations in wired machines in laparoscopy, single-port laparoscopy, or natural orifice surgery.
Numerical simulation of multi-directional random wave transformation in a yacht port
NASA Astrophysics Data System (ADS)
Ji, Qiaoling; Dong, Sheng; Zhao, Xizeng; Zhang, Guowei
2012-09-01
This paper extends a prediction model for multi-directional random wave transformation based on an energy balance equation by Mase with the consideration of wave shoaling, refraction, diffraction, reflection and breaking. This numerical model is improved by 1) introducing Wen's frequency spectrum and Mitsuyasu's directional function, which are more suitable to the coastal area of China; 2) considering energy dissipation caused by bottom friction, which ensures more accurate results for large-scale and shallow water areas; 3) taking into account a non-linear dispersion relation. Predictions using the extended wave model are carried out to study the feasibility of constructing the Ai Hua yacht port in Qingdao, China, with a comparison between two port layouts in design. Wave fields inside the port for different incident wave directions, water levels and return periods are simulated, and then two kinds of parameters are calculated to evaluate the wave conditions for the two layouts. Analyses show that Layout I is better than Layout II. Calculation results also show that the harbor will be calm for different wave directions under the design water level. On the contrary, the wave conditions do not wholly meet the requirements of a yacht port for ship berthing under the extreme water level. For safety consideration, the elevation of the breakwater might need to be properly increased to prevent wave overtopping under such water level. The extended numerical simulation model may provide an effective approach to computing wave heights in a harbor.
Effect of nanostructures orientation on electroosmotic flow in a microfluidic channel
NASA Astrophysics Data System (ADS)
Eng Lim, An; Lim, Chun Yee; Cheong Lam, Yee; Taboryski, Rafael; Rui Wang, Shu
2017-06-01
Electroosmotic flow (EOF) is an electric-field-induced fluid flow that has numerous micro-/nanofluidic applications, ranging from pumping to chemical and biomedical analyses. Nanoscale networks/structures are often integrated in microchannels for a broad range of applications, such as electrophoretic separation of biomolecules, high reaction efficiency catalytic microreactors, and enhancement of heat transfer and sensing. Their introduction has been known to reduce EOF. Hitherto, a proper study on the effect of nanostructures orientation on EOF in a microfluidic channel is yet to be carried out. In this investigation, we present a novel fabrication method for nanostructure designs that possess maximum orientation difference, i.e. parallel versus perpendicular indented nanolines, to examine the effect of nanostructures orientation on EOF. It consists of four phases: fabrication of silicon master, creation of mold insert via electroplating, injection molding with cyclic olefin copolymer, and thermal bonding and integration of practical inlet/outlet ports. The effect of nanostructures orientation on EOF was studied experimentally by current monitoring method. The experimental results show that nanolines which are perpendicular to the microchannel reduce the EOF velocity significantly (approximately 20%). This flow velocity reduction is due to the distortion of local electric field by the perpendicular nanolines at the nanostructured surface as demonstrated by finite element simulation. In contrast, nanolines which are parallel to the microchannel have no effect on EOF, as it can be deduced that the parallel nanolines do not distort the local electric field. The outcomes of this investigation contribute to the precise control of EOF in lab-on-chip devices, and fundamental understanding of EOF in devices which utilize nanostructured surfaces for chemical and biological analyses.
Tiong, Ho Yee; Goh, Benjamin Yen Seow; Chiong, Edmund; Tan, Lincoln Guan Lim; Vathsala, Anatharaman
2018-03-31
Robotic-assisted kidney transplantation (RKT) with the Da Vinci (Intuitive, USA) platform has been recently developed to improve outcomes by decreasing surgical site complications and morbidity, especially in obese patients. This potential paradigm shift in the surgical technique of kidney transplantation is performed in only a few centers. For wider adoption of this high stake complex operation, we aimed to develop a procedure-specific simulation platform in a porcine model for the training of robotic intracorporeal vascular anastomosis and evaluating vascular anastomoses patency. This paper describes the requirements and steps developed for the above training purpose. Over a series of four animal ethics' approved experiments, the technique of robotic-assisted laparoscopic autotransplantation of the kidney was developed in Amsterdam live pigs (60-70 kg). The surgery was based around the vascular anastomosis technique described by Menon et al. This non-survival porcine training model is targeted at transplant surgeons with robotic surgery experience. Under general anesthesia, each pig was placed in lateral decubitus position with the placement of one robotic camera port, two robotic 8 mm ports and one assistant port. Robotic docking over the pig posteriorly was performed. The training platform involved the following procedural steps. First, ipsilateral iliac vessel dissection was performed. Second, robotic-assisted laparoscopic donor nephrectomy was performed with in situ perfusion of the kidney with cold Hartmann's solution prior to complete division of the hilar vessels, ureter and kidney mobilization. Thirdly, the kidney was either kept in situ for orthotopic autotransplantation or mobilized to the pelvis and orientated for the vascular anastomosis, which was performed end to end or end to side after vessel loop clamping of the iliac vessels, respectively, using 6/0 Gore-Tex sutures. Following autotransplantation and release of vessel loops, perfusion of the graft was assessed using intraoperative indocyanine green imaging and monitoring urine output after unclamping. This training platform demonstrates adequate face and content validity. With practice, arterial anastomotic time could be improved, showing its construct validity. This porcine training model can be useful in providing training for robotic intracorporeal vascular anastomosis and may facilitate confident translation into a transplant human recipient.
A Computer Model for Red Blood Cell Chemistry
1996-10-01
5012. 13. ABSTRACT (Maximum 200 There is a growing need for interactive computational tools for medical education and research. The most exciting...paradigm for interactive education is simulation. Fluid Mod is a simulation based computational tool developed in the late sixties and early seventies at...to a modern Windows, object oriented interface. This development will provide students with a useful computational tool for learning . More important
An integrated port camera and display system for laparoscopy.
Terry, Benjamin S; Ruppert, Austin D; Steinhaus, Kristen R; Schoen, Jonathan A; Rentschler, Mark E
2010-05-01
In this paper, we built and tested the port camera, a novel, inexpensive, portable, and battery-powered laparoscopic tool that integrates the components of a vision system with a cannula port. This new device 1) minimizes the invasiveness of laparoscopic surgery by combining a camera port and tool port; 2) reduces the cost of laparoscopic vision systems by integrating an inexpensive CMOS sensor and LED light source; and 3) enhances laparoscopic surgical procedures by mechanically coupling the camera, tool port, and liquid crystal display (LCD) screen to provide an on-patient visual display. The port camera video system was compared to two laparoscopic video systems: a standard resolution unit from Karl Storz (model 22220130) and a high definition unit from Stryker (model 1188HD). Brightness, contrast, hue, colorfulness, and sharpness were compared. The port camera video is superior to the Storz scope and approximately equivalent to the Stryker scope. An ex vivo study was conducted to measure the operative performance of the port camera. The results suggest that simulated tissue identification and biopsy acquisition with the port camera is as efficient as with a traditional laparoscopic system. The port camera was successfully used by a laparoscopic surgeon for exploratory surgery and liver biopsy during a porcine surgery, demonstrating initial surgical feasibility.
Strong Motion Instrumentation of Seismically-Strengthened Port Structures in California by CSMIP
Huang, M.J.; Shakal, A.F.
2009-01-01
The California Strong Motion Instrumentation Program (CSMIP) has instrumented five port structures. Instrumentation of two more port structures is underway and another one is in planning. Two of the port structures have been seismically strengthened. The primary goals of the strong motion instrumentation are to obtain strong earthquake shaking data for verifying seismic analysis procedures and strengthening schemes, and for post-earthquake evaluations of port structures. The wharves instrumented by CSMIP were recommended by the Strong Motion Instrumentation Advisory Committee, a committee of the California Seismic Safety Commission. Extensive instrumentation of a wharf is difficult and would be impossible without the cooperation of the owners and the involvement of the design engineers. The instrumentation plan for a wharf is developed through study of the retrofit plans of the wharf, and the strong-motion sensors are installed at locations where specific instrumentation objectives can be achieved and access is possible. Some sensor locations have to be planned during design; otherwise they are not possible to install after construction. This paper summarizes the two seismically-strengthened wharves and discusses the instrumentation schemes and objectives. ?? 2009 ASCE.
Simulation of liquefaction-induced damage of the Port of Long Beach using the UBC3DPLM Model.
DOT National Transportation Integrated Search
2016-12-31
In the past decades, expansion projects of port facilities in California, USA, have been completed by placing hydraulic fills. These loose manmade : fills and even their subjacent natural estuarine and marine deposits, have shown to be susceptible to...
An Object-oriented Computer Code for Aircraft Engine Weight Estimation
NASA Technical Reports Server (NTRS)
Tong, Michael T.; Naylor, Bret A.
2008-01-01
Reliable engine-weight estimation at the conceptual design stage is critical to the development of new aircraft engines. It helps to identify the best engine concept amongst several candidates. At NASA Glenn (GRC), the Weight Analysis of Turbine Engines (WATE) computer code, originally developed by Boeing Aircraft, has been used to estimate the engine weight of various conceptual engine designs. The code, written in FORTRAN, was originally developed for NASA in 1979. Since then, substantial improvements have been made to the code to improve the weight calculations for most of the engine components. Most recently, to improve the maintainability and extensibility of WATE, the FORTRAN code has been converted into an object-oriented version. The conversion was done within the NASA s NPSS (Numerical Propulsion System Simulation) framework. This enables WATE to interact seamlessly with the thermodynamic cycle model which provides component flow data such as airflows, temperatures, and pressures, etc. that are required for sizing the components and weight calculations. The tighter integration between the NPSS and WATE would greatly enhance system-level analysis and optimization capabilities. It also would facilitate the enhancement of the WATE code for next-generation aircraft and space propulsion systems. In this paper, the architecture of the object-oriented WATE code (or WATE++) is described. Both the FORTRAN and object-oriented versions of the code are employed to compute the dimensions and weight of a 300- passenger aircraft engine (GE90 class). Both versions of the code produce essentially identical results as should be the case. Keywords: NASA, aircraft engine, weight, object-oriented
Feature-oriented regional modeling and simulations in the Gulf of Maine and Georges Bank
NASA Astrophysics Data System (ADS)
Gangopadhyay, Avijit; Robinson, Allan R.; Haley, Patrick J.; Leslie, Wayne G.; Lozano, Carlos J.; Bisagni, James J.; Yu, Zhitao
2003-03-01
The multiscale synoptic circulation system in the Gulf of Maine and Georges Bank (GOMGB) region is presented using a feature-oriented approach. Prevalent synoptic circulation structures, or 'features', are identified from previous observational studies. These features include the buoyancy-driven Maine Coastal Current, the Georges Bank anticyclonic frontal circulation system, the basin-scale cyclonic gyres (Jordan, Georges and Wilkinson), the deep inflow through the Northeast Channel (NEC), the shallow outflow via the Great South Channel (GSC), and the shelf-slope front (SSF). Their synoptic water-mass ( T- S) structures are characterized and parameterized in a generalized formulation to develop temperature-salinity feature models. A synoptic initialization scheme for feature-oriented regional modeling and simulation (FORMS) of the circulation in the coastal-to-deep region of the GOMGB system is then developed. First, the temperature and salinity feature-model profiles are placed on a regional circulation template and then objectively analyzed with appropriate background climatology in the coastal region. Furthermore, these fields are melded with adjacent deep-ocean regional circulation (Gulf Stream Meander and Ring region) along and across the SSF. These initialization fields are then used for dynamical simulations via the primitive equation model. Simulation results are analyzed to calibrate the multiparameter feature-oriented modeling system. Experimental short-term synoptic simulations are presented for multiple resolutions in different regions with and without atmospheric forcing. The presented 'generic and portable' methodology demonstrates the potential of applying similar FORMS in many other regions of the Global Coastal Ocean.
1993-07-01
version tree is formed that permits users to go back to any previous version. There are methods for traversing the version tree of a particular...workspace. Workspace objects are linked (or nested) hierarchically into a workspace tree . Applications can set the access privileges to parts of this...workspace tree to control access (and hence change). There must be a default global workspace. Workspace objects are then allocated within the context
Port risk management and insurance guidebook
DOT National Transportation Integrated Search
1998-09-01
The overall objective of the guidebook is to provide ports with the basic skills and information needed to establish and maintain appropriate and cost-effective insurance and risk management programs. it is designed to serve as a practical "how-to" m...
Freight optimization and development in Missouri : ports and waterways module
DOT National Transportation Integrated Search
2008-04-01
Missouris ports and waterways have proven to be important to the regions economic growth and significant to the states role in transporting waterborne freight. The ultimate objectives of this analysis are to provide an inventory of Missouri...
NASA Astrophysics Data System (ADS)
Muravev, Dmitri; Rakhmangulov, Aleksandr
2016-11-01
Currently, container shipping development is directly associated with an increase of warehouse areas for containers' storage. One of the most successful types of container terminal is an intermodal terminal called a dry port. Main pollution sources during the organization of intermodal transport are considered. A system of dry port parameters, which are recommended for the evaluation of different scenarios for a seaport infrastructure development at the stage of its strategic planning, is proposed in this paper. The authors have developed a method for determining the optimal values of the main dry port parameters by simulation modeling in the programming software Any- Logic. Dependencies thatwere obtained as a result of modeling experiments prove the adequacy of main selected dry port parameters for the effective scenarios' evaluation of throughput and handling capacity at existing seaports at the stage of strategic planning and a rational dry port location, allowed ensuring the improvement of the ecological situation in a port city.
Luo, Ma-Ji; Chen, Guo-Hua; Ma, Yuan-Hao
2003-01-01
This paper presents a KIVA-3 code based numerical model for three-dimensional transient intake flow in the intake port-valve-cylinder system of internal combustion engine using body-fitted technique, which can be used in numerical study on internal combustion engine with vertical and inclined valves, and has higher calculation precision. A numerical simulation (on the intake process of a two-valve engine with a semi-sphere combustion chamber and a radial intake port) is provided for analysis of the velocity field and pressure field of different plane at different crank angles. The results revealed the formation of the tumble motion, the evolution of flow field parameters and the variation of tumble ratios as important information for the design of engine intake system.
Using object-oriented analysis techniques to support system testing
NASA Astrophysics Data System (ADS)
Zucconi, Lin
1990-03-01
Testing of real-time control systems can be greatly facilitated by use of object-oriented and structured analysis modeling techniques. This report describes a project where behavior, process and information models built for a real-time control system were used to augment and aid traditional system testing. The modeling techniques used were an adaptation of the Ward/Mellor method for real-time systems analysis and design (Ward85) for object-oriented development. The models were used to simulate system behavior by means of hand execution of the behavior or state model and the associated process (data and control flow) and information (data) models. The information model, which uses an extended entity-relationship modeling technique, is used to identify application domain objects and their attributes (instance variables). The behavioral model uses state-transition diagrams to describe the state-dependent behavior of the object. The process model uses a transformation schema to describe the operations performed on or by the object. Together, these models provide a means of analyzing and specifying a system in terms of the static and dynamic properties of the objects which it manipulates. The various models were used to simultaneously capture knowledge about both the objects in the application domain and the system implementation. Models were constructed, verified against the software as-built and validated through informal reviews with the developer. These models were then hand-executed.
OpenSim: A Flexible Distributed Neural Network Simulator with Automatic Interactive Graphics.
Jarosch, Andreas; Leber, Jean Francois
1997-06-01
An object-oriented simulator called OpenSim is presented that achieves a high degree of flexibility by relying on a small set of building blocks. The state variables and algorithms put in this framework can easily be accessed through a command shell. This allows one to distribute a large-scale simulation over several workstations and to generate the interactive graphics automatically. OpenSim opens new possibilities for cooperation among Neural Network researchers. Copyright 1997 Elsevier Science Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dandini, Vincent John; Duran, Felicia Angelica; Wyss, Gregory Dane
2003-09-01
This article describes how features of event tree analysis and Monte Carlo-based discrete event simulation can be combined with concepts from object-oriented analysis to develop a new risk assessment methodology, with some of the best features of each. The resultant object-based event scenario tree (OBEST) methodology enables an analyst to rapidly construct realistic models for scenarios for which an a priori discovery of event ordering is either cumbersome or impossible. Each scenario produced by OBEST is automatically associated with a likelihood estimate because probabilistic branching is integral to the object model definition. The OBEST methodology is then applied to anmore » aviation safety problem that considers mechanisms by which an aircraft might become involved in a runway incursion incident. The resulting OBEST model demonstrates how a close link between human reliability analysis and probabilistic risk assessment methods can provide important insights into aviation safety phenomenology.« less
Beardsley, D; Holman, S; Gantt, R; Robinson, R A; Lindsey, J; Bazaral, M; Stewart, S F; Stevens, R A
1995-08-01
Recent reports of transient neurologic deficits have raised concern about the potential toxicity of single-dose spinal 5% lidocaine in 7.5% dextrose. Two cases of volunteers who experienced minor local sensory deficits after slow (60 s) injections of 2 mL 5% lidocaine via Whitacre needles are described. One case was a result of a double injection because of a "failed" block. It seemed possible that the neurologic deficit in these cases resulted from neurotoxicity associated with maldistribution of local anesthetic. Using an in vitro spinal model, we investigated drug distribution resulting from injections through side-port spinal needles to determine whether the use of these needles could result in high local concentrations of hyperbaric solutions. A spinal canal model was fabricated using human magnetic resonance measurements. The model was placed in a surgical supine position and filled with lactated Ringer's solution to simulate the specific gravity of cerebral spinal fluid at 22 degrees C. A hyperbaric solution of phthalocyanine blue dye and dextrose (SG 1.042), simulating the anesthetic, was injected through three different needles (27-gauge 4 11/16-in. Whitacre, 25-gauge 3 1/2-in. Whitacre, 25-gauge 3 1/2-in. Quincke). Triplicate injections were done at rapid (2 mL/10 s) and slow (2 mL/60 s) rates, with needle side ports oriented in a sacral and cephalad direction. At slow rates of injection, using 27- or 25-gauge sacrally directed Whitacre needles, injections showed evidence of maldistribution with extrapolated peak sacral lidocaine concentrations reaching 2.0%. In contrast, distribution after slow injection through sacrally directed Quincke needles was uniform.(ABSTRACT TRUNCATED AT 250 WORDS)
libdrdc: software standards library
NASA Astrophysics Data System (ADS)
Erickson, David; Peng, Tie
2008-04-01
This paper presents the libdrdc software standards library including internal nomenclature, definitions, units of measure, coordinate reference frames, and representations for use in autonomous systems research. This library is a configurable, portable C-function wrapped C++ / Object Oriented C library developed to be independent of software middleware, system architecture, processor, or operating system. It is designed to use the automatically-tuned linear algebra suite (ATLAS) and Basic Linear Algebra Suite (BLAS) and port to firmware and software. The library goal is to unify data collection and representation for various microcontrollers and Central Processing Unit (CPU) cores and to provide a common Application Binary Interface (ABI) for research projects at all scales. The library supports multi-platform development and currently works on Windows, Unix, GNU/Linux, and Real-Time Executive for Multiprocessor Systems (RTEMS). This library is made available under LGPL version 2.1 license.
Inverse Flush Air Data System (FADS) for Real Time Simulations
NASA Astrophysics Data System (ADS)
Madhavanpillai, Jayakumar; Dhoaya, Jayanta; Balakrishnan, Vidya Saraswathi; Narayanan, Remesh; Chacko, Finitha Kallely; Narayanan, Shyam Mohan
2017-12-01
Flush Air Data Sensing System (FADS) forms a mission critical sub system in future reentry vehicles. FADS makes use of surface pressure measurements from the nose cap of the vehicle for deriving the air data parameters of the vehicle such as angle of attack, angle of sideslip, Mach number, etc. These parameters find use in the flight control and guidance systems, and also assist in the overall mission management. The FADS under consideration in this paper makes use of nine pressure ports located in the nose cap of a technology demonstrator vehicle. In flight, the air data parameters are obtained from the FADS estimation algorithm using the pressure data at the nine pressure ports. But, these pressure data will not be available, for testing the FADS package during ground simulation. So, an inverse software to FADS which estimates the pressure data at the pressure ports for a given flight condition is developed. These pressure data at the nine ports will go as input to the FADS package during ground simulation. The software is run to generate the pressure data for the descent phase trajectory of the technology demonstrator. This data is used again to generate the air data parameters from FADS algorithm. The computed results from FADS algorithm match well with the trajectory data.
MOOSE: A parallel computational framework for coupled systems of nonlinear equations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derek Gaston; Chris Newman; Glen Hansen
Systems of coupled, nonlinear partial differential equations (PDEs) often arise in simulation of nuclear processes. MOOSE: Multiphysics Object Oriented Simulation Environment, a parallel computational framework targeted at the solution of such systems, is presented. As opposed to traditional data-flow oriented computational frameworks, MOOSE is instead founded on the mathematical principle of Jacobian-free Newton-Krylov (JFNK) solution methods. Utilizing the mathematical structure present in JFNK, physics expressions are modularized into `Kernels,'' allowing for rapid production of new simulation tools. In addition, systems are solved implicitly and fully coupled, employing physics based preconditioning, which provides great flexibility even with large variance in timemore » scales. A summary of the mathematics, an overview of the structure of MOOSE, and several representative solutions from applications built on the framework are presented.« less
NASA Astrophysics Data System (ADS)
Pantale, O.; Caperaa, S.; Rakotomalala, R.
2004-07-01
During the last 50 years, the development of better numerical methods and more powerful computers has been a major enterprise for the scientific community. In the same time, the finite element method has become a widely used tool for researchers and engineers. Recent advances in computational software have made possible to solve more physical and complex problems such as coupled problems, nonlinearities, high strain and high-strain rate problems. In this field, an accurate analysis of large deformation inelastic problems occurring in metal-forming or impact simulations is extremely important as a consequence of high amount of plastic flow. In this presentation, the object-oriented implementation, using the C++ language, of an explicit finite element code called DynELA is presented. The object-oriented programming (OOP) leads to better-structured codes for the finite element method and facilitates the development, the maintainability and the expandability of such codes. The most significant advantage of OOP is in the modeling of complex physical systems such as deformation processing where the overall complex problem is partitioned in individual sub-problems based on physical, mathematical or geometric reasoning. We first focus on the advantages of OOP for the development of scientific programs. Specific aspects of OOP, such as the inheritance mechanism, the operators overload procedure or the use of template classes are detailed. Then we present the approach used for the development of our finite element code through the presentation of the kinematics, conservative and constitutive laws and their respective implementation in C++. Finally, the efficiency and accuracy of our finite element program are investigated using a number of benchmark tests relative to metal forming and impact simulations.
Augmented assessment as a means to augmented reality.
Bergeron, Bryan
2006-01-01
Rigorous scientific assessment of educational technologies typically lags behind the availability of the technologies by years because of the lack of validated instruments and benchmarks. Even when the appropriate assessment instruments are available, they may not be applied because of time and monetary constraints. Work in augmented reality, instrumented mannequins, serious gaming, and similar promising educational technologies that haven't undergone timely, rigorous evaluation, highlights the need for assessment methodologies that address the limitations of traditional approaches. The most promising augmented assessment solutions incorporate elements of rapid prototyping used in the software industry, simulation-based assessment techniques modeled after methods used in bioinformatics, and object-oriented analysis methods borrowed from object oriented programming.
Passive simulation of the nonlinear port-Hamiltonian modeling of a Rhodes Piano
NASA Astrophysics Data System (ADS)
Falaize, Antoine; Hélie, Thomas
2017-03-01
This paper deals with the time-domain simulation of an electro-mechanical piano: the Fender Rhodes. A simplified description of this multi-physical system is considered. It is composed of a hammer (nonlinear mechanical component), a cantilever beam (linear damped vibrating component) and a pickup (nonlinear magneto-electronic transducer). The approach is to propose a power-balanced formulation of the complete system, from which a guaranteed-passive simulation is derived to generate physically-based realistic sound synthesis. Theses issues are addressed in four steps. First, a class of Port-Hamiltonian Systems is introduced: these input-to-output systems fulfill a power balance that can be decomposed into conservative, dissipative and source parts. Second, physical models are proposed for each component and are recast in the port-Hamiltonian formulation. In particular, a finite-dimensional model of the cantilever beam is derived, based on a standard modal decomposition applied to the Euler-Bernoulli model. Third, these systems are interconnected, providing a nonlinear finite-dimensional Port-Hamiltonian System of the piano. Fourth, a passive-guaranteed numerical method is proposed. This method is built to preserve the power balance in the discrete-time domain, and more precisely, its decomposition structured into conservative, dissipative and source parts. Finally, simulations are performed for a set of physical parameters, based on empirical but realistic values. They provide a variety of audio signals which are perceptively relevant and qualitatively similar to some signals measured on a real instrument.
Mikulecky, D C
1979-01-01
A two-port for coupled salt and current flow is created by using the network thermodynamic approach in the same manner as that for coupled solute and volume flow (Mikulecky et al., 1977b; Mikulecky, 1977). This electrochemical two-port has distinct advantages over the equivalent circuit representation and overcomes difficulties pointed out by Finkelstein and Mauro (1963). The electrochemical two-port is used to produce a schematic diagram of the coupled flows through a tissue. The network is superimposable on the tissue morphology and preserves the physical qualities of the flows and forces in each part of an organized structure (e.g., an epithelium). The topological properties are manipulated independently from the constitutive (flow-force) relations. The constitutive relations are chosen from a number of alternatives depending on the detail and rigor desired. With the topology and constitutive parameters specified, the steady-state behavior is simulated with a network simulation program. By using capacitance to represent the filling and depletion of compartments, as well as the traditional electrical capacitances, time-dependent behavior is also simulated. Nonlinear effects arising from the integration of equations describing local behavior (e.g., the Nernst-Planck equations) are dealt with explicitly. The network thermodynamic approach provides a simple, straightforward method for representing a system diagrammatically and then simulating the system's behavior from the diagram with a minimum of mathematical manipulation. PMID:262391
NASA Astrophysics Data System (ADS)
Yamada, Yoshiyuki; Gouda, Naoteru; Yano, Taihei; Kobayashi, Yukiyasu; Tsujimoto, Takuji; Suganuma, Masahiro; Niwa, Yoshito; Sako, Nobutada; Hatsutori, Yoichi; Tanaka, Takashi
2006-06-01
We explain simulation tools in JASMINE project (JASMINE simulator). The JASMINE project stands at the stage where its basic design will be determined in a few years. Then it is very important to simulate the data stream generated by astrometric fields at JASMINE in order to support investigations into error budgets, sampling strategy, data compression, data analysis, scientific performances, etc. Of course, component simulations are needed, but total simulations which include all components from observation target to satellite system are also very important. We find that new software technologies, such as Object Oriented(OO) methodologies are ideal tools for the simulation system of JASMINE(the JASMINE simulator). In this article, we explain the framework of the JASMINE simulator.
Saltwater movement in the upper Floridan aquifer beneath Port Royal Sound, South Carolina
Smith, Barry S.
1994-01-01
Freshwater for Hilton Head Island, South Carolina, is supplied by withdrawals from the Upper Floridan aquifer. Freshwater for the nearby city of Savannah, Georgia, and for the industry that has grown adjacent to the city, has also been supplied, in part, by withdrawal from the Upper Floridan aquifer since 1885. The withdrawal of ground water has caused water levels in the Upper Floridan aquifer to decline over a broad area, forming a cone of depression in the potentiometric surface of the aquifer centered near Savannah. In 1984, the cone of depression extended beneath Hilton Head Island as far as Port Royal Sound. Flow in the aquifer, which had previously been toward Port Royal Sound, has been reversed, and, as a result, saltwater in the aquifer beneath Port Royal Sound has begun to move toward Hilton Head Island. The Saturated-Unsaturated Transport (SUTRA) model of the U.S. Geological Survey was used for the simulation of density-dependent ground-water flow and solute transport for a vertical section of the Upper Floridan aquifer and upper confining unit beneath Hilton Head Island and Port Royal Sound. The model simulated a dynamic equilibrium between the flow of seawater and freshwater in the aquifer near the Gyben-Herzberg position estimated for the period before withdrawals began in 1885; it simulated reasonable movements of brackish water and saltwater from that position to the position determined by chemical analyses of samples withdrawn from the aquifer in 1984, and it approximated hydraulic heads measured in the aquifer in 1976 and 1984. The solute-transport simulations indicate that the transition zone would continue to move toward Hilton Head Island even if pumping ceased on the island. Increases in existing withdrawals or additional withdrawals on or near Hilton Head Island would accelerate movement of the transition zone toward the island, but reduction in withdrawals or the injection of freshwater would slow movement toward the island, according to the simulations. Future movements of the transition zone toward Hilton Head Island will depend on hydraulic gradients in the aquifer beneath the island and the sound. Hydraulic gradients in the Upper Floridan aquifer beneath Hilton Head Island and Port Royal Sound are strongly influenced by withdrawals on the island and near Savannah. Since 1984, withdrawals on Hilton Head Island have increased.
Research on moving object detection based on frog's eyes
NASA Astrophysics Data System (ADS)
Fu, Hongwei; Li, Dongguang; Zhang, Xinyuan
2008-12-01
On the basis of object's information processing mechanism with frog's eyes, this paper discussed a bionic detection technology which suitable for object's information processing based on frog's vision. First, the bionics detection theory by imitating frog vision is established, it is an parallel processing mechanism which including pick-up and pretreatment of object's information, parallel separating of digital image, parallel processing, and information synthesis. The computer vision detection system is described to detect moving objects which has special color, special shape, the experiment indicates that it can scheme out the detecting result in the certain interfered background can be detected. A moving objects detection electro-model by imitating biologic vision based on frog's eyes is established, the video simulative signal is digital firstly in this system, then the digital signal is parallel separated by FPGA. IN the parallel processing, the video information can be caught, processed and displayed in the same time, the information fusion is taken by DSP HPI ports, in order to transmit the data which processed by DSP. This system can watch the bigger visual field and get higher image resolution than ordinary monitor systems. In summary, simulative experiments for edge detection of moving object with canny algorithm based on this system indicate that this system can detect the edge of moving objects in real time, the feasibility of bionic model was fully demonstrated in the engineering system, and it laid a solid foundation for the future study of detection technology by imitating biologic vision.
NPSS on NASA's IPG: Using CORBA and Globus to Coordinate Multidisciplinary Aeroscience Applications
NASA Technical Reports Server (NTRS)
Lopez, Isaac; Follen, Gregory J.; Gutierrez, Richard; Naiman, Cynthia G.; Foster, Ian; Ginsburg, Brian; Larsson, Olle; Martin, Stuart; Tuecke, Steven; Woodford, David
2000-01-01
Within NASA's High Performance Computing and Communication (HPCC) program, the NASA Glenn Research Center is developing an environment for the analysis/design of aircraft engines called the Numerical Propulsion System Simulation (NPSS). The vision for NPSS is to create a "numerical test cell" enabling full engine simulations overnight on cost-effective computing platforms. To this end, NPSS integrates multiple disciplines such as aerodynamics, structures, and heat transfer and supports "numerical zooming" between O-dimensional to 1-, 2-, and 3-dimensional component engine codes. In order to facilitate the timely and cost-effective capture of complex physical processes, NPSS uses object-oriented technologies such as C++ objects to encapsulate individual engine components and CORBA ORBs for object communication and deployment across heterogeneous computing platforms. Recently, the HPCC program has initiated a concept called the Information Power Grid (IPG), a virtual computing environment that integrates computers and other resources at different sites. IPG implements a range of Grid services such as resource discovery, scheduling, security, instrumentation, and data access, many of which are provided by the Globus toolkit. IPG facilities have the potential to benefit NPSS considerably. For example, NPSS should in principle be able to use Grid services to discover dynamically and then co-schedule the resources required for a particular engine simulation, rather than relying on manual placement of ORBs as at present. Grid services can also be used to initiate simulation components on parallel computers (MPPs) and to address inter-site security issues that currently hinder the coupling of components across multiple sites. These considerations led NASA Glenn and Globus project personnel to formulate a collaborative project designed to evaluate whether and how benefits such as those just listed can be achieved in practice. This project involves firstly development of the basic techniques required to achieve co-existence of commodity object technologies and Grid technologies; and secondly the evaluation of these techniques in the context of NPSS-oriented challenge problems. The work on basic techniques seeks to understand how "commodity" technologies (CORBA, DCOM, Excel, etc.) can be used in concert with specialized "Grid" technologies (for security, MPP scheduling, etc.). In principle, this coordinated use should be straightforward because of the Globus and IPG philosophy of providing low-level Grid mechanisms that can be used to implement a wide variety of application-level programming models. (Globus technologies have previously been used to implement Grid-enabled message-passing libraries, collaborative environments, and parameter study tools, among others.) Results obtained to date are encouraging: we have successfully demonstrated a CORBA to Globus resource manager gateway that allows the use of CORBA RPCs to control submission and execution of programs on workstations and MPPs; a gateway from the CORBA Trader service to the Grid information service; and a preliminary integration of CORBA and Grid security mechanisms. The two challenge problems that we consider are the following: 1) Desktop-controlled parameter study. Here, an Excel spreadsheet is used to define and control a CFD parameter study, via a CORBA interface to a high throughput broker that runs individual cases on different IPG resources. 2) Aviation safety. Here, about 100 near real time jobs running NPSS need to be submitted, run and data returned in near real time. Evaluation will address such issues as time to port, execution time, potential scalability of simulation, and reliability of resources. The full paper will present the following information: 1. A detailed analysis of the requirements that NPSS applications place on IPG. 2. A description of the techniques used to meet these requirements via the coordinated use of CORBA and Globus. 3. A description of results obtained to date in the first two challenge problems.
Beneficial use of dredged materials in Great Lakes commercial ports for transportation projects.
DOT National Transportation Integrated Search
2014-05-01
This report describes an effort to facilitate beneficial use of dredged materials (DM) from Great Lakes ports and harbors as an alternative construction : material in transportation-related earthwork applications. The overall objective is to link tog...
Alfa, M J; Nemes, R
2004-09-01
We undertook a simulated-use study using quantitative methods to evaluate the cleaning efficacy of ported and non-ported accessory devices used in minimally invasive surgery. We chose laparoscopic scissors and forceps to represent worst-case devices which were inoculated with artificial test soil containing 10(6) cfu/mL Enterococcus faecalis and Geobacillus stearothermophilus and allowed to dry for 1 h. Cleaning was performed manually, as well as by the automated SI-Auto Narrow lumen cleaner. Manual cleaning left two- to 50-fold more soil residuals (protein, haemoglobin and carbohydrate) inside the lumen of non-ported versus ported laparoscopic accessory devices. The SI-Auto Narrow lumen cleaner was more efficient than manual cleaning and achieved >99% reduction in soil parameters in both non-ported (using retro-flushing) and ported laparoscopic devices. Only the automated cleaning of ported devices achieved 10(3)-10(4)-fold reduction in bacterial numbers. Sonication alone (no flushing of inner channel) did not effectively remove soil or organisms from the inner channel. Our findings indicate that non-ported accessory devices cannot be as reliably cleaned as ported devices regardless of the cleaning method used. If non-ported accessory devices are reprocessed, they should be cleaned using retro-flushing in an automated narrow lumen cleaner.
Object-Oriented Control System Design Using On-Line Training of Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Rubaai, Ahmed
1997-01-01
This report deals with the object-oriented model development of a neuro-controller design for permanent magnet (PM) dc motor drives. The system under study is described as a collection of interacting objects. Each object module describes the object behaviors, called methods. The characteristics of the object are included in its variables. The knowledge of the object exists within its variables, and the performance is determined by its methods. This structure maps well to the real world objects that comprise the system being modeled. A dynamic learning architecture that possesses the capabilities of simultaneous on-line identification and control is incorporated to enforce constraints on connections and control the dynamics of the motor. The control action is implemented "on-line", in "real time" in such a way that the predicted trajectory follows a specified reference model. A design example of controlling a PM dc motor drive on-line shows the effectiveness of the design tool. This will therefore be very useful in aerospace applications. It is expected to provide an innovative and noval software model for the rocket engine numerical simulator executive.
Equivalent radiation source of 3D package for electromagnetic characteristics analysis
NASA Astrophysics Data System (ADS)
Li, Jun; Wei, Xingchang; Shu, Yufei
2017-10-01
An equivalent radiation source method is proposed to characterize electromagnetic emission and interference of complex three dimensional integrated circuits (IC) in this paper. The method utilizes amplitude-only near-field scanning data to reconstruct an equivalent magnetic dipole array, and the differential evolution optimization algorithm is proposed to extract the locations, orientation and moments of those dipoles. By importing the equivalent dipoles model into a 3D full-wave simulator together with the victim circuit model, the electromagnetic interference issues in mixed RF/digital systems can be well predicted. A commercial IC is used to validate the accuracy and efficiency of this proposed method. The coupled power at the victim antenna port calculated by the equivalent radiation source is compared with the measured data. Good consistency is obtained which confirms the validity and efficiency of the method. Project supported by the National Nature Science Foundation of China (No. 61274110).
Simulation Modeling of Software Development Processes
NASA Technical Reports Server (NTRS)
Calavaro, G. F.; Basili, V. R.; Iazeolla, G.
1996-01-01
A simulation modeling approach is proposed for the prediction of software process productivity indices, such as cost and time-to-market, and the sensitivity analysis of such indices to changes in the organization parameters and user requirements. The approach uses a timed Petri Net and Object Oriented top-down model specification. Results demonstrate the model representativeness, and its usefulness in verifying process conformance to expectations, and in performing continuous process improvement and optimization.
iTesla Power Systems Library (iPSL): A Modelica library for phasor time-domain simulations
NASA Astrophysics Data System (ADS)
Vanfretti, L.; Rabuzin, T.; Baudette, M.; Murad, M.
The iTesla Power Systems Library (iPSL) is a Modelica package providing a set of power system components for phasor time-domain modeling and simulation. The Modelica language provides a systematic approach to develop models using a formal mathematical description, that uniquely specifies the physical behavior of a component or the entire system. Furthermore, the standardized specification of the Modelica language (Modelica Association [1]) enables unambiguous model exchange by allowing any Modelica-compliant tool to utilize the models for simulation and their analyses without the need of a specific model transformation tool. As the Modelica language is being developed with open specifications, any tool that implements these requirements can be utilized. This gives users the freedom of choosing an Integrated Development Environment (IDE) of their choice. Furthermore, any integration solver can be implemented within a Modelica tool to simulate Modelica models. Additionally, Modelica is an object-oriented language, enabling code factorization and model re-use to improve the readability of a library by structuring it with object-oriented hierarchy. The developed library is released under an open source license to enable a wider distribution and let the user customize it to their specific needs. This paper describes the iPSL and provides illustrative application examples.
Pendulum detector testing device
Gonsalves, J.M.
1997-09-30
A detector testing device is described which provides consistent, cost-effective, repeatable results. The testing device is primarily constructed of PVC plastic and other non-metallic materials. Sensitivity of a walk-through detector system can be checked by: (1) providing a standard test object simulating the mass, size and material content of a weapon or other contraband, (2) suspending the test object in successive positions, such as head, waist and ankle levels, simulating where the contraband might be concealed on a person walking through the detector system; and (3) swinging the suspended object through each of the positions, while operating the detector system and observing its response. The test object is retained in a holder in which the orientation of the test device or target can be readily changed, to properly complete the testing requirements. 5 figs.
Pendulum detector testing device
Gonsalves, John M.
1997-01-01
A detector testing device which provides consistent, cost-effective, repeatable results. The testing device is primarily constructed of PVC plastic and other non-metallic materials. Sensitivity of a walk-through detector system can be checked by: 1) providing a standard test object simulating the mass, size and material content of a weapon or other contraband, 2) suspending the test object in successive positions, such as head, waist and ankle levels, simulating where the contraband might be concealed on a person walking through the detector system; and 3) swinging the suspended object through each of the positions, while operating the detector system and observing its response. The test object is retained in a holder in which the orientation of the test device or target can be readily changed, to properly complete the testing requirements.
Teaching Cellular Automation Concepts through Interdisciplinary Collaborative Learning.
ERIC Educational Resources Information Center
Biernacki, Joseph J.; Ayers, Jerry B.
2000-01-01
Reports on the experiences of 12 students--three senior undergraduates majoring in chemical engineering, five master-level, and four doctoral students--in a course titled "Interdisciplinary Studies in Multi-Scale Simulation of Concrete Materials". Course objectives focused on incorporating team-oriented interdisciplinary experiences into the…
USDA-ARS?s Scientific Manuscript database
An integrated foundation is presented to study the impacts of external forcings on irrigated agricultural systems. Individually, models are presented that simulate groundwater hydrogeology and econometric farm level crop choices and irrigated water use. The natural association between groundwater we...
Richard, Joshua; Galloway, Jack; Fensin, Michael; ...
2015-04-04
A novel object-oriented modular mapping methodology for externally coupled neutronics–thermal hydraulics multiphysics simulations was developed. The Simulator using MCNP with Integrated Thermal-Hydraulics for Exploratory Reactor Studies (SMITHERS) code performs on-the-fly mapping of material-wise power distribution tallies implemented by MCNP-based neutron transport/depletion solvers for use in estimating coolant temperature and density distributions with a separate thermal-hydraulic solver. The key development of SMITHERS is that it reconstructs the hierarchical geometry structure of the material-wise power generation tallies from the depletion solver automatically, with only a modicum of additional information required from the user. In addition, it performs the basis mapping from themore » combinatorial geometry of the depletion solver to the required geometry of the thermal-hydraulic solver in a generalizable manner, such that it can transparently accommodate varying levels of thermal-hydraulic solver geometric fidelity, from the nodal geometry of multi-channel analysis solvers to the pin-cell level of discretization for sub-channel analysis solvers.« less
Kable, Ashley K; Levett-Jones, Tracy L; Arthur, Carol; Reid-Searl, Kerry; Humphreys, Melanie; Morris, Sara; Walsh, Pauline; Witton, Nicola J
2018-01-01
The aim of this paper is to report the results of a cross-national study that evaluated a range of simulation sessions using an observation schedule developed from evidence-based quality indicators. Observational data were collected from 17 simulation sessions conducted for undergraduate nursing students at three universities in Australia and the United Kingdom. The observation schedule contained 27 questions that rated simulation quality. Data were collected by direct observation and from video recordings of the simulation sessions. Results indicated that the highest quality scores were for provision of learning objectives prior to the simulation session (90%) and debriefing (72%). Student preparatiosn and orientation (67%) and perceived realism and fidelity (67%) were scored lower than other components of the simulation sessions. This observational study proved to be an effective strategy to identify areas of strength and those needing further development to improve simulation sessions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Operation Husky: Seeking an Operational Approach to Decisive Victory
2014-05-22
Wilt, War From the Top: German and British Military Decision Making during World War II (Bloomington: Indiana University Press, 1990), 198. 7Ibid...primary objectives. On D-Day, three British divisions would land on the southeast corner of the island and secure the ports of Syracuse and Augusta ...15 line of Syracuse - Palazzolo - Ragusa, gain contact with Force 343, and then move to capture the port of Augusta , the port of Catania, and the
Stone, John E.; Hynninen, Antti-Pekka; Phillips, James C.; Schulten, Klaus
2017-01-01
All-atom molecular dynamics simulations of biomolecules provide a powerful tool for exploring the structure and dynamics of large protein complexes within realistic cellular environments. Unfortunately, such simulations are extremely demanding in terms of their computational requirements, and they present many challenges in terms of preparation, simulation methodology, and analysis and visualization of results. We describe our early experiences porting the popular molecular dynamics simulation program NAMD and the simulation preparation, analysis, and visualization tool VMD to GPU-accelerated OpenPOWER hardware platforms. We report our experiences with compiler-provided autovectorization and compare with hand-coded vector intrinsics for the POWER8 CPU. We explore the performance benefits obtained from unique POWER8 architectural features such as 8-way SMT and its value for particular molecular modeling tasks. Finally, we evaluate the performance of several GPU-accelerated molecular modeling kernels and relate them to other hardware platforms. PMID:29202130
Development of a dredge planning and decision support tool.
DOT National Transportation Integrated Search
2004-12-01
The report presented herein is a comprehensive overview of the practice of harbor dredging : at the Port of New York and New Jersey, USA. The study was commissioned by the Port : Authority of Piraeus, Greece with the objective of creating a database ...
Two-dimensional CFD modeling of wave rotor flow dynamics
NASA Technical Reports Server (NTRS)
Welch, Gerard E.; Chima, Rodrick V.
1994-01-01
A two-dimensional Navier-Stokes solver developed for detailed study of wave rotor flow dynamics is described. The CFD model is helping characterize important loss mechanisms within the wave rotor. The wave rotor stationary ports and the moving rotor passages are resolved on multiple computational grid blocks. The finite-volume form of the thin-layer Navier-Stokes equations with laminar viscosity are integrated in time using a four-stage Runge-Kutta scheme. Roe's approximate Riemann solution scheme or the computationally less expensive advection upstream splitting method (AUSM) flux-splitting scheme is used to effect upwind-differencing of the inviscid flux terms, using cell interface primitive variables set by MUSCL-type interpolation. The diffusion terms are central-differenced. The solver is validated using a steady shock/laminar boundary layer interaction problem and an unsteady, inviscid wave rotor passage gradual opening problem. A model inlet port/passage charging problem is simulated and key features of the unsteady wave rotor flow field are identified. Lastly, the medium pressure inlet port and high pressure outlet port portion of the NASA Lewis Research Center experimental divider cycle is simulated and computed results are compared with experimental measurements. The model accurately predicts the wave timing within the rotor passages and the distribution of flow variables in the stationary inlet port region.
Two-dimensional CFD modeling of wave rotor flow dynamics
NASA Technical Reports Server (NTRS)
Welch, Gerard E.; Chima, Rodrick V.
1993-01-01
A two-dimensional Navier-Stokes solver developed for detailed study of wave rotor flow dynamics is described. The CFD model is helping characterize important loss mechanisms within the wave rotor. The wave rotor stationary ports and the moving rotor passages are resolved on multiple computational grid blocks. The finite-volume form of the thin-layer Navier-Stokes equations with laminar viscosity are integrated in time using a four-stage Runge-Kutta scheme. The Roe approximate Riemann solution scheme or the computationally less expensive Advection Upstream Splitting Method (AUSM) flux-splitting scheme are used to effect upwind-differencing of the inviscid flux terms, using cell interface primitive variables set by MUSCL-type interpolation. The diffusion terms are central-differenced. The solver is validated using a steady shock/laminar boundary layer interaction problem and an unsteady, inviscid wave rotor passage gradual opening problem. A model inlet port/passage charging problem is simulated and key features of the unsteady wave rotor flow field are identified. Lastly, the medium pressure inlet port and high pressure outlet port portion of the NASA Lewis Research Center experimental divider cycle is simulated and computed results are compared with experimental measurements. The model accurately predicts the wave timing within the rotor passage and the distribution of flow variables in the stationary inlet port region.
Guiffant, Gérard; Durussel, Jean Jacques; Flaud, Patrice; Royon, Laurent; Marcy, Pierre Yves; Merckx, Jacques
2013-01-01
The use of totally implantable venous access devices (TIVADs) certified as "high pressure resistant" or "power port" has begun to spread worldwide as a safe procedure for power contrast injection. Owing to the thermo-rheological properties of the contrast media, the primary aim of this work is to present an in vitro experimental impact study concerning the impact of the temperature level on flushing efficiency after contrast medium injection. Moreover, we report experimental data that confirms the role of needle bevel orientation. The secondary aim is to answer the following questions: Is there significant device contrast medium trapping after contrast medium injection? Is saline flushing efficient? And, finally, is it safe to inject contrast medium through an indwelled port catheter? The experimental results show that in addition to hydrodynamics, temperature is a key parameter for the efficiency of device flushing after contrast medium injection. It appears that this is the case when the cavity is incompletely rinsed after three calibrated flushing volumes of 10 mL saline solution, even by using the Huber needle bevel opposite to the port exit. This leads to a potentially important trapped volume of contrast medium in the port, and consequently to the possibility of subsequent salt precipitates and long term trisubstituted benzene nuclei delivery that might impair the solute properties, which may be further injected via the power port later on. We thus suggest, in TIVADS patients, the use of a temporary supplementary intravenous line rather than the port to perform contrast medium injections in daily radiology routine practice.
Beyond a series of security nets: Applying STAMP & STPA to port security
Williams, Adam D.
2015-11-17
Port security is an increasing concern considering the significant role of ports in global commerce and today’s increasingly complex threat environment. Current approaches to port security mirror traditional models of accident causality -- ‘a series of security nets’ based on component reliability and probabilistic assumptions. Traditional port security frameworks result in isolated and inconsistent improvement strategies. Recent work in engineered safety combines the ideas of hierarchy, emergence, control and communication into a new paradigm for understanding port security as an emergent complex system property. The ‘System-Theoretic Accident Model and Process (STAMP)’ is a new model of causality based on systemsmore » and control theory. The associated analysis process -- System Theoretic Process Analysis (STPA) -- identifies specific technical or procedural security requirements designed to work in coordination with (and be traceable to) overall port objectives. This process yields port security design specifications that can mitigate (if not eliminate) port security vulnerabilities related to an emphasis on component reliability, lack of coordination between port security stakeholders or economic pressures endemic in the maritime industry. As a result, this article aims to demonstrate how STAMP’s broader view of causality and complexity can better address the dynamic and interactive behaviors of social, organizational and technical components of port security.« less
Beyond a series of security nets: Applying STAMP & STPA to port security
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Adam D.
Port security is an increasing concern considering the significant role of ports in global commerce and today’s increasingly complex threat environment. Current approaches to port security mirror traditional models of accident causality -- ‘a series of security nets’ based on component reliability and probabilistic assumptions. Traditional port security frameworks result in isolated and inconsistent improvement strategies. Recent work in engineered safety combines the ideas of hierarchy, emergence, control and communication into a new paradigm for understanding port security as an emergent complex system property. The ‘System-Theoretic Accident Model and Process (STAMP)’ is a new model of causality based on systemsmore » and control theory. The associated analysis process -- System Theoretic Process Analysis (STPA) -- identifies specific technical or procedural security requirements designed to work in coordination with (and be traceable to) overall port objectives. This process yields port security design specifications that can mitigate (if not eliminate) port security vulnerabilities related to an emphasis on component reliability, lack of coordination between port security stakeholders or economic pressures endemic in the maritime industry. As a result, this article aims to demonstrate how STAMP’s broader view of causality and complexity can better address the dynamic and interactive behaviors of social, organizational and technical components of port security.« less
Kim, Yong Joon; Jo, Sungkil; Moon, Daruchi; Joo, Youngcheol; Choi, Kyung Seek
2014-05-01
To comprehend the mechanism of focal chorioretinal damage by analysis of the pressure distribution and dynamic pressure induced by infused air during fluid-air exchange. A precise simulation featuring a model eye and a fluid circuit was designed to analyze fluid-air exchange. The pressure distribution, flow velocity, and dynamic pressure induced by infusion of air into an air-filled eye were analyzed using an approach based on fluid dynamics. The size of the port and the infusion pressure were varied during simulated iterations. We simulated infusion of an air-filled eye with balanced salt solution (BSS) to better understand the mechanism of chorioretinal damage induced by infused air. Infused air was projected straight toward a point on the retina contralateral to the infusion port (the "vulnerable point"). The highest pressure was evident at the vulnerable point, and the lowest pressure was recorded on most retinal areas. Simulations using greater infusion pressure and a port of larger size were associated with elevations in dynamic pressure and the pressure gradient. The pressure gradients were 2.8 and 5.1 mm Hg, respectively, when infusion pressures of 30 and 50 mm Hg were delivered through a 20-gauge port. The pressure gradient associated with BSS infusion was greater than that created by air, but lasted for only a moment. Our simulation explains the mechanism of focal chorioretinal damage in numerical terms. Infused air induces a prolonged increase in focal pressure on the vulnerable point, and this may be responsible for visual field defects arising after fluid-air exchange. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
A software framework for pipelined arithmetic algorithms in field programmable gate arrays
NASA Astrophysics Data System (ADS)
Kim, J. B.; Won, E.
2018-03-01
Pipelined algorithms implemented in field programmable gate arrays are extensively used for hardware triggers in the modern experimental high energy physics field and the complexity of such algorithms increases rapidly. For development of such hardware triggers, algorithms are developed in C++, ported to hardware description language for synthesizing firmware, and then ported back to C++ for simulating the firmware response down to the single bit level. We present a C++ software framework which automatically simulates and generates hardware description language code for pipelined arithmetic algorithms.
A Novel Optical/digital Processing System for Pattern Recognition
NASA Technical Reports Server (NTRS)
Boone, Bradley G.; Shukla, Oodaye B.
1993-01-01
This paper describes two processing algorithms that can be implemented optically: the Radon transform and angular correlation. These two algorithms can be combined in one optical processor to extract all the basic geometric and amplitude features from objects embedded in video imagery. We show that the internal amplitude structure of objects is recovered by the Radon transform, which is a well-known result, but, in addition, we show simulation results that calculate angular correlation, a simple but unique algorithm that extracts object boundaries from suitably threshold images from which length, width, area, aspect ratio, and orientation can be derived. In addition to circumventing scale and rotation distortions, these simulations indicate that the features derived from the angular correlation algorithm are relatively insensitive to tracking shifts and image noise. Some optical architecture concepts, including one based on micro-optical lenslet arrays, have been developed to implement these algorithms. Simulation test and evaluation using simple synthetic object data will be described, including results of a study that uses object boundaries (derivable from angular correlation) to classify simple objects using a neural network.
Charging of Basic Structural Shapes in a Simulated Lunar Environment
NASA Technical Reports Server (NTRS)
Craven, P.; Schneider, T.; Vaughn, J.; Wang, J.; Polansky, J.
2012-01-01
In order to understand the effect of the charging environment on and around structures on the lunar surface, we have exposed basic structural shapes to electrons and Vacuum Ultra-Violet (VUV) radiation. The objects were, in separate runs, isolated, grounded, and placed on dielectric surfaces. In this presentation, the effects of electron energy, VUV flux, and sample orientation, on the charging of the objects will be examined. The potential of each of the object surfaces was monitored in order to determine the magnitude of the ram and wake effects under different orientations relative to the incoming beams (solar wind). This is a part of, and complementary to, the study of the group at USC under Dr. J. Wang, the purpose of which is to model the effects of the charging environment on structures on the lunar surface.
Using GeoRePORT to report socio-economic potential for geothermal development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, Katherine R.; Levine, Aaron
The Geothermal Resource Portfolio Optimization and Reporting Tool (GeoRePORT, http://en.openei.org/wiki/GeoRePORT) was developed for reporting resource grades and project readiness levels, providing the U.S. Department of Energy a consistent and comprehensible means of evaluating projects. The tool helps funding organizations (1) quantitatively identify barriers, (2) develop measureable goals, (3) objectively evaluate proposals, including contribution to goals, (4) monitor progress, and (5) report portfolio performance. GeoRePORT assesses three categories: geological, technical, and socio-economic. Here, we describe GeoRePORT, then focus on the socio-economic assessment and its applications for assessing deployment potential in the U.S. Socio-economic attributes include land access, permitting, transmission, and market.
Simulating effects of highway embankments on estuarine circulation
Lee, Jonathan K.; Schaffranek, Raymond W.; Baltzer, Robert A.
1994-01-01
A two-dimensional depth-averaged, finite-difference, numerical model was used to simulate tidal circulation and mass transport in the Port Royal Sound. South Carolina, estuarine system. The purpose of the study was to demonstrate the utility of the Surface-Water. Integrated. Flow and Transport model (SWIFT2D) for evaluating changes in circulation patterns and mass transport caused by highway-crossing embankments. A model of subregion of Port Royal Sound including the highway crossings and having a grid size of 61 m (200ft) was derived from a 183-m (600-ft) model of the entire Port Royal Sound estuarine system. The 183-m model was used to compute boundary-value data for the 61-m submodel, which was then used to simulate flow conditions with and without the highway embankments in place. The numerical simulations show that, with the highway embankment in place, mass transport between the Broad River and Battery Creek is reduced and mass transport between the Beaufort River and Battery Creek is increased. The net result is that mass transport into and out of upper Battery Creek is reduced. The presence of the embankments also alters circulation patterns within Battery Creek.
DOT National Transportation Integrated Search
2016-12-31
In the past decades, expansion projects of port in USA, have been completed by placing hydraulic fills. These loose man-made fills and even their subjacent natural estuarine and marine deposits, have shown to be susceptible to liquefaction. The case ...
Simulation and analysis of a proposed replacement for the McCook port of entry inspection station
DOT National Transportation Integrated Search
1999-04-01
This report describes a study of a proposed replacement for the McCook Port of Entry inspection station at the entry to South Dakota. In order to assess the potential for a low-speed weigh in motion (WIM) scale within the station to pre-screen trucks...
NASA Astrophysics Data System (ADS)
Leamy, Michael J.; Springer, Adam C.
In this research we report parallel implementation of a Cellular Automata-based simulation tool for computing elastodynamic response on complex, two-dimensional domains. Elastodynamic simulation using Cellular Automata (CA) has recently been presented as an alternative, inherently object-oriented technique for accurately and efficiently computing linear and nonlinear wave propagation in arbitrarily-shaped geometries. The local, autonomous nature of the method should lead to straight-forward and efficient parallelization. We address this notion on symmetric multiprocessor (SMP) hardware using a Java-based object-oriented CA code implementing triangular state machines (i.e., automata) and the MPI bindings written in Java (MPJ Express). We use MPJ Express to reconfigure our existing CA code to distribute a domain's automata to cores present on a dual quad-core shared-memory system (eight total processors). We note that this message passing parallelization strategy is directly applicable to computer clustered computing, which will be the focus of follow-on research. Results on the shared memory platform indicate nearly-ideal, linear speed-up. We conclude that the CA-based elastodynamic simulator is easily configured to run in parallel, and yields excellent speed-up on SMP hardware.
Guiffant, Gérard; Durussel, Jean Jacques; Flaud, Patrice; Vigier, Jean Pierre; Merckx, Jacques
2012-01-01
The use of totally implantable venous access devices developed as a medical device allowing mid- and long-term, frequent, repeated, or continuous injection of therapeutic products, by vascular, cavitary, or perineural access. The effective flushing of these devices is a central element to assure long-lasting use. Our experimental work demonstrates that directing the Huber point needle opening in the diametrically opposite direction of the implantable port exit channel increases the flushing efficiency. These results are consolidated by numerical computations, which support recommendations not only for their maintenance, but also for their use.
Guiffant, Gérard; Durussel, Jean Jacques; Flaud, Patrice; Vigier, Jean Pierre; Merckx, Jacques
2012-01-01
The use of totally implantable venous access devices developed as a medical device allowing mid- and long-term, frequent, repeated, or continuous injection of therapeutic products, by vascular, cavitary, or perineural access. The effective flushing of these devices is a central element to assure long-lasting use. Our experimental work demonstrates that directing the Huber point needle opening in the diametrically opposite direction of the implantable port exit channel increases the flushing efficiency. These results are consolidated by numerical computations, which support recommendations not only for their maintenance, but also for their use. PMID:23166455
The Simulation of Vibrations of Railway Beam Bridges in the Object-oriented Environment Delphi
NASA Astrophysics Data System (ADS)
Raspopov, Alexander; Artyomov, Vitaly; Rusu, Sergey
2010-01-01
The peculiarities of combination of finite-element method and equations of solid dynamics, the basic stages of development of the program complex Belinda for calculation of statics and dynamics of the rods constructions as applied to railway bridges are described.
Rural inland waterways economic impact kit : users guide
DOT National Transportation Integrated Search
2000-08-01
The primary objective of the project was to develop a PC-based kit allowing users to evaluate the economic impact of existing rural inland waterways ports and terminals. By using the Kit, the importance to a community of a port and terminals can be q...
Rural inland waterways economic impact kit : analysis manual
DOT National Transportation Integrated Search
2000-08-01
The primary objective of the project was to develop a PC-based kit allowing users to evaluate the economic impact of existing rural inland waterways ports and terminals. By using the Kit, the importance to a community of a port and terminals can be q...
A Modeling Tool for Household Biogas Burner Flame Port Design
NASA Astrophysics Data System (ADS)
Decker, Thomas J.
Anaerobic digestion is a well-known and potentially beneficial process for rural communities in emerging markets, providing the opportunity to generate usable gaseous fuel from agricultural waste. With recent developments in low-cost digestion technology, communities across the world are gaining affordable access to the benefits of anaerobic digestion derived biogas. For example, biogas can displace conventional cooking fuels such as biomass (wood, charcoal, dung) and Liquefied Petroleum Gas (LPG), effectively reducing harmful emissions and fuel cost respectively. To support the ongoing scaling effort of biogas in rural communities, this study has developed and tested a design tool aimed at optimizing flame port geometry for household biogas-fired burners. The tool consists of a multi-component simulation that incorporates three-dimensional CAD designs with simulated chemical kinetics and computational fluid dynamics. An array of circular and rectangular port designs was developed for a widely available biogas stove (called the Lotus) as part of this study. These port designs were created through guidance from previous studies found in the literature. The three highest performing designs identified by the tool were manufactured and tested experimentally to validate tool output and to compare against the original port geometry. The experimental results aligned with the tool's prediction for the three chosen designs. Each design demonstrated improved thermal efficiency relative to the original, with one configuration of circular ports exhibiting superior performance. The results of the study indicated that designing for a targeted range of port hydraulic diameter, velocity and mixture density in the tool is a relevant way to improve the thermal efficiency of a biogas burner. Conversely, the emissions predictions made by the tool were found to be unreliable and incongruent with laboratory experiments.
Novel Experimental Techniques to Investigate Wellbore Damage Mechanisms
NASA Astrophysics Data System (ADS)
Choens, R. C., II; Ingraham, M. D.; Lee, M.; Dewers, T. A.
2017-12-01
A new experimental technique with unique geometry is presented investigating deformation of simulated boreholes using standard axisymmetric triaxial deformation equipment. The Sandia WEllbore SImulation, SWESI, geometry, uses right cylinders of rock 50mm in diameter and 75mm in length. A 11.3mm hole is drilled perpendicular to the axis of the cylinder in the center of the sample to simulate a borehole. The hole is covered with a solid metal cover, and sealed with polyurethane. The metal cover can be machined with a high-pressure port to introduce different fluid chemistries into the borehole at controlled pressures. Samples are deformed in a standard load frame under confinement, allowing for a broad range of possible stresses, load paths, and temperatures. Experiments in this study are loaded to the desired confining pressure, then deformed at a constant axial strain rate or 10-5 sec-1. Two different suites of experiments are conducted in this study on sedimentary and crystalline rock types. The first series of experiments are conducted on Mancos Shale, a finely laminated transversely isotropic rock. Samples are cored at three different orientations to the laminations. A second series of experiments is conducted on Sierra White granite with different fluid chemistries inside the borehole. Numerical modelling and experimental observations including CT-microtomography demonstrate that stresses are concentrated around the simulated wellbore and recreate wellbore deformation mechanisms. Borehole strength and damage development is dependent on anisotropy orientation and fluid chemistry. Observed failure geometries, particularly for Mancos shale, can be highly asymmetric. These results demonstrate uncertainties in in situ stresses measurements using commonly-applied borehole breakout techniques in complicated borehole physico-chemical environments. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2017-8259 A
NASA Astrophysics Data System (ADS)
Cottrell, E.; Kelley, K. A.; Grant, E.; Coombs, M. L.; Pistone, M.
2016-12-01
A new experimental technique with unique geometry is presented investigating deformation of simulated boreholes using standard axisymmetric triaxial deformation equipment. The Sandia WEllbore SImulation, SWESI, geometry, uses right cylinders of rock 50mm in diameter and 75mm in length. A 11.3mm hole is drilled perpendicular to the axis of the cylinder in the center of the sample to simulate a borehole. The hole is covered with a solid metal cover, and sealed with polyurethane. The metal cover can be machined with a high-pressure port to introduce different fluid chemistries into the borehole at controlled pressures. Samples are deformed in a standard load frame under confinement, allowing for a broad range of possible stresses, load paths, and temperatures. Experiments in this study are loaded to the desired confining pressure, then deformed at a constant axial strain rate or 10-5 sec-1. Two different suites of experiments are conducted in this study on sedimentary and crystalline rock types. The first series of experiments are conducted on Mancos Shale, a finely laminated transversely isotropic rock. Samples are cored at three different orientations to the laminations. A second series of experiments is conducted on Sierra White granite with different fluid chemistries inside the borehole. Numerical modelling and experimental observations including CT-microtomography demonstrate that stresses are concentrated around the simulated wellbore and recreate wellbore deformation mechanisms. Borehole strength and damage development is dependent on anisotropy orientation and fluid chemistry. Observed failure geometries, particularly for Mancos shale, can be highly asymmetric. These results demonstrate uncertainties in in situ stresses measurements using commonly-applied borehole breakout techniques in complicated borehole physico-chemical environments. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2017-8259 A
Implementation of jump-diffusion algorithms for understanding FLIR scenes
NASA Astrophysics Data System (ADS)
Lanterman, Aaron D.; Miller, Michael I.; Snyder, Donald L.
1995-07-01
Our pattern theoretic approach to the automated understanding of forward-looking infrared (FLIR) images brings the traditionally separate endeavors of detection, tracking, and recognition together into a unified jump-diffusion process. New objects are detected and object types are recognized through discrete jump moves. Between jumps, the location and orientation of objects are estimated via continuous diffusions. An hypothesized scene, simulated from the emissive characteristics of the hypothesized scene elements, is compared with the collected data by a likelihood function based on sensor statistics. This likelihood is combined with a prior distribution defined over the set of possible scenes to form a posterior distribution. The jump-diffusion process empirically generates the posterior distribution. Both the diffusion and jump operations involve the simulation of a scene produced by a hypothesized configuration. Scene simulation is most effectively accomplished by pipelined rendering engines such as silicon graphics. We demonstrate the execution of our algorithm on a silicon graphics onyx/reality engine.
1988-06-01
became apparent. ESC originally planned to confect a dedicated model, i.e., one specifically designed to address Korea. However, it reconsidered the...s) and should not be construed as an official US Department of the Army position, policy, or decision unless so designated by other official...model based on object-oriented programming design techniques, and uses the process view of simulation to achieve its purpose. As a direct con
Singh, Harnarayan; Patir, Rana; Vaishya, Sandeep; Miglani, Rahul; Kaur, Amandeep
2018-06-01
Minimally invasive transportal resection of deep intracranial lesions has become a widely accepted surgical technique. Many disposable, mountable port systems are available in the market for this purpose, like the ViewSite Brain Access System. The objective of this study was to find a cost-effective substitute for these systems. Deep-seated brain lesions were treated with a port system made from disposable syringes. The syringe port could be inserted through minicraniotomies placed and planned with navigation. All deep-seated lesions like ventricular tumours, colloid cysts, deep-seated gliomas, and basal ganglia hemorrhages were treated with this syringe port system and evaluated for safety, operative site hematomas, and blood loss. 62 patients were operated on during the study period from January 2015 to July 2017, using this innovative syringe port system for deep-seated lesions of the brain. No operative site hematoma or contusions were seen along the port entry site and tract. Syringe port is a cost-effective and safe alternative to the costly disposable brain port systems, especially for neurosurgical setups in developing countries for minimally invasive transportal resection of deep brain lesions. Copyright © 2018 Elsevier Inc. All rights reserved.
DOT National Transportation Integrated Search
2012-06-01
A small team of university-based transportation system experts and simulation experts has been : assembled to develop, test, and apply an approach to assessing road infrastructure capacity using : micro traffic simulation supported by publically avai...
JVIEW Visualization for Virtual Airspace Modeling and Simulation
2009-04-01
23 4.2.2 Translucency ................................................................................................................. 25 4.3... Translucency Used to Display Multiple Visualization Elements .............................. 26 Figure 26 - Textual Labels Feature...been done by Jason Moore and other AFRL/RISF staff and support personnel developing the JView API. JView relies on concrete Object Oriented Design
Flexibility on storage-release based distributed hydrologic modeling with object-oriented approach
USDA-ARS?s Scientific Manuscript database
With the availability of advanced hydrologic data in the public domain such as remotely sensed and climate change scenario data, there is a need for a modeling framework that is capable of using these data to simulate and extend hydrologic processes with multidisciplinary approaches for sustainable ...
Perceived orientation of a runway model in nonpilots during simulated night approaches to landing.
DOT National Transportation Integrated Search
1977-07-01
Illusions due to reduced visual cues at night have long been cited as contributing to the dangerous tendency of pilots to fly too low during night landing approaches. The cue of motion parallax (a difference in rate of apparent movement of objects in...
Park, Chanhun; Nam, Hee-Geun; Kim, Pung-Ho; Mun, Sungyong
2014-06-01
The removal of isoleucine from valine has been a key issue in the stage of valine crystallization, which is the final step in the valine production process in industry. To address this issue, a three-zone simulated moving-bed (SMB) process for the separation of valine and isoleucine has been developed previously. However, the previous process, which was based on a classical port-location mode, had some limitations in throughput and valine product concentration. In this study, a three-zone SMB process based on a modified port-location mode was applied to the separation of valine and isoleucine for the purpose of making a marked improvement in throughput and valine product concentration. Computer simulations and a lab-scale process experiment showed that the modified three-zone SMB for valine separation led to >65% higher throughput and >160% higher valine concentration compared to the previous three-zone SMB for the same separation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Use of Virtual Reality Computer Simulation in Learning Port-A Cath Injection
ERIC Educational Resources Information Center
Tsai, Sing-Ling; Chai, Sin-Kuo; Hsieh, Li-Feng; Lin, Shirling; Taur, Fang-Meei; Sung, Wen-Hsu; Doong, Ji-Liang
2008-01-01
Cost-benefit management trends in Taiwan healthcare settings have led nurses to perform more invasive skills, such as Port-A cath administration of medications. Accordingly, nurses must be well-prepared prior to teaching by the mentor and supervision method. The purpose of the current study was to develop a computer-assisted protocol using virtual…
Fusion of GEDI, ICESAT2 & NISAR data for above ground biomass mapping in Sonoma County, California
NASA Astrophysics Data System (ADS)
Duncanson, L.; Simard, M.; Thomas, N. M.; Neuenschwander, A. L.; Hancock, S.; Armston, J.; Dubayah, R.; Hofton, M. A.; Huang, W.; Tang, H.; Marselis, S.; Fatoyinbo, T.
2017-12-01
Several upcoming NASA missions will collect data sensitive to forest structure (GEDI, ICESAT-2 & NISAR). The LiDAR and SAR data collected by these missions will be used in coming years to map forest aboveground biomass at various resolutions. This research focuses on developing and testing multi-sensor data fusion approaches in advance of these missions. Here, we present the first case study of a CMS-16 grant with results from Sonoma County, California. We simulate lidar and SAR datasets from GEDI, ICESAT-2 and NISAR using airborne discrete return lidar and UAVSAR data, respectively. GEDI and ICESAT-2 signals are simulated from high point density discrete return lidar that was acquired over the entire county in 2014 through a previous CMS project (Dubayah & Hurtt, CMS-13). NISAR is simulated from L-band UAVSAR data collected in 2014. These simulations are empirically related to 300 field plots of aboveground biomass as well as a 30m biomass map produced from the 2014 airborne lidar data. We model biomass independently for each simulated mission dataset and then test two fusion methods for County-wide mapping 1) a pixel based approach and 2) an object oriented approach. In the pixel-based approach, GEDI and ICESAT-2 biomass models are calibrated over field plots and applied in orbital simulations for a 2-year period of the GEDI and ICESAT-2 missions. These simulated samples are then used to calibrate UAVSAR data to produce a 0.25 ha map. In the object oriented approach, the GEDI and ICESAT-2 data are identical to the pixel-based approach, but calibrate image objects of similar L-band backscatter rather than uniform pixels. The results of this research demonstrate the estimated ability for each of these three missions to independently map biomass in a temperate, high biomass system, as well as the potential improvement expected through combining mission datasets.
Globe stability during simulated vitrectomy with valved and non-valved trocar cannulas
Abulon, Dina Joy; Charles, Martin; Charles, Daniel E
2015-01-01
Purpose To compare the effects of valved and non-valved cannulas on intraocular pressure (IOP), fluid leakage, and vitreous incarceration during simulated vitrectomy. Methods Three-port pars plana incisions were generated in six rubber eyes using 23-, 25-, and 27-gauge valved and non-valved trocar cannulas. The models were filled with air and IOP was measured. Similar procedures were followed for 36 acrylic eyes filled with saline solution. Vitreous incarceration was analyzed in eleven rabbit and twelve porcine cadaver eyes. Results In the air-filled model, IOP loss was 89%–94% when two non-valved cannulas were unoccupied versus 1%–5% when two valved cannulas were unoccupied. In the fluid-filled model, with non-valved cannulas, IOP dropped while fluid leaked from the open ports. With two open ports, the IOP dropped to 20%–30% of set infusion pressure, regardless of infusion pressure and IOP compensation. The IOP was maintained in valved cannulas when one or two ports were left open, regardless of IOP compensation settings. There was no or minimal fluid leakage through open ports at any infusion pressure. Direct microscopic analysis of rabbit eyes showed that vitreous incarceration was significantly greater with 23-gauge non-valved than valved cannulas (P<0.005), and endoscopy of porcine eyes showed that vitreous incarceration was significantly greater with 23-gauge (P<0.05) and 27-gauge (P<0.05) non-valved cannulas. External observation of rabbit eyes showed vitreous prolapse through non-valved, but not valved, cannulas. Conclusion Valved cannulas surpassed non-valved cannulas in maintaining IOP, preventing fluid leakage, and reducing vitreous incarceration during simulated vitrectomy. PMID:26445520
NASA Astrophysics Data System (ADS)
St Fleur, S.; Courboulex, F.; Bertrand, E.; Deschamps, A.; Mercier de Lepinay, B.; Prepetit, C.; Hough, S. E.
2013-12-01
Haiti was struck in January 2010 by a strong Mw=7 earthquake that caused extensive damages in the city of Port au Prince. At this time, very few seismological stations were working in Haiti and the only one that recorded the mainshock in Port au Prince was saturated. Thus, there were no direct measurements of the ground motion produced by this large event. Quickly after the 2010 event, several permanent accelerometric stations were installed by the USGS (U.S. Geological Survey) and the BME (Bureau des Mines et de l'Energie d'Haiti) as well as broad-band stations by the GSC (Geological Survey of Canada). Since their installation, these stations recorded several tens of aftershocks. The aim of our work is to take advantage of this new dataset to better understand the ground motions generated by earthquakes in the city of Port au Prince. We have used first spectral ratio methods to obtain the transfer function of each station, and then an empirical Green's Function simulation approach to combine source and site effects. In order to estimate site effects under each station, we have used classical spectral ratio methods. In a first step, the H/V (Horizontal/Vertical) method was used to select a reference station (in Port au Prince) that should be ideally a station without any site effects. We selected two stations, HCEA and PAPH, as reference stations, as even if the shape of their H/V curves is not always equal to 1 in the entire frequency band. In a second step, we computed the transfer function at each station by a ratio between the spectra of each earthquake at each station and the spectra obtained at the reference station (we use successively HCEA, PAPH and a combination of both). The results were kept only for the frequencies where the signal to noise was larger than 3. In the frequency range 1 to 20 Hz, we found site/reference ratios that reach values from 3 to 8 and a large variability from one station to another one. In the low frequency band 0.5 to 1 Hz a peak is present at almost all the stations in Port au Prince, which may indicate an amplification due to a deep interface. However, these values have a large variability from one earthquake recording to the other. This may indicate that the observed amplification depends not only on the effect of local site, but also on the source or the propagation direction. We then used the recordings of two earthquakes (Mw 4.3 and Mw 4.4) that occurred on the Leogane fault as Empirical Green's Functions (EGF) in order to simulate the ground motions generated by a virtual Mw 6.8 earthquake. For this simulation a stochastic EGF summation method was used. The results obtained using the two events are surprisingly very different. Using the first EGF, nearly the same ground motion was obtained at each station in Port-au-Prince, whereas with the second EGF, the results highlight large differences. Finally, the estimated site response (site/reference) was used in combination with a direct estimation of the rock site motion (HCEA simulation) in order to reproduce the ground motions which were compared to the EGF simulation method. The comparison confirms the large variability in the modeled ground shaking which can be due to both site and source effects and the low frequency amplification on the plain of Port-au-Prince.
2003-04-17
KENNEDY SPACE CENTER, FLA. - STS-116 Commander Terrence Wilcutt is in training at SPACEHAB, Port Canaveral, Fla., along with other crew members Pilot William Oefelein and Mission Specialists Robert Curbeam and Christer Fuglesang. Objective of their mission to the International Space Station is to deliver and attach the third port truss segment, the P5 Truss, deactivate and retract the P6 Truss Channel 4B (port-side) solar array, and reconfigure station power from 2A and 4A solar arrays. A launch date is under review.
2003-04-17
KENNEDY SPACE CENTER, FLA. - STS-116 Pilot William Oelefein is in training at SPACEHAB, Port Canaveral, Fla., along with other crew members Commander Terrence Wilcutt and Mission Specialists Robert Curbeam and Christer Fuglesang. Objective of their mission to the International Space Station is to deliver and attach the third port truss segment, the P5 Truss, deactivate and retract the P6 Truss Channel 4B (port-side) solar array, and reconfigure station power from 2A and 4A solar arrays. A launch date is under review.
2003-04-17
KENNEDY SPACE CENTER, FLA. - STS-116 Mission Specialist Robert Curbeam is in training at SPACEHAB, Port Canaveral, Fla., along with other crew members Commander Terrence Wilcutt, Pilot William Oelefein and Mission Specialist Christer Fuglesang. Objective of their mission to the International Space Station is to deliver and attach the third port truss segment, the P5 Truss, deactivate and retract the P6 Truss Channel 4B (port-side) solar array, and reconfigure station power from 2A and 4A solar arrays. A launch date is under review.
Comparison Between Simulated and Experimentally Measured Performance of a Four Port Wave Rotor
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.; Wilson, Jack; Welch, Gerard E.
2007-01-01
Performance and operability testing has been completed on a laboratory-scale, four-port wave rotor, of the type suitable for use as a topping cycle on a gas turbine engine. Many design aspects, and performance estimates for the wave rotor were determined using a time-accurate, one-dimensional, computational fluid dynamics-based simulation code developed specifically for wave rotors. The code follows a single rotor passage as it moves past the various ports, which in this reference frame become boundary conditions. This paper compares wave rotor performance predicted with the code to that measured during laboratory testing. Both on and off-design operating conditions were examined. Overall, the match between code and rig was found to be quite good. At operating points where there were disparities, the assumption of larger than expected internal leakage rates successfully realigned code predictions and laboratory measurements. Possible mechanisms for such leakage rates are discussed.
Convergance experiments with a hydrodynamic model of Port Royal Sound, South Carolina
Lee, J.K.; Schaffranek, R.W.; Baltzer, R.A.
1989-01-01
A two-demensional, depth-averaged, finite-difference, flow/transport model, SIM2D, is being used to simulate tidal circulation and transport in the Port Royal Sound, South Carolina, estuarine system. Models of a subregion of the Port Royal Sound system have been derived from an earlier-developed model of the entire system having a grid size of 600 ft. The submodels were implemented with grid sizes of 600, 300, and 150 ft in order to determine the effects of changes in grid size on computed flows in the subregion, which is characterized by narrow channels and extensive tidal flats that flood and dewater with each rise and fall of the tide. Tidal amplitudes changes less than 5 percent as the grid size was decreased. Simulations were performed with the 300-foot submodel for time steps of 60, 30, and 15 s. Study results are discussed.
10. VIEW TOWARD PORT BOW IN THE FOC'S'LE OF THE ...
10. VIEW TOWARD PORT BOW IN THE FOC'S'LE OF THE EVELINA M. GOULART. OBJECT IN THE FOREGROUND IS A FOLDING MESS TABLE LOCATED BETWEEN THE TIERS OF BUNKS. - Auxiliary Fishing Schooner "Evelina M. Goulart", Essex Shipbuilding Museum, 66 Main Street, Essex, Essex County, MA
NASA Astrophysics Data System (ADS)
Mitosinkova, K.; Tomes, M.; Stockel, J.; Varju, J.; Stano, M.
2018-03-01
Neutral particle analyzers (NPA) measure line-integrated energy spectra of fast neutral atoms escaping the tokamak plasma, which are a product of charge-exchange (CX) collisions of plasma ions with background neutrals. They can observe variations in the ion temperature T i of non-thermal fast ions created by additional plasma heating. However, the plasma column which a fast atom has to pass through must be sufficiently short in comparison with the fast atom’s mean-free-path. Tokamak COMPASS is currently equipped with one NPA installed at a tangential mid-plane port. This orientation is optimal for observing non-thermal fast ions. However, in this configuration the signal at energies useful for T i derivation is lost in noise due to the too long fast atoms’ trajectories. Thus, a second NPA is planned to be connected for the purpose of measuring T i. We analyzed different possible view-lines (perpendicular mid-plane, tangential mid-plane, and top view) for the second NPA using the DOUBLE Monte-Carlo code and compared the results with the performance of the present NPA with tangential orientation. The DOUBLE code provides fast-atoms’ emissivity functions along the NPA view-line. The position of the median of these emissivity functions is related to the location from where the measured signal originates. Further, we compared the difference between the real central T i used as a DOUBLE code input and the T iCX derived from the exponential decay of simulated energy spectra. The advantages and disadvantages of each NPA location are discussed.
Subsurface Grain Morphology Reconstruction by Differential Aperture X-ray Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisenlohr, Philip; Shanthraj, Pratheek; Vande Kieft, Brendan R.
A multistep, non-destructive grain morphology reconstruction methodology that is applicable to near-surface volumes is developed and tested on synthetic grain structures. This approach probes the subsurface crystal orientation using differential aperture x-ray microscopy on a sparse grid across the microstructure volume of interest. Resulting orientation data are clustered according to proximity in physical and orientation space and used as seed points for an initial Voronoi tessellation to (crudely) approximate the grain morphology. Curvature-driven grain boundary relaxation, simulated by means of the Voronoi implicit interface method, progressively improves the reconstruction accuracy. The similarity between bulk and readily accessible surface reconstruction errormore » provides an objective termination criterion for boundary relaxation.« less
Science Objectives for a Soft X-ray Mission
NASA Astrophysics Data System (ADS)
Sibeck, D. G.; Connor, H. K.; Collier, M. R.; Collado-Vega, Y. M.; Walsh, B.
2016-12-01
When high charge state solar wind ions exchange electrons with exospheric neutrals, soft X-rays are emitted. In conjunction with flight- proven wide field-of-view soft X-ray imagers employing lobster-eye optics, recent simulations demonstrate the feasibility of imaging magnetospheric density structures such as the bow shock, magnetopause, and cusps. This presentation examines the Heliospheric scientific objectives that such imagers can address. Principal amongst these is the nature of reconnection at the dayside magnetopause: steady or transient, widespread or localized, component or antiparallel as a function of solar wind conditions. However, amongst many other objectives, soft X-ray imagers can provide crucial information concerning the structure of the bow shock as a function of solar wind Mach number and IMF orientation, the presence or absence of a depletion layer, the occurrence of Kelvin-Helmholtz or pressure-pulse driven magnetopause boundary waves, and the effects of radial IMF orientations and the foreshock upon bow shock and magnetopause location.
Facilitating LOS Debriefings: A Training Manual
NASA Technical Reports Server (NTRS)
McDonnell, Lori K.; Jobe, Kimberly K.; Dismukes, R. Key
1997-01-01
This manual is a practical guide to help airline instructors effectively facilitate debriefings of Line Oriented Simulations (LOS). It is based on a recently completed study of Line Oriented Flight Training (LOFT) debriefings at several U.S. airlines. This manual presents specific facilitation tools instructors can use to achieve debriefing objectives. The approach of the manual is to be flexible so it can be tailored to the individual needs of each airline. Part One clarifies the purpose and objectives of facilitation in the LOS setting. Part Two provides recommendations for clarifying roles and expectations and presents a model for organizing discussion. Part Tree suggests techniques for eliciting active crew participation and in-depth analysis and evaluation. Finally, in Part Four, these techniques are organized according to the facilitation model. Examples of how to effectively use the techniques are provided throughout, including strategies to try when the debriefing objectives are not being fully achieved.
Onyx-Advanced Aeropropulsion Simulation Framework Created
NASA Technical Reports Server (NTRS)
Reed, John A.
2001-01-01
The Numerical Propulsion System Simulation (NPSS) project at the NASA Glenn Research Center is developing a new software environment for analyzing and designing aircraft engines and, eventually, space transportation systems. Its purpose is to dramatically reduce the time, effort, and expense necessary to design and test jet engines by creating sophisticated computer simulations of an aerospace object or system (refs. 1 and 2). Through a university grant as part of that effort, researchers at the University of Toledo have developed Onyx, an extensible Java-based (Sun Micro-systems, Inc.), objectoriented simulation framework, to investigate how advanced software design techniques can be successfully applied to aeropropulsion system simulation (refs. 3 and 4). The design of Onyx's architecture enables users to customize and extend the framework to add new functionality or adapt simulation behavior as required. It exploits object-oriented technologies, such as design patterns, domain frameworks, and software components, to develop a modular system in which users can dynamically replace components with others having different functionality.
Simulation for assessment of bulk cargo berths number
NASA Astrophysics Data System (ADS)
Kuznetsov, A. L.; Kirichenko, A. V.; Slitsan, A. E.
2017-10-01
The world trade volumes of mineral resources have been growing constantly for decades, notwithstanding any economical crises. At the same time, the proximity of the bulk materials as products to the starting point of the integrated value added or logistic supply chain makes their unit price relatively low. This fact automatically causes a strong economic sensitivity of the supply chain to the level of operational expenses in every link. The core of the integrated logistic supply chain is its maritime segment, with the fleet and terminals (i.e. the cargo transportation system) serving as the base platform for it. In its turn, the terminal berths play a role of the interface between the fleet and the land-transportation sub-system. Current development of the maritime transportation technologies, ships and terminal specialization, vessel size growth, rationalization of route patterns, regionalization of trade etc., has made conventional calculation methods inadequate. The solution of the problem is in using object oriented simulation. At the same time, this approch usually assumes only ad hoc models. Thus, it does not provide the generality of its conventional analytical predecessors. The time and labor consumpting procedure of simulation results in a very narrow application domain of the model. This article describes a new simulation instrument, combining the generality of the analytical technoques with the efficiency of the object-oriented simulation. The approach implemented as a software module, which validity and adequacy are proved. The software was tested on several sea terminal design projects and confirmed its efficiency.
Ka-Band TWT High-Efficiency Power Combiner for High-Rate Data Transmission
NASA Technical Reports Server (NTRS)
Wintucky, Edwin G.; Simons, Rainee; Vaden, Karl R.; Lesny, Gary G.; Glass, Jeffrey L.
2007-01-01
A four-port magic-T hybrid waveguide junction serves as the central component of a high-efficiency two-way power combiner circuit for transmitting a high-rate phase-modulated digital signal at a carrier frequency in the Ka-band (between 27 and 40 GHz). This power combiner was developed to satisfy a specific requirement to efficiently combine the coherent outputs of two traveling-wavetube (TWT) amplifiers that are typically characterized by power levels on the order of 100 W or more. In this application, the use of a waveguide-based power combiner (instead of a coaxial-cable- or microstrip-based power combiner, for example) is dictated by requirements for low loss, high power-handling capability, and broadband response. Combiner efficiencies were typically 90 percent or more over both the linear and saturated output power regions of operation of the TWTs . Figure 1 depicts the basic configuration of the magic-T hybrid junction. The coherent outputs of the two TWTs enter through ports 1 and 4. As a result of the orientations of the electromagnetic fields, which also provides a needed high port-to-port isolation, of these two input signals and the interior design of the magic-T junction, the input powers are divided so as to add in phase at one output port (port 2), and to be opposite in phase and hence cancel each other at the opposite coplanar output port (port 3). The net result is that the output power at port 2 is essentially double that of the output of one TWT, minus the power lost in the magic-T hybrid junction. Optimum performance as a high-efficiency power combiner thus requires a balance of both power and phase at the input ports of the magic-T. Replicas of this two-way combiner can be arranged in a binary configuration to obtain a 2n-way (where n is an integer) combiner. For example, Figure 2 illustrates the use of three two-way combiners to combine the outputs of four TWTs.
Abramyan, Tigran M; Snyder, James A; Thyparambil, Aby A; Stuart, Steven J; Latour, Robert A
2016-08-05
Clustering methods have been widely used to group together similar conformational states from molecular simulations of biomolecules in solution. For applications such as the interaction of a protein with a surface, the orientation of the protein relative to the surface is also an important clustering parameter because of its potential effect on adsorbed-state bioactivity. This study presents cluster analysis methods that are specifically designed for systems where both molecular orientation and conformation are important, and the methods are demonstrated using test cases of adsorbed proteins for validation. Additionally, because cluster analysis can be a very subjective process, an objective procedure for identifying both the optimal number of clusters and the best clustering algorithm to be applied to analyze a given dataset is presented. The method is demonstrated for several agglomerative hierarchical clustering algorithms used in conjunction with three cluster validation techniques. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Automatic code generation in SPARK: Applications of computer algebra and compiler-compilers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nataf, J.M.; Winkelmann, F.
We show how computer algebra and compiler-compilers are used for automatic code generation in the Simulation Problem Analysis and Research Kernel (SPARK), an object oriented environment for modeling complex physical systems that can be described by differential-algebraic equations. After a brief overview of SPARK, we describe the use of computer algebra in SPARK's symbolic interface, which generates solution code for equations that are entered in symbolic form. We also describe how the Lex/Yacc compiler-compiler is used to achieve important extensions to the SPARK simulation language, including parametrized macro objects and steady-state resetting of a dynamic simulation. The application of thesemore » methods to solving the partial differential equations for two-dimensional heat flow is illustrated.« less
Automatic code generation in SPARK: Applications of computer algebra and compiler-compilers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nataf, J.M.; Winkelmann, F.
We show how computer algebra and compiler-compilers are used for automatic code generation in the Simulation Problem Analysis and Research Kernel (SPARK), an object oriented environment for modeling complex physical systems that can be described by differential-algebraic equations. After a brief overview of SPARK, we describe the use of computer algebra in SPARK`s symbolic interface, which generates solution code for equations that are entered in symbolic form. We also describe how the Lex/Yacc compiler-compiler is used to achieve important extensions to the SPARK simulation language, including parametrized macro objects and steady-state resetting of a dynamic simulation. The application of thesemore » methods to solving the partial differential equations for two-dimensional heat flow is illustrated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthew Ellis; Derek Gaston; Benoit Forget
In recent years the use of Monte Carlo methods for modeling reactors has become feasible due to the increasing availability of massively parallel computer systems. One of the primary challenges yet to be fully resolved, however, is the efficient and accurate inclusion of multiphysics feedback in Monte Carlo simulations. The research in this paper presents a preliminary coupling of the open source Monte Carlo code OpenMC with the open source Multiphysics Object-Oriented Simulation Environment (MOOSE). The coupling of OpenMC and MOOSE will be used to investigate efficient and accurate numerical methods needed to include multiphysics feedback in Monte Carlo codes.more » An investigation into the sensitivity of Doppler feedback to fuel temperature approximations using a two dimensional 17x17 PWR fuel assembly is presented in this paper. The results show a functioning multiphysics coupling between OpenMC and MOOSE. The coupling utilizes Functional Expansion Tallies to accurately and efficiently transfer pin power distributions tallied in OpenMC to unstructured finite element meshes used in MOOSE. The two dimensional PWR fuel assembly case also demonstrates that for a simplified model the pin-by-pin doppler feedback can be adequately replicated by scaling a representative pin based on pin relative powers.« less
A flexible object-oriented software framework for developing complex multimedia simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sydelko, P. J.; Dolph, J. E.; Christiansen, J. H.
Decision makers involved in brownfields redevelopment and long-term stewardship must consider environmental conditions, future-use potential, site ownership, area infrastructure, funding resources, cost recovery, regulations, risk and liability management, community relations, and expected return on investment in a comprehensive and integrated fashion to achieve desired results. Successful brownfields redevelopment requires the ability to assess the impacts of redevelopment options on multiple interrelated aspects of the ecosystem, both natural and societal. Computer-based tools, such as simulation models, databases, and geographical information systems (GISs) can be used to address brownfields planning and project execution. The transparent integration of these tools into a comprehensivemore » and dynamic decision support system would greatly enhance the brownfields assessment process. Such a system needs to be able to adapt to shifting and expanding analytical requirements and contexts. The Dynamic Information Architecture System (DIAS) is a flexible, extensible, object-oriented framework for developing and maintaining complex multidisciplinary simulations of a wide variety of application domains. The modeling domain of a specific DIAS-based simulation is determined by (1) software objects that represent the real-world entities that comprise the problem space (atmosphere, watershed, human), and (2) simulation models and other data processing applications that express the dynamic behaviors of the domain entities. Models and applications used to express dynamic behaviors can be either internal or external to DIAS, including existing legacy models written in various languages (FORTRAN, C, etc.). The flexible design framework of DIAS makes the objects adjustable to the context of the problem without a great deal of recoding. The DIAS Spatial Data Set facility allows parameters to vary spatially depending on the simulation context according to any of a number of 1-D, 2-D, or 3-D topologies. DIAS is also capable of interacting with other GIS packages and can import many standard spatial data formats. DIAS simulation capabilities can also be extended by including societal process models. Models that implement societal behaviors of individuals and organizations within larger DIAS-based natural systems simulations allow for interaction and feedback among natural and societal processes. The ability to simulate the complex interplay of multimedia processes makes DIAS a promising tool for constructing applications for comprehensive community planning, including the assessment of multiple development and redevelopment scenarios.« less
Recent Developments in the VISRAD 3-D Target Design and Radiation Simulation Code
NASA Astrophysics Data System (ADS)
Macfarlane, Joseph; Golovkin, Igor; Sebald, James
2017-10-01
The 3-D view factor code VISRAD is widely used in designing HEDP experiments at major laser and pulsed-power facilities, including NIF, OMEGA, OMEGA-EP, ORION, Z, and LMJ. It simulates target designs by generating a 3-D grid of surface elements, utilizing a variety of 3-D primitives and surface removal algorithms, and can be used to compute the radiation flux throughout the surface element grid by computing element-to-element view factors and solving power balance equations. Target set-up and beam pointing are facilitated by allowing users to specify positions and angular orientations using a variety of coordinates systems (e.g., that of any laser beam, target component, or diagnostic port). Analytic modeling for laser beam spatial profiles for OMEGA DPPs and NIF CPPs is used to compute laser intensity profiles throughout the grid of surface elements. VISRAD includes a variety of user-friendly graphics for setting up targets and displaying results, can readily display views from any point in space, and can be used to generate image sequences for animations. We will discuss recent improvements to conveniently assess beam capture on target and beam clearance of diagnostic components, as well as plans for future developments.
NASA Astrophysics Data System (ADS)
Arief, A. B.; Yudono, A.; Akil, A.; Ramli, I.
2017-08-01
The lack of social and public facilties of seven small islands around Makassar, causing the commuters to experience inefficiency in fulfilling their basic needs in the mainland of Makassar city. The purpose of this study is finding the location of coastal TOD in accordance with the principles of development model of coastal TOD. The result showed that inefficiency of time, cost and distance could be eliminated by applying vertical, united and integrated development model of coastal TOD. Using survey, interview and literature study through expert system analysis based on GIS deliniates coastal TOD.
1981-01-01
Reference Direction4 at " Is - (198) SNetwork’Ports. In either c•es, the port voltagemay be related to the appl &id field on the "segment by’ t~h constant...04 6.|• swot -0 1, i.61-03 45.766 17 0 0.117* 0.US30 ,0001 0.01111,31 1 I. K-03 1.137ft-04 i .3%$K-03 11.i1i is 0 0a1113 0.2178 0.0003 0.00339 1.1117K
NASA Technical Reports Server (NTRS)
Leavitt, L. D.; Burley, J. R., II
1985-01-01
An investigation has been conducted at wind-off conditions in the stati-test facility of the Langley 16-Foot Transonic Tunnel. The tests were conducted on a single-engine reverser configuration with partial and full reverse-thrust modulation capabilities. The reverser design had four ports with equal areas. These ports were angled outboard 30 deg from the vertical impart of a splay angle to the reverse exhaust flow. This splaying of reverser flow was intended to prevent impingement of exhaust flow on empennage surfaces and to help avoid inlet reingestion of exhaust gas when the reverser is integrated into an actual airplane configuration. External vane boxes were located directly over each of the four ports to provide variation of reverser efflux angle from 140 deg to 26 deg (measured forward from the horizontal reference axis). The reverser model was tested with both a butterfly-type inner door and an internal slider door to provide area control for each individual port. In addition, main nozzle throat area and vector angle were varied to examine various methods of modulating thrust levels. Other model variables included vane box configuration (four or six vanes per box), orientation of external vane boxes with respect to internal port walls (splay angle shims), and vane box sideplates. Nozzle pressure ratio was varied from 2.0 approximately 7.0.
Tateda, Yutaka; Tsumune, Daisuke; Misumi, Kazuhiro; Aono, Tatsuo; Kanda, Jota; Ishimaru, Takashi
2017-01-01
Radiocesium ( 134 Cs and 137 Cs) released from the Fukushima Dai-ichi Nuclear Power Plant (1FNPP) accident contaminated the fish inhabiting the port of 1FNPP. Radiocesium concentrations in some fishes, especially rockfish, have still remained at elevated levels, while concentrations in olive flounder have decreased in 2015 to the level which is close to the Japanese regulatory limit for seafood products (0.1 kBq kg-wet -1 ). In this study a dynamic food chain transfer model was applied to reconstruct radiocesium levels in olive flounder residing around the port area. As a result, the observed 137 Cs concentrations in olive flounder collected from the port could be explained by the simulated values in the fish, using the seawater level records at the port entrance. The reconstructed maximum 134 + 137 Cs concentration in olive flounder inhabiting the port area was 72 kB kg-wet -1 in July 2011 and the ecological half-life (EHL) was estimated as being 180 days during the period of 2014-2015. Short term simulation which assumed that the coastal water fish swam into the port during 1 month, demonstrated that the radiocesium level in the olive flounder may become equivalent to the depurated level in the fish which were initially contaminated. This result indicated that the increase of radiocesium levels in wandering fish is unlikely to change total radiocesium concentrations in the olive flounder. In this sense, the radiocesium levels in the olive flounder of the port area can be interpreted as being convergent in 2015, regardless of the differences in their contamination histories. On the other hand, the higher 137 Cs concentrations in fat greenling, compared to the olive flounder, can be attributed to a history of exposure to the contaminated seawater and food at the inner area of the port, such as the shallow draft quay and seawall area. As a result of the reconstructed initial higher radiocesium concentration, constrained by exposure history at the inner area of the port, the depurated radiocesium concentration in fat greenling is still likely to be greater than the regulatory level in the port area in 2015. Copyright © 2016 Elsevier Ltd. All rights reserved.
An Object-Oriented Computer Code for Aircraft Engine Weight Estimation
NASA Technical Reports Server (NTRS)
Tong, Michael T.; Naylor, Bret A.
2009-01-01
Reliable engine-weight estimation at the conceptual design stage is critical to the development of new aircraft engines. It helps to identify the best engine concept amongst several candidates. At NASA Glenn Research Center (GRC), the Weight Analysis of Turbine Engines (WATE) computer code, originally developed by Boeing Aircraft, has been used to estimate the engine weight of various conceptual engine designs. The code, written in FORTRAN, was originally developed for NASA in 1979. Since then, substantial improvements have been made to the code to improve the weight calculations for most of the engine components. Most recently, to improve the maintainability and extensibility of WATE, the FORTRAN code has been converted into an object-oriented version. The conversion was done within the NASA's NPSS (Numerical Propulsion System Simulation) framework. This enables WATE to interact seamlessly with the thermodynamic cycle model which provides component flow data such as airflows, temperatures, and pressures, etc., that are required for sizing the components and weight calculations. The tighter integration between the NPSS and WATE would greatly enhance system-level analysis and optimization capabilities. It also would facilitate the enhancement of the WATE code for next-generation aircraft and space propulsion systems. In this paper, the architecture of the object-oriented WATE code (or WATE++) is described. Both the FORTRAN and object-oriented versions of the code are employed to compute the dimensions and weight of a 300-passenger aircraft engine (GE90 class). Both versions of the code produce essentially identical results as should be the case.
NASA Astrophysics Data System (ADS)
Chack, Devendra; Kumar, V.; Raghuwanshi, Sanjeev Kumar; Singh, Dev Prakash
2017-01-01
Compact triple O-S-C band wavelength demultiplexer, which consists of series cascaded multimode interference (MMI) couplers has been carried out in this paper. The MMI coupler has been used to drop the wavelengths of 1510 nm and 1550 nm at bar port while the wavelength 1300 nm into the cross port. Then another MMI coupler has been designed to separate the wavelength 1510 nminto one port and wavelength 1550 nm into another port. The triple wavelength demultiplexer function has been performed by choosing a suitable refractive index of the guiding region and geometrical parameters such as the width and length of MMI coupler. Numerical simulation with finite difference beam propagation method (BPM) has been utilized to design and optimize the operation of the proposed triple wavelength demultiplexer. The simulation results show that insertion losses of wavelength O, S and C, bands are 1.884 dB, 1.452 dB and 2.568 dB, respectively, with isolations for each output waveguide ranging from 10 dB to 28.72 dB. The 3-dB bandwidth of insertion loss for 1300 nm, 1510 nm and 1550 nm are 80 nm, 20 nm and 10 nm, respectively.
Scoping studies of shielding to reduce the shutdown dose rates in the ITER ports
NASA Astrophysics Data System (ADS)
Juárez, R.; Guirao, J.; Pampin, R.; Loughlin, M.; Polunovskiy, E.; Le Tonqueze, Y.; Bertalot, L.; Kolsek, A.; Ogando, F.; Udintsev, V.; Walsh, M.
2018-07-01
The planned in situ maintenance tasks in the ITER port interspace are fundamental to ensure the operation of equipment to control, evaluate and optimize the plasma performance during the entire facility lifetime. They are subject to a limit of shutdown dose rates (SDDR) of 100 µSv h‑1 after 106 s of cooling time, which is nowadays a design driver for the port plugs as well as the application of ALARA. Three conceptual shielding proposals outside the ITER ports are studied in this work to support the achievement of this objective. Considered one by one, they offer reductions ranging from 25% to 50%, which are rather significant. This paper shows that, by combining these shields, the SDDR as low as 57Δ µSv h‑1 can be achieved with a local approach considering only radiation from one port (no cross-talk form neighboring ports). The locally evaluated SDDR are well below the limit which is an essential pre-requisite for achieving 100µSv h‑1 in a global analysis including all contributions. Further studies will have to deal with a realistic port plug design and the cross-talks from neighbour ports.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, X.H.
Aluminum multi-port extrusion tube is processed by the porthole die extrusion and the internal tube walls are welded through the solid state metallurgical bonding. In order to observe the development of grains and their orientations under severe plastic deformation and solid state welding, the extrusion butt together with the die is quenched immediately after extrusion to preserve the grain structure in the processing. The forming histories of selected material points are obtained by analyzing the optical microscopy graph. The evolution of the microstructure along the forming path is characterized by electro backscattered diffraction. It is found that geometrical dynamic recrystallizationmore » happens in the process. Grains are elongated, scattered at the transition zone and shear intensive zone, and then pinched off when they are pushed out from the die orifice. The shear-type orientations are predominant at the surface layer on the longitudinal section of the tube web and have penetrated into the intermediate layer. The rolling-type orientations are formed at the central layer. Texture gradient through the thickness of the tube web is observed. And cube orientated grains are found at the seam weld region. - Highlights: •Microstructure of extrusion butt is preserved after the micro scale porthole die extrusion. •Grain morphology history along forming path is investigated. •Texture evolutions on three material flows are present. •Texture gradient exists on the longitudinal section of the internal wall of profile. •Rolling-type and cube textures are found at the solid state welding region.« less
Lonati, Giovanni; Cernuschi, Stefano; Sidi, Shelina
2010-12-01
This work is intended to assess the impact on local air quality due to atmospheric emissions from port area activities for a new port in project in the Mediterranean Sea. The sources of air pollutants in the harbour area are auxiliary engines used by ships at berth during loading/offloading operations. A fleet activity-based methodology is first applied to evaluate annual pollutant emissions (NO(X), SO(X), PM, CO and VOC) based on vessel traffic data, ships tonnage and in-port hotelling time for loading/offloading operations. The 3-dimensional Calpuff transport and dispersion model is then applied for the subsequent assessment of the ground level spatial distribution of atmospheric pollutants for both long-term and short-term averaging times. Compliance with current air quality standards in the port area is finally evaluated and indications for port operation are provided. Some methodological aspects of the impact assessment procedure, namely those concerning the steps of emission scenario definitions and model simulations set-up at the project stage, are specifically addressed, suggesting a pragmatic approach for similar evaluations for small new ports in project. Copyright © 2010 Elsevier B.V. All rights reserved.
Simulating Operations at a Spaceport
NASA Technical Reports Server (NTRS)
Nevins, Michael R.
2007-01-01
SPACESIM is a computer program for detailed simulation of operations at a spaceport. SPACESIM is being developed to greatly improve existing spaceports and to aid in designing, building, and operating future spaceports, given that there is a worldwide trend in spaceport operations from very expensive, research- oriented launches to more frequent commercial launches. From an operational perspective, future spaceports are expected to resemble current airports and seaports, for which it is necessary to resolve issues of safety, security, efficient movement of machinery and people, cost effectiveness, timeliness, and maximizing effectiveness in utilization of resources. Simulations can be performed, for example, to (1) simultaneously analyze launches of reusable and expendable rockets and identify bottlenecks arising from competition for limited resources or (2) perform what-if scenario analyses to identify optimal scenarios prior to making large capital investments. SPACESIM includes an object-oriented discrete-event-simulation engine. (Discrete- event simulation has been used to assess processes at modern seaports.) The simulation engine is built upon the Java programming language for maximum portability. Extensible Markup Language (XML) is used for storage of data to enable industry-standard interchange of data with other software. A graphical user interface facilitates creation of scenarios and analysis of data.
ERIC Educational Resources Information Center
Chapman, Bryan L.
1994-01-01
Discusses the effect of object-oriented programming on the evolution of authoring systems. Topics include the definition of an object; examples of object-oriented authoring interfaces; what object-orientation means to an instructional developer; how object orientation increases productivity and enhances interactivity; and the future of courseware…
Running Parallel Discrete Event Simulators on Sierra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, P. D.; Jefferson, D. R.
2015-12-03
In this proposal we consider porting the ROSS/Charm++ simulator and the discrete event models that run under its control so that they run on the Sierra architecture and make efficient use of the Volta GPUs.
Vision-based overlay of a virtual object into real scene for designing room interior
NASA Astrophysics Data System (ADS)
Harasaki, Shunsuke; Saito, Hideo
2001-10-01
In this paper, we introduce a geometric registration method for augmented reality (AR) and an application system, interior simulator, in which a virtual (CG) object can be overlaid into a real world space. Interior simulator is developed as an example of an AR application of the proposed method. Using interior simulator, users can visually simulate the location of virtual furniture and articles in the living room so that they can easily design the living room interior without placing real furniture and articles, by viewing from many different locations and orientations in real-time. In our system, two base images of a real world space are captured from two different views for defining a projective coordinate of object 3D space. Then each projective view of a virtual object in the base images are registered interactively. After such coordinate determination, an image sequence of a real world space is captured by hand-held camera with tracking non-metric measured feature points for overlaying a virtual object. Virtual objects can be overlaid onto the image sequence by taking each relationship between the images. With the proposed system, 3D position tracking device, such as magnetic trackers, are not required for the overlay of virtual objects. Experimental results demonstrate that 3D virtual furniture can be overlaid into an image sequence of the scene of a living room nearly at video rate (20 frames per second).
World Geography. The Port of Baltimore Workplace Skills Development Project.
ERIC Educational Resources Information Center
Walker, Sam
This set of learning modules was developed during a project to deliver workplace literacy instruction to individuals employed in the more than 50 businesses related to the activities of the Port of Baltimore. It is intended to accomplish the following objectives: familiarize students with basic concepts of geography; give students knowledge of…
Rich media streaming for just-in-time training of first responders
NASA Astrophysics Data System (ADS)
Bandera, Cesar; Marsico, Michael
2005-05-01
The diversity of first responders and of asymmetric threats precludes the effectiveness of any single training syllabus. Just-in-time training (JITT) addresses this variability, but requires training content to be quickly tailored to the subject (the threat), the learner (the responder), and the infrastructure (the C2 chain from DHS to the responder"s equipment). We present a distributed system for personalized just-in-time training of first responders. The authoring and delivery of interactive rich media and simulations, and the integration of JITT with C2 centers, are demonstrated. Live and archived video, imagery, 2-D and 3-D models, and simulations are autonomously (1) aggregated from object-oriented databases into SCORM-compliant objects, (2) tailored to the individual learner"s training history, preferences, connectivity and computing platform (from workstations to wireless PDAs), (3) conveyed as secure and reliable MPEG-4 compliant streams with data rights management, and (4) rendered as interactive high-definition rich media that promotes knowledge retention and the refinement of learner skills without the need of special hardware. We review the object-oriented implications of SCORM and the higher level profiles of the MPEG-4 standard, and show how JITT can be integrated into - and improve the ROI of - existing training infrastructures, including COTS content authoring tools, LMS/CMS, man-in-the-loop simulators, and legacy content. Lastly, we compare the audiovisual quality of different streaming platforms under varying connectivity conditions.
Numerical System Solver Developed for the National Cycle Program
NASA Technical Reports Server (NTRS)
Binder, Michael P.
1999-01-01
As part of the National Cycle Program (NCP), a powerful new numerical solver has been developed to support the simulation of aeropropulsion systems. This software uses a hierarchical object-oriented design. It can provide steady-state and time-dependent solutions to nonlinear and even discontinuous problems typically encountered when aircraft and spacecraft propulsion systems are simulated. It also can handle constrained solutions, in which one or more factors may limit the behavior of the engine system. Timedependent simulation capabilities include adaptive time-stepping and synchronization with digital control elements. The NCP solver is playing an important role in making the NCP a flexible, powerful, and reliable simulation package.
Design of transportation and distribution Oil Palm Trunk of (OPT) in Indonesia
NASA Astrophysics Data System (ADS)
Norita, Defi; Arkeman, Yandra
2018-03-01
This research initiated from the area of oil palm plantations in Indonesia 13 million hectares, triggering consternation of abundance of oil palm trunk when garden regeneration is done. If 4 percent of the area is rehabilitated every year, almost 100 million cubic feet of oil palm will be trash. Biomass in the form of pellets can be processed from oil palm trunk. It is then disseminated back to the palm oil processing area into biomass. The amount of transportation cost of the used ships and trucks was defined as parameters. So the objective function determined the type and number of ship and truck trips that provide the minimum transportation cost. To optimize logistics transportation network in regional port cluster, combining hub-and-spoke transportation system among regional port with consolidation and dispersing transportation systems between ports and their own hinterlands, a nonlinear optimization model for two-stage logistics system in regional port cluster was introduced to simultaneously determine the following factors: the hinterlands serviced by individual ports and transportation capacity operated between each port and its hinterland, cargo transportation volume and corresponding transportation capacity allocated via a hub port from an original port to a destination port, cargo transportation volume and corresponding transportation capacity allocated directly from an original port to a destination port. Finally, a numerical example is given to demonstrate the application of the proposed model. It can be shown that the solution to the proposed non-linear model can be obtained by transforming it into linear programming models.
Guiffant, Gérard; Durussel, Jean Jacques; Flaud, Patrice; Royon, Laurent; Marcy, Pierre Yves; Merckx, Jacques
2013-01-01
Purpose The use of totally implantable venous access devices (TIVADs) certified as “high pressure resistant” or “power port” has begun to spread worldwide as a safe procedure for power contrast injection. Owing to the thermo-rheological properties of the contrast media, the primary aim of this work is to present an in vitro experimental impact study concerning the impact of the temperature level on flushing efficiency after contrast medium injection. Moreover, we report experimental data that confirms the role of needle bevel orientation. The secondary aim is to answer the following questions: Is there significant device contrast medium trapping after contrast medium injection? Is saline flushing efficient? And, finally, is it safe to inject contrast medium through an indwelled port catheter? Results The experimental results show that in addition to hydrodynamics, temperature is a key parameter for the efficiency of device flushing after contrast medium injection. It appears that this is the case when the cavity is incompletely rinsed after three calibrated flushing volumes of 10 mL saline solution, even by using the Huber needle bevel opposite to the port exit. This leads to a potentially important trapped volume of contrast medium in the port, and consequently to the possibility of subsequent salt precipitates and long term trisubstituted benzene nuclei delivery that might impair the solute properties, which may be further injected via the power port later on. Conclusion We thus suggest, in TIVADS patients, the use of a temporary supplementary intravenous line rather than the port to perform contrast medium injections in daily radiology routine practice. PMID:24043959
NASA Astrophysics Data System (ADS)
Rusgiyarto, Ferry; Sjafruddin, Ade; Frazila, Russ Bona; Suprayogi
2017-06-01
Increasing container traffic and land acquisition problem for terminal expansion leads to usage of external yard in a port buffer area. This condition influenced the terminal performance because a road which connects the terminal and the external yard was also used by non-container traffic. Location choice problem considered to solve this condition, but the previous research has not taken account a stochastic condition of container arrival rate and service time yet. Bi-level programming framework was used to find optimum location configuration. In the lower-level, there was a problem to construct the equation, which correlated the terminal operation and the road due to different time cycle equilibrium. Container moves from the quay to a terminal gate in a daily unit of time, meanwhile, it moves from the terminal gate to the external yard through the road in a minute unit of time. If the equation formulated in hourly unit equilibrium, it cannot catch up the container movement characteristics in the terminal. Meanwhile, if the equation formulated in daily unit equilibrium, it cannot catch up the road traffic movement characteristics in the road. This problem can be addressed using simulation model. Discrete Event Simulation Model was used to simulate import container flow processes in the container terminal and external yard. Optimum location configuration in the upper-level was the combinatorial problem, which was solved by Full Enumeration approach. The objective function of the external yard location model was to minimize user transport cost (or time) and to maximize operator benefit. Numerical experiment was run for the scenario assumption of two container handling ways, three external yards, and thirty-day simulation periods. Jakarta International Container Terminal (JICT) container characteristics data was referred for the simulation. Based on five runs which were 5, 10, 15, 20, and 30 repetitions, operation one of three available external yards (external yard - 3) was the optimum result. Apparently, the model confirmed the hypothesis that there was an optimum configuration of the external yard. Nevertheless, the model needs detail elaboration related to the objective function and the optimization constraint. It requires detail validation, in term of service time value, distribution pattern, and arrival rate in each unit server modeled in the next step of the research. The model gave unique and relatively consistent value of each run. It was indicated that the method has a chance to solve the research problem.
System analysis through bond graph modeling
NASA Astrophysics Data System (ADS)
McBride, Robert Thomas
2005-07-01
Modeling and simulation form an integral role in the engineering design process. An accurate mathematical description of a system provides the design engineer the flexibility to perform trade studies quickly and accurately to expedite the design process. Most often, the mathematical model of the system contains components of different engineering disciplines. A modeling methodology that can handle these types of systems might be used in an indirect fashion to extract added information from the model. This research examines the ability of a modeling methodology to provide added insight into system analysis and design. The modeling methodology used is bond graph modeling. An investigation into the creation of a bond graph model using the Lagrangian of the system is provided. Upon creation of the bond graph, system analysis is performed. To aid in the system analysis, an object-oriented approach to bond graph modeling is introduced. A framework is provided to simulate the bond graph directly. Through object-oriented simulation of a bond graph, the information contained within the bond graph can be exploited to create a measurement of system efficiency. A definition of system efficiency is given. This measurement of efficiency is used in the design of different controllers of varying architectures. Optimal control of a missile autopilot is discussed within the framework of the calculated system efficiency.
Bommer, Cassidy; Sullivan, Sarah; Campbell, Krystle; Ahola, Zachary; Agarwal, Suresh; O'Rourke, Ann; Jung, Hee Soo; Gibson, Angela; Leverson, Glen; Liepert, Amy E
2018-02-01
We assessed the effect of basic orientation to the simulation environment on anxiety, confidence, and clinical decision making. Twenty-four graduating medical students participated in a two-week surgery preparatory curriculum, including three simulations. Baseline anxiety was assessed pre-course. Scenarios were completed on day 2 and day 9. Prior to the first simulation, participants were randomly divided into two groups. Only one group received a pre-simulation orientation. Before the second simulation, all students received the same orientation. Learner anxiety was reported immediately preceding and following each simulation. Confidence was assessed post-simulation. Performance was evaluated by surgical faculty. The oriented group experienced decreased anxiety following the first simulation (p = 0.003); the control group did not. Compared to the control group, the oriented group reported less anxiety and greater confidence and received higher performance scores following all three simulations (all p < 0.05). Pre-simulation orientation reduces anxiety while increasing confidence and improving performance. Copyright © 2017 Elsevier Inc. All rights reserved.
Dexterity optimization by port placement in robot-assisted minimally invasive surgery
NASA Astrophysics Data System (ADS)
Selha, Shaun; Dupont, Pierre; Howe, Robert D.; Torchiana, David F.
2002-02-01
A computer-based algorithm has been developed which uses preoperative images to provide a surgeon with a list of feasible port triplets ranked according to tool dexterity and endoscopic view quality at each surgical site involved in a procedure. A computer simulation allows the surgeon to select from among the proposed port locations. The procedure selected for the development of the system consists of a coronary artery bypass graft (CABG). In this procedure, the interior mammary artery (IMA) is mobilized from the interior chest wall, and one end is attached to the coronary arteries to provide a new blood supply for the heart. Approximately 10-20 cm is dissected free, using blunt dissection and a harmonic scalpel or electrocautery. At present, the port placement system is being evaluated in clinical trials.
2003-04-17
KENNEDY SPACE CENTER, FLA. -- Members of the STS-116 crew look over equipment at SPACEHAB in Port Canaveral, Fla. On the left are Mission Specialists Robert Curbeam and Christer Fuglesang; on the right are Commander Terrence Wilcutt and Pilot William Oefelein. Objective of their mission to the International Space Station is to deliver and attach the third port truss segment, the P5 Truss, deactivate and retract the P6 Truss Channel 4B (port-side) solar array, and reconfigure station power from 2A and 4A solar arrays. A launch date is under review.
2003-04-17
KENNEDY SPACE CENTER, FLA. -- Members of the STS-116 crew handle equipment at SPACEHAB in Port Canaveral, Fla. On the left are Mission Specialists Robert Curbeam and Christer Fuglesang; on the right are Pilot William Oefelein (front) and Commander Terrence Wilcutt. Objective of their mission to the International Space Station is to deliver and attach the third port truss segment, the P5 Truss, deactivate and retract the P6 Truss Channel 4B (port-side) solar array, and reconfigure station power from 2A and 4A solar arrays. A launch date is under review.
2003-04-17
KENNEDY SPACE CENTER, FLA. - During a break in training at SPACEHAB, Port Canaveral, Fla., STS-116 Commander Terrence Wilcutt, Mission Specialist Christer Fuglesang and Pilot Michael Oelefein share a laugh. Not seen is Mission Specialist Robert Curbeam. Objective of their mission to the International Space Station is to deliver and attach the third port truss segment, the P5 Truss, deactivate and retract the P6 Truss Channel 4B (port-side) solar array, and reconfigure station power from 2A and 4A solar arrays. A launch date is under review.
Integration of OpenMC methods into MAMMOTH and Serpent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerby, Leslie; DeHart, Mark; Tumulak, Aaron
OpenMC, a Monte Carlo particle transport simulation code focused on neutron criticality calculations, contains several methods we wish to emulate in MAMMOTH and Serpent. First, research coupling OpenMC and the Multiphysics Object-Oriented Simulation Environment (MOOSE) has shown promising results. Second, the utilization of Functional Expansion Tallies (FETs) allows for a more efficient passing of multiphysics data between OpenMC and MOOSE. Both of these capabilities have been preliminarily implemented into Serpent. Results are discussed and future work recommended.
Parallelization of Rocket Engine Simulator Software (PRESS)
NASA Technical Reports Server (NTRS)
Cezzar, Ruknet
1997-01-01
Parallelization of Rocket Engine System Software (PRESS) project is part of a collaborative effort with Southern University at Baton Rouge (SUBR), University of West Florida (UWF), and Jackson State University (JSU). The second-year funding, which supports two graduate students enrolled in our new Master's program in Computer Science at Hampton University and the principal investigator, have been obtained for the period from October 19, 1996 through October 18, 1997. The key part of the interim report was new directions for the second year funding. This came about from discussions during Rocket Engine Numeric Simulator (RENS) project meeting in Pensacola on January 17-18, 1997. At that time, a software agreement between Hampton University and NASA Lewis Research Center had already been concluded. That agreement concerns off-NASA-site experimentation with PUMPDES/TURBDES software. Before this agreement, during the first year of the project, another large-scale FORTRAN-based software, Two-Dimensional Kinetics (TDK), was being used for translation to an object-oriented language and parallelization experiments. However, that package proved to be too complex and lacking sufficient documentation for effective translation effort to the object-oriented C + + source code. The focus, this time with better documented and more manageable PUMPDES/TURBDES package, was still on translation to C + + with design improvements. At the RENS Meeting, however, the new impetus for the RENS projects in general, and PRESS in particular, has shifted in two important ways. One was closer alignment with the work on Numerical Propulsion System Simulator (NPSS) through cooperation and collaboration with LERC ACLU organization. The other was to see whether and how NASA's various rocket design software can be run over local and intra nets without any radical efforts for redesign and translation into object-oriented source code. There were also suggestions that the Fortran based code be encapsulated in C + + code thereby facilitating reuse without undue development effort. The details are covered in the aforementioned section of the interim report filed on April 28, 1997.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, W; Wagar, M; Lyatskaya, Y
2016-06-15
Purpose: Mastectomy patients with breast reconstruction usually have a magnetic injection port inside the breast during radiation treatments. The magnet has a very high CT number and produces severe streaking artifact across the entire breast in CT images. Our routine strategy is to replace the artifact volumes with uniform water, and it is necessary to validate that the planned dose, with such an artifact correction, is sufficiently accurate. Methods: A phantom was made with a gelatine-filled container sitting on a Matrixx detector, and the magnetic port was inserted into gelatine with specific depths and orientations. The phantom was scanned onmore » a CT simulator and imported into Eclipse for treatment planning. The dose distribution at the Matrixx detector plane was calculated for raw CT images and artifact-corrected images. The treatment beams were then delivered to the phantom and the dose distributions were acquired by the Matrixx detector. Gamma index was calculated to compare the planned dose and the measurement. Results: Three field sizes (10×10, 15×15 and 20×20) and two depths (50mm and 20mm) were investigated. With the 2%/2mm or 3%/3mm criteria, several points (6–10) failed in the plan for raw CT images, and the number of failure was reduced close to zero for the corrected CT images. An assignment of 10,000 HU to the magnet further reduced the dose error directly under the magnet. Conclusion: It is validated that our routine strategy of artifact correction can effectively reduce the number of failures in the detector plane. It is also recommended to set the magnet with a CT number of 10,000HU, which could potentially improve the dose calculation at the points right behind the magnet.« less
Position estimation and driving of an autonomous vehicle by monocular vision
NASA Astrophysics Data System (ADS)
Hanan, Jay C.; Kayathi, Pavan; Hughlett, Casey L.
2007-04-01
Automatic adaptive tracking in real-time for target recognition provided autonomous control of a scale model electric truck. The two-wheel drive truck was modified as an autonomous rover test-bed for vision based guidance and navigation. Methods were implemented to monitor tracking error and ensure a safe, accurate arrival at the intended science target. Some methods are situation independent relying only on the confidence error of the target recognition algorithm. Other methods take advantage of the scenario of combined motion and tracking to filter out anomalies. In either case, only a single calibrated camera was needed for position estimation. Results from real-time autonomous driving tests on the JPL simulated Mars yard are presented. Recognition error was often situation dependent. For the rover case, the background was in motion and may be characterized to provide visual cues on rover travel such as rate, pitch, roll, and distance to objects of interest or hazards. Objects in the scene may be used as landmarks, or waypoints, for such estimations. As objects are approached, their scale increases and their orientation may change. In addition, particularly on rough terrain, these orientation and scale changes may be unpredictable. Feature extraction combined with the neural network algorithm was successful in providing visual odometry in the simulated Mars environment.
Dynamic simulation of a reverse Brayton refrigerator
NASA Astrophysics Data System (ADS)
Peng, N.; Lei, L. L.; Xiong, L. Y.; Tang, J. C.; Dong, B.; Liu, L. Q.
2014-01-01
A test refrigerator based on the modified Reverse Brayton cycle has been developed in the Chinese Academy of Sciences recently. To study the behaviors of this test refrigerator, a dynamic simulation has been carried out. The numerical model comprises the typical components of the test refrigerator: compressor, valves, heat exchangers, expander and heater. This simulator is based on the oriented-object approach and each component is represented by a set of differential and algebraic equations. The control system of the test refrigerator is also simulated, which can be used to optimize the control strategies. This paper describes all the models and shows the simulation results. Comparisons between simulation results and experimental data are also presented. Experimental validation on the test refrigerator gives satisfactory results.
Shadowfax: Moving mesh hydrodynamical integration code
NASA Astrophysics Data System (ADS)
Vandenbroucke, Bert
2016-05-01
Shadowfax simulates galaxy evolution. Written in object-oriented modular C++, it evolves a mixture of gas, subject to the laws of hydrodynamics and gravity, and any collisionless fluid only subject to gravity, such as cold dark matter or stars. For the hydrodynamical integration, it makes use of a (co-) moving Lagrangian mesh. The code has a 2D and 3D version, contains utility programs to generate initial conditions and visualize simulation snapshots, and its input/output is compatible with a number of other simulation codes, e.g. Gadget2 (ascl:0003.001) and GIZMO (ascl:1410.003).
An expert system for municipal solid waste management simulation analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsieh, M.C.; Chang, N.B.
1996-12-31
Optimization techniques were usually used to model the complicated metropolitan solid waste management system to search for the best dynamic combination of waste recycling, facility siting, and system operation, where sophisticated and well-defined interrelationship are required in the modeling process. But this paper applied the Concurrent Object-Oriented Simulation (COOS), a new simulation software construction method, to bridge the gap between the physical system and its computer representation. The case study of Kaohsiung solid waste management system in Taiwan is prepared for the illustration of the analytical methodology of COOS and its implementation in the creation of an expert system.
Ehmke, Tobias; Nitzsche, Tim Heiko; Knebl, Andreas; Heisterkamp, Alexander
2014-01-01
We demonstrate the possibility to switch the z-polarization component of the illumination in the vicinity of the focus of high-NA objective lenses by applying radially and azimuthally polarized incident light. The influence of the field distribution on nonlinear effects was first investigated by the means of simulations. These were performed for high-NA objective lenses commonly used in nonlinear microscopy. Special attention is paid to the influence of the polarization of the incoming field. For linearly, circularly and radially polarized light a considerable polarization component in z-direction is generated by high NA focusing. Azimuthal polarization is an exceptional case: even for strong focusing no z-component arises. Furthermore, the influence of the input polarization on the intensity contributing to the nonlinear signal generation was computed. No distinct difference between comparable input polarization states was found for chosen thresholds of nonlinear signal generation. Differences in signal generation for radially and azimuthally polarized vortex beams were experimentally evaluated in native collagen tissue (porcine cornea). The findings are in good agreement with the theoretical predictions and display the possibility to probe the molecular orientation along the optical axis of samples with known nonlinear properties. The combination of simulations regarding the nonlinear response of materials and experiments with different sample orientations and present or non present z-polarization could help to increase the understanding of nonlinear signal formation in yet unstudied materials. PMID:25071961
Numerical Propulsion System Simulation Architecture
NASA Technical Reports Server (NTRS)
Naiman, Cynthia G.
2004-01-01
The Numerical Propulsion System Simulation (NPSS) is a framework for performing analysis of complex systems. Because the NPSS was developed using the object-oriented paradigm, the resulting architecture is an extensible and flexible framework that is currently being used by a diverse set of participants in government, academia, and the aerospace industry. NPSS is being used by over 15 different institutions to support rockets, hypersonics, power and propulsion, fuel cells, ground based power, and aerospace. Full system-level simulations as well as subsystems may be modeled using NPSS. The NPSS architecture enables the coupling of analyses at various levels of detail, which is called numerical zooming. The middleware used to enable zooming and distributed simulations is the Common Object Request Broker Architecture (CORBA). The NPSS Developer's Kit offers tools for the developer to generate CORBA-based components and wrap codes. The Developer's Kit enables distributed multi-fidelity and multi-discipline simulations, preserves proprietary and legacy codes, and facilitates addition of customized codes. The platforms supported are PC, Linux, HP, Sun, and SGI.
Determining the orientation of depth-rotated familiar objects.
Niimi, Ryosuke; Yokosawa, Kazuhiko
2008-02-01
How does the human visual system determine the depth-orientation of familiar objects? We examined reaction times and errors in the detection of 15 degrees differences in the depth orientations of two simultaneously presented familiar objects, which were the same objects (Experiment 1) or different objects (Experiment 2). Detection of orientation differences was best for 0 degrees (front) and 180 degrees (back), while 45 degrees and 135 degrees yielded poorer results, and 90 degrees (side) showed intermediate results, suggesting that the visual system is tuned for front, side and back orientations. We further found that those advantages are due to orientation-specific features such as horizontal linear contours and symmetry, since the 90 degrees advantage was absent for objects with curvilinear contours, and asymmetric object diminished the 0 degrees and 180 degrees advantages. We conclude that the efficiency of visually determining object orientation is highly orientation-dependent, and object orientation may be perceived in favor of front-back axes.
Optical 1's and 2's complement devices using lithium-niobate-based waveguide
NASA Astrophysics Data System (ADS)
Pal, Amrindra; Kumar, Santosh; Sharma, Sandeep
2016-12-01
Optical 1's and 2's complement devices are proposed with the help of lithium-niobate-based Mach-Zehnder interferometers. It has a powerful capability of switching an optical signal from one port to the other port with the help of an electrical control signal. The paper includes the optical conversion scheme using sets of optical switches. 2's complement is common in computer systems and is used in binary subtraction and logical manipulation. The operation of the circuits is studied theoretically and analyzed through numerical simulations. The truth table of these complement methods is verified with the beam propagation method and MATLAB® simulation results.
A wind model for an elevated STOL-port configuration
NASA Technical Reports Server (NTRS)
Peterka, J. A.; Cermak, J. E.
1974-01-01
Measurements of mean velocity magnitude and direction as well as three-dimensional turbulence intensity were made in the flow over a model of an elevated STOL-port. A 1:300 scale model was placed in a wind tunnel flow simulating the mean velocity profile and turbulence characteristics of atmospheric winds over a typical city environment excluding detailed wake structures of possible nearby buildings. Hot-wire anemometer measurements of velocity and turbulence were made along approach and departure paths of aircraft operating on the runway centerline and at specified lateral distances from the centerline. Approach flow directions simulated were 0 and 30 degrees to the runway centerline.
Simulation of the National Aerospace System for Safety Analysis
NASA Technical Reports Server (NTRS)
Pritchett, Amy; Goldsman, Dave; Statler, Irv (Technical Monitor)
2002-01-01
Work started on this project on January 1, 1999, the first year of the grant. Following the outline of the grant proposal, a simulator architecture has been established which can incorporate the variety of types of models needed to accurately simulate national airspace dynamics. For the sake of efficiency, this architecture was based on an established single-aircraft flight simulator, the Reconfigurable Flight Simulator (RFS), already developed at Georgia Tech. Likewise, in the first year substantive changes and additions were made to the RFS to convert it into a simulation of the National Airspace System, with the flexibility to incorporate many types of models: aircraft models; controller models; airspace configuration generators; discrete event generators; embedded statistical functions; and display and data outputs. The architecture has been developed with the capability to accept any models of these types; due to its object-oriented structure, individual simulator components can be added and removed during run-time, and can be compiled separately. Simulation objects from other projects should be easy to convert to meet architecture requirements, with the intent that both this project may now be able to incorporate established simulation components from other projects, and that other projects may easily use this simulation without significant time investment.
Subsurface Grain Morphology Reconstruction by Differential Aperture X-ray Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisenlohr, Philip; Shanthraj, Pratheek; Vande Kieft, Brendan R.
A multistep, non-destructive grain morphology reconstruction methodology that is applicable to near-surface volumes is developed and tested on synthetic grain structures. This approach probes the subsurface crystal orientation using differential aperture X-ray microscopy (DAXM) on a sparse grid across the microstructure volume of interest. Resulting orientation data is clustered according to proximity in physical and orientation space and used as seed points for an initial Voronoi tessellation to (crudely) approximate the grain morphology. Curvature-driven grain boundary relaxation, simulated by means of the Voronoi Implicit Interface Method (VIIM), progressively improves the reconstruction accuracy. The similarity between bulk and readily accessible surfacemore » reconstruction error provides an objective termination criterion for boundary relaxation.« less
An automated methodology development. [software design for combat simulation
NASA Technical Reports Server (NTRS)
Hawley, L. R.
1985-01-01
The design methodology employed in testing the applicability of Ada in large-scale combat simulations is described. Ada was considered as a substitute for FORTRAN to lower life cycle costs and ease the program development efforts. An object-oriented approach was taken, which featured definitions of military targets, the capability of manipulating their condition in real-time, and one-to-one correlation between the object states and real world states. The simulation design process was automated by the problem statement language (PSL)/problem statement analyzer (PSA). The PSL/PSA system accessed the problem data base directly to enhance the code efficiency by, e.g., eliminating non-used subroutines, and provided for automated report generation, besides allowing for functional and interface descriptions. The ways in which the methodology satisfied the responsiveness, reliability, transportability, modifiability, timeliness and efficiency goals are discussed.
Pneumafil casing blower through moving reference frame (MRF) - A CFD simulation
NASA Astrophysics Data System (ADS)
Manivel, R.; Vijayanandh, R.; Babin, T.; Sriram, G.
2018-05-01
In this analysis work, the ring frame of Pneumafil casing blower of the textile mills with a power rating of 5 kW have been simulated using Computational Fluid Dynamics (CFD) code. The CFD analysis of the blower is carried out in Ansys Workbench 16.2 with Fluent using MRF solver settings. The simulation settings and boundary conditions are based on literature study and field data acquired. The main objective of this work is to reduce the energy consumption of the blower. The flow analysis indicated that the power consumption is influenced by the deflector plate orientation and deflector plate strip situated at the outlet casing of the blower. The energy losses occurred in the blower is due to the recirculation zones formed around the deflector plate strip. The deflector plate orientation is changed and optimized to reduce the energy consumption. The proposed optimized model is based on the simulation results which had relatively lesser power consumption than the existing and other cases. The energy losses in the Pneumafil casing blower are reduced through CFD analysis.
Object-Oriented Modeling of an Energy Harvesting System Based on Thermoelectric Generators
NASA Astrophysics Data System (ADS)
Nesarajah, Marco; Frey, Georg
This paper deals with the modeling of an energy harvesting system based on thermoelectric generators (TEG), and the validation of the model by means of a test bench. TEGs are capable to improve the overall energy efficiency of energy systems, e.g. combustion engines or heating systems, by using the remaining waste heat to generate electrical power. Previously, a component-oriented model of the TEG itself was developed in Modelica® language. With this model any TEG can be described and simulated given the material properties and the physical dimension. Now, this model was extended by the surrounding components to a complete model of a thermoelectric energy harvesting system. In addition to the TEG, the model contains the cooling system, the heat source, and the power electronics. To validate the simulation model, a test bench was built and installed on an oil-fired household heating system. The paper reports results of the measurements and discusses the validity of the developed simulation models. Furthermore, the efficiency of the proposed energy harvesting system is derived and possible improvements based on design variations tested in the simulation model are proposed.
NASA Technical Reports Server (NTRS)
Alvertos, Nicolas; Dcunha, Ivan
1992-01-01
A feature set of two dimensional curves is obtained after intersecting symmetric objects like spheres, cones, cylinders, ellipsoids, paraboloids, and parallelepipeds with two planes. After determining the location and orientation of the objects in space, these objects are aligned so as to lie on a plane parallel to a suitable coordinate system. These objects are then intersected with a horizontal and a vertical plane. Experiments were carried out with range images of sphere and cylinder. The 3-D discriminant approach was used to recognize quadric surfaces made up of simulated data. Its application to real data was also studied.
Rapid Prototyping of an Aircraft Model in an Object-Oriented Simulation
NASA Technical Reports Server (NTRS)
Kenney, P. Sean
2003-01-01
A team was created to participate in the Mars Scout Opportunity. Trade studies determined that an aircraft provided the best opportunity to complete the science objectives of the team. A high fidelity six degree of freedom flight simulation was required to provide credible evidence that the aircraft design fulfilled mission objectives and to support the aircraft design process by providing performance evaluations. The team created the simulation using the Langley Standard Real-Time Simulation in C++ (LaSRS++) application framework. A rapid prototyping approach was necessary because the team had only three months to both develop the aircraft simulation model and evaluate aircraft performance as the design and mission parameters matured. The design of LaSRS++ enabled rapid-prototyping in several ways. First, the framework allowed component models to be designed, implemented, unit-tested, and integrated quickly. Next, the framework provides a highly reusable infrastructure that allowed developers to maximize code reuse while concentrating on aircraft and mission specific features. Finally, the framework reduces risk by providing reusable components that allow developers to build a quality product with a compressed testing cycle that relies heavily on unit testing of new components.
Two-port robotic hysterectomy: a novel approach.
Moawad, Gaby N; Tyan, Paul; Khalil, Elias D Abi
2018-03-24
The objective of the study was to demonstrate a novel technique for two-port robotic hysterectomy with a particular focus on the challenging portions of the procedure. The study is designed as a technical video, showing step-by-step a two-port robotic hysterectomy approach (Canadian Task Force classification level III). IRB approval was not required for this study. The benefits of minimally invasive surgery for gynecological pathology have been clearly documented in multiple studies. Patients had fewer medical and surgical complications postoperatively, better cosmesis and quality of life. Most gynecological surgeons require 3-5 ports for the standard gynecological procedure. Even though the minimally invasive multiport system provides an excellent safety profile, multiple incisions are associated with a greater risk for morbidity including infection, pain, and hernia. In the past decade, various new methods have emerged to minimize the number of ports used in gynecological surgery. The interventions employed were a two-port robotic hysterectomy, using a camera port plus one robotic arm, with a focus on salpingectomy and cuff closure. We describe a transvaginal and a transabdominal approach for salpingectomy and a novel method for cuff closure. The transvaginal and transabdominal techniques for salpingectomy for two-port robotic-assisted hysterectomy provide excellent tension and exposure for a safe procedure without the need for an extra port. We also describe a transvaginal technique to place the vaginal cuff on tension during closure. With the necessary set of skills on a carefully chosen patient, two-port robotic-assisted total laparoscopic hysterectomy is a feasible procedure.
Ground-plane influences on size estimation in early visual processing.
Champion, Rebecca A; Warren, Paul A
2010-07-21
Ground-planes have an important influence on the perception of 3D space (Gibson, 1950) and it has been shown that the assumption that a ground-plane is present in the scene plays a role in the perception of object distance (Bruno & Cutting, 1988). Here, we investigate whether this influence is exerted at an early stage of processing, to affect the rapid estimation of 3D size. Participants performed a visual search task in which they searched for a target object that was larger or smaller than distracter objects. Objects were presented against a background that contained either a frontoparallel or slanted 3D surface, defined by texture gradient cues. We measured the effect on search performance of target location within the scene (near vs. far) and how this was influenced by scene orientation (which, e.g., might be consistent with a ground or ceiling plane, etc.). In addition, we investigated how scene orientation interacted with texture gradient information (indicating surface slant), to determine how these separate cues to scene layout were combined. We found that the difference in target detection performance between targets at the front and rear of the simulated scene was maximal when the scene was consistent with a ground-plane - consistent with the use of an elevation cue to object distance. In addition, we found a significant increase in the size of this effect when texture gradient information (indicating surface slant) was present, but no interaction between texture gradient and scene orientation information. We conclude that scene orientation plays an important role in the estimation of 3D size at an early stage of processing, and suggest that elevation information is linearly combined with texture gradient information for the rapid estimation of 3D size. Copyright 2010 Elsevier Ltd. All rights reserved.
Natural uranium and thorium isotopes in sediment cores off Malaysian ports
NASA Astrophysics Data System (ADS)
Yusoff, Abdul Hafidz; Sabuti, Asnor Azrin; Mohamed, Che Abd Rahim
2015-06-01
Sediment cores collected from three Malaysian marine ports, namely, Kota Kinabalu, Labuan and Klang were analyzed to determine the radioactivities of 234U, 238U, 230Th, 232Th and total organic carbon (TOC) content. The objectives of this study were to determine the factors that control the activity of uranium isotopes and identify the possible origin of uranium and thorium in these areas. The activities of 234U and 238U show high positive correlation with TOC at the middle of sediment core from Kota Kinabalu port. This result suggests that activity of uranium at Kota Kinabalu port was influenced by organic carbon. The 234U/238U value at the upper layer of Kota Kinabalu port was ≥1.14 while the ratio value at Labuan and Klang port was ≤ 1.14. These results suggest a reduction process occurred at Kota Kinabalu port where mobile U(VI) was converted to immobile U(IV) by organic carbon. Therefore, it can be concluded that the major input of uranium at Kota Kinabalu port is by sorptive uptake of authigenic uranium from the water column whereas the major inputs of uranium to Labuan and Klang port are of detrital origin. The ratio of 230Th/232Th was used to estimate the origin of thorium. Low ratio value (lt; 1.5) at Labuan and Klang ports support the suggestion that thorium from both areas were come from detrital input while the high ratio (> 1.5) of 230Th/232Th at Kota Kinabalu port suggest the anthropogenic input of 230Th to this area. The source of 230Th is probably from phosphate fertilizers used in the oil-palm cultivation in Kota Kinabalu that is adjacent to the Kota Kinabalu port.
A Qualitative Simulation Framework in Smalltalk Based on Fuzzy Arithmetic
Richard L. Olson; Daniel L. Schmoldt; David L. Peterson
1996-01-01
For many systems, it is not practical to collect and correlate empirical data necessary to formulate a mathematical model. However, it is often sufficient to predict qualitative dynamics effects (as opposed to system quantities), especially for research purposes. In this effort, an object-oriented application framework (AF) was developed for the qualitative modeling of...
Inflight Evaluation of an Acoustic Orientation Instrument
1992-12-01
othoienwma noted. mu wwTI DATA OUT DATA VAUID Figure 11-9. Porn Write or Timor Output Compare E:WU READ DATA M* PORTS A. C. 0 DAT VLI DATA Ill PORT fDATA...9* 9* WATCH DOG TIMER x x X x X X X X X X RS-232 CONVERSION X X x X X X X X RS-232 DB25 CONN. X X X X X X X RESET BUTTON X X X X X X X RS-422/485...calanOs. Tfle b.A.1t-in skivmter and us~ dog timrm, rrnm it the natural dmie fo real tire g’~ t~man and sacung also ca benit fr= it’s feture. frv F68MC is
General object-oriented software development
NASA Technical Reports Server (NTRS)
Seidewitz, Edwin V.; Stark, Mike
1986-01-01
Object-oriented design techniques are gaining increasing popularity for use with the Ada programming language. A general approach to object-oriented design which synthesizes the principles of previous object-oriented methods into the overall software life-cycle, providing transitions from specification to design and from design to code. It therefore provides the basis for a general object-oriented development methodology.
NASA Astrophysics Data System (ADS)
Yamada, Y.; Gouda, N.; Yano, T.; Sako, N.; Hatsutori, Y.; Tanaka, T.; Yamauchi, M.
We explain simulation tools in JASMINE project(JASMINE simulator). The JASMINE project stands at the stage where its basic design will be determined in a few years. Then it is very important to simulate the data stream generated by astrometric fields at JASMINE in order to support investigations of error budgets, sampling strategy, data compression, data analysis, scientific performances, etc. Of course, component simulations are needed, but total simulations which include all components from observation target to satellite system are also very important. We find that new software technologies, such as Object Oriented(OO) methodologies are ideal tools for the simulation system of JASMINE(the JASMINE simulator). The simulation system should include all objects in JASMINE such as observation techniques, models of instruments and bus design, orbit, data transfer, data analysis etc. in order to resolve all issues which can be expected beforehand and make it easy to cope with some unexpected problems which might occur during the mission of JASMINE. So, the JASMINE Simulator is designed as handling events such as photons from astronomical objects, control signals for devices, disturbances for satellite attitude, by instruments such as mirrors and detectors, successively. The simulator is also applied to the technical demonstration "Nano-JASMINE". The accuracy of ordinary sensor is not enough for initial phase attitude control. Mission instruments may be a good sensor for this purpose. The problem of attitude control in initial phase is a good example of this software because the problem is closely related to both mission instruments and satellite bus systems.
NASA Astrophysics Data System (ADS)
Yamada, Y.; Gouda, N.; Yano, T.; Kobayashi, Y.; Suganuma, M.; Tsujimoto, T.; Sako, N.; Hatsutori, Y.; Tanaka, T.
2006-08-01
We explain simulation tools in JASMINE project (JASMINE simulator). The JASMINE project stands at the stage where its basic design will be determined in a few years. Then it is very important to simulate the data stream generated by astrometric fields at JASMINE in order to support investigations of error budgets, sampling strategy, data compression, data analysis, scientific performances, etc. Of course, component simulations are needed, but total simulations which include all components from observation target to satellite system are also very important. We find that new software technologies, such as Object Oriented (OO) methodologies are ideal tools for the simulation system of JASMINE (the JASMINE simulator). The simulation system should include all objects in JASMINE such as observation techniques, models of instruments and bus design, orbit, data transfer, data analysis etc. in order to resolve all issues which can be expected beforehand and make it easy to cope with some unexpected problems which might occur during the mission of JASMINE. So, the JASMINE Simulator is designed as handling events such as photons from astronomical objects, control signals for devices, disturbances for satellite attitude, by instruments such as mirrors and detectors, successively. The simulator is also applied to the technical demonstration "Nano-JASMINE". The accuracy of ordinary sensor is not enough for initial phase attitude control. Mission instruments may be a good sensor for this purpose. The problem of attitude control in initial phase is a good example of this software because the problem is closely related to both mission instruments and satellite bus systems.
Tatai, Ildiko; Zaharie, Ioan
2012-11-01
In this paper a gyrator implementation using a LM13700 operational transconductance amplifier is analyzed. It was first verified under PSpice simulation and experimentally the antireciprocity of this gyrator, i.e., its properties. This type of gyrator can be used for controlling the energy transfer from one port to the other by modifying the bias currents of the operational transconductance amplifier.
Brygo, Anais; Sarakoglou, Ioannis; Grioli, Giorgio; Tsagarakis, Nikos
2017-01-01
Endowing tele-manipulation frameworks with the capability to accommodate a variety of robotic hands is key to achieving high performances through permitting to flexibly interchange the end-effector according to the task considered. This requires the development of control policies that not only cope with asymmetric master–slave systems but also whose high-level components are designed in a unified space in abstraction from the devices specifics. To address this dual challenge, a novel synergy port is developed that resolves the kinematic, sensing, and actuation asymmetries of the considered system through generating motion and force feedback references in the hardware-independent hand postural synergy space. It builds upon the concept of the Cartesian-based synergy matrix, which is introduced as a tool mapping the fingertips Cartesian space to the directions oriented along the grasp principal components. To assess the effectiveness of the proposed approach, the synergy port has been integrated into the control system of a highly asymmetric tele-manipulation framework, in which the 3-finger hand exoskeleton HEXOTRAC is used as a master device to control the SoftHand, a robotic hand whose transmission system relies on a single motor to drive all joints along a soft synergistic path. The platform is further enriched with the vision-based motion capture system Optitrack to monitor the 6D trajectory of the user’s wrist, which is used to control the robotic arm on which the SoftHand is mounted. Experiments have been conducted with the humanoid robot COMAN and the KUKA LWR robotic manipulator. Results indicate that this bilateral interface is highly intuitive and allows users with no prior experience to reach, grasp, and transport a variety of objects exhibiting very different shapes and impedances. In addition, the hardware and control solutions proved capable of accommodating users with different hand kinematics. Finally, the proposed control framework offers a universal, flexible, and intuitive interface allowing for the performance of effective tele-manipulations. PMID:28421179
Brygo, Anais; Sarakoglou, Ioannis; Grioli, Giorgio; Tsagarakis, Nikos
2017-01-01
Endowing tele-manipulation frameworks with the capability to accommodate a variety of robotic hands is key to achieving high performances through permitting to flexibly interchange the end-effector according to the task considered. This requires the development of control policies that not only cope with asymmetric master-slave systems but also whose high-level components are designed in a unified space in abstraction from the devices specifics. To address this dual challenge, a novel synergy port is developed that resolves the kinematic, sensing, and actuation asymmetries of the considered system through generating motion and force feedback references in the hardware-independent hand postural synergy space. It builds upon the concept of the Cartesian-based synergy matrix, which is introduced as a tool mapping the fingertips Cartesian space to the directions oriented along the grasp principal components. To assess the effectiveness of the proposed approach, the synergy port has been integrated into the control system of a highly asymmetric tele-manipulation framework, in which the 3-finger hand exoskeleton HEXOTRAC is used as a master device to control the SoftHand, a robotic hand whose transmission system relies on a single motor to drive all joints along a soft synergistic path. The platform is further enriched with the vision-based motion capture system Optitrack to monitor the 6D trajectory of the user's wrist, which is used to control the robotic arm on which the SoftHand is mounted. Experiments have been conducted with the humanoid robot COMAN and the KUKA LWR robotic manipulator. Results indicate that this bilateral interface is highly intuitive and allows users with no prior experience to reach, grasp, and transport a variety of objects exhibiting very different shapes and impedances. In addition, the hardware and control solutions proved capable of accommodating users with different hand kinematics. Finally, the proposed control framework offers a universal, flexible, and intuitive interface allowing for the performance of effective tele-manipulations.
Quist, Brian W.
2012-01-01
Rats actively tap and sweep their large mystacial vibrissae (whiskers) against objects to tactually explore their surroundings. When a vibrissa makes contact with an object, it bends, and this bending generates forces and bending moments at the vibrissa base. Researchers have only recently begun to quantify these mechanical variables. The present study quantifies the forces and bending moments at the vibrissa base with a quasi-static model of vibrissa deflection. The model was validated with experiments on real vibrissae. Initial simulations demonstrated that almost all vibrissa-object collisions during natural behavior will occur with the concave side of the vibrissa facing the object, and we therefore paid particular attention to the role of the vibrissa's intrinsic curvature in shaping the forces at the base. Both simulations and experiments showed that vibrissae with larger intrinsic curvatures will generate larger axial forces. Simulations also demonstrated that the range of forces and moments at the vibrissal base vary over approximately three orders of magnitude, depending on the location along the vibrissa at which object contact is made. Both simulations and experiments demonstrated that collisions in which the concave side of the vibrissa faces the object generate longer-duration contacts and larger net forces than collisions with the convex side. These results suggest that the orientation of the vibrissa's intrinsic curvature on the mystacial pad may increase forces during object contact and provide increased sensitivity to detailed surface features. PMID:22298834
Object-Oriented MDAO Tool with Aeroservoelastic Model Tuning Capability
NASA Technical Reports Server (NTRS)
Pak, Chan-gi; Li, Wesley; Lung, Shun-fat
2008-01-01
An object-oriented multi-disciplinary analysis and optimization (MDAO) tool has been developed at the NASA Dryden Flight Research Center to automate the design and analysis process and leverage existing commercial as well as in-house codes to enable true multidisciplinary optimization in the preliminary design stage of subsonic, transonic, supersonic and hypersonic aircraft. Once the structural analysis discipline is finalized and integrated completely into the MDAO process, other disciplines such as aerodynamics and flight controls will be integrated as well. Simple and efficient model tuning capabilities based on optimization problem are successfully integrated with the MDAO tool. More synchronized all phases of experimental testing (ground and flight), analytical model updating, high-fidelity simulations for model validation, and integrated design may result in reduction of uncertainties in the aeroservoelastic model and increase the flight safety.
2003-04-17
KENNEDY SPACE CENTER, FLA. - At SPACEHAB, Port Canaveral, Fla., STS-116 Mission Specialist Christer Fuglesang (left) and Pilot Michael Oelefein share a laugh during a break in training. Fuglesang is with the European Space Agency. Not seen are Commander Terrence Wilcutt and Mission Specialist Robert Curbeam. Objective of their mission to the International Space Station is to deliver and attach the third port truss segment, the P5 Truss, deactivate and retract the P6 Truss Channel 4B (port-side) solar array, and reconfigure station power from 2A and 4A solar arrays. A launch date is under review.
ERIC Educational Resources Information Center
Kuhn, Jonathan R.; Marsh, Shawn C.; Cotman, Chip
2017-01-01
Background: Both observed studies and experimental studies have identified programs, practices, and treatments that are considered effective, ineffective, or harmful for juvenile offenders. Objective: Identify which dispositions were best and worse for each offense in the La Porte County, Indiana, juvenile justice database of over 8500 juvenile…
A Pilot and Feasibility Study of Virtual Reality as a Distraction for Children with Cancer
ERIC Educational Resources Information Center
Gershon, Jonathan; Zimand, Elana; Pickering, Melissa; Rothbaum, Barbara Olasov; Hodges, Larry
2004-01-01
Objective: To pilot and test the feasibility of a novel technology to reduce anxiety and pain associated with an invasive medical procedure in children with cancer. Method: Children with cancer (ages 7-19) whose treatment protocols required access of their subcutaneous venous port device (port access) were randomly assigned to a virtual reality…
ERIC Educational Resources Information Center
Geller, Elaine; Foley, Gilbert M.
2009-01-01
Purpose: To outline an expanded framework for clinical practice in speech-language pathology. This framework broadens the focus on discipline-specific knowledge and infuses mental health constructs within the study of communication sciences and disorders, with the objective of expanding the potential "ports or points of entry" (D. Stern, 1995) for…
Visual Search for Object Orientation Can Be Modulated by Canonical Orientation
ERIC Educational Resources Information Center
Ballaz, Cecile; Boutsen, Luc; Peyrin, Carole; Humphreys, Glyn W.; Marendaz, Christian
2005-01-01
The authors studied the influence of canonical orientation on visual search for object orientation. Displays consisted of pictures of animals whose axis of elongation was either vertical or tilted in their canonical orientation. Target orientation could be either congruent or incongruent with the object's canonical orientation. In Experiment 1,…
Thermal depth profiling of vascular lesions: automated regularization of reconstruction algorithms
NASA Astrophysics Data System (ADS)
Verkruysse, Wim; Choi, Bernard; Zhang, Jenny R.; Kim, Jeehyun; Nelson, J. Stuart
2008-03-01
Pulsed photo-thermal radiometry (PPTR) is a non-invasive, non-contact diagnostic technique used to locate cutaneous chromophores such as melanin (epidermis) and hemoglobin (vascular structures). Clinical utility of PPTR is limited because it typically requires trained user intervention to regularize the inversion solution. Herein, the feasibility of automated regularization was studied. A second objective of this study was to depart from modeling port wine stain PWS, a vascular skin lesion frequently studied with PPTR, as strictly layered structures since this may influence conclusions regarding PPTR reconstruction quality. Average blood vessel depths, diameters and densities derived from histology of 30 PWS patients were used to generate 15 randomized lesion geometries for which we simulated PPTR signals. Reconstruction accuracy for subjective regularization was compared with that for automated regularization methods. The objective regularization approach performed better. However, the average difference was much smaller than the variation between the 15 simulated profiles. Reconstruction quality depended more on the actual profile to be reconstructed than on the reconstruction algorithm or regularization method. Similar, or better, accuracy reconstructions can be achieved with an automated regularization procedure which enhances prospects for user friendly implementation of PPTR to optimize laser therapy on an individual patient basis.
Task-Oriented Gaming for Transfer to Prosthesis Use.
van Dijk, Ludger; van der Sluis, Corry K; van Dijk, Hylke W; Bongers, Raoul M
2016-12-01
The aim of this study is to establish the effect of task-oriented video gaming on using a myoelectric prosthesis in a basic activity of daily life (ADL). Forty-one able-bodied right-handed participants were randomly assigned to one of four groups. In three of these groups the participants trained to control a video game using the myosignals of the flexors and extensors of the wrist: in the Adaptive Catching group participants needed to catch falling objects by opening and closing a grabber and received ADL-relevant feedback during performance. The Free Catching group used the same game, but without augmented feedback. The Interceptive Catching group trained a game where the goal was to intercept a falling object by moving a grabber to the left and right. They received no additional feedback. The control group played a regular Mario computer game. All groups trained 20 minutes a day for four consecutive days. Two tests were conducted before and after training: one level of the training game was performed, and participants grasped objects with a prosthesis simulator. Results showed all groups improved their game performance over controls. In the prosthesis-simulator task, after training the Adaptive Catching group outperformed the other groups in their ability to adjust the hand aperture to the size of the objects and the degree of compression of compressible objects. This study is the first to demonstrate transfer effects from a serious game to a myoelectric prosthesis task. The specificity of the learning effects suggests that research into serious gaming will benefit from placing ADL-specific constraints on game development.
NASA Astrophysics Data System (ADS)
Makabe, Ryosuke; Takeoka, Hidetaka; Uye, Shin-ichi
2015-12-01
Recurrent outbreaks of the common jellyfish Aurelia aurita s.l. have been increasingly significant, particularly in human perturbed coastal waters, where numerous artificial constructions increase suitable habitat for polyp populations. We examined the spatiotemporal dispersion process in 6 ports of ephyrae of A. aurita after release from strobilating polyps, to offshore waters of northern Harima Nada (eutrophic eastern Inland Sea of Japan) from January to May 2010. Almost exclusive occurrence of the ephyra stage in the ports demonstrated that their seeding polyps reside in the port enclosures, and liberated ephyrae are rapidly exported offshore by tidal water exchange. Post-ephyra stages occurred primarily outside the ports, and their age increased gradually offshore, ca. up to 9 km off the ports, and the pattern of age increase could be simulated by a simple diffusion model. However, there was an abrupt decline in A. aurita density beyond ca. 3 km off the shore, where jellyfish-eating Chrysaora pacifica medusae were prevalent. We conclude that physical forces are primarily responsible for offshore dispersion of A. aurita, and a biological factor, i.e. predation by C. pacifica, jointly affects the distribution pattern of A. aurita.
NASA Astrophysics Data System (ADS)
Zheng, H. W.; Shu, C.; Chew, Y. T.
2008-07-01
In this paper, an object-oriented and quadrilateral-mesh based solution adaptive algorithm for the simulation of compressible multi-fluid flows is presented. The HLLC scheme (Harten, Lax and van Leer approximate Riemann solver with the Contact wave restored) is extended to adaptively solve the compressible multi-fluid flows under complex geometry on unstructured mesh. It is also extended to the second-order of accuracy by using MUSCL extrapolation. The node, edge and cell are arranged in such an object-oriented manner that each of them inherits from a basic object. A home-made double link list is designed to manage these objects so that the inserting of new objects and removing of the existing objects (nodes, edges and cells) are independent of the number of objects and only of the complexity of O( 1). In addition, the cells with different levels are further stored in different lists. This avoids the recursive calculation of solution of mother (non-leaf) cells. Thus, high efficiency is obtained due to these features. Besides, as compared to other cell-edge adaptive methods, the separation of nodes would reduce the memory requirement of redundant nodes, especially in the cases where the level number is large or the space dimension is three. Five two-dimensional examples are used to examine its performance. These examples include vortex evolution problem, interface only problem under structured mesh and unstructured mesh, bubble explosion under the water, bubble-shock interaction, and shock-interface interaction inside the cylindrical vessel. Numerical results indicate that there is no oscillation of pressure and velocity across the interface and it is feasible to apply it to solve compressible multi-fluid flows with large density ratio (1000) and strong shock wave (the pressure ratio is 10,000) interaction with the interface.
Construct validation of a novel hybrid surgical simulator.
Broe, D; Ridgway, P F; Johnson, S; Tierney, S; Conlon, K C
2006-06-01
Simulated minimal access surgery has improved recently as both a learning and assessment tool. The construct validation of a novel simulator, ProMis, is described for use by residents in training. ProMis is a surgical simulator that can design tasks in both virtual and actual reality. A pilot group of surgical residents ranging from novice to expert completed three standardized tasks: orientation, dissection, and basic suturing. The tasks were tested for construct validity. Two experienced surgeons examined the recorded tasks in a blinded fashion using an objective structured assessment of technical skills format (OSATS: task-specific checklist and global rating score) as well as metrics delivered by the simulator. The findings showed excellent interrater reliability (Cronbach's alpha of 0.88 for the checklist and 0.93 for the global rating). The median scores in the experience groups were statistically different in both the global rating and the task-specific checklists (p < 0.05). The scores for the orientation task alone did not reach significance (p = 0.1), suggesting that modification is required before ProMis could be used in isolation as an assessment tool. The three simulated tasks in combination are construct valid for differentiating experience levels among surgeons in training. This hybrid simulator has potential added benefits of marrying the virtual with actual, and of combining simple box traits and advanced virtual reality simulation.
2012-10-01
using the open-source code Large-scale Atomic/Molecular Massively Parallel Simulator ( LAMMPS ) (http://lammps.sandia.gov) (23). The commercial...parameters are proprietary and cannot be ported to the LAMMPS 4 simulation code. In our molecular dynamics simulations at the atomistic resolution, we...IBI iterative Boltzmann inversion LAMMPS Large-scale Atomic/Molecular Massively Parallel Simulator MAPS Materials Processes and Simulations MS
Conditioning 3D object-based models to dense well data
NASA Astrophysics Data System (ADS)
Wang, Yimin C.; Pyrcz, Michael J.; Catuneanu, Octavian; Boisvert, Jeff B.
2018-06-01
Object-based stochastic simulation models are used to generate categorical variable models with a realistic representation of complicated reservoir heterogeneity. A limitation of object-based modeling is the difficulty of conditioning to dense data. One method to achieve data conditioning is to apply optimization techniques. Optimization algorithms can utilize an objective function measuring the conditioning level of each object while also considering the geological realism of the object. Here, an objective function is optimized with implicit filtering which considers constraints on object parameters. Thousands of objects conditioned to data are generated and stored in a database. A set of objects are selected with linear integer programming to generate the final realization and honor all well data, proportions and other desirable geological features. Although any parameterizable object can be considered, objects from fluvial reservoirs are used to illustrate the ability to simultaneously condition multiple types of geologic features. Channels, levees, crevasse splays and oxbow lakes are parameterized based on location, path, orientation and profile shapes. Functions mimicking natural river sinuosity are used for the centerline model. Channel stacking pattern constraints are also included to enhance the geological realism of object interactions. Spatial layout correlations between different types of objects are modeled. Three case studies demonstrate the flexibility of the proposed optimization-simulation method. These examples include multiple channels with high sinuosity, as well as fragmented channels affected by limited preservation. In all cases the proposed method reproduces input parameters for the object geometries and matches the dense well constraints. The proposed methodology expands the applicability of object-based simulation to complex and heterogeneous geological environments with dense sampling.
Garland, F C; Garland, C F; Gorham, E D; Miller, M R; Cunnion, S O; Berg, S W; Balazs, L L
1993-12-13
The US Navy visits ports on all continents and many islands of the world, many of which are reported to have a high endemicity of human immunodeficiency virus (HIV) infection. The objective of this study was to determine whether visits to foreign ports by active-duty navy personnel were associated with increased risk of HIV infection. The Naval Health Research Center in San Diego, Calif, maintains records of all HIV enzyme-linked immunosorbent assay and Western blot tests given in the navy. This information, along with career histories and ship movement data, was used in a nested case-control design to examine the relationship between visits to the 100 foreign ports most frequently visited by the navy and risk of HIV seroconversion. All visits to a port and total time in each port during the study period were examined. A total of 813 seroconverters were matched to 6993 seronegative active-duty controls by age, race, sex, occupational group, home port, and year of test. Estimated relative risks of seroconversion associated with visits to foreign ports showed no statistically significant excess risk of HIV infection for navy personnel after visits to any foreign port. These results do not imply that an individual's risk of acquisition of HIV would be less in a foreign port if the individual engaged in high-risk activity there. Rather, they imply that despite the mobility of the US Navy and the large variation in HIV seroprevalence rates throughout the world, navy personnel generally do not appear to be acquiring HIV infections abroad.
Solving Equations of Multibody Dynamics
NASA Technical Reports Server (NTRS)
Jain, Abhinandan; Lim, Christopher
2007-01-01
Darts++ is a computer program for solving the equations of motion of a multibody system or of a multibody model of a dynamic system. It is intended especially for use in dynamical simulations performed in designing and analyzing, and developing software for the control of, complex mechanical systems. Darts++ is based on the Spatial-Operator- Algebra formulation for multibody dynamics. This software reads a description of a multibody system from a model data file, then constructs and implements an efficient algorithm that solves the dynamical equations of the system. The efficiency and, hence, the computational speed is sufficient to make Darts++ suitable for use in realtime closed-loop simulations. Darts++ features an object-oriented software architecture that enables reconfiguration of system topology at run time; in contrast, in related prior software, system topology is fixed during initialization. Darts++ provides an interface to scripting languages, including Tcl and Python, that enable the user to configure and interact with simulation objects at run time.
NASA Technical Reports Server (NTRS)
Matsumoto, Joy Hamerman; Rogers, Steven; Mccauley, Michael; Salinas, AL
1992-01-01
The U.S. Army Crew Station Research and Development Branch (CSRDB) of the Aircraft Simulation Division (AVSCOM) was tasked by the Light Helicopter Program Manager (LH-PM) to provide training to Army personnel in advanced aircraft simulation technology. The purpose of this training was to prepare different groups of pilots to support and evaluate two contractor simulation efforts during the Demonstration/Validation (DEM/VAL) phase of the LH program. The personnel in the CSRDB developed mission oriented training programs to accomplish the objectives, conduct the programs, and provide guidance to army personnel and support personnel throughout the DEM/VAL phase.
Astronomical Simulations Using Visual Python
NASA Astrophysics Data System (ADS)
Cobb, Michael L.
2007-05-01
The Physics and Engineering Physics Department at Southeast Missouri State University has adopted the “Matter and Interactions I Modern Mechanics” text by Chabay and Sherwood for our calculus based introductory physics course. We have fully integrated the use of modeling and simulations by using the Visual Python language also know as VPython. This powerful, high level, object orientated language with full three dimensional, stereo graphics has stimulated both my students and myself to find wider applications for our new found skills. We have successfully modeled gravitational resonances in planetary rings, galaxy collisions, and planetary orbits around binary star systems. This talk will provide a quick overview of VPython and demonstrate the various simulations.
Multi-metric calibration of hydrological model to capture overall flow regimes
NASA Astrophysics Data System (ADS)
Zhang, Yongyong; Shao, Quanxi; Zhang, Shifeng; Zhai, Xiaoyan; She, Dunxian
2016-08-01
Flow regimes (e.g., magnitude, frequency, variation, duration, timing and rating of change) play a critical role in water supply and flood control, environmental processes, as well as biodiversity and life history patterns in the aquatic ecosystem. The traditional flow magnitude-oriented calibration of hydrological model was usually inadequate to well capture all the characteristics of observed flow regimes. In this study, we simulated multiple flow regime metrics simultaneously by coupling a distributed hydrological model with an equally weighted multi-objective optimization algorithm. Two headwater watersheds in the arid Hexi Corridor were selected for the case study. Sixteen metrics were selected as optimization objectives, which could represent the major characteristics of flow regimes. Model performance was compared with that of the single objective calibration. Results showed that most metrics were better simulated by the multi-objective approach than those of the single objective calibration, especially the low and high flow magnitudes, frequency and variation, duration, maximum flow timing and rating. However, the model performance of middle flow magnitude was not significantly improved because this metric was usually well captured by single objective calibration. The timing of minimum flow was poorly predicted by both the multi-metric and single calibrations due to the uncertainties in model structure and input data. The sensitive parameter values of the hydrological model changed remarkably and the simulated hydrological processes by the multi-metric calibration became more reliable, because more flow characteristics were considered. The study is expected to provide more detailed flow information by hydrological simulation for the integrated water resources management, and to improve the simulation performances of overall flow regimes.
DDN (Defense Data Network) Protocol Implementations and Vendors Guide,
1988-02-01
TELNET) TCP/IP on an ethernet network. The program simulates a Hayes modem through the serial port. BWFTP is a thorough implementation of the FTP...25 IMP interface at VV from 19.2 Kbps to 56K bps. The IP, ICMP, TCP, Telnet. FFP and SMTP protocols are implemented along with R-Utxities...WANs. microcomputers, dataswitches. minicomputers. "black boxes" and modems . DOCUMENTATION: Software System Overview, Generic X.25 Porting Guide
Al-Janabi, Shahd; Greenberg, Adam S
2016-10-01
The representational basis of attentional selection can be object-based. Various studies have suggested, however, that object-based selection is less robust than spatial selection across experimental paradigms. We sought to examine the manner by which the following factors might explain this variation: Target-Object Integration (targets 'on' vs. part 'of' an object), Attention Distribution (narrow vs. wide), and Object Orientation (horizontal vs. vertical). In Experiment 1, participants discriminated between two targets presented 'on' an object in one session, or presented as a change 'of' an object in another session. There was no spatial cue-thus, attention was initially focused widely-and the objects were horizontal or vertical. We found evidence of object-based selection only when targets constituted a change 'of' an object. Additionally, object orientation modulated the sign of object-based selection: We observed a same-object advantage for horizontal objects, but a same-object cost for vertical objects. In Experiment 2, an informative cue preceded a single target presented 'on' an object or as a change 'of' an object (thus, attention was initially focused narrowly). Unlike in Experiment 1, we found evidence of object-based selection independent of target-object integration. We again found that the sign of selection was modulated by the objects' orientation. This result may reflect a meridian effect, which emerged due to anisotropies in the cortical representations when attention is oriented endogenously. Experiment 3 revealed that object orientation did not modulate object-based selection when attention was oriented exogenously. Our findings suggest that target-object integration, attention distribution, and object orientation modulate object-based selection, but only in combination.
A four-port vertical-coupling optical interface based on two-dimensional grating coupler
NASA Astrophysics Data System (ADS)
Zhang, Zan; Zhang, Zanyun; Huang, Beiju; Cheng, Chuantong; Gao, Tianxi; Hu, Xiaochuan; Zhang, Lin; Chen, Hongda
2016-10-01
In this work, a fiber-to-chip optical interface with four output ports is proposed. External lights irradiate vertically from single mode fiber to the center of optical interface can be coupled into silicon photonic chips and split into four siliconon- insulator (SOI) waveguides. If the light is circular polarized, the power of light will be equally split into four ports. Meanwhile, all lights travel in the four channel will be converted into TE polarization. The optical interface is based on a two-dimensional grating coupler with carefully designed duty cycle and period. Simulation results show that the coupling efficiency of each port can reach 11.6% so that the total coupling efficiency of the interface is 46.4%. And Lights coupled into four waveguides are all converted into TE polarization. Further, the optical interface has a simple grating structure allowing for easy fabrication.
Optimization of MLS receivers for multipath environments
NASA Technical Reports Server (NTRS)
Mcalpine, G. A.; Highfill, J. H., III; Tzeng, C. P. J.; Koleyni, G.
1978-01-01
Reduced order receiver (suboptimal receiver) analysis in multipath environments is presented. The origin and objective of MLS is described briefly. Signal modeling in MLS the optimum receiver is also included and a description of a computer oriented technique which was used in the simulation study of the suboptimal receiver is provided. Results and conclusion obtained from the research for the suboptimal receiver are reported.
Analysis of orbital perturbations acting on objects in orbits near geosynchronous earth orbit
NASA Technical Reports Server (NTRS)
Friesen, Larry J.; Jackson, Albert A., IV; Zook, Herbert A.; Kessler, Donald J.
1992-01-01
The paper presents a numerical investigation of orbital evolution for objects started in GEO or in orbits near GEO in order to study potential orbital debris problems in this region. Perturbations simulated include nonspherical terms in the earth's geopotential field, lunar and solar gravity, and solar radiation pressure. Objects simulated include large satellites, for which solar radiation pressure is insignificant, and small particles, for which solar radiation pressure is an important force. Results for large satellites are largely in agreement with previous GEO studies that used classical perturbation techniques. The orbit plane of GEO satellites placed in a stable plane orbit inclined approximately 7.3 deg to the equator experience very little precession, remaining always within 1.2 percent of their initial orientation. Solar radiation pressure generates two major effects on small particles: an orbital eccentricity oscillation anticipated from previous research, and an oscillation in orbital inclination.
Large-scale lattice-Boltzmann simulations over lambda networks
NASA Astrophysics Data System (ADS)
Saksena, R.; Coveney, P. V.; Pinning, R.; Booth, S.
Amphiphilic molecules are of immense industrial importance, mainly due to their tendency to align at interfaces in a solution of immiscible species, e.g., oil and water, thereby reducing surface tension. Depending on the concentration of amphiphiles in the solution, they may assemble into a variety of morphologies, such as lamellae, micelles, sponge and cubic bicontinuous structures exhibiting non-trivial rheological properties. The main objective of this work is to study the rheological properties of very large, defect-containing gyroidal systems (of up to 10243 lattice sites) using the lattice-Boltzmann method. Memory requirements for the simulation of such large lattices exceed that available to us on most supercomputers and so we use MPICH-G2/MPIg to investigate geographically distributed domain decomposition simulations across HPCx in the UK and TeraGrid in the US. Use of MPICH-G2/MPIg requires the port-forwarder to work with the grid middleware on HPCx. Data from the simulations is streamed to a high performance visualisation resource at UCL (London) for rendering and visualisation. Lighting the Blue Touchpaper for UK e-Science - Closing Conference of ESLEA Project March 26-28 2007 The George Hotel, Edinburgh, UK
A smooth particle hydrodynamics code to model collisions between solid, self-gravitating objects
NASA Astrophysics Data System (ADS)
Schäfer, C.; Riecker, S.; Maindl, T. I.; Speith, R.; Scherrer, S.; Kley, W.
2016-05-01
Context. Modern graphics processing units (GPUs) lead to a major increase in the performance of the computation of astrophysical simulations. Owing to the different nature of GPU architecture compared to traditional central processing units (CPUs) such as x86 architecture, existing numerical codes cannot be easily migrated to run on GPU. Here, we present a new implementation of the numerical method smooth particle hydrodynamics (SPH) using CUDA and the first astrophysical application of the new code: the collision between Ceres-sized objects. Aims: The new code allows for a tremendous increase in speed of astrophysical simulations with SPH and self-gravity at low costs for new hardware. Methods: We have implemented the SPH equations to model gas, liquids and elastic, and plastic solid bodies and added a fragmentation model for brittle materials. Self-gravity may be optionally included in the simulations and is treated by the use of a Barnes-Hut tree. Results: We find an impressive performance gain using NVIDIA consumer devices compared to our existing OpenMP code. The new code is freely available to the community upon request. If you are interested in our CUDA SPH code miluphCUDA, please write an email to Christoph Schäfer. miluphCUDA is the CUDA port of miluph. miluph is pronounced [maßl2v]. We do not support the use of the code for military purposes.
Water management in the framework of environmental management systems in Bulgarian seaports
NASA Astrophysics Data System (ADS)
Quynh, Le Xuan; Hens, Luc; Stoyanov, Stoyan
Seaports or harbours are major hub of economic activities, connecting sea routes with the hinterland via rail, road and inland waterway. At the same time, they are hubs of environmental issues, resulting from its diversified operations involving vessels, machines, vehicles and industries. The Black Sea Commission in 2007 pointed out that water pollution at the ports around Black Sea, including the ports of Bourgas and Varna, poses a great threat to the overall water quality of the Black Sea and the quality of the Mediterranean Sea. The two ports, and their facilities, are the black spots of pollution that need immediate intervention to safeguard the Black Sea. The first steps of an environmental management system were implemented at both ports. Environmental protection objectives are identified and initial actions are being implemented. However, assessment of the environmental performance of both ports based on concrete indicators was not done. Further efforts are needed to advance the environmental management system to contribute more to the protection of the Mediterranean and Black Sea region.
Rossi, Marcel M; Alderson, Jacqueline; El-Sallam, Amar; Dowling, James; Reinbolt, Jeffrey; Donnelly, Cyril J
2016-12-08
The aims of this study were to: (i) establish a new criterion method to validate inertia tensor estimates by setting the experimental angular velocity data of an airborne objects as ground truth against simulations run with the estimated tensors, and (ii) test the sensitivity of the simulations to changes in the inertia tensor components. A rigid steel cylinder was covered with reflective kinematic markers and projected through a calibrated motion capture volume. Simulations of the airborne motion were run with two models, using inertia tensor estimated with geometric formula or the compound pendulum technique. The deviation angles between experimental (ground truth) and simulated angular velocity vectors and the root mean squared deviation angle were computed for every simulation. Monte Carlo analyses were performed to assess the sensitivity of simulations to changes in magnitude of principal moments of inertia within ±10% and to changes in orientation of principal axes of inertia within ±10° (of the geometric-based inertia tensor). Root mean squared deviation angles ranged between 2.9° and 4.3° for the inertia tensor estimated geometrically, and between 11.7° and 15.2° for the compound pendulum values. Errors up to 10% in magnitude of principal moments of inertia yielded root mean squared deviation angles ranging between 3.2° and 6.6°, and between 5.5° and 7.9° when lumped with errors of 10° in principal axes of inertia orientation. The proposed technique can effectively validate inertia tensors from novel estimation methods of body segment inertial parameter. Principal axes of inertia orientation should not be neglected when modelling human/animal mechanics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Noncontact orientation of objects in three-dimensional space using magnetic levitation
Subramaniam, Anand Bala; Yang, Dian; Yu, Hai-Dong; Nemiroski, Alex; Tricard, Simon; Ellerbee, Audrey K.; Soh, Siowling; Whitesides, George M.
2014-01-01
This paper describes several noncontact methods of orienting objects in 3D space using Magnetic Levitation (MagLev). The methods use two permanent magnets arranged coaxially with like poles facing and a container containing a paramagnetic liquid in which the objects are suspended. Absent external forcing, objects levitating in the device adopt predictable static orientations; the orientation depends on the shape and distribution of mass within the objects. The orientation of objects of uniform density in the MagLev device shows a sharp geometry-dependent transition: an analytical theory rationalizes this transition and predicts the orientation of objects in the MagLev device. Manipulation of the orientation of the levitating objects in space is achieved in two ways: (i) by rotating and/or translating the MagLev device while the objects are suspended in the paramagnetic solution between the magnets; (ii) by moving a small external magnet close to the levitating objects while keeping the device stationary. Unlike mechanical agitation or robotic selection, orienting using MagLev is possible for objects having a range of different physical characteristics (e.g., different shapes, sizes, and mechanical properties from hard polymers to gels and fluids). MagLev thus has the potential to be useful for sorting and positioning components in 3D space, orienting objects for assembly, constructing noncontact devices, and assembling objects composed of soft materials such as hydrogels, elastomers, and jammed granular media. PMID:25157136
Noncontact orientation of objects in three-dimensional space using magnetic levitation.
Subramaniam, Anand Bala; Yang, Dian; Yu, Hai-Dong; Nemiroski, Alex; Tricard, Simon; Ellerbee, Audrey K; Soh, Siowling; Whitesides, George M
2014-09-09
This paper describes several noncontact methods of orienting objects in 3D space using Magnetic Levitation (MagLev). The methods use two permanent magnets arranged coaxially with like poles facing and a container containing a paramagnetic liquid in which the objects are suspended. Absent external forcing, objects levitating in the device adopt predictable static orientations; the orientation depends on the shape and distribution of mass within the objects. The orientation of objects of uniform density in the MagLev device shows a sharp geometry-dependent transition: an analytical theory rationalizes this transition and predicts the orientation of objects in the MagLev device. Manipulation of the orientation of the levitating objects in space is achieved in two ways: (i) by rotating and/or translating the MagLev device while the objects are suspended in the paramagnetic solution between the magnets; (ii) by moving a small external magnet close to the levitating objects while keeping the device stationary. Unlike mechanical agitation or robotic selection, orienting using MagLev is possible for objects having a range of different physical characteristics (e.g., different shapes, sizes, and mechanical properties from hard polymers to gels and fluids). MagLev thus has the potential to be useful for sorting and positioning components in 3D space, orienting objects for assembly, constructing noncontact devices, and assembling objects composed of soft materials such as hydrogels, elastomers, and jammed granular media.
Implementation of object-oriented programming in study of electrical race car
NASA Astrophysics Data System (ADS)
Nowak, M.; Baier, M.
2016-08-01
The paper covers issue of conducting advanced research of electrical race car participating in international competition called Sileverline Corporate Challenge. Process of designing race cars in Silesian Greenpower team is aided by a professional engine test stand built particularly in purpose of this research. Phase of testing and simulation is an important part of the implementation of new technologies. Properly developed solutions and test procedures are able to significantly shorten development time and reduce design costs. Testing process must be controlled by a modular and flexible application, easy to modify and ensuring safety. This paper describes the concept of object-oriented programming in LabVIEW and exemplary architecture of object-oriented control application designed to control engine test stand of the electrical race car. Eventually, the task of application will be to steer the electromagnetic brake and the engine load torque to perform according to data from the actual race track. During the designing process of the car, minimizing energy losses and maximizing powertrain efficiency are the main aspects taken into consideration. One of the crucial issues to accomplish these goals is to maintain optimal performance of the motor by applying effective cooling. The paper covers the research verifying the effectiveness of the cooling system.
MAPA: Implementation of the Standard Interchange Format and use for analyzing lattices
NASA Astrophysics Data System (ADS)
Shasharina, Svetlana G.; Cary, John R.
1997-05-01
MAPA (Modular Accelerator Physics Analysis) is an object oriented application for accelerator design and analysis with a Motif based graphical user interface. MAPA has been ported to AIX, Linux, HPUX, Solaris, and IRIX. MAPA provides an intuitive environment for accelerator study and design. The user can bring up windows for fully nonlinear analysis of accelerator lattices in any number of dimensions. The current graphical analysis methods of Lifetime plots and Surfaces of Section have been used to analyze the improved lattice designs of Wan, Cary, and Shasharina (this conference). MAPA can now read and write Standard Interchange Format (MAD) accelerator description files and it has a general graphical user interface for adding, changing, and deleting elements. MAPA's consistency checks prevent deletion of used elements and prevent creation of recursive beam lines. Plans include development of a richer set of modeling tools and the ability to invoke existing modeling codes through the MAPA interface. MAPA will be demonstrated on a Pentium 150 laptop running Linux.
Natural thorium isotopes in marine sediment core off Labuan port
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hafidz, B. Y.; Asnor, A. S.; Terence, R. C.
2014-02-12
Sediment core was collected from Labuan port and analyzed to determine the radioactivity of thorium (Th) isotopes. The objectives of this study are to determine the possible sources of Th isotopes at Labuan port and estimates the sedimentation rate based on {sup 228}Th/{sup 232}Th model. The results suggest the {sup 230}Th and {sup 232}Th might be originated from terrestrial sedimentary rock while {sup 228}Th originated by authigenic origin. High ratio value of {sup 230}Th/{sup 232}Th detected at the top surface sediment indicates the increasing of {sup 230}Th at the recent years which might be contributed from the anthropogenic sources. Themore » sedimentation rate of core sediment from Labuan Port was successfully estimated by using {sup 228}Th/{sup 232}Th model. The result show high sedimentation rate with 4.67 cm/year indicates rapid deposition occurred at this study area due to the high physical activity at the Labuan port. By assume the constant sedimentation rate at this area; we estimated the age of 142 cm core sediment obtained from Labuan port is 32 years started from 1981 to 2012. This chronology will be used in forthcoming research to investigate the historical profile of anthropogenic activities affecting the Labuan port.« less
GEM detector development for tokamak plasma radiation diagnostics: SXR poloidal tomography
NASA Astrophysics Data System (ADS)
Chernyshova, Maryna; Malinowski, Karol; Ziółkowski, Adam; Kowalska-Strzeciwilk, Ewa; Czarski, Tomasz; Poźniak, Krzysztof T.; Kasprowicz, Grzegorz; Zabołotny, Wojciech; Wojeński, Andrzej; Kolasiński, Piotr; Krawczyk, Rafał D.
2015-09-01
An increased attention to tungsten material is related to a fact that it became a main candidate for the plasma facing material in ITER and future fusion reactor. The proposed work refers to the studies of W influence on the plasma performances by developing new detectors based on Gas Electron Multiplier GEM) technology for tomographic studies of tungsten transport in ITER-oriented tokamaks, e.g. WEST project. It presents current stage of design and developing of cylindrically bent SXR GEM detector construction for horizontal port implementation. Concept to overcome an influence of constraints on vertical port has been also presented. It is expected that the detecting unit under development, when implemented, will add to the safe operation of tokamak bringing creation of sustainable nuclear fusion reactors a step closer.
NASA Technical Reports Server (NTRS)
Kolb, Mark A.
1988-01-01
The Rubber Airplane program, which combines two symbolic processing techniques with a component-based database of design knowledge, is proposed as a computer aid for conceptual design. Using object-oriented programming, programs are organized around the objects and behavior to be simulated, and using constraint propagation, declarative statements designate mathematical relationships among all the equation variables. It is found that the additional level of organizational structure resulting from the arrangement of the design information in terms of design components provides greater flexibility and convenience.
NASA Technical Reports Server (NTRS)
Gregorich, Steven E.
1991-01-01
An effort is made to ascertain which combinations of technical demands and crew coordination should be incorporated in training scenarios in order to maximize the effectiveness of training for crew members. Such high-fidelity simulation, which has come to be known as 'line-oriented flight training' or LOFT, involves the practice of both technical and crew coordination skills in a realistic setting, in conjunction with periodic reviews of performance via videotaped feedback. Attention is given to the integration of appropriate information, the measurement of objective task demands, the character of information from LOFT students, and the leeway allowed LOFT instructors.
ERIC Educational Resources Information Center
Ives, William; Rovet, Joanne
1979-01-01
Reports three experiments which investigate: whether familiar objects have standard graphic orientations (Experiment 1); the relationship between use of object orientations and more conventional methods in depicting familiar objects in motion (Experiment 2); and whether orientations are used differently in novel objects whose only defining feature…
Effect of climate change on morphology around a port
NASA Astrophysics Data System (ADS)
Bharathan Radhamma, R.; Deo, M. C.
2017-12-01
It is well known that with the construction of a port and harbour structure the natural shoreline gets interrupted and this disturbs the surrounding coastal morphology. Added to this concern is another one of recent origin, namely, the likely impact of climate change induced by global warming. The present work addresses this issue by describing a case study at New Mangalore Port situated along the west coast of India. The harbour was formed by constructing two breakwaters along either side of the port since the year 1975. We have first determined the rate of change of the shoreline surrounding the port using historic satellite imageries over a period of 36 years. Thereafter a numerical shoreline change model: LITPACK was used to do the same and it was forced by waves simulated over a period of past 36 years varying from 1979 to 2016 and future 36 years ranging from 2016 to 2052. The wave simulation was done with the help of numerical wave model: Mike21-SW which was driven by the wind from a regional climate model called CORDEX. This climate model was earlier run for a moderate global warming pathway called: RCP-4.5. The analysis of satellite imageries indicated that in the past the shoreline change varied from -1.69 m/year to 2.56 m/year with an uncertainty of ± 0.35 m/year and approximately half of the coastal stretch faced extensive erosion. It was found that the wind and waves at this region would intensify in future and also raise the probability of occurrence of high waves. As per the numerical shoreline modelling this would give rise to a much enhanced rate of erosion, namely -2.87 m/year to -3.62 m/year. This would call for a modified shoreline management strategy around the port area. The study highlights the importance of considering potential changes in wind and wave forcing because of the climate change in evaluating future rates of shoreline changes around a port and harbour structure.
Gesenhues, Jonas; Hein, Marc; Ketelhut, Maike; Habigt, Moriz; Rüschen, Daniel; Mechelinck, Mare; Albin, Thivaharan; Leonhardt, Steffen; Schmitz-Rode, Thomas; Rossaint, Rolf; Autschbach, Rüdiger; Abel, Dirk
2017-04-01
Computational models of biophysical systems generally constitute an essential component in the realization of smart biomedical technological applications. Typically, the development process of such models is characterized by a great extent of collaboration between different interdisciplinary parties. Furthermore, due to the fact that many underlying mechanisms and the necessary degree of abstraction of biophysical system models are unknown beforehand, the steps of the development process of the application are iteratively repeated when the model is refined. This paper presents some methods and tools to facilitate the development process. First, the principle of object-oriented (OO) modeling is presented and the advantages over classical signal-oriented modeling are emphasized. Second, our self-developed simulation tool ModeliChart is presented. ModeliChart was designed specifically for clinical users and allows independently performing in silico studies in real time including intuitive interaction with the model. Furthermore, ModeliChart is capable of interacting with hardware such as sensors and actuators. Finally, it is presented how optimal control methods in combination with OO models can be used to realize clinically motivated control applications. All methods presented are illustrated on an exemplary clinically oriented use case of the artificial perfusion of the systemic circulation.
Parasitic Parameters Extraction for InP DHBT Based on EM Method and Validation up to H-Band
NASA Astrophysics Data System (ADS)
Li, Oupeng; Zhang, Yong; Wang, Lei; Xu, Ruimin; Cheng, Wei; Wang, Yuan; Lu, Haiyan
2017-05-01
This paper presents a small-signal model for InGaAs/InP double heterojunction bipolar transistor (DHBT). Parasitic parameters of access via and electrode finger are extracted by 3-D electromagnetic (EM) simulation. By analyzing the equivalent circuit of seven special structures and using the EM simulation results, the parasitic parameters are extracted systematically. Compared with multi-port s-parameter EM model, the equivalent circuit model has clear physical intension and avoids the complex internal ports setting. The model is validated on a 0.5 × 7 μm2 InP DHBT up to 325 GHz. The model provides a good fitting result between measured and simulated multi-bias s-parameters in full band. At last, an H-band amplifier is designed and fabricated for further verification. The measured amplifier performance is highly agreed with the model prediction, which indicates the model has good accuracy in submillimeterwave band.
Zhao, Huawei
2009-01-01
A ZEMAX model was constructed to simulate a clinical trial of intraocular lenses (IOLs) based on a clinically oriented Monte Carlo ensemble analysis using postoperative ocular parameters. The purpose of this model is to test the feasibility of streamlining and optimizing both the design process and the clinical testing of IOLs. This optical ensemble analysis (OEA) is also validated. Simulated pseudophakic eyes were generated by using the tolerancing and programming features of ZEMAX optical design software. OEA methodology was verified by demonstrating that the results of clinical performance simulations were consistent with previously published clinical performance data using the same types of IOLs. From these results we conclude that the OEA method can objectively simulate the potential clinical trial performance of IOLs.
NASA Astrophysics Data System (ADS)
Bagli, Enrico; Guidi, Vincenzo
2013-08-01
A toolkit for the simulation of coherent interactions between high-energy charged particles and complex crystal structures, called DYNECHARM++ has been developed. The code has been written in C++ language taking advantage of this object-oriented programing method. The code is capable to evaluating the electrical characteristics of complex atomic structures and to simulate and track the particle trajectory within them. Calculation method of electrical characteristics based on their expansion in Fourier series has been adopted. Two different approaches to simulate the interaction have been adopted, relying on the full integration of particle trajectories under the continuum potential approximation and on the definition of cross-sections of coherent processes. Finally, the code has proved to reproduce experimental results and to simulate interaction of charged particles with complex structures.
ERIC Educational Resources Information Center
Hudaya, Yaya
2015-01-01
In an effort to increase revenue, salted fish processors in Karangantu NFP should be able to change the behavior of production from quantity to quality orientation. The increase in revenue will be difficult to achieve if the salted fish products produced still monotonous and traditional and only sold in sacks or cardboard. Development of a quality…
Performance-Based Logistics Contracts: A Basic Overview
2005-11-01
world. The Navy began using PBL contracts in 1999, and since then, contract managers have reported improved availability and reduced customer wait...4825 Mark Center Drive • Alexandria, Virginia 22311-1850 CRM D0012881.A2/Final November 2005 Performance-Based Logistics Contracts: A Basic Overview...Performance-Based Logistics (PBL) contracts provide services or sup- port where the provider is held to customer -oriented performance requirements
NASA Astrophysics Data System (ADS)
French, J.
2015-12-01
Ports are vital to the global economy, but assessments of global exposure to flood risk have generally focused on major concentrations of population or asset values. Few studies have examined the impact of extreme inundation events on port operation and critical supply chains. Extreme water levels and recurrence intervals have conventionally been estimated via analysis of historic water level maxima, and these vary widely depending on the statistical assumptions made. This information is supplemented by near-term forecasts from operational surge-tide models, which give continuous water levels but at considerable computational cost. As part of a NERC Infrastructure and Risk project, we have investigated the impact of North Sea tidal surges on the Port of Immingham, eastern, UK. This handles the largest volume of bulk cargo in the UK and flows of coal and biomass that are critically important for national energy security. The port was partly flooded during a major tidal surge in 2013. This event highlighted the need for improved local forecasts of surge timing in relation to high water, with a better indication of flood depth and duration. We address this problem using a combination of data-driven and numerical hydrodynamic models. An Artificial Neural Network (ANN) is first used to predict the surge component of water level from meteorological data. The input vector comprises time-series of local wind (easterly and northerly wind stress) and pressure, as well as regional pressure and pressure gradients from stations between the Shetland Islands and the Humber estuary. The ANN achieves rms errors of around 0.1 m and can generate short-range (~ 3 to 12 hour) forecasts given real-time input data feeds. It can also synthesize water level events for a wider range of tidal and meteorological forcing combinations than contained in the observational records. These are used to force Telemac2D numerical floodplain simulations using a LiDAR digital elevation model of the port. Functional relationships between peak water level and surge 'shape' allow estimation of flood depths and durations for any location. Supplementing existing surge warning systems, our approach predicts the location and duration of flooding in detail, and allows port managers to take steps to minimize its impact on the most critical aspects of port operation.
Tsunami Risk Assessment Modelling in Chabahar Port, Iran
NASA Astrophysics Data System (ADS)
Delavar, M. R.; Mohammadi, H.; Sharifi, M. A.; Pirooz, M. D.
2017-09-01
The well-known historical tsunami in the Makran Subduction Zone (MSZ) region was generated by the earthquake of November 28, 1945 in Makran Coast in the North of Oman Sea. This destructive tsunami killed over 4,000 people in Southern Pakistan and India, caused great loss of life and devastation along the coasts of Western India, Iran and Oman. According to the report of "Remembering the 1945 Makran Tsunami", compiled by the Intergovernmental Oceanographic Commission (UNESCO/IOC), the maximum inundation of Chabahar port was 367 m toward the dry land, which had a height of 3.6 meters from the sea level. In addition, the maximum amount of inundation at Pasni (Pakistan) reached to 3 km from the coastline. For the two beaches of Gujarat (India) and Oman the maximum run-up height was 3 m from the sea level. In this paper, we first use Makran 1945 seismic parameters to simulate the tsunami in generation, propagation and inundation phases. The effect of tsunami on Chabahar port is simulated using the ComMIT model which is based on the Method of Splitting Tsunami (MOST). In this process the results are compared with the documented eyewitnesses and some reports from researchers for calibration and validation of the result. Next we have used the model to perform risk assessment for Chabahar port in the south of Iran with the worst case scenario of the tsunami. The simulated results showed that the tsunami waves will reach Chabahar coastline 11 minutes after generation and 9 minutes later, over 9.4 Km2 of the dry land will be flooded with maximum wave amplitude reaching up to 30 meters.
An object-oriented description method of EPMM process
NASA Astrophysics Data System (ADS)
Jiang, Zuo; Yang, Fan
2017-06-01
In order to use the object-oriented mature tools and language in software process model, make the software process model more accord with the industrial standard, it’s necessary to study the object-oriented modelling of software process. Based on the formal process definition in EPMM, considering the characteristics that Petri net is mainly formal modelling tool and combining the Petri net modelling with the object-oriented modelling idea, this paper provides this implementation method to convert EPMM based on Petri net into object models based on object-oriented description.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, D.; Yoshimura, A.; Butler, D.
This report describes the results of a Cooperative Research and Development Agreement between Sandia National Laboratories and Kaiser Permanente Southern California to develop a prototype computer model of Kaiser Permanente`s health care delivery system. As a discrete event simulation, SimHCO models for each of 100,000 patients the progression of disease, individual resource usage, and patient choices in a competitive environment. SimHCO is implemented in the object-oriented programming language C{sup 2}, stressing reusable knowledge and reusable software components. The versioned implementation of SimHCO showed that the object-oriented framework allows the program to grow in complexity in an incremental way. Furthermore, timingmore » calculations showed that SimHCO runs in a reasonable time on typical workstations, and that a second phase model will scale proportionally and run within the system constraints of contemporary computer technology.« less
A Modular Multilevel Converter with Power Mismatch Control for Grid-Connected Photovoltaic Systems
Duman, Turgay; Marti, Shilpa; Moonem, M. A.; ...
2017-05-17
A modular multilevel power converter configuration for grid connected photovoltaic (PV) systems is proposed. The converter configuration replaces the conventional bulky line frequency transformer with several high frequency transformers, potentially reducing the balance of systems cost of PV systems. The front-end converter for each port is a neutral-point diode clamped (NPC) multi-level dc-dc dual-active bridge (ML-DAB) which allows maximum power point tracking (MPPT). The integrated high frequency transformer provides the galvanic isolation between the PV and grid side and also steps up the low dc voltage from PV source. Following the ML-DAB stage, in each port, is a NPC inverter.more » N number of NPC inverters’ outputs are cascaded to attain the per-phase line-to-neutral voltage to connect directly to the distribution grid (i.e., 13.8 kV). The cascaded NPC (CNPC) inverters have the inherent advantage of using lower rated devices, smaller filters and low total harmonic distortion required for PV grid interconnection. The proposed converter system is modular, scalable, and serviceable with zero downtime with lower foot print and lower overall cost. A novel voltage balance control at each module based on power mismatch among N-ports, have been presented and verified in simulation. Analysis and simulation results are presented for the N-port converter. The converter performance has also been verified on a hardware prototype.« less
A Modular Multilevel Converter with Power Mismatch Control for Grid-Connected Photovoltaic Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duman, Turgay; Marti, Shilpa; Moonem, M. A.
A modular multilevel power converter configuration for grid connected photovoltaic (PV) systems is proposed. The converter configuration replaces the conventional bulky line frequency transformer with several high frequency transformers, potentially reducing the balance of systems cost of PV systems. The front-end converter for each port is a neutral-point diode clamped (NPC) multi-level dc-dc dual-active bridge (ML-DAB) which allows maximum power point tracking (MPPT). The integrated high frequency transformer provides the galvanic isolation between the PV and grid side and also steps up the low dc voltage from PV source. Following the ML-DAB stage, in each port, is a NPC inverter.more » N number of NPC inverters’ outputs are cascaded to attain the per-phase line-to-neutral voltage to connect directly to the distribution grid (i.e., 13.8 kV). The cascaded NPC (CNPC) inverters have the inherent advantage of using lower rated devices, smaller filters and low total harmonic distortion required for PV grid interconnection. The proposed converter system is modular, scalable, and serviceable with zero downtime with lower foot print and lower overall cost. A novel voltage balance control at each module based on power mismatch among N-ports, have been presented and verified in simulation. Analysis and simulation results are presented for the N-port converter. The converter performance has also been verified on a hardware prototype.« less
Parietal and frontal object areas underlie perception of object orientation in depth.
Niimi, Ryosuke; Saneyoshi, Ayako; Abe, Reiko; Kaminaga, Tatsuro; Yokosawa, Kazuhiko
2011-05-27
Recent studies have shown that the human parietal and frontal cortices are involved in object image perception. We hypothesized that the parietal/frontal object areas play a role in differentiating the orientations (i.e., views) of an object. By using functional magnetic resonance imaging, we compared brain activations while human observers differentiated between two object images in depth-orientation (orientation task) and activations while they differentiated the images in object identity (identity task). The left intraparietal area, right angular gyrus, and right inferior frontal areas were activated more for the orientation task than for the identity task. The occipitotemporal object areas, however, were activated equally for the two tasks. No region showed greater activation for the identity task. These results suggested that the parietal/frontal object areas encode view-dependent visual features and underlie object orientation perception. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
pysimm: A Python Package for Simulation of Molecular Systems
NASA Astrophysics Data System (ADS)
Fortunato, Michael; Colina, Coray
pysimm, short for python simulation interface for molecular modeling, is a python package designed to facilitate the structure generation and simulation of molecular systems through convenient and programmatic access to object-oriented representations of molecular system data. This poster presents core features of pysimm and design philosophies that highlight a generalized methodology for incorporation of third-party software packages through API interfaces. The integration with the LAMMPS simulation package is explained to demonstrate this methodology. pysimm began as a back-end python library that powered a cloud-based application on nanohub.org for amorphous polymer simulation. The extension from a specific application library to general purpose simulation interface is explained. Additionally, this poster highlights the rapid development of new applications to construct polymer chains capable of controlling chain morphology such as molecular weight distribution and monomer composition.
Berthing simulator for space station and orbiter
NASA Technical Reports Server (NTRS)
Veerasamy, Sam
1991-01-01
The development of a real-time man-in-the-loop berthing simulator is in progress at NASA Lyndon B. Johnson Space Center (JSC) to conduct a parametric study and to measure forces during contact conditions of the actual docking mechanisms for the Space Station Freedom and the orbiter. In berthing, the docking ports of the Space Station and the orbiter are brought together using the orbiter robotic arm to control the relative motion of the vehicles. The berthing simulator consists of a dynamics docking test system (DDTS), computer system, simulator software, and workstations. In the DDTS, the Space Station, and the orbiter docking mechanisms are mounted on a six-degree-of-freedom (6 DOF) table and a fixed platform above the table. Six load cells are used on the fixed platform to measure forces during contact conditions of the docking mechanisms. Two Encore Concept 32/9780 computers are used to simulate the orbiter robotic arm and to operate the berthing simulator. A systematic procedure for a real-time dynamic initialization is being developed to synchronize the Space Station docking port trajectory with the 6 DOF table movement. The berthing test can be conducted manually or automatically and can be extended for any two orbiting vehicles using a simulated robotic arm. The real-time operation of the berthing simulator is briefly described.
Iemsupakkul, Paiboon; Kongchareonsombat, Wisoot; Kijvikai, Kittinut
2017-04-01
Our objective was to compare the outcomes of the different extraction sites between extended iliac port site incision and Pfannenstiel incision during laparoscopic donor nephrectomy. We prospectively evaluated patients who underwent laparoscopic donor nephrectomy from June 2014 to March 2015 at our institution. Perioperative parameters were included, with particular reference to warm ischemic time. The other parameters recorded included operative time, blood loss, hospital stay, analgesic requirement, and cosmetic results. We analyzed a total of 41 patients. Kidney retrieval site of each patient was made randomly. Extraction sites were done by using extended iliac port site incisions in 23 patients and by Pfannenstiel incision in 18 patients. Mean warm ischemic time was 4.09 minutes with extended iliac port site incision versus 4.94 minutes with Pfannenstiel incision (P = .04). Mean operative time, blood loss, hospital stay, and analgesic requirements were comparable between the 2 groups. Mean cosmetic score was 10.39 with extended iliac port site versus 12.06 with Pfannenstiel incision. Extraction with extended iliac port site incision had significantly less warm ischemic time than Pfannenstiel incision in laparoscopic donor nephrectomy. It was also not inferior to Pfannenstiel incision regarding the other.
Anthropomorphic cardiac ultrasound phantom.
Smith, S W; Rinaldi, J E
1989-10-01
A new phantom is described which simulates the human cardiac anatomy for applications in ultrasound imaging, ultrasound Doppler, and color-flow Doppler imaging. The phantom consists of a polymer left ventricle which includes a prosthetic mitral and aortic valve and is connected to a mock circulatory loop. Aerated tap water serves as a blood simulating fluid and ultrasound contrast medium within the circulatory loop. The left ventricle is housed in a Lexan ultrasound visualization chamber which includes ultrasound viewing ports and acoustic absorbers. A piston pump connected to the visualization chamber by a single port pumps degassed water within the chamber which in turn pumps the left ventricle. Real-time ultrasound images and Doppler studies measure flow patterns through the valves and within the left ventricle.
Tracer simulation study of potential solute movement in Port Royal Sound, South Carolina
Kilpatrick, F.A.; Cummings, T. Ray
1972-01-01
A tracer study was conducted in Port Royal Sound to simulate the movement and ultimate pattern of concentration of a solute continuously injected into the flow. A total of 750 pounds of Rhodamine WT dye was injected by boat during a period of 24.8 hours in a line across the Colleton River. During the following 43 days, samples of water were taken at selected points in the sound, and the concentration of dye in the samples was determined by fluorometric analysis. The data obtained in the field study were used with theoretical models to compute the ultimate pattern of concentration of nonconservative and conservative solutes for a hypothetical continuous injection at the site on the Colleton River.
Integrated Vivaldi plasmonic antenna for wireless on-chip optical communications.
Bellanca, Gaetano; Calò, Giovanna; Kaplan, Ali Emre; Bassi, Paolo; Petruzzelli, Vincenzo
2017-07-10
In this paper we propose a novel hybrid optical plasmonic Vivaldi antenna for operation in the standard C telecommunication band for wavelengths in the 1550 nm range. The antenna is fed by a silicon waveguide and is designed to have high gain and large bandwidth. The shape of the radiation pattern, with a main lobe along the antenna axis, makes this antenna suitable for point-to-point connections for inter- or intra-chip optical communications. Direct port-to-port short links for different connection distances and in a homogeneous environment have also been simulated to verify, by comparing the results of a full-wave simulation with the Friis transmission equation, the correctness of the antenna parameters obtained via near-to-far field transformation.
Model and algorithm for container ship stowage planning based on bin-packing problem
NASA Astrophysics Data System (ADS)
Zhang, Wei-Ying; Lin, Yan; Ji, Zhuo-Shang
2005-09-01
In a general case, container ship serves many different ports on each voyage. A stowage planning for container ship made at one port must take account of the influence on subsequent ports. So the complexity of stowage planning problem increases due to its multi-ports nature. This problem is NP-hard problem. In order to reduce the computational complexity, the problem is decomposed into two sub-problems in this paper. First, container ship stowage problem (CSSP) is regarded as “packing problem”, ship-bays on the board of vessel are regarded as bins, the number of slots at each bay are taken as capacities of bins, and containers with different characteristics (homogeneous containers group) are treated as items packed. At this stage, there are two objective functions, one is to minimize the number of bays packed by containers and the other is to minimize the number of overstows. Secondly, containers assigned to each bays at first stage are allocate to special slot, the objective functions are to minimize the metacentric height, heel and overstows. The taboo search heuristics algorithm are used to solve the subproblem. The main focus of this paper is on the first subproblem. A case certifies the feasibility of the model and algorithm.
NASA Astrophysics Data System (ADS)
Matsushima, Shinichi; Kosaka, Hiroyuki; Kawase, Hiroshi
2017-07-01
As observational evidence of 3-D microtremor horizontal-to-vertical spectral ratios (MHVRs), previous studies have shown that a significant directional dependency is observed in and around Uji campus, Kyoto University, Japan. This directional dependence is considered to be the result of 2-D basin structure. In this study, we observed microtremors around a strong motion observation site of the Port and Harbor Research Institute in Onahama, Japan, and found that directional dependence of MHVRs exists in some parts of the area around the site. The directional dependence is more apparent and has a higher dominant frequency, at around 5 Hz, relative to those observed in Uji, at around 0.5 Hz. We defined a parameter γ, which we refer to as the "directionally dependent coefficient" to indicate the magnitude of difference between the two orthogonal components which implies the directional dependence of the MHVRs. We rotated the axes and calculated γ for each angle and searched for the orientation that gave the largest γ at a point. Points for which the axis with larger MHVR amplitude among the two axes is oriented in the NS direction are aligned in the NS direction, while points for which the axis with larger MHVR amplitude is oriented in the EW direction are aligned in the EW direction. The distribution of points with large γ formed a T-shaped distribution. We calculated the analytical and numerical MHVRs in order to simulate the observed MHVRs and succeeded in showing the existence of a narrow wedge. From these results, we conclude that a wedge-like lateral heterogeneity exists in the shallow subsurface of the studied area, parallel to the direction of the axis of the larger MHVR amplitude.
NASA Astrophysics Data System (ADS)
Thompson, Errol; Kinshuk
2011-09-01
Object-oriented programming is seen as a difficult skill to master. There is considerable debate about the most appropriate way to introduce novice programmers to object-oriented concepts. Is it possible to uncover what the critical aspects or features are that enhance the learning of object-oriented programming? Practitioners have differing understandings of the nature of an object-oriented program. Uncovering these different ways of understanding leads to agreater understanding of the critical aspects and their relationship tothe structure of the program produced. A phenomenographic studywas conducted to uncover practitioner understandings of the nature of an object-oriented program. The study identified five levels of understanding and three dimensions of variation within these levels. These levels and dimensions of variation provide a framework for fostering conceptual change with respect to the nature of an object-oriented program.
Object-Oriented Programming in High Schools the Turing Way.
ERIC Educational Resources Information Center
Holt, Richard C.
This paper proposes an approach to introducing object-oriented concepts to high school computer science students using the Object-Oriented Turing (OOT) language. Students can learn about basic object-oriented (OO) principles such as classes and inheritance by using and expanding a collection of classes that draw pictures like circles and happy…
3D Fiber Orientation Simulation for Plastic Injection Molding
NASA Astrophysics Data System (ADS)
Lin, Baojiu; Jin, Xiaoshi; Zheng, Rong; Costa, Franco S.; Fan, Zhiliang
2004-06-01
Glass fiber reinforced polymer is widely used in the products made using injection molding processing. The distribution of fiber orientation inside plastic parts has direct effects on quality of molded parts. Using computer simulation to predict fiber orientation distribution is one of most efficient ways to assist engineers to do warpage analysis and to find a good design solution to produce high quality plastic parts. Fiber orientation simulation software based on 2-1/2D (midplane /Dual domain mesh) techniques has been used in industry for a decade. However, the 2-1/2D technique is based on the planar Hele-Shaw approximation and it is not suitable when the geometry has complex three-dimensional features which cannot be well approximated by 2D shells. Recently, a full 3D simulation software for fiber orientation has been developed and integrated into Moldflow Plastics Insight 3D simulation software. The theory for this new 3D fiber orientation calculation module is described in this paper. Several examples are also presented to show the benefit in using 3D fiber orientation simulation.
Imaging, object detection, and change detection with a polarized multistatic GPR array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beer, N. Reginald; Paglieroni, David W.
A polarized detection system performs imaging, object detection, and change detection factoring in the orientation of an object relative to the orientation of transceivers. The polarized detection system may operate on one of several modes of operation based on whether the imaging, object detection, or change detection is performed separately for each transceiver orientation. In combined change mode, the polarized detection system performs imaging, object detection, and change detection separately for each transceiver orientation, and then combines changes across polarizations. In combined object mode, the polarized detection system performs imaging and object detection separately for each transceiver orientation, and thenmore » combines objects across polarizations and performs change detection on the result. In combined image mode, the polarized detection system performs imaging separately for each transceiver orientation, and then combines images across polarizations and performs object detection followed by change detection on the result.« less
Changes in the shoreline at Paradip Port, India in response to climate change
NASA Astrophysics Data System (ADS)
Gopikrishna, B.; Deo, M. C.
2018-02-01
One of the popular methods to predict shoreline shifts into the future involves use of a shoreline evolution model driven by the historical wave climate. It is however understood by now that historical wave conditions might substantially change in future in response to climate change induced by the global warming. The future shoreline changes as well as sediment transport therefore need to be determined with the help of future projections of wave climate. In this work this is done at the port of Paradip situated along the east coast of India. The high resolution wind resulting from a climate modelling experiment called: CORDEX, South Asia, was used to simulate waves over two time-slices of 25 years each in past and future. The wave simulations were carried out with the help of a numerical wave model. Thereafter, rates of longshore sediment transport as well as shoreline shifts were determined over past and future using a numerical shoreline model. It was found that at Paradip Port the net littoral drift per metre width of cross-shore might go up by 37% and so also the net accumulated drift over the entire cross-shore width by 71%. This could be caused by an increase in the mean significant wave height of around 32% and also by changes in the frequency and direction of waves. The intensification of waves in turn might result from an increase in the mean wind speed of around 19%. Similarly, the horizontal extent of the beach accretion and erosion at the port's southern breakwater might go up by 4 m and 8 m, respectively, from the current level in another 25 years. This study should be useful in framing future port management strategies.
CONFIG: Integrated engineering of systems and their operation
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Ryan, Dan; Fleming, Land
1994-01-01
This article discusses CONFIG 3, a prototype software tool that supports integrated conceptual design evaluation from early in the product life cycle, by supporting isolated or integrated modeling, simulation, and analysis of the function, structure, behavior, failures and operations of system designs. Integration and reuse of models is supported in an object-oriented environment providing capabilities for graph analysis and discrete event simulation. CONFIG supports integration among diverse modeling approaches (component view, configuration or flow path view, and procedure view) and diverse simulation and analysis approaches. CONFIG is designed to support integrated engineering in diverse design domains, including mechanical and electro-mechanical systems, distributed computer systems, and chemical processing and transport systems.
Durham extremely large telescope adaptive optics simulation platform.
Basden, Alastair; Butterley, Timothy; Myers, Richard; Wilson, Richard
2007-03-01
Adaptive optics systems are essential on all large telescopes for which image quality is important. These are complex systems with many design parameters requiring optimization before good performance can be achieved. The simulation of adaptive optics systems is therefore necessary to categorize the expected performance. We describe an adaptive optics simulation platform, developed at Durham University, which can be used to simulate adaptive optics systems on the largest proposed future extremely large telescopes as well as on current systems. This platform is modular, object oriented, and has the benefit of hardware application acceleration that can be used to improve the simulation performance, essential for ensuring that the run time of a given simulation is acceptable. The simulation platform described here can be highly parallelized using parallelization techniques suited for adaptive optics simulation, while still offering the user complete control while the simulation is running. The results from the simulation of a ground layer adaptive optics system are provided as an example to demonstrate the flexibility of this simulation platform.
NASA Astrophysics Data System (ADS)
Bongartz, K.; Flügel, W. A.
2003-04-01
In the joint research project “Development of an integrated methodology for the sustainable management of river basins The Saale River Basin example”, coordinated by the Centre of Environmental Research (UFZ), concepts and tools for an integrated management of large river basins are developed and applied for the Saale river basin. The ultimate objective of the project is to contribute to the holistic assessment and benchmarking approaches in water resource planning, as required by the European Water Framework Directive. The study presented here deals (1) with the development of a river basin information and modelling system, (2) with the refinement of a regionalisation approach adapted for integrated basin modelling. The approach combines a user friendly basin disaggregation method preserving the catchment’s physiographic heterogeneity with a process oriented hydrological basin assessment for scale bridging integrated modelling. The well tested regional distribution concept of Response Units (RUs) will be enhanced by landscape metrics and decision support tools for objective, scale independent and problem oriented RU delineation to provide the spatial modelling entities for process oriented and distributed simulation of vertical and lateral hydrological transport processes. On basis of this RUs suitable hydrological modelling approaches will be further developed with strong respect to a more detailed simulation of the lateral surface and subsurface flows as well as the channel flow. This methodical enhancement of the well recognised RU-concept will be applied to the river basin of the Saale (Ac: 23 179 km2) and validated by a nested catchment approach, which allows multi-response-validation and estimation of uncertainties of the modelling results. Integrated modelling of such a complex basin strongly influenced by manifold human activities (reservoirs, agriculture, urban areas and industry) can only be achieved by coupling the various modelling approaches within a well defined model framework system. The latter is interactively linked with a sophisticated geo-relational database (DB) serving all research teams involved in the project. This interactive linkage is a core element comprising an object-oriented, internet-based modelling framework system (MFS) for building interdisciplinary modelling applications and offering different analysis and visualisation tools.
Guillaumin, Julien; Olp, Nichole M; Magnusson, Karissa D; Butler, Amy L; Daniels, Joshua B
2017-09-01
To assess the rate of bacterial contamination of fluid and ports in intravenous bags in a veterinary emergency room (ER) and intensive care unit (ICU). Experimental model. Ninety intravenous fluid bags of lactated balanced-electrolytes solution (1 L) hung in a university hospital. Bags were hung in 2 different locations in the ER (sink and bins) and one location in the ICU (sink) for 11 days. Bags were punctured 3 times daily with a sterile needle to simulate clinical use. Injection ports were swabbed and 50 mL of fluid were collected in duplicates on days 0, 2, 4, 7, and 10. Aerobic bacterial cultures were performed on the fluid and injection port. Contamination was defined as bacterial growth of a similar phenotype across 2 consecutive times. Increase in the fluid contamination rate from day 0 was tested using an exact binomial test. Port contamination rate between locations was tested using Fisher's exact test. Combined bacterial growth on injection ports reached a mean (95% confidence interval) of 8.1 (0.005-16.2) cfu/port on day 10. The combined port contamination was 3.3%, 11.1%, 17.8%, and 31.1% on days 0, 2, 4, and 7, respectively. Port contamination was similar between ER and ICU. However, port contamination was higher in the sink versus the bins area (38.3% vs 16.7%, P = 0.032). No fluid bag was contaminated at days 0 and 2. The contamination rate of fluid bag was 1.1% and 4.4% on days 4 and 7, respectively. All bags with contaminated fluid were in the ER (6.7%, 95% exact binomial confidence interval 1.9-16.2%). Injection port contamination reached 31.1% on day 7. Contamination was more likely when the bags were hung next to a sink. In our model of bag puncture, fluid contamination occurred between days 2 and 4. © Veterinary Emergency and Critical Care Society 2017.
Heavy-Duty Vehicle Port Drayage Drive Cycle Characterization and Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prohaska, Robert; Konan, Arnaud; Kelly, Kenneth
In an effort to better understand the operational requirements of port drayage vehicles and their potential for adoption of advanced technologies, National Renewable Energy Laboratory (NREL) researchers collected over 36,000 miles of in-use duty cycle data from 30 Class 8 drayage trucks operating at the Port of Long Beach and Port of Los Angeles in Southern California. These data include 1-Hz global positioning system location and SAE J1939 high-speed controller area network information. Researchers processed the data through NREL's Drive-Cycle Rapid Investigation, Visualization, and Evaluation tool to examine vehicle kinematic and dynamic patterns across the spectrum of operations. Using themore » k-medoids clustering method, a repeatable and quantitative process for multi-mode drive cycle segmentation, the analysis led to the creation of multiple drive cycles representing four distinct modes of operation that can be used independently or in combination. These drive cycles are statistically representative of real-world operation of port drayage vehicles. When combined with modeling and simulation tools, these representative test cycles allow advanced vehicle or systems developers to efficiently and accurately evaluate vehicle technology performance requirements to reduce cost and development time while ultimately leading to the commercialization of advanced technologies that meet the performance requirements of the port drayage vocation. The drive cycles, which are suitable for chassis dynamometer testing, were compared to several existing test cycles. This paper presents the clustering methodology, accompanying results of the port drayage duty cycle analysis and custom drive cycle creation.« less
Heavy-Duty Vehicle Port Drayage Drive Cycle Characterization and Development: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prohaska, Robert; Konan, Arnaud; Kelly, Kenneth
In an effort to better understand the operational requirements of port drayage vehicles and their potential for adoption of advanced technologies, National Renewable Energy Laboratory (NREL) researchers collected over 36,000 miles of in-use duty cycle data from 30 Class 8 drayage trucks operating at the Port of Long Beach and Port of Los Angeles in Southern California. These data include 1-Hz global positioning system location and SAE J1939 high-speed controller area network information. Researchers processed the data through NREL's Drive-Cycle Rapid Investigation, Visualization, and Evaluation tool to examine vehicle kinematic and dynamic patterns across the spectrum of operations. Using themore » k-medoids clustering method, a repeatable and quantitative process for multi-mode drive cycle segmentation, the analysis led to the creation of multiple drive cycles representing four distinct modes of operation that can be used independently or in combination. These drive cycles are statistically representative of real-world operation of port drayage vehicles. When combined with modeling and simulation tools, these representative test cycles allow advanced vehicle or systems developers to efficiently and accurately evaluate vehicle technology performance requirements to reduce cost and development time while ultimately leading to the commercialization of advanced technologies that meet the performance requirements of the port drayage vocation. The drive cycles, which are suitable for chassis dynamometer testing, were compared to several existing test cycles. This paper presents the clustering methodology, accompanying results of the port drayage duty cycle analysis and custom drive cycle creation.« less
Heavy-Duty Vehicle Port Drayage Drive Cycle Characterization and Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prohaska, Robert; Konan, Arnaud; Kelly, Kenneth
2016-05-02
In an effort to better understand the operational requirements of port drayage vehicles and their potential for adoption of advanced technologies, National Renewable Energy Laboratory (NREL) researchers collected over 36,000 miles of in-use duty cycle data from 30 Class 8 drayage trucks operating at the Port of Long Beach and Port of Los Angeles in Southern California. These data include 1-Hz global positioning system location and SAE J1939 high-speed controller area network information. Researchers processed the data through NREL's Drive-Cycle Rapid Investigation, Visualization, and Evaluation tool to examine vehicle kinematic and dynamic patterns across the spectrum of operations. Using themore » k-medoids clustering method, a repeatable and quantitative process for multi-mode drive cycle segmentation, the analysis led to the creation of multiple drive cycles representing four distinct modes of operation that can be used independently or in combination. These drive cycles are statistically representative of real-world operation of port drayage vehicles. When combined with modeling and simulation tools, these representative test cycles allow advanced vehicle or systems developers to efficiently and accurately evaluate vehicle technology performance requirements to reduce cost and development time while ultimately leading to the commercialization of advanced technologies that meet the performance requirements of the port drayage vocation. The drive cycles, which are suitable for chassis dynamometer testing, were compared to several existing test cycles. This paper presents the clustering methodology, accompanying results of the port drayage duty cycle analysis and custom drive cycle creation.« less
Port Granby Project Overview - 13208
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, David W.; Vandergaast, Gary; Sungaila, Mark
2013-07-01
The Port Granby Project is an integral part of the Port Hope Area Initiative (PHAI), and is located approximately 14 kilometres west of the Municipality of Port Hope in the adjacent Municipality of Clarington, Ontario. The principal objective of the project is the excavation and relocation of low-level radioactive waste (LLRW) and marginally contaminated soils, which were deposited at the Port Granby Waste Management Facility (PGWMF) by Eldorado Nuclear Limited during the period 1955 to 1988, to a new, highly engineered above-ground Long-term Waste Management Facility (LTWMF) to be constructed on a nearby site. The Environmental Assessment for the Projectmore » was approved in 2009 August and the required Waste Nuclear Substance License was received in 2011 November. Once the detailed engineering design was completed, in 2011 March, the Port Granby Project was divided into three major contracts for construction implementation purposes. The first of these contracts was completed in late 2012 and the second is planned to start in early 2013. The contracting process for the third major contract is also expected to be completed during 2013. This paper provides an overview of the Port Granby Project as well as discussion on the status of the Project, including the regulatory approvals process, the approach to contracting the construction works and an update of work recently completed and soon to get underway. (authors)« less
Incidence of Port-Site Incisional Hernia After Single-Incision Laparoscopic Surgery
Rainville, Harvey; Ikedilo, Ojinika; Vemulapali, Pratibha
2014-01-01
Background and Objectives: Single-incision laparoscopic surgery is gaining popularity among minimally invasive surgeons and is now being applied to a broad number of surgical procedures. Although this technique uses only 1 port, the diameter of the incision is larger than in standard laparoscopic surgery. The long-term incidence of port-site hernias after single-incision laparoscopic surgery has yet to be determined. Methods: All patients who underwent a single-incision laparoscopic surgical procedure from May 2008 through May 2009 were included in the study. Single-incision laparoscopic surgical operations were performed either by a multiport technique or with a 3-trocar single-incision laparoscopic surgery port. The patients were seen at 30 to 36 months' follow-up, at which time they were examined for any evidence of port-site incisional hernia. Patients found to have hernias on clinical examination underwent repairs with mesh. Results: A total of 211 patients met the criteria for inclusion in the study. The types of operations included were cholecystectomy, appendectomy, sleeve gastrectomy, gastric banding, Nissen fundoplication, colectomy, and gastrojejunostomy. We found a port-site hernia rate of 2.9% at 30 to 36 months' follow-up. Conclusion: Port-site incisional hernia after single-incision laparoscopic surgical procedures remains a major setback for patients. The true incidence remains largely unknown because most patients are asymptomatic and therefore do not seek surgical aid. PMID:24960483
Stakeholder identification of advanced technology opportunities at international ports of entry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, S.K.; Icerman, L.
As part of the Advanced Technologies for International and Intermodal Ports of Entry (ATIPE) Project, a diverse group of stakeholders was engaged to help identify problems experienced at inland international border crossings, particularly those at the US-Mexican border. The fundamental issue at international ports of entry is reducing transit time through the required documentation and inspection processes. Examples of other issues or problems, typically manifested as time delays at border crossings, repeatedly mentioned by stakeholders include: (1) lack of document standardization; (2) failure to standardize inspection processes; (3) inadequate information and communications systems; (4) manual fee and tariff collection; (5)more » inconsistency of processes and procedures; and (6) suboptimal cooperation among governmental agencies. Most of these issues can be addressed to some extent by the development of advanced technologies with the objective of allowing ports of entry to become more efficient while being more effective. Three categories of technologies were unambiguously of high priority to port of entry stakeholders: (1) automated documentation; (2) systems integration; and (3) vehicle and cargo tracking. Together, these technologies represent many of the technical components necessary for pre-clearance of freight approaching international ports of entry. Integration of vehicle and cargo tracking systems with port of entry information and communications systems, as well as existing industry legacy systems, should further enable border crossings to be accomplished consistently with optimal processing times.« less
The GeantV project: Preparing the future of simulation
Amadio, G.; J. Apostolakis; Bandieramonte, M.; ...
2015-12-23
Detector simulation is consuming at least half of the HEP computing cycles, and even so, experiments have to take hard decisions on what to simulate, as their needs greatly surpass the availability of computing resources. New experiments still in the design phase such as FCC, CLIC and ILC as well as upgraded versions of the existing LHC detectors will push further the simulation requirements. Since the increase in computing resources is not likely to keep pace with our needs, it is therefore necessary to explore innovative ways of speeding up simulation in order to sustain the progress of High Energymore » Physics. The GeantV project aims at developing a high performance detector simulation system integrating fast and full simulation that can be ported on different computing architectures, including CPU accelerators. After more than two years of R&D the project has produced a prototype capable of transporting particles in complex geometries exploiting micro-parallelism, SIMD and multithreading. Portability is obtained via C++ template techniques that allow the development of machine- independent computational kernels. Furthermore, a set of tables derived from Geant4 for cross sections and final states provides a realistic shower development and, having been ported into a Geant4 physics list, can be used as a basis for a direct performance comparison.« less
NASA Astrophysics Data System (ADS)
Ubieta, Eduardo; Hoyo, Itzal del; Valenzuela, Loreto; Lopez-Martín, Rafael; Peña, Víctor de la; López, Susana
2017-06-01
A simulation model of a parabolic-trough solar collector developed in Modelica® language is calibrated and validated. The calibration is performed in order to approximate the behavior of the solar collector model to a real one due to the uncertainty in some of the system parameters, i.e. measured data is used during the calibration process. Afterwards, the validation of this calibrated model is done. During the validation, the results obtained from the model are compared to the ones obtained during real operation in a collector from the Plataforma Solar de Almeria (PSA).
The influence of grasping habits and object orientation on motor planning in children and adults.
Jovanovic, Bianca; Schwarzer, Gudrun
2017-12-01
We investigated the influence of habitual grasp strategies and object orientation on motor planning in 3-year-olds and 4- to 5-year-old children and adults. Participants were required to rotate different vertically oriented objects around 180°. Usually, adults perform this task by grasping objects with an awkward grip (thumb and index finger pointing downward) at the beginning of the movement, in order to finish it with a comfortable hand position. This pattern corresponds to the well-known end-state comfort effect (ESC) in grasp planning. The presented objects were associated with different habitual grasp orientations that either corresponded with the grasp direction required to reach end-state comfort (downward) or implied a contrary grasp orientation (upward). Additionally, they were presented either in their usual, canonical orientation (e.g., shovel with the blade oriented downward versus cup with its opening oriented upward) or upside down. As dependent variable we analyzed the number of grips conforming to the end-state comfort principle (ESC score) realized in each object type and orientation condition. The number of grips conforming to ESC strongly increased with age. In addition, the extent to which end-state comfort was considered was influenced by the actual orientation of the objects' functional parts. Thus, in all age-groups the ESC score was highest when the functional parts of the objects were oriented downward (shovel presented canonically with blade pointing downward, cup presented upside down) and corresponded to the hand orientation needed to realize ESC. © 2017 Wiley Periodicals, Inc.
Acoustic positioning and orientation prediction
NASA Technical Reports Server (NTRS)
Barmatz, Martin B. (Inventor); Aveni, Glenn (Inventor); Putterman, Seth (Inventor); Rudnick, Joseph (Inventor)
1990-01-01
A method is described for use with an acoustic positioner, which enables a determination of the equilibrium position and orientation which an object assumes in a zero gravity environment, as well as restoring forces and torques of an object in an acoustic standing wave field. An acoustic standing wave field is established in the chamber, and the object is held at several different positions near the expected equilibrium position. While the object is held at each position, the center resonant frequency of the chamber is determined, by noting which frequency results in the greatest pressure of the acoustic field. The object position which results in the lowest center resonant frequency is the equilibrium position. The orientation of a nonspherical object is similarly determined, by holding the object in a plurality of different orientations at its equilibrium position, and noting the center resonant frequency for each orientation. The orientation which results in the lowest center resonant frequency is the equilibrium orientation. Where the acoustic frequency is constant, but the chamber length is variable, the equilibrium position or orientation is that which results in the greatest chamber length at the center resonant frequency.
NASA Astrophysics Data System (ADS)
Cacace, Mauro; Jacquey, Antoine B.
2017-09-01
Theory and numerical implementation describing groundwater flow and the transport of heat and solute mass in fully saturated fractured rocks with elasto-plastic mechanical feedbacks are developed. In our formulation, fractures are considered as being of lower dimension than the hosting deformable porous rock and we consider their hydraulic and mechanical apertures as scaling parameters to ensure continuous exchange of fluid mass and energy within the fracture-solid matrix system. The coupled system of equations is implemented in a new simulator code that makes use of a Galerkin finite-element technique. The code builds on a flexible, object-oriented numerical framework (MOOSE, Multiphysics Object Oriented Simulation Environment) which provides an extensive scalable parallel and implicit coupling to solve for the multiphysics problem. The governing equations of groundwater flow, heat and mass transport, and rock deformation are solved in a weak sense (either by classical Newton-Raphson or by free Jacobian inexact Newton-Krylow schemes) on an underlying unstructured mesh. Nonlinear feedbacks among the active processes are enforced by considering evolving fluid and rock properties depending on the thermo-hydro-mechanical state of the system and the local structure, i.e. degree of connectivity, of the fracture system. A suite of applications is presented to illustrate the flexibility and capability of the new simulator to address problems of increasing complexity and occurring at different spatial (from centimetres to tens of kilometres) and temporal scales (from minutes to hundreds of years).
ERIC Educational Resources Information Center
Shin, Shin-Shing
2015-01-01
Students in object-oriented analysis and design (OOAD) courses typically encounter difficulties transitioning from object-oriented analysis (OOA) to logical design (OOLD). This study conducted an empirical experiment to examine these learning difficulties by evaluating differences between OOA-to-OOLD and OOLD-to-object-oriented-physical-design…
ERIC Educational Resources Information Center
Thompson, Errol; Kinshuk
2011-01-01
Object-oriented programming is seen as a difficult skill to master. There is considerable debate about the most appropriate way to introduce novice programmers to object-oriented concepts. Is it possible to uncover what the critical aspects or features are that enhance the learning of object-oriented programming? Practitioners have differing…
Monte Carlo simulations in X-ray imaging
NASA Astrophysics Data System (ADS)
Giersch, Jürgen; Durst, Jürgen
2008-06-01
Monte Carlo simulations have become crucial tools in many fields of X-ray imaging. They help to understand the influence of physical effects such as absorption, scattering and fluorescence of photons in different detector materials on image quality parameters. They allow studying new imaging concepts like photon counting, energy weighting or material reconstruction. Additionally, they can be applied to the fields of nuclear medicine to define virtual setups studying new geometries or image reconstruction algorithms. Furthermore, an implementation of the propagation physics of electrons and photons allows studying the behavior of (novel) X-ray generation concepts. This versatility of Monte Carlo simulations is illustrated with some examples done by the Monte Carlo simulation ROSI. An overview of the structure of ROSI is given as an example of a modern, well-proven, object-oriented, parallel computing Monte Carlo simulation for X-ray imaging.
Dual-function photonic integrated circuit for frequency octo-tupling or single-side-band modulation.
Hasan, Mehedi; Maldonado-Basilio, Ramón; Hall, Trevor J
2015-06-01
A dual-function photonic integrated circuit for microwave photonic applications is proposed. The circuit consists of four linear electro-optic phase modulators connected optically in parallel within a generalized Mach-Zehnder interferometer architecture. The photonic circuit is arranged to have two separate output ports. A first port provides frequency up-conversion of a microwave signal from the electrical to the optical domain; equivalently single-side-band modulation. A second port provides tunable millimeter wave carriers by frequency octo-tupling of an appropriate amplitude RF carrier. The circuit exploits the intrinsic relative phases between the ports of multi-mode interference couplers to provide substantially all the static optical phases needed. The operation of the proposed dual-function photonic integrated circuit is verified by computer simulations. The performance of the frequency octo-tupling and up-conversion functions is analyzed in terms of the electrical signal to harmonic distortion ratio and the optical single side band to unwanted harmonics ratio, respectively.
Analyzing Strategic Business Rules through Simulation Modeling
NASA Astrophysics Data System (ADS)
Orta, Elena; Ruiz, Mercedes; Toro, Miguel
Service Oriented Architecture (SOA) holds promise for business agility since it allows business process to change to meet new customer demands or market needs without causing a cascade effect of changes in the underlying IT systems. Business rules are the instrument chosen to help business and IT to collaborate. In this paper, we propose the utilization of simulation models to model and simulate strategic business rules that are then disaggregated at different levels of an SOA architecture. Our proposal is aimed to help find a good configuration for strategic business objectives and IT parameters. The paper includes a case study where a simulation model is built to help business decision-making in a context where finding a good configuration for different business parameters and performance is too complex to analyze by trial and error.
JASMINE Simulator - construction of framework
NASA Astrophysics Data System (ADS)
Yamada, Yoshiyuki; Ueda, Seiji; Kuwabara, Takashi; Yano, Taihei; Gouda, Naoteru
2004-10-01
JASMINE is an abbreviation of Japan Astrometry Satellite Mission for INfrared Exploration currently planned at National Astronomical Observatory of Japan. JASMINE stands at a stage where its basic design will be determined in a few years. Then it is very important for JASMINE to simulate the data stream generated by the astrometric fields in order to support investigations of accuracy, sampling strategy, data compression, data analysis, scientific performances, etc. It is found that the new software technologies of Object Oriented methodologies with Unified Modeling Language are ideal for the simulation system of JASMINE (JASMINE Simualtor). In this paper, we briefly introduce some concepts of such technologies and explain the framework of the JASMINE Simulator which is constructed by new technologies. We believe that these technologies are useful also for other future big projects of astronomcial research.
NASA Technical Reports Server (NTRS)
Gist, Emily; Turner, Gary; Shelton, Robert; Vautier, Mana; Shaikh, Ashraf
2013-01-01
NASA needed to provide a software model of a parachute system for a manned re-entry vehicle. NASA has parachute codes, e.g., the Descent Simulation System (DSS), that date back to the Apollo Program. Since the space shuttle did not rely on parachutes as its primary descent control mechanism, DSS has not been maintained or incorporated into modern simulation architectures such as Osiris and Antares, which are used for new mission simulations. GFEChutes Lo-Fi is an object-oriented implementation of conventional parachute codes designed for use in modern simulation environments. The GFE (Government Furnished Equipment), low-fidelity (Lo-Fi) parachute model (GFEChutes Lo-Fi) is a software package capable of modeling the effects of multiple parachutes, deployed concurrently and/or sequentially, on a vehicle during the subsonic phase of reentry into planetary atmosphere. The term "low-fidelity" distinguishes models that represent the parachutes as simple forces acting on the vehicle, as opposed to independent aerodynamic bodies. GFEChutes Lo-Fi was created from these existing models to be clean, modular, certified as NASA Class C software, and portable, or "plug and play." The GFE Lo-Fi Chutes Model provides basic modeling capability of a sequential series of parachute activities. Actions include deploying the parachute, changing the reefing on the parachute, and cutting away the parachute. Multiple chutes can be deployed at any given time, but all chutes in that case are assumed to behave as individually isolated chutes; there is no modeling of any interactions between deployed chutes. Drag characteristics of a deployed chute are based on a coefficient of drag, the face area of the chute, and the local dynamic pressure only. The orientation of the chute is approximately modeled for purposes of obtaining torques on the vehicle, but the dynamic state of the chute as a separate entity is not integrated - the treatment is simply an approximation. The innovation in GFEChutes Lo-Fi is to use an object design that closely followed the mechanical characteristics and structure of a physical system of parachutes and their deployment mechanisms. Software objects represent the components of the system, and use of an object hierarchy allows a progression from general component outlines to specific implementations. These extra chutes were not part of the baseline deceleration sequence of drogues and mains, but still had to be simulated. The major innovation in GFEChutes Lo-Fi is the software design and architecture.
Nau, Amy; Bach, Michael; Fisher, Christopher
2013-01-01
We evaluated whether existing ultra-low vision tests are suitable for measuring outcomes using sensory substitution. The BrainPort is a vision assist device coupling a live video feed with an electrotactile tongue display, allowing a user to gain information about their surroundings. We enrolled 30 adult subjects (age range 22-74) divided into two groups. Our blind group included 24 subjects ( n = 16 males and n = 8 females, average age 50) with light perception or worse vision. Our control group consisted of six subjects ( n = 3 males, n = 3 females, average age 43) with healthy ocular status. All subjects performed 11 computer-based psychophysical tests from three programs: Basic Assessment of Light Motion, Basic Assessment of Grating Acuity, and the Freiburg Vision Test as well as a modified Tangent Screen. Assessments were performed at baseline and again using the BrainPort after 15 hours of training. Most tests could be used with the BrainPort. Mean success scores increased for all of our tests except contrast sensitivity. Increases were statistically significant for tests of light perception (8.27 ± 3.95 SE), time resolution (61.4% ± 3.14 SE), light localization (44.57% ± 3.58 SE), grating orientation (70.27% ± 4.64 SE), and white Tumbling E on a black background (2.49 logMAR ± 0.39 SE). Motion tests were limited by BrainPort resolution. Tactile-based sensory substitution devices are amenable to psychophysical assessments of vision, even though traditional visual pathways are circumvented. This study is one of many that will need to be undertaken to achieve a common outcomes infrastructure for the field of artificial vision.
Applications of AN OO Methodology and Case to a Daq System
NASA Astrophysics Data System (ADS)
Bee, C. P.; Eshghi, S.; Jones, R.; Kolos, S.; Magherini, C.; Maidantchik, C.; Mapelli, L.; Mornacchi, G.; Niculescu, M.; Patel, A.; Prigent, D.; Spiwoks, R.; Soloviev, I.; Caprini, M.; Duval, P. Y.; Etienne, F.; Ferrato, D.; Le van Suu, A.; Qian, Z.; Gaponenko, I.; Merzliakov, Y.; Ambrosini, G.; Ferrari, R.; Fumagalli, G.; Polesello, G.
The RD13 project has evaluated the use of the Object Oriented Information Engineering (OOIE) method during the development of several software components connected to the DAQ system. The method is supported by a sophisticated commercial CASE tool (Object Management Workbench) and programming environment (Kappa) which covers the full life-cycle of the software including model simulation, code generation and application deployment. This paper gives an overview of the method, CASE tool, DAQ components which have been developed and we relate our experiences with the method and tool, its integration into our development environment and the spiral lifecycle it supports.
Optimal Robust Matching of Engine Models to Test Data
2009-02-28
Monte Carlo process 19 Figure 7: Flowchart of SVD Calculations 22 Figure 8: Schematic Diagram of NPSS Engine Model Components 24 Figure 9: PW2037...System Simulation ( NPSS ). NPSS is an object-oriented modeling environment widely used throughout industry and the USAF. With NPSS , the engine is...34 modifiers are available for adjusting the component representations. The scripting language in NPSS allowed for easy implementation of each solution
Galato, Dayani; Alano, Graziela M.; Trauthman, Silvana C.; França, Tainã F.
Objective A simulation process known as objective structured clinical examination (OSCE) was applied to assess pharmacy practice performed by senior pharmacy students. Methods A cross-sectional study was conducted based on documentary analysis of performance evaluation records of pharmacy practice simulations that occurred between 2005 and 2009. These simulations were related to the process of self-medication and dispensing, and were performed with the use of patients simulated. The simulations were filmed to facilitate the evaluation process. It presents the OSCE educational experience performed by pharmacy trainees of the University of Southern Santa Catarina and experienced by two evaluators. The student general performance was analyzed, and the criteria for pharmacy practice assessment often identified trainees in difficulty. Results The results of 291 simulations showed that students have an average yield performance of 70.0%. Several difficulties were encountered, such as the lack of information about the selected/prescribed treatment regimen (65.1%); inadequate communication style (21.9%); lack of identification of patients’ needs (7.7%) and inappropriate drug selection for self-medication (5.3%). Conclusions These data show that there is a need for reorientation of clinical pharmacy students because they need to improve their communication skills, and have a deeper knowledge of medicines and health problems in order to properly orient their patients. PMID:24367467
Object-oriented knowledge representation for expert systems
NASA Technical Reports Server (NTRS)
Scott, Stephen L.
1991-01-01
Object oriented techniques have generated considerable interest in the Artificial Intelligence (AI) community in recent years. This paper discusses an approach for representing expert system knowledge using classes, objects, and message passing. The implementation is in version 4.3 of NASA's C Language Integrated Production System (CLIPS), an expert system tool that does not provide direct support for object oriented design. The method uses programmer imposed conventions and keywords to structure facts, and rules to provide object oriented capabilities.
Environmental and health impact assessment for ports in Thailand.
Chanchang, Chamchan; Sithisarankul, Pornchai; Supanitayanon, Thanawat
2016-01-01
Port development in Thailand is an essential part of the national maritime interest in connection with ship and shore activities. The growth of maritime industry and transportation has led to the expansion of ports' areas and capacity. Each port type causes different environmental impacts. Therefore, the Port Authority of Thailand has set up guidelines on ports' environmental management. This is divided into 3 major phases; namely, planning, construction and operation commencement periods. The Report of Environmental and Health Impact Assessment (EIA, HIA and EHIA) is regarded as the environmental management process in the planning period. It is a key tool to anticipate and prevent any adverse effects that might occur on the environment as well as community health resulting from the project implementation. This measure, in turn, creates advance preparation on both the preventive and problem-solving means before the project gets off the ground. At present, the majority of new projects on port development have still been in the process of information gathering for EHIA submission. Some cannot start to operate due to their EHIA failure. For example, the Tha-sala port which did not pass EHIA, mainly because emphasis had been focused on adhering to legal regulations without taking into consideration the in-depth analysis of data being conducted by community entities in the area. Thus caused the project to be finally abolished. Impact assessment on environment and health should be aimed at detailed understanding of the community in each particular area so that effective data of objective achievement in preventing environmental problems could actually be carried out and welcomed by the concerned society.
Birch, A A; Eynon, C A; Schley, D
2006-01-01
The objective of this report is to highlight the potential for false pressure measurements from systems that combine intracranial pressure (ICP) measurement and ventricular drainage. If the ports of the drain become blocked to the extent that they present a high resistance to cerebrospinal fluid flow, then a significant pressure gradient between the inside and outside of the catheter may be established. Thus, any intracatheter transducer will faithfully record a pressure much lower than true ICP. This holds true for catheter-tip transducers when the transducer lies inside the catheter. In the absence of flow, however, pressures will equalize; therefore, accurate measurements may be taken if the drain is temporarily closed. We model this situation and provide simulations of expected measurements in such situations; these compare well to observed clinical readings.
Object-oriented numerical computing C++
NASA Technical Reports Server (NTRS)
Vanrosendale, John
1994-01-01
An object oriented language is one allowing users to create a set of related types and then intermix and manipulate values of these related types. This paper discusses object oriented numerical computing using C++.
NASA Astrophysics Data System (ADS)
Nan, Hanqing; Liang, Long; Chen, Guo; Liu, Liyu; Liu, Ruchuan; Jiao, Yang
2018-03-01
Three-dimensional (3D) collective cell migration in a collagen-based extracellular matrix (ECM) is among one of the most significant topics in developmental biology, cancer progression, tissue regeneration, and immune response. Recent studies have suggested that collagen-fiber mediated force transmission in cellularized ECM plays an important role in stress homeostasis and regulation of collective cellular behaviors. Motivated by the recent in vitro observation that oriented collagen can significantly enhance the penetration of migrating breast cancer cells into dense Matrigel which mimics the intravasation process in vivo [Han et al. Proc. Natl. Acad. Sci. USA 113, 11208 (2016), 10.1073/pnas.1610347113], we devise a procedure for generating realizations of highly heterogeneous 3D collagen networks with prescribed microstructural statistics via stochastic optimization. Specifically, a collagen network is represented via the graph (node-bond) model and the microstructural statistics considered include the cross-link (node) density, valence distribution, fiber (bond) length distribution, as well as fiber orientation distribution. An optimization problem is formulated in which the objective function is defined as the squared difference between a set of target microstructural statistics and the corresponding statistics for the simulated network. Simulated annealing is employed to solve the optimization problem by evolving an initial network via random perturbations to generate realizations of homogeneous networks with randomly oriented fibers, homogeneous networks with aligned fibers, heterogeneous networks with a continuous variation of fiber orientation along a prescribed direction, as well as a binary system containing a collagen region with aligned fibers and a dense Matrigel region with randomly oriented fibers. The generation and propagation of active forces in the simulated networks due to polarized contraction of an embedded ellipsoidal cell and a small group of cells are analyzed by considering a nonlinear fiber model incorporating strain hardening upon large stretching and buckling upon compression. Our analysis shows that oriented fibers can significantly enhance long-range force transmission in the network. Moreover, in the oriented-collagen-Matrigel system, the forces generated by a polarized cell in collagen can penetrate deeply into the Matrigel region. The stressed Matrigel fibers could provide contact guidance for the migrating cell cells, and thus enhance their penetration into Matrigel. This suggests a possible mechanism for the observed enhanced intravasation by oriented collagen.
ERIC Educational Resources Information Center
Lobo, Michele A.; Galloway, James C.
2008-01-01
The effects of 3 weeks of social (control), postural, or object-oriented experiences on 9- to 21-week-old infants' (N = 42) reaching, exploration, and means-end behaviors were assessed. Coders recorded object contacts, mouthing, fingering, attention, and affect from video. Postural and object-oriented experiences advanced reaching, haptic…
Object-oriented programming with mixins in Ada
NASA Technical Reports Server (NTRS)
Seidewitz, ED
1992-01-01
Recently, I wrote a paper discussing the lack of 'true' object-oriented programming language features in Ada 83, why one might desire them in Ada, and how they might be added in Ada 9X. The approach I took in this paper was to build the new object-oriented features of Ada 9X as much as possible on the basic constructs and philosophy of Ada 83. The object-oriented features proposed for Ada 9X, while different in detail, are based on the same kind of approach. Further consideration of this approach led me on a long reflection on the nature of object-oriented programming and its application to Ada. The results of this reflection, presented in this paper, show how a fairly natural object-oriented style can indeed be developed even in Ada 83. The exercise of developing this style is useful for at least three reasons: (1) it provides a useful style for programming object-oriented applications in Ada 83 until new features become available with Ada 9X; (2) it demystifies many of the mechanisms that seem to be 'magic' in most object-oriented programming languages by making them explicit; and (3) it points out areas that are and are not in need of change in Ada 83 to make object-oriented programming more natural in Ada 9X. In the next four sections I will address in turn the issues of object-oriented classes, mixins, self-reference and supertyping. The presentation is through a sequence of examples. This results in some overlap with that paper, but all the examples in the present paper are written entirely in Ada 83. I will return to considerations for Ada 9X in the last section of the paper.
Towards an Object-Oriented Model for the Design and Development of Learning Objects
ERIC Educational Resources Information Center
Chrysostomou, Chrysostomos; Papadopoulos, George
2008-01-01
This work introduces the concept of an Object-Oriented Learning Object (OOLO) that is developed in a manner similar to the one that software objects are developed through Object-Oriented Software Engineering (OO SWE) techniques. In order to make the application of the OOLO feasible and efficient, an OOLO model needs to be developed based on…
Simulated color: a diagnostic tool for skin lesions like port-wine stain
NASA Astrophysics Data System (ADS)
Randeberg, Lise L.; Svaasand, Lars O.
2001-05-01
A device independent method for skin color visualization has been developed. Colors reconstructed from a reflectance spectrum are presented on a computer screen by sRGB (standard Red Green Blue) color coordinates. The colors are presented as adjacent patches surrounded by a medium grey border. CIELAB color coordinates and CIE (International Commission on Illumination) color difference (Delta) E are computed. The change in skin color due to a change in average blood content or scattering properties in dermis is investigated. This is done by analytical simulations based on the diffusion approximation. It is found that an 11% change in average blood content and a 15% change in scattering properties will give a visible color change. A supposed visibility limit for (Delta) E is given. This value is based on experimental testing and the known properties of the human visual system. This limit value can be used as a tool to determine when to terminate laser treatment of port- wine stain due to low treatment response, i.e. low (Delta) E between treatments. The visualization method presented seems promising for medical applications as port-wine stain diagnostics. The method gives good possibilities for electronic transfer of data between clinics because it is device independent.
Simulation of Liquid Injection Thrust Vector Control for Mars Ascent Vehicle
NASA Technical Reports Server (NTRS)
Gudenkauf, Jared
2017-01-01
The Jet Propulsion Laboratory is currently in the initial design phase for a potential Mars Ascent Vehicle; which will be landed on Mars, stay on the surface for period of time, collect samples from the Mars 2020 rover, and then lift these samples into orbit around Mars. The engineers at JPL have down selected to a hybrid wax-based fuel rocket using a liquid oxidizer based on nitrogen tetroxide, or a Mixed Oxide of Nitrogen. To lower the gross lift-off mass of the vehicle the thrust vector control system will use liquid injection of the oxidizer to deflect the thrust of the main nozzle instead of using a gimbaled nozzle. The disadvantage of going with the liquid injection system is the low technology readiness level with a hybrid rocket. Presented in this paper is an effort to simulate the Mars Ascent Vehicle hybrid rocket nozzle and liquid injection thrust vector control system using the computational fluid dynamic flow solver Loci/Chem. This effort also includes determining the sensitivity of the thrust vector control system to a number of different design variables for the injection ports; including axial location, number of adjacent ports, injection angle, and distance between the ports.
An Object Model for a Rocket Engine Numerical Simulator
NASA Technical Reports Server (NTRS)
Mitra, D.; Bhalla, P. N.; Pratap, V.; Reddy, P.
1998-01-01
Rocket Engine Numerical Simulator (RENS) is a packet of software which numerically simulates the behavior of a rocket engine. Different parameters of the components of an engine is the input to these programs. Depending on these given parameters the programs output the behaviors of those components. These behavioral values are then used to guide the design of or to diagnose a model of a rocket engine "built" by a composition of these programs simulating different components of the engine system. In order to use this software package effectively one needs to have a flexible model of a rocket engine. These programs simulating different components then should be plugged into this modular representation. Our project is to develop an object based model of such an engine system. We are following an iterative and incremental approach in developing the model, as is the standard practice in the area of object oriented design and analysis of softwares. This process involves three stages: object modeling to represent the components and sub-components of a rocket engine, dynamic modeling to capture the temporal and behavioral aspects of the system, and functional modeling to represent the transformational aspects. This article reports on the first phase of our activity under a grant (RENS) from the NASA Lewis Research center. We have utilized Rambaugh's object modeling technique and the tool UML for this purpose. The classes of a rocket engine propulsion system are developed and some of them are presented in this report. The next step, developing a dynamic model for RENS, is also touched upon here. In this paper we will also discuss the advantages of using object-based modeling for developing this type of an integrated simulator over other tools like an expert systems shell or a procedural language, e.g., FORTRAN. Attempts have been made in the past to use such techniques.
Graboyes, Evan M; Garrett-Mayer, Elizabeth; Ellis, Mark A; Sharma, Anand K; Wahlquist, Amy E; Lentsch, Eric J; Nussenbaum, Brian; Day, Terry A
2017-12-15
The objective of this study was to determine the effects of National Comprehensive Cancer Network (NCCN) guideline-adherent initiation of postoperative radiation therapy (PORT) and different time-to-PORT intervals on the overall survival (OS) of patients with head and neck squamous cell carcinoma (HNSCC). The National Cancer Data Base was reviewed for the period of 2006-2014, and patients with HNSCC undergoing surgery and PORT were identified. Kaplan-Meier survival estimates, Cox regression analysis, and propensity score matching were used to determine the effects of initiating PORT within 6 weeks of surgery and different time-to-PORT intervals on survival. This study included 41,291 patients. After adjustments for covariates, starting PORT >6 weeks postoperatively was associated with decreased OS (adjusted hazard ratio [aHR], 1.13; 99% confidence interval [CI], 1.08-1.19). This finding remained in the propensity score-matched subset (hazard ratio, 1.21; 99% CI, 1.15-1.28). In comparison with starting PORT 5 to 6 weeks postoperatively, initiating PORT earlier was not associated with improved survival (aHR for ≤ 4 weeks, 0.93; 99% CI, 0.85-1.02; aHR for 4-5 weeks, 0.92; 99% CI, 0.84-1.01). Increasing durations of delay beyond 7 weeks were associated with small, progressive survival decrements (aHR, 1.09, 1.10, and 1.12 for 7-8, 8-10, and >10 weeks, respectively). Nonadherence to NCCN guidelines for initiating PORT within 6 weeks of surgery was associated with decreased survival. There was no survival benefit to initiating PORT earlier within the recommended 6-week timeframe. Increasing durations of delay beyond 7 weeks were associated with small, progressive survival decrements. Cancer 2017;123:4841-50. © 2017 American Cancer Society. © 2017 American Cancer Society.
Object-oriented productivity metrics
NASA Technical Reports Server (NTRS)
Connell, John L.; Eller, Nancy
1992-01-01
Software productivity metrics are useful for sizing and costing proposed software and for measuring development productivity. Estimating and measuring source lines of code (SLOC) has proven to be a bad idea because it encourages writing more lines of code and using lower level languages. Function Point Analysis is an improved software metric system, but it is not compatible with newer rapid prototyping and object-oriented approaches to software development. A process is presented here for counting object-oriented effort points, based on a preliminary object-oriented analysis. It is proposed that this approach is compatible with object-oriented analysis, design, programming, and rapid prototyping. Statistics gathered on actual projects are presented to validate the approach.
Object-oriented analysis and design of an ECG storage and retrieval system integrated with an HIS.
Wang, C; Ohe, K; Sakurai, T; Nagase, T; Kaihara, S
1996-03-01
For a hospital information system, object-oriented methodology plays an increasingly important role, especially for the management of digitized data, e.g., the electrocardiogram, electroencephalogram, electromyogram, spirogram, X-ray, CT and histopathological images, which are not yet computerized in most hospitals. As a first step in an object-oriented approach to hospital information management and storing medical data in an object-oriented database, we connected electrocardiographs to a hospital network and established the integration of ECG storage and retrieval systems with a hospital information system. In this paper, the object-oriented analysis and design of the ECG storage and retrieval systems is reported.
Experiments in cooperative-arm object manipulation with a two-armed free-flying robot. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Koningstein, Ross
1990-01-01
Developing computed-torque controllers for complex manipulator systems using current techniques and tools is difficult because they address the issues pertinent to simulation, as opposed to control. A new formulation of computed-torque (CT) control that leads to an automated computer-torque robot controller program is presented. This automated tool is used for simulations and experimental demonstrations of endpoint and object control from a free-flying robot. A new computed-torque formulation states the multibody control problem in an elegant, homogeneous, and practical form. A recursive dynamics algorithm is presented that numerically evaluates kinematics and dynamics terms for multibody systems given a topological description. Manipulators may be free-flying, and may have closed-chain constraints. With the exception of object squeeze-force control, the algorithm does not deal with actuator redundancy. The algorithm is used to implement an automated 2D computed-torque dynamics and control package that allows joint, endpoint, orientation, momentum, and object squeeze-force control. This package obviates the need for hand-derivation of kinematics and dynamics, and is used for both simulation and experimental control. Endpoint control experiments are performed on a laboratory robot that has two arms to manipulate payloads, and uses an air bearing to achieve very-low drag characteristics. Simulations and experimental data for endpoint and object controllers are presented for the experimental robot - a complex dynamic system. There is a certain rather wide set of conditions under which CT endpoint controllers can neglect robot base accelerations (but not motions) and achieve comparable performance including base accelerations in the model. The regime over which this simplification holds is explored by simulation and experiment.
System for sterilizing objects. [cleaning space vehicle systems
NASA Technical Reports Server (NTRS)
Bryan, C. J.; Wright, E. E., Jr.; Moyers, C. V. (Inventor)
1981-01-01
A system for producing a stream of humidified sterilizing gas for sterilizing objects such as the water systems of space vehicles and the like includes a source of sterilant gas which is fed to a mixing chamber which has inlet and outlet ports. The level of the water only partially fills the mixing chamber so as to provide an empty space adjacent the top of the chamber. A heater is provided for heating the water in the chamber so as to produce a humidified atmosphere. The sterilant gas is fed through an arcuate shaped tubular member connected to the inlet port of the mixing chamber for producing a vortex type of flow of sterilant gas into the chamber for humidification. A tubular member extends from the mixing chamber for supplying the humidified sterilant gas to the object for being sterilized. Scrubbers are provided for removing the sterilant gas after use.
NASA Astrophysics Data System (ADS)
Xie, Yiyuan; Zhang, Zhendong; Song, Tingting; He, Chao; Li, Jiachao; Wang, Guijin
2016-05-01
Crosstalk noise and transmission loss are two key elements in determining the performance of optical routers. We propose a universal method for crosstalk noise and transmission loss analysis for the N-port nonblocking optical router used in photonic networks-on-chip. Utilizing this method, we study the crosstalk noise and transmission loss for the five-, six-, seven-, and eight-port optical routers. We ascertain that the crosstalk noise and transmission loss are different for different input-output pairs. For the five-port optical router, the maximum crosstalk noise ranges from 0 to -7.07 dBm, and the transmission loss ranges from -9.05 to -0.51 dB. Furthermore, based on the crosstalk noise and transmission loss, we analyze optical signal-to-noise ratio (OSNR) and bit error ratio (BER) for the five-, six-, seven-, and eight-port nonblocking optical routers. As the number of ports increases, the minimum average OSNR decreases and the average BER increases. In addition, in order to present the performance of the routers more visually, a fiber-optic communications system is designed to simulate the transmission processes of the signals of the different paths of the routers in Optisystem. The results show that the power amplitude of the input signal is obviously higher than the corresponding output signal. With this method, we can easily evaluate the transmission loss, crosstalk noise, OSNR, and BER of high-radix nonblocking optical routers and conveniently study the performance of the N-port optical router.
Platform-Independence and Scheduling In a Multi-Threaded Real-Time Simulation
NASA Technical Reports Server (NTRS)
Sugden, Paul P.; Rau, Melissa A.; Kenney, P. Sean
2001-01-01
Aviation research often relies on real-time, pilot-in-the-loop flight simulation as a means to develop new flight software, flight hardware, or pilot procedures. Often these simulations become so complex that a single processor is incapable of performing the necessary computations within a fixed time-step. Threads are an elegant means to distribute the computational work-load when running on a symmetric multi-processor machine. However, programming with threads often requires operating system specific calls that reduce code portability and maintainability. While a multi-threaded simulation allows a significant increase in the simulation complexity, it also increases the workload of a simulation operator by requiring that the operator determine which models run on which thread. To address these concerns an object-oriented design was implemented in the NASA Langley Standard Real-Time Simulation in C++ (LaSRS++) application framework. The design provides a portable and maintainable means to use threads and also provides a mechanism to automatically load balance the simulation models.
Lewin, Keith F.
1997-04-15
A multi-port valve for regulating, as a function of ambient air having varying wind velocity and wind direction in an open-field control area, the distribution of a fluid, particularly carbon dioxide (CO.sub.2) gas, in a fluid distribution system so that the control area remains generally at an elevated fluid concentration or level of said fluid. The multi-port valve generally includes a multi-port housing having a plurality of outlets therethrough disposed in a first pattern of outlets and at least one second pattern of outlets, and a movable plate having a plurality of apertures extending therethrough disposed in a first pattern of apertures and at least one second pattern of apertures. The first pattern of apertures being alignable with the first pattern of outlets and the at least one second pattern of apertures being alignable with the second pattern of outlets. The first pattern of apertures has a predetermined orientation with the at least one second pattern of apertures. For an open-field control area subject to ambient wind having a low velocity from any direction, the movable plate is positioned to equally distribute the supply of fluid in a fluid distribution system to the open-field control area. For an open-field control area subject to ambient wind having a high velocity from a given direction, the movable plate is positioned to generally distribute a supply of fluid in a fluid distribution system to that portion of the open-field control area located upwind.
Lewin, K.F.
1997-04-15
A multi-port valve is described for regulating, as a function of ambient air having varying wind velocity and wind direction in an open-field control area, the distribution of a fluid, particularly carbon dioxide (CO{sub 2}) gas, in a fluid distribution system so that the control area remains generally at an elevated fluid concentration or level of said fluid. The multi-port valve generally includes a multi-port housing having a plurality of outlets there through disposed in a first pattern of outlets and at least one second pattern of outlets, and a movable plate having a plurality of apertures extending there through disposed in a first pattern of apertures and at least one second pattern of apertures. The first pattern of apertures being alignable with the first pattern of outlets and the at least one second pattern of apertures being alignable with the second pattern of outlets. The first pattern of apertures has a predetermined orientation with the at least one second pattern of apertures. For an open-field control area subject to ambient wind having a low velocity from any direction, the movable plate is positioned to equally distribute the supply of fluid in a fluid distribution system to the open-field control area. For an open-field control area subject to ambient wind having a high velocity from a given direction, the movable plate is positioned to generally distribute a supply of fluid in a fluid distribution system to that portion of the open-field control area located upwind. 7 figs.
NASA Technical Reports Server (NTRS)
Kolb, Mark A.
1990-01-01
Originally, computer programs for engineering design focused on detailed geometric design. Later, computer programs for algorithmically performing the preliminary design of specific well-defined classes of objects became commonplace. However, due to the need for extreme flexibility, it appears unlikely that conventional programming techniques will prove fruitful in developing computer aids for engineering conceptual design. The use of symbolic processing techniques, such as object-oriented programming and constraint propagation, facilitate such flexibility. Object-oriented programming allows programs to be organized around the objects and behavior to be simulated, rather than around fixed sequences of function- and subroutine-calls. Constraint propagation allows declarative statements to be understood as designating multi-directional mathematical relationships among all the variables of an equation, rather than as unidirectional assignments to the variable on the left-hand side of the equation, as in conventional computer programs. The research has concentrated on applying these two techniques to the development of a general-purpose computer aid for engineering conceptual design. Object-oriented programming techniques are utilized to implement a user-extensible database of design components. The mathematical relationships which model both geometry and physics of these components are managed via constraint propagation. In addition, to this component-based hierarchy, special-purpose data structures are provided for describing component interactions and supporting state-dependent parameters. In order to investigate the utility of this approach, a number of sample design problems from the field of aerospace engineering were implemented using the prototype design tool, Rubber Airplane. The additional level of organizational structure obtained by representing design knowledge in terms of components is observed to provide greater convenience to the program user, and to result in a database of engineering information which is easier both to maintain and to extend.
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Basham, Bryan D.
1989-01-01
CONFIG is a modeling and simulation tool prototype for analyzing the normal and faulty qualitative behaviors of engineered systems. Qualitative modeling and discrete-event simulation have been adapted and integrated, to support early development, during system design, of software and procedures for management of failures, especially in diagnostic expert systems. Qualitative component models are defined in terms of normal and faulty modes and processes, which are defined by invocation statements and effect statements with time delays. System models are constructed graphically by using instances of components and relations from object-oriented hierarchical model libraries. Extension and reuse of CONFIG models and analysis capabilities in hybrid rule- and model-based expert fault-management support systems are discussed.
Simulation of a Rotorcraft in Turbulent Flows
1991-09-01
Knot) Aircraft Parallel Aircraft Parallel Aircraft Parallel To Ship’s To Port-To-Star- To Starboard- Centerline board Landing To-Port Landing Lineup ...Line Lineup Line 345 to 015/35 340 to 005/45 345 to 005145 016 t,) 040/30 006 to 035!35 006 to 025/40 041 to 180/45 036 to 050/30 026 to 040/30 181 to...WIND /FRA3 LOW REYNOLD’S NUMBER AERODYNAMICS FOR NACA0012 AIRFOIL REQUIRES DS/DM NACA0012/AIRFOIL NO SEQUENTIAL FILES REQUIRED INPUT FOR FORCE FRA3
Object-oriented requirements analysis: A quick tour
NASA Technical Reports Server (NTRS)
Berard, Edward V.
1990-01-01
Of all the approaches to software development, an object-oriented approach appears to be both the most beneficial and the most popular. The description of the object-oriented approach is presented in the form of the view graphs.
High Performance Object-Oriented Scientific Programming in Fortran 90
NASA Technical Reports Server (NTRS)
Norton, Charles D.; Decyk, Viktor K.; Szymanski, Boleslaw K.
1997-01-01
We illustrate how Fortran 90 supports object-oriented concepts by example of plasma particle computations on the IBM SP. Our experience shows that Fortran 90 and object-oriented methodology give high performance while providing a bridge from Fortran 77 legacy codes to modern programming principles. All of our object-oriented Fortran 90 codes execute more quickly thatn the equeivalent C++ versions, yet the abstraction modelling capabilities used for scentific programming are comparably powereful.
Parallel tempering Monte Carlo simulations of lysozyme orientation on charged surfaces
NASA Astrophysics Data System (ADS)
Xie, Yun; Zhou, Jian; Jiang, Shaoyi
2010-02-01
In this work, the parallel tempering Monte Carlo (PTMC) algorithm is applied to accurately and efficiently identify the global-minimum-energy orientation of a protein adsorbed on a surface in a single simulation. When applying the PTMC method to simulate lysozyme orientation on charged surfaces, it is found that lysozyme could easily be adsorbed on negatively charged surfaces with "side-on" and "back-on" orientations. When driven by dominant electrostatic interactions, lysozyme tends to be adsorbed on negatively charged surfaces with the side-on orientation for which the active site of lysozyme faces sideways. The side-on orientation agrees well with the experimental results where the adsorbed orientation of lysozyme is determined by electrostatic interactions. As the contribution from van der Waals interactions gradually dominates, the back-on orientation becomes the preferred one. For this orientation, the active site of lysozyme faces outward, which conforms to the experimental results where the orientation of adsorbed lysozyme is co-determined by electrostatic interactions and van der Waals interactions. It is also found that despite of its net positive charge, lysozyme could be adsorbed on positively charged surfaces with both "end-on" and back-on orientations owing to the nonuniform charge distribution over lysozyme surface and the screening effect from ions in solution. The PTMC simulation method provides a way to determine the preferred orientation of proteins on surfaces for biosensor and biomaterial applications.
Characterization of Orbital Debris Photometric Properties Derived from Laboratory-Based Measurements
NASA Technical Reports Server (NTRS)
Cowardin, Heather; Seitzer, Pat; Abercromby, Kira; Barker, Ed; Schildknecht, Thomas
2010-01-01
Capitalizing on optical data products and applying them to generate a more complete understanding of orbital space objects, is a key objective of NASA's Optical Measurement Program, and a primary objective for the creation of the Optical Measurements Center(OMC). The OMC attempts to emulate space-based illumination conditions using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. The data acquired in the OMC are a function of known shape, size, and material. These three physical parameters are key to understanding the orbital debris environment in more depth. For optical observations, one must rely on spectroscopic or photometric measurements to ascertain an object's material type. Determination of an object s shape using remote observations is more complicated due to the various light scattering properties each object present and is a subject that requires more study. It is much easier to look at the periodicity of the light curve and analyze its structure for rotation. In order to best simulate the orbital debris population, three main sources were used as test fragments for optical measurements: flight-ready materials, destructive hypervelocity testing (simulating on-orbit collisions) and destructive pressure testing (simulating on-orbit explosions). Laboratory optical characteristics of fragments were measured, including light curve shape, phase angle dependence, and photometric and spectroscopic color indices. These characteristics were then compared with similar optical measurements acquired from telescopic observations in order to correlate remote and laboratory properties with the intent of ascertaining the intrinsic properties of the observed orbital debris
Comparative study of bowtie and patient scatter in diagnostic CT
NASA Astrophysics Data System (ADS)
Prakash, Prakhar; Boudry, John M.
2017-03-01
A fast, GPU accelerated Monte Carlo engine for simulating relevant photon interaction processes over the diagnostic energy range in third-generation CT systems was developed to study the relative contributions of bowtie and object scatter to the total scatter reaching an imaging detector. Primary and scattered projections for an elliptical water phantom (major axis set to 300mm) with muscle and fat inserts were simulated for a typical diagnostic CT system as a function of anti-scatter grid (ASG) configurations. The ASG design space explored grid orientation, i.e. septa either a) parallel or b) parallel and perpendicular to the axis of rotation, as well as septa height. The septa material was Tungsten. The resulting projections were reconstructed and the scatter induced image degradation was quantified using common CT image metrics (such as Hounsfield Unit (HU) inaccuracy and loss in contrast), along with a qualitative review of image artifacts. Results indicate object scatter dominates total scatter in the detector channels under the shadow of the imaged object with the bowtie scatter fraction progressively increasing towards the edges of the object projection. Object scatter was shown to be the driving factor behind HU inaccuracy and contrast reduction in the simulated images while shading artifacts and elevated loss in HU accuracy at the object boundary were largely attributed to bowtie scatter. Because the impact of bowtie scatter could not be sufficiently mitigated with a large grid ratio ASG, algorithmic correction may be necessary to further mitigate these artifacts.
Three-dimensional object recognition using similar triangles and decision trees
NASA Technical Reports Server (NTRS)
Spirkovska, Lilly
1993-01-01
A system, TRIDEC, that is capable of distinguishing between a set of objects despite changes in the objects' positions in the input field, their size, or their rotational orientation in 3D space is described. TRIDEC combines very simple yet effective features with the classification capabilities of inductive decision tree methods. The feature vector is a list of all similar triangles defined by connecting all combinations of three pixels in a coarse coded 127 x 127 pixel input field. The classification is accomplished by building a decision tree using the information provided from a limited number of translated, scaled, and rotated samples. Simulation results are presented which show that TRIDEC achieves 94 percent recognition accuracy in the 2D invariant object recognition domain and 98 percent recognition accuracy in the 3D invariant object recognition domain after training on only a small sample of transformed views of the objects.
A case of complex regional pain syndrome with agnosia for object orientation.
Robinson, Gail; Cohen, Helen; Goebel, Andreas
2011-07-01
This systematic investigation of the neurocognitive correlates of complex regional pain syndrome (CRPS) in a single case also reports agnosia for object orientation in the context of persistent CRPS. We report a patient (JW) with severe long-standing CRPS who had no difficulty identifying and naming line drawings of objects presented in 1 of 4 cardinal orientations. In contrast, he was extremely poor at reorienting these objects into the correct upright orientation and in judging whether an object was upright or not. Moreover, JW made orientation errors when copying drawings of objects, and he also showed features of mirror reversal in writing single words and reading single letters. The findings are discussed in relation to accounts of visual processing. Agnosia for object orientation is the term for impaired knowledge of an object's orientation despite good recognition and naming of the same misoriented object. This defect has previously only been reported in patients with major structural brain lesions. The neuroanatomical correlates are discussed. The patient had no structural brain lesion, raising the possibility that nonstructural reorganisation of cortical networks may be responsible for his deficits. Other patients with CRPS may have related neurocognitive defects. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.
Pecevski, Dejan; Natschläger, Thomas; Schuch, Klaus
2009-01-01
The Parallel Circuit SIMulator (PCSIM) is a software package for simulation of neural circuits. It is primarily designed for distributed simulation of large scale networks of spiking point neurons. Although its computational core is written in C++, PCSIM's primary interface is implemented in the Python programming language, which is a powerful programming environment and allows the user to easily integrate the neural circuit simulator with data analysis and visualization tools to manage the full neural modeling life cycle. The main focus of this paper is to describe PCSIM's full integration into Python and the benefits thereof. In particular we will investigate how the automatically generated bidirectional interface and PCSIM's object-oriented modular framework enable the user to adopt a hybrid modeling approach: using and extending PCSIM's functionality either employing pure Python or C++ and thus combining the advantages of both worlds. Furthermore, we describe several supplementary PCSIM packages written in pure Python and tailored towards setting up and analyzing neural simulations.
Kinnear, Frances B; Fulbrook, Paul
2017-01-01
Aim To assess the utility of a multiple-encounter in-situ (MEIS) simulation as an orientation tool for multidisciplinary staff prior to opening a new paediatric emergency service. Methods A single-group pretest/post-test study was conducted. During the MEIS simulation, multidisciplinary staff with participant or observer roles managed eight children (mannequins) who attended triage with their parent/guardians (clinical facilitators) for a range of emergency presentations (structured scenarios designed to represent the expected range of presentations plus test various clinical pathways/systems). Participants were debriefed to explore clinical, systems and crisis-resource management issues. Participants also completed a pre-intervention and post-intervention questionnaire comprising statements about role confidence and orientation adequacy. Pre-test and post-test results were analysed using t-test and Wilcoxon signed rank test. Results Eighty-nine staff participated in the MEIS simulation, with the majority completing the pre-simulation and post-simulation questionnaire. There was a significant improvement in post-intervention versus pre-intervention Likert scores for role confidence and orientation adequacy (p=0.001 and <0.001, respectively); effect sizes suggested the greatest impact was on orientation adequacy. Nearly all scenarios resulted in significant increases in participants’ confidence levels. Conclusions The MEIS simulation was of utility in orientation of staff, at least with respect to self-reported role confidence and orientation adequacy. Its effectiveness in practice or compared with other orientation techniques was not assessed, but it did identify several flaws in planned systems allowing remediation prior to opening. PMID:29354279
Davison, Michelle; Kinnear, Frances B; Fulbrook, Paul
2017-10-01
To assess the utility of a multiple-encounter in-situ (MEIS) simulation as an orientation tool for multidisciplinary staff prior to opening a new paediatric emergency service. A single-group pretest/post-test study was conducted. During the MEIS simulation, multidisciplinary staff with participant or observer roles managed eight children (mannequins) who attended triage with their parent/guardians (clinical facilitators) for a range of emergency presentations (structured scenarios designed to represent the expected range of presentations plus test various clinical pathways/systems). Participants were debriefed to explore clinical, systems and crisis-resource management issues. Participants also completed a pre-intervention and post-intervention questionnaire comprising statements about role confidence and orientation adequacy. Pre-test and post-test results were analysed using t-test and Wilcoxon signed rank test. Eighty-nine staff participated in the MEIS simulation, with the majority completing the pre-simulation and post-simulation questionnaire. There was a significant improvement in post-intervention versus pre-intervention Likert scores for role confidence and orientation adequacy (p=0.001 and <0.001, respectively); effect sizes suggested the greatest impact was on orientation adequacy. Nearly all scenarios resulted in significant increases in participants' confidence levels. The MEIS simulation was of utility in orientation of staff, at least with respect to self-reported role confidence and orientation adequacy. Its effectiveness in practice or compared with other orientation techniques was not assessed, but it did identify several flaws in planned systems allowing remediation prior to opening.
Orientation priming of grasping decision for drawings of objects and blocks, and words.
Chainay, Hanna; Naouri, Lucie; Pavec, Alice
2011-05-01
This study tested the influence of orientation priming on grasping decisions. Two groups of 20 healthy participants had to select a preferred grasping orientation (horizontal, vertical) based on drawings of everyday objects, geometric blocks or object names. Three priming conditions were used: congruent, incongruent and neutral. The facilitating effects of priming were observed in the grasping decision task for drawings of objects and blocks but not object names. The visual information about congruent orientation in the prime quickened participants' responses but had no effect on response accuracy. The results are discussed in the context of the hypothesis that an object automatically potentiates grasping associated with it, and that the on-line visual information is necessary for grasping potentiation to occur. The possibility that the most frequent orientation of familiar objects might be included in object-action representation is also discussed.
Three-dimensional touch interface for medical education.
Panchaphongsaphak, Bundit; Burgkart, Rainer; Riener, Robert
2007-05-01
We present the technical principle and evaluation of a multimodal virtual reality (VR) system for medical education, called a touch simulator. This touch simulator comes with an innovative three-dimensional (3-D) touch sensitive input device. The device comprises a six-axis force-torque sensor connected to a tangible object representing the shape of an anatomical structure. Information related to the point of contact is recorded by the sensor, processed, and audiovisually displayed. The touch simulator provides a high level of user-friendliness and fidelity compared to other purely graphically oriented simulation environments. In this paper, the touch simulator has been realized as an interactive neuroanatomical training simulator. The user can visualize and manipulate graphical information of the brain surface or different cross-sectional slices by a finger-touch on a brain-like shaped tangible object. We evaluated the system by theoretical derivations, experiments, and subjective questionnaires. In the theoretical analysis, we could show that the contact point estimation error mainly depends on the accuracy and the noise of the sensor, the amount and direction of the applied force, and the geometry of the tangible object. The theoretical results could be validated by experiments: applying a normal force of 10 N on a 120 mm x 120 mm x 120 mm cube causes a maximum error of 2.5 +/- 0.7 mm. This error becomes smaller when increasing the contact force. Based on the survey results, the touch simulator may be a useful tool for assisting medical schools in the visualization of brain image data and the study of neuroanatomy.
An AI approach for scheduling space-station payloads at Kennedy Space Center
NASA Technical Reports Server (NTRS)
Castillo, D.; Ihrie, D.; Mcdaniel, M.; Tilley, R.
1987-01-01
The Payload Processing for Space-Station Operations (PHITS) is a prototype modeling tool capable of addressing many Space Station related concerns. The system's object oriented design approach coupled with a powerful user interface provide the user with capabilities to easily define and model many applications. PHITS differs from many artificial intelligence based systems in that it couples scheduling and goal-directed simulation to ensure that on-orbit requirement dates are satisfied.
Algorithms and Object-Oriented Software for Distributed Physics-Based Modeling
NASA Technical Reports Server (NTRS)
Kenton, Marc A.
2001-01-01
The project seeks to develop methods to more efficiently simulate aerospace vehicles. The goals are to reduce model development time, increase accuracy (e.g.,by allowing the integration of multidisciplinary models), facilitate collaboration by geographically- distributed groups of engineers, support uncertainty analysis and optimization, reduce hardware costs, and increase execution speeds. These problems are the subject of considerable contemporary research (e.g., Biedron et al. 1999; Heath and Dick, 2000).
C3I and Modelling and Simulation (M&S) Interoperability
2004-03-01
customised Open Source products. The technical implementation is based on the use of the eXtendend Markup Language (XML) and Python . XML is developed...to structure, store and send information. The language is focus on the description of data. Python is a portable, interpreted, object-oriented...programming language. A huge variety of usable Open Source Projects were issued by the Python Community. 3.1 Phase 1: Feasibility Studies Phase 1 was
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Brian M.; Ebeida, Mohamed Salah; Eldred, Michael S.
The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a exible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quanti cation with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components requiredmore » for iterative systems analyses, the Dakota toolkit provides a exible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a user's manual for the Dakota software and provides capability overviews and procedures for software execution, as well as a variety of example studies.« less
Predictive Rotation Profile Control for the DIII-D Tokamak
NASA Astrophysics Data System (ADS)
Wehner, W. P.; Schuster, E.; Boyer, M. D.; Walker, M. L.; Humphreys, D. A.
2017-10-01
Control-oriented modeling and model-based control of the rotation profile are employed to build a suitable control capability for aiding rotation-related physics studies at DIII-D. To obtain a control-oriented model, a simplified version of the momentum balance equation is combined with empirical representations of the momentum sources. The control approach is rooted in a Model Predictive Control (MPC) framework to regulate the rotation profile while satisfying constraints associated with the desired plasma stored energy and/or βN limit. Simple modifications allow for alternative control objectives, such as maximizing the plasma rotation while maintaining a specified input torque. Because the MPC approach can explicitly incorporate various types of constraints, this approach is well suited to a variety of control objectives, and therefore serves as a valuable tool for experimental physics studies. Closed-loop TRANSP simulations are presented to demonstrate the effectiveness of the control approach. Supported by the US DOE under DE-SC0010661 and DE-FC02-04ER54698.
ODIN-object-oriented development interface for NMR.
Jochimsen, Thies H; von Mengershausen, Michael
2004-09-01
A cross-platform development environment for nuclear magnetic resonance (NMR) experiments is presented. It allows rapid prototyping of new pulse sequences and provides a common programming interface for different system types. With this object-oriented interface implemented in C++, the programmer is capable of writing applications to control an experiment that can be executed on different measurement devices, even from different manufacturers, without the need to modify the source code. Due to the clear design of the software, new pulse sequences can be created, tested, and executed within a short time. To post-process the acquired data, an interface to well-known numerical libraries is part of the framework. This allows a transparent integration of the data processing instructions into the measurement module. The software focuses mainly on NMR imaging, but can also be used with limitations for spectroscopic experiments. To demonstrate the capabilities of the framework, results of the same experiment, carried out on two NMR imaging systems from different manufacturers are shown and compared with the results of a simulation.
Framework for Development of Object-Oriented Software
NASA Technical Reports Server (NTRS)
Perez-Poveda, Gus; Ciavarella, Tony; Nieten, Dan
2004-01-01
The Real-Time Control (RTC) Application Framework is a high-level software framework written in C++ that supports the rapid design and implementation of object-oriented application programs. This framework provides built-in functionality that solves common software development problems within distributed client-server, multi-threaded, and embedded programming environments. When using the RTC Framework to develop software for a specific domain, designers and implementers can focus entirely on the details of the domain-specific software rather than on creating custom solutions, utilities, and frameworks for the complexities of the programming environment. The RTC Framework was originally developed as part of a Space Shuttle Launch Processing System (LPS) replacement project called Checkout and Launch Control System (CLCS). As a result of the framework s development, CLCS software development time was reduced by 66 percent. The framework is generic enough for developing applications outside of the launch-processing system domain. Other applicable high-level domains include command and control systems and simulation/ training systems.
NASA Technical Reports Server (NTRS)
Drysdale, Alan; Thomas, Mark; Fresa, Mark; Wheeler, Ray
1992-01-01
Controlled Ecological Life Support System (CELSS) technology is critical to the Space Exploration Initiative. NASA's Kennedy Space Center has been performing CELSS research for several years, developing data related to CELSS design. We have developed OCAM (Object-oriented CELSS Analysis and Modeling), a CELSS modeling tool, and have used this tool to evaluate CELSS concepts, using this data. In using OCAM, a CELSS is broken down into components, and each component is modeled as a combination of containers, converters, and gates which store, process, and exchange carbon, hydrogen, and oxygen on a daily basis. Multiple crops and plant types can be simulated. Resource recovery options modeled include combustion, leaching, enzyme treatment, aerobic or anaerobic digestion, and mushroom and fish growth. Results include printouts and time-history graphs of total system mass, biomass, carbon dioxide, and oxygen quantities; energy consumption; and manpower requirements. The contributions of mass, energy, and manpower to system cost have been analyzed to compare configurations and determine appropriate research directions.
2003-04-17
KENNEDY SPACE CENTER, FLA. - The STS-116 crew take part in training in the SPACEHAB module. From left are Mission Specialist Christer Fuglesang; a trainer; Pilot Michael Oefelein; Mission Specialist Robert Curbeam; and Commander Terrence Wilcutt. Objective of their mission to the International Space Station is to deliver and attach the third port truss segment, the P5 Truss, deactivate and retract the P6 Truss Channel 4B (port-side) solar array, and reconfigure station power from 2A and 4A solar arrays. A launch date is under review
NASA Astrophysics Data System (ADS)
Cowardin, H.; Abercromby, K.; Barker, E.; Seitzer, P.; Mulrooney, M.; Schildknecht, T.
Optical observations of orbital debris offer insights that differ from radar measurements (specifically the size parameter and wavelength regime). For example, time-dependent photometric data yield lightcurves in multiple bandpasses that aid in material identification and possible periodic orientations. This data can also be used to help identify shapes and optical properties at multiple phase angles. Capitalizing on optical data products and applying them to generate a more complete understanding of orbital space objects, is a key objective of NASA's Optical Measurement Program, and a primary driver for creation of the Optical Measurements Center (OMC). The OMC attempts to emulate space-based illumination conditions using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. The OMC uses a 300 Watt Xenon arc lamp as a solar simulator, a CCD camera with Johnson/Bessel colored filters, and a robotic arm to orientate/rotate objects to simulate an objects orbit/rotational period. A high-resolution, high bandwidth (350nm-2500nm) Analytical Spectral Devices (ASD) spectrometer is also employed to baseline various material types. Since observation of GEO targets are generally restricted to the optical regime (due to radar range limitations), analysis of their properties is tailored to those revealed by optical data products. In this connection, much attention has been directed towards understanding the lightcurves of orbital debris with high area-to-mass (A/m) ratios (> 0.9 m2/kg). A small population of GEO debris was recently identified, which exhibits the properties of high A/m objects, such as variable eccentricities and inclinations -- a dynamical characteristic generally resulting from varying solar radiation pressure on high A/m objects. Materials such as multi-layered insulation (MLI) and solar panels are two examples of materials with high area-to mass ratios. Lightcurves for such objects can vary greatly (even for the same object under different illumination conditions). For example, specular reflections from multiple facets of the target surface (e.g. Mylar or Aluminized Kapton) can lead to erratic, orientation-dependent lightcurves. This paper will investigate published color photometric data for a series of orbital debris targets and compare it to the empirical photometric measurements generated in the OMC. The specific materials investigated (known to exist in GEO) are: an intact piece of MLI, separated layers of MLI, and multiple solar cells materials. Using the data acquired over specific rotational angles through different filters (B, V, R, I), a color index is acquired (B-R, R-I). As a secondary check, the spectrometer is used to define color indexes for the same material. Using these values and their associated lightcurves, this laboratory data is compared to observational data obtained on the 1m telescope of the Astronomical Institute of the University of Bern (AUIB) and the 0.9 m Small and Moderate Aperture Research Telescope System (SMARTS) telescope at Cerro Tololo Inter-American Observatory (CTIO). We will present laboratory generated lightcurves with color indexes of the high A/m materials alongside telescopic data of targets with high A/m values. We will discuss the relationship of laboratory to telescope data in the context of classification of GEO debris objects.
Observing and Simulating Diapycnal Mixing in the Canadian Arctic Archipelago
NASA Astrophysics Data System (ADS)
Hughes, K.; Klymak, J. M.; Hu, X.; Myers, P. G.; Williams, W. J.; Melling, H.
2016-12-01
High-spatial-resolution observations in the central Canadian Arctic Archipelago are analysed in conjunction with process-oriented modelling to estimate the flow pathways among the constricted waterways, understand the nature of the hydraulic control(s), and assess the influence of smaller scale (metres to kilometres) phenomena such as internal waves and topographically induced eddies. The observations repeatedly display isopycnal displacements of 50 m as dense water plunges over a sill. Depth-averaged turbulent dissipation rates near the sill estimated from these observations are typically 10-6-10-5 W kg-1, a range that is three orders of magnitude larger than that for the open ocean. These and other estimates are compared against a 1/12° basin-scale model from which we estimate diapycnal mixing rates using a volume-integrated advection-diffusion equation. Much of the mixing in this simulation is concentrated near constrictions within Barrow Strait and Queens Channel, the latter being our observational site. This suggests the model is capable of capturing topographically induced mixing. However, such mixing is expected to be enhanced in the presence of tides, a process not included in our basin scale simulation or other similar models. Quantifying this enhancement is another objective of our process-oriented modelling.
Object-Oriented Programming When Developing Software in Geology and Geophysics
NASA Astrophysics Data System (ADS)
Ahmadulin, R. K.; Bakanovskaya, L. N.
2017-01-01
The paper reviews the role of object-oriented programming when developing software in geology and geophysics. Main stages have been identified at which it is worthwhile to apply principles of object-oriented programming when developing software in geology and geophysics. The research was based on a number of problems solved in Geology and Petroleum Production Institute. Distinctive features of these problems are given and areas of application of the object-oriented approach are identified. Developing applications in the sphere of geology and geophysics has shown that the process of creating such products is simplified due to the use of object-oriented programming, firstly when designing structures for data storage and graphical user interfaces.
Flex Fuel Optimized SI and HCCI Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Guoming; Schock, Harold; Yang, Xiaojian
The central objective of the proposed work is to demonstrate an HCCI (homogeneous charge compression ignition) capable SI (spark ignited) engine that is capable of fast and smooth mode transition between SI and HCCI combustion modes. The model-based control technique was used to develop and validate the proposed control strategy for the fast and smooth combustion mode transition based upon the developed control-oriented engine; and an HCCI capable SI engine was designed and constructed using production ready two-step valve-train with electrical variable valve timing actuating system. Finally, smooth combustion mode transition was demonstrated on a metal engine within eight enginemore » cycles. The Chrysler turbocharged 2.0L I4 direct injection engine was selected as the base engine for the project and the engine was modified to fit the two-step valve with electrical variable valve timing actuating system. To develop the model-based control strategy for stable HCCI combustion and smooth combustion mode transition between SI and HCCI combustion, a control-oriented real-time engine model was developed and implemented into the MSU HIL (hardware-in-the-loop) simulation environment. The developed model was used to study the engine actuating system requirement for the smooth and fast combustion mode transition and to develop the proposed mode transition control strategy. Finally, a single cylinder optical engine was designed and fabricated for studying the HCCI combustion characteristics. Optical engine combustion tests were conducted in both SI and HCCI combustion modes and the test results were used to calibrate the developed control-oriented engine model. Intensive GT-Power simulations were conducted to determine the optimal valve lift (high and low) and the cam phasing range. Delphi was selected to be the supplier for the two-step valve-train and Denso to be the electrical variable valve timing system supplier. A test bench was constructed to develop control strategies for the electrical variable valve timing (VVT) actuating system and satisfactory electrical VVT responses were obtained. Target engine control system was designed and fabricated at MSU for both single-cylinder optical and multi-cylinder metal engines. Finally, the developed control-oriented engine model was successfully implemented into the HIL simulation environment. The Chrysler 2.0L I4 DI engine was modified to fit the two-step vale with electrical variable valve timing actuating system. A used prototype engine was used as the base engine and the cylinder head was modified for the two-step valve with electrical VVT actuating system. Engine validation tests indicated that cylinder #3 has very high blow-by and it cannot be reduced with new pistons and rings. Due to the time constraint, it was decided to convert the four-cylinder engine into a single cylinder engine by blocking both intake and exhaust ports of the unused cylinders. The model-based combustion mode transition control algorithm was developed in the MSU HIL simulation environment and the Simulink based control strategy was implemented into the target engine controller. With both single-cylinder metal engine and control strategy ready, stable HCCI combustion was achived with COV of 2.1% Motoring tests were conducted to validate the actuator transient operations including valve lift, electrical variable valve timing, electronic throttle, multiple spark and injection controls. After the actuator operations were confirmed, 15-cycle smooth combustion mode transition from SI to HCCI combustion was achieved; and fast 8-cycle smooth combustion mode transition followed. With a fast electrical variable valve timing actuator, the number of engine cycles required for mode transition can be reduced down to five. It was also found that the combustion mode transition is sensitive to the charge air and engine coolant temperatures and regulating the corresponding temperatures to the target levels during the combustion mode transition is the key for a smooth combustion mode transition. As a summary, the proposed combustion mode transition strategy using the hybrid combustion mode that starts with the SI combustion and ends with the HCCI combustion was experimentally validated on a metal engine. The proposed model-based control approach made it possible to complete the SI-HCCI combustion mode transition within eight engine cycles utilizing the well controlled hybrid combustion mode. Without intensive control-oriented engine modeling and HIL simulation study of using the hybrid combustion mode during the mode transition, it would be impossible to validate the proposed combustion mode transition strategy in a very short period.« less