Sample records for objective classification scheme

  1. OBJECTIVE METEOROLOGICAL CLASSIFICATION SCHEME DESIGNED TO ELUCIDATE OZONE'S DEPENDENCE ON METEOROLOGY

    EPA Science Inventory

    This paper utilizes a two-stage clustering approach as part of an objective classification scheme designed to elucidate 03's dependence on meteorology. hen applied to ten years (1981-1990) of meteorological data for Birmingham, Alabama, the classification scheme identified seven ...

  2. Classification schemes for knowledge translation interventions: a practical resource for researchers.

    PubMed

    Slaughter, Susan E; Zimmermann, Gabrielle L; Nuspl, Megan; Hanson, Heather M; Albrecht, Lauren; Esmail, Rosmin; Sauro, Khara; Newton, Amanda S; Donald, Maoliosa; Dyson, Michele P; Thomson, Denise; Hartling, Lisa

    2017-12-06

    As implementation science advances, the number of interventions to promote the translation of evidence into healthcare, health systems, or health policy is growing. Accordingly, classification schemes for these knowledge translation (KT) interventions have emerged. A recent scoping review identified 51 classification schemes of KT interventions to integrate evidence into healthcare practice; however, the review did not evaluate the quality of the classification schemes or provide detailed information to assist researchers in selecting a scheme for their context and purpose. This study aimed to further examine and assess the quality of these classification schemes of KT interventions, and provide information to aid researchers when selecting a classification scheme. We abstracted the following information from each of the original 51 classification scheme articles: authors' objectives; purpose of the scheme and field of application; socioecologic level (individual, organizational, community, system); adaptability (broad versus specific); target group (patients, providers, policy-makers), intent (policy, education, practice), and purpose (dissemination versus implementation). Two reviewers independently evaluated the methodological quality of the development of each classification scheme using an adapted version of the AGREE II tool. Based on these assessments, two independent reviewers reached consensus about whether to recommend each scheme for researcher use, or not. Of the 51 original classification schemes, we excluded seven that were not specific classification schemes, not accessible or duplicates. Of the remaining 44 classification schemes, nine were not recommended. Of the 35 recommended classification schemes, ten focused on behaviour change and six focused on population health. Many schemes (n = 29) addressed practice considerations. Fewer schemes addressed educational or policy objectives. Twenty-five classification schemes had broad applicability

  3. Cross-ontological analytics for alignment of different classification schemes

    DOEpatents

    Posse, Christian; Sanfilippo, Antonio P; Gopalan, Banu; Riensche, Roderick M; Baddeley, Robert L

    2010-09-28

    Quantification of the similarity between nodes in multiple electronic classification schemes is provided by automatically identifying relationships and similarities between nodes within and across the electronic classification schemes. Quantifying the similarity between a first node in a first electronic classification scheme and a second node in a second electronic classification scheme involves finding a third node in the first electronic classification scheme, wherein a first product value of an inter-scheme similarity value between the second and third nodes and an intra-scheme similarity value between the first and third nodes is a maximum. A fourth node in the second electronic classification scheme can be found, wherein a second product value of an inter-scheme similarity value between the first and fourth nodes and an intra-scheme similarity value between the second and fourth nodes is a maximum. The maximum between the first and second product values represents a measure of similarity between the first and second nodes.

  4. The search for structure - Object classification in large data sets. [for astronomers

    NASA Technical Reports Server (NTRS)

    Kurtz, Michael J.

    1988-01-01

    Research concerning object classifications schemes are reviewed, focusing on large data sets. Classification techniques are discussed, including syntactic, decision theoretic methods, fuzzy techniques, and stochastic and fuzzy grammars. Consideration is given to the automation of MK classification (Morgan and Keenan, 1973) and other problems associated with the classification of spectra. In addition, the classification of galaxies is examined, including the problems of systematic errors, blended objects, galaxy types, and galaxy clusters.

  5. A classification scheme for risk assessment methods.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stamp, Jason Edwin; Campbell, Philip LaRoche

    2004-08-01

    This report presents a classification scheme for risk assessment methods. This scheme, like all classification schemes, provides meaning by imposing a structure that identifies relationships. Our scheme is based on two orthogonal aspects--level of detail, and approach. The resulting structure is shown in Table 1 and is explained in the body of the report. Each cell in the Table represent a different arrangement of strengths and weaknesses. Those arrangements shift gradually as one moves through the table, each cell optimal for a particular situation. The intention of this report is to enable informed use of the methods so that amore » method chosen is optimal for a situation given. This report imposes structure on the set of risk assessment methods in order to reveal their relationships and thus optimize their usage.We present a two-dimensional structure in the form of a matrix, using three abstraction levels for the rows and three approaches for the columns. For each of the nine cells in the matrix we identify the method type by name and example. The matrix helps the user understand: (1) what to expect from a given method, (2) how it relates to other methods, and (3) how best to use it. Each cell in the matrix represent a different arrangement of strengths and weaknesses. Those arrangements shift gradually as one moves through the table, each cell optimal for a particular situation. The intention of this report is to enable informed use of the methods so that a method chosen is optimal for a situation given. The matrix, with type names in the cells, is introduced in Table 2 on page 13 below. Unless otherwise stated we use the word 'method' in this report to refer to a 'risk assessment method', though often times we use the full phrase. The use of the terms 'risk assessment' and 'risk management' are close enough that we do not attempt to distinguish them in this report. The remainder of this report is organized as follows. In Section 2 we provide context for

  6. Enriching User-Oriented Class Associations for Library Classification Schemes.

    ERIC Educational Resources Information Center

    Pu, Hsiao-Tieh; Yang, Chyan

    2003-01-01

    Explores the possibility of adding user-oriented class associations to hierarchical library classification schemes. Analyses a log of book circulation records from a university library in Taiwan and shows that classification schemes can be made more adaptable by analyzing circulation patterns of similar users. (Author/LRW)

  7. A Classification Scheme for Smart Manufacturing Systems’ Performance Metrics

    PubMed Central

    Lee, Y. Tina; Kumaraguru, Senthilkumaran; Jain, Sanjay; Robinson, Stefanie; Helu, Moneer; Hatim, Qais Y.; Rachuri, Sudarsan; Dornfeld, David; Saldana, Christopher J.; Kumara, Soundar

    2017-01-01

    This paper proposes a classification scheme for performance metrics for smart manufacturing systems. The discussion focuses on three such metrics: agility, asset utilization, and sustainability. For each of these metrics, we discuss classification themes, which we then use to develop a generalized classification scheme. In addition to the themes, we discuss a conceptual model that may form the basis for the information necessary for performance evaluations. Finally, we present future challenges in developing robust, performance-measurement systems for real-time, data-intensive enterprises. PMID:28785744

  8. Proposed new classification scheme for chemical injury to the human eye.

    PubMed

    Bagley, Daniel M; Casterton, Phillip L; Dressler, William E; Edelhauser, Henry F; Kruszewski, Francis H; McCulley, James P; Nussenblatt, Robert B; Osborne, Rosemarie; Rothenstein, Arthur; Stitzel, Katherine A; Thomas, Karluss; Ward, Sherry L

    2006-07-01

    Various ocular alkali burn classification schemes have been published and used to grade human chemical eye injuries for the purpose of identifying treatments and forecasting outcomes. The ILSI chemical eye injury classification scheme was developed for the additional purpose of collecting detailed human eye injury data to provide information on the mechanisms associated with chemical eye injuries. This information will have clinical application, as well as use in the development and validation of new methods to assess ocular toxicity. A panel of ophthalmic researchers proposed the new classification scheme based upon current knowledge of the mechanisms of eye injury, and their collective clinical and research experience. Additional ophthalmologists and researchers were surveyed to critique the scheme. The draft scheme was revised, and the proposed scheme represents the best consensus from at least 23 physicians and scientists. The new scheme classifies chemical eye injury into five categories based on clinical signs, symptoms, and expected outcomes. Diagnostic classification is based primarily on two clinical endpoints: (1) the extent (area) of injury at the limbus, and (2) the degree of injury (area and depth) to the cornea. The new classification scheme provides a uniform system for scoring eye injury across chemical classes, and provides enough detail for the clinician to collect data that will be relevant to identifying the mechanisms of ocular injury.

  9. 15 CFR Appendix I to Part 921 - Biogeographic Classification Scheme

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Biogeographic Classification Scheme I Appendix I to Part 921 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade... Part 921—Biogeographic Classification Scheme Acadian 1. Northern of Maine (Eastport to the Sheepscot...

  10. 15 CFR Appendix I to Part 921 - Biogeographic Classification Scheme

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Biogeographic Classification Scheme I Appendix I to Part 921 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade... Part 921—Biogeographic Classification Scheme Acadian 1. Northern of Maine (Eastport to the Sheepscot...

  11. 15 CFR Appendix I to Part 921 - Biogeographic Classification Scheme

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Biogeographic Classification Scheme I Appendix I to Part 921 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade... Part 921—Biogeographic Classification Scheme Acadian 1. Northern of Maine (Eastport to the Sheepscot...

  12. 15 CFR Appendix I to Part 921 - Biogeographic Classification Scheme

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Biogeographic Classification Scheme I Appendix I to Part 921 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade... Part 921—Biogeographic Classification Scheme Acadian 1. Northern of Maine (Eastport to the Sheepscot...

  13. 15 CFR Appendix I to Part 921 - Biogeographic Classification Scheme

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Biogeographic Classification Scheme I Appendix I to Part 921 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade... Part 921—Biogeographic Classification Scheme Acadian 1. Northern of Maine (Eastport to the Sheepscot...

  14. State of the Art in the Cramer Classification Scheme and ...

    EPA Pesticide Factsheets

    Slide presentation at the SOT FDA Colloquium on State of the Art in the Cramer Classification Scheme and Threshold of Toxicological Concern in College Park, MD. Slide presentation at the SOT FDA Colloquium on State of the Art in the Cramer Classification Scheme and Threshold of Toxicological Concern in College Park, MD.

  15. 15 CFR 921.3 - National Estuarine Research Reserve System biogeographic classification scheme and estuarine...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... System biogeographic classification scheme and estuarine typologies. 921.3 Section 921.3 Commerce and... biogeographic classification scheme and estuarine typologies. (a) National Estuarine Research Reserves are... classification scheme based on regional variations in the nation's coastal zone has been developed. The...

  16. 15 CFR 921.3 - National Estuarine Research Reserve System biogeographic classification scheme and estuarine...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... System biogeographic classification scheme and estuarine typologies. 921.3 Section 921.3 Commerce and... biogeographic classification scheme and estuarine typologies. (a) National Estuarine Research Reserves are... classification scheme based on regional variations in the nation's coastal zone has been developed. The...

  17. 15 CFR 921.3 - National Estuarine Research Reserve System biogeographic classification scheme and estuarine...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... System biogeographic classification scheme and estuarine typologies. 921.3 Section 921.3 Commerce and... biogeographic classification scheme and estuarine typologies. (a) National Estuarine Research Reserves are... classification scheme based on regional variations in the nation's coastal zone has been developed. The...

  18. 15 CFR 921.3 - National Estuarine Research Reserve System biogeographic classification scheme and estuarine...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... System biogeographic classification scheme and estuarine typologies. 921.3 Section 921.3 Commerce and... biogeographic classification scheme and estuarine typologies. (a) National Estuarine Research Reserves are... classification scheme based on regional variations in the nation's coastal zone has been developed. The...

  19. 15 CFR 921.3 - National Estuarine Research Reserve System biogeographic classification scheme and estuarine...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... System biogeographic classification scheme and estuarine typologies. 921.3 Section 921.3 Commerce and... biogeographic classification scheme and estuarine typologies. (a) National Estuarine Research Reserves are... classification scheme based on regional variations in the nation's coastal zone has been developed. The...

  20. Towards a Collaborative Intelligent Tutoring System Classification Scheme

    ERIC Educational Resources Information Center

    Harsley, Rachel

    2014-01-01

    This paper presents a novel classification scheme for Collaborative Intelligent Tutoring Systems (CITS), an emergent research field. The three emergent classifications of CITS are unstructured, semi-structured, and fully structured. While all three types of CITS offer opportunities to improve student learning gains, the full extent to which these…

  1. Diagnostic classification scheme in Iranian breast cancer patients using a decision tree.

    PubMed

    Malehi, Amal Saki

    2014-01-01

    The objective of this study was to determine a diagnostic classification scheme using a decision tree based model. The study was conducted as a retrospective case-control study in Imam Khomeini hospital in Tehran during 2001 to 2009. Data, including demographic and clinical-pathological characteristics, were uniformly collected from 624 females, 312 of them were referred with positive diagnosis of breast cancer (cases) and 312 healthy women (controls). The decision tree was implemented to develop a diagnostic classification scheme using CART 6.0 Software. The AUC (area under curve), was measured as the overall performance of diagnostic classification of the decision tree. Five variables as main risk factors of breast cancer and six subgroups as high risk were identified. The results indicated that increasing age, low age at menarche, single and divorced statues, irregular menarche pattern and family history of breast cancer are the important diagnostic factors in Iranian breast cancer patients. The sensitivity and specificity of the analysis were 66% and 86.9% respectively. The high AUC (0.82) also showed an excellent classification and diagnostic performance of the model. Decision tree based model appears to be suitable for identifying risk factors and high or low risk subgroups. It can also assists clinicians in making a decision, since it can identify underlying prognostic relationships and understanding the model is very explicit.

  2. Taxonomy and Classification Scheme for Artificial Space Objects

    DTIC Science & Technology

    2013-09-01

    filter UVB and spectroscopic measurements) and albedo (including polarimetry ). Earliest classifications of asteroids [17] were based on the filter...similarities of the asteroid colors to K0 to K2V stars. The first more complete asteroid taxonomy was based on a synthesis of polarimetry , radiometry, and

  3. Transporter taxonomy - a comparison of different transport protein classification schemes.

    PubMed

    Viereck, Michael; Gaulton, Anna; Digles, Daniela; Ecker, Gerhard F

    2014-06-01

    Currently, there are more than 800 well characterized human membrane transport proteins (including channels and transporters) and there are estimates that about 10% (approx. 2000) of all human genes are related to transport. Membrane transport proteins are of interest as potential drug targets, for drug delivery, and as a cause of side effects and drug–drug interactions. In light of the development of Open PHACTS, which provides an open pharmacological space, we analyzed selected membrane transport protein classification schemes (Transporter Classification Database, ChEMBL, IUPHAR/BPS Guide to Pharmacology, and Gene Ontology) for their ability to serve as a basis for pharmacology driven protein classification. A comparison of these membrane transport protein classification schemes by using a set of clinically relevant transporters as use-case reveals the strengths and weaknesses of the different taxonomy approaches.

  4. A Computerized English-Spanish Correlation Index to Five Biomedical Library Classification Schemes Based on MeSH*

    PubMed Central

    Muench, Eugene V.

    1971-01-01

    A computerized English/Spanish correlation index to five biomedical library classification schemes and a computerized English/Spanish, Spanish/English listings of MeSH are described. The index was accomplished by supplying appropriate classification numbers of five classification schemes (National Library of Medicine; Library of Congress; Dewey Decimal; Cunningham; Boston Medical) to MeSH and a Spanish translation of MeSH The data were keypunched, merged on magnetic tape, and sorted in a computer alphabetically by English and Spanish subject headings and sequentially by classification number. Some benefits and uses of the index are: a complete index to classification schemes based on MeSH terms; a tool for conversion of classification numbers when reclassifying collections; a Spanish index and a crude Spanish translation of five classification schemes; a data base for future applications, e.g., automatic classification. Other classification schemes, such as the UDC, and translations of MeSH into other languages can be added. PMID:5172471

  5. Monitoring nanotechnology using patent classifications: an overview and comparison of nanotechnology classification schemes

    NASA Astrophysics Data System (ADS)

    Jürgens, Björn; Herrero-Solana, Victor

    2017-04-01

    Patents are an essential information source used to monitor, track, and analyze nanotechnology. When it comes to search nanotechnology-related patents, a keyword search is often incomplete and struggles to cover such an interdisciplinary discipline. Patent classification schemes can reveal far better results since they are assigned by experts who classify the patent documents according to their technology. In this paper, we present the most important classifications to search nanotechnology patents and analyze how nanotechnology is covered in the main patent classification systems used in search systems nowadays: the International Patent Classification (IPC), the United States Patent Classification (USPC), and the Cooperative Patent Classification (CPC). We conclude that nanotechnology has a significantly better patent coverage in the CPC since considerable more nanotechnology documents were retrieved than by using other classifications, and thus, recommend its use for all professionals involved in nanotechnology patent searches.

  6. A classification scheme for edge-localized modes based on their probability distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shabbir, A., E-mail: aqsa.shabbir@ugent.be; Max Planck Institute for Plasma Physics, D-85748 Garching; Hornung, G.

    We present here an automated classification scheme which is particularly well suited to scenarios where the parameters have significant uncertainties or are stochastic quantities. To this end, the parameters are modeled with probability distributions in a metric space and classification is conducted using the notion of nearest neighbors. The presented framework is then applied to the classification of type I and type III edge-localized modes (ELMs) from a set of carbon-wall plasmas at JET. This provides a fast, standardized classification of ELM types which is expected to significantly reduce the effort of ELM experts in identifying ELM types. Further, themore » classification scheme is general and can be applied to various other plasma phenomena as well.« less

  7. A Noise-Filtered Under-Sampling Scheme for Imbalanced Classification.

    PubMed

    Kang, Qi; Chen, XiaoShuang; Li, SiSi; Zhou, MengChu

    2017-12-01

    Under-sampling is a popular data preprocessing method in dealing with class imbalance problems, with the purposes of balancing datasets to achieve a high classification rate and avoiding the bias toward majority class examples. It always uses full minority data in a training dataset. However, some noisy minority examples may reduce the performance of classifiers. In this paper, a new under-sampling scheme is proposed by incorporating a noise filter before executing resampling. In order to verify the efficiency, this scheme is implemented based on four popular under-sampling methods, i.e., Undersampling + Adaboost, RUSBoost, UnderBagging, and EasyEnsemble through benchmarks and significance analysis. Furthermore, this paper also summarizes the relationship between algorithm performance and imbalanced ratio. Experimental results indicate that the proposed scheme can improve the original undersampling-based methods with significance in terms of three popular metrics for imbalanced classification, i.e., the area under the curve, -measure, and -mean.

  8. A Job Classification Scheme for Health Manpower

    PubMed Central

    Weiss, Jeffrey H.

    1968-01-01

    The Census Bureau's occupational classification scheme and concept of the “health services industry” are inadequate tools for analysis of the changing job structure of health manpower. In an attempt to remedy their inadequacies, a new analytical framework—drawing upon the work of James Scoville on the job content of the U.S. economy—was devised. The first stage in formulating this new framework was to determine which jobs should be considered health jobs. The overall health care job family was designed to encompass jobs in which the primary technical focus or function is oriented toward the provision of health services. There are two dimensions to the job classification scheme presented here. The first describes each job in terms of job content; relative income data and minimum education and training requirements were employed as surrogate measures. By this means, health care jobs were grouped by three levels of job content: high, medium, and low. The other dimension describes each job in terms of its technical focus or function; by this means, health care jobs were grouped into nine job families. PMID:5673666

  9. A scheme for a flexible classification of dietary and health biomarkers.

    PubMed

    Gao, Qian; Praticò, Giulia; Scalbert, Augustin; Vergères, Guy; Kolehmainen, Marjukka; Manach, Claudine; Brennan, Lorraine; Afman, Lydia A; Wishart, David S; Andres-Lacueva, Cristina; Garcia-Aloy, Mar; Verhagen, Hans; Feskens, Edith J M; Dragsted, Lars O

    2017-01-01

    Biomarkers are an efficient means to examine intakes or exposures and their biological effects and to assess system susceptibility. Aided by novel profiling technologies, the biomarker research field is undergoing rapid development and new putative biomarkers are continuously emerging in the scientific literature. However, the existing concepts for classification of biomarkers in the dietary and health area may be ambiguous, leading to uncertainty about their application. In order to better understand the potential of biomarkers and to communicate their use and application, it is imperative to have a solid scheme for biomarker classification that will provide a well-defined ontology for the field. In this manuscript, we provide an improved scheme for biomarker classification based on their intended use rather than the technology or outcomes (six subclasses are suggested: food compound intake biomarkers (FCIBs), food or food component intake biomarkers (FIBs), dietary pattern biomarkers (DPBs), food compound status biomarkers (FCSBs), effect biomarkers, physiological or health state biomarkers). The application of this scheme is described in detail for the dietary and health area and is compared with previous biomarker classification for this field of research.

  10. Classification of basic facilities for high-rise residential: A survey from 100 housing scheme in Kajang area

    NASA Astrophysics Data System (ADS)

    Ani, Adi Irfan Che; Sairi, Ahmad; Tawil, Norngainy Mohd; Wahab, Siti Rashidah Hanum Abd; Razak, Muhd Zulhanif Abd

    2016-08-01

    High demand for housing and limited land in town area has increasing the provision of high-rise residential scheme. This type of housing has different owners but share the same land lot and common facilities. Thus, maintenance works of the buildings and common facilities must be well organized. The purpose of this paper is to identify and classify basic facilities for high-rise residential building hoping to improve the management of the scheme. The method adopted is a survey on 100 high-rise residential schemes that ranged from affordable housing to high cost housing by using a snowball sampling. The scope of this research is within Kajang area, which is rapidly developed with high-rise housing. The objective of the survey is to list out all facilities in every sample of the schemes. The result confirmed that pre-determined 11 classifications hold true and can provide the realistic classification for high-rise residential scheme. This paper proposed for redefinition of facilities provided to create a better management system and give a clear definition on the type of high-rise residential based on its facilities.

  11. A Classification Scheme for Glaciological AVA Responses

    NASA Astrophysics Data System (ADS)

    Booth, A.; Emir, E.

    2014-12-01

    A classification scheme is proposed for amplitude vs. angle (AVA) responses as an aid to the interpretation of seismic reflectivity in glaciological research campaigns. AVA responses are a powerful tool in characterising the material properties of glacier ice and its substrate. However, before interpreting AVA data, careful true amplitude processing is required to constrain basal reflectivity and compensate amplitude decay mechanisms, including anelastic attenuation and spherical divergence. These fundamental processing steps can be difficult to design in cases of noisy data, e.g. where a target reflection is contaminated by surface wave energy (in the case of shallow glaciers) or by energy reflected from out of the survey plane. AVA methods have equally powerful usage in estimating the fluid fill of potential hydrocarbon reservoirs. However, such applications seldom use true amplitude data and instead consider qualitative AVA responses using a well-defined classification scheme. Such schemes are often defined in terms of the characteristics of best-fit responses to the observed reflectivity, e.g. the intercept (I) and gradient (G) of a linear approximation to the AVA data. The position of the response on a cross-plot of I and G then offers a diagnostic attribute for certain fluid types. We investigate the advantages in glaciology of emulating this practice, and develop a cross-plot based on the 3-term Shuey AVA approximation (using I, G, and a curvature term C). Model AVA curves define a clear lithification trend: AVA responses to stiff (lithified) substrates fall discretely into one quadrant of the cross-plot, with positive I and negative G, whereas those to fluid-rich substrates plot diagonally opposite (in the negative I and positive G quadrant). The remaining quadrants are unoccupied by plausible single-layer responses and may therefore be diagnostic of complex thin-layer reflectivity, and the magnitude and polarity of the C term serves as a further indicator

  12. New Course Design: Classification Schemes and Information Architecture.

    ERIC Educational Resources Information Center

    Weinberg, Bella Hass

    2002-01-01

    Describes a course developed at St. John's University (New York) in the Division of Library and Information Science that relates traditional classification schemes to information architecture and Web sites. Highlights include functional aspects of information architecture, that is, the way content is structured; assignments; student reactions; and…

  13. A proposed classification scheme for Ada-based software products

    NASA Technical Reports Server (NTRS)

    Cernosek, Gary J.

    1986-01-01

    As the requirements for producing software in the Ada language become a reality for projects such as the Space Station, a great amount of Ada-based program code will begin to emerge. Recognizing the potential for varying levels of quality to result in Ada programs, what is needed is a classification scheme that describes the quality of a software product whose source code exists in Ada form. A 5-level classification scheme is proposed that attempts to decompose this potentially broad spectrum of quality which Ada programs may possess. The number of classes and their corresponding names are not as important as the mere fact that there needs to be some set of criteria from which to evaluate programs existing in Ada. An exact criteria for each class is not presented, nor are any detailed suggestions of how to effectively implement this quality assessment. The idea of Ada-based software classification is introduced and a set of requirements from which to base further research and development is suggested.

  14. A Classification Scheme for Analyzing Mobile Apps Used to Prevent and Manage Disease in Late Life

    PubMed Central

    Wang, Aiguo; Lu, Xin; Chen, Hongtu; Li, Changqun; Levkoff, Sue

    2014-01-01

    Background There are several mobile apps that offer tools for disease prevention and management among older adults, and promote health behaviors that could potentially reduce or delay the onset of disease. A classification scheme that categorizes apps could be useful to both older adult app users and app developers. Objective The objective of our study was to build and evaluate the effectiveness of a classification scheme that classifies mobile apps available for older adults in the “Health & Fitness” category of the iTunes App Store. Methods We constructed a classification scheme for mobile apps according to three dimensions: (1) the Precede-Proceed Model (PPM), which classifies mobile apps in terms of predisposing, enabling, and reinforcing factors for behavior change; (2) health care process, specifically prevention versus management of disease; and (3) health conditions, including physical health and mental health. Content analysis was conducted by the research team on health and fitness apps designed specifically for older adults, as well as those applicable to older adults, released during the months of June and August 2011 and August 2012. Face validity was assessed by a different group of individuals, who were not related to the study. A reliability analysis was conducted to confirm the accuracy of the coding scheme of the sample apps in this study. Results After applying sample inclusion and exclusion criteria, a total of 119 apps were included in the study sample, of which 26/119 (21.8%) were released in June 2011, 45/119 (37.8%) in August 2011, and 48/119 (40.3%) in August 2012. Face validity was determined by interviewing 11 people, who agreed that this scheme accurately reflected the nature of this application. The entire study sample was successfully coded, demonstrating satisfactory inter-rater reliability by two independent coders (95.8% initial concordance and 100% concordance after consensus was reached). The apps included in the study sample

  15. Simple adaptive sparse representation based classification schemes for EEG based brain-computer interface applications.

    PubMed

    Shin, Younghak; Lee, Seungchan; Ahn, Minkyu; Cho, Hohyun; Jun, Sung Chan; Lee, Heung-No

    2015-11-01

    One of the main problems related to electroencephalogram (EEG) based brain-computer interface (BCI) systems is the non-stationarity of the underlying EEG signals. This results in the deterioration of the classification performance during experimental sessions. Therefore, adaptive classification techniques are required for EEG based BCI applications. In this paper, we propose simple adaptive sparse representation based classification (SRC) schemes. Supervised and unsupervised dictionary update techniques for new test data and a dictionary modification method by using the incoherence measure of the training data are investigated. The proposed methods are very simple and additional computation for the re-training of the classifier is not needed. The proposed adaptive SRC schemes are evaluated using two BCI experimental datasets. The proposed methods are assessed by comparing classification results with the conventional SRC and other adaptive classification methods. On the basis of the results, we find that the proposed adaptive schemes show relatively improved classification accuracy as compared to conventional methods without requiring additional computation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. A Classification Scheme for Career Education Resource Materials.

    ERIC Educational Resources Information Center

    Koontz, Ronald G.

    The introductory section of the paper expresses its purpose: to devise a classification scheme for career education resource material, which will be used to develop the USOE Office of Career Education Resource Library and will be disseminated to interested State departments of education and local school districts to assist them in classifying…

  17. The GEMPAK Barnes objective analysis scheme

    NASA Technical Reports Server (NTRS)

    Koch, S. E.; Desjardins, M.; Kocin, P. J.

    1981-01-01

    GEMPAK, an interactive computer software system developed for the purpose of assimilating, analyzing, and displaying various conventional and satellite meteorological data types is discussed. The objective map analysis scheme possesses certain characteristics that allowed it to be adapted to meet the analysis needs GEMPAK. Those characteristics and the specific adaptation of the scheme to GEMPAK are described. A step-by-step guide for using the GEMPAK Barnes scheme on an interactive computer (in real time) to analyze various types of meteorological datasets is also presented.

  18. Machine learning in infrared object classification - an all-sky selection of YSO candidates

    NASA Astrophysics Data System (ADS)

    Marton, Gabor; Zahorecz, Sarolta; Toth, L. Viktor; Magnus McGehee, Peregrine; Kun, Maria

    2015-08-01

    Object classification is a fundamental and challenging problem in the era of big data. I will discuss up-to-date methods and their application to classify infrared point sources.We analysed the ALLWISE catalogue, the most recent public source catalogue of the Wide-field Infrared Survey Explorer (WISE) to compile a reliable list of Young Stellar Object (YSO) candidates. We tested and compared classical and up-to-date statistical methods as well, to discriminate source types like extragalactic objects, evolved stars, main sequence stars, objects related to the interstellar medium and YSO candidates by using their mid-IR WISE properties and associated near-IR 2MASS data.In the particular classification problem the Support Vector Machines (SVM), a class of supervised learning algorithm turned out to be the best tool. As a result we classify Class I and II YSOs with >90% accuracy while the fraction of contaminating extragalactic objects remains well below 1%, based on the number of known objects listed in the SIMBAD and VizieR databases. We compare our results to other classification schemes from the literature and show that the SVM outperforms methods that apply linear cuts on the colour-colour and colour-magnitude space. Our homogenous YSO candidate catalog can serve as an excellent pathfinder for future detailed observations of individual objects and a starting point of statistical studies that aim to add pieces to the big picture of star formation theory.

  19. FIELD TESTS OF GEOGRAPHICALLY-DEPENDENT VS. THRESHOLD-BASED WATERSHED CLASSIFICATION SCHEMES IN THE GREAT LAKES BASIN

    EPA Science Inventory

    We compared classification schemes based on watershed storage (wetland + lake area/watershed area) and forest fragmentation with a geographically-based classification scheme for two case studies involving 1) Lake Superior tributaries and 2) watersheds of riverine coastal wetlands...

  20. FIELD TESTS OF GEOGRAPHICALLY-DEPENDENT VS. THRESHOLD-BASED WATERSHED CLASSIFICATION SCHEMED IN THE GREAT LAKES BASIN

    EPA Science Inventory

    We compared classification schemes based on watershed storage (wetland + lake area/watershed area) and forest fragmentation with a geographically-based classification scheme for two case studies involving 1)Lake Superior tributaries and 2) watersheds of riverine coastal wetlands ...

  1. A physical classification scheme for blazars

    NASA Astrophysics Data System (ADS)

    Landt, Hermine; Padovani, Paolo; Perlman, Eric S.; Giommi, Paolo

    2004-06-01

    Blazars are currently separated into BL Lacertae objects (BL Lacs) and flat spectrum radio quasars based on the strength of their emission lines. This is performed rather arbitrarily by defining a diagonal line in the Ca H&K break value-equivalent width plane, following Marchã et al. We readdress this problem and put the classification scheme for blazars on firm physical grounds. We study ~100 blazars and radio galaxies from the Deep X-ray Radio Blazar Survey (DXRBS) and 2-Jy radio survey and find a significant bimodality for the narrow emission line [OIII]λ5007. This suggests the presence of two physically distinct classes of radio-loud active galactic nuclei (AGN). We show that all radio-loud AGN, blazars and radio galaxies, can be effectively separated into weak- and strong-lined sources using the [OIII]λ5007-[OII]λ3727 equivalent width plane. This plane allows one to disentangle orientation effects from intrinsic variations in radio-loud AGN. Based on DXRBS, the strongly beamed sources of the new class of weak-lined radio-loud AGN are made up of BL Lacs at the ~75 per cent level, whereas those of the strong-lined radio-loud AGN include mostly (~97 per cent) quasars.

  2. Developing a contributing factor classification scheme for Rasmussen's AcciMap: Reliability and validity evaluation.

    PubMed

    Goode, N; Salmon, P M; Taylor, N Z; Lenné, M G; Finch, C F

    2017-10-01

    One factor potentially limiting the uptake of Rasmussen's (1997) Accimap method by practitioners is the lack of a contributing factor classification scheme to guide accident analyses. This article evaluates the intra- and inter-rater reliability and criterion-referenced validity of a classification scheme developed to support the use of Accimap by led outdoor activity (LOA) practitioners. The classification scheme has two levels: the system level describes the actors, artefacts and activity context in terms of 14 codes; the descriptor level breaks the system level codes down into 107 specific contributing factors. The study involved 11 LOA practitioners using the scheme on two separate occasions to code a pre-determined list of contributing factors identified from four incident reports. Criterion-referenced validity was assessed by comparing the codes selected by LOA practitioners to those selected by the method creators. Mean intra-rater reliability scores at the system (M = 83.6%) and descriptor (M = 74%) levels were acceptable. Mean inter-rater reliability scores were not consistently acceptable for both coding attempts at the system level (M T1  = 68.8%; M T2  = 73.9%), and were poor at the descriptor level (M T1  = 58.5%; M T2  = 64.1%). Mean criterion referenced validity scores at the system level were acceptable (M T1  = 73.9%; M T2  = 75.3%). However, they were not consistently acceptable at the descriptor level (M T1  = 67.6%; M T2  = 70.8%). Overall, the results indicate that the classification scheme does not currently satisfy reliability and validity requirements, and that further work is required. The implications for the design and development of contributing factors classification schemes are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Classification scheme for phenomenological universalities in growth problems in physics and other sciences.

    PubMed

    Castorina, P; Delsanto, P P; Guiot, C

    2006-05-12

    A classification in universality classes of broad categories of phenomenologies, belonging to physics and other disciplines, may be very useful for a cross fertilization among them and for the purpose of pattern recognition and interpretation of experimental data. We present here a simple scheme for the classification of nonlinear growth problems. The success of the scheme in predicting and characterizing the well known Gompertz, West, and logistic models, suggests to us the study of a hitherto unexplored class of nonlinear growth problems.

  4. Social Constructivism: Botanical Classification Schemes of Elementary School Children.

    ERIC Educational Resources Information Center

    Tull, Delena

    The assertion that there is a social component to children's construction of knowledge about natural phenomena is supported by evidence from an examination of children's classification schemes for plants. An ethnographic study was conducted with nine sixth grade children in central Texas. The children classified plants in the outdoors, in a…

  5. Modern radiosurgical and endovascular classification schemes for brain arteriovenous malformations.

    PubMed

    Tayebi Meybodi, Ali; Lawton, Michael T

    2018-05-04

    Stereotactic radiosurgery (SRS) and endovascular techniques are commonly used for treating brain arteriovenous malformations (bAVMs). They are usually used as ancillary techniques to microsurgery but may also be used as solitary treatment options. Careful patient selection requires a clear estimate of the treatment efficacy and complication rates for the individual patient. As such, classification schemes are an essential part of patient selection paradigm for each treatment modality. While the Spetzler-Martin grading system and its subsequent modifications are commonly used for microsurgical outcome prediction for bAVMs, the same system(s) may not be easily applicable to SRS and endovascular therapy. Several radiosurgical- and endovascular-based grading scales have been proposed for bAVMs. However, a comprehensive review of these systems including a discussion on their relative advantages and disadvantages is missing. This paper is dedicated to modern classification schemes designed for SRS and endovascular techniques.

  6. A new scheme for urban impervious surface classification from SAR images

    NASA Astrophysics Data System (ADS)

    Zhang, Hongsheng; Lin, Hui; Wang, Yunpeng

    2018-05-01

    Urban impervious surfaces have been recognized as a significant indicator for various environmental and socio-economic studies. There is an increasingly urgent demand for timely and accurate monitoring of the impervious surfaces with satellite technology from local to global scales. In the past decades, optical remote sensing has been widely employed for this task with various techniques. However, there are still a range of challenges, e.g. handling cloud contamination on optical data. Therefore, the Synthetic Aperture Radar (SAR) was introduced for the challenging task because it is uniquely all-time- and all-weather-capable. Nevertheless, with an increasing number of SAR data applied, the methodology used for impervious surfaces classification remains unchanged from the methods used for optical datasets. This shortcoming has prevented the community from fully exploring the potential of using SAR data for impervious surfaces classification. We proposed a new scheme that is comparable to the well-known and fundamental Vegetation-Impervious surface-Soil (V-I-S) model for mapping urban impervious surfaces. Three scenes of fully polarimetric Radsarsat-2 data for the cities of Shenzhen, Hong Kong and Macau were employed to test and validate the proposed methodology. Experimental results indicated that the overall accuracy and Kappa coefficient were 96.00% and 0.8808 in Shenzhen, 93.87% and 0.8307 in Hong Kong and 97.48% and 0.9354 in Macau, indicating the applicability and great potential of the new scheme for impervious surfaces classification using polarimetric SAR data. Comparison with the traditional scheme indicated that this new scheme was able to improve the overall accuracy by up to 4.6% and Kappa coefficient by up to 0.18.

  7. Computer classification of remotely sensed multispectral image data by extraction and classification of homogeneous objects

    NASA Technical Reports Server (NTRS)

    Kettig, R. L.

    1975-01-01

    A method of classification of digitized multispectral images is developed and experimentally evaluated on actual earth resources data collected by aircraft and satellite. The method is designed to exploit the characteristic dependence between adjacent states of nature that is neglected by the more conventional simple-symmetric decision rule. Thus contextual information is incorporated into the classification scheme. The principle reason for doing this is to improve the accuracy of the classification. For general types of dependence this would generally require more computation per resolution element than the simple-symmetric classifier. But when the dependence occurs in the form of redundance, the elements can be classified collectively, in groups, therby reducing the number of classifications required.

  8. A new classification scheme for periodontal and peri-implant diseases and conditions - Introduction and key changes from the 1999 classification.

    PubMed

    G Caton, Jack; Armitage, Gary; Berglundh, Tord; Chapple, Iain L C; Jepsen, Søren; S Kornman, Kenneth; L Mealey, Brian; Papapanou, Panos N; Sanz, Mariano; S Tonetti, Maurizio

    2018-06-01

    A classification scheme for periodontal and peri-implant diseases and conditions is necessary for clinicians to properly diagnose and treat patients as well as for scientists to investigate etiology, pathogenesis, natural history, and treatment of the diseases and conditions. This paper summarizes the proceedings of the World Workshop on the Classification of Periodontal and Peri-implant Diseases and Conditions. The workshop was co-sponsored by the American Academy of Periodontology (AAP) and the European Federation of Periodontology (EFP) and included expert participants from all over the world. Planning for the conference, which was held in Chicago on November 9 to 11, 2017, began in early 2015. An organizing committee from the AAP and EFP commissioned 19 review papers and four consensus reports covering relevant areas in periodontology and implant dentistry. The authors were charged with updating the 1999 classification of periodontal diseases and conditions and developing a similar scheme for peri-implant diseases and conditions. Reviewers and workgroups were also asked to establish pertinent case definitions and to provide diagnostic criteria to aid clinicians in the use of the new classification. All findings and recommendations of the workshop were agreed to by consensus. This introductory paper presents an overview for the new classification of periodontal and peri-implant diseases and conditions, along with a condensed scheme for each of four workgroup sections, but readers are directed to the pertinent consensus reports and review papers for a thorough discussion of the rationale, criteria, and interpretation of the proposed classification. Changes to the 1999 classification are highlighted and discussed. Although the intent of the workshop was to base classification on the strongest available scientific evidence, lower level evidence and expert opinion were inevitably used whenever sufficient research data were unavailable. The scope of this workshop was

  9. A new classification scheme for periodontal and peri-implant diseases and conditions - Introduction and key changes from the 1999 classification.

    PubMed

    G Caton, Jack; Armitage, Gary; Berglundh, Tord; Chapple, Iain L C; Jepsen, Søren; S Kornman, Kenneth; L Mealey, Brian; Papapanou, Panos N; Sanz, Mariano; S Tonetti, Maurizio

    2018-06-01

    A classification scheme for periodontal and peri-implant diseases and conditions is necessary for clinicians to properly diagnose and treat patients as well as for scientists to investigate etiology, pathogenesis, natural history, and treatment of the diseases and conditions. This paper summarizes the proceedings of the World Workshop on the Classification of Periodontal and Peri-implant Diseases and Conditions. The workshop was co-sponsored by the American Academy of Periodontology (AAP) and the European Federation of Periodontology (EFP) and included expert participants from all over the world. Planning for the conference, which was held in Chicago on November 9 to 11, 2017, began in early 2015. An organizing committee from the AAP and EFP commissioned 19 review papers and four consensus reports covering relevant areas in periodontology and implant dentistry. The authors were charged with updating the 1999 classification of periodontal diseases and conditions and developing a similar scheme for peri-implant diseases and conditions. Reviewers and workgroups were also asked to establish pertinent case definitions and to provide diagnostic criteria to aid clinicians in the use of the new classification. All findings and recommendations of the workshop were agreed to by consensus. This introductory paper presents an overview for the new classification of periodontal and peri-implant diseases and conditions, along with a condensed scheme for each of four workgroup sections, but readers are directed to the pertinent consensus reports and review papers for a thorough discussion of the rationale, criteria, and interpretation of the proposed classification. Changes to the 1999 classification are highlighted and discussed. Although the intent of the workshop was to base classification on the strongest available scientific evidence, lower level evidence and expert opinion were inevitably used whenever sufficient research data were unavailable. The scope of this workshop was

  10. 14 CFR Section 16 - Objective Classification-Discontinued Operations

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Objective Classification-Discontinued Operations Section 16 Section 16 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION... AIR CARRIERS Profit and Loss Classification Section 16 Objective Classification—Discontinued...

  11. Subordinate-level object classification reexamined.

    PubMed

    Biederman, I; Subramaniam, S; Bar, M; Kalocsai, P; Fiser, J

    1999-01-01

    The classification of a table as round rather than square, a car as a Mazda rather than a Ford, a drill bit as 3/8-inch rather than 1/4-inch, and a face as Tom have all been regarded as a single process termed "subordinate classification." Despite the common label, the considerable heterogeneity of the perceptual processing required to achieve such classifications requires, minimally, a more detailed taxonomy. Perceptual information relevant to subordinate-level shape classifications can be presumed to vary on continua of (a) the type of distinctive information that is present, nonaccidental or metric, (b) the size of the relevant contours or surfaces, and (c) the similarity of the to-be-discriminated features, such as whether a straight contour has to be distinguished from a contour of low curvature versus high curvature. We consider three, relatively pure cases. Case 1 subordinates may be distinguished by a representation, a geon structural description (GSD), specifying a nonaccidental characterization of an object's large parts and the relations among these parts, such as a round table versus a square table. Case 2 subordinates are also distinguished by GSDs, except that the distinctive GSDs are present at a small scale in a complex object so the location and mapping of the GSDs are contingent on an initial basic-level classification, such as when we use a logo to distinguish various makes of cars. Expertise for Cases 1 and 2 can be easily achieved through specification, often verbal, of the GSDs. Case 3 subordinates, which have furnished much of the grist for theorizing with "view-based" template models, require fine metric discriminations. Cases 1 and 2 account for the overwhelming majority of shape-based basic- and subordinate-level object classifications that people can and do make in their everyday lives. These classifications are typically made quickly, accurately, and with only modest costs of viewpoint changes. Whereas the activation of an array of

  12. 14 CFR Section 17 - Objective Classification-Extraordinary Items

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Objective Classification-Extraordinary Items Section 17 Section 17 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION... AIR CARRIERS Profit and Loss Classification Section 17 Objective Classification—Extraordinary Items...

  13. Inter-sectoral costs and benefits of mental health prevention: towards a new classification scheme.

    PubMed

    Drost, Ruben M W A; Paulus, Aggie T G; Ruwaard, Dirk; Evers, Silvia M A A

    2013-12-01

    Many preventive interventions for mental disorders have costs and benefits that spill over to sectors outside the healthcare sector. Little is known about these "inter-sectoral costs and benefits" (ICBs) of prevention. However, to achieve an efficient allocation of scarce resources, insights on ICBs are indispensable. The main aim was to identify the ICBs related to the prevention of mental disorders and provide a sector-specific classification scheme for these ICBs. Using PubMed, a literature search was conducted for ICBs of mental disorders and related (psycho)social effects. A policy perspective was used to build the scheme's structure, which was adapted to the outcomes of the literature search. In order to validate the scheme's international applicability inside and outside the mental health domain, semi-structured interviews were conducted with (inter)national experts in the broad fields of health promotion and disease prevention. The searched-for items appeared in a total of 52 studies. The ICBs found were classified in one of four sectors: "Education", "Labor and Social Security", "Household and Leisure" or "Criminal Justice System". Psycho(social) effects were placed in a separate section under "Individual and Family". Based on interviews, the scheme remained unadjusted, apart from adding a population-based dimension. This is the first study which offers a sector-specific classification of ICBs. Given the explorative nature of the study, no guidelines on sector-specific classification of ICBs were available. Nevertheless, the classification scheme was acknowledged by an international audience and could therefore provide added value to researchers and policymakers in the field of mental health economics and prevention. The identification and classification of ICBs offers decision makers supporting information on how to optimally allocate scarce resources with respect to preventive interventions for mental disorders. By exploring a new area of research, which

  14. Haptic Classification of Common Objects: Knowledge-Driven Exploration.

    ERIC Educational Resources Information Center

    Lederman, Susan J.; Klatzky, Roberta L.

    1990-01-01

    Theoretical and empirical issues relating to haptic exploration and the representation of common objects during haptic classification were investigated in 3 experiments involving a total of 112 college students. Results are discussed in terms of a computational model of human haptic object classification with implications for dextrous robot…

  15. The Nutraceutical Bioavailability Classification Scheme: Classifying Nutraceuticals According to Factors Limiting their Oral Bioavailability.

    PubMed

    McClements, David Julian; Li, Fang; Xiao, Hang

    2015-01-01

    The oral bioavailability of a health-promoting dietary component (nutraceutical) may be limited by various physicochemical and physiological phenomena: liberation from food matrices, solubility in gastrointestinal fluids, interaction with gastrointestinal components, chemical degradation or metabolism, and epithelium cell permeability. Nutraceutical bioavailability can therefore be improved by designing food matrices that control their bioaccessibility (B*), absorption (A*), and transformation (T*) within the gastrointestinal tract (GIT). This article reviews the major factors influencing the gastrointestinal fate of nutraceuticals, and then uses this information to develop a new scheme to classify the major factors limiting nutraceutical bioavailability: the nutraceutical bioavailability classification scheme (NuBACS). This new scheme is analogous to the biopharmaceutical classification scheme (BCS) used by the pharmaceutical industry to classify drug bioavailability, but it contains additional factors important for understanding nutraceutical bioavailability in foods. The article also highlights potential strategies for increasing the oral bioavailability of nutraceuticals based on their NuBACS designation (B*A*T*).

  16. Validation of a selective ensemble-based classification scheme for myoelectric control using a three-dimensional Fitts' Law test.

    PubMed

    Scheme, Erik J; Englehart, Kevin B

    2013-07-01

    When controlling a powered upper limb prosthesis it is important not only to know how to move the device, but also when not to move. A novel approach to pattern recognition control, using a selective multiclass one-versus-one classification scheme has been shown to be capable of rejecting unintended motions. This method was shown to outperform other popular classification schemes when presented with muscle contractions that did not correspond to desired actions. In this work, a 3-D Fitts' Law test is proposed as a suitable alternative to using virtual limb environments for evaluating real-time myoelectric control performance. The test is used to compare the selective approach to a state-of-the-art linear discriminant analysis classification based scheme. The framework is shown to obey Fitts' Law for both control schemes, producing linear regression fittings with high coefficients of determination (R(2) > 0.936). Additional performance metrics focused on quality of control are discussed and incorporated in the evaluation. Using this framework the selective classification based scheme is shown to produce significantly higher efficiency and completion rates, and significantly lower overshoot and stopping distances, with no significant difference in throughput.

  17. Mammogram classification scheme using 2D-discrete wavelet and local binary pattern for detection of breast cancer

    NASA Astrophysics Data System (ADS)

    Adi Putra, Januar

    2018-04-01

    In this paper, we propose a new mammogram classification scheme to classify the breast tissues as normal or abnormal. Feature matrix is generated using Local Binary Pattern to all the detailed coefficients from 2D-DWT of the region of interest (ROI) of a mammogram. Feature selection is done by selecting the relevant features that affect the classification. Feature selection is used to reduce the dimensionality of data and features that are not relevant, in this paper the F-test and Ttest will be performed to the results of the feature extraction dataset to reduce and select the relevant feature. The best features are used in a Neural Network classifier for classification. In this research we use MIAS and DDSM database. In addition to the suggested scheme, the competent schemes are also simulated for comparative analysis. It is observed that the proposed scheme has a better say with respect to accuracy, specificity and sensitivity. Based on experiments, the performance of the proposed scheme can produce high accuracy that is 92.71%, while the lowest accuracy obtained is 77.08%.

  18. A new classification scheme of plastic wastes based upon recycling labels.

    PubMed

    Özkan, Kemal; Ergin, Semih; Işık, Şahin; Işıklı, Idil

    2015-01-01

    Since recycling of materials is widely assumed to be environmentally and economically beneficial, reliable sorting and processing of waste packaging materials such as plastics is very important for recycling with high efficiency. An automated system that can quickly categorize these materials is certainly needed for obtaining maximum classification while maintaining high throughput. In this paper, first of all, the photographs of the plastic bottles have been taken and several preprocessing steps were carried out. The first preprocessing step is to extract the plastic area of a bottle from the background. Then, the morphological image operations are implemented. These operations are edge detection, noise removal, hole removing, image enhancement, and image segmentation. These morphological operations can be generally defined in terms of the combinations of erosion and dilation. The effect of bottle color as well as label are eliminated using these operations. Secondly, the pixel-wise intensity values of the plastic bottle images have been used together with the most popular subspace and statistical feature extraction methods to construct the feature vectors in this study. Only three types of plastics are considered due to higher existence ratio of them than the other plastic types in the world. The decision mechanism consists of five different feature extraction methods including as Principal Component Analysis (PCA), Kernel PCA (KPCA), Fisher's Linear Discriminant Analysis (FLDA), Singular Value Decomposition (SVD) and Laplacian Eigenmaps (LEMAP) and uses a simple experimental setup with a camera and homogenous backlighting. Due to the giving global solution for a classification problem, Support Vector Machine (SVM) is selected to achieve the classification task and majority voting technique is used as the decision mechanism. This technique equally weights each classification result and assigns the given plastic object to the class that the most classification

  19. CANDELS Visual Classifications: Scheme, Data Release, and First Results

    NASA Astrophysics Data System (ADS)

    Kartaltepe, Jeyhan S.; Mozena, Mark; Kocevski, Dale; McIntosh, Daniel H.; Lotz, Jennifer; Bell, Eric F.; Faber, Sandy; Ferguson, Harry; Koo, David; Bassett, Robert; Bernyk, Maksym; Blancato, Kirsten; Bournaud, Frederic; Cassata, Paolo; Castellano, Marco; Cheung, Edmond; Conselice, Christopher J.; Croton, Darren; Dahlen, Tomas; de Mello, Duilia F.; DeGroot, Laura; Donley, Jennifer; Guedes, Javiera; Grogin, Norman; Hathi, Nimish; Hilton, Matt; Hollon, Brett; Koekemoer, Anton; Liu, Nick; Lucas, Ray A.; Martig, Marie; McGrath, Elizabeth; McPartland, Conor; Mobasher, Bahram; Morlock, Alice; O'Leary, Erin; Peth, Mike; Pforr, Janine; Pillepich, Annalisa; Rosario, David; Soto, Emmaris; Straughn, Amber; Telford, Olivia; Sunnquist, Ben; Trump, Jonathan; Weiner, Benjamin; Wuyts, Stijn; Inami, Hanae; Kassin, Susan; Lani, Caterina; Poole, Gregory B.; Rizer, Zachary

    2015-11-01

    We have undertaken an ambitious program to visually classify all galaxies in the five CANDELS fields down to H < 24.5 involving the dedicated efforts of over 65 individual classifiers. Once completed, we expect to have detailed morphological classifications for over 50,000 galaxies spanning 0 < z < 4 over all the fields, with classifications from 3 to 5 independent classifiers for each galaxy. Here, we present our detailed visual classification scheme, which was designed to cover a wide range of CANDELS science goals. This scheme includes the basic Hubble sequence types, but also includes a detailed look at mergers and interactions, the clumpiness of galaxies, k-corrections, and a variety of other structural properties. In this paper, we focus on the first field to be completed—GOODS-S, which has been classified at various depths. The wide area coverage spanning the full field (wide+deep+ERS) includes 7634 galaxies that have been classified by at least three different people. In the deep area of the field, 2534 galaxies have been classified by at least five different people at three different depths. With this paper, we release to the public all of the visual classifications in GOODS-S along with the Perl/Tk GUI that we developed to classify galaxies. We present our initial results here, including an analysis of our internal consistency and comparisons among multiple classifiers as well as a comparison to the Sérsic index. We find that the level of agreement among classifiers is quite good (>70% across the full magnitude range) and depends on both the galaxy magnitude and the galaxy type, with disks showing the highest level of agreement (>50%) and irregulars the lowest (<10%). A comparison of our classifications with the Sérsic index and rest-frame colors shows a clear separation between disk and spheroid populations. Finally, we explore morphological k-corrections between the V-band and H-band observations and find that a small fraction (84 galaxies in total

  20. An efficient fully unsupervised video object segmentation scheme using an adaptive neural-network classifier architecture.

    PubMed

    Doulamis, A; Doulamis, N; Ntalianis, K; Kollias, S

    2003-01-01

    In this paper, an unsupervised video object (VO) segmentation and tracking algorithm is proposed based on an adaptable neural-network architecture. The proposed scheme comprises: 1) a VO tracking module and 2) an initial VO estimation module. Object tracking is handled as a classification problem and implemented through an adaptive network classifier, which provides better results compared to conventional motion-based tracking algorithms. Network adaptation is accomplished through an efficient and cost effective weight updating algorithm, providing a minimum degradation of the previous network knowledge and taking into account the current content conditions. A retraining set is constructed and used for this purpose based on initial VO estimation results. Two different scenarios are investigated. The first concerns extraction of human entities in video conferencing applications, while the second exploits depth information to identify generic VOs in stereoscopic video sequences. Human face/ body detection based on Gaussian distributions is accomplished in the first scenario, while segmentation fusion is obtained using color and depth information in the second scenario. A decision mechanism is also incorporated to detect time instances for weight updating. Experimental results and comparisons indicate the good performance of the proposed scheme even in sequences with complicated content (object bending, occlusion).

  1. Mental Task Classification Scheme Utilizing Correlation Coefficient Extracted from Interchannel Intrinsic Mode Function.

    PubMed

    Rahman, Md Mostafizur; Fattah, Shaikh Anowarul

    2017-01-01

    In view of recent increase of brain computer interface (BCI) based applications, the importance of efficient classification of various mental tasks has increased prodigiously nowadays. In order to obtain effective classification, efficient feature extraction scheme is necessary, for which, in the proposed method, the interchannel relationship among electroencephalogram (EEG) data is utilized. It is expected that the correlation obtained from different combination of channels will be different for different mental tasks, which can be exploited to extract distinctive feature. The empirical mode decomposition (EMD) technique is employed on a test EEG signal obtained from a channel, which provides a number of intrinsic mode functions (IMFs), and correlation coefficient is extracted from interchannel IMF data. Simultaneously, different statistical features are also obtained from each IMF. Finally, the feature matrix is formed utilizing interchannel correlation features and intrachannel statistical features of the selected IMFs of EEG signal. Different kernels of the support vector machine (SVM) classifier are used to carry out the classification task. An EEG dataset containing ten different combinations of five different mental tasks is utilized to demonstrate the classification performance and a very high level of accuracy is achieved by the proposed scheme compared to existing methods.

  2. Discovery of User-Oriented Class Associations for Enriching Library Classification Schemes.

    ERIC Educational Resources Information Center

    Pu, Hsiao-Tieh

    2002-01-01

    Presents a user-based approach to exploring the possibility of adding user-oriented class associations to hierarchical library classification schemes. Classes not grouped in the same subject hierarchies yet relevant to users' knowledge are obtained by analyzing a log book of a university library's circulation records, using collaborative filtering…

  3. A Classification Scheme for Adult Education. Education Libraries Bulletin, Supplement Twelve.

    ERIC Educational Resources Information Center

    Greaves, Monica A., Comp.

    This classification scheme, based on the 'facet formula' theory of Ranganathan, is designed primarily for the library of the National Institute of Adult Education in London, England. Kinds of persons being educated (educands), methods and problems of education, specific countries, specific organizations, and forms in which the information is…

  4. A new Fourier transform based CBIR scheme for mammographic mass classification: a preliminary invariance assessment

    NASA Astrophysics Data System (ADS)

    Gundreddy, Rohith Reddy; Tan, Maxine; Qui, Yuchen; Zheng, Bin

    2015-03-01

    The purpose of this study is to develop and test a new content-based image retrieval (CBIR) scheme that enables to achieve higher reproducibility when it is implemented in an interactive computer-aided diagnosis (CAD) system without significantly reducing lesion classification performance. This is a new Fourier transform based CBIR algorithm that determines image similarity of two regions of interest (ROI) based on the difference of average regional image pixel value distribution in two Fourier transform mapped images under comparison. A reference image database involving 227 ROIs depicting the verified soft-tissue breast lesions was used. For each testing ROI, the queried lesion center was systematically shifted from 10 to 50 pixels to simulate inter-user variation of querying suspicious lesion center when using an interactive CAD system. The lesion classification performance and reproducibility as the queried lesion center shift were assessed and compared among the three CBIR schemes based on Fourier transform, mutual information and Pearson correlation. Each CBIR scheme retrieved 10 most similar reference ROIs and computed a likelihood score of the queried ROI depicting a malignant lesion. The experimental results shown that three CBIR schemes yielded very comparable lesion classification performance as measured by the areas under ROC curves with the p-value greater than 0.498. However, the CBIR scheme using Fourier transform yielded the highest invariance to both queried lesion center shift and lesion size change. This study demonstrated the feasibility of improving robustness of the interactive CAD systems by adding a new Fourier transform based image feature to CBIR schemes.

  5. CANDELS Visual Classifications: Scheme, Data Release, and First Results

    NASA Technical Reports Server (NTRS)

    Kartaltepe, Jeyhan S.; Mozena, Mark; Kocevski, Dale; McIntosh, Daniel H.; Lotz, Jennifer; Bell, Eric F.; Faber, Sandy; Ferguson, Henry; Koo, David; Bassett, Robert; hide

    2014-01-01

    We have undertaken an ambitious program to visually classify all galaxies in the five CANDELS fields down to H <24.5 involving the dedicated efforts of 65 individual classifiers. Once completed, we expect to have detailed morphological classifications for over 50,000 galaxies spanning 0 < z < 4 over all the fields. Here, we present our detailed visual classification scheme, which was designed to cover a wide range of CANDELS science goals. This scheme includes the basic Hubble sequence types, but also includes a detailed look at mergers and interactions, the clumpiness of galaxies, k-corrections, and a variety of other structural properties. In this paper, we focus on the first field to be completed - GOODS-S, which has been classified at various depths. The wide area coverage spanning the full field (wide+deep+ERS) includes 7634 galaxies that have been classified by at least three different people. In the deep area of the field, 2534 galaxies have been classified by at least five different people at three different depths. With this paper, we release to the public all of the visual classifications in GOODS-S along with the Perl/Tk GUI that we developed to classify galaxies. We present our initial results here, including an analysis of our internal consistency and comparisons among multiple classifiers as well as a comparison to the Sersic index. We find that the level of agreement among classifiers is quite good and depends on both the galaxy magnitude and the galaxy type, with disks showing the highest level of agreement and irregulars the lowest. A comparison of our classifications with the Sersic index and restframe colors shows a clear separation between disk and spheroid populations. Finally, we explore morphological k-corrections between the V-band and H-band observations and find that a small fraction (84 galaxies in total) are classified as being very different between these two bands. These galaxies typically have very clumpy and extended morphology or

  6. A review of supervised object-based land-cover image classification

    NASA Astrophysics Data System (ADS)

    Ma, Lei; Li, Manchun; Ma, Xiaoxue; Cheng, Liang; Du, Peijun; Liu, Yongxue

    2017-08-01

    Object-based image classification for land-cover mapping purposes using remote-sensing imagery has attracted significant attention in recent years. Numerous studies conducted over the past decade have investigated a broad array of sensors, feature selection, classifiers, and other factors of interest. However, these research results have not yet been synthesized to provide coherent guidance on the effect of different supervised object-based land-cover classification processes. In this study, we first construct a database with 28 fields using qualitative and quantitative information extracted from 254 experimental cases described in 173 scientific papers. Second, the results of the meta-analysis are reported, including general characteristics of the studies (e.g., the geographic range of relevant institutes, preferred journals) and the relationships between factors of interest (e.g., spatial resolution and study area or optimal segmentation scale, accuracy and number of targeted classes), especially with respect to the classification accuracy of different sensors, segmentation scale, training set size, supervised classifiers, and land-cover types. Third, useful data on supervised object-based image classification are determined from the meta-analysis. For example, we find that supervised object-based classification is currently experiencing rapid advances, while development of the fuzzy technique is limited in the object-based framework. Furthermore, spatial resolution correlates with the optimal segmentation scale and study area, and Random Forest (RF) shows the best performance in object-based classification. The area-based accuracy assessment method can obtain stable classification performance, and indicates a strong correlation between accuracy and training set size, while the accuracy of the point-based method is likely to be unstable due to mixed objects. In addition, the overall accuracy benefits from higher spatial resolution images (e.g., unmanned aerial

  7. 14 CFR Section 6 - Objective Classification of Balance Sheet Elements

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Objective Classification of Balance Sheet... AIR CARRIERS Balance Sheet Classifications Section 6 Objective Classification of Balance Sheet...) Record here all general and working funds available on demand as of the date of the balance sheet which...

  8. 14 CFR Section 6 - Objective Classification of Balance Sheet Elements

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Objective Classification of Balance Sheet... AIR CARRIERS Balance Sheet Classifications Section 6 Objective Classification of Balance Sheet...) Record here all general and working funds available on demand as of the date of the balance sheet which...

  9. A new classification scheme of plastic wastes based upon recycling labels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Özkan, Kemal, E-mail: kozkan@ogu.edu.tr; Ergin, Semih, E-mail: sergin@ogu.edu.tr; Işık, Şahin, E-mail: sahini@ogu.edu.tr

    experimental setup with a camera and homogenous backlighting. Due to the giving global solution for a classification problem, Support Vector Machine (SVM) is selected to achieve the classification task and majority voting technique is used as the decision mechanism. This technique equally weights each classification result and assigns the given plastic object to the class that the most classification results agree on. The proposed classification scheme provides high accuracy rate, and also it is able to run in real-time applications. It can automatically classify the plastic bottle types with approximately 90% recognition accuracy. Besides this, the proposed methodology yields approximately 96% classification rate for the separation of PET or non-PET plastic types. It also gives 92% accuracy for the categorization of non-PET plastic types into HPDE or PP.« less

  10. Classification of childhood epilepsies in a tertiary pediatric neurology clinic using a customized classification scheme from the international league against epilepsy 2010 report.

    PubMed

    Khoo, Teik-Beng

    2013-01-01

    In its 2010 report, the International League Against Epilepsy Commission on Classification and Terminology had made a number of changes to the organization, terminology, and classification of seizures and epilepsies. This study aims to test the usefulness of this revised classification scheme on children with epilepsies aged between 0 and 18 years old. Of 527 patients, 75.1% only had 1 type of seizure and the commonest was focal seizure (61.9%). A specific electroclinical syndrome diagnosis could be made in 27.5%. Only 2.1% had a distinctive constellation. In this cohort, 46.9% had an underlying structural, metabolic, or genetic etiology. Among the important causes were pre-/perinatal insults, malformation of cortical development, intracranial infections, and neurocutaneous syndromes. However, 23.5% of the patients in our cohort were classified as having "epilepsies of unknown cause." The revised classification scheme is generally useful for pediatric patients. To make it more inclusive and clinically meaningful, some local customizations are required.

  11. DREAM: Classification scheme for dialog acts in clinical research query mediation.

    PubMed

    Hoxha, Julia; Chandar, Praveen; He, Zhe; Cimino, James; Hanauer, David; Weng, Chunhua

    2016-02-01

    Clinical data access involves complex but opaque communication between medical researchers and query analysts. Understanding such communication is indispensable for designing intelligent human-machine dialog systems that automate query formulation. This study investigates email communication and proposes a novel scheme for classifying dialog acts in clinical research query mediation. We analyzed 315 email messages exchanged in the communication for 20 data requests obtained from three institutions. The messages were segmented into 1333 utterance units. Through a rigorous process, we developed a classification scheme and applied it for dialog act annotation of the extracted utterances. Evaluation results with high inter-annotator agreement demonstrate the reliability of this scheme. This dataset is used to contribute preliminary understanding of dialog acts distribution and conversation flow in this dialog space. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. A Standardised Vocabulary for Identifying Benthic Biota and Substrata from Underwater Imagery: The CATAMI Classification Scheme

    PubMed Central

    Jordan, Alan; Rees, Tony; Gowlett-Holmes, Karen

    2015-01-01

    Imagery collected by still and video cameras is an increasingly important tool for minimal impact, repeatable observations in the marine environment. Data generated from imagery includes identification, annotation and quantification of biological subjects and environmental features within an image. To be long-lived and useful beyond their project-specific initial purpose, and to maximize their utility across studies and disciplines, marine imagery data should use a standardised vocabulary of defined terms. This would enable the compilation of regional, national and/or global data sets from multiple sources, contributing to broad-scale management studies and development of automated annotation algorithms. The classification scheme developed under the Collaborative and Automated Tools for Analysis of Marine Imagery (CATAMI) project provides such a vocabulary. The CATAMI classification scheme introduces Australian-wide acknowledged, standardised terminology for annotating benthic substrates and biota in marine imagery. It combines coarse-level taxonomy and morphology, and is a flexible, hierarchical classification that bridges the gap between habitat/biotope characterisation and taxonomy, acknowledging limitations when describing biological taxa through imagery. It is fully described, documented, and maintained through curated online databases, and can be applied across benthic image collection methods, annotation platforms and scoring methods. Following release in 2013, the CATAMI classification scheme was taken up by a wide variety of users, including government, academia and industry. This rapid acceptance highlights the scheme’s utility and the potential to facilitate broad-scale multidisciplinary studies of marine ecosystems when applied globally. Here we present the CATAMI classification scheme, describe its conception and features, and discuss its utility and the opportunities as well as challenges arising from its use. PMID:26509918

  13. A new classification scheme of European cold-water coral habitats: Implications for ecosystem-based management of the deep sea

    NASA Astrophysics Data System (ADS)

    Davies, J. S.; Guillaumont, B.; Tempera, F.; Vertino, A.; Beuck, L.; Ólafsdóttir, S. H.; Smith, C. J.; Fosså, J. H.; van den Beld, I. M. J.; Savini, A.; Rengstorf, A.; Bayle, C.; Bourillet, J.-F.; Arnaud-Haond, S.; Grehan, A.

    2017-11-01

    Cold-water corals (CWC) can form complex structures which provide refuge, nursery grounds and physical support for a diversity of other living organisms. However, irrespectively from such ecological significance, CWCs are still vulnerable to human pressures such as fishing, pollution, ocean acidification and global warming Providing coherent and representative conservation of vulnerable marine ecosystems including CWCs is one of the aims of the Marine Protected Areas networks being implemented across European seas and oceans under the EC Habitats Directive, the Marine Strategy Framework Directive and the OSPAR Convention. In order to adequately represent ecosystem diversity, these initiatives require a standardised habitat classification that organises the variety of biological assemblages and provides consistent and functional criteria to map them across European Seas. One such classification system, EUNIS, enables a broad level classification of the deep sea based on abiotic and geomorphological features. More detailed lower biotope-related levels are currently under-developed, particularly with regards to deep-water habitats (>200 m depth). This paper proposes a hierarchical CWC biotope classification scheme that could be incorporated by existing classification schemes such as EUNIS. The scheme was developed within the EU FP7 project CoralFISH to capture the variability of CWC habitats identified using a wealth of seafloor imagery datasets from across the Northeast Atlantic and Mediterranean. Depending on the resolution of the imagery being interpreted, this hierarchical scheme allows data to be recorded from broad CWC biotope categories down to detailed taxonomy-based levels, thereby providing a flexible yet valuable information level for management. The CWC biotope classification scheme identifies 81 biotopes and highlights the limitations of the classification framework and guidance provided by EUNIS, the EC Habitats Directive, OSPAR and FAO; which largely

  14. A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers

    PubMed Central

    Bennett, David A.; Blennow, Kaj; Carrillo, Maria C.; Feldman, Howard H.; Frisoni, Giovanni B.; Hampel, Harald; Jagust, William J.; Johnson, Keith A.; Knopman, David S.; Petersen, Ronald C.; Scheltens, Philip; Sperling, Reisa A.; Dubois, Bruno

    2016-01-01

    Biomarkers have become an essential component of Alzheimer disease (AD) research and because of the pervasiveness of AD pathology in the elderly, the same biomarkers are used in cognitive aging research. A number of current issues suggest that an unbiased descriptive classification scheme for these biomarkers would be useful. We propose the “A/T/N” system in which 7 major AD biomarkers are divided into 3 binary categories based on the nature of the pathophysiology that each measures. “A” refers to the value of a β-amyloid biomarker (amyloid PET or CSF Aβ42); “T,” the value of a tau biomarker (CSF phospho tau, or tau PET); and “N,” biomarkers of neurodegeneration or neuronal injury ([18F]-fluorodeoxyglucose–PET, structural MRI, or CSF total tau). Each biomarker category is rated as positive or negative. An individual score might appear as A+/T+/N−, or A+/T−/N−, etc. The A/T/N system includes the new modality tau PET. It is agnostic to the temporal ordering of mechanisms underlying AD pathogenesis. It includes all individuals in any population regardless of the mix of biomarker findings and therefore is suited to population studies of cognitive aging. It does not specify disease labels and thus is not a diagnostic classification system. It is a descriptive system for categorizing multidomain biomarker findings at the individual person level in a format that is easy to understand and use. Given the present lack of consensus among AD specialists on terminology across the clinically normal to dementia spectrum, a biomarker classification scheme will have broadest acceptance if it is independent from any one clinically defined diagnostic scheme. PMID:27371494

  15. The Selection of Computed Tomography Scanning Schemes for Lengthy Symmetric Objects

    NASA Astrophysics Data System (ADS)

    Trinh, V. B.; Zhong, Y.; Osipov, S. P.

    2017-04-01

    . The article describes the basic computed tomography scan schemes for lengthy symmetric objects: continuous (discrete) rotation with a discrete linear movement; continuous (discrete) rotation with discrete linear movement to acquire 2D projection; continuous (discrete) linear movement with discrete rotation to acquire one-dimensional projection and continuous (discrete) rotation to acquire of 2D projection. The general method to calculate the scanning time is discussed in detail. It should be extracted the comparison principle to select a scanning scheme. This is because data are the same for all scanning schemes: the maximum energy of the X-ray radiation; the power of X-ray radiation source; the angle of the X-ray cone beam; the transverse dimension of a single detector; specified resolution and the maximum time, which is need to form one point of the original image and complies the number of registered photons). It demonstrates the possibilities of the above proposed method to compare the scanning schemes. Scanning object was a cylindrical object with the mass thickness is 4 g/cm2, the effective atomic number is 15 and length is 1300 mm. It analyzes data of scanning time and concludes about the efficiency of scanning schemes. It examines the productivity of all schemes and selects the effective one.

  16. Evaluation of effectiveness of wavelet based denoising schemes using ANN and SVM for bearing condition classification.

    PubMed

    Vijay, G S; Kumar, H S; Srinivasa Pai, P; Sriram, N S; Rao, Raj B K N

    2012-01-01

    The wavelet based denoising has proven its ability to denoise the bearing vibration signals by improving the signal-to-noise ratio (SNR) and reducing the root-mean-square error (RMSE). In this paper seven wavelet based denoising schemes have been evaluated based on the performance of the Artificial Neural Network (ANN) and the Support Vector Machine (SVM), for the bearing condition classification. The work consists of two parts, the first part in which a synthetic signal simulating the defective bearing vibration signal with Gaussian noise was subjected to these denoising schemes. The best scheme based on the SNR and the RMSE was identified. In the second part, the vibration signals collected from a customized Rolling Element Bearing (REB) test rig for four bearing conditions were subjected to these denoising schemes. Several time and frequency domain features were extracted from the denoised signals, out of which a few sensitive features were selected using the Fisher's Criterion (FC). Extracted features were used to train and test the ANN and the SVM. The best denoising scheme identified, based on the classification performances of the ANN and the SVM, was found to be the same as the one obtained using the synthetic signal.

  17. Reconsideration of the scheme of the international classification of functioning, disability and health: incentives from the Netherlands for a global debate.

    PubMed

    Heerkens, Yvonne F; de Weerd, Marjolein; Huber, Machteld; de Brouwer, Carin P M; van der Veen, Sabina; Perenboom, Rom J M; van Gool, Coen H; Ten Napel, Huib; van Bon-Martens, Marja; Stallinga, Hillegonda A; van Meeteren, Nico L U

    2018-03-01

    The ICF (International Classification of Functioning, Disability and Health) framework (used worldwide to describe 'functioning' and 'disability'), including the ICF scheme (visualization of functioning as result of interaction with health condition and contextual factors), needs reconsideration. The purpose of this article is to discuss alternative ICF schemes. Reconsideration of ICF via literature review and discussions with 23 Dutch ICF experts. Twenty-six experts were invited to rank the three resulting alternative schemes. The literature review provided five themes: 1) societal developments; 2) health and research influences; 3) conceptualization of health; 4) models/frameworks of health and disability; and 5) ICF-criticism (e.g. position of 'health condition' at the top and role of 'contextual factors'). Experts concluded that the ICF scheme gives the impression that the medical perspective is dominant instead of the biopsychosocial perspective. Three alternative ICF schemes were ranked by 16 (62%) experts, resulting in one preferred scheme. There is a need for a new ICF scheme, better reflecting the ICF framework, for further (inter)national consideration. These Dutch schemes should be reviewed on a global scale, to develop a scheme that is more consistent with current and foreseen developments and changing ideas on health. Implications for Rehabilitation We propose policy makers on community, regional and (inter)national level to consider the use of the alternative schemes of the International Classification of Functioning, Disability and Health within their plans to promote functioning and health of their citizens and researchers and teachers to incorporate the alternative schemes into their research and education to emphasize the biopsychosocial paradigm. We propose to set up an international Delphi procedure involving citizens (including patients), experts in healthcare, occupational care, research, education and policy, and planning to get consensus on

  18. Underwater object classification using scattering transform of sonar signals

    NASA Astrophysics Data System (ADS)

    Saito, Naoki; Weber, David S.

    2017-08-01

    In this paper, we apply the scattering transform (ST)-a nonlinear map based off of a convolutional neural network (CNN)-to classification of underwater objects using sonar signals. The ST formalizes the observation that the filters learned by a CNN have wavelet-like structure. We achieve effective binary classification both on a real dataset of Unexploded Ordinance (UXOs), as well as synthetically generated examples. We also explore the effects on the waveforms with respect to changes in the object domain (e.g., translation, rotation, and acoustic impedance, etc.), and examine the consequences coming from theoretical results for the scattering transform. We show that the scattering transform is capable of excellent classification on both the synthetic and real problems, thanks to having more quasi-invariance properties that are well-suited to translation and rotation of the object.

  19. JOURNAL SCOPE GUIDELINES: Paper classification scheme

    NASA Astrophysics Data System (ADS)

    2005-06-01

    This scheme is used to clarify the journal's scope and enable authors and readers to more easily locate the appropriate section for their work. For each of the sections listed in the scope statement we suggest some more detailed subject areas which help define that subject area. These lists are by no means exhaustive and are intended only as a guide to the type of papers we envisage appearing in each section. We acknowledge that no classification scheme can be perfect and that there are some papers which might be placed in more than one section. We are happy to provide further advice on paper classification to authors upon request (please email jphysa@iop.org). 1. Statistical physics numerical and computational methods statistical mechanics, phase transitions and critical phenomena quantum condensed matter theory Bose-Einstein condensation strongly correlated electron systems exactly solvable models in statistical mechanics lattice models, random walks and combinatorics field-theoretical models in statistical mechanics disordered systems, spin glasses and neural networks nonequilibrium systems network theory 2. Chaotic and complex systems nonlinear dynamics and classical chaos fractals and multifractals quantum chaos classical and quantum transport cellular automata granular systems and self-organization pattern formation biophysical models 3. Mathematical physics combinatorics algebraic structures and number theory matrix theory classical and quantum groups, symmetry and representation theory Lie algebras, special functions and orthogonal polynomials ordinary and partial differential equations difference and functional equations integrable systems soliton theory functional analysis and operator theory inverse problems geometry, differential geometry and topology numerical approximation and analysis geometric integration computational methods 4. Quantum mechanics and quantum information theory coherent states eigenvalue problems supersymmetric quantum mechanics

  20. Attribution of local climate zones using a multitemporal land use/land cover classification scheme

    NASA Astrophysics Data System (ADS)

    Wicki, Andreas; Parlow, Eberhard

    2017-04-01

    Worldwide, the number of people living in an urban environment exceeds the rural population with increasing tendency. Especially in relation to global climate change, cities play a major role considering the impacts of extreme heat waves on the population. For urban planners, it is important to know which types of urban structures are beneficial for a comfortable urban climate and which actions can be taken to improve urban climate conditions. Therefore, it is essential to differ between not only urban and rural environments, but also between different levels of urban densification. To compare these built-up types within different cities worldwide, Stewart and Oke developed the concept of local climate zones (LCZ) defined by morphological characteristics. The original LCZ scheme often has considerable problems when adapted to European cities with historical city centers, including narrow streets and irregular patterns. In this study, a method to bridge the gap between a classical land use/land cover (LULC) classification and the LCZ scheme is presented. Multitemporal Landsat 8 data are used to create a high accuracy LULC map, which is linked to the LCZ by morphological parameters derived from a high-resolution digital surface model and cadastral data. A bijective combination of the different classification schemes could not be achieved completely due to overlapping threshold values and the spatially homogeneous distribution of morphological parameters, but the attribution of LCZ to the LULC classification was successful.

  1. Local Laplacian Coding From Theoretical Analysis of Local Coding Schemes for Locally Linear Classification.

    PubMed

    Pang, Junbiao; Qin, Lei; Zhang, Chunjie; Zhang, Weigang; Huang, Qingming; Yin, Baocai

    2015-12-01

    Local coordinate coding (LCC) is a framework to approximate a Lipschitz smooth function by combining linear functions into a nonlinear one. For locally linear classification, LCC requires a coding scheme that heavily determines the nonlinear approximation ability, posing two main challenges: 1) the locality making faraway anchors have smaller influences on current data and 2) the flexibility balancing well between the reconstruction of current data and the locality. In this paper, we address the problem from the theoretical analysis of the simplest local coding schemes, i.e., local Gaussian coding and local student coding, and propose local Laplacian coding (LPC) to achieve the locality and the flexibility. We apply LPC into locally linear classifiers to solve diverse classification tasks. The comparable or exceeded performances of state-of-the-art methods demonstrate the effectiveness of the proposed method.

  2. An Alternative Classification Scheme for Teaching Performance Incentives Using a Factor Analytic Approach.

    ERIC Educational Resources Information Center

    Mertler, Craig A.

    This study attempted to (1) expand the dichotomous classification scheme typically used by educators and researchers to describe teaching incentives and (2) offer administrators and teachers an alternative framework within which to develop incentive systems. Elementary, middle, and high school teachers in Ohio rated 10 commonly instituted teaching…

  3. Map Classification: A Comparison of Schemes with Special Reference to the Continent of Africa. Occasional Papers, Number 154.

    ERIC Educational Resources Information Center

    Merrett, Christopher E.

    This guide to the theory and practice of map classification begins with a discussion of the filing of maps and the function of map classification based on area and theme as illustrated by four maps of Africa. The description of the various classification systems which follows is divided into book schemes with provision for maps (including Dewey…

  4. A comparative agreement evaluation of two subaxial cervical spine injury classification systems: the AOSpine and the Allen and Ferguson schemes.

    PubMed

    Urrutia, Julio; Zamora, Tomas; Campos, Mauricio; Yurac, Ratko; Palma, Joaquin; Mobarec, Sebastian; Prada, Carlos

    2016-07-01

    We performed an agreement study using two subaxial cervical spine classification systems: the AOSpine and the Allen and Ferguson (A&F) classifications. We sought to determine which scheme allows better agreement by different evaluators and by the same evaluator on different occasions. Complete imaging studies of 65 patients with subaxial cervical spine injuries were classified by six evaluators (three spine sub-specialists and three senior orthopaedic surgery residents) using the AOSpine subaxial cervical spine classification system and the A&F scheme. The cases were displayed in a random sequence after a 6-week interval for repeat evaluation. The Kappa coefficient (κ) was used to determine inter- and intra-observer agreement. Inter-observer: considering the main AO injury types, the agreement was substantial for the AOSpine classification [κ = 0.61 (0.57-0.64)]; using AO sub-types, the agreement was moderate [κ = 0.57 (0.54-0.60)]. For the A&F classification, the agreement [κ = 0.46 (0.42-0.49)] was significantly lower than using the AOSpine scheme. Intra-observer: the agreement was substantial considering injury types [κ = 0.68 (0.62-0.74)] and considering sub-types [κ = 0.62 (0.57-0.66)]. Using the A&F classification, the agreement was also substantial [κ = 0.66 (0.61-0.71)]. No significant differences were observed between spine surgeons and orthopaedic residents in the overall inter- and intra-observer agreement, or in the inter- and intra-observer agreement of specific type of injuries. The AOSpine classification (using the four main injury types or at the sub-types level) allows a significantly better agreement than the A&F classification. The A&F scheme does not allow reliable communication between medical professionals.

  5. An evaluation of several different classification schemes - Their parameters and performance. [maximum likelihood decision for crop identification

    NASA Technical Reports Server (NTRS)

    Scholz, D.; Fuhs, N.; Hixson, M.

    1979-01-01

    The overall objective of this study was to apply and evaluate several of the currently available classification schemes for crop identification. The approaches examined were: (1) a per point Gaussian maximum likelihood classifier, (2) a per point sum of normal densities classifier, (3) a per point linear classifier, (4) a per point Gaussian maximum likelihood decision tree classifier, and (5) a texture sensitive per field Gaussian maximum likelihood classifier. Three agricultural data sets were used in the study: areas from Fayette County, Illinois, and Pottawattamie and Shelby Counties in Iowa. The segments were located in two distinct regions of the Corn Belt to sample variability in soils, climate, and agricultural practices.

  6. An Automated Scheme for the Large-Scale Survey of Herbig-Haro Objects

    NASA Astrophysics Data System (ADS)

    Deng, Licai; Yang, Ji; Zheng, Zhongyuan; Jiang, Zhaoji

    2001-04-01

    Owing to their spectral properties, Herbig-Haro (HH) objects can be discovered using photometric methods through a combination of filters, sampling the characteristic spectral lines and the nearby continuum. The data are commonly processed through direct visual inspection of the images. To make data reduction more efficient and the results more uniform and complete, an automated searching scheme for HH objects is developed to manipulate the images using IRAF. This approach helps to extract images with only intrinsic HH emissions. By using this scheme, the pointlike stellar sources and extended nebulous sources with continuum emission can be eliminated from the original images. The objects with only characteristic HH emission become prominent and can be easily picked up. In this paper our scheme is illustrated by a sample field and has been applied to our surveys for HH objects.

  7. Objects Classification by Learning-Based Visual Saliency Model and Convolutional Neural Network.

    PubMed

    Li, Na; Zhao, Xinbo; Yang, Yongjia; Zou, Xiaochun

    2016-01-01

    Humans can easily classify different kinds of objects whereas it is quite difficult for computers. As a hot and difficult problem, objects classification has been receiving extensive interests with broad prospects. Inspired by neuroscience, deep learning concept is proposed. Convolutional neural network (CNN) as one of the methods of deep learning can be used to solve classification problem. But most of deep learning methods, including CNN, all ignore the human visual information processing mechanism when a person is classifying objects. Therefore, in this paper, inspiring the completed processing that humans classify different kinds of objects, we bring forth a new classification method which combines visual attention model and CNN. Firstly, we use the visual attention model to simulate the processing of human visual selection mechanism. Secondly, we use CNN to simulate the processing of how humans select features and extract the local features of those selected areas. Finally, not only does our classification method depend on those local features, but also it adds the human semantic features to classify objects. Our classification method has apparently advantages in biology. Experimental results demonstrated that our method made the efficiency of classification improve significantly.

  8. Object Detection and Classification by Decision-Level Fusion for Intelligent Vehicle Systems.

    PubMed

    Oh, Sang-Il; Kang, Hang-Bong

    2017-01-22

    To understand driving environments effectively, it is important to achieve accurate detection and classification of objects detected by sensor-based intelligent vehicle systems, which are significantly important tasks. Object detection is performed for the localization of objects, whereas object classification recognizes object classes from detected object regions. For accurate object detection and classification, fusing multiple sensor information into a key component of the representation and perception processes is necessary. In this paper, we propose a new object-detection and classification method using decision-level fusion. We fuse the classification outputs from independent unary classifiers, such as 3D point clouds and image data using a convolutional neural network (CNN). The unary classifiers for the two sensors are the CNN with five layers, which use more than two pre-trained convolutional layers to consider local to global features as data representation. To represent data using convolutional layers, we apply region of interest (ROI) pooling to the outputs of each layer on the object candidate regions generated using object proposal generation to realize color flattening and semantic grouping for charge-coupled device and Light Detection And Ranging (LiDAR) sensors. We evaluate our proposed method on a KITTI benchmark dataset to detect and classify three object classes: cars, pedestrians and cyclists. The evaluation results show that the proposed method achieves better performance than the previous methods. Our proposed method extracted approximately 500 proposals on a 1226 × 370 image, whereas the original selective search method extracted approximately 10 6 × n proposals. We obtained classification performance with 77.72% mean average precision over the entirety of the classes in the moderate detection level of the KITTI benchmark dataset.

  9. Object Detection and Classification by Decision-Level Fusion for Intelligent Vehicle Systems

    PubMed Central

    Oh, Sang-Il; Kang, Hang-Bong

    2017-01-01

    To understand driving environments effectively, it is important to achieve accurate detection and classification of objects detected by sensor-based intelligent vehicle systems, which are significantly important tasks. Object detection is performed for the localization of objects, whereas object classification recognizes object classes from detected object regions. For accurate object detection and classification, fusing multiple sensor information into a key component of the representation and perception processes is necessary. In this paper, we propose a new object-detection and classification method using decision-level fusion. We fuse the classification outputs from independent unary classifiers, such as 3D point clouds and image data using a convolutional neural network (CNN). The unary classifiers for the two sensors are the CNN with five layers, which use more than two pre-trained convolutional layers to consider local to global features as data representation. To represent data using convolutional layers, we apply region of interest (ROI) pooling to the outputs of each layer on the object candidate regions generated using object proposal generation to realize color flattening and semantic grouping for charge-coupled device and Light Detection And Ranging (LiDAR) sensors. We evaluate our proposed method on a KITTI benchmark dataset to detect and classify three object classes: cars, pedestrians and cyclists. The evaluation results show that the proposed method achieves better performance than the previous methods. Our proposed method extracted approximately 500 proposals on a 1226×370 image, whereas the original selective search method extracted approximately 106×n proposals. We obtained classification performance with 77.72% mean average precision over the entirety of the classes in the moderate detection level of the KITTI benchmark dataset. PMID:28117742

  10. Learning object-to-class kernels for scene classification.

    PubMed

    Zhang, Lei; Zhen, Xiantong; Shao, Ling

    2014-08-01

    High-level image representations have drawn increasing attention in visual recognition, e.g., scene classification, since the invention of the object bank. The object bank represents an image as a response map of a large number of pretrained object detectors and has achieved superior performance for visual recognition. In this paper, based on the object bank representation, we propose the object-to-class (O2C) distances to model scene images. In particular, four variants of O2C distances are presented, and with the O2C distances, we can represent the images using the object bank by lower-dimensional but more discriminative spaces, called distance spaces, which are spanned by the O2C distances. Due to the explicit computation of O2C distances based on the object bank, the obtained representations can possess more semantic meanings. To combine the discriminant ability of the O2C distances to all scene classes, we further propose to kernalize the distance representation for the final classification. We have conducted extensive experiments on four benchmark data sets, UIUC-Sports, Scene-15, MIT Indoor, and Caltech-101, which demonstrate that the proposed approaches can significantly improve the original object bank approach and achieve the state-of-the-art performance.

  11. 14 CFR 16 - Objective Classification-Discontinued Operations

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... CERTIFICATED AIR CARRIERS Profit and Loss Classification Section 16 Objective Classification—Discontinued... the disposal of investor controlled companies and nontransport ventures whether sold, abandoned, spun... transport or transport-related operations. (b) This account shall be subdivided as follows by all air...

  12. Remote sensing imagery classification using multi-objective gravitational search algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Aizhu; Sun, Genyun; Wang, Zhenjie

    2016-10-01

    Simultaneous optimization of different validity measures can capture different data characteristics of remote sensing imagery (RSI) and thereby achieving high quality classification results. In this paper, two conflicting cluster validity indices, the Xie-Beni (XB) index and the fuzzy C-means (FCM) (Jm) measure, are integrated with a diversity-enhanced and memory-based multi-objective gravitational search algorithm (DMMOGSA) to present a novel multi-objective optimization based RSI classification method. In this method, the Gabor filter method is firstly implemented to extract texture features of RSI. Then, the texture features are syncretized with the spectral features to construct the spatial-spectral feature space/set of the RSI. Afterwards, cluster of the spectral-spatial feature set is carried out on the basis of the proposed method. To be specific, cluster centers are randomly generated initially. After that, the cluster centers are updated and optimized adaptively by employing the DMMOGSA. Accordingly, a set of non-dominated cluster centers are obtained. Therefore, numbers of image classification results of RSI are produced and users can pick up the most promising one according to their problem requirements. To quantitatively and qualitatively validate the effectiveness of the proposed method, the proposed classification method was applied to classifier two aerial high-resolution remote sensing imageries. The obtained classification results are compared with that produced by two single cluster validity index based and two state-of-the-art multi-objective optimization algorithms based classification results. Comparison results show that the proposed method can achieve more accurate RSI classification.

  13. Development of a Hazard Classification Scheme for Substances Used in the Fraudulent Adulteration of Foods.

    PubMed

    Everstine, Karen; Abt, Eileen; McColl, Diane; Popping, Bert; Morrison-Rowe, Sara; Lane, Richard W; Scimeca, Joseph; Winter, Carl; Ebert, Andrew; Moore, Jeffrey C; Chin, Henry B

    2018-01-01

    Food fraud, the intentional misrepresentation of the true identity of a food product or ingredient for economic gain, is a threat to consumer confidence and public health and has received increased attention from both regulators and the food industry. Following updates to food safety certification standards and publication of new U.S. regulatory requirements, we undertook a project to (i) develop a scheme to classify food fraud-related adulterants based on their potential health hazard and (ii) apply this scheme to the adulterants in a database of 2,970 food fraud records. The classification scheme was developed by a panel of experts in food safety and toxicology from the food industry, academia, and the U.S. Food and Drug Administration. Categories and subcategories were created through an iterative process of proposal, review, and validation using a subset of substances known to be associated with the fraudulent adulteration of foods. Once developed, the scheme was applied to the adulterants in the database. The resulting scheme included three broad categories: 1, potentially hazardous adulterants; 2, adulterants that are unlikely to be hazardous; and 3, unclassifiable adulterants. Categories 1 and 2 consisted of seven subcategories intended to further define the range of hazard potential for adulterants. Application of the scheme to the 1,294 adulterants in the database resulted in 45% of adulterants classified in category 1 (potentially hazardous). Twenty-seven percent of the 1,294 adulterants had a history of causing consumer illness or death, were associated with safety-related regulatory action, or were classified as allergens. These results reinforce the importance of including a consideration of food fraud-related adulterants in food safety systems. This classification scheme supports food fraud mitigation efforts and hazard identification as required in the U.S. Food Safety Modernization Act Preventive Controls Rules.

  14. A new classification scheme for treating blunt aortic injury.

    PubMed

    Starnes, Benjamin W; Lundgren, Rachel S; Gunn, Martin; Quade, Samantha; Hatsukami, Thomas S; Tran, Nam T; Mokadam, Nahush; Aldea, Gabriel

    2012-01-01

    There are numerous questions about the treatment of blunt aortic injury (BAI), including the management of small intimal tears, what injury characteristics are predictive of death from rupture, and which patients actually need intervention. We used our experience in treating BAI during the past decade to create a classification scheme based on radiographic and clinical data and to provide clear treatment guidelines. The records of patients admitted with BAI from 1999 to 2008 were retrospectively reviewed. Patients with a radiographically or operatively confirmed diagnosis (echocardiogram, computed tomography, or angiography) of BAI were included. We created a classification system based on the presence or absence of an aortic external contour abnormality, defined as an alteration in the symmetric, round shape of the aorta: (1) intimal tear (IT)-absence of aortic external contour abnormality and intimal defect and/or thrombus of <10 mm in length or width; (2) large intimal flap (LIF)-absence of aortic external contour abnormality and intimal defect and/or thrombus of ≥10 mm in length or width; (3) pseudoaneurysm-presence of aortic external contour abnormality and contained rupture; (4) rupture-presence of aortic external contour abnormality and free contrast extravasation or hemothorax at thoracotomy. We identified 140 patients with BAI. Most injuries were pseudoaneurysm (71%) at the isthmus (70%), 16.4% had an IT, 5.7% had a LIF, and 6.4% had a rupture. Survival rates by classification were IT, 87%; LIF, 100%; pseudoaneurysm, 76%; and rupture, 11% (one patient). Of the ITs, LIFs, and pseudoaneurysms treated nonoperatively, none worsened, and 65% completely healed. No patient with an IT or LIF died. Most patients with ruptures lost vital signs before presentation or in the emergency department and did not survive. Hypotension before or at hospital presentation and size of the periaortic hematoma at the level of the aortic arch predicted likelihood of death from

  15. A multiple-point spatially weighted k-NN method for object-based classification

    NASA Astrophysics Data System (ADS)

    Tang, Yunwei; Jing, Linhai; Li, Hui; Atkinson, Peter M.

    2016-10-01

    Object-based classification, commonly referred to as object-based image analysis (OBIA), is now commonly regarded as able to produce more appealing classification maps, often of greater accuracy, than pixel-based classification and its application is now widespread. Therefore, improvement of OBIA using spatial techniques is of great interest. In this paper, multiple-point statistics (MPS) is proposed for object-based classification enhancement in the form of a new multiple-point k-nearest neighbour (k-NN) classification method (MPk-NN). The proposed method first utilises a training image derived from a pre-classified map to characterise the spatial correlation between multiple points of land cover classes. The MPS borrows spatial structures from other parts of the training image, and then incorporates this spatial information, in the form of multiple-point probabilities, into the k-NN classifier. Two satellite sensor images with a fine spatial resolution were selected to evaluate the new method. One is an IKONOS image of the Beijing urban area and the other is a WorldView-2 image of the Wolong mountainous area, in China. The images were object-based classified using the MPk-NN method and several alternatives, including the k-NN, the geostatistically weighted k-NN, the Bayesian method, the decision tree classifier (DTC), and the support vector machine classifier (SVM). It was demonstrated that the new spatial weighting based on MPS can achieve greater classification accuracy relative to the alternatives and it is, thus, recommended as appropriate for object-based classification.

  16. Model Validation and Site Characterization for Early Deployment MHK Sites and Establishment of Wave Classification Scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilcher, Levi F

    Model Validation and Site Characterization for Early Deployment Marine and Hydrokinetic Energy Sites and Establishment of Wave Classification Scheme presentation from from Water Power Technologies Office Peer Review, FY14-FY16.

  17. Maxillectomy defects: a suggested classification scheme.

    PubMed

    Akinmoladun, V I; Dosumu, O O; Olusanya, A A; Ikusika, O F

    2013-06-01

    The term "maxillectomy" has been used to describe a variety of surgical procedures for a spectrum of diseases involving a diverse anatomical site. Hence, classifications of maxillectomy defects have often made communication difficult. This article highlights this problem, emphasises the need for a uniform system of classification and suggests a classification system which is simple and comprehensive. Articles related to this subject, especially those with specified classifications of maxillary surgical defects were sourced from the internet through Google, Scopus and PubMed using the search terms maxillectomy defects classification. A manual search through available literature was also done. The review of the materials revealed many classifications and modifications of classifications from the descriptive, reconstructive and prosthodontic perspectives. No globally acceptable classification exists among practitioners involved in the management of diseases in the mid-facial region. There were over 14 classifications of maxillary defects found in the English literature. Attempts made to address the inadequacies of previous classifications have tended to result in cumbersome and relatively complex classifications. A single classification that is based on both surgical and prosthetic considerations is most desirable and is hereby proposed.

  18. Semi-automatic classification of glaciovolcanic landforms: An object-based mapping approach based on geomorphometry

    NASA Astrophysics Data System (ADS)

    Pedersen, G. B. M.

    2016-02-01

    A new object-oriented approach is developed to classify glaciovolcanic landforms (Procedure A) and their landform elements boundaries (Procedure B). It utilizes the principle that glaciovolcanic edifices are geomorphometrically distinct from lava shields and plains (Pedersen and Grosse, 2014), and the approach is tested on data from Reykjanes Peninsula, Iceland. The outlined procedures utilize slope and profile curvature attribute maps (20 m/pixel) and the classified results are evaluated quantitatively through error matrix maps (Procedure A) and visual inspection (Procedure B). In procedure A, the highest obtained accuracy is 94.1%, but even simple mapping procedures provide good results (> 90% accuracy). Successful classification of glaciovolcanic landform element boundaries (Procedure B) is also achieved and this technique has the potential to delineate the transition from intraglacial to subaerial volcanic activity in orthographic view. This object-oriented approach based on geomorphometry overcomes issues with vegetation cover, which has been typically problematic for classification schemes utilizing spectral data. Furthermore, it handles complex edifice outlines well and is easily incorporated into a GIS environment, where results can be edited or fused with other mapping results. The approach outlined here is designed to map glaciovolcanic edifices within the Icelandic neovolcanic zone but may also be applied to similar subaerial or submarine volcanic settings, where steep volcanic edifices are surrounded by flat plains.

  19. The reliability of axis V of the multiaxial classification scheme.

    PubMed

    van Goor-Lambo, G

    1987-07-01

    In a reliability study concerning axis V (abnormal psychosocial situations) of the Multiaxial classification scheme for psychiatric disorders in childhood and adolescence, it was found that the level of agreement in scoring was adequate for only 2 out of 12 categories. A proposal for a modification of axis V was made, including a differentiation and regrouping of the categories and an adjustment of the descriptions in the glossary. With this modification of axis V another reliability study was carried out, in which the level of agreement in scoring was adequate for 12 out of 16 categories.

  20. Medical X-ray Image Hierarchical Classification Using a Merging and Splitting Scheme in Feature Space.

    PubMed

    Fesharaki, Nooshin Jafari; Pourghassem, Hossein

    2013-07-01

    Due to the daily mass production and the widespread variation of medical X-ray images, it is necessary to classify these for searching and retrieving proposes, especially for content-based medical image retrieval systems. In this paper, a medical X-ray image hierarchical classification structure based on a novel merging and splitting scheme and using shape and texture features is proposed. In the first level of the proposed structure, to improve the classification performance, similar classes with regard to shape contents are grouped based on merging measures and shape features into the general overlapped classes. In the next levels of this structure, the overlapped classes split in smaller classes based on the classification performance of combination of shape and texture features or texture features only. Ultimately, in the last levels, this procedure is also continued forming all the classes, separately. Moreover, to optimize the feature vector in the proposed structure, we use orthogonal forward selection algorithm according to Mahalanobis class separability measure as a feature selection and reduction algorithm. In other words, according to the complexity and inter-class distance of each class, a sub-space of the feature space is selected in each level and then a supervised merging and splitting scheme is applied to form the hierarchical classification. The proposed structure is evaluated on a database consisting of 2158 medical X-ray images of 18 classes (IMAGECLEF 2005 database) and accuracy rate of 93.6% in the last level of the hierarchical structure for an 18-class classification problem is obtained.

  1. Object-based delineation and classification of alluvial fans by application of mean-shift segmentation and support vector machines

    NASA Astrophysics Data System (ADS)

    Pipaud, Isabel; Lehmkuhl, Frank

    2017-09-01

    In the field of geomorphology, automated extraction and classification of landforms is one of the most active research areas. Until the late 2000s, this task has primarily been tackled using pixel-based approaches. As these methods consider pixels and pixel neighborhoods as the sole basic entities for analysis, they cannot account for the irregular boundaries of real-world objects. Object-based analysis frameworks emerging from the field of remote sensing have been proposed as an alternative approach, and were successfully applied in case studies falling in the domains of both general and specific geomorphology. In this context, the a-priori selection of scale parameters or bandwidths is crucial for the segmentation result, because inappropriate parametrization will either result in over-segmentation or insufficient segmentation. In this study, we describe a novel supervised method for delineation and classification of alluvial fans, and assess its applicability using a SRTM 1‧‧ DEM scene depicting a section of the north-eastern Mongolian Altai, located in northwest Mongolia. The approach is premised on the application of mean-shift segmentation and the use of a one-class support vector machine (SVM) for classification. To consider variability in terms of alluvial fan dimension and shape, segmentation is performed repeatedly for different weightings of the incorporated morphometric parameters as well as different segmentation bandwidths. The final classification layer is obtained by selecting, for each real-world object, the most appropriate segmentation result according to fuzzy membership values derived from the SVM classification. Our results show that mean-shift segmentation and SVM-based classification provide an effective framework for delineation and classification of a particular landform. Variable bandwidths and terrain parameter weightings were identified as being crucial for consideration of intra-class variability, and, in turn, for a constantly

  2. Submerged Object Detection and Classification System

    DTIC Science & Technology

    1993-04-16

    example of this type of system is a conventional sonar device wherein a highly directional beam of sonic energy periodically radiates from a...scanning transducer which in turn operates as a receiver to detect echoes reflected from any object within the path of 15 propagation. Sonar devices...classification, which requires relatively high frequency signals. Sonar devices also have the shortcoming of sensing background noise generated by

  3. A Hybrid Semi-supervised Classification Scheme for Mining Multisource Geospatial Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vatsavai, Raju; Bhaduri, Budhendra L

    2011-01-01

    Supervised learning methods such as Maximum Likelihood (ML) are often used in land cover (thematic) classification of remote sensing imagery. ML classifier relies exclusively on spectral characteristics of thematic classes whose statistical distributions (class conditional probability densities) are often overlapping. The spectral response distributions of thematic classes are dependent on many factors including elevation, soil types, and ecological zones. A second problem with statistical classifiers is the requirement of large number of accurate training samples (10 to 30 |dimensions|), which are often costly and time consuming to acquire over large geographic regions. With the increasing availability of geospatial databases, itmore » is possible to exploit the knowledge derived from these ancillary datasets to improve classification accuracies even when the class distributions are highly overlapping. Likewise newer semi-supervised techniques can be adopted to improve the parameter estimates of statistical model by utilizing a large number of easily available unlabeled training samples. Unfortunately there is no convenient multivariate statistical model that can be employed for mulitsource geospatial databases. In this paper we present a hybrid semi-supervised learning algorithm that effectively exploits freely available unlabeled training samples from multispectral remote sensing images and also incorporates ancillary geospatial databases. We have conducted several experiments on real datasets, and our new hybrid approach shows over 25 to 35% improvement in overall classification accuracy over conventional classification schemes.« less

  4. Development and application of a new comprehensive image-based classification scheme for coastal and benthic environments along the southeast Florida continental shelf

    NASA Astrophysics Data System (ADS)

    Makowski, Christopher

    The coastal (terrestrial) and benthic environments along the southeast Florida continental shelf show a unique biophysical succession of marine features from a highly urbanized, developed coastal region in the north (i.e. northern Miami-Dade County) to a protective marine sanctuary in the southeast (i.e. Florida Keys National Marine Sanctuary). However, the establishment of a standard bio-geomorphological classification scheme for this area of coastal and benthic environments is lacking. The purpose of this study was to test the hypothesis and answer the research question of whether new parameters of integrating geomorphological components with dominant biological covers could be developed and applied across multiple remote sensing platforms for an innovative way to identify, interpret, and classify diverse coastal and benthic environments along the southeast Florida continental shelf. An ordered manageable hierarchical classification scheme was developed to incorporate the categories of Physiographic Realm, Morphodynamic Zone, Geoform, Landform, Dominant Surface Sediment, and Dominant Biological Cover. Six different remote sensing platforms (i.e. five multi-spectral satellite image sensors and one high-resolution aerial orthoimagery) were acquired, delineated according to the new classification scheme, and compared to determine optimal formats for classifying the study area. Cognitive digital classification at a nominal scale of 1:6000 proved to be more accurate than autoclassification programs and therefore used to differentiate coastal marine environments based on spectral reflectance characteristics, such as color, tone, saturation, pattern, and texture of the seafloor topology. In addition, attribute tables were created in conjugation with interpretations to quantify and compare the spatial relationships between classificatory units. IKONOS-2 satellite imagery was determined to be the optimal platform for applying the hierarchical classification scheme

  5. Classification and pose estimation of objects using nonlinear features

    NASA Astrophysics Data System (ADS)

    Talukder, Ashit; Casasent, David P.

    1998-03-01

    A new nonlinear feature extraction method called the maximum representation and discrimination feature (MRDF) method is presented for extraction of features from input image data. It implements transformations similar to the Sigma-Pi neural network. However, the weights of the MRDF are obtained in closed form, and offer advantages compared to nonlinear neural network implementations. The features extracted are useful for both object discrimination (classification) and object representation (pose estimation). We show its use in estimating the class and pose of images of real objects and rendered solid CAD models of machine parts from single views using a feature-space trajectory (FST) neural network classifier. We show more accurate classification and pose estimation results than are achieved by standard principal component analysis (PCA) and Fukunaga-Koontz (FK) feature extraction methods.

  6. A color-coded vision scheme for robotics

    NASA Technical Reports Server (NTRS)

    Johnson, Kelley Tina

    1991-01-01

    Most vision systems for robotic applications rely entirely on the extraction of information from gray-level images. Humans, however, regularly depend on color to discriminate between objects. Therefore, the inclusion of color in a robot vision system seems a natural extension of the existing gray-level capabilities. A method for robot object recognition using a color-coding classification scheme is discussed. The scheme is based on an algebraic system in which a two-dimensional color image is represented as a polynomial of two variables. The system is then used to find the color contour of objects. In a controlled environment, such as that of the in-orbit space station, a particular class of objects can thus be quickly recognized by its color.

  7. Pareto-optimal multi-objective dimensionality reduction deep auto-encoder for mammography classification.

    PubMed

    Taghanaki, Saeid Asgari; Kawahara, Jeremy; Miles, Brandon; Hamarneh, Ghassan

    2017-07-01

    Feature reduction is an essential stage in computer aided breast cancer diagnosis systems. Multilayer neural networks can be trained to extract relevant features by encoding high-dimensional data into low-dimensional codes. Optimizing traditional auto-encoders works well only if the initial weights are close to a proper solution. They are also trained to only reduce the mean squared reconstruction error (MRE) between the encoder inputs and the decoder outputs, but do not address the classification error. The goal of the current work is to test the hypothesis that extending traditional auto-encoders (which only minimize reconstruction error) to multi-objective optimization for finding Pareto-optimal solutions provides more discriminative features that will improve classification performance when compared to single-objective and other multi-objective approaches (i.e. scalarized and sequential). In this paper, we introduce a novel multi-objective optimization of deep auto-encoder networks, in which the auto-encoder optimizes two objectives: MRE and mean classification error (MCE) for Pareto-optimal solutions, rather than just MRE. These two objectives are optimized simultaneously by a non-dominated sorting genetic algorithm. We tested our method on 949 X-ray mammograms categorized into 12 classes. The results show that the features identified by the proposed algorithm allow a classification accuracy of up to 98.45%, demonstrating favourable accuracy over the results of state-of-the-art methods reported in the literature. We conclude that adding the classification objective to the traditional auto-encoder objective and optimizing for finding Pareto-optimal solutions, using evolutionary multi-objective optimization, results in producing more discriminative features. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Applying machine learning classification techniques to automate sky object cataloguing

    NASA Astrophysics Data System (ADS)

    Fayyad, Usama M.; Doyle, Richard J.; Weir, W. Nick; Djorgovski, Stanislav

    1993-08-01

    We describe the application of an Artificial Intelligence machine learning techniques to the development of an automated tool for the reduction of a large scientific data set. The 2nd Mt. Palomar Northern Sky Survey is nearly completed. This survey provides comprehensive coverage of the northern celestial hemisphere in the form of photographic plates. The plates are being transformed into digitized images whose quality will probably not be surpassed in the next ten to twenty years. The images are expected to contain on the order of 107 galaxies and 108 stars. Astronomers wish to determine which of these sky objects belong to various classes of galaxies and stars. Unfortunately, the size of this data set precludes analysis in an exclusively manual fashion. Our approach is to develop a software system which integrates the functions of independently developed techniques for image processing and data classification. Digitized sky images are passed through image processing routines to identify sky objects and to extract a set of features for each object. These routines are used to help select a useful set of attributes for classifying sky objects. Then GID3 (Generalized ID3) and O-B Tree, two inductive learning techniques, learns classification decision trees from examples. These classifiers will then be applied to new data. These developmnent process is highly interactive, with astronomer input playing a vital role. Astronomers refine the feature set used to construct sky object descriptions, and evaluate the performance of the automated classification technique on new data. This paper gives an overview of the machine learning techniques with an emphasis on their general applicability, describes the details of our specific application, and reports the initial encouraging results. The results indicate that our machine learning approach is well-suited to the problem. The primary benefit of the approach is increased data reduction throughput. Another benefit is

  9. A Novel Certificateless Signature Scheme for Smart Objects in the Internet-of-Things.

    PubMed

    Yeh, Kuo-Hui; Su, Chunhua; Choo, Kim-Kwang Raymond; Chiu, Wayne

    2017-05-01

    Rapid advances in wireless communications and pervasive computing technologies have resulted in increasing interest and popularity of Internet-of-Things (IoT) architecture, ubiquitously providing intelligence and convenience to our daily life. In IoT-based network environments, smart objects are embedded everywhere as ubiquitous things connected in a pervasive manner. Ensuring security for interactions between these smart things is significantly more important, and a topic of ongoing interest. In this paper, we present a certificateless signature scheme for smart objects in IoT-based pervasive computing environments. We evaluate the utility of the proposed scheme in IoT-oriented testbeds, i.e., Arduino Uno and Raspberry PI 2. Experiment results present the practicability of the proposed scheme. Moreover, we revisit the scheme of Wang et al. (2015) and revealed that a malicious super type I adversary can easily forge a legitimate signature to cheat any receiver as he/she wishes in the scheme. The superiority of the proposed certificateless signature scheme over relevant studies is demonstrated in terms of the summarized security and performance comparisons.

  10. A Novel Certificateless Signature Scheme for Smart Objects in the Internet-of-Things

    PubMed Central

    Yeh, Kuo-Hui; Su, Chunhua; Choo, Kim-Kwang Raymond; Chiu, Wayne

    2017-01-01

    Rapid advances in wireless communications and pervasive computing technologies have resulted in increasing interest and popularity of Internet-of-Things (IoT) architecture, ubiquitously providing intelligence and convenience to our daily life. In IoT-based network environments, smart objects are embedded everywhere as ubiquitous things connected in a pervasive manner. Ensuring security for interactions between these smart things is significantly more important, and a topic of ongoing interest. In this paper, we present a certificateless signature scheme for smart objects in IoT-based pervasive computing environments. We evaluate the utility of the proposed scheme in IoT-oriented testbeds, i.e., Arduino Uno and Raspberry PI 2. Experiment results present the practicability of the proposed scheme. Moreover, we revisit the scheme of Wang et al. (2015) and revealed that a malicious super type I adversary can easily forge a legitimate signature to cheat any receiver as he/she wishes in the scheme. The superiority of the proposed certificateless signature scheme over relevant studies is demonstrated in terms of the summarized security and performance comparisons. PMID:28468313

  11. Classification of subsurface objects using singular values derived from signal frames

    DOEpatents

    Chambers, David H; Paglieroni, David W

    2014-05-06

    The classification system represents a detected object with a feature vector derived from the return signals acquired by an array of N transceivers operating in multistatic mode. The classification system generates the feature vector by transforming the real-valued return signals into complex-valued spectra, using, for example, a Fast Fourier Transform. The classification system then generates a feature vector of singular values for each user-designated spectral sub-band by applying a singular value decomposition (SVD) to the N.times.N square complex-valued matrix formed from sub-band samples associated with all possible transmitter-receiver pairs. The resulting feature vector of singular values may be transformed into a feature vector of singular value likelihoods and then subjected to a multi-category linear or neural network classifier for object classification.

  12. a Two-Step Classification Approach to Distinguishing Similar Objects in Mobile LIDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    He, H.; Khoshelham, K.; Fraser, C.

    2017-09-01

    Nowadays, lidar is widely used in cultural heritage documentation, urban modeling, and driverless car technology for its fast and accurate 3D scanning ability. However, full exploitation of the potential of point cloud data for efficient and automatic object recognition remains elusive. Recently, feature-based methods have become very popular in object recognition on account of their good performance in capturing object details. Compared with global features describing the whole shape of the object, local features recording the fractional details are more discriminative and are applicable for object classes with considerable similarity. In this paper, we propose a two-step classification approach based on point feature histograms and the bag-of-features method for automatic recognition of similar objects in mobile lidar point clouds. Lamp post, street light and traffic sign are grouped as one category in the first-step classification for their inter similarity compared with tree and vehicle. A finer classification of the lamp post, street light and traffic sign based on the result of the first-step classification is implemented in the second step. The proposed two-step classification approach is shown to yield a considerable improvement over the conventional one-step classification approach.

  13. Object Classification in Semi Structured Enviroment Using Forward-Looking Sonar

    PubMed Central

    dos Santos, Matheus; Ribeiro, Pedro Otávio; Núñez, Pedro; Botelho, Silvia

    2017-01-01

    The submarine exploration using robots has been increasing in recent years. The automation of tasks such as monitoring, inspection, and underwater maintenance requires the understanding of the robot’s environment. The object recognition in the scene is becoming a critical issue for these systems. On this work, an underwater object classification pipeline applied in acoustic images acquired by Forward-Looking Sonar (FLS) are studied. The object segmentation combines thresholding, connected pixels searching and peak of intensity analyzing techniques. The object descriptor extract intensity and geometric features of the detected objects. A comparison between the Support Vector Machine, K-Nearest Neighbors, and Random Trees classifiers are presented. An open-source tool was developed to annotate and classify the objects and evaluate their classification performance. The proposed method efficiently segments and classifies the structures in the scene using a real dataset acquired by an underwater vehicle in a harbor area. Experimental results demonstrate the robustness and accuracy of the method described in this paper. PMID:28961163

  14. Object-Based Classification and Change Detection of Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Park, J. G.; Harada, I.; Kwak, Y.

    2016-06-01

    Topography and geology are factors to characterize the distribution of natural vegetation. Topographic contour is particularly influential on the living conditions of plants such as soil moisture, sunlight, and windiness. Vegetation associations having similar characteristics are present in locations having similar topographic conditions unless natural disturbances such as landslides and forest fires or artificial disturbances such as deforestation and man-made plantation bring about changes in such conditions. We developed a vegetation map of Japan using an object-based segmentation approach with topographic information (elevation, slope, slope direction) that is closely related to the distribution of vegetation. The results found that the object-based classification is more effective to produce a vegetation map than the pixel-based classification.

  15. 14 CFR Section 16 - Objective Classification-Discontinued Operations

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIR CARRIERS Profit and Loss Classification Section 16 Objective Classification—Discontinued... the disposal of investor controlled companies and nontransport ventures whether sold, abandoned, spun... transport or transport-related operations. (b) This account shall be subdivided as follows by all air...

  16. Model-based object classification using unification grammars and abstract representations

    NASA Astrophysics Data System (ADS)

    Liburdy, Kathleen A.; Schalkoff, Robert J.

    1993-04-01

    The design and implementation of a high level computer vision system which performs object classification is described. General object labelling and functional analysis require models of classes which display a wide range of geometric variations. A large representational gap exists between abstract criteria such as `graspable' and current geometric image descriptions. The vision system developed and described in this work addresses this problem and implements solutions based on a fusion of semantics, unification, and formal language theory. Object models are represented using unification grammars, which provide a framework for the integration of structure and semantics. A methodology for the derivation of symbolic image descriptions capable of interacting with the grammar-based models is described and implemented. A unification-based parser developed for this system achieves object classification by determining if the symbolic image description can be unified with the abstract criteria of an object model. Future research directions are indicated.

  17. MeMoVolc report on classification and dynamics of volcanic explosive eruptions

    NASA Astrophysics Data System (ADS)

    Bonadonna, C.; Cioni, R.; Costa, A.; Druitt, T.; Phillips, J.; Pioli, L.; Andronico, D.; Harris, A.; Scollo, S.; Bachmann, O.; Bagheri, G.; Biass, S.; Brogi, F.; Cashman, K.; Dominguez, L.; Dürig, T.; Galland, O.; Giordano, G.; Gudmundsson, M.; Hort, M.; Höskuldsson, A.; Houghton, B.; Komorowski, J. C.; Küppers, U.; Lacanna, G.; Le Pennec, J. L.; Macedonio, G.; Manga, M.; Manzella, I.; Vitturi, M. de'Michieli; Neri, A.; Pistolesi, M.; Polacci, M.; Ripepe, M.; Rossi, E.; Scheu, B.; Sulpizio, R.; Tripoli, B.; Valade, S.; Valentine, G.; Vidal, C.; Wallenstein, N.

    2016-11-01

    Classifications of volcanic eruptions were first introduced in the early twentieth century mostly based on qualitative observations of eruptive activity, and over time, they have gradually been developed to incorporate more quantitative descriptions of the eruptive products from both deposits and observations of active volcanoes. Progress in physical volcanology, and increased capability in monitoring, measuring and modelling of explosive eruptions, has highlighted shortcomings in the way we classify eruptions and triggered a debate around the need for eruption classification and the advantages and disadvantages of existing classification schemes. Here, we (i) review and assess existing classification schemes, focussing on subaerial eruptions; (ii) summarize the fundamental processes that drive and parameters that characterize explosive volcanism; (iii) identify and prioritize the main research that will improve the understanding, characterization and classification of volcanic eruptions and (iv) provide a roadmap for producing a rational and comprehensive classification scheme. In particular, classification schemes need to be objective-driven and simple enough to permit scientific exchange and promote transfer of knowledge beyond the scientific community. Schemes should be comprehensive and encompass a variety of products, eruptive styles and processes, including for example, lava flows, pyroclastic density currents, gas emissions and cinder cone or caldera formation. Open questions, processes and parameters that need to be addressed and better characterized in order to develop more comprehensive classification schemes and to advance our understanding of volcanic eruptions include conduit processes and dynamics, abrupt transitions in eruption regime, unsteadiness, eruption energy and energy balance.

  18. Real-time, resource-constrained object classification on a micro-air vehicle

    NASA Astrophysics Data System (ADS)

    Buck, Louis; Ray, Laura

    2013-12-01

    A real-time embedded object classification algorithm is developed through the novel combination of binary feature descriptors, a bag-of-visual-words object model and the cortico-striatal loop (CSL) learning algorithm. The BRIEF, ORB and FREAK binary descriptors are tested and compared to SIFT descriptors with regard to their respective classification accuracies, execution times, and memory requirements when used with CSL on a 12.6 g ARM Cortex embedded processor running at 800 MHz. Additionally, the effect of x2 feature mapping and opponent-color representations used with these descriptors is examined. These tests are performed on four data sets of varying sizes and difficulty, and the BRIEF descriptor is found to yield the best combination of speed and classification accuracy. Its use with CSL achieves accuracies between 67% and 95% of those achieved with SIFT descriptors and allows for the embedded classification of a 128x192 pixel image in 0.15 seconds, 60 times faster than classification with SIFT. X2 mapping is found to provide substantial improvements in classification accuracy for all of the descriptors at little cost, while opponent-color descriptors are offer accuracy improvements only on colorful datasets.

  19. Underwater target classification using wavelet packets and neural networks.

    PubMed

    Azimi-Sadjadi, M R; Yao, D; Huang, Q; Dobeck, G J

    2000-01-01

    In this paper, a new subband-based classification scheme is developed for classifying underwater mines and mine-like targets from the acoustic backscattered signals. The system consists of a feature extractor using wavelet packets in conjunction with linear predictive coding (LPC), a feature selection scheme, and a backpropagation neural-network classifier. The data set used for this study consists of the backscattered signals from six different objects: two mine-like targets and four nontargets for several aspect angles. Simulation results on ten different noisy realizations and for signal-to-noise ratio (SNR) of 12 dB are presented. The receiver operating characteristic (ROC) curve of the classifier generated based on these results demonstrated excellent classification performance of the system. The generalization ability of the trained network was demonstrated by computing the error and classification rate statistics on a large data set. A multiaspect fusion scheme was also adopted in order to further improve the classification performance.

  20. Object oriented classification of high resolution data for inventory of horticultural crops

    NASA Astrophysics Data System (ADS)

    Hebbar, R.; Ravishankar, H. M.; Trivedi, S.; Subramoniam, S. R.; Uday, R.; Dadhwal, V. K.

    2014-11-01

    High resolution satellite images are associated with large variance and thus, per pixel classifiers often result in poor accuracy especially in delineation of horticultural crops. In this context, object oriented techniques are powerful and promising methods for classification. In the present study, a semi-automatic object oriented feature extraction model has been used for delineation of horticultural fruit and plantation crops using Erdas Objective Imagine. Multi-resolution data from Resourcesat LISS-IV and Cartosat-1 have been used as source data in the feature extraction model. Spectral and textural information along with NDVI were used as inputs for generation of Spectral Feature Probability (SFP) layers using sample training pixels. The SFP layers were then converted into raster objects using threshold and clump function resulting in pixel probability layer. A set of raster and vector operators was employed in the subsequent steps for generating thematic layer in the vector format. This semi-automatic feature extraction model was employed for classification of major fruit and plantations crops viz., mango, banana, citrus, coffee and coconut grown under different agro-climatic conditions. In general, the classification accuracy of about 75-80 per cent was achieved for these crops using object based classification alone and the same was further improved using minimal visual editing of misclassified areas. A comparison of on-screen visual interpretation with object oriented approach showed good agreement. It was observed that old and mature plantations were classified more accurately while young and recently planted ones (3 years or less) showed poor classification accuracy due to mixed spectral signature, wider spacing and poor stands of plantations. The results indicated the potential use of object oriented approach for classification of high resolution data for delineation of horticultural fruit and plantation crops. The present methodology is applicable at

  1. Diffuse Lung Disease in Biopsied Children 2 to 18 Years of Age. Application of the chILD Classification Scheme.

    PubMed

    Fan, Leland L; Dishop, Megan K; Galambos, Csaba; Askin, Frederic B; White, Frances V; Langston, Claire; Liptzin, Deborah R; Kroehl, Miranda E; Deutsch, Gail H; Young, Lisa R; Kurland, Geoffrey; Hagood, James; Dell, Sharon; Trapnell, Bruce C; Deterding, Robin R

    2015-10-01

    Children's Interstitial and Diffuse Lung Disease (chILD) is a heterogeneous group of disorders that is challenging to categorize. In previous study, a classification scheme was successfully applied to children 0 to 2 years of age who underwent lung biopsies for chILD. This classification scheme has not been evaluated in children 2 to 18 years of age. This multicenter interdisciplinary study sought to describe the spectrum of biopsy-proven chILD in North America and to apply a previously reported classification scheme in children 2 to 18 years of age. Mortality and risk factors for mortality were also assessed. Patients 2 to 18 years of age who underwent lung biopsies for diffuse lung disease from 12 North American institutions were included. Demographic and clinical data were collected and described. The lung biopsies were reviewed by pediatric lung pathologists with expertise in diffuse lung disease and were classified by the chILD classification scheme. Logistic regression was used to determine risk factors for mortality. A total of 191 cases were included in the final analysis. Number of biopsies varied by center (5-49 biopsies; mean, 15.8) and by age (2-18 yr; mean, 10.6 yr). The most common classification category in this cohort was Disorders of the Immunocompromised Host (40.8%), and the least common was Disorders of Infancy (4.7%). Immunocompromised patients suffered the highest mortality (52.8%). Additional associations with mortality included mechanical ventilation, worse clinical status at time of biopsy, tachypnea, hemoptysis, and crackles. Pulmonary hypertension was found to be a risk factor for mortality but only in the immunocompetent patients. In patients 2 to 18 years of age who underwent lung biopsies for diffuse lung disease, there were far fewer diagnoses prevalent in infancy and more overlap with adult diagnoses. Immunocompromised patients with diffuse lung disease who underwent lung biopsies had less than 50% survival at time of last follow-up.

  2. Objected-oriented remote sensing image classification method based on geographic ontology model

    NASA Astrophysics Data System (ADS)

    Chu, Z.; Liu, Z. J.; Gu, H. Y.

    2016-11-01

    Nowadays, with the development of high resolution remote sensing image and the wide application of laser point cloud data, proceeding objected-oriented remote sensing classification based on the characteristic knowledge of multi-source spatial data has been an important trend on the field of remote sensing image classification, which gradually replaced the traditional method through improving algorithm to optimize image classification results. For this purpose, the paper puts forward a remote sensing image classification method that uses the he characteristic knowledge of multi-source spatial data to build the geographic ontology semantic network model, and carries out the objected-oriented classification experiment to implement urban features classification, the experiment uses protégé software which is developed by Stanford University in the United States, and intelligent image analysis software—eCognition software as the experiment platform, uses hyperspectral image and Lidar data that is obtained through flight in DaFeng City of JiangSu as the main data source, first of all, the experiment uses hyperspectral image to obtain feature knowledge of remote sensing image and related special index, the second, the experiment uses Lidar data to generate nDSM(Normalized DSM, Normalized Digital Surface Model),obtaining elevation information, the last, the experiment bases image feature knowledge, special index and elevation information to build the geographic ontology semantic network model that implement urban features classification, the experiment results show that, this method is significantly higher than the traditional classification algorithm on classification accuracy, especially it performs more evidently on the respect of building classification. The method not only considers the advantage of multi-source spatial data, for example, remote sensing image, Lidar data and so on, but also realizes multi-source spatial data knowledge integration and application

  3. Object-based land-cover classification for metropolitan Phoenix, Arizona, using aerial photography

    NASA Astrophysics Data System (ADS)

    Li, Xiaoxiao; Myint, Soe W.; Zhang, Yujia; Galletti, Chritopher; Zhang, Xiaoxiang; Turner, Billie L.

    2014-12-01

    Detailed land-cover mapping is essential for a range of research issues addressed by the sustainability and land system sciences and planning. This study uses an object-based approach to create a 1 m land-cover classification map of the expansive Phoenix metropolitan area through the use of high spatial resolution aerial photography from National Agricultural Imagery Program. It employs an expert knowledge decision rule set and incorporates the cadastral GIS vector layer as auxiliary data. The classification rule was established on a hierarchical image object network, and the properties of parcels in the vector layer were used to establish land cover types. Image segmentations were initially utilized to separate the aerial photos into parcel sized objects, and were further used for detailed land type identification within the parcels. Characteristics of image objects from contextual and geometrical aspects were used in the decision rule set to reduce the spectral limitation of the four-band aerial photography. Classification results include 12 land-cover classes and subclasses that may be assessed from the sub-parcel to the landscape scales, facilitating examination of scale dynamics. The proposed object-based classification method provides robust results, uses minimal and readily available ancillary data, and reduces computational time.

  4. A risk-based classification scheme for genetically modified foods. I: Conceptual development.

    PubMed

    Chao, Eunice; Krewski, Daniel

    2008-12-01

    The predominant paradigm for the premarket assessment of genetically modified (GM) foods reflects heightened public concern by focusing on foods modified by recombinant deoxyribonucleic acid (rDNA) techniques, while foods modified by other methods of genetic modification are generally not assessed for safety. To determine whether a GM product requires less or more regulatory oversight and testing, we developed and evaluated a risk-based classification scheme (RBCS) for crop-derived GM foods. The results of this research are presented in three papers. This paper describes the conceptual development of the proposed RBCS that focuses on two categories of adverse health effects: (1) toxic and antinutritional effects, and (2) allergenic effects. The factors that may affect the level of potential health risks of GM foods are identified. For each factor identified, criteria for differentiating health risk potential are developed. The extent to which a GM food satisfies applicable criteria for each factor is rated separately. A concern level for each category of health effects is then determined by aggregating the ratings for the factors using predetermined aggregation rules. An overview of the proposed scheme is presented, as well as the application of the scheme to a hypothetical GM food.

  5. Object-Part Attention Model for Fine-Grained Image Classification

    NASA Astrophysics Data System (ADS)

    Peng, Yuxin; He, Xiangteng; Zhao, Junjie

    2018-03-01

    Fine-grained image classification is to recognize hundreds of subcategories belonging to the same basic-level category, such as 200 subcategories belonging to the bird, which is highly challenging due to large variance in the same subcategory and small variance among different subcategories. Existing methods generally first locate the objects or parts and then discriminate which subcategory the image belongs to. However, they mainly have two limitations: (1) Relying on object or part annotations which are heavily labor consuming. (2) Ignoring the spatial relationships between the object and its parts as well as among these parts, both of which are significantly helpful for finding discriminative parts. Therefore, this paper proposes the object-part attention model (OPAM) for weakly supervised fine-grained image classification, and the main novelties are: (1) Object-part attention model integrates two level attentions: object-level attention localizes objects of images, and part-level attention selects discriminative parts of object. Both are jointly employed to learn multi-view and multi-scale features to enhance their mutual promotions. (2) Object-part spatial constraint model combines two spatial constraints: object spatial constraint ensures selected parts highly representative, and part spatial constraint eliminates redundancy and enhances discrimination of selected parts. Both are jointly employed to exploit the subtle and local differences for distinguishing the subcategories. Importantly, neither object nor part annotations are used in our proposed approach, which avoids the heavy labor consumption of labeling. Comparing with more than 10 state-of-the-art methods on 4 widely-used datasets, our OPAM approach achieves the best performance.

  6. Land Cover Analysis by Using Pixel-Based and Object-Based Image Classification Method in Bogor

    NASA Astrophysics Data System (ADS)

    Amalisana, Birohmatin; Rokhmatullah; Hernina, Revi

    2017-12-01

    The advantage of image classification is to provide earth’s surface information like landcover and time-series changes. Nowadays, pixel-based image classification technique is commonly performed with variety of algorithm such as minimum distance, parallelepiped, maximum likelihood, mahalanobis distance. On the other hand, landcover classification can also be acquired by using object-based image classification technique. In addition, object-based classification uses image segmentation from parameter such as scale, form, colour, smoothness and compactness. This research is aimed to compare the result of landcover classification and its change detection between parallelepiped pixel-based and object-based classification method. Location of this research is Bogor with 20 years range of observation from 1996 until 2016. This region is famous as urban areas which continuously change due to its rapid development, so that time-series landcover information of this region will be interesting.

  7. Fused man-machine classification schemes to enhance diagnosis of breast microcalcifications

    NASA Astrophysics Data System (ADS)

    Andreadis, Ioannis; Sevastianos, Chatzistergos; George, Spyrou; Konstantina, Nikita

    2017-11-01

    Computer aided diagnosis (CAD x ) approaches are developed towards the effective discrimination between benign and malignant clusters of microcalcifications. Different sources of information are exploited, such as features extracted from the image analysis of the region of interest, features related to the location of the cluster inside the breast, age of the patient and descriptors provided by the radiologists while performing their diagnostic task. A series of different CAD x schemes are implemented, each of which uses a different category of features and adopts a variety of machine learning algorithms and alternative image processing techniques. A novel framework is introduced where these independent diagnostic components are properly combined according to features critical to a radiologist in an attempt to identify the most appropriate CAD x schemes for the case under consideration. An open access database (Digital Database of Screening Mammography (DDSM)) has been elaborated to construct a large dataset with cases of varying subtlety, in order to ensure the development of schemes with high generalization ability, as well as extensive evaluation of their performance. The obtained results indicate that the proposed framework succeeds in improving the diagnostic procedure, as the achieved overall classification performance outperforms all the independent single diagnostic components, as well as the radiologists that assessed the same cases, in terms of accuracy, sensitivity, specificity and area under the curve following receiver operating characteristic analysis.

  8. Object links in the repository

    NASA Technical Reports Server (NTRS)

    Beck, Jon; Eichmann, David

    1991-01-01

    Some of the architectural ramifications of extending the Eichmann/Atkins lattice-based classification scheme to encompass the assets of the full life-cycle of software development are explored. In particular, we wish to consider a model which provides explicit links between objects in addition to the edges connecting classification vertices in the standard lattice. The model we consider uses object-oriented terminology. Thus, the lattice is viewed as a data structure which contains class objects which exhibit inheritance. A description of the types of objects in the repository is presented, followed by a discussion of how they interrelate. We discuss features of the object-oriented model which support these objects and their links, and consider behavior which an implementation of the model should exhibit. Finally, we indicate some thoughts on implementing a prototype of this repository architecture.

  9. Comparative study of SVM methods combined with voxel selection for object category classification on fMRI data.

    PubMed

    Song, Sutao; Zhan, Zhichao; Long, Zhiying; Zhang, Jiacai; Yao, Li

    2011-02-16

    Support vector machine (SVM) has been widely used as accurate and reliable method to decipher brain patterns from functional MRI (fMRI) data. Previous studies have not found a clear benefit for non-linear (polynomial kernel) SVM versus linear one. Here, a more effective non-linear SVM using radial basis function (RBF) kernel is compared with linear SVM. Different from traditional studies which focused either merely on the evaluation of different types of SVM or the voxel selection methods, we aimed to investigate the overall performance of linear and RBF SVM for fMRI classification together with voxel selection schemes on classification accuracy and time-consuming. Six different voxel selection methods were employed to decide which voxels of fMRI data would be included in SVM classifiers with linear and RBF kernels in classifying 4-category objects. Then the overall performances of voxel selection and classification methods were compared. Results showed that: (1) Voxel selection had an important impact on the classification accuracy of the classifiers: in a relative low dimensional feature space, RBF SVM outperformed linear SVM significantly; in a relative high dimensional space, linear SVM performed better than its counterpart; (2) Considering the classification accuracy and time-consuming holistically, linear SVM with relative more voxels as features and RBF SVM with small set of voxels (after PCA) could achieve the better accuracy and cost shorter time. The present work provides the first empirical result of linear and RBF SVM in classification of fMRI data, combined with voxel selection methods. Based on the findings, if only classification accuracy was concerned, RBF SVM with appropriate small voxels and linear SVM with relative more voxels were two suggested solutions; if users concerned more about the computational time, RBF SVM with relative small set of voxels when part of the principal components were kept as features was a better choice.

  10. A new classification of glaucomas

    PubMed Central

    Bordeianu, Constantin-Dan

    2014-01-01

    Purpose To suggest a new glaucoma classification that is pathogenic, etiologic, and clinical. Methods After discussing the logical pathway used in criteria selection, the paper presents the new classification and compares it with the classification currently in use, that is, the one issued by the European Glaucoma Society in 2008. Results The paper proves that the new classification is clear (being based on a coherent and consistently followed set of criteria), is comprehensive (framing all forms of glaucoma), and helps in understanding the sickness understanding (in that it uses a logical framing system). The great advantage is that it facilitates therapeutic decision making in that it offers direct therapeutic suggestions and avoids errors leading to disasters. Moreover, the scheme remains open to any new development. Conclusion The suggested classification is a pathogenic, etiologic, and clinical classification that fulfills the conditions of an ideal classification. The suggested classification is the first classification in which the main criterion is consistently used for the first 5 to 7 crossings until its differentiation capabilities are exhausted. Then, secondary criteria (etiologic and clinical) pick up the relay until each form finds its logical place in the scheme. In order to avoid unclear aspects, the genetic criterion is no longer used, being replaced by age, one of the clinical criteria. The suggested classification brings only benefits to all categories of ophthalmologists: the beginners will have a tool to better understand the sickness and to ease their decision making, whereas the experienced doctors will have their practice simplified. For all doctors, errors leading to therapeutic disasters will be less likely to happen. Finally, researchers will have the object of their work gathered in the group of glaucoma with unknown or uncertain pathogenesis, whereas the results of their work will easily find a logical place in the scheme, as the

  11. Sunspot Pattern Classification using PCA and Neural Networks (Poster)

    NASA Technical Reports Server (NTRS)

    Rajkumar, T.; Thompson, D. E.; Slater, G. L.

    2005-01-01

    The sunspot classification scheme presented in this paper is considered as a 2-D classification problem on archived datasets, and is not a real-time system. As a first step, it mirrors the Zuerich/McIntosh historical classification system and reproduces classification of sunspot patterns based on preprocessing and neural net training datasets. Ultimately, the project intends to move from more rudimentary schemes, to develop spatial-temporal-spectral classes derived by correlating spatial and temporal variations in various wavelengths to the brightness fluctuation spectrum of the sun in those wavelengths. Once the approach is generalized, then the focus will naturally move from a 2-D to an n-D classification, where "n" includes time and frequency. Here, the 2-D perspective refers both to the actual SOH0 Michelson Doppler Imager (MDI) images that are processed, but also refers to the fact that a 2-D matrix is created from each image during preprocessing. The 2-D matrix is the result of running Principal Component Analysis (PCA) over the selected dataset images, and the resulting matrices and their eigenvalues are the objects that are stored in a database, classified, and compared. These matrices are indexed according to the standard McIntosh classification scheme.

  12. Multidimensional Shape Similarity in the Development of Visual Object Classification

    ERIC Educational Resources Information Center

    Mash, Clay

    2006-01-01

    The current work examined age differences in the classification of novel object images that vary in continuous dimensions of structural shape. The structural dimensions employed are two that share a privileged status in the visual analysis and representation of objects: the shape of discrete prominent parts and the attachment positions of those…

  13. A study of earthquake-induced building detection by object oriented classification approach

    NASA Astrophysics Data System (ADS)

    Sabuncu, Asli; Damla Uca Avci, Zehra; Sunar, Filiz

    2017-04-01

    Among the natural hazards, earthquakes are the most destructive disasters and cause huge loss of lives, heavily infrastructure damages and great financial losses every year all around the world. According to the statistics about the earthquakes, more than a million earthquakes occur which is equal to two earthquakes per minute in the world. Natural disasters have brought more than 780.000 deaths approximately % 60 of all mortality is due to the earthquakes after 2001. A great earthquake took place at 38.75 N 43.36 E in the eastern part of Turkey in Van Province on On October 23th, 2011. 604 people died and about 4000 buildings seriously damaged and collapsed after this earthquake. In recent years, the use of object oriented classification approach based on different object features, such as spectral, textural, shape and spatial information, has gained importance and became widespread for the classification of high-resolution satellite images and orthophotos. The motivation of this study is to detect the collapsed buildings and debris areas after the earthquake by using very high-resolution satellite images and orthophotos with the object oriented classification and also see how well remote sensing technology was carried out in determining the collapsed buildings. In this study, two different land surfaces were selected as homogenous and heterogeneous case study areas. In the first step of application, multi-resolution segmentation was applied and optimum parameters were selected to obtain the objects in each area after testing different color/shape and compactness/smoothness values. In the next step, two different classification approaches, namely "supervised" and "unsupervised" approaches were applied and their classification performances were compared. Object-based Image Analysis (OBIA) was performed using e-Cognition software.

  14. Object-based classification of earthquake damage from high-resolution optical imagery using machine learning

    NASA Astrophysics Data System (ADS)

    Bialas, James; Oommen, Thomas; Rebbapragada, Umaa; Levin, Eugene

    2016-07-01

    Object-based approaches in the segmentation and classification of remotely sensed images yield more promising results compared to pixel-based approaches. However, the development of an object-based approach presents challenges in terms of algorithm selection and parameter tuning. Subjective methods are often used, but yield less than optimal results. Objective methods are warranted, especially for rapid deployment in time-sensitive applications, such as earthquake damage assessment. Herein, we used a systematic approach in evaluating object-based image segmentation and machine learning algorithms for the classification of earthquake damage in remotely sensed imagery. We tested a variety of algorithms and parameters on post-event aerial imagery for the 2011 earthquake in Christchurch, New Zealand. Results were compared against manually selected test cases representing different classes. In doing so, we can evaluate the effectiveness of the segmentation and classification of different classes and compare different levels of multistep image segmentations. Our classifier is compared against recent pixel-based and object-based classification studies for postevent imagery of earthquake damage. Our results show an improvement against both pixel-based and object-based methods for classifying earthquake damage in high resolution, post-event imagery.

  15. Attribute-based classification for zero-shot visual object categorization.

    PubMed

    Lampert, Christoph H; Nickisch, Hannes; Harmeling, Stefan

    2014-03-01

    We study the problem of object recognition for categories for which we have no training examples, a task also called zero--data or zero-shot learning. This situation has hardly been studied in computer vision research, even though it occurs frequently; the world contains tens of thousands of different object classes, and image collections have been formed and suitably annotated for only a few of them. To tackle the problem, we introduce attribute-based classification: Objects are identified based on a high-level description that is phrased in terms of semantic attributes, such as the object's color or shape. Because the identification of each such property transcends the specific learning task at hand, the attribute classifiers can be prelearned independently, for example, from existing image data sets unrelated to the current task. Afterward, new classes can be detected based on their attribute representation, without the need for a new training phase. In this paper, we also introduce a new data set, Animals with Attributes, of over 30,000 images of 50 animal classes, annotated with 85 semantic attributes. Extensive experiments on this and two more data sets show that attribute-based classification indeed is able to categorize images without access to any training images of the target classes.

  16. Video based object representation and classification using multiple covariance matrices.

    PubMed

    Zhang, Yurong; Liu, Quan

    2017-01-01

    Video based object recognition and classification has been widely studied in computer vision and image processing area. One main issue of this task is to develop an effective representation for video. This problem can generally be formulated as image set representation. In this paper, we present a new method called Multiple Covariance Discriminative Learning (MCDL) for image set representation and classification problem. The core idea of MCDL is to represent an image set using multiple covariance matrices with each covariance matrix representing one cluster of images. Firstly, we use the Nonnegative Matrix Factorization (NMF) method to do image clustering within each image set, and then adopt Covariance Discriminative Learning on each cluster (subset) of images. At last, we adopt KLDA and nearest neighborhood classification method for image set classification. Promising experimental results on several datasets show the effectiveness of our MCDL method.

  17. Applying the Methodology of the Community College Classification Scheme to the Public Master's Colleges and Universities Sector

    ERIC Educational Resources Information Center

    Kinkead, J. Clint.; Katsinas, Stephen G.

    2011-01-01

    This work brings forward the geographically-based classification scheme for the public Master's Colleges and Universities sector. Using the same methodology developed by Katsinas and Hardy (2005) to classify community colleges, this work classifies Master's Colleges and Universities. This work has four major findings and conclusions. First, a…

  18. Space Object Classification Using Fused Features of Time Series Data

    NASA Astrophysics Data System (ADS)

    Jia, B.; Pham, K. D.; Blasch, E.; Shen, D.; Wang, Z.; Chen, G.

    In this paper, a fused feature vector consisting of raw time series and texture feature information is proposed for space object classification. The time series data includes historical orbit trajectories and asteroid light curves. The texture feature is derived from recurrence plots using Gabor filters for both unsupervised learning and supervised learning algorithms. The simulation results show that the classification algorithms using the fused feature vector achieve better performance than those using raw time series or texture features only.

  19. Three-dimensional passive sensing photon counting for object classification

    NASA Astrophysics Data System (ADS)

    Yeom, Seokwon; Javidi, Bahram; Watson, Edward

    2007-04-01

    In this keynote address, we address three-dimensional (3D) distortion-tolerant object recognition using photon-counting integral imaging (II). A photon-counting linear discriminant analysis (LDA) is discussed for classification of photon-limited images. We develop a compact distortion-tolerant recognition system based on the multiple-perspective imaging of II. Experimental and simulation results have shown that a low level of photons is sufficient to classify out-of-plane rotated objects.

  20. Comparison of transect sampling and object-oriented image classification methods of urbanizing catchments

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Tenenbaum, D. E.

    2009-12-01

    The process of urbanization has major effects on both human and natural systems. In order to monitor these changes and better understand how urban ecological systems work, urban spatial structure and the variation needs to be first quantified at a fine scale. Because the land-use and land-cover (LULC) in urbanizing areas is highly heterogeneous, the classification of urbanizing environments is the most challenging field in remote sensing. Although a pixel-based method is a common way to do classification, the results are not good enough for many research objectives which require more accurate classification data in fine scales. Transect sampling and object-oriented classification methods are more appropriate for urbanizing areas. Tenenbaum used a transect sampling method using a computer-based facility within a widely available commercial GIS in the Glyndon Catchment and the Upper Baismans Run Catchment, Baltimore, Maryland. It was a two-tiered classification system, including a primary level (which includes 7 classes) and a secondary level (which includes 37 categories). The statistical information of LULC was collected. W. Zhou applied an object-oriented method at the parcel level in Gwynn’s Falls Watershed which includes the two previously mentioned catchments and six classes were extracted. The two urbanizing catchments are located in greater Baltimore, Maryland and drain into Chesapeake Bay. In this research, the two different methods are compared for 6 classes (woody, herbaceous, water, ground, pavement and structure). The comparison method uses the segments in the transect method to extract LULC information from the results of the object-oriented method. Classification results were compared in order to evaluate the difference between the two methods. The overall proportions of LULC classes from the two studies show that there is overestimation of structures in the object-oriented method. For the other five classes, the results from the two methods are

  1. Object-based land cover classification based on fusion of multifrequency SAR data and THAICHOTE optical imagery

    NASA Astrophysics Data System (ADS)

    Sukawattanavijit, Chanika; Srestasathiern, Panu

    2017-10-01

    Land Use and Land Cover (LULC) information are significant to observe and evaluate environmental change. LULC classification applying remotely sensed data is a technique popularly employed on a global and local dimension particularly, in urban areas which have diverse land cover types. These are essential components of the urban terrain and ecosystem. In the present, object-based image analysis (OBIA) is becoming widely popular for land cover classification using the high-resolution image. COSMO-SkyMed SAR data was fused with THAICHOTE (namely, THEOS: Thailand Earth Observation Satellite) optical data for land cover classification using object-based. This paper indicates a comparison between object-based and pixel-based approaches in image fusion. The per-pixel method, support vector machines (SVM) was implemented to the fused image based on Principal Component Analysis (PCA). For the objectbased classification was applied to the fused images to separate land cover classes by using nearest neighbor (NN) classifier. Finally, the accuracy assessment was employed by comparing with the classification of land cover mapping generated from fused image dataset and THAICHOTE image. The object-based data fused COSMO-SkyMed with THAICHOTE images demonstrated the best classification accuracies, well over 85%. As the results, an object-based data fusion provides higher land cover classification accuracy than per-pixel data fusion.

  2. A two-tier atmospheric circulation classification scheme for the European-North Atlantic region

    NASA Astrophysics Data System (ADS)

    Guentchev, Galina S.; Winkler, Julie A.

    A two-tier classification of large-scale atmospheric circulation was developed for the European-North-Atlantic domain. The classification was constructed using a combination of principal components and k-means cluster analysis applied to reanalysis fields of mean sea-level pressure for 1951-2004. Separate classifications were developed for the winter, spring, summer, and fall seasons. For each season, the two classification tiers were identified independently, such that the definition of one tier does not depend on the other tier having already been defined. The first tier of the classification is comprised of supertype patterns. These broad-scale circulation classes are useful for generalized analyses such as investigations of the temporal trends in circulation frequency and persistence. The second, more detailed tier consists of circulation types and is useful for numerous applied research questions regarding the relationships between large-scale circulation and local and regional climate. Three to five supertypes and up to 19 circulation types were identified for each season. An intuitive nomenclature scheme based on the physical entities (i.e., anomaly centers) which dominate the specific patterns was used to label each of the supertypes and types. Two example applications illustrate the potential usefulness of a two-tier classification. In the first application, the temporal variability of the supertypes was evaluated. In general, the frequency and persistence of supertypes dominated by anticyclonic circulation increased during the study period, whereas the supertypes dominated by cyclonic features decreased in frequency and persistence. The usefulness of the derived circulation types was exemplified by an analysis of the circulation associated with heat waves and cold spells reported at several cities in Bulgaria. These extreme temperature events were found to occur with a small number of circulation types, a finding that can be helpful in understanding past

  3. A risk-based classification scheme for genetically modified foods. III: Evaluation using a panel of reference foods.

    PubMed

    Chao, Eunice; Krewski, Daniel

    2008-12-01

    This paper presents an exploratory evaluation of four functional components of a proposed risk-based classification scheme (RBCS) for crop-derived genetically modified (GM) foods in a concordance study. Two independent raters assigned concern levels to 20 reference GM foods using a rating form based on the proposed RBCS. The four components of evaluation were: (1) degree of concordance, (2) distribution across concern levels, (3) discriminating ability of the scheme, and (4) ease of use. At least one of the 20 reference foods was assigned to each of the possible concern levels, demonstrating the ability of the scheme to identify GM foods of different concern with respect to potential health risk. There was reasonably good concordance between the two raters for the three separate parts of the RBCS. The raters agreed that the criteria in the scheme were sufficiently clear in discriminating reference foods into different concern levels, and that with some experience, the scheme was reasonably easy to use. Specific issues and suggestions for improvements identified in the concordance study are discussed.

  4. Comparative Study of SVM Methods Combined with Voxel Selection for Object Category Classification on fMRI Data

    PubMed Central

    Song, Sutao; Zhan, Zhichao; Long, Zhiying; Zhang, Jiacai; Yao, Li

    2011-01-01

    Background Support vector machine (SVM) has been widely used as accurate and reliable method to decipher brain patterns from functional MRI (fMRI) data. Previous studies have not found a clear benefit for non-linear (polynomial kernel) SVM versus linear one. Here, a more effective non-linear SVM using radial basis function (RBF) kernel is compared with linear SVM. Different from traditional studies which focused either merely on the evaluation of different types of SVM or the voxel selection methods, we aimed to investigate the overall performance of linear and RBF SVM for fMRI classification together with voxel selection schemes on classification accuracy and time-consuming. Methodology/Principal Findings Six different voxel selection methods were employed to decide which voxels of fMRI data would be included in SVM classifiers with linear and RBF kernels in classifying 4-category objects. Then the overall performances of voxel selection and classification methods were compared. Results showed that: (1) Voxel selection had an important impact on the classification accuracy of the classifiers: in a relative low dimensional feature space, RBF SVM outperformed linear SVM significantly; in a relative high dimensional space, linear SVM performed better than its counterpart; (2) Considering the classification accuracy and time-consuming holistically, linear SVM with relative more voxels as features and RBF SVM with small set of voxels (after PCA) could achieve the better accuracy and cost shorter time. Conclusions/Significance The present work provides the first empirical result of linear and RBF SVM in classification of fMRI data, combined with voxel selection methods. Based on the findings, if only classification accuracy was concerned, RBF SVM with appropriate small voxels and linear SVM with relative more voxels were two suggested solutions; if users concerned more about the computational time, RBF SVM with relative small set of voxels when part of the principal

  5. Lexicon-enhanced sentiment analysis framework using rule-based classification scheme.

    PubMed

    Asghar, Muhammad Zubair; Khan, Aurangzeb; Ahmad, Shakeel; Qasim, Maria; Khan, Imran Ali

    2017-01-01

    With the rapid increase in social networks and blogs, the social media services are increasingly being used by online communities to share their views and experiences about a particular product, policy and event. Due to economic importance of these reviews, there is growing trend of writing user reviews to promote a product. Nowadays, users prefer online blogs and review sites to purchase products. Therefore, user reviews are considered as an important source of information in Sentiment Analysis (SA) applications for decision making. In this work, we exploit the wealth of user reviews, available through the online forums, to analyze the semantic orientation of words by categorizing them into +ive and -ive classes to identify and classify emoticons, modifiers, general-purpose and domain-specific words expressed in the public's feedback about the products. However, the un-supervised learning approach employed in previous studies is becoming less efficient due to data sparseness, low accuracy due to non-consideration of emoticons, modifiers, and presence of domain specific words, as they may result in inaccurate classification of users' reviews. Lexicon-enhanced sentiment analysis based on Rule-based classification scheme is an alternative approach for improving sentiment classification of users' reviews in online communities. In addition to the sentiment terms used in general purpose sentiment analysis, we integrate emoticons, modifiers and domain specific terms to analyze the reviews posted in online communities. To test the effectiveness of the proposed method, we considered users reviews in three domains. The results obtained from different experiments demonstrate that the proposed method overcomes limitations of previous methods and the performance of the sentiment analysis is improved after considering emoticons, modifiers, negations, and domain specific terms when compared to baseline methods.

  6. Histogram Curve Matching Approaches for Object-based Image Classification of Land Cover and Land Use

    PubMed Central

    Toure, Sory I.; Stow, Douglas A.; Weeks, John R.; Kumar, Sunil

    2013-01-01

    The classification of image-objects is usually done using parametric statistical measures of central tendency and/or dispersion (e.g., mean or standard deviation). The objectives of this study were to analyze digital number histograms of image objects and evaluate classifications measures exploiting characteristic signatures of such histograms. Two histograms matching classifiers were evaluated and compared to the standard nearest neighbor to mean classifier. An ADS40 airborne multispectral image of San Diego, California was used for assessing the utility of curve matching classifiers in a geographic object-based image analysis (GEOBIA) approach. The classifications were performed with data sets having 0.5 m, 2.5 m, and 5 m spatial resolutions. Results show that histograms are reliable features for characterizing classes. Also, both histogram matching classifiers consistently performed better than the one based on the standard nearest neighbor to mean rule. The highest classification accuracies were produced with images having 2.5 m spatial resolution. PMID:24403648

  7. Classification scheme for sedimentary and igneous rocks in Gale crater, Mars

    NASA Astrophysics Data System (ADS)

    Mangold, N.; Schmidt, M. E.; Fisk, M. R.; Forni, O.; McLennan, S. M.; Ming, D. W.; Sautter, V.; Sumner, D.; Williams, A. J.; Clegg, S. M.; Cousin, A.; Gasnault, O.; Gellert, R.; Grotzinger, J. P.; Wiens, R. C.

    2017-03-01

    Rocks analyzed by the Curiosity rover in Gale crater include a variety of clastic sedimentary rocks and igneous float rocks transported by fluvial and impact processes. To facilitate the discussion of the range of lithologies, we present in this article a petrological classification framework adapting terrestrial classification schemes to Mars compositions (such as Fe abundances typically higher than for comparable lithologies on Earth), to specific Curiosity observations (such as common alkali-rich rocks), and to the capabilities of the rover instruments. Mineralogy was acquired only locally for a few drilled rocks, and so it does not suffice as a systematic classification tool, in contrast to classical terrestrial rock classification. The core of this classification involves (1) the characterization of rock texture as sedimentary, igneous or undefined according to grain/crystal sizes and shapes using imaging from the ChemCam Remote Micro-Imager (RMI), Mars Hand Lens Imager (MAHLI) and Mastcam instruments, and (2) the assignment of geochemical modifiers based on the abundances of Fe, Si, alkali, and S determined by the Alpha Particle X-ray Spectrometer (APXS) and ChemCam instruments. The aims are to help understand Gale crater geology by highlighting the various categories of rocks analyzed by the rover. Several implications are proposed from the cross-comparisons of rocks of various texture and composition, for instance between in place outcrops and float rocks. All outcrops analyzed by the rover are sedimentary; no igneous outcrops have been observed. However, some igneous rocks are clasts in conglomerates, suggesting that part of them are derived from the crater rim. The compositions of in-place sedimentary rocks contrast significantly with the compositions of igneous float rocks. While some of the differences between sedimentary rocks and igneous floats may be related to physical sorting and diagenesis of the sediments, some of the sedimentary rocks (e

  8. Classification scheme for sedimentary and igneous rocks in Gale crater, Mars

    DOE PAGES

    Mangold, Nicolas; Schmidt, Mariek E.; Fisk, Martin R.; ...

    2016-11-05

    Rocks analyzed by the Curiosity rover in Gale crater include a variety of clastic sedimentary rocks and igneous float rocks transported by fluvial and impact processes. Here, to facilitate the discussion of the range of lithologies, we present in this article a petrological classification framework adapting terrestrial classification schemes to Mars compositions (such as Fe abundances typically higher than for comparable lithologies on Earth), to specific Curiosity observations (such as common alkali-rich rocks), and to the capabilities of the rover instruments. Mineralogy was acquired only locally for a few drilled rocks, and so it does not suffice as a systematicmore » classification tool, in contrast to classical terrestrial rock classification. The core of this classification involves (1) the characterization of rock texture as sedimentary, igneous or undefined according to grain/crystal sizes and shapes using imaging from the ChemCam Remote Micro-Imager (RMI), Mars Hand Lens Imager (MAHLI) and Mastcam instruments, and (2) the assignment of geochemical modifiers based on the abundances of Fe, Si, alkali, and S determined by the Alpha Particle X-ray Spectrometer (APXS) and ChemCam instruments. The aims are to help understand Gale crater geology by highlighting the various categories of rocks analyzed by the rover. Several implications are proposed from the cross-comparisons of rocks of various texture and composition, for instance between in place outcrops and float rocks. All outcrops analyzed by the rover are sedimentary; no igneous outcrops have been observed. However, some igneous rocks are clasts in conglomerates, suggesting that part of them are derived from the crater rim. The compositions of in-place sedimentary rocks contrast significantly with the compositions of igneous float rocks. While some of the differences between sedimentary rocks and igneous floats may be related to physical sorting and diagenesis of the sediments, some of the sedimentary

  9. Classification scheme for sedimentary and igneous rocks in Gale crater, Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangold, Nicolas; Schmidt, Mariek E.; Fisk, Martin R.

    Rocks analyzed by the Curiosity rover in Gale crater include a variety of clastic sedimentary rocks and igneous float rocks transported by fluvial and impact processes. Here, to facilitate the discussion of the range of lithologies, we present in this article a petrological classification framework adapting terrestrial classification schemes to Mars compositions (such as Fe abundances typically higher than for comparable lithologies on Earth), to specific Curiosity observations (such as common alkali-rich rocks), and to the capabilities of the rover instruments. Mineralogy was acquired only locally for a few drilled rocks, and so it does not suffice as a systematicmore » classification tool, in contrast to classical terrestrial rock classification. The core of this classification involves (1) the characterization of rock texture as sedimentary, igneous or undefined according to grain/crystal sizes and shapes using imaging from the ChemCam Remote Micro-Imager (RMI), Mars Hand Lens Imager (MAHLI) and Mastcam instruments, and (2) the assignment of geochemical modifiers based on the abundances of Fe, Si, alkali, and S determined by the Alpha Particle X-ray Spectrometer (APXS) and ChemCam instruments. The aims are to help understand Gale crater geology by highlighting the various categories of rocks analyzed by the rover. Several implications are proposed from the cross-comparisons of rocks of various texture and composition, for instance between in place outcrops and float rocks. All outcrops analyzed by the rover are sedimentary; no igneous outcrops have been observed. However, some igneous rocks are clasts in conglomerates, suggesting that part of them are derived from the crater rim. The compositions of in-place sedimentary rocks contrast significantly with the compositions of igneous float rocks. While some of the differences between sedimentary rocks and igneous floats may be related to physical sorting and diagenesis of the sediments, some of the sedimentary

  10. Object-Based Random Forest Classification of Land Cover from Remotely Sensed Imagery for Industrial and Mining Reclamation

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Luo, M.; Xu, L.; Zhou, X.; Ren, J.; Zhou, J.

    2018-04-01

    The RF method based on grid-search parameter optimization could achieve a classification accuracy of 88.16 % in the classification of images with multiple feature variables. This classification accuracy was higher than that of SVM and ANN under the same feature variables. In terms of efficiency, the RF classification method performs better than SVM and ANN, it is more capable of handling multidimensional feature variables. The RF method combined with object-based analysis approach could highlight the classification accuracy further. The multiresolution segmentation approach on the basis of ESP scale parameter optimization was used for obtaining six scales to execute image segmentation, when the segmentation scale was 49, the classification accuracy reached the highest value of 89.58 %. The classification accuracy of object-based RF classification was 1.42 % higher than that of pixel-based classification (88.16 %), and the classification accuracy was further improved. Therefore, the RF classification method combined with object-based analysis approach could achieve relatively high accuracy in the classification and extraction of land use information for industrial and mining reclamation areas. Moreover, the interpretation of remotely sensed imagery using the proposed method could provide technical support and theoretical reference for remotely sensed monitoring land reclamation.

  11. Sensitivity of Forecast Skill to Different Objective Analysis Schemes

    NASA Technical Reports Server (NTRS)

    Baker, W. E.

    1979-01-01

    Numerical weather forecasts are characterized by rapidly declining skill in the first 48 to 72 h. Recent estimates of the sources of forecast error indicate that the inaccurate specification of the initial conditions contributes substantially to this error. The sensitivity of the forecast skill to the initial conditions is examined by comparing a set of real-data experiments whose initial data were obtained with two different analysis schemes. Results are presented to emphasize the importance of the objective analysis techniques used in the assimilation of observational data.

  12. CIFAR10-DVS: An Event-Stream Dataset for Object Classification

    PubMed Central

    Li, Hongmin; Liu, Hanchao; Ji, Xiangyang; Li, Guoqi; Shi, Luping

    2017-01-01

    Neuromorphic vision research requires high-quality and appropriately challenging event-stream datasets to support continuous improvement of algorithms and methods. However, creating event-stream datasets is a time-consuming task, which needs to be recorded using the neuromorphic cameras. Currently, there are limited event-stream datasets available. In this work, by utilizing the popular computer vision dataset CIFAR-10, we converted 10,000 frame-based images into 10,000 event streams using a dynamic vision sensor (DVS), providing an event-stream dataset of intermediate difficulty in 10 different classes, named as “CIFAR10-DVS.” The conversion of event-stream dataset was implemented by a repeated closed-loop smooth (RCLS) movement of frame-based images. Unlike the conversion of frame-based images by moving the camera, the image movement is more realistic in respect of its practical applications. The repeated closed-loop image movement generates rich local intensity changes in continuous time which are quantized by each pixel of the DVS camera to generate events. Furthermore, a performance benchmark in event-driven object classification is provided based on state-of-the-art classification algorithms. This work provides a large event-stream dataset and an initial benchmark for comparison, which may boost algorithm developments in even-driven pattern recognition and object classification. PMID:28611582

  13. CIFAR10-DVS: An Event-Stream Dataset for Object Classification.

    PubMed

    Li, Hongmin; Liu, Hanchao; Ji, Xiangyang; Li, Guoqi; Shi, Luping

    2017-01-01

    Neuromorphic vision research requires high-quality and appropriately challenging event-stream datasets to support continuous improvement of algorithms and methods. However, creating event-stream datasets is a time-consuming task, which needs to be recorded using the neuromorphic cameras. Currently, there are limited event-stream datasets available. In this work, by utilizing the popular computer vision dataset CIFAR-10, we converted 10,000 frame-based images into 10,000 event streams using a dynamic vision sensor (DVS), providing an event-stream dataset of intermediate difficulty in 10 different classes, named as "CIFAR10-DVS." The conversion of event-stream dataset was implemented by a repeated closed-loop smooth (RCLS) movement of frame-based images. Unlike the conversion of frame-based images by moving the camera, the image movement is more realistic in respect of its practical applications. The repeated closed-loop image movement generates rich local intensity changes in continuous time which are quantized by each pixel of the DVS camera to generate events. Furthermore, a performance benchmark in event-driven object classification is provided based on state-of-the-art classification algorithms. This work provides a large event-stream dataset and an initial benchmark for comparison, which may boost algorithm developments in even-driven pattern recognition and object classification.

  14. a Point Cloud Classification Approach Based on Vertical Structures of Ground Objects

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Hu, Q.; Hu, W.

    2018-04-01

    This paper proposes a novel method for point cloud classification using vertical structural characteristics of ground objects. Since urbanization develops rapidly nowadays, urban ground objects also change frequently. Conventional photogrammetric methods cannot satisfy the requirements of updating the ground objects' information efficiently, so LiDAR (Light Detection and Ranging) technology is employed to accomplish this task. LiDAR data, namely point cloud data, can obtain detailed three-dimensional coordinates of ground objects, but this kind of data is discrete and unorganized. To accomplish ground objects classification with point cloud, we first construct horizontal grids and vertical layers to organize point cloud data, and then calculate vertical characteristics, including density and measures of dispersion, and form characteristic curves for each grids. With the help of PCA processing and K-means algorithm, we analyze the similarities and differences of characteristic curves. Curves that have similar features will be classified into the same class and point cloud correspond to these curves will be classified as well. The whole process is simple but effective, and this approach does not need assistance of other data sources. In this study, point cloud data are classified into three classes, which are vegetation, buildings, and roads. When horizontal grid spacing and vertical layer spacing are 3 m and 1 m respectively, vertical characteristic is set as density, and the number of dimensions after PCA processing is 11, the overall precision of classification result is about 86.31 %. The result can help us quickly understand the distribution of various ground objects.

  15. Multi-objective evolutionary algorithms for fuzzy classification in survival prediction.

    PubMed

    Jiménez, Fernando; Sánchez, Gracia; Juárez, José M

    2014-03-01

    This paper presents a novel rule-based fuzzy classification methodology for survival/mortality prediction in severe burnt patients. Due to the ethical aspects involved in this medical scenario, physicians tend not to accept a computer-based evaluation unless they understand why and how such a recommendation is given. Therefore, any fuzzy classifier model must be both accurate and interpretable. The proposed methodology is a three-step process: (1) multi-objective constrained optimization of a patient's data set, using Pareto-based elitist multi-objective evolutionary algorithms to maximize accuracy and minimize the complexity (number of rules) of classifiers, subject to interpretability constraints; this step produces a set of alternative (Pareto) classifiers; (2) linguistic labeling, which assigns a linguistic label to each fuzzy set of the classifiers; this step is essential to the interpretability of the classifiers; (3) decision making, whereby a classifier is chosen, if it is satisfactory, according to the preferences of the decision maker. If no classifier is satisfactory for the decision maker, the process starts again in step (1) with a different input parameter set. The performance of three multi-objective evolutionary algorithms, niched pre-selection multi-objective algorithm, elitist Pareto-based multi-objective evolutionary algorithm for diversity reinforcement (ENORA) and the non-dominated sorting genetic algorithm (NSGA-II), was tested using a patient's data set from an intensive care burn unit and a standard machine learning data set from an standard machine learning repository. The results are compared using the hypervolume multi-objective metric. Besides, the results have been compared with other non-evolutionary techniques and validated with a multi-objective cross-validation technique. Our proposal improves the classification rate obtained by other non-evolutionary techniques (decision trees, artificial neural networks, Naive Bayes, and case

  16. Application of a five-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants lodged on the InSiGHT locus-specific database

    PubMed Central

    Plazzer, John-Paul; Greenblatt, Marc S.; Akagi, Kiwamu; Al-Mulla, Fahd; Bapat, Bharati; Bernstein, Inge; Capellá, Gabriel; den Dunnen, Johan T.; du Sart, Desiree; Fabre, Aurelie; Farrell, Michael P.; Farrington, Susan M.; Frayling, Ian M.; Frebourg, Thierry; Goldgar, David E.; Heinen, Christopher D.; Holinski-Feder, Elke; Kohonen-Corish, Maija; Robinson, Kristina Lagerstedt; Leung, Suet Yi; Martins, Alexandra; Moller, Pal; Morak, Monika; Nystrom, Minna; Peltomaki, Paivi; Pineda, Marta; Qi, Ming; Ramesar, Rajkumar; Rasmussen, Lene Juel; Royer-Pokora, Brigitte; Scott, Rodney J.; Sijmons, Rolf; Tavtigian, Sean V.; Tops, Carli M.; Weber, Thomas; Wijnen, Juul; Woods, Michael O.; Macrae, Finlay; Genuardi, Maurizio

    2015-01-01

    Clinical classification of sequence variants identified in hereditary disease genes directly affects clinical management of patients and their relatives. The International Society for Gastrointestinal Hereditary Tumours (InSiGHT) undertook a collaborative effort to develop, test and apply a standardized classification scheme to constitutional variants in the Lynch Syndrome genes MLH1, MSH2, MSH6 and PMS2. Unpublished data submission was encouraged to assist variant classification, and recognized by microattribution. The scheme was refined by multidisciplinary expert committee review of clinical and functional data available for variants, applied to 2,360 sequence alterations, and disseminated online. Assessment using validated criteria altered classifications for 66% of 12,006 database entries. Clinical recommendations based on transparent evaluation are now possible for 1,370 variants not obviously protein-truncating from nomenclature. This large-scale endeavor will facilitate consistent management of suspected Lynch Syndrome families, and demonstrates the value of multidisciplinary collaboration for curation and classification of variants in public locus-specific databases. PMID:24362816

  17. Automated object-based classification of topography from SRTM data

    PubMed Central

    Drăguţ, Lucian; Eisank, Clemens

    2012-01-01

    We introduce an object-based method to automatically classify topography from SRTM data. The new method relies on the concept of decomposing land-surface complexity into more homogeneous domains. An elevation layer is automatically segmented and classified at three scale levels that represent domains of complexity by using self-adaptive, data-driven techniques. For each domain, scales in the data are detected with the help of local variance and segmentation is performed at these appropriate scales. Objects resulting from segmentation are partitioned into sub-domains based on thresholds given by the mean values of elevation and standard deviation of elevation respectively. Results resemble reasonably patterns of existing global and regional classifications, displaying a level of detail close to manually drawn maps. Statistical evaluation indicates that most of classes satisfy the regionalization requirements of maximizing internal homogeneity while minimizing external homogeneity. Most objects have boundaries matching natural discontinuities at regional level. The method is simple and fully automated. The input data consist of only one layer, which does not need any pre-processing. Both segmentation and classification rely on only two parameters: elevation and standard deviation of elevation. The methodology is implemented as a customized process for the eCognition® software, available as online download. The results are embedded in a web application with functionalities of visualization and download. PMID:22485060

  18. Automated object-based classification of topography from SRTM data

    NASA Astrophysics Data System (ADS)

    Drăguţ, Lucian; Eisank, Clemens

    2012-03-01

    We introduce an object-based method to automatically classify topography from SRTM data. The new method relies on the concept of decomposing land-surface complexity into more homogeneous domains. An elevation layer is automatically segmented and classified at three scale levels that represent domains of complexity by using self-adaptive, data-driven techniques. For each domain, scales in the data are detected with the help of local variance and segmentation is performed at these appropriate scales. Objects resulting from segmentation are partitioned into sub-domains based on thresholds given by the mean values of elevation and standard deviation of elevation respectively. Results resemble reasonably patterns of existing global and regional classifications, displaying a level of detail close to manually drawn maps. Statistical evaluation indicates that most of classes satisfy the regionalization requirements of maximizing internal homogeneity while minimizing external homogeneity. Most objects have boundaries matching natural discontinuities at regional level. The method is simple and fully automated. The input data consist of only one layer, which does not need any pre-processing. Both segmentation and classification rely on only two parameters: elevation and standard deviation of elevation. The methodology is implemented as a customized process for the eCognition® software, available as online download. The results are embedded in a web application with functionalities of visualization and download.

  19. A Deep Learning Scheme for Motor Imagery Classification based on Restricted Boltzmann Machines.

    PubMed

    Lu, Na; Li, Tengfei; Ren, Xiaodong; Miao, Hongyu

    2017-06-01

    Motor imagery classification is an important topic in brain-computer interface (BCI) research that enables the recognition of a subject's intension to, e.g., implement prosthesis control. The brain dynamics of motor imagery are usually measured by electroencephalography (EEG) as nonstationary time series of low signal-to-noise ratio. Although a variety of methods have been previously developed to learn EEG signal features, the deep learning idea has rarely been explored to generate new representation of EEG features and achieve further performance improvement for motor imagery classification. In this study, a novel deep learning scheme based on restricted Boltzmann machine (RBM) is proposed. Specifically, frequency domain representations of EEG signals obtained via fast Fourier transform (FFT) and wavelet package decomposition (WPD) are obtained to train three RBMs. These RBMs are then stacked up with an extra output layer to form a four-layer neural network, which is named the frequential deep belief network (FDBN). The output layer employs the softmax regression to accomplish the classification task. Also, the conjugate gradient method and backpropagation are used to fine tune the FDBN. Extensive and systematic experiments have been performed on public benchmark datasets, and the results show that the performance improvement of FDBN over other selected state-of-the-art methods is statistically significant. Also, several findings that may be of significant interest to the BCI community are presented in this article.

  20. Hydrometeorological application of an extratropical cyclone classification scheme in the southern United States

    NASA Astrophysics Data System (ADS)

    Senkbeil, J. C.; Brommer, D. M.; Comstock, I. J.; Loyd, T.

    2012-07-01

    Extratropical cyclones (ETCs) in the southern United States are often overlooked when compared with tropical cyclones in the region and ETCs in the northern United States. Although southern ETCs are significant weather events, there is currently not an operational scheme used for identifying and discussing these nameless storms. In this research, we classified 84 ETCs (1970-2009). We manually identified five distinct formation regions and seven unique ETC types using statistical classification. Statistical classification employed the use of principal components analysis and two methods of cluster analysis. Both manual and statistical storm types generally showed positive (negative) relationships with El Niño (La Niña). Manual storm types displayed precipitation swaths consistent with discrete storm tracks which further legitimizes the existence of multiple modes of southern ETCs. Statistical storm types also displayed unique precipitation intensity swaths, but these swaths were less indicative of track location. It is hoped that by classifying southern ETCs into types, that forecasters, hydrologists, and broadcast meteorologists might be able to better anticipate projected amounts of precipitation at their locations.

  1. Relevance popularity: A term event model based feature selection scheme for text classification.

    PubMed

    Feng, Guozhong; An, Baiguo; Yang, Fengqin; Wang, Han; Zhang, Libiao

    2017-01-01

    Feature selection is a practical approach for improving the performance of text classification methods by optimizing the feature subsets input to classifiers. In traditional feature selection methods such as information gain and chi-square, the number of documents that contain a particular term (i.e. the document frequency) is often used. However, the frequency of a given term appearing in each document has not been fully investigated, even though it is a promising feature to produce accurate classifications. In this paper, we propose a new feature selection scheme based on a term event Multinomial naive Bayes probabilistic model. According to the model assumptions, the matching score function, which is based on the prediction probability ratio, can be factorized. Finally, we derive a feature selection measurement for each term after replacing inner parameters by their estimators. On a benchmark English text datasets (20 Newsgroups) and a Chinese text dataset (MPH-20), our numerical experiment results obtained from using two widely used text classifiers (naive Bayes and support vector machine) demonstrate that our method outperformed the representative feature selection methods.

  2. Object-based vegetation classification with high resolution remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Yu, Qian

    Vegetation species are valuable indicators to understand the earth system. Information from mapping of vegetation species and community distribution at large scales provides important insight for studying the phenological (growth) cycles of vegetation and plant physiology. Such information plays an important role in land process modeling including climate, ecosystem and hydrological models. The rapidly growing remote sensing technology has increased its potential in vegetation species mapping. However, extracting information at a species level is still a challenging research topic. I proposed an effective method for extracting vegetation species distribution from remotely sensed data and investigated some ways for accuracy improvement. The study consists of three phases. Firstly, a statistical analysis was conducted to explore the spatial variation and class separability of vegetation as a function of image scale. This analysis aimed to confirm that high resolution imagery contains the information on spatial vegetation variation and these species classes can be potentially separable. The second phase was a major effort in advancing classification by proposing a method for extracting vegetation species from high spatial resolution remote sensing data. The proposed classification employs an object-based approach that integrates GIS and remote sensing data and explores the usefulness of ancillary information. The whole process includes image segmentation, feature generation and selection, and nearest neighbor classification. The third phase introduces a spatial regression model for evaluating the mapping quality from the above vegetation classification results. The effects of six categories of sample characteristics on the classification uncertainty are examined: topography, sample membership, sample density, spatial composition characteristics, training reliability and sample object features. This evaluation analysis answered several interesting scientific questions

  3. Space Object Classification and Characterization Via Multiple Model Adaptive Estimation

    DTIC Science & Technology

    2014-07-14

    BRDF ) which models light distribution scattered from the surface due to the incident light. The BRDF at any point on the surface is a function of two...uu B vu B nu obs I u sun I u I hu (b) Reflection Geometry Fig. 2: Reflection Geometry and Space Object Shape Model of the BRDF is ρdiff(i...Space Object Classification and Characterization Via Multiple Model Adaptive Estimation Richard Linares Director’s Postdoctoral Fellow Space Science

  4. Application of a 5-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants in the InSiGHT locus-specific database.

    PubMed

    Thompson, Bryony A; Spurdle, Amanda B; Plazzer, John-Paul; Greenblatt, Marc S; Akagi, Kiwamu; Al-Mulla, Fahd; Bapat, Bharati; Bernstein, Inge; Capellá, Gabriel; den Dunnen, Johan T; du Sart, Desiree; Fabre, Aurelie; Farrell, Michael P; Farrington, Susan M; Frayling, Ian M; Frebourg, Thierry; Goldgar, David E; Heinen, Christopher D; Holinski-Feder, Elke; Kohonen-Corish, Maija; Robinson, Kristina Lagerstedt; Leung, Suet Yi; Martins, Alexandra; Moller, Pal; Morak, Monika; Nystrom, Minna; Peltomaki, Paivi; Pineda, Marta; Qi, Ming; Ramesar, Rajkumar; Rasmussen, Lene Juel; Royer-Pokora, Brigitte; Scott, Rodney J; Sijmons, Rolf; Tavtigian, Sean V; Tops, Carli M; Weber, Thomas; Wijnen, Juul; Woods, Michael O; Macrae, Finlay; Genuardi, Maurizio

    2014-02-01

    The clinical classification of hereditary sequence variants identified in disease-related genes directly affects clinical management of patients and their relatives. The International Society for Gastrointestinal Hereditary Tumours (InSiGHT) undertook a collaborative effort to develop, test and apply a standardized classification scheme to constitutional variants in the Lynch syndrome-associated genes MLH1, MSH2, MSH6 and PMS2. Unpublished data submission was encouraged to assist in variant classification and was recognized through microattribution. The scheme was refined by multidisciplinary expert committee review of the clinical and functional data available for variants, applied to 2,360 sequence alterations, and disseminated online. Assessment using validated criteria altered classifications for 66% of 12,006 database entries. Clinical recommendations based on transparent evaluation are now possible for 1,370 variants that were not obviously protein truncating from nomenclature. This large-scale endeavor will facilitate the consistent management of families suspected to have Lynch syndrome and demonstrates the value of multidisciplinary collaboration in the curation and classification of variants in public locus-specific databases.

  5. Error determination of a successive correction type objective analysis scheme. [for surface meteorological data

    NASA Technical Reports Server (NTRS)

    Smith, D. R.; Leslie, F. W.

    1984-01-01

    The Purdue Regional Objective Analysis of the Mesoscale (PROAM) is a successive correction type scheme for the analysis of surface meteorological data. The scheme is subjected to a series of experiments to evaluate its performance under a variety of analysis conditions. The tests include use of a known analytic temperature distribution to quantify error bounds for the scheme. Similar experiments were conducted using actual atmospheric data. Results indicate that the multiple pass technique increases the accuracy of the analysis. Furthermore, the tests suggest appropriate values for the analysis parameters in resolving disturbances for the data set used in this investigation.

  6. Classification of close binary systems by Svechnikov

    NASA Astrophysics Data System (ADS)

    Dryomova, G. N.

    The paper presents the historical overview of classification schemes of eclipsing variable stars with the foreground of advantages of the classification scheme by Svechnikov being widely appreciated for Close Binary Systems due to simplicity of classification criteria and brevity.

  7. Classification scheme for acid rock drainage detection - the Hamersley Basin, Western Australia

    NASA Astrophysics Data System (ADS)

    Skrzypek, Grzegorz; Dogramaci, Shawan; McLean, Laura

    2017-04-01

    In arid environment where precipitation and surface water are very limited, groundwater is the most important freshwater resource. For this reasons it is intensively exploited and needs to be managed wisely and protected from pollutants. Acid rock drainage often constitutes a serious risk to groundwater quality, particularly in catchments that are subject to mining, large scale groundwater injection or abstraction. However, assessment of the potential acid rock drainage risk can be challenging, especially in carbonate rich environment, where the decreasing pH that usually accompanies pyrite oxidation, can be masked by the high pH-neutralisation capacity of carbonate minerals. In this study, we analysed 73 surface and groundwater samples from different water bodies and aquifers located in the Hamersley Basin, Western Australia. Although the majority of samples had a neutral pH, there was a large spatial variability in the dissolved sulphate concentrations that ranged from 1 mg/L to 15,000 mg/L. Waters with high dissolved sulphate concentration were found in areas with a high percentage of sulphide minerals (e.g. pyrite) located within the aquifer matrix and were characterised by low δ34SSO4 values (+1.2‰ to +4.6) consistent with signatures of aquifer matrix pyritic rock samples (+1.9‰ to +4.4). It was also found that the SO4 concentrations and acidity levels were not only dependent on δ34SSO4 values and existence of pyrite but also on the presence of carbonate minerals in the aquifer matrix. Based on the results from this study, a classification scheme has been developed for identification of waters impacted by acid rock drainage that also encompasses numerous concomitant geochemical processes that often occur in aqueous systems. The classification uses five proxies: SO4, SO4/Cl, SI of calcite, δ34SSO4 and δ18OSO4 to improve assessment of the contribution that oxidation of sulphide minerals has to overall sulphate ion concentrations, regardless of acidity

  8. Con-Text: Text Detection for Fine-grained Object Classification.

    PubMed

    Karaoglu, Sezer; Tao, Ran; van Gemert, Jan C; Gevers, Theo

    2017-05-24

    This work focuses on fine-grained object classification using recognized scene text in natural images. While the state-of-the-art relies on visual cues only, this paper is the first work which proposes to combine textual and visual cues. Another novelty is the textual cue extraction. Unlike the state-of-the-art text detection methods, we focus more on the background instead of text regions. Once text regions are detected, they are further processed by two methods to perform text recognition i.e. ABBYY commercial OCR engine and a state-of-the-art character recognition algorithm. Then, to perform textual cue encoding, bi- and trigrams are formed between the recognized characters by considering the proposed spatial pairwise constraints. Finally, extracted visual and textual cues are combined for fine-grained classification. The proposed method is validated on four publicly available datasets: ICDAR03, ICDAR13, Con-Text and Flickr-logo. We improve the state-of-the-art end-to-end character recognition by a large margin of 15% on ICDAR03. We show that textual cues are useful in addition to visual cues for fine-grained classification. We show that textual cues are also useful for logo retrieval. Adding textual cues outperforms visual- and textual-only in fine-grained classification (70.7% to 60.3%) and logo retrieval (57.4% to 54.8%).

  9. A proposed radiographic classification scheme for congenital thoracic vertebral malformations in brachycephalic "screw-tailed" dog breeds.

    PubMed

    Gutierrez-Quintana, Rodrigo; Guevar, Julien; Stalin, Catherine; Faller, Kiterie; Yeamans, Carmen; Penderis, Jacques

    2014-01-01

    Congenital vertebral malformations are common in brachycephalic "screw-tailed" dog breeds such as French bulldogs, English bulldogs, Boston terriers, and pugs. The aim of this retrospective study was to determine whether a radiographic classification scheme developed for use in humans would be feasible for use in these dog breeds. Inclusion criteria were hospital admission between September 2009 and April 2013, neurologic examination findings available, diagnostic quality lateral and ventro-dorsal digital radiographs of the thoracic vertebral column, and at least one congenital vertebral malformation. Radiographs were retrieved and interpreted by two observers who were unaware of neurologic status. Vertebral malformations were classified based on a classification scheme modified from a previous human study and a consensus of both observers. Twenty-eight dogs met inclusion criteria (12 with neurologic deficits, 16 with no neurologic deficits). Congenital vertebral malformations affected 85/362 (23.5%) of thoracic vertebrae. Vertebral body formation defects were the most common (butterfly vertebrae 6.6%, ventral wedge-shaped vertebrae 5.5%, dorsal hemivertebrae 0.8%, and dorso-lateral hemivertebrae 0.5%). No lateral hemivertebrae or lateral wedge-shaped vertebrae were identified. The T7 vertebra was the most commonly affected (11/28 dogs), followed by T8 (8/28 dogs) and T12 (8/28 dogs). The number and type of vertebral malformations differed between groups (P = 0.01). Based on MRI, dorsal, and dorso-lateral hemivertebrae were the cause of spinal cord compression in 5/12 (41.6%) of dogs with neurologic deficits. Findings indicated that a modified human radiographic classification system of vertebral malformations is feasible for use in future studies of brachycephalic "screw-tailed" dogs. © 2014 American College of Veterinary Radiology.

  10. Object-Based Classification as an Alternative Approach to the Traditional Pixel-Based Classification to Identify Potential Habitat of the Grasshopper Sparrow

    NASA Astrophysics Data System (ADS)

    Jobin, Benoît; Labrecque, Sandra; Grenier, Marcelle; Falardeau, Gilles

    2008-01-01

    The traditional method of identifying wildlife habitat distribution over large regions consists of pixel-based classification of satellite images into a suite of habitat classes used to select suitable habitat patches. Object-based classification is a new method that can achieve the same objective based on the segmentation of spectral bands of the image creating homogeneous polygons with regard to spatial or spectral characteristics. The segmentation algorithm does not solely rely on the single pixel value, but also on shape, texture, and pixel spatial continuity. The object-based classification is a knowledge base process where an interpretation key is developed using ground control points and objects are assigned to specific classes according to threshold values of determined spectral and/or spatial attributes. We developed a model using the eCognition software to identify suitable habitats for the Grasshopper Sparrow, a rare and declining species found in southwestern Québec. The model was developed in a region with known breeding sites and applied on other images covering adjacent regions where potential breeding habitats may be present. We were successful in locating potential habitats in areas where dairy farming prevailed but failed in an adjacent region covered by a distinct Landsat scene and dominated by annual crops. We discuss the added value of this method, such as the possibility to use the contextual information associated to objects and the ability to eliminate unsuitable areas in the segmentation and land cover classification processes, as well as technical and logistical constraints. A series of recommendations on the use of this method and on conservation issues of Grasshopper Sparrow habitat is also provided.

  11. Physiotherapy movement based classification approaches to low back pain: comparison of subgroups through review and developer/expert survey.

    PubMed

    Karayannis, Nicholas V; Jull, Gwendolen A; Hodges, Paul W

    2012-02-20

    Several classification schemes, each with its own philosophy and categorizing method, subgroup low back pain (LBP) patients with the intent to guide treatment. Physiotherapy derived schemes usually have a movement impairment focus, but the extent to which other biological, psychological, and social factors of pain are encompassed requires exploration. Furthermore, within the prevailing 'biological' domain, the overlap of subgrouping strategies within the orthopaedic examination remains unexplored. The aim of this study was "to review and clarify through developer/expert survey, the theoretical basis and content of physical movement classification schemes, determine their relative reliability and similarities/differences, and to consider the extent of incorporation of the bio-psycho-social framework within the schemes". A database search for relevant articles related to LBP and subgrouping or classification was conducted. Five dominant movement-based schemes were identified: Mechanical Diagnosis and Treatment (MDT), Treatment Based Classification (TBC), Pathoanatomic Based Classification (PBC), Movement System Impairment Classification (MSI), and O'Sullivan Classification System (OCS) schemes. Data were extracted and a survey sent to the classification scheme developers/experts to clarify operational criteria, reliability, decision-making, and converging/diverging elements between schemes. Survey results were integrated into the review and approval obtained for accuracy. Considerable diversity exists between schemes in how movement informs subgrouping and in the consideration of broader neurosensory, cognitive, emotional, and behavioural dimensions of LBP. Despite differences in assessment philosophy, a common element lies in their objective to identify a movement pattern related to a pain reduction strategy. Two dominant movement paradigms emerge: (i) loading strategies (MDT, TBC, PBC) aimed at eliciting a phenomenon of centralisation of symptoms; and (ii) modified

  12. [Object-oriented segmentation and classification of forest gap based on QuickBird remote sensing image.

    PubMed

    Mao, Xue Gang; Du, Zi Han; Liu, Jia Qian; Chen, Shu Xin; Hou, Ji Yu

    2018-01-01

    Traditional field investigation and artificial interpretation could not satisfy the need of forest gaps extraction at regional scale. High spatial resolution remote sensing image provides the possibility for regional forest gaps extraction. In this study, we used object-oriented classification method to segment and classify forest gaps based on QuickBird high resolution optical remote sensing image in Jiangle National Forestry Farm of Fujian Province. In the process of object-oriented classification, 10 scales (10-100, with a step length of 10) were adopted to segment QuickBird remote sensing image; and the intersection area of reference object (RA or ) and intersection area of segmented object (RA os ) were adopted to evaluate the segmentation result at each scale. For segmentation result at each scale, 16 spectral characteristics and support vector machine classifier (SVM) were further used to classify forest gaps, non-forest gaps and others. The results showed that the optimal segmentation scale was 40 when RA or was equal to RA os . The accuracy difference between the maximum and minimum at different segmentation scales was 22%. At optimal scale, the overall classification accuracy was 88% (Kappa=0.82) based on SVM classifier. Combining high resolution remote sensing image data with object-oriented classification method could replace the traditional field investigation and artificial interpretation method to identify and classify forest gaps at regional scale.

  13. The Evolution of Complex Microsurgical Midface Reconstruction: A Classification Scheme and Reconstructive Algorithm.

    PubMed

    Alam, Daniel; Ali, Yaseen; Klem, Christopher; Coventry, Daniel

    2016-11-01

    Orbito-malar reconstruction after oncological resection represents one of the most challenging facial reconstructive procedures. Until the last few decades, rehabilitation was typically prosthesis based with a limited role for surgery. The advent of microsurgical techniques allowed large-volume tissue reconstitution from a distant donor site, revolutionizing the potential approaches to these defects. The authors report a novel surgery-based algorithm and a classification scheme for complete midface reconstruction with a foundation in the Gillies principles of like-to-like reconstruction and with a significant role of computer-aided virtual planning. With this approach, the authors have been able to achieve significantly better patient outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Combining High Spatial Resolution Optical and LIDAR Data for Object-Based Image Classification

    NASA Astrophysics Data System (ADS)

    Li, R.; Zhang, T.; Geng, R.; Wang, L.

    2018-04-01

    In order to classify high spatial resolution images more accurately, in this research, a hierarchical rule-based object-based classification framework was developed based on a high-resolution image with airborne Light Detection and Ranging (LiDAR) data. The eCognition software is employed to conduct the whole process. In detail, firstly, the FBSP optimizer (Fuzzy-based Segmentation Parameter) is used to obtain the optimal scale parameters for different land cover types. Then, using the segmented regions as basic units, the classification rules for various land cover types are established according to the spectral, morphological and texture features extracted from the optical images, and the height feature from LiDAR respectively. Thirdly, the object classification results are evaluated by using the confusion matrix, overall accuracy and Kappa coefficients. As a result, a method using the combination of an aerial image and the airborne Lidar data shows higher accuracy.

  15. Use of Binary Partition Tree and energy minimization for object-based classification of urban land cover

    NASA Astrophysics Data System (ADS)

    Li, Mengmeng; Bijker, Wietske; Stein, Alfred

    2015-04-01

    Two main challenges are faced when classifying urban land cover from very high resolution satellite images: obtaining an optimal image segmentation and distinguishing buildings from other man-made objects. For optimal segmentation, this work proposes a hierarchical representation of an image by means of a Binary Partition Tree (BPT) and an unsupervised evaluation of image segmentations by energy minimization. For building extraction, we apply fuzzy sets to create a fuzzy landscape of shadows which in turn involves a two-step procedure. The first step is a preliminarily image classification at a fine segmentation level to generate vegetation and shadow information. The second step models the directional relationship between building and shadow objects to extract building information at the optimal segmentation level. We conducted the experiments on two datasets of Pléiades images from Wuhan City, China. To demonstrate its performance, the proposed classification is compared at the optimal segmentation level with Maximum Likelihood Classification and Support Vector Machine classification. The results show that the proposed classification produced the highest overall accuracies and kappa coefficients, and the smallest over-classification and under-classification geometric errors. We conclude first that integrating BPT with energy minimization offers an effective means for image segmentation. Second, we conclude that the directional relationship between building and shadow objects represented by a fuzzy landscape is important for building extraction.

  16. An objective daily Weather Type classification for Iberia since 1850; patterns, trends, variability and impact in precipitation

    NASA Astrophysics Data System (ADS)

    Ramos, A. M.; Trigo, R. M.; Lorenzo, M. N.; Vaquero, J. M.; Gallego, M. C.; Valente, M. A.; Gimeno, L.

    2009-04-01

    In recent years a large number of automated classifications of atmospheric circulation patterns have been published covering the entire European continent or specific sub-regions (Huth et al., 2008). This generalized use of objective classifications results from their relatively straightforward computation but crucially from their capacity to provide simple description of typical synoptic conditions as well as their climatic and environmental impact. For this purpose, the vast majority of authors has employed the Reanalyses datasets, namely from either NCEP/NCAR or ECMWF projects. However, both these widely used datasets suffer from important caveats, namely their restricted temporal coverage, that is limited to the last six decades (NCEP/NCAR since 1948 and ECMWF since 1958). This limitation has been partially mitigated by the recent availability of continuous daily mean sea level pressure obtained within the European project EMULATE, that extended the historic records over the extra-tropical Atlantic and Europe (70°-25° N by 70° W-50° E), for the period 1850 to the present (Ansell, T. J. et al. 2006). Here we have used the extended EMULATE dataset to construct an automated version of the Lamb Weather type (WTs) classification scheme (Jones et al 1993) adapted for the center of the Iberian Peninsula. We have identified 10 basic WTs (Cyclonic, Anticyclonic and 8 directional types) following a similar methodology to that previously adopted by Trigo and DaCamara, 2000 (for Portugal) and Lorenzo et al. 2008 (for Galicia, northwestern Iberia). We have evaluated trends of monthly/seasonal frequency of each WT for the entire period and several shorter periods. Finally, we use the long-term precipitation time series from Lisbon (recently digitized) and Cadiz (southern Spain) to evaluate, the impact of each WT on the precipitation regime. It is shown that the Anticyclonic (A) type, although being the most frequent class in winter, gives a rather small contribution to

  17. Holistic processing of impossible objects: evidence from Garner's speeded-classification task.

    PubMed

    Freud, Erez; Avidan, Galia; Ganel, Tzvi

    2013-12-18

    Holistic processing, the decoding of the global structure of a stimulus while the local parts are not explicitly represented, is a basic characteristic of object perception. The current study was aimed to test whether such a representation could be created even for objects that violate fundamental principles of spatial organization, namely impossible objects. Previous studies argued that these objects cannot be represented holistically in long-term memory because they lack coherent 3D structure. Here, we utilized Garner's speeded classification task to test whether the perception of possible and impossible objects is mediated by similar holistic processing mechanisms. To this end, participants were asked to make speeded classifications of one object dimension while an irrelevant dimension was kept constant (baseline condition) or when this dimension varied (filtering condition). It is well accepted that ignoring the irrelevant dimension is impossible when holistic perception is mandatory, thus the extent of Garner interference in performance between the baseline and filtering conditions serves as an index of holistic processing. Critically, in Experiment 1, similar levels of Garner interference were found for possible and impossible objects implying holistic perception of both object types. Experiment 2 extended these results and demonstrated that even when depth information was explicitly processed, participants were still unable to process one dimension (width/depth) while ignoring the irrelevant dimension (depth/width, respectively). The results of Experiment 3 replicated the basic pattern found in Experiments 1 and 2 using a novel set of object exemplars. In Experiment 4, we used possible and impossible versions of the Penrose triangles in which information about impossibility is embedded in the internal elements of the objects which participant were explicitly asked to judge. As in Experiments 1-3, similar Garner interference was found for possible and

  18. Twenty five years of beach monitoring in Hong Kong: A re-examination of the beach water quality classification scheme from a comparative and global perspective.

    PubMed

    Thoe, W; Lee, Olive H K; Leung, K F; Lee, T; Ashbolt, Nicholas J; Yang, Ron R; Chui, Samuel H K

    2018-06-01

    Hong Kong's beach water quality classification scheme, used effectively for >25 years in protecting public health, was first established in local epidemiology studies during the late 1980s where Escherichia coli (E. coli) was identified as the most suitable faecal indicator bacteria. To review and further substantiate the scheme's robustness, a performance check was carried out to classify water quality of 37 major local beaches in Hong Kong during four bathing seasons (March-October) from 2010 to 2013. Given the enterococci and E. coli data collected, beach classification by the local scheme was found to be in line with the prominent international benchmarks recommended by the World Health Organization and the European Union. Local bacteriological studies over the last 15 years further confirmed that E. coli is the more suitable faecal indicator bacteria than enterococci in the local context. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. [Object-oriented remote sensing image classification in epidemiological studies of visceral leishmaniasis in urban areas].

    PubMed

    Almeida, Andréa Sobral de; Werneck, Guilherme Loureiro; Resendes, Ana Paula da Costa

    2014-08-01

    This study explored the use of object-oriented classification of remote sensing imagery in epidemiological studies of visceral leishmaniasis (VL) in urban areas. To obtain temperature and environmental information, an object-oriented classification approach was applied to Landsat 5 TM scenes from the city of Teresina, Piauí State, Brazil. For 1993-1996, VL incidence rates correlated positively with census tracts covered by dense vegetation, grass/pasture, and bare soil and negatively with areas covered by water and densely populated areas. In 2001-2006, positive correlations were found with dense vegetation, grass/pasture, bare soil, and densely populated areas and negative correlations with occupied urban areas with some vegetation. Land surface temperature correlated negatively with VL incidence in both periods. Object-oriented classification can be useful to characterize landscape features associated with VL in urban areas and to help identify risk areas in order to prioritize interventions.

  20. A systematic comparison of different object-based classification techniques using high spatial resolution imagery in agricultural environments

    NASA Astrophysics Data System (ADS)

    Li, Manchun; Ma, Lei; Blaschke, Thomas; Cheng, Liang; Tiede, Dirk

    2016-07-01

    Geographic Object-Based Image Analysis (GEOBIA) is becoming more prevalent in remote sensing classification, especially for high-resolution imagery. Many supervised classification approaches are applied to objects rather than pixels, and several studies have been conducted to evaluate the performance of such supervised classification techniques in GEOBIA. However, these studies did not systematically investigate all relevant factors affecting the classification (segmentation scale, training set size, feature selection and mixed objects). In this study, statistical methods and visual inspection were used to compare these factors systematically in two agricultural case studies in China. The results indicate that Random Forest (RF) and Support Vector Machines (SVM) are highly suitable for GEOBIA classifications in agricultural areas and confirm the expected general tendency, namely that the overall accuracies decline with increasing segmentation scale. All other investigated methods except for RF and SVM are more prone to obtain a lower accuracy due to the broken objects at fine scales. In contrast to some previous studies, the RF classifiers yielded the best results and the k-nearest neighbor classifier were the worst results, in most cases. Likewise, the RF and Decision Tree classifiers are the most robust with or without feature selection. The results of training sample analyses indicated that the RF and adaboost. M1 possess a superior generalization capability, except when dealing with small training sample sizes. Furthermore, the classification accuracies were directly related to the homogeneity/heterogeneity of the segmented objects for all classifiers. Finally, it was suggested that RF should be considered in most cases for agricultural mapping.

  1. The impact of catchment source group classification on the accuracy of sediment fingerprinting outputs.

    PubMed

    Pulley, Simon; Foster, Ian; Collins, Adrian L

    2017-06-01

    The objective classification of sediment source groups is at present an under-investigated aspect of source tracing studies, which has the potential to statistically improve discrimination between sediment sources and reduce uncertainty. This paper investigates this potential using three different source group classification schemes. The first classification scheme was simple surface and subsurface groupings (Scheme 1). The tracer signatures were then used in a two-step cluster analysis to identify the sediment source groupings naturally defined by the tracer signatures (Scheme 2). The cluster source groups were then modified by splitting each one into a surface and subsurface component to suit catchment management goals (Scheme 3). The schemes were tested using artificial mixtures of sediment source samples. Controlled corruptions were made to some of the mixtures to mimic the potential causes of tracer non-conservatism present when using tracers in natural fluvial environments. It was determined how accurately the known proportions of sediment sources in the mixtures were identified after unmixing modelling using the three classification schemes. The cluster analysis derived source groups (2) significantly increased tracer variability ratios (inter-/intra-source group variability) (up to 2122%, median 194%) compared to the surface and subsurface groupings (1). As a result, the composition of the artificial mixtures was identified an average of 9.8% more accurately on the 0-100% contribution scale. It was found that the cluster groups could be reclassified into a surface and subsurface component (3) with no significant increase in composite uncertainty (a 0.1% increase over Scheme 2). The far smaller effects of simulated tracer non-conservatism for the cluster analysis based schemes (2 and 3) was primarily attributed to the increased inter-group variability producing a far larger sediment source signal that the non-conservatism noise (1). Modified cluster analysis

  2. Research on Remote Sensing Geological Information Extraction Based on Object Oriented Classification

    NASA Astrophysics Data System (ADS)

    Gao, Hui

    2018-04-01

    The northern Tibet belongs to the Sub cold arid climate zone in the plateau. It is rarely visited by people. The geological working conditions are very poor. However, the stratum exposures are good and human interference is very small. Therefore, the research on the automatic classification and extraction of remote sensing geological information has typical significance and good application prospect. Based on the object-oriented classification in Northern Tibet, using the Worldview2 high-resolution remote sensing data, combined with the tectonic information and image enhancement, the lithological spectral features, shape features, spatial locations and topological relations of various geological information are excavated. By setting the threshold, based on the hierarchical classification, eight kinds of geological information were classified and extracted. Compared with the existing geological maps, the accuracy analysis shows that the overall accuracy reached 87.8561 %, indicating that the classification-oriented method is effective and feasible for this study area and provides a new idea for the automatic extraction of remote sensing geological information.

  3. Using two classification schemes to develop vegetation indices of biological integrity for wetlands in West Virginia, USA.

    PubMed

    Veselka, Walter; Rentch, James S; Grafton, William N; Kordek, Walter S; Anderson, James T

    2010-11-01

    Bioassessment methods for wetlands, and other bodies of water, have been developed worldwide to measure and quantify changes in "biological integrity." These assessments are based on a classification system, meant to ensure appropriate comparisons between wetland types. Using a local site-specific disturbance gradient, we built vegetation indices of biological integrity (Veg-IBIs) based on two commonly used wetland classification systems in the USA: One based on vegetative structure and the other based on a wetland's position in a landscape and sources of water. The resulting class-specific Veg-IBIs were comprised of 1-5 metrics that varied in their sensitivity to the disturbance gradient (R2=0.14-0.65). Moreover, the sensitivity to the disturbance gradient increased as metrics from each of the two classification schemes were combined (added). Using this information to monitor natural and created wetlands will help natural resource managers track changes in biological integrity of wetlands in response to anthropogenic disturbance and allows the use of vegetative communities to set ecological performance standards for mitigation banks.

  4. Generalized interpretation scheme for arbitrary HR InSAR image pairs

    NASA Astrophysics Data System (ADS)

    Boldt, Markus; Thiele, Antje; Schulz, Karsten

    2013-10-01

    Land cover classification of remote sensing imagery is an important topic of research. For example, different applications require precise and fast information about the land cover of the imaged scenery (e.g., disaster management and change detection). Focusing on high resolution (HR) spaceborne remote sensing imagery, the user has the choice between passive and active sensor systems. Passive systems, such as multispectral sensors, have the disadvantage of being dependent from weather influences (fog, dust, clouds, etc.) and time of day, since they work in the visible part of the electromagnetic spectrum. Here, active systems like Synthetic Aperture Radar (SAR) provide improved capabilities. As an interactive method analyzing HR InSAR image pairs, the CovAmCohTM method was introduced in former studies. CovAmCoh represents the joint analysis of locality (coefficient of variation - Cov), backscatter (amplitude - Am) and temporal stability (coherence - Coh). It delivers information on physical backscatter characteristics of imaged scene objects or structures and provides the opportunity to detect different classes of land cover (e.g., urban, rural, infrastructure and activity areas). As example, railway tracks are easily distinguishable from other infrastructure due to their characteristic bluish coloring caused by the gravel between the sleepers. In consequence, imaged objects or structures have a characteristic appearance in CovAmCoh images which allows the development of classification rules. In this paper, a generalized interpretation scheme for arbitrary InSAR image pairs using the CovAmCoh method is proposed. This scheme bases on analyzing the information content of typical CovAmCoh imagery using the semisupervised k-means clustering. It is shown that eight classes model the main local information content of CovAmCoh images sufficiently and can be used as basis for a classification scheme.

  5. An Object-Oriented Classification Method on High Resolution Satellite Data

    DTIC Science & Technology

    2004-11-01

    25th ACRS 2004 Chiang Mai , Thailand 347 Data Processing B-4.6 AN OBJECT-ORIENTED CLASSIFICATION METHOD ON...unlimited 13. SUPPLEMENTARY NOTES Proceedings of the 25th Asian Conference on Remote Sensing, Held in Chiang Mai , Thailand on 22-26 November 2004...panchromatic (left) and multispectral (right) 25th ACRS 2004 Chiang Mai , Thailand 349 Data Processing B-4.6 First of all, the

  6. A Classification Methodology and Retrieval Model to Support Software Reuse

    DTIC Science & Technology

    1988-01-01

    Dewey Decimal Classification ( DDC 18), an enumerative scheme, occupies 40 pages [Buchanan 19791. Langridge [19731 states that the facets listed in the...sense of historical importance or wide spread use. The schemes are: Dewey Decimal Classification ( DDC ), Universal Decimal Classification (UDC...Classification Systems ..... ..... 2.3.3 Library Classification__- .52 23.3.1 Dewey Decimal Classification -53 2.33.2 Universal Decimal Classification 55 2333

  7. Assessment of skeletal maturity in scoliosis patients to determine clinical management: a new classification scheme using distal radius and ulna radiographs.

    PubMed

    Luk, Keith D K; Saw, Lim Beng; Grozman, Samuel; Cheung, Kenneth M C; Samartzis, Dino

    2014-02-01

    Assessment of skeletal maturity in patients with adolescent idiopathic scoliosis (AIS) is important to guide clinical management. Understanding growth peak and cessation is crucial to determine clinical observational intervals, timing to initiate or end bracing therapy, and when to instrument and fuse. The commonly used clinical or radiologic methods to assess skeletal maturity are still deficient in predicting the growth peak and cessation among adolescents, and bone age is too complicated to apply. To address these concerns, we describe a new distal radius and ulna (DRU) classification scheme to assess skeletal maturity. A prospective study. One hundred fifty young, female AIS patients with hand x-rays and no previous history of spine surgery from a single institute were assessed. Radius and ulna plain radiographs, and various anthropomorphic parameters were assessed. We identified various stages of radius and ulna epiphysis maturity, which were graded as R1-R11 for the radius and U1-U9 for the ulna. The bone age, development of sexual characteristics, standing height, sitting height, arm span, radius length, and tibia length were studied prospectively at each stage of these epiphysis changes. Standing height, sitting height, and arm span growth were at their peak during stages R7 (mean, 11.4 years old) and U5 (mean, 11.0 years old). The long bone growths also demonstrated a common peak at R7 and U5. Cessation of height and arm span growth was noted after stages R10 (mean, 15.6 years old) and U9 (mean, 17.3 years old). The new DRU classification is a practical and easy-to-use scheme that can provide skeletal maturation status. This classification scheme provides close relationship with adolescent growth spurt and cessation of growth. This classification may have a tremendous utility in improving clinical-decision making in the conservative and operative management of scoliosis patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. A new gamma-ray burst classification scheme from GRB 060614.

    PubMed

    Gehrels, N; Norris, J P; Barthelmy, S D; Granot, J; Kaneko, Y; Kouveliotou, C; Markwardt, C B; Mészáros, P; Nakar, E; Nousek, J A; O'Brien, P T; Page, M; Palmer, D M; Parsons, A M; Roming, P W A; Sakamoto, T; Sarazin, C L; Schady, P; Stamatikos, M; Woosley, S E

    2006-12-21

    Gamma-ray bursts (GRBs) are known to come in two duration classes, separated at approximately 2 s. Long-duration bursts originate from star-forming regions in galaxies, have accompanying supernovae when these are near enough to observe and are probably caused by massive-star collapsars. Recent observations show that short-duration bursts originate in regions within their host galaxies that have lower star-formation rates, consistent with binary neutron star or neutron star-black hole mergers. Moreover, although their hosts are predominantly nearby galaxies, no supernovae have been so far associated with short-duration GRBs. Here we report that the bright, nearby GRB 060614 does not fit into either class. Its approximately 102-s duration groups it with long-duration GRBs, while its temporal lag and peak luminosity fall entirely within the short-duration GRB subclass. Moreover, very deep optical observations exclude an accompanying supernova, similar to short-duration GRBs. This combination of a long-duration event without an accompanying supernova poses a challenge to both the collapsar and the merging-neutron-star interpretations and opens the door to a new GRB classification scheme that straddles both long- and short-duration bursts.

  9. Method of center localization for objects containing concentric arcs

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Elena G.; Shvets, Evgeny A.; Nikolaev, Dmitry P.

    2015-02-01

    This paper proposes a method for automatic center location of objects containing concentric arcs. The method utilizes structure tensor analysis and voting scheme optimized with Fast Hough Transform. Two applications of the proposed method are considered: (i) wheel tracking in video-based system for automatic vehicle classification and (ii) tree growth rings analysis on a tree cross cut image.

  10. A Hierarchical Object-oriented Urban Land Cover Classification Using WorldView-2 Imagery and Airborne LiDAR data

    NASA Astrophysics Data System (ADS)

    Wu, M. F.; Sun, Z. C.; Yang, B.; Yu, S. S.

    2016-11-01

    In order to reduce the “salt and pepper” in pixel-based urban land cover classification and expand the application of fusion of multi-source data in the field of urban remote sensing, WorldView-2 imagery and airborne Light Detection and Ranging (LiDAR) data were used to improve the classification of urban land cover. An approach of object- oriented hierarchical classification was proposed in our study. The processing of proposed method consisted of two hierarchies. (1) In the first hierarchy, LiDAR Normalized Digital Surface Model (nDSM) image was segmented to objects. The NDVI, Costal Blue and nDSM thresholds were set for extracting building objects. (2) In the second hierarchy, after removing building objects, WorldView-2 fused imagery was obtained by Haze-ratio-based (HR) fusion, and was segmented. A SVM classifier was applied to generate road/parking lot, vegetation and bare soil objects. (3) Trees and grasslands were split based on an nDSM threshold (2.4 meter). The results showed that compared with pixel-based and non-hierarchical object-oriented approach, proposed method provided a better performance of urban land cover classification, the overall accuracy (OA) and overall kappa (OK) improved up to 92.75% and 0.90. Furthermore, proposed method reduced “salt and pepper” in pixel-based classification, improved the extraction accuracy of buildings based on LiDAR nDSM image segmentation, and reduced the confusion between trees and grasslands through setting nDSM threshold.

  11. Overview of classification systems in peripheral artery disease.

    PubMed

    Hardman, Rulon L; Jazaeri, Omid; Yi, J; Smith, M; Gupta, Rajan

    2014-12-01

    Peripheral artery disease (PAD), secondary to atherosclerotic disease, is currently the leading cause of morbidity and mortality in the western world. While PAD is common, it is estimated that the majority of patients with PAD are undiagnosed and undertreated. The challenge to the treatment of PAD is to accurately diagnose the symptoms and determine treatment for each patient. The varied presentations of peripheral vascular disease have led to numerous classification schemes throughout the literature. Consistent grading of patients leads to both objective criteria for treating patients and a baseline for clinical follow-up. Reproducible classification systems are also important in clinical trials and when comparing medical, surgical, and endovascular treatment paradigms. This article reviews the various classification systems for PAD and advantages to each system.

  12. Classification of product inspection items using nonlinear features

    NASA Astrophysics Data System (ADS)

    Talukder, Ashit; Casasent, David P.; Lee, H.-W.

    1998-03-01

    Automated processing and classification of real-time x-ray images of randomly oriented touching pistachio nuts is discussed. The ultimate objective is the development of a system for automated non-invasive detection of defective product items on a conveyor belt. This approach involves two main steps: preprocessing and classification. Preprocessing locates individual items and segments ones that touch using a modified watershed algorithm. The second stage involves extraction of features that allow discrimination between damaged and clean items (pistachio nuts). This feature extraction and classification stage is the new aspect of this paper. We use a new nonlinear feature extraction scheme called the maximum representation and discriminating feature (MRDF) extraction method to compute nonlinear features that are used as inputs to a classifier. The MRDF is shown to provide better classification and a better ROC (receiver operating characteristic) curve than other methods.

  13. A novel fractal image compression scheme with block classification and sorting based on Pearson's correlation coefficient.

    PubMed

    Wang, Jianji; Zheng, Nanning

    2013-09-01

    Fractal image compression (FIC) is an image coding technology based on the local similarity of image structure. It is widely used in many fields such as image retrieval, image denoising, image authentication, and encryption. FIC, however, suffers from the high computational complexity in encoding. Although many schemes are published to speed up encoding, they do not easily satisfy the encoding time or the reconstructed image quality requirements. In this paper, a new FIC scheme is proposed based on the fact that the affine similarity between two blocks in FIC is equivalent to the absolute value of Pearson's correlation coefficient (APCC) between them. First, all blocks in the range and domain pools are chosen and classified using an APCC-based block classification method to increase the matching probability. Second, by sorting the domain blocks with respect to APCCs between these domain blocks and a preset block in each class, the matching domain block for a range block can be searched in the selected domain set in which these APCCs are closer to APCC between the range block and the preset block. Experimental results show that the proposed scheme can significantly speed up the encoding process in FIC while preserving the reconstructed image quality well.

  14. Object based image analysis for the classification of the growth stages of Avocado crop, in Michoacán State, Mexico

    NASA Astrophysics Data System (ADS)

    Gao, Yan; Marpu, Prashanth; Morales Manila, Luis M.

    2014-11-01

    This paper assesses the suitability of 8-band Worldview-2 (WV2) satellite data and object-based random forest algorithm for the classification of avocado growth stages in Mexico. We tested both pixel-based with minimum distance (MD) and maximum likelihood (MLC) and object-based with Random Forest (RF) algorithm for this task. Training samples and verification data were selected by visual interpreting the WV2 images for seven thematic classes: fully grown, middle stage, and early stage of avocado crops, bare land, two types of natural forests, and water body. To examine the contribution of the four new spectral bands of WV2 sensor, all the tested classifications were carried out with and without the four new spectral bands. Classification accuracy assessment results show that object-based classification with RF algorithm obtained higher overall higher accuracy (93.06%) than pixel-based MD (69.37%) and MLC (64.03%) method. For both pixel-based and object-based methods, the classifications with the four new spectral bands (overall accuracy obtained higher accuracy than those without: overall accuracy of object-based RF classification with vs without: 93.06% vs 83.59%, pixel-based MD: 69.37% vs 67.2%, pixel-based MLC: 64.03% vs 36.05%, suggesting that the four new spectral bands in WV2 sensor contributed to the increase of the classification accuracy.

  15. Update on diabetes classification.

    PubMed

    Thomas, Celeste C; Philipson, Louis H

    2015-01-01

    This article highlights the difficulties in creating a definitive classification of diabetes mellitus in the absence of a complete understanding of the pathogenesis of the major forms. This brief review shows the evolving nature of the classification of diabetes mellitus. No classification scheme is ideal, and all have some overlap and inconsistencies. The only diabetes in which it is possible to accurately diagnose by DNA sequencing, monogenic diabetes, remains undiagnosed in more than 90% of the individuals who have diabetes caused by one of the known gene mutations. The point of classification, or taxonomy, of disease, should be to give insight into both pathogenesis and treatment. It remains a source of frustration that all schemes of diabetes mellitus continue to fall short of this goal. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Segmentation and object-oriented classification of wetlands in a karst Florida landscape using multi-season Landsat-7 ETM+ Imagery

    EPA Science Inventory

    Segmentation and object-oriented processing of single-season and multi-season Landsat-7 ETM+ data was utilized for the classification of wetlands in a 1560 km2 study area of north central Florida. This segmentation and object-oriented classification outperformed the traditional ...

  17. Wing Classification in the Virtual Research Center

    NASA Technical Reports Server (NTRS)

    Campbell, William H.

    1999-01-01

    The Virtual Research Center (VRC) is a Web site that hosts a database of documents organized to allow teams of scientists and engineers to store and maintain documents. A number of other workgroup-related capabilities are provided. My tasks as a NASA/ASEE Summer Faculty Fellow included developing a scheme for classifying the workgroups using the VRC using the various Divisions within NASA Enterprises. To this end I developed a plan to use several CGI Perl scripts to gather classification information from the leaders of the workgroups, and to display all the workgroups within a specified classification. I designed, implemented, and partially tested scripts which can be used to do the classification. I was also asked to consider directions for future development of the VRC. I think that the VRC can use XML to advantage. XML is a markup language with designer tags that can be used to build meaning into documents. An investigation as to how CORBA, an object-oriented object request broker included with JDK 1.2, might be used also seems justified.

  18. PET/CT detectability and classification of simulated pulmonary lesions using an SUV correction scheme

    NASA Astrophysics Data System (ADS)

    Morrow, Andrew N.; Matthews, Kenneth L., II; Bujenovic, Steven

    2008-03-01

    Positron emission tomography (PET) and computed tomography (CT) together are a powerful diagnostic tool, but imperfect image quality allows false positive and false negative diagnoses to be made by any observer despite experience and training. This work investigates PET acquisition mode, reconstruction method and a standard uptake value (SUV) correction scheme on the classification of lesions as benign or malignant in PET/CT images, in an anthropomorphic phantom. The scheme accounts for partial volume effect (PVE) and PET resolution. The observer draws a region of interest (ROI) around the lesion using the CT dataset. A simulated homogenous PET lesion of the same shape as the drawn ROI is blurred with the point spread function (PSF) of the PET scanner to estimate the PVE, providing a scaling factor to produce a corrected SUV. Computer simulations showed that the accuracy of the corrected PET values depends on variations in the CT-drawn boundary and the position of the lesion with respect to the PET image matrix, especially for smaller lesions. Correction accuracy was affected slightly by mismatch of the simulation PSF and the actual scanner PSF. The receiver operating characteristic (ROC) study resulted in several observations. Using observer drawn ROIs, scaled tumor-background ratios (TBRs) more accurately represented actual TBRs than unscaled TBRs. For the PET images, 3D OSEM outperformed 2D OSEM, 3D OSEM outperformed 3D FBP, and 2D OSEM outperformed 2D FBP. The correction scheme significantly increased sensitivity and slightly increased accuracy for all acquisition and reconstruction modes at the cost of a small decrease in specificity.

  19. A fuzzy automated object classification by infrared laser camera

    NASA Astrophysics Data System (ADS)

    Kanazawa, Seigo; Taniguchi, Kazuhiko; Asari, Kazunari; Kuramoto, Kei; Kobashi, Syoji; Hata, Yutaka

    2011-06-01

    Home security in night is very important, and the system that watches a person's movements is useful in the security. This paper describes a classification system of adult, child and the other object from distance distribution measured by an infrared laser camera. This camera radiates near infrared waves and receives reflected ones. Then, it converts the time of flight into distance distribution. Our method consists of 4 steps. First, we do background subtraction and noise rejection in the distance distribution. Second, we do fuzzy clustering in the distance distribution, and form several clusters. Third, we extract features such as the height, thickness, aspect ratio, area ratio of the cluster. Then, we make fuzzy if-then rules from knowledge of adult, child and the other object so as to classify the cluster to one of adult, child and the other object. Here, we made the fuzzy membership function with respect to each features. Finally, we classify the clusters to one with the highest fuzzy degree among adult, child and the other object. In our experiment, we set up the camera in room and tested three cases. The method successfully classified them in real time processing.

  20. Object linking in repositories

    NASA Technical Reports Server (NTRS)

    Eichmann, David (Editor); Beck, Jon; Atkins, John; Bailey, Bill

    1992-01-01

    This topic is covered in three sections. The first section explores some of the architectural ramifications of extending the Eichmann/Atkins lattice-based classification scheme to encompass the assets of the full life cycle of software development. A model is considered that provides explicit links between objects in addition to the edges connecting classification vertices in the standard lattice. The second section gives a description of the efforts to implement the repository architecture using a commercially available object-oriented database management system. Some of the features of this implementation are described, and some of the next steps to be taken to produce a working prototype of the repository are pointed out. In the final section, it is argued that design and instantiation of reusable components have competing criteria (design-for-reuse strives for generality, design-with-reuse strives for specificity) and that providing mechanisms for each can be complementary rather than antagonistic. In particular, it is demonstrated how program slicing techniques can be applied to customization of reusable components.

  1. Circulation Type Classifications and their nexus to Van Bebber's storm track Vb

    NASA Astrophysics Data System (ADS)

    Hofstätter, M.; Chimani, B.

    2012-04-01

    Circulation Type Classifications (CTCs) are tools to identify repetitive and predominantly stationary patterns of the atmospheric circulation over a certain area, with the purpose to enable the recognition of specific characteristics in surface climate variables. On the other hand storm tracks can be used to identify similar types of synoptic events from a non-stationary, kinematic perspective. Such a storm track classification for Europe has been done in the late 19th century by Van Bebber (1882, 1891), from which the famous type Vb and Vc/d remained up to the present day because of to their association with major flooding events like in August 2002 in Europe. In this work a systematic tracking procedure has been developed, to determine storm track types and their characteristics especially for the Eastern Alpine Region in the period 1961-2002, using ERA40 and ERAinterim reanalysis. The focus thereby is on cyclone tracks of type V as suggested by van Bebber and congeneric types. This new catalogue is used as a reference to verify the hypothesis of a certain coherence of storm track Vb with certain circulation types (e.g. Fricke and Kaminski, 2002). Selected objective and subjective classification schemes from the COST733 action (http://cost733.met.no/, Phillip et al. 2010) are used therefore, as well as the manual classification from ZAMG (Lauscher 1972 and 1985), in which storm track Vb has been classified explicitly on a daily base since 1948. The latter scheme should prove itself as a valuable and unique data source in that issue. Results show that not less than 146 storm tracks are identified as Vb between 1961 and 2002, whereas only three events could be found from literature, pointing to big subjectivity and preconception in the issue of Vb storm tracks. The annual number of Vb storm tracks do not show any significant trend over the last 42 years, but large variations from year to year. Circulation type classification CAP27 (Cluster Analysis of Principal

  2. A Classification Scheme for Young Stellar Objects Using the WIDE-FIELD INFRARED SURVEY EXPLORER ALLWISE Catalog: Revealing Low-Density Star Formation in the Outer Galaxy

    NASA Technical Reports Server (NTRS)

    Koening, X. P.; Leisawitz, D. T.

    2014-01-01

    We present an assessment of the performance of WISE and the AllWISE data release in a section of the Galactic Plane. We lay out an approach to increasing the reliability of point source photometry extracted from the AllWISE catalog in Galactic Plane regions using parameters provided in the catalog. We use the resulting catalog to construct a new, revised young star detection and classification scheme combining WISE and 2MASS near and mid-infrared colors and magnitudes and test it in a section of the Outer Milky Way. The clustering properties of the candidate Class I and II stars using a nearest neighbor density calculation and the two-point correlation function suggest that the majority of stars do form in massive star forming regions, and any isolated mode of star formation is at most a small fraction of the total star forming output of the Galaxy. We also show that the isolated component may be very small and could represent the tail end of a single mechanism of star formation in line with models of molecular cloud collapse with supersonic turbulence and not a separate mode all to itself.

  3. Linguistic Relativity in Japanese and English: Is Language the Primary Determinant in Object Classification?

    ERIC Educational Resources Information Center

    Mazuka, Reiko; Friedman, Ronald S.

    2000-01-01

    Tested claims by Lucy (1992a, 1992b) that differences between the number marking systems used by Yucatec Maya and English lead speakers of these languages to differentially attend to either the material composition or the shape of objects. Replicated Lucy's critical objects' classification experiments using speakers of English and Japanese.…

  4. Objective classification of atmospheric circulation over southern Scandinavia

    NASA Astrophysics Data System (ADS)

    Linderson, Maj-Lena

    2001-02-01

    A method for calculating circulation indices and weather types following the Lamb classification is applied to southern Scandinavia. The main objective is to test the ability of the method to describe the atmospheric circulation over the area, and to evaluate the extent to which the pressure patterns determine local precipitation and temperature in Scania, southernmost Sweden. The weather type classification method works well and produces distinct groups. However, the variability within the group is large with regard to the location of the low pressure centres, which may have implications for the precipitation over the area. The anticyclonic weather type dominates, together with the cyclonic and westerly types. This deviates partly from the general picture for Sweden and may be explained by the southerly location of the study area. The cyclonic type is most frequent in spring, although cloudiness and amount of rain are lowest during this season. This could be explained by the occurrence of weaker cyclones or low air humidity during this time of year. Local temperature and precipitation were modelled by stepwise regression for each season, designating weather types as independent variables. Only the winter season-modelled temperature and precipitation show a high and robust correspondence to the observed temperature and precipitation, even though <60% of the precipitation variance is explained. In the other seasons, the connection between atmospheric circulation and the local temperature and precipitation is low. Other meteorological parameters may need to be taken into account. The time and space resolution of the mean sea level pressure (MSLP) grid may affect the results, as many important features might not be covered by the classification. Local physiography may also influence the local climate in a way that cannot be described by the atmospheric circulation pattern alone, stressing the importance of using more than one observation series.

  5. Urban Image Classification: Per-Pixel Classifiers, Sub-Pixel Analysis, Object-Based Image Analysis, and Geospatial Methods. 10; Chapter

    NASA Technical Reports Server (NTRS)

    Myint, Soe W.; Mesev, Victor; Quattrochi, Dale; Wentz, Elizabeth A.

    2013-01-01

    Remote sensing methods used to generate base maps to analyze the urban environment rely predominantly on digital sensor data from space-borne platforms. This is due in part from new sources of high spatial resolution data covering the globe, a variety of multispectral and multitemporal sources, sophisticated statistical and geospatial methods, and compatibility with GIS data sources and methods. The goal of this chapter is to review the four groups of classification methods for digital sensor data from space-borne platforms; per-pixel, sub-pixel, object-based (spatial-based), and geospatial methods. Per-pixel methods are widely used methods that classify pixels into distinct categories based solely on the spectral and ancillary information within that pixel. They are used for simple calculations of environmental indices (e.g., NDVI) to sophisticated expert systems to assign urban land covers. Researchers recognize however, that even with the smallest pixel size the spectral information within a pixel is really a combination of multiple urban surfaces. Sub-pixel classification methods therefore aim to statistically quantify the mixture of surfaces to improve overall classification accuracy. While within pixel variations exist, there is also significant evidence that groups of nearby pixels have similar spectral information and therefore belong to the same classification category. Object-oriented methods have emerged that group pixels prior to classification based on spectral similarity and spatial proximity. Classification accuracy using object-based methods show significant success and promise for numerous urban 3 applications. Like the object-oriented methods that recognize the importance of spatial proximity, geospatial methods for urban mapping also utilize neighboring pixels in the classification process. The primary difference though is that geostatistical methods (e.g., spatial autocorrelation methods) are utilized during both the pre- and post-classification

  6. Single-Grasp Object Classification and Feature Extraction with Simple Robot Hands and Tactile Sensors.

    PubMed

    Spiers, Adam J; Liarokapis, Minas V; Calli, Berk; Dollar, Aaron M

    2016-01-01

    Classical robotic approaches to tactile object identification often involve rigid mechanical grippers, dense sensor arrays, and exploratory procedures (EPs). Though EPs are a natural method for humans to acquire object information, evidence also exists for meaningful tactile property inference from brief, non-exploratory motions (a 'haptic glance'). In this work, we implement tactile object identification and feature extraction techniques on data acquired during a single, unplanned grasp with a simple, underactuated robot hand equipped with inexpensive barometric pressure sensors. Our methodology utilizes two cooperating schemes based on an advanced machine learning technique (random forests) and parametric methods that estimate object properties. The available data is limited to actuator positions (one per two link finger) and force sensors values (eight per finger). The schemes are able to work both independently and collaboratively, depending on the task scenario. When collaborating, the results of each method contribute to the other, improving the overall result in a synergistic fashion. Unlike prior work, the proposed approach does not require object exploration, re-grasping, grasp-release, or force modulation and works for arbitrary object start positions and orientations. Due to these factors, the technique may be integrated into practical robotic grasping scenarios without adding time or manipulation overheads.

  7. On Classification in the Study of Failure, and a Challenge to Classifiers

    NASA Technical Reports Server (NTRS)

    Wasson, Kimberly S.

    2003-01-01

    Classification schemes are abundant in the literature of failure. They serve a number of purposes, some more successfully than others. We examine several classification schemes constructed for various purposes relating to failure and its investigation, and discuss their values and limits. The analysis results in a continuum of uses for classification schemes, that suggests that the value of certain properties of these schemes is dependent on the goals a classification is designed to forward. The contrast in the value of different properties for different uses highlights a particular shortcoming: we argue that while humans are good at developing one kind of scheme: dynamic, flexible classifications used for exploratory purposes, we are not so good at developing another: static, rigid classifications used to trap and organize data for specific analytic goals. Our lack of strong foundation in developing valid instantiations of the latter impedes progress toward a number of investigative goals. This shortcoming and its consequences pose a challenge to researchers in the study of failure: to develop new methods for constructing and validating static classification schemes of demonstrable value in promoting the goals of investigations. We note current productive activity in this area, and outline foundations for more.

  8. An analysis of the synoptic and climatological applicability of circulation type classifications for Ireland

    NASA Astrophysics Data System (ADS)

    Broderick, Ciaran; Fealy, Rowan

    2013-04-01

    Circulation type classifications (CTCs) compiled as part of the COST733 Action, entitled 'Harmonisation and Application of Weather Type Classifications for European Regions', are examined for their synoptic and climatological applicability to Ireland based on their ability to characterise surface temperature and precipitation. In all 16 different objective classification schemes, representative of four different methodological approaches to circulation typing (optimization algorithms, threshold based methods, eigenvector techniques and leader algorithms) are considered. Several statistical metrics which variously quantify the ability of CTCs to discretize daily data into well-defined homogeneous groups are used to evaluate and compare different approaches to synoptic typing. The records from 14 meteorological stations located across the island of Ireland are used in the study. The results indicate that while it was not possible to identify a single optimum classification or approach to circulation typing - conditional on the location and surface variables considered - a number of general assertions regarding the performance of different schemes can be made. The findings for surface temperature indicate that that those classifications based on predefined thresholds (e.g. Litynski, GrossWetterTypes and original Lamb Weather Type) perform well, as do the Kruizinga and Lund classification schemes. Similarly for precipitation predefined type classifications return high skill scores, as do those classifications derived using some optimization procedure (e.g. SANDRA, Self Organizing Maps and K-Means clustering). For both temperature and precipitation the results generally indicate that the classifications perform best for the winter season - reflecting the closer coupling between large-scale circulation and surface conditions during this period. In contrast to the findings for temperature, spatial patterns in the performance of classifications were more evident for

  9. A soft computing scheme incorporating ANN and MOV energy in fault detection, classification and distance estimation of EHV transmission line with FSC.

    PubMed

    Khadke, Piyush; Patne, Nita; Singh, Arvind; Shinde, Gulab

    2016-01-01

    In this article, a novel and accurate scheme for fault detection, classification and fault distance estimation for a fixed series compensated transmission line is proposed. The proposed scheme is based on artificial neural network (ANN) and metal oxide varistor (MOV) energy, employing Levenberg-Marquardt training algorithm. The novelty of this scheme is the use of MOV energy signals of fixed series capacitors (FSC) as input to train the ANN. Such approach has never been used in any earlier fault analysis algorithms in the last few decades. Proposed scheme uses only single end measurement energy signals of MOV in all the 3 phases over one cycle duration from the occurrence of a fault. Thereafter, these MOV energy signals are fed as input to ANN for fault distance estimation. Feasibility and reliability of the proposed scheme have been evaluated for all ten types of fault in test power system model at different fault inception angles over numerous fault locations. Real transmission system parameters of 3-phase 400 kV Wardha-Aurangabad transmission line (400 km) with 40 % FSC at Power Grid Wardha Substation, India is considered for this research. Extensive simulation experiments show that the proposed scheme provides quite accurate results which demonstrate complete protection scheme with high accuracy, simplicity and robustness.

  10. A Distributed Artificial Intelligence Approach To Object Identification And Classification

    NASA Astrophysics Data System (ADS)

    Sikka, Digvijay I.; Varshney, Pramod K.; Vannicola, Vincent C.

    1989-09-01

    This paper presents an application of Distributed Artificial Intelligence (DAI) tools to the data fusion and classification problem. Our approach is to use a blackboard for information management and hypothe-ses formulation. The blackboard is used by the knowledge sources (KSs) for sharing information and posting their hypotheses on, just as experts sitting around a round table would do. The present simulation performs classification of an Aircraft(AC), after identifying it by its features, into disjoint sets (object classes) comprising of the five commercial ACs; Boeing 747, Boeing 707, DC10, Concord and Boeing 727. A situation data base is characterized by experimental data available from the three levels of expert reasoning. Ohio State University ElectroScience Laboratory provided this experimental data. To validate the architecture presented, we employ two KSs for modeling the sensors, aspect angle polarization feature and the ellipticity data. The system has been implemented on Symbolics 3645, under Genera 7.1, in Common LISP.

  11. Learning viewpoint invariant object representations using a temporal coherence principle.

    PubMed

    Einhäuser, Wolfgang; Hipp, Jörg; Eggert, Julian; Körner, Edgar; König, Peter

    2005-07-01

    Invariant object recognition is arguably one of the major challenges for contemporary machine vision systems. In contrast, the mammalian visual system performs this task virtually effortlessly. How can we exploit our knowledge on the biological system to improve artificial systems? Our understanding of the mammalian early visual system has been augmented by the discovery that general coding principles could explain many aspects of neuronal response properties. How can such schemes be transferred to system level performance? In the present study we train cells on a particular variant of the general principle of temporal coherence, the "stability" objective. These cells are trained on unlabeled real-world images without a teaching signal. We show that after training, the cells form a representation that is largely independent of the viewpoint from which the stimulus is looked at. This finding includes generalization to previously unseen viewpoints. The achieved representation is better suited for view-point invariant object classification than the cells' input patterns. This property to facilitate view-point invariant classification is maintained even if training and classification take place in the presence of an--also unlabeled--distractor object. In summary, here we show that unsupervised learning using a general coding principle facilitates the classification of real-world objects, that are not segmented from the background and undergo complex, non-isomorphic, transformations.

  12. Sensitivity and Specificity of the World Health Organization Dengue Classification Schemes for Severe Dengue Assessment in Children in Rio de Janeiro

    PubMed Central

    Macedo, Gleicy A.; Gonin, Michelle Luiza C.; Pone, Sheila M.; Cruz, Oswaldo G.; Nobre, Flávio F.; Brasil, Patrícia

    2014-01-01

    Background The clinical definition of severe dengue fever remains a challenge for researchers in hyperendemic areas like Brazil. The ability of the traditional (1997) as well as the revised (2009) World Health Organization (WHO) dengue case classification schemes to detect severe dengue cases was evaluated in 267 children admitted to hospital with laboratory-confirmed dengue. Principal Findings Using the traditional scheme, 28.5% of patients could not be assigned to any category, while the revised scheme categorized all patients. Intensive therapeutic interventions were used as the reference standard to evaluate the ability of both the traditional and revised schemes to detect severe dengue cases. Analyses of the classified cases (n = 183) demonstrated that the revised scheme had better sensitivity (86.8%, P<0.001), while the traditional scheme had better specificity (93.4%, P<0.001) for the detection of severe forms of dengue. Conclusions/Significance This improved sensitivity of the revised scheme allows for better case capture and increased ICU admission, which may aid pediatricians in avoiding deaths due to severe dengue among children, but, in turn, it may also result in the misclassification of the patients' condition as severe, reflected in the observed lower positive predictive value (61.6%, P<0.001) when compared with the traditional scheme (82.6%, P<0.001). The inclusion of unusual dengue manifestations in the revised scheme has not shifted the emphasis from the most important aspects of dengue disease and the major factors contributing to fatality in this study: shock with consequent organ dysfunction. PMID:24777054

  13. Sensitivity and specificity of the World Health Organization dengue classification schemes for severe dengue assessment in children in Rio de Janeiro.

    PubMed

    Macedo, Gleicy A; Gonin, Michelle Luiza C; Pone, Sheila M; Cruz, Oswaldo G; Nobre, Flávio F; Brasil, Patrícia

    2014-01-01

    The clinical definition of severe dengue fever remains a challenge for researchers in hyperendemic areas like Brazil. The ability of the traditional (1997) as well as the revised (2009) World Health Organization (WHO) dengue case classification schemes to detect severe dengue cases was evaluated in 267 children admitted to hospital with laboratory-confirmed dengue. Using the traditional scheme, 28.5% of patients could not be assigned to any category, while the revised scheme categorized all patients. Intensive therapeutic interventions were used as the reference standard to evaluate the ability of both the traditional and revised schemes to detect severe dengue cases. Analyses of the classified cases (n = 183) demonstrated that the revised scheme had better sensitivity (86.8%, P<0.001), while the traditional scheme had better specificity (93.4%, P<0.001) for the detection of severe forms of dengue. This improved sensitivity of the revised scheme allows for better case capture and increased ICU admission, which may aid pediatricians in avoiding deaths due to severe dengue among children, but, in turn, it may also result in the misclassification of the patients' condition as severe, reflected in the observed lower positive predictive value (61.6%, P<0.001) when compared with the traditional scheme (82.6%, P<0.001). The inclusion of unusual dengue manifestations in the revised scheme has not shifted the emphasis from the most important aspects of dengue disease and the major factors contributing to fatality in this study: shock with consequent organ dysfunction.

  14. Object-based forest classification to facilitate landscape-scale conservation in the Mississippi Alluvial Valley

    USGS Publications Warehouse

    Mitchell, Michael; Wilson, R. Randy; Twedt, Daniel J.; Mini, Anne E.; James, J. Dale

    2016-01-01

    The Mississippi Alluvial Valley is a floodplain along the southern extent of the Mississippi River extending from southern Missouri to the Gulf of Mexico. This area once encompassed nearly 10 million ha of floodplain forests, most of which has been converted to agriculture over the past two centuries. Conservation programs in this region revolve around protection of existing forest and reforestation of converted lands. Therefore, an accurate and up to date classification of forest cover is essential for conservation planning, including efforts that prioritize areas for conservation activities. We used object-based image analysis with Random Forest classification to quickly and accurately classify forest cover. We used Landsat band, band ratio, and band index statistics to identify and define similar objects as our training sets instead of selecting individual training points. This provided a single rule-set that was used to classify each of the 11 Landsat 5 Thematic Mapper scenes that encompassed the Mississippi Alluvial Valley. We classified 3,307,910±85,344 ha (32% of this region) as forest. Our overall classification accuracy was 96.9% with Kappa statistic of 0.96. Because this method of forest classification is rapid and accurate, assessment of forest cover can be regularly updated and progress toward forest habitat goals identified in conservation plans can be periodically evaluated.

  15. CLASSIFICATION FRAMEWORK FOR COASTAL ECOSYSTEM RESPONSES TO AQUATIC STRESSORS

    EPA Science Inventory

    Many classification schemes have been developed to group ecosystems based on similar characteristics. To date, however, no single scheme has addressed coastal ecosystem responses to multiple stressors. We developed a classification framework for coastal ecosystems to improve the ...

  16. Classification Scheme for Items in CAAT.

    ERIC Educational Resources Information Center

    Epstein, Marion G.

    In planning the development of the system for computer assisted assembly of tests, it was agreed at the outset that one of the basic requirements for the successful initiation of any such system would be the development of a detailed item content classification system. The design of the system for classifying item content is a key element in…

  17. Lagrangian methods of cosmic web classification

    NASA Astrophysics Data System (ADS)

    Fisher, J. D.; Faltenbacher, A.; Johnson, M. S. T.

    2016-05-01

    The cosmic web defines the large-scale distribution of matter we see in the Universe today. Classifying the cosmic web into voids, sheets, filaments and nodes allows one to explore structure formation and the role environmental factors have on halo and galaxy properties. While existing studies of cosmic web classification concentrate on grid-based methods, this work explores a Lagrangian approach where the V-web algorithm proposed by Hoffman et al. is implemented with techniques borrowed from smoothed particle hydrodynamics. The Lagrangian approach allows one to classify individual objects (e.g. particles or haloes) based on properties of their nearest neighbours in an adaptive manner. It can be applied directly to a halo sample which dramatically reduces computational cost and potentially allows an application of this classification scheme to observed galaxy samples. Finally, the Lagrangian nature admits a straightforward inclusion of the Hubble flow negating the necessity of a visually defined threshold value which is commonly employed by grid-based classification methods.

  18. Keypoint Density-Based Region Proposal for Fine-Grained Object Detection and Classification Using Regions with Convolutional Neural Network Features

    DTIC Science & Technology

    2015-12-15

    Keypoint Density-based Region Proposal for Fine-Grained Object Detection and Classification using Regions with Convolutional Neural Network ... Convolutional Neural Networks (CNNs) enable them to outperform conventional techniques on standard object detection and classification tasks, their...detection accuracy and speed on the fine-grained Caltech UCSD bird dataset (Wah et al., 2011). Recently, Convolutional Neural Networks (CNNs), a deep

  19. D Object Classification Based on Thermal and Visible Imagery in Urban Area

    NASA Astrophysics Data System (ADS)

    Hasani, H.; Samadzadegan, F.

    2015-12-01

    The spatial distribution of land cover in the urban area especially 3D objects (buildings and trees) is a fundamental dataset for urban planning, ecological research, disaster management, etc. According to recent advances in sensor technologies, several types of remotely sensed data are available from the same area. Data fusion has been widely investigated for integrating different source of data in classification of urban area. Thermal infrared imagery (TIR) contains information on emitted radiation and has unique radiometric properties. However, due to coarse spatial resolution of thermal data, its application has been restricted in urban areas. On the other hand, visible image (VIS) has high spatial resolution and information in visible spectrum. Consequently, there is a complementary relation between thermal and visible imagery in classification of urban area. This paper evaluates the potential of aerial thermal hyperspectral and visible imagery fusion in classification of urban area. In the pre-processing step, thermal imagery is resampled to the spatial resolution of visible image. Then feature level fusion is applied to construct hybrid feature space include visible bands, thermal hyperspectral bands, spatial and texture features and moreover Principle Component Analysis (PCA) transformation is applied to extract PCs. Due to high dimensionality of feature space, dimension reduction method is performed. Finally, Support Vector Machines (SVMs) classify the reduced hybrid feature space. The obtained results show using thermal imagery along with visible imagery, improved the classification accuracy up to 8% respect to visible image classification.

  20. A comparison of the accuracy of pixel based and object based classifications of integrated optical and LiDAR data

    NASA Astrophysics Data System (ADS)

    Gajda, Agnieszka; Wójtowicz-Nowakowska, Anna

    2013-04-01

    A comparison of the accuracy of pixel based and object based classifications of integrated optical and LiDAR data Land cover maps are generally produced on the basis of high resolution imagery. Recently, LiDAR (Light Detection and Ranging) data have been brought into use in diverse applications including land cover mapping. In this study we attempted to assess the accuracy of land cover classification using both high resolution aerial imagery and LiDAR data (airborne laser scanning, ALS), testing two classification approaches: a pixel-based classification and object-oriented image analysis (OBIA). The study was conducted on three test areas (3 km2 each) in the administrative area of Kraków, Poland, along the course of the Vistula River. They represent three different dominating land cover types of the Vistula River valley. Test site 1 had a semi-natural vegetation, with riparian forests and shrubs, test site 2 represented a densely built-up area, and test site 3 was an industrial site. Point clouds from ALS and ortophotomaps were both captured in November 2007. Point cloud density was on average 16 pt/m2 and it contained additional information about intensity and encoded RGB values. Ortophotomaps had a spatial resolution of 10 cm. From point clouds two raster maps were generated: intensity (1) and (2) normalised Digital Surface Model (nDSM), both with the spatial resolution of 50 cm. To classify the aerial data, a supervised classification approach was selected. Pixel based classification was carried out in ERDAS Imagine software. Ortophotomaps and intensity and nDSM rasters were used in classification. 15 homogenous training areas representing each cover class were chosen. Classified pixels were clumped to avoid salt and pepper effect. Object oriented image object classification was carried out in eCognition software, which implements both the optical and ALS data. Elevation layers (intensity, firs/last reflection, etc.) were used at segmentation stage due to

  1. A learning scheme for reach to grasp movements: on EMG-based interfaces using task specific motion decoding models.

    PubMed

    Liarokapis, Minas V; Artemiadis, Panagiotis K; Kyriakopoulos, Kostas J; Manolakos, Elias S

    2013-09-01

    A learning scheme based on random forests is used to discriminate between different reach to grasp movements in 3-D space, based on the myoelectric activity of human muscles of the upper-arm and the forearm. Task specificity for motion decoding is introduced in two different levels: Subspace to move toward and object to be grasped. The discrimination between the different reach to grasp strategies is accomplished with machine learning techniques for classification. The classification decision is then used in order to trigger an EMG-based task-specific motion decoding model. Task specific models manage to outperform "general" models providing better estimation accuracy. Thus, the proposed scheme takes advantage of a framework incorporating both a classifier and a regressor that cooperate advantageously in order to split the task space. The proposed learning scheme can be easily used to a series of EMG-based interfaces that must operate in real time, providing data-driven capabilities for multiclass problems, that occur in everyday life complex environments.

  2. Detection and Classification of Pole-Like Objects from Mobile Mapping Data

    NASA Astrophysics Data System (ADS)

    Fukano, K.; Masuda, H.

    2015-08-01

    Laser scanners on a vehicle-based mobile mapping system can capture 3D point-clouds of roads and roadside objects. Since roadside objects have to be maintained periodically, their 3D models are useful for planning maintenance tasks. In our previous work, we proposed a method for detecting cylindrical poles and planar plates in a point-cloud. However, it is often required to further classify pole-like objects into utility poles, streetlights, traffic signals and signs, which are managed by different organizations. In addition, our previous method may fail to extract low pole-like objects, which are often observed in urban residential areas. In this paper, we propose new methods for extracting and classifying pole-like objects. In our method, we robustly extract a wide variety of poles by converting point-clouds into wireframe models and calculating cross-sections between wireframe models and horizontal cutting planes. For classifying pole-like objects, we subdivide a pole-like object into five subsets by extracting poles and planes, and calculate feature values of each subset. Then we apply a supervised machine learning method using feature variables of subsets. In our experiments, our method could achieve excellent results for detection and classification of pole-like objects.

  3. EEG Classification for Hybrid Brain-Computer Interface Using a Tensor Based Multiclass Multimodal Analysis Scheme

    PubMed Central

    Ji, Hongfei; Li, Jie; Lu, Rongrong; Gu, Rong; Cao, Lei; Gong, Xiaoliang

    2016-01-01

    Electroencephalogram- (EEG-) based brain-computer interface (BCI) systems usually utilize one type of changes in the dynamics of brain oscillations for control, such as event-related desynchronization/synchronization (ERD/ERS), steady state visual evoked potential (SSVEP), and P300 evoked potentials. There is a recent trend to detect more than one of these signals in one system to create a hybrid BCI. However, in this case, EEG data were always divided into groups and analyzed by the separate processing procedures. As a result, the interactive effects were ignored when different types of BCI tasks were executed simultaneously. In this work, we propose an improved tensor based multiclass multimodal scheme especially for hybrid BCI, in which EEG signals are denoted as multiway tensors, a nonredundant rank-one tensor decomposition model is proposed to obtain nonredundant tensor components, a weighted fisher criterion is designed to select multimodal discriminative patterns without ignoring the interactive effects, and support vector machine (SVM) is extended to multiclass classification. Experiment results suggest that the proposed scheme can not only identify the different changes in the dynamics of brain oscillations induced by different types of tasks but also capture the interactive effects of simultaneous tasks properly. Therefore, it has great potential use for hybrid BCI. PMID:26880873

  4. EEG Classification for Hybrid Brain-Computer Interface Using a Tensor Based Multiclass Multimodal Analysis Scheme.

    PubMed

    Ji, Hongfei; Li, Jie; Lu, Rongrong; Gu, Rong; Cao, Lei; Gong, Xiaoliang

    2016-01-01

    Electroencephalogram- (EEG-) based brain-computer interface (BCI) systems usually utilize one type of changes in the dynamics of brain oscillations for control, such as event-related desynchronization/synchronization (ERD/ERS), steady state visual evoked potential (SSVEP), and P300 evoked potentials. There is a recent trend to detect more than one of these signals in one system to create a hybrid BCI. However, in this case, EEG data were always divided into groups and analyzed by the separate processing procedures. As a result, the interactive effects were ignored when different types of BCI tasks were executed simultaneously. In this work, we propose an improved tensor based multiclass multimodal scheme especially for hybrid BCI, in which EEG signals are denoted as multiway tensors, a nonredundant rank-one tensor decomposition model is proposed to obtain nonredundant tensor components, a weighted fisher criterion is designed to select multimodal discriminative patterns without ignoring the interactive effects, and support vector machine (SVM) is extended to multiclass classification. Experiment results suggest that the proposed scheme can not only identify the different changes in the dynamics of brain oscillations induced by different types of tasks but also capture the interactive effects of simultaneous tasks properly. Therefore, it has great potential use for hybrid BCI.

  5. Object-oriented classification of drumlins from digital elevation models

    NASA Astrophysics Data System (ADS)

    Saha, Kakoli

    Drumlins are common elements of glaciated landscapes which are easily identified by their distinct morphometric characteristics including shape, length/width ratio, elongation ratio, and uniform direction. To date, most researchers have mapped drumlins by tracing contours on maps, or through on-screen digitization directly on top of hillshaded digital elevation models (DEMs). This paper seeks to utilize the unique morphometric characteristics of drumlins and investigates automated extraction of the landforms as objects from DEMs by Definiens Developer software (V.7), using the 30 m United States Geological Survey National Elevation Dataset DEM as input. The Chautauqua drumlin field in Pennsylvania and upstate New York, USA was chosen as a study area. As the study area is huge (approximately covers 2500 sq.km. of area), small test areas were selected for initial testing of the method. Individual polygons representing the drumlins were extracted from the elevation data set by automated recognition, using Definiens' Multiresolution Segmentation tool, followed by rule-based classification. Subsequently parameters such as length, width and length-width ratio, perimeter and area were measured automatically. To test the accuracy of the method, a second base map was produced by manual on-screen digitization of drumlins from topographic maps and the same morphometric parameters were extracted from the mapped landforms using Definiens Developer. Statistical comparison showed a high agreement between the two methods confirming that object-oriented classification for extraction of drumlins can be used for mapping these landforms. The proposed method represents an attempt to solve the problem by providing a generalized rule-set for mass extraction of drumlins. To check that the automated extraction process was next applied to a larger area. Results showed that the proposed method is as successful for the bigger area as it was for the smaller test areas.

  6. Classification of spatially unresolved objects

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F.; Horwitz, H. M.; Hyde, P. D.; Morgenstern, J. P.

    1972-01-01

    A proportion estimation technique for classification of multispectral scanner images is reported that uses data point averaging to extract and compute estimated proportions for a single average data point to classify spatial unresolved areas. Example extraction calculations of spectral signatures for bare soil, weeds, alfalfa, and barley prove quite accurate.

  7. Object Manifold Alignment for Multi-Temporal High Resolution Remote Sensing Images Classification

    NASA Astrophysics Data System (ADS)

    Gao, G.; Zhang, M.; Gu, Y.

    2017-05-01

    Multi-temporal remote sensing images classification is very useful for monitoring the land cover changes. Traditional approaches in this field mainly face to limited labelled samples and spectral drift of image information. With spatial resolution improvement, "pepper and salt" appears and classification results will be effected when the pixelwise classification algorithms are applied to high-resolution satellite images, in which the spatial relationship among the pixels is ignored. For classifying the multi-temporal high resolution images with limited labelled samples, spectral drift and "pepper and salt" problem, an object-based manifold alignment method is proposed. Firstly, multi-temporal multispectral images are cut to superpixels by simple linear iterative clustering (SLIC) respectively. Secondly, some features obtained from superpixels are formed as vector. Thirdly, a majority voting manifold alignment method aiming at solving high resolution problem is proposed and mapping the vector data to alignment space. At last, all the data in the alignment space are classified by using KNN method. Multi-temporal images from different areas or the same area are both considered in this paper. In the experiments, 2 groups of multi-temporal HR images collected by China GF1 and GF2 satellites are used for performance evaluation. Experimental results indicate that the proposed method not only has significantly outperforms than traditional domain adaptation methods in classification accuracy, but also effectively overcome the problem of "pepper and salt".

  8. "Interactive Classification Technology"

    NASA Technical Reports Server (NTRS)

    deBessonet, Cary

    1999-01-01

    The investigators are upgrading a knowledge representation language called SL (Symbolic Language) and an automated reasoning system called SMS (Symbolic Manipulation System) to enable the technologies to be used in automated reasoning and interactive classification systems. The overall goals of the project are: a) the enhancement of the representation language SL to accommodate multiple perspectives and a wider range of meaning; b) the development of a sufficient set of operators to enable the interpreter of SL to handle representations of basic cognitive acts; and c) the development of a default inference scheme to operate over SL notation as it is encoded. As to particular goals the first-year work plan focused on inferencing and.representation issues, including: 1) the development of higher level cognitive/ classification functions and conceptual models for use in inferencing and decision making; 2) the specification of a more detailed scheme of defaults and the enrichment of SL notation to accommodate the scheme; and 3) the adoption of additional perspectives for inferencing.

  9. A Proposal to Develop Interactive Classification Technology

    NASA Technical Reports Server (NTRS)

    deBessonet, Cary

    1998-01-01

    Research for the first year was oriented towards: 1) the design of an interactive classification tool (ICT); and 2) the development of an appropriate theory of inference for use in ICT technology. The general objective was to develop a theory of classification that could accommodate a diverse array of objects, including events and their constituent objects. Throughout this report, the term "object" is to be interpreted in a broad sense to cover any kind of object, including living beings, non-living physical things, events, even ideas and concepts. The idea was to produce a theory that could serve as the uniting fabric of a base technology capable of being implemented in a variety of automated systems. The decision was made to employ two technologies under development by the principal investigator, namely, SMS (Symbolic Manipulation System) and SL (Symbolic Language) [see debessonet, 1991, for detailed descriptions of SMS and SL]. The plan was to enhance and modify these technologies for use in an ICT environment. As a means of giving focus and direction to the proposed research, the investigators decided to design an interactive, classificatory tool for use in building accessible knowledge bases for selected domains. Accordingly, the proposed research was divisible into tasks that included: 1) the design of technology for classifying domain objects and for building knowledge bases from the results automatically; 2) the development of a scheme of inference capable of drawing upon previously processed classificatory schemes and knowledge bases; and 3) the design of a query/ search module for accessing the knowledge bases built by the inclusive system. The interactive tool for classifying domain objects was to be designed initially for textual corpora with a view to having the technology eventually be used in robots to build sentential knowledge bases that would be supported by inference engines specially designed for the natural or man-made environments in which the

  10. Selective classification for improved robustness of myoelectric control under nonideal conditions.

    PubMed

    Scheme, Erik J; Englehart, Kevin B; Hudgins, Bernard S

    2011-06-01

    Recent literature in pattern recognition-based myoelectric control has highlighted a disparity between classification accuracy and the usability of upper limb prostheses. This paper suggests that the conventionally defined classification accuracy may be idealistic and may not reflect true clinical performance. Herein, a novel myoelectric control system based on a selective multiclass one-versus-one classification scheme, capable of rejecting unknown data patterns, is introduced. This scheme is shown to outperform nine other popular classifiers when compared using conventional classification accuracy as well as a form of leave-one-out analysis that may be more representative of real prosthetic use. Additionally, the classification scheme allows for real-time, independent adjustment of individual class-pair boundaries making it flexible and intuitive for clinical use.

  11. Addition of Histology to the Paris Classification of Pediatric Crohn Disease Alters Classification of Disease Location.

    PubMed

    Fernandes, Melissa A; Verstraete, Sofia G; Garnett, Elizabeth A; Heyman, Melvin B

    2016-02-01

    The aim of the study was to investigate the value of microscopic findings in the classification of pediatric Crohn disease (CD) by determining whether classification of disease changes significantly with inclusion of histologic findings. Sixty patients were randomly selected from a cohort of patients studied at the Pediatric Inflammatory Bowel Disease Clinic at the University of California, San Francisco Benioff Children's Hospital. Two physicians independently reviewed the electronic health records of the included patients to determine the Paris classification for each patient by adhering to present guidelines and then by including microscopic findings. Macroscopic and combined disease location classifications were discordant in 34 (56.6%), with no statistically significant differences between groups. Interobserver agreement was higher in the combined classification (κ = 0.73, 95% confidence interval 0.65-0.82) as opposed to when classification was limited to macroscopic findings (κ = 0.53, 95% confidence interval 0.40-0.58). When evaluating the proximal upper gastrointestinal tract (Paris L4a), the interobserver agreement was better in macroscopic compared with the combined classification. Disease extent classifications differed significantly when comparing isolated macroscopic findings (Paris classification) with the combined scheme that included microscopy. Further studies are needed to determine which scheme provides more accurate representation of disease extent.

  12. Feature space trajectory for distorted-object classification and pose estimation in synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Casasent, David P.; Shenoy, Rajesh

    1997-10-01

    Classification and pose estimation of distorted input objects are considered. The feature space trajectory representation of distorted views of an object is used with a new eigenfeature space. For a distorted input object, the closest trajectory denotes the class of the input and the closest line segment on it denotes its pose. If an input point is too far from a trajectory, it is rejected as clutter. New methods for selecting Fukunaga-Koontz discriminant vectors, the number of dominant eigenvectors per class and for determining training, and test set compatibility are presented.

  13. Segmentation, modeling and classification of the compact objects in a pile

    NASA Technical Reports Server (NTRS)

    Gupta, Alok; Funka-Lea, Gareth; Wohn, Kwangyoen

    1990-01-01

    The problem of interpreting dense range images obtained from the scene of a heap of man-made objects is discussed. A range image interpretation system consisting of segmentation, modeling, verification, and classification procedures is described. First, the range image is segmented into regions and reasoning is done about the physical support of these regions. Second, for each region several possible three-dimensional interpretations are made based on various scenarios of the objects physical support. Finally each interpretation is tested against the data for its consistency. The superquadric model is selected as the three-dimensional shape descriptor, plus tapering deformations along the major axis. Experimental results obtained from some complex range images of mail pieces are reported to demonstrate the soundness and the robustness of our approach.

  14. Preliminary Results of Earthquake-Induced Building Damage Detection with Object-Based Image Classification

    NASA Astrophysics Data System (ADS)

    Sabuncu, A.; Uca Avci, Z. D.; Sunar, F.

    2016-06-01

    Earthquakes are the most destructive natural disasters, which result in massive loss of life, infrastructure damages and financial losses. Earthquake-induced building damage detection is a very important step after earthquakes since earthquake-induced building damage is one of the most critical threats to cities and countries in terms of the area of damage, rate of collapsed buildings, the damage grade near the epicenters and also building damage types for all constructions. Van-Ercis (Turkey) earthquake (Mw= 7.1) was occurred on October 23th, 2011; at 10:41 UTC (13:41 local time) centered at 38.75 N 43.36 E that places the epicenter about 30 kilometers northern part of the city of Van. It is recorded that, 604 people died and approximately 4000 buildings collapsed or seriously damaged by the earthquake. In this study, high-resolution satellite images of Van-Ercis, acquired by Quickbird-2 (Digital Globe Inc.) after the earthquake, were used to detect the debris areas using an object-based image classification. Two different land surfaces, having homogeneous and heterogeneous land covers, were selected as case study areas. As a first step of the object-based image processing, segmentation was applied with a convenient scale parameter and homogeneity criterion parameters. As a next step, condition based classification was used. In the final step of this preliminary study, outputs were compared with streetview/ortophotos for the verification and evaluation of the classification accuracy.

  15. Wide field imaging - I. Applications of neural networks to object detection and star/galaxy classification

    NASA Astrophysics Data System (ADS)

    Andreon, S.; Gargiulo, G.; Longo, G.; Tagliaferri, R.; Capuano, N.

    2000-12-01

    Astronomical wide-field imaging performed with new large-format CCD detectors poses data reduction problems of unprecedented scale, which are difficult to deal with using traditional interactive tools. We present here NExt (Neural Extractor), a new neural network (NN) based package capable of detecting objects and performing both deblending and star/galaxy classification in an automatic way. Traditionally, in astronomical images, objects are first distinguished from the noisy background by searching for sets of connected pixels having brightnesses above a given threshold; they are then classified as stars or as galaxies through diagnostic diagrams having variables chosen according to the astronomer's taste and experience. In the extraction step, assuming that images are well sampled, NExt requires only the simplest a priori definition of `what an object is' (i.e. it keeps all structures composed of more than one pixel) and performs the detection via an unsupervised NN, approaching detection as a clustering problem that has been thoroughly studied in the artificial intelligence literature. The first part of the NExt procedure consists of an optimal compression of the redundant information contained in the pixels via a mapping from pixel intensities to a subspace individualized through principal component analysis. At magnitudes fainter than the completeness limit, stars are usually almost indistinguishable from galaxies, and therefore the parameters characterizing the two classes do not lie in disconnected subspaces, thus preventing the use of unsupervised methods. We therefore adopted a supervised NN (i.e. a NN that first finds the rules to classify objects from examples and then applies them to the whole data set). In practice, each object is classified depending on its membership of the regions mapping the input feature space in the training set. In order to obtain an objective and reliable classification, instead of using an arbitrarily defined set of features

  16. MRI histogram analysis enables objective and continuous classification of intervertebral disc degeneration.

    PubMed

    Waldenberg, Christian; Hebelka, Hanna; Brisby, Helena; Lagerstrand, Kerstin Magdalena

    2018-05-01

    Magnetic resonance imaging (MRI) is the best diagnostic imaging method for low back pain. However, the technique is currently not utilized in its full capacity, often failing to depict painful intervertebral discs (IVDs), potentially due to the rough degeneration classification system used clinically today. MR image histograms, which reflect the IVD heterogeneity, may offer sensitive imaging biomarkers for IVD degeneration classification. This study investigates the feasibility of using histogram analysis as means of objective and continuous grading of IVD degeneration. Forty-nine IVDs in ten low back pain patients (six males, 25-69 years) were examined with MRI (T2-weighted images and T2-maps). Each IVD was semi-automatically segmented on three mid-sagittal slices. Histogram features of the IVD were extracted from the defined regions of interest and correlated to Pfirrmann grade. Both T2-weighted images and T2-maps displayed similar histogram features. Histograms of well-hydrated IVDs displayed two separate peaks, representing annulus fibrosus and nucleus pulposus. Degenerated IVDs displayed decreased peak separation, where the separation was shown to correlate strongly with Pfirrmann grade (P < 0.05). In addition, some degenerated IVDs within the same Pfirrmann grade displayed diametrically different histogram appearances. Histogram features correlated well with IVD degeneration, suggesting that IVD histogram analysis is a suitable tool for objective and continuous IVD degeneration classification. As histogram analysis revealed IVD heterogeneity, it may be a clinical tool for characterization of regional IVD degeneration effects. To elucidate the usefulness of histogram analysis in patient management, IVD histogram features between asymptomatic and symptomatic individuals needs to be compared.

  17. Toward an endovascular internal carotid artery classification system.

    PubMed

    Shapiro, M; Becske, T; Riina, H A; Raz, E; Zumofen, D; Jafar, J J; Huang, P P; Nelson, P K

    2014-02-01

    Does the world need another ICA classification scheme? We believe so. The purpose of proposed angiography-driven classification is to optimize description of the carotid artery from the endovascular perspective. A review of existing, predominantly surgically-driven classifications is performed, and a new scheme, based on the study of NYU aneurysm angiographic and cross-sectional databases is proposed. Seven segments - cervical, petrous, cavernous, paraophthlamic, posterior communicating, choroidal, and terminus - are named. This nomenclature recognizes intrinsic uncertainty in precise angiographic and cross-sectional localization of aneurysms adjacent to the dural rings, regarding all lesions distal to the cavernous segment as potentially intradural. Rather than subdividing various transitional, ophthalmic, and hypophyseal aneurysm subtypes, as necessitated by their varied surgical approaches and risks, the proposed classification emphasizes their common endovascular treatment features, while recognizing that many complex, trans-segmental, and fusiform aneurysms not readily classifiable into presently available, saccular aneurysm-driven schemes, are being increasingly addressed by endovascular means. We believe this classification may find utility in standardizing nomenclature for outcome tracking, treatment trials and physician communication.

  18. Object Classification Based on Analysis of Spectral Characteristics of Seismic Signal Envelopes

    NASA Astrophysics Data System (ADS)

    Morozov, Yu. V.; Spektor, A. A.

    2017-11-01

    A method for classifying moving objects having a seismic effect on the ground surface is proposed which is based on statistical analysis of the envelopes of received signals. The values of the components of the amplitude spectrum of the envelopes obtained applying Hilbert and Fourier transforms are used as classification criteria. Examples illustrating the statistical properties of spectra and the operation of the seismic classifier are given for an ensemble of objects of four classes (person, group of people, large animal, vehicle). It is shown that the computational procedures for processing seismic signals are quite simple and can therefore be used in real-time systems with modest requirements for computational resources.

  19. THE ROLE OF WATERSHED CLASSIFICATION IN DIAGNOSING CAUSES OF BIOLOGICAL IMPAIRMENT

    EPA Science Inventory

    We compared classification schemes based on watershed storage (wetland + lake area/watershed area) and forest fragmention with a gewographically-based classification scheme for two case studies involving 1) Lake Superior tributaries and 2) watersheds of riverine coastal wetlands ...

  20. Multi-class geospatial object detection and geographic image classification based on collection of part detectors

    NASA Astrophysics Data System (ADS)

    Cheng, Gong; Han, Junwei; Zhou, Peicheng; Guo, Lei

    2014-12-01

    The rapid development of remote sensing technology has facilitated us the acquisition of remote sensing images with higher and higher spatial resolution, but how to automatically understand the image contents is still a big challenge. In this paper, we develop a practical and rotation-invariant framework for multi-class geospatial object detection and geographic image classification based on collection of part detectors (COPD). The COPD is composed of a set of representative and discriminative part detectors, where each part detector is a linear support vector machine (SVM) classifier used for the detection of objects or recurring spatial patterns within a certain range of orientation. Specifically, when performing multi-class geospatial object detection, we learn a set of seed-based part detectors where each part detector corresponds to a particular viewpoint of an object class, so the collection of them provides a solution for rotation-invariant detection of multi-class objects. When performing geographic image classification, we utilize a large number of pre-trained part detectors to discovery distinctive visual parts from images and use them as attributes to represent the images. Comprehensive evaluations on two remote sensing image databases and comparisons with some state-of-the-art approaches demonstrate the effectiveness and superiority of the developed framework.

  1. Object-Based Classification of Ikonos Imagery for Mapping Large-Scale Vegetation Communities in Urban Areas.

    PubMed

    Mathieu, Renaud; Aryal, Jagannath; Chong, Albert K

    2007-11-20

    Effective assessment of biodiversity in cities requires detailed vegetation maps.To date, most remote sensing of urban vegetation has focused on thematically coarse landcover products. Detailed habitat maps are created by manual interpretation of aerialphotographs, but this is time consuming and costly at large scale. To address this issue, wetested the effectiveness of object-based classifications that use automated imagesegmentation to extract meaningful ground features from imagery. We applied thesetechniques to very high resolution multispectral Ikonos images to produce vegetationcommunity maps in Dunedin City, New Zealand. An Ikonos image was orthorectified and amulti-scale segmentation algorithm used to produce a hierarchical network of image objects.The upper level included four coarse strata: industrial/commercial (commercial buildings),residential (houses and backyard private gardens), vegetation (vegetation patches larger than0.8/1ha), and water. We focused on the vegetation stratum that was segmented at moredetailed level to extract and classify fifteen classes of vegetation communities. The firstclassification yielded a moderate overall classification accuracy (64%, κ = 0.52), which ledus to consider a simplified classification with ten vegetation classes. The overallclassification accuracy from the simplified classification was 77% with a κ value close tothe excellent range (κ = 0.74). These results compared favourably with similar studies inother environments. We conclude that this approach does not provide maps as detailed as those produced by manually interpreting aerial photographs, but it can still extract ecologically significant classes. It is an efficient way to generate accurate and detailed maps in significantly shorter time. The final map accuracy could be improved by integrating segmentation, automated and manual classification in the mapping process, especially when considering important vegetation classes with limited spectral contrast.

  2. Classification Scheme for Diverse Sedimentary and Igneous Rocks Encountered by MSL in Gale Crater

    NASA Technical Reports Server (NTRS)

    Schmidt, M. E.; Mangold, N.; Fisk, M.; Forni, O.; McLennan, S.; Ming, D. W.; Sumner, D.; Sautter, V.; Williams, A. J.; Gellert, R.

    2015-01-01

    The Curiosity Rover landed in a lithologically and geochemically diverse region of Mars. We present a recommended rock classification framework based on terrestrial schemes, and adapted for the imaging and analytical capabilities of MSL as well as for rock types distinctive to Mars (e.g., high Fe sediments). After interpreting rock origin from textures, i.e., sedimentary (clastic, bedded), igneous (porphyritic, glassy), or unknown, the overall classification procedure (Fig 1) involves: (1) the characterization of rock type according to grain size and texture; (2) the assignment of geochemical modifiers according to Figs 3 and 4; and if applicable, in depth study of (3) mineralogy and (4) geologic/stratigraphic context. Sedimentary rock types are assigned by measuring grains in the best available resolution image (Table 1) and classifying according to the coarsest resolvable grains as conglomerate/breccia, (coarse, medium, or fine) sandstone, silt-stone, or mudstone. If grains are not resolvable in MAHLI images, grains in the rock are assumed to be silt sized or smaller than surface dust particles. Rocks with low color contrast contrast between grains (e.g., Dismal Lakes, sol 304) are classified according to minimum size of apparent grains from surface roughness or shadows outlining apparent grains. Igneous rocks are described as intrusive or extrusive depending on crystal size and fabric. Igneous textures may be described as granular, porphyritic, phaneritic, aphyric, or glassy depending on crystal size. Further descriptors may include terms such as vesicular or cumulate textures.

  3. Parameterization of Shape and Compactness in Object-based Image Classification Using Quickbird-2 Imagery

    NASA Astrophysics Data System (ADS)

    Tonbul, H.; Kavzoglu, T.

    2016-12-01

    In recent years, object based image analysis (OBIA) has spread out and become a widely accepted technique for the analysis of remotely sensed data. OBIA deals with grouping pixels into homogenous objects based on spectral, spatial and textural features of contiguous pixels in an image. The first stage of OBIA, named as image segmentation, is the most prominent part of object recognition. In this study, multiresolution segmentation, which is a region-based approach, was employed to construct image objects. In the application of multi-resolution, three parameters, namely shape, compactness and scale must be set by the analyst. Segmentation quality remarkably influences the fidelity of the thematic maps and accordingly the classification accuracy. Therefore, it is of great importance to search and set optimal values for the segmentation parameters. In the literature, main focus has been on the definition of scale parameter, assuming that the effect of shape and compactness parameters is limited in terms of achieved classification accuracy. The aim of this study is to deeply analyze the influence of shape/compactness parameters by varying their values while using the optimal scale parameter determined by the use of Estimation of Scale Parameter (ESP-2) approach. A pansharpened Qickbird-2 image covering Trabzon, Turkey was employed to investigate the objectives of the study. For this purpose, six different combinations of shape/compactness were utilized to make deductions on the behavior of shape and compactness parameters and optimal setting for all parameters as a whole. Objects were assigned to classes using nearest neighbor classifier in all segmentation observations and equal number of pixels was randomly selected to calculate accuracy metrics. The highest overall accuracy (92.3%) was achieved by setting the shape/compactness criteria to 0.3/0.3. The results of this study indicate that shape/compactness parameters can have significant effect on classification

  4. Modification and evaluation of a Barnes-type objective analysis scheme for surface meteorological data

    NASA Technical Reports Server (NTRS)

    Smith, D. R.

    1982-01-01

    The Purdue Regional Objective Analysis of the Mesoscale (PROAM) is a Barness-type scheme for the analysis of surface meteorological data. Modifications are introduced to the original version in order to increase its flexibility and to permit greater ease of usage. The code was rewritten for an interactive computer environment. Furthermore, a multiple iteration technique suggested by Barnes was implemented for greater accuracy. PROAM was subjected to a series of experiments in order to evaluate its performance under a variety of analysis conditions. The tests include use of a known analytic temperature distribution in order to quantify error bounds for the scheme. Similar experiments were conducted using actual atmospheric data. Results indicate that the multiple iteration technique increases the accuracy of the analysis. Furthermore, the tests verify appropriate values for the analysis parameters in resolving meso-beta scale phenomena.

  5. Predominant-period site classification for response spectra prediction equations in Italy

    USGS Publications Warehouse

    Di Alessandro, Carola; Bonilla, Luis Fabian; Boore, David M.; Rovelli, Antonio; Scotti, Oona

    2012-01-01

    We propose a site‐classification scheme based on the predominant period of the site, as determined from the average horizontal‐to‐vertical (H/V) spectral ratios of ground motion. Our scheme extends Zhao et al. (2006) classifications by adding two classes, the most important of which is defined by flat H/V ratios with amplitudes less than 2. The proposed classification is investigated by using 5%‐damped response spectra from Italian earthquake records. We select a dataset of 602 three‐component analog and digital recordings from 120 earthquakes recorded at 214 seismic stations within a hypocentral distance of 200 km. Selected events are in the moment‐magnitude range 4.0≤Mw≤6.8 and focal depths from a few kilometers to 46 km. We computed H/V ratios for these data and used them to classify each site into one of six classes. We then investigate the impact of this classification scheme on empirical ground‐motion prediction equations (GMPEs) by comparing its performance with that of the conventional rock/soil classification. Although the adopted approach results in only a small reduction of the overall standard deviation, the use of H/V spectral ratios in site classification does capture the signature of sites with flat frequency‐response, as well as deep and shallow‐soil profiles, characterized by long‐ and short‐period resonance, respectively; in addition, the classification scheme is relatively quick and inexpensive, which is an advantage over schemes based on measurements of shear‐wave velocity.

  6. Classification for Estuarine Ecosystems: A Review and Comparison of Selected Classification Schemes

    EPA Science Inventory

    Estuarine scientists have devoted considerable effort to classifying coastal, estuarine and marine environments and their watersheds, for a variety of purposes. These classifications group systems with similarities – most often in physical and hydrodynamic properties – in order ...

  7. A Computer Oriented Scheme for Coding Chemicals in the Field of Biomedicine.

    ERIC Educational Resources Information Center

    Bobka, Marilyn E.; Subramaniam, J.B.

    The chemical coding scheme of the Medical Coding Scheme (MCS), developed for use in the Comparative Systems Laboratory (CSL), is outlined and evaluated in this report. The chemical coding scheme provides a classification scheme and encoding method for drugs and chemical terms. Using the scheme complicated chemical structures may be expressed…

  8. Object Classification With Joint Projection and Low-Rank Dictionary Learning.

    PubMed

    Foroughi, Homa; Ray, Nilanjan; Hong Zhang

    2018-02-01

    For an object classification system, the most critical obstacles toward real-world applications are often caused by large intra-class variability, arising from different lightings, occlusion, and corruption, in limited sample sets. Most methods in the literature would fail when the training samples are heavily occluded, corrupted or have significant illumination or viewpoint variations. Besides, most of the existing methods and especially deep learning-based methods, need large training sets to achieve a satisfactory recognition performance. Although using the pre-trained network on a generic large-scale data set and fine-tune it to the small-sized target data set is a widely used technique, this would not help when the content of base and target data sets are very different. To address these issues simultaneously, we propose a joint projection and low-rank dictionary learning method using dual graph constraints. Specifically, a structured class-specific dictionary is learned in the low-dimensional space, and the discrimination is further improved by imposing a graph constraint on the coding coefficients, that maximizes the intra-class compactness and inter-class separability. We enforce structural incoherence and low-rank constraints on sub-dictionaries to reduce the redundancy among them, and also make them robust to variations and outliers. To preserve the intrinsic structure of data, we introduce a supervised neighborhood graph into the framework to make the proposed method robust to small-sized and high-dimensional data sets. Experimental results on several benchmark data sets verify the superior performance of our method for object classification of small-sized data sets, which include a considerable amount of different kinds of variation, and may have high-dimensional feature vectors.

  9. Classification of Dual-Wavelength Airborne Laser Scanning Point Cloud Based on the Radiometric Properties of the Objects

    NASA Astrophysics Data System (ADS)

    Pilarska, M.

    2018-05-01

    Airborne laser scanning (ALS) is a well-known and willingly used technology. One of the advantages of this technology is primarily its fast and accurate data registration. In recent years ALS is continuously developed. One of the latest achievements is multispectral ALS, which consists in obtaining simultaneously the data in more than one laser wavelength. In this article the results of the dual-wavelength ALS data classification are presented. The data were acquired with RIEGL VQ-1560i sensor, which is equipped with two laser scanners operating in different wavelengths: 532 nm and 1064 nm. Two classification approaches are presented in the article: classification, which is based on geometric relationships between points and classification, which mostly relies on the radiometric properties of registered objects. The overall accuracy of the geometric classification was 86 %, whereas for the radiometric classification it was 81 %. As a result, it can be assumed that the radiometric features which are provided by the multispectral ALS have potential to be successfully used in ALS point cloud classification.

  10. Classification of ring artifacts for their effective removal using type adaptive correction schemes.

    PubMed

    Anas, Emran Mohammad Abu; Lee, Soo Yeol; Hasan, Kamrul

    2011-06-01

    High resolution tomographic images acquired with a digital X-ray detector are often degraded by the so called ring artifacts. In this paper, a detail analysis including the classification, detection and correction of these ring artifacts is presented. At first, a novel idea for classifying rings into two categories, namely type I and type II rings, is proposed based on their statistical characteristics. The defective detector elements and the dusty scintillator screens result in type I ring and the mis-calibrated detector elements lead to type II ring. Unlike conventional approaches, we emphasize here on the separate detection and correction schemes for each type of rings for their effective removal. For the detection of type I ring, the histogram of the responses of the detector elements is used and a modified fast image inpainting algorithm is adopted to correct the responses of the defective pixels. On the other hand, to detect the type II ring, first a simple filtering scheme is presented based on the fast Fourier transform (FFT) to smooth the sum curve derived form the type I ring corrected projection data. The difference between the sum curve and its smoothed version is then used to detect their positions. Then, to remove the constant bias suffered by the responses of the mis-calibrated detector elements with view angle, an estimated dc shift is subtracted from them. The performance of the proposed algorithm is evaluated using real micro-CT images and is compared with three recently reported algorithms. Simulation results demonstrate superior performance of the proposed technique as compared to the techniques reported in the literature. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Regional assessment of lake ecological states using Landsat: A classification scheme for alkaline-saline, flamingo lakes in the East African Rift Valley

    NASA Astrophysics Data System (ADS)

    Tebbs, E. J.; Remedios, J. J.; Avery, S. T.; Rowland, C. S.; Harper, D. M.

    2015-08-01

    In situ reflectance measurements and Landsat satellite imagery were combined to develop an optical classification scheme for alkaline-saline lakes in the Eastern Rift Valley. The classification allows the ecological state and consequent value, in this case to Lesser Flamingos, to be determined using Landsat satellite imagery. Lesser Flamingos depend on a network of 15 alkaline-saline lakes in East African Rift Valley, where they feed by filtering cyanobacteria and benthic diatoms from the lakes' waters. The classification developed here was based on a decision tree which used the reflectance in Landsat ETM+ bands 2-4 to assign one of six classes: low phytoplankton biomass; suspended sediment-dominated; microphytobenthos; high cyanobacterial biomass; cyanobacterial scum and bleached cyanobacterial scum. The classification accuracy was 77% when verified against in situ measurements. Classified imagery and timeseries were produced for selected lakes, which show the different ecological behaviours of these complex systems. The results have highlighted the importance to flamingos of the food resources offered by the extremely remote Lake Logipi. This study has demonstrated the potential of high spatial resolution, low spectral resolution sensors for providing ecologically valuable information at a regional scale, for alkaline-saline lakes and similar hypereutrophic inland waters.

  12. A classification of errors in lay comprehension of medical documents.

    PubMed

    Keselman, Alla; Smith, Catherine Arnott

    2012-12-01

    Emphasis on participatory medicine requires that patients and consumers participate in tasks traditionally reserved for healthcare providers. This includes reading and comprehending medical documents, often but not necessarily in the context of interacting with Personal Health Records (PHRs). Research suggests that while giving patients access to medical documents has many benefits (e.g., improved patient-provider communication), lay people often have difficulty understanding medical information. Informatics can address the problem by developing tools that support comprehension; this requires in-depth understanding of the nature and causes of errors that lay people make when comprehending clinical documents. The objective of this study was to develop a classification scheme of comprehension errors, based on lay individuals' retellings of two documents containing clinical text: a description of a clinical trial and a typical office visit note. While not comprehensive, the scheme can serve as a foundation of further development of a taxonomy of patients' comprehension errors. Eighty participants, all healthy volunteers, read and retold two medical documents. A data-driven content analysis procedure was used to extract and classify retelling errors. The resulting hierarchical classification scheme contains nine categories and 23 subcategories. The most common error made by the participants involved incorrectly recalling brand names of medications. Other common errors included misunderstanding clinical concepts, misreporting the objective of a clinical research study and physician's findings during a patient's visit, and confusing and misspelling clinical terms. A combination of informatics support and health education is likely to improve the accuracy of lay comprehension of medical documents. Published by Elsevier Inc.

  13. Object-oriented and pixel-based classification approach for land cover using airborne long-wave infrared hyperspectral data

    NASA Astrophysics Data System (ADS)

    Marwaha, Richa; Kumar, Anil; Kumar, Arumugam Senthil

    2015-01-01

    Our primary objective was to explore a classification algorithm for thermal hyperspectral data. Minimum noise fraction is applied to thermal hyperspectral data and eight pixel-based classifiers, i.e., constrained energy minimization, matched filter, spectral angle mapper (SAM), adaptive coherence estimator, orthogonal subspace projection, mixture-tuned matched filter, target-constrained interference-minimized filter, and mixture-tuned target-constrained interference minimized filter are tested. The long-wave infrared (LWIR) has not yet been exploited for classification purposes. The LWIR data contain emissivity and temperature information about an object. A highest overall accuracy of 90.99% was obtained using the SAM algorithm for the combination of thermal data with a colored digital photograph. Similarly, an object-oriented approach is applied to thermal data. The image is segmented into meaningful objects based on properties such as geometry, length, etc., which are grouped into pixels using a watershed algorithm and an applied supervised classification algorithm, i.e., support vector machine (SVM). The best algorithm in the pixel-based category is the SAM technique. SVM is useful for thermal data, providing a high accuracy of 80.00% at a scale value of 83 and a merge value of 90, whereas for the combination of thermal data with a colored digital photograph, SVM gives the highest accuracy of 85.71% at a scale value of 82 and a merge value of 90.

  14. Woodland Mapping at Single-Tree Levels Using Object-Oriented Classification of Unmanned Aerial Vehicle (uav) Images

    NASA Astrophysics Data System (ADS)

    Chenari, A.; Erfanifard, Y.; Dehghani, M.; Pourghasemi, H. R.

    2017-09-01

    Remotely sensed datasets offer a reliable means to precisely estimate biophysical characteristics of individual species sparsely distributed in open woodlands. Moreover, object-oriented classification has exhibited significant advantages over different classification methods for delineation of tree crowns and recognition of species in various types of ecosystems. However, it still is unclear if this widely-used classification method can have its advantages on unmanned aerial vehicle (UAV) digital images for mapping vegetation cover at single-tree levels. In this study, UAV orthoimagery was classified using object-oriented classification method for mapping a part of wild pistachio nature reserve in Zagros open woodlands, Fars Province, Iran. This research focused on recognizing two main species of the study area (i.e., wild pistachio and wild almond) and estimating their mean crown area. The orthoimage of study area was consisted of 1,076 images with spatial resolution of 3.47 cm which was georeferenced using 12 ground control points (RMSE=8 cm) gathered by real-time kinematic (RTK) method. The results showed that the UAV orthoimagery classified by object-oriented method efficiently estimated mean crown area of wild pistachios (52.09±24.67 m2) and wild almonds (3.97±1.69 m2) with no significant difference with their observed values (α=0.05). In addition, the results showed that wild pistachios (accuracy of 0.90 and precision of 0.92) and wild almonds (accuracy of 0.90 and precision of 0.89) were well recognized by image segmentation. In general, we concluded that UAV orthoimagery can efficiently produce precise biophysical data of vegetation stands at single-tree levels, which therefore is suitable for assessment and monitoring open woodlands.

  15. A new blood vessel extraction technique using edge enhancement and object classification.

    PubMed

    Badsha, Shahriar; Reza, Ahmed Wasif; Tan, Kim Geok; Dimyati, Kaharudin

    2013-12-01

    Diabetic retinopathy (DR) is increasing progressively pushing the demand of automatic extraction and classification of severity of diseases. Blood vessel extraction from the fundus image is a vital and challenging task. Therefore, this paper presents a new, computationally simple, and automatic method to extract the retinal blood vessel. The proposed method comprises several basic image processing techniques, namely edge enhancement by standard template, noise removal, thresholding, morphological operation, and object classification. The proposed method has been tested on a set of retinal images. The retinal images were collected from the DRIVE database and we have employed robust performance analysis to evaluate the accuracy. The results obtained from this study reveal that the proposed method offers an average accuracy of about 97 %, sensitivity of 99 %, specificity of 86 %, and predictive value of 98 %, which is superior to various well-known techniques.

  16. Object-based analysis of multispectral airborne laser scanner data for land cover classification and map updating

    NASA Astrophysics Data System (ADS)

    Matikainen, Leena; Karila, Kirsi; Hyyppä, Juha; Litkey, Paula; Puttonen, Eetu; Ahokas, Eero

    2017-06-01

    During the last 20 years, airborne laser scanning (ALS), often combined with passive multispectral information from aerial images, has shown its high feasibility for automated mapping processes. The main benefits have been achieved in the mapping of elevated objects such as buildings and trees. Recently, the first multispectral airborne laser scanners have been launched, and active multispectral information is for the first time available for 3D ALS point clouds from a single sensor. This article discusses the potential of this new technology in map updating, especially in automated object-based land cover classification and change detection in a suburban area. For our study, Optech Titan multispectral ALS data over a suburban area in Finland were acquired. Results from an object-based random forests analysis suggest that the multispectral ALS data are very useful for land cover classification, considering both elevated classes and ground-level classes. The overall accuracy of the land cover classification results with six classes was 96% compared with validation points. The classes under study included building, tree, asphalt, gravel, rocky area and low vegetation. Compared to classification of single-channel data, the main improvements were achieved for ground-level classes. According to feature importance analyses, multispectral intensity features based on several channels were more useful than those based on one channel. Automatic change detection for buildings and roads was also demonstrated by utilising the new multispectral ALS data in combination with old map vectors. In change detection of buildings, an old digital surface model (DSM) based on single-channel ALS data was also used. Overall, our analyses suggest that the new data have high potential for further increasing the automation level in mapping. Unlike passive aerial imaging commonly used in mapping, the multispectral ALS technology is independent of external illumination conditions, and there are

  17. A two-objective optimization scheme for high-OSNR and low-power-consuming all-optical networks

    NASA Astrophysics Data System (ADS)

    Abedifar, Vahid; Mirjalili, Seyed Mohammad; Eshghi, Mohammad

    2015-01-01

    In all-optical networks the ASE noise of the utilized optical power amplifiers is a major impairment, making the OSNR to be the dominant parameter in QoS. In this paper, a two-objective optimization scheme using Multi-Objective Particle Swarm Optimization (MOPSO) is proposed to reach the maximum OSNR for all channels while the optical power consumed by EDFAs and lasers is minimized. Two scenarios are investigated: Scenario 1 and Scenario 2. The former scenario optimizes the gain values of a predefined number of EDFAs in physical links. The gain values may be different from each other. The latter scenario optimizes the gains value of EDFAs (which is supposed to be identical in each physical link) in addition to the number of EDFAs for each physical link. In both scenarios, the launch powers of the lasers are also taken into account during optimization process. Two novel encoding methods are proposed to uniquely represent the problem solutions. Two virtual demand sets are considered for evaluation of the performance of the proposed optimization scheme. The simulations results are described for both scenarios and both virtual demands.

  18. Mathematical model of blasting schemes management in mining operations in presence of random disturbances

    NASA Astrophysics Data System (ADS)

    Kazakova, E. I.; Medvedev, A. N.; Kolomytseva, A. O.; Demina, M. I.

    2017-11-01

    The paper presents a mathematical model of blasting schemes management in presence of random disturbances. Based on the lemmas and theorems proved, a control functional is formulated, which is stable. A universal classification of blasting schemes is developed. The main classification attributes are suggested: the orientation in plan the charging wells rows relatively the block of rocks; the presence of cuts in the blasting schemes; the separation of the wells series onto elements; the sequence of the blasting. The periodic regularity of transition from one Short-delayed scheme of blasting to another is proved.

  19. Cheese Classification, Characterization, and Categorization: A Global Perspective.

    PubMed

    Almena-Aliste, Montserrat; Mietton, Bernard

    2014-02-01

    Cheese is one of the most fascinating, complex, and diverse foods enjoyed today. Three elements constitute the cheese ecosystem: ripening agents, consisting of enzymes and microorganisms; the composition of the fresh cheese; and the environmental conditions during aging. These factors determine and define not only the sensory quality of the final cheese product but also the vast diversity of cheeses produced worldwide. How we define and categorize cheese is a complicated matter. There are various approaches to cheese classification, and a global approach for classification and characterization is needed. We review current cheese classification schemes and the limitations inherent in each of the schemes described. While some classification schemes are based on microbiological criteria, others rely on descriptions of the technologies used for cheese production. The goal of this review is to present an overview of comprehensive and practical integrative classification models in order to better describe cheese diversity and the fundamental differences within cheeses, as well as to connect fundamental technological, microbiological, chemical, and sensory characteristics to contribute to an overall characterization of the main families of cheese, including the expanding world of American artisanal cheeses.

  20. Comparison of Neural Networks and Tabular Nearest Neighbor Encoding for Hyperspectral Signature Classification in Unresolved Object Detection

    NASA Astrophysics Data System (ADS)

    Schmalz, M.; Ritter, G.; Key, R.

    Accurate and computationally efficient spectral signature classification is a crucial step in the nonimaging detection and recognition of spaceborne objects. In classical hyperspectral recognition applications using linear mixing models, signature classification accuracy depends on accurate spectral endmember discrimination [1]. If the endmembers cannot be classified correctly, then the signatures cannot be classified correctly, and object recognition from hyperspectral data will be inaccurate. In practice, the number of endmembers accurately classified often depends linearly on the number of inputs. This can lead to potentially severe classification errors in the presence of noise or densely interleaved signatures. In this paper, we present an comparison of emerging technologies for nonimaging spectral signature classfication based on a highly accurate, efficient search engine called Tabular Nearest Neighbor Encoding (TNE) [3,4] and a neural network technology called Morphological Neural Networks (MNNs) [5]. Based on prior results, TNE can optimize its classifier performance to track input nonergodicities, as well as yield measures of confidence or caution for evaluation of classification results. Unlike neural networks, TNE does not have a hidden intermediate data structure (e.g., the neural net weight matrix). Instead, TNE generates and exploits a user-accessible data structure called the agreement map (AM), which can be manipulated by Boolean logic operations to effect accurate classifier refinement algorithms. The open architecture and programmability of TNE's agreement map processing allows a TNE programmer or user to determine classification accuracy, as well as characterize in detail the signatures for which TNE did not obtain classification matches, and why such mis-matches occurred. In this study, we will compare TNE and MNN based endmember classification, using performance metrics such as probability of correct classification (Pd) and rate of false

  1. Polsar Land Cover Classification Based on Hidden Polarimetric Features in Rotation Domain and Svm Classifier

    NASA Astrophysics Data System (ADS)

    Tao, C.-S.; Chen, S.-W.; Li, Y.-Z.; Xiao, S.-P.

    2017-09-01

    Land cover classification is an important application for polarimetric synthetic aperture radar (PolSAR) data utilization. Rollinvariant polarimetric features such as H / Ani / α / Span are commonly adopted in PolSAR land cover classification. However, target orientation diversity effect makes PolSAR images understanding and interpretation difficult. Only using the roll-invariant polarimetric features may introduce ambiguity in the interpretation of targets' scattering mechanisms and limit the followed classification accuracy. To address this problem, this work firstly focuses on hidden polarimetric feature mining in the rotation domain along the radar line of sight using the recently reported uniform polarimetric matrix rotation theory and the visualization and characterization tool of polarimetric coherence pattern. The former rotates the acquired polarimetric matrix along the radar line of sight and fully describes the rotation characteristics of each entry of the matrix. Sets of new polarimetric features are derived to describe the hidden scattering information of the target in the rotation domain. The latter extends the traditional polarimetric coherence at a given rotation angle to the rotation domain for complete interpretation. A visualization and characterization tool is established to derive new polarimetric features for hidden information exploration. Then, a classification scheme is developed combing both the selected new hidden polarimetric features in rotation domain and the commonly used roll-invariant polarimetric features with a support vector machine (SVM) classifier. Comparison experiments based on AIRSAR and multi-temporal UAVSAR data demonstrate that compared with the conventional classification scheme which only uses the roll-invariant polarimetric features, the proposed classification scheme achieves both higher classification accuracy and better robustness

  2. Object-based classification of global undersea topography and geomorphological features from the SRTM30_PLUS data

    NASA Astrophysics Data System (ADS)

    Dekavalla, Maria; Argialas, Demetre

    2017-07-01

    The analysis of undersea topography and geomorphological features provides necessary information to related disciplines and many applications. The development of an automated knowledge-based classification approach of undersea topography and geomorphological features is challenging due to their multi-scale nature. The aim of the study is to develop and evaluate an automated knowledge-based OBIA approach to: i) decompose the global undersea topography to multi-scale regions of distinct morphometric properties, and ii) assign the derived regions to characteristic geomorphological features. First, the global undersea topography was decomposed through the SRTM30_PLUS bathymetry data to the so-called morphometric objects of discrete morphometric properties and spatial scales defined by data-driven methods (local variance graphs and nested means) and multi-scale analysis. The derived morphometric objects were combined with additional relative topographic position information computed with a self-adaptive pattern recognition method (geomorphons), and auxiliary data and were assigned to characteristic undersea geomorphological feature classes through a knowledge base, developed from standard definitions. The decomposition of the SRTM30_PLUS data to morphometric objects was considered successful for the requirements of maximizing intra-object and inter-object heterogeneity, based on the near zero values of the Moran's I and the low values of the weighted variance index. The knowledge-based classification approach was tested for its transferability in six case studies of various tectonic settings and achieved the efficient extraction of 11 undersea geomorphological feature classes. The classification results for the six case studies were compared with the digital global seafloor geomorphic features map (GSFM). The 11 undersea feature classes and their producer's accuracies in respect to the GSFM relevant areas were Basin (95%), Continental Shelf (94.9%), Trough (88

  3. A Philosophical Approach to Describing Science Content: An Example From Geologic Classification.

    ERIC Educational Resources Information Center

    Finley, Fred N.

    1981-01-01

    Examines how research of philosophers of science may be useful to science education researchers and curriculum developers in the development of descriptions of science content related to classification schemes. Provides examples of concept analysis of two igneous rock classification schemes. (DS)

  4. Change classification in SAR time series: a functional approach

    NASA Astrophysics Data System (ADS)

    Boldt, Markus; Thiele, Antje; Schulz, Karsten; Hinz, Stefan

    2017-10-01

    Change detection represents a broad field of research in SAR remote sensing, consisting of many different approaches. Besides the simple recognition of change areas, the analysis of type, category or class of the change areas is at least as important for creating a comprehensive result. Conventional strategies for change classification are based on supervised or unsupervised landuse / landcover classifications. The main drawback of such approaches is that the quality of the classification result directly depends on the selection of training and reference data. Additionally, supervised processing methods require an experienced operator who capably selects the training samples. This training step is not necessary when using unsupervised strategies, but nevertheless meaningful reference data must be available for identifying the resulting classes. Consequently, an experienced operator is indispensable. In this study, an innovative concept for the classification of changes in SAR time series data is proposed. Regarding the drawbacks of traditional strategies given above, it copes without using any training data. Moreover, the method can be applied by an operator, who does not have detailed knowledge about the available scenery yet. This knowledge is provided by the algorithm. The final step of the procedure, which main aspect is given by the iterative optimization of an initial class scheme with respect to the categorized change objects, is represented by the classification of these objects to the finally resulting classes. This assignment step is subject of this paper.

  5. Classification and reduction of pilot error

    NASA Technical Reports Server (NTRS)

    Rogers, W. H.; Logan, A. L.; Boley, G. D.

    1989-01-01

    Human error is a primary or contributing factor in about two-thirds of commercial aviation accidents worldwide. With the ultimate goal of reducing pilot error accidents, this contract effort is aimed at understanding the factors underlying error events and reducing the probability of certain types of errors by modifying underlying factors such as flight deck design and procedures. A review of the literature relevant to error classification was conducted. Classification includes categorizing types of errors, the information processing mechanisms and factors underlying them, and identifying factor-mechanism-error relationships. The classification scheme developed by Jens Rasmussen was adopted because it provided a comprehensive yet basic error classification shell or structure that could easily accommodate addition of details on domain-specific factors. For these purposes, factors specific to the aviation environment were incorporated. Hypotheses concerning the relationship of a small number of underlying factors, information processing mechanisms, and error types types identified in the classification scheme were formulated. ASRS data were reviewed and a simulation experiment was performed to evaluate and quantify the hypotheses.

  6. A risk-based classification scheme for genetically modified foods. II: Graded testing.

    PubMed

    Chao, Eunice; Krewski, Daniel

    2008-12-01

    This paper presents a graded approach to the testing of crop-derived genetically modified (GM) foods based on concern levels in a proposed risk-based classification scheme (RBCS) and currently available testing methods. A graded approach offers the potential for more efficient use of testing resources by focusing less on lower concern GM foods, and more on higher concern foods. In this proposed approach to graded testing, products that are classified as Level I would have met baseline testing requirements that are comparable to what is widely applied to premarket assessment of GM foods at present. In most cases, Level I products would require no further testing, or very limited confirmatory analyses. For products classified as Level II or higher, additional testing would be required, depending on the type of the substance, prior dietary history, estimated exposure level, prior knowledge of toxicity of the substance, and the nature of the concern related to unintended changes in the modified food. Level III testing applies only to the assessment of toxic and antinutritional effects from intended changes and is tailored to the nature of the substance in question. Since appropriate test methods are not currently available for all effects of concern, future research to strengthen the testing of GM foods is discussed.

  7. Clinical presentation and outcome prediction of clinical, serological, and histopathological classification schemes in ANCA-associated vasculitis with renal involvement.

    PubMed

    Córdova-Sánchez, Bertha M; Mejía-Vilet, Juan M; Morales-Buenrostro, Luis E; Loyola-Rodríguez, Georgina; Uribe-Uribe, Norma O; Correa-Rotter, Ricardo

    2016-07-01

    Several classification schemes have been developed for anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV), with actual debate focusing on their clinical and prognostic performance. Sixty-two patients with renal biopsy-proven AAV from a single center in Mexico City diagnosed between 2004 and 2013 were analyzed and classified under clinical (granulomatosis with polyangiitis [GPA], microscopic polyangiitis [MPA], renal limited vasculitis [RLV]), serological (proteinase 3 anti-neutrophil cytoplasmic antibodies [PR3-ANCA], myeloperoxidase anti-neutrophil cytoplasmic antibodies [MPO-ANCA], ANCA negative), and histopathological (focal, crescenteric, mixed-type, sclerosing) categories. Clinical presentation parameters were compared at baseline between classification groups, and the predictive value of different classification categories for disease and renal remission, relapse, renal, and patient survival was analyzed. Serological classification predicted relapse rate (PR3-ANCA hazard ratio for relapse 2.93, 1.20-7.17, p = 0.019). There were no differences in disease or renal remission, renal, or patient survival between clinical and serological categories. Histopathological classification predicted response to therapy, with a poorer renal remission rate for sclerosing group and those with less than 25 % normal glomeruli; in addition, it adequately delimited 24-month glomerular filtration rate (eGFR) evolution, but it did not predict renal nor patient survival. On multivariate models, renal replacement therapy (RRT) requirement (HR 8.07, CI 1.75-37.4, p = 0.008) and proteinuria (HR 1.49, CI 1.03-2.14, p = 0.034) at presentation predicted renal survival, while age (HR 1.10, CI 1.01-1.21, p = 0.041) and infective events during the induction phase (HR 4.72, 1.01-22.1, p = 0.049) negatively influenced patient survival. At present, ANCA-based serological classification may predict AAV relapses, but neither clinical nor serological

  8. Automatic classification of protein structures using physicochemical parameters.

    PubMed

    Mohan, Abhilash; Rao, M Divya; Sunderrajan, Shruthi; Pennathur, Gautam

    2014-09-01

    Protein classification is the first step to functional annotation; SCOP and Pfam databases are currently the most relevant protein classification schemes. However, the disproportion in the number of three dimensional (3D) protein structures generated versus their classification into relevant superfamilies/families emphasizes the need for automated classification schemes. Predicting function of novel proteins based on sequence information alone has proven to be a major challenge. The present study focuses on the use of physicochemical parameters in conjunction with machine learning algorithms (Naive Bayes, Decision Trees, Random Forest and Support Vector Machines) to classify proteins into their respective SCOP superfamily/Pfam family, using sequence derived information. Spectrophores™, a 1D descriptor of the 3D molecular field surrounding a structure was used as a benchmark to compare the performance of the physicochemical parameters. The machine learning algorithms were modified to select features based on information gain for each SCOP superfamily/Pfam family. The effect of combining physicochemical parameters and spectrophores on classification accuracy (CA) was studied. Machine learning algorithms trained with the physicochemical parameters consistently classified SCOP superfamilies and Pfam families with a classification accuracy above 90%, while spectrophores performed with a CA of around 85%. Feature selection improved classification accuracy for both physicochemical parameters and spectrophores based machine learning algorithms. Combining both attributes resulted in a marginal loss of performance. Physicochemical parameters were able to classify proteins from both schemes with classification accuracy ranging from 90-96%. These results suggest the usefulness of this method in classifying proteins from amino acid sequences.

  9. Image Augmentation for Object Image Classification Based On Combination of Pre-Trained CNN and SVM

    NASA Astrophysics Data System (ADS)

    Shima, Yoshihiro

    2018-04-01

    Neural networks are a powerful means of classifying object images. The proposed image category classification method for object images combines convolutional neural networks (CNNs) and support vector machines (SVMs). A pre-trained CNN, called Alex-Net, is used as a pattern-feature extractor. Alex-Net is pre-trained for the large-scale object-image dataset ImageNet. Instead of training, Alex-Net, pre-trained for ImageNet is used. An SVM is used as trainable classifier. The feature vectors are passed to the SVM from Alex-Net. The STL-10 dataset are used as object images. The number of classes is ten. Training and test samples are clearly split. STL-10 object images are trained by the SVM with data augmentation. We use the pattern transformation method with the cosine function. We also apply some augmentation method such as rotation, skewing and elastic distortion. By using the cosine function, the original patterns were left-justified, right-justified, top-justified, or bottom-justified. Patterns were also center-justified and enlarged. Test error rate is decreased by 0.435 percentage points from 16.055% by augmentation with cosine transformation. Error rates are increased by other augmentation method such as rotation, skewing and elastic distortion, compared without augmentation. Number of augmented data is 30 times that of the original STL-10 5K training samples. Experimental test error rate for the test 8k STL-10 object images was 15.620%, which shows that image augmentation is effective for image category classification.

  10. Classification of Instructional Programs: 2000 Edition.

    ERIC Educational Resources Information Center

    Morgan, Robert L.; Hunt, E. Stephen

    This third revision of the Classification of Instructional Programs (CIP) updates and modifies education program classifications, providing a taxonomic scheme that supports the accurate tracking, assessment, and reporting of field of study and program completions activity. This edition has also been adopted as the standard field of study taxonomy…

  11. Advanced Steel Microstructural Classification by Deep Learning Methods.

    PubMed

    Azimi, Seyed Majid; Britz, Dominik; Engstler, Michael; Fritz, Mario; Mücklich, Frank

    2018-02-01

    The inner structure of a material is called microstructure. It stores the genesis of a material and determines all its physical and chemical properties. While microstructural characterization is widely spread and well known, the microstructural classification is mostly done manually by human experts, which gives rise to uncertainties due to subjectivity. Since the microstructure could be a combination of different phases or constituents with complex substructures its automatic classification is very challenging and only a few prior studies exist. Prior works focused on designed and engineered features by experts and classified microstructures separately from the feature extraction step. Recently, Deep Learning methods have shown strong performance in vision applications by learning the features from data together with the classification step. In this work, we propose a Deep Learning method for microstructural classification in the examples of certain microstructural constituents of low carbon steel. This novel method employs pixel-wise segmentation via Fully Convolutional Neural Network (FCNN) accompanied by a max-voting scheme. Our system achieves 93.94% classification accuracy, drastically outperforming the state-of-the-art method of 48.89% accuracy. Beyond the strong performance of our method, this line of research offers a more robust and first of all objective way for the difficult task of steel quality appreciation.

  12. Object-Based Point Cloud Analysis of Full-Waveform Airborne Laser Scanning Data for Urban Vegetation Classification

    PubMed Central

    Rutzinger, Martin; Höfle, Bernhard; Hollaus, Markus; Pfeifer, Norbert

    2008-01-01

    Airborne laser scanning (ALS) is a remote sensing technique well-suited for 3D vegetation mapping and structure characterization because the emitted laser pulses are able to penetrate small gaps in the vegetation canopy. The backscattered echoes from the foliage, woody vegetation, the terrain, and other objects are detected, leading to a cloud of points. Higher echo densities (>20 echoes/m2) and additional classification variables from full-waveform (FWF) ALS data, namely echo amplitude, echo width and information on multiple echoes from one shot, offer new possibilities in classifying the ALS point cloud. Currently FWF sensor information is hardly used for classification purposes. This contribution presents an object-based point cloud analysis (OBPA) approach, combining segmentation and classification of the 3D FWF ALS points designed to detect tall vegetation in urban environments. The definition tall vegetation includes trees and shrubs, but excludes grassland and herbage. In the applied procedure FWF ALS echoes are segmented by a seeded region growing procedure. All echoes sorted descending by their surface roughness are used as seed points. Segments are grown based on echo width homogeneity. Next, segment statistics (mean, standard deviation, and coefficient of variation) are calculated by aggregating echo features such as amplitude and surface roughness. For classification a rule base is derived automatically from a training area using a statistical classification tree. To demonstrate our method we present data of three sites with around 500,000 echoes each. The accuracy of the classified vegetation segments is evaluated for two independent validation sites. In a point-wise error assessment, where the classification is compared with manually classified 3D points, completeness and correctness better than 90% are reached for the validation sites. In comparison to many other algorithms the proposed 3D point classification works on the original measurements

  13. Object classification and outliers analysis in the forthcoming Gaia mission

    NASA Astrophysics Data System (ADS)

    Ordóñez-Blanco, D.; Arcay, B.; Dafonte, C.; Manteiga, M.; Ulla, A.

    2010-12-01

    Astrophysics is evolving towards the rational optimization of costly observational material by the intelligent exploitation of large astronomical databases from both terrestrial telescopes and spatial mission archives. However, there has been relatively little advance in the development of highly scalable data exploitation and analysis tools needed to generate the scientific returns from these large and expensively obtained datasets. Among the upcoming projects of astronomical instrumentation, Gaia is the next cornerstone ESA mission. The Gaia survey foresees the creation of a data archive and its future exploitation with automated or semi-automated analysis tools. This work reviews some of the work that is being developed by the Gaia Data Processing and Analysis Consortium for the object classification and analysis of outliers in the forthcoming mission.

  14. Relationship between AOD and synoptic circulation over the Eastern Mediterranean: A comparison between subjective and objective classifications

    NASA Astrophysics Data System (ADS)

    Bodenheimer, Shalev; Nirel, Ronit; Lensky, Itamar M.; Dayan, Uri

    2018-03-01

    The Eastern Mediterranean (EM) Basin is strongly affected by dust originating from two of the largest world sources: The Sahara Desert and the Arabian Peninsula. Climatologically, the distribution pattern of aerosol optical depth (AOD), as proxy to particulate matter (PM), is known to be correlated with synoptic circulation. The climatological relationship between circulation type classifications (CTCs) and AOD levels over the EM Basin ("synoptic skill") was examined for the years 2000-2014. We compared the association between subjective (expert-based) and objective (fully automated) classifications and AOD using autoregressive models. After seasonal adjustment, the mean values of R2 for the different methods were similar. However, the distinct spatial pattern of the R2 values suggests that subjective classifications perform better in their area of expertise, specifically in the southeast region of the study area, while, objective CTCs had better synoptic skill over the northern part of the EM. This higher synoptic skill of subjective CTCs stem from their ability to identify distinct circulation types (e.g. Sharav lows and winter lows) that are infrequent but are highly correlated with AOD. Notably, a simple CTC based on seasonality rather than meteorological parameters predicted well AOD levels, especially over the south-eastern part of the domain. Synoptic classifications that are area-oriented are likely better predictors of AOD and possibly other environmental variables.

  15. Development of a Procurement Task Classification Scheme.

    DTIC Science & Technology

    1987-12-01

    Office of Sci- entific Research, Arlington, Virginia, January 1970. Tornow , Walter W . and Pinto, Patrick R. "The Development of a Man- agerial Job...classification. [Ref. 4:271 -. 20 6 %° w Numerical taxonomy proponents hold [Ref. 4:271, ... that the relationships of contiguity and similarity should be...solving. 22 W i * These primitive categories are based on a sorting of learning pro- cesses into classes that have obvious differences at the

  16. Object-Oriented Classification of Sugarcane Using Time-Series Middle-Resolution Remote Sensing Data Based on AdaBoost

    PubMed Central

    Zhou, Zhen; Huang, Jingfeng; Wang, Jing; Zhang, Kangyu; Kuang, Zhaomin; Zhong, Shiquan; Song, Xiaodong

    2015-01-01

    Most areas planted with sugarcane are located in southern China. However, remote sensing of sugarcane has been limited because useable remote sensing data are limited due to the cloudy climate of this region during the growing season and severe spectral mixing with other crops. In this study, we developed a methodology for automatically mapping sugarcane over large areas using time-series middle-resolution remote sensing data. For this purpose, two major techniques were used, the object-oriented method (OOM) and data mining (DM). In addition, time-series Chinese HJ-1 CCD images were obtained during the sugarcane growing period. Image objects were generated using a multi-resolution segmentation algorithm, and DM was implemented using the AdaBoost algorithm, which generated the prediction model. The prediction model was applied to the HJ-1 CCD time-series image objects, and then a map of the sugarcane planting area was produced. The classification accuracy was evaluated using independent field survey sampling points. The confusion matrix analysis showed that the overall classification accuracy reached 93.6% and that the Kappa coefficient was 0.85. Thus, the results showed that this method is feasible, efficient, and applicable for extrapolating the classification of other crops in large areas where the application of high-resolution remote sensing data is impractical due to financial considerations or because qualified images are limited. PMID:26528811

  17. Object-Oriented Classification of Sugarcane Using Time-Series Middle-Resolution Remote Sensing Data Based on AdaBoost.

    PubMed

    Zhou, Zhen; Huang, Jingfeng; Wang, Jing; Zhang, Kangyu; Kuang, Zhaomin; Zhong, Shiquan; Song, Xiaodong

    2015-01-01

    Most areas planted with sugarcane are located in southern China. However, remote sensing of sugarcane has been limited because useable remote sensing data are limited due to the cloudy climate of this region during the growing season and severe spectral mixing with other crops. In this study, we developed a methodology for automatically mapping sugarcane over large areas using time-series middle-resolution remote sensing data. For this purpose, two major techniques were used, the object-oriented method (OOM) and data mining (DM). In addition, time-series Chinese HJ-1 CCD images were obtained during the sugarcane growing period. Image objects were generated using a multi-resolution segmentation algorithm, and DM was implemented using the AdaBoost algorithm, which generated the prediction model. The prediction model was applied to the HJ-1 CCD time-series image objects, and then a map of the sugarcane planting area was produced. The classification accuracy was evaluated using independent field survey sampling points. The confusion matrix analysis showed that the overall classification accuracy reached 93.6% and that the Kappa coefficient was 0.85. Thus, the results showed that this method is feasible, efficient, and applicable for extrapolating the classification of other crops in large areas where the application of high-resolution remote sensing data is impractical due to financial considerations or because qualified images are limited.

  18. Atmospheric circulation classification comparison based on wildfires in Portugal

    NASA Astrophysics Data System (ADS)

    Pereira, M. G.; Trigo, R. M.

    2009-04-01

    Atmospheric circulation classifications are not a simple description of atmospheric states but a tool to understand and interpret the atmospheric processes and to model the relation between atmospheric circulation and surface climate and other related variables (Radan Huth et al., 2008). Classifications were initially developed with weather forecasting purposes, however with the progress in computer processing capability, new and more robust objective methods were developed and applied to large datasets prompting atmospheric circulation classification methods to one of the most important fields in synoptic and statistical climatology. Classification studies have been extensively used in climate change studies (e.g. reconstructed past climates, recent observed changes and future climates), in bioclimatological research (e.g. relating human mortality to climatic factors) and in a wide variety of synoptic climatological applications (e.g. comparison between datasets, air pollution, snow avalanches, wine quality, fish captures and forest fires). Likewise, atmospheric circulation classifications are important for the study of the role of weather in wildfire occurrence in Portugal because the daily synoptic variability is the most important driver of local weather conditions (Pereira et al., 2005). In particular, the objective classification scheme developed by Trigo and DaCamara (2000) to classify the atmospheric circulation affecting Portugal have proved to be quite useful in discriminating the occurrence and development of wildfires as well as the distribution over Portugal of surface climatic variables with impact in wildfire activity such as maximum and minimum temperature and precipitation. This work aims to present: (i) an overview the existing circulation classification for the Iberian Peninsula, and (ii) the results of a comparison study between these atmospheric circulation classifications based on its relation with wildfires and relevant meteorological

  19. Consensus embedding: theory, algorithms and application to segmentation and classification of biomedical data

    PubMed Central

    2012-01-01

    Background Dimensionality reduction (DR) enables the construction of a lower dimensional space (embedding) from a higher dimensional feature space while preserving object-class discriminability. However several popular DR approaches suffer from sensitivity to choice of parameters and/or presence of noise in the data. In this paper, we present a novel DR technique known as consensus embedding that aims to overcome these problems by generating and combining multiple low-dimensional embeddings, hence exploiting the variance among them in a manner similar to ensemble classifier schemes such as Bagging. We demonstrate theoretical properties of consensus embedding which show that it will result in a single stable embedding solution that preserves information more accurately as compared to any individual embedding (generated via DR schemes such as Principal Component Analysis, Graph Embedding, or Locally Linear Embedding). Intelligent sub-sampling (via mean-shift) and code parallelization are utilized to provide for an efficient implementation of the scheme. Results Applications of consensus embedding are shown in the context of classification and clustering as applied to: (1) image partitioning of white matter and gray matter on 10 different synthetic brain MRI images corrupted with 18 different combinations of noise and bias field inhomogeneity, (2) classification of 4 high-dimensional gene-expression datasets, (3) cancer detection (at a pixel-level) on 16 image slices obtained from 2 different high-resolution prostate MRI datasets. In over 200 different experiments concerning classification and segmentation of biomedical data, consensus embedding was found to consistently outperform both linear and non-linear DR methods within all applications considered. Conclusions We have presented a novel framework termed consensus embedding which leverages ensemble classification theory within dimensionality reduction, allowing for application to a wide range of high

  20. Extraction and classification of 3D objects from volumetric CT data

    NASA Astrophysics Data System (ADS)

    Song, Samuel M.; Kwon, Junghyun; Ely, Austin; Enyeart, John; Johnson, Chad; Lee, Jongkyu; Kim, Namho; Boyd, Douglas P.

    2016-05-01

    We propose an Automatic Threat Detection (ATD) algorithm for Explosive Detection System (EDS) using our multistage Segmentation Carving (SC) followed by Support Vector Machine (SVM) classifier. The multi-stage Segmentation and Carving (SC) step extracts all suspect 3-D objects. The feature vector is then constructed for all extracted objects and the feature vector is classified by the Support Vector Machine (SVM) previously learned using a set of ground truth threat and benign objects. The learned SVM classifier has shown to be effective in classification of different types of threat materials. The proposed ATD algorithm robustly deals with CT data that are prone to artifacts due to scatter, beam hardening as well as other systematic idiosyncrasies of the CT data. Furthermore, the proposed ATD algorithm is amenable for including newly emerging threat materials as well as for accommodating data from newly developing sensor technologies. Efficacy of the proposed ATD algorithm with the SVM classifier is demonstrated by the Receiver Operating Characteristics (ROC) curve that relates Probability of Detection (PD) as a function of Probability of False Alarm (PFA). The tests performed using CT data of passenger bags shows excellent performance characteristics.

  1. Toward functional classification of neuronal types.

    PubMed

    Sharpee, Tatyana O

    2014-09-17

    How many types of neurons are there in the brain? This basic neuroscience question remains unsettled despite many decades of research. Classification schemes have been proposed based on anatomical, electrophysiological, or molecular properties. However, different schemes do not always agree with each other. This raises the question of whether one can classify neurons based on their function directly. For example, among sensory neurons, can a classification scheme be devised that is based on their role in encoding sensory stimuli? Here, theoretical arguments are outlined for how this can be achieved using information theory by looking at optimal numbers of cell types and paying attention to two key properties: correlations between inputs and noise in neural responses. This theoretical framework could help to map the hierarchical tree relating different neuronal classes within and across species. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. A New Approach to Develop Computer-aided Diagnosis Scheme of Breast Mass Classification Using Deep Learning Technology

    PubMed Central

    Qiu, Yuchen; Yan, Shiju; Gundreddy, Rohith Reddy; Wang, Yunzhi; Cheng, Samuel; Liu, Hong; Zheng, Bin

    2017-01-01

    PURPOSE To develop and test a deep learning based computer-aided diagnosis (CAD) scheme of mammograms for classifying between malignant and benign masses. METHODS An image dataset involving 560 regions of interest (ROIs) extracted from digital mammograms was used. After down-sampling each ROI from 512×512 to 64×64 pixel size, we applied an 8 layer deep learning network that involves 3 pairs of convolution-max-pooling layers for automatic feature extraction and a multiple layer perceptron (MLP) classifier for feature categorization to process ROIs. The 3 pairs of convolution layers contain 20, 10, and 5 feature maps, respectively. Each convolution layer is connected with a max-pooling layer to improve the feature robustness. The output of the sixth layer is fully connected with a MLP classifier, which is composed of one hidden layer and one logistic regression layer. The network then generates a classification score to predict the likelihood of ROI depicting a malignant mass. A four-fold cross validation method was applied to train and test this deep learning network. RESULTS The results revealed that this CAD scheme yields an area under the receiver operation characteristic curve (AUC) of 0.696±0.044, 0.802±0.037, 0.836±0.036, and 0.822±0.035 for fold 1 to 4 testing datasets, respectively. The overall AUC of the entire dataset is 0.790±0.019. CONCLUSIONS This study demonstrates the feasibility of applying a deep learning based CAD scheme to classify between malignant and benign breast masses without a lesion segmentation, image feature computation and selection process. PMID:28436410

  3. A new approach to develop computer-aided diagnosis scheme of breast mass classification using deep learning technology.

    PubMed

    Qiu, Yuchen; Yan, Shiju; Gundreddy, Rohith Reddy; Wang, Yunzhi; Cheng, Samuel; Liu, Hong; Zheng, Bin

    2017-01-01

    To develop and test a deep learning based computer-aided diagnosis (CAD) scheme of mammograms for classifying between malignant and benign masses. An image dataset involving 560 regions of interest (ROIs) extracted from digital mammograms was used. After down-sampling each ROI from 512×512 to 64×64 pixel size, we applied an 8 layer deep learning network that involves 3 pairs of convolution-max-pooling layers for automatic feature extraction and a multiple layer perceptron (MLP) classifier for feature categorization to process ROIs. The 3 pairs of convolution layers contain 20, 10, and 5 feature maps, respectively. Each convolution layer is connected with a max-pooling layer to improve the feature robustness. The output of the sixth layer is fully connected with a MLP classifier, which is composed of one hidden layer and one logistic regression layer. The network then generates a classification score to predict the likelihood of ROI depicting a malignant mass. A four-fold cross validation method was applied to train and test this deep learning network. The results revealed that this CAD scheme yields an area under the receiver operation characteristic curve (AUC) of 0.696±0.044, 0.802±0.037, 0.836±0.036, and 0.822±0.035 for fold 1 to 4 testing datasets, respectively. The overall AUC of the entire dataset is 0.790±0.019. This study demonstrates the feasibility of applying a deep learning based CAD scheme to classify between malignant and benign breast masses without a lesion segmentation, image feature computation and selection process.

  4. Assessment of geostatistical features for object-based image classification of contrasted landscape vegetation cover

    NASA Astrophysics Data System (ADS)

    de Oliveira Silveira, Eduarda Martiniano; de Menezes, Michele Duarte; Acerbi Júnior, Fausto Weimar; Castro Nunes Santos Terra, Marcela; de Mello, José Márcio

    2017-07-01

    Accurate mapping and monitoring of savanna and semiarid woodland biomes are needed to support the selection of areas of conservation, to provide sustainable land use, and to improve the understanding of vegetation. The potential of geostatistical features, derived from medium spatial resolution satellite imagery, to characterize contrasted landscape vegetation cover and improve object-based image classification is studied. The study site in Brazil includes cerrado sensu stricto, deciduous forest, and palm swamp vegetation cover. Sentinel 2 and Landsat 8 images were acquired and divided into objects, for each of which a semivariogram was calculated using near-infrared (NIR) and normalized difference vegetation index (NDVI) to extract the set of geostatistical features. The features selected by principal component analysis were used as input data to train a random forest algorithm. Tests were conducted, combining spectral and geostatistical features. Change detection evaluation was performed using a confusion matrix and its accuracies. The semivariogram curves were efficient to characterize spatial heterogeneity, with similar results using NIR and NDVI from Sentinel 2 and Landsat 8. Accuracy was significantly greater when combining geostatistical features with spectral data, suggesting that this method can improve image classification results.

  5. Deep convolutional neural network training enrichment using multi-view object-based analysis of Unmanned Aerial systems imagery for wetlands classification

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Abd-Elrahman, Amr

    2018-05-01

    Deep convolutional neural network (DCNN) requires massive training datasets to trigger its image classification power, while collecting training samples for remote sensing application is usually an expensive process. When DCNN is simply implemented with traditional object-based image analysis (OBIA) for classification of Unmanned Aerial systems (UAS) orthoimage, its power may be undermined if the number training samples is relatively small. This research aims to develop a novel OBIA classification approach that can take advantage of DCNN by enriching the training dataset automatically using multi-view data. Specifically, this study introduces a Multi-View Object-based classification using Deep convolutional neural network (MODe) method to process UAS images for land cover classification. MODe conducts the classification on multi-view UAS images instead of directly on the orthoimage, and gets the final results via a voting procedure. 10-fold cross validation results show the mean overall classification accuracy increasing substantially from 65.32%, when DCNN was applied on the orthoimage to 82.08% achieved when MODe was implemented. This study also compared the performances of the support vector machine (SVM) and random forest (RF) classifiers with DCNN under traditional OBIA and the proposed multi-view OBIA frameworks. The results indicate that the advantage of DCNN over traditional classifiers in terms of accuracy is more obvious when these classifiers were applied with the proposed multi-view OBIA framework than when these classifiers were applied within the traditional OBIA framework.

  6. A Global Classification System for Catchment Hydrology

    NASA Astrophysics Data System (ADS)

    Woods, R. A.

    2004-05-01

    It is a shocking state of affairs - there is no underpinning scientific taxonomy of catchments. There are widely used global classification systems for climate, river morphology, lakes and wetlands, but for river catchments there exists only a plethora of inconsistent, incomplete regional schemes. By proceeding without a common taxonomy for catchments, freshwater science has missed one of its key developmental stages, and has leapt from definition of phenomena to experiments, theories and models, without the theoretical framework of a classification. I propose the development of a global hierarchical classification system for physical aspects of river catchments, to help underpin physical science in the freshwater environment and provide a solid foundation for classification of river ecosystems. Such a classification scheme can open completely new vistas in hydrology: for example it will be possible to (i) rationally transfer experimental knowledge of hydrological processes between basins anywhere in the world, provided they belong to the same class; (ii) perform meaningful meta-analyses in order to reconcile studies that show inconsistent results (iii) generate new testable hypotheses which involve locations worldwide.

  7. A Unified Classification Framework for FP, DP and CP Data at X-Band in Southern China

    NASA Astrophysics Data System (ADS)

    Xie, Lei; Zhang, Hong; Li, Hhongzhong; Wang, Chao

    2015-04-01

    The main objective of this paper is to introduce an unified framework for crop classification in Southern China using data in fully polarimetric (FP), dual-pol (DP) and compact polarimetric (CP) modes. The TerraSAR-X data acquired over the Leizhou Peninsula, South China are used in our experiments. The study site involves four main crops (rice, banana, sugarcane eucalyptus). Through exploring the similarities between data in these three modes, a knowledge-based characteristic space is created and the unified framework is presented. The overall classification accuracies for data in the FP, coherent HH/VV are about 95%, and is about 91% in CP modes, which suggests that the proposed classification scheme is effective and promising. Compared with the Wishart Maximum Likelihood (ML) classifier, the proposed method exhibits higher classification accuracy.

  8. Semantic Shot Classification in Sports Video

    NASA Astrophysics Data System (ADS)

    Duan, Ling-Yu; Xu, Min; Tian, Qi

    2003-01-01

    In this paper, we present a unified framework for semantic shot classification in sports videos. Unlike previous approaches, which focus on clustering by aggregating shots with similar low-level features, the proposed scheme makes use of domain knowledge of a specific sport to perform a top-down video shot classification, including identification of video shot classes for each sport, and supervised learning and classification of the given sports video with low-level and middle-level features extracted from the sports video. It is observed that for each sport we can predefine a small number of semantic shot classes, about 5~10, which covers 90~95% of sports broadcasting video. With the supervised learning method, we can map the low-level features to middle-level semantic video shot attributes such as dominant object motion (a player), camera motion patterns, and court shape, etc. On the basis of the appropriate fusion of those middle-level shot classes, we classify video shots into the predefined video shot classes, each of which has a clear semantic meaning. The proposed method has been tested over 4 types of sports videos: tennis, basketball, volleyball and soccer. Good classification accuracy of 85~95% has been achieved. With correctly classified sports video shots, further structural and temporal analysis, such as event detection, video skimming, table of content, etc, will be greatly facilitated.

  9. mm_par2.0: An object-oriented molecular dynamics simulation program parallelized using a hierarchical scheme with MPI and OPENMP

    NASA Astrophysics Data System (ADS)

    Oh, Kwang Jin; Kang, Ji Hoon; Myung, Hun Joo

    2012-02-01

    We have revised a general purpose parallel molecular dynamics simulation program mm_par using the object-oriented programming. We parallelized the revised version using a hierarchical scheme in order to utilize more processors for a given system size. The benchmark result will be presented here. New version program summaryProgram title: mm_par2.0 Catalogue identifier: ADXP_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXP_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2 390 858 No. of bytes in distributed program, including test data, etc.: 25 068 310 Distribution format: tar.gz Programming language: C++ Computer: Any system operated by Linux or Unix Operating system: Linux Classification: 7.7 External routines: We provide wrappers for FFTW [1], Intel MKL library [2] FFT routine, and Numerical recipes [3] FFT, random number generator, and eigenvalue solver routines, SPRNG [4] random number generator, Mersenne Twister [5] random number generator, space filling curve routine. Catalogue identifier of previous version: ADXP_v1_0 Journal reference of previous version: Comput. Phys. Comm. 174 (2006) 560 Does the new version supersede the previous version?: Yes Nature of problem: Structural, thermodynamic, and dynamical properties of fluids and solids from microscopic scales to mesoscopic scales. Solution method: Molecular dynamics simulation in NVE, NVT, and NPT ensemble, Langevin dynamics simulation, dissipative particle dynamics simulation. Reasons for new version: First, object-oriented programming has been used, which is known to be open for extension and closed for modification. It is also known to be better for maintenance. Second, version 1.0 was based on atom decomposition and domain decomposition scheme [6] for parallelization. However, atom

  10. An efficient scheme for automatic web pages categorization using the support vector machine

    NASA Astrophysics Data System (ADS)

    Bhalla, Vinod Kumar; Kumar, Neeraj

    2016-07-01

    In the past few years, with an evolution of the Internet and related technologies, the number of the Internet users grows exponentially. These users demand access to relevant web pages from the Internet within fraction of seconds. To achieve this goal, there is a requirement of an efficient categorization of web page contents. Manual categorization of these billions of web pages to achieve high accuracy is a challenging task. Most of the existing techniques reported in the literature are semi-automatic. Using these techniques, higher level of accuracy cannot be achieved. To achieve these goals, this paper proposes an automatic web pages categorization into the domain category. The proposed scheme is based on the identification of specific and relevant features of the web pages. In the proposed scheme, first extraction and evaluation of features are done followed by filtering the feature set for categorization of domain web pages. A feature extraction tool based on the HTML document object model of the web page is developed in the proposed scheme. Feature extraction and weight assignment are based on the collection of domain-specific keyword list developed by considering various domain pages. Moreover, the keyword list is reduced on the basis of ids of keywords in keyword list. Also, stemming of keywords and tag text is done to achieve a higher accuracy. An extensive feature set is generated to develop a robust classification technique. The proposed scheme was evaluated using a machine learning method in combination with feature extraction and statistical analysis using support vector machine kernel as the classification tool. The results obtained confirm the effectiveness of the proposed scheme in terms of its accuracy in different categories of web pages.

  11. Object-based land cover classification and change analysis in the Baltimore metropolitan area using multitemporal high resolution remote sensing data

    Treesearch

    Weiqi Zhou; Austin Troy; Morgan Grove

    2008-01-01

    Accurate and timely information about land cover pattern and change in urban areas is crucial for urban land management decision-making, ecosystem monitoring and urban planning. This paper presents the methods and results of an object-based classification and post-classification change detection of multitemporal high-spatial resolution Emerge aerial imagery in the...

  12. A comparative study for chest radiograph image retrieval using binary texture and deep learning classification.

    PubMed

    Anavi, Yaron; Kogan, Ilya; Gelbart, Elad; Geva, Ofer; Greenspan, Hayit

    2015-08-01

    In this work various approaches are investigated for X-ray image retrieval and specifically chest pathology retrieval. Given a query image taken from a data set of 443 images, the objective is to rank images according to similarity. Different features, including binary features, texture features, and deep learning (CNN) features are examined. In addition, two approaches are investigated for the retrieval task. One approach is based on the distance of image descriptors using the above features (hereon termed the "descriptor"-based approach); the second approach ("classification"-based approach) is based on a probability descriptor, generated by a pair-wise classification of each two classes (pathologies) and their decision values using an SVM classifier. Best results are achieved using deep learning features in a classification scheme.

  13. Classification of proteins: available structural space for molecular modeling.

    PubMed

    Andreeva, Antonina

    2012-01-01

    The wealth of available protein structural data provides unprecedented opportunity to study and better understand the underlying principles of protein folding and protein structure evolution. A key to achieving this lies in the ability to analyse these data and to organize them in a coherent classification scheme. Over the past years several protein classifications have been developed that aim to group proteins based on their structural relationships. Some of these classification schemes explore the concept of structural neighbourhood (structural continuum), whereas other utilize the notion of protein evolution and thus provide a discrete rather than continuum view of protein structure space. This chapter presents a strategy for classification of proteins with known three-dimensional structure. Steps in the classification process along with basic definitions are introduced. Examples illustrating some fundamental concepts of protein folding and evolution with a special focus on the exceptions to them are presented.

  14. Comparison of using single- or multi-polarimetric TerraSAR-X images for segmentation and classification of man-made maritime objects

    NASA Astrophysics Data System (ADS)

    Teutsch, Michael; Saur, Günter

    2011-11-01

    Spaceborne SAR imagery offers high capability for wide-ranging maritime surveillance especially in situations, where AIS (Automatic Identification System) data is not available. Therefore, maritime objects have to be detected and optional information such as size, orientation, or object/ship class is desired. In recent research work, we proposed a SAR processing chain consisting of pre-processing, detection, segmentation, and classification for single-polarimetric (HH) TerraSAR-X StripMap images to finally assign detection hypotheses to class "clutter", "non-ship", "unstructured ship", or "ship structure 1" (bulk carrier appearance) respectively "ship structure 2" (oil tanker appearance). In this work, we extend the existing processing chain and are now able to handle full-polarimetric (HH, HV, VH, VV) TerraSAR-X data. With the possibility of better noise suppression using the different polarizations, we slightly improve both the segmentation and the classification process. In several experiments we demonstrate the potential benefit for segmentation and classification. Precision of size and orientation estimation as well as correct classification rates are calculated individually for single- and quad-polarization and compared to each other.

  15. Using Simulations to Investigate the Longitudinal Stability of Alternative Schemes for Classifying and Identifying Children with Reading Disabilities

    ERIC Educational Resources Information Center

    Schatschneider, Christopher; Wagner, Richard K.; Hart, Sara A.; Tighe, Elizabeth L.

    2016-01-01

    The present study employed data simulation techniques to investigate the 1-year stability of alternative classification schemes for identifying children with reading disabilities. Classification schemes investigated include low performance, unexpected low performance, dual-discrepancy, and a rudimentary form of constellation model of reading…

  16. Hybrid Optimization of Object-Based Classification in High-Resolution Images Using Continous ANT Colony Algorithm with Emphasis on Building Detection

    NASA Astrophysics Data System (ADS)

    Tamimi, E.; Ebadi, H.; Kiani, A.

    2017-09-01

    Automatic building detection from High Spatial Resolution (HSR) images is one of the most important issues in Remote Sensing (RS). Due to the limited number of spectral bands in HSR images, using other features will lead to improve accuracy. By adding these features, the presence probability of dependent features will be increased, which leads to accuracy reduction. In addition, some parameters should be determined in Support Vector Machine (SVM) classification. Therefore, it is necessary to simultaneously determine classification parameters and select independent features according to image type. Optimization algorithm is an efficient method to solve this problem. On the other hand, pixel-based classification faces several challenges such as producing salt-paper results and high computational time in high dimensional data. Hence, in this paper, a novel method is proposed to optimize object-based SVM classification by applying continuous Ant Colony Optimization (ACO) algorithm. The advantages of the proposed method are relatively high automation level, independency of image scene and type, post processing reduction for building edge reconstruction and accuracy improvement. The proposed method was evaluated by pixel-based SVM and Random Forest (RF) classification in terms of accuracy. In comparison with optimized pixel-based SVM classification, the results showed that the proposed method improved quality factor and overall accuracy by 17% and 10%, respectively. Also, in the proposed method, Kappa coefficient was improved by 6% rather than RF classification. Time processing of the proposed method was relatively low because of unit of image analysis (image object). These showed the superiority of the proposed method in terms of time and accuracy.

  17. Mangrove classification through the use of object oriented classification and support vector machine of lidar datasets: a case study in Naawan and Manticao, Misamis Oriental, Philippines

    NASA Astrophysics Data System (ADS)

    Jalbuena, Rey L.; Peralta, Rudolph V.; Tamondong, Ayin M.

    2016-10-01

    Mangroves are trees or shrubs that grows at the surface between the land and the sea in tropical and sub-tropical latitudes. Mangroves are essential in supporting various marine life, thus, it is important to preserve and manage these areas. There are many approaches in creating Mangroves maps, one of which is through the use of Light Detection and Ranging (LiDAR). It is a remote sensing technique which uses light pulses to measure distances and to generate three-dimensional point clouds of the Earth's surface. In this study, the topographic LiDAR Data will be used to analyze the geophysical features of the terrain and create a Mangrove map. The dataset that we have were first pre-processed using the LAStools software. It is a software that is used to process LiDAR data sets and create different layers such as DSM, DTM, nDSM, Slope, LiDAR Intensity, LiDAR number of first returns, and CHM. All the aforementioned layers together was used to derive the Mangrove class. Then, an Object-based Image Analysis (OBIA) was performed using eCognition. OBIA analyzes a group of pixels with similar properties called objects, as compared to the traditional pixel-based which only examines a single pixel. Multi-threshold and multiresolution segmentation were used to delineate the different classes and split the image into objects. There are four levels of classification, first is the separation of the Land from the Water. Then the Land class was further dived into Ground and Non-ground objects. Furthermore classification of Nonvegetation, Mangroves, and Other Vegetation was done from the Non-ground objects. Lastly Separation of the mangrove class was done through the Use of field verified training points which was then run into a Support Vector Machine (SVM) classification. Different classes were separated using the different layer feature properties, such as mean, mode, standard deviation, geometrical properties, neighbor-related properties, and textural properties. Accuracy

  18. A simple, objective analysis scheme for scatterometer data. [Seasat A satellite observation of wind over ocean

    NASA Technical Reports Server (NTRS)

    Levy, G.; Brown, R. A.

    1986-01-01

    A simple economical objective analysis scheme is devised and tested on real scatterometer data. It is designed to treat dense data such as those of the Seasat A Satellite Scatterometer (SASS) for individual or multiple passes, and preserves subsynoptic scale features. Errors are evaluated with the aid of sampling ('bootstrap') statistical methods. In addition, sensitivity tests have been performed which establish qualitative confidence in calculated fields of divergence and vorticity. The SASS wind algorithm could be improved; however, the data at this point are limited by instrument errors rather than analysis errors. The analysis error is typically negligible in comparison with the instrument error, but amounts to 30 percent of the instrument error in areas of strong wind shear. The scheme is very economical, and thus suitable for large volumes of dense data such as SASS data.

  19. A Hybrid Classification System for Heart Disease Diagnosis Based on the RFRS Method.

    PubMed

    Liu, Xiao; Wang, Xiaoli; Su, Qiang; Zhang, Mo; Zhu, Yanhong; Wang, Qiugen; Wang, Qian

    2017-01-01

    Heart disease is one of the most common diseases in the world. The objective of this study is to aid the diagnosis of heart disease using a hybrid classification system based on the ReliefF and Rough Set (RFRS) method. The proposed system contains two subsystems: the RFRS feature selection system and a classification system with an ensemble classifier. The first system includes three stages: (i) data discretization, (ii) feature extraction using the ReliefF algorithm, and (iii) feature reduction using the heuristic Rough Set reduction algorithm that we developed. In the second system, an ensemble classifier is proposed based on the C4.5 classifier. The Statlog (Heart) dataset, obtained from the UCI database, was used for experiments. A maximum classification accuracy of 92.59% was achieved according to a jackknife cross-validation scheme. The results demonstrate that the performance of the proposed system is superior to the performances of previously reported classification techniques.

  20. [Evaluation of traditional pathological classification at molecular classification era for gastric cancer].

    PubMed

    Yu, Yingyan

    2014-01-01

    Histopathological classification is in a pivotal position in both basic research and clinical diagnosis and treatment of gastric cancer. Currently, there are different classification systems in basic science and clinical application. In medical literatures, different classifications are used including Lauren and WHO systems, which have confused many researchers. Lauren classification has been proposed for half a century, but is still used worldwide. It shows many advantages of simple, easy handling with prognostic significance. The WHO classification scheme is better than Lauren classification in that it is continuously being revised according to the progress of gastric cancer, and is always used in the clinical and pathological diagnosis of common scenarios. Along with the progression of genomics, transcriptomics, proteomics, metabolomics researches, molecular classification of gastric cancer becomes the current hot topics. The traditional therapeutic approach based on phenotypic characteristics of gastric cancer will most likely be replaced with a gene variation mode. The gene-targeted therapy against the same molecular variation seems more reasonable than traditional chemical treatment based on the same morphological change.

  1. Applying the Multiple Signal Classification Method to Silent Object Detection Using Ambient Noise

    NASA Astrophysics Data System (ADS)

    Mori, Kazuyoshi; Yokoyama, Tomoki; Hasegawa, Akio; Matsuda, Minoru

    2004-05-01

    The revolutionary concept of using ocean ambient noise positively to detect objects, called acoustic daylight imaging, has attracted much attention. The authors attempted the detection of a silent target object using ambient noise and a wide-band beam former consisting of an array of receivers. In experimental results obtained in air, using the wide-band beam former, we successfully applied the delay-sum array (DSA) method to detect a silent target object in an acoustic noise field generated by a large number of transducers. This paper reports some experimental results obtained by applying the multiple signal classification (MUSIC) method to a wide-band beam former to detect silent targets. The ocean ambient noise was simulated by transducers decentralized to many points in air. Both MUSIC and DSA detected a spherical target object in the noise field. The relative power levels near the target obtained with MUSIC were compared with those obtained by DSA. Then the effectiveness of the MUSIC method was evaluated according to the rate of increase in the maximum and minimum relative power levels.

  2. Comparing ecoregional classifications for natural areas management in the Klamath Region, USA

    USGS Publications Warehouse

    Sarr, Daniel A.; Duff, Andrew; Dinger, Eric C.; Shafer, Sarah L.; Wing, Michael; Seavy, Nathaniel E.; Alexander, John D.

    2015-01-01

    We compared three existing ecoregional classification schemes (Bailey, Omernik, and World Wildlife Fund) with two derived schemes (Omernik Revised and Climate Zones) to explore their effectiveness in explaining species distributions and to better understand natural resource geography in the Klamath Region, USA. We analyzed presence/absence data derived from digital distribution maps for trees, amphibians, large mammals, small mammals, migrant birds, and resident birds using three statistical analyses of classification accuracy (Analysis of Similarity, Canonical Analysis of Principal Coordinates, and Classification Strength). The classifications were roughly comparable in classification accuracy, with Omernik Revised showing the best overall performance. Trees showed the strongest fidelity to the classifications, and large mammals showed the weakest fidelity. We discuss the implications for regional biogeography and describe how intermediate resolution ecoregional classifications may be appropriate for use as natural areas management domains.

  3. Experiments with a three-dimensional statistical objective analysis scheme using FGGE data

    NASA Technical Reports Server (NTRS)

    Baker, Wayman E.; Bloom, Stephen C.; Woollen, John S.; Nestler, Mark S.; Brin, Eugenia

    1987-01-01

    A three-dimensional (3D), multivariate, statistical objective analysis scheme (referred to as optimum interpolation or OI) has been developed for use in numerical weather prediction studies with the FGGE data. Some novel aspects of the present scheme include: (1) a multivariate surface analysis over the oceans, which employs an Ekman balance instead of the usual geostrophic relationship, to model the pressure-wind error cross correlations, and (2) the capability to use an error correlation function which is geographically dependent. A series of 4-day data assimilation experiments are conducted to examine the importance of some of the key features of the OI in terms of their effects on forecast skill, as well as to compare the forecast skill using the OI with that utilizing a successive correction method (SCM) of analysis developed earlier. For the three cases examined, the forecast skill is found to be rather insensitive to varying the error correlation function geographically. However, significant differences are noted between forecasts from a two-dimensional (2D) version of the OI and those from the 3D OI, with the 3D OI forecasts exhibiting better forecast skill. The 3D OI forecasts are also more accurate than those from the SCM initial conditions. The 3D OI with the multivariate oceanic surface analysis was found to produce forecasts which were slightly more accurate, on the average, than a univariate version.

  4. Investigations on classification categories for wetlands of Chesapeake Bay using remotely sensed data

    NASA Technical Reports Server (NTRS)

    Williamson, F. S. L.

    1974-01-01

    The use of remote sensors to determine the characteristics of the wetlands of the Chesapeake Bay and surrounding areas is discussed. The objectives of the program are stated as follows: (1) to use data and remote sensing techniques developed from studies of Rhode River, West River, and South River salt marshes to develop a wetland classification scheme useful in other regions of the Chesapeake Bay and to evaluate the classification system with respect to vegetation types, marsh physiography, man-induced perturbation, and salinity; and (2) to develop a program using remote sensing techniques, for the extension of the classification to Chesapeake Bay salt marshes and to coordinate this program with the goals of the Chesapeake Research Consortium and the states of Maryland and Virginia. Maps of the Chesapeake Bay areas are developed from aerial photographs to display the wetland structure and vegetation.

  5. Computer-aided diagnosis system: a Bayesian hybrid classification method.

    PubMed

    Calle-Alonso, F; Pérez, C J; Arias-Nicolás, J P; Martín, J

    2013-10-01

    A novel method to classify multi-class biomedical objects is presented. The method is based on a hybrid approach which combines pairwise comparison, Bayesian regression and the k-nearest neighbor technique. It can be applied in a fully automatic way or in a relevance feedback framework. In the latter case, the information obtained from both an expert and the automatic classification is iteratively used to improve the results until a certain accuracy level is achieved, then, the learning process is finished and new classifications can be automatically performed. The method has been applied in two biomedical contexts by following the same cross-validation schemes as in the original studies. The first one refers to cancer diagnosis, leading to an accuracy of 77.35% versus 66.37%, originally obtained. The second one considers the diagnosis of pathologies of the vertebral column. The original method achieves accuracies ranging from 76.5% to 96.7%, and from 82.3% to 97.1% in two different cross-validation schemes. Even with no supervision, the proposed method reaches 96.71% and 97.32% in these two cases. By using a supervised framework the achieved accuracy is 97.74%. Furthermore, all abnormal cases were correctly classified. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Chemical sensing system for classification of minelike objects by explosives detection

    NASA Astrophysics Data System (ADS)

    Chambers, William B.; Rodacy, Philip J.; Jones, Edwin E.; Gomez, Bernard J.; Woodfin, Ronald L.

    1998-09-01

    Sandia National Laboratories has conducted research in chemical sensing and analysis of explosives for many years. Recently, that experience has been directed towards detecting mines and unexploded ordnance (UXO) by sensing the low-level explosive signatures associated with these objects. Our focus has been on the classification of UXO in shallow water and anti-personnel/anti tank mines on land. The objective of this work is to develop a field portable chemical sensing system which can be used to examine mine-like objects (MLO) to determine whether there are explosive molecules associated with the MLO. Two sampling subsystems have been designed, one for water collection and one for soil/vapor sampling. The water sampler utilizes a flow-through chemical adsorbent canister to extract and concentrate the explosive molecules. Explosive molecules are thermally desorbed from the concentrator and trapped in a focusing stage for rapid desorption into an ion-mobility spectrometer (IMS). We will describe a prototype system which consists of a sampler, concentrator-focuser, and detector. The soil sampler employs a light-weight probe for extracting and concentrating explosive vapor from the soil in the vicinity of an MLO. The chemical sensing system is capable of sub-part-per-billion detection of TNT and related explosive munition compounds. We will present the results of field and laboratory tests on buried landmines, which demonstrate our ability to detect the explosive signatures associated with these objects.

  7. Object classification for obstacle avoidance

    NASA Astrophysics Data System (ADS)

    Regensburger, Uwe; Graefe, Volker

    1991-03-01

    Object recognition is necessary for any mobile robot operating autonomously in the real world. This paper discusses an object classifier based on a 2-D object model. Obstacle candidates are tracked and analyzed false alarms generated by the object detector are recognized and rejected. The methods have been implemented on a multi-processor system and tested in real-world experiments. They work reliably under favorable conditions but sometimes problems occur e. g. when objects contain many features (edges) or move in front of structured background.

  8. Object-based methods for individual tree identification and tree species classification from high-spatial resolution imagery

    NASA Astrophysics Data System (ADS)

    Wang, Le

    2003-10-01

    Modern forest management poses an increasing need for detailed knowledge of forest information at different spatial scales. At the forest level, the information for tree species assemblage is desired whereas at or below the stand level, individual tree related information is preferred. Remote Sensing provides an effective tool to extract the above information at multiple spatial scales in the continuous time domain. To date, the increasing volume and readily availability of high-spatial-resolution data have lead to a much wider application of remotely sensed products. Nevertheless, to make effective use of the improving spatial resolution, conventional pixel-based classification methods are far from satisfactory. Correspondingly, developing object-based methods becomes a central challenge for researchers in the field of Remote Sensing. This thesis focuses on the development of methods for accurate individual tree identification and tree species classification. We develop a method in which individual tree crown boundaries and treetop locations are derived under a unified framework. We apply a two-stage approach with edge detection followed by marker-controlled watershed segmentation. Treetops are modeled from radiometry and geometry aspects. Specifically, treetops are assumed to be represented by local radiation maxima and to be located near the center of the tree-crown. As a result, a marker image was created from the derived treetop to guide a watershed segmentation to further differentiate overlapping trees and to produce a segmented image comprised of individual tree crowns. The image segmentation method developed achieves a promising result for a 256 x 256 CASI image. Then further effort is made to extend our methods to the multiscales which are constructed from a wavelet decomposition. A scale consistency and geometric consistency are designed to examine the gradients along the scale-space for the purpose of separating true crown boundary from unwanted

  9. Ecosystem classifications based on summer and winter conditions.

    PubMed

    Andrew, Margaret E; Nelson, Trisalyn A; Wulder, Michael A; Hobart, George W; Coops, Nicholas C; Farmer, Carson J Q

    2013-04-01

    Ecosystem classifications map an area into relatively homogenous units for environmental research, monitoring, and management. However, their effectiveness is rarely tested. Here, three classifications are (1) defined and characterized for Canada along summertime productivity (moderate-resolution imaging spectrometer fraction of absorbed photosynthetically active radiation) and wintertime snow conditions (special sensor microwave/imager snow water equivalent), independently and in combination, and (2) comparatively evaluated to determine the ability of each classification to represent the spatial and environmental patterns of alternative schemes, including the Canadian ecozone framework. All classifications depicted similar patterns across Canada, but detailed class distributions differed. Class spatial characteristics varied with environmental conditions within classifications, but were comparable between classifications. There was moderate correspondence between classifications. The strongest association was between productivity classes and ecozones. The classification along both productivity and snow balanced these two sets of variables, yielding intermediate levels of association in all pairwise comparisons. Despite relatively low spatial agreement between classifications, they successfully captured patterns of the environmental conditions underlying alternate schemes (e.g., snow classes explained variation in productivity and vice versa). The performance of ecosystem classifications and the relevance of their input variables depend on the environmental patterns and processes used for applications and evaluation. Productivity or snow regimes, as constructed here, may be desirable when summarizing patterns controlled by summer- or wintertime conditions, respectively, or of climate change responses. General purpose ecosystem classifications should include both sets of drivers. Classifications should be carefully, quantitatively, and comparatively evaluated

  10. The "chessboard" classification scheme of mineral deposits: Mineralogy and geology from aluminum to zirconium

    NASA Astrophysics Data System (ADS)

    Dill, Harald G.

    2010-06-01

    Economic geology is a mixtum compositum of all geoscientific disciplines focused on one goal, finding new mineral depsosits and enhancing their exploitation. The keystones of this mixtum compositum are geology and mineralogy whose studies are centered around the emplacement of the ore body and the development of its minerals and rocks. In the present study, mineralogy and geology act as x- and y-coordinates of a classification chart of mineral resources called the "chessboard" (or "spreadsheet") classification scheme. Magmatic and sedimentary lithologies together with tectonic structures (1 -D/pipes, 2 -D/veins) are plotted along the x-axis in the header of the spreadsheet diagram representing the columns in this chart diagram. 63 commodity groups, encompassing minerals and elements are plotted along the y-axis, forming the lines of the spreadsheet. These commodities are subjected to a tripartite subdivision into ore minerals, industrial minerals/rocks and gemstones/ornamental stones. Further information on the various types of mineral deposits, as to the major ore and gangue minerals, the current models and the mode of formation or when and in which geodynamic setting these deposits mainly formed throughout the geological past may be obtained from the text by simply using the code of each deposit in the chart. This code can be created by combining the commodity (lines) shown by numbers plus lower caps with the host rocks or structure (columns) given by capital letters. Each commodity has a small preface on the mineralogy and chemistry and ends up with an outlook into its final use and the supply situation of the raw material on a global basis, which may be updated by the user through a direct link to databases available on the internet. In this case the study has been linked to the commodity database of the US Geological Survey. The internal subdivision of each commodity section corresponds to the common host rock lithologies (magmatic, sedimentary, and

  11. [Classification in medicine. An introductory reflection on its aim and object].

    PubMed

    Giere, W

    2007-07-01

    Human beings are born with the ability to recognize Gestalt and to classify. However, all classifications depend on their circumstances and intentions. There is no ultimate classification, and there is no one correct classification in medicine either. Examples for classifications of diagnoses, symptoms and procedures are discussed. The path to gaining knowledge and the basic difference between collecting data (patient file) and sorting data (register) will be illustrated using the BAIK information model. Additionally the model shows how the doctor can profit from the active electronic patient file which automatically offers him other relevant information for his current decision and saves time. "Without classification no new knowledge, no new knowledge through classification". This paradox will be solved eventually: a change of paradigms requires the overcoming of the currently valid classification system in medicine as well. Finally more precise recommendations will be given on how doctors can be freed from the burden of the need to classify and how the whole health system can gain much more valid data without limiting the doctors' freedom and creativity through co-ordinated use of IT, all while saving money at the same time.

  12. Objective Classification of Radar Profile Types, and Their Relationship to Lightning Occurrence

    NASA Technical Reports Server (NTRS)

    Boccippio, Dennis

    2003-01-01

    A cluster analysis technique is used to identify 16 "archetypal" vertical radar profile types from a large, globally representative sample of profiles from the TRMM Precipitation Radar. These include nine convective types (7 of these deep convective) and seven stratiform types (5 of these clearly glaciated). Radar profile classification provides an alternative to conventional deep convective storm metrics, such as 30 dBZ echo height, maximum reflectivity or VIL. As expected, the global frequency of occurrence of deep convective profile types matches satellite-observed total lightning production, including to very small scall local features. Each location's "mix" of profile types provides an objective description of the local convective spectrum, and in turn, is a first step in objectively classifying convective regimes. These classifiers are tested as inputs to a neural network which attempts to predict lightning occurrence based on radar-only storm observations, and performance is compared with networks using traditional radar metrics as inputs.

  13. Infant Mortality: Development of a Proposed Update to the Dollfus Classification of Infant Deaths

    PubMed Central

    Dove, Melanie S.; Minnal, Archana; Damesyn, Mark; Curtis, Michael P.

    2015-01-01

    Objective Identifying infant deaths with common underlying causes and potential intervention points is critical to infant mortality surveillance and the development of prevention strategies. We constructed an International Classification of Diseases 10th Revision (ICD-10) parallel to the Dollfus cause-of-death classification scheme first published in 1990, which organized infant deaths by etiology and their amenability to prevention efforts. Methods Infant death records for 1996, dual-coded to the ICD Ninth Revision (ICD-9) and ICD-10, were obtained from the CDC public-use multiple-cause-of-death file on comparability between ICD-9 and ICD-10. We used the underlying cause of death to group 27,821 infant deaths into the nine categories of the ICD-9-based update to Dollfus' original coding scheme, published by Sowards in 1999. Comparability ratios were computed to measure concordance between ICD versions. Results The Dollfus classification system updated with ICD-10 codes had limited agreement with the 1999 modified classification system. Although prematurity, congenital malformations, Sudden Infant Death Syndrome, and obstetric conditions were the first through fourth most common causes of infant death under both systems, most comparability ratios were significantly different from one system to the other. Conclusion The Dollfus classification system can be adapted for use with ICD-10 codes to create a comprehensive, etiology-based profile of infant deaths. The potential benefits of using Dollfus logic to guide perinatal mortality reduction strategies, particularly to maternal and child health programs and other initiatives focused on improving infant health, warrant further examination of this method's use in perinatal mortality surveillance. PMID:26556935

  14. Do thoraco-lumbar spinal injuries classification systems exhibit lower inter- and intra-observer agreement than other fractures classifications?: A comparison using fractures of the trochanteric area of the proximal femur as contrast model.

    PubMed

    Urrutia, Julio; Zamora, Tomas; Klaber, Ianiv; Carmona, Maximiliano; Palma, Joaquin; Campos, Mauricio; Yurac, Ratko

    2016-04-01

    It has been postulated that the complex patterns of spinal injuries have prevented adequate agreement using thoraco-lumbar spinal injuries (TLSI) classifications; however, limb fracture classifications have also shown variable agreements. This study compared agreement using two TLSI classifications with agreement using two classifications of fractures of the trochanteric area of the proximal femur (FTAPF). Six evaluators classified the radiographs and computed tomography scans of 70 patients with acute TLSI using the Denis and the new AO Spine thoraco-lumbar injury classifications. Additionally, six evaluators classified the radiographs of 70 patients with FTAPF using the Tronzo and the AO schemes. Six weeks later, all cases were presented in a random sequence for repeat assessment. The Kappa coefficient (κ) was used to determine agreement. Inter-observer agreement: For TLSI, using the AOSpine classification, the mean κ was 0.62 (0.57-0.66) considering fracture types, and 0.55 (0.52-0.57) considering sub-types; using the Denis classification, κ was 0.62 (0.59-0.65). For FTAPF, with the AO scheme, the mean κ was 0.58 (0.54-0.63) considering fracture types and 0.31 (0.28-0.33) considering sub-types; for the Tronzo classification, κ was 0.54 (0.50-0.57). Intra-observer agreement: For TLSI, using the AOSpine scheme, the mean κ was 0.77 (0.72-0.83) considering fracture types, and 0.71 (0.67-0.76) considering sub-types; for the Denis classification, κ was 0.76 (0.71-0.81). For FTAPF, with the AO scheme, the mean κ was 0.75 (0.69-0.81) considering fracture types and 0.45 (0.39-0.51) considering sub-types; for the Tronzo classification, κ was 0.64 (0.58-0.70). Using the main types of AO classifications, inter- and intra-observer agreement of TLSI were comparable to agreement evaluating FTAPF; including sub-types, inter- and intra-observer agreement evaluating TLSI were significantly better than assessing FTAPF. Inter- and intra-observer agreements using the Denis

  15. Benefits of Red-Edge Spectral Band and Texture Features for the Object-based Classification using RapidEye sSatellite Image data

    NASA Astrophysics Data System (ADS)

    Kim, H. O.; Yeom, J. M.

    2014-12-01

    Space-based remote sensing in agriculture is particularly relevant to issues such as global climate change, food security, and precision agriculture. Recent satellite missions have opened up new perspectives by offering high spatial resolution, various spectral properties, and fast revisit rates to the same regions. Here, we examine the utility of broadband red-edge spectral information in multispectral satellite image data for classifying paddy rice crops in South Korea. Additionally, we examine how object-based spectral features affect the classification of paddy rice growth stages. For the analysis, two seasons of RapidEye satellite image data were used. The results showed that the broadband red-edge information slightly improved the classification accuracy of the crop condition in heterogeneous paddy rice crop environments, particularly when single-season image data were used. This positive effect appeared to be offset by the multi-temporal image data. Additional texture information brought only a minor improvement or a slight decline, although it is well known to be advantageous for object-based classification in general. We conclude that broadband red-edge information derived from conventional multispectral satellite data has the potential to improve space-based crop monitoring. Because the positive or negative effects of texture features for object-based crop classification could barely be interpreted, the relationships between the textual properties and paddy rice crop parameters at the field scale should be further examined in depth.

  16. TFM classification and staging of oral submucous fibrosis: A new proposal.

    PubMed

    Arakeri, Gururaj; Thomas, Deepak; Aljabab, Abdulsalam S; Hunasgi, Santosh; Rai, Kirthi Kumar; Hale, Beverley; Fonseca, Felipe Paiva; Gomez, Ricardo Santiago; Rahimi, Siavash; Merkx, Matthias A W; Brennan, Peter A

    2018-04-01

    We have evaluated the rationale of existing grading and staging schemes of oral submucous fibrosis (OSMF) based on how they are categorized. A novel classification and staging scheme is proposed. A total of 300 OSMF patients were evaluated for agreement between functional, clinical, and histopathological staging. Bilateral biopsies were assessed in 25 patients to evaluate for any differences in histopathological staging of OSMF in the same mouth. Extent of clinician agreement for categorized staging data was evaluated using Cohen's weighted kappa analysis. Cross-tabulation was performed on categorical grading data to understand the intercorrelation, and the unweighted kappa analysis was used to assess the bilateral grade agreement. Probabilities of less than 0.05 were considered significant. Data were analyzed using SPSS Statistics (version 25.0, IBM, USA). A low agreement was found between all the stages depicting the independent nature of trismus, clinical features, and histopathological components (K = 0.312, 0.167, 0.152) in OSMF. Following analysis, a three-component classification scheme (TFM classification) was developed that describes the severity of each independently, grouping them using a novel three-tier staging scheme as a guide to the treatment plan. The proposed classification and staging could be useful for effective communication, categorization, and for recording data and prognosis, and for guiding treatment plans. Furthermore, the classification considers OSMF malignant transformation in detail. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. The classification of phobic disorders.

    PubMed

    Sheehan, D V; Sheehan, K H

    The history of classification of phobic disorders is reviewed. Problems in the ability of current classification schemes to predict, control and describe the relationship between the symptoms and other phenomena are outlined. A new classification of phobic disorders is proposed based on the presence or absence of an endogenous anxiety syndrome with the phobias. The two categories of phobic disorder have a different clinical presentation and course, a different mean age of onset, distribution of age of onset, sex distribution, response to treatment modalities, GSR testing and habituation response. Empirical evidence supporting this proposal is cited. This classification has heuristic merit in guiding research efforts and discussions and in directing the clinician to a simple and practical solution of his patient's phobic disorder.

  18. Classification and global distribution of ocean precipitation types based on satellite passive microwave signatures

    NASA Astrophysics Data System (ADS)

    Gautam, Nitin

    The main objectives of this thesis are to develop a robust statistical method for the classification of ocean precipitation based on physical properties to which the SSM/I is sensitive and to examine how these properties vary globally and seasonally. A two step approach is adopted for the classification of oceanic precipitation classes from multispectral SSM/I data: (1)we subjectively define precipitation classes using a priori information about the precipitating system and its possible distinct signature on SSM/I data such as scattering by ice particles aloft in the precipitating cloud, emission by liquid rain water below freezing level, the difference of polarization at 19 GHz-an indirect measure of optical depth, etc.; (2)we then develop an objective classification scheme which is found to reproduce the subjective classification with high accuracy. This hybrid strategy allows us to use the characteristics of the data to define and encode classes and helps retain the physical interpretation of classes. The classification methods based on k-nearest neighbor and neural network are developed to objectively classify six precipitation classes. It is found that the classification method based neural network yields high accuracy for all precipitation classes. An inversion method based on minimum variance approach was used to retrieve gross microphysical properties of these precipitation classes such as column integrated liquid water path, column integrated ice water path, and column integrated min water path. This classification method is then applied to 2 years (1991-92) of SSM/I data to examine and document the seasonal and global distribution of precipitation frequency corresponding to each of these objectively defined six classes. The characteristics of the distribution are found to be consistent with assumptions used in defining these six precipitation classes and also with well known climatological patterns of precipitation regions. The seasonal and global

  19. Classification in Astronomy: Past and Present

    NASA Astrophysics Data System (ADS)

    Feigelson, Eric

    2012-03-01

    used today with many refinements by Gerard de Vaucouleurs and others. Supernovae, nearly all of which are found in external galaxies, have a complicated classification scheme:Type I with subtypes Ia, Ib, Ic, Ib/c pec and Type II with subtypes IIb, IIL, IIP, and IIn (Turatto 2003). The classification is based on elemental abundances in optical spectra and on optical light curve shapes. Tadhunter (2009) presents a three-dimensional classification of active galactic nuclei involving radio power, emission line width, and nuclear luminosity. These taxonomies have played enormously important roles in the development of astronomy, yet all were developed using heuristic methods. Many are based on qualitative and subjective assessments of spatial, temporal, or spectral properties. A qualitative, morphological approach to astronomical studies was explicitly promoted by Zwicky (1957). Other classifications are based on quantitative criteria, but these criteria were developed by subjective examination of training datasets. For example, starburst galaxies are discriminated from narrow-line Seyfert galaxies by a curved line in a diagramof the ratios of four emission lines (Veilleux and Osterbrock 1987). Class II young stellar objects have been defined by a rectangular region in a mid-infrared color-color diagram (Allen et al. 2004). Short and hard gamma-ray bursts are discriminated by a dip in the distribution of burst durations (Kouveliotou et al. 2000). In no case was a statistical or algorithmic procedure used to define the classes.

  20. A kernel-based novelty detection scheme for the ultra-fast detection of chirp evoked Auditory Brainstem Responses.

    PubMed

    Corona-Strauss, Farah I; Delb, Wolfgang; Schick, Bernhard; Strauss, Daniel J

    2010-01-01

    Auditory Brainstem Responses (ABRs) are used as objective method for diagnostics and quantification of hearing loss. Many methods for automatic recognition of ABRs have been developed, but none of them include the individual measurement setup in the analysis. The purpose of this work was to design a fast recognition scheme for chirp-evoked ABRs that is adjusted to the individual measurement condition using spontaneous electroencephalographic activity (SA). For the classification, the kernel-based novelty detection scheme used features based on the inter-sweep instantaneous phase synchronization as well as energy and entropy relations in the time-frequency domain. This method provided SA discrimination from stimulations above the hearing threshold with a minimum number of sweeps, i.e., 200 individual responses. It is concluded that the proposed paradigm, processing procedures and stimulation techniques improve the detection of ABRs in terms of the degree of objectivity, i.e., automation of procedure, and measurement time.

  1. New KF-PP-SVM classification method for EEG in brain-computer interfaces.

    PubMed

    Yang, Banghua; Han, Zhijun; Zan, Peng; Wang, Qian

    2014-01-01

    Classification methods are a crucial direction in the current study of brain-computer interfaces (BCIs). To improve the classification accuracy for electroencephalogram (EEG) signals, a novel KF-PP-SVM (kernel fisher, posterior probability, and support vector machine) classification method is developed. Its detailed process entails the use of common spatial patterns to obtain features, based on which the within-class scatter is calculated. Then the scatter is added into the kernel function of a radial basis function to construct a new kernel function. This new kernel is integrated into the SVM to obtain a new classification model. Finally, the output of SVM is calculated based on posterior probability and the final recognition result is obtained. To evaluate the effectiveness of the proposed KF-PP-SVM method, EEG data collected from laboratory are processed with four different classification schemes (KF-PP-SVM, KF-SVM, PP-SVM, and SVM). The results showed that the overall average improvements arising from the use of the KF-PP-SVM scheme as opposed to KF-SVM, PP-SVM and SVM schemes are 2.49%, 5.83 % and 6.49 % respectively.

  2. Optical tomographic detection of rheumatoid arthritis with computer-aided classification schemes

    NASA Astrophysics Data System (ADS)

    Klose, Christian D.; Klose, Alexander D.; Netz, Uwe; Beuthan, Jürgen; Hielscher, Andreas H.

    2009-02-01

    A recent research study has shown that combining multiple parameters, drawn from optical tomographic images, leads to better classification results to identifying human finger joints that are affected or not affected by rheumatic arthritis RA. Building up on the research findings of the previous study, this article presents an advanced computer-aided classification approach for interpreting optical image data to detect RA in finger joints. Additional data are used including, for example, maximum and minimum values of the absorption coefficient as well as their ratios and image variances. Classification performances obtained by the proposed method were evaluated in terms of sensitivity, specificity, Youden index and area under the curve AUC. Results were compared to different benchmarks ("gold standard"): magnet resonance, ultrasound and clinical evaluation. Maximum accuracies (AUC=0.88) were reached when combining minimum/maximum-ratios and image variances and using ultrasound as gold standard.

  3. Carnegie's New Community Engagement Classification: Affirming Higher Education's Role in Community

    ERIC Educational Resources Information Center

    Driscoll, Amy

    2009-01-01

    In 2005, the Carnegie Foundation for the Advancement of Teaching (CFAT) stirred the higher education world with the announcement of a new classification for institutions that engage with community. The classification, community engagement, is the first in a set of planned classification schemes resulting from the foundation's reexamination of the…

  4. Object-based Image Classification of Arctic Sea Ice and Melt Ponds through Aerial Photos

    NASA Astrophysics Data System (ADS)

    Miao, X.; Xie, H.; Li, Z.; Lei, R.

    2013-12-01

    The last six years have marked the lowest Arctic summer sea ice extents in the modern era, with a new record summer minimum (3.4 million km2) set on 13 September 2012. It has been predicted that the Arctic could be free of summer ice within the next 25-30. The loss of Arctic summer ice could have serious consequences, such as higher water temperature due to the positive feedback of albedo, more powerful and frequent storms, rising sea levels, diminished habitats for polar animals, and more pollution due to fossil fuel exploitation and/ or increased traffic through the Northwest/ Northeast Passage. In these processes, melt ponds play an important role in Earth's radiation balance since they strongly absorb solar radiation rather than reflecting it as snow and ice do. Therefore, it is necessary to develop the ability of predicting the sea ice/ melt pond extents and space-time evolution, which is pivotal to prepare for the variation and uncertainty of the future environment, political, economic, and military needs. A lot of efforts have been put into Arctic sea ice modeling to simulate sea ice processes. However, these sea ice models were initiated and developed based on limited field surveys, aircraft or satellite image data. Therefore, it is necessary to collect high resolution sea ice aerial photo in a systematic way to tune up, validate, and improve models. Currently there are many sea ice aerial photos available, such as Chinese Arctic Exploration (CHINARE 2008, 2010, 2012), SHEBA 1998 and HOTRAX 2005. However, manually delineating of sea ice and melt pond from these images is time-consuming and labor-intensive. In this study, we use the object-based remote sensing classification scheme to extract sea ice and melt ponds efficiently from 1,727 aerial photos taken during the CHINARE 2010. The algorithm includes three major steps as follows. (1) Image segmentation groups the neighboring pixels into objects according to the similarity of spectral and texture

  5. Si-29 NMR spectroscopy of naturally-shocked quartz from Meteor Crater, Arizona: Correlation to Kieffer's classification scheme

    NASA Technical Reports Server (NTRS)

    Boslough, M. B.; Cygan, R. T.; Kirkpatrick, R. J.

    1993-01-01

    We have applied solid state Si-29 nuclear magnetic resonance (NMR) spectroscopy to five naturally-shocked Coconino Sandstone samples from Meteor Crater, Arizona, with the goal of examining possible correlations between NMR spectral characteristics and shock level. This work follows our observation of a strong correlation between the width of a Si-29 resonance and peak shock pressure for experimentally shocked quartz powders. The peak width increase is due to the shock-induced formation of amorphous silica, which increases as a function of shock pressure over the range that we studied (7.5 to 22 GPa). The Coconino Sandstone spectra are in excellent agreement with the classification scheme of Kieffer in terms of presence and approximate abundances of quartz, coesite, stishovite, and glass. We also observe a new resonance in two moderately shocked samples that we have tentatively identified with silicon in tetrahedra with one hydroxyl group in a densified form of amorphous silica.

  6. A novel encoding scheme for effective biometric discretization: Linearly Separable Subcode.

    PubMed

    Lim, Meng-Hui; Teoh, Andrew Beng Jin

    2013-02-01

    Separability in a code is crucial in guaranteeing a decent Hamming-distance separation among the codewords. In multibit biometric discretization where a code is used for quantization-intervals labeling, separability is necessary for preserving distance dissimilarity when feature components are mapped from a discrete space to a Hamming space. In this paper, we examine separability of Binary Reflected Gray Code (BRGC) encoding and reveal its inadequacy in tackling interclass variation during the discrete-to-binary mapping, leading to a tradeoff between classification performance and entropy of binary output. To overcome this drawback, we put forward two encoding schemes exhibiting full-ideal and near-ideal separability capabilities, known as Linearly Separable Subcode (LSSC) and Partially Linearly Separable Subcode (PLSSC), respectively. These encoding schemes convert the conventional entropy-performance tradeoff into an entropy-redundancy tradeoff in the increase of code length. Extensive experimental results vindicate the superiority of our schemes over the existing encoding schemes in discretization performance. This opens up possibilities of achieving much greater classification performance with high output entropy.

  7. Using methods from the data mining and machine learning literature for disease classification and prediction: A case study examining classification of heart failure sub-types

    PubMed Central

    Austin, Peter C.; Tu, Jack V.; Ho, Jennifer E.; Levy, Daniel; Lee, Douglas S.

    2014-01-01

    Objective Physicians classify patients into those with or without a specific disease. Furthermore, there is often interest in classifying patients according to disease etiology or subtype. Classification trees are frequently used to classify patients according to the presence or absence of a disease. However, classification trees can suffer from limited accuracy. In the data-mining and machine learning literature, alternate classification schemes have been developed. These include bootstrap aggregation (bagging), boosting, random forests, and support vector machines. Study design and Setting We compared the performance of these classification methods with those of conventional classification trees to classify patients with heart failure according to the following sub-types: heart failure with preserved ejection fraction (HFPEF) vs. heart failure with reduced ejection fraction (HFREF). We also compared the ability of these methods to predict the probability of the presence of HFPEF with that of conventional logistic regression. Results We found that modern, flexible tree-based methods from the data mining literature offer substantial improvement in prediction and classification of heart failure sub-type compared to conventional classification and regression trees. However, conventional logistic regression had superior performance for predicting the probability of the presence of HFPEF compared to the methods proposed in the data mining literature. Conclusion The use of tree-based methods offers superior performance over conventional classification and regression trees for predicting and classifying heart failure subtypes in a population-based sample of patients from Ontario. However, these methods do not offer substantial improvements over logistic regression for predicting the presence of HFPEF. PMID:23384592

  8. SWIFT Detects a remarkable Gamma-ray Burst, GRB 060514, that introduces a New Classification Scheme

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Norris, J. P.; Mangano, V.; Barthelmy, S. D.; Burrows, D. N.; Granot, J.; Kaneko, Y.; Kouveliotou, C.; Markwardt, C. B.; Meszaros, P.; hide

    2007-01-01

    Gamma ray bursts (GFU3s) are known to come in two duration classes, separated at approx.2 s. Long bursts originate from star forming regions in galaxies, have accompanying supernovae (SNe) when near enough to observe and are likely caused by massive-star collapsars. Recent observations show that short bursts originate in regions within their host galaxies with lower star formation rates, consistent with binary neutron star (NS) or NS - black hole (BH) mergers. Moreover, although their hosts are predominantly nearby galaxies, no SNe have been so far associated with short GRBs. We report here on the bright, nearby GRB 060614 that does not fit in either class. Its approx.102 s duration groups it with long GRBs, while its temporal lag and peak luminosity fall entirely within the short GRB subclass. Moreover, very deep optical observations exclude an accompanying supernova, similar to short GRBs. This combination of a long duration event without accompanying SN poses a challenge to both a collapsar and merging NS interpretation and opens the door on a new GRB classification scheme that straddles both long and short bursts.

  9. Multi-classification of cell deformation based on object alignment and run length statistic.

    PubMed

    Li, Heng; Liu, Zhiwen; An, Xing; Shi, Yonggang

    2014-01-01

    Cellular morphology is widely applied in digital pathology and is essential for improving our understanding of the basic physiological processes of organisms. One of the main issues of application is to develop efficient methods for cell deformation measurement. We propose an innovative indirect approach to analyze dynamic cell morphology in image sequences. The proposed approach considers both the cellular shape change and cytoplasm variation, and takes each frame in the image sequence into account. The cell deformation is measured by the minimum energy function of object alignment, which is invariant to object pose. Then an indirect analysis strategy is employed to overcome the limitation of gradual deformation by run length statistic. We demonstrate the power of the proposed approach with one application: multi-classification of cell deformation. Experimental results show that the proposed method is sensitive to the morphology variation and performs better than standard shape representation methods.

  10. Functional Basis of Microorganism Classification.

    PubMed

    Zhu, Chengsheng; Delmont, Tom O; Vogel, Timothy M; Bromberg, Yana

    2015-08-01

    Correctly identifying nearest "neighbors" of a given microorganism is important in industrial and clinical applications where close relationships imply similar treatment. Microbial classification based on similarity of physiological and genetic organism traits (polyphasic similarity) is experimentally difficult and, arguably, subjective. Evolutionary relatedness, inferred from phylogenetic markers, facilitates classification but does not guarantee functional identity between members of the same taxon or lack of similarity between different taxa. Using over thirteen hundred sequenced bacterial genomes, we built a novel function-based microorganism classification scheme, functional-repertoire similarity-based organism network (FuSiON; flattened to fusion). Our scheme is phenetic, based on a network of quantitatively defined organism relationships across the known prokaryotic space. It correlates significantly with the current taxonomy, but the observed discrepancies reveal both (1) the inconsistency of functional diversity levels among different taxa and (2) an (unsurprising) bias towards prioritizing, for classification purposes, relatively minor traits of particular interest to humans. Our dynamic network-based organism classification is independent of the arbitrary pairwise organism similarity cut-offs traditionally applied to establish taxonomic identity. Instead, it reveals natural, functionally defined organism groupings and is thus robust in handling organism diversity. Additionally, fusion can use organism meta-data to highlight the specific environmental factors that drive microbial diversification. Our approach provides a complementary view to cladistic assignments and holds important clues for further exploration of microbial lifestyles. Fusion is a more practical fit for biomedical, industrial, and ecological applications, as many of these rely on understanding the functional capabilities of the microbes in their environment and are less concerned with

  11. Heuristic pattern correction scheme using adaptively trained generalized regression neural networks.

    PubMed

    Hoya, T; Chambers, J A

    2001-01-01

    In many pattern classification problems, an intelligent neural system is required which can learn the newly encountered but misclassified patterns incrementally, while keeping a good classification performance over the past patterns stored in the network. In the paper, an heuristic pattern correction scheme is proposed using adaptively trained generalized regression neural networks (GRNNs). The scheme is based upon both network growing and dual-stage shrinking mechanisms. In the network growing phase, a subset of the misclassified patterns in each incoming data set is iteratively added into the network until all the patterns in the incoming data set are classified correctly. Then, the redundancy in the growing phase is removed in the dual-stage network shrinking. Both long- and short-term memory models are considered in the network shrinking, which are motivated from biological study of the brain. The learning capability of the proposed scheme is investigated through extensive simulation studies.

  12. A fast and efficient segmentation scheme for cell microscopic image.

    PubMed

    Lebrun, G; Charrier, C; Lezoray, O; Meurie, C; Cardot, H

    2007-04-27

    Microscopic cellular image segmentation schemes must be efficient for reliable analysis and fast to process huge quantity of images. Recent studies have focused on improving segmentation quality. Several segmentation schemes have good quality but processing time is too expensive to deal with a great number of images per day. For segmentation schemes based on pixel classification, the classifier design is crucial since it is the one which requires most of the processing time necessary to segment an image. The main contribution of this work is focused on how to reduce the complexity of decision functions produced by support vector machines (SVM) while preserving recognition rate. Vector quantization is used in order to reduce the inherent redundancy present in huge pixel databases (i.e. images with expert pixel segmentation). Hybrid color space design is also used in order to improve data set size reduction rate and recognition rate. A new decision function quality criterion is defined to select good trade-off between recognition rate and processing time of pixel decision function. The first results of this study show that fast and efficient pixel classification with SVM is possible. Moreover posterior class pixel probability estimation is easy to compute with Platt method. Then a new segmentation scheme using probabilistic pixel classification has been developed. This one has several free parameters and an automatic selection must dealt with, but criteria for evaluate segmentation quality are not well adapted for cell segmentation, especially when comparison with expert pixel segmentation must be achieved. Another important contribution in this paper is the definition of a new quality criterion for evaluation of cell segmentation. The results presented here show that the selection of free parameters of the segmentation scheme by optimisation of the new quality cell segmentation criterion produces efficient cell segmentation.

  13. Divorcing Strain Classification from Species Names.

    PubMed

    Baltrus, David A

    2016-06-01

    Confusion about strain classification and nomenclature permeates modern microbiology. Although taxonomists have traditionally acted as gatekeepers of order, the numbers of, and speed at which, new strains are identified has outpaced the opportunity for professional classification for many lineages. Furthermore, the growth of bioinformatics and database-fueled investigations have placed metadata curation in the hands of researchers with little taxonomic experience. Here I describe practical challenges facing modern microbial taxonomy, provide an overview of complexities of classification for environmentally ubiquitous taxa like Pseudomonas syringae, and emphasize that classification can be independent of nomenclature. A move toward implementation of relational classification schemes based on inherent properties of whole genomes could provide sorely needed continuity in how strains are referenced across manuscripts and data sets. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Objectification of Orthodontic Treatment Needs: Does the Classification of Malocclusions or a History of Orthodontic Treatment Matter?

    PubMed

    Kozanecka, Anna; Sarul, Michał; Kawala, Beata; Antoszewska-Smith, Joanna

    2016-01-01

    Orthodontic classifications make it possible to give an accurate diagnosis but do not indicate an objective orthodontic treatment need. In order to evaluate the need for treatment, it is necessary to use such indicators as the IOTN. The aim of the study was to find (i) relationships between individual diagnosis and objective recommendations for treatment and (ii) an answer to the question whether and which occlusal anomalies play an important role in the objectification of treatment needs. Two hundred three 18-year-old adolescents (104 girls, 99 boys) were examined. In order to recognize occlusal anomalies, the classifications proposed by Orlik-Grzybowska and Ackerman-Proffit were used. The occlusal anomalies were divided into three categories: belonging to both classifications, typical of OrlikGrzybowska classification and typical of Ackerman-Proffit classification. In order to determine the objective need for orthodontic treatment, the Dental Health Component (DHC) of the IOTN was used. The occurrence of the following malocclusions covered by both classifications, namely abnormal overjet, crossbite and Angle's class, had a statistically significant (p < 0.05) impact on an increase of treatment needs in the subjects (DHC > 3). As for the classification by Orlik-Grzybowska, dental malpositions and canine class significantly affected the need for orthodontic treatment, while in the case of the Ackerman-Proffit scheme, it was asymmetry and crowding. There was no statistically significant correlation between past orthodontic treatment and current orthodontic treatment need. IOTN may be affected by a greater number of occlusal anomalies than it was assumed. Orthodontic treatment received in the past slightly reduces the need for treatment in 18-year-olds.

  15. Models of Marine Fish Biodiversity: Assessing Predictors from Three Habitat Classification Schemes.

    PubMed

    Yates, Katherine L; Mellin, Camille; Caley, M Julian; Radford, Ben T; Meeuwig, Jessica J

    2016-01-01

    Prioritising biodiversity conservation requires knowledge of where biodiversity occurs. Such knowledge, however, is often lacking. New technologies for collecting biological and physical data coupled with advances in modelling techniques could help address these gaps and facilitate improved management outcomes. Here we examined the utility of environmental data, obtained using different methods, for developing models of both uni- and multivariate biodiversity metrics. We tested which biodiversity metrics could be predicted best and evaluated the performance of predictor variables generated from three types of habitat data: acoustic multibeam sonar imagery, predicted habitat classification, and direct observer habitat classification. We used boosted regression trees (BRT) to model metrics of fish species richness, abundance and biomass, and multivariate regression trees (MRT) to model biomass and abundance of fish functional groups. We compared model performance using different sets of predictors and estimated the relative influence of individual predictors. Models of total species richness and total abundance performed best; those developed for endemic species performed worst. Abundance models performed substantially better than corresponding biomass models. In general, BRT and MRTs developed using predicted habitat classifications performed less well than those using multibeam data. The most influential individual predictor was the abiotic categorical variable from direct observer habitat classification and models that incorporated predictors from direct observer habitat classification consistently outperformed those that did not. Our results show that while remotely sensed data can offer considerable utility for predictive modelling, the addition of direct observer habitat classification data can substantially improve model performance. Thus it appears that there are aspects of marine habitats that are important for modelling metrics of fish biodiversity that are

  16. Models of Marine Fish Biodiversity: Assessing Predictors from Three Habitat Classification Schemes

    PubMed Central

    Yates, Katherine L.; Mellin, Camille; Caley, M. Julian; Radford, Ben T.; Meeuwig, Jessica J.

    2016-01-01

    Prioritising biodiversity conservation requires knowledge of where biodiversity occurs. Such knowledge, however, is often lacking. New technologies for collecting biological and physical data coupled with advances in modelling techniques could help address these gaps and facilitate improved management outcomes. Here we examined the utility of environmental data, obtained using different methods, for developing models of both uni- and multivariate biodiversity metrics. We tested which biodiversity metrics could be predicted best and evaluated the performance of predictor variables generated from three types of habitat data: acoustic multibeam sonar imagery, predicted habitat classification, and direct observer habitat classification. We used boosted regression trees (BRT) to model metrics of fish species richness, abundance and biomass, and multivariate regression trees (MRT) to model biomass and abundance of fish functional groups. We compared model performance using different sets of predictors and estimated the relative influence of individual predictors. Models of total species richness and total abundance performed best; those developed for endemic species performed worst. Abundance models performed substantially better than corresponding biomass models. In general, BRT and MRTs developed using predicted habitat classifications performed less well than those using multibeam data. The most influential individual predictor was the abiotic categorical variable from direct observer habitat classification and models that incorporated predictors from direct observer habitat classification consistently outperformed those that did not. Our results show that while remotely sensed data can offer considerable utility for predictive modelling, the addition of direct observer habitat classification data can substantially improve model performance. Thus it appears that there are aspects of marine habitats that are important for modelling metrics of fish biodiversity that are

  17. Object-oriented classification using quasi-synchronous multispectral images (optical and radar) over agricultural surface

    NASA Astrophysics Data System (ADS)

    Marais Sicre, Claire; Baup, Frederic; Fieuzal, Remy

    2015-04-01

    In the context of climate change (with consequences on temperature and precipitation patterns), persons involved in agricultural management have the imperative to combine: sufficient productivity (as a response of the increment of the necessary foods) and durability of the resources (in order to restrain waste of water, fertilizer or environmental damages). To this end, a detailed knowledge of land use will improve the management of food and water, while preserving the ecosystems. Among the wide range of available monitoring tools, numerous studies demonstrated the interest of satellite images for agricultural mapping. Recently, the launch of several radar and optical sensors offer new perspectives for the multi-wavelength crop monitoring (Terrasar-X, Radarsat-2, Sentinel-1, Landsat-8…) allowing surface survey whatever the cloud conditions. Previous studies have demonstrated the interest of using multi-temporal approaches for crop classification, requiring several images for suitable classification results. Unfortunately, these approaches are limited (due to the satellite orbit cycle) and require waiting several days, week or month before offering an accurate land use map. The objective of this study is to compare the accuracy of object-oriented classification (random forest algorithm combined with vector layer coming from segmentation) to map winter crop (barley, rapeseed, grasslands and wheat) and soil states (bare soils with different surface roughness) using quasi-synchronous images. Satellite data are composed of multi-frequency and multi-polarization (HH, VV, HV and VH) images acquired near the 14th of April, 2010, over a studied area (90km²) located close to Toulouse in France. This is a region of alluvial plains and hills, which are mostly mixed farming and governed by a temperate climate. Remote sensing images are provided by Formosat-2 (04/18), Radarsat-2 (C-band, 04/15), Terrasar-X (X-band, 04/14) and ALOS (L-band, 04/14). Ground data are collected

  18. Unsupervised classification of earth resources data.

    NASA Technical Reports Server (NTRS)

    Su, M. Y.; Jayroe, R. R., Jr.; Cummings, R. E.

    1972-01-01

    A new clustering technique is presented. It consists of two parts: (a) a sequential statistical clustering which is essentially a sequential variance analysis and (b) a generalized K-means clustering. In this composite clustering technique, the output of (a) is a set of initial clusters which are input to (b) for further improvement by an iterative scheme. This unsupervised composite technique was employed for automatic classification of two sets of remote multispectral earth resource observations. The classification accuracy by the unsupervised technique is found to be comparable to that by existing supervised maximum liklihood classification technique.

  19. Extraction and Analysis of Mega Cities’ Impervious Surface on Pixel-based and Object-oriented Support Vector Machine Classification Technology: A case of Bombay

    NASA Astrophysics Data System (ADS)

    Yu, S. S.; Sun, Z. C.; Sun, L.; Wu, M. F.

    2017-02-01

    The object of this paper is to study the impervious surface extraction method using remote sensing imagery and monitor the spatiotemporal changing patterns of mega cities. Megacity Bombay was selected as the interesting area. Firstly, the pixel-based and object-oriented support vector machine (SVM) classification methods were used to acquire the land use/land cover (LULC) products of Bombay in 2010. Consequently, the overall accuracy (OA) and overall Kappa (OK) of the pixel-based method were 94.97% and 0.96 with a running time of 78 minutes, the OA and OK of the object-oriented method were 93.72% and 0.94 with a running time of only 17s. Additionally, OA and OK of the object-oriented method after a post-classification were improved up to 95.8% and 0.94. Then, the dynamic impervious surfaces of Bombay in the period 1973-2015 were extracted and the urbanization pattern of Bombay was analysed. Results told that both the two SVM classification methods could accomplish the impervious surface extraction, but the object-oriented method should be a better choice. Urbanization of Bombay experienced a fast extending during the past 42 years, implying a dramatically urban sprawl of mega cities in the developing countries along the One Belt and One Road (OBOR).

  20. Classification of cryocoolers

    NASA Technical Reports Server (NTRS)

    Walker, G.

    1985-01-01

    A great diversity of methods and mechanisms were devised to effect cryogenic refrigeration. The basic parameters and considerations affecting the selection of a particular system are reviewed. A classification scheme for mechanical cryocoolers is presented. An important distinguishing feature is the incorporation or not of a regenerative heat exchanger, of valves, and of the method for achieving a pressure variation.

  1. THE WESTERN LAKE SUPERIOR COMPARATIVE WATERSHED FRAMEWORK: A FIELD TEST OF GEOGRAPHICALLY-DEPENDENT VS. THRESHOLD-BASED GEOGRAPHICALLY-INDEPENDENT CLASSIFICATION

    EPA Science Inventory

    Stratified random selection of watersheds allowed us to compare geographically-independent classification schemes based on watershed storage (wetland + lake area/watershed area) and forest fragmentation with a geographically-based classification scheme within the Northern Lakes a...

  2. The classification of anxiety and hysterical states. Part I. Historical review and empirical delineation.

    PubMed

    Sheehan, D V; Sheehan, K H

    1982-08-01

    The history of the classification of anxiety, hysterical, and hypochondriacal disorders is reviewed. Problems in the ability of current classification schemes to predict, control, and describe the relationship between the symptoms and other phenomena are outlined. Existing classification schemes failed the first test of a good classification model--that of providing categories that are mutually exclusive. The independence of these diagnostic categories from each other does not appear to hold up on empirical testing. In the absence of inherently mutually exclusive categories, further empirical investigation of these classes is obstructed since statistically valid analysis of the nominal data and any useful multivariate analysis would be difficult if not impossible. It is concluded that the existing classifications are unsatisfactory and require some fundamental reconceptualization.

  3. Classification of instability after reverse shoulder arthroplasty guides surgical management and outcomes.

    PubMed

    Abdelfattah, Adham; Otto, Randall J; Simon, Peter; Christmas, Kaitlyn N; Tanner, Gregory; LaMartina, Joey; Levy, Jonathan C; Cuff, Derek J; Mighell, Mark A; Frankle, Mark A

    2018-04-01

    Revision of unstable reverse shoulder arthroplasty (RSA) remains a significant challenge. The purpose of this study was to determine the reliability of a new treatment-guiding classification for instability after RSA, to describe the clinical outcomes of patients stabilized operatively, and to identify those with higher risk of recurrence. All patients undergoing revision for instability after RSA were identified at our institution. Demographic, clinical, radiographic, and intraoperative data were collected. A classification was developed using all identified causes of instability after RSA and allocating them to 1 of 3 defined treatment-guiding categories. Eight surgeons reviewed all data and applied the classification scheme to each case. Interobserver and intraobserver reliability was used to evaluate the classification scheme. Preoperative clinical outcomes were compared with final follow-up in stabilized shoulders. Forty-three revision cases in 34 patients met the inclusion for study. Five patients remained unstable after revision. Persistent instability most commonly occurred in persistent deltoid dysfunction and postoperative acromial fractures but also in 1 case of soft tissue impingement. Twenty-one patients remained stable at minimum 2 years of follow-up and had significant improvement of clinical outcome scores and range of motion. Reliability of the classification scheme showed substantial and almost perfect interobserver and intraobserver agreement among all the participants (κ = 0.699 and κ = 0.851, respectively). Instability after RSA can be successfully treated with revision surgery using the reliable treatment-guiding classification scheme presented herein. However, more understanding is needed for patients with greater risk of recurrent instability after revision surgery. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  4. The Classification of Hysteria and Related Disorders: Historical and Phenomenological Considerations

    PubMed Central

    North, Carol S.

    2015-01-01

    This article examines the history of the conceptualization of dissociative, conversion, and somatoform syndromes in relation to one another, chronicles efforts to classify these and other phenomenologically-related psychopathology in the American diagnostic system for mental disorders, and traces the subsequent divergence in opinions of dissenting sectors on classification of these disorders. This article then considers the extensive phenomenological overlap across these disorders in empirical research, and from this foundation presents a new model for the conceptualization of these disorders. The classification of disorders formerly known as hysteria and phenomenologically-related syndromes has long been contentious and unsettled. Examination of the long history of the conceptual difficulties, which remain inherent in existing classification schemes for these disorders, can help to address the continuing controversy. This review clarifies the need for a major conceptual revision of the current classification of these disorders. A new phenomenologically-based classification scheme for these disorders is proposed that is more compatible with the agnostic and atheoretical approach to diagnosis of mental disorders used by the current classification system. PMID:26561836

  5. Classification of diffuse lung diseases: why and how.

    PubMed

    Hansell, David M

    2013-09-01

    The understanding of complex lung diseases, notably the idiopathic interstitial pneumonias and small airways diseases, owes as much to repeated attempts over the years to classify them as to any single conceptual breakthrough. One of the many benefits of a successful classification scheme is that it allows workers, within and between disciplines, to be clear that they are discussing the same disease. This may be of particular importance in the recruitment of individuals for a clinical trial that requires a standardized and homogeneous study population. Different specialties require fundamentally different things from a classification: for epidemiologic studies, a classification that requires categorization of individuals according to histopathologic pattern is not usually practicable. Conversely, a scheme that simply divides diffuse parenchymal disease into inflammatory and noninflammatory categories is unlikely to further the understanding about the pathogenesis of disease. Thus, for some disease groupings, for example, pulmonary vasculopathies, there may be several appropriate classifications, each with its merits and demerits. There has been an interesting shift in the past few years, from the accepted primacy of histopathology as the sole basis on which the classification of parenchymal lung disease has rested, to new ways of considering how these entities relate to each other. Some inventive thinking has resulted in new classifications that undoubtedly benefit patients and clinicians in their endeavor to improve management and outcome. The challenge of understanding the logic behind current classifications and their shortcomings are explored in various examples of lung diseases.

  6. Classification of Variable Objects in Massive Sky Monitoring Surveys

    NASA Astrophysics Data System (ADS)

    Woźniak, Przemek; Wyrzykowski, Łukasz; Belokurov, Vasily

    2012-03-01

    The era of great sky surveys is upon us. Over the past decade we have seen rapid progress toward a continuous photometric record of the optical sky. Numerous sky surveys are discovering and monitoring variable objects by hundreds of thousands. Advances in detector, computing, and networking technology are driving applications of all shapes and sizes ranging from small all sky monitors, through networks of robotic telescopes of modest size, to big glass facilities equipped with giga-pixel CCD mosaics. The Large Synoptic Survey Telescope will be the first peta-scale astronomical survey [18]. It will expand the volume of the parameter space available to us by three orders of magnitude and explore the mutable heavens down to an unprecedented level of sensitivity. Proliferation of large, multidimensional astronomical data sets is stimulating the work on new methods and tools to handle the identification and classification challenge [3]. Given exponentially growing data rates, automated classification of variability types is quickly becoming a necessity. Taking humans out of the loop not only eliminates the subjective nature of visual classification, but is also an enabling factor for time-critical applications. Full automation is especially important for studies of explosive phenomena such as γ-ray bursts that require rapid follow-up observations before the event is over. While there is a general consensus that machine learning will provide a viable solution, the available algorithmic toolbox remains underutilized in astronomy by comparison with other fields such as genomics or market research. Part of the problem is the nature of astronomical data sets that tend to be dominated by a variety of irregularities. Not all algorithms can handle gracefully uneven time sampling, missing features, or sparsely populated high-dimensional spaces. More sophisticated algorithms and better tools available in standard software packages are required to facilitate the adoption of

  7. Objective classification of historical tropical cyclone intensity

    NASA Astrophysics Data System (ADS)

    Chenoweth, Michael

    2007-03-01

    Preinstrumental records of historical tropical cyclone activity require objective methods for accurately categorizing tropical cyclone intensity. Here wind force terms and damage reports from newspaper accounts in the Lesser Antilles and Jamaica for the period 1795-1879 are compared with wind speed estimates calculated from barometric pressure data. A total of 95 separate barometric pressure readings and colocated simultaneous wind force descriptors and wind-induced damage reports are compared. The wind speed estimates from barometric pressure data are taken as the most reliable and serve as a standard to compare against other data. Wind-induced damage reports are used to produce an estimated wind speed range using a modified Fujita scale. Wind force terms are compared with the barometric pressure data to determine if a gale, as used in the contemporary newspapers, is consistent with the modern definition of a gale. Results indicate that the modern definition of a gale (the threshold point separating the classification of a tropical depression from a tropical storm) is equivalent to that in contemporary newspaper accounts. Barometric pressure values are consistent with both reported wind force terms and wind damage on land when the location, speed and direction of movement of the tropical cyclone are determined. Damage reports and derived wind force estimates are consistent with other published results. Biases in ships' logbooks are confirmed and wind force terms of gale strength or greater are identified. These results offer a bridge between the earlier noninstrumental records of tropical cyclones and modern records thereby offering a method of consistently classifying storms in the Caribbean region into tropical depressions, tropical storms, nonmajor and major hurricanes.

  8. A scheme for the classification of explosions in the chemical process industry.

    PubMed

    Abbasi, Tasneem; Pasman, H J; Abbasi, S A

    2010-02-15

    All process industry accidents fall under three broad categories-fire, explosion, and toxic release. Of these fire is the most common, followed by explosions. Within these broad categories occur a large number of sub-categories, each depicting a specific sub-type of a fire/explosion/toxic release. But whereas clear and self-consistent sub-classifications exist for fires and toxic releases, the situation is not as clear vis a vis explosions. In this paper the inconsistencies and/or shortcomings associated with the classification of different types of explosions, which are seen even in otherwise highly authentic and useful reference books on process safety, are reviewed. In its context a new classification is attempted which may, hopefully, provide a frame-of-reference for the future.

  9. Weather elements, chemical air pollutants and airborne pollen influencing asthma emergency room visits in Szeged, Hungary: performance of two objective weather classifications

    NASA Astrophysics Data System (ADS)

    Makra, László; Puskás, János; Matyasovszky, István; Csépe, Zoltán; Lelovics, Enikő; Bálint, Beatrix; Tusnády, Gábor

    2015-09-01

    Weather classification approaches may be useful tools in modelling the occurrence of respiratory diseases. The aim of the study is to compare the performance of an objectively defined weather classification and the Spatial Synoptic Classification (SSC) in classifying emergency department (ED) visits for acute asthma depending from weather, air pollutants, and airborne pollen variables for Szeged, Hungary, for the 9-year period 1999-2007. The research is performed for three different pollen-related periods of the year and the annual data set. According to age and gender, nine patient categories, eight meteorological variables, seven chemical air pollutants, and two pollen categories were used. In general, partly dry and cold air and partly warm and humid air aggravate substantially the symptoms of asthmatics. Our major findings are consistent with this establishment. Namely, for the objectively defined weather types favourable conditions for asthma ER visits occur when an anticyclonic ridge weather situation happens with near extreme temperature and humidity parameters. Accordingly, the SSC weather types facilitate aggravating asthmatic conditions if warm or cool weather occur with high humidity in both cases. Favourable conditions for asthma attacks are confirmed in the extreme seasons when atmospheric stability contributes to enrichment of air pollutants. The total efficiency of the two classification approaches is similar in spite of the fact that the methodology for derivation of the individual types within the two classification approaches is completely different.

  10. Weather elements, chemical air pollutants and airborne pollen influencing asthma emergency room visits in Szeged, Hungary: performance of two objective weather classifications.

    PubMed

    Makra, László; Puskás, János; Matyasovszky, István; Csépe, Zoltán; Lelovics, Enikő; Bálint, Beatrix; Tusnády, Gábor

    2015-09-01

    Weather classification approaches may be useful tools in modelling the occurrence of respiratory diseases. The aim of the study is to compare the performance of an objectively defined weather classification and the Spatial Synoptic Classification (SSC) in classifying emergency department (ED) visits for acute asthma depending from weather, air pollutants, and airborne pollen variables for Szeged, Hungary, for the 9-year period 1999-2007. The research is performed for three different pollen-related periods of the year and the annual data set. According to age and gender, nine patient categories, eight meteorological variables, seven chemical air pollutants, and two pollen categories were used. In general, partly dry and cold air and partly warm and humid air aggravate substantially the symptoms of asthmatics. Our major findings are consistent with this establishment. Namely, for the objectively defined weather types favourable conditions for asthma ER visits occur when an anticyclonic ridge weather situation happens with near extreme temperature and humidity parameters. Accordingly, the SSC weather types facilitate aggravating asthmatic conditions if warm or cool weather occur with high humidity in both cases. Favourable conditions for asthma attacks are confirmed in the extreme seasons when atmospheric stability contributes to enrichment of air pollutants. The total efficiency of the two classification approaches is similar in spite of the fact that the methodology for derivation of the individual types within the two classification approaches is completely different.

  11. Hierarchical Object-based Image Analysis approach for classification of sub-meter multispectral imagery in Tanzania

    NASA Astrophysics Data System (ADS)

    Chung, C.; Nagol, J. R.; Tao, X.; Anand, A.; Dempewolf, J.

    2015-12-01

    Increasing agricultural production while at the same time preserving the environment has become a challenging task. There is a need for new approaches for use of multi-scale and multi-source remote sensing data as well as ground based measurements for mapping and monitoring crop and ecosystem state to support decision making by governmental and non-governmental organizations for sustainable agricultural development. High resolution sub-meter imagery plays an important role in such an integrative framework of landscape monitoring. It helps link the ground based data to more easily available coarser resolution data, facilitating calibration and validation of derived remote sensing products. Here we present a hierarchical Object Based Image Analysis (OBIA) approach to classify sub-meter imagery. The primary reason for choosing OBIA is to accommodate pixel sizes smaller than the object or class of interest. Especially in non-homogeneous savannah regions of Tanzania, this is an important concern and the traditional pixel based spectral signature approach often fails. Ortho-rectified, calibrated, pan sharpened 0.5 meter resolution data acquired from DigitalGlobe's WorldView-2 satellite sensor was used for this purpose. Multi-scale hierarchical segmentation was performed using multi-resolution segmentation approach to facilitate the use of texture, neighborhood context, and the relationship between super and sub objects for training and classification. eCognition, a commonly used OBIA software program, was used for this purpose. Both decision tree and random forest approaches for classification were tested. The Kappa index agreement for both algorithms surpassed the 85%. The results demonstrate that using hierarchical OBIA can effectively and accurately discriminate classes at even LCCS-3 legend.

  12. Functional Basis of Microorganism Classification

    PubMed Central

    Zhu, Chengsheng; Delmont, Tom O.; Vogel, Timothy M.; Bromberg, Yana

    2015-01-01

    Correctly identifying nearest “neighbors” of a given microorganism is important in industrial and clinical applications where close relationships imply similar treatment. Microbial classification based on similarity of physiological and genetic organism traits (polyphasic similarity) is experimentally difficult and, arguably, subjective. Evolutionary relatedness, inferred from phylogenetic markers, facilitates classification but does not guarantee functional identity between members of the same taxon or lack of similarity between different taxa. Using over thirteen hundred sequenced bacterial genomes, we built a novel function-based microorganism classification scheme, functional-repertoire similarity-based organism network (FuSiON; flattened to fusion). Our scheme is phenetic, based on a network of quantitatively defined organism relationships across the known prokaryotic space. It correlates significantly with the current taxonomy, but the observed discrepancies reveal both (1) the inconsistency of functional diversity levels among different taxa and (2) an (unsurprising) bias towards prioritizing, for classification purposes, relatively minor traits of particular interest to humans. Our dynamic network-based organism classification is independent of the arbitrary pairwise organism similarity cut-offs traditionally applied to establish taxonomic identity. Instead, it reveals natural, functionally defined organism groupings and is thus robust in handling organism diversity. Additionally, fusion can use organism meta-data to highlight the specific environmental factors that drive microbial diversification. Our approach provides a complementary view to cladistic assignments and holds important clues for further exploration of microbial lifestyles. Fusion is a more practical fit for biomedical, industrial, and ecological applications, as many of these rely on understanding the functional capabilities of the microbes in their environment and are less concerned

  13. Centrifuge: rapid and sensitive classification of metagenomic sequences

    PubMed Central

    Song, Li; Breitwieser, Florian P.

    2016-01-01

    Centrifuge is a novel microbial classification engine that enables rapid, accurate, and sensitive labeling of reads and quantification of species on desktop computers. The system uses an indexing scheme based on the Burrows-Wheeler transform (BWT) and the Ferragina-Manzini (FM) index, optimized specifically for the metagenomic classification problem. Centrifuge requires a relatively small index (4.2 GB for 4078 bacterial and 200 archaeal genomes) and classifies sequences at very high speed, allowing it to process the millions of reads from a typical high-throughput DNA sequencing run within a few minutes. Together, these advances enable timely and accurate analysis of large metagenomics data sets on conventional desktop computers. Because of its space-optimized indexing schemes, Centrifuge also makes it possible to index the entire NCBI nonredundant nucleotide sequence database (a total of 109 billion bases) with an index size of 69 GB, in contrast to k-mer-based indexing schemes, which require far more extensive space. PMID:27852649

  14. Object-Based Land Use Classification of Agricultural Land by Coupling Multi-Temporal Spectral Characteristics and Phenological Events in Germany

    NASA Astrophysics Data System (ADS)

    Knoefel, Patrick; Loew, Fabian; Conrad, Christopher

    2015-04-01

    Crop maps based on classification of remotely sensed data are of increased attendance in agricultural management. This induces a more detailed knowledge about the reliability of such spatial information. However, classification of agricultural land use is often limited by high spectral similarities of the studied crop types. More, spatially and temporally varying agro-ecological conditions can introduce confusion in crop mapping. Classification errors in crop maps in turn may have influence on model outputs, like agricultural production monitoring. One major goal of the PhenoS project ("Phenological structuring to determine optimal acquisition dates for Sentinel-2 data for field crop classification"), is the detection of optimal phenological time windows for land cover classification purposes. Since many crop species are spectrally highly similar, accurate classification requires the right selection of satellite images for a certain classification task. In the course of one growing season, phenological phases exist where crops are separable with higher accuracies. For this purpose, coupling of multi-temporal spectral characteristics and phenological events is promising. The focus of this study is set on the separation of spectrally similar cereal crops like winter wheat, barley, and rye of two test sites in Germany called "Harz/Central German Lowland" and "Demmin". However, this study uses object based random forest (RF) classification to investigate the impact of image acquisition frequency and timing on crop classification uncertainty by permuting all possible combinations of available RapidEye time series recorded on the test sites between 2010 and 2014. The permutations were applied to different segmentation parameters. Then, classification uncertainty was assessed and analysed, based on the probabilistic soft-output from the RF algorithm at the per-field basis. From this soft output, entropy was calculated as a spatial measure of classification uncertainty

  15. Stellar Classification Online - Public Exploration

    NASA Astrophysics Data System (ADS)

    Castelaz, Michael W.; Bedell, W.; Barker, T.; Cline, J.; Owen, L.

    2009-01-01

    The Michigan Objective Prism Blue Survey (e.g. Sowell et al 2007, AJ, 134, 1089) photographic plates located in the Astronomical Photographic Data Archive at the Pisgah Astronomical Research Institute hold hundreds of thousands of stellar spectra, many of which have not been classified before. The public is invited to participate in a distributed computing online environment to classify the stars on the objective prism plates. The online environment is called Stellar Classification Online - Public Exploration (SCOPE). Through a website, SCOPE participants are given a tutorial on stellar spectra and their classification, and given the chance to practice their skills at classification. After practice, participants register, login, and select stars for classification from scans of the objective prism plates. Their classifications are recorded in a database where the accumulation of classifications of the same star by many users will be statistically analyzed. The project includes stars with known spectral types to help test the reliability of classifications. The SCOPE webpage and the use of results will be described.

  16. Dewey Decimal Classification for U. S. Conn: An Advantage?

    ERIC Educational Resources Information Center

    Marek, Kate

    This paper examines the use of the Dewey Decimal Classification (DDC) system at the U. S. Conn Library at Wayne State College (WSC) in Nebraska. Several developments in the last 20 years which have eliminated the trend toward reclassification of academic library collections from DDC to the Library of Congress (LC) classification scheme are…

  17. Subsurface classification of objects under turbid waters by means of regularization techniques applied to real hyperspectral data

    NASA Astrophysics Data System (ADS)

    Carpena, Emmanuel; Jiménez, Luis O.; Arzuaga, Emmanuel; Fonseca, Sujeily; Reyes, Ernesto; Figueroa, Juan

    2017-05-01

    Improved benthic habitat mapping is needed to monitor coral reefs around the world and to assist coastal zones management programs. A fundamental challenge to remotely sensed mapping of coastal shallow waters is due to the significant disparity in the optical properties of the water column caused by the interaction between the coast and the sea. The objects to be classified have weak signals that interact with turbid waters that include sediments. In real scenarios, the absorption and backscattering coefficients are unknown with different sources of variability (river discharges and coastal interactions). Under normal circumstances, another unknown variable is the depth of shallow waters. This paper presents the development of algorithms for retrieving information and its application to the classification and mapping of objects under coastal shallow waters with different unknown concentrations of sediments. A mathematical model that simplifies the radiative transfer equation was used to quantify the interaction between the object of interest, the medium and the sensor. The retrieval of information requires the development of mathematical models and processing tools in the area of inversion, image reconstruction and classification of hyperspectral data. The algorithms developed were applied to one set of real hyperspectral imagery taken in a tank filled with water and TiO2 that emulates turbid coastal shallow waters. Tikhonov method of regularization was used in the inversion process to estimate the bottom albedo of the water tank using a priori information in the form of stored spectral signatures, previously measured, of objects of interest.

  18. A new local-global approach for classification.

    PubMed

    Peres, R T; Pedreira, C E

    2010-09-01

    In this paper, we propose a new local-global pattern classification scheme that combines supervised and unsupervised approaches, taking advantage of both, local and global environments. We understand as global methods the ones concerned with the aim of constructing a model for the whole problem space using the totality of the available observations. Local methods focus into sub regions of the space, possibly using an appropriately selected subset of the sample. In the proposed method, the sample is first divided in local cells by using a Vector Quantization unsupervised algorithm, the LBG (Linde-Buzo-Gray). In a second stage, the generated assemblage of much easier problems is locally solved with a scheme inspired by Bayes' rule. Four classification methods were implemented for comparison purposes with the proposed scheme: Learning Vector Quantization (LVQ); Feedforward Neural Networks; Support Vector Machine (SVM) and k-Nearest Neighbors. These four methods and the proposed scheme were implemented in eleven datasets, two controlled experiments, plus nine public available datasets from the UCI repository. The proposed method has shown a quite competitive performance when compared to these classical and largely used classifiers. Our method is simple concerning understanding and implementation and is based on very intuitive concepts. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. Detailed Quantitative Classifications of Galaxy Morphology

    NASA Astrophysics Data System (ADS)

    Nair, Preethi

    2018-01-01

    Understanding the physical processes responsible for the growth of galaxies is one of the key challenges in extragalactic astronomy. The assembly history of a galaxy is imprinted in a galaxy’s detailed morphology. The bulge-to-total ratio of galaxies, the presence or absence of bars, rings, spiral arms, tidal tails etc, all have implications for the past merger, star formation, and feedback history of a galaxy. However, current quantitative galaxy classification schemes are only useful for broad binning. They cannot classify or exploit the wide variety of galaxy structures seen in nature. Therefore, comparisons of observations with theoretical predictions of secular structure formation have only been conducted on small samples of visually classified galaxies. However large samples are needed to disentangle the complex physical processes of galaxy formation. With the advent of large surveys, like the Sloan Digital Sky Survey (SDSS) and the upcoming Large Synoptic Survey Telescope (LSST) and WFIRST, the problem of statistics will be resolved. However, the need for a robust quantitative classification scheme will still remain. Here I will present early results on promising machine learning algorithms that are providing detailed classifications, identifying bars, rings, multi-armed spiral galaxies, and Hubble type.

  20. VizieR Online Data Catalog: GALAH semi-automated classification scheme (Traven+, 2017)

    NASA Astrophysics Data System (ADS)

    Traven, G.; Matijevic, G.; Zwitter, T.; Zerjal, M.; Kos, J.; Asplund, M.; Bland-Hawthorn, J.; Casey, A. R.; de Silva, G.; Freeman, K.; Lin, J.; Martell, S. L.; Schlesinger, K. J.; Sharma, S.; Simpson, J. D.; Zucker, D. B.; Anguiano, B.; da Costa, G.; Duong, L.; Horner, J.; Hyde, E. A.; Kafle, P. R.; Munari, U.; Nataf, D.; Navin, C. A.; Reid, W.; Ting, Y.-S.

    2017-04-01

    The GALactic Archaeology with HERMES (GALAH) survey was the main driver for the construction of Hermes (High Efficiency and Resolution Multi-Element Spectrograph), a fiber-fed multi-object spectrograph on the 3.9m Anglo-Australian Telescope. Its spectral resolving power (R) is about 28000, and there is also an R=45000 mode using a slit mask. Hermes has four simultaneous non-contiguous spectral arms centered at 4800, 5761, 6610, and 7740Å, covering about 1000Å in total, including Hα and Hβ lines. About 300000 spectra have been taken to date, including various calibration exposures. However, we concentrate on ~210000 spectra recorded before 2016 January 30. We devise a custom classification procedure which is based on two independently developed methods, the novel dimensionality reduction technique t-SNE (t-distributed stochastic neighbor embedding; van der Maaten & Hinton 2008, Journal of Machine Learning Research 9, 2579) and the renowned clustering algorithm DBSCAN (Ester+ 1996, Proc. 2nd Int. Conf. on KDD, 226 ed. E. Simoudis, J. Han, and U. Fayyad). (4 data files).

  1. Acoustic signature recognition technique for Human-Object Interactions (HOI) in persistent surveillance systems

    NASA Astrophysics Data System (ADS)

    Alkilani, Amjad; Shirkhodaie, Amir

    2013-05-01

    Handling, manipulation, and placement of objects, hereon called Human-Object Interaction (HOI), in the environment generate sounds. Such sounds are readily identifiable by the human hearing. However, in the presence of background environment noises, recognition of minute HOI sounds is challenging, though vital for improvement of multi-modality sensor data fusion in Persistent Surveillance Systems (PSS). Identification of HOI sound signatures can be used as precursors to detection of pertinent threats that otherwise other sensor modalities may miss to detect. In this paper, we present a robust method for detection and classification of HOI events via clustering of extracted features from training of HOI acoustic sound waves. In this approach, salient sound events are preliminary identified and segmented from background via a sound energy tracking method. Upon this segmentation, frequency spectral pattern of each sound event is modeled and its features are extracted to form a feature vector for training. To reduce dimensionality of training feature space, a Principal Component Analysis (PCA) technique is employed to expedite fast classification of test feature vectors, a kd-tree and Random Forest classifiers are trained for rapid classification of training sound waves. Each classifiers employs different similarity distance matching technique for classification. Performance evaluations of classifiers are compared for classification of a batch of training HOI acoustic signatures. Furthermore, to facilitate semantic annotation of acoustic sound events, a scheme based on Transducer Mockup Language (TML) is proposed. The results demonstrate the proposed approach is both reliable and effective, and can be extended to future PSS applications.

  2. Development the EarthCARE aerosol classification scheme

    NASA Astrophysics Data System (ADS)

    Wandinger, Ulla; Baars, Holger; Hünerbein, Anja; Donovan, Dave; van Zadelhoff, Gerd-Jan; Fischer, Jürgen; von Bismarck, Jonas; Eisinger, Michael; Lajas, Dulce; Wehr, Tobias

    2015-04-01

    The Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) mission is a joint ESA/JAXA mission planned to be launched in 2018. The multi-sensor platform carries a cloud-profiling radar (CPR), a high-spectral-resolution cloud/aerosol lidar (ATLID), a cloud/aerosol multi-spectral imager (MSI), and a three-view broad-band radiometer (BBR). Three out of the four instruments (ATLID, MSI, and BBR) will be able to sense the global aerosol distribution and contribute to the overarching EarthCARE goals of sensor synergy and radiation closure with respect to aerosols. The high-spectral-resolution lidar ATLID obtains profiles of particle extinction and backscatter coefficients, lidar ratio, and linear depolarization ratio as well as the aerosol optical thickness (AOT) at 355 nm. MSI provides AOT at 670 nm (over land and ocean) and 865 nm (over ocean). Next to these primary observables the aerosol type is one of the required products to be derived from both lidar stand-alone and ATLID-MSI synergistic retrievals. ATLID measurements of the aerosol intensive properties (lidar ratio, depolarization ratio) and ATLID-MSI observations of the spectral AOT will provide the basic input for aerosol-type determination. Aerosol typing is needed for the quantification of anthropogenic versus natural aerosol loadings of the atmosphere, the investigation of aerosol-cloud interaction, assimilation purposes, and the validation of atmospheric transport models which carry components like dust, sea salt, smoke and pollution. Furthermore, aerosol classification is a prerequisite for the estimation of direct aerosol radiative forcing and radiative closure studies. With an appropriate underlying microphysical particle description, the categorization of aerosol observations into predefined aerosol types allows us to infer information needed for the calculation of shortwave radiative effects, such as mean particle size, single-scattering albedo, and spectral conversion factors. In order to ensure

  3. Evaluation of several schemes for classification of remotely sensed data: Their parameters and performance. [Foster County, North Dakota; Grant County, Kansas; Iroquois County, Illinois, Tippecanoe County, Indiana; and Pottawattamie and Shelby Counties, Iowa

    NASA Technical Reports Server (NTRS)

    Scholz, D.; Fuhs, N.; Hixson, M.; Akiyama, T. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. Data sets for corn, soybeans, winter wheat, and spring wheat were used to evaluate the following schemes for crop identification: (1) per point Gaussian maximum classifier; (2) per point sum of normal densities classifiers; (3) per point linear classifier; (4) per point Gaussian maximum likelihood decision tree classifiers; and (5) texture sensitive per field Gaussian maximum likelihood classifier. Test site location and classifier both had significant effects on classification accuracy of small grains; classifiers did not differ significantly in overall accuracy, with the majority of the difference among classifiers being attributed to training method rather than to the classification algorithm applied. The complexity of use and computer costs for the classifiers varied significantly. A linear classification rule which assigns each pixel to the class whose mean is closest in Euclidean distance was the easiest for the analyst and cost the least per classification.

  4. FORUM: A Suggestion for an Improved Vegetation Scheme for Local and Global Mapping and Monitoring.

    PubMed

    ADAMS

    1999-01-01

    / Understanding of global ecological problems is at least partly dependent on clear assessments of vegetation change, and such assessment is always dependent on the use of a vegetation classification scheme. Use of satellite remotely sensed data is the only practical means of carrying out any global-scale vegetation mapping exercise, but if the resulting maps are to be useful to most ecologists and conservationists, they must be closely tied to clearly defined features of vegetation on the ground. Furthermore, much of the mapping that does take place involves more local-scale description of field sites; for purposes of cost and practicality, such studies usually do not involve remote sensing using satellites. There is a need for a single scheme that integrates the smallest to the largest scale in a way that is meaningful to most environmental scientists. Existing schemes are unsatisfactory for this task; they are ambiguous, unnecessarily complex, and their categories do not correspond to common-sense definitions. In response to these problems, a simple structural-physiognomically based scheme with 23 fundamental categories is proposed here for mapping and monitoring on any scale, from local to global. The fundamental categories each subdivide into more specific structural categories for more detailed mapping, but all the categories can be used throughout the world and at any scale, allowing intercomparison between regions. The next stage in the process will be to obtain the views of as many people working in as many different fields as possible, to see whether the proposed scheme suits their needs and how it should be modified. With a few modifications, such a scheme could easily be appended to an existing land cover classification scheme, such as the FAO system, greatly increasing the usefulness and accessability of the results of the landcover classification. KEY WORDS: Vegetation scheme; Mapping; Monitoring; Land cover

  5. Improved opponent color local binary patterns: an effective local image descriptor for color texture classification

    NASA Astrophysics Data System (ADS)

    Bianconi, Francesco; Bello-Cerezo, Raquel; Napoletano, Paolo

    2018-01-01

    Texture classification plays a major role in many computer vision applications. Local binary patterns (LBP) encoding schemes have largely been proven to be very effective for this task. Improved LBP (ILBP) are conceptually simple, easy to implement, and highly effective LBP variants based on a point-to-average thresholding scheme instead of a point-to-point one. We propose the use of this encoding scheme for extracting intra- and interchannel features for color texture classification. We experimentally evaluated the resulting improved opponent color LBP alone and in concatenation with the ILBP of the local color contrast map on a set of image classification tasks over 9 datasets of generic color textures and 11 datasets of biomedical textures. The proposed approach outperformed other grayscale and color LBP variants in nearly all the datasets considered and proved competitive even against image features from last generation convolutional neural networks, particularly for the classification of biomedical images.

  6. SOM Classification of Martian TES Data

    NASA Technical Reports Server (NTRS)

    Hogan, R. C.; Roush, T. L.

    2002-01-01

    A classification scheme based on unsupervised self-organizing maps (SOM) is described. Results from its application to the ASU mineral spectral database are presented. Applications to the Martian Thermal Emission Spectrometer data are discussed. Additional information is contained in the original extended abstract.

  7. A cancelable biometric scheme based on multi-lead ECGs.

    PubMed

    Peng-Tzu Chen; Shun-Chi Wu; Jui-Hsuan Hsieh

    2017-07-01

    Biometric technologies offer great advantages over other recognition methods, but there are concerns that they may compromise the privacy of individuals. In this paper, an electrocardiogram (ECG)-based cancelable biometric scheme is proposed to relieve such concerns. In this scheme, distinct biometric templates for a given beat bundle are constructed via "subspace collapsing." To determine the identity of any unknown beat bundle, the multiple signal classification (MUSIC) algorithm, incorporating a "suppression and poll" strategy, is adopted. Unlike the existing cancelable biometric schemes, knowledge of the distortion transform is not required for recognition. Experiments with real ECGs from 285 subjects are presented to illustrate the efficacy of the proposed scheme. The best recognition rate of 97.58 % was achieved under the test condition N train = 10 and N test = 10.

  8. Classification of extraterrestrial civilizations

    NASA Astrophysics Data System (ADS)

    Tang, Tong B.; Chang, Grace

    1991-06-01

    A scheme of classification of extraterrestrial intelligence (ETI) communities based on the scope of energy accessible to the civilization in question is proposed as an alternative to the Kardeshev (1964) scheme that includes three types of civilization, as determined by their levels of energy expenditure. The proposed scheme includes six classes: (1) a civilization that runs essentially on energy exerted by individual beings or by domesticated lower life forms, (2) harnessing of natural sources on planetary surface with artificial constructions, like water wheels and wind sails, (3) energy from fossils and fissionable isotopes, mined beneath the planet surface, (4) exploitation of nuclear fusion on a large scale, whether on the planet, in space, or from primary solar energy, (5) extensive use of antimatter for energy storage, and (6) energy from spacetime, perhaps via the action of naked singularities.

  9. Vegetation Monitoring of Mashhad Using AN Object-Oriented POST Classification Comparison Method

    NASA Astrophysics Data System (ADS)

    Khalili Moghadam, N.; Delavar, M. R.; Forati, A.

    2017-09-01

    By and large, todays mega cities are confronting considerable urban development in which many new buildings are being constructed in fringe areas of these cities. This remarkable urban development will probably end in vegetation reduction even though each mega city requires adequate areas of vegetation, which is considered to be crucial and helpful for these cities from a wide variety of perspectives such as air pollution reduction, soil erosion prevention, and eco system as well as environmental protection. One of the optimum methods for monitoring this vital component of each city is multi-temporal satellite images acquisition and using change detection techniques. In this research, the vegetation and urban changes of Mashhad, Iran, were monitored using an object-oriented (marker-based watershed algorithm) post classification comparison (PCC) method. A Bi-temporal multi-spectral Landsat satellite image was used from the study area to detect the changes of urban and vegetation areas and to find a relation between these changes. The results of this research demonstrate that during 1987-2017, Mashhad urban area has increased about 22525 hectares and the vegetation area has decreased approximately 4903 hectares. These statistics substantiate the close relationship between urban development and vegetation reduction. Moreover, the overall accuracies of 85.5% and 91.2% were achieved for the first and the second image classification, respectively. In addition, the overall accuracy and kappa coefficient of change detection were assessed 84.1% and 70.3%, respectively.

  10. Etiological classification of ischemic stroke in young patients: a comparative study of TOAST, CCS, and ASCO.

    PubMed

    Gökçal, Elif; Niftaliyev, Elvin; Asil, Talip

    2017-09-01

    Analysis of stroke subtypes is important for making treatment decisions and prognostic evaluations. The TOAST classification system is most commonly used, but the CCS and ASCO classification systems might be more useful to identify stroke etiologies in young patients whose strokes have a wide range of different causes. In this manuscript, we aim to compare the differences in subtype classification between TOAST, CCS, and ASCO in young stroke patients. The TOAST, CCS, and ASCO classification schemes were applied to 151 patients with ischemic stroke aged 18-49 years old and the proportion of subtypes classified by each scheme was compared. For comparison, determined etiologies were defined as cases with evident and probable subtypes when using the CCS scheme and cases with grade 1 and 2 subtypes but no other grade 1 subtype when using the ASCO scheme. The McNemar test with Bonferroni correction was used to assess significance. By TOAST, 41.1% of patients' stroke etiology was classified as undetermined etiology, 19.2% as cardioembolic, 13.2% as large artery atherosclerosis, 11.3% as small vessel occlusion, and 15.2% as other causes. Compared with TOAST, both CCS and ASCO assigned fewer patients to the undetermined etiology group (30.5% p < 0.001 and 26.5% p < 0.001, respectively) and assigned more patients to the small vessel occlusion category (19.9%, p < 0.001, and 21.9%, p < 0.001, respectively). Additionally, both schemes assigned more patients to the large artery atherosclerosis group (15.9 and 16.6%, respectively). The proportion of patients assigned to either the cardioembolic or the other causes etiology did not differ significantly between the three schemes. Application of the CCS and ASCO classification schemes in young stroke patients seems feasible, and using both schemes may result in fewer patients being classified as undetermined etiology. New studies with more patients and a prospective design are needed to explore this topic further.

  11. Poisoning by Herbs and Plants: Rapid Toxidromic Classification and Diagnosis.

    PubMed

    Diaz, James H

    2016-03-01

    The American Association of Poison Control Centers has continued to report approximately 50,000 telephone calls or 8% of incoming calls annually related to plant exposures, mostly in children. Although the frequency of plant ingestions in children is related to the presence of popular species in households, adolescents may experiment with hallucinogenic plants; and trekkers and foragers may misidentify poisonous plants as edible. Since plant exposures have continued at a constant rate, the objectives of this review were (1) to review the epidemiology of plant poisonings; and (2) to propose a rapid toxidromic classification system for highly toxic plant ingestions for field use by first responders in comparison to current classification systems. Internet search engines were queried to identify and select peer-reviewed articles on plant poisonings using the key words in order to classify plant poisonings into four specific toxidromes: cardiotoxic, neurotoxic, cytotoxic, and gastrointestinal-hepatotoxic. A simple toxidromic classification system of plant poisonings may permit rapid diagnoses of highly toxic versus less toxic and nontoxic plant ingestions both in households and outdoors; direct earlier management of potentially serious poisonings; and reduce costly inpatient evaluations for inconsequential plant ingestions. The current textbook classification schemes for plant poisonings were complex in comparison to the rapid classification system; and were based on chemical nomenclatures and pharmacological effects, and not on clearly presenting toxidromes. Validation of the rapid toxidromic classification system as compared to existing chemical classification systems for plant poisonings will require future adoption and implementation of the toxidromic system by its intended users. Copyright © 2016 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  12. Neyman-Pearson classification algorithms and NP receiver operating characteristics

    PubMed Central

    Tong, Xin; Feng, Yang; Li, Jingyi Jessica

    2018-01-01

    In many binary classification applications, such as disease diagnosis and spam detection, practitioners commonly face the need to limit type I error (that is, the conditional probability of misclassifying a class 0 observation as class 1) so that it remains below a desired threshold. To address this need, the Neyman-Pearson (NP) classification paradigm is a natural choice; it minimizes type II error (that is, the conditional probability of misclassifying a class 1 observation as class 0) while enforcing an upper bound, α, on the type I error. Despite its century-long history in hypothesis testing, the NP paradigm has not been well recognized and implemented in classification schemes. Common practices that directly limit the empirical type I error to no more than α do not satisfy the type I error control objective because the resulting classifiers are likely to have type I errors much larger than α, and the NP paradigm has not been properly implemented in practice. We develop the first umbrella algorithm that implements the NP paradigm for all scoring-type classification methods, such as logistic regression, support vector machines, and random forests. Powered by this algorithm, we propose a novel graphical tool for NP classification methods: NP receiver operating characteristic (NP-ROC) bands motivated by the popular ROC curves. NP-ROC bands will help choose α in a data-adaptive way and compare different NP classifiers. We demonstrate the use and properties of the NP umbrella algorithm and NP-ROC bands, available in the R package nproc, through simulation and real data studies. PMID:29423442

  13. Neyman-Pearson classification algorithms and NP receiver operating characteristics.

    PubMed

    Tong, Xin; Feng, Yang; Li, Jingyi Jessica

    2018-02-01

    In many binary classification applications, such as disease diagnosis and spam detection, practitioners commonly face the need to limit type I error (that is, the conditional probability of misclassifying a class 0 observation as class 1) so that it remains below a desired threshold. To address this need, the Neyman-Pearson (NP) classification paradigm is a natural choice; it minimizes type II error (that is, the conditional probability of misclassifying a class 1 observation as class 0) while enforcing an upper bound, α, on the type I error. Despite its century-long history in hypothesis testing, the NP paradigm has not been well recognized and implemented in classification schemes. Common practices that directly limit the empirical type I error to no more than α do not satisfy the type I error control objective because the resulting classifiers are likely to have type I errors much larger than α, and the NP paradigm has not been properly implemented in practice. We develop the first umbrella algorithm that implements the NP paradigm for all scoring-type classification methods, such as logistic regression, support vector machines, and random forests. Powered by this algorithm, we propose a novel graphical tool for NP classification methods: NP receiver operating characteristic (NP-ROC) bands motivated by the popular ROC curves. NP-ROC bands will help choose α in a data-adaptive way and compare different NP classifiers. We demonstrate the use and properties of the NP umbrella algorithm and NP-ROC bands, available in the R package nproc, through simulation and real data studies.

  14. TFOS DEWS II Definition and Classification Report.

    PubMed

    Craig, Jennifer P; Nichols, Kelly K; Akpek, Esen K; Caffery, Barbara; Dua, Harminder S; Joo, Choun-Ki; Liu, Zuguo; Nelson, J Daniel; Nichols, Jason J; Tsubota, Kazuo; Stapleton, Fiona

    2017-07-01

    The goals of the TFOS DEWS II Definition and Classification Subcommittee were to create an evidence-based definition and a contemporary classification system for dry eye disease (DED). The new definition recognizes the multifactorial nature of dry eye as a disease where loss of homeostasis of the tear film is the central pathophysiological concept. Ocular symptoms, as a broader term that encompasses reports of discomfort or visual disturbance, feature in the definition and the key etiologies of tear film instability, hyperosmolarity, and ocular surface inflammation and damage were determined to be important for inclusion in the definition. In the light of new data, neurosensory abnormalities were also included in the definition for the first time. In the classification of DED, recent evidence supports a scheme based on the pathophysiology where aqueous deficient and evaporative dry eye exist as a continuum, such that elements of each are considered in diagnosis and management. Central to the scheme is a positive diagnosis of DED with signs and symptoms, and this is directed towards management to restore homeostasis. The scheme also allows consideration of various related manifestations, such as non-obvious disease involving ocular surface signs without related symptoms, including neurotrophic conditions where dysfunctional sensation exists, and cases where symptoms exist without demonstrable ocular surface signs, including neuropathic pain. This approach is not intended to override clinical assessment and judgment but should prove helpful in guiding clinical management and research. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. A combined reconstruction-classification method for diffuse optical tomography.

    PubMed

    Hiltunen, P; Prince, S J D; Arridge, S

    2009-11-07

    We present a combined classification and reconstruction algorithm for diffuse optical tomography (DOT). DOT is a nonlinear ill-posed inverse problem. Therefore, some regularization is needed. We present a mixture of Gaussians prior, which regularizes the DOT reconstruction step. During each iteration, the parameters of a mixture model are estimated. These associate each reconstructed pixel with one of several classes based on the current estimate of the optical parameters. This classification is exploited to form a new prior distribution to regularize the reconstruction step and update the optical parameters. The algorithm can be described as an iteration between an optimization scheme with zeroth-order variable mean and variance Tikhonov regularization and an expectation-maximization scheme for estimation of the model parameters. We describe the algorithm in a general Bayesian framework. Results from simulated test cases and phantom measurements show that the algorithm enhances the contrast of the reconstructed images with good spatial accuracy. The probabilistic classifications of each image contain only a few misclassified pixels.

  16. Discriminative Hierarchical K-Means Tree for Large-Scale Image Classification.

    PubMed

    Chen, Shizhi; Yang, Xiaodong; Tian, Yingli

    2015-09-01

    A key challenge in large-scale image classification is how to achieve efficiency in terms of both computation and memory without compromising classification accuracy. The learning-based classifiers achieve the state-of-the-art accuracies, but have been criticized for the computational complexity that grows linearly with the number of classes. The nonparametric nearest neighbor (NN)-based classifiers naturally handle large numbers of categories, but incur prohibitively expensive computation and memory costs. In this brief, we present a novel classification scheme, i.e., discriminative hierarchical K-means tree (D-HKTree), which combines the advantages of both learning-based and NN-based classifiers. The complexity of the D-HKTree only grows sublinearly with the number of categories, which is much better than the recent hierarchical support vector machines-based methods. The memory requirement is the order of magnitude less than the recent Naïve Bayesian NN-based approaches. The proposed D-HKTree classification scheme is evaluated on several challenging benchmark databases and achieves the state-of-the-art accuracies, while with significantly lower computation cost and memory requirement.

  17. Comparing the performance of flat and hierarchical Habitat/Land-Cover classification models in a NATURA 2000 site

    NASA Astrophysics Data System (ADS)

    Gavish, Yoni; O'Connell, Jerome; Marsh, Charles J.; Tarantino, Cristina; Blonda, Palma; Tomaselli, Valeria; Kunin, William E.

    2018-02-01

    The increasing need for high quality Habitat/Land-Cover (H/LC) maps has triggered considerable research into novel machine-learning based classification models. In many cases, H/LC classes follow pre-defined hierarchical classification schemes (e.g., CORINE), in which fine H/LC categories are thematically nested within more general categories. However, none of the existing machine-learning algorithms account for this pre-defined hierarchical structure. Here we introduce a novel Random Forest (RF) based application of hierarchical classification, which fits a separate local classification model in every branching point of the thematic tree, and then integrates all the different local models to a single global prediction. We applied the hierarchal RF approach in a NATURA 2000 site in Italy, using two land-cover (CORINE, FAO-LCCS) and one habitat classification scheme (EUNIS) that differ from one another in the shape of the class hierarchy. For all 3 classification schemes, both the hierarchical model and a flat model alternative provided accurate predictions, with kappa values mostly above 0.9 (despite using only 2.2-3.2% of the study area as training cells). The flat approach slightly outperformed the hierarchical models when the hierarchy was relatively simple, while the hierarchical model worked better under more complex thematic hierarchies. Most misclassifications came from habitat pairs that are thematically distant yet spectrally similar. In 2 out of 3 classification schemes, the additional constraints of the hierarchical model resulted with fewer such serious misclassifications relative to the flat model. The hierarchical model also provided valuable information on variable importance which can shed light into "black-box" based machine learning algorithms like RF. We suggest various ways by which hierarchical classification models can increase the accuracy and interpretability of H/LC classification maps.

  18. Classification of Palmprint Using Principal Line

    NASA Astrophysics Data System (ADS)

    Prasad, Munaga V. N. K.; Kumar, M. K. Pramod; Sharma, Kuldeep

    In this paper, a new classification scheme for palmprint is proposed. Palmprint is one of the reliable physiological characteristics that can be used to authenticate an individual. Palmprint classification provides an important indexing mechanism in a very large palmprint database. Here, the palmprint database is initially categorized into two groups, right hand group and left hand group. Then, each group is further classified based on the distance traveled by principal line i.e. Heart Line During pre processing, a rectangular Region of Interest (ROI) in which only heart line is present, is extracted. Further, ROI is divided into 6 regions and depending upon the regions in which the heart line traverses the palmprint is classified accordingly. Consequently, our scheme allows 64 categories for each group forming a total number of 128 possible categories. The technique proposed in this paper includes only 15 such categories and it classifies not more than 20.96% of the images into a single category.

  19. Optimizing classification performance in an object-based very-high-resolution land use-land cover urban application

    NASA Astrophysics Data System (ADS)

    Georganos, Stefanos; Grippa, Tais; Vanhuysse, Sabine; Lennert, Moritz; Shimoni, Michal; Wolff, Eléonore

    2017-10-01

    This study evaluates the impact of three Feature Selection (FS) algorithms in an Object Based Image Analysis (OBIA) framework for Very-High-Resolution (VHR) Land Use-Land Cover (LULC) classification. The three selected FS algorithms, Correlation Based Selection (CFS), Mean Decrease in Accuracy (MDA) and Random Forest (RF) based Recursive Feature Elimination (RFE), were tested on Support Vector Machine (SVM), K-Nearest Neighbor, and Random Forest (RF) classifiers. The results demonstrate that the accuracy of SVM and KNN classifiers are the most sensitive to FS. The RF appeared to be more robust to high dimensionality, although a significant increase in accuracy was found by using the RFE method. In terms of classification accuracy, SVM performed the best using FS, followed by RF and KNN. Finally, only a small number of features is needed to achieve the highest performance using each classifier. This study emphasizes the benefits of rigorous FS for maximizing performance, as well as for minimizing model complexity and interpretation.

  20. Centrifuge: rapid and sensitive classification of metagenomic sequences.

    PubMed

    Kim, Daehwan; Song, Li; Breitwieser, Florian P; Salzberg, Steven L

    2016-12-01

    Centrifuge is a novel microbial classification engine that enables rapid, accurate, and sensitive labeling of reads and quantification of species on desktop computers. The system uses an indexing scheme based on the Burrows-Wheeler transform (BWT) and the Ferragina-Manzini (FM) index, optimized specifically for the metagenomic classification problem. Centrifuge requires a relatively small index (4.2 GB for 4078 bacterial and 200 archaeal genomes) and classifies sequences at very high speed, allowing it to process the millions of reads from a typical high-throughput DNA sequencing run within a few minutes. Together, these advances enable timely and accurate analysis of large metagenomics data sets on conventional desktop computers. Because of its space-optimized indexing schemes, Centrifuge also makes it possible to index the entire NCBI nonredundant nucleotide sequence database (a total of 109 billion bases) with an index size of 69 GB, in contrast to k-mer-based indexing schemes, which require far more extensive space. © 2016 Kim et al.; Published by Cold Spring Harbor Laboratory Press.

  1. A classification of open Gaussian dynamics

    NASA Astrophysics Data System (ADS)

    Grimmer, Daniel; Brown, Eric; Kempf, Achim; Mann, Robert B.; Martín-Martínez, Eduardo

    2018-06-01

    We introduce a classification scheme for the generators of bosonic open Gaussian dynamics, providing instructive diagrams description for each type of dynamics. Using this classification, we discuss the consequences of imposing complete positivity on Gaussian dynamics. In particular, we show that non-symplectic operations must be active to allow for complete positivity. In addition, non-symplectic operations can, in fact, conserve the volume of phase space only if the restriction of complete positivity is lifted. We then discuss the implications for the relationship between information and energy flows in open quantum mechanics.

  2. Solar wind classification from a machine learning perspective

    NASA Astrophysics Data System (ADS)

    Heidrich-Meisner, V.; Wimmer-Schweingruber, R. F.

    2017-12-01

    It is a very well known fact that the ubiquitous solar wind comes in at least two varieties, the slow solar wind and the coronal hole wind. The simplified view of two solar wind types has been frequently challenged. Existing solar wind categorization schemes rely mainly on different combinations of the solar wind proton speed, the O and C charge state ratios, the Alfvén speed, the expected proton temperature and the specific proton entropy. In available solar wind classification schemes, solar wind from stream interaction regimes is often considered either as coronal hole wind or slow solar wind, although their plasma properties are different compared to "pure" coronal hole or slow solar wind. As shown in Neugebauer et al. (2016), even if only two solar wind types are assumed, available solar wind categorization schemes differ considerably for intermediate solar wind speeds. Thus, the decision boundary between the coronal hole and the slow solar wind is so far not well defined.In this situation, a machine learning approach to solar wind classification can provide an additional perspective.We apply a well-known machine learning method, k-means, to the task of solar wind classification in order to answer the following questions: (1) How many solar wind types can reliably be identified in our data set comprised of ten years of solar wind observations from the Advanced Composition Explorer (ACE)? (2) Which combinations of solar wind parameters are particularly useful for solar wind classification?Potential subtypes of slow solar wind are of particular interest because they can provide hints of respective different source regions or release mechanisms of slow solar wind.

  3. An improved fault detection classification and location scheme based on wavelet transform and artificial neural network for six phase transmission line using single end data only.

    PubMed

    Koley, Ebha; Verma, Khushaboo; Ghosh, Subhojit

    2015-01-01

    Restrictions on right of way and increasing power demand has boosted development of six phase transmission. It offers a viable alternative for transmitting more power, without major modification in existing structure of three phase double circuit transmission system. Inspite of the advantages, low acceptance of six phase system is attributed to the unavailability of a proper protection scheme. The complexity arising from large number of possible faults in six phase lines makes the protection quite challenging. The proposed work presents a hybrid wavelet transform and modular artificial neural network based fault detector, classifier and locator for six phase lines using single end data only. The standard deviation of the approximate coefficients of voltage and current signals obtained using discrete wavelet transform are applied as input to the modular artificial neural network for fault classification and location. The proposed scheme has been tested for all 120 types of shunt faults with variation in location, fault resistance, fault inception angles. The variation in power system parameters viz. short circuit capacity of the source and its X/R ratio, voltage, frequency and CT saturation has also been investigated. The result confirms the effectiveness and reliability of the proposed protection scheme which makes it ideal for real time implementation.

  4. An unsupervised classification technique for multispectral remote sensing data.

    NASA Technical Reports Server (NTRS)

    Su, M. Y.; Cummings, R. E.

    1973-01-01

    Description of a two-part clustering technique consisting of (a) a sequential statistical clustering, which is essentially a sequential variance analysis, and (b) a generalized K-means clustering. In this composite clustering technique, the output of (a) is a set of initial clusters which are input to (b) for further improvement by an iterative scheme. This unsupervised composite technique was employed for automatic classification of two sets of remote multispectral earth resource observations. The classification accuracy by the unsupervised technique is found to be comparable to that by traditional supervised maximum-likelihood classification techniques.

  5. COMPARISON OF GEOGRAPHIC CLASSIFICATION SCHEMES FOR MID-ATLANTIC STREAM FISH ASSEMBLAGES

    EPA Science Inventory

    Understanding the influence of geographic factors in structuring fish assemblages is crucial to developing a comprehensive assessment of stream conditions. We compared the classification strengths (CS) of geographic groups (ecoregions and catchments), stream order, and groups bas...

  6. Extracting built-up areas from TerraSAR-X data using object-oriented classification method

    NASA Astrophysics Data System (ADS)

    Wang, SuYun; Sun, Z. C.

    2017-02-01

    Based on single-polarized TerraSAR-X, the approach generates homogeneous segments on an arbitrary number of scale levels by applying a region-growing algorithm which takes the intensity of backscatter and shape-related properties into account. The object-oriented procedure consists of three main steps: firstly, the analysis of the local speckle behavior in the SAR intensity data, leading to the generation of a texture image; secondly, a segmentation based on the intensity image; thirdly, the classification of each segment using the derived texture file and intensity information in order to identify and extract build-up areas. In our research, the distribution of BAs in Dongying City is derived from single-polarized TSX SM image (acquired on 17th June 2013) with average ground resolution of 3m using our proposed approach. By cross-validating the random selected validation points with geo-referenced field sites, Quick Bird high-resolution imagery, confusion matrices with statistical indicators are calculated and used for assessing the classification results. The results demonstrate that an overall accuracy 92.89 and a kappa coefficient of 0.85 could be achieved. We have shown that connect texture information with the analysis of the local speckle divergence, combining texture and intensity of construction extraction is feasible, efficient and rapid.

  7. An enhanced forest classification scheme for modeling vegetation-climate interactions based on national forest inventory data

    NASA Astrophysics Data System (ADS)

    Majasalmi, Titta; Eisner, Stephanie; Astrup, Rasmus; Fridman, Jonas; Bright, Ryan M.

    2018-01-01

    Forest management affects the distribution of tree species and the age class of a forest, shaping its overall structure and functioning and in turn the surface-atmosphere exchanges of mass, energy, and momentum. In order to attribute climate effects to anthropogenic activities like forest management, good accounts of forest structure are necessary. Here, using Fennoscandia as a case study, we make use of Fennoscandic National Forest Inventory (NFI) data to systematically classify forest cover into groups of similar aboveground forest structure. An enhanced forest classification scheme and related lookup table (LUT) of key forest structural attributes (i.e., maximum growing season leaf area index (LAImax), basal-area-weighted mean tree height, tree crown length, and total stem volume) was developed, and the classification was applied for multisource NFI (MS-NFI) maps from Norway, Sweden, and Finland. To provide a complete surface representation, our product was integrated with the European Space Agency Climate Change Initiative Land Cover (ESA CCI LC) map of present day land cover (v.2.0.7). Comparison of the ESA LC and our enhanced LC products (https://doi.org/10.21350/7zZEy5w3) showed that forest extent notably (κ = 0.55, accuracy 0.64) differed between the two products. To demonstrate the potential of our enhanced LC product to improve the description of the maximum growing season LAI (LAImax) of managed forests in Fennoscandia, we compared our LAImax map with reference LAImax maps created using the ESA LC product (and related cross-walking table) and PFT-dependent LAImax values used in three leading land models. Comparison of the LAImax maps showed that our product provides a spatially more realistic description of LAImax in managed Fennoscandian forests compared to reference maps. This study presents an approach to account for the transient nature of forest structural attributes due to human

  8. A comparison of resampling schemes for estimating model observer performance with small ensembles

    NASA Astrophysics Data System (ADS)

    Elshahaby, Fatma E. A.; Jha, Abhinav K.; Ghaly, Michael; Frey, Eric C.

    2017-09-01

    In objective assessment of image quality, an ensemble of images is used to compute the 1st and 2nd order statistics of the data. Often, only a finite number of images is available, leading to the issue of statistical variability in numerical observer performance. Resampling-based strategies can help overcome this issue. In this paper, we compared different combinations of resampling schemes (the leave-one-out (LOO) and the half-train/half-test (HT/HT)) and model observers (the conventional channelized Hotelling observer (CHO), channelized linear discriminant (CLD) and channelized quadratic discriminant). Observer performance was quantified by the area under the ROC curve (AUC). For a binary classification task and for each observer, the AUC value for an ensemble size of 2000 samples per class served as a gold standard for that observer. Results indicated that each observer yielded a different performance depending on the ensemble size and the resampling scheme. For a small ensemble size, the combination [CHO, HT/HT] had more accurate rankings than the combination [CHO, LOO]. Using the LOO scheme, the CLD and CHO had similar performance for large ensembles. However, the CLD outperformed the CHO and gave more accurate rankings for smaller ensembles. As the ensemble size decreased, the performance of the [CHO, LOO] combination seriously deteriorated as opposed to the [CLD, LOO] combination. Thus, it might be desirable to use the CLD with the LOO scheme when smaller ensemble size is available.

  9. Video Games: Instructional Potential and Classification.

    ERIC Educational Resources Information Center

    Nawrocki, Leon H.; Winner, Janet L.

    1983-01-01

    Intended to provide a framework and impetus for future investigations of video games, this paper summarizes activities investigating the instructional use of such games, observations by the authors, and a proposed classification scheme and a paradigm to assist in the preliminary selection of instructional video games. Nine references are listed.…

  10. Ototoxicity (cochleotoxicity) classifications: A review.

    PubMed

    Crundwell, Gemma; Gomersall, Phil; Baguley, David M

    2016-01-01

    Drug-mediated ototoxicity, specifically cochleotoxicity, is a concern for patients receiving medications for the treatment of serious illness. A number of classification schemes exist, most of which are based on pure-tone audiometry, in order to assist non-audiological/non-otological specialists in the identification and monitoring of iatrogenic hearing loss. This review identifies the primary classification systems used in cochleototoxicity monitoring. By bringing together classifications published in discipline-specific literature, the paper aims to increase awareness of their relative strengths and limitations in the assessment and monitoring of ototoxic hearing loss and to indicate how future classification systems may improve upon the status-quo. Literature review. PubMed identified 4878 articles containing the search term ototox*. A systematic search identified 13 key classification systems. Cochleotoxicity classification systems can be divided into those which focus on hearing change from a baseline audiogram and those that focus on the functional impact of the hearing loss. Common weaknesses of these grading scales included a lack of sensitivity to small adverse changes in hearing thresholds, a lack of high-frequency audiometry (>8 kHz), and lack of indication of which changes are likely to be clinically significant for communication and quality of life.

  11. Automated source classification of new transient sources

    NASA Astrophysics Data System (ADS)

    Oertel, M.; Kreikenbohm, A.; Wilms, J.; DeLuca, A.

    2017-10-01

    The EXTraS project harvests the hitherto unexplored temporal domain information buried in the serendipitous data collected by the European Photon Imaging Camera (EPIC) onboard the ESA XMM-Newton mission since its launch. This includes a search for fast transients, missed by standard image analysis, and a search and characterization of variability in hundreds of thousands of sources. We present an automated classification scheme for new transient sources in the EXTraS project. The method is as follows: source classification features of a training sample are used to train machine learning algorithms (performed in R; randomForest (Breiman, 2001) in supervised mode) which are then tested on a sample of known source classes and used for classification.

  12. 28 CFR 345.20 - Position classification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Position classification. 345.20 Section... INDUSTRIES (FPI) INMATE WORK PROGRAMS Position Classification § 345.20 Position classification. (a) Inmate... the objectives and principles of pay classification as a part of the routine orientation of new FPI...

  13. 28 CFR 345.20 - Position classification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Position classification. 345.20 Section... INDUSTRIES (FPI) INMATE WORK PROGRAMS Position Classification § 345.20 Position classification. (a) Inmate... the objectives and principles of pay classification as a part of the routine orientation of new FPI...

  14. 28 CFR 345.20 - Position classification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Position classification. 345.20 Section... INDUSTRIES (FPI) INMATE WORK PROGRAMS Position Classification § 345.20 Position classification. (a) Inmate... the objectives and principles of pay classification as a part of the routine orientation of new FPI...

  15. 28 CFR 345.20 - Position classification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Position classification. 345.20 Section... INDUSTRIES (FPI) INMATE WORK PROGRAMS Position Classification § 345.20 Position classification. (a) Inmate... the objectives and principles of pay classification as a part of the routine orientation of new FPI...

  16. 28 CFR 345.20 - Position classification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Position classification. 345.20 Section... INDUSTRIES (FPI) INMATE WORK PROGRAMS Position Classification § 345.20 Position classification. (a) Inmate... the objectives and principles of pay classification as a part of the routine orientation of new FPI...

  17. Approach for a Clinically Useful Comprehensive Classification of Vascular and Neural Aspects of Diabetic Retinal Disease

    PubMed Central

    Abramoff, Michael D.; Fort, Patrice E.; Han, Ian C.; Jayasundera, K. Thiran; Sohn, Elliott H.; Gardner, Thomas W.

    2018-01-01

    The Early Treatment Diabetic Retinopathy Study (ETDRS) and other standardized classification schemes have laid a foundation for tremendous advances in the understanding and management of diabetic retinopathy (DR). However, technological advances in optics and image analysis, especially optical coherence tomography (OCT), OCT angiography (OCTa), and ultra-widefield imaging, as well as new discoveries in diabetic retinal neuropathy (DRN), are exposing the limitations of ETDRS and other classification systems to completely characterize retinal changes in diabetes, which we term diabetic retinal disease (DRD). While it may be most straightforward to add axes to existing classification schemes, as diabetic macular edema (DME) was added as an axis to earlier DR classifications, doing so may make these classifications increasingly complicated and thus clinically intractable. Therefore, we propose future research efforts to develop a new, comprehensive, and clinically useful classification system that will identify multimodal biomarkers to reflect the complex pathophysiology of DRD and accelerate the development of therapies to prevent vision-threatening DRD. PMID:29372250

  18. Approach for a Clinically Useful Comprehensive Classification of Vascular and Neural Aspects of Diabetic Retinal Disease.

    PubMed

    Abramoff, Michael D; Fort, Patrice E; Han, Ian C; Jayasundera, K Thiran; Sohn, Elliott H; Gardner, Thomas W

    2018-01-01

    The Early Treatment Diabetic Retinopathy Study (ETDRS) and other standardized classification schemes have laid a foundation for tremendous advances in the understanding and management of diabetic retinopathy (DR). However, technological advances in optics and image analysis, especially optical coherence tomography (OCT), OCT angiography (OCTa), and ultra-widefield imaging, as well as new discoveries in diabetic retinal neuropathy (DRN), are exposing the limitations of ETDRS and other classification systems to completely characterize retinal changes in diabetes, which we term diabetic retinal disease (DRD). While it may be most straightforward to add axes to existing classification schemes, as diabetic macular edema (DME) was added as an axis to earlier DR classifications, doing so may make these classifications increasingly complicated and thus clinically intractable. Therefore, we propose future research efforts to develop a new, comprehensive, and clinically useful classification system that will identify multimodal biomarkers to reflect the complex pathophysiology of DRD and accelerate the development of therapies to prevent vision-threatening DRD.

  19. Objective classification of ecological status in marine water bodies using ecotoxicological information and multivariate analysis.

    PubMed

    Beiras, Ricardo; Durán, Iria

    2014-12-01

    Some relevant shortcomings have been identified in the current approach for the classification of ecological status in marine water bodies, leading to delays in the fulfillment of the Water Framework Directive objectives. Natural variability makes difficult to settle fixed reference values and boundary values for the Ecological Quality Ratios (EQR) for the biological quality elements. Biological responses to environmental degradation are frequently of nonmonotonic nature, hampering the EQR approach. Community structure traits respond only once ecological damage has already been done and do not provide early warning signals. An alternative methodology for the classification of ecological status integrating chemical measurements, ecotoxicological bioassays and community structure traits (species richness and diversity), and using multivariate analyses (multidimensional scaling and cluster analysis), is proposed. This approach does not depend on the arbitrary definition of fixed reference values and EQR boundary values, and it is suitable to integrate nonlinear, sensitive signals of ecological degradation. As a disadvantage, this approach demands the inclusion of sampling sites representing the full range of ecological status in each monitoring campaign. National or international agencies in charge of coastal pollution monitoring have comprehensive data sets available to overcome this limitation.

  20. Local classification: Locally weighted-partial least squares-discriminant analysis (LW-PLS-DA).

    PubMed

    Bevilacqua, Marta; Marini, Federico

    2014-08-01

    The possibility of devising a simple, flexible and accurate non-linear classification method, by extending the locally weighted partial least squares (LW-PLS) approach to the cases where the algorithm is used in a discriminant way (partial least squares discriminant analysis, PLS-DA), is presented. In particular, to assess which category an unknown sample belongs to, the proposed algorithm operates by identifying which training objects are most similar to the one to be predicted and building a PLS-DA model using these calibration samples only. Moreover, the influence of the selected training samples on the local model can be further modulated by adopting a not uniform distance-based weighting scheme which allows the farthest calibration objects to have less impact than the closest ones. The performances of the proposed locally weighted-partial least squares-discriminant analysis (LW-PLS-DA) algorithm have been tested on three simulated data sets characterized by a varying degree of non-linearity: in all cases, a classification accuracy higher than 99% on external validation samples was achieved. Moreover, when also applied to a real data set (classification of rice varieties), characterized by a high extent of non-linearity, the proposed method provided an average correct classification rate of about 93% on the test set. By the preliminary results, showed in this paper, the performances of the proposed LW-PLS-DA approach have proved to be comparable and in some cases better than those obtained by other non-linear methods (k nearest neighbors, kernel-PLS-DA and, in the case of rice, counterpropagation neural networks). Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Branch classification: A new mechanism for improving branch predictor performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, P.Y.; Hao, E.; Patt, Y.

    There is wide agreement that one of the most significant impediments to the performance of current and future pipelined superscalar processors is the presence of conditional branches in the instruction stream. Speculative execution is one solution to the branch problem, but speculative work is discarded if a branch is mispredicted. For it to be effective, speculative work is discarded if a branch is mispredicted. For it to be effective, speculative execution requires a very accurate branch predictor; 95% accuracy is not good enough. This paper proposes branch classification, a methodology for building more accurate branch predictors. Branch classification allows anmore » individual branch instruction to be associated with the branch predictor best suited to predict its direction. Using this approach, a hybrid branch predictor can be constructed such that each component branch predictor predicts those branches for which it is best suited. To demonstrate the usefulness of branch classification, an example classification scheme is given and a new hybrid predictor is built based on this scheme which achieves a higher prediction accuracy than any branch predictor previously reported in the literature.« less

  2. ERTS-1 data applications to Minnesota forest land use classification

    NASA Technical Reports Server (NTRS)

    Sizer, J. E. (Principal Investigator); Eller, R. G.; Meyer, M. P.; Ulliman, J. J.

    1973-01-01

    The author has identified the following significant results. Color-combined ERTS-1 MSS spectral slices were analyzed to determine the maximum (repeatable) level of meaningful forest resource classification data visually attainable by skilled forest photointerpreters for the following purposes: (1) periodic updating of the Minnesota Land Management Information System (MLMIS) statewide computerized land use data bank, and (2) to provide first-stage forest resources survey data for large area forest land management planning. Controlled tests were made of two forest classification schemes by experienced professional foresters with special photointerpretation training and experience. The test results indicate it is possible to discriminate the MLMIS forest class from the MLMIS nonforest classes, but that it is not possible, under average circumstances, to further stratify the forest classification into species components with any degree of reliability with ERTS-1 imagery. An ongoing test of the resulting classification scheme involves the interpretation, and mapping, of the south half of Itasca County, Minnesota, with ERTS-1 imagery. This map is undergoing field checking by on the ground field cooperators, whose evaluation will be completed in the fall of 1973.

  3. Validating the Danish adaptation of the World Health Organization's International Classification for Patient Safety classification of patient safety incident types

    PubMed Central

    Mikkelsen, Kim Lyngby; Thommesen, Jacob; Andersen, Henning Boje

    2013-01-01

    Objectives Validation of a Danish patient safety incident classification adapted from the World Health Organizaton's International Classification for Patient Safety (ICPS-WHO). Design Thirty-three hospital safety management experts classified 58 safety incident cases selected to represent all types and subtypes of the Danish adaptation of the ICPS (ICPS-DK). Outcome Measures Two measures of inter-rater agreement: kappa and intra-class correlation (ICC). Results An average number of incident types used per case per rater was 2.5. The mean ICC was 0.521 (range: 0.199–0.809) and the mean kappa was 0.513 (range: 0.193–0.804). Kappa and ICC showed high correlation (r = 0.99). An inverse correlation was found between the prevalence of type and inter-rater reliability. Results are discussed according to four factors known to determine the inter-rater agreement: skill and motivation of raters; clarity of case descriptions; clarity of the operational definitions of the types and the instructions guiding the coding process; adequacy of the underlying classification scheme. Conclusions The incident types of the ICPS-DK are adequate, exhaustive and well suited for classifying and structuring incident reports. With a mean kappa a little above 0.5 the inter-rater agreement of the classification system is considered ‘fair’ to ‘good’. The wide variation in the inter-rater reliability and low reliability and poor discrimination among the highly prevalent incident types suggest that for these types, precisely defined incident sub-types may be preferred. This evaluation of the reliability and usability of WHO's ICPS should be useful for healthcare administrations that consider or are in the process of adapting the ICPS. PMID:23287641

  4. High-order asynchrony-tolerant finite difference schemes for partial differential equations

    NASA Astrophysics Data System (ADS)

    Aditya, Konduri; Donzis, Diego A.

    2017-12-01

    Synchronizations of processing elements (PEs) in massively parallel simulations, which arise due to communication or load imbalances between PEs, significantly affect the scalability of scientific applications. We have recently proposed a method based on finite-difference schemes to solve partial differential equations in an asynchronous fashion - synchronization between PEs is relaxed at a mathematical level. While standard schemes can maintain their stability in the presence of asynchrony, their accuracy is drastically affected. In this work, we present a general methodology to derive asynchrony-tolerant (AT) finite difference schemes of arbitrary order of accuracy, which can maintain their accuracy when synchronizations are relaxed. We show that there are several choices available in selecting a stencil to derive these schemes and discuss their effect on numerical and computational performance. We provide a simple classification of schemes based on the stencil and derive schemes that are representative of different classes. Their numerical error is rigorously analyzed within a statistical framework to obtain the overall accuracy of the solution. Results from numerical experiments are used to validate the performance of the schemes.

  5. Classification Objects, Ideal Observers & Generative Models

    ERIC Educational Resources Information Center

    Olman, Cheryl; Kersten, Daniel

    2004-01-01

    A successful vision system must solve the problem of deriving geometrical information about three-dimensional objects from two-dimensional photometric input. The human visual system solves this problem with remarkable efficiency, and one challenge in vision research is to understand how neural representations of objects are formed and what visual…

  6. Adaptive video-based vehicle classification technique for monitoring traffic.

    DOT National Transportation Integrated Search

    2015-08-01

    This report presents a methodology for extracting two vehicle features, vehicle length and number of axles in order : to classify the vehicles from video, based on Federal Highway Administration (FHWA)s recommended vehicle : classification scheme....

  7. Visual classification of feral cat Felis silvestris catus vocalizations

    PubMed Central

    Owens, Jessica L.; Olsen, Mariana; Fontaine, Amy; Kloth, Christopher; Kershenbaum, Arik

    2017-01-01

    Abstract Cat vocal behavior, in particular, the vocal and social behavior of feral cats, is poorly understood, as are the differences between feral and fully domestic cats. The relationship between feral cat social and vocal behavior is important because of the markedly different ecology of feral and domestic cats, and enhanced comprehension of the repertoire and potential information content of feral cat calls can provide both better understanding of the domestication and socialization process, and improved welfare for feral cats undergoing adoption. Previous studies have used conflicting classification schemes for cat vocalizations, often relying on onomatopoeic or popular descriptions of call types (e.g., “miow”). We studied the vocalizations of 13 unaltered domestic cats that complied with our behavioral definition used to distinguish feral cats from domestic. A total of 71 acoustic units were extracted and visually analyzed for the construction of a hierarchical classification of vocal sounds, based on acoustic properties. We identified 3 major categories (tonal, pulse, and broadband) that further breakdown into 8 subcategories, and show a high degree of reliability when sounds are classified blindly by independent observers (Fleiss’ Kappa K = 0.863). Due to the limited behavioral contexts in this study, additional subcategories of cat vocalizations may be identified in the future, but our hierarchical classification system allows for the addition of new categories and new subcategories as they are described. This study shows that cat vocalizations are diverse and complex, and provides an objective and reliable classification system that can be used in future studies. PMID:29491992

  8. Visual classification of feral cat Felis silvestris catus vocalizations.

    PubMed

    Owens, Jessica L; Olsen, Mariana; Fontaine, Amy; Kloth, Christopher; Kershenbaum, Arik; Waller, Sara

    2017-06-01

    Cat vocal behavior, in particular, the vocal and social behavior of feral cats, is poorly understood, as are the differences between feral and fully domestic cats. The relationship between feral cat social and vocal behavior is important because of the markedly different ecology of feral and domestic cats, and enhanced comprehension of the repertoire and potential information content of feral cat calls can provide both better understanding of the domestication and socialization process, and improved welfare for feral cats undergoing adoption. Previous studies have used conflicting classification schemes for cat vocalizations, often relying on onomatopoeic or popular descriptions of call types (e.g., "miow"). We studied the vocalizations of 13 unaltered domestic cats that complied with our behavioral definition used to distinguish feral cats from domestic. A total of 71 acoustic units were extracted and visually analyzed for the construction of a hierarchical classification of vocal sounds, based on acoustic properties. We identified 3 major categories (tonal, pulse, and broadband) that further breakdown into 8 subcategories, and show a high degree of reliability when sounds are classified blindly by independent observers (Fleiss' Kappa K  = 0.863). Due to the limited behavioral contexts in this study, additional subcategories of cat vocalizations may be identified in the future, but our hierarchical classification system allows for the addition of new categories and new subcategories as they are described. This study shows that cat vocalizations are diverse and complex, and provides an objective and reliable classification system that can be used in future studies.

  9. LevelScheme: A level scheme drawing and scientific figure preparation system for Mathematica

    NASA Astrophysics Data System (ADS)

    Caprio, M. A.

    2005-09-01

    LevelScheme is a scientific figure preparation system for Mathematica. The main emphasis is upon the construction of level schemes, or level energy diagrams, as used in nuclear, atomic, molecular, and hadronic physics. LevelScheme also provides a general infrastructure for the preparation of publication-quality figures, including support for multipanel and inset plotting, customizable tick mark generation, and various drawing and labeling tasks. Coupled with Mathematica's plotting functions and powerful programming language, LevelScheme provides a flexible system for the creation of figures combining diagrams, mathematical plots, and data plots. Program summaryTitle of program:LevelScheme Catalogue identifier:ADVZ Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVZ Operating systems:Any which supports Mathematica; tested under Microsoft Windows XP, Macintosh OS X, and Linux Programming language used:Mathematica 4 Number of bytes in distributed program, including test and documentation:3 051 807 Distribution format:tar.gz Nature of problem:Creation of level scheme diagrams. Creation of publication-quality multipart figures incorporating diagrams and plots. Method of solution:A set of Mathematica packages has been developed, providing a library of level scheme drawing objects, tools for figure construction and labeling, and control code for producing the graphics.

  10. ABCD classification system: a novel classification for subaxial cervical spine injuries.

    PubMed

    Shousha, Mootaz

    2014-04-20

    The classification system was derived through a retrospective analysis of 73 consecutive cases of subaxial cervical spine injury as well as thorough literature review. To define a new classification system for subaxial cervical spine injuries. There exist several methods to classify subaxial cervical spine injuries but no single system has emerged as clearly superior to the others. On the basis of a 2-column anatomical model, the first part of the proposed classification is an anatomical description of the injury. It delivers the information whether the injury is bony, ligamentous, or a combined one. The first 4 alphabetical letters have been used for simplicity. Each column is represented by an alphabetical letter from A to D. Each letter has a radiological meaning (A = Absent injury, B = Bony lesion, C = Combined bony and ligamentous, D = Disc or ligamentous injury).The second part of the classification is represented by 3 modifiers. These are the neurological status of the patient (N), the degree of spinal canal stenosis (S), and the degree of instability (I). For simplicity, each modifier was graded in an ascending pattern of severity from zero to 2. The last part is optional and denotes which radiological examination has been used to define the injury type. The new ABCD classification was applicable for all patients. The most common type was anterior ligamentous and posterior combined injury "DC" (37.9%), followed by "DD" injury in 12% of the cases. Through this work a new classification for cervical spine injuries is proposed. The aim is to establish criteria for a common language in description of cervical injuries aiming for simplification, especially for junior residents. Each letter and each sign has a meaning to deliver the largest amount of information. Both the radiological as well as the clinical data are represented in this scheme. However, further evaluation of this classification is needed. 3.

  11. Cross-mapping the ICNP with NANDA, HHCC, Omaha System and NIC for unified nursing language system development. International Classification for Nursing Practice. International Council of Nurses. North American Nursing Diagnosis Association. Home Health Care Classification. Nursing Interventions Classification.

    PubMed

    Hyun, S; Park, H A

    2002-06-01

    Nursing language plays an important role in describing and defining nursing phenomena and nursing actions. There are numerous vocabularies describing nursing diagnoses, interventions and outcomes in nursing. However, the lack of a standardized unified nursing language is considered a problem for further development of the discipline of nursing. In an effort to unify the nursing languages, the International Council of Nurses (ICN) has proposed the International Classification for Nursing Practice (ICNP) as a unified nursing language system. The purpose of this study was to evaluate the inclusiveness and expressiveness of the ICNP terms by cross-mapping them with the existing nursing terminologies, specifically the North American Nursing Diagnosis Association (NANDA) taxonomy I, the Omaha System, the Home Health Care Classification (HHCC) and the Nursing Interventions Classification (NIC). Nine hundred and seventy-four terms from these four classifications were cross-mapped with the ICNP terms. This was performed in accordance with the Guidelines for Composing a Nursing Diagnosis and Guidelines for Composing a Nursing Intervention, which were suggested by the ICNP development team. An expert group verified the results. The ICNP Phenomena Classification described 87.5% of the NANDA diagnoses, 89.7% of the HHCC diagnoses and 72.7% of the Omaha System problem classification scheme. The ICNP Action Classification described 79.4% of the NIC interventions, 80.6% of the HHCC interventions and 71.4% of the Omaha System intervention scheme. The results of this study suggest that the ICNP has a sound starting structure for a unified nursing language system and can be used to describe most of the existing terminologies. Recommendations for the addition of terms to the ICNP are provided.

  12. Classification of topological phonons in linear mechanical metamaterials

    PubMed Central

    Süsstrunk, Roman

    2016-01-01

    Topological phononic crystals, alike their electronic counterparts, are characterized by a bulk–edge correspondence where the interior of a material dictates the existence of stable surface or boundary modes. In the mechanical setup, such surface modes can be used for various applications such as wave guiding, vibration isolation, or the design of static properties such as stable floppy modes where parts of a system move freely. Here, we provide a classification scheme of topological phonons based on local symmetries. We import and adapt the classification of noninteracting electron systems and embed it into the mechanical setup. Moreover, we provide an extensive set of examples that illustrate our scheme and can be used to generate models in unexplored symmetry classes. Our work unifies the vast recent literature on topological phonons and paves the way to future applications of topological surface modes in mechanical metamaterials. PMID:27482105

  13. An Innovative Approach to Scheme Learning Map Considering Tradeoff Multiple Objectives

    ERIC Educational Resources Information Center

    Lin, Yu-Shih; Chang, Yi-Chun; Chu, Chih-Ping

    2016-01-01

    An important issue in personalized learning is to provide learners with customized learning according to their learning characteristics. This paper focused attention on scheming learning map as follows. The learning goal can be achieved via different pathways based on alternative materials, which have the relationships of prerequisite, dependence,…

  14. Creating a Canonical Scientific and Technical Information Classification System for NCSTRL+

    NASA Technical Reports Server (NTRS)

    Tiffany, Melissa E.; Nelson, Michael L.

    1998-01-01

    The purpose of this paper is to describe the new subject classification system for the NCSTRL+ project. NCSTRL+ is a canonical digital library (DL) based on the Networked Computer Science Technical Report Library (NCSTRL). The current NCSTRL+ classification system uses the NASA Scientific and Technical (STI) subject classifications, which has a bias towards the aerospace, aeronautics, and engineering disciplines. Examination of other scientific and technical information classification systems showed similar discipline-centric weaknesses. Traditional, library-oriented classification systems represented all disciplines, but were too generalized to serve the needs of a scientific and technically oriented digital library. Lack of a suitable existing classification system led to the creation of a lightweight, balanced, general classification system that allows the mapping of more specialized classification schemes into the new framework. We have developed the following classification system to give equal weight to all STI disciplines, while being compact and lightweight.

  15. Estimating persistence of brominated and chlorinated organic pollutants in air, water, soil, and sediments with the QSPR-based classification scheme.

    PubMed

    Puzyn, T; Haranczyk, M; Suzuki, N; Sakurai, T

    2011-02-01

    We have estimated degradation half-lives of both brominated and chlorinated dibenzo-p-dioxins (PBDDs and PCDDs), furans (PBDFs and PCDFs), biphenyls (PBBs and PCBs), naphthalenes (PBNs and PCNs), diphenyl ethers (PBDEs and PCDEs) as well as selected unsubstituted polycyclic aromatic hydrocarbons (PAHs) in air, surface water, surface soil, and sediments (in total of 1,431 compounds in four compartments). Next, we compared the persistence between chloro- (relatively well-studied) and bromo- (less studied) analogs. The predictions have been performed based on the quantitative structure-property relationship (QSPR) scheme with use of k-nearest neighbors (kNN) classifier and the semi-quantitative system of persistence classes. The classification models utilized principal components derived from the principal component analysis of a set of 24 constitutional and quantum mechanical descriptors as input variables. Accuracies of classification (based on an external validation) were 86, 85, 87, and 75% for air, surface water, surface soil, and sediments, respectively. The persistence of all chlorinated species increased with increasing halogenation degree. In the case of brominated organic pollutants (Br-OPs), the trend was the same for air and sediments. However, we noticed that the opposite trend for persistence in surface water and soil. The results suggest that, due to high photoreactivity of C-Br chemical bonds, photolytic processes occurring in surface water and soil are able to play significant role in transforming and removing Br-OPs from these compartments. This contribution is the first attempt of classifying together Br-OPs and Cl-OPs according to their persistence, in particular, environmental compartments.

  16. Etiologic classification of TIA and minor stroke by A-S-C-O and causative classification system as compared to TOAST reduces the proportion of patients categorized as cause undetermined.

    PubMed

    Desai, Jamsheed A; Abuzinadah, Ahmad R; Imoukhuede, Oje; Bernbaum, Manya L; Modi, Jayesh; Demchuk, Andrew M; Coutts, Shelagh B

    2014-01-01

    The assortment of patients based on the underlying pathophysiology is central to preventing recurrent stroke after a transient ischemic attack and minor stroke (TIA-MS). The causative classification of stroke (CCS) and the A-S-C-O (A for atherosclerosis, S for small vessel disease, C for Cardiac source, O for other cause) classification schemes have recently been developed. These systems have not been specifically applied to the TIA-MS population. We hypothesized that both CCS and A-S-C-O would increase the proportion of patients with a definitive etiologic mechanism for TIA-MS as compared with TOAST. Patients were analyzed from the CATCH study. A single-stroke physician assigned all patients to an etiologic subtype using published algorithms for TOAST, CCS and ASCO. We compared the proportions in the various categories for each classification scheme and then the association with stroke progression or recurrence was assessed. TOAST, CCS and A-S-C-O classification schemes were applied in 469 TIA-MS patients. When compared to TOAST both CCS (58.0 vs. 65.3%; p < 0.0001) and ASCO grade 1 or 2 (37.5 vs. 65.3%; p < 0.0001) assigned fewer patients as cause undetermined. CCS had increased assignment of cardioembolism (+3.8%, p = 0.0001) as compared with TOAST. ASCO grade 1 or 2 had increased assignment of cardioembolism (+8.5%, p < 0.0001), large artery atherosclerosis (+14.9%, p < 0.0001) and small artery occlusion (+4.3%, p < 0.0001) as compared with TOAST. Compared with CCS, using ASCO resulted in a 20.5% absolute reduction in patients assigned to the 'cause undetermined' category (p < 0.0001). Patients who had multiple high-risk etiologies either by CCS or ASCO classification or an ASCO undetermined classification had a higher chance of having a recurrent event. Both CCS and ASCO schemes reduce the proportion of TIA and minor stroke patients classified as 'cause undetermined.' ASCO resulted in the fewest patients classified as cause undetermined. Stroke recurrence

  17. Stygoregions – a promising approach to a bioregional classification of groundwater systems

    PubMed Central

    Stein, Heide; Griebler, Christian; Berkhoff, Sven; Matzke, Dirk; Fuchs, Andreas; Hahn, Hans Jürgen

    2012-01-01

    Linked to diverse biological processes, groundwater ecosystems deliver essential services to mankind, the most important of which is the provision of drinking water. In contrast to surface waters, ecological aspects of groundwater systems are ignored by the current European Union and national legislation. Groundwater management and protection measures refer exclusively to its good physicochemical and quantitative status. Current initiatives in developing ecologically sound integrative assessment schemes by taking groundwater fauna into account depend on the initial classification of subsurface bioregions. In a large scale survey, the regional and biogeographical distribution patterns of groundwater dwelling invertebrates were examined for many parts of Germany. Following an exploratory approach, our results underline that the distribution patterns of invertebrates in groundwater are not in accordance with any existing bioregional classification system established for surface habitats. In consequence, we propose to develope a new classification scheme for groundwater ecosystems based on stygoregions. PMID:22993698

  18. A prototype of mammography CADx scheme integrated to imaging quality evaluation techniques

    NASA Astrophysics Data System (ADS)

    Schiabel, Homero; Matheus, Bruno R. N.; Angelo, Michele F.; Patrocínio, Ana Claudia; Ventura, Liliane

    2011-03-01

    As all women over the age of 40 are recommended to perform mammographic exams every two years, the demands on radiologists to evaluate mammographic images in short periods of time has increased considerably. As a tool to improve quality and accelerate analysis CADe/Dx (computer-aided detection/diagnosis) schemes have been investigated, but very few complete CADe/Dx schemes have been developed and most are restricted to detection and not diagnosis. The existent ones usually are associated to specific mammographic equipment (usually DR), which makes them very expensive. So this paper describes a prototype of a complete mammography CADx scheme developed by our research group integrated to an imaging quality evaluation process. The basic structure consists of pre-processing modules based on image acquisition and digitization procedures (FFDM, CR or film + scanner), a segmentation tool to detect clustered microcalcifications and suspect masses and a classification scheme, which evaluates as the presence of microcalcifications clusters as well as possible malignant masses based on their contour. The aim is to provide enough information not only on the detected structures but also a pre-report with a BI-RADS classification. At this time the system is still lacking an interface integrating all the modules. Despite this, it is functional as a prototype for clinical practice testing, with results comparable to others reported in literature.

  19. Applying graphics user interface ot group technology classification and coding at the Boeing aerospace company

    NASA Astrophysics Data System (ADS)

    Ness, P. H.; Jacobson, H.

    1984-10-01

    The thrust of 'group technology' is toward the exploitation of similarities in component design and manufacturing process plans to achieve assembly line flow cost efficiencies for small batch production. The systematic method devised for the identification of similarities in component geometry and processing steps is a coding and classification scheme implemented by interactive CAD/CAM systems. This coding and classification scheme has led to significant increases in computer processing power, allowing rapid searches and retrievals on the basis of a 30-digit code together with user-friendly computer graphics.

  20. Efficient Fingercode Classification

    NASA Astrophysics Data System (ADS)

    Sun, Hong-Wei; Law, Kwok-Yan; Gollmann, Dieter; Chung, Siu-Leung; Li, Jian-Bin; Sun, Jia-Guang

    In this paper, we present an efficient fingerprint classification algorithm which is an essential component in many critical security application systems e. g. systems in the e-government and e-finance domains. Fingerprint identification is one of the most important security requirements in homeland security systems such as personnel screening and anti-money laundering. The problem of fingerprint identification involves searching (matching) the fingerprint of a person against each of the fingerprints of all registered persons. To enhance performance and reliability, a common approach is to reduce the search space by firstly classifying the fingerprints and then performing the search in the respective class. Jain et al. proposed a fingerprint classification algorithm based on a two-stage classifier, which uses a K-nearest neighbor classifier in its first stage. The fingerprint classification algorithm is based on the fingercode representation which is an encoding of fingerprints that has been demonstrated to be an effective fingerprint biometric scheme because of its ability to capture both local and global details in a fingerprint image. We enhance this approach by improving the efficiency of the K-nearest neighbor classifier for fingercode-based fingerprint classification. Our research firstly investigates the various fast search algorithms in vector quantization (VQ) and the potential application in fingerprint classification, and then proposes two efficient algorithms based on the pyramid-based search algorithms in VQ. Experimental results on DB1 of FVC 2004 demonstrate that our algorithms can outperform the full search algorithm and the original pyramid-based search algorithms in terms of computational efficiency without sacrificing accuracy.

  1. Organizing and Typing Persistent Objects Within an Object-Oriented Framework

    NASA Technical Reports Server (NTRS)

    Madany, Peter W.; Campbell, Roy H.

    1991-01-01

    Conventional operating systems provide little or no direct support for the services required for an efficient persistent object system implementation. We have built a persistent object scheme using a customization and extension of an object-oriented operating system called Choices. Choices includes a framework for the storage of persistent data that is suited to the construction of both conventional file system and persistent object system. In this paper we describe three areas in which persistent object support differs from file system support: storage organization, storage management, and typing. Persistent object systems must support various sizes of objects efficiently. Customizable containers, which are themselves persistent objects and can be nested, support a wide range of object sizes in Choices. Collections of persistent objects that are accessed as an aggregate and collections of light-weight persistent objects can be clustered in containers that are nested within containers for larger objects. Automated garbage collection schemes are added to storage management and have a major impact on persistent object applications. The Choices persistent object store provides extensible sets of persistent object types. The store contains not only the data for persistent objects but also the names of the classes to which they belong and the code for the operation of the classes. Besides presenting persistent object storage organization, storage management, and typing, this paper discusses how persistent objects are named and used within the Choices persistent data/file system framework.

  2. Ice/water Classification of Sentinel-1 Images

    NASA Astrophysics Data System (ADS)

    Korosov, Anton; Zakhvatkina, Natalia; Muckenhuber, Stefan

    2015-04-01

    Sea Ice monitoring and classification relies heavily on synthetic aperture radar (SAR) imagery. These sensors record data either only at horizontal polarization (RADARSAT-1) or vertically polarized (ERS-1 and ERS-2) or at dual polarization (Radarsat-2, Sentinel-1). Many algorithms have been developed to discriminate sea ice types and open water using single polarization images. Ice type classification, however, is still ambiguous in some cases. Sea ice classification in single polarization SAR images has been attempted using various methods since the beginning of the ERS programme. The robust classification using only SAR images that can provide useful results under varying sea ice types and open water tend to be not generally applicable in operational regime. The new generation SAR satellites have capability to deliver images in several polarizations. This gives improved possibility to develop sea ice classification algorithms. In this study we use data from Sentinel-1 at dual-polarization, i.e. HH (horizontally transmitted and horizontally received) and HV (horizontally transmitted, vertically received). This mode assembles wide SAR image from several narrower SAR beams, resulting to an image of 500 x 500 km with 50 m resolution. A non-linear scheme for classification of Sentinel-1 data has been developed. The processing allows to identify three classes: ice, calm water and rough water at 1 km spatial resolution. The raw sigma0 data in HH and HV polarization are first corrected for thermal and random noise by extracting the background thermal noise level and smoothing the image with several filters. At the next step texture characteristics are computed in a moving window using a Gray Level Co-occurence Matrix (GLCM). A neural network is applied at the last step for processing array of the most informative texture characteristics and ice/water classification. The main results are: * the most informative texture characteristics to be used for sea ice classification

  3. Multi-dimensional classification of GABAergic interneurons with Bayesian network-modeled label uncertainty.

    PubMed

    Mihaljević, Bojan; Bielza, Concha; Benavides-Piccione, Ruth; DeFelipe, Javier; Larrañaga, Pedro

    2014-01-01

    Interneuron classification is an important and long-debated topic in neuroscience. A recent study provided a data set of digitally reconstructed interneurons classified by 42 leading neuroscientists according to a pragmatic classification scheme composed of five categorical variables, namely, of the interneuron type and four features of axonal morphology. From this data set we now learned a model which can classify interneurons, on the basis of their axonal morphometric parameters, into these five descriptive variables simultaneously. Because of differences in opinion among the neuroscientists, especially regarding neuronal type, for many interneurons we lacked a unique, agreed-upon classification, which we could use to guide model learning. Instead, we guided model learning with a probability distribution over the neuronal type and the axonal features, obtained, for each interneuron, from the neuroscientists' classification choices. We conveniently encoded such probability distributions with Bayesian networks, calling them label Bayesian networks (LBNs), and developed a method to predict them. This method predicts an LBN by forming a probabilistic consensus among the LBNs of the interneurons most similar to the one being classified. We used 18 axonal morphometric parameters as predictor variables, 13 of which we introduce in this paper as quantitative counterparts to the categorical axonal features. We were able to accurately predict interneuronal LBNs. Furthermore, when extracting crisp (i.e., non-probabilistic) predictions from the predicted LBNs, our method outperformed related work on interneuron classification. Our results indicate that our method is adequate for multi-dimensional classification of interneurons with probabilistic labels. Moreover, the introduced morphometric parameters are good predictors of interneuron type and the four features of axonal morphology and thus may serve as objective counterparts to the subjective, categorical axonal features.

  4. An Object-Based Machine Learning Classification Procedure for Mapping Impoundments in Brazil's Amazon-Cerrado Agricultural Frontier

    NASA Astrophysics Data System (ADS)

    Solvik, K.; Macedo, M.; Graesser, J.; Lathuilliere, M. J.

    2017-12-01

    Large-scale agriculture and cattle ranching in Brazil has driving the creation of tens of thousands of small stream impoundments to provide water for crops and livestock. These impoundments are a source of methane emissions and have significant impacts on stream temperature, connectivity, and water use over a large region. Due to their large numbers and small size, they are difficult to map using conventional methods. Here, we present a two-stage object-based supervised classification methodology for identifying man-made impoundments in Brazil. First, in Google Earth Engine pixels are classified as water or non-water using satellite data and HydroSHEDS products as predictors. Second, using Python's scikit-learn and scikit-image modules the water objects are classified as man-made or natural based on a variety of shape and spectral properties. Both classifications are performed by a random forest classifier. Training data is acquired by visually identifying impoundments and natural water bodies using high resolution satellite imagery from Google Earth.This methodology was applied to the state of Mato Grosso using a cloud-free mosaic of Sentinel 1 (10m resolution) radar and Sentinel 2 (10-20m) multispectral data acquired during the 2016 dry season. Independent test accuracy was estimated at 95% for the first stage and 93% for the second. We identified 54,294 man-made impoundments in Mato Grosso in 2016. The methodology is generalizable to other high resolution satellite data and has been tested on Landsat 5 and 8 imagery. Applying the same approach to Landsat 8 images (30 m), we identified 35,707 impoundments in the 2015 dry season. The difference in number is likely because the coarser-scale imagery fails to detect small (< 900 m2) objects. On-going work will apply this approach to satellite time series for the entire Amazon-Cerrado frontier, allowing us to track changes in the number, size, and distribution of man-made impoundments. Automated impoundment mapping

  5. Development and evaluation of a computer-aided diagnostic scheme for lung nodule detection in chest radiographs by means of two-stage nodule enhancement with support vector classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Sheng; Suzuki, Kenji; MacMahon, Heber

    2011-04-15

    Purpose: To develop a computer-aided detection (CADe) scheme for nodules in chest radiographs (CXRs) with a high sensitivity and a low false-positive (FP) rate. Methods: The authors developed a CADe scheme consisting of five major steps, which were developed for improving the overall performance of CADe schemes. First, to segment the lung fields accurately, the authors developed a multisegment active shape model. Then, a two-stage nodule-enhancement technique was developed for improving the conspicuity of nodules. Initial nodule candidates were detected and segmented by using the clustering watershed algorithm. Thirty-one shape-, gray-level-, surface-, and gradient-based features were extracted from each segmentedmore » candidate for determining the feature space, including one of the new features based on the Canny edge detector to eliminate a major FP source caused by rib crossings. Finally, a nonlinear support vector machine (SVM) with a Gaussian kernel was employed for classification of the nodule candidates. Results: To evaluate and compare the scheme to other published CADe schemes, the authors used a publicly available database containing 140 nodules in 140 CXRs and 93 normal CXRs. The CADe scheme based on the SVM classifier achieved sensitivities of 78.6% (110/140) and 71.4% (100/140) with averages of 5.0 (1165/233) FPs/image and 2.0 (466/233) FPs/image, respectively, in a leave-one-out cross-validation test, whereas the CADe scheme based on a linear discriminant analysis classifier had a sensitivity of 60.7% (85/140) at an FP rate of 5.0 FPs/image. For nodules classified as ''very subtle'' and ''extremely subtle,'' a sensitivity of 57.1% (24/42) was achieved at an FP rate of 5.0 FPs/image. When the authors used a database developed at the University of Chicago, the sensitivities was 83.3% (40/48) and 77.1% (37/48) at an FP rate of 5.0 (240/48) FPs/image and 2.0 (96/48) FPs /image, respectively. Conclusions: These results compare favorably to those

  6. Automated structural classification of lipids by machine learning.

    PubMed

    Taylor, Ryan; Miller, Ryan H; Miller, Ryan D; Porter, Michael; Dalgleish, James; Prince, John T

    2015-03-01

    Modern lipidomics is largely dependent upon structural ontologies because of the great diversity exhibited in the lipidome, but no automated lipid classification exists to facilitate this partitioning. The size of the putative lipidome far exceeds the number currently classified, despite a decade of work. Automated classification would benefit ongoing classification efforts by decreasing the time needed and increasing the accuracy of classification while providing classifications for mass spectral identification algorithms. We introduce a tool that automates classification into the LIPID MAPS ontology of known lipids with >95% accuracy and novel lipids with 63% accuracy. The classification is based upon simple chemical characteristics and modern machine learning algorithms. The decision trees produced are intelligible and can be used to clarify implicit assumptions about the current LIPID MAPS classification scheme. These characteristics and decision trees are made available to facilitate alternative implementations. We also discovered many hundreds of lipids that are currently misclassified in the LIPID MAPS database, strongly underscoring the need for automated classification. Source code and chemical characteristic lists as SMARTS search strings are available under an open-source license at https://www.github.com/princelab/lipid_classifier. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Concepts of Classification and Taxonomy Phylogenetic Classification

    NASA Astrophysics Data System (ADS)

    Fraix-Burnet, D.

    2016-05-01

    Phylogenetic approaches to classification have been heavily developed in biology by bioinformaticians. But these techniques have applications in other fields, in particular in linguistics. Their main characteristics is to search for relationships between the objects or species in study, instead of grouping them by similarity. They are thus rather well suited for any kind of evolutionary objects. For nearly fifteen years, astrocladistics has explored the use of Maximum Parsimony (or cladistics) for astronomical objects like galaxies or globular clusters. In this lesson we will learn how it works.

  8. Unsupervised classification of remote multispectral sensing data

    NASA Technical Reports Server (NTRS)

    Su, M. Y.

    1972-01-01

    The new unsupervised classification technique for classifying multispectral remote sensing data which can be either from the multispectral scanner or digitized color-separation aerial photographs consists of two parts: (a) a sequential statistical clustering which is a one-pass sequential variance analysis and (b) a generalized K-means clustering. In this composite clustering technique, the output of (a) is a set of initial clusters which are input to (b) for further improvement by an iterative scheme. Applications of the technique using an IBM-7094 computer on multispectral data sets over Purdue's Flight Line C-1 and the Yellowstone National Park test site have been accomplished. Comparisons between the classification maps by the unsupervised technique and the supervised maximum liklihood technique indicate that the classification accuracies are in agreement.

  9. Changing Patient Classification System for Hospital Reimbursement in Romania

    PubMed Central

    Radu, Ciprian-Paul; Chiriac, Delia Nona; Vladescu, Cristian

    2010-01-01

    Aim To evaluate the effects of the change in the diagnosis-related group (DRG) system on patient morbidity and hospital financial performance in the Romanian public health care system. Methods Three variables were assessed before and after the classification switch in July 2007: clinical outcomes, the case mix index, and hospital budgets, using the database of the National School of Public Health and Health Services Management, which contains data regularly received from hospitals reimbursed through the Romanian DRG scheme (291 in 2009). Results The lack of a Romanian system for the calculation of cost-weights imposed the necessity to use an imported system, which was criticized by some clinicians for not accurately reflecting resource consumption in Romanian hospitals. The new DRG classification system allowed a more accurate clinical classification. However, it also exposed a lack of physicians’ knowledge on diagnosing and coding procedures, which led to incorrect coding. Consequently, the reported hospital morbidity changed after the DRG switch, reflecting an increase in the national case mix index of 25% in 2009 (compared with 2007). Since hospitals received the same reimbursement over the first two years after the classification switch, the new DRG system led them sometimes to change patients' diagnoses in order to receive more funding. Conclusion Lack of oversight of hospital coding and reporting to the national reimbursement scheme allowed the increase in the case mix index. The complexity of the new classification system requires more resources (human and financial), better monitoring and evaluation, and improved legislation in order to achieve better hospital resource allocation and more efficient patient care. PMID:20564769

  10. Changing patient classification system for hospital reimbursement in Romania.

    PubMed

    Radu, Ciprian-Paul; Chiriac, Delia Nona; Vladescu, Cristian

    2010-06-01

    To evaluate the effects of the change in the diagnosis-related group (DRG) system on patient morbidity and hospital financial performance in the Romanian public health care system. Three variables were assessed before and after the classification switch in July 2007: clinical outcomes, the case mix index, and hospital budgets, using the database of the National School of Public Health and Health Services Management, which contains data regularly received from hospitals reimbursed through the Romanian DRG scheme (291 in 2009). The lack of a Romanian system for the calculation of cost-weights imposed the necessity to use an imported system, which was criticized by some clinicians for not accurately reflecting resource consumption in Romanian hospitals. The new DRG classification system allowed a more accurate clinical classification. However, it also exposed a lack of physicians' knowledge on diagnosing and coding procedures, which led to incorrect coding. Consequently, the reported hospital morbidity changed after the DRG switch, reflecting an increase in the national case-mix index of 25% in 2009 (compared with 2007). Since hospitals received the same reimbursement over the first two years after the classification switch, the new DRG system led them sometimes to change patients' diagnoses in order to receive more funding. Lack of oversight of hospital coding and reporting to the national reimbursement scheme allowed the increase in the case-mix index. The complexity of the new classification system requires more resources (human and financial), better monitoring and evaluation, and improved legislation in order to achieve better hospital resource allocation and more efficient patient care.

  11. An evaluation of supervised classifiers for indirectly detecting salt-affected areas at irrigation scheme level

    NASA Astrophysics Data System (ADS)

    Muller, Sybrand Jacobus; van Niekerk, Adriaan

    2016-07-01

    Soil salinity often leads to reduced crop yield and quality and can render soils barren. Irrigated areas are particularly at risk due to intensive cultivation and secondary salinization caused by waterlogging. Regular monitoring of salt accumulation in irrigation schemes is needed to keep its negative effects under control. The dynamic spatial and temporal characteristics of remote sensing can provide a cost-effective solution for monitoring salt accumulation at irrigation scheme level. This study evaluated a range of pan-fused SPOT-5 derived features (spectral bands, vegetation indices, image textures and image transformations) for classifying salt-affected areas in two distinctly different irrigation schemes in South Africa, namely Vaalharts and Breede River. The relationship between the input features and electro conductivity measurements were investigated using regression modelling (stepwise linear regression, partial least squares regression, curve fit regression modelling) and supervised classification (maximum likelihood, nearest neighbour, decision tree analysis, support vector machine and random forests). Classification and regression trees and random forest were used to select the most important features for differentiating salt-affected and unaffected areas. The results showed that the regression analyses produced weak models (<0.4 R squared). Better results were achieved using the supervised classifiers, but the algorithms tend to over-estimate salt-affected areas. A key finding was that none of the feature sets or classification algorithms stood out as being superior for monitoring salt accumulation at irrigation scheme level. This was attributed to the large variations in the spectral responses of different crops types at different growing stages, coupled with their individual tolerances to saline conditions.

  12. A Three-Phase Decision Model of Computer-Aided Coding for the Iranian Classification of Health Interventions (IRCHI)

    PubMed Central

    Azadmanjir, Zahra; Safdari, Reza; Ghazisaeedi, Marjan; Mokhtaran, Mehrshad; Kameli, Mohammad Esmail

    2017-01-01

    Introduction: Accurate coded data in the healthcare are critical. Computer-Assisted Coding (CAC) is an effective tool to improve clinical coding in particular when a new classification will be developed and implemented. But determine the appropriate method for development need to consider the specifications of existing CAC systems, requirements for each type, our infrastructure and also, the classification scheme. Aim: The aim of the study was the development of a decision model for determining accurate code of each medical intervention in Iranian Classification of Health Interventions (IRCHI) that can be implemented as a suitable CAC system. Methods: first, a sample of existing CAC systems was reviewed. Then feasibility of each one of CAC types was examined with regard to their prerequisites for their implementation. The next step, proper model was proposed according to the structure of the classification scheme and was implemented as an interactive system. Results: There is a significant relationship between the level of assistance of a CAC system and integration of it with electronic medical documents. Implementation of fully automated CAC systems is impossible due to immature development of electronic medical record and problems in using language for medical documenting. So, a model was proposed to develop semi-automated CAC system based on hierarchical relationships between entities in the classification scheme and also the logic of decision making to specify the characters of code step by step through a web-based interactive user interface for CAC. It was composed of three phases to select Target, Action and Means respectively for an intervention. Conclusion: The proposed model was suitable the current status of clinical documentation and coding in Iran and also, the structure of new classification scheme. Our results show it was practical. However, the model needs to be evaluated in the next stage of the research. PMID:28883671

  13. A Three-Phase Decision Model of Computer-Aided Coding for the Iranian Classification of Health Interventions (IRCHI).

    PubMed

    Azadmanjir, Zahra; Safdari, Reza; Ghazisaeedi, Marjan; Mokhtaran, Mehrshad; Kameli, Mohammad Esmail

    2017-06-01

    Accurate coded data in the healthcare are critical. Computer-Assisted Coding (CAC) is an effective tool to improve clinical coding in particular when a new classification will be developed and implemented. But determine the appropriate method for development need to consider the specifications of existing CAC systems, requirements for each type, our infrastructure and also, the classification scheme. The aim of the study was the development of a decision model for determining accurate code of each medical intervention in Iranian Classification of Health Interventions (IRCHI) that can be implemented as a suitable CAC system. first, a sample of existing CAC systems was reviewed. Then feasibility of each one of CAC types was examined with regard to their prerequisites for their implementation. The next step, proper model was proposed according to the structure of the classification scheme and was implemented as an interactive system. There is a significant relationship between the level of assistance of a CAC system and integration of it with electronic medical documents. Implementation of fully automated CAC systems is impossible due to immature development of electronic medical record and problems in using language for medical documenting. So, a model was proposed to develop semi-automated CAC system based on hierarchical relationships between entities in the classification scheme and also the logic of decision making to specify the characters of code step by step through a web-based interactive user interface for CAC. It was composed of three phases to select Target, Action and Means respectively for an intervention. The proposed model was suitable the current status of clinical documentation and coding in Iran and also, the structure of new classification scheme. Our results show it was practical. However, the model needs to be evaluated in the next stage of the research.

  14. Objective breast tissue image classification using Quantitative Transmission ultrasound tomography

    NASA Astrophysics Data System (ADS)

    Malik, Bilal; Klock, John; Wiskin, James; Lenox, Mark

    2016-12-01

    Quantitative Transmission Ultrasound (QT) is a powerful and emerging imaging paradigm which has the potential to perform true three-dimensional image reconstruction of biological tissue. Breast imaging is an important application of QT and allows non-invasive, non-ionizing imaging of whole breasts in vivo. Here, we report the first demonstration of breast tissue image classification in QT imaging. We systematically assess the ability of the QT images’ features to differentiate between normal breast tissue types. The three QT features were used in Support Vector Machines (SVM) classifiers, and classification of breast tissue as either skin, fat, glands, ducts or connective tissue was demonstrated with an overall accuracy of greater than 90%. Finally, the classifier was validated on whole breast image volumes to provide a color-coded breast tissue volume. This study serves as a first step towards a computer-aided detection/diagnosis platform for QT.

  15. Object-based Classification for Detecting Landslides and Stochastic Procedure to landslide susceptibility maps - A Case at Baolai Village, SW Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Ying-Tong; Chang, Kuo-Chen; Yang, Ci-Jian

    2017-04-01

    As the result of global warming in the past decades, Taiwan has experienced more and more extreme typhoons with hazardous massive landslides. In this study, we use object-oriented analysis method to classify landslide area at Baolai village by using Formosat-2 satellite images. We used for multiresolution segmented to generate the blocks, and used hierarchical logic to classified 5 different kinds of features. After that, classification the landslide into different type of landslide. Beside, we use stochastic procedure to integrate landslide susceptibility maps. This study assumed that in the extreme event, 2009 Typhoon Morakot, which precipitation goes to 1991.5mm in 5 days, and the highest landslide susceptible area. The results show that study area's landslide area was greatly changes, most of landslide was erosion by gully and made dip slope slide, or erosion by the stream, especially at undercut bank. From the landslide susceptibility maps, we know that the old landslide area have high potential to occur landslides in the extreme event. This study demonstrates the changing of landslide area and the landslide susceptible area. Keywords: Formosat-2, object-oriented, segmentation, classification, landslide, Baolai Village, SW Taiwan, FS

  16. Land cover classification of VHR airborne images for citrus grove identification

    NASA Astrophysics Data System (ADS)

    Amorós López, J.; Izquierdo Verdiguier, E.; Gómez Chova, L.; Muñoz Marí, J.; Rodríguez Barreiro, J. Z.; Camps Valls, G.; Calpe Maravilla, J.

    Managing land resources using remote sensing techniques is becoming a common practice. However, data analysis procedures should satisfy the high accuracy levels demanded by users (public or private companies and governments) in order to be extensively used. This paper presents a multi-stage classification scheme to update the citrus Geographical Information System (GIS) of the Comunidad Valenciana region (Spain). Spain is the first citrus fruit producer in Europe and the fourth in the world. In particular, citrus fruits represent 67% of the agricultural production in this region, with a total production of 4.24 million tons (campaign 2006-2007). The citrus GIS inventory, created in 2001, needs to be regularly updated in order to monitor changes quickly enough, and allow appropriate policy making and citrus production forecasting. Automatic methods are proposed in this work to facilitate this update, whose processing scheme is summarized as follows. First, an object-oriented feature extraction process is carried out for each cadastral parcel from very high spatial resolution aerial images (0.5 m). Next, several automatic classifiers (decision trees, artificial neural networks, and support vector machines) are trained and combined to improve the final classification accuracy. Finally, the citrus GIS is automatically updated if a high enough level of confidence, based on the agreement between classifiers, is achieved. This is the case for 85% of the parcels and accuracy results exceed 94%. The remaining parcels are classified by expert photo-interpreters in order to guarantee the high accuracy demanded by policy makers.

  17. WIRED for EC: New White Dwarfs with WISE Infrared Excesses and New Classification Schemes from the Edinburgh–Cape Blue Object Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennihy, E.; Clemens, J. C.; Dunlap, B. H.

    We present a simple method for identifying candidate white dwarf systems with dusty exoplanetary debris based on a single temperature blackbody model fit to the infrared excess. We apply this technique to a sample of Southern Hemisphere white dwarfs from the recently completed Edinburgh–Cape Blue Object Survey and identify four new promising dusty debris disk candidates. We demonstrate the efficacy of our selection method by recovering three of the four Spitzer confirmed dusty debris disk systems in our sample. Further investigation using archival high-resolution imaging shows that Spitzer data of the unrecovered fourth object is likely contaminated by a line-of-sightmore » object that either led to a misclassification as a dusty disk in the literature or is confounding our method. Finally, in our diagnostic plot, we show that dusty white dwarfs, which also host gaseous debris, lie along a boundary of our dusty debris disk region, providing clues to the origin and evolution of these especially interesting systems.« less

  18. Prediction of cause of death from forensic autopsy reports using text classification techniques: A comparative study.

    PubMed

    Mujtaba, Ghulam; Shuib, Liyana; Raj, Ram Gopal; Rajandram, Retnagowri; Shaikh, Khairunisa

    2018-07-01

    Automatic text classification techniques are useful for classifying plaintext medical documents. This study aims to automatically predict the cause of death from free text forensic autopsy reports by comparing various schemes for feature extraction, term weighing or feature value representation, text classification, and feature reduction. For experiments, the autopsy reports belonging to eight different causes of death were collected, preprocessed and converted into 43 master feature vectors using various schemes for feature extraction, representation, and reduction. The six different text classification techniques were applied on these 43 master feature vectors to construct a classification model that can predict the cause of death. Finally, classification model performance was evaluated using four performance measures i.e. overall accuracy, macro precision, macro-F-measure, and macro recall. From experiments, it was found that that unigram features obtained the highest performance compared to bigram, trigram, and hybrid-gram features. Furthermore, in feature representation schemes, term frequency, and term frequency with inverse document frequency obtained similar and better results when compared with binary frequency, and normalized term frequency with inverse document frequency. Furthermore, the chi-square feature reduction approach outperformed Pearson correlation, and information gain approaches. Finally, in text classification algorithms, support vector machine classifier outperforms random forest, Naive Bayes, k-nearest neighbor, decision tree, and ensemble-voted classifier. Our results and comparisons hold practical importance and serve as references for future works. Moreover, the comparison outputs will act as state-of-art techniques to compare future proposals with existing automated text classification techniques. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  19. Object-Based Image Classification of Floating Ice Used as Habitat for Harbor Seals in a Tidewater Glacier Fjord in Alaska

    NASA Astrophysics Data System (ADS)

    McNabb, R. W.; Womble, J. N.; Prakash, A.; Gens, R.; Ver Hoef, J.

    2014-12-01

    Tidewater glaciers play an important role in many landscape and ecosystem processes in fjords, terminating in the sea and calving icebergs and discharging meltwater directly into the ocean. Tidewater glaciers provide floating ice for use as habitat for harbor seals (Phoca vitulina richardii) for resting, pupping, nursing, molting, and avoiding predators. Tidewater glaciers are found in high concentrations in Southeast and Southcentral Alaska; currently, many of these glaciers are retreating or have stabilized in a retracted state, raising questions about the future availability of ice in these fjords as habitat for seals. Our primary objective is to investigate the relationship between harbor seal distribution and ice availability at an advancing tidewater glacier in Johns Hopkins Inlet, Glacier Bay National Park, Alaska. To this end, we use a combination of visible and infrared aerial photographs, object-based image analysis (OBIA), and statistical modeling techniques. We have developed a workflow to automate the processing of the imagery and the classification of the fjordscape (e.g., individual icebergs, brash ice, and open water), providing quantitative information on ice coverage as well as properties not typically found in traditional pixel-based classification techniques, such as block angularity and seal density across the fjord. Reflectance variation in the red channel of the optical images has proven to be the most important first-level criterion to separate open water from floating ice. This first-level criterion works well in areas without dense brash ice, but tends to misclassify dense brash ice as single icebergs. Isolating these large misclassified regions and applying a higher reflectance threshold as a second-level criterion helps to isolate individual ice blocks surrounded by dense brash ice. We present classification results from surveys taken during June and August, 2007-2013, as well as preliminary results from statistical modeling of the

  20. Hydrological Climate Classification: Can We Improve on Köppen-Geiger?

    NASA Astrophysics Data System (ADS)

    Knoben, W.; Woods, R. A.; Freer, J. E.

    2017-12-01

    Classification is essential in the study of complex natural systems, yet hydrology so far has no formal way to structure the climate forcing which underlies hydrologic response. Various climate classification systems can be borrowed from other disciplines but these are based on different organizing principles than a hydrological classification might use. From gridded global data we calculate a gridded aridity index, an aridity seasonality index and a rain-vs-snow index, which we use to cluster global locations into climate groups. We then define the membership degree of nearly 1100 catchments to each of our climate groups based on each catchment's climate and investigate the extent to which streamflow responses within each climate group are similar. We compare this climate classification approach with the often-used Köppen-Geiger classification, using statistical tests based on streamflow signature values. We find that three climate indices are sufficient to distinguish 18 different climate types world-wide. Climates tend to change gradually in space and catchments can thus belong to multiple climate groups, albeit with different degrees of membership. Streamflow responses within a climate group tend to be similar, regardless of the catchments' geographical proximity. A Wilcoxon two-sample test based on streamflow signature values for each climate group shows that the new classification can distinguish different flow regimes using this classification scheme. The Köppen-Geiger approach uses 29 climate classes but is less able to differentiate streamflow regimes. Climate forcing exerts a strong control on typical hydrologic response and both change gradually in space. This makes arbitrary hard boundaries in any classification scheme difficult to defend. Any hydrological classification should thus acknowledge these gradual changes in forcing. Catchment characteristics (soil or vegetation type, land use, etc) can vary more quickly in space than climate does, which

  1. Preprocessing and meta-classification for brain-computer interfaces.

    PubMed

    Hammon, Paul S; de Sa, Virginia R

    2007-03-01

    A brain-computer interface (BCI) is a system which allows direct translation of brain states into actions, bypassing the usual muscular pathways. A BCI system works by extracting user brain signals, applying machine learning algorithms to classify the user's brain state, and performing a computer-controlled action. Our goal is to improve brain state classification. Perhaps the most obvious way to improve classification performance is the selection of an advanced learning algorithm. However, it is now well known in the BCI community that careful selection of preprocessing steps is crucial to the success of any classification scheme. Furthermore, recent work indicates that combining the output of multiple classifiers (meta-classification) leads to improved classification rates relative to single classifiers (Dornhege et al., 2004). In this paper, we develop an automated approach which systematically analyzes the relative contributions of different preprocessing and meta-classification approaches. We apply this procedure to three data sets drawn from BCI Competition 2003 (Blankertz et al., 2004) and BCI Competition III (Blankertz et al., 2006), each of which exhibit very different characteristics. Our final classification results compare favorably with those from past BCI competitions. Additionally, we analyze the relative contributions of individual preprocessing and meta-classification choices and discuss which types of BCI data benefit most from specific algorithms.

  2. 14 CFR Section 14 - Objective Classification-Nonoperating Income and Expense

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... [ER-1401, 50 FR 245, Jan. 3, 1985] 81Interest on Long-term Debt and Capital Leases. (a) Record here... sheet classification purposes. 81.2Interest expense—capital leases. Record here for all capitalized... reasonably identifiable. (c) Amortization expense attributable to capital leases recorded in balance sheet...

  3. 14 CFR Section 14 - Objective Classification-Nonoperating Income and Expense

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... [ER-1401, 50 FR 245, Jan. 3, 1985] 81Interest on Long-term Debt and Capital Leases. (a) Record here... sheet classification purposes. 81.2Interest expense—capital leases. Record here for all capitalized... reasonably identifiable. (c) Amortization expense attributable to capital leases recorded in balance sheet...

  4. Objectivity in the classification of tumours of the nasal epithelium

    PubMed Central

    Michaels, L.; Hyams, V. J.

    1975-01-01

    A survey of tumours derived from each of the four cell types of nasal epithelium is presented. Criticism is levelled at the adoption of additional terms for tissue types such as lympho-epithelium and transitional cell epithelium and tumours said to be derived from them. Electron microscopy is of assistance in classification particularly in the detection of evidence of keratin synthesis. The proposed classification of tumours of the nasal epithelium is: (1) Pseudostratified columnar epithelium: (a) papillary adenoma, (b) papillary carcinoma. (2) Squamous epithelium: (a) everted squamous papilloma, (b) inverted papilloma, (c) squamous carcinoma of any grade of differentiation from well differentiated to undifferentiated. (3) Melanocyte: malignant melanoma. (4) Olfactory neuroepithelium: olfactory neuroblastoma. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7Fig. 8Fig. 9Fig. 10Fig. 11Fig. 12Fig. 13Fig. 14Fig. 15Fig. 16Fig. 17Fig. 18Fig. 19Fig. 21Fig. 20 PMID:1197175

  5. Exploring the impact of wavelet-based denoising in the classification of remote sensing hyperspectral images

    NASA Astrophysics Data System (ADS)

    Quesada-Barriuso, Pablo; Heras, Dora B.; Argüello, Francisco

    2016-10-01

    The classification of remote sensing hyperspectral images for land cover applications is a very intensive topic. In the case of supervised classification, Support Vector Machines (SVMs) play a dominant role. Recently, the Extreme Learning Machine algorithm (ELM) has been extensively used. The classification scheme previously published by the authors, and called WT-EMP, introduces spatial information in the classification process by means of an Extended Morphological Profile (EMP) that is created from features extracted by wavelets. In addition, the hyperspectral image is denoised in the 2-D spatial domain, also using wavelets and it is joined to the EMP via a stacked vector. In this paper, the scheme is improved achieving two goals. The first one is to reduce the classification time while preserving the accuracy of the classification by using ELM instead of SVM. The second one is to improve the accuracy results by performing not only a 2-D denoising for every spectral band, but also a previous additional 1-D spectral signature denoising applied to each pixel vector of the image. For each denoising the image is transformed by applying a 1-D or 2-D wavelet transform, and then a NeighShrink thresholding is applied. Improvements in terms of classification accuracy are obtained, especially for images with close regions in the classification reference map, because in these cases the accuracy of the classification in the edges between classes is more relevant.

  6. Consensus Classification Using Non-Optimized Classifiers.

    PubMed

    Brownfield, Brett; Lemos, Tony; Kalivas, John H

    2018-04-03

    Classifying samples into categories is a common problem in analytical chemistry and other fields. Classification is usually based on only one method, but numerous classifiers are available with some being complex, such as neural networks, and others are simple, such as k nearest neighbors. Regardless, most classification schemes require optimization of one or more tuning parameters for best classification accuracy, sensitivity, and specificity. A process not requiring exact selection of tuning parameter values would be useful. To improve classification, several ensemble approaches have been used in past work to combine classification results from multiple optimized single classifiers. The collection of classifications for a particular sample are then combined by a fusion process such as majority vote to form the final classification. Presented in this Article is a method to classify a sample by combining multiple classification methods without specifically classifying the sample by each method, that is, the classification methods are not optimized. The approach is demonstrated on three analytical data sets. The first is a beer authentication set with samples measured on five instruments, allowing fusion of multiple instruments by three ways. The second data set is composed of textile samples from three classes based on Raman spectra. This data set is used to demonstrate the ability to classify simultaneously with different data preprocessing strategies, thereby reducing the need to determine the ideal preprocessing method, a common prerequisite for accurate classification. The third data set contains three wine cultivars for three classes measured at 13 unique chemical and physical variables. In all cases, fusion of nonoptimized classifiers improves classification. Also presented are atypical uses of Procrustes analysis and extended inverted signal correction (EISC) for distinguishing sample similarities to respective classes.

  7. Classification-Based Spatial Error Concealment for Visual Communications

    NASA Astrophysics Data System (ADS)

    Chen, Meng; Zheng, Yefeng; Wu, Min

    2006-12-01

    In an error-prone transmission environment, error concealment is an effective technique to reconstruct the damaged visual content. Due to large variations of image characteristics, different concealment approaches are necessary to accommodate the different nature of the lost image content. In this paper, we address this issue and propose using classification to integrate the state-of-the-art error concealment techniques. The proposed approach takes advantage of multiple concealment algorithms and adaptively selects the suitable algorithm for each damaged image area. With growing awareness that the design of sender and receiver systems should be jointly considered for efficient and reliable multimedia communications, we proposed a set of classification-based block concealment schemes, including receiver-side classification, sender-side attachment, and sender-side embedding. Our experimental results provide extensive performance comparisons and demonstrate that the proposed classification-based error concealment approaches outperform the conventional approaches.

  8. Chondrule formation, metamorphism, brecciation, an important new primary chondrule group, and the classification of chondrules

    NASA Technical Reports Server (NTRS)

    Sears, Derek W. G.; Shaoxiong, Huang; Benoit, Paul H.

    1995-01-01

    The recently proposed compositional classification scheme for meteoritic chondrules divides the chondrules into groups depending on the composition of their two major phases, olivine (or pyroxene) and the mesostasis, both of which are genetically important. The scheme is here applied to discussions of three topics: the petrographic classification of Roosevelt County 075 (the least-metamorphosed H chondrite known), brecciation (an extremely important and ubiquitous process probably experienced by greater than 40% of all unequilibrated ordinary chondrites), and the group A5 chondrules in the least metamorphosed ordinary chondrites which have many similarities to chondrules in the highly metamorphosed 'equilibrated' chondrites. Since composition provides insights into both primary formation properties of the chondruies and the effects of metamorphism on the entire assemblage it is possible to determine the petrographic type of RC075 as 3.1 with unique certainty. Similarly, the near scheme can be applied to individual chondrules without knowledge of the petrographic type of the host chondrite, which makes it especially suitable for studying breccias. Finally, the new scheme has revealed the existence of chondrules not identified by previous techniques and which appear to be extremely important. Like group A1 and A2 chondrules (but unlike group B1 chondrules) the primitive group A5 chondruies did not supercool during formation, but unlike group A1 and A2 chondrules (and like group B1 chondrules) they did not suffer volatile loss and reduction during formation. It is concluded that the compositional classification scheme provides important new insights into the formation and history of chondrules and chondrites which would be overlooked by previous schemes.

  9. Evaluation of the Melanocytic Pathology Assessment Tool and Hierarchy for Diagnosis (MPATH-Dx) classification scheme for diagnosis of cutaneous melanocytic neoplasms: Results from the International Melanoma Pathology Study Group.

    PubMed

    Lott, Jason P; Elmore, Joann G; Zhao, Ge A; Knezevich, Stevan R; Frederick, Paul D; Reisch, Lisa M; Chu, Emily Y; Cook, Martin G; Duncan, Lyn M; Elenitsas, Rosalie; Gerami, Pedram; Landman, Gilles; Lowe, Lori; Messina, Jane L; Mihm, Martin C; van den Oord, Joost J; Rabkin, Michael S; Schmidt, Birgitta; Shea, Christopher R; Yun, Sook Jung; Xu, George X; Piepkorn, Michael W; Elder, David E; Barnhill, Raymond L

    2016-08-01

    Pathologists use diverse terminology when interpreting melanocytic neoplasms, potentially compromising quality of care. We sought to evaluate the Melanocytic Pathology Assessment Tool and Hierarchy for Diagnosis (MPATH-Dx) scheme, a 5-category classification system for melanocytic lesions. Participants (n = 16) of the 2013 International Melanoma Pathology Study Group Workshop provided independent case-level diagnoses and treatment suggestions for 48 melanocytic lesions. Individual diagnoses (including, when necessary, least and most severe diagnoses) were mapped to corresponding MPATH-Dx classes. Interrater agreement and correlation between MPATH-Dx categorization and treatment suggestions were evaluated. Most participants were board-certified dermatopathologists (n = 15), age 50 years or older (n = 12), male (n = 9), based in the United States (n = 11), and primary academic faculty (n = 14). Overall, participants generated 634 case-level diagnoses with treatment suggestions. Mean weighted kappa coefficients for diagnostic agreement after MPATH-Dx mapping (assuming least and most severe diagnoses, when necessary) were 0.70 (95% confidence interval 0.68-0.71) and 0.72 (95% confidence interval 0.71-0.73), respectively, whereas correlation between MPATH-Dx categorization and treatment suggestions was 0.91. This was a small sample size of experienced pathologists in a testing situation. Varying diagnostic nomenclature can be classified into a concise hierarchy using the MPATH-Dx scheme. Further research is needed to determine whether this classification system can facilitate diagnostic concordance in general pathology practice and improve patient care. Copyright © 2016 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  10. Application of Snyder-Dolan classification scheme to the selection of "orthogonal" columns for fast screening of illicit drugs and impurity profiling of pharmaceuticals--I. Isocratic elution.

    PubMed

    Fan, Wenzhe; Zhang, Yu; Carr, Peter W; Rutan, Sarah C; Dumarey, Melanie; Schellinger, Adam P; Pritts, Wayne

    2009-09-18

    Fourteen judiciously selected reversed phase columns were tested with 18 cationic drug solutes under the isocratic elution conditions advised in the Snyder-Dolan (S-D) hydrophobic subtraction method of column classification. The standard errors (S.E.) of the least squares regressions of logk' vs. logk'(REF) were obtained for a given column against a reference column and used to compare and classify columns based on their selectivity. The results are consistent with those obtained with a study of the 16 test solutes recommended by Snyder and Dolan. To the extent these drugs are representative, these results show that the S-D classification scheme is also generally applicable to pharmaceuticals under isocratic conditions. That is, those columns judged to be similar based on the 16 S-D solutes were similar based on the 18 drugs; furthermore those columns judged to have significantly different selectivities based on the 16 S-D probes appeared to be quite different for the drugs as well. Given that the S-D method has been used to classify more than 400 different types of reversed phases the extension to cationic drugs is a significant finding.

  11. Gemstones and geosciences in space and time. Digital maps to the "Chessboard classification scheme of mineral deposits"

    NASA Astrophysics Data System (ADS)

    Dill, Harald G.; Weber, Berthold

    2013-12-01

    The gemstones, covering the spectrum from jeweler's to showcase quality, have been presented in a tripartite subdivision, by country, geology and geomorphology realized in 99 digital maps with more than 2600 mineralized sites. The various maps were designed based on the "Chessboard classification scheme of mineral deposits" proposed by Dill (2010a, 2010b) to reveal the interrelations between gemstone deposits and mineral deposits of other commodities and direct our thoughts to potential new target areas for exploration. A number of 33 categories were used for these digital maps: chromium, nickel, titanium, iron, manganese, copper, tin-tungsten, beryllium, lithium, zinc, calcium, boron, fluorine, strontium, phosphorus, zirconium, silica, feldspar, feldspathoids, zeolite, amphibole (tiger's eye), olivine, pyroxenoid, garnet, epidote, sillimanite-andalusite, corundum-spinel - diaspore, diamond, vermiculite-pagodite, prehnite, sepiolite, jet, and amber. Besides the political base map (gems by country) the mineral deposit is drawn on a geological map, illustrating the main lithologies, stratigraphic units and tectonic structure to unravel the evolution of primary gemstone deposits in time and space. The geomorphological map is to show the control of climate and subaerial and submarine hydrography on the deposition of secondary gemstone deposits. The digital maps are designed so as to be plotted as a paper version of different scale and to upgrade them for an interactive use and link them to gemological databases.

  12. Comparison of Pixel-Based and Object-Based Classification Using Parameters and Non-Parameters Approach for the Pattern Consistency of Multi Scale Landcover

    NASA Astrophysics Data System (ADS)

    Juniati, E.; Arrofiqoh, E. N.

    2017-09-01

    Information extraction from remote sensing data especially land cover can be obtained by digital classification. In practical some people are more comfortable using visual interpretation to retrieve land cover information. However, it is highly influenced by subjectivity and knowledge of interpreter, also takes time in the process. Digital classification can be done in several ways, depend on the defined mapping approach and assumptions on data distribution. The study compared several classifiers method for some data type at the same location. The data used Landsat 8 satellite imagery, SPOT 6 and Orthophotos. In practical, the data used to produce land cover map in 1:50,000 map scale for Landsat, 1:25,000 map scale for SPOT and 1:5,000 map scale for Orthophotos, but using visual interpretation to retrieve information. Maximum likelihood Classifiers (MLC) which use pixel-based and parameters approach applied to such data, and also Artificial Neural Network classifiers which use pixel-based and non-parameters approach applied too. Moreover, this study applied object-based classifiers to the data. The classification system implemented is land cover classification on Indonesia topographic map. The classification applied to data source, which is expected to recognize the pattern and to assess consistency of the land cover map produced by each data. Furthermore, the study analyse benefits and limitations the use of methods.

  13. Multi-stage robust scheme for citrus identification from high resolution airborne images

    NASA Astrophysics Data System (ADS)

    Amorós-López, Julia; Izquierdo Verdiguier, Emma; Gómez-Chova, Luis; Muñoz-Marí, Jordi; Zoilo Rodríguez-Barreiro, Jorge; Camps-Valls, Gustavo; Calpe-Maravilla, Javier

    2008-10-01

    Identification of land cover types is one of the most critical activities in remote sensing. Nowadays, managing land resources by using remote sensing techniques is becoming a common procedure to speed up the process while reducing costs. However, data analysis procedures should satisfy the accuracy figures demanded by institutions and governments for further administrative actions. This paper presents a methodological scheme to update the citrus Geographical Information Systems (GIS) of the Comunidad Valenciana autonomous region, Spain). The proposed approach introduces a multi-stage automatic scheme to reduce visual photointerpretation and ground validation tasks. First, an object-oriented feature extraction process is carried out for each cadastral parcel from very high spatial resolution (VHR) images (0.5m) acquired in the visible and near infrared. Next, several automatic classifiers (decision trees, multilayer perceptron, and support vector machines) are trained and combined to improve the final accuracy of the results. The proposed strategy fulfills the high accuracy demanded by policy makers by means of combining automatic classification methods with visual photointerpretation available resources. A level of confidence based on the agreement between classifiers allows us an effective management by fixing the quantity of parcels to be reviewed. The proposed methodology can be applied to similar problems and applications.

  14. Modern classification and outcome predictors of surgery in patients with brain arteriovenous malformations.

    PubMed

    Tayebi Meybodi, Ali; Lawton, Michael T

    2018-02-23

    Brain arteriovenous malformations (bAVM) are challenging lesions. Part of this challenge stems from the infinite diversity of these lesions regarding shape, location, anatomy, and physiology. This diversity has called on a variety of treatment modalities for these lesions, of which microsurgical resection prevails as the mainstay of treatment. As such, outcome prediction and managing strategy mainly rely on unraveling the nature of these complex tangles and ways each lesion responds to various therapeutic modalities. This strategy needs the ability to decipher each lesion through accurate and efficient categorization. Therefore, classification schemes are essential parts of treatment planning and outcome prediction. This article summarizes different surgical classification schemes and outcome predictors proposed for bAVMs.

  15. Log-ratio transformed major element based multidimensional classification for altered High-Mg igneous rocks

    NASA Astrophysics Data System (ADS)

    Verma, Surendra P.; Rivera-Gómez, M. Abdelaly; Díaz-González, Lorena; Quiroz-Ruiz, Alfredo

    2016-12-01

    A new multidimensional classification scheme consistent with the chemical classification of the International Union of Geological Sciences (IUGS) is proposed for the nomenclature of High-Mg altered rocks. Our procedure is based on an extensive database of major element (SiO2, TiO2, Al2O3, Fe2O3t, MnO, MgO, CaO, Na2O, K2O, and P2O5) compositions of a total of 33,868 (920 High-Mg and 32,948 "Common") relatively fresh igneous rock samples. The database consisting of these multinormally distributed samples in terms of their isometric log-ratios was used to propose a set of 11 discriminant functions and 6 diagrams to facilitate High-Mg rock classification. The multinormality required by linear discriminant and canonical analysis was ascertained by a new computer program DOMuDaF. One multidimensional function can distinguish the High-Mg and Common igneous rocks with high percent success values of about 86.4% and 98.9%, respectively. Similarly, from 10 discriminant functions the High-Mg rocks can also be classified as one of the four rock types (komatiite, meimechite, picrite, and boninite), with high success values of about 88%-100%. Satisfactory functioning of this new classification scheme was confirmed by seven independent tests. Five further case studies involving application to highly altered rocks illustrate the usefulness of our proposal. A computer program HMgClaMSys was written to efficiently apply the proposed classification scheme, which will be available for online processing of igneous rock compositional data. Monte Carlo simulation modeling and mass-balance computations confirmed the robustness of our classification with respect to analytical errors and postemplacement compositional changes.

  16. Exploring synergistic benefits of Water-Food-Energy Nexus through multi-objective reservoir optimization schemes.

    PubMed

    Uen, Tinn-Shuan; Chang, Fi-John; Zhou, Yanlai; Tsai, Wen-Ping

    2018-08-15

    This study proposed a holistic three-fold scheme that synergistically optimizes the benefits of the Water-Food-Energy (WFE) Nexus by integrating the short/long-term joint operation of a multi-objective reservoir with irrigation ponds in response to urbanization. The three-fold scheme was implemented step by step: (1) optimizing short-term (daily scale) reservoir operation for maximizing hydropower output and final reservoir storage during typhoon seasons; (2) simulating long-term (ten-day scale) water shortage rates in consideration of the availability of irrigation ponds for both agricultural and public sectors during non-typhoon seasons; and (3) promoting the synergistic benefits of the WFE Nexus in a year-round perspective by integrating the short-term optimization and long-term simulation of reservoir operations. The pivotal Shihmen Reservoir and 745 irrigation ponds located in Taoyuan City of Taiwan together with the surrounding urban areas formed the study case. The results indicated that the optimal short-term reservoir operation obtained from the non-dominated sorting genetic algorithm II (NSGA-II) could largely increase hydropower output but just slightly affected water supply. The simulation results of the reservoir coupled with irrigation ponds indicated that such joint operation could significantly reduce agricultural and public water shortage rates by 22.2% and 23.7% in average, respectively, as compared to those of reservoir operation excluding irrigation ponds. The results of year-round short/long-term joint operation showed that water shortage rates could be reduced by 10% at most, the food production rate could be increased by up to 47%, and the hydropower benefit could increase up to 9.33 million USD per year, respectively, in a wet year. Consequently, the proposed methodology could be a viable approach to promoting the synergistic benefits of the WFE Nexus, and the results provided unique insights for stakeholders and policymakers to pursue

  17. Semi-Automated Classification of Seafloor Data Collected on the Delmarva Inner Shelf

    NASA Astrophysics Data System (ADS)

    Sweeney, E. M.; Pendleton, E. A.; Brothers, L. L.; Mahmud, A.; Thieler, E. R.

    2017-12-01

    We tested automated classification methods on acoustic bathymetry and backscatter data collected by the U.S. Geological Survey (USGS) and National Oceanic and Atmospheric Administration (NOAA) on the Delmarva inner continental shelf to efficiently and objectively identify sediment texture and geomorphology. Automated classification techniques are generally less subjective and take significantly less time than manual classification methods. We used a semi-automated process combining unsupervised and supervised classification techniques to characterize seafloor based on bathymetric slope and relative backscatter intensity. Statistical comparison of our automated classification results with those of a manual classification conducted on a subset of the acoustic imagery indicates that our automated method was highly accurate (95% total accuracy and 93% Kappa). Our methods resolve sediment ridges, zones of flat seafloor and areas of high and low backscatter. We compared our classification scheme with mean grain size statistics of samples collected in the study area and found that strong correlations between backscatter intensity and sediment texture exist. High backscatter zones are associated with the presence of gravel and shells mixed with sand, and low backscatter areas are primarily clean sand or sand mixed with mud. Slope classes further elucidate textural and geomorphologic differences in the seafloor, such that steep slopes (>0.35°) with high backscatter are most often associated with the updrift side of sand ridges and bedforms, whereas low slope with high backscatter correspond to coarse lag or shell deposits. Low backscatter and high slopes are most often found on the downdrift side of ridges and bedforms, and low backscatter and low slopes identify swale areas and sand sheets. We found that poor acoustic data quality was the most significant cause of inaccurate classification results, which required additional user input to mitigate. Our method worked well

  18. [The establishment, development and application of classification approach of freshwater phytoplankton based on the functional group: a review].

    PubMed

    Yang, Wen; Zhu, Jin-Yong; Lu, Kai-Hong; Wan, Li; Mao, Xiao-Hua

    2014-06-01

    Appropriate schemes for classification of freshwater phytoplankton are prerequisites and important tools for revealing phytoplanktonic succession and studying freshwater ecosystems. An alternative approach, functional group of freshwater phytoplankton, has been proposed and developed due to the deficiencies of Linnaean and molecular identification in ecological applications. The functional group of phytoplankton is a classification scheme based on autoecology. In this study, the theoretical basis and classification criterion of functional group (FG), morpho-functional group (MFG) and morphology-based functional group (MBFG) were summarized, as well as their merits and demerits. FG was considered as the optimal classification approach for the aquatic ecology research and aquatic environment evaluation. The application status of FG was introduced, with the evaluation standards and problems of two approaches to assess water quality on the basis of FG, index methods of Q and QR, being briefly discussed.

  19. Interactive Classification Technology

    NASA Technical Reports Server (NTRS)

    deBessonet, Cary

    2000-01-01

    The investigators upgraded a knowledge representation language called SL (Symbolic Language) and an automated reasoning system called SMS (Symbolic Manipulation System) to enable the more effective use of the technologies in automated reasoning and interactive classification systems. The overall goals of the project were: 1) the enhancement of the representation language SL to accommodate a wider range of meaning; 2) the development of a default inference scheme to operate over SL notation as it is encoded; and 3) the development of an interpreter for SL that would handle representations of some basic cognitive acts and perspectives.

  20. Evolutional schemes for objects with active nuclei

    NASA Technical Reports Server (NTRS)

    Komberg, B. V.

    1979-01-01

    The observational properties of quasistellar objects (QSO) reveal that they are extremely violent nuclei of distant galaxies, but the evolutionary stage of these galaxies is still undetermined. Various published attempts to classify QSO under different criteria - including the one based on the morphological type of the surrounding galaxy E- or S- are analyzed. There are evidences that radioactive quasars reside in E-, while radio-quiet quasars reside in both E- and S- systems. The latter may be evolutionary connected to Seyfert-like objects. A correlation between the nuclei activity level in systems of different morphological type and the relative amount of gas in them is noted. From the point of view of activity level and the duration of active stage of nuclei it is concluded that an interaction of galaxies with the intergalactic medium is of particular importance and must be most conspicuous in spheriodal systems of central regions of rich clusters, in tight groups and binary galaxies.

  1. An assessment of commonly employed satellite-based remote sensors for mapping mangrove species in Mexico using an NDVI-based classification scheme.

    PubMed

    Valderrama-Landeros, L; Flores-de-Santiago, F; Kovacs, J M; Flores-Verdugo, F

    2017-12-14

    Optimizing the classification accuracy of a mangrove forest is of utmost importance for conservation practitioners. Mangrove forest mapping using satellite-based remote sensing techniques is by far the most common method of classification currently used given the logistical difficulties of field endeavors in these forested wetlands. However, there is now an abundance of options from which to choose in regards to satellite sensors, which has led to substantially different estimations of mangrove forest location and extent with particular concern for degraded systems. The objective of this study was to assess the accuracy of mangrove forest classification using different remotely sensed data sources (i.e., Landsat-8, SPOT-5, Sentinel-2, and WorldView-2) for a system located along the Pacific coast of Mexico. Specifically, we examined a stressed semiarid mangrove forest which offers a variety of conditions such as dead areas, degraded stands, healthy mangroves, and very dense mangrove island formations. The results indicated that Landsat-8 (30 m per pixel) had  the lowest overall accuracy at 64% and that WorldView-2 (1.6 m per pixel) had the highest at 93%. Moreover, the SPOT-5 and the Sentinel-2 classifications (10 m per pixel) were very similar having accuracies of 75 and 78%, respectively. In comparison to WorldView-2, the other sensors overestimated the extent of Laguncularia racemosa and underestimated the extent of Rhizophora mangle. When considering such type of sensors, the higher spatial resolution can be particularly important in mapping small mangrove islands that often occur in degraded mangrove systems.

  2. ON DEPARTURES FROM INDEPENDENCE IN CROSS-CLASSIFICATIONS.

    ERIC Educational Resources Information Center

    CASE, C. MARSTON

    THIS NOTE IS CONCERNED WITH IDEAS AND PROBLEMS INVOLVED IN CROSS-CLASSIFICATION OF OBSERVATIONS ON A GIVEN POPULATION, ESPECIALLY TWO-DIMENSIONAL CROSS-CLASSIFICATIONS. MAIN OBJECTIVES OF THE NOTE INCLUDE--(1) ESTABLISHMENT OF A CONCEPTUAL FRAMEWORK FOR CHARACTERIZATION AND COMPARISON OF CROSS-CLASSIFICATIONS, (2) DISCUSSION OF EXISTING METHODS…

  3. A comparative study of advanced shock-capturing schemes applied to Burgers' equation

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; Przekwas, A. J.

    1990-01-01

    Several variations of the TVD scheme, ENO scheme, FCT scheme, and geometrical schemes, such as MUSCL and PPM, are considered. A comparative study of these schemes as applied to the Burgers' equation is presented. The objective is to assess their performance for problems involving formation and propagation of shocks, shock collisions, and expansion of discontinuities.

  4. Some new classification methods for hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Du, Pei-jun; Chen, Yun-hao; Jones, Simon; Ferwerda, Jelle G.; Chen, Zhi-jun; Zhang, Hua-peng; Tan, Kun; Yin, Zuo-xia

    2006-10-01

    Hyperspectral Remote Sensing (HRS) is one of the most significant recent achievements of Earth Observation Technology. Classification is the most commonly employed processing methodology. In this paper three new hyperspectral RS image classification methods are analyzed. These methods are: Object-oriented FIRS image classification, HRS image classification based on information fusion and HSRS image classification by Back Propagation Neural Network (BPNN). OMIS FIRS image is used as the example data. Object-oriented techniques have gained popularity for RS image classification in recent years. In such method, image segmentation is used to extract the regions from the pixel information based on homogeneity criteria at first, and spectral parameters like mean vector, texture, NDVI and spatial/shape parameters like aspect ratio, convexity, solidity, roundness and orientation for each region are calculated, finally classification of the image using the region feature vectors and also using suitable classifiers such as artificial neural network (ANN). It proves that object-oriented methods can improve classification accuracy since they utilize information and features both from the point and the neighborhood, and the processing unit is a polygon (in which all pixels are homogeneous and belong to the class). HRS image classification based on information fusion, divides all bands of the image into different groups initially, and extracts features from every group according to the properties of each group. Three levels of information fusion: data level fusion, feature level fusion and decision level fusion are used to HRS image classification. Artificial Neural Network (ANN) can perform well in RS image classification. In order to promote the advances of ANN used for HIRS image classification, Back Propagation Neural Network (BPNN), the most commonly used neural network, is used to HRS image classification.

  5. Automated flaw detection scheme for cast austenitic stainless steel weld specimens using Hilbert-Huang transform of ultrasonic phased array data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Tariq; Majumdar, Shantanu; Udpa, Lalita

    2012-05-17

    The objective of this work is to develop processing algorithms to detect and localize flaws using ultrasonic phased-array data. Data was collected on cast austenitic stainless stell (CASS) weld specimens onloan from the U.S. nuclear power industry' Pressurized Walter Reactor Owners Group (PWROG) traveling specimen set. Each specimen consists of a centrifugally cast stainless stell (CCSS) pipe section welded to a statically cst(SCSS) or wrought (WRSS) section. The paper presents a novel automated flaw detection and localization scheme using low frequency ultrasonic phased array inspection singals from the weld and heat affected zone of the based materials. The major stepsmore » of the overall scheme are preprocessing and region of interest (ROI) detection followed by the Hilbert-Huang transform (HHT) of A-scans in the detected ROIs. HHT offers time-frequency-energy distribution for each ROI. The Accumulation of energy in a particular frequency band is used as a classification feature for the particular ROI.« less

  6. Automatic liver volume segmentation and fibrosis classification

    NASA Astrophysics Data System (ADS)

    Bal, Evgeny; Klang, Eyal; Amitai, Michal; Greenspan, Hayit

    2018-02-01

    In this work, we present an automatic method for liver segmentation and fibrosis classification in liver computed-tomography (CT) portal phase scans. The input is a full abdomen CT scan with an unknown number of slices, and the output is a liver volume segmentation mask and a fibrosis grade. A multi-stage analysis scheme is applied to each scan, including: volume segmentation, texture features extraction and SVM based classification. Data contains portal phase CT examinations from 80 patients, taken with different scanners. Each examination has a matching Fibroscan grade. The dataset was subdivided into two groups: first group contains healthy cases and mild fibrosis, second group contains moderate fibrosis, severe fibrosis and cirrhosis. Using our automated algorithm, we achieved an average dice index of 0.93 ± 0.05 for segmentation and a sensitivity of 0.92 and specificity of 0.81for classification. To the best of our knowledge, this is a first end to end automatic framework for liver fibrosis classification; an approach that, once validated, can have a great potential value in the clinic.

  7. Application of Snyder-Dolan Classification Scheme to the Selection of “Orthogonal” Columns for Fast Screening for Illicit Drugs and Impurity Profiling of Pharmaceuticals - I. Isocratic Elution

    PubMed Central

    Fan, Wenzhe; Zhang, Yu; Carr, Peter W.; Rutan, Sarah C.; Dumarey, Melanie; Schellinger, Adam P.; Pritts, Wayne

    2011-01-01

    Fourteen judiciously selected reversed-phase columns were tested with 18 cationic drug solutes under the isocratic elution conditions advised in the Snyder-Dolan (S-D) hydrophobic subtraction method of column classification. The standard errors (S.E.) of the least squares regressions of log k′ vs. log k′REF were obtained for a given column against a reference column and used to compare and classify columns based on their selectivity. The results are consistent with those obtained with a study of the 16 test solutes recommended by Snyder and Dolan. To the extent that these drugs are representative these results show that the S-D classification scheme is also generally applicable to pharmaceuticals under isocratic conditions. That is, those columns judged to be similar based on the S-D 16 solutes were similar based on the 18 drugs; furthermore those columns judged to have significantly different selectivities based on the 16 S-D probes appeared to be quite different for the drugs as well. Given that the S-D method has been used to classify more than 400 different types of reversed phases the extension to cationic drugs is a significant finding. PMID:19698948

  8. Implementation of Objective PASC-Derived Taxon Demarcation Criteria for Official Classification of Filoviruses.

    PubMed

    Bào, Yīmíng; Amarasinghe, Gaya K; Basler, Christopher F; Bavari, Sina; Bukreyev, Alexander; Chandran, Kartik; Dolnik, Olga; Dye, John M; Ebihara, Hideki; Formenty, Pierre; Hewson, Roger; Kobinger, Gary P; Leroy, Eric M; Mühlberger, Elke; Netesov, Sergey V; Patterson, Jean L; Paweska, Janusz T; Smither, Sophie J; Takada, Ayato; Towner, Jonathan S; Volchkov, Viktor E; Wahl-Jensen, Victoria; Kuhn, Jens H

    2017-05-11

    The mononegaviral family Filoviridae has eight members assigned to three genera and seven species. Until now, genus and species demarcation were based on arbitrarily chosen filovirus genome sequence divergence values (≈50% for genera, ≈30% for species) and arbitrarily chosen phenotypic virus or virion characteristics. Here we report filovirus genome sequence-based taxon demarcation criteria using the publicly accessible PAirwise Sequencing Comparison (PASC) tool of the US National Center for Biotechnology Information (Bethesda, MD, USA). Comparison of all available filovirus genomes in GenBank using PASC revealed optimal genus demarcation at the 55-58% sequence diversity threshold range for genera and at the 23-36% sequence diversity threshold range for species. Because these thresholds do not change the current official filovirus classification, these values are now implemented as filovirus taxon demarcation criteria that may solely be used for filovirus classification in case additional data are absent. A near-complete, coding-complete, or complete filovirus genome sequence will now be required to allow official classification of any novel "filovirus." Classification of filoviruses into existing taxa or determining the need for novel taxa is now straightforward and could even become automated using a presented algorithm/flowchart rooted in RefSeq (type) sequences.

  9. Artificial neural network classification using a minimal training set - Comparison to conventional supervised classification

    NASA Technical Reports Server (NTRS)

    Hepner, George F.; Logan, Thomas; Ritter, Niles; Bryant, Nevin

    1990-01-01

    Recent research has shown an artificial neural network (ANN) to be capable of pattern recognition and the classification of image data. This paper examines the potential for the application of neural network computing to satellite image processing. A second objective is to provide a preliminary comparison and ANN classification. An artificial neural network can be trained to do land-cover classification of satellite imagery using selected sites representative of each class in a manner similar to conventional supervised classification. One of the major problems associated with recognition and classifications of pattern from remotely sensed data is the time and cost of developing a set of training sites. This reseach compares the use of an ANN back propagation classification procedure with a conventional supervised maximum likelihood classification procedure using a minimal training set. When using a minimal training set, the neural network is able to provide a land-cover classification superior to the classification derived from the conventional classification procedure. This research is the foundation for developing application parameters for further prototyping of software and hardware implementations for artificial neural networks in satellite image and geographic information processing.

  10. An MBO Scheme for Minimizing the Graph Ohta-Kawasaki Functional

    NASA Astrophysics Data System (ADS)

    van Gennip, Yves

    2018-06-01

    We study a graph-based version of the Ohta-Kawasaki functional, which was originally introduced in a continuum setting to model pattern formation in diblock copolymer melts and has been studied extensively as a paradigmatic example of a variational model for pattern formation. Graph-based problems inspired by partial differential equations (PDEs) and variational methods have been the subject of many recent papers in the mathematical literature, because of their applications in areas such as image processing and data classification. This paper extends the area of PDE inspired graph-based problems to pattern-forming models, while continuing in the tradition of recent papers in the field. We introduce a mass conserving Merriman-Bence-Osher (MBO) scheme for minimizing the graph Ohta-Kawasaki functional with a mass constraint. We present three main results: (1) the Lyapunov functionals associated with this MBO scheme Γ -converge to the Ohta-Kawasaki functional (which includes the standard graph-based MBO scheme and total variation as a special case); (2) there is a class of graphs on which the Ohta-Kawasaki MBO scheme corresponds to a standard MBO scheme on a transformed graph and for which generalized comparison principles hold; (3) this MBO scheme allows for the numerical computation of (approximate) minimizers of the graph Ohta-Kawasaki functional with a mass constraint.

  11. Computer-aided Classification of Mammographic Masses Using Visually Sensitive Image Features

    PubMed Central

    Wang, Yunzhi; Aghaei, Faranak; Zarafshani, Ali; Qiu, Yuchen; Qian, Wei; Zheng, Bin

    2017-01-01

    Purpose To develop a new computer-aided diagnosis (CAD) scheme that computes visually sensitive image features routinely used by radiologists to develop a machine learning classifier and distinguish between the malignant and benign breast masses detected from digital mammograms. Methods An image dataset including 301 breast masses was retrospectively selected. From each segmented mass region, we computed image features that mimic five categories of visually sensitive features routinely used by radiologists in reading mammograms. We then selected five optimal features in the five feature categories and applied logistic regression models for classification. A new CAD interface was also designed to show lesion segmentation, computed feature values and classification score. Results Areas under ROC curves (AUC) were 0.786±0.026 and 0.758±0.027 when to classify mass regions depicting on two view images, respectively. By fusing classification scores computed from two regions, AUC increased to 0.806±0.025. Conclusion This study demonstrated a new approach to develop CAD scheme based on 5 visually sensitive image features. Combining with a “visual aid” interface, CAD results may be much more easily explainable to the observers and increase their confidence to consider CAD generated classification results than using other conventional CAD approaches, which involve many complicated and visually insensitive texture features. PMID:27911353

  12. Towards biological plausibility of electronic noses: A spiking neural network based approach for tea odour classification.

    PubMed

    Sarkar, Sankho Turjo; Bhondekar, Amol P; Macaš, Martin; Kumar, Ritesh; Kaur, Rishemjit; Sharma, Anupma; Gulati, Ashu; Kumar, Amod

    2015-11-01

    The paper presents a novel encoding scheme for neuronal code generation for odour recognition using an electronic nose (EN). This scheme is based on channel encoding using multiple Gaussian receptive fields superimposed over the temporal EN responses. The encoded data is further applied to a spiking neural network (SNN) for pattern classification. Two forms of SNN, a back-propagation based SpikeProp and a dynamic evolving SNN are used to learn the encoded responses. The effects of information encoding on the performance of SNNs have been investigated. Statistical tests have been performed to determine the contribution of the SNN and the encoding scheme to overall odour discrimination. The approach has been implemented in odour classification of orthodox black tea (Kangra-Himachal Pradesh Region) thereby demonstrating a biomimetic approach for EN data analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Stokes space modulation format classification based on non-iterative clustering algorithm for coherent optical receivers.

    PubMed

    Mai, Xiaofeng; Liu, Jie; Wu, Xiong; Zhang, Qun; Guo, Changjian; Yang, Yanfu; Li, Zhaohui

    2017-02-06

    A Stokes-space modulation format classification (MFC) technique is proposed for coherent optical receivers by using a non-iterative clustering algorithm. In the clustering algorithm, two simple parameters are calculated to help find the density peaks of the data points in Stokes space and no iteration is required. Correct MFC can be realized in numerical simulations among PM-QPSK, PM-8QAM, PM-16QAM, PM-32QAM and PM-64QAM signals within practical optical signal-to-noise ratio (OSNR) ranges. The performance of the proposed MFC algorithm is also compared with those of other schemes based on clustering algorithms. The simulation results show that good classification performance can be achieved using the proposed MFC scheme with moderate time complexity. Proof-of-concept experiments are finally implemented to demonstrate MFC among PM-QPSK/16QAM/64QAM signals, which confirm the feasibility of our proposed MFC scheme.

  14. Support vector machine and principal component analysis for microarray data classification

    NASA Astrophysics Data System (ADS)

    Astuti, Widi; Adiwijaya

    2018-03-01

    Cancer is a leading cause of death worldwide although a significant proportion of it can be cured if it is detected early. In recent decades, technology called microarray takes an important role in the diagnosis of cancer. By using data mining technique, microarray data classification can be performed to improve the accuracy of cancer diagnosis compared to traditional techniques. The characteristic of microarray data is small sample but it has huge dimension. Since that, there is a challenge for researcher to provide solutions for microarray data classification with high performance in both accuracy and running time. This research proposed the usage of Principal Component Analysis (PCA) as a dimension reduction method along with Support Vector Method (SVM) optimized by kernel functions as a classifier for microarray data classification. The proposed scheme was applied on seven data sets using 5-fold cross validation and then evaluation and analysis conducted on term of both accuracy and running time. The result showed that the scheme can obtained 100% accuracy for Ovarian and Lung Cancer data when Linear and Cubic kernel functions are used. In term of running time, PCA greatly reduced the running time for every data sets.

  15. sdg boson model in the SU(3) scheme

    NASA Astrophysics Data System (ADS)

    Akiyama, Yoshimi

    1985-02-01

    Basic properties of the interacting boson model with s-, d- and g-bosons are investigated in rotational nuclei. An SU(3)-seniority scheme is found for the classification of physically important states according to a group reduction chain U(15) ⊃ SU(3). The capability of describing rotational bands increases enormously in comparison with the ordinary sd interacting boson model. The sdg boson model is shown to be able to describe the so-called anharmonicity effect recently observed in the 168Er nucleus.

  16. Sensitivity analysis of the GEMS soil organic carbon model to land cover land use classification uncertainties under different climate scenarios in Senegal

    USGS Publications Warehouse

    Dieye, A.M.; Roy, David P.; Hanan, N.P.; Liu, S.; Hansen, M.; Toure, A.

    2012-01-01

    Spatially explicit land cover land use (LCLU) change information is needed to drive biogeochemical models that simulate soil organic carbon (SOC) dynamics. Such information is increasingly being mapped using remotely sensed satellite data with classification schemes and uncertainties constrained by the sensing system, classification algorithms and land cover schemes. In this study, automated LCLU classification of multi-temporal Landsat satellite data were used to assess the sensitivity of SOC modeled by the Global Ensemble Biogeochemical Modeling System (GEMS). The GEMS was run for an area of 1560 km2 in Senegal under three climate change scenarios with LCLU maps generated using different Landsat classification approaches. This research provides a method to estimate the variability of SOC, specifically the SOC uncertainty due to satellite classification errors, which we show is dependent not only on the LCLU classification errors but also on where the LCLU classes occur relative to the other GEMS model inputs.

  17. Cooperative Learning for Distributed In-Network Traffic Classification

    NASA Astrophysics Data System (ADS)

    Joseph, S. B.; Loo, H. R.; Ismail, I.; Andromeda, T.; Marsono, M. N.

    2017-04-01

    Inspired by the concept of autonomic distributed/decentralized network management schemes, we consider the issue of information exchange among distributed network nodes to network performance and promote scalability for in-network monitoring. In this paper, we propose a cooperative learning algorithm for propagation and synchronization of network information among autonomic distributed network nodes for online traffic classification. The results show that network nodes with sharing capability perform better with a higher average accuracy of 89.21% (sharing data) and 88.37% (sharing clusters) compared to 88.06% for nodes without cooperative learning capability. The overall performance indicates that cooperative learning is promising for distributed in-network traffic classification.

  18. REGIONAL-SCALE WIND FIELD CLASSIFICATION EMPLOYING CLUSTER ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glascoe, L G; Glaser, R E; Chin, H S

    2004-06-17

    The classification of time-varying multivariate regional-scale wind fields at a specific location can assist event planning as well as consequence and risk analysis. Further, wind field classification involves data transformation and inference techniques that effectively characterize stochastic wind field variation. Such a classification scheme is potentially useful for addressing overall atmospheric transport uncertainty and meteorological parameter sensitivity issues. Different methods to classify wind fields over a location include the principal component analysis of wind data (e.g., Hardy and Walton, 1978) and the use of cluster analysis for wind data (e.g., Green et al., 1992; Kaufmann and Weber, 1996). The goalmore » of this study is to use a clustering method to classify the winds of a gridded data set, i.e, from meteorological simulations generated by a forecast model.« less

  19. Computer-aided classification of breast masses using contrast-enhanced digital mammograms

    NASA Astrophysics Data System (ADS)

    Danala, Gopichandh; Aghaei, Faranak; Heidari, Morteza; Wu, Teresa; Patel, Bhavika; Zheng, Bin

    2018-02-01

    By taking advantages of both mammography and breast MRI, contrast-enhanced digital mammography (CEDM) has emerged as a new promising imaging modality to improve efficacy of breast cancer screening and diagnosis. The primary objective of study is to develop and evaluate a new computer-aided detection and diagnosis (CAD) scheme of CEDM images to classify between malignant and benign breast masses. A CEDM dataset consisting of 111 patients (33 benign and 78 malignant) was retrospectively assembled. Each case includes two types of images namely, low-energy (LE) and dual-energy subtracted (DES) images. First, CAD scheme applied a hybrid segmentation method to automatically segment masses depicting on LE and DES images separately. Optimal segmentation results from DES images were also mapped to LE images and vice versa. Next, a set of 109 quantitative image features related to mass shape and density heterogeneity was initially computed. Last, four multilayer perceptron-based machine learning classifiers integrated with correlationbased feature subset evaluator and leave-one-case-out cross-validation method was built to classify mass regions depicting on LE and DES images, respectively. Initially, when CAD scheme was applied to original segmentation of DES and LE images, the areas under ROC curves were 0.7585+/-0.0526 and 0.7534+/-0.0470, respectively. After optimal segmentation mapping from DES to LE images, AUC value of CAD scheme significantly increased to 0.8477+/-0.0376 (p<0.01). Since DES images eliminate overlapping effect of dense breast tissue on lesions, segmentation accuracy was significantly improved as compared to regular mammograms, the study demonstrated that computer-aided classification of breast masses using CEDM images yielded higher performance.

  20. 22 CFR 9.2 - Objective.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Objective. 9.2 Section 9.2 Foreign Relations DEPARTMENT OF STATE GENERAL SECURITY INFORMATION REGULATIONS § 9.2 Objective. The objective of the Department's classification program is to ensure that national security information is protected from...

  1. 22 CFR 9.2 - Objective.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Objective. 9.2 Section 9.2 Foreign Relations DEPARTMENT OF STATE GENERAL SECURITY INFORMATION REGULATIONS § 9.2 Objective. The objective of the Department's classification program is to ensure that national security information is protected from...

  2. Rank preserving sparse learning for Kinect based scene classification.

    PubMed

    Tao, Dapeng; Jin, Lianwen; Yang, Zhao; Li, Xuelong

    2013-10-01

    With the rapid development of the RGB-D sensors and the promptly growing population of the low-cost Microsoft Kinect sensor, scene classification, which is a hard, yet important, problem in computer vision, has gained a resurgence of interest recently. That is because the depth of information provided by the Kinect sensor opens an effective and innovative way for scene classification. In this paper, we propose a new scheme for scene classification, which applies locality-constrained linear coding (LLC) to local SIFT features for representing the RGB-D samples and classifies scenes through the cooperation between a new rank preserving sparse learning (RPSL) based dimension reduction and a simple classification method. RPSL considers four aspects: 1) it preserves the rank order information of the within-class samples in a local patch; 2) it maximizes the margin between the between-class samples on the local patch; 3) the L1-norm penalty is introduced to obtain the parsimony property; and 4) it models the classification error minimization by utilizing the least-squares error minimization. Experiments are conducted on the NYU Depth V1 dataset and demonstrate the robustness and effectiveness of RPSL for scene classification.

  3. Significance of clustering and classification applications in digital and physical libraries

    NASA Astrophysics Data System (ADS)

    Triantafyllou, Ioannis; Koulouris, Alexandros; Zervos, Spiros; Dendrinos, Markos; Giannakopoulos, Georgios

    2015-02-01

    Applications of clustering and classification techniques can be proved very significant in both digital and physical (paper-based) libraries. The most essential application, document classification and clustering, is crucial for the content that is produced and maintained in digital libraries, repositories, databases, social media, blogs etc., based on various tags and ontology elements, transcending the traditional library-oriented classification schemes. Other applications with very useful and beneficial role in the new digital library environment involve document routing, summarization and query expansion. Paper-based libraries can benefit as well since classification combined with advanced material characterization techniques such as FTIR (Fourier Transform InfraRed spectroscopy) can be vital for the study and prevention of material deterioration. An improved two-level self-organizing clustering architecture is proposed in order to enhance the discrimination capacity of the learning space, prior to classification, yielding promising results when applied to the above mentioned library tasks.

  4. Mapping changes in the largest continuous Amazonian mangrove belt using object-based classification of multisensor satellite imagery

    NASA Astrophysics Data System (ADS)

    Nascimento, Wilson R.; Souza-Filho, Pedro Walfir M.; Proisy, Christophe; Lucas, Richard M.; Rosenqvist, Ake

    2013-01-01

    Mapping and monitoring mangrove ecosystems is a crucial objective for tropical countries, particularly where human disturbance occurs and because of uncertainties associated with sea level and climatic fluctuation. In many tropical regions, such efforts have focused largely on the use of optical data despite low capture rates because of persistent cloud cover. Recognizing the ability of Synthetic Aperture Radar (SAR) for providing cloud-free observations, this study investigated the use of JERS-1 SAR and ALOS PALSAR data, acquired in 1996 and 2008 respectively, for mapping the extent of mangroves along the Brazilian coastline, from east of the Amazon River mouth, Pará State, to the Bay of São José in Maranhão. For each year, an object-orientated classification of major land covers (mangrove, secondary vegetation, gallery and swamp forest, open water, intermittent lakes and bare areas) was performed with the resulting maps then compared to quantify change. Comparison with available ground truth data indicated a general accuracy in the 2008 image classification of all land covers of 96% (kappa = 90.6%, tau = 92.6%). Over the 12 year period, the area of mangrove increased by 718.6 km2 from 6705 m2 to 7423.60 km2, with 1931.0 km² of expansion and 1213 km² of erosion noted; 5493 km² remained unchanged in extent. The general accuracy relating to changes in mangroves was 83.3% (Kappa 66.1%; tau 66.7%). The study confirmed that these mangroves constituted the largest continuous belt globally and were experiencing significant change because of the dynamic coastal environment and the influence of sedimentation from the Amazon River along the shoreline. The study recommends continued observations using combinations of SAR and optical data to establish trends in mangrove distributions and implications for provision of ecosystem services (e.g., fish/invertebrate nurseries, carbon storage and coastal protection).

  5. USCS and the USDA Soil Classification System: Development of a Mapping Scheme

    DTIC Science & Technology

    2015-03-01

    important to human daily living. A variety of disciplines (geology, agriculture, engineering, etc.) require a sys- tematic categorization of soil, detailing...it is often important to also con- sider parameters that indicate soil strength. Two important properties used for engineering-related problems are...that many textural clas- sification systems were developed to meet specifics needs. In agriculture, textural classification is used to determine crop

  6. U.S. Geological Survey ArcMap Sediment Classification tool

    USGS Publications Warehouse

    O'Malley, John

    2007-01-01

    The U.S. Geological Survey (USGS) ArcMap Sediment Classification tool is a custom toolbar that extends the Environmental Systems Research Institute, Inc. (ESRI) ArcGIS 9.2 Desktop application to aid in the analysis of seabed sediment classification. The tool uses as input either a point data layer with field attributes containing percentage of gravel, sand, silt, and clay or four raster data layers representing a percentage of sediment (0-100%) for the various sediment grain size analysis: sand, gravel, silt and clay. This tool is designed to analyze the percent of sediment at a given location and classify the sediments according to either the Folk (1954, 1974) or Shepard (1954) as modified by Schlee(1973) classification schemes. The sediment analysis tool is based upon the USGS SEDCLASS program (Poppe, et al. 2004).

  7. Exploiting unsupervised and supervised classification for segmentation of the pathological lung in CT

    NASA Astrophysics Data System (ADS)

    Korfiatis, P.; Kalogeropoulou, C.; Daoussis, D.; Petsas, T.; Adonopoulos, A.; Costaridou, L.

    2009-07-01

    Delineation of lung fields in presence of diffuse lung diseases (DLPDs), such as interstitial pneumonias (IP), challenges segmentation algorithms. To deal with IP patterns affecting the lung border an automated image texture classification scheme is proposed. The proposed segmentation scheme is based on supervised texture classification between lung tissue (normal and abnormal) and surrounding tissue (pleura and thoracic wall) in the lung border region. This region is coarsely defined around an initial estimate of lung border, provided by means of Markov Radom Field modeling and morphological operations. Subsequently, a support vector machine classifier was trained to distinguish between the above two classes of tissue, using textural feature of gray scale and wavelet domains. 17 patients diagnosed with IP, secondary to connective tissue diseases were examined. Segmentation performance in terms of overlap was 0.924±0.021, and for shape differentiation mean, rms and maximum distance were 1.663±0.816, 2.334±1.574 and 8.0515±6.549 mm, respectively. An accurate, automated scheme is proposed for segmenting abnormal lung fields in HRC affected by IP

  8. Evaluation of host and viral factors associated with severe dengue based on the 2009 WHO classification.

    PubMed

    Pozo-Aguilar, Jorge O; Monroy-Martínez, Verónica; Díaz, Daniel; Barrios-Palacios, Jacqueline; Ramos, Celso; Ulloa-García, Armando; García-Pillado, Janet; Ruiz-Ordaz, Blanca H

    2014-12-11

    Dengue fever (DF) is the most prevalent arthropod-borne viral disease affecting humans. The World Health Organization (WHO) proposed a revised classification in 2009 to enable the more effective identification of cases of severe dengue (SD). This was designed primarily as a clinical tool, but it also enables cases of SD to be differentiated into three specific subcategories (severe vascular leakage, severe bleeding, and severe organ dysfunction). However, no study has addressed whether this classification has advantage in estimating factors associated with the progression of disease severity or dengue pathogenesis. We evaluate in a dengue outbreak associated risk factors that could contribute to the development of SD according to the 2009 WHO classification. A prospective cross-sectional study was performed during an epidemic of dengue in 2009 in Chiapas, Mexico. Data were analyzed for host and viral factors associated with dengue cases, using the 1997 and 2009 WHO classifications. The cost-benefit ratio (CBR) was also estimated. The sensitivity in the 1997 WHO classification for determining SD was 75%, and the specificity was 97.7%. For the 2009 scheme, these were 100% and 81.1%, respectively. The 2009 classification showed a higher benefit (537%) with a lower cost (10.2%) than the 1997 WHO scheme. A secondary antibody response was strongly associated with SD. Early viral load was higher in cases of SD than in those with DF. Logistic regression analysis identified predictive SD factors (secondary infection, disease phase, viral load) within the 2009 classification. However, within the 1997 scheme it was not possible to differentiate risk factors between DF and dengue hemorrhagic fever or dengue shock syndrome. The critical clinical stage for determining SD progression was the transition from fever to defervescence in which plasma leakage can occur. The clinical phenotype of SD is influenced by the host (secondary response) and viral factors (viral load). The 2009

  9. Texture as a basis for acoustic classification of substrate in the nearshore region

    NASA Astrophysics Data System (ADS)

    Dennison, A.; Wattrus, N. J.

    2016-12-01

    Segmentation and classification of substrate type from two locations in Lake Superior, are predicted using multivariate statistical processing of textural measures derived from shallow-water, high-resolution multibeam bathymetric data. During a multibeam sonar survey, both bathymetric and backscatter data are collected. It is well documented that the statistical characteristic of a sonar backscatter mosaic is dependent on substrate type. While classifying the bottom-type on the basis on backscatter alone can accurately predict and map bottom-type, it lacks the ability to resolve and capture fine textural details, an important factor in many habitat mapping studies. Statistical processing can capture the pertinent details about the bottom-type that are rich in textural information. Further multivariate statistical processing can then isolate characteristic features, and provide the basis for an accurate classification scheme. Preliminary results from an analysis of bathymetric data and ground-truth samples collected from the Amnicon River, Superior, Wisconsin, and the Lester River, Duluth, Minnesota, demonstrate the ability to process and develop a novel classification scheme of the bottom type in two geomorphologically distinct areas.

  10. Classifier fusion for VoIP attacks classification

    NASA Astrophysics Data System (ADS)

    Safarik, Jakub; Rezac, Filip

    2017-05-01

    SIP is one of the most successful protocols in the field of IP telephony communication. It establishes and manages VoIP calls. As the number of SIP implementation rises, we can expect a higher number of attacks on the communication system in the near future. This work aims at malicious SIP traffic classification. A number of various machine learning algorithms have been developed for attack classification. The paper presents a comparison of current research and the use of classifier fusion method leading to a potential decrease in classification error rate. Use of classifier combination makes a more robust solution without difficulties that may affect single algorithms. Different voting schemes, combination rules, and classifiers are discussed to improve the overall performance. All classifiers have been trained on real malicious traffic. The concept of traffic monitoring depends on the network of honeypot nodes. These honeypots run in several networks spread in different locations. Separation of honeypots allows us to gain an independent and trustworthy attack information.

  11. Multisource Data Classification Using A Hybrid Semi-supervised Learning Scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vatsavai, Raju; Bhaduri, Budhendra L; Shekhar, Shashi

    2009-01-01

    In many practical situations thematic classes can not be discriminated by spectral measurements alone. Often one needs additional features such as population density, road density, wetlands, elevation, soil types, etc. which are discrete attributes. On the other hand remote sensing image features are continuous attributes. Finding a suitable statistical model and estimation of parameters is a challenging task in multisource (e.g., discrete and continuous attributes) data classification. In this paper we present a semi-supervised learning method by assuming that the samples were generated by a mixture model, where each component could be either a continuous or discrete distribution. Overall classificationmore » accuracy of the proposed method is improved by 12% in our initial experiments.« less

  12. The EpiOcular™ Eye Irritation Test is the Method of Choice for the In Vitro Eye Irritation Testing of Agrochemical Formulations: Correlation Analysis of EpiOcular Eye Irritation Test and BCOP Test Data According to the UN GHS, US EPA and Brazil ANVISA Classification Schemes.

    PubMed

    Kolle, Susanne N; Rey Moreno, Maria Cecilia; Mayer, Winfried; van Cott, Andrew; van Ravenzwaay, Bennard; Landsiedel, Robert

    2015-07-01

    The Bovine Corneal Opacity and Permeability (BCOP) test is commonly used for the identification of severe ocular irritants (GHS Category 1), but it is not recommended for the identification of ocular irritants (GHS Category 2). The incorporation of human reconstructed tissue model-based tests into a tiered test strategy to identify ocular non-irritants and replace the Draize rabbit eye irritation test has been suggested (OECD TG 405). The value of the EpiOcular™ Eye Irritation Test (EIT) for the prediction of ocular non-irritants (GHS No Category) has been demonstrated, and an OECD Test Guideline (TG) was drafted in 2014. The purpose of this study was to evaluate whether the BCOP test, in conjunction with corneal histopathology (as suggested for the evaluation of the depth of the injury( and/or the EpiOcular-EIT, could be used to predict the eye irritation potential of agrochemical formulations according to the UN GHS, US EPA and Brazil ANVISA classification schemes. We have assessed opacity, permeability and histopathology in the BCOP assay, and relative tissue viability in the EpiOcular-EIT, for 97 agrochemical formulations with available in vivo eye irritation data. By using the OECD TG 437 protocol for liquids, the BCOP test did not result in sufficient correct predictions of severe ocular irritants for any of the three classification schemes. The lack of sensitivity could be improved somewhat by the inclusion of corneal histopathology, but the relative viability in the EpiOcular-EIT clearly outperformed the BCOP test for all three classification schemes. The predictive capacity of the EpiOcular-EIT for ocular non-irritants (UN GHS No Category) for the 97 agrochemical formulations tested (91% sensitivity, 72% specificity and 82% accuracy for UN GHS classification) was comparable to that obtained in the formal validation exercise underlying the OECD draft TG. We therefore conclude that the EpiOcular-EIT is currently the best in vitro method for the prediction

  13. Classification of infectious bursal disease virus into genogroups.

    PubMed

    Michel, Linda O; Jackwood, Daral J

    2017-12-01

    Infectious bursal disease virus (IBDV) causes infectious bursal disease (IBD), an immunosuppressive disease of poultry. The current classification scheme of IBDV is confusing because it is based on antigenic types (variant and classical) as well as pathotypes. Many of the amino acid changes differentiating these various classifications are found in a hypervariable region of the capsid protein VP2 (hvVP2), the major host protective antigen. Data from this study were used to propose a new classification scheme for IBDV based solely on genogroups identified from phylogenetic analysis of the hvVP2 of strains worldwide. Seven major genogroups were identified, some of which are geographically restricted and others that have global dispersion, such as genogroup 1. Genogroup 2 viruses are predominately distributed in North America, while genogroup 3 viruses are most often identified on other continents. Additionally, we have identified a population of genogroup 3 vvIBDV isolates that have an amino acid change from alanine to threonine at position 222 while maintaining other residues conserved in this genogroup (I242, I256 and I294). A222T is an important mutation because amino acid 222 is located in the first of four surface loops of hvVP2. A similar shift from proline to threonine at 222 is believed to play a role in the significant antigenic change of the genogroup 2 IBDV strains, suggesting that antigenic drift may be occurring in genogroup 3, possibly in response to antigenic pressure from vaccination.

  14. Extending a field-based Sonoran desert vegetation classification to a regional scale using optical and microwave satellite imagery

    NASA Astrophysics Data System (ADS)

    Shupe, Scott Marshall

    2000-10-01

    Vegetation mapping in and regions facilitates ecological studies, land management, and provides a record to which future land changes can be compared. Accurate and representative mapping of desert vegetation requires a sound field sampling program and a methodology to transform the data collected into a representative classification system. Time and cost constraints require that a remote sensing approach be used if such a classification system is to be applied on a regional scale. However, desert vegetation may be sparse and thus difficult to sense at typical satellite resolutions, especially given the problem of soil reflectance. This study was designed to address these concerns by conducting vegetation mapping research using field and satellite data from the US Army Yuma Proving Ground (USYPG) in Southwest Arizona. Line and belt transect data from the Army's Land Condition Trend Analysis (LCTA) Program were transformed into relative cover and relative density classification schemes using cluster analysis. Ordination analysis of the same data produced two and three-dimensional graphs on which the homogeneity of each vegetation class could be examined. It was found that the use of correspondence analysis (CA), detrended correspondence analysis (DCA), and non-metric multidimensional scaling (NMS) ordination methods was superior to the use of any single ordination method for helping to clarify between-class and within-class relationships in vegetation composition. Analysis of these between-class and within-class relationships were of key importance in examining how well relative cover and relative density schemes characterize the USYPG vegetation. Using these two classification schemes as reference data, maximum likelihood and artificial neural net classifications were then performed on a coregistered dataset consisting of a summer Landsat Thematic Mapper (TM) image, one spring and one summer ERS-1 microwave image, and elevation, slope, and aspect layers

  15. Does ASA classification impact success rates of endovascular aneurysm repairs?

    PubMed

    Conners, Michael S; Tonnessen, Britt H; Sternbergh, W Charles; Carter, Glen; Yoselevitz, Moises; Money, Samuel R

    2002-09-01

    The purpose of this study was to evaluate the technical success, clinical success, postoperative complication rate, need for a secondary procedure, and mortality rate with endovascular aneurysm repair (EAR), based on the physical status classification scheme advocated by the American Society of Anesthesiologists (ASA). At a single institution 167 patients underwent attempted EAR. Query of a prospectively maintained database supplemented with a retrospective review of medical records was used to gather statistics pertaining to patient demographics and outcome. In patients selected for EAR on the basis of acceptable anatomy, technical and clinical success rates were not significantly different among the different ASA classifications. Importantly, postoperative complication and 30-day mortality rates do not appear to significantly differ among the different ASA classifications in this patient population.

  16. Contemplating case mix: A primer on case mix classification and management.

    PubMed

    Costa, Andrew P; Poss, Jeffery W; McKillop, Ian

    2015-01-01

    Case mix classifications are the frameworks that underlie many healthcare funding schemes, including the so-called activity-based funding. Now more than ever, Canadian healthcare administrators are evaluating case mix-based funding and deciphering how they will influence their organization. Case mix is a topic fraught with technical jargon and largely relegated to government agencies or private industries. This article provides an abridged review of case mix classification as well as its implications for management in healthcare. © 2015 The Canadian College of Health Leaders.

  17. Family Traits of Galaxies: From the Tuning Fork to a Physical Classification in a Multi-Wavelength Context

    NASA Astrophysics Data System (ADS)

    Rampazzo, Roberto; D'Onofrio, Mauro; Zaggia, Simone; Elmegreen, Debra M.; Laurikainen, Eija; Duc, Pierre-Alain; Gallart, Carme; Fraix-Burnet, Didier

    At the time of the Great Debate nebulæ where recognized to have different morphologies and first classifications, sometimes only descriptive, have been attempted. A review of these early classification systems are well documented by the Allan Sandage's review in 2005 (Sandage 2005). This review emphasized the debt, in term of continuity of forms of spiral galaxies, due by the Hubble's classification scheme to the Reynold's systems proposed in 1920 (Reynolds, 1920).

  18. Bayes classification of interferometric TOPSAR data

    NASA Technical Reports Server (NTRS)

    Michel, T. R.; Rodriguez, E.; Houshmand, B.; Carande, R.

    1995-01-01

    We report the Bayes classification of terrain types at different sites using airborne interferometric synthetic aperture radar (INSAR) data. A Gaussian maximum likelihood classifier was applied on multidimensional observations derived from the SAR intensity, the terrain elevation model, and the magnitude of the interferometric correlation. Training sets for forested, urban, agricultural, or bare areas were obtained either by selecting samples with known ground truth, or by k-means clustering of random sets of samples uniformly distributed across all sites, and subsequent assignments of these clusters using ground truth. The accuracy of the classifier was used to optimize the discriminating efficiency of the set of features that was chosen. The most important features include the SAR intensity, a canopy penetration depth model, and the terrain slope. We demonstrate the classifier's performance across sites using a unique set of training classes for the four main terrain categories. The scenes examined include San Francisco (CA) (predominantly urban and water), Mount Adams (WA) (forested with clear cuts), Pasadena (CA) (urban with mountains), and Antioch Hills (CA) (water, swamps, fields). Issues related to the effects of image calibration and the robustness of the classification to calibration errors are explored. The relative performance of single polarization Interferometric data classification is contrasted against classification schemes based on polarimetric SAR data.

  19. Generalized Rainich conditions, generalized stress-energy conditions, and the Hawking-Ellis classification

    NASA Astrophysics Data System (ADS)

    Martín–Moruno, Prado; Visser, Matt

    2017-11-01

    The (generalized) Rainich conditions are algebraic conditions which are polynomial in the (mixed-component) stress-energy tensor. As such they are logically distinct from the usual classical energy conditions (NEC, WEC, SEC, DEC), and logically distinct from the usual Hawking-Ellis (Segré-Plebański) classification of stress-energy tensors (type I, type II, type III, type IV). There will of course be significant inter-connections between these classification schemes, which we explore in the current article. Overall, we shall argue that it is best to view the (generalized) Rainich conditions as a refinement of the classical energy conditions and the usual Hawking-Ellis classification.

  20. Applying a deep learning based CAD scheme to segment and quantify visceral and subcutaneous fat areas from CT images

    NASA Astrophysics Data System (ADS)

    Wang, Yunzhi; Qiu, Yuchen; Thai, Theresa; Moore, Kathleen; Liu, Hong; Zheng, Bin

    2017-03-01

    Abdominal obesity is strongly associated with a number of diseases and accurately assessment of subtypes of adipose tissue volume plays a significant role in predicting disease risk, diagnosis and prognosis. The objective of this study is to develop and evaluate a new computer-aided detection (CAD) scheme based on deep learning models to automatically segment subcutaneous fat areas (SFA) and visceral (VFA) fat areas depicting on CT images. A dataset involving CT images from 40 patients were retrospectively collected and equally divided into two independent groups (i.e. training and testing group). The new CAD scheme consisted of two sequential convolutional neural networks (CNNs) namely, Selection-CNN and Segmentation-CNN. Selection-CNN was trained using 2,240 CT slices to automatically select CT slices belonging to abdomen areas and SegmentationCNN was trained using 84,000 fat-pixel patches to classify fat-pixels as belonging to SFA or VFA. Then, data from the testing group was used to evaluate the performance of the optimized CAD scheme. Comparing to manually labelled results, the classification accuracy of CT slices selection generated by Selection-CNN yielded 95.8%, while the accuracy of fat pixel segmentation using Segmentation-CNN yielded 96.8%. Therefore, this study demonstrated the feasibility of using deep learning based CAD scheme to recognize human abdominal section from CT scans and segment SFA and VFA from CT slices with high agreement compared with subjective segmentation results.