Sample records for objective image analysis

  1. Analysis and Recognition of Curve Type as The Basis of Object Recognition in Image

    NASA Astrophysics Data System (ADS)

    Nugraha, Nurma; Madenda, Sarifuddin; Indarti, Dina; Dewi Agushinta, R.; Ernastuti

    2016-06-01

    An object in an image when analyzed further will show the characteristics that distinguish one object with another object in an image. Characteristics that are used in object recognition in an image can be a color, shape, pattern, texture and spatial information that can be used to represent objects in the digital image. The method has recently been developed for image feature extraction on objects that share characteristics curve analysis (simple curve) and use the search feature of chain code object. This study will develop an algorithm analysis and the recognition of the type of curve as the basis for object recognition in images, with proposing addition of complex curve characteristics with maximum four branches that will be used for the process of object recognition in images. Definition of complex curve is the curve that has a point of intersection. By using some of the image of the edge detection, the algorithm was able to do the analysis and recognition of complex curve shape well.

  2. Analysis of objects in binary images. M.S. Thesis - Old Dominion Univ.

    NASA Technical Reports Server (NTRS)

    Leonard, Desiree M.

    1991-01-01

    Digital image processing techniques are typically used to produce improved digital images through the application of successive enhancement techniques to a given image or to generate quantitative data about the objects within that image. In support of and to assist researchers in a wide range of disciplines, e.g., interferometry, heavy rain effects on aerodynamics, and structure recognition research, it is often desirable to count objects in an image and compute their geometric properties. Therefore, an image analysis application package, focusing on a subset of image analysis techniques used for object recognition in binary images, was developed. This report describes the techniques and algorithms utilized in three main phases of the application and are categorized as: image segmentation, object recognition, and quantitative analysis. Appendices provide supplemental formulas for the algorithms employed as well as examples and results from the various image segmentation techniques and the object recognition algorithm implemented.

  3. CognitionMaster: an object-based image analysis framework

    PubMed Central

    2013-01-01

    Background Automated image analysis methods are becoming more and more important to extract and quantify image features in microscopy-based biomedical studies and several commercial or open-source tools are available. However, most of the approaches rely on pixel-wise operations, a concept that has limitations when high-level object features and relationships between objects are studied and if user-interactivity on the object-level is desired. Results In this paper we present an open-source software that facilitates the analysis of content features and object relationships by using objects as basic processing unit instead of individual pixels. Our approach enables also users without programming knowledge to compose “analysis pipelines“ that exploit the object-level approach. We demonstrate the design and use of example pipelines for the immunohistochemistry-based cell proliferation quantification in breast cancer and two-photon fluorescence microscopy data about bone-osteoclast interaction, which underline the advantages of the object-based concept. Conclusions We introduce an open source software system that offers object-based image analysis. The object-based concept allows for a straight-forward development of object-related interactive or fully automated image analysis solutions. The presented software may therefore serve as a basis for various applications in the field of digital image analysis. PMID:23445542

  4. Foreign object detection and removal to improve automated analysis of chest radiographs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogeweg, Laurens; Sanchez, Clara I.; Melendez, Jaime

    2013-07-15

    Purpose: Chest radiographs commonly contain projections of foreign objects, such as buttons, brassier clips, jewellery, or pacemakers and wires. The presence of these structures can substantially affect the output of computer analysis of these images. An automated method is presented to detect, segment, and remove foreign objects from chest radiographs.Methods: Detection is performed using supervised pixel classification with a kNN classifier, resulting in a probability estimate per pixel to belong to a projected foreign object. Segmentation is performed by grouping and post-processing pixels with a probability above a certain threshold. Next, the objects are replaced by texture inpainting.Results: The methodmore » is evaluated in experiments on 257 chest radiographs. The detection at pixel level is evaluated with receiver operating characteristic analysis on pixels within the unobscured lung fields and an A{sub z} value of 0.949 is achieved. Free response operator characteristic analysis is performed at the object level, and 95.6% of objects are detected with on average 0.25 false positive detections per image. To investigate the effect of removing the detected objects through inpainting, a texture analysis system for tuberculosis detection is applied to images with and without pathology and with and without foreign object removal. Unprocessed, the texture analysis abnormality score of normal images with foreign objects is comparable to those with pathology. After removing foreign objects, the texture score of normal images with and without foreign objects is similar, while abnormal images, whether they contain foreign objects or not, achieve on average higher scores.Conclusions: The authors conclude that removal of foreign objects from chest radiographs is feasible and beneficial for automated image analysis.« less

  5. Identification of uncommon objects in containers

    DOEpatents

    Bremer, Peer-Timo; Kim, Hyojin; Thiagarajan, Jayaraman J.

    2017-09-12

    A system for identifying in an image an object that is commonly found in a collection of images and for identifying a portion of an image that represents an object based on a consensus analysis of segmentations of the image. The system collects images of containers that contain objects for generating a collection of common objects within the containers. To process the images, the system generates a segmentation of each image. The image analysis system may also generate multiple segmentations for each image by introducing variations in the selection of voxels to be merged into a segment. The system then generates clusters of the segments based on similarity among the segments. Each cluster represents a common object found in the containers. Once the clustering is complete, the system may be used to identify common objects in images of new containers based on similarity between segments of images and the clusters.

  6. Can state-of-the-art HVS-based objective image quality criteria be used for image reconstruction techniques based on ROI analysis?

    NASA Astrophysics Data System (ADS)

    Dostal, P.; Krasula, L.; Klima, M.

    2012-06-01

    Various image processing techniques in multimedia technology are optimized using visual attention feature of the human visual system. Spatial non-uniformity causes that different locations in an image are of different importance in terms of perception of the image. In other words, the perceived image quality depends mainly on the quality of important locations known as regions of interest. The performance of such techniques is measured by subjective evaluation or objective image quality criteria. Many state-of-the-art objective metrics are based on HVS properties; SSIM, MS-SSIM based on image structural information, VIF based on the information that human brain can ideally gain from the reference image or FSIM utilizing the low-level features to assign the different importance to each location in the image. But still none of these objective metrics utilize the analysis of regions of interest. We solve the question if these objective metrics can be used for effective evaluation of images reconstructed by processing techniques based on ROI analysis utilizing high-level features. In this paper authors show that the state-of-the-art objective metrics do not correlate well with subjective evaluation while the demosaicing based on ROI analysis is used for reconstruction. The ROI were computed from "ground truth" visual attention data. The algorithm combining two known demosaicing techniques on the basis of ROI location is proposed to reconstruct the ROI in fine quality while the rest of image is reconstructed with low quality. The color image reconstructed by this ROI approach was compared with selected demosaicing techniques by objective criteria and subjective testing. The qualitative comparison of the objective and subjective results indicates that the state-of-the-art objective metrics are still not suitable for evaluation image processing techniques based on ROI analysis and new criteria is demanded.

  7. Image Analysis and Modeling

    DTIC Science & Technology

    1976-03-01

    This report summarizes the results of the research program on Image Analysis and Modeling supported by the Defense Advanced Research Projects Agency...The objective is to achieve a better understanding of image structure and to use this knowledge to develop improved image models for use in image ... analysis and processing tasks such as information extraction, image enhancement and restoration, and coding. The ultimate objective of this research is

  8. RecceMan: an interactive recognition assistance for image-based reconnaissance: synergistic effects of human perception and computational methods for object recognition, identification, and infrastructure analysis

    NASA Astrophysics Data System (ADS)

    El Bekri, Nadia; Angele, Susanne; Ruckhäberle, Martin; Peinsipp-Byma, Elisabeth; Haelke, Bruno

    2015-10-01

    This paper introduces an interactive recognition assistance system for imaging reconnaissance. This system supports aerial image analysts on missions during two main tasks: Object recognition and infrastructure analysis. Object recognition concentrates on the classification of one single object. Infrastructure analysis deals with the description of the components of an infrastructure and the recognition of the infrastructure type (e.g. military airfield). Based on satellite or aerial images, aerial image analysts are able to extract single object features and thereby recognize different object types. It is one of the most challenging tasks in the imaging reconnaissance. Currently, there are no high potential ATR (automatic target recognition) applications available, as consequence the human observer cannot be replaced entirely. State-of-the-art ATR applications cannot assume in equal measure human perception and interpretation. Why is this still such a critical issue? First, cluttered and noisy images make it difficult to automatically extract, classify and identify object types. Second, due to the changed warfare and the rise of asymmetric threats it is nearly impossible to create an underlying data set containing all features, objects or infrastructure types. Many other reasons like environmental parameters or aspect angles compound the application of ATR supplementary. Due to the lack of suitable ATR procedures, the human factor is still important and so far irreplaceable. In order to use the potential benefits of the human perception and computational methods in a synergistic way, both are unified in an interactive assistance system. RecceMan® (Reconnaissance Manual) offers two different modes for aerial image analysts on missions: the object recognition mode and the infrastructure analysis mode. The aim of the object recognition mode is to recognize a certain object type based on the object features that originated from the image signatures. The infrastructure analysis mode pursues the goal to analyze the function of the infrastructure. The image analyst extracts visually certain target object signatures, assigns them to corresponding object features and is finally able to recognize the object type. The system offers him the possibility to assign the image signatures to features given by sample images. The underlying data set contains a wide range of objects features and object types for different domains like ships or land vehicles. Each domain has its own feature tree developed by aerial image analyst experts. By selecting the corresponding features, the possible solution set of objects is automatically reduced and matches only the objects that contain the selected features. Moreover, we give an outlook of current research in the field of ground target analysis in which we deal with partly automated methods to extract image signatures and assign them to the corresponding features. This research includes methods for automatically determining the orientation of an object and geometric features like width and length of the object. This step enables to reduce automatically the possible object types offered to the image analyst by the interactive recognition assistance system.

  9. Development of Automated Image Analysis Software for Suspended Marine Particle Classification

    DTIC Science & Technology

    2002-09-30

    Development of Automated Image Analysis Software for Suspended Marine Particle Classification Scott Samson Center for Ocean Technology...and global water column. 1 OBJECTIVES The project’s objective is to develop automated image analysis software to reduce the effort and time

  10. Introduction to the GEOBIA 2010 special issue: From pixels to geographic objects in remote sensing image analysis

    NASA Astrophysics Data System (ADS)

    Addink, Elisabeth A.; Van Coillie, Frieke M. B.; De Jong, Steven M.

    2012-04-01

    Traditional image analysis methods are mostly pixel-based and use the spectral differences of landscape elements at the Earth surface to classify these elements or to extract element properties from the Earth Observation image. Geographic object-based image analysis (GEOBIA) has received considerable attention over the past 15 years for analyzing and interpreting remote sensing imagery. In contrast to traditional image analysis, GEOBIA works more like the human eye-brain combination does. The latter uses the object's color (spectral information), size, texture, shape and occurrence to other image objects to interpret and analyze what we see. GEOBIA starts by segmenting the image grouping together pixels into objects and next uses a wide range of object properties to classify the objects or to extract object's properties from the image. Significant advances and improvements in image analysis and interpretation are made thanks to GEOBIA. In June 2010 the third conference on GEOBIA took place at the Ghent University after successful previous meetings in Calgary (2008) and Salzburg (2006). This special issue presents a selection of the 2010 conference papers that are worked out as full research papers for JAG. The papers cover GEOBIA applications as well as innovative methods and techniques. The topics range from vegetation mapping, forest parameter estimation, tree crown identification, urban mapping, land cover change, feature selection methods and the effects of image compression on segmentation. From the original 94 conference papers, 26 full research manuscripts were submitted; nine papers were selected and are presented in this special issue. Selection was done on the basis of quality and topic of the studies. The next GEOBIA conference will take place in Rio de Janeiro from 7 to 9 May 2012 where we hope to welcome even more scientists working in the field of GEOBIA.

  11. Image analysis of multiple moving wood pieces in real time

    NASA Astrophysics Data System (ADS)

    Wang, Weixing

    2006-02-01

    This paper presents algorithms for image processing and image analysis of wood piece materials. The algorithms were designed for auto-detection of wood piece materials on a moving conveyor belt or a truck. When wood objects on moving, the hard task is to trace the contours of the objects in n optimal way. To make the algorithms work efficiently in the plant, a flexible online system was designed and developed, which mainly consists of image acquisition, image processing, object delineation and analysis. A number of newly-developed algorithms can delineate wood objects with high accuracy and high speed, and in the wood piece analysis part, each wood piece can be characterized by a number of visual parameters which can also be used for constructing experimental models directly in the system.

  12. Using object-based image analysis to guide the selection of field sample locations

    USDA-ARS?s Scientific Manuscript database

    One of the most challenging tasks for resource management and research is designing field sampling schemes to achieve unbiased estimates of ecosystem parameters as efficiently as possible. This study focused on the potential of fine-scale image objects from object-based image analysis (OBIA) to be u...

  13. Image Segmentation Analysis for NASA Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Tilton, James C.

    2010-01-01

    NASA collects large volumes of imagery data from satellite-based Earth remote sensing sensors. Nearly all of the computerized image analysis of this data is performed pixel-by-pixel, in which an algorithm is applied directly to individual image pixels. While this analysis approach is satisfactory in many cases, it is usually not fully effective in extracting the full information content from the high spatial resolution image data that s now becoming increasingly available from these sensors. The field of object-based image analysis (OBIA) has arisen in recent years to address the need to move beyond pixel-based analysis. The Recursive Hierarchical Segmentation (RHSEG) software developed by the author is being used to facilitate moving from pixel-based image analysis to OBIA. The key unique aspect of RHSEG is that it tightly intertwines region growing segmentation, which produces spatially connected region objects, with region object classification, which groups sets of region objects together into region classes. No other practical, operational image segmentation approach has this tight integration of region growing object finding with region classification This integration is made possible by the recursive, divide-and-conquer implementation utilized by RHSEG, in which the input image data is recursively subdivided until the image data sections are small enough to successfully mitigat the combinatorial explosion caused by the need to compute the dissimilarity between each pair of image pixels. RHSEG's tight integration of region growing object finding and region classification is what enables the high spatial fidelity of the image segmentations produced by RHSEG. This presentation will provide an overview of the RHSEG algorithm and describe how it is currently being used to support OBIA or Earth Science applications such as snow/ice mapping and finding archaeological sites from remotely sensed data.

  14. Towards a framework for agent-based image analysis of remote-sensing data.

    PubMed

    Hofmann, Peter; Lettmayer, Paul; Blaschke, Thomas; Belgiu, Mariana; Wegenkittl, Stefan; Graf, Roland; Lampoltshammer, Thomas Josef; Andrejchenko, Vera

    2015-04-03

    Object-based image analysis (OBIA) as a paradigm for analysing remotely sensed image data has in many cases led to spatially and thematically improved classification results in comparison to pixel-based approaches. Nevertheless, robust and transferable object-based solutions for automated image analysis capable of analysing sets of images or even large image archives without any human interaction are still rare. A major reason for this lack of robustness and transferability is the high complexity of image contents: Especially in very high resolution (VHR) remote-sensing data with varying imaging conditions or sensor characteristics, the variability of the objects' properties in these varying images is hardly predictable. The work described in this article builds on so-called rule sets. While earlier work has demonstrated that OBIA rule sets bear a high potential of transferability, they need to be adapted manually, or classification results need to be adjusted manually in a post-processing step. In order to automate these adaptation and adjustment procedures, we investigate the coupling, extension and integration of OBIA with the agent-based paradigm, which is exhaustively investigated in software engineering. The aims of such integration are (a) autonomously adapting rule sets and (b) image objects that can adopt and adjust themselves according to different imaging conditions and sensor characteristics. This article focuses on self-adapting image objects and therefore introduces a framework for agent-based image analysis (ABIA).

  15. Extraction of composite visual objects from audiovisual materials

    NASA Astrophysics Data System (ADS)

    Durand, Gwenael; Thienot, Cedric; Faudemay, Pascal

    1999-08-01

    An effective analysis of Visual Objects appearing in still images and video frames is required in order to offer fine grain access to multimedia and audiovisual contents. In previous papers, we showed how our method for segmenting still images into visual objects could improve content-based image retrieval and video analysis methods. Visual Objects are used in particular for extracting semantic knowledge about the contents. However, low-level segmentation methods for still images are not likely to extract a complex object as a whole but instead as a set of several sub-objects. For example, a person would be segmented into three visual objects: a face, hair, and a body. In this paper, we introduce the concept of Composite Visual Object. Such an object is hierarchically composed of sub-objects called Component Objects.

  16. Automatic target recognition apparatus and method

    DOEpatents

    Baumgart, Chris W.; Ciarcia, Christopher A.

    2000-01-01

    An automatic target recognition apparatus (10) is provided, having a video camera/digitizer (12) for producing a digitized image signal (20) representing an image containing therein objects which objects are to be recognized if they meet predefined criteria. The digitized image signal (20) is processed within a video analysis subroutine (22) residing in a computer (14) in a plurality of parallel analysis chains such that the objects are presumed to be lighter in shading than the background in the image in three of the chains and further such that the objects are presumed to be darker than the background in the other three chains. In two of the chains the objects are defined by surface texture analysis using texture filter operations. In another two of the chains the objects are defined by background subtraction operations. In yet another two of the chains the objects are defined by edge enhancement processes. In each of the analysis chains a calculation operation independently determines an error factor relating to the probability that the objects are of the type which should be recognized, and a probability calculation operation combines the results of the analysis chains.

  17. The effect of input data transformations on object-based image analysis

    PubMed Central

    LIPPITT, CHRISTOPHER D.; COULTER, LLOYD L.; FREEMAN, MARY; LAMANTIA-BISHOP, JEFFREY; PANG, WYSON; STOW, DOUGLAS A.

    2011-01-01

    The effect of using spectral transform images as input data on segmentation quality and its potential effect on products generated by object-based image analysis are explored in the context of land cover classification in Accra, Ghana. Five image data transformations are compared to untransformed spectral bands in terms of their effect on segmentation quality and final product accuracy. The relationship between segmentation quality and product accuracy is also briefly explored. Results suggest that input data transformations can aid in the delineation of landscape objects by image segmentation, but the effect is idiosyncratic to the transformation and object of interest. PMID:21673829

  18. Software for Analyzing Sequences of Flow-Related Images

    NASA Technical Reports Server (NTRS)

    Klimek, Robert; Wright, Ted

    2004-01-01

    Spotlight is a computer program for analysis of sequences of images generated in combustion and fluid physics experiments. Spotlight can perform analysis of a single image in an interactive mode or a sequence of images in an automated fashion. The primary type of analysis is tracking of positions of objects over sequences of frames. Features and objects that are typically tracked include flame fronts, particles, droplets, and fluid interfaces. Spotlight automates the analysis of object parameters, such as centroid position, velocity, acceleration, size, shape, intensity, and color. Images can be processed to enhance them before statistical and measurement operations are performed. An unlimited number of objects can be analyzed simultaneously. Spotlight saves results of analyses in a text file that can be exported to other programs for graphing or further analysis. Spotlight is a graphical-user-interface-based program that at present can be executed on Microsoft Windows and Linux operating systems. A version that runs on Macintosh computers is being considered.

  19. Towards a framework for agent-based image analysis of remote-sensing data

    PubMed Central

    Hofmann, Peter; Lettmayer, Paul; Blaschke, Thomas; Belgiu, Mariana; Wegenkittl, Stefan; Graf, Roland; Lampoltshammer, Thomas Josef; Andrejchenko, Vera

    2015-01-01

    Object-based image analysis (OBIA) as a paradigm for analysing remotely sensed image data has in many cases led to spatially and thematically improved classification results in comparison to pixel-based approaches. Nevertheless, robust and transferable object-based solutions for automated image analysis capable of analysing sets of images or even large image archives without any human interaction are still rare. A major reason for this lack of robustness and transferability is the high complexity of image contents: Especially in very high resolution (VHR) remote-sensing data with varying imaging conditions or sensor characteristics, the variability of the objects’ properties in these varying images is hardly predictable. The work described in this article builds on so-called rule sets. While earlier work has demonstrated that OBIA rule sets bear a high potential of transferability, they need to be adapted manually, or classification results need to be adjusted manually in a post-processing step. In order to automate these adaptation and adjustment procedures, we investigate the coupling, extension and integration of OBIA with the agent-based paradigm, which is exhaustively investigated in software engineering. The aims of such integration are (a) autonomously adapting rule sets and (b) image objects that can adopt and adjust themselves according to different imaging conditions and sensor characteristics. This article focuses on self-adapting image objects and therefore introduces a framework for agent-based image analysis (ABIA). PMID:27721916

  20. Method for stitching microbial images using a neural network

    NASA Astrophysics Data System (ADS)

    Semenishchev, E. A.; Voronin, V. V.; Marchuk, V. I.; Tolstova, I. V.

    2017-05-01

    Currently an analog microscope has a wide distribution in the following fields: medicine, animal husbandry, monitoring technological objects, oceanography, agriculture and others. Automatic method is preferred because it will greatly reduce the work involved. Stepper motors are used to move the microscope slide and allow to adjust the focus in semi-automatic or automatic mode view with transfer images of microbiological objects from the eyepiece of the microscope to the computer screen. Scene analysis allows to locate regions with pronounced abnormalities for focusing specialist attention. This paper considers the method for stitching microbial images, obtained of semi-automatic microscope. The method allows to keep the boundaries of objects located in the area of capturing optical systems. Objects searching are based on the analysis of the data located in the area of the camera view. We propose to use a neural network for the boundaries searching. The stitching image boundary is held of the analysis borders of the objects. To auto focus, we use the criterion of the minimum thickness of the line boundaries of object. Analysis produced the object located in the focal axis of the camera. We use method of recovery of objects borders and projective transform for the boundary of objects which are based on shifted relative to the focal axis. Several examples considered in this paper show the effectiveness of the proposed approach on several test images.

  1. Object-Based Image Analysis Beyond Remote Sensing - the Human Perspective

    NASA Astrophysics Data System (ADS)

    Blaschke, T.; Lang, S.; Tiede, D.; Papadakis, M.; Györi, A.

    2016-06-01

    We introduce a prototypical methodological framework for a place-based GIS-RS system for the spatial delineation of place while incorporating spatial analysis and mapping techniques using methods from different fields such as environmental psychology, geography, and computer science. The methodological lynchpin for this to happen - when aiming to delineate place in terms of objects - is object-based image analysis (OBIA).

  2. Change Detection of High-Resolution Remote Sensing Images Based on Adaptive Fusion of Multiple Features

    NASA Astrophysics Data System (ADS)

    Wang, G. H.; Wang, H. B.; Fan, W. F.; Liu, Y.; Chen, C.

    2018-04-01

    In view of the traditional change detection algorithm mainly depends on the spectral information image spot, failed to effectively mining and fusion of multi-image feature detection advantage, the article borrows the ideas of object oriented analysis proposed a multi feature fusion of remote sensing image change detection algorithm. First by the multi-scale segmentation of image objects based; then calculate the various objects of color histogram and linear gradient histogram; utilizes the color distance and edge line feature distance between EMD statistical operator in different periods of the object, using the adaptive weighted method, the color feature distance and edge in a straight line distance of combination is constructed object heterogeneity. Finally, the curvature histogram analysis image spot change detection results. The experimental results show that the method can fully fuse the color and edge line features, thus improving the accuracy of the change detection.

  3. Digital 3D Microstructure Analysis of Concrete using X-Ray Micro Computed Tomography SkyScan 1173: A Preliminary Study

    NASA Astrophysics Data System (ADS)

    Latief, F. D. E.; Mohammad, I. H.; Rarasati, A. D.

    2017-11-01

    Digital imaging of a concrete sample using high resolution tomographic imaging by means of X-Ray Micro Computed Tomography (μ-CT) has been conducted to assess the characteristic of the sample’s structure. A standard procedure of image acquisition, reconstruction, image processing of the method using a particular scanning device i.e., the Bruker SkyScan 1173 High Energy Micro-CT are elaborated. A qualitative and a quantitative analysis were briefly performed on the sample to deliver some basic ideas of the capability of the system and the bundled software package. Calculation of total VOI volume, object volume, percent of object volume, total VOI surface, object surface, object surface/volume ratio, object surface density, structure thickness, structure separation, total porosity were conducted and analysed. This paper should serve as a brief description of how the device can produce the preferred image quality as well as the ability of the bundled software packages to help in performing qualitative and quantitative analysis.

  4. Comparative analysis of imaging configurations and objectives for Fourier microscopy.

    PubMed

    Kurvits, Jonathan A; Jiang, Mingming; Zia, Rashid

    2015-11-01

    Fourier microscopy is becoming an increasingly important tool for the analysis of optical nanostructures and quantum emitters. However, achieving quantitative Fourier space measurements requires a thorough understanding of the impact of aberrations introduced by optical microscopes that have been optimized for conventional real-space imaging. Here we present a detailed framework for analyzing the performance of microscope objectives for several common Fourier imaging configurations. To this end, we model objectives from Nikon, Olympus, and Zeiss using parameters that were inferred from patent literature and confirmed, where possible, by physical disassembly. We then examine the aberrations most relevant to Fourier microscopy, including the alignment tolerances of apodization factors for different objective classes, the effect of magnification on the modulation transfer function, and vignetting-induced reductions of the effective numerical aperture for wide-field measurements. Based on this analysis, we identify an optimal objective class and imaging configuration for Fourier microscopy. In addition, the Zemax files for the objectives and setups used in this analysis have been made publicly available as a resource for future studies.

  5. An approach for quantitative image quality analysis for CT

    NASA Astrophysics Data System (ADS)

    Rahimi, Amir; Cochran, Joe; Mooney, Doug; Regensburger, Joe

    2016-03-01

    An objective and standardized approach to assess image quality of Compute Tomography (CT) systems is required in a wide variety of imaging processes to identify CT systems appropriate for a given application. We present an overview of the framework we have developed to help standardize and to objectively assess CT image quality for different models of CT scanners used for security applications. Within this framework, we have developed methods to quantitatively measure metrics that should correlate with feature identification, detection accuracy and precision, and image registration capabilities of CT machines and to identify strengths and weaknesses in different CT imaging technologies in transportation security. To that end we have designed, developed and constructed phantoms that allow for systematic and repeatable measurements of roughly 88 image quality metrics, representing modulation transfer function, noise equivalent quanta, noise power spectra, slice sensitivity profiles, streak artifacts, CT number uniformity, CT number consistency, object length accuracy, CT number path length consistency, and object registration. Furthermore, we have developed a sophisticated MATLAB based image analysis tool kit to analyze CT generated images of phantoms and report these metrics in a format that is standardized across the considered models of CT scanners, allowing for comparative image quality analysis within a CT model or between different CT models. In addition, we have developed a modified sparse principal component analysis (SPCA) method to generate a modified set of PCA components as compared to the standard principal component analysis (PCA) with sparse loadings in conjunction with Hotelling T2 statistical analysis method to compare, qualify, and detect faults in the tested systems.

  6. Advances in image compression and automatic target recognition; Proceedings of the Meeting, Orlando, FL, Mar. 30, 31, 1989

    NASA Technical Reports Server (NTRS)

    Tescher, Andrew G. (Editor)

    1989-01-01

    Various papers on image compression and automatic target recognition are presented. Individual topics addressed include: target cluster detection in cluttered SAR imagery, model-based target recognition using laser radar imagery, Smart Sensor front-end processor for feature extraction of images, object attitude estimation and tracking from a single video sensor, symmetry detection in human vision, analysis of high resolution aerial images for object detection, obscured object recognition for an ATR application, neural networks for adaptive shape tracking, statistical mechanics and pattern recognition, detection of cylinders in aerial range images, moving object tracking using local windows, new transform method for image data compression, quad-tree product vector quantization of images, predictive trellis encoding of imagery, reduced generalized chain code for contour description, compact architecture for a real-time vision system, use of human visibility functions in segmentation coding, color texture analysis and synthesis using Gibbs random fields.

  7. Digital imaging and image analysis applied to numerical applications in forensic hair examination.

    PubMed

    Brooks, Elizabeth; Comber, Bruce; McNaught, Ian; Robertson, James

    2011-03-01

    A method that provides objective data to complement the hair analysts' microscopic observations, which is non-destructive, would be of obvious benefit in the forensic examination of hairs. This paper reports on the use of objective colour measurement and image analysis techniques of auto-montaged images. Brown Caucasian telogen scalp hairs were chosen as a stern test of the utility of these approaches. The results show the value of using auto-montaged images and the potential for the use of objective numerical measures of colour and pigmentation to complement microscopic observations. 2010. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Image sequence analysis workstation for multipoint motion analysis

    NASA Astrophysics Data System (ADS)

    Mostafavi, Hassan

    1990-08-01

    This paper describes an application-specific engineering workstation designed and developed to analyze motion of objects from video sequences. The system combines the software and hardware environment of a modem graphic-oriented workstation with the digital image acquisition, processing and display techniques. In addition to automation and Increase In throughput of data reduction tasks, the objective of the system Is to provide less invasive methods of measurement by offering the ability to track objects that are more complex than reflective markers. Grey level Image processing and spatial/temporal adaptation of the processing parameters is used for location and tracking of more complex features of objects under uncontrolled lighting and background conditions. The applications of such an automated and noninvasive measurement tool include analysis of the trajectory and attitude of rigid bodies such as human limbs, robots, aircraft in flight, etc. The system's key features are: 1) Acquisition and storage of Image sequences by digitizing and storing real-time video; 2) computer-controlled movie loop playback, freeze frame display, and digital Image enhancement; 3) multiple leading edge tracking in addition to object centroids at up to 60 fields per second from both live input video or a stored Image sequence; 4) model-based estimation and tracking of the six degrees of freedom of a rigid body: 5) field-of-view and spatial calibration: 6) Image sequence and measurement data base management; and 7) offline analysis software for trajectory plotting and statistical analysis.

  9. Analysis and segmentation of images in case of solving problems of detecting and tracing objects on real-time video

    NASA Astrophysics Data System (ADS)

    Ezhova, Kseniia; Fedorenko, Dmitriy; Chuhlamov, Anton

    2016-04-01

    The article deals with the methods of image segmentation based on color space conversion, and allow the most efficient way to carry out the detection of a single color in a complex background and lighting, as well as detection of objects on a homogeneous background. The results of the analysis of segmentation algorithms of this type, the possibility of their implementation for creating software. The implemented algorithm is very time-consuming counting, making it a limited application for the analysis of the video, however, it allows us to solve the problem of analysis of objects in the image if there is no dictionary of images and knowledge bases, as well as the problem of choosing the optimal parameters of the frame quantization for video analysis.

  10. Objective determination of image end-members in spectral mixture analysis of AVIRIS data

    NASA Technical Reports Server (NTRS)

    Tompkins, Stefanie; Mustard, John F.; Pieters, Carle M.; Forsyth, Donald W.

    1993-01-01

    Spectral mixture analysis has been shown to be a powerful, multifaceted tool for analysis of multi- and hyper-spectral data. Applications of AVIRIS data have ranged from mapping soils and bedrock to ecosystem studies. During the first phase of the approach, a set of end-members are selected from an image cube (image end-members) that best account for its spectral variance within a constrained, linear least squares mixing model. These image end-members are usually selected using a priori knowledge and successive trial and error solutions to refine the total number and physical location of the end-members. However, in many situations a more objective method of determining these essential components is desired. We approach the problem of image end-member determination objectively by using the inherent variance of the data. Unlike purely statistical methods such as factor analysis, this approach derives solutions that conform to a physically realistic model.

  11. How does c-view image quality compare with conventional 2D FFDM?

    PubMed

    Nelson, Jeffrey S; Wells, Jered R; Baker, Jay A; Samei, Ehsan

    2016-05-01

    The FDA approved the use of digital breast tomosynthesis (DBT) in 2011 as an adjunct to 2D full field digital mammography (FFDM) with the constraint that all DBT acquisitions must be paired with a 2D image to assure adequate interpretative information is provided. Recently manufacturers have developed methods to provide a synthesized 2D image generated from the DBT data with the hope of sparing patients the radiation exposure from the FFDM acquisition. While this much needed alternative effectively reduces the total radiation burden, differences in image quality must also be considered. The goal of this study was to compare the intrinsic image quality of synthesized 2D c-view and 2D FFDM images in terms of resolution, contrast, and noise. Two phantoms were utilized in this study: the American College of Radiology mammography accreditation phantom (ACR phantom) and a novel 3D printed anthropomorphic breast phantom. Both phantoms were imaged using a Hologic Selenia Dimensions 3D system. Analysis of the ACR phantom includes both visual inspection and objective automated analysis using in-house software. Analysis of the 3D anthropomorphic phantom includes visual assessment of resolution and Fourier analysis of the noise. Using ACR-defined scoring criteria for the ACR phantom, the FFDM images scored statistically higher than c-view according to both the average observer and automated scores. In addition, between 50% and 70% of c-view images failed to meet the nominal minimum ACR accreditation requirements-primarily due to fiber breaks. Software analysis demonstrated that c-view provided enhanced visualization of medium and large microcalcification objects; however, the benefits diminished for smaller high contrast objects and all low contrast objects. Visual analysis of the anthropomorphic phantom showed a measureable loss of resolution in the c-view image (11 lp/mm FFDM, 5 lp/mm c-view) and loss in detection of small microcalcification objects. Spectral analysis of the anthropomorphic phantom showed higher total noise magnitude in the FFDM image compared with c-view. Whereas the FFDM image contained approximately white noise texture, the c-view image exhibited marked noise reduction at midfrequency and high frequency with far less noise suppression at low frequencies resulting in a mottled noise appearance. Their analysis demonstrates many instances where the c-view image quality differs from FFDM. Compared to FFDM, c-view offers a better depiction of objects of certain size and contrast, but provides poorer overall resolution and noise properties. Based on these findings, the utilization of c-view images in the clinical setting requires careful consideration, especially if considering the discontinuation of FFDM imaging. Not explicitly explored in this study is how the combination of DBT + c-view performs relative to DBT + FFDM or FFDM alone.

  12. Studying the Sky/Planets Can Drown You in Images: Machine Learning Solutions at JPL/Caltech

    NASA Technical Reports Server (NTRS)

    Fayyad, U. M.

    1995-01-01

    JPL is working to develop a domain-independent system capable of small-scale object recognition in large image databases for science analysis. Two applications discussed are the cataloging of three billion sky objects in the Sky Image Cataloging and Analysis Tool (SKICAT) and the detection of possibly one million small volcanoes visible in the Magellan synthetic aperture radar images of Venus (JPL Adaptive Recognition Tool, JARTool).

  13. Ruby-Helix: an implementation of helical image processing based on object-oriented scripting language.

    PubMed

    Metlagel, Zoltan; Kikkawa, Yayoi S; Kikkawa, Masahide

    2007-01-01

    Helical image analysis in combination with electron microscopy has been used to study three-dimensional structures of various biological filaments or tubes, such as microtubules, actin filaments, and bacterial flagella. A number of packages have been developed to carry out helical image analysis. Some biological specimens, however, have a symmetry break (seam) in their three-dimensional structure, even though their subunits are mostly arranged in a helical manner. We refer to these objects as "asymmetric helices". All the existing packages are designed for helically symmetric specimens, and do not allow analysis of asymmetric helical objects, such as microtubules with seams. Here, we describe Ruby-Helix, a new set of programs for the analysis of "helical" objects with or without a seam. Ruby-Helix is built on top of the Ruby programming language and is the first implementation of asymmetric helical reconstruction for practical image analysis. It also allows easier and semi-automated analysis, performing iterative unbending and accurate determination of the repeat length. As a result, Ruby-Helix enables us to analyze motor-microtubule complexes with higher throughput to higher resolution.

  14. How to Determine the Centre of Mass of Bodies from Image Modelling

    ERIC Educational Resources Information Center

    Dias, Marco Adriano; Carvalho, Paulo Simeão; Rodrigues, Marcelo

    2016-01-01

    Image modelling is a recent technique in physics education that includes digital tools for image treatment and analysis, such as digital stroboscopic photography (DSP) and video analysis software. It is commonly used to analyse the motion of objects. In this work we show how to determine the position of the centre of mass (CM) of objects with…

  15. Vision-based object detection and recognition system for intelligent vehicles

    NASA Astrophysics Data System (ADS)

    Ran, Bin; Liu, Henry X.; Martono, Wilfung

    1999-01-01

    Recently, a proactive crash mitigation system is proposed to enhance the crash avoidance and survivability of the Intelligent Vehicles. Accurate object detection and recognition system is a prerequisite for a proactive crash mitigation system, as system component deployment algorithms rely on accurate hazard detection, recognition, and tracking information. In this paper, we present a vision-based approach to detect and recognize vehicles and traffic signs, obtain their information, and track multiple objects by using a sequence of color images taken from a moving vehicle. The entire system consist of two sub-systems, the vehicle detection and recognition sub-system and traffic sign detection and recognition sub-system. Both of the sub- systems consist of four models: object detection model, object recognition model, object information model, and object tracking model. In order to detect potential objects on the road, several features of the objects are investigated, which include symmetrical shape and aspect ratio of a vehicle and color and shape information of the signs. A two-layer neural network is trained to recognize different types of vehicles and a parameterized traffic sign model is established in the process of recognizing a sign. Tracking is accomplished by combining the analysis of single image frame with the analysis of consecutive image frames. The analysis of the single image frame is performed every ten full-size images. The information model will obtain the information related to the object, such as time to collision for the object vehicle and relative distance from the traffic sings. Experimental results demonstrated a robust and accurate system in real time object detection and recognition over thousands of image frames.

  16. A focus of attention mechanism for gaze control within a framework for intelligent image analysis tools

    NASA Astrophysics Data System (ADS)

    Rodrigo, Ranga P.; Ranaweera, Kamal; Samarabandu, Jagath K.

    2004-05-01

    Focus of attention is often attributed to biological vision system where the entire field of view is first monitored and then the attention is focused to the object of interest. We propose using a similar approach for object recognition in a color image sequence. The intention is to locate an object based on a prior motive, concentrate on the detected object so that the imaging device can be guided toward it. We use the abilities of the intelligent image analysis framework developed in our laboratory to generate an algorithm dynamically to detect the particular type of object based on the user's object description. The proposed method uses color clustering along with segmentation. The segmented image with labeled regions is used to calculate the shape descriptor parameters. These and the color information are matched with the input description. Gaze is then controlled by issuing camera movement commands as appropriate. We present some preliminary results that demonstrate the success of this approach.

  17. Multiple Object Retrieval in Image Databases Using Hierarchical Segmentation Tree

    ERIC Educational Resources Information Center

    Chen, Wei-Bang

    2012-01-01

    The purpose of this research is to develop a new visual information analysis, representation, and retrieval framework for automatic discovery of salient objects of user's interest in large-scale image databases. In particular, this dissertation describes a content-based image retrieval framework which supports multiple-object retrieval. The…

  18. IDL Object Oriented Software for Hinode/XRT Image Analysis

    NASA Astrophysics Data System (ADS)

    Higgins, P. A.; Gallagher, P. T.

    2008-09-01

    We have developed a set of object oriented IDL routines that enable users to search, download and analyse images from the X-Ray Telescope (XRT) on-board Hinode. In this paper, we give specific examples of how the object can be used and how multi-instrument data analysis can be performed. The XRT object is a highly versatile and powerful IDL object, which will prove to be a useful tool for solar researchers. This software utilizes the generic Framework object available within the GEN branch of SolarSoft.

  19. Fast and objective detection and analysis of structures in downhole images

    NASA Astrophysics Data System (ADS)

    Wedge, Daniel; Holden, Eun-Jung; Dentith, Mike; Spadaccini, Nick

    2017-09-01

    Downhole acoustic and optical televiewer images, and formation microimager (FMI) logs are important datasets for structural and geotechnical analyses for the mineral and petroleum industries. Within these data, dipping planar structures appear as sinusoids, often in incomplete form and in abundance. Their detection is a labour intensive and hence expensive task and as such is a significant bottleneck in data processing as companies may have hundreds of kilometres of logs to process each year. We present an image analysis system that harnesses the power of automated image analysis and provides an interactive user interface to support the analysis of televiewer images by users with different objectives. Our algorithm rapidly produces repeatable, objective results. We have embedded it in an interactive workflow to complement geologists' intuition and experience in interpreting data to improve efficiency and assist, rather than replace the geologist. The main contributions include a new image quality assessment technique for highlighting image areas most suited to automated structure detection and for detecting boundaries of geological zones, and a novel sinusoid detection algorithm for detecting and selecting sinusoids with given confidence levels. Further tools are provided to perform rapid analysis of and further detection of structures e.g. as limited to specific orientations.

  20. Method of assessing heterogeneity in images

    DOEpatents

    Jacob, Richard E.; Carson, James P.

    2016-08-23

    A method of assessing heterogeneity in images is disclosed. 3D images of an object are acquired. The acquired images may be filtered and masked. Iterative decomposition is performed on the masked images to obtain image subdivisions that are relatively homogeneous. Comparative analysis, such as variogram analysis or correlogram analysis, is performed of the decomposed images to determine spatial relationships between regions of the images that are relatively homogeneous.

  1. [Object Separation from Medical X-Ray Images Based on ICA].

    PubMed

    Li, Yan; Yu, Chun-yu; Miao, Ya-jian; Fei, Bin; Zhuang, Feng-yun

    2015-03-01

    X-ray medical image can examine diseased tissue of patients and has important reference value for medical diagnosis. With the problems that traditional X-ray images have noise, poor level sense and blocked aliasing organs, this paper proposes a method for the introduction of multi-spectrum X-ray imaging and independent component analysis (ICA) algorithm to separate the target object. Firstly image de-noising preprocessing ensures the accuracy of target extraction based on independent component analysis and sparse code shrinkage. Then according to the main proportion of organ in the images, aliasing thickness matrix of each pixel was isolated. Finally independent component analysis obtains convergence matrix to reconstruct the target object with blind separation theory. In the ICA algorithm, it found that when the number is more than 40, the target objects separate successfully with the aid of subjective evaluation standard. And when the amplitudes of the scale are in the [25, 45] interval, the target images have high contrast and less distortion. The three-dimensional figure of Peak signal to noise ratio (PSNR) shows that the different convergence times and amplitudes have a greater influence on image quality. The contrast and edge information of experimental images achieve better effects with the convergence times 85 and amplitudes 35 in the ICA algorithm.

  2. Object-based land cover classification based on fusion of multifrequency SAR data and THAICHOTE optical imagery

    NASA Astrophysics Data System (ADS)

    Sukawattanavijit, Chanika; Srestasathiern, Panu

    2017-10-01

    Land Use and Land Cover (LULC) information are significant to observe and evaluate environmental change. LULC classification applying remotely sensed data is a technique popularly employed on a global and local dimension particularly, in urban areas which have diverse land cover types. These are essential components of the urban terrain and ecosystem. In the present, object-based image analysis (OBIA) is becoming widely popular for land cover classification using the high-resolution image. COSMO-SkyMed SAR data was fused with THAICHOTE (namely, THEOS: Thailand Earth Observation Satellite) optical data for land cover classification using object-based. This paper indicates a comparison between object-based and pixel-based approaches in image fusion. The per-pixel method, support vector machines (SVM) was implemented to the fused image based on Principal Component Analysis (PCA). For the objectbased classification was applied to the fused images to separate land cover classes by using nearest neighbor (NN) classifier. Finally, the accuracy assessment was employed by comparing with the classification of land cover mapping generated from fused image dataset and THAICHOTE image. The object-based data fused COSMO-SkyMed with THAICHOTE images demonstrated the best classification accuracies, well over 85%. As the results, an object-based data fusion provides higher land cover classification accuracy than per-pixel data fusion.

  3. How does C-VIEW image quality compare with conventional 2D FFDM?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Jeffrey S., E-mail: nelson.jeffrey@duke.edu; Wells, Jered R.; Baker, Jay A.

    Purpose: The FDA approved the use of digital breast tomosynthesis (DBT) in 2011 as an adjunct to 2D full field digital mammography (FFDM) with the constraint that all DBT acquisitions must be paired with a 2D image to assure adequate interpretative information is provided. Recently manufacturers have developed methods to provide a synthesized 2D image generated from the DBT data with the hope of sparing patients the radiation exposure from the FFDM acquisition. While this much needed alternative effectively reduces the total radiation burden, differences in image quality must also be considered. The goal of this study was to comparemore » the intrinsic image quality of synthesized 2D C-VIEW and 2D FFDM images in terms of resolution, contrast, and noise. Methods: Two phantoms were utilized in this study: the American College of Radiology mammography accreditation phantom (ACR phantom) and a novel 3D printed anthropomorphic breast phantom. Both phantoms were imaged using a Hologic Selenia Dimensions 3D system. Analysis of the ACR phantom includes both visual inspection and objective automated analysis using in-house software. Analysis of the 3D anthropomorphic phantom includes visual assessment of resolution and Fourier analysis of the noise. Results: Using ACR-defined scoring criteria for the ACR phantom, the FFDM images scored statistically higher than C-VIEW according to both the average observer and automated scores. In addition, between 50% and 70% of C-VIEW images failed to meet the nominal minimum ACR accreditation requirements—primarily due to fiber breaks. Software analysis demonstrated that C-VIEW provided enhanced visualization of medium and large microcalcification objects; however, the benefits diminished for smaller high contrast objects and all low contrast objects. Visual analysis of the anthropomorphic phantom showed a measureable loss of resolution in the C-VIEW image (11 lp/mm FFDM, 5 lp/mm C-VIEW) and loss in detection of small microcalcification objects. Spectral analysis of the anthropomorphic phantom showed higher total noise magnitude in the FFDM image compared with C-VIEW. Whereas the FFDM image contained approximately white noise texture, the C-VIEW image exhibited marked noise reduction at midfrequency and high frequency with far less noise suppression at low frequencies resulting in a mottled noise appearance. Conclusions: Their analysis demonstrates many instances where the C-VIEW image quality differs from FFDM. Compared to FFDM, C-VIEW offers a better depiction of objects of certain size and contrast, but provides poorer overall resolution and noise properties. Based on these findings, the utilization of C-VIEW images in the clinical setting requires careful consideration, especially if considering the discontinuation of FFDM imaging. Not explicitly explored in this study is how the combination of DBT + C-VIEW performs relative to DBT + FFDM or FFDM alone.« less

  4. Subcellular object quantification with Squassh3C and SquasshAnalyst.

    PubMed

    Rizk, Aurélien; Mansouri, Maysam; Ballmer-Hofer, Kurt; Berger, Philipp

    2015-11-01

    Quantitative image analysis plays an important role in contemporary biomedical research. Squassh is a method for automatic detection, segmentation, and quantification of subcellular structures and analysis of their colocalization. Here we present the applications Squassh3C and SquasshAnalyst. Squassh3C extends the functionality of Squassh to three fluorescence channels and live-cell movie analysis. SquasshAnalyst is an interactive web interface for the analysis of Squassh3C object data. It provides segmentation image overview and data exploration, figure generation, object and image filtering, and a statistical significance test in an easy-to-use interface. The overall procedure combines the Squassh3C plug-in for the free biological image processing program ImageJ and a web application working in conjunction with the free statistical environment R, and it is compatible with Linux, MacOS X, or Microsoft Windows. Squassh3C and SquasshAnalyst are available for download at www.psi.ch/lbr/SquasshAnalystEN/SquasshAnalyst.zip.

  5. Development of Automated Image Analysis Software for Suspended Marine Particle Classification

    DTIC Science & Technology

    2003-09-30

    Development of Automated Image Analysis Software for Suspended Marine Particle Classification Scott Samson Center for Ocean Technology...REPORT TYPE 3. DATES COVERED 00-00-2003 to 00-00-2003 4. TITLE AND SUBTITLE Development of Automated Image Analysis Software for Suspended...objective is to develop automated image analysis software to reduce the effort and time required for manual identification of plankton images. Automated

  6. Fourier analysis: from cloaking to imaging

    NASA Astrophysics Data System (ADS)

    Wu, Kedi; Cheng, Qiluan; Wang, Guo Ping

    2016-04-01

    Regarding invisibility cloaks as an optical imaging system, we present a Fourier approach to analytically unify both Pendry cloaks and complementary media-based invisibility cloaks into one kind of cloak. By synthesizing different transfer functions, we can construct different devices to realize a series of interesting functions such as hiding objects (events), creating illusions, and performing perfect imaging. In this article, we give a brief review on recent works of applying Fourier approach to analysis invisibility cloaks and optical imaging through scattering layers. We show that, to construct devices to conceal an object, no constructive materials with extreme properties are required, making most, if not all, of the above functions realizable by using naturally occurring materials. As instances, we experimentally verify a method of directionally hiding distant objects and create illusions by using all-dielectric materials, and further demonstrate a non-invasive method of imaging objects completely hidden by scattering layers.

  7. Modeling Of Object- And Scene-Prototypes With Hierarchically Structured Classes

    NASA Astrophysics Data System (ADS)

    Ren, Z.; Jensch, P.; Ameling, W.

    1989-03-01

    The success of knowledge-based image analysis methodology and implementation tools depends largely on an appropriately and efficiently built model wherein the domain-specific context information about and the inherent structure of the observed image scene have been encoded. For identifying an object in an application environment a computer vision system needs to know firstly the description of the object to be found in an image or in an image sequence, secondly the corresponding relationships between object descriptions within the image sequence. This paper presents models of image objects scenes by means of hierarchically structured classes. Using the topovisual formalism of graph and higraph, we are currently studying principally the relational aspect and data abstraction of the modeling in order to visualize the structural nature resident in image objects and scenes, and to formalize. their descriptions. The goal is to expose the structure of image scene and the correspondence of image objects in the low level image interpretation. process. The object-based system design approach has been applied to build the model base. We utilize the object-oriented programming language C + + for designing, testing and implementing the abstracted entity classes and the operation structures which have been modeled topovisually. The reference images used for modeling prototypes of objects and scenes are from industrial environments as'well as medical applications.

  8. Congruence analysis of point clouds from unstable stereo image sequences

    NASA Astrophysics Data System (ADS)

    Jepping, C.; Bethmann, F.; Luhmann, T.

    2014-06-01

    This paper deals with the correction of exterior orientation parameters of stereo image sequences over deformed free-form surfaces without control points. Such imaging situation can occur, for example, during photogrammetric car crash test recordings where onboard high-speed stereo cameras are used to measure 3D surfaces. As a result of such measurements 3D point clouds of deformed surfaces are generated for a complete stereo sequence. The first objective of this research focusses on the development and investigation of methods for the detection of corresponding spatial and temporal tie points within the stereo image sequences (by stereo image matching and 3D point tracking) that are robust enough for a reliable handling of occlusions and other disturbances that may occur. The second objective of this research is the analysis of object deformations in order to detect stable areas (congruence analysis). For this purpose a RANSAC-based method for congruence analysis has been developed. This process is based on the sequential transformation of randomly selected point groups from one epoch to another by using a 3D similarity transformation. The paper gives a detailed description of the congruence analysis. The approach has been tested successfully on synthetic and real image data.

  9. Digital Image Analysis System for Monitoring Crack Growth at Elevated Temperature

    DTIC Science & Technology

    1988-05-01

    The objective of the research work reported here was to develop a new concept, based on Digital Image Analysis , for monitoring the crack-tip position...a 512 x 512 pixel frame. c) Digital Image Analysis software developed to locate and digitize the position of the crack-tip, on the observed image

  10. 3D noise-resistant segmentation and tracking of unknown and occluded objects using integral imaging

    NASA Astrophysics Data System (ADS)

    Aloni, Doron; Jung, Jae-Hyun; Yitzhaky, Yitzhak

    2017-10-01

    Three dimensional (3D) object segmentation and tracking can be useful in various computer vision applications, such as: object surveillance for security uses, robot navigation, etc. We present a method for 3D multiple-object tracking using computational integral imaging, based on accurate 3D object segmentation. The method does not employ object detection by motion analysis in a video as conventionally performed (such as background subtraction or block matching). This means that the movement properties do not significantly affect the detection quality. The object detection is performed by analyzing static 3D image data obtained through computational integral imaging With regard to previous works that used integral imaging data in such a scenario, the proposed method performs the 3D tracking of objects without prior information about the objects in the scene, and it is found efficient under severe noise conditions.

  11. Relevant Scatterers Characterization in SAR Images

    NASA Astrophysics Data System (ADS)

    Chaabouni, Houda; Datcu, Mihai

    2006-11-01

    Recognizing scenes in a single look meter resolution Synthetic Aperture Radar (SAR) images, requires the capability to identify relevant signal signatures in condition of variable image acquisition geometry, arbitrary objects poses and configurations. Among the methods to detect relevant scatterers in SAR images, we can mention the internal coherence. The SAR spectrum splitted in azimuth generates a series of images which preserve high coherence only for particular object scattering. The detection of relevant scatterers can be done by correlation study or Independent Component Analysis (ICA) methods. The present article deals with the state of the art for SAR internal correlation analysis and proposes further extensions using elements of inference based on information theory applied to complex valued signals. The set of azimuth looks images is analyzed using mutual information measures and an equivalent channel capacity is derived. The localization of the "target" requires analysis in a small image window, thus resulting in imprecise estimation of the second order statistics of the signal. For a better precision, a Hausdorff measure is introduced. The method is applied to detect and characterize relevant objects in urban areas.

  12. Critical object recognition in millimeter-wave images with robustness to rotation and scale.

    PubMed

    Mohammadzade, Hoda; Ghojogh, Benyamin; Faezi, Sina; Shabany, Mahdi

    2017-06-01

    Locating critical objects is crucial in various security applications and industries. For example, in security applications, such as in airports, these objects might be hidden or covered under shields or secret sheaths. Millimeter-wave images can be utilized to discover and recognize the critical objects out of the hidden cases without any health risk due to their non-ionizing features. However, millimeter-wave images usually have waves in and around the detected objects, making object recognition difficult. Thus, regular image processing and classification methods cannot be used for these images and additional pre-processings and classification methods should be introduced. This paper proposes a novel pre-processing method for canceling rotation and scale using principal component analysis. In addition, a two-layer classification method is introduced and utilized for recognition. Moreover, a large dataset of millimeter-wave images is collected and created for experiments. Experimental results show that a typical classification method such as support vector machines can recognize 45.5% of a type of critical objects at 34.2% false alarm rate (FAR), which is a drastically poor recognition. The same method within the proposed recognition framework achieves 92.9% recognition rate at 0.43% FAR, which indicates a highly significant improvement. The significant contribution of this work is to introduce a new method for analyzing millimeter-wave images based on machine vision and learning approaches, which is not yet widely noted in the field of millimeter-wave image analysis.

  13. The use of neural networks and texture analysis for rapid objective selection of regions of interest in cytoskeletal images.

    PubMed

    Derkacs, Amanda D Felder; Ward, Samuel R; Lieber, Richard L

    2012-02-01

    Understanding cytoskeletal dynamics in living tissue is prerequisite to understanding mechanisms of injury, mechanotransduction, and mechanical signaling. Real-time visualization is now possible using transfection with plasmids that encode fluorescent cytoskeletal proteins. Using this approach with the muscle-specific intermediate filament protein desmin, we found that a green fluorescent protein-desmin chimeric protein was unevenly distributed throughout the muscle fiber, resulting in some image areas that were saturated as well as others that lacked any signal. Our goal was to analyze the muscle fiber cytoskeletal network quantitatively in an unbiased fashion. To objectively select areas of the muscle fiber that are suitable for analysis, we devised a method that provides objective classification of regions of images of striated cytoskeletal structures into "usable" and "unusable" categories. This method consists of a combination of spatial analysis of the image using Fourier methods along with a boosted neural network that "decides" on the quality of the image based on previous training. We trained the neural network using the expert opinion of three scientists familiar with these types of images. We found that this method was over 300 times faster than manual classification and that it permitted objective and accurate classification of image regions.

  14. A combined use of multispectral and SAR images for ship detection and characterization through object based image analysis

    NASA Astrophysics Data System (ADS)

    Aiello, Martina; Gianinetto, Marco

    2017-10-01

    Marine routes represent a huge portion of commercial and human trades, therefore surveillance, security and environmental protection themes are gaining increasing importance. Being able to overcome the limits imposed by terrestrial means of monitoring, ship detection from satellite has recently prompted a renewed interest for a continuous monitoring of illegal activities. This paper describes an automatic Object Based Image Analysis (OBIA) approach to detect vessels made of different materials in various sea environments. The combined use of multispectral and SAR images allows for a regular observation unrestricted by lighting and atmospheric conditions and complementarity in terms of geographic coverage and geometric detail. The method developed adopts a region growing algorithm to segment the image in homogeneous objects, which are then classified through a decision tree algorithm based on spectral and geometrical properties. Then, a spatial analysis retrieves the vessels' position, length and heading parameters and a speed range is associated. Optimization of the image processing chain is performed by selecting image tiles through a statistical index. Vessel candidates are detected over amplitude SAR images using an adaptive threshold Constant False Alarm Rate (CFAR) algorithm prior the object based analysis. Validation is carried out by comparing the retrieved parameters with the information provided by the Automatic Identification System (AIS), when available, or with manual measurement when AIS data are not available. The estimation of length shows R2=0.85 and estimation of heading R2=0.92, computed as the average of R2 values obtained for both optical and radar images.

  15. An Imaging And Graphics Workstation For Image Sequence Analysis

    NASA Astrophysics Data System (ADS)

    Mostafavi, Hassan

    1990-01-01

    This paper describes an application-specific engineering workstation designed and developed to analyze imagery sequences from a variety of sources. The system combines the software and hardware environment of the modern graphic-oriented workstations with the digital image acquisition, processing and display techniques. The objective is to achieve automation and high throughput for many data reduction tasks involving metric studies of image sequences. The applications of such an automated data reduction tool include analysis of the trajectory and attitude of aircraft, missile, stores and other flying objects in various flight regimes including launch and separation as well as regular flight maneuvers. The workstation can also be used in an on-line or off-line mode to study three-dimensional motion of aircraft models in simulated flight conditions such as wind tunnels. The system's key features are: 1) Acquisition and storage of image sequences by digitizing real-time video or frames from a film strip; 2) computer-controlled movie loop playback, slow motion and freeze frame display combined with digital image sharpening, noise reduction, contrast enhancement and interactive image magnification; 3) multiple leading edge tracking in addition to object centroids at up to 60 fields per second from both live input video or a stored image sequence; 4) automatic and manual field-of-view and spatial calibration; 5) image sequence data base generation and management, including the measurement data products; 6) off-line analysis software for trajectory plotting and statistical analysis; 7) model-based estimation and tracking of object attitude angles; and 8) interface to a variety of video players and film transport sub-systems.

  16. Evaluation of Alzheimer's disease by analysis of MR images using Objective Dialectical Classifiers as an alternative to ADC maps.

    PubMed

    Dos Santos, Wellington P; de Assis, Francisco M; de Souza, Ricardo E; Dos Santos Filho, Plinio B

    2008-01-01

    Alzheimer's disease is the most common cause of dementia, yet hard to diagnose precisely without invasive techniques, particularly at the onset of the disease. This work approaches image analysis and classification of synthetic multispectral images composed by diffusion-weighted (DW) magnetic resonance (MR) cerebral images for the evaluation of cerebrospinal fluid area and measuring the advance of Alzheimer's disease. A clinical 1.5 T MR imaging system was used to acquire all images presented. The classification methods are based on Objective Dialectical Classifiers, a new method based on Dialectics as defined in the Philosophy of Praxis. A 2-degree polynomial network with supervised training is used to generate the ground truth image. The classification results are used to improve the usual analysis of the apparent diffusion coefficient map.

  17. Quantification of Impervious Surfaces Along the Wasatch Front, Utah: AN Object-Based Image Analysis Approach to Identifying AN Indicator for Wetland Stress

    NASA Astrophysics Data System (ADS)

    Leydsman-McGinty, E. I.; Ramsey, R. D.; McGinty, C.

    2013-12-01

    The Remote Sensing/GIS Laboratory at Utah State University, in cooperation with the United States Environmental Protection Agency, is quantifying impervious surfaces for three watershed sub-basins in Utah. The primary objective of developing watershed-scale quantifications of impervious surfaces is to provide an indicator of potential impacts to wetlands that occur within the Wasatch Front and along the Great Salt Lake. A geospatial layer of impervious surfaces can assist state agencies involved with Utah's Wetlands Program Plan (WPP) in understanding the impacts of impervious surfaces on wetlands, as well as support them in carrying out goals and actions identified in the WPP. The three watershed sub-basins, Lower Bear-Malad, Lower Weber, and Jordan, span the highly urbanized Wasatch Front and are consistent with focal areas in need of wetland monitoring and assessment as identified in Utah's WPP. Geospatial layers of impervious surface currently exist in the form of national and regional land cover datasets; however, these datasets are too coarse to be utilized in fine-scale analyses. In addition, the pixel-based image processing techniques used to develop these coarse datasets have proven insufficient in smaller scale or detailed studies, particularly when applied to high-resolution satellite imagery or aerial photography. Therefore, object-based image analysis techniques are being implemented to develop the geospatial layer of impervious surfaces. Object-based image analysis techniques employ a combination of both geospatial and image processing methods to extract meaningful information from high-resolution imagery. Spectral, spatial, textural, and contextual information is used to group pixels into image objects and then subsequently used to develop rule sets for image classification. eCognition, an object-based image analysis software program, is being utilized in conjunction with one-meter resolution National Agriculture Imagery Program (NAIP) aerial photography from 2011.

  18. Flightspeed Integral Image Analysis Toolkit

    NASA Technical Reports Server (NTRS)

    Thompson, David R.

    2009-01-01

    The Flightspeed Integral Image Analysis Toolkit (FIIAT) is a C library that provides image analysis functions in a single, portable package. It provides basic low-level filtering, texture analysis, and subwindow descriptor for applications dealing with image interpretation and object recognition. Designed with spaceflight in mind, it addresses: Ease of integration (minimal external dependencies) Fast, real-time operation using integer arithmetic where possible (useful for platforms lacking a dedicated floatingpoint processor) Written entirely in C (easily modified) Mostly static memory allocation 8-bit image data The basic goal of the FIIAT library is to compute meaningful numerical descriptors for images or rectangular image regions. These n-vectors can then be used directly for novelty detection or pattern recognition, or as a feature space for higher-level pattern recognition tasks. The library provides routines for leveraging training data to derive descriptors that are most useful for a specific data set. Its runtime algorithms exploit a structure known as the "integral image." This is a caching method that permits fast summation of values within rectangular regions of an image. This integral frame facilitates a wide range of fast image-processing functions. This toolkit has applicability to a wide range of autonomous image analysis tasks in the space-flight domain, including novelty detection, object and scene classification, target detection for autonomous instrument placement, and science analysis of geomorphology. It makes real-time texture and pattern recognition possible for platforms with severe computational restraints. The software provides an order of magnitude speed increase over alternative software libraries currently in use by the research community. FIIAT can commercially support intelligent video cameras used in intelligent surveillance. It is also useful for object recognition by robots or other autonomous vehicles

  19. An image segmentation method for apple sorting and grading using support vector machine and Otsu's method

    USDA-ARS?s Scientific Manuscript database

    Segmentation is the first step in image analysis to subdivide an image into meaningful regions. The segmentation result directly affects the subsequent image analysis. The objective of the research was to develop an automatic adjustable algorithm for segmentation of color images, using linear suppor...

  20. Attitude Determination and Control System Design for a 6U Cube Sat for Proximity Operations and Rendezvous

    DTIC Science & Technology

    2014-08-04

    Resident Space Object Proximity Analysis and IMAging) mission is carried out by a 6U Cube Sat class satellite equipped with a warm gas propulsion system... mission . The ARAPAIMA (Application for Resident Space Object Proximity Analysis and IMAging) mission is carried out by a 6 U CubeSat class satellite...attitude determination and control subsystem (ADCS) (or a proximity operation and imaging satellite mission . The ARAP AI MA (Application for

  1. Buildings Change Detection Based on Shape Matching for Multi-Resolution Remote Sensing Imagery

    NASA Astrophysics Data System (ADS)

    Abdessetar, M.; Zhong, Y.

    2017-09-01

    Buildings change detection has the ability to quantify the temporal effect, on urban area, for urban evolution study or damage assessment in disaster cases. In this context, changes analysis might involve the utilization of the available satellite images with different resolutions for quick responses. In this paper, to avoid using traditional method with image resampling outcomes and salt-pepper effect, building change detection based on shape matching is proposed for multi-resolution remote sensing images. Since the object's shape can be extracted from remote sensing imagery and the shapes of corresponding objects in multi-scale images are similar, it is practical for detecting buildings changes in multi-scale imagery using shape analysis. Therefore, the proposed methodology can deal with different pixel size for identifying new and demolished buildings in urban area using geometric properties of objects of interest. After rectifying the desired multi-dates and multi-resolutions images, by image to image registration with optimal RMS value, objects based image classification is performed to extract buildings shape from the images. Next, Centroid-Coincident Matching is conducted, on the extracted building shapes, based on the Euclidean distance measurement between shapes centroid (from shape T0 to shape T1 and vice versa), in order to define corresponding building objects. Then, New and Demolished buildings are identified based on the obtained distances those are greater than RMS value (No match in the same location).

  2. Ray tracing analysis of overlapping objects in refraction contrast imaging.

    PubMed

    Hirano, Masatsugu; Yamasaki, Katsuhito; Okada, Hiroshi; Sakurai, Takashi; Kondoh, Takeshi; Katafuchi, Tetsuro; Sugimura, Kazuro; Kitazawa, Sohei; Kitazawa, Riko; Maeda, Sakan; Tamura, Shinichi

    2005-08-01

    We simulated refraction contrast imaging in overlapping objects using the ray tracing method. The easiest case, in which two columnar objects (blood vessels) with a density of 1.0 [g/cm3], run at right angles in air, was calculated. For absorption, we performed simulation using the Snell law adapted to the object's boundary. A pair of bright and dark spot results from the interference of refracted X-rays where the blood vessels crossed. This has the possibility of increasing the visibility of the image.

  3. A survey on object detection in optical remote sensing images

    NASA Astrophysics Data System (ADS)

    Cheng, Gong; Han, Junwei

    2016-07-01

    Object detection in optical remote sensing images, being a fundamental but challenging problem in the field of aerial and satellite image analysis, plays an important role for a wide range of applications and is receiving significant attention in recent years. While enormous methods exist, a deep review of the literature concerning generic object detection is still lacking. This paper aims to provide a review of the recent progress in this field. Different from several previously published surveys that focus on a specific object class such as building and road, we concentrate on more generic object categories including, but are not limited to, road, building, tree, vehicle, ship, airport, urban-area. Covering about 270 publications we survey (1) template matching-based object detection methods, (2) knowledge-based object detection methods, (3) object-based image analysis (OBIA)-based object detection methods, (4) machine learning-based object detection methods, and (5) five publicly available datasets and three standard evaluation metrics. We also discuss the challenges of current studies and propose two promising research directions, namely deep learning-based feature representation and weakly supervised learning-based geospatial object detection. It is our hope that this survey will be beneficial for the researchers to have better understanding of this research field.

  4. A software package to improve image quality and isolation of objects of interest for quantitative stereology studies of rat hepatocarcinogenesis.

    PubMed

    Xu, Yihua; Pitot, Henry C

    2006-03-01

    In the studies of quantitative stereology of rat hepatocarcinogenesis, we have used image analysis technology (automatic particle analysis) to obtain data such as liver tissue area, size and location of altered hepatic focal lesions (AHF), and nuclei counts. These data are then used for three-dimensional estimation of AHF occurrence and nuclear labeling index analysis. These are important parameters for quantitative studies of carcinogenesis, for screening and classifying carcinogens, and for risk estimation. To take such measurements, structures or cells of interest should be separated from the other components based on the difference of color and density. Common background problems seen on the captured sample image such as uneven light illumination or color shading can cause severe problems in the measurement. Two application programs (BK_Correction and Pixel_Separator) have been developed to solve these problems. With BK_Correction, common background problems such as incorrect color temperature setting, color shading, and uneven light illumination background, can be corrected. With Pixel_Separator different types of objects can be separated from each other in relation to their color, such as seen with different colors in immunohistochemically stained slides. The resultant images of such objects separated from other components are then ready for particle analysis. Objects that have the same darkness but different colors can be accurately differentiated in a grayscale image analysis system after application of these programs.

  5. Optimisation and evaluation of hyperspectral imaging system using machine learning algorithm

    NASA Astrophysics Data System (ADS)

    Suthar, Gajendra; Huang, Jung Y.; Chidangil, Santhosh

    2017-10-01

    Hyperspectral imaging (HSI), also called imaging spectrometer, originated from remote sensing. Hyperspectral imaging is an emerging imaging modality for medical applications, especially in disease diagnosis and image-guided surgery. HSI acquires a three-dimensional dataset called hypercube, with two spatial dimensions and one spectral dimension. Spatially resolved spectral imaging obtained by HSI provides diagnostic information about the objects physiology, morphology, and composition. The present work involves testing and evaluating the performance of the hyperspectral imaging system. The methodology involved manually taking reflectance of the object in many images or scan of the object. The object used for the evaluation of the system was cabbage and tomato. The data is further converted to the required format and the analysis is done using machine learning algorithm. The machine learning algorithms applied were able to distinguish between the object present in the hypercube obtain by the scan. It was concluded from the results that system was working as expected. This was observed by the different spectra obtained by using the machine-learning algorithm.

  6. Selective object encryption for privacy protection

    NASA Astrophysics Data System (ADS)

    Zhou, Yicong; Panetta, Karen; Cherukuri, Ravindranath; Agaian, Sos

    2009-05-01

    This paper introduces a new recursive sequence called the truncated P-Fibonacci sequence, its corresponding binary code called the truncated Fibonacci p-code and a new bit-plane decomposition method using the truncated Fibonacci pcode. In addition, a new lossless image encryption algorithm is presented that can encrypt a selected object using this new decomposition method for privacy protection. The user has the flexibility (1) to define the object to be protected as an object in an image or in a specific part of the image, a selected region of an image, or an entire image, (2) to utilize any new or existing method for edge detection or segmentation to extract the selected object from an image or a specific part/region of the image, (3) to select any new or existing method for the shuffling process. The algorithm can be used in many different areas such as wireless networking, mobile phone services and applications in homeland security and medical imaging. Simulation results and analysis verify that the algorithm shows good performance in object/image encryption and can withstand plaintext attacks.

  7. Image digitising and analysis of outflows from young stars

    NASA Astrophysics Data System (ADS)

    Zealey, W. J.; Mader, S. L.

    1997-08-01

    We present IIIaJ, IIIaF and IVN band images of Herbig-Haro objects digitised from the ESO/SERC Southern Sky Survey plates. These form part of a digital image database of southern HH objects, which allows the identification of emission and reflection nebulosity and the location of the obscured sources of outflows.

  8. 3D Texture Features Mining for MRI Brain Tumor Identification

    NASA Astrophysics Data System (ADS)

    Rahim, Mohd Shafry Mohd; Saba, Tanzila; Nayer, Fatima; Syed, Afraz Zahra

    2014-03-01

    Medical image segmentation is a process to extract region of interest and to divide an image into its individual meaningful, homogeneous components. Actually, these components will have a strong relationship with the objects of interest in an image. For computer-aided diagnosis and therapy process, medical image segmentation is an initial mandatory step. Medical image segmentation is a sophisticated and challenging task because of the sophisticated nature of the medical images. Indeed, successful medical image analysis heavily dependent on the segmentation accuracy. Texture is one of the major features to identify region of interests in an image or to classify an object. 2D textures features yields poor classification results. Hence, this paper represents 3D features extraction using texture analysis and SVM as segmentation technique in the testing methodologies.

  9. A knowledge-based machine vision system for space station automation

    NASA Technical Reports Server (NTRS)

    Chipman, Laure J.; Ranganath, H. S.

    1989-01-01

    A simple knowledge-based approach to the recognition of objects in man-made scenes is being developed. Specifically, the system under development is a proposed enhancement to a robot arm for use in the space station laboratory module. The system will take a request from a user to find a specific object, and locate that object by using its camera input and information from a knowledge base describing the scene layout and attributes of the object types included in the scene. In order to use realistic test images in developing the system, researchers are using photographs of actual NASA simulator panels, which provide similar types of scenes to those expected in the space station environment. Figure 1 shows one of these photographs. In traditional approaches to image analysis, the image is transformed step by step into a symbolic representation of the scene. Often the first steps of the transformation are done without any reference to knowledge of the scene or objects. Segmentation of an image into regions generally produces a counterintuitive result in which regions do not correspond to objects in the image. After segmentation, a merging procedure attempts to group regions into meaningful units that will more nearly correspond to objects. Here, researchers avoid segmenting the image as a whole, and instead use a knowledge-directed approach to locate objects in the scene. The knowledge-based approach to scene analysis is described and the categories of knowledge used in the system are discussed.

  10. Three-dimensional passive sensing photon counting for object classification

    NASA Astrophysics Data System (ADS)

    Yeom, Seokwon; Javidi, Bahram; Watson, Edward

    2007-04-01

    In this keynote address, we address three-dimensional (3D) distortion-tolerant object recognition using photon-counting integral imaging (II). A photon-counting linear discriminant analysis (LDA) is discussed for classification of photon-limited images. We develop a compact distortion-tolerant recognition system based on the multiple-perspective imaging of II. Experimental and simulation results have shown that a low level of photons is sufficient to classify out-of-plane rotated objects.

  11. Resolving power of diffraction imaging with an objective: a numerical study.

    PubMed

    Wang, Wenjin; Liu, Jing; Lu, Jun Qing; Ding, Junhua; Hu, Xin-Hua

    2017-05-01

    Diffraction imaging in the far-field can detect 3D morphological features of an object for its coherent nature. We describe methods for accurate calculation and analysis of diffraction images of scatterers of single and double spheres by an imaging unit based on microscope objective at non-conjugate positions. A quantitative study of the calculated diffraction imaging in spectral domain has been performed to assess the resolving power of diffraction imaging. It has been shown numerically that with coherent illumination of 532 nm in wavelength the imaging unit can resolve single spheres of 2 μm or larger in diameters and double spheres separated by less than 300 nm between their centers.

  12. Segmentation of touching mycobacterium tuberculosis from Ziehl-Neelsen stained sputum smear images

    NASA Astrophysics Data System (ADS)

    Xu, Chao; Zhou, Dongxiang; Liu, Yunhui

    2015-12-01

    Touching Mycobacterium tuberculosis objects in the Ziehl-Neelsen stained sputum smear images present different shapes and invisible boundaries in the adhesion areas, which increases the difficulty in objects recognition and counting. In this paper, we present a segmentation method of combining the hierarchy tree analysis with gradient vector flow snake to address this problem. The skeletons of the objects are used for structure analysis based on the hierarchy tree. The gradient vector flow snake is used to estimate the object edge. Experimental results show that the single objects composing the touching objects are successfully segmented by the proposed method. This work will improve the accuracy and practicability of the computer-aided diagnosis of tuberculosis.

  13. A wavelet-based Bayesian framework for 3D object segmentation in microscopy

    NASA Astrophysics Data System (ADS)

    Pan, Kangyu; Corrigan, David; Hillebrand, Jens; Ramaswami, Mani; Kokaram, Anil

    2012-03-01

    In confocal microscopy, target objects are labeled with fluorescent markers in the living specimen, and usually appear with irregular brightness in the observed images. Also, due to the existence of out-of-focus objects in the image, the segmentation of 3-D objects in the stack of image slices captured at different depth levels of the specimen is still heavily relied on manual analysis. In this paper, a novel Bayesian model is proposed for segmenting 3-D synaptic objects from given image stack. In order to solve the irregular brightness and out-offocus problems, the segmentation model employs a likelihood using the luminance-invariant 'wavelet features' of image objects in the dual-tree complex wavelet domain as well as a likelihood based on the vertical intensity profile of the image stack in 3-D. Furthermore, a smoothness 'frame' prior based on the a priori knowledge of the connections of the synapses is introduced to the model for enhancing the connectivity of the synapses. As a result, our model can successfully segment the in-focus target synaptic object from a 3D image stack with irregular brightness.

  14. Three-dimensional localization and optical imaging of objects in turbid media with independent component analysis.

    PubMed

    Xu, M; Alrubaiee, M; Gayen, S K; Alfano, R R

    2005-04-01

    A new approach for optical imaging and localization of objects in turbid media that makes use of the independent component analysis (ICA) from information theory is demonstrated. Experimental arrangement realizes a multisource illumination of a turbid medium with embedded objects and a multidetector acquisition of transmitted light on the medium boundary. The resulting spatial diversity and multiple angular observations provide robust data for three-dimensional localization and characterization of absorbing and scattering inhomogeneities embedded in a turbid medium. ICA of the perturbations in the spatial intensity distribution on the medium boundary sorts out the embedded objects, and their locations are obtained from Green's function analysis based on any appropriate light propagation model. Imaging experiments were carried out on two highly scattering samples of thickness approximately 50 times the transport mean-free path of the respective medium. One turbid medium had two embedded absorptive objects, and the other had four scattering objects. An independent component separation of the signal, in conjunction with diffusive photon migration theory, was used to locate the embedded inhomogeneities. In both cases, improved lateral and axial localizations of the objects over the result obtained by use of common photon migration reconstruction algorithms were achieved. The approach is applicable to different medium geometries, can be used with any suitable photon propagation model, and is amenable to near-real-time imaging applications.

  15. Digital Imaging

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Digital Imaging is the computer processed numerical representation of physical images. Enhancement of images results in easier interpretation. Quantitative digital image analysis by Perceptive Scientific Instruments, locates objects within an image and measures them to extract quantitative information. Applications are CAT scanners, radiography, microscopy in medicine as well as various industrial and manufacturing uses. The PSICOM 327 performs all digital image analysis functions. It is based on Jet Propulsion Laboratory technology, is accurate and cost efficient.

  16. Extended depth of field imaging for high speed object analysis

    NASA Technical Reports Server (NTRS)

    Frost, Keith (Inventor); Ortyn, William (Inventor); Basiji, David (Inventor); Bauer, Richard (Inventor); Liang, Luchuan (Inventor); Hall, Brian (Inventor); Perry, David (Inventor)

    2011-01-01

    A high speed, high-resolution flow imaging system is modified to achieve extended depth of field imaging. An optical distortion element is introduced into the flow imaging system. Light from an object, such as a cell, is distorted by the distortion element, such that a point spread function (PSF) of the imaging system is invariant across an extended depth of field. The distorted light is spectrally dispersed, and the dispersed light is used to simultaneously generate a plurality of images. The images are detected, and image processing is used to enhance the detected images by compensating for the distortion, to achieve extended depth of field images of the object. The post image processing preferably involves de-convolution, and requires knowledge of the PSF of the imaging system, as modified by the optical distortion element.

  17. Image processing and classification procedures for analysis of sub-decimeter imagery acquired with an unmanned aircraft over arid rangelands

    USDA-ARS?s Scientific Manuscript database

    Using five centimeter resolution images acquired with an unmanned aircraft system (UAS), we developed and evaluated an image processing workflow that included the integration of resolution-appropriate field sampling, feature selection, object-based image analysis, and processing approaches for UAS i...

  18. Multi-scale image segmentation method with visual saliency constraints and its application

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Yu, Jie; Sun, Kaimin

    2018-03-01

    Object-based image analysis method has many advantages over pixel-based methods, so it is one of the current research hotspots. It is very important to get the image objects by multi-scale image segmentation in order to carry out object-based image analysis. The current popular image segmentation methods mainly share the bottom-up segmentation principle, which is simple to realize and the object boundaries obtained are accurate. However, the macro statistical characteristics of the image areas are difficult to be taken into account, and fragmented segmentation (or over-segmentation) results are difficult to avoid. In addition, when it comes to information extraction, target recognition and other applications, image targets are not equally important, i.e., some specific targets or target groups with particular features worth more attention than the others. To avoid the problem of over-segmentation and highlight the targets of interest, this paper proposes a multi-scale image segmentation method with visually saliency graph constraints. Visual saliency theory and the typical feature extraction method are adopted to obtain the visual saliency information, especially the macroscopic information to be analyzed. The visual saliency information is used as a distribution map of homogeneity weight, where each pixel is given a weight. This weight acts as one of the merging constraints in the multi- scale image segmentation. As a result, pixels that macroscopically belong to the same object but are locally different can be more likely assigned to one same object. In addition, due to the constraint of visual saliency model, the constraint ability over local-macroscopic characteristics can be well controlled during the segmentation process based on different objects. These controls will improve the completeness of visually saliency areas in the segmentation results while diluting the controlling effect for non- saliency background areas. Experiments show that this method works better for texture image segmentation than traditional multi-scale image segmentation methods, and can enable us to give priority control to the saliency objects of interest. This method has been used in image quality evaluation, scattered residential area extraction, sparse forest extraction and other applications to verify its validation. All applications showed good results.

  19. The objective assessment of experts' and novices' suturing skills using an image analysis program.

    PubMed

    Frischknecht, Adam C; Kasten, Steven J; Hamstra, Stanley J; Perkins, Noel C; Gillespie, R Brent; Armstrong, Thomas J; Minter, Rebecca M

    2013-02-01

    To objectively assess suturing performance using an image analysis program and to provide validity evidence for this assessment method by comparing experts' and novices' performance. In 2009, the authors used an image analysis program to extract objective variables from digital images of suturing end products obtained during a previous study involving third-year medical students (novices) and surgical faculty and residents (experts). Variables included number of stitches, stitch length, total bite size, travel, stitch orientation, total bite-size-to-travel ratio, and symmetry across the incision ratio. The authors compared all variables between groups to detect significant differences and two variables (total bite-size-to-travel ratio and symmetry across the incision ratio) to ideal values. Five experts and 15 novices participated. Experts' and novices' performances differed significantly (P < .05) with large effect sizes attributable to experience (Cohen d > 0.8) for total bite size (P = .009, d = 1.5), travel (P = .045, d = 1.1), total bite-size-to-travel ratio (P < .0001, d = 2.6), stitch orientation (P = .014,d = 1.4), and symmetry across the incision ratio (P = .022, d = 1.3). The authors found that a simple computer algorithm can extract variables from digital images of a running suture and rapidly provide quantitative summative assessment feedback. The significant differences found between groups confirm that this system can discriminate between skill levels. This image analysis program represents a viable training tool for objectively assessing trainees' suturing, a foundational skill for many medical specialties.

  20. A computational image analysis glossary for biologists.

    PubMed

    Roeder, Adrienne H K; Cunha, Alexandre; Burl, Michael C; Meyerowitz, Elliot M

    2012-09-01

    Recent advances in biological imaging have resulted in an explosion in the quality and quantity of images obtained in a digital format. Developmental biologists are increasingly acquiring beautiful and complex images, thus creating vast image datasets. In the past, patterns in image data have been detected by the human eye. Larger datasets, however, necessitate high-throughput objective analysis tools to computationally extract quantitative information from the images. These tools have been developed in collaborations between biologists, computer scientists, mathematicians and physicists. In this Primer we present a glossary of image analysis terms to aid biologists and briefly discuss the importance of robust image analysis in developmental studies.

  1. Refocusing-range and image-quality enhanced optical reconstruction of 3-D objects from integral images using a principal periodic δ-function array

    NASA Astrophysics Data System (ADS)

    Ai, Lingyu; Kim, Eun-Soo

    2018-03-01

    We propose a method for refocusing-range and image-quality enhanced optical reconstruction of three-dimensional (3-D) objects from integral images only by using a 3 × 3 periodic δ-function array (PDFA), which is called a principal PDFA (P-PDFA). By directly convolving the elemental image array (EIA) captured from 3-D objects with the P-PDFAs whose spatial periods correspond to each object's depth, a set of spatially-filtered EIAs (SF-EIAs) are extracted, and from which 3-D objects can be reconstructed to be refocused on their real depth. convolutional operations are performed directly on each of the minimum 3 × 3 EIs of the picked-up EIA, the capturing and refocused-depth ranges of 3-D objects can be greatly enhanced, as well as 3-D objects much improved in image quality can be reconstructed without any preprocessing operations. Through ray-optical analysis and optical experiments with actual 3-D objects, the feasibility of the proposed method has been confirmed.

  2. Power spectrum weighted edge analysis for straight edge detection in images

    NASA Astrophysics Data System (ADS)

    Karvir, Hrishikesh V.; Skipper, Julie A.

    2007-04-01

    Most man-made objects provide characteristic straight line edges and, therefore, edge extraction is a commonly used target detection tool. However, noisy images often yield broken edges that lead to missed detections, and extraneous edges that may contribute to false target detections. We present a sliding-block approach for target detection using weighted power spectral analysis. In general, straight line edges appearing at a given frequency are represented as a peak in the Fourier domain at a radius corresponding to that frequency, and a direction corresponding to the orientation of the edges in the spatial domain. Knowing the edge width and spacing between the edges, a band-pass filter is designed to extract the Fourier peaks corresponding to the target edges and suppress image noise. These peaks are then detected by amplitude thresholding. The frequency band width and the subsequent spatial filter mask size are variable parameters to facilitate detection of target objects of different sizes under known imaging geometries. Many military objects, such as trucks, tanks and missile launchers, produce definite signatures with parallel lines and the algorithm proves to be ideal for detecting such objects. Moreover, shadow-casting objects generally provide sharp edges and are readily detected. The block operation procedure offers advantages of significant reduction in noise influence, improved edge detection, faster processing speed and versatility to detect diverse objects of different sizes in the image. With Scud missile launcher replicas as target objects, the method has been successfully tested on terrain board test images under different backgrounds, illumination and imaging geometries with cameras of differing spatial resolution and bit-depth.

  3. A light and faster regional convolutional neural network for object detection in optical remote sensing images

    NASA Astrophysics Data System (ADS)

    Ding, Peng; Zhang, Ye; Deng, Wei-Jian; Jia, Ping; Kuijper, Arjan

    2018-07-01

    Detection of objects from satellite optical remote sensing images is very important for many commercial and governmental applications. With the development of deep convolutional neural networks (deep CNNs), the field of object detection has seen tremendous advances. Currently, objects in satellite remote sensing images can be detected using deep CNNs. In general, optical remote sensing images contain many dense and small objects, and the use of the original Faster Regional CNN framework does not yield a suitably high precision. Therefore, after careful analysis we adopt dense convoluted networks, a multi-scale representation and various combinations of improvement schemes to enhance the structure of the base VGG16-Net for improving the precision. We propose an approach to reduce the test-time (detection time) and memory requirements. To validate the effectiveness of our approach, we perform experiments using satellite remote sensing image datasets of aircraft and automobiles. The results show that the improved network structure can detect objects in satellite optical remote sensing images more accurately and efficiently.

  4. Comparison of classification algorithms for various methods of preprocessing radar images of the MSTAR base

    NASA Astrophysics Data System (ADS)

    Borodinov, A. A.; Myasnikov, V. V.

    2018-04-01

    The present work is devoted to comparing the accuracy of the known qualification algorithms in the task of recognizing local objects on radar images for various image preprocessing methods. Preprocessing involves speckle noise filtering and normalization of the object orientation in the image by the method of image moments and by a method based on the Hough transform. In comparison, the following classification algorithms are used: Decision tree; Support vector machine, AdaBoost, Random forest. The principal component analysis is used to reduce the dimension. The research is carried out on the objects from the base of radar images MSTAR. The paper presents the results of the conducted studies.

  5. Computer object segmentation by nonlinear image enhancement, multidimensional clustering, and geometrically constrained contour optimization

    NASA Astrophysics Data System (ADS)

    Bruynooghe, Michel M.

    1998-04-01

    In this paper, we present a robust method for automatic object detection and delineation in noisy complex images. The proposed procedure is a three stage process that integrates image segmentation by multidimensional pixel clustering and geometrically constrained optimization of deformable contours. The first step is to enhance the original image by nonlinear unsharp masking. The second step is to segment the enhanced image by multidimensional pixel clustering, using our reducible neighborhoods clustering algorithm that has a very interesting theoretical maximal complexity. Then, candidate objects are extracted and initially delineated by an optimized region merging algorithm, that is based on ascendant hierarchical clustering with contiguity constraints and on the maximization of average contour gradients. The third step is to optimize the delineation of previously extracted and initially delineated objects. Deformable object contours have been modeled by cubic splines. An affine invariant has been used to control the undesired formation of cusps and loops. Non linear constrained optimization has been used to maximize the external energy. This avoids the difficult and non reproducible choice of regularization parameters, that are required by classical snake models. The proposed method has been applied successfully to the detection of fine and subtle microcalcifications in X-ray mammographic images, to defect detection by moire image analysis, and to the analysis of microrugosities of thin metallic films. The later implementation of the proposed method on a digital signal processor associated to a vector coprocessor would allow the design of a real-time object detection and delineation system for applications in medical imaging and in industrial computer vision.

  6. ConfocalGN: A minimalistic confocal image generator

    NASA Astrophysics Data System (ADS)

    Dmitrieff, Serge; Nédélec, François

    Validating image analysis pipelines and training machine-learning segmentation algorithms require images with known features. Synthetic images can be used for this purpose, with the advantage that large reference sets can be produced easily. It is however essential to obtain images that are as realistic as possible in terms of noise and resolution, which is challenging in the field of microscopy. We describe ConfocalGN, a user-friendly software that can generate synthetic microscopy stacks from a ground truth (i.e. the observed object) specified as a 3D bitmap or a list of fluorophore coordinates. This software can analyze a real microscope image stack to set the noise parameters and directly generate new images of the object with noise characteristics similar to that of the sample image. With a minimal input from the user and a modular architecture, ConfocalGN is easily integrated with existing image analysis solutions.

  7. Demonstrating Change with Astronaut Photography Using Object Based Image Analysis

    NASA Technical Reports Server (NTRS)

    Hollier, Andi; Jagge, Amy

    2017-01-01

    Every day, hundreds of images of Earth flood the Crew Earth Observations database as astronauts use hand held digital cameras to capture spectacular frames from the International Space Station. The variety of resolutions and perspectives provide a template for assessing land cover change over decades. We will focus on urban growth in the second fastest growing city in the nation, Houston, TX, using Object-Based Image Analysis. This research will contribute to the land change science community, integrated resource planning, and monitoring of the rapid rate of urban sprawl.

  8. Object Based Image Analysis Combining High Spatial Resolution Imagery and Laser Point Clouds for Urban Land Cover

    NASA Astrophysics Data System (ADS)

    Zou, Xiaoliang; Zhao, Guihua; Li, Jonathan; Yang, Yuanxi; Fang, Yong

    2016-06-01

    With the rapid developments of the sensor technology, high spatial resolution imagery and airborne Lidar point clouds can be captured nowadays, which make classification, extraction, evaluation and analysis of a broad range of object features available. High resolution imagery, Lidar dataset and parcel map can be widely used for classification as information carriers. Therefore, refinement of objects classification is made possible for the urban land cover. The paper presents an approach to object based image analysis (OBIA) combing high spatial resolution imagery and airborne Lidar point clouds. The advanced workflow for urban land cover is designed with four components. Firstly, colour-infrared TrueOrtho photo and laser point clouds were pre-processed to derive the parcel map of water bodies and nDSM respectively. Secondly, image objects are created via multi-resolution image segmentation integrating scale parameter, the colour and shape properties with compactness criterion. Image can be subdivided into separate object regions. Thirdly, image objects classification is performed on the basis of segmentation and a rule set of knowledge decision tree. These objects imagery are classified into six classes such as water bodies, low vegetation/grass, tree, low building, high building and road. Finally, in order to assess the validity of the classification results for six classes, accuracy assessment is performed through comparing randomly distributed reference points of TrueOrtho imagery with the classification results, forming the confusion matrix and calculating overall accuracy and Kappa coefficient. The study area focuses on test site Vaihingen/Enz and a patch of test datasets comes from the benchmark of ISPRS WG III/4 test project. The classification results show higher overall accuracy for most types of urban land cover. Overall accuracy is 89.5% and Kappa coefficient equals to 0.865. The OBIA approach provides an effective and convenient way to combine high resolution imagery and Lidar ancillary data for classification of urban land cover.

  9. A method for the evaluation of image quality according to the recognition effectiveness of objects in the optical remote sensing image using machine learning algorithm.

    PubMed

    Yuan, Tao; Zheng, Xinqi; Hu, Xuan; Zhou, Wei; Wang, Wei

    2014-01-01

    Objective and effective image quality assessment (IQA) is directly related to the application of optical remote sensing images (ORSI). In this study, a new IQA method of standardizing the target object recognition rate (ORR) is presented to reflect quality. First, several quality degradation treatments with high-resolution ORSIs are implemented to model the ORSIs obtained in different imaging conditions; then, a machine learning algorithm is adopted for recognition experiments on a chosen target object to obtain ORRs; finally, a comparison with commonly used IQA indicators was performed to reveal their applicability and limitations. The results showed that the ORR of the original ORSI was calculated to be up to 81.95%, whereas the ORR ratios of the quality-degraded images to the original images were 65.52%, 64.58%, 71.21%, and 73.11%. The results show that these data can more accurately reflect the advantages and disadvantages of different images in object identification and information extraction when compared with conventional digital image assessment indexes. By recognizing the difference in image quality from the application effect perspective, using a machine learning algorithm to extract regional gray scale features of typical objects in the image for analysis, and quantitatively assessing quality of ORSI according to the difference, this method provides a new approach for objective ORSI assessment.

  10. Multiscale Medical Image Fusion in Wavelet Domain

    PubMed Central

    Khare, Ashish

    2013-01-01

    Wavelet transforms have emerged as a powerful tool in image fusion. However, the study and analysis of medical image fusion is still a challenging area of research. Therefore, in this paper, we propose a multiscale fusion of multimodal medical images in wavelet domain. Fusion of medical images has been performed at multiple scales varying from minimum to maximum level using maximum selection rule which provides more flexibility and choice to select the relevant fused images. The experimental analysis of the proposed method has been performed with several sets of medical images. Fusion results have been evaluated subjectively and objectively with existing state-of-the-art fusion methods which include several pyramid- and wavelet-transform-based fusion methods and principal component analysis (PCA) fusion method. The comparative analysis of the fusion results has been performed with edge strength (Q), mutual information (MI), entropy (E), standard deviation (SD), blind structural similarity index metric (BSSIM), spatial frequency (SF), and average gradient (AG) metrics. The combined subjective and objective evaluations of the proposed fusion method at multiple scales showed the effectiveness and goodness of the proposed approach. PMID:24453868

  11. Man-made objects cuing in satellite imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skurikhin, Alexei N

    2009-01-01

    We present a multi-scale framework for man-made structures cuing in satellite image regions. The approach is based on a hierarchical image segmentation followed by structural analysis. A hierarchical segmentation produces an image pyramid that contains a stack of irregular image partitions, represented as polygonized pixel patches, of successively reduced levels of detail (LOOs). We are jumping off from the over-segmented image represented by polygons attributed with spectral and texture information. The image is represented as a proximity graph with vertices corresponding to the polygons and edges reflecting polygon relations. This is followed by the iterative graph contraction based on Boruvka'smore » Minimum Spanning Tree (MST) construction algorithm. The graph contractions merge the patches based on their pairwise spectral and texture differences. Concurrently with the construction of the irregular image pyramid, structural analysis is done on the agglomerated patches. Man-made object cuing is based on the analysis of shape properties of the constructed patches and their spatial relations. The presented framework can be used as pre-scanning tool for wide area monitoring to quickly guide the further analysis to regions of interest.« less

  12. High-resolution ab initio three-dimensional x-ray diffraction microscopy

    DOE PAGES

    Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; ...

    2006-01-01

    Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatialmore » resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.« less

  13. Objects Grouping for Segmentation of Roads Network in High Resolution Images of Urban Areas

    NASA Astrophysics Data System (ADS)

    Maboudi, M.; Amini, J.; Hahn, M.

    2016-06-01

    Updated road databases are required for many purposes such as urban planning, disaster management, car navigation, route planning, traffic management and emergency handling. In the last decade, the improvement in spatial resolution of VHR civilian satellite sensors - as the main source of large scale mapping applications - was so considerable that GSD has become finer than size of common urban objects of interest such as building, trees and road parts. This technological advancement pushed the development of "Object-based Image Analysis (OBIA)" as an alternative to pixel-based image analysis methods. Segmentation as one of the main stages of OBIA provides the image objects on which most of the following processes will be applied. Therefore, the success of an OBIA approach is strongly affected by the segmentation quality. In this paper, we propose a purpose-dependent refinement strategy in order to group road segments in urban areas using maximal similarity based region merging. For investigations with the proposed method, we use high resolution images of some urban sites. The promising results suggest that the proposed approach is applicable in grouping of road segments in urban areas.

  14. A programmable light engine for quantitative single molecule TIRF and HILO imaging.

    PubMed

    van 't Hoff, Marcel; de Sars, Vincent; Oheim, Martin

    2008-10-27

    We report on a simple yet powerful implementation of objective-type total internal reflection fluorescence (TIRF) and highly inclined and laminated optical sheet (HILO, a type of dark-field) illumination. Instead of focusing the illuminating laser beam to a single spot close to the edge of the microscope objective, we are scanning during the acquisition of a fluorescence image the focused spot in a circular orbit, thereby illuminating the sample from various directions. We measure parameters relevant for quantitative image analysis during fluorescence image acquisition by capturing an image of the excitation light distribution in an equivalent objective backfocal plane (BFP). Operating at scan rates above 1 MHz, our programmable light engine allows directional averaging by circular spinning the spot even for sub-millisecond exposure times. We show that restoring the symmetry of TIRF/HILO illumination reduces scattering and produces an evenly lit field-of-view that affords on-line analysis of evanescnt-field excited fluorescence without pre-processing. Utilizing crossed acousto-optical deflectors, our device generates arbitrary intensity profiles in BFP, permitting variable-angle, multi-color illumination, or objective lenses to be rapidly exchanged.

  15. The Novel Object and Unusual Name (NOUN) Database: A collection of novel images for use in experimental research.

    PubMed

    Horst, Jessica S; Hout, Michael C

    2016-12-01

    Many experimental research designs require images of novel objects. Here we introduce the Novel Object and Unusual Name (NOUN) Database. This database contains 64 primary novel object images and additional novel exemplars for ten basic- and nine global-level object categories. The objects' novelty was confirmed by both self-report and a lack of consensus on questions that required participants to name and identify the objects. We also found that object novelty correlated with qualifying naming responses pertaining to the objects' colors. The results from a similarity sorting task (and a subsequent multidimensional scaling analysis on the similarity ratings) demonstrated that the objects are complex and distinct entities that vary along several featural dimensions beyond simply shape and color. A final experiment confirmed that additional item exemplars comprised both sub- and superordinate categories. These images may be useful in a variety of settings, particularly for developmental psychology and other research in the language, categorization, perception, visual memory, and related domains.

  16. Parallel architecture for rapid image generation and analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nerheim, R.J.

    1987-01-01

    A multiprocessor architecture inspired by the Disney multiplane camera is proposed. For many applications, this approach produces a natural mapping of processors to objects in a scene. Such a mapping promotes parallelism and reduces the hidden-surface work with minimal interprocessor communication and low-overhead cost. Existing graphics architectures store the final picture as a monolithic entity. The architecture here stores each object's image separately. It assembles the final composite picture from component images only when the video display needs to be refreshed. This organization simplifies the work required to animate moving objects that occlude other objects. In addition, the architecture hasmore » multiple processors that generate the component images in parallel. This further shortens the time needed to create a composite picture. In addition to generating images for animation, the architecture has the ability to decompose images.« less

  17. Generating land cover boundaries from remotely sensed data using object-based image analysis: overview and epidemiological application

    PubMed Central

    Maxwell, Susan K.

    2010-01-01

    Satellite imagery and aerial photography represent a vast resource to significantly enhance environmental mapping and modeling applications for use in understanding spatio-temporal relationships between environment and health. Deriving boundaries of land cover objects, such as trees, buildings, and crop fields, from image data has traditionally been performed manually using a very time consuming process of hand digitizing. Boundary detection algorithms are increasingly being applied using object-based image analysis (OBIA) technology to automate the process. The purpose of this paper is to present an overview and demonstrate the application of OBIA for delineating land cover features at multiple scales using a high resolution aerial photograph (1 m) and a medium resolution Landsat image (30 m) time series in the context of a pesticide spray drift exposure application. PMID:21135917

  18. Learning a cost function for microscope image segmentation.

    PubMed

    Nilufar, Sharmin; Perkins, Theodore J

    2014-01-01

    Quantitative analysis of microscopy images is increasingly important in clinical researchers' efforts to unravel the cellular and molecular determinants of disease, and for pathological analysis of tissue samples. Yet, manual segmentation and measurement of cells or other features in images remains the norm in many fields. We report on a new system that aims for robust and accurate semi-automated analysis of microscope images. A user interactively outlines one or more examples of a target object in a training image. We then learn a cost function for detecting more objects of the same type, either in the same or different images. The cost function is incorporated into an active contour model, which can efficiently determine optimal boundaries by dynamic programming. We validate our approach and compare it to some standard alternatives on three different types of microscopic images: light microscopy of blood cells, light microscopy of muscle tissue sections, and electron microscopy cross-sections of axons and their myelin sheaths.

  19. Evaluation of image quality in terahertz pulsed imaging using test objects.

    PubMed

    Fitzgerald, A J; Berry, E; Miles, R E; Zinovev, N N; Smith, M A; Chamberlain, J M

    2002-11-07

    As with other imaging modalities, the performance of terahertz (THz) imaging systems is limited by factors of spatial resolution, contrast and noise. The purpose of this paper is to introduce test objects and image analysis methods to evaluate and compare THz image quality in a quantitative and objective way, so that alternative terahertz imaging system configurations and acquisition techniques can be compared, and the range of image parameters can be assessed. Two test objects were designed and manufactured, one to determine the modulation transfer functions (MTF) and the other to derive image signal to noise ratio (SNR) at a range of contrasts. As expected the higher THz frequencies had larger MTFs, and better spatial resolution as determined by the spatial frequency at which the MTF dropped below the 20% threshold. Image SNR was compared for time domain and frequency domain image parameters and time delay based images consistently demonstrated higher SNR than intensity based parameters such as relative transmittance because the latter are more strongly affected by the sources of noise in the THz system such as laser fluctuations and detector shot noise.

  20. Passive Infrared Thermographic Imaging for Mobile Robot Object Identification

    NASA Astrophysics Data System (ADS)

    Hinders, M. K.; Fehlman, W. L.

    2010-02-01

    The usefulness of thermal infrared imaging as a mobile robot sensing modality is explored, and a set of thermal-physical features used to characterize passive thermal objects in outdoor environments is described. Objects that extend laterally beyond the thermal camera's field of view, such as brick walls, hedges, picket fences, and wood walls as well as compact objects that are laterally within the thermal camera's field of view, such as metal poles and tree trunks, are considered. Classification of passive thermal objects is a subtle process since they are not a source for their own emission of thermal energy. A detailed analysis is included of the acquisition and preprocessing of thermal images, as well as the generation and selection of thermal-physical features from these objects within thermal images. Classification performance using these features is discussed, as a precursor to the design of a physics-based model to automatically classify these objects.

  1. Geographic Object-Based Image Analysis - Towards a new paradigm.

    PubMed

    Blaschke, Thomas; Hay, Geoffrey J; Kelly, Maggi; Lang, Stefan; Hofmann, Peter; Addink, Elisabeth; Queiroz Feitosa, Raul; van der Meer, Freek; van der Werff, Harald; van Coillie, Frieke; Tiede, Dirk

    2014-01-01

    The amount of scientific literature on (Geographic) Object-based Image Analysis - GEOBIA has been and still is sharply increasing. These approaches to analysing imagery have antecedents in earlier research on image segmentation and use GIS-like spatial analysis within classification and feature extraction approaches. This article investigates these development and its implications and asks whether or not this is a new paradigm in remote sensing and Geographic Information Science (GIScience). We first discuss several limitations of prevailing per-pixel methods when applied to high resolution images. Then we explore the paradigm concept developed by Kuhn (1962) and discuss whether GEOBIA can be regarded as a paradigm according to this definition. We crystallize core concepts of GEOBIA, including the role of objects, of ontologies and the multiplicity of scales and we discuss how these conceptual developments support important methods in remote sensing such as change detection and accuracy assessment. The ramifications of the different theoretical foundations between the ' per-pixel paradigm ' and GEOBIA are analysed, as are some of the challenges along this path from pixels, to objects, to geo-intelligence. Based on several paradigm indications as defined by Kuhn and based on an analysis of peer-reviewed scientific literature we conclude that GEOBIA is a new and evolving paradigm.

  2. Geographic Object-Based Image Analysis – Towards a new paradigm

    PubMed Central

    Blaschke, Thomas; Hay, Geoffrey J.; Kelly, Maggi; Lang, Stefan; Hofmann, Peter; Addink, Elisabeth; Queiroz Feitosa, Raul; van der Meer, Freek; van der Werff, Harald; van Coillie, Frieke; Tiede, Dirk

    2014-01-01

    The amount of scientific literature on (Geographic) Object-based Image Analysis – GEOBIA has been and still is sharply increasing. These approaches to analysing imagery have antecedents in earlier research on image segmentation and use GIS-like spatial analysis within classification and feature extraction approaches. This article investigates these development and its implications and asks whether or not this is a new paradigm in remote sensing and Geographic Information Science (GIScience). We first discuss several limitations of prevailing per-pixel methods when applied to high resolution images. Then we explore the paradigm concept developed by Kuhn (1962) and discuss whether GEOBIA can be regarded as a paradigm according to this definition. We crystallize core concepts of GEOBIA, including the role of objects, of ontologies and the multiplicity of scales and we discuss how these conceptual developments support important methods in remote sensing such as change detection and accuracy assessment. The ramifications of the different theoretical foundations between the ‘per-pixel paradigm’ and GEOBIA are analysed, as are some of the challenges along this path from pixels, to objects, to geo-intelligence. Based on several paradigm indications as defined by Kuhn and based on an analysis of peer-reviewed scientific literature we conclude that GEOBIA is a new and evolving paradigm. PMID:24623958

  3. A novel approach to segmentation and measurement of medical image using level set methods.

    PubMed

    Chen, Yao-Tien

    2017-06-01

    The study proposes a novel approach for segmentation and visualization plus value-added surface area and volume measurements for brain medical image analysis. The proposed method contains edge detection and Bayesian based level set segmentation, surface and volume rendering, and surface area and volume measurements for 3D objects of interest (i.e., brain tumor, brain tissue, or whole brain). Two extensions based on edge detection and Bayesian level set are first used to segment 3D objects. Ray casting and a modified marching cubes algorithm are then adopted to facilitate volume and surface visualization of medical-image dataset. To provide physicians with more useful information for diagnosis, the surface area and volume of an examined 3D object are calculated by the techniques of linear algebra and surface integration. Experiment results are finally reported in terms of 3D object extraction, surface and volume rendering, and surface area and volume measurements for medical image analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Integrating fuzzy object based image analysis and ant colony optimization for road extraction from remotely sensed images

    NASA Astrophysics Data System (ADS)

    Maboudi, Mehdi; Amini, Jalal; Malihi, Shirin; Hahn, Michael

    2018-04-01

    Updated road network as a crucial part of the transportation database plays an important role in various applications. Thus, increasing the automation of the road extraction approaches from remote sensing images has been the subject of extensive research. In this paper, we propose an object based road extraction approach from very high resolution satellite images. Based on the object based image analysis, our approach incorporates various spatial, spectral, and textural objects' descriptors, the capabilities of the fuzzy logic system for handling the uncertainties in road modelling, and the effectiveness and suitability of ant colony algorithm for optimization of network related problems. Four VHR optical satellite images which are acquired by Worldview-2 and IKONOS satellites are used in order to evaluate the proposed approach. Evaluation of the extracted road networks shows that the average completeness, correctness, and quality of the results can reach 89%, 93% and 83% respectively, indicating that the proposed approach is applicable for urban road extraction. We also analyzed the sensitivity of our algorithm to different ant colony optimization parameter values. Comparison of the achieved results with the results of four state-of-the-art algorithms and quantifying the robustness of the fuzzy rule set demonstrate that the proposed approach is both efficient and transferable to other comparable images.

  5. Analysis of autostereoscopic three-dimensional images using multiview wavelets.

    PubMed

    Saveljev, Vladimir; Palchikova, Irina

    2016-08-10

    We propose that multiview wavelets can be used in processing multiview images. The reference functions for the synthesis/analysis of multiview images are described. The synthesized binary images were observed experimentally as three-dimensional visual images. The symmetric multiview B-spline wavelets are proposed. The locations recognized in the continuous wavelet transform correspond to the layout of the test objects. The proposed wavelets can be applied to the multiview, integral, and plenoptic images.

  6. Spotlight-8 Image Analysis Software

    NASA Technical Reports Server (NTRS)

    Klimek, Robert; Wright, Ted

    2006-01-01

    Spotlight is a cross-platform GUI-based software package designed to perform image analysis on sequences of images generated by combustion and fluid physics experiments run in a microgravity environment. Spotlight can perform analysis on a single image in an interactive mode or perform analysis on a sequence of images in an automated fashion. Image processing operations can be employed to enhance the image before various statistics and measurement operations are performed. An arbitrarily large number of objects can be analyzed simultaneously with independent areas of interest. Spotlight saves results in a text file that can be imported into other programs for graphing or further analysis. Spotlight can be run on Microsoft Windows, Linux, and Apple OS X platforms.

  7. Concealed object segmentation and three-dimensional localization with passive millimeter-wave imaging

    NASA Astrophysics Data System (ADS)

    Yeom, Seokwon

    2013-05-01

    Millimeter waves imaging draws increasing attention in security applications for weapon detection under clothing. In this paper, concealed object segmentation and three-dimensional localization schemes are reviewed. A concealed object is segmented by the k-means algorithm. A feature-based stereo-matching method estimates the longitudinal distance of the concealed object. The distance is estimated by the discrepancy between the corresponding centers of the segmented objects. Experimental results are provided with the analysis of the depth resolution.

  8. The Analysis of Image Segmentation Hierarchies with a Graph-based Knowledge Discovery System

    NASA Technical Reports Server (NTRS)

    Tilton, James C.; Cooke, diane J.; Ketkar, Nikhil; Aksoy, Selim

    2008-01-01

    Currently available pixel-based analysis techniques do not effectively extract the information content from the increasingly available high spatial resolution remotely sensed imagery data. A general consensus is that object-based image analysis (OBIA) is required to effectively analyze this type of data. OBIA is usually a two-stage process; image segmentation followed by an analysis of the segmented objects. We are exploring an approach to OBIA in which hierarchical image segmentations provided by the Recursive Hierarchical Segmentation (RHSEG) software developed at NASA GSFC are analyzed by the Subdue graph-based knowledge discovery system developed by a team at Washington State University. In this paper we discuss out initial approach to representing the RHSEG-produced hierarchical image segmentations in a graphical form understandable by Subdue, and provide results on real and simulated data. We also discuss planned improvements designed to more effectively and completely convey the hierarchical segmentation information to Subdue and to improve processing efficiency.

  9. Histogram Curve Matching Approaches for Object-based Image Classification of Land Cover and Land Use

    PubMed Central

    Toure, Sory I.; Stow, Douglas A.; Weeks, John R.; Kumar, Sunil

    2013-01-01

    The classification of image-objects is usually done using parametric statistical measures of central tendency and/or dispersion (e.g., mean or standard deviation). The objectives of this study were to analyze digital number histograms of image objects and evaluate classifications measures exploiting characteristic signatures of such histograms. Two histograms matching classifiers were evaluated and compared to the standard nearest neighbor to mean classifier. An ADS40 airborne multispectral image of San Diego, California was used for assessing the utility of curve matching classifiers in a geographic object-based image analysis (GEOBIA) approach. The classifications were performed with data sets having 0.5 m, 2.5 m, and 5 m spatial resolutions. Results show that histograms are reliable features for characterizing classes. Also, both histogram matching classifiers consistently performed better than the one based on the standard nearest neighbor to mean rule. The highest classification accuracies were produced with images having 2.5 m spatial resolution. PMID:24403648

  10. An Integrative Object-Based Image Analysis Workflow for Uav Images

    NASA Astrophysics Data System (ADS)

    Yu, Huai; Yan, Tianheng; Yang, Wen; Zheng, Hong

    2016-06-01

    In this work, we propose an integrative framework to process UAV images. The overall process can be viewed as a pipeline consisting of the geometric and radiometric corrections, subsequent panoramic mosaicking and hierarchical image segmentation for later Object Based Image Analysis (OBIA). More precisely, we first introduce an efficient image stitching algorithm after the geometric calibration and radiometric correction, which employs a fast feature extraction and matching by combining the local difference binary descriptor and the local sensitive hashing. We then use a Binary Partition Tree (BPT) representation for the large mosaicked panoramic image, which starts by the definition of an initial partition obtained by an over-segmentation algorithm, i.e., the simple linear iterative clustering (SLIC). Finally, we build an object-based hierarchical structure by fully considering the spectral and spatial information of the super-pixels and their topological relationships. Moreover, an optimal segmentation is obtained by filtering the complex hierarchies into simpler ones according to some criterions, such as the uniform homogeneity and semantic consistency. Experimental results on processing the post-seismic UAV images of the 2013 Ya'an earthquake demonstrate the effectiveness and efficiency of our proposed method.

  11. Mapping urban impervious surface using object-based image analysis with WorldView-3 satellite imagery

    NASA Astrophysics Data System (ADS)

    Iabchoon, Sanwit; Wongsai, Sangdao; Chankon, Kanoksuk

    2017-10-01

    Land use and land cover (LULC) data are important to monitor and assess environmental change. LULC classification using satellite images is a method widely used on a global and local scale. Especially, urban areas that have various LULC types are important components of the urban landscape and ecosystem. This study aims to classify urban LULC using WorldView-3 (WV-3) very high-spatial resolution satellite imagery and the object-based image analysis method. A decision rules set was applied to classify the WV-3 images in Kathu subdistrict, Phuket province, Thailand. The main steps were as follows: (1) the image was ortho-rectified with ground control points and using the digital elevation model, (2) multiscale image segmentation was applied to divide the image pixel level into image object level, (3) development of the decision ruleset for LULC classification using spectral bands, spectral indices, spatial and contextual information, and (4) accuracy assessment was computed using testing data, which sampled by statistical random sampling. The results show that seven LULC classes (water, vegetation, open space, road, residential, building, and bare soil) were successfully classified with overall classification accuracy of 94.14% and a kappa coefficient of 92.91%.

  12. Designing Image Analysis Pipelines in Light Microscopy: A Rational Approach.

    PubMed

    Arganda-Carreras, Ignacio; Andrey, Philippe

    2017-01-01

    With the progress of microscopy techniques and the rapidly growing amounts of acquired imaging data, there is an increased need for automated image processing and analysis solutions in biological studies. Each new application requires the design of a specific image analysis pipeline, by assembling a series of image processing operations. Many commercial or free bioimage analysis software are now available and several textbooks and reviews have presented the mathematical and computational fundamentals of image processing and analysis. Tens, if not hundreds, of algorithms and methods have been developed and integrated into image analysis software, resulting in a combinatorial explosion of possible image processing sequences. This paper presents a general guideline methodology to rationally address the design of image processing and analysis pipelines. The originality of the proposed approach is to follow an iterative, backwards procedure from the target objectives of analysis. The proposed goal-oriented strategy should help biologists to better apprehend image analysis in the context of their research and should allow them to efficiently interact with image processing specialists.

  13. Generating land cover boundaries from remotely sensed data using object-based image analysis: overview and epidemiological application.

    PubMed

    Maxwell, Susan K

    2010-12-01

    Satellite imagery and aerial photography represent a vast resource to significantly enhance environmental mapping and modeling applications for use in understanding spatio-temporal relationships between environment and health. Deriving boundaries of land cover objects, such as trees, buildings, and crop fields, from image data has traditionally been performed manually using a very time consuming process of hand digitizing. Boundary detection algorithms are increasingly being applied using object-based image analysis (OBIA) technology to automate the process. The purpose of this paper is to present an overview and demonstrate the application of OBIA for delineating land cover features at multiple scales using a high resolution aerial photograph (1 m) and a medium resolution Landsat image (30 m) time series in the context of a pesticide spray drift exposure application. Copyright © 2010. Published by Elsevier Ltd.

  14. Combinational pixel-by-pixel and object-level classifying, segmenting, and agglomerating in performing quantitative image analysis that distinguishes between healthy non-cancerous and cancerous cell nuclei and delineates nuclear, cytoplasm, and stromal material objects from stained biological tissue materials

    DOEpatents

    Boucheron, Laura E

    2013-07-16

    Quantitative object and spatial arrangement-level analysis of tissue are detailed using expert (pathologist) input to guide the classification process. A two-step method is disclosed for imaging tissue, by classifying one or more biological materials, e.g. nuclei, cytoplasm, and stroma, in the tissue into one or more identified classes on a pixel-by-pixel basis, and segmenting the identified classes to agglomerate one or more sets of identified pixels into segmented regions. Typically, the one or more biological materials comprises nuclear material, cytoplasm material, and stromal material. The method further allows a user to markup the image subsequent to the classification to re-classify said materials. The markup is performed via a graphic user interface to edit designated regions in the image.

  15. Automated metastatic brain lesion detection: a computer aided diagnostic and clinical research tool

    NASA Astrophysics Data System (ADS)

    Devine, Jeremy; Sahgal, Arjun; Karam, Irene; Martel, Anne L.

    2016-03-01

    The accurate localization of brain metastases in magnetic resonance (MR) images is crucial for patients undergoing stereotactic radiosurgery (SRS) to ensure that all neoplastic foci are targeted. Computer automated tumor localization and analysis can improve both of these tasks by eliminating inter and intra-observer variations during the MR image reading process. Lesion localization is accomplished using adaptive thresholding to extract enhancing objects. Each enhancing object is represented as a vector of features which includes information on object size, symmetry, position, shape, and context. These vectors are then used to train a random forest classifier. We trained and tested the image analysis pipeline on 3D axial contrast-enhanced MR images with the intention of localizing the brain metastases. In our cross validation study and at the most effective algorithm operating point, we were able to identify 90% of the lesions at a precision rate of 60%.

  16. Algorithm for Automatic Segmentation of Nuclear Boundaries in Cancer Cells in Three-Channel Luminescent Images

    NASA Astrophysics Data System (ADS)

    Lisitsa, Y. V.; Yatskou, M. M.; Apanasovich, V. V.; Apanasovich, T. V.

    2015-09-01

    We have developed an algorithm for segmentation of cancer cell nuclei in three-channel luminescent images of microbiological specimens. The algorithm is based on using a correlation between fluorescence signals in the detection channels for object segmentation, which permits complete automation of the data analysis procedure. We have carried out a comparative analysis of the proposed method and conventional algorithms implemented in the CellProfiler and ImageJ software packages. Our algorithm has an object localization uncertainty which is 2-3 times smaller than for the conventional algorithms, with comparable segmentation accuracy.

  17. GuidosToolbox: universal digital image object analysis

    Treesearch

    Peter Vogt; Kurt Riitters

    2017-01-01

    The increased availability of mapped environmental data calls for better tools to analyze the spatial characteristics and information contained in those maps. Publicly available, userfriendly and universal tools are needed to foster the interdisciplinary development and application of methodologies for the extraction of image object information properties contained in...

  18. Remote Sensing Image Analysis Without Expert Knowledge - A Web-Based Classification Tool On Top of Taverna Workflow Management System

    NASA Astrophysics Data System (ADS)

    Selsam, Peter; Schwartze, Christian

    2016-10-01

    Providing software solutions via internet has been known for quite some time and is now an increasing trend marketed as "software as a service". A lot of business units accept the new methods and streamlined IT strategies by offering web-based infrastructures for external software usage - but geospatial applications featuring very specialized services or functionalities on demand are still rare. Originally applied in desktop environments, the ILMSimage tool for remote sensing image analysis and classification was modified in its communicating structures and enabled for running on a high-power server and benefiting from Tavema software. On top, a GIS-like and web-based user interface guides the user through the different steps in ILMSimage. ILMSimage combines object oriented image segmentation with pattern recognition features. Basic image elements form a construction set to model for large image objects with diverse and complex appearance. There is no need for the user to set up detailed object definitions. Training is done by delineating one or more typical examples (templates) of the desired object using a simple vector polygon. The template can be large and does not need to be homogeneous. The template is completely independent from the segmentation. The object definition is done completely by the software.

  19. Rotation covariant image processing for biomedical applications.

    PubMed

    Skibbe, Henrik; Reisert, Marco

    2013-01-01

    With the advent of novel biomedical 3D image acquisition techniques, the efficient and reliable analysis of volumetric images has become more and more important. The amount of data is enormous and demands an automated processing. The applications are manifold, ranging from image enhancement, image reconstruction, and image description to object/feature detection and high-level contextual feature extraction. In most scenarios, it is expected that geometric transformations alter the output in a mathematically well-defined manner. In this paper we emphasis on 3D translations and rotations. Many algorithms rely on intensity or low-order tensorial-like descriptions to fulfill this demand. This paper proposes a general mathematical framework based on mathematical concepts and theories transferred from mathematical physics and harmonic analysis into the domain of image analysis and pattern recognition. Based on two basic operations, spherical tensor differentiation and spherical tensor multiplication, we show how to design a variety of 3D image processing methods in an efficient way. The framework has already been applied to several biomedical applications ranging from feature and object detection tasks to image enhancement and image restoration techniques. In this paper, the proposed methods are applied on a variety of different 3D data modalities stemming from medical and biological sciences.

  20. Object recognition through turbulence with a modified plenoptic camera

    NASA Astrophysics Data System (ADS)

    Wu, Chensheng; Ko, Jonathan; Davis, Christopher

    2015-03-01

    Atmospheric turbulence adds accumulated distortion to images obtained by cameras and surveillance systems. When the turbulence grows stronger or when the object is further away from the observer, increasing the recording device resolution helps little to improve the quality of the image. Many sophisticated methods to correct the distorted images have been invented, such as using a known feature on or near the target object to perform a deconvolution process, or use of adaptive optics. However, most of the methods depend heavily on the object's location, and optical ray propagation through the turbulence is not directly considered. Alternatively, selecting a lucky image over many frames provides a feasible solution, but at the cost of time. In our work, we propose an innovative approach to improving image quality through turbulence by making use of a modified plenoptic camera. This type of camera adds a micro-lens array to a traditional high-resolution camera to form a semi-camera array that records duplicate copies of the object as well as "superimposed" turbulence at slightly different angles. By performing several steps of image reconstruction, turbulence effects will be suppressed to reveal more details of the object independently (without finding references near the object). Meanwhile, the redundant information obtained by the plenoptic camera raises the possibility of performing lucky image algorithmic analysis with fewer frames, which is more efficient. In our work, the details of our modified plenoptic cameras and image processing algorithms will be introduced. The proposed method can be applied to coherently illuminated object as well as incoherently illuminated objects. Our result shows that the turbulence effect can be effectively suppressed by the plenoptic camera in the hardware layer and a reconstructed "lucky image" can help the viewer identify the object even when a "lucky image" by ordinary cameras is not achievable.

  1. Digital image analysis techniques for fiber and soil mixtures.

    DOT National Transportation Integrated Search

    1999-05-01

    The objective of image processing is to visually enhance, quantify, and/or statistically evaluate some aspect of an image not readily apparent in its original form. Processed digital image data can be analyzed in numerous ways. In order to summarize ...

  2. An improved level set method for brain MR images segmentation and bias correction.

    PubMed

    Chen, Yunjie; Zhang, Jianwei; Macione, Jim

    2009-10-01

    Intensity inhomogeneities cause considerable difficulty in the quantitative analysis of magnetic resonance (MR) images. Thus, bias field estimation is a necessary step before quantitative analysis of MR data can be undertaken. This paper presents a variational level set approach to bias correction and segmentation for images with intensity inhomogeneities. Our method is based on an observation that intensities in a relatively small local region are separable, despite of the inseparability of the intensities in the whole image caused by the overall intensity inhomogeneity. We first define a localized K-means-type clustering objective function for image intensities in a neighborhood around each point. The cluster centers in this objective function have a multiplicative factor that estimates the bias within the neighborhood. The objective function is then integrated over the entire domain to define the data term into the level set framework. Our method is able to capture bias of quite general profiles. Moreover, it is robust to initialization, and thereby allows fully automated applications. The proposed method has been used for images of various modalities with promising results.

  3. A semi-automated image analysis procedure for in situ plankton imaging systems.

    PubMed

    Bi, Hongsheng; Guo, Zhenhua; Benfield, Mark C; Fan, Chunlei; Ford, Michael; Shahrestani, Suzan; Sieracki, Jeffery M

    2015-01-01

    Plankton imaging systems are capable of providing fine-scale observations that enhance our understanding of key physical and biological processes. However, processing the large volumes of data collected by imaging systems remains a major obstacle for their employment, and existing approaches are designed either for images acquired under laboratory controlled conditions or within clear waters. In the present study, we developed a semi-automated approach to analyze plankton taxa from images acquired by the ZOOplankton VISualization (ZOOVIS) system within turbid estuarine waters, in Chesapeake Bay. When compared to images under laboratory controlled conditions or clear waters, images from highly turbid waters are often of relatively low quality and more variable, due to the large amount of objects and nonlinear illumination within each image. We first customized a segmentation procedure to locate objects within each image and extracted them for classification. A maximally stable extremal regions algorithm was applied to segment large gelatinous zooplankton and an adaptive threshold approach was developed to segment small organisms, such as copepods. Unlike the existing approaches for images acquired from laboratory, controlled conditions or clear waters, the target objects are often the majority class, and the classification can be treated as a multi-class classification problem. We customized a two-level hierarchical classification procedure using support vector machines to classify the target objects (< 5%), and remove the non-target objects (> 95%). First, histograms of oriented gradients feature descriptors were constructed for the segmented objects. In the first step all non-target and target objects were classified into different groups: arrow-like, copepod-like, and gelatinous zooplankton. Each object was passed to a group-specific classifier to remove most non-target objects. After the object was classified, an expert or non-expert then manually removed the non-target objects that could not be removed by the procedure. The procedure was tested on 89,419 images collected in Chesapeake Bay, and results were consistent with visual counts with >80% accuracy for all three groups.

  4. A Semi-Automated Image Analysis Procedure for In Situ Plankton Imaging Systems

    PubMed Central

    Bi, Hongsheng; Guo, Zhenhua; Benfield, Mark C.; Fan, Chunlei; Ford, Michael; Shahrestani, Suzan; Sieracki, Jeffery M.

    2015-01-01

    Plankton imaging systems are capable of providing fine-scale observations that enhance our understanding of key physical and biological processes. However, processing the large volumes of data collected by imaging systems remains a major obstacle for their employment, and existing approaches are designed either for images acquired under laboratory controlled conditions or within clear waters. In the present study, we developed a semi-automated approach to analyze plankton taxa from images acquired by the ZOOplankton VISualization (ZOOVIS) system within turbid estuarine waters, in Chesapeake Bay. When compared to images under laboratory controlled conditions or clear waters, images from highly turbid waters are often of relatively low quality and more variable, due to the large amount of objects and nonlinear illumination within each image. We first customized a segmentation procedure to locate objects within each image and extracted them for classification. A maximally stable extremal regions algorithm was applied to segment large gelatinous zooplankton and an adaptive threshold approach was developed to segment small organisms, such as copepods. Unlike the existing approaches for images acquired from laboratory, controlled conditions or clear waters, the target objects are often the majority class, and the classification can be treated as a multi-class classification problem. We customized a two-level hierarchical classification procedure using support vector machines to classify the target objects (< 5%), and remove the non-target objects (> 95%). First, histograms of oriented gradients feature descriptors were constructed for the segmented objects. In the first step all non-target and target objects were classified into different groups: arrow-like, copepod-like, and gelatinous zooplankton. Each object was passed to a group-specific classifier to remove most non-target objects. After the object was classified, an expert or non-expert then manually removed the non-target objects that could not be removed by the procedure. The procedure was tested on 89,419 images collected in Chesapeake Bay, and results were consistent with visual counts with >80% accuracy for all three groups. PMID:26010260

  5. Automatic archaeological feature extraction from satellite VHR images

    NASA Astrophysics Data System (ADS)

    Jahjah, Munzer; Ulivieri, Carlo

    2010-05-01

    Archaeological applications need a methodological approach on a variable scale able to satisfy the intra-site (excavation) and the inter-site (survey, environmental research). The increased availability of high resolution and micro-scale data has substantially favoured archaeological applications and the consequent use of GIS platforms for reconstruction of archaeological landscapes based on remotely sensed data. Feature extraction of multispectral remotely sensing image is an important task before any further processing. High resolution remote sensing data, especially panchromatic, is an important input for the analysis of various types of image characteristics; it plays an important role in the visual systems for recognition and interpretation of given data. The methods proposed rely on an object-oriented approach based on a theory for the analysis of spatial structures called mathematical morphology. The term "morphology" stems from the fact that it aims at analysing object shapes and forms. It is mathematical in the sense that the analysis is based on the set theory, integral geometry, and lattice algebra. Mathematical morphology has proven to be a powerful image analysis technique; two-dimensional grey tone images are seen as three-dimensional sets by associating each image pixel with an elevation proportional to its intensity level. An object of known shape and size, called the structuring element, is then used to investigate the morphology of the input set. This is achieved by positioning the origin of the structuring element to every possible position of the space and testing, for each position, whether the structuring element either is included or has a nonempty intersection with the studied set. The shape and size of the structuring element must be selected according to the morphology of the searched image structures. Other two feature extraction techniques were used, eCognition and ENVI module SW, in order to compare the results. These techniques were applied to different archaeological sites in Turkmenistan (Nisa) and in Iraq (Babylon); a further change detection analysis was applied to the Babylon site using two HR images as a pre-post second gulf war. We had different results or outputs, taking into consideration the fact that the operative scale of sensed data determines the final result of the elaboration and the output of the information quality, because each of them was sensitive to specific shapes in each input image, we had mapped linear and nonlinear objects, updating archaeological cartography, automatic change detection analysis for the Babylon site. The discussion of these techniques has the objective to provide the archaeological team with new instruments for the orientation and the planning of a remote sensing application.

  6. Multi-object segmentation framework using deformable models for medical imaging analysis.

    PubMed

    Namías, Rafael; D'Amato, Juan Pablo; Del Fresno, Mariana; Vénere, Marcelo; Pirró, Nicola; Bellemare, Marc-Emmanuel

    2016-08-01

    Segmenting structures of interest in medical images is an important step in different tasks such as visualization, quantitative analysis, simulation, and image-guided surgery, among several other clinical applications. Numerous segmentation methods have been developed in the past three decades for extraction of anatomical or functional structures on medical imaging. Deformable models, which include the active contour models or snakes, are among the most popular methods for image segmentation combining several desirable features such as inherent connectivity and smoothness. Even though different approaches have been proposed and significant work has been dedicated to the improvement of such algorithms, there are still challenging research directions as the simultaneous extraction of multiple objects and the integration of individual techniques. This paper presents a novel open-source framework called deformable model array (DMA) for the segmentation of multiple and complex structures of interest in different imaging modalities. While most active contour algorithms can extract one region at a time, DMA allows integrating several deformable models to deal with multiple segmentation scenarios. Moreover, it is possible to consider any existing explicit deformable model formulation and even to incorporate new active contour methods, allowing to select a suitable combination in different conditions. The framework also introduces a control module that coordinates the cooperative evolution of the snakes and is able to solve interaction issues toward the segmentation goal. Thus, DMA can implement complex object and multi-object segmentations in both 2D and 3D using the contextual information derived from the model interaction. These are important features for several medical image analysis tasks in which different but related objects need to be simultaneously extracted. Experimental results on both computed tomography and magnetic resonance imaging show that the proposed framework has a wide range of applications especially in the presence of adjacent structures of interest or under intra-structure inhomogeneities giving excellent quantitative results.

  7. Geospatial mapping of Antarctic coastal oasis using geographic object-based image analysis and high resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Jawak, Shridhar D.; Luis, Alvarinho J.

    2016-04-01

    An accurate spatial mapping and characterization of land cover features in cryospheric regions is an essential procedure for many geoscientific studies. A novel semi-automated method was devised by coupling spectral index ratios (SIRs) and geographic object-based image analysis (OBIA) to extract cryospheric geospatial information from very high resolution WorldView 2 (WV-2) satellite imagery. The present study addresses development of multiple rule sets for OBIA-based classification of WV-2 imagery to accurately extract land cover features in the Larsemann Hills, east Antarctica. Multilevel segmentation process was applied to WV-2 image to generate different sizes of geographic image objects corresponding to various land cover features with respect to scale parameter. Several SIRs were applied to geographic objects at different segmentation levels to classify land mass, man-made features, snow/ice, and water bodies. We focus on water body class to identify water areas at the image level, considering their uneven appearance on landmass and ice. The results illustrated that synergetic usage of SIRs and OBIA can provide accurate means to identify land cover classes with an overall classification accuracy of ≍97%. In conclusion, our results suggest that OBIA is a powerful tool for carrying out automatic and semiautomatic analysis for most cryospheric remote-sensing applications, and the synergetic coupling with pixel-based SIRs is found to be a superior method for mining geospatial information.

  8. Approach for scene reconstruction from the analysis of a triplet of still images

    NASA Astrophysics Data System (ADS)

    Lechat, Patrick; Le Mestre, Gwenaelle; Pele, Danielle

    1997-03-01

    Three-dimensional modeling of a scene from the automatic analysis of 2D image sequences is a big challenge for future interactive audiovisual services based on 3D content manipulation such as virtual vests, 3D teleconferencing and interactive television. We propose a scheme that computes 3D objects models from stereo analysis of image triplets shot by calibrated cameras. After matching the different views with a correlation based algorithm, a depth map referring to a given view is built by using a fusion criterion taking into account depth coherency, visibility constraints and correlation scores. Because luminance segmentation helps to compute accurate object borders and to detect and improve the unreliable depth values, a two steps segmentation algorithm using both depth map and graylevel image is applied to extract the objects masks. First an edge detection segments the luminance image in regions and a multimodal thresholding method selects depth classes from the depth map. Then the regions are merged and labelled with the different depth classes numbers by using a coherence test on depth values according to the rate of reliable and dominant depth values and the size of the regions. The structures of the segmented objects are obtained with a constrained Delaunay triangulation followed by a refining stage. Finally, texture mapping is performed using open inventor or VRML1.0 tools.

  9. Computer-Assisted Digital Image Analysis of Plus Disease in Retinopathy of Prematurity.

    PubMed

    Kemp, Pavlina S; VanderVeen, Deborah K

    2016-01-01

    The objective of this study is to review the current state and role of computer-assisted analysis in diagnosis of plus disease in retinopathy of prematurity. Diagnosis and documentation of retinopathy of prematurity are increasingly being supplemented by digital imaging. The incorporation of computer-aided techniques has the potential to add valuable information and standardization regarding the presence of plus disease, an important criterion in deciding the necessity of treatment of vision-threatening retinopathy of prematurity. A review of literature found that several techniques have been published examining the process and role of computer aided analysis of plus disease in retinopathy of prematurity. These techniques use semiautomated image analysis techniques to evaluate retinal vascular dilation and tortuosity, using calculated parameters to evaluate presence or absence of plus disease. These values are then compared with expert consensus. The study concludes that computer-aided image analysis has the potential to use quantitative and objective criteria to act as a supplemental tool in evaluating for plus disease in the setting of retinopathy of prematurity.

  10. Stochastic HKMDHE: A multi-objective contrast enhancement algorithm

    NASA Astrophysics Data System (ADS)

    Pratiher, Sawon; Mukhopadhyay, Sabyasachi; Maity, Srideep; Pradhan, Asima; Ghosh, Nirmalya; Panigrahi, Prasanta K.

    2018-02-01

    This contribution proposes a novel extension of the existing `Hyper Kurtosis based Modified Duo-Histogram Equalization' (HKMDHE) algorithm, for multi-objective contrast enhancement of biomedical images. A novel modified objective function has been formulated by joint optimization of the individual histogram equalization objectives. The optimal adequacy of the proposed methodology with respect to image quality metrics such as brightness preserving abilities, peak signal-to-noise ratio (PSNR), Structural Similarity Index (SSIM) and universal image quality metric has been experimentally validated. The performance analysis of the proposed Stochastic HKMDHE with existing histogram equalization methodologies like Global Histogram Equalization (GHE) and Contrast Limited Adaptive Histogram Equalization (CLAHE) has been given for comparative evaluation.

  11. A Time of Flight Fast Neutron Imaging System Design Study

    NASA Astrophysics Data System (ADS)

    Canion, Bonnie; Glenn, Andrew; Sheets, Steven; Wurtz, Ron; Nakae, Les; Hausladen, Paul; McConchie, Seth; Blackston, Matthew; Fabris, Lorenzo; Newby, Jason

    2017-09-01

    LLNL and ORNL are designing an active/passive fast neutron imaging system that is flexible to non-ideal detector positioning. It is often not possible to move an inspection object in fieldable imager applications such as safeguards, arms control treaty verification, and emergency response. Particularly, we are interested in scenarios which inspectors do not have access to all sides of an inspection object, due to interfering objects or walls. This paper will present the results of a simulation-based design parameter study, that will determine the optimum system design parameters for a fieldable system to perform time-of-flight based imaging analysis. The imaging analysis is based on the use of an associated particle imaging deuterium-tritium (API DT) neutron generator to get the time-of-flight of radiation induced within an inspection object. This design study will investigate the optimum design parameters for such a system (e.g. detector size, ideal placement, etc.), as well as the upper and lower feasible design parameters that the system can expect to provide results within a reasonable amount of time (e.g. minimum/maximum detector efficiency, detector standoff, etc.). Ideally the final prototype from this project will be capable of using full-access techniques, such as transmission imaging, when the measurement circumstances allow, but with the additional capability of producing results at reduced accessibility.

  12. Comparison of Object-Based Image Analysis Approaches to Mapping New Buildings in Accra, Ghana Using Multi-Temporal QuickBird Satellite Imagery

    PubMed Central

    Tsai, Yu Hsin; Stow, Douglas; Weeks, John

    2013-01-01

    The goal of this study was to map and quantify the number of newly constructed buildings in Accra, Ghana between 2002 and 2010 based on high spatial resolution satellite image data. Two semi-automated feature detection approaches for detecting and mapping newly constructed buildings based on QuickBird very high spatial resolution satellite imagery were analyzed: (1) post-classification comparison; and (2) bi-temporal layerstack classification. Feature Analyst software based on a spatial contextual classifier and ENVI Feature Extraction that uses a true object-based image analysis approach of image segmentation and segment classification were evaluated. Final map products representing new building objects were compared and assessed for accuracy using two object-based accuracy measures, completeness and correctness. The bi-temporal layerstack method generated more accurate results compared to the post-classification comparison method due to less confusion with background objects. The spectral/spatial contextual approach (Feature Analyst) outperformed the true object-based feature delineation approach (ENVI Feature Extraction) due to its ability to more reliably delineate individual buildings of various sizes. Semi-automated, object-based detection followed by manual editing appears to be a reliable and efficient approach for detecting and enumerating new building objects. A bivariate regression analysis was performed using neighborhood-level estimates of new building density regressed on a census-derived measure of socio-economic status, yielding an inverse relationship with R2 = 0.31 (n = 27; p = 0.00). The primary utility of the new building delineation results is to support spatial analyses of land cover and land use and demographic change. PMID:24415810

  13. Correction of Atmospheric Haze in RESOURCESAT-1 LISS-4 MX Data for Urban Analysis: AN Improved Dark Object Subtraction Approach

    NASA Astrophysics Data System (ADS)

    Mustak, S.

    2013-09-01

    The correction of atmospheric effects is very essential because visible bands of shorter wavelength are highly affected by atmospheric scattering especially of Rayleigh scattering. The objectives of the paper is to find out the haze values present in the all spectral bands and to correct the haze values for urban analysis. In this paper, Improved Dark Object Subtraction method of P. Chavez (1988) is applied for the correction of atmospheric haze in the Resoucesat-1 LISS-4 multispectral satellite image. Dark object Subtraction is a very simple image-based method of atmospheric haze which assumes that there are at least a few pixels within an image which should be black (% reflectance) and such black reflectance termed as dark object which are clear water body and shadows whose DN values zero (0) or Close to zero in the image. Simple Dark Object Subtraction method is a first order atmospheric correction but Improved Dark Object Subtraction method which tends to correct the Haze in terms of atmospheric scattering and path radiance based on the power law of relative scattering effect of atmosphere. The haze values extracted using Simple Dark Object Subtraction method for Green band (Band2), Red band (Band3) and NIR band (band4) are 40, 34 and 18 but the haze values extracted using Improved Dark Object Subtraction method are 40, 18.02 and 11.80 for aforesaid bands. Here it is concluded that the haze values extracted by Improved Dark Object Subtraction method provides more realistic results than Simple Dark Object Subtraction method.

  14. Syntactic methods of shape feature description and its application in analysis of medical images

    NASA Astrophysics Data System (ADS)

    Ogiela, Marek R.; Tadeusiewicz, Ryszard

    2000-02-01

    The paper presents specialist algorithms of morphologic analysis of shapes of selected organs of abdominal cavity proposed in order to diagnose disease symptoms occurring in the main pancreatic ducts and upper segments of ureters. Analysis of the correct morphology of these structures has been conducted with the use of syntactic methods of pattern recognition. Its main objective is computer-aided support to early diagnosis of neoplastic lesions and pancreatitis based on images taken in the course of examination with the endoscopic retrograde cholangiopancreatography (ERCP) method and a diagnosis of morphological lesions in ureter based on kidney radiogram analysis. In the analysis of ERCP images, the main objective is to recognize morphological lesions in pancreas ducts characteristic for carcinoma and chronic pancreatitis. In the case of kidney radiogram analysis the aim is to diagnose local irregularity of ureter lumen. Diagnosing the above mentioned lesion has been conducted with the use of syntactic methods of pattern recognition, in particular the languages of shape features description and context-free attributed grammars. These methods allow to recognize and describe in a very efficient way the aforementioned lesions on images obtained as a result of initial image processing into diagrams of widths of the examined structures.

  15. Rock classification based on resistivity patterns in electrical borehole wall images

    NASA Astrophysics Data System (ADS)

    Linek, Margarete; Jungmann, Matthias; Berlage, Thomas; Pechnig, Renate; Clauser, Christoph

    2007-06-01

    Electrical borehole wall images represent grey-level-coded micro-resistivity measurements at the borehole wall. Different scientific methods have been implemented to transform image data into quantitative log curves. We introduce a pattern recognition technique applying texture analysis, which uses second-order statistics based on studying the occurrence of pixel pairs. We calculate so-called Haralick texture features such as contrast, energy, entropy and homogeneity. The supervised classification method is used for assigning characteristic texture features to different rock classes and assessing the discriminative power of these image features. We use classifiers obtained from training intervals to characterize the entire image data set recovered in ODP hole 1203A. This yields a synthetic lithology profile based on computed texture data. We show that Haralick features accurately classify 89.9% of the training intervals. We obtained misclassification for vesicular basaltic rocks. Hence, further image analysis tools are used to improve the classification reliability. We decompose the 2D image signal by the application of wavelet transformation in order to enhance image objects horizontally, diagonally and vertically. The resulting filtered images are used for further texture analysis. This combined classification based on Haralick features and wavelet transformation improved our classification up to a level of 98%. The application of wavelet transformation increases the consistency between standard logging profiles and texture-derived lithology. Texture analysis of borehole wall images offers the potential to facilitate objective analysis of multiple boreholes with the same lithology.

  16. a Region-Based Multi-Scale Approach for Object-Based Image Analysis

    NASA Astrophysics Data System (ADS)

    Kavzoglu, T.; Yildiz Erdemir, M.; Tonbul, H.

    2016-06-01

    Within the last two decades, object-based image analysis (OBIA) considering objects (i.e. groups of pixels) instead of pixels has gained popularity and attracted increasing interest. The most important stage of the OBIA is image segmentation that groups spectrally similar adjacent pixels considering not only the spectral features but also spatial and textural features. Although there are several parameters (scale, shape, compactness and band weights) to be set by the analyst, scale parameter stands out the most important parameter in segmentation process. Estimating optimal scale parameter is crucially important to increase the classification accuracy that depends on image resolution, image object size and characteristics of the study area. In this study, two scale-selection strategies were implemented in the image segmentation process using pan-sharped Qickbird-2 image. The first strategy estimates optimal scale parameters for the eight sub-regions. For this purpose, the local variance/rate of change (LV-RoC) graphs produced by the ESP-2 tool were analysed to determine fine, moderate and coarse scales for each region. In the second strategy, the image was segmented using the three candidate scale values (fine, moderate, coarse) determined from the LV-RoC graph calculated for whole image. The nearest neighbour classifier was applied in all segmentation experiments and equal number of pixels was randomly selected to calculate accuracy metrics (overall accuracy and kappa coefficient). Comparison of region-based and image-based segmentation was carried out on the classified images and found that region-based multi-scale OBIA produced significantly more accurate results than image-based single-scale OBIA. The difference in classification accuracy reached to 10% in terms of overall accuracy.

  17. An image analysis toolbox for high-throughput C. elegans assays

    PubMed Central

    Wählby, Carolina; Kamentsky, Lee; Liu, Zihan H.; Riklin-Raviv, Tammy; Conery, Annie L.; O’Rourke, Eyleen J.; Sokolnicki, Katherine L.; Visvikis, Orane; Ljosa, Vebjorn; Irazoqui, Javier E.; Golland, Polina; Ruvkun, Gary; Ausubel, Frederick M.; Carpenter, Anne E.

    2012-01-01

    We present a toolbox for high-throughput screening of image-based Caenorhabditis elegans phenotypes. The image analysis algorithms measure morphological phenotypes in individual worms and are effective for a variety of assays and imaging systems. This WormToolbox is available via the open-source CellProfiler project and enables objective scoring of whole-animal high-throughput image-based assays of C. elegans for the study of diverse biological pathways relevant to human disease. PMID:22522656

  18. Mathematical morphology for automated analysis of remotely sensed objects in radar images

    NASA Technical Reports Server (NTRS)

    Daida, Jason M.; Vesecky, John F.

    1991-01-01

    A symbiosis of pyramidal segmentation and morphological transmission is described. The pyramidal segmentation portion of the symbiosis has resulted in low (2.6 percent) misclassification error rate for a one-look simulation. Other simulations indicate lower error rates (1.8 percent for a four-look image). The morphological transformation portion has resulted in meaningful partitions with a minimal loss of fractal boundary information. An unpublished version of Thicken, suitable for watersheds transformations of fractal objects, is also presented. It is demonstrated that the proposed symbiosis works with SAR (synthetic aperture radar) images: in this case, a four-look Seasat image of sea ice. It is concluded that the symbiotic forms of both segmentation and morphological transformation seem well suited for unsupervised geophysical analysis.

  19. Photogrammetric Analysis of Historical Image Repositories for Virtual Reconstruction in the Field of Digital Humanities

    NASA Astrophysics Data System (ADS)

    Maiwald, F.; Vietze, T.; Schneider, D.; Henze, F.; Münster, S.; Niebling, F.

    2017-02-01

    Historical photographs contain high density of information and are of great importance as sources in humanities research. In addition to the semantic indexing of historical images based on metadata, it is also possible to reconstruct geometric information about the depicted objects or the camera position at the time of the recording by employing photogrammetric methods. The approach presented here is intended to investigate (semi-) automated photogrammetric reconstruction methods for heterogeneous collections of historical (city) photographs and photographic documentation for the use in the humanities, urban research and history sciences. From a photogrammetric point of view, these images are mostly digitized photographs. For a photogrammetric evaluation, therefore, the characteristics of scanned analog images with mostly unknown camera geometry, missing or minimal object information and low radiometric and geometric resolution have to be considered. In addition, these photographs have not been created specifically for documentation purposes and so the focus of these images is often not on the object to be evaluated. The image repositories must therefore be subjected to a preprocessing analysis of their photogrammetric usability. Investigations are carried out on the basis of a repository containing historical images of the Kronentor ("crown gate") of the Dresden Zwinger. The initial step was to assess the quality and condition of available images determining their appropriateness for generating three-dimensional point clouds from historical photos using a structure-from-motion evaluation (SfM). Then, the generated point clouds were assessed by comparing them with current measurement data of the same object.

  20. Towards a computer-aided diagnosis system for vocal cord diseases.

    PubMed

    Verikas, A; Gelzinis, A; Bacauskiene, M; Uloza, V

    2006-01-01

    The objective of this work is to investigate a possibility of creating a computer-aided decision support system for an automated analysis of vocal cord images aiming to categorize diseases of vocal cords. The problem is treated as a pattern recognition task. To obtain a concise and informative representation of a vocal cord image, colour, texture, and geometrical features are used. The representation is further analyzed by a pattern classifier categorizing the image into healthy, diffuse, and nodular classes. The approach developed was tested on 785 vocal cord images collected at the Department of Otolaryngology, Kaunas University of Medicine, Lithuania. A correct classification rate of over 87% was obtained when categorizing a set of unseen images into the aforementioned three classes. Bearing in mind the high similarity of the decision classes, the results obtained are rather encouraging and the developed tools could be very helpful for assuring objective analysis of the images of laryngeal diseases.

  1. Analysis on the Effect of Sensor Views in Image Reconstruction Produced by Optical Tomography System Using Charge-Coupled Device.

    PubMed

    Jamaludin, Juliza; Rahim, Ruzairi Abdul; Fazul Rahiman, Mohd Hafiz; Mohd Rohani, Jemmy

    2018-04-01

    Optical tomography (OPT) is a method to capture a cross-sectional image based on the data obtained by sensors, distributed around the periphery of the analyzed system. This system is based on the measurement of the final light attenuation or absorption of radiation after crossing the measured objects. The number of sensor views will affect the results of image reconstruction, where the high number of sensor views per projection will give a high image quality. This research presents an application of charge-coupled device linear sensor and laser diode in an OPT system. Experiments in detecting solid and transparent objects in crystal clear water were conducted. Two numbers of sensors views, 160 and 320 views are evaluated in this research in reconstructing the images. The image reconstruction algorithms used were filtered images of linear back projection algorithms. Analysis on comparing the simulation and experiments image results shows that, with 320 image views giving less area error than 160 views. This suggests that high image view resulted in the high resolution of image reconstruction.

  2. MRI histogram analysis enables objective and continuous classification of intervertebral disc degeneration.

    PubMed

    Waldenberg, Christian; Hebelka, Hanna; Brisby, Helena; Lagerstrand, Kerstin Magdalena

    2018-05-01

    Magnetic resonance imaging (MRI) is the best diagnostic imaging method for low back pain. However, the technique is currently not utilized in its full capacity, often failing to depict painful intervertebral discs (IVDs), potentially due to the rough degeneration classification system used clinically today. MR image histograms, which reflect the IVD heterogeneity, may offer sensitive imaging biomarkers for IVD degeneration classification. This study investigates the feasibility of using histogram analysis as means of objective and continuous grading of IVD degeneration. Forty-nine IVDs in ten low back pain patients (six males, 25-69 years) were examined with MRI (T2-weighted images and T2-maps). Each IVD was semi-automatically segmented on three mid-sagittal slices. Histogram features of the IVD were extracted from the defined regions of interest and correlated to Pfirrmann grade. Both T2-weighted images and T2-maps displayed similar histogram features. Histograms of well-hydrated IVDs displayed two separate peaks, representing annulus fibrosus and nucleus pulposus. Degenerated IVDs displayed decreased peak separation, where the separation was shown to correlate strongly with Pfirrmann grade (P < 0.05). In addition, some degenerated IVDs within the same Pfirrmann grade displayed diametrically different histogram appearances. Histogram features correlated well with IVD degeneration, suggesting that IVD histogram analysis is a suitable tool for objective and continuous IVD degeneration classification. As histogram analysis revealed IVD heterogeneity, it may be a clinical tool for characterization of regional IVD degeneration effects. To elucidate the usefulness of histogram analysis in patient management, IVD histogram features between asymptomatic and symptomatic individuals needs to be compared.

  3. On the representation of cells in bone marrow pathology by a scalar field: propagation through serial sections, co-localization and spatial interaction analysis.

    PubMed

    Weis, Cleo-Aron; Grießmann, Benedict Walter; Scharff, Christoph; Detzner, Caecilia; Pfister, Eva; Marx, Alexander; Zoellner, Frank Gerrit

    2015-09-02

    Immunohistochemical analysis of cellular interactions in the bone marrow in situ is demanding, due to its heterogeneous cellular composition, the poor delineation and overlap of functional compartments and highly complex immunophenotypes of several cell populations (e.g. regulatory T-cells) that require immunohistochemical marker sets for unambiguous characterization. To overcome these difficulties, we herein present an approach to describe objects (e.g. cells, bone trabeculae) by a scalar field that can be propagated through registered images of serial histological sections. The transformation of objects within images (e.g. cells) to a scalar field was performed by convolution of the object's centroids with differently formed radial basis function (e.g. for direct or indirect spatial interaction). On the basis of such a scalar field, a summation field described distributed objects within an image. After image registration i) colocalization analysis could be performed on basis scalar field, which is propagated through registered images, and - due to the shape of the field - were barely prone to matching errors and morphological changes by different cutting levels; ii) furthermore, depending on the field shape the colocalization measurements could also quantify spatial interaction (e.g. direct or paracrine cellular contact); ii) the field-overlap, which represents the spatial distance, of different objects (e.g. two cells) could be calculated by the histogram intersection. The description of objects (e.g. cells, cell clusters, bone trabeculae etc.) as a field offers several possibilities: First, co-localization of different markers (e.g. by immunohistochemical staining) in serial sections can be performed in an automatic, objective and quantifiable way. In contrast to multicolour staining (e.g. 10-colour immunofluorescence) the financial and technical requirements are fairly minor. Second, the approach allows searching for different types of spatial interactions (e.g. direct and indirect cellular interaction) between objects by taking field shape into account (e.g. thin vs. broad). Third, by describing spatially distributed groups of objects as summation field, it gives cluster definition that relies rather on the bare object distance than on the modelled spatial cellular interaction.

  4. SlideJ: An ImageJ plugin for automated processing of whole slide images.

    PubMed

    Della Mea, Vincenzo; Baroni, Giulia L; Pilutti, David; Di Loreto, Carla

    2017-01-01

    The digital slide, or Whole Slide Image, is a digital image, acquired with specific scanners, that represents a complete tissue sample or cytological specimen at microscopic level. While Whole Slide image analysis is recognized among the most interesting opportunities, the typical size of such images-up to Gpixels- can be very demanding in terms of memory requirements. Thus, while algorithms and tools for processing and analysis of single microscopic field images are available, Whole Slide images size makes the direct use of such tools prohibitive or impossible. In this work a plugin for ImageJ, named SlideJ, is proposed with the objective to seamlessly extend the application of image analysis algorithms implemented in ImageJ for single microscopic field images to a whole digital slide analysis. The plugin has been complemented by examples of macro in the ImageJ scripting language to demonstrate its use in concrete situations.

  5. Land Cover Analysis by Using Pixel-Based and Object-Based Image Classification Method in Bogor

    NASA Astrophysics Data System (ADS)

    Amalisana, Birohmatin; Rokhmatullah; Hernina, Revi

    2017-12-01

    The advantage of image classification is to provide earth’s surface information like landcover and time-series changes. Nowadays, pixel-based image classification technique is commonly performed with variety of algorithm such as minimum distance, parallelepiped, maximum likelihood, mahalanobis distance. On the other hand, landcover classification can also be acquired by using object-based image classification technique. In addition, object-based classification uses image segmentation from parameter such as scale, form, colour, smoothness and compactness. This research is aimed to compare the result of landcover classification and its change detection between parallelepiped pixel-based and object-based classification method. Location of this research is Bogor with 20 years range of observation from 1996 until 2016. This region is famous as urban areas which continuously change due to its rapid development, so that time-series landcover information of this region will be interesting.

  6. Object localization in handheld thermal images for fireground understanding

    NASA Astrophysics Data System (ADS)

    Vandecasteele, Florian; Merci, Bart; Jalalvand, Azarakhsh; Verstockt, Steven

    2017-05-01

    Despite the broad application of the handheld thermal imaging cameras in firefighting, its usage is mostly limited to subjective interpretation by the person carrying the device. As remedies to overcome this limitation, object localization and classification mechanisms could assist the fireground understanding and help with the automated localization, characterization and spatio-temporal (spreading) analysis of the fire. An automated understanding of thermal images can enrich the conventional knowledge-based firefighting techniques by providing the information from the data and sensing-driven approaches. In this work, transfer learning is applied on multi-labeling convolutional neural network architectures for object localization and recognition in monocular visual, infrared and multispectral dynamic images. Furthermore, the possibility of analyzing fire scene images is studied and their current limitations are discussed. Finally, the understanding of the room configuration (i.e., objects location) for indoor localization in reduced visibility environments and the linking with Building Information Models (BIM) are investigated.

  7. Detecting objects in radiographs for homeland security

    NASA Astrophysics Data System (ADS)

    Prasad, Lakshman; Snyder, Hans

    2005-05-01

    We present a general scheme for segmenting a radiographic image into polygons that correspond to visual features. This decomposition provides a vectorized representation that is a high-level description of the image. The polygons correspond to objects or object parts present in the image. This characterization of radiographs allows the direct application of several shape recognition algorithms to identify objects. In this paper we describe the use of constrained Delaunay triangulations as a uniform foundational tool to achieve multiple visual tasks, namely image segmentation, shape decomposition, and parts-based shape matching. Shape decomposition yields parts that serve as tokens representing local shape characteristics. Parts-based shape matching enables the recognition of objects in the presence of occlusions, which commonly occur in radiographs. The polygonal representation of image features affords the efficient design and application of sophisticated geometric filtering methods to detect large-scale structural properties of objects in images. Finally, the representation of radiographs via polygons results in significant reduction of image file sizes and permits the scalable graphical representation of images, along with annotations of detected objects, in the SVG (scalable vector graphics) format that is proposed by the world wide web consortium (W3C). This is a textual representation that can be compressed and encrypted for efficient and secure transmission of information over wireless channels and on the Internet. In particular, our methods described here provide an algorithmic framework for developing image analysis tools for screening cargo at ports of entry for homeland security.

  8. Extraction of Extended Small-Scale Objects in Digital Images

    NASA Astrophysics Data System (ADS)

    Volkov, V. Y.

    2015-05-01

    Detection and localization problem of extended small-scale objects with different shapes appears in radio observation systems which use SAR, infra-red, lidar and television camera. Intensive non-stationary background is the main difficulty for processing. Other challenge is low quality of images, blobs, blurred boundaries; in addition SAR images suffer from a serious intrinsic speckle noise. Statistics of background is not normal, it has evident skewness and heavy tails in probability density, so it is hard to identify it. The problem of extraction small-scale objects is solved here on the basis of directional filtering, adaptive thresholding and morthological analysis. New kind of masks is used which are open-ended at one side so it is possible to extract ends of line segments with unknown length. An advanced method of dynamical adaptive threshold setting is investigated which is based on isolated fragments extraction after thresholding. Hierarchy of isolated fragments on binary image is proposed for the analysis of segmentation results. It includes small-scale objects with different shape, size and orientation. The method uses extraction of isolated fragments in binary image and counting points in these fragments. Number of points in extracted fragments is normalized to the total number of points for given threshold and is used as effectiveness of extraction for these fragments. New method for adaptive threshold setting and control maximises effectiveness of extraction. It has optimality properties for objects extraction in normal noise field and shows effective results for real SAR images.

  9. Tracker: Image-Processing and Object-Tracking System Developed

    NASA Technical Reports Server (NTRS)

    Klimek, Robert B.; Wright, Theodore W.

    1999-01-01

    Tracker is an object-tracking and image-processing program designed and developed at the NASA Lewis Research Center to help with the analysis of images generated by microgravity combustion and fluid physics experiments. Experiments are often recorded on film or videotape for analysis later. Tracker automates the process of examining each frame of the recorded experiment, performing image-processing operations to bring out the desired detail, and recording the positions of the objects of interest. It can load sequences of images from disk files or acquire images (via a frame grabber) from film transports, videotape, laser disks, or a live camera. Tracker controls the image source to automatically advance to the next frame. It can employ a large array of image-processing operations to enhance the detail of the acquired images and can analyze an arbitrarily large number of objects simultaneously. Several different tracking algorithms are available, including conventional threshold and correlation-based techniques, and more esoteric procedures such as "snake" tracking and automated recognition of character data in the image. The Tracker software was written to be operated by researchers, thus every attempt was made to make the software as user friendly and self-explanatory as possible. Tracker is used by most of the microgravity combustion and fluid physics experiments performed by Lewis, and by visiting researchers. This includes experiments performed on the space shuttles, Mir, sounding rockets, zero-g research airplanes, drop towers, and ground-based laboratories. This software automates the analysis of the flame or liquid s physical parameters such as position, velocity, acceleration, size, shape, intensity characteristics, color, and centroid, as well as a number of other measurements. It can perform these operations on multiple objects simultaneously. Another key feature of Tracker is that it performs optical character recognition (OCR). This feature is useful in extracting numerical instrumentation data that are embedded in images. All the results are saved in files for further data reduction and graphing. There are currently three Tracking Systems (workstations) operating near the laboratories and offices of Lewis Microgravity Science Division researchers. These systems are used independently by students, scientists, and university-based principal investigators. The researchers bring their tapes or films to the workstation and perform the tracking analysis. The resultant data files generated by the tracking process can then be analyzed on the spot, although most of the time researchers prefer to transfer them via the network to their offices for further analysis or plotting. In addition, many researchers have installed Tracker on computers in their office for desktop analysis of digital image sequences, which can be digitized by the Tracking System or some other means. Tracker has not only provided a capability to efficiently and automatically analyze large volumes of data, saving many hours of tedious work, but has also provided new capabilities to extract valuable information and phenomena that was heretofore undetected and unexploited.

  10. A theory of phase singularities for image representation and its applications to object tracking and image matching.

    PubMed

    Qiao, Yu; Wang, Wei; Minematsu, Nobuaki; Liu, Jianzhuang; Takeda, Mitsuo; Tang, Xiaoou

    2009-10-01

    This paper studies phase singularities (PSs) for image representation. We show that PSs calculated with Laguerre-Gauss filters contain important information and provide a useful tool for image analysis. PSs are invariant to image translation and rotation. We introduce several invariant features to characterize the core structures around PSs and analyze the stability of PSs to noise addition and scale change. We also study the characteristics of PSs in a scale space, which lead to a method to select key scales along phase singularity curves. We demonstrate two applications of PSs: object tracking and image matching. In object tracking, we use the iterative closest point algorithm to determine the correspondences of PSs between two adjacent frames. The use of PSs allows us to precisely determine the motions of tracked objects. In image matching, we combine PSs and scale-invariant feature transform (SIFT) descriptor to deal with the variations between two images and examine the proposed method on a benchmark database. The results indicate that our method can find more correct matching pairs with higher repeatability rates than some well-known methods.

  11. Use of iris recognition camera technology for the quantification of corneal opacification in mucopolysaccharidoses.

    PubMed

    Aslam, Tariq Mehmood; Shakir, Savana; Wong, James; Au, Leon; Ashworth, Jane

    2012-12-01

    Mucopolysaccharidoses (MPS) can cause corneal opacification that is currently difficult to objectively quantify. With newer treatments for MPS comes an increased need for a more objective, valid and reliable index of disease severity for clinical and research use. Clinical evaluation by slit lamp is very subjective and techniques based on colour photography are difficult to standardise. In this article the authors present evidence for the utility of dedicated image analysis algorithms applied to images obtained by a highly sophisticated iris recognition camera that is small, manoeuvrable and adapted to achieve rapid, reliable and standardised objective imaging in a wide variety of patients while minimising artefactual interference in image quality.

  12. Adaptive Morphological Feature-Based Object Classifier for a Color Imaging System

    NASA Technical Reports Server (NTRS)

    McDowell, Mark; Gray, Elizabeth

    2009-01-01

    Utilizing a Compact Color Microscope Imaging System (CCMIS), a unique algorithm has been developed that combines human intelligence along with machine vision techniques to produce an autonomous microscope tool for biomedical, industrial, and space applications. This technique is based on an adaptive, morphological, feature-based mapping function comprising 24 mutually inclusive feature metrics that are used to determine the metrics for complex cell/objects derived from color image analysis. Some of the features include: Area (total numbers of non-background pixels inside and including the perimeter), Bounding Box (smallest rectangle that bounds and object), centerX (x-coordinate of intensity-weighted, center-of-mass of an entire object or multi-object blob), centerY (y-coordinate of intensity-weighted, center-of-mass, of an entire object or multi-object blob), Circumference (a measure of circumference that takes into account whether neighboring pixels are diagonal, which is a longer distance than horizontally or vertically joined pixels), . Elongation (measure of particle elongation given as a number between 0 and 1. If equal to 1, the particle bounding box is square. As the elongation decreases from 1, the particle becomes more elongated), . Ext_vector (extremal vector), . Major Axis (the length of a major axis of a smallest ellipse encompassing an object), . Minor Axis (the length of a minor axis of a smallest ellipse encompassing an object), . Partial (indicates if the particle extends beyond the field of view), . Perimeter Points (points that make up a particle perimeter), . Roundness [(4(pi) x area)/perimeter(squared)) the result is a measure of object roundness, or compactness, given as a value between 0 and 1. The greater the ratio, the rounder the object.], . Thin in center (determines if an object becomes thin in the center, (figure-eight-shaped), . Theta (orientation of the major axis), . Smoothness and color metrics for each component (red, green, blue) the minimum, maximum, average, and standard deviation within the particle are tracked. These metrics can be used for autonomous analysis of color images from a microscope, video camera, or digital, still image. It can also automatically identify tumor morphology of stained images and has been used to detect stained cell phenomena (see figure).

  13. Aerial Vehicle Surveys of other Planetary Atmospheres and Surfaces: Imaging, Remote-sensing, and Autonomy Technology Requirements

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Gregory; Ippolito, Corey; Alena, Rick

    2005-01-01

    The objective of this paper is to review the anticipated imaging and remote-sensing technology requirements for aerial vehicle survey missions to other planetary bodies in our Solar system that can support in-atmosphere flight. In the not too distant future such planetary aerial vehicle (a.k.a. aerial explorers) exploration missions will become feasible. Imaging and remote-sensing observations will be a key objective for these missions. Accordingly, it is imperative that optimal solutions in terms of imaging acquisition and real-time autonomous analysis of image data sets be developed for such vehicles.

  14. Improved biliary detection and diagnosis through intelligent machine analysis.

    PubMed

    Logeswaran, Rajasvaran

    2012-09-01

    This paper reports on work undertaken to improve automated detection of bile ducts in magnetic resonance cholangiopancreatography (MRCP) images, with the objective of conducting preliminary classification of the images for diagnosis. The proposed I-BDeDIMA (Improved Biliary Detection and Diagnosis through Intelligent Machine Analysis) scheme is a multi-stage framework consisting of successive phases of image normalization, denoising, structure identification, object labeling, feature selection and disease classification. A combination of multiresolution wavelet, dynamic intensity thresholding, segment-based region growing, region elimination, statistical analysis and neural networks, is used in this framework to achieve good structure detection and preliminary diagnosis. Tests conducted on over 200 clinical images with known diagnosis have shown promising results of over 90% accuracy. The scheme outperforms related work in the literature, making it a viable framework for computer-aided diagnosis of biliary diseases. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  15. Real-time color image processing for forensic fiber investigations

    NASA Astrophysics Data System (ADS)

    Paulsson, Nils

    1995-09-01

    This paper describes a system for automatic fiber debris detection based on color identification. The properties of the system are fast analysis and high selectivity, a necessity when analyzing forensic fiber samples. An ordinary investigation separates the material into well above 100,000 video images to analyze. The system is based on standard techniques such as CCD-camera, motorized sample table, and IBM-compatible PC/AT with add-on-boards for video frame digitalization and stepping motor control as the main parts. It is possible to operate the instrument at full video rate (25 image/s) with aid of the HSI-color system (hue- saturation-intensity) and software optimization. High selectivity is achieved by separating the analysis into several steps. The first step is fast direct color identification of objects in the analyzed video images and the second step analyzes detected objects with a more complex and time consuming stage of the investigation to identify single fiber fragments for subsequent analysis with more selective techniques.

  16. SlideJ: An ImageJ plugin for automated processing of whole slide images

    PubMed Central

    Baroni, Giulia L.; Pilutti, David; Di Loreto, Carla

    2017-01-01

    The digital slide, or Whole Slide Image, is a digital image, acquired with specific scanners, that represents a complete tissue sample or cytological specimen at microscopic level. While Whole Slide image analysis is recognized among the most interesting opportunities, the typical size of such images—up to Gpixels- can be very demanding in terms of memory requirements. Thus, while algorithms and tools for processing and analysis of single microscopic field images are available, Whole Slide images size makes the direct use of such tools prohibitive or impossible. In this work a plugin for ImageJ, named SlideJ, is proposed with the objective to seamlessly extend the application of image analysis algorithms implemented in ImageJ for single microscopic field images to a whole digital slide analysis. The plugin has been complemented by examples of macro in the ImageJ scripting language to demonstrate its use in concrete situations. PMID:28683129

  17. Improving lip wrinkles: lipstick-related image analysis.

    PubMed

    Ryu, Jong-Seong; Park, Sun-Gyoo; Kwak, Taek-Jong; Chang, Min-Youl; Park, Moon-Eok; Choi, Khee-Hwan; Sung, Kyung-Hye; Shin, Hyun-Jong; Lee, Cheon-Koo; Kang, Yun-Seok; Yoon, Moung-Seok; Rang, Moon-Jeong; Kim, Seong-Jin

    2005-08-01

    The appearance of lip wrinkles is problematic if it is adversely influenced by lipstick make-up causing incomplete color tone, spread phenomenon and pigment remnants. It is mandatory to develop an objective assessment method for lip wrinkle status by which the potential of wrinkle-improving products to lips can be screened. The present study is aimed at finding out the useful parameters from the image analysis of lip wrinkles that is affected by lipstick application. The digital photograph image of lips before and after lipstick application was assessed from 20 female volunteers. Color tone was measured by Hue, Saturation and Intensity parameters, and time-related pigment spread was calculated by the area over vermilion border by image-analysis software (Image-Pro). The efficacy of wrinkle-improving lipstick containing asiaticoside was evaluated from 50 women by using subjective and objective methods including image analysis in a double-blind placebo-controlled fashion. The color tone and spread phenomenon after lipstick make-up were remarkably affected by lip wrinkles. The level of standard deviation by saturation value of image-analysis software was revealed as a good parameter for lip wrinkles. By using the lipstick containing asiaticoside for 8 weeks, the change of visual grading scores and replica analysis indicated the wrinkle-improving effect. As the depth and number of wrinkles were reduced, the lipstick make-up appearance by image analysis also improved significantly. The lip wrinkle pattern together with lipstick make-up can be evaluated by the image-analysis system in addition to traditional assessment methods. Thus, this evaluation system is expected to test the efficacy of wrinkle-reducing lipstick that was not described in previous dermatologic clinical studies.

  18. Metal artifact reduction in CT, a phantom study: subjective and objective evaluation of four commercial metal artifact reduction algorithms when used on three different orthopedic metal implants.

    PubMed

    Bolstad, Kirsten; Flatabø, Silje; Aadnevik, Daniel; Dalehaug, Ingvild; Vetti, Nils

    2018-01-01

    Background Metal implants may introduce severe artifacts in computed tomography (CT) images. Over the last few years dedicated algorithms have been developed in order to reduce metal artifacts in CT images. Purpose To investigate and compare metal artifact reduction algorithms (MARs) from four different CT vendors when imaging three different orthopedic metal implants. Material and Methods Three clinical metal implants were attached to the leg of an anthropomorphic phantom: cobalt-chrome; stainless steel; and titanium. Four commercial MARs were investigated: SmartMAR (GE); O-MAR (Philips); iMAR (Siemens); and SEMAR (Toshiba). The images were evaluated subjectively by three observers and analyzed objectively by calculating the fraction of pixels with CT number above 500 HU in a region of interest around the metal. The average CT number and image noise were also measured. Results Both subjective evaluation and objective analysis showed that MARs reduced metal artifacts and improved the image quality for CT images containing metal implants of steel and cobalt-chrome. When using MARs on titanium, all MARs introduced new visible artifacts. Conclusion The effect of MARs varied between CT vendors and different metal implants used in orthopedic surgery. Both in subjective evaluation and objective analysis the effect of applying MARs was most obvious on steel and cobalt-chrome implants when using SEMAR from Toshiba followed by SmartMAR from GE. However, MARs may also introduce new image artifacts especially when used on titanium implants. Therefore, it is important to reconstruct all CT images containing metal with and without MARs.

  19. Sensory Interactive Teleoperator Robotic Grasping

    NASA Technical Reports Server (NTRS)

    Alark, Keli; Lumia, Ron

    1997-01-01

    As the technological world strives for efficiency, the need for economical equipment that increases operator proficiency in minimal time is fundamental. This system links a CCD camera, a controller and a robotic arm to a computer vision system to provide an alternative method of image analysis. The machine vision system which was employed possesses software tools for acquiring and analyzing images which are received through a CCD camera. After feature extraction on the object in the image was performed, information about the object's location, orientation and distance from the robotic gripper is sent to the robot controller so that the robot can manipulate the object.

  20. Photogrammetry of the solar aureole

    NASA Technical Reports Server (NTRS)

    Deepak, A.

    1978-01-01

    This paper presents a photogrammetric analysis of the solar aureole for the purpose of making photographic sky radiance measurements for determining aerosol physical characteristics. A photograph is essentially a projection of a 3-D object space onto a 2-D image space. Photogrammetry deals with relations that exist between the object and the image spaces. The main problem of photogrammetry is the reconstruction of configurations in the object space by means of the image space data. It is shown that the almucantar projects onto the photographic plane as a conic section and the sun vertical as a straight line.

  1. A new generation of intelligent trainable tools for analyzing large scientific image databases

    NASA Technical Reports Server (NTRS)

    Fayyad, Usama M.; Smyth, Padhraic; Atkinson, David J.

    1994-01-01

    The focus of this paper is on the detection of natural, as opposed to human-made, objects. The distinction is important because, in the context of image analysis, natural objects tend to possess much greater variability in appearance than human-made objects. Hence, we shall focus primarily on the use of algorithms that 'learn by example' as the basis for image exploration. The 'learn by example' approach is potentially more generally applicable compared to model-based vision methods since domain scientists find it relatively easier to provide examples of what they are searching for versus describing a model.

  2. Image Analysis and Modeling

    DTIC Science & Technology

    1975-08-01

    image analysis and processing tasks such as information extraction, image enhancement and restoration, coding, etc. The ultimate objective of this research is to form a basis for the development of technology relevant to military applications of machine extraction of information from aircraft and satellite imagery of the earth’s surface. This report discusses research activities during the three month period February 1 - April 30,

  3. Rotation Covariant Image Processing for Biomedical Applications

    PubMed Central

    Reisert, Marco

    2013-01-01

    With the advent of novel biomedical 3D image acquisition techniques, the efficient and reliable analysis of volumetric images has become more and more important. The amount of data is enormous and demands an automated processing. The applications are manifold, ranging from image enhancement, image reconstruction, and image description to object/feature detection and high-level contextual feature extraction. In most scenarios, it is expected that geometric transformations alter the output in a mathematically well-defined manner. In this paper we emphasis on 3D translations and rotations. Many algorithms rely on intensity or low-order tensorial-like descriptions to fulfill this demand. This paper proposes a general mathematical framework based on mathematical concepts and theories transferred from mathematical physics and harmonic analysis into the domain of image analysis and pattern recognition. Based on two basic operations, spherical tensor differentiation and spherical tensor multiplication, we show how to design a variety of 3D image processing methods in an efficient way. The framework has already been applied to several biomedical applications ranging from feature and object detection tasks to image enhancement and image restoration techniques. In this paper, the proposed methods are applied on a variety of different 3D data modalities stemming from medical and biological sciences. PMID:23710255

  4. Wave analysis of a plenoptic system and its applications

    NASA Astrophysics Data System (ADS)

    Shroff, Sapna A.; Berkner, Kathrin

    2013-03-01

    Traditional imaging systems directly image a 2D object plane on to the sensor. Plenoptic imaging systems contain a lenslet array at the conventional image plane and a sensor at the back focal plane of the lenslet array. In this configuration the data captured at the sensor is not a direct image of the object. Each lenslet effectively images the aperture of the main imaging lens at the sensor. Therefore the sensor data retains angular light-field information which can be used for a posteriori digital computation of multi-angle images and axially refocused images. If a filter array, containing spectral filters or neutral density or polarization filters, is placed at the pupil aperture of the main imaging lens, then each lenslet images the filters on to the sensor. This enables the digital separation of multiple filter modalities giving single snapshot, multi-modal images. Due to the diversity of potential applications of plenoptic systems, their investigation is increasing. As the application space moves towards microscopes and other complex systems, and as pixel sizes become smaller, the consideration of diffraction effects in these systems becomes increasingly important. We discuss a plenoptic system and its wave propagation analysis for both coherent and incoherent imaging. We simulate a system response using our analysis and discuss various applications of the system response pertaining to plenoptic system design, implementation and calibration.

  5. Vaccine Images on Twitter: Analysis of What Images are Shared

    PubMed Central

    Dredze, Mark

    2018-01-01

    Background Visual imagery plays a key role in health communication; however, there is little understanding of what aspects of vaccine-related images make them effective communication aids. Twitter, a popular venue for discussions related to vaccination, provides numerous images that are shared with tweets. Objective The objectives of this study were to understand how images are used in vaccine-related tweets and provide guidance with respect to the characteristics of vaccine-related images that correlate with the higher likelihood of being retweeted. Methods We collected more than one million vaccine image messages from Twitter and characterized various properties of these images using automated image analytics. We fit a logistic regression model to predict whether or not a vaccine image tweet was retweeted, thus identifying characteristics that correlate with a higher likelihood of being shared. For comparison, we built similar models for the sharing of vaccine news on Facebook and for general image tweets. Results Most vaccine-related images are duplicates (125,916/237,478; 53.02%) or taken from other sources, not necessarily created by the author of the tweet. Almost half of the images contain embedded text, and many include images of people and syringes. The visual content is highly correlated with a tweet’s textual topics. Vaccine image tweets are twice as likely to be shared as nonimage tweets. The sentiment of an image and the objects shown in the image were the predictive factors in determining whether an image was retweeted. Conclusions We are the first to study vaccine images on Twitter. Our findings suggest future directions for the study and use of vaccine imagery and may inform communication strategies around vaccination. Furthermore, our study demonstrates an effective study methodology for image analysis. PMID:29615386

  6. Extraction of object skeletons in multispectral imagery by the orthogonal regression fitting

    NASA Astrophysics Data System (ADS)

    Palenichka, Roman M.; Zaremba, Marek B.

    2003-03-01

    Accurate and automatic extraction of skeletal shape of objects of interest from satellite images provides an efficient solution to such image analysis tasks as object detection, object identification, and shape description. The problem of skeletal shape extraction can be effectively solved in three basic steps: intensity clustering (i.e. segmentation) of objects, extraction of a structural graph of the object shape, and refinement of structural graph by the orthogonal regression fitting. The objects of interest are segmented from the background by a clustering transformation of primary features (spectral components) with respect to each pixel. The structural graph is composed of connected skeleton vertices and represents the topology of the skeleton. In the general case, it is a quite rough piecewise-linear representation of object skeletons. The positions of skeleton vertices on the image plane are adjusted by means of the orthogonal regression fitting. It consists of changing positions of existing vertices according to the minimum of the mean orthogonal distances and, eventually, adding new vertices in-between if a given accuracy if not yet satisfied. Vertices of initial piecewise-linear skeletons are extracted by using a multi-scale image relevance function. The relevance function is an image local operator that has local maximums at the centers of the objects of interest.

  7. A spherical aberration-free microscopy system for live brain imaging.

    PubMed

    Ue, Yoshihiro; Monai, Hiromu; Higuchi, Kaori; Nishiwaki, Daisuke; Tajima, Tetsuya; Okazaki, Kenya; Hama, Hiroshi; Hirase, Hajime; Miyawaki, Atsushi

    2018-06-02

    The high-resolution in vivo imaging of mouse brain for quantitative analysis of fine structures, such as dendritic spines, requires objectives with high numerical apertures (NAs) and long working distances (WDs). However, this imaging approach is often hampered by spherical aberration (SA) that results from the mismatch of refractive indices in the optical path and becomes more severe with increasing depth of target from the brain surface. Whereas a revolving objective correction collar has been designed to compensate SA, its adjustment requires manual operation and is inevitably accompanied by considerable focal shift, making it difficult to acquire the best image of a given fluorescent object. To solve the problems, we have created an objective-attached device and formulated a fast iterative algorithm for the realization of an automatic SA compensation system. The device coordinates the collar rotation and the Z-position of an objective, enabling correction collar adjustment while stably focusing on a target. The algorithm provides the best adjustment on the basis of the calculated contrast of acquired images. Together, they enable the system to compensate SA at a given depth. As proof of concept, we applied the SA compensation system to in vivo two-photon imaging with a 25 × water-immersion objective (NA, 1.05; WD, 2 mm). It effectively reduced SA regardless of location, allowing quantitative and reproducible analysis of fine structures of YFP-labeled neurons in the mouse cerebral cortical layers. Interestingly, although the cortical structure was optically heterogeneous along the z-axis, the refractive index of each layer could be assessed on the basis of the compensation degree. It was also possible to make fully corrected three-dimensional reconstructions of YFP-labeled neurons in live brain samples. Our SA compensation system, called Deep-C, is expected to bring out the best in all correction-collar-equipped objectives for imaging deep regions of heterogeneous tissues. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Evaluating fuzzy operators of an object-based image analysis for detecting landslides and their changes

    NASA Astrophysics Data System (ADS)

    Feizizadeh, Bakhtiar; Blaschke, Thomas; Tiede, Dirk; Moghaddam, Mohammad Hossein Rezaei

    2017-09-01

    This article presents a method of object-based image analysis (OBIA) for landslide delineation and landslide-related change detection from multi-temporal satellite images. It uses both spatial and spectral information on landslides, through spectral analysis, shape analysis, textural measurements using a gray-level co-occurrence matrix (GLCM), and fuzzy logic membership functionality. Following an initial segmentation step, particular combinations of various information layers were investigated to generate objects. This was achieved by applying multi-resolution segmentation to IRS-1D, SPOT-5, and ALOS satellite imagery in sequential steps of feature selection and object classification, and using slope and flow direction derivatives from a digital elevation model together with topographically-oriented gray level co-occurrence matrices. Fuzzy membership values were calculated for 11 different membership functions using 20 landslide objects from a landslide training data. Six fuzzy operators were used for the final classification and the accuracies of the resulting landslide maps were compared. A Fuzzy Synthetic Evaluation (FSE) approach was adapted for validation of the results and for an accuracy assessment using the landslide inventory database. The FSE approach revealed that the AND operator performed best with an accuracy of 93.87% for 2005 and 94.74% for 2011, closely followed by the MEAN Arithmetic operator, while the OR and AND (*) operators yielded relatively low accuracies. An object-based change detection was then applied to monitor landslide-related changes that occurred in northern Iran between 2005 and 2011. Knowledge rules to detect possible landslide-related changes were developed by evaluating all possible landslide-related objects for both time steps.

  9. Identification of Buried Objects in GPR Using Amplitude Modulated Signals Extracted from Multiresolution Monogenic Signal Analysis

    PubMed Central

    Qiao, Lihong; Qin, Yao; Ren, Xiaozhen; Wang, Qifu

    2015-01-01

    It is necessary to detect the target reflections in ground penetrating radar (GPR) images, so that surface metal targets can be identified successfully. In order to accurately locate buried metal objects, a novel method called the Multiresolution Monogenic Signal Analysis (MMSA) system is applied in ground penetrating radar (GPR) images. This process includes four steps. First the image is decomposed by the MMSA to extract the amplitude component of the B-scan image. The amplitude component enhances the target reflection and suppresses the direct wave and reflective wave to a large extent. Then we use the region of interest extraction method to locate the genuine target reflections from spurious reflections by calculating the normalized variance of the amplitude component. To find the apexes of the targets, a Hough transform is used in the restricted area. Finally, we estimate the horizontal and vertical position of the target. In terms of buried object detection, the proposed system exhibits promising performance, as shown in the experimental results. PMID:26690146

  10. Analysis of simulated image sequences from sensors for restricted-visibility operations

    NASA Technical Reports Server (NTRS)

    Kasturi, Rangachar

    1991-01-01

    A real time model of the visible output from a 94 GHz sensor, based on a radiometric simulation of the sensor, was developed. A sequence of images as seen from an aircraft as it approaches for landing was simulated using this model. Thirty frames from this sequence of 200 x 200 pixel images were analyzed to identify and track objects in the image using the Cantata image processing package within the visual programming environment provided by the Khoros software system. The image analysis operations are described.

  11. On-line object feature extraction for multispectral scene representation

    NASA Technical Reports Server (NTRS)

    Ghassemian, Hassan; Landgrebe, David

    1988-01-01

    A new on-line unsupervised object-feature extraction method is presented that reduces the complexity and costs associated with the analysis of the multispectral image data and data transmission, storage, archival and distribution. The ambiguity in the object detection process can be reduced if the spatial dependencies, which exist among the adjacent pixels, are intelligently incorporated into the decision making process. The unity relation was defined that must exist among the pixels of an object. Automatic Multispectral Image Compaction Algorithm (AMICA) uses the within object pixel-feature gradient vector as a valuable contextual information to construct the object's features, which preserve the class separability information within the data. For on-line object extraction the path-hypothesis and the basic mathematical tools for its realization are introduced in terms of a specific similarity measure and adjacency relation. AMICA is applied to several sets of real image data, and the performance and reliability of features is evaluated.

  12. Support vector machine as a binary classifier for automated object detection in remotely sensed data

    NASA Astrophysics Data System (ADS)

    Wardaya, P. D.

    2014-02-01

    In the present paper, author proposes the application of Support Vector Machine (SVM) for the analysis of satellite imagery. One of the advantages of SVM is that, with limited training data, it may generate comparable or even better results than the other methods. The SVM algorithm is used for automated object detection and characterization. Specifically, the SVM is applied in its basic nature as a binary classifier where it classifies two classes namely, object and background. The algorithm aims at effectively detecting an object from its background with the minimum training data. The synthetic image containing noises is used for algorithm testing. Furthermore, it is implemented to perform remote sensing image analysis such as identification of Island vegetation, water body, and oil spill from the satellite imagery. It is indicated that SVM provides the fast and accurate analysis with the acceptable result.

  13. Near-infrared imaging spectroscopy for counterfeit drug detection

    NASA Astrophysics Data System (ADS)

    Arnold, Thomas; De Biasio, Martin; Leitner, Raimund

    2011-06-01

    Pharmaceutical counterfeiting is a significant issue in the healthcare community as well as for the pharmaceutical industry worldwide. The use of counterfeit medicines can result in treatment failure or even death. A rapid screening technique such as near infrared (NIR) spectroscopy could aid in the search for and identification of counterfeit drugs. This work presents a comparison of two laboratory NIR imaging systems and the chemometric analysis of the acquired spectroscopic image data. The first imaging system utilizes a NIR liquid crystal tuneable filter and is designed for the investigation of stationary objects. The second imaging system utilizes a NIR imaging spectrograph and is designed for the fast analysis of moving objects on a conveyor belt. Several drugs in form of tablets and capsules were analyzed. Spectral unmixing techniques were applied to the mixed reflectance spectra to identify constituent parts of the investigated drugs. The results show that NIR spectroscopic imaging can be used for contact-less detection and identification of a variety of counterfeit drugs.

  14. Using SAR Interferograms and Coherence Images for Object-Based Delineation of Unstable Slopes

    NASA Astrophysics Data System (ADS)

    Friedl, Barbara; Holbling, Daniel

    2015-05-01

    This study uses synthetic aperture radar (SAR) interferometric products for the semi-automated identification and delineation of unstable slopes and active landslides. Single-pair interferograms and coherence images are therefore segmented and classified in an object-based image analysis (OBIA) framework. The rule-based classification approach has been applied to landslide-prone areas located in Taiwan and Southern Germany. The semi-automatically obtained results were validated against landslide polygons derived from manual interpretation.

  15. Hierarchical layered and semantic-based image segmentation using ergodicity map

    NASA Astrophysics Data System (ADS)

    Yadegar, Jacob; Liu, Xiaoqing

    2010-04-01

    Image segmentation plays a foundational role in image understanding and computer vision. Although great strides have been made and progress achieved on automatic/semi-automatic image segmentation algorithms, designing a generic, robust, and efficient image segmentation algorithm is still challenging. Human vision is still far superior compared to computer vision, especially in interpreting semantic meanings/objects in images. We present a hierarchical/layered semantic image segmentation algorithm that can automatically and efficiently segment images into hierarchical layered/multi-scaled semantic regions/objects with contextual topological relationships. The proposed algorithm bridges the gap between high-level semantics and low-level visual features/cues (such as color, intensity, edge, etc.) through utilizing a layered/hierarchical ergodicity map, where ergodicity is computed based on a space filling fractal concept and used as a region dissimilarity measurement. The algorithm applies a highly scalable, efficient, and adaptive Peano- Cesaro triangulation/tiling technique to decompose the given image into a set of similar/homogenous regions based on low-level visual cues in a top-down manner. The layered/hierarchical ergodicity map is built through a bottom-up region dissimilarity analysis. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level of detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanisms for contextual topological object/region relationship generation. Experiments have been conducted within the maritime image environment where the segmented layered semantic objects include the basic level objects (i.e. sky/land/water) and deeper level objects in the sky/land/water surfaces. Experimental results demonstrate the proposed algorithm has the capability to robustly and efficiently segment images into layered semantic objects/regions with contextual topological relationships.

  16. Development and validation of a visual grading scale for assessing image quality of AP pelvis radiographic images

    PubMed Central

    England, Andrew; Cassidy, Simon; Eachus, Peter; Dominguez, Alejandro; Hogg, Peter

    2016-01-01

    Objective: The aim of this article was to apply psychometric theory to develop and validate a visual grading scale for assessing the visual perception of digital image quality anteroposterior (AP) pelvis. Methods: Psychometric theory was used to guide scale development. Seven phantom and seven cadaver images of visually and objectively predetermined quality were used to help assess scale reliability and validity. 151 volunteers scored phantom images, and 184 volunteers scored cadaver images. Factor analysis and Cronbach's alpha were used to assess scale validity and reliability. Results: A 24-item scale was produced. Aggregated mean volunteer scores for each image correlated with the rank order of the visually and objectively predetermined image qualities. Scale items had good interitem correlation (≥0.2) and high factor loadings (≥0.3). Cronbach's alpha (reliability) revealed that the scale has acceptable levels of internal reliability for both phantom and cadaver images (α = 0.8 and 0.9, respectively). Factor analysis suggested that the scale is multidimensional (assessing multiple quality themes). Conclusion: This study represents the first full development and validation of a visual image quality scale using psychometric theory. It is likely that this scale will have clinical, training and research applications. Advances in knowledge: This article presents data to create and validate visual grading scales for radiographic examinations. The visual grading scale, for AP pelvis examinations, can act as a validated tool for future research, teaching and clinical evaluations of image quality. PMID:26943836

  17. Wavelet-based compression of M-FISH images.

    PubMed

    Hua, Jianping; Xiong, Zixiang; Wu, Qiang; Castleman, Kenneth R

    2005-05-01

    Multiplex fluorescence in situ hybridization (M-FISH) is a recently developed technology that enables multi-color chromosome karyotyping for molecular cytogenetic analysis. Each M-FISH image set consists of a number of aligned images of the same chromosome specimen captured at different optical wavelength. This paper presents embedded M-FISH image coding (EMIC), where the foreground objects/chromosomes and the background objects/images are coded separately. We first apply critically sampled integer wavelet transforms to both the foreground and the background. We then use object-based bit-plane coding to compress each object and generate separate embedded bitstreams that allow continuous lossy-to-lossless compression of the foreground and the background. For efficient arithmetic coding of bit planes, we propose a method of designing an optimal context model that specifically exploits the statistical characteristics of M-FISH images in the wavelet domain. Our experiments show that EMIC achieves nearly twice as much compression as Lempel-Ziv-Welch coding. EMIC also performs much better than JPEG-LS and JPEG-2000 for lossless coding. The lossy performance of EMIC is significantly better than that of coding each M-FISH image with JPEG-2000.

  18. Solution of the problem of superposing image and digital map for detection of new objects

    NASA Astrophysics Data System (ADS)

    Rizaev, I. S.; Miftakhutdinov, D. I.; Takhavova, E. G.

    2018-01-01

    The problem of superposing the map of the terrain with the image of the terrain is considered. The image of the terrain may be represented in different frequency bands. Further analysis of the results of collation the digital map with the image of the appropriate terrain is described. Also the approach to detection of differences between information represented on the digital map and information of the image of the appropriate area is offered. The algorithm for calculating the values of brightness of the converted image area on the original picture is offered. The calculation is based on using information about the navigation parameters and information according to arranged bench marks. For solving the posed problem the experiments were performed. The results of the experiments are shown in this paper. The presented algorithms are applicable to the ground complex of remote sensing data to assess differences between resulting images and accurate geopositional data. They are also suitable for detecting new objects in the image, based on the analysis of the matching the digital map and the image of corresponding locality.

  19. Genetic Particle Swarm Optimization-Based Feature Selection for Very-High-Resolution Remotely Sensed Imagery Object Change Detection.

    PubMed

    Chen, Qiang; Chen, Yunhao; Jiang, Weiguo

    2016-07-30

    In the field of multiple features Object-Based Change Detection (OBCD) for very-high-resolution remotely sensed images, image objects have abundant features and feature selection affects the precision and efficiency of OBCD. Through object-based image analysis, this paper proposes a Genetic Particle Swarm Optimization (GPSO)-based feature selection algorithm to solve the optimization problem of feature selection in multiple features OBCD. We select the Ratio of Mean to Variance (RMV) as the fitness function of GPSO, and apply the proposed algorithm to the object-based hybrid multivariate alternative detection model. Two experiment cases on Worldview-2/3 images confirm that GPSO can significantly improve the speed of convergence, and effectively avoid the problem of premature convergence, relative to other feature selection algorithms. According to the accuracy evaluation of OBCD, GPSO is superior at overall accuracy (84.17% and 83.59%) and Kappa coefficient (0.6771 and 0.6314) than other algorithms. Moreover, the sensitivity analysis results show that the proposed algorithm is not easily influenced by the initial parameters, but the number of features to be selected and the size of the particle swarm would affect the algorithm. The comparison experiment results reveal that RMV is more suitable than other functions as the fitness function of GPSO-based feature selection algorithm.

  20. Histopathological image analysis of chemical-induced hepatocellular hypertrophy in mice.

    PubMed

    Asaoka, Yoshiji; Togashi, Yuko; Mutsuga, Mayu; Imura, Naoko; Miyoshi, Tomoya; Miyamoto, Yohei

    2016-04-01

    Chemical-induced hepatocellular hypertrophy is frequently observed in rodents, and is mostly caused by the induction of phase I and phase II drug metabolic enzymes and peroxisomal lipid metabolic enzymes. Liver weight is a sensitive and commonly used marker for detecting hepatocellular hypertrophy, but is also increased by a number of other factors. Histopathological observations subjectively detect changes such as hepatocellular hypertrophy based on the size of a hepatocyte. Therefore, quantitative microscopic observations are required to evaluate histopathological alterations objectively. In the present study, we developed a novel quantitative method for an image analysis of hepatocellular hypertrophy using liver sections stained with hematoxylin and eosin, and demonstrated its usefulness for evaluating hepatocellular hypertrophy induced by phenobarbital (a phase I and phase II enzyme inducer) and clofibrate (a peroxisomal enzyme inducer) in mice. The algorithm of this imaging analysis was designed to recognize an individual hepatocyte through a combination of pixel-based and object-based analyses. Hepatocellular nuclei and the surrounding non-hepatocellular cells were recognized by the pixel-based analysis, while the areas of the recognized hepatocellular nuclei were then expanded until they ran against their expanding neighboring hepatocytes and surrounding non-hepatocellular cells by the object-based analysis. The expanded area of each hepatocellular nucleus was regarded as the size of an individual hepatocyte. The results of this imaging analysis showed that changes in the sizes of hepatocytes corresponded with histopathological observations in phenobarbital and clofibrate-treated mice, and revealed a correlation between hepatocyte size and liver weight. In conclusion, our novel image analysis method is very useful for quantitative evaluations of chemical-induced hepatocellular hypertrophy. Copyright © 2015 Elsevier GmbH. All rights reserved.

  1. A framework for joint image-and-shape analysis

    NASA Astrophysics Data System (ADS)

    Gao, Yi; Tannenbaum, Allen; Bouix, Sylvain

    2014-03-01

    Techniques in medical image analysis are many times used for the comparison or regression on the intensities of images. In general, the domain of the image is a given Cartesian grids. Shape analysis, on the other hand, studies the similarities and differences among spatial objects of arbitrary geometry and topology. Usually, there is no function defined on the domain of shapes. Recently, there has been a growing needs for defining and analyzing functions defined on the shape space, and a coupled analysis on both the shapes and the functions defined on them. Following this direction, in this work we present a coupled analysis for both images and shapes. As a result, the statistically significant discrepancies in both the image intensities as well as on the underlying shapes are detected. The method is applied on both brain images for the schizophrenia and heart images for atrial fibrillation patients.

  2. Three-dimensional rendering of segmented object using matlab - biomed 2010.

    PubMed

    Anderson, Jeffrey R; Barrett, Steven F

    2010-01-01

    The three-dimensional rendering of microscopic objects is a difficult and challenging task that often requires specialized image processing techniques. Previous work has been described of a semi-automatic segmentation process of fluorescently stained neurons collected as a sequence of slice images with a confocal laser scanning microscope. Once properly segmented, each individual object can be rendered and studied as a three-dimensional virtual object. This paper describes the work associated with the design and development of Matlab files to create three-dimensional images from the segmented object data previously mentioned. Part of the motivation for this work is to integrate both the segmentation and rendering processes into one software application, providing a seamless transition from the segmentation tasks to the rendering and visualization tasks. Previously these tasks were accomplished on two different computer systems, windows and Linux. This transition basically limits the usefulness of the segmentation and rendering applications to those who have both computer systems readily available. The focus of this work is to create custom Matlab image processing algorithms for object rendering and visualization, and merge these capabilities to the Matlab files that were developed especially for the image segmentation task. The completed Matlab application will contain both the segmentation and rendering processes in a single graphical user interface, or GUI. This process for rendering three-dimensional images in Matlab requires that a sequence of two-dimensional binary images, representing a cross-sectional slice of the object, be reassembled in a 3D space, and covered with a surface. Additional segmented objects can be rendered in the same 3D space. The surface properties of each object can be varied by the user to aid in the study and analysis of the objects. This inter-active process becomes a powerful visual tool to study and understand microscopic objects.

  3. Statistical Signal Models and Algorithms for Image Analysis

    DTIC Science & Technology

    1984-10-25

    In this report, two-dimensional stochastic linear models are used in developing algorithms for image analysis such as classification, segmentation, and object detection in images characterized by textured backgrounds. These models generate two-dimensional random processes as outputs to which statistical inference procedures can naturally be applied. A common thread throughout our algorithms is the interpretation of the inference procedures in terms of linear prediction

  4. A model-based approach for detection of runways and other objects in image sequences acquired using an on-board camera

    NASA Technical Reports Server (NTRS)

    Kasturi, Rangachar; Devadiga, Sadashiva; Tang, Yuan-Liang

    1994-01-01

    This research was initiated as a part of the Advanced Sensor and Imaging System Technology (ASSIST) program at NASA Langley Research Center. The primary goal of this research is the development of image analysis algorithms for the detection of runways and other objects using an on-board camera. Initial effort was concentrated on images acquired using a passive millimeter wave (PMMW) sensor. The images obtained using PMMW sensors under poor visibility conditions due to atmospheric fog are characterized by very low spatial resolution but good image contrast compared to those images obtained using sensors operating in the visible spectrum. Algorithms developed for analyzing these images using a model of the runway and other objects are described in Part 1 of this report. Experimental verification of these algorithms was limited to a sequence of images simulated from a single frame of PMMW image. Subsequent development and evaluation of algorithms was done using video image sequences. These images have better spatial and temporal resolution compared to PMMW images. Algorithms for reliable recognition of runways and accurate estimation of spatial position of stationary objects on the ground have been developed and evaluated using several image sequences. These algorithms are described in Part 2 of this report. A list of all publications resulting from this work is also included.

  5. Combining features from ERP components in single-trial EEG for discriminating four-category visual objects.

    PubMed

    Wang, Changming; Xiong, Shi; Hu, Xiaoping; Yao, Li; Zhang, Jiacai

    2012-10-01

    Categorization of images containing visual objects can be successfully recognized using single-trial electroencephalograph (EEG) measured when subjects view images. Previous studies have shown that task-related information contained in event-related potential (ERP) components could discriminate two or three categories of object images. In this study, we investigated whether four categories of objects (human faces, buildings, cats and cars) could be mutually discriminated using single-trial EEG data. Here, the EEG waveforms acquired while subjects were viewing four categories of object images were segmented into several ERP components (P1, N1, P2a and P2b), and then Fisher linear discriminant analysis (Fisher-LDA) was used to classify EEG features extracted from ERP components. Firstly, we compared the classification results using features from single ERP components, and identified that the N1 component achieved the highest classification accuracies. Secondly, we discriminated four categories of objects using combining features from multiple ERP components, and showed that combination of ERP components improved four-category classification accuracies by utilizing the complementarity of discriminative information in ERP components. These findings confirmed that four categories of object images could be discriminated with single-trial EEG and could direct us to select effective EEG features for classifying visual objects.

  6. Basic research planning in mathematical pattern recognition and image analysis

    NASA Technical Reports Server (NTRS)

    Bryant, J.; Guseman, L. F., Jr.

    1981-01-01

    Fundamental problems encountered while attempting to develop automated techniques for applications of remote sensing are discussed under the following categories: (1) geometric and radiometric preprocessing; (2) spatial, spectral, temporal, syntactic, and ancillary digital image representation; (3) image partitioning, proportion estimation, and error models in object scene interference; (4) parallel processing and image data structures; and (5) continuing studies in polarization; computer architectures and parallel processing; and the applicability of "expert systems" to interactive analysis.

  7. Moving object detection using dynamic motion modelling from UAV aerial images.

    PubMed

    Saif, A F M Saifuddin; Prabuwono, Anton Satria; Mahayuddin, Zainal Rasyid

    2014-01-01

    Motion analysis based moving object detection from UAV aerial image is still an unsolved issue due to inconsideration of proper motion estimation. Existing moving object detection approaches from UAV aerial images did not deal with motion based pixel intensity measurement to detect moving object robustly. Besides current research on moving object detection from UAV aerial images mostly depends on either frame difference or segmentation approach separately. There are two main purposes for this research: firstly to develop a new motion model called DMM (dynamic motion model) and secondly to apply the proposed segmentation approach SUED (segmentation using edge based dilation) using frame difference embedded together with DMM model. The proposed DMM model provides effective search windows based on the highest pixel intensity to segment only specific area for moving object rather than searching the whole area of the frame using SUED. At each stage of the proposed scheme, experimental fusion of the DMM and SUED produces extracted moving objects faithfully. Experimental result reveals that the proposed DMM and SUED have successfully demonstrated the validity of the proposed methodology.

  8. Profile fitting in crowded astronomical images

    NASA Astrophysics Data System (ADS)

    Manish, Raja

    Around 18,000 known objects currently populate the near Earth space. These constitute active space assets as well as space debris objects. The tracking and cataloging of such objects relies on observations, most of which are ground based. Also, because of the great distance to the objects, only non-resolved object images can be obtained from the observations. Optical systems consist of telescope optics and a detector. Nowadays, usually CCD detectors are used. The information that is sought to be extracted from the frames are the individual object's astrometric position. In order to do so, the center of the object's image on the CCD frame has to be found. However, the observation frames that are read out of the detector are subject to noise. There are three different sources of noise: celestial background sources, the object signal itself and the sensor noise. The noise statistics are usually modeled as Gaussian or Poisson distributed or their combined distribution. In order to achieve a near real time processing, computationally fast and reliable methods for the so-called centroiding are desired; analytical methods are preferred over numerical ones of comparable accuracy. In this work, an analytic method for the centroiding is investigated and compared to numerical methods. Though the work focuses mainly on astronomical images, same principle could be applied on non-celestial images containing similar data. The method is based on minimizing weighted least squared (LS) error between observed data and the theoretical model of point sources in a novel yet simple way. Synthetic image frames have been simulated. The newly developed method is tested in both crowded and non-crowded fields where former needs additional image handling procedures to separate closely packed objects. Subsequent analysis on real celestial images corroborate the effectiveness of the approach.

  9. Computer simulation of schlieren images of rotationally symmetric plasma systems: a simple method.

    PubMed

    Noll, R; Haas, C R; Weikl, B; Herziger, G

    1986-03-01

    Schlieren techniques are commonly used methods for quantitative analysis of cylindrical or spherical index of refraction profiles. Many schlieren objects, however, are characterized by more complex geometries, so we have investigated the more general case of noncylindrical, rotationally symmetric distributions of index of refraction n(r,z). Assuming straight ray paths in the schlieren object we have calculated 2-D beam deviation profiles. It is shown that experimental schlieren images of the noncylindrical plasma generated by a plasma focus device can be simulated with these deviation profiles. The computer simulation allows a quantitative analysis of these schlieren images, which yields, for example, the plasma parameters, electron density, and electron density gradients.

  10. The Medical Analysis of Child Sexual Abuse Images

    ERIC Educational Resources Information Center

    Cooper, Sharon W.

    2011-01-01

    Analysis of child sexual abuse images, commonly referred to as pornography, requires a familiarity with the sexual maturation rating of children and an understanding of growth and development parameters. This article explains barriers that exist in working in this area of child abuse, the differences between subjective and objective analyses,…

  11. Object-Based Change Detection Using High-Resolution Remotely Sensed Data and GIS

    NASA Astrophysics Data System (ADS)

    Sofina, N.; Ehlers, M.

    2012-08-01

    High resolution remotely sensed images provide current, detailed, and accurate information for large areas of the earth surface which can be used for change detection analyses. Conventional methods of image processing permit detection of changes by comparing remotely sensed multitemporal images. However, for performing a successful analysis it is desirable to take images from the same sensor which should be acquired at the same time of season, at the same time of a day, and - for electro-optical sensors - in cloudless conditions. Thus, a change detection analysis could be problematic especially for sudden catastrophic events. A promising alternative is the use of vector-based maps containing information about the original urban layout which can be related to a single image obtained after the catastrophe. The paper describes a methodology for an object-based search of destroyed buildings as a consequence of a natural or man-made catastrophe (e.g., earthquakes, flooding, civil war). The analysis is based on remotely sensed and vector GIS data. It includes three main steps: (i) generation of features describing the state of buildings; (ii) classification of building conditions; and (iii) data import into a GIS. One of the proposed features is a newly developed 'Detected Part of Contour' (DPC). Additionally, several features based on the analysis of textural information corresponding to the investigated vector objects are calculated. The method is applied to remotely sensed images of areas that have been subjected to an earthquake. The results show the high reliability of the DPC feature as an indicator for change.

  12. 3D shape recovery of a newborn skull using thin-plate splines.

    PubMed

    Lapeer, R J; Prager, R W

    2000-01-01

    The objective of this paper is to construct a mesh-model of a newborn skull for finite element analysis to study its deformation when subjected to the forces present during labour. The current state of medical imaging technology has reached a level which allows accurate visualisation and shape recovery of biological organs and body-parts. However, a sufficiently large set of medical images cannot always be obtained, often because of practical or ethical reasons, and the requirement to recover the shape of the biological object of interest has to be met by other means. Such is the case for a newborn skull. A method to recover the three-dimensional (3D) shape from (minimum) two orthogonal atlas images of the object of interest and a homologous object is described. This method is based on matching landmarks and curves on the orthogonal images of the object of interest with corresponding landmarks and curves on the homologous or 'master'-object which is fully defined in 3D space. On the basis of this set of corresponding landmarks, a thin-plate spline function can be derived to warp from the 'master'-object space to the 'slave'-object space. This method is applied to recover the 3D shape of a newborn skull. Images from orthogonal view-planes are obtained from an atlas. The homologous object is an adult skull, obtained from CT-images made available by the Visible Human Project. After shape recovery, a mesh-model of the newborn skull is generated.

  13. Quadratic grating apodized photon sieves for simultaneous multiplane microscopy

    NASA Astrophysics Data System (ADS)

    Cheng, Yiguang; Zhu, Jiangping; He, Yu; Tang, Yan; Hu, Song; Zhao, Lixin

    2017-10-01

    We present a new type of imaging device, named quadratic grating apodized photon sieve (QGPS), used as the objective for simultaneous multiplane imaging in X-rays. The proposed QGPS is structured based on the combination of two concepts: photon sieves and quadratic gratings. Its design principles are also expounded in detail. Analysis of imaging properties of QGPS in terms of point-spread function shows that QGPS can image multiple layers within an object field onto a single image plane. Simulated and experimental results in visible light both demonstrate the feasibility of QGPS for simultaneous multiplane imaging, which is extremely promising to detect dynamic specimens by X-ray microscopy in the physical and life sciences.

  14. [RS estimation of inventory parameters and carbon storage of moso bamboo forest based on synergistic use of object-based image analysis and decision tree].

    PubMed

    Du, Hua Qiang; Sun, Xiao Yan; Han, Ning; Mao, Fang Jie

    2017-10-01

    By synergistically using the object-based image analysis (OBIA) and the classification and regression tree (CART) methods, the distribution information, the indexes (including diameter at breast, tree height, and crown closure), and the aboveground carbon storage (AGC) of moso bamboo forest in Shanchuan Town, Anji County, Zhejiang Province were investigated. The results showed that the moso bamboo forest could be accurately delineated by integrating the multi-scale ima ge segmentation in OBIA technique and CART, which connected the image objects at various scales, with a pretty good producer's accuracy of 89.1%. The investigation of indexes estimated by regression tree model that was constructed based on the features extracted from the image objects reached normal or better accuracy, in which the crown closure model archived the best estimating accuracy of 67.9%. The estimating accuracy of diameter at breast and tree height was relatively low, which was consistent with conclusion that estimating diameter at breast and tree height using optical remote sensing could not achieve satisfactory results. Estimation of AGC reached relatively high accuracy, and accuracy of the region of high value achieved above 80%.

  15. Image denoising and deblurring using multispectral data

    NASA Astrophysics Data System (ADS)

    Semenishchev, E. A.; Voronin, V. V.; Marchuk, V. I.

    2017-05-01

    Currently decision-making systems get widespread. These systems are based on the analysis video sequences and also additional data. They are volume, change size, the behavior of one or a group of objects, temperature gradient, the presence of local areas with strong differences, and others. Security and control system are main areas of application. A noise on the images strongly influences the subsequent processing and decision making. This paper considers the problem of primary signal processing for solving the tasks of image denoising and deblurring of multispectral data. The additional information from multispectral channels can improve the efficiency of object classification. In this paper we use method of combining information about the objects obtained by the cameras in different frequency bands. We apply method based on simultaneous minimization L2 and the first order square difference sequence of estimates to denoising and restoring the blur on the edges. In case of loss of the information will be applied an approach based on the interpolation of data taken from the analysis of objects located in other areas and information obtained from multispectral camera. The effectiveness of the proposed approach is shown in a set of test images.

  16. Blood pulsation measurement using cameras operating in visible light: limitations.

    PubMed

    Koprowski, Robert

    2016-10-03

    The paper presents an automatic method for analysis and processing of images from a camera operating in visible light. This analysis applies to images containing the human facial area (body) and enables to measure the blood pulse rate. Special attention was paid to the limitations of this measurement method taking into account the possibility of using consumer cameras in real conditions (different types of lighting, different camera resolution, camera movement). The proposed new method of image analysis and processing was associated with three stages: (1) image pre-processing-allowing for the image filtration and stabilization (object location tracking); (2) main image processing-allowing for segmentation of human skin areas, acquisition of brightness changes; (3) signal analysis-filtration, FFT (Fast Fourier Transformation) analysis, pulse calculation. The presented algorithm and method for measuring the pulse rate has the following advantages: (1) it allows for non-contact and non-invasive measurement; (2) it can be carried out using almost any camera, including webcams; (3) it enables to track the object on the stage, which allows for the measurement of the heart rate when the patient is moving; (4) for a minimum of 40,000 pixels, it provides a measurement error of less than ±2 beats per minute for p < 0.01 and sunlight, or a slightly larger error (±3 beats per minute) for artificial lighting; (5) analysis of a single image takes about 40 ms in Matlab Version 7.11.0.584 (R2010b) with Image Processing Toolbox Version 7.1 (R2010b).

  17. The robot's eyes - Stereo vision system for automated scene analysis

    NASA Technical Reports Server (NTRS)

    Williams, D. S.

    1977-01-01

    Attention is given to the robot stereo vision system which maintains the image produced by solid-state detector television cameras in a dynamic random access memory called RAPID. The imaging hardware consists of sensors (two solid-state image arrays using a charge injection technique), a video-rate analog-to-digital converter, the RAPID memory, and various types of computer-controlled displays, and preprocessing equipment (for reflexive actions, processing aids, and object detection). The software is aimed at locating objects and transversibility. An object-tracking algorithm is discussed and it is noted that tracking speed is in the 50-75 pixels/s range.

  18. Passive Fully Polarimetric W-Band Millimeter-Wave Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernacki, Bruce E.; Kelly, James F.; Sheen, David M.

    2012-04-01

    We present the theory, design, and experimental results obtained from a scanning passive W-band fully polarimetric imager. Passive millimeter-wave imaging offers persistent day/nighttime imaging and the ability to penetrate dust, clouds and other obscurants, including clothing and dry soil. The single-pixel scanning imager includes both far-field and near-field fore-optics for investigation of polarization phenomena. Using both fore-optics, a variety of scenes including natural and man-made objects was imaged and these results are presented showing the utility of polarimetric imaging for anomaly detection. Analysis includes conventional Stokes-parameter based approaches as well as multivariate image analysis methods.

  19. Dermatological Feasibility of Multimodal Facial Color Imaging Modality for Cross-Evaluation of Facial Actinic Keratosis

    PubMed Central

    Bae, Youngwoo; Son, Taeyoon; Nelson, J. Stuart; Kim, Jae-Hong; Choi, Eung Ho; Jung, Byungjo

    2010-01-01

    Background/Purpose Digital color image analysis is currently considered as a routine procedure in dermatology. In our previous study, a multimodal facial color imaging modality (MFCIM), which provides a conventional, parallel- and cross-polarization, and fluorescent color image, was introduced for objective evaluation of various facial skin lesions. This study introduces a commercial version of MFCIM, DermaVision-PRO, for routine clinical use in dermatology and demonstrates its dermatological feasibility for cross-evaluation of skin lesions. Methods/Results Sample images of subjects with actinic keratosis or non-melanoma skin cancers were obtained at four different imaging modes. Various image analysis methods were applied to cross-evaluate the skin lesion and, finally, extract valuable diagnostic information. DermaVision-PRO is potentially a useful tool as an objective macroscopic imaging modality for quick prescreening and cross-evaluation of facial skin lesions. Conclusion DermaVision-PRO may be utilized as a useful tool for cross-evaluation of widely distributed facial skin lesions and an efficient database management of patient information. PMID:20923462

  20. Automatic thoracic body region localization

    NASA Astrophysics Data System (ADS)

    Bai, PeiRui; Udupa, Jayaram K.; Tong, YuBing; Xie, ShiPeng; Torigian, Drew A.

    2017-03-01

    Radiological imaging and image interpretation for clinical decision making are mostly specific to each body region such as head & neck, thorax, abdomen, pelvis, and extremities. For automating image analysis and consistency of results, standardizing definitions of body regions and the various anatomic objects, tissue regions, and zones in them becomes essential. Assuming that a standardized definition of body regions is available, a fundamental early step needed in automated image and object analytics is to automatically trim the given image stack into image volumes exactly satisfying the body region definition. This paper presents a solution to this problem based on the concept of virtual landmarks and evaluates it on whole-body positron emission tomography/computed tomography (PET/CT) scans. The method first selects a (set of) reference object(s), segments it (them) roughly, and identifies virtual landmarks for the object(s). The geometric relationship between these landmarks and the boundary locations of body regions in the craniocaudal direction is then learned through a neural network regressor, and the locations are predicted. Based on low-dose unenhanced CT images of 180 near whole-body PET/CT scans (which includes 34 whole-body PET/CT scans), the mean localization error for the boundaries of superior of thorax (TS) and inferior of thorax (TI), expressed as number of slices (slice spacing ≍ 4mm)), and using either the skeleton or the pleural spaces as reference objects, is found to be 3,2 (using skeleton) and 3, 5 (using pleural spaces) respectively, or in mm 13, 10 mm (using skeleton) and 10.5, 20 mm (using pleural spaces), respectively. Improvements of this performance via optimal selection of objects and virtual landmarks and other object analytics applications are currently being pursued. and the skeleton and pleural spaces used as a reference objects

  1. Resolving human object recognition in space and time

    PubMed Central

    Cichy, Radoslaw Martin; Pantazis, Dimitrios; Oliva, Aude

    2014-01-01

    A comprehensive picture of object processing in the human brain requires combining both spatial and temporal information about brain activity. Here, we acquired human magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) responses to 92 object images. Multivariate pattern classification applied to MEG revealed the time course of object processing: whereas individual images were discriminated by visual representations early, ordinate and superordinate category levels emerged relatively later. Using representational similarity analysis, we combine human fMRI and MEG to show content-specific correspondence between early MEG responses and primary visual cortex (V1), and later MEG responses and inferior temporal (IT) cortex. We identified transient and persistent neural activities during object processing, with sources in V1 and IT., Finally, human MEG signals were correlated to single-unit responses in monkey IT. Together, our findings provide an integrated space- and time-resolved view of human object categorization during the first few hundred milliseconds of vision. PMID:24464044

  2. Model-based object classification using unification grammars and abstract representations

    NASA Astrophysics Data System (ADS)

    Liburdy, Kathleen A.; Schalkoff, Robert J.

    1993-04-01

    The design and implementation of a high level computer vision system which performs object classification is described. General object labelling and functional analysis require models of classes which display a wide range of geometric variations. A large representational gap exists between abstract criteria such as `graspable' and current geometric image descriptions. The vision system developed and described in this work addresses this problem and implements solutions based on a fusion of semantics, unification, and formal language theory. Object models are represented using unification grammars, which provide a framework for the integration of structure and semantics. A methodology for the derivation of symbolic image descriptions capable of interacting with the grammar-based models is described and implemented. A unification-based parser developed for this system achieves object classification by determining if the symbolic image description can be unified with the abstract criteria of an object model. Future research directions are indicated.

  3. SHERPA: an image segmentation and outline feature extraction tool for diatoms and other objects

    PubMed Central

    2014-01-01

    Background Light microscopic analysis of diatom frustules is widely used both in basic and applied research, notably taxonomy, morphometrics, water quality monitoring and paleo-environmental studies. In these applications, usually large numbers of frustules need to be identified and/or measured. Although there is a need for automation in these applications, and image processing and analysis methods supporting these tasks have previously been developed, they did not become widespread in diatom analysis. While methodological reports for a wide variety of methods for image segmentation, diatom identification and feature extraction are available, no single implementation combining a subset of these into a readily applicable workflow accessible to diatomists exists. Results The newly developed tool SHERPA offers a versatile image processing workflow focused on the identification and measurement of object outlines, handling all steps from image segmentation over object identification to feature extraction, and providing interactive functions for reviewing and revising results. Special attention was given to ease of use, applicability to a broad range of data and problems, and supporting high throughput analyses with minimal manual intervention. Conclusions Tested with several diatom datasets from different sources and of various compositions, SHERPA proved its ability to successfully analyze large amounts of diatom micrographs depicting a broad range of species. SHERPA is unique in combining the following features: application of multiple segmentation methods and selection of the one giving the best result for each individual object; identification of shapes of interest based on outline matching against a template library; quality scoring and ranking of resulting outlines supporting quick quality checking; extraction of a wide range of outline shape descriptors widely used in diatom studies and elsewhere; minimizing the need for, but enabling manual quality control and corrections. Although primarily developed for analyzing images of diatom valves originating from automated microscopy, SHERPA can also be useful for other object detection, segmentation and outline-based identification problems. PMID:24964954

  4. SHERPA: an image segmentation and outline feature extraction tool for diatoms and other objects.

    PubMed

    Kloster, Michael; Kauer, Gerhard; Beszteri, Bánk

    2014-06-25

    Light microscopic analysis of diatom frustules is widely used both in basic and applied research, notably taxonomy, morphometrics, water quality monitoring and paleo-environmental studies. In these applications, usually large numbers of frustules need to be identified and/or measured. Although there is a need for automation in these applications, and image processing and analysis methods supporting these tasks have previously been developed, they did not become widespread in diatom analysis. While methodological reports for a wide variety of methods for image segmentation, diatom identification and feature extraction are available, no single implementation combining a subset of these into a readily applicable workflow accessible to diatomists exists. The newly developed tool SHERPA offers a versatile image processing workflow focused on the identification and measurement of object outlines, handling all steps from image segmentation over object identification to feature extraction, and providing interactive functions for reviewing and revising results. Special attention was given to ease of use, applicability to a broad range of data and problems, and supporting high throughput analyses with minimal manual intervention. Tested with several diatom datasets from different sources and of various compositions, SHERPA proved its ability to successfully analyze large amounts of diatom micrographs depicting a broad range of species. SHERPA is unique in combining the following features: application of multiple segmentation methods and selection of the one giving the best result for each individual object; identification of shapes of interest based on outline matching against a template library; quality scoring and ranking of resulting outlines supporting quick quality checking; extraction of a wide range of outline shape descriptors widely used in diatom studies and elsewhere; minimizing the need for, but enabling manual quality control and corrections. Although primarily developed for analyzing images of diatom valves originating from automated microscopy, SHERPA can also be useful for other object detection, segmentation and outline-based identification problems.

  5. Software for Automated Image-to-Image Co-registration

    NASA Technical Reports Server (NTRS)

    Benkelman, Cody A.; Hughes, Heidi

    2007-01-01

    The project objectives are: a) Develop software to fine-tune image-to-image co-registration, presuming images are orthorectified prior to input; b) Create a reusable software development kit (SDK) to enable incorporation of these tools into other software; d) provide automated testing for quantitative analysis; and e) Develop software that applies multiple techniques to achieve subpixel precision in the co-registration of image pairs.

  6. A Marker-Based Approach for the Automated Selection of a Single Segmentation from a Hierarchical Set of Image Segmentations

    NASA Technical Reports Server (NTRS)

    Tarabalka, Y.; Tilton, J. C.; Benediktsson, J. A.; Chanussot, J.

    2012-01-01

    The Hierarchical SEGmentation (HSEG) algorithm, which combines region object finding with region object clustering, has given good performances for multi- and hyperspectral image analysis. This technique produces at its output a hierarchical set of image segmentations. The automated selection of a single segmentation level is often necessary. We propose and investigate the use of automatically selected markers for this purpose. In this paper, a novel Marker-based HSEG (M-HSEG) method for spectral-spatial classification of hyperspectral images is proposed. Two classification-based approaches for automatic marker selection are adapted and compared for this purpose. Then, a novel constrained marker-based HSEG algorithm is applied, resulting in a spectral-spatial classification map. Three different implementations of the M-HSEG method are proposed and their performances in terms of classification accuracies are compared. The experimental results, presented for three hyperspectral airborne images, demonstrate that the proposed approach yields accurate segmentation and classification maps, and thus is attractive for remote sensing image analysis.

  7. Reducing noise component on medical images

    NASA Astrophysics Data System (ADS)

    Semenishchev, Evgeny; Voronin, Viacheslav; Dub, Vladimir; Balabaeva, Oksana

    2018-04-01

    Medical visualization and analysis of medical data is an actual direction. Medical images are used in microbiology, genetics, roentgenology, oncology, surgery, ophthalmology, etc. Initial data processing is a major step towards obtaining a good diagnostic result. The paper considers the approach allows an image filtering with preservation of objects borders. The algorithm proposed in this paper is based on sequential data processing. At the first stage, local areas are determined, for this purpose the method of threshold processing, as well as the classical ICI algorithm, is applied. The second stage uses a method based on based on two criteria, namely, L2 norm and the first order square difference. To preserve the boundaries of objects, we will process the transition boundary and local neighborhood the filtering algorithm with a fixed-coefficient. For example, reconstructed images of CT, x-ray, and microbiological studies are shown. The test images show the effectiveness of the proposed algorithm. This shows the applicability of analysis many medical imaging applications.

  8. Comparative analysis of numerical simulation techniques for incoherent imaging of extended objects through atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Lachinova, Svetlana L.; Vorontsov, Mikhail A.; Filimonov, Grigory A.; LeMaster, Daniel A.; Trippel, Matthew E.

    2017-07-01

    Computational efficiency and accuracy of wave-optics-based Monte-Carlo and brightness function numerical simulation techniques for incoherent imaging of extended objects through atmospheric turbulence are evaluated. Simulation results are compared with theoretical estimates based on known analytical solutions for the modulation transfer function of an imaging system and the long-exposure image of a Gaussian-shaped incoherent light source. It is shown that the accuracy of both techniques is comparable over the wide range of path lengths and atmospheric turbulence conditions, whereas the brightness function technique is advantageous in terms of the computational speed.

  9. A review of supervised object-based land-cover image classification

    NASA Astrophysics Data System (ADS)

    Ma, Lei; Li, Manchun; Ma, Xiaoxue; Cheng, Liang; Du, Peijun; Liu, Yongxue

    2017-08-01

    Object-based image classification for land-cover mapping purposes using remote-sensing imagery has attracted significant attention in recent years. Numerous studies conducted over the past decade have investigated a broad array of sensors, feature selection, classifiers, and other factors of interest. However, these research results have not yet been synthesized to provide coherent guidance on the effect of different supervised object-based land-cover classification processes. In this study, we first construct a database with 28 fields using qualitative and quantitative information extracted from 254 experimental cases described in 173 scientific papers. Second, the results of the meta-analysis are reported, including general characteristics of the studies (e.g., the geographic range of relevant institutes, preferred journals) and the relationships between factors of interest (e.g., spatial resolution and study area or optimal segmentation scale, accuracy and number of targeted classes), especially with respect to the classification accuracy of different sensors, segmentation scale, training set size, supervised classifiers, and land-cover types. Third, useful data on supervised object-based image classification are determined from the meta-analysis. For example, we find that supervised object-based classification is currently experiencing rapid advances, while development of the fuzzy technique is limited in the object-based framework. Furthermore, spatial resolution correlates with the optimal segmentation scale and study area, and Random Forest (RF) shows the best performance in object-based classification. The area-based accuracy assessment method can obtain stable classification performance, and indicates a strong correlation between accuracy and training set size, while the accuracy of the point-based method is likely to be unstable due to mixed objects. In addition, the overall accuracy benefits from higher spatial resolution images (e.g., unmanned aerial vehicle) or agricultural sites where it also correlates with the number of targeted classes. More than 95.6% of studies involve an area less than 300 ha, and the spatial resolution of images is predominantly between 0 and 2 m. Furthermore, we identify some methods that may advance supervised object-based image classification. For example, deep learning and type-2 fuzzy techniques may further improve classification accuracy. Lastly, scientists are strongly encouraged to report results of uncertainty studies to further explore the effects of varied factors on supervised object-based image classification.

  10. An image analysis system for near-infrared (NIR) fluorescence lymph imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Jingdan; Zhou, Shaohua Kevin; Xiang, Xiaoyan; Rasmussen, John C.; Sevick-Muraca, Eva M.

    2011-03-01

    Quantitative analysis of lymphatic function is crucial for understanding the lymphatic system and diagnosing the associated diseases. Recently, a near-infrared (NIR) fluorescence imaging system is developed for real-time imaging lymphatic propulsion by intradermal injection of microdose of a NIR fluorophore distal to the lymphatics of interest. However, the previous analysis software3, 4 is underdeveloped, requiring extensive time and effort to analyze a NIR image sequence. In this paper, we develop a number of image processing techniques to automate the data analysis workflow, including an object tracking algorithm to stabilize the subject and remove the motion artifacts, an image representation named flow map to characterize lymphatic flow more reliably, and an automatic algorithm to compute lymph velocity and frequency of propulsion. By integrating all these techniques to a system, the analysis workflow significantly reduces the amount of required user interaction and improves the reliability of the measurement.

  11. Video enhancement workbench: an operational real-time video image processing system

    NASA Astrophysics Data System (ADS)

    Yool, Stephen R.; Van Vactor, David L.; Smedley, Kirk G.

    1993-01-01

    Video image sequences can be exploited in real-time, giving analysts rapid access to information for military or criminal investigations. Video-rate dynamic range adjustment subdues fluctuations in image intensity, thereby assisting discrimination of small or low- contrast objects. Contrast-regulated unsharp masking enhances differentially shadowed or otherwise low-contrast image regions. Real-time removal of localized hotspots, when combined with automatic histogram equalization, may enhance resolution of objects directly adjacent. In video imagery corrupted by zero-mean noise, real-time frame averaging can assist resolution and location of small or low-contrast objects. To maximize analyst efficiency, lengthy video sequences can be screened automatically for low-frequency, high-magnitude events. Combined zoom, roam, and automatic dynamic range adjustment permit rapid analysis of facial features captured by video cameras recording crimes in progress. When trying to resolve small objects in murky seawater, stereo video places the moving imagery in an optimal setting for human interpretation.

  12. The Shuttle Imaging Radar B (SIR-B) experiment report

    NASA Technical Reports Server (NTRS)

    Cimino, Jo Bea; Holt, Benjamin; Richardson, Annie

    1988-01-01

    The primary objective of the SIR-B experiment was to acquire multiple-incidence-angle radar imagery of a variety of Earth's surfaces to better understand the effects of imaging geometry on radar backscatter. A complementary objective was to map extensive regions of particular interest. Under these broad objectives, many specific scientific experiments were defined by the 43 SIR-B Science Team members, including studies in the area of geology, vegetation, radar penetration, oceanography, image analysis, and calibration technique development. Approximately 20 percent of the planned digital data were collected, meeting 40 percent of the scientific objectives. This report is an overview of the SIR-B experiment and includes the science investigations, hardware design, mission scenario, mission operations, events of the actual missions, astronaut participation, data products (including auxiliary data), calibrations, and a summary of the actual coverage. Also included are several image samples.

  13. Accurate estimation of object location in an image sequence using helicopter flight data

    NASA Technical Reports Server (NTRS)

    Tang, Yuan-Liang; Kasturi, Rangachar

    1994-01-01

    In autonomous navigation, it is essential to obtain a three-dimensional (3D) description of the static environment in which the vehicle is traveling. For a rotorcraft conducting low-latitude flight, this description is particularly useful for obstacle detection and avoidance. In this paper, we address the problem of 3D position estimation for static objects from a monocular sequence of images captured from a low-latitude flying helicopter. Since the environment is static, it is well known that the optical flow in the image will produce a radiating pattern from the focus of expansion. We propose a motion analysis system which utilizes the epipolar constraint to accurately estimate 3D positions of scene objects in a real world image sequence taken from a low-altitude flying helicopter. Results show that this approach gives good estimates of object positions near the rotorcraft's intended flight-path.

  14. Developing an ANSI standard for image quality tools for the testing of active millimeter wave imaging systems

    NASA Astrophysics Data System (ADS)

    Barber, Jeffrey; Greca, Joseph; Yam, Kevin; Weatherall, James C.; Smith, Peter R.; Smith, Barry T.

    2017-05-01

    In 2016, the millimeter wave (MMW) imaging community initiated the formation of a standard for millimeter wave image quality metrics. This new standard, American National Standards Institute (ANSI) N42.59, will apply to active MMW systems for security screening of humans. The Electromagnetic Signatures of Explosives Laboratory at the Transportation Security Laboratory is supporting the ANSI standards process via the creation of initial prototypes for round-robin testing with MMW imaging system manufacturers and experts. Results obtained for these prototypes will be used to inform the community and lead to consensus objective standards amongst stakeholders. Images collected with laboratory systems are presented along with results of preliminary image analysis. Future directions for object design, data collection and image processing are discussed.

  15. Streak detection and analysis pipeline for space-debris optical images

    NASA Astrophysics Data System (ADS)

    Virtanen, Jenni; Poikonen, Jonne; Säntti, Tero; Komulainen, Tuomo; Torppa, Johanna; Granvik, Mikael; Muinonen, Karri; Pentikäinen, Hanna; Martikainen, Julia; Näränen, Jyri; Lehti, Jussi; Flohrer, Tim

    2016-04-01

    We describe a novel data-processing and analysis pipeline for optical observations of moving objects, either of natural (asteroids, meteors) or artificial origin (satellites, space debris). The monitoring of the space object populations requires reliable acquisition of observational data, to support the development and validation of population models and to build and maintain catalogues of orbital elements. The orbital catalogues are, in turn, needed for the assessment of close approaches (for asteroids, with the Earth; for satellites, with each other) and for the support of contingency situations or launches. For both types of populations, there is also increasing interest to detect fainter objects corresponding to the small end of the size distribution. The ESA-funded StreakDet (streak detection and astrometric reduction) activity has aimed at formulating and discussing suitable approaches for the detection and astrometric reduction of object trails, or streaks, in optical observations. Our two main focuses are objects in lower altitudes and space-based observations (i.e., high angular velocities), resulting in long (potentially curved) and faint streaks in the optical images. In particular, we concentrate on single-image (as compared to consecutive frames of the same field) and low-SNR detection of objects. Particular attention has been paid to the process of extraction of all necessary information from one image (segmentation), and subsequently, to efficient reduction of the extracted data (classification). We have developed an automated streak detection and processing pipeline and demonstrated its performance with an extensive database of semisynthetic images simulating streak observations both from ground-based and space-based observing platforms. The average processing time per image is about 13 s for a typical 2k-by-2k image. For long streaks (length >100 pixels), primary targets of the pipeline, the detection sensitivity (true positives) is about 90% for both scenarios for the bright streaks (SNR > 1), while in the low-SNR regime, the sensitivity is still 50% at SNR = 0.5 .

  16. Quantitative Medical Image Analysis for Clinical Development of Therapeutics

    NASA Astrophysics Data System (ADS)

    Analoui, Mostafa

    There has been significant progress in development of therapeutics for prevention and management of several disease areas in recent years, leading to increased average life expectancy, as well as of quality of life, globally. However, due to complexity of addressing a number of medical needs and financial burden of development of new class of therapeutics, there is a need for better tools for decision making and validation of efficacy and safety of new compounds. Numerous biological markers (biomarkers) have been proposed either as adjunct to current clinical endpoints or as surrogates. Imaging biomarkers are among rapidly increasing biomarkers, being examined to expedite effective and rational drug development. Clinical imaging often involves a complex set of multi-modality data sets that require rapid and objective analysis, independent of reviewer's bias and training. In this chapter, an overview of imaging biomarkers for drug development is offered, along with challenges that necessitate quantitative and objective image analysis. Examples of automated and semi-automated analysis approaches are provided, along with technical review of such methods. These examples include the use of 3D MRI for osteoarthritis, ultrasound vascular imaging, and dynamic contrast enhanced MRI for oncology. Additionally, a brief overview of regulatory requirements is discussed. In conclusion, this chapter highlights key challenges and future directions in this area.

  17. Stable image acquisition for mobile image processing applications

    NASA Astrophysics Data System (ADS)

    Henning, Kai-Fabian; Fritze, Alexander; Gillich, Eugen; Mönks, Uwe; Lohweg, Volker

    2015-02-01

    Today, mobile devices (smartphones, tablets, etc.) are widespread and of high importance for their users. Their performance as well as versatility increases over time. This leads to the opportunity to use such devices for more specific tasks like image processing in an industrial context. For the analysis of images requirements like image quality (blur, illumination, etc.) as well as a defined relative position of the object to be inspected are crucial. Since mobile devices are handheld and used in constantly changing environments the challenge is to fulfill these requirements. We present an approach to overcome the obstacles and stabilize the image capturing process such that image analysis becomes significantly improved on mobile devices. Therefore, image processing methods are combined with sensor fusion concepts. The approach consists of three main parts. First, pose estimation methods are used to guide a user moving the device to a defined position. Second, the sensors data and the pose information are combined for relative motion estimation. Finally, the image capturing process is automated. It is triggered depending on the alignment of the device and the object as well as the image quality that can be achieved under consideration of motion and environmental effects.

  18. Optical nanoscopy with contact Mie-particles: Resolution analysis

    NASA Astrophysics Data System (ADS)

    Maslov, Alexey V.; Astratov, Vasily N.

    2017-06-01

    The theoretical limits of resolution available in microspherical nanoscopy are explored using incoherent point emitters in the air. The images are calculated using a two-dimensional model and solving the Maxwell equations which account for the wave effects on the sub-wavelength scale of the emitter-microsphere interaction. Based on our results, we propose to use small dielectric particles with diameters λ ≲ D ≲ 2 λ made of a high-refractive-index material n ˜2 for imaging sub-wavelength objects. It is shown that such particles form virtual images below and real images above them. At wavelengths of the Mie resonances, these images have slightly better than ˜λ/4 resolution that can be attributed to the image magnification in close proximity to the object and contributions of its near field. The resonant super-resolution imaging of various point-like objects, such as dye molecules, fluorophores, or nanoplasmonic particles, can be realized by using narrow bandpass optical filters spectrally aligned with the Mie resonances.

  19. Objective definition of rosette shape variation using a combined computer vision and data mining approach.

    PubMed

    Camargo, Anyela; Papadopoulou, Dimitra; Spyropoulou, Zoi; Vlachonasios, Konstantinos; Doonan, John H; Gay, Alan P

    2014-01-01

    Computer-vision based measurements of phenotypic variation have implications for crop improvement and food security because they are intrinsically objective. It should be possible therefore to use such approaches to select robust genotypes. However, plants are morphologically complex and identification of meaningful traits from automatically acquired image data is not straightforward. Bespoke algorithms can be designed to capture and/or quantitate specific features but this approach is inflexible and is not generally applicable to a wide range of traits. In this paper, we have used industry-standard computer vision techniques to extract a wide range of features from images of genetically diverse Arabidopsis rosettes growing under non-stimulated conditions, and then used statistical analysis to identify those features that provide good discrimination between ecotypes. This analysis indicates that almost all the observed shape variation can be described by 5 principal components. We describe an easily implemented pipeline including image segmentation, feature extraction and statistical analysis. This pipeline provides a cost-effective and inherently scalable method to parameterise and analyse variation in rosette shape. The acquisition of images does not require any specialised equipment and the computer routines for image processing and data analysis have been implemented using open source software. Source code for data analysis is written using the R package. The equations to calculate image descriptors have been also provided.

  20. Determining the 3-D structure and motion of objects using a scanning laser range sensor

    NASA Technical Reports Server (NTRS)

    Nandhakumar, N.; Smith, Philip W.

    1993-01-01

    In order for the EVAHR robot to autonomously track and grasp objects, its vision system must be able to determine the 3-D structure and motion of an object from a sequence of sensory images. This task is accomplished by the use of a laser radar range sensor which provides dense range maps of the scene. Unfortunately, the currently available laser radar range cameras use a sequential scanning approach which complicates image analysis. Although many algorithms have been developed for recognizing objects from range images, none are suited for use with single beam, scanning, time-of-flight sensors because all previous algorithms assume instantaneous acquisition of the entire image. This assumption is invalid since the EVAHR robot is equipped with a sequential scanning laser range sensor. If an object is moving while being imaged by the device, the apparent structure of the object can be significantly distorted due to the significant non-zero delay time between sampling each image pixel. If an estimate of the motion of the object can be determined, this distortion can be eliminated; but, this leads to the motion-structure paradox - most existing algorithms for 3-D motion estimation use the structure of objects to parameterize their motions. The goal of this research is to design a rigid-body motion recovery technique which overcomes this limitation. The method being developed is an iterative, linear, feature-based approach which uses the non-zero image acquisition time constraint to accurately recover the motion parameters from the distorted structure of the 3-D range maps. Once the motion parameters are determined, the structural distortion in the range images is corrected.

  1. Identification of handheld objects for electro-optic/FLIR applications

    NASA Astrophysics Data System (ADS)

    Moyer, Steve K.; Flug, Eric; Edwards, Timothy C.; Krapels, Keith A.; Scarbrough, John

    2004-08-01

    This paper describes research on the determination of the fifty-percent probability of identification cycle criterion (N50) for two sets of handheld objects. The first set consists of 12 objects which are commonly held in a single hand. The second set consists of 10 objects commonly held in both hands. These sets consist of not only typical civilian handheld objects but also objects that are potentially lethal. A pistol, a cell phone, a rocket propelled grenade (RPG) launcher, and a broom are examples of the objects in these sets. The discrimination of these objects is an inherent part of homeland security, force protection, and also general population security. Objects were imaged from each set in the visible and mid-wave infrared (MWIR) spectrum. Various levels of blur are then applied to these images. These blurred images were then used in a forced choice perception experiment. Results were analyzed as a function of blur level and target size to give identification probability as a function of resolvable cycles on target. These results are applicable to handheld object target acquisition estimates for visible imaging systems and MWIR systems. This research provides guidance in the design and analysis of electro-optical systems and forward-looking infrared (FLIR) systems for use in homeland security, force protection, and also general population security.

  2. Multivariate analysis: A statistical approach for computations

    NASA Astrophysics Data System (ADS)

    Michu, Sachin; Kaushik, Vandana

    2014-10-01

    Multivariate analysis is a type of multivariate statistical approach commonly used in, automotive diagnosis, education evaluating clusters in finance etc and more recently in the health-related professions. The objective of the paper is to provide a detailed exploratory discussion about factor analysis (FA) in image retrieval method and correlation analysis (CA) of network traffic. Image retrieval methods aim to retrieve relevant images from a collected database, based on their content. The problem is made more difficult due to the high dimension of the variable space in which the images are represented. Multivariate correlation analysis proposes an anomaly detection and analysis method based on the correlation coefficient matrix. Anomaly behaviors in the network include the various attacks on the network like DDOs attacks and network scanning.

  3. Objective research on tongue manifestation of patients with eczema.

    PubMed

    Yu, Zhifeng; Zhang, Haifang; Fu, Linjie; Lu, Xiaozuo

    2017-07-20

    Tongue observation often depends on subjective judgment, it is necessary to establish an objective and quantifiable standard for tongue observation. To discuss the features of tongue manifestation of patients who suffered from eczema with different types and to reveal the clinical significance of the tongue images. Two hundred patients with eczema were recruited and divided into three groups according to the diagnostic criteria. Acute group had 47 patients, subacute group had 82 patients, and chronic group had 71 patients. The computerized tongue image digital analysis device was used to detect tongue parameters. The L*a*b* color model was applied to classify tongue parameters quantitatively. For parameters such as tongue color, tongue shape, color of tongue coating, and thickness or thinness of tongue coating, there was a significant difference among acute group, subacute group and chronic group (P< 0.05). For Lab values of both tongue and tongue coating, there was statistical significance among the above types of eczema (P< 0.05). Tongue images can reflect some features of eczema, and different types of eczema may be related to the changes of tongue images. The computerized tongue image digital analysis device can reflect the tongue characteristics of patients with eczema objectively.

  4. Seismic zonation of Port-Au-Prince using pixel- and object-based imaging analysis methods on ASTER GDEM

    USGS Publications Warehouse

    Yong, Alan; Hough, Susan E.; Cox, Brady R.; Rathje, Ellen M.; Bachhuber, Jeff; Dulberg, Ranon; Hulslander, David; Christiansen, Lisa; and Abrams, Michael J.

    2011-01-01

    We report about a preliminary study to evaluate the use of semi-automated imaging analysis of remotely-sensed DEM and field geophysical measurements to develop a seismic-zonation map of Port-au-Prince, Haiti. For in situ data, VS30 values are derived from the MASW technique deployed in and around the city. For satellite imagery, we use an ASTER GDEM of Hispaniola. We apply both pixel- and object-based imaging methods on the ASTER GDEM to explore local topography (absolute elevation values) and classify terrain types such as mountains, alluvial fans and basins/near-shore regions. We assign NEHRP seismic site class ranges based on available VS30 values. A comparison of results from imagery-based methods to results from traditional geologic-based approaches reveals good overall correspondence. We conclude that image analysis of RS data provides reliable first-order site characterization results in the absence of local data and can be useful to refine detailed site maps with sparse local data.

  5. FISH Finder: a high-throughput tool for analyzing FISH images

    PubMed Central

    Shirley, James W.; Ty, Sereyvathana; Takebayashi, Shin-ichiro; Liu, Xiuwen; Gilbert, David M.

    2011-01-01

    Motivation: Fluorescence in situ hybridization (FISH) is used to study the organization and the positioning of specific DNA sequences within the cell nucleus. Analyzing the data from FISH images is a tedious process that invokes an element of subjectivity. Automated FISH image analysis offers savings in time as well as gaining the benefit of objective data analysis. While several FISH image analysis software tools have been developed, they often use a threshold-based segmentation algorithm for nucleus segmentation. As fluorescence signal intensities can vary significantly from experiment to experiment, from cell to cell, and within a cell, threshold-based segmentation is inflexible and often insufficient for automatic image analysis, leading to additional manual segmentation and potential subjective bias. To overcome these problems, we developed a graphical software tool called FISH Finder to automatically analyze FISH images that vary significantly. By posing the nucleus segmentation as a classification problem, compound Bayesian classifier is employed so that contextual information is utilized, resulting in reliable classification and boundary extraction. This makes it possible to analyze FISH images efficiently and objectively without adjustment of input parameters. Additionally, FISH Finder was designed to analyze the distances between differentially stained FISH probes. Availability: FISH Finder is a standalone MATLAB application and platform independent software. The program is freely available from: http://code.google.com/p/fishfinder/downloads/list Contact: gilbert@bio.fsu.edu PMID:21310746

  6. Linguoculturological Analysis of Woman's Image in the Proverbs and Sayings of the Dagestan Languages

    ERIC Educational Resources Information Center

    Gasanova, Marina; Magomedova, Patimat; Gasanova, Salminat

    2016-01-01

    The article is devoted to linguoculturological description of woman's image in the proverbial worldview of the Dagestan languages. The analysis of proverbial expressions revealed androcentric bias of the Dagestan paroemiological worldview where woman, as a rule, appears for an object: mainly for mother, daughter, bride, and wife/mistress. The…

  7. Noninvasive Electromagnetic Source Imaging and Granger Causality Analysis: An Electrophysiological Connectome (eConnectome) Approach

    PubMed Central

    Sohrabpour, Abbas; Ye, Shuai; Worrell, Gregory A.; Zhang, Wenbo

    2016-01-01

    Objective Combined source imaging techniques and directional connectivity analysis can provide useful information about the underlying brain networks in a non-invasive fashion. Source imaging techniques have been used successfully to either determine the source of activity or to extract source time-courses for Granger causality analysis, previously. In this work, we utilize source imaging algorithms to both find the network nodes (regions of interest) and then extract the activation time series for further Granger causality analysis. The aim of this work is to find network nodes objectively from noninvasive electromagnetic signals, extract activation time-courses and apply Granger analysis on the extracted series to study brain networks under realistic conditions. Methods Source imaging methods are used to identify network nodes and extract time-courses and then Granger causality analysis is applied to delineate the directional functional connectivity of underlying brain networks. Computer simulations studies where the underlying network (nodes and connectivity pattern) is known were performed; additionally, this approach has been evaluated in partial epilepsy patients to study epilepsy networks from inter-ictal and ictal signals recorded by EEG and/or MEG. Results Localization errors of network nodes are less than 5 mm and normalized connectivity errors of ~20% in estimating underlying brain networks in simulation studies. Additionally, two focal epilepsy patients were studied and the identified nodes driving the epileptic network were concordant with clinical findings from intracranial recordings or surgical resection. Conclusion Our study indicates that combined source imaging algorithms with Granger causality analysis can identify underlying networks precisely (both in terms of network nodes location and internodal connectivity). Significance The combined source imaging and Granger analysis technique is an effective tool for studying normal or pathological brain conditions. PMID:27740473

  8. MRT letter: Guided filtering of image focus volume for 3D shape recovery of microscopic objects.

    PubMed

    Mahmood, Muhammad Tariq

    2014-12-01

    In this letter, a shape from focus (SFF) method is proposed that utilizes the guided image filtering to enhance the image focus volume efficiently. First, image focus volume is computed using a conventional focus measure. Then each layer of image focus volume is filtered using guided filtering. In this work, the all-in-focus image, which can be obtained from the initial focus volume, is used as guidance image. Finally, improved depth map is obtained from the filtered image focus volume by maximizing the focus measure along the optical axis. The proposed SFF method is efficient and provides better depth maps. The improved performance is highlighted by conducting several experiments using image sequences of simulated and real microscopic objects. The comparative analysis demonstrates the effectiveness of the proposed SFF method. © 2014 Wiley Periodicals, Inc.

  9. A survey of MRI-based medical image analysis for brain tumor studies

    NASA Astrophysics Data System (ADS)

    Bauer, Stefan; Wiest, Roland; Nolte, Lutz-P.; Reyes, Mauricio

    2013-07-01

    MRI-based medical image analysis for brain tumor studies is gaining attention in recent times due to an increased need for efficient and objective evaluation of large amounts of data. While the pioneering approaches applying automated methods for the analysis of brain tumor images date back almost two decades, the current methods are becoming more mature and coming closer to routine clinical application. This review aims to provide a comprehensive overview by giving a brief introduction to brain tumors and imaging of brain tumors first. Then, we review the state of the art in segmentation, registration and modeling related to tumor-bearing brain images with a focus on gliomas. The objective in the segmentation is outlining the tumor including its sub-compartments and surrounding tissues, while the main challenge in registration and modeling is the handling of morphological changes caused by the tumor. The qualities of different approaches are discussed with a focus on methods that can be applied on standard clinical imaging protocols. Finally, a critical assessment of the current state is performed and future developments and trends are addressed, giving special attention to recent developments in radiological tumor assessment guidelines.

  10. Automated Recognition of 3D Features in GPIR Images

    NASA Technical Reports Server (NTRS)

    Park, Han; Stough, Timothy; Fijany, Amir

    2007-01-01

    A method of automated recognition of three-dimensional (3D) features in images generated by ground-penetrating imaging radar (GPIR) is undergoing development. GPIR 3D images can be analyzed to detect and identify such subsurface features as pipes and other utility conduits. Until now, much of the analysis of GPIR images has been performed manually by expert operators who must visually identify and track each feature. The present method is intended to satisfy a need for more efficient and accurate analysis by means of algorithms that can automatically identify and track subsurface features, with minimal supervision by human operators. In this method, data from multiple sources (for example, data on different features extracted by different algorithms) are fused together for identifying subsurface objects. The algorithms of this method can be classified in several different ways. In one classification, the algorithms fall into three classes: (1) image-processing algorithms, (2) feature- extraction algorithms, and (3) a multiaxis data-fusion/pattern-recognition algorithm that includes a combination of machine-learning, pattern-recognition, and object-linking algorithms. The image-processing class includes preprocessing algorithms for reducing noise and enhancing target features for pattern recognition. The feature-extraction algorithms operate on preprocessed data to extract such specific features in images as two-dimensional (2D) slices of a pipe. Then the multiaxis data-fusion/ pattern-recognition algorithm identifies, classifies, and reconstructs 3D objects from the extracted features. In this process, multiple 2D features extracted by use of different algorithms and representing views along different directions are used to identify and reconstruct 3D objects. In object linking, which is an essential part of this process, features identified in successive 2D slices and located within a threshold radius of identical features in adjacent slices are linked in a directed-graph data structure. Relative to past approaches, this multiaxis approach offers the advantages of more reliable detections, better discrimination of objects, and provision of redundant information, which can be helpful in filling gaps in feature recognition by one of the component algorithms. The image-processing class also includes postprocessing algorithms that enhance identified features to prepare them for further scrutiny by human analysts (see figure). Enhancement of images as a postprocessing step is a significant departure from traditional practice, in which enhancement of images is a preprocessing step.

  11. Photovoltaic panel extraction from very high-resolution aerial imagery using region-line primitive association analysis and template matching

    NASA Astrophysics Data System (ADS)

    Wang, Min; Cui, Qi; Sun, Yujie; Wang, Qiao

    2018-07-01

    In object-based image analysis (OBIA), object classification performance is jointly determined by image segmentation, sample or rule setting, and classifiers. Typically, as a crucial step to obtain object primitives, image segmentation quality significantly influences subsequent feature extraction and analyses. By contrast, template matching extracts specific objects from images and prevents shape defects caused by image segmentation. However, creating or editing templates is tedious and sometimes results in incomplete or inaccurate templates. In this study, we combine OBIA and template matching techniques to address these problems and aim for accurate photovoltaic panel (PVP) extraction from very high-resolution (VHR) aerial imagery. The proposed method is based on the previously proposed region-line primitive association framework, in which complementary information between region (segment) and line (straight line) primitives is utilized to achieve a more powerful performance than routine OBIA. Several novel concepts, including the mutual fitting ratio and best-fitting template based on region-line primitive association analyses, are proposed. Automatic template generation and matching method for PVP extraction from VHR imagery are designed for concept and model validation. Results show that the proposed method can successfully extract PVPs without any user-specified matching template or training sample. High user independency and accuracy are the main characteristics of the proposed method in comparison with routine OBIA and template matching techniques.

  12. Multi-band morpho-Spectral Component Analysis Deblending Tool (MuSCADeT): Deblending colourful objects

    NASA Astrophysics Data System (ADS)

    Joseph, R.; Courbin, F.; Starck, J.-L.

    2016-05-01

    We introduce a new algorithm for colour separation and deblending of multi-band astronomical images called MuSCADeT which is based on Morpho-spectral Component Analysis of multi-band images. The MuSCADeT algorithm takes advantage of the sparsity of astronomical objects in morphological dictionaries such as wavelets and their differences in spectral energy distribution (SED) across multi-band observations. This allows us to devise a model independent and automated approach to separate objects with different colours. We show with simulations that we are able to separate highly blended objects and that our algorithm is robust against SED variations of objects across the field of view. To confront our algorithm with real data, we use HST images of the strong lensing galaxy cluster MACS J1149+2223 and we show that MuSCADeT performs better than traditional profile-fitting techniques in deblending the foreground lensing galaxies from background lensed galaxies. Although the main driver for our work is the deblending of strong gravitational lenses, our method is fit to be used for any purpose related to deblending of objects in astronomical images. An example of such an application is the separation of the red and blue stellar populations of a spiral galaxy in the galaxy cluster Abell 2744. We provide a python package along with all simulations and routines used in this paper to contribute to reproducible research efforts. Codes can be found at http://lastro.epfl.ch/page-126973.html

  13. New Colors for Histology: Optimized Bivariate Color Maps Increase Perceptual Contrast in Histological Images

    PubMed Central

    Kather, Jakob Nikolas; Weis, Cleo-Aron; Marx, Alexander; Schuster, Alexander K.; Schad, Lothar R.; Zöllner, Frank Gerrit

    2015-01-01

    Background Accurate evaluation of immunostained histological images is required for reproducible research in many different areas and forms the basis of many clinical decisions. The quality and efficiency of histopathological evaluation is limited by the information content of a histological image, which is primarily encoded as perceivable contrast differences between objects in the image. However, the colors of chromogen and counterstain used for histological samples are not always optimally distinguishable, even under optimal conditions. Methods and Results In this study, we present a method to extract the bivariate color map inherent in a given histological image and to retrospectively optimize this color map. We use a novel, unsupervised approach based on color deconvolution and principal component analysis to show that the commonly used blue and brown color hues in Hematoxylin—3,3’-Diaminobenzidine (DAB) images are poorly suited for human observers. We then demonstrate that it is possible to construct improved color maps according to objective criteria and that these color maps can be used to digitally re-stain histological images. Validation To validate whether this procedure improves distinguishability of objects and background in histological images, we re-stain phantom images and N = 596 large histological images of immunostained samples of human solid tumors. We show that perceptual contrast is improved by a factor of 2.56 in phantom images and up to a factor of 2.17 in sets of histological tumor images. Context Thus, we provide an objective and reliable approach to measure object distinguishability in a given histological image and to maximize visual information available to a human observer. This method could easily be incorporated in digital pathology image viewing systems to improve accuracy and efficiency in research and diagnostics. PMID:26717571

  14. New Colors for Histology: Optimized Bivariate Color Maps Increase Perceptual Contrast in Histological Images.

    PubMed

    Kather, Jakob Nikolas; Weis, Cleo-Aron; Marx, Alexander; Schuster, Alexander K; Schad, Lothar R; Zöllner, Frank Gerrit

    2015-01-01

    Accurate evaluation of immunostained histological images is required for reproducible research in many different areas and forms the basis of many clinical decisions. The quality and efficiency of histopathological evaluation is limited by the information content of a histological image, which is primarily encoded as perceivable contrast differences between objects in the image. However, the colors of chromogen and counterstain used for histological samples are not always optimally distinguishable, even under optimal conditions. In this study, we present a method to extract the bivariate color map inherent in a given histological image and to retrospectively optimize this color map. We use a novel, unsupervised approach based on color deconvolution and principal component analysis to show that the commonly used blue and brown color hues in Hematoxylin-3,3'-Diaminobenzidine (DAB) images are poorly suited for human observers. We then demonstrate that it is possible to construct improved color maps according to objective criteria and that these color maps can be used to digitally re-stain histological images. To validate whether this procedure improves distinguishability of objects and background in histological images, we re-stain phantom images and N = 596 large histological images of immunostained samples of human solid tumors. We show that perceptual contrast is improved by a factor of 2.56 in phantom images and up to a factor of 2.17 in sets of histological tumor images. Thus, we provide an objective and reliable approach to measure object distinguishability in a given histological image and to maximize visual information available to a human observer. This method could easily be incorporated in digital pathology image viewing systems to improve accuracy and efficiency in research and diagnostics.

  15. Computerized quantitative evaluation of mammographic accreditation phantom images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Yongbum; Tsai, Du-Yih; Shinohara, Norimitsu

    2010-12-15

    Purpose: The objective was to develop and investigate an automated scoring scheme of the American College of Radiology (ACR) mammographic accreditation phantom (RMI 156, Middleton, WI) images. Methods: The developed method consisted of background subtraction, determination of region of interest, classification of fiber and mass objects by Mahalanobis distance, detection of specks by template matching, and rule-based scoring. Fifty-one phantom images were collected from 51 facilities for this study (one facility provided one image). A medical physicist and two radiologic technologists also scored the images. The human and computerized scores were compared. Results: In terms of meeting the ACR's criteria,more » the accuracies of the developed method for computerized evaluation of fiber, mass, and speck were 90%, 80%, and 98%, respectively. Contingency table analysis revealed significant association between observer and computer scores for microcalcifications (p<5%) but not for masses and fibers. Conclusions: The developed method may achieve a stable assessment of visibility for test objects in mammographic accreditation phantom image in whether the phantom image meets the ACR's criteria in the evaluation test, although there is room left for improvement in the approach for fiber and mass objects.« less

  16. Automatic Cell Segmentation in Fluorescence Images of Confluent Cell Monolayers Using Multi-object Geometric Deformable Model.

    PubMed

    Yang, Zhen; Bogovic, John A; Carass, Aaron; Ye, Mao; Searson, Peter C; Prince, Jerry L

    2013-03-13

    With the rapid development of microscopy for cell imaging, there is a strong and growing demand for image analysis software to quantitatively study cell morphology. Automatic cell segmentation is an important step in image analysis. Despite substantial progress, there is still a need to improve the accuracy, efficiency, and adaptability to different cell morphologies. In this paper, we propose a fully automatic method for segmenting cells in fluorescence images of confluent cell monolayers. This method addresses several challenges through a combination of ideas. 1) It realizes a fully automatic segmentation process by first detecting the cell nuclei as initial seeds and then using a multi-object geometric deformable model (MGDM) for final segmentation. 2) To deal with different defects in the fluorescence images, the cell junctions are enhanced by applying an order-statistic filter and principal curvature based image operator. 3) The final segmentation using MGDM promotes robust and accurate segmentation results, and guarantees no overlaps and gaps between neighboring cells. The automatic segmentation results are compared with manually delineated cells, and the average Dice coefficient over all distinguishable cells is 0.88.

  17. Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex.

    PubMed Central

    Malach, R; Reppas, J B; Benson, R R; Kwong, K K; Jiang, H; Kennedy, W A; Ledden, P J; Brady, T J; Rosen, B R; Tootell, R B

    1995-01-01

    The stages of integration leading from local feature analysis to object recognition were explored in human visual cortex by using the technique of functional magnetic resonance imaging. Here we report evidence for object-related activation. Such activation was located at the lateral-posterior aspect of the occipital lobe, just abutting the posterior aspect of the motion-sensitive area MT/V5, in a region termed the lateral occipital complex (LO). LO showed preferential activation to images of objects, compared to a wide range of texture patterns. This activation was not caused by a global difference in the Fourier spatial frequency content of objects versus texture images, since object images produced enhanced LO activation compared to textures matched in power spectra but randomized in phase. The preferential activation to objects also could not be explained by different patterns of eye movements: similar levels of activation were observed when subjects fixated on the objects and when they scanned the objects with their eyes. Additional manipulations such as spatial frequency filtering and a 4-fold change in visual size did not affect LO activation. These results suggest that the enhanced responses to objects were not a manifestation of low-level visual processing. A striking demonstration that activity in LO is uniquely correlated to object detectability was produced by the "Lincoln" illusion, in which blurring of objects digitized into large blocks paradoxically increases their recognizability. Such blurring led to significant enhancement of LO activation. Despite the preferential activation to objects, LO did not seem to be involved in the final, "semantic," stages of the recognition process. Thus, objects varying widely in their recognizability (e.g., famous faces, common objects, and unfamiliar three-dimensional abstract sculptures) activated it to a similar degree. These results are thus evidence for an intermediate link in the chain of processing stages leading to object recognition in human visual cortex. Images Fig. 1 Fig. 2 Fig. 3 PMID:7667258

  18. Regional fringe analysis for improving depth measurement in phase-shifting fringe projection profilometry

    NASA Astrophysics Data System (ADS)

    Chien, Kuang-Che Chang; Tu, Han-Yen; Hsieh, Ching-Huang; Cheng, Chau-Jern; Chang, Chun-Yen

    2018-01-01

    This study proposes a regional fringe analysis (RFA) method to detect the regions of a target object in captured shifted images to improve depth measurement in phase-shifting fringe projection profilometry (PS-FPP). In the RFA method, region-based segmentation is exploited to segment the de-fringed image of a target object, and a multi-level fuzzy-based classification with five presented features is used to analyze and discriminate the regions of an object from the segmented regions, which were associated with explicit fringe information. Then, in the experiment, the performance of the proposed method is tested and evaluated on 26 test cases made of five types of materials. The qualitative and quantitative results demonstrate that the proposed RFA method can effectively detect the desired regions of an object to improve depth measurement in the PS-FPP system.

  19. 3D Position and Velocity Vector Computations of Objects Jettisoned from the International Space Station Using Close-Range Photogrammetry Approach

    NASA Technical Reports Server (NTRS)

    Papanyan, Valeri; Oshle, Edward; Adamo, Daniel

    2008-01-01

    Measurement of the jettisoned object departure trajectory and velocity vector in the International Space Station (ISS) reference frame is vitally important for prompt evaluation of the object s imminent orbit. We report on the first successful application of photogrammetric analysis of the ISS imagery for the prompt computation of the jettisoned object s position and velocity vectors. As post-EVA analyses examples, we present the Floating Potential Probe (FPP) and the Russian "Orlan" Space Suit jettisons, as well as the near-real-time (provided in several hours after the separation) computations of the Video Stanchion Support Assembly Flight Support Assembly (VSSA-FSA) and Early Ammonia Servicer (EAS) jettisons during the US astronauts space-walk. Standard close-range photogrammetry analysis was used during this EVA to analyze two on-board camera image sequences down-linked from the ISS. In this approach the ISS camera orientations were computed from known coordinates of several reference points on the ISS hardware. Then the position of the jettisoned object for each time-frame was computed from its image in each frame of the video-clips. In another, "quick-look" approach used in near-real time, orientation of the cameras was computed from their position (from the ISS CAD model) and operational data (pan and tilt) then location of the jettisoned object was calculated only for several frames of the two synchronized movies. Keywords: Photogrammetry, International Space Station, jettisons, image analysis.

  20. Genetic Particle Swarm Optimization–Based Feature Selection for Very-High-Resolution Remotely Sensed Imagery Object Change Detection

    PubMed Central

    Chen, Qiang; Chen, Yunhao; Jiang, Weiguo

    2016-01-01

    In the field of multiple features Object-Based Change Detection (OBCD) for very-high-resolution remotely sensed images, image objects have abundant features and feature selection affects the precision and efficiency of OBCD. Through object-based image analysis, this paper proposes a Genetic Particle Swarm Optimization (GPSO)-based feature selection algorithm to solve the optimization problem of feature selection in multiple features OBCD. We select the Ratio of Mean to Variance (RMV) as the fitness function of GPSO, and apply the proposed algorithm to the object-based hybrid multivariate alternative detection model. Two experiment cases on Worldview-2/3 images confirm that GPSO can significantly improve the speed of convergence, and effectively avoid the problem of premature convergence, relative to other feature selection algorithms. According to the accuracy evaluation of OBCD, GPSO is superior at overall accuracy (84.17% and 83.59%) and Kappa coefficient (0.6771 and 0.6314) than other algorithms. Moreover, the sensitivity analysis results show that the proposed algorithm is not easily influenced by the initial parameters, but the number of features to be selected and the size of the particle swarm would affect the algorithm. The comparison experiment results reveal that RMV is more suitable than other functions as the fitness function of GPSO-based feature selection algorithm. PMID:27483285

  1. Object representations in ventral and dorsal visual streams: fMRI repetition effects depend on attention and part–whole configuration

    PubMed Central

    Thoma, Volker; Henson, Richard N.

    2011-01-01

    The effects of attention and object configuration on the neural responses to short-lag visual image repetition were investigated with fMRI. Attention to one of two object images in a prime display was cued spatially. The images were either intact or split vertically; a manipulation that negates the influence of view-based representations. A subsequent single intact probe image was named covertly. Behavioural priming observed as faster button presses was found for attended primes in both intact and split configurations, but only for uncued primes in the intact configuration. In a voxel-wise analysis, fMRI repetition suppression (RS) was observed in a left mid-fusiform region for attended primes, both intact and split, whilst a right intraparietal region showed repetition enhancement (RE) for intact primes, regardless of attention. In a factorial analysis across regions of interest (ROIs) defined from independent localiser contrasts, RS for attended objects in the ventral stream was significantly left-lateralised, whilst repetition effects in ventral and dorsal ROIs correlated with the amount of priming in specific conditions. These fMRI results extend hybrid theories of object recognition, implicating left ventral stream regions in analytic processing (requiring attention), consistent with prior hypotheses about hemispheric specialisation, and implicating dorsal stream regions in holistic processing (independent of attention). PMID:21554967

  2. Getting a grip on reality: Grasping movements directed to real objects and images rely on dissociable neural representations.

    PubMed

    Freud, Erez; Macdonald, Scott N; Chen, Juan; Quinlan, Derek J; Goodale, Melvyn A; Culham, Jody C

    2018-01-01

    In the current era of touchscreen technology, humans commonly execute visually guided actions directed to two-dimensional (2D) images of objects. Although real, three-dimensional (3D), objects and images of the same objects share high degree of visual similarity, they differ fundamentally in the actions that can be performed on them. Indeed, previous behavioral studies have suggested that simulated grasping of images relies on different representations than actual grasping of real 3D objects. Yet the neural underpinnings of this phenomena have not been investigated. Here we used functional magnetic resonance imaging (fMRI) to investigate how brain activation patterns differed for grasping and reaching actions directed toward real 3D objects compared to images. Multivoxel Pattern Analysis (MVPA) revealed that the left anterior intraparietal sulcus (aIPS), a key region for visually guided grasping, discriminates between both the format in which objects were presented (real/image) and the motor task performed on them (grasping/reaching). Interestingly, during action planning, the representations of real 3D objects versus images differed more for grasping movements than reaching movements, likely because grasping real 3D objects involves fine-grained planning and anticipation of the consequences of a real interaction. Importantly, this dissociation was evident in the planning phase, before movement initiation, and was not found in any other regions, including motor and somatosensory cortices. This suggests that the dissociable representations in the left aIPS were not based on haptic, motor or proprioceptive feedback. Together, these findings provide novel evidence that actions, particularly grasping, are affected by the realness of the target objects during planning, perhaps because real targets require a more elaborate forward model based on visual cues to predict the consequences of real manipulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Optical Observation, Image-processing, and Detection of Space Debris in Geosynchronous Earth Orbit

    NASA Astrophysics Data System (ADS)

    Oda, H.; Yanagisawa, T.; Kurosaki, H.; Tagawa, M.

    2014-09-01

    We report on optical observations and an efficient detection method of space debris in the geosynchronous Earth orbit (GEO). We operate our new Australia Remote Observatory (ARO) where an 18 cm optical telescope with a charged-coupled device (CCD) camera covering a 3.14-degree field of view is used for GEO debris survey, and analyse datasets of successive CCD images using the line detection method (Yanagisawa and Nakajima 2005). In our operation, the exposure time of each CCD image is set to be 3 seconds (or 5 seconds), and the time interval of CCD shutter open is about 4.7 seconds (or 6.7 seconds). In the line detection method, a sufficient number of sample objects are taken from each image based on their shape and intensity, which includes not only faint signals but also background noise (we take 500 sample objects from each image in this paper). Then we search a sequence of sample objects aligning in a straight line in the successive images to exclude the noise sample. We succeed in detecting faint signals (down to about 1.8 sigma of background noise) by applying the line detection method to 18 CCD images. As a result, we detected about 300 GEO objects up to magnitude of 15.5 among 5 nights data. We also calculate orbits of objects detected using the Simplified General Perturbations Satellite Orbit Model 4(SGP4), and identify the objects listed in the two-line-element (TLE) data catalogue publicly provided by the U.S. Strategic Command (USSTRATCOM). We found that a certain amount of our detections are new objects that are not contained in the catalogue. We conclude that our ARO and detection method posse a high efficiency detection of GEO objects despite the use of comparatively-inexpensive observation and analysis system. We also describe the image-processing specialized for the detection of GEO objects (not for usual astronomical objects like stars) in this paper.

  4. Three-dimensional surface contouring of macroscopic objects by means of phase-difference images.

    PubMed

    Velásquez Prieto, Daniel; Garcia-Sucerquia, Jorge

    2006-09-01

    We report a technique to determine the 3D contour of objects with dimensions of at least 4 orders of magnitude larger than the illumination optical wavelength. Our proposal is based on the numerical reconstruction of the optical wave field of digitally recorded holograms. The required modulo 2pi phase map in any contouring process is obtained by means of the direct subtraction of two phase-contrast images under different illumination angles to create a phase-difference image of a still object. Obtaining the phase-difference images is only possible by using the capability of numerical reconstruction of the complex optical field provided by digital holography. This unique characteristic leads us to a robust, reliable, and fast procedure that requires only two images. A theoretical analysis of the contouring system is shown, with verification by means of numerical and experimental results.

  5. Methods for the analysis of ordinal response data in medical image quality assessment.

    PubMed

    Keeble, Claire; Baxter, Paul D; Gislason-Lee, Amber J; Treadgold, Laura A; Davies, Andrew G

    2016-07-01

    The assessment of image quality in medical imaging often requires observers to rate images for some metric or detectability task. These subjective results are used in optimization, radiation dose reduction or system comparison studies and may be compared to objective measures from a computer vision algorithm performing the same task. One popular scoring approach is to use a Likert scale, then assign consecutive numbers to the categories. The mean of these response values is then taken and used for comparison with the objective or second subjective response. Agreement is often assessed using correlation coefficients. We highlight a number of weaknesses in this common approach, including inappropriate analyses of ordinal data and the inability to properly account for correlations caused by repeated images or observers. We suggest alternative data collection and analysis techniques such as amendments to the scale and multilevel proportional odds models. We detail the suitability of each approach depending upon the data structure and demonstrate each method using a medical imaging example. Whilst others have raised some of these issues, we evaluated the entire study from data collection to analysis, suggested sources for software and further reading, and provided a checklist plus flowchart for use with any ordinal data. We hope that raised awareness of the limitations of the current approaches will encourage greater method consideration and the utilization of a more appropriate analysis. More accurate comparisons between measures in medical imaging will lead to a more robust contribution to the imaging literature and ultimately improved patient care.

  6. 3D-HST WFC3-selected Photometric Catalogs in the Five CANDELS/3D-HST Fields: Photometry, Photometric Redshifts, and Stellar Masses

    NASA Astrophysics Data System (ADS)

    Skelton, Rosalind E.; Whitaker, Katherine E.; Momcheva, Ivelina G.; Brammer, Gabriel B.; van Dokkum, Pieter G.; Labbé, Ivo; Franx, Marijn; van der Wel, Arjen; Bezanson, Rachel; Da Cunha, Elisabete; Fumagalli, Mattia; Förster Schreiber, Natascha; Kriek, Mariska; Leja, Joel; Lundgren, Britt F.; Magee, Daniel; Marchesini, Danilo; Maseda, Michael V.; Nelson, Erica J.; Oesch, Pascal; Pacifici, Camilla; Patel, Shannon G.; Price, Sedona; Rix, Hans-Walter; Tal, Tomer; Wake, David A.; Wuyts, Stijn

    2014-10-01

    The 3D-HST and CANDELS programs have provided WFC3 and ACS spectroscopy and photometry over ≈900 arcmin2 in five fields: AEGIS, COSMOS, GOODS-North, GOODS-South, and the UKIDSS UDS field. All these fields have a wealth of publicly available imaging data sets in addition to the Hubble Space Telescope (HST) data, which makes it possible to construct the spectral energy distributions (SEDs) of objects over a wide wavelength range. In this paper we describe a photometric analysis of the CANDELS and 3D-HST HST imaging and the ancillary imaging data at wavelengths 0.3-8 μm. Objects were selected in the WFC3 near-IR bands, and their SEDs were determined by carefully taking the effects of the point-spread function in each observation into account. A total of 147 distinct imaging data sets were used in the analysis. The photometry is made available in the form of six catalogs: one for each field, as well as a master catalog containing all objects in the entire survey. We also provide derived data products: photometric redshifts, determined with the EAZY code, and stellar population parameters determined with the FAST code. We make all the imaging data that were used in the analysis available, including our reductions of the WFC3 imaging in all five fields. 3D-HST is a spectroscopic survey with the WFC3 and ACS grisms, and the photometric catalogs presented here constitute a necessary first step in the analysis of these grism data. All the data presented in this paper are available through the 3D-HST Web site (http://3dhst.research.yale.edu).

  7. Rapid Disaster Damage Estimation

    NASA Astrophysics Data System (ADS)

    Vu, T. T.

    2012-07-01

    The experiences from recent disaster events showed that detailed information derived from high-resolution satellite images could accommodate the requirements from damage analysts and disaster management practitioners. Richer information contained in such high-resolution images, however, increases the complexity of image analysis. As a result, few image analysis solutions can be practically used under time pressure in the context of post-disaster and emergency responses. To fill the gap in employment of remote sensing in disaster response, this research develops a rapid high-resolution satellite mapping solution built upon a dual-scale contextual framework to support damage estimation after a catastrophe. The target objects are building (or building blocks) and their condition. On the coarse processing level, statistical region merging deployed to group pixels into a number of coarse clusters. Based on majority rule of vegetation index, water and shadow index, it is possible to eliminate the irrelevant clusters. The remaining clusters likely consist of building structures and others. On the fine processing level details, within each considering clusters, smaller objects are formed using morphological analysis. Numerous indicators including spectral, textural and shape indices are computed to be used in a rule-based object classification. Computation time of raster-based analysis highly depends on the image size or number of processed pixels in order words. Breaking into 2 level processing helps to reduce the processed number of pixels and the redundancy of processing irrelevant information. In addition, it allows a data- and tasks- based parallel implementation. The performance is demonstrated with QuickBird images captured a disaster-affected area of Phanga, Thailand by the 2004 Indian Ocean tsunami are used for demonstration of the performance. The developed solution will be implemented in different platforms as well as a web processing service for operational uses.

  8. 3D-HST WFC3-SELECTED PHOTOMETRIC CATALOGS IN THE FIVE CANDELS/3D-HST FIELDS: PHOTOMETRY, PHOTOMETRIC REDSHIFTS, AND STELLAR MASSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skelton, Rosalind E.; Whitaker, Katherine E.; Momcheva, Ivelina G.

    The 3D-HST and CANDELS programs have provided WFC3 and ACS spectroscopy and photometry over ≈900 arcmin{sup 2} in five fields: AEGIS, COSMOS, GOODS-North, GOODS-South, and the UKIDSS UDS field. All these fields have a wealth of publicly available imaging data sets in addition to the Hubble Space Telescope (HST) data, which makes it possible to construct the spectral energy distributions (SEDs) of objects over a wide wavelength range. In this paper we describe a photometric analysis of the CANDELS and 3D-HST HST imaging and the ancillary imaging data at wavelengths 0.3-8 μm. Objects were selected in the WFC3 near-IR bands,more » and their SEDs were determined by carefully taking the effects of the point-spread function in each observation into account. A total of 147 distinct imaging data sets were used in the analysis. The photometry is made available in the form of six catalogs: one for each field, as well as a master catalog containing all objects in the entire survey. We also provide derived data products: photometric redshifts, determined with the EAZY code, and stellar population parameters determined with the FAST code. We make all the imaging data that were used in the analysis available, including our reductions of the WFC3 imaging in all five fields. 3D-HST is a spectroscopic survey with the WFC3 and ACS grisms, and the photometric catalogs presented here constitute a necessary first step in the analysis of these grism data. All the data presented in this paper are available through the 3D-HST Web site (http://3dhst.research.yale.edu)« less

  9. The optimal algorithm for Multi-source RS image fusion.

    PubMed

    Fu, Wei; Huang, Shui-Guang; Li, Zeng-Shun; Shen, Hao; Li, Jun-Shuai; Wang, Peng-Yuan

    2016-01-01

    In order to solve the issue which the fusion rules cannot be self-adaptively adjusted by using available fusion methods according to the subsequent processing requirements of Remote Sensing (RS) image, this paper puts forward GSDA (genetic-iterative self-organizing data analysis algorithm) by integrating the merit of genetic arithmetic together with the advantage of iterative self-organizing data analysis algorithm for multi-source RS image fusion. The proposed algorithm considers the wavelet transform of the translation invariance as the model operator, also regards the contrast pyramid conversion as the observed operator. The algorithm then designs the objective function by taking use of the weighted sum of evaluation indices, and optimizes the objective function by employing GSDA so as to get a higher resolution of RS image. As discussed above, the bullet points of the text are summarized as follows.•The contribution proposes the iterative self-organizing data analysis algorithm for multi-source RS image fusion.•This article presents GSDA algorithm for the self-adaptively adjustment of the fusion rules.•This text comes up with the model operator and the observed operator as the fusion scheme of RS image based on GSDA. The proposed algorithm opens up a novel algorithmic pathway for multi-source RS image fusion by means of GSDA.

  10. Signal-to-noise ratio analysis and evaluation of the Hadamard imaging technique

    NASA Technical Reports Server (NTRS)

    Jobson, D. J.; Katzberg, S. J.; Spiers, R. B., Jr.

    1977-01-01

    The signal-to-noise ratio performance of the Hadamard imaging technique is analyzed and an experimental evaluation of a laboratory Hadamard imager is presented. A comparison between the performances of Hadamard and conventional imaging techniques shows that the Hadamard technique is superior only when the imaging objective lens is required to have an effective F (focus) number of about 2 or slower.

  11. Fast processing of microscopic images using object-based extended depth of field.

    PubMed

    Intarapanich, Apichart; Kaewkamnerd, Saowaluck; Pannarut, Montri; Shaw, Philip J; Tongsima, Sissades

    2016-12-22

    Microscopic analysis requires that foreground objects of interest, e.g. cells, are in focus. In a typical microscopic specimen, the foreground objects may lie on different depths of field necessitating capture of multiple images taken at different focal planes. The extended depth of field (EDoF) technique is a computational method for merging images from different depths of field into a composite image with all foreground objects in focus. Composite images generated by EDoF can be applied in automated image processing and pattern recognition systems. However, current algorithms for EDoF are computationally intensive and impractical, especially for applications such as medical diagnosis where rapid sample turnaround is important. Since foreground objects typically constitute a minor part of an image, the EDoF technique could be made to work much faster if only foreground regions are processed to make the composite image. We propose a novel algorithm called object-based extended depths of field (OEDoF) to address this issue. The OEDoF algorithm consists of four major modules: 1) color conversion, 2) object region identification, 3) good contrast pixel identification and 4) detail merging. First, the algorithm employs color conversion to enhance contrast followed by identification of foreground pixels. A composite image is constructed using only these foreground pixels, which dramatically reduces the computational time. We used 250 images obtained from 45 specimens of confirmed malaria infections to test our proposed algorithm. The resulting composite images with all in-focus objects were produced using the proposed OEDoF algorithm. We measured the performance of OEDoF in terms of image clarity (quality) and processing time. The features of interest selected by the OEDoF algorithm are comparable in quality with equivalent regions in images processed by the state-of-the-art complex wavelet EDoF algorithm; however, OEDoF required four times less processing time. This work presents a modification of the extended depth of field approach for efficiently enhancing microscopic images. This selective object processing scheme used in OEDoF can significantly reduce the overall processing time while maintaining the clarity of important image features. The empirical results from parasite-infected red cell images revealed that our proposed method efficiently and effectively produced in-focus composite images. With the speed improvement of OEDoF, this proposed algorithm is suitable for processing large numbers of microscope images, e.g., as required for medical diagnosis.

  12. High contrast imaging through adaptive transmittance control in the focal plane

    NASA Astrophysics Data System (ADS)

    Dhadwal, Harbans S.; Rastegar, Jahangir; Feng, Dake

    2016-05-01

    High contrast imaging, in the presence of a bright background, is a challenging problem encountered in diverse applications ranging from the daily chore of driving into a sun-drenched scene to in vivo use of biomedical imaging in various types of keyhole surgeries. Imaging in the presence of bright sources saturates the vision system, resulting in loss of scene fidelity, corresponding to low image contrast and reduced resolution. The problem is exacerbated in retro-reflective imaging systems where the light sources illuminating the object are unavoidably strong, typically masking the object features. This manuscript presents a novel theoretical framework, based on nonlinear analysis and adaptive focal plane transmittance, to selectively remove object domain sources of background light from the image plane, resulting in local and global increases in image contrast. The background signal can either be of a global specular nature, giving rise to parallel illumination from the entire object surface or can be represented by a mosaic of randomly orientated, small specular surfaces. The latter is more representative of real world practical imaging systems. Thus, the background signal comprises of groups of oblique rays corresponding to distributions of the mosaic surfaces. Through the imaging system, light from group of like surfaces, converges to a localized spot in the focal plane of the lens and then diverges to cast a localized bright spot in the image plane. Thus, transmittance of a spatial light modulator, positioned in the focal plane, can be adaptively controlled to block a particular source of background light. Consequently, the image plane intensity is entirely due to the object features. Experimental image data is presented to verify the efficacy of the methodology.

  13. Practical considerations of image analysis and quantification of signal transduction IHC staining.

    PubMed

    Grunkin, Michael; Raundahl, Jakob; Foged, Niels T

    2011-01-01

    The dramatic increase in computer processing power in combination with the availability of high-quality digital cameras during the last 10 years has fertilized the grounds for quantitative microscopy based on digital image analysis. With the present introduction of robust scanners for whole slide imaging in both research and routine, the benefits of automation and objectivity in the analysis of tissue sections will be even more obvious. For in situ studies of signal transduction, the combination of tissue microarrays, immunohistochemistry, digital imaging, and quantitative image analysis will be central operations. However, immunohistochemistry is a multistep procedure including a lot of technical pitfalls leading to intra- and interlaboratory variability of its outcome. The resulting variations in staining intensity and disruption of original morphology are an extra challenge for the image analysis software, which therefore preferably should be dedicated to the detection and quantification of histomorphometrical end points.

  14. Dynamic feature analysis for Voyager at the Image Processing Laboratory

    NASA Technical Reports Server (NTRS)

    Yagi, G. M.; Lorre, J. J.; Jepsen, P. L.

    1978-01-01

    Voyager 1 and 2 were launched from Cape Kennedy to Jupiter, Saturn, and beyond on September 5, 1977 and August 20, 1977. The role of the Image Processing Laboratory is to provide the Voyager Imaging Team with the necessary support to identify atmospheric features (tiepoints) for Jupiter and Saturn data, and to analyze and display them in a suitable form. This support includes the software needed to acquire and store tiepoints, the hardware needed to interactively display images and tiepoints, and the general image processing environment necessary for decalibration and enhancement of the input images. The objective is an understanding of global circulation in the atmospheres of Jupiter and Saturn. Attention is given to the Voyager imaging subsystem, the Voyager imaging science objectives, hardware, software, display monitors, a dynamic feature study, decalibration, navigation, and data base.

  15. An Integrated Centroid Finding and Particle Overlap Decomposition Algorithm for Stereo Imaging Velocimetry

    NASA Technical Reports Server (NTRS)

    McDowell, Mark

    2004-01-01

    An integrated algorithm for decomposing overlapping particle images (multi-particle objects) along with determining each object s constituent particle centroid(s) has been developed using image analysis techniques. The centroid finding algorithm uses a modified eight-direction search method for finding the perimeter of any enclosed object. The centroid is calculated using the intensity-weighted center of mass of the object. The overlap decomposition algorithm further analyzes the object data and breaks it down into its constituent particle centroid(s). This is accomplished with an artificial neural network, feature based technique and provides an efficient way of decomposing overlapping particles. Combining the centroid finding and overlap decomposition routines into a single algorithm allows us to accurately predict the error associated with finding the centroid(s) of particles in our experiments. This algorithm has been tested using real, simulated, and synthetic data and the results are presented and discussed.

  16. exVis: a visual analysis tool for wind tunnel data

    NASA Astrophysics Data System (ADS)

    Deardorff, D. G.; Keeley, Leslie E.; Uselton, Samuel P.

    1998-05-01

    exVis is a software tool created to support interactive display and analysis of data collected during wind tunnel experiments. It is a result of a continuing project to explore the uses of information technology in improving the effectiveness of aeronautical design professionals. The data analysis goals are accomplished by allowing aerodynamicists to display and query data collected by new data acquisition systems and to create traditional wind tunnel plots from this data by interactively interrogating these images. exVis was built as a collection of distinct modules to allow for rapid prototyping, to foster evolution of capabilities, and to facilitate object reuse within other applications being developed. It was implemented using C++ and Open Inventor, commercially available object-oriented tools. The initial version was composed of three main classes. Two of these modules are autonomous viewer objects intended to display the test images (ImageViewer) and the plots (GraphViewer). The third main class is the Application User Interface (AUI) which manages the passing of data and events between the viewers, as well as providing a user interface to certain features. User feedback was obtained on a regular basis, which allowed for quick revision cycles and appropriately enhanced feature sets. During the development process additional classes were added, including a color map editor and a data set manager. The ImageViewer module was substantially rewritten to add features and to use the data set manager. The use of an object-oriented design was successful in allowing rapid prototyping and easy feature addition.

  17. A functional analysis of photo-object matching skills of severely retarded adolescents.

    PubMed

    Dixon, L S

    1981-01-01

    Matching-to-sample procedures were used to assess picture representation skills of severely retarded, nonverbal adolescents. Identity matching within the classes of objects and life-size, full-color photos of the objects was first used to assess visual discrimination, a necessary condition for picture representation. Picture representation was then assessed through photo-object matching tasks. Five students demonstrated visual discrimination (identity matching) within the two classes of photos and the objects. Only one student demonstrated photo-object matching. The results of the four students who failed to demonstrate photo-object matching suggested that physical properties of photos (flat, rectangular) and depth dimensions of objects may exert more control over matching than the similarities of the objects and images within the photos. An analysis of figure-ground variables was conducted to provide an empirical basis for program development in the use of pictures. In one series of tests, rectangular shape and background were removed by cutting out the figures in the photos. The edge shape of the photo and the edge shape of the image were then identical. The results suggest that photo-object matching may be facilitated by using cut-out figures rather than the complete rectangular photo.

  18. A multiple-point spatially weighted k-NN method for object-based classification

    NASA Astrophysics Data System (ADS)

    Tang, Yunwei; Jing, Linhai; Li, Hui; Atkinson, Peter M.

    2016-10-01

    Object-based classification, commonly referred to as object-based image analysis (OBIA), is now commonly regarded as able to produce more appealing classification maps, often of greater accuracy, than pixel-based classification and its application is now widespread. Therefore, improvement of OBIA using spatial techniques is of great interest. In this paper, multiple-point statistics (MPS) is proposed for object-based classification enhancement in the form of a new multiple-point k-nearest neighbour (k-NN) classification method (MPk-NN). The proposed method first utilises a training image derived from a pre-classified map to characterise the spatial correlation between multiple points of land cover classes. The MPS borrows spatial structures from other parts of the training image, and then incorporates this spatial information, in the form of multiple-point probabilities, into the k-NN classifier. Two satellite sensor images with a fine spatial resolution were selected to evaluate the new method. One is an IKONOS image of the Beijing urban area and the other is a WorldView-2 image of the Wolong mountainous area, in China. The images were object-based classified using the MPk-NN method and several alternatives, including the k-NN, the geostatistically weighted k-NN, the Bayesian method, the decision tree classifier (DTC), and the support vector machine classifier (SVM). It was demonstrated that the new spatial weighting based on MPS can achieve greater classification accuracy relative to the alternatives and it is, thus, recommended as appropriate for object-based classification.

  19. Informative Feature Selection for Object Recognition via Sparse PCA

    DTIC Science & Technology

    2011-04-07

    constraint on images collected from low-power camera net- works instead of high-end photography is that establishing wide-baseline feature correspondence of...variable selection tool for selecting informative features in the object images captured from low-resolution cam- era sensor networks. Firstly, we...More examples can be found in Figure 4 later. 3. Identifying Informative Features Classical PCA is a well established tool for the analysis of high

  20. Multispectral Photography

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Model II Multispectral Camera is an advanced aerial camera that provides optimum enhancement of a scene by recording spectral signatures of ground objects only in narrow, preselected bands of the electromagnetic spectrum. Its photos have applications in such areas as agriculture, forestry, water pollution investigations, soil analysis, geologic exploration, water depth studies and camouflage detection. The target scene is simultaneously photographed in four separate spectral bands. Using a multispectral viewer, such as their Model 75 Spectral Data creates a color image from the black and white positives taken by the camera. With this optical image analysis unit, all four bands are superimposed in accurate registration and illuminated with combinations of blue green, red, and white light. Best color combination for displaying the target object is selected and printed. Spectral Data Corporation produces several types of remote sensing equipment and also provides aerial survey, image processing and analysis and number of other remote sensing services.

  1. Combining Landform Thematic Layer and Object-Oriented Image Analysis to Map the Surface Features of Mountainous Flood Plain Areas

    NASA Astrophysics Data System (ADS)

    Chuang, H.-K.; Lin, M.-L.; Huang, W.-C.

    2012-04-01

    The Typhoon Morakot on August 2009 brought more than 2,000 mm of cumulative rainfall in southern Taiwan, the extreme rainfall event caused serious damage to the Kaoping River basin. The losses were mostly blamed on the landslides along sides of the river, and shifting of the watercourse even led to the failure of roads and bridges, as well as flooding and levees damage happened around the villages on flood bank and terraces. Alluvial fans resulted from debris flow of stream feeders blocked the main watercourse and debris dam was even formed and collapsed. These disasters have highlighted the importance of identification and map the watercourse alteration, surface features of flood plain area and artificial structures soon after the catastrophic typhoon event for natural hazard mitigation. Interpretation of remote sensing images is an efficient approach to acquire spatial information for vast areas, therefore making it suitable for the differentiation of terrain and objects near the vast flood plain areas in a short term. The object-oriented image analysis program (Definiens Developer 7.0) and multi-band high resolution satellite images (QuickBird, DigitalGlobe) was utilized to interpret the flood plain features from Liouguei to Baolai of the the Kaoping River basin after Typhoon Morakot. Object-oriented image interpretation is the process of using homogenized image blocks as elements instead of pixels for different shapes, textures and the mutual relationships of adjacent elements, as well as categorized conditions and rules for semi-artificial interpretation of surface features. Digital terrain models (DTM) are also employed along with the above process to produce layers with specific "landform thematic layers". These layers are especially helpful in differentiating some confusing categories in the spectrum analysis with improved accuracy, such as landslides and riverbeds, as well as terraces, riverbanks, which are of significant engineering importance in disaster mitigation. In this study, an automatic and fast image interpretation process for eight surface features including main channel, secondary channel, sandbar, flood plain, river terrace, alluvial fan, landslide, and the nearby artificial structures in the mountainous flood plain is proposed. Images along timelines can even be compared in order to differentiate historical events such as village inundations, failure of roads, bridges and levees, as well as alternation of watercourse, and therefore can be used as references for safety evaluation of engineering structures near rivers, disaster prevention and mitigation, and even future land-use planning. Keywords: Flood plain area, Remote sensing, Object-oriented, Surface feature interpretation, Terrain analysis, Thematic layer, Typhoon Morakot

  2. Statistical analysis and interpretation of prenatal diagnostic imaging studies, Part 2: descriptive and inferential statistical methods.

    PubMed

    Tuuli, Methodius G; Odibo, Anthony O

    2011-08-01

    The objective of this article is to discuss the rationale for common statistical tests used for the analysis and interpretation of prenatal diagnostic imaging studies. Examples from the literature are used to illustrate descriptive and inferential statistics. The uses and limitations of linear and logistic regression analyses are discussed in detail.

  3. Applications notice for participation in the LANDSAT-D image data quality analysis program

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The applications notice for the LANDSAT 4 image data quality analysis program is presented. The objectives of the program are to qualify LANDSAT 4 sensor and systems performance from a user applications point of view, and to identify any malfunctions that may impact data applications. Guidelines for preparing proposals and background information are provided.

  4. Using Deep Learning Algorithm to Enhance Image-review Software for Surveillance Cameras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Yonggang; Thomas, Maikael A.

    We propose the development of proven deep learning algorithms to flag objects and events of interest in Next Generation Surveillance System (NGSS) surveillance to make IAEA image review more efficient. Video surveillance is one of the core monitoring technologies used by the IAEA Department of Safeguards when implementing safeguards at nuclear facilities worldwide. The current image review software GARS has limited automated functions, such as scene-change detection, black image detection and missing scene analysis, but struggles with highly cluttered backgrounds. A cutting-edge algorithm to be developed in this project will enable efficient and effective searches in images and video streamsmore » by identifying and tracking safeguards relevant objects and detect anomalies in their vicinity. In this project, we will develop the algorithm, test it with the IAEA surveillance cameras and data sets collected at simulated nuclear facilities at BNL and SNL, and implement it in a software program for potential integration into the IAEA’s IRAP (Integrated Review and Analysis Program).« less

  5. Noise and analyzer-crystal angular position analysis for analyzer-based phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Majidi, Keivan; Li, Jun; Muehleman, Carol; Brankov, Jovan G.

    2014-04-01

    The analyzer-based phase-contrast x-ray imaging (ABI) method is emerging as a potential alternative to conventional radiography. Like many of the modern imaging techniques, ABI is a computed imaging method (meaning that images are calculated from raw data). ABI can simultaneously generate a number of planar parametric images containing information about absorption, refraction, and scattering properties of an object. These images are estimated from raw data acquired by measuring (sampling) the angular intensity profile of the x-ray beam passed through the object at different angular positions of the analyzer crystal. The noise in the estimated ABI parametric images depends upon imaging conditions like the source intensity (flux), measurements angular positions, object properties, and the estimation method. In this paper, we use the Cramér-Rao lower bound (CRLB) to quantify the noise properties in parametric images and to investigate the effect of source intensity, different analyzer-crystal angular positions and object properties on this bound, assuming a fixed radiation dose delivered to an object. The CRLB is the minimum bound for the variance of an unbiased estimator and defines the best noise performance that one can obtain regardless of which estimation method is used to estimate ABI parametric images. The main result of this paper is that the variance (hence the noise) in parametric images is directly proportional to the source intensity and only a limited number of analyzer-crystal angular measurements (eleven for uniform and three for optimal non-uniform) are required to get the best parametric images. The following angular measurements only spread the total dose to the measurements without improving or worsening CRLB, but the added measurements may improve parametric images by reducing estimation bias. Next, using CRLB we evaluate the multiple-image radiography, diffraction enhanced imaging and scatter diffraction enhanced imaging estimation techniques, though the proposed methodology can be used to evaluate any other ABI parametric image estimation technique.

  6. Noise and Analyzer-Crystal Angular Position Analysis for Analyzer-Based Phase-Contrast Imaging

    PubMed Central

    Majidi, Keivan; Li, Jun; Muehleman, Carol; Brankov, Jovan G.

    2014-01-01

    The analyzer-based phase-contrast X-ray imaging (ABI) method is emerging as a potential alternative to conventional radiography. Like many of the modern imaging techniques, ABI is a computed imaging method (meaning that images are calculated from raw data). ABI can simultaneously generate a number of planar parametric images containing information about absorption, refraction, and scattering properties of an object. These images are estimated from raw data acquired by measuring (sampling) the angular intensity profile (AIP) of the X-ray beam passed through the object at different angular positions of the analyzer crystal. The noise in the estimated ABI parametric images depends upon imaging conditions like the source intensity (flux), measurements angular positions, object properties, and the estimation method. In this paper, we use the Cramér-Rao lower bound (CRLB) to quantify the noise properties in parametric images and to investigate the effect of source intensity, different analyzer-crystal angular positions and object properties on this bound, assuming a fixed radiation dose delivered to an object. The CRLB is the minimum bound for the variance of an unbiased estimator and defines the best noise performance that one can obtain regardless of which estimation method is used to estimate ABI parametric images. The main result of this manuscript is that the variance (hence the noise) in parametric images is directly proportional to the source intensity and only a limited number of analyzer-crystal angular measurements (eleven for uniform and three for optimal non-uniform) are required to get the best parametric images. The following angular measurements only spread the total dose to the measurements without improving or worsening CRLB, but the added measurements may improve parametric images by reducing estimation bias. Next, using CRLB we evaluate the Multiple-Image Radiography (MIR), Diffraction Enhanced Imaging (DEI) and Scatter Diffraction Enhanced Imaging (S-DEI) estimation techniques, though the proposed methodology can be used to evaluate any other ABI parametric image estimation technique. PMID:24651402

  7. Weed Mapping in Early-Season Maize Fields Using Object-Based Analysis of Unmanned Aerial Vehicle (UAV) Images

    PubMed Central

    Peña, José Manuel; Torres-Sánchez, Jorge; de Castro, Ana Isabel; Kelly, Maggi; López-Granados, Francisca

    2013-01-01

    The use of remote imagery captured by unmanned aerial vehicles (UAV) has tremendous potential for designing detailed site-specific weed control treatments in early post-emergence, which have not possible previously with conventional airborne or satellite images. A robust and entirely automatic object-based image analysis (OBIA) procedure was developed on a series of UAV images using a six-band multispectral camera (visible and near-infrared range) with the ultimate objective of generating a weed map in an experimental maize field in Spain. The OBIA procedure combines several contextual, hierarchical and object-based features and consists of three consecutive phases: 1) classification of crop rows by application of a dynamic and auto-adaptive classification approach, 2) discrimination of crops and weeds on the basis of their relative positions with reference to the crop rows, and 3) generation of a weed infestation map in a grid structure. The estimation of weed coverage from the image analysis yielded satisfactory results. The relationship of estimated versus observed weed densities had a coefficient of determination of r2=0.89 and a root mean square error of 0.02. A map of three categories of weed coverage was produced with 86% of overall accuracy. In the experimental field, the area free of weeds was 23%, and the area with low weed coverage (<5% weeds) was 47%, which indicated a high potential for reducing herbicide application or other weed operations. The OBIA procedure computes multiple data and statistics derived from the classification outputs, which permits calculation of herbicide requirements and estimation of the overall cost of weed management operations in advance. PMID:24146963

  8. Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images.

    PubMed

    Peña, José Manuel; Torres-Sánchez, Jorge; de Castro, Ana Isabel; Kelly, Maggi; López-Granados, Francisca

    2013-01-01

    The use of remote imagery captured by unmanned aerial vehicles (UAV) has tremendous potential for designing detailed site-specific weed control treatments in early post-emergence, which have not possible previously with conventional airborne or satellite images. A robust and entirely automatic object-based image analysis (OBIA) procedure was developed on a series of UAV images using a six-band multispectral camera (visible and near-infrared range) with the ultimate objective of generating a weed map in an experimental maize field in Spain. The OBIA procedure combines several contextual, hierarchical and object-based features and consists of three consecutive phases: 1) classification of crop rows by application of a dynamic and auto-adaptive classification approach, 2) discrimination of crops and weeds on the basis of their relative positions with reference to the crop rows, and 3) generation of a weed infestation map in a grid structure. The estimation of weed coverage from the image analysis yielded satisfactory results. The relationship of estimated versus observed weed densities had a coefficient of determination of r(2)=0.89 and a root mean square error of 0.02. A map of three categories of weed coverage was produced with 86% of overall accuracy. In the experimental field, the area free of weeds was 23%, and the area with low weed coverage (<5% weeds) was 47%, which indicated a high potential for reducing herbicide application or other weed operations. The OBIA procedure computes multiple data and statistics derived from the classification outputs, which permits calculation of herbicide requirements and estimation of the overall cost of weed management operations in advance.

  9. Assessment methods for the evaluation of vitiligo.

    PubMed

    Alghamdi, K M; Kumar, A; Taïeb, A; Ezzedine, K

    2012-12-01

    There is no standardized method for assessing vitiligo. In this article, we review the literature from 1981 to 2011 on different vitiligo assessment methods. We aim to classify the techniques available for vitiligo assessment as subjective, semi-objective or objective; microscopic or macroscopic; and as based on morphometry or colorimetry. Macroscopic morphological measurements include visual assessment, photography in natural or ultraviolet light, photography with computerized image analysis and tristimulus colorimetry or spectrophotometry. Non-invasive micromorphological methods include confocal laser microscopy (CLM). Subjective methods include clinical evaluation by a dermatologist and a vitiligo disease activity score. Semi-objective methods include the Vitiligo Area Scoring Index (VASI) and point-counting methods. Objective methods include software-based image analysis, tristimulus colorimetry, spectrophotometry and CLM. Morphometry is the measurement of the vitiliginous surface area, whereas colorimetry quantitatively analyses skin colour changes caused by erythema or pigment. Most methods involve morphometry, except for the chromameter method, which assesses colorimetry. Some image analysis software programs can assess both morphometry and colorimetry. The details of these programs (Corel Draw, Image Pro Plus, AutoCad and Photoshop) are discussed in the review. Reflectance confocal microscopy provides real-time images and has great potential for the non-invasive assessment of pigmentary lesions. In conclusion, there is no single best method for assessing vitiligo. This review revealed that VASI, the rule of nine and Wood's lamp are likely to be the best techniques available for assessing the degree of pigmentary lesions and measuring the extent and progression of vitiligo in the clinic and in clinical trials. © 2012 The Authors. Journal of the European Academy of Dermatology and Venereology © 2012 European Academy of Dermatology and Venereology.

  10. An improved K-means clustering algorithm in agricultural image segmentation

    NASA Astrophysics Data System (ADS)

    Cheng, Huifeng; Peng, Hui; Liu, Shanmei

    Image segmentation is the first important step to image analysis and image processing. In this paper, according to color crops image characteristics, we firstly transform the color space of image from RGB to HIS, and then select proper initial clustering center and cluster number in application of mean-variance approach and rough set theory followed by clustering calculation in such a way as to automatically segment color component rapidly and extract target objects from background accurately, which provides a reliable basis for identification, analysis, follow-up calculation and process of crops images. Experimental results demonstrate that improved k-means clustering algorithm is able to reduce the computation amounts and enhance precision and accuracy of clustering.

  11. Analysis of source data resolution on photogrammetric products quality of architectural object. (Polish Title: Analiza wpęywu rozdzielczości danych śródłowych na jakość produktów fotogrametrycznych obiektu architektury)

    NASA Astrophysics Data System (ADS)

    Markiewicz, J. S.; Kowalczyk, M.; Podlasiak, P.; Bakuła, K.; Zawieska, D.; Bujakiewicz, A.; Andrzejewska, E.

    2013-12-01

    Due to considerable development of the non - invasion measurement technologies, taking advantages from the distance measurement, the possibility of data acquisition increased and at the same time the measurement period has been reduced. This, by combination of close range laser scanning data and images, enabled the wider expansion of photogrammetric methods effectiveness in registration and analysis of cultural heritage objects. Mentioned integration allows acquisition of objects three - dimensional models and in addition digital image maps - true - ortho and vector products. The quality of photogrammetric products is defined by accuracy and the range of content, therefore by number and the minuteness of detail. That always depends on initial data geometrical resolution. The research results presented in the following paper concern the quality valuation of two products, image of true - ortho and vector data, created for selected parts of architectural object. Source data is represented by point collection i n cloud, acquired from close range laser scanning and photo images. Both data collections has been acquired with diversified resolutions. The exterior orientation of images and several versions of the true - ortho are based on numeric models of the object, acquired with specified resolutions. The comparison of these products gives the opportunity to rate the influence of initial data resolution on their quality (accuracy, information volume). Additional analysis will be performed on the base of vector product s comparison, acquired from monoplotting and true - ortho images. As a conclusion of experiment it was proved that geometric resolution has significant impact on the possibility of generation and on the accuracy of relative orientation TLS scans. If creation of high - resolution products is considered, scanning resolution of about 2 mm should be applied and in case of architecture details - 1 mm. It was also noted that scanning angle and object structure has significant influence on accuracy and completeness of the data. For creation of true - orthoimages for architecture purposes high - resolution ground - based images in geometry close to normal case are recommended to improve their quality. The use of grayscale true - orthoimages with values from scanner intensity is not advised. Presented research proved also that accuracy of manual and automated vectorisation results depend significantly on the resolution of the generated orthoimages (scans and images resolution) and mainly of blur effect and possible pixel size.

  12. Analysis of image heterogeneity using 2D Minkowski functionals detects tumor responses to treatment.

    PubMed

    Larkin, Timothy J; Canuto, Holly C; Kettunen, Mikko I; Booth, Thomas C; Hu, De-En; Krishnan, Anant S; Bohndiek, Sarah E; Neves, André A; McLachlan, Charles; Hobson, Michael P; Brindle, Kevin M

    2014-01-01

    The acquisition of ever increasing volumes of high resolution magnetic resonance imaging (MRI) data has created an urgent need to develop automated and objective image analysis algorithms that can assist in determining tumor margins, diagnosing tumor stage, and detecting treatment response. We have shown previously that Minkowski functionals, which are precise morphological and structural descriptors of image heterogeneity, can be used to enhance the detection, in T1 -weighted images, of a targeted Gd(3+) -chelate-based contrast agent for detecting tumor cell death. We have used Minkowski functionals here to characterize heterogeneity in T2 -weighted images acquired before and after drug treatment, and obtained without contrast agent administration. We show that Minkowski functionals can be used to characterize the changes in image heterogeneity that accompany treatment of tumors with a vascular disrupting agent, combretastatin A4-phosphate, and with a cytotoxic drug, etoposide. Parameterizing changes in the heterogeneity of T2 -weighted images can be used to detect early responses of tumors to drug treatment, even when there is no change in tumor size. The approach provides a quantitative and therefore objective assessment of treatment response that could be used with other types of MR image and also with other imaging modalities. Copyright © 2013 Wiley Periodicals, Inc.

  13. Quantitative pathology in virtual microscopy: history, applications, perspectives.

    PubMed

    Kayser, Gian; Kayser, Klaus

    2013-07-01

    With the emerging success of commercially available personal computers and the rapid progress in the development of information technologies, morphometric analyses of static histological images have been introduced to improve our understanding of the biology of diseases such as cancer. First applications have been quantifications of immunohistochemical expression patterns. In addition to object counting and feature extraction, laws of thermodynamics have been applied in morphometric calculations termed syntactic structure analysis. Here, one has to consider that the information of an image can be calculated for separate hierarchical layers such as single pixels, cluster of pixels, segmented small objects, clusters of small objects, objects of higher order composed of several small objects. Using syntactic structure analysis in histological images, functional states can be extracted and efficiency of labor in tissues can be quantified. Image standardization procedures, such as shading correction and color normalization, can overcome artifacts blurring clear thresholds. Morphometric techniques are not only useful to learn more about biological features of growth patterns, they can also be helpful in routine diagnostic pathology. In such cases, entropy calculations are applied in analogy to theoretical considerations concerning information content. Thus, regions with high information content can automatically be highlighted. Analysis of the "regions of high diagnostic value" can deliver in the context of clinical information, site of involvement and patient data (e.g. age, sex), support in histopathological differential diagnoses. It can be expected that quantitative virtual microscopy will open new possibilities for automated histological support. Automated integrated quantification of histological slides also serves for quality assurance. The development and theoretical background of morphometric analyses in histopathology are reviewed, as well as their application and potential future implementation in virtual microscopy. Copyright © 2012 Elsevier GmbH. All rights reserved.

  14. Far-ultraviolet spectral images of comet Halley from sounding rockets

    NASA Technical Reports Server (NTRS)

    Mccoy, R. P.; Carruthers, G. R.; Opal, C. B.

    1986-01-01

    Far-ultraviolet images of comet Halley obtained from sounding rockets launched from White Sands Missile Range, New Mexico, on 24 February and 13 March, 1986, are presented. Direct electrographic images of the hydrogen coma of the comet were obtained at the Lyman-alpha wavelength along with objective spectra containing images of the coma at the oxygen, carbon, and sulfur resonance multiplets. Analysis of the Lyman-alpha images yields hydrogen atom production rates of 1.9 x 10 to the 30th/s and 1.4 x 120 to the 30th/s for the two observations. Images of oxygen, carbon, and sulfur emissions obtained with the objective grating spectrograph are presented for the first set of observations and preliminary production rates are derived for these elements.

  15. Identifying and Assessing Self-Images in Drawings by Delinquent Adolescents (in 2 Parts).

    ERIC Educational Resources Information Center

    Silver, Rawley; Ellison, JoAnne

    1995-01-01

    Examines assumption that art therapists can objectively identify self-images in drawings by troubled adolescents without talking to these youth. Findings suggest that discussion, though preferable, is not required for identifying self-images. Analysis of adolescents' drawings indicates that structured art assessment can be useful in evaluating…

  16. Software Graphical User Interface For Analysis Of Images

    NASA Technical Reports Server (NTRS)

    Leonard, Desiree M.; Nolf, Scott R.; Avis, Elizabeth L.; Stacy, Kathryn

    1992-01-01

    CAMTOOL software provides graphical interface between Sun Microsystems workstation and Eikonix Model 1412 digitizing camera system. Camera scans and digitizes images, halftones, reflectives, transmissives, rigid or flexible flat material, or three-dimensional objects. Users digitize images and select from three destinations: work-station display screen, magnetic-tape drive, or hard disk. Written in C.

  17. ROBOSIGHT: Robotic Vision System For Inspection And Manipulation

    NASA Astrophysics Data System (ADS)

    Trivedi, Mohan M.; Chen, ChuXin; Marapane, Suresh

    1989-02-01

    Vision is an important sensory modality that can be used for deriving information critical to the proper, efficient, flexible, and safe operation of an intelligent robot. Vision systems are uti-lized for developing higher level interpretation of the nature of a robotic workspace using images acquired by cameras mounted on a robot. Such information can be useful for tasks such as object recognition, object location, object inspection, obstacle avoidance and navigation. In this paper we describe efforts directed towards developing a vision system useful for performing various robotic inspection and manipulation tasks. The system utilizes gray scale images and can be viewed as a model-based system. It includes general purpose image analysis modules as well as special purpose, task dependent object status recognition modules. Experiments are described to verify the robust performance of the integrated system using a robotic testbed.

  18. Context-sensitive extraction of tree crown objects in urban areas using VHR satellite images

    NASA Astrophysics Data System (ADS)

    Ardila, Juan P.; Bijker, Wietske; Tolpekin, Valentyn A.; Stein, Alfred

    2012-04-01

    Municipalities need accurate and updated inventories of urban vegetation in order to manage green resources and estimate their return on investment in urban forestry activities. Earlier studies have shown that semi-automatic tree detection using remote sensing is a challenging task. This study aims to develop a reproducible geographic object-based image analysis (GEOBIA) methodology to locate and delineate tree crowns in urban areas using high resolution imagery. We propose a GEOBIA approach that considers the spectral, spatial and contextual characteristics of tree objects in the urban space. The study presents classification rules that exploit object features at multiple segmentation scales modifying the labeling and shape of image-objects. The GEOBIA methodology was implemented on QuickBird images acquired over the cities of Enschede and Delft (The Netherlands), resulting in an identification rate of 70% and 82% respectively. False negative errors concentrated on small trees and false positive errors in private gardens. The quality of crown boundaries was acceptable, with an overall delineation error <0.24 outside of gardens and backyards.

  19. Automated Glacier Mapping using Object Based Image Analysis. Case Studies from Nepal, the European Alps and Norway

    NASA Astrophysics Data System (ADS)

    Vatle, S. S.

    2015-12-01

    Frequent and up-to-date glacier outlines are needed for many applications of glaciology, not only glacier area change analysis, but also for masks in volume or velocity analysis, for the estimation of water resources and as model input data. Remote sensing offers a good option for creating glacier outlines over large areas, but manual correction is frequently necessary, especially in areas containing supraglacial debris. We show three different workflows for mapping clean ice and debris-covered ice within Object Based Image Analysis (OBIA). By working at the object level as opposed to the pixel level, OBIA facilitates using contextual, spatial and hierarchical information when assigning classes, and additionally permits the handling of multiple data sources. Our first example shows mapping debris-covered ice in the Manaslu Himalaya, Nepal. SAR Coherence data is used in combination with optical and topographic data to classify debris-covered ice, obtaining an accuracy of 91%. Our second example shows using a high-resolution LiDAR derived DEM over the Hohe Tauern National Park in Austria. Breaks in surface morphology are used in creating image objects; debris-covered ice is then classified using a combination of spectral, thermal and topographic properties. Lastly, we show a completely automated workflow for mapping glacier ice in Norway. The NDSI and NIR/SWIR band ratio are used to map clean ice over the entire country but the thresholds are calculated automatically based on a histogram of each image subset. This means that in theory any Landsat scene can be inputted and the clean ice can be automatically extracted. Debris-covered ice can be included semi-automatically using contextual and morphological information.

  20. Explicit area-based accuracy assessment for mangrove tree crown delineation using Geographic Object-Based Image Analysis (GEOBIA)

    NASA Astrophysics Data System (ADS)

    Kamal, Muhammad; Johansen, Kasper

    2017-10-01

    Effective mangrove management requires spatially explicit information of mangrove tree crown map as a basis for ecosystem diversity study and health assessment. Accuracy assessment is an integral part of any mapping activities to measure the effectiveness of the classification approach. In geographic object-based image analysis (GEOBIA) the assessment of the geometric accuracy (shape, symmetry and location) of the created image objects from image segmentation is required. In this study we used an explicit area-based accuracy assessment to measure the degree of similarity between the results of the classification and reference data from different aspects, including overall quality (OQ), user's accuracy (UA), producer's accuracy (PA) and overall accuracy (OA). We developed a rule set to delineate the mangrove tree crown using WorldView-2 pan-sharpened image. The reference map was obtained by visual delineation of the mangrove tree crowns boundaries form a very high-spatial resolution aerial photograph (7.5cm pixel size). Ten random points with a 10 m radius circular buffer were created to calculate the area-based accuracy assessment. The resulting circular polygons were used to clip both the classified image objects and reference map for area comparisons. In this case, the area-based accuracy assessment resulted 64% and 68% for the OQ and OA, respectively. The overall quality of the calculation results shows the class-related area accuracy; which is the area of correctly classified as tree crowns was 64% out of the total area of tree crowns. On the other hand, the overall accuracy of 68% was calculated as the percentage of all correctly classified classes (tree crowns and canopy gaps) in comparison to the total class area (an entire image). Overall, the area-based accuracy assessment was simple to implement and easy to interpret. It also shows explicitly the omission and commission error variations of object boundary delineation with colour coded polygons.

  1. Resolution factors in edgeline holography.

    PubMed

    Trolinger, J D; Gee, T H

    1971-06-01

    When an in-line Fresnel hologram of an object such as a projectile in flight is made, the reconstruction comprises an image of the outside edge of the object superimposed upon a Fresnel diffraction pattern of the edge and an unmodulated portion of the reconstruction beam. When the reconstructed image is bandpass filtered, the only remaining significant contribution is that of a diffraction pattern which is symmetrical about an edgeline gaussian image of the object. The present paper discusses the application of this type of holography in accurately locating the edge of a large dynamic object, the position of which is not accurately known in any dimension. A theoretical and experimental analysis was performed to study the effects of motion, hologram size, film type, and practical limitations upon the attainable resolution in the reconstructed image. The bandlimiting effect of motion is used to relate the motion effected resolution limit of holography to that of photography. The study shows that an edgeline can be accurately located even at high velocity normal to the edge.

  2. Quantitative Hyperspectral Reflectance Imaging

    PubMed Central

    Klein, Marvin E.; Aalderink, Bernard J.; Padoan, Roberto; de Bruin, Gerrit; Steemers, Ted A.G.

    2008-01-01

    Hyperspectral imaging is a non-destructive optical analysis technique that can for instance be used to obtain information from cultural heritage objects unavailable with conventional colour or multi-spectral photography. This technique can be used to distinguish and recognize materials, to enhance the visibility of faint or obscured features, to detect signs of degradation and study the effect of environmental conditions on the object. We describe the basic concept, working principles, construction and performance of a laboratory instrument specifically developed for the analysis of historical documents. The instrument measures calibrated spectral reflectance images at 70 wavelengths ranging from 365 to 1100 nm (near-ultraviolet, visible and near-infrared). By using a wavelength tunable narrow-bandwidth light-source, the light energy used to illuminate the measured object is minimal, so that any light-induced degradation can be excluded. Basic analysis of the hyperspectral data includes a qualitative comparison of the spectral images and the extraction of quantitative data such as mean spectral reflectance curves and statistical information from user-defined regions-of-interest. More sophisticated mathematical feature extraction and classification techniques can be used to map areas on the document, where different types of ink had been applied or where one ink shows various degrees of degradation. The developed quantitative hyperspectral imager is currently in use by the Nationaal Archief (National Archives of The Netherlands) to study degradation effects of artificial samples and original documents, exposed in their permanent exhibition area or stored in their deposit rooms. PMID:27873831

  3. Computer-Based Image Analysis for Plus Disease Diagnosis in Retinopathy of Prematurity

    PubMed Central

    Wittenberg, Leah A.; Jonsson, Nina J.; Chan, RV Paul; Chiang, Michael F.

    2014-01-01

    Presence of plus disease in retinopathy of prematurity (ROP) is an important criterion for identifying treatment-requiring ROP. Plus disease is defined by a standard published photograph selected over 20 years ago by expert consensus. However, diagnosis of plus disease has been shown to be subjective and qualitative. Computer-based image analysis, using quantitative methods, has potential to improve the objectivity of plus disease diagnosis. The objective was to review the published literature involving computer-based image analysis for ROP diagnosis. The PubMed and Cochrane library databases were searched for the keywords “retinopathy of prematurity” AND “image analysis” AND/OR “plus disease.” Reference lists of retrieved articles were searched to identify additional relevant studies. All relevant English-language studies were reviewed. There are four main computer-based systems, ROPtool (AU ROC curve, plus tortuosity 0.95, plus dilation 0.87), RISA (AU ROC curve, arteriolar TI 0.71, venular diameter 0.82), Vessel Map (AU ROC curve, arteriolar dilation 0.75, venular dilation 0.96), and CAIAR (AU ROC curve, arteriole tortuosity 0.92, venular dilation 0.91), attempting to objectively analyze vessel tortuosity and dilation in plus disease in ROP. Some of them show promise for identification of plus disease using quantitative methods. This has potential to improve the diagnosis of plus disease, and may contribute to the management of ROP using both traditional binocular indirect ophthalmoscopy and image-based telemedicine approaches. PMID:21366159

  4. Object tracking using multiple camera video streams

    NASA Astrophysics Data System (ADS)

    Mehrubeoglu, Mehrube; Rojas, Diego; McLauchlan, Lifford

    2010-05-01

    Two synchronized cameras are utilized to obtain independent video streams to detect moving objects from two different viewing angles. The video frames are directly correlated in time. Moving objects in image frames from the two cameras are identified and tagged for tracking. One advantage of such a system involves overcoming effects of occlusions that could result in an object in partial or full view in one camera, when the same object is fully visible in another camera. Object registration is achieved by determining the location of common features in the moving object across simultaneous frames. Perspective differences are adjusted. Combining information from images from multiple cameras increases robustness of the tracking process. Motion tracking is achieved by determining anomalies caused by the objects' movement across frames in time in each and the combined video information. The path of each object is determined heuristically. Accuracy of detection is dependent on the speed of the object as well as variations in direction of motion. Fast cameras increase accuracy but limit the speed and complexity of the algorithm. Such an imaging system has applications in traffic analysis, surveillance and security, as well as object modeling from multi-view images. The system can easily be expanded by increasing the number of cameras such that there is an overlap between the scenes from at least two cameras in proximity. An object can then be tracked long distances or across multiple cameras continuously, applicable, for example, in wireless sensor networks for surveillance or navigation.

  5. Histology image analysis for carcinoma detection and grading

    PubMed Central

    He, Lei; Long, L. Rodney; Antani, Sameer; Thoma, George R.

    2012-01-01

    This paper presents an overview of the image analysis techniques in the domain of histopathology, specifically, for the objective of automated carcinoma detection and classification. As in other biomedical imaging areas such as radiology, many computer assisted diagnosis (CAD) systems have been implemented to aid histopathologists and clinicians in cancer diagnosis and research, which have been attempted to significantly reduce the labor and subjectivity of traditional manual intervention with histology images. The task of automated histology image analysis is usually not simple due to the unique characteristics of histology imaging, including the variability in image preparation techniques, clinical interpretation protocols, and the complex structures and very large size of the images themselves. In this paper we discuss those characteristics, provide relevant background information about slide preparation and interpretation, and review the application of digital image processing techniques to the field of histology image analysis. In particular, emphasis is given to state-of-the-art image segmentation methods for feature extraction and disease classification. Four major carcinomas of cervix, prostate, breast, and lung are selected to illustrate the functions and capabilities of existing CAD systems. PMID:22436890

  6. Does Vesta Have Moons?: Dawn's Search for Satellites

    NASA Technical Reports Server (NTRS)

    McFadden, L. A.; Sykes, M. V.; Tricarico, P.; Carsenty, U.; Gutierrez-Marques, P.; Jacobson, R. A.; Joy, S.; Keller, H. U.; Li, J.-Y.; McLean, B.; hide

    2011-01-01

    Upon approach to asteroid 4 Vesta, the Dawn mission included a dedicated satellite search observation of the operational sphere of the spacecraft around Vesta. Discovery of moons of Vesta would constrain theories of satellite f()rmation. The sequence using the framing camera and clear filter includes three mosaics of six stations acquired on July 9-10. 2011. Each station consists of four sets with three different exposures, 1.5,20 and 270 s. We also processed and scanned the optical navigation sequences until Vesta filled the field of view. Analysis of images involves looking for moving objects in the mosaics and identifying catalogued stars, subtracting them from the image and examining residual objects for evidence of bodies in orbit around Vesta. Celestial coordinates were determined using Astrometry.net, an astrometry calibration service (http://astrometry.net/use.html). We processed the images by subtracting dark and bias fields and dividing by a Hatfield. Images were further filtered subtracting a box car filter (9x9 average) to remove effects of scattered light from Vesta itself. Images were scanned by eye for evidence of motion in directions different from the background stars. All objects were compared with Hubble Space Telescope's Guide Star Catalogue and US Naval Observatory's UCAC3 catalog. We report findings from these observations and analysis, including limits of magnitude, size and motion of objects in orbit around Vesta. We gratefully acknowledge modifications made to Astrometrica http://www.astrometrica.at/ for purposes of this effort.

  7. Automated daily quality control analysis for mammography in a multi-unit imaging center.

    PubMed

    Sundell, Veli-Matti; Mäkelä, Teemu; Meaney, Alexander; Kaasalainen, Touko; Savolainen, Sauli

    2018-01-01

    Background The high requirements for mammography image quality necessitate a systematic quality assurance process. Digital imaging allows automation of the image quality analysis, which can potentially improve repeatability and objectivity compared to a visual evaluation made by the users. Purpose To develop an automatic image quality analysis software for daily mammography quality control in a multi-unit imaging center. Material and Methods An automated image quality analysis software using the discrete wavelet transform and multiresolution analysis was developed for the American College of Radiology accreditation phantom. The software was validated by analyzing 60 randomly selected phantom images from six mammography systems and 20 phantom images with different dose levels from one mammography system. The results were compared to a visual analysis made by four reviewers. Additionally, long-term image quality trends of a full-field digital mammography system and a computed radiography mammography system were investigated. Results The automated software produced feature detection levels comparable to visual analysis. The agreement was good in the case of fibers, while the software detected somewhat more microcalcifications and characteristic masses. Long-term follow-up via a quality assurance web portal demonstrated the feasibility of using the software for monitoring the performance of mammography systems in a multi-unit imaging center. Conclusion Automated image quality analysis enables monitoring the performance of digital mammography systems in an efficient, centralized manner.

  8. CALIPSO: an interactive image analysis software package for desktop PACS workstations

    NASA Astrophysics Data System (ADS)

    Ratib, Osman M.; Huang, H. K.

    1990-07-01

    The purpose of this project is to develop a low cost workstation for quantitative analysis of multimodality images using a Macintosh II personal computer. In the current configuration the Macintosh operates as a stand alone workstation where images are imported either from a central PACS server through a standard Ethernet network or recorded through video digitizer board. The CALIPSO software developed contains a large variety ofbasic image display and manipulation tools. We focused our effort however on the design and implementation ofquantitative analysis methods that can be applied to images from different imaging modalities. Analysis modules currently implemented include geometric and densitometric volumes and ejection fraction calculation from radionuclide and cine-angiograms Fourier analysis ofcardiac wall motion vascular stenosis measurement color coded parametric display of regional flow distribution from dynamic coronary angiograms automatic analysis ofmyocardial distribution ofradiolabelled tracers from tomoscintigraphic images. Several of these analysis tools were selected because they use similar color coded andparametric display methods to communicate quantitative data extracted from the images. 1. Rationale and objectives of the project Developments of Picture Archiving and Communication Systems (PACS) in clinical environment allow physicians and radiologists to assess radiographic images directly through imaging workstations (''). This convenient access to the images is often limited by the number of workstations available due in part to their high cost. There is also an increasing need for quantitative analysis ofthe images. During thepast decade

  9. Kernel-aligned multi-view canonical correlation analysis for image recognition

    NASA Astrophysics Data System (ADS)

    Su, Shuzhi; Ge, Hongwei; Yuan, Yun-Hao

    2016-09-01

    Existing kernel-based correlation analysis methods mainly adopt a single kernel in each view. However, only a single kernel is usually insufficient to characterize nonlinear distribution information of a view. To solve the problem, we transform each original feature vector into a 2-dimensional feature matrix by means of kernel alignment, and then propose a novel kernel-aligned multi-view canonical correlation analysis (KAMCCA) method on the basis of the feature matrices. Our proposed method can simultaneously employ multiple kernels to better capture the nonlinear distribution information of each view, so that correlation features learned by KAMCCA can have well discriminating power in real-world image recognition. Extensive experiments are designed on five real-world image datasets, including NIR face images, thermal face images, visible face images, handwritten digit images, and object images. Promising experimental results on the datasets have manifested the effectiveness of our proposed method.

  10. Comparative Performance Analysis of Intel Xeon Phi, GPU, and CPU: A Case Study from Microscopy Image Analysis

    PubMed Central

    Teodoro, George; Kurc, Tahsin; Kong, Jun; Cooper, Lee; Saltz, Joel

    2014-01-01

    We study and characterize the performance of operations in an important class of applications on GPUs and Many Integrated Core (MIC) architectures. Our work is motivated by applications that analyze low-dimensional spatial datasets captured by high resolution sensors, such as image datasets obtained from whole slide tissue specimens using microscopy scanners. Common operations in these applications involve the detection and extraction of objects (object segmentation), the computation of features of each extracted object (feature computation), and characterization of objects based on these features (object classification). In this work, we have identify the data access and computation patterns of operations in the object segmentation and feature computation categories. We systematically implement and evaluate the performance of these operations on modern CPUs, GPUs, and MIC systems for a microscopy image analysis application. Our results show that the performance on a MIC of operations that perform regular data access is comparable or sometimes better than that on a GPU. On the other hand, GPUs are significantly more efficient than MICs for operations that access data irregularly. This is a result of the low performance of MICs when it comes to random data access. We also have examined the coordinated use of MICs and CPUs. Our experiments show that using a performance aware task strategy for scheduling application operations improves performance about 1.29× over a first-come-first-served strategy. This allows applications to obtain high performance efficiency on CPU-MIC systems - the example application attained an efficiency of 84% on 192 nodes (3072 CPU cores and 192 MICs). PMID:25419088

  11. Textural features for radar image analysis

    NASA Technical Reports Server (NTRS)

    Shanmugan, K. S.; Narayanan, V.; Frost, V. S.; Stiles, J. A.; Holtzman, J. C.

    1981-01-01

    Texture is seen as an important spatial feature useful for identifying objects or regions of interest in an image. While textural features have been widely used in analyzing a variety of photographic images, they have not been used in processing radar images. A procedure for extracting a set of textural features for characterizing small areas in radar images is presented, and it is shown that these features can be used in classifying segments of radar images corresponding to different geological formations.

  12. Segmentation and learning in the quantitative analysis of microscopy images

    NASA Astrophysics Data System (ADS)

    Ruggiero, Christy; Ross, Amy; Porter, Reid

    2015-02-01

    In material science and bio-medical domains the quantity and quality of microscopy images is rapidly increasing and there is a great need to automatically detect, delineate and quantify particles, grains, cells, neurons and other functional "objects" within these images. These are challenging problems for image processing because of the variability in object appearance that inevitably arises in real world image acquisition and analysis. One of the most promising (and practical) ways to address these challenges is interactive image segmentation. These algorithms are designed to incorporate input from a human operator to tailor the segmentation method to the image at hand. Interactive image segmentation is now a key tool in a wide range of applications in microscopy and elsewhere. Historically, interactive image segmentation algorithms have tailored segmentation on an image-by-image basis, and information derived from operator input is not transferred between images. But recently there has been increasing interest to use machine learning in segmentation to provide interactive tools that accumulate and learn from the operator input over longer periods of time. These new learning algorithms reduce the need for operator input over time, and can potentially provide a more dynamic balance between customization and automation for different applications. This paper reviews the state of the art in this area, provides a unified view of these algorithms, and compares the segmentation performance of various design choices.

  13. Polarization analysis for magnetic field imaging at RADEN in J-PARC/MLF

    NASA Astrophysics Data System (ADS)

    Shinohara, Takenao; Hiroi, Kosuke; Su, Yuhua; Kai, Tetsuya; Nakatani, Takeshi; Oikawa, Kenichi; Segawa, Mariko; Hayashida, Hirotoshi; Parker, Joseph D.; Matsumoto, Yoshihiro; Zhang, Shuoyuan; Kiyanagi, Yoshiaki

    2017-06-01

    Polarized neutron imaging is an attractive method for visualizing magnetic fields in a bulk object or in free space. In this technique polarization of neutrons transmitted through a sample is analyzed position by position to produce an image of the polarization distribution. In particular, the combination of three-dimensional spin analysis and the use of a pulsed neutron beam is very effective for the quantitative evaluation of both field strength and direction by means of the analysis of the wavelength dependent polarization vector. Recently a new imaging instrument “RADEN” has been constructed at the beam line of BL22 of the Materials and Life Science Experimental Facility (MLF) at J-PARC, which is dedicated to energy-resolved neutron imaging experiments. We have designed a polarization analysis apparatus for magnetic field imaging at the RADEN instrument and have evaluated its performance.

  14. Quantitative analysis of γ-oryzanol content in cold pressed rice bran oil by TLC-image analysis method

    PubMed Central

    Sakunpak, Apirak; Suksaeree, Jirapornchai; Monton, Chaowalit; Pathompak, Pathamaporn; Kraisintu, Krisana

    2014-01-01

    Objective To develop and validate an image analysis method for quantitative analysis of γ-oryzanol in cold pressed rice bran oil. Methods TLC-densitometric and TLC-image analysis methods were developed, validated, and used for quantitative analysis of γ-oryzanol in cold pressed rice bran oil. The results obtained by these two different quantification methods were compared by paired t-test. Results Both assays provided good linearity, accuracy, reproducibility and selectivity for determination of γ-oryzanol. Conclusions The TLC-densitometric and TLC-image analysis methods provided a similar reproducibility, accuracy and selectivity for the quantitative determination of γ-oryzanol in cold pressed rice bran oil. A statistical comparison of the quantitative determinations of γ-oryzanol in samples did not show any statistically significant difference between TLC-densitometric and TLC-image analysis methods. As both methods were found to be equal, they therefore can be used for the determination of γ-oryzanol in cold pressed rice bran oil. PMID:25182282

  15. Methods of Hematoxylin and Erosin Image Information Acquisition and Optimization in Confocal Microscopy

    PubMed Central

    Yoon, Woong Bae; Kim, Hyunjin; Kim, Kwang Gi; Choi, Yongdoo; Chang, Hee Jin

    2016-01-01

    Objectives We produced hematoxylin and eosin (H&E) staining-like color images by using confocal laser scanning microscopy (CLSM), which can obtain the same or more information in comparison to conventional tissue staining. Methods We improved images by using several image converting techniques, including morphological methods, color space conversion methods, and segmentation methods. Results An image obtained after image processing showed coloring very similar to that in images produced by H&E staining, and it is advantageous to conduct analysis through fluorescent dye imaging and microscopy rather than analysis based on single microscopic imaging. Conclusions The colors used in CLSM are different from those seen in H&E staining, which is the method most widely used for pathologic diagnosis and is familiar to pathologists. Computer technology can facilitate the conversion of images by CLSM to be very similar to H&E staining images. We believe that the technique used in this study has great potential for application in clinical tissue analysis. PMID:27525165

  16. Seismic-zonation of Port-au-Prince using pixel- and object-based imaging analysis methods on ASTER GDEM

    USGS Publications Warehouse

    Yong, A.; Hough, S.E.; Cox, B.R.; Rathje, E.M.; Bachhuber, J.; Dulberg, R.; Hulslander, D.; Christiansen, L.; Abrams, M.J.

    2011-01-01

    We report about a preliminary study to evaluate the use of semi-automated imaging analysis of remotely-sensed DEM and field geophysical measurements to develop a seismic-zonation map of Port-au-Prince, Haiti. For in situ data, Vs30 values are derived from the MASW technique deployed in and around the city. For satellite imagery, we use an ASTER GDEM of Hispaniola. We apply both pixel- and object-based imaging methods on the ASTER GDEM to explore local topography (absolute elevation values) and classify terrain types such as mountains, alluvial fans and basins/near-shore regions. We assign NEHRP seismic site class ranges based on available Vs30 values. A comparison of results from imagery-based methods to results from traditional geologic-based approaches reveals good overall correspondence. We conclude that image analysis of RS data provides reliable first-order site characterization results in the absence of local data and can be useful to refine detailed site maps with sparse local data. ?? 2011 American Society for Photogrammetry and Remote Sensing.

  17. Trabecular bone analysis in CT and X-ray images of the proximal femur for the assessment of local bone quality.

    PubMed

    Fritscher, Karl; Grunerbl, Agnes; Hanni, Markus; Suhm, Norbert; Hengg, Clemens; Schubert, Rainer

    2009-10-01

    Currently, conventional X-ray and CT images as well as invasive methods performed during the surgical intervention are used to judge the local quality of a fractured proximal femur. However, these approaches are either dependent on the surgeon's experience or cannot assist diagnostic and planning tasks preoperatively. Therefore, in this work a method for the individual analysis of local bone quality in the proximal femur based on model-based analysis of CT- and X-ray images of femur specimen will be proposed. A combined representation of shape and spatial intensity distribution of an object and different statistical approaches for dimensionality reduction are used to create a statistical appearance model in order to assess the local bone quality in CT and X-ray images. The developed algorithms are tested and evaluated on 28 femur specimen. It will be shown that the tools and algorithms presented herein are highly adequate to automatically and objectively predict bone mineral density values as well as a biomechanical parameter of the bone that can be measured intraoperatively.

  18. Land Cover/Land Use Classification and Change Detection Analysis with Astronaut Photography and Geographic Object-Based Image Analysis

    NASA Technical Reports Server (NTRS)

    Hollier, Andi B.; Jagge, Amy M.; Stefanov, William L.; Vanderbloemen, Lisa A.

    2017-01-01

    For over fifty years, NASA astronauts have taken exceptional photographs of the Earth from the unique vantage point of low Earth orbit (as well as from lunar orbit and surface of the Moon). The Crew Earth Observations (CEO) Facility is the NASA ISS payload supporting astronaut photography of the Earth surface and atmosphere. From aurora to mountain ranges, deltas, and cities, there are over two million images of the Earth's surface dating back to the Mercury missions in the early 1960s. The Gateway to Astronaut Photography of Earth website (eol.jsc.nasa.gov) provides a publically accessible platform to query and download these images at a variety of spatial resolutions and perform scientific research at no cost to the end user. As a demonstration to the science, application, and education user communities we examine astronaut photography of the Washington D.C. metropolitan area for three time steps between 1998 and 2016 using Geographic Object-Based Image Analysis (GEOBIA) to classify and quantify land cover/land use and provide a template for future change detection studies with astronaut photography.

  19. Unified Framework for Development, Deployment and Robust Testing of Neuroimaging Algorithms

    PubMed Central

    Joshi, Alark; Scheinost, Dustin; Okuda, Hirohito; Belhachemi, Dominique; Murphy, Isabella; Staib, Lawrence H.; Papademetris, Xenophon

    2011-01-01

    Developing both graphical and command-line user interfaces for neuroimaging algorithms requires considerable effort. Neuroimaging algorithms can meet their potential only if they can be easily and frequently used by their intended users. Deployment of a large suite of such algorithms on multiple platforms requires consistency of user interface controls, consistent results across various platforms and thorough testing. We present the design and implementation of a novel object-oriented framework that allows for rapid development of complex image analysis algorithms with many reusable components and the ability to easily add graphical user interface controls. Our framework also allows for simplified yet robust nightly testing of the algorithms to ensure stability and cross platform interoperability. All of the functionality is encapsulated into a software object requiring no separate source code for user interfaces, testing or deployment. This formulation makes our framework ideal for developing novel, stable and easy-to-use algorithms for medical image analysis and computer assisted interventions. The framework has been both deployed at Yale and released for public use in the open source multi-platform image analysis software—BioImage Suite (bioimagesuite.org). PMID:21249532

  20. Polarization sensitive spectroscopic optical coherence tomography for multimodal imaging

    NASA Astrophysics Data System (ADS)

    Strąkowski, Marcin R.; Kraszewski, Maciej; Strąkowska, Paulina; Trojanowski, Michał

    2015-03-01

    Optical coherence tomography (OCT) is a non-invasive method for 3D and cross-sectional imaging of biological and non-biological objects. The OCT measurements are provided in non-contact and absolutely safe way for the tested sample. Nowadays, the OCT is widely applied in medical diagnosis especially in ophthalmology, as well as dermatology, oncology and many more. Despite of great progress in OCT measurements there are still a vast number of issues like tissue recognition or imaging contrast enhancement that have not been solved yet. Here we are going to present the polarization sensitive spectroscopic OCT system (PS-SOCT). The PS-SOCT combines the polarization sensitive analysis with time-frequency analysis. Unlike standard polarization sensitive OCT the PS-SOCT delivers spectral information about measured quantities e.g. tested object birefringence changes over the light spectra. This solution overcomes the limits of polarization sensitive analysis applied in standard PS-OCT. Based on spectral data obtained from PS-SOCT the exact value of birefringence can be calculated even for the objects that provide higher order of retardation. In this contribution the benefits of using the combination of time-frequency and polarization sensitive analysis are being expressed. Moreover, the PS-SOCT system features, as well as OCT measurement examples are presented.

  1. A novel image database analysis system maintenance of transportation facility.

    DOT National Transportation Integrated Search

    2009-01-01

    The current project was funded by MIOH-UTC in the Spring of 2008 to investigate efficient : maintenance methods for transportation facilities. To achieve the objectives of the project, the : PIs undertook the research of various technologies of image...

  2. Using machine learning techniques to automate sky survey catalog generation

    NASA Technical Reports Server (NTRS)

    Fayyad, Usama M.; Roden, J. C.; Doyle, R. J.; Weir, Nicholas; Djorgovski, S. G.

    1993-01-01

    We describe the application of machine classification techniques to the development of an automated tool for the reduction of a large scientific data set. The 2nd Palomar Observatory Sky Survey provides comprehensive photographic coverage of the northern celestial hemisphere. The photographic plates are being digitized into images containing on the order of 10(exp 7) galaxies and 10(exp 8) stars. Since the size of this data set precludes manual analysis and classification of objects, our approach is to develop a software system which integrates independently developed techniques for image processing and data classification. Image processing routines are applied to identify and measure features of sky objects. Selected features are used to determine the classification of each object. GID3* and O-BTree, two inductive learning techniques, are used to automatically learn classification decision trees from examples. We describe the techniques used, the details of our specific application, and the initial encouraging results which indicate that our approach is well-suited to the problem. The benefits of the approach are increased data reduction throughput, consistency of classification, and the automated derivation of classification rules that will form an objective, examinable basis for classifying sky objects. Furthermore, astronomers will be freed from the tedium of an intensely visual task to pursue more challenging analysis and interpretation problems given automatically cataloged data.

  3. Rapid Target Detection in High Resolution Remote Sensing Images Using Yolo Model

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Chen, X.; Gao, Y.; Li, Y.

    2018-04-01

    Object detection in high resolution remote sensing images is a fundamental and challenging problem in the field of remote sensing imagery analysis for civil and military application due to the complex neighboring environments, which can cause the recognition algorithms to mistake irrelevant ground objects for target objects. Deep Convolution Neural Network(DCNN) is the hotspot in object detection for its powerful ability of feature extraction and has achieved state-of-the-art results in Computer Vision. Common pipeline of object detection based on DCNN consists of region proposal, CNN feature extraction, region classification and post processing. YOLO model frames object detection as a regression problem, using a single CNN predicts bounding boxes and class probabilities in an end-to-end way and make the predict faster. In this paper, a YOLO based model is used for object detection in high resolution sensing images. The experiments on NWPU VHR-10 dataset and our airport/airplane dataset gain from GoogleEarth show that, compare with the common pipeline, the proposed model speeds up the detection process and have good accuracy.

  4. Parameterization of Shape and Compactness in Object-based Image Classification Using Quickbird-2 Imagery

    NASA Astrophysics Data System (ADS)

    Tonbul, H.; Kavzoglu, T.

    2016-12-01

    In recent years, object based image analysis (OBIA) has spread out and become a widely accepted technique for the analysis of remotely sensed data. OBIA deals with grouping pixels into homogenous objects based on spectral, spatial and textural features of contiguous pixels in an image. The first stage of OBIA, named as image segmentation, is the most prominent part of object recognition. In this study, multiresolution segmentation, which is a region-based approach, was employed to construct image objects. In the application of multi-resolution, three parameters, namely shape, compactness and scale must be set by the analyst. Segmentation quality remarkably influences the fidelity of the thematic maps and accordingly the classification accuracy. Therefore, it is of great importance to search and set optimal values for the segmentation parameters. In the literature, main focus has been on the definition of scale parameter, assuming that the effect of shape and compactness parameters is limited in terms of achieved classification accuracy. The aim of this study is to deeply analyze the influence of shape/compactness parameters by varying their values while using the optimal scale parameter determined by the use of Estimation of Scale Parameter (ESP-2) approach. A pansharpened Qickbird-2 image covering Trabzon, Turkey was employed to investigate the objectives of the study. For this purpose, six different combinations of shape/compactness were utilized to make deductions on the behavior of shape and compactness parameters and optimal setting for all parameters as a whole. Objects were assigned to classes using nearest neighbor classifier in all segmentation observations and equal number of pixels was randomly selected to calculate accuracy metrics. The highest overall accuracy (92.3%) was achieved by setting the shape/compactness criteria to 0.3/0.3. The results of this study indicate that shape/compactness parameters can have significant effect on classification accuracy with 4% change in overall accuracy. Also, statistical significance of differences in accuracy was tested using the McNemar's test and found that the difference between poor and optimal setting of shape/compactness parameters was statistically significant, suggesting a search for optimal parameterization instead of default setting.

  5. DICOM for quantitative imaging biomarker development: a standards based approach to sharing clinical data and structured PET/CT analysis results in head and neck cancer research.

    PubMed

    Fedorov, Andriy; Clunie, David; Ulrich, Ethan; Bauer, Christian; Wahle, Andreas; Brown, Bartley; Onken, Michael; Riesmeier, Jörg; Pieper, Steve; Kikinis, Ron; Buatti, John; Beichel, Reinhard R

    2016-01-01

    Background. Imaging biomarkers hold tremendous promise for precision medicine clinical applications. Development of such biomarkers relies heavily on image post-processing tools for automated image quantitation. Their deployment in the context of clinical research necessitates interoperability with the clinical systems. Comparison with the established outcomes and evaluation tasks motivate integration of the clinical and imaging data, and the use of standardized approaches to support annotation and sharing of the analysis results and semantics. We developed the methodology and tools to support these tasks in Positron Emission Tomography and Computed Tomography (PET/CT) quantitative imaging (QI) biomarker development applied to head and neck cancer (HNC) treatment response assessment, using the Digital Imaging and Communications in Medicine (DICOM(®)) international standard and free open-source software. Methods. Quantitative analysis of PET/CT imaging data collected on patients undergoing treatment for HNC was conducted. Processing steps included Standardized Uptake Value (SUV) normalization of the images, segmentation of the tumor using manual and semi-automatic approaches, automatic segmentation of the reference regions, and extraction of the volumetric segmentation-based measurements. Suitable components of the DICOM standard were identified to model the various types of data produced by the analysis. A developer toolkit of conversion routines and an Application Programming Interface (API) were contributed and applied to create a standards-based representation of the data. Results. DICOM Real World Value Mapping, Segmentation and Structured Reporting objects were utilized for standards-compliant representation of the PET/CT QI analysis results and relevant clinical data. A number of correction proposals to the standard were developed. The open-source DICOM toolkit (DCMTK) was improved to simplify the task of DICOM encoding by introducing new API abstractions. Conversion and visualization tools utilizing this toolkit were developed. The encoded objects were validated for consistency and interoperability. The resulting dataset was deposited in the QIN-HEADNECK collection of The Cancer Imaging Archive (TCIA). Supporting tools for data analysis and DICOM conversion were made available as free open-source software. Discussion. We presented a detailed investigation of the development and application of the DICOM model, as well as the supporting open-source tools and toolkits, to accommodate representation of the research data in QI biomarker development. We demonstrated that the DICOM standard can be used to represent the types of data relevant in HNC QI biomarker development, and encode their complex relationships. The resulting annotated objects are amenable to data mining applications, and are interoperable with a variety of systems that support the DICOM standard.

  6. Object-oriented design of medical imaging software.

    PubMed

    Ligier, Y; Ratib, O; Logean, M; Girard, C; Perrier, R; Scherrer, J R

    1994-01-01

    A special software package for interactive display and manipulation of medical images was developed at the University Hospital of Geneva, as part of a hospital wide Picture Archiving and Communication System (PACS). This software package, called Osiris, was especially designed to be easily usable and adaptable to the needs of noncomputer-oriented physicians. The Osiris software has been developed to allow the visualization of medical images obtained from any imaging modality. It provides generic manipulation tools, processing tools, and analysis tools more specific to clinical applications. This software, based on an object-oriented paradigm, is portable and extensible. Osiris is available on two different operating systems: the Unix X-11/OSF-Motif based workstations, and the Macintosh family.

  7. View subspaces for indexing and retrieval of 3D models

    NASA Astrophysics Data System (ADS)

    Dutagaci, Helin; Godil, Afzal; Sankur, Bülent; Yemez, Yücel

    2010-02-01

    View-based indexing schemes for 3D object retrieval are gaining popularity since they provide good retrieval results. These schemes are coherent with the theory that humans recognize objects based on their 2D appearances. The viewbased techniques also allow users to search with various queries such as binary images, range images and even 2D sketches. The previous view-based techniques use classical 2D shape descriptors such as Fourier invariants, Zernike moments, Scale Invariant Feature Transform-based local features and 2D Digital Fourier Transform coefficients. These methods describe each object independent of others. In this work, we explore data driven subspace models, such as Principal Component Analysis, Independent Component Analysis and Nonnegative Matrix Factorization to describe the shape information of the views. We treat the depth images obtained from various points of the view sphere as 2D intensity images and train a subspace to extract the inherent structure of the views within a database. We also show the benefit of categorizing shapes according to their eigenvalue spread. Both the shape categorization and data-driven feature set conjectures are tested on the PSB database and compared with the competitor view-based 3D shape retrieval algorithms.

  8. Speckle correlation method used to measure object's in-plane velocity.

    PubMed

    Smíd, Petr; Horváth, Pavel; Hrabovský, Miroslav

    2007-06-20

    We present a measurement of an object's in-plane velocity in one direction by the use of the speckle correlation method. Numerical correlations of speckle patterns recorded periodically during motion of the object under investigation give information used to evaluate the object's in-plane velocity. The proposed optical setup uses a detection plane in the image field and enables one to detect the object's velocity within the interval (10-150) microm x s(-1). Simulation analysis shows a way of controlling the measuring range. The presented theory, simulation analysis, and setup are verified through an experiment of measurement of the velocity profile of an object.

  9. Multidimensional Shape Similarity in the Development of Visual Object Classification

    ERIC Educational Resources Information Center

    Mash, Clay

    2006-01-01

    The current work examined age differences in the classification of novel object images that vary in continuous dimensions of structural shape. The structural dimensions employed are two that share a privileged status in the visual analysis and representation of objects: the shape of discrete prominent parts and the attachment positions of those…

  10. The Spectral Image Processing System (SIPS) - Interactive visualization and analysis of imaging spectrometer data

    NASA Technical Reports Server (NTRS)

    Kruse, F. A.; Lefkoff, A. B.; Boardman, J. W.; Heidebrecht, K. B.; Shapiro, A. T.; Barloon, P. J.; Goetz, A. F. H.

    1993-01-01

    The Center for the Study of Earth from Space (CSES) at the University of Colorado, Boulder, has developed a prototype interactive software system called the Spectral Image Processing System (SIPS) using IDL (the Interactive Data Language) on UNIX-based workstations. SIPS is designed to take advantage of the combination of high spectral resolution and spatial data presentation unique to imaging spectrometers. It streamlines analysis of these data by allowing scientists to rapidly interact with entire datasets. SIPS provides visualization tools for rapid exploratory analysis and numerical tools for quantitative modeling. The user interface is X-Windows-based, user friendly, and provides 'point and click' operation. SIPS is being used for multidisciplinary research concentrating on use of physically based analysis methods to enhance scientific results from imaging spectrometer data. The objective of this continuing effort is to develop operational techniques for quantitative analysis of imaging spectrometer data and to make them available to the scientific community prior to the launch of imaging spectrometer satellite systems such as the Earth Observing System (EOS) High Resolution Imaging Spectrometer (HIRIS).

  11. 3D Surface Reconstruction for Lower Limb Prosthetic Model using Radon Transform

    NASA Astrophysics Data System (ADS)

    Sobani, S. S. Mohd; Mahmood, N. H.; Zakaria, N. A.; Razak, M. A. Abdul

    2018-03-01

    This paper describes the idea to realize three-dimensional surfaces of objects with cylinder-based shapes where the techniques adopted and the strategy developed for a non-rigid three-dimensional surface reconstruction of an object from uncalibrated two-dimensional image sequences using multiple-view digital camera and turntable setup. The surface of an object is reconstructed based on the concept of tomography with the aid of performing several digital image processing algorithms on the two-dimensional images captured by a digital camera in thirty-six different projections and the three-dimensional structure of the surface is analysed. Four different objects are used as experimental models in the reconstructions and each object is placed on a manually rotated turntable. The results shown that the proposed method has successfully reconstruct the three-dimensional surface of the objects and practicable. The shape and size of the reconstructed three-dimensional objects are recognizable and distinguishable. The reconstructions of objects involved in the test are strengthened with the analysis where the maximum percent error obtained from the computation is approximately 1.4 % for the height whilst 4.0%, 4.79% and 4.7% for the diameters at three specific heights of the objects.

  12. RAPTOR-scan: Identifying and Tracking Objects Through Thousands of Sky Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidoff, Sherri; Wozniak, Przemyslaw

    2004-09-28

    The RAPTOR-scan system mines data for optical transients associated with gamma-ray bursts and is used to create a catalog for the RAPTOR telescope system. RAPTOR-scan can detect and track individual astronomical objects across data sets containing millions of observed points.Accurately identifying a real object over many optical images (clustering the individual appearances) is necessary in order to analyze object light curves. To achieve this, RAPTOR telescope observations are sent in real time to a database. Each morning, a program based on the DBSCAN algorithm clusters the observations and labels each one with an object identifier. Once clustering is complete, themore » analysis program may be used to query the database and produce light curves, maps of the sky field, or other informative displays.Although RAPTOR-scan was designed for the RAPTOR optical telescope system, it is a general tool designed to identify objects in a collection of astronomical data and facilitate quick data analysis. RAPTOR-scan will be released as free software under the GNU General Public License.« less

  13. Automatic identification of fault surfaces through Object Based Image Analysis of a Digital Elevation Model in the submarine area of the North Aegean Basin

    NASA Astrophysics Data System (ADS)

    Argyropoulou, Evangelia

    2015-04-01

    The current study was focused on the seafloor morphology of the North Aegean Basin in Greece, through Object Based Image Analysis (OBIA) using a Digital Elevation Model. The goal was the automatic extraction of morphologic and morphotectonic features, resulting into fault surface extraction. An Object Based Image Analysis approach was developed based on the bathymetric data and the extracted features, based on morphological criteria, were compared with the corresponding landforms derived through tectonic analysis. A digital elevation model of 150 meters spatial resolution was used. At first, slope, profile curvature, and percentile were extracted from this bathymetry grid. The OBIA approach was developed within the eCognition environment. Four segmentation levels were created having as a target "level 4". At level 4, the final classes of geomorphological features were classified: discontinuities, fault-like features and fault surfaces. On previous levels, additional landforms were also classified, such as continental platform and continental slope. The results of the developed approach were evaluated by two methods. At first, classification stability measures were computed within eCognition. Then, qualitative and quantitative comparison of the results took place with a reference tectonic map which has been created manually based on the analysis of seismic profiles. The results of this comparison were satisfactory, a fact which determines the correctness of the developed OBIA approach.

  14. SNIa detection in the SNLS photometric analysis using Morphological Component Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Möller, A.; Ruhlmann-Kleider, V.; Neveu, J.

    2015-04-01

    Detection of supernovae (SNe) and, more generally, of transient events in large surveys can provide numerous false detections. In the case of a deferred processing of survey images, this implies reconstructing complete light curves for all detections, requiring sizable processing time and resources. Optimizing the detection of transient events is thus an important issue for both present and future surveys. We present here the optimization done in the SuperNova Legacy Survey (SNLS) for the 5-year data deferred photometric analysis. In this analysis, detections are derived from stacks of subtracted images with one stack per lunation. The 3-year analysis provided 300,000more » detections dominated by signals of bright objects that were not perfectly subtracted. Allowing these artifacts to be detected leads not only to a waste of resources but also to possible signal coordinate contamination. We developed a subtracted image stack treatment to reduce the number of non SN-like events using morphological component analysis. This technique exploits the morphological diversity of objects to be detected to extract the signal of interest. At the level of our subtraction stacks, SN-like events are rather circular objects while most spurious detections exhibit different shapes. A two-step procedure was necessary to have a proper evaluation of the noise in the subtracted image stacks and thus a reliable signal extraction. We also set up a new detection strategy to obtain coordinates with good resolution for the extracted signal. SNIa Monte-Carlo (MC) generated images were used to study detection efficiency and coordinate resolution. When tested on SNLS 3-year data this procedure decreases the number of detections by a factor of two, while losing only 10% of SN-like events, almost all faint ones. MC results show that SNIa detection efficiency is equivalent to that of the original method for bright events, while the coordinate resolution is improved.« less

  15. Contour sensitive saliency and depth application in image retargeting

    NASA Astrophysics Data System (ADS)

    Lu, Hongju; Yue, Pengfei; Zhao, Yanhui; Liu, Rui; Fu, Yuanbin; Zheng, Yuanjie; Cui, Jia

    2018-04-01

    Image retargeting technique requires important information preservation and less edge distortion during increasing/decreasing image size. The major existed content-aware methods perform well. However, there are two problems should be improved: the slight distortion appeared at the object edges and the structure distortion in the nonsalient area. According to psychological theories, people evaluate image quality based on multi-level judgments and comparison between different areas, both image content and image structure. The paper proposes a new standard: the structure preserving in non-salient area. After observation and image analysis, blur (slight blur) is generally existed at the edge of objects. The blur feature is used to estimate the depth cue, named blur depth descriptor. It can be used in the process of saliency computation for balanced image retargeting result. In order to keep the structure information in nonsalient area, the salient edge map is presented in Seam Carving process, instead of field-based saliency computation. The derivative saliency from x- and y-direction can avoid the redundant energy seam around salient objects causing structure distortion. After the comparison experiments between classical approaches and ours, the feasibility of our algorithm is proved.

  16. A neural network ActiveX based integrated image processing environment.

    PubMed

    Ciuca, I; Jitaru, E; Alaicescu, M; Moisil, I

    2000-01-01

    The paper outlines an integrated image processing environment that uses neural networks ActiveX technology for object recognition and classification. The image processing environment which is Windows based, encapsulates a Multiple-Document Interface (MDI) and is menu driven. Object (shape) parameter extraction is focused on features that are invariant in terms of translation, rotation and scale transformations. The neural network models that can be incorporated as ActiveX components into the environment allow both clustering and classification of objects from the analysed image. Mapping neural networks perform an input sensitivity analysis on the extracted feature measurements and thus facilitate the removal of irrelevant features and improvements in the degree of generalisation. The program has been used to evaluate the dimensions of the hydrocephalus in a study for calculating the Evans index and the angle of the frontal horns of the ventricular system modifications.

  17. Dedicated computer system AOTK for image processing and analysis of horse navicular bone

    NASA Astrophysics Data System (ADS)

    Zaborowicz, M.; Fojud, A.; Koszela, K.; Mueller, W.; Górna, K.; Okoń, P.; Piekarska-Boniecka, H.

    2017-07-01

    The aim of the research was made the dedicated application AOTK (pol. Analiza Obrazu Trzeszczki Kopytowej) for image processing and analysis of horse navicular bone. The application was produced by using specialized software like Visual Studio 2013 and the .NET platform. To implement algorithms of image processing and analysis were used libraries of Aforge.NET. Implemented algorithms enabling accurate extraction of the characteristics of navicular bones and saving data to external files. Implemented in AOTK modules allowing the calculations of distance selected by user, preliminary assessment of conservation of structure of the examined objects. The application interface is designed in a way that ensures user the best possible view of the analyzed images.

  18. Automated in vivo 3D high-definition optical coherence tomography skin analysis system.

    PubMed

    Ai Ping Yow; Jun Cheng; Annan Li; Srivastava, Ruchir; Jiang Liu; Wong, Damon Wing Kee; Hong Liang Tey

    2016-08-01

    The in vivo assessment and visualization of skin structures can be performed through the use of high resolution optical coherence tomography imaging, also known as HD-OCT. However, the manual assessment of such images can be exhaustive and time consuming. In this paper, we present an analysis system to automatically identify and quantify the skin characteristics such as the topography of the surface of the skin and thickness of the epidermis in HD-OCT images. Comparison of this system with manual clinical measurements demonstrated its potential for automatic objective skin analysis and diseases diagnosis. To our knowledge, this is the first report of an automated system to process and analyse HD-OCT skin images.

  19. Processing And Display Of Medical Three Dimensional Arrays Of Numerical Data Using Octree Encoding

    NASA Astrophysics Data System (ADS)

    Amans, Jean-Louis; Darier, Pierre

    1986-05-01

    imaging modalities such as X-Ray computerized Tomography (CT), Nuclear Medecine and Nuclear Magnetic Resonance can produce three-dimensional (3-D) arrays of numerical data of medical object internal structures. The analysis of 3-D data by synthetic generation of realistic images is an important area of computer graphics and imaging.

  20. System of technical vision for autonomous unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Bondarchuk, A. S.

    2018-05-01

    This paper is devoted to the implementation of image recognition algorithm using the LabVIEW software. The created virtual instrument is designed to detect the objects on the frames from the camera mounted on the UAV. The trained classifier is invariant to changes in rotation, as well as to small changes in the camera's viewing angle. Finding objects in the image using particle analysis, allows you to classify regions of different sizes. This method allows the system of technical vision to more accurately determine the location of the objects of interest and their movement relative to the camera.

  1. A Biologically Plausible Transform for Visual Recognition that is Invariant to Translation, Scale, and Rotation.

    PubMed

    Sountsov, Pavel; Santucci, David M; Lisman, John E

    2011-01-01

    Visual object recognition occurs easily despite differences in position, size, and rotation of the object, but the neural mechanisms responsible for this invariance are not known. We have found a set of transforms that achieve invariance in a neurally plausible way. We find that a transform based on local spatial frequency analysis of oriented segments and on logarithmic mapping, when applied twice in an iterative fashion, produces an output image that is unique to the object and that remains constant as the input image is shifted, scaled, or rotated.

  2. A Biologically Plausible Transform for Visual Recognition that is Invariant to Translation, Scale, and Rotation

    PubMed Central

    Sountsov, Pavel; Santucci, David M.; Lisman, John E.

    2011-01-01

    Visual object recognition occurs easily despite differences in position, size, and rotation of the object, but the neural mechanisms responsible for this invariance are not known. We have found a set of transforms that achieve invariance in a neurally plausible way. We find that a transform based on local spatial frequency analysis of oriented segments and on logarithmic mapping, when applied twice in an iterative fashion, produces an output image that is unique to the object and that remains constant as the input image is shifted, scaled, or rotated. PMID:22125522

  3. An insect-inspired model for visual binding II: functional analysis and visual attention.

    PubMed

    Northcutt, Brandon D; Higgins, Charles M

    2017-04-01

    We have developed a neural network model capable of performing visual binding inspired by neuronal circuitry in the optic glomeruli of flies: a brain area that lies just downstream of the optic lobes where early visual processing is performed. This visual binding model is able to detect objects in dynamic image sequences and bind together their respective characteristic visual features-such as color, motion, and orientation-by taking advantage of their common temporal fluctuations. Visual binding is represented in the form of an inhibitory weight matrix which learns over time which features originate from a given visual object. In the present work, we show that information represented implicitly in this weight matrix can be used to explicitly count the number of objects present in the visual image, to enumerate their specific visual characteristics, and even to create an enhanced image in which one particular object is emphasized over others, thus implementing a simple form of visual attention. Further, we present a detailed analysis which reveals the function and theoretical limitations of the visual binding network and in this context describe a novel network learning rule which is optimized for visual binding.

  4. Method of center localization for objects containing concentric arcs

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Elena G.; Shvets, Evgeny A.; Nikolaev, Dmitry P.

    2015-02-01

    This paper proposes a method for automatic center location of objects containing concentric arcs. The method utilizes structure tensor analysis and voting scheme optimized with Fast Hough Transform. Two applications of the proposed method are considered: (i) wheel tracking in video-based system for automatic vehicle classification and (ii) tree growth rings analysis on a tree cross cut image.

  5. Design of polarized infrared athermal telephoto objective for penetrating the fog

    NASA Astrophysics Data System (ADS)

    Gao, Duorui; Fu, Qiang; Zhao, Zhao; Zhao, Bin; Zhong, Lijun; Zhan, Juntong

    2014-11-01

    Polarized infrared imaging technology is a new detection technique which own the ability of spying through the fog, highlighting the target and recognizing the forgeries, these characters make it a good advantage of increasing the work distance in the fog. Compared to the traditional infrared imaging method, polarized infrared imaging can identify the background and target easily, that is the most distinguishing feature of polarized infrared imaging technology. Owning to the large refractive index of the infrared material, temperature change will bring defocus seriously, athermal infrared objective is necessarily. On the other hand, athermal objective has large total length, and hard to be integrated for their huge volume. However telephoto objective has the character of small volume and short total length. The paper introduce a method of polarized and athermal infrared telephoto objective which can spy the fog. First assign the optical power of the fore group and the rear group on the basis of the principle of telephoto objective, the power of the fore group is positive and the rear group is negative; then distribute the optical power within each group to realize the ability of athermalization, finally computer-aided software is used to correct aberration. In order to prove the feasibility of the scheme, an athermal optical system was designed by virtue of ZEMAX software which works at 8~12 µm, the focal length of 150mm, F number is 2, and total length of the telephoto objective is 120mm. The environment temperature analysis shows that the optical system have stable imaging quality, MTF is close to diffraction limit. This telephoto objective is available for infrared polarized imaging.

  6. Classification of high resolution remote sensing image based on geo-ontology and conditional random fields

    NASA Astrophysics Data System (ADS)

    Hong, Liang

    2013-10-01

    The availability of high spatial resolution remote sensing data provides new opportunities for urban land-cover classification. More geometric details can be observed in the high resolution remote sensing image, Also Ground objects in the high resolution remote sensing image have displayed rich texture, structure, shape and hierarchical semantic characters. More landscape elements are represented by a small group of pixels. Recently years, the an object-based remote sensing analysis methodology is widely accepted and applied in high resolution remote sensing image processing. The classification method based on Geo-ontology and conditional random fields is presented in this paper. The proposed method is made up of four blocks: (1) the hierarchical ground objects semantic framework is constructed based on geoontology; (2) segmentation by mean-shift algorithm, which image objects are generated. And the mean-shift method is to get boundary preserved and spectrally homogeneous over-segmentation regions ;(3) the relations between the hierarchical ground objects semantic and over-segmentation regions are defined based on conditional random fields framework ;(4) the hierarchical classification results are obtained based on geo-ontology and conditional random fields. Finally, high-resolution remote sensed image data -GeoEye, is used to testify the performance of the presented method. And the experimental results have shown the superiority of this method to the eCognition method both on the effectively and accuracy, which implies it is suitable for the classification of high resolution remote sensing image.

  7. An image understanding system using attributed symbolic representation and inexact graph-matching

    NASA Astrophysics Data System (ADS)

    Eshera, M. A.; Fu, K.-S.

    1986-09-01

    A powerful image understanding system using a semantic-syntactic representation scheme consisting of attributed relational graphs (ARGs) is proposed for the analysis of the global information content of images. A multilayer graph transducer scheme performs the extraction of ARG representations from images, with ARG nodes representing the global image features, and the relations between features represented by the attributed branches between corresponding nodes. An efficient dynamic programming technique is employed to derive the distance between two ARGs and the inexact matching of their respective components. Noise, distortion and ambiguity in real-world images are handled through modeling in the transducer mapping rules and through the appropriate cost of error-transformation for the inexact matching of the representation. The system is demonstrated for the case of locating objects in a scene composed of complex overlapped objects, and the case of target detection in noisy and distorted synthetic aperture radar image.

  8. A Review of Sparsity-Based Methods for Analysing Radar Returns from Helicopter Rotor Blades

    DTIC Science & Technology

    2016-09-01

    UNCLASSIFIED A Review of Sparsity-Based Methods for Analysing Radar Returns from Helicopter Rotor Blades Ngoc Hung Nguyen 1, Hai-Tan Tran 2, Kutluyıl...TR–3292 ABSTRACT Radar imaging of rotating blade -like objects, such as helicopter rotors, using narrowband radar has lately been of significant...Methods for Analysing Radar Returns from Helicopter Rotor Blades Executive Summary Signal analysis and radar imaging of fast-rotating objects such as

  9. An ECG storage and retrieval system embedded in client server HIS utilizing object-oriented DB.

    PubMed

    Wang, C; Ohe, K; Sakurai, T; Nagase, T; Kaihara, S

    1996-02-01

    In the University of Tokyo Hospital, the improved client server HIS has been applied to clinical practice and physicians can order prescription, laboratory examination, ECG examination and radiographic examination, etc. directly by themselves and read results of these examinations, except medical signal waves, schema and image, on UNIX workstations. Recently, we designed and developed an ECG storage and retrieval system embedded in the client server HIS utilizing object-oriented database to take the first step in dealing with digitized signal, schema and image data and show waves, graphics, and images directly to physicians by the client server HIS. The system was developed based on object-oriented analysis and design, and implemented with object-oriented database management system (OODMS) and C++ programming language. In this paper, we describe the ECG data model, functions of the storage and retrieval system, features of user interface and the result of its implementation in the HIS.

  10. Analyzing the Heterogeneous Hierarchy of Cultural Heritage Materials: Analytical Imaging.

    PubMed

    Trentelman, Karen

    2017-06-12

    Objects of cultural heritage significance are created using a wide variety of materials, or mixtures of materials, and often exhibit heterogeneity on multiple length scales. The effective study of these complex constructions thus requires the use of a suite of complementary analytical technologies. Moreover, because of the importance and irreplaceability of most cultural heritage objects, researchers favor analytical techniques that can be employed noninvasively, i.e., without having to remove any material for analysis. As such, analytical imaging has emerged as an important approach for the study of cultural heritage. Imaging technologies commonly employed, from the macroscale through the micro- to nanoscale, are discussed with respect to how the information obtained helps us understand artists' materials and methods, the cultures in which the objects were created, how the objects may have changed over time, and importantly, how we may develop strategies for their preservation.

  11. A motion artefact study and locally deforming objects in computerized tomography

    NASA Astrophysics Data System (ADS)

    Hahn, Bernadette N.

    2017-11-01

    Movements of the object during the data collection in computerized tomography can introduce motion artefacts in the reconstructed image. They can be reduced by employing information about the dynamic behaviour within the reconstruction step. However, inaccuracies concerning the movement are inevitable in practice. In this article, we give an explicit characterization of what is visible in an image obtained by a reconstruction algorithm with incorrect motion information. Then, we use this result to study in detail the situation of locally deforming objects, i.e. individual parts of the object have a different dynamic behaviour. In this context, we prove that additional artefacts arise due to the global nature of the Radon transform, even if the motion is exactly known. Based on our analysis, we propose a numerical scheme to reduce these artefacts in the reconstructed image. All our results are illustrated by numerical examples.

  12. Contrast-detail phantom scoring methodology.

    PubMed

    Thomas, Jerry A; Chakrabarti, Kish; Kaczmarek, Richard; Romanyukha, Alexander

    2005-03-01

    Published results of medical imaging studies which make use of contrast detail mammography (CDMAM) phantom images for analysis are difficult to compare since data are often not analyzed in the same way. In order to address this situation, the concept of ideal contrast detail curves is suggested. The ideal contrast detail curves are constructed based on the requirement of having the same product of the diameter and contrast (disk thickness) of the minimal correctly determined object for every row of the CDMAM phantom image. A correlation and comparison of five different quality parameters of the CDMAM phantom image determined for obtained ideal contrast detail curves is performed. The image quality parameters compared include: (1) contrast detail curve--a graph correlation between "minimal correct reading" diameter and disk thickness; (2) correct observation ratio--the ratio of the number of correctly identified objects to the actual total number of objects multiplied by 100; (3) image quality figure--the sum of the product of the diameter of the smallest scored object and its relative contrast; (4) figure-of-merit--the zero disk diameter value obtained from extrapolation of the contrast detail curve to the origin (e.g., zero disk diameter); and (5) k-factor--the product of the thickness and the diameter of the smallest correctly identified disks. The analysis carried out showed the existence of a nonlinear relationship between the above parameters, which means that use of different parameters of CDMAM image quality potentially can cause different conclusions about changes in image quality. Construction of the ideal contrast detail curves for CDMAM phantom is an attempt to determine the quantitative limits of the CDMAM phantom as employed for image quality evaluation. These limits are determined by the relationship between certain parameters of a digital mammography system and the set of the gold disks sizes in the CDMAM phantom. Recommendations are made on selections of CDMAM phantom regions which should be used for scoring at different image quality and which scoring methodology may be most appropriate. Special attention is also paid to the use of the CDMAM phantom for image quality assessment of digital mammography systems particularly in the vicinity of the Nyquist frequency.

  13. Technical Considerations on Scanning and Image Analysis for Amyloid PET in Dementia.

    PubMed

    Akamatsu, Go; Ohnishi, Akihito; Aita, Kazuki; Ikari, Yasuhiko; Yamamoto, Yasuji; Senda, Michio

    2017-01-01

    Brain imaging techniques, such as computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), and positron emission tomography (PET), can provide essential and objective information for the early and differential diagnosis of dementia. Amyloid PET is especially useful to evaluate the amyloid-β pathological process as a biomarker of Alzheimer's disease. This article reviews critical points about technical considerations on the scanning and image analysis methods for amyloid PET. Each amyloid PET agent has its own proper administration instructions and recommended uptake time, scan duration, and the method of image display and interpretation. In addition, we have introduced general scanning information, including subject positioning, reconstruction parameters, and quantitative and statistical image analysis. We believe that this article could make amyloid PET a more reliable tool in clinical study and practice.

  14. Extracting contours of oval-shaped objects by Hough transform and minimal path algorithms

    NASA Astrophysics Data System (ADS)

    Tleis, Mohamed; Verbeek, Fons J.

    2014-04-01

    Circular and oval-like objects are very common in cell and micro biology. These objects need to be analyzed, and to that end, digitized images from the microscope are used so as to come to an automated analysis pipeline. It is essential to detect all the objects in an image as well as to extract the exact contour of each individual object. In this manner it becomes possible to perform measurements on these objects, i.e. shape and texture features. Our measurement objective is achieved by probing contour detection through dynamic programming. In this paper we describe a method that uses Hough transform and two minimal path algorithms to detect contours of (ovoid-like) objects. These algorithms are based on an existing grey-weighted distance transform and a new algorithm to extract the circular shortest path in an image. The methods are tested on an artificial dataset of a 1000 images, with an F1-score of 0.972. In a case study with yeast cells, contours from our methods were compared with another solution using Pratt's figure of merit. Results indicate that our methods were more precise based on a comparison with a ground-truth dataset. As far as yeast cells are concerned, the segmentation and measurement results enable, in future work, to retrieve information from different developmental stages of the cell using complex features.

  15. Improvement and Extension of Shape Evaluation Criteria in Multi-Scale Image Segmentation

    NASA Astrophysics Data System (ADS)

    Sakamoto, M.; Honda, Y.; Kondo, A.

    2016-06-01

    From the last decade, the multi-scale image segmentation is getting a particular interest and practically being used for object-based image analysis. In this study, we have addressed the issues on multi-scale image segmentation, especially, in improving the performances for validity of merging and variety of derived region's shape. Firstly, we have introduced constraints on the application of spectral criterion which could suppress excessive merging between dissimilar regions. Secondly, we have extended the evaluation for smoothness criterion by modifying the definition on the extent of the object, which was brought for controlling the shape's diversity. Thirdly, we have developed new shape criterion called aspect ratio. This criterion helps to improve the reproducibility on the shape of object to be matched to the actual objectives of interest. This criterion provides constraint on the aspect ratio in the bounding box of object by keeping properties controlled with conventional shape criteria. These improvements and extensions lead to more accurate, flexible, and diverse segmentation results according to the shape characteristics of the target of interest. Furthermore, we also investigated a technique for quantitative and automatic parameterization in multi-scale image segmentation. This approach is achieved by comparing segmentation result with training area specified in advance by considering the maximization of the average area in derived objects or satisfying the evaluation index called F-measure. Thus, it has been possible to automate the parameterization that suited the objectives especially in the view point of shape's reproducibility.

  16. Multi-energy method of digital radiography for imaging of biological objects

    NASA Astrophysics Data System (ADS)

    Ryzhikov, V. D.; Naydenov, S. V.; Opolonin, O. D.; Volkov, V. G.; Smith, C. F.

    2016-03-01

    This work has been dedicated to the search for a new possibility to use multi-energy digital radiography (MER) for medical applications. Our work has included both theoretical and experimental investigations of 2-energy (2E) and 3- energy (3D) radiography for imaging the structure of biological objects. Using special simulation methods and digital analysis based on the X-ray interaction energy dependence for each element of importance to medical applications in the X-ray range of energy up to 150 keV, we have implemented a quasi-linear approximation for the energy dependence of the X-ray linear mass absorption coefficient μm (E) that permits us to determine the intrinsic structure of the biological objects. Our measurements utilize multiple X-ray tube voltages (50, 100, and 150 kV) with Al and Cu filters of different thicknesses to achieve 3-energy X-ray examination of objects. By doing so, we are able to achieve significantly improved imaging quality of the structure of the subject biological objects. To reconstruct and visualize the final images, we use both two-dimensional (2D) and three-dimensional (3D) palettes of identification. The result is a 2E and/or 3E representation of the object with color coding of each pixel according to the data outputs. Following the experimental measurements and post-processing, we produce a 3D image of the biological object - in the case of our trials, fragments or parts of chicken and turkey.

  17. Tensor-based dynamic reconstruction method for electrical capacitance tomography

    NASA Astrophysics Data System (ADS)

    Lei, J.; Mu, H. P.; Liu, Q. B.; Li, Z. H.; Liu, S.; Wang, X. Y.

    2017-03-01

    Electrical capacitance tomography (ECT) is an attractive visualization measurement method, in which the acquisition of high-quality images is beneficial for the understanding of the underlying physical or chemical mechanisms of the dynamic behaviors of the measurement objects. In real-world measurement environments, imaging objects are often in a dynamic process, and the exploitation of the spatial-temporal correlations related to the dynamic nature will contribute to improving the imaging quality. Different from existing imaging methods that are often used in ECT measurements, in this paper a dynamic image sequence is stacked into a third-order tensor that consists of a low rank tensor and a sparse tensor within the framework of the multiple measurement vectors model and the multi-way data analysis method. The low rank tensor models the similar spatial distribution information among frames, which is slowly changing over time, and the sparse tensor captures the perturbations or differences introduced in each frame, which is rapidly changing over time. With the assistance of the Tikhonov regularization theory and the tensor-based multi-way data analysis method, a new cost function, with the considerations of the multi-frames measurement data, the dynamic evolution information of a time-varying imaging object and the characteristics of the low rank tensor and the sparse tensor, is proposed to convert the imaging task in the ECT measurement into a reconstruction problem of a third-order image tensor. An effective algorithm is developed to search for the optimal solution of the proposed cost function, and the images are reconstructed via a batching pattern. The feasibility and effectiveness of the developed reconstruction method are numerically validated.

  18. Serial grouping of 2D-image regions with object-based attention in humans.

    PubMed

    Jeurissen, Danique; Self, Matthew W; Roelfsema, Pieter R

    2016-06-13

    After an initial stage of local analysis within the retina and early visual pathways, the human visual system creates a structured representation of the visual scene by co-selecting image elements that are part of behaviorally relevant objects. The mechanisms underlying this perceptual organization process are only partially understood. We here investigate the time-course of perceptual grouping of two-dimensional image-regions by measuring the reaction times of human participants and report that it is associated with the gradual spread of object-based attention. Attention spreads fastest over large and homogeneous areas and is slowed down at locations that require small-scale processing. We find that the time-course of the object-based selection process is well explained by a 'growth-cone' model, which selects surface elements in an incremental, scale-dependent manner. We discuss how the visual cortical hierarchy can implement this scale-dependent spread of object-based attention, leveraging the different receptive field sizes in distinct cortical areas.

  19. Disease quantification on PET/CT images without object delineation

    NASA Astrophysics Data System (ADS)

    Tong, Yubing; Udupa, Jayaram K.; Odhner, Dewey; Wu, Caiyun; Fitzpatrick, Danielle; Winchell, Nicole; Schuster, Stephen J.; Torigian, Drew A.

    2017-03-01

    The derivation of quantitative information from images to make quantitative radiology (QR) clinically practical continues to face a major image analysis hurdle because of image segmentation challenges. This paper presents a novel approach to disease quantification (DQ) via positron emission tomography/computed tomography (PET/CT) images that explores how to decouple DQ methods from explicit dependence on object segmentation through the use of only object recognition results to quantify disease burden. The concept of an object-dependent disease map is introduced to express disease severity without performing explicit delineation and partial volume correction of either objects or lesions. The parameters of the disease map are estimated from a set of training image data sets. The idea is illustrated on 20 lung lesions and 20 liver lesions derived from 18F-2-fluoro-2-deoxy-D-glucose (FDG)-PET/CT scans of patients with various types of cancers and also on 20 NEMA PET/CT phantom data sets. Our preliminary results show that, on phantom data sets, "disease burden" can be estimated to within 2% of known absolute true activity. Notwithstanding the difficulty in establishing true quantification on patient PET images, our results achieve 8% deviation from "true" estimates, with slightly larger deviations for small and diffuse lesions where establishing ground truth becomes really questionable, and smaller deviations for larger lesions where ground truth set up becomes more reliable. We are currently exploring extensions of the approach to include fully automated body-wide DQ, extensions to just CT or magnetic resonance imaging (MRI) alone, to PET/CT performed with radiotracers other than FDG, and other functional forms of disease maps.

  20. The design and performance characteristics of a cellular logic 3-D image classification processor

    NASA Astrophysics Data System (ADS)

    Ankeney, L. A.

    1981-04-01

    The introduction of high resolution scanning laser radar systems which are capable of collecting range and reflectivity images, is predicted to significantly influence the development of processors capable of performing autonomous target classification tasks. Actively sensed range images are shown to be superior to passively collected infrared images in both image stability and information content. An illustrated tutorial introduces cellular logic (neighborhood) transformations and two and three dimensional erosion and dilation operations which are used for noise filters and geometric shape measurement. A unique 'cookbook' approach to selecting a sequence of neighborhood transformations suitable for object measurement is developed and related to false alarm rate and algorithm effectiveness measures. The cookbook design approach is used to develop an algorithm to classify objects based upon their 3-D geometrical features. A Monte Carlo performance analysis is used to demonstrate the utility of the design approach by characterizing the ability of the algorithm to classify randomly positioned three dimensional objects in the presence of additive noise, scale variations, and other forms of image distortion.

  1. Application of GEM-based detectors in full-field XRF imaging

    NASA Astrophysics Data System (ADS)

    Dąbrowski, W.; Fiutowski, T.; Frączek, P.; Koperny, S.; Lankosz, M.; Mendys, A.; Mindur, B.; Świentek, K.; Wiącek, P.; Wróbel, P. M.

    2016-12-01

    X-ray fluorescence spectroscopy (XRF) is a commonly used technique for non-destructive elemental analysis of cultural heritage objects. It can be applied to investigations of provenance of historical objects as well as to studies of art techniques. While the XRF analysis can be easily performed locally using standard available equipment there is a growing interest in imaging of spatial distribution of specific elements. Spatial imaging of elemental distrbutions is usually realised by scanning an object with a narrow focused X-ray excitation beam and measuring characteristic fluorescence radiation using a high energy resolution detector, usually a silicon drift detector. Such a technique, called macro-XRF imaging, is suitable for investigation of flat surfaces but it is time consuming because the spatial resolution is basically determined by the spot size of the beam. Another approach is the full-field XRF, which is based on simultaneous irradiation and imaging of large area of an object. The image of the investigated area is projected by a pinhole camera on a position-sensitive and energy dispersive detector. The infinite depth of field of the pinhole camera allows one, in principle, investigation of non-flat surfaces. One of possible detectors to be employed in full-field XRF imaging is a GEM based detector with 2-dimensional readout. In the paper we report on development of an imaging system equipped with a standard 3-stage GEM detector of 10 × 10 cm2 equipped with readout electronics based on dedicated full-custom ASICs and DAQ system. With a demonstrator system we have obtained 2-D spatial resolution of the order of 100 μm and energy resolution at a level of 20% FWHM for 5.9 keV . Limitations of such a detector due to copper fluorescence radiation excited in the copper-clad drift electrode and GEM foils is discussed and performance of the detector using chromium-clad electrodes is reported.

  2. Thermal image analysis using the serpentine method

    NASA Astrophysics Data System (ADS)

    Koprowski, Robert; Wilczyński, Sławomir

    2018-03-01

    Thermal imaging is an increasingly widespread alternative to other imaging methods. As a supplementary method in diagnostics, it can be used both statically and with dynamic temperature changes. The paper proposes a new image analysis method that allows for the acquisition of new diagnostic information as well as object segmentation. The proposed serpentine analysis uses known and new methods of image analysis and processing proposed by the authors. Affine transformations of an image and subsequent Fourier analysis provide a new diagnostic quality. The method is fully repeatable and automatic and independent of inter-individual variability in patients. The segmentation results are by 10% better than those obtained from the watershed method and the hybrid segmentation method based on the Canny detector. The first and second harmonics of serpentine analysis enable to determine the type of temperature changes in the region of interest (gradient, number of heat sources etc.). The presented serpentine method provides new quantitative information on thermal imaging and more. Since it allows for image segmentation and designation of contact points of two and more heat sources (local minimum), it can be used to support medical diagnostics in many areas of medicine.

  3. Information recovery through image sequence fusion under wavelet transformation

    NASA Astrophysics Data System (ADS)

    He, Qiang

    2010-04-01

    Remote sensing is widely applied to provide information of areas with limited ground access with applications such as to assess the destruction from natural disasters and to plan relief and recovery operations. However, the data collection of aerial digital images is constrained by bad weather, atmospheric conditions, and unstable camera or camcorder. Therefore, how to recover the information from the low-quality remote sensing images and how to enhance the image quality becomes very important for many visual understanding tasks, such like feature detection, object segmentation, and object recognition. The quality of remote sensing imagery can be improved through meaningful combination of the employed images captured from different sensors or from different conditions through information fusion. Here we particularly address information fusion to remote sensing images under multi-resolution analysis in the employed image sequences. The image fusion is to recover complete information by integrating multiple images captured from the same scene. Through image fusion, a new image with high-resolution or more perceptive for human and machine is created from a time series of low-quality images based on image registration between different video frames.

  4. MR Image Analytics to Characterize the Upper Airway Structure in Obese Children with Obstructive Sleep Apnea Syndrome

    PubMed Central

    Tong, Yubing; Udupa, Jayaram K.; Sin, Sanghun; Liu, Zhengbing; Wileyto, E. Paul; Torigian, Drew A.; Arens, Raanan

    2016-01-01

    Purpose Quantitative image analysis in previous research in obstructive sleep apnea syndrome (OSAS) has focused on the upper airway or several objects in its immediate vicinity and measures of object size. In this paper, we take a more general approach of considering all major objects in the upper airway region and measures pertaining to their individual morphological properties, their tissue characteristics revealed by image intensities, and the 3D architecture of the object assembly. We propose a novel methodology to select a small set of salient features from this large collection of measures and demonstrate the ability of these features to discriminate with very high prediction accuracy between obese OSAS and obese non-OSAS groups. Materials and Methods Thirty children were involved in this study with 15 in the obese OSAS group with an apnea-hypopnea index (AHI) = 14.4 ± 10.7) and 15 in the obese non-OSAS group with an AHI = 1.0 ± 1.0 (p<0.001). Subjects were between 8–17 years and underwent T1- and T2-weighted magnetic resonance imaging (MRI) of the upper airway during wakefulness. Fourteen objects in the vicinity of the upper airways were segmented in these images and a total of 159 measurements were derived from each subject image which included object size, surface area, volume, sphericity, standardized T2-weighted image intensity value, and inter-object distances. A small set of discriminating features was identified from this set in several steps. First, a subset of measures that have a low level of correlation among the measures was determined. A heat map visualization technique that allows grouping of parameters based on correlations among them was used for this purpose. Then, through T-tests, another subset of measures which are capable of separating the two groups was identified. The intersection of these subsets yielded the final feature set. The accuracy of these features to perform classification of unseen images into the two patient groups was tested by using logistic regression and multi-fold cross validation. Results A set of 16 features identified with low inter-feature correlation (< 0.36) yielded a high classification accuracy of 96% with sensitivity and specificity of 97.8% and 94.4%, respectively. In addition to the previously observed increase in linear size, surface area, and volume of adenoid, tonsils, and fat pad in OSAS, the following new markers have been found. Standardized T2-weighted image intensities differed between the two groups for the entire neck body region, pharynx, and nasopharynx, possibly indicating changes in object tissue characteristics. Fat pad and oropharynx become less round or more complex in shape in OSAS. Fat pad and tongue move closer in OSAS, and so also oropharynx and tonsils and fat pad and tonsils. In contrast, fat pad and oropharynx move farther apart from the skin object. Conclusions The study has found several new anatomic bio-markers of OSAS. Changes in standardized T2-weighted image intensities in objects may imply that intrinsic tissue composition undergoes changes in OSAS. The results on inter-object distances imply that treatment methods should respect the relationships that exist among objects and not just their size. The proposed method of analysis may lead to an improved understanding of the mechanisms underlying OSAS. PMID:27487240

  5. Applying machine learning classification techniques to automate sky object cataloguing

    NASA Astrophysics Data System (ADS)

    Fayyad, Usama M.; Doyle, Richard J.; Weir, W. Nick; Djorgovski, Stanislav

    1993-08-01

    We describe the application of an Artificial Intelligence machine learning techniques to the development of an automated tool for the reduction of a large scientific data set. The 2nd Mt. Palomar Northern Sky Survey is nearly completed. This survey provides comprehensive coverage of the northern celestial hemisphere in the form of photographic plates. The plates are being transformed into digitized images whose quality will probably not be surpassed in the next ten to twenty years. The images are expected to contain on the order of 107 galaxies and 108 stars. Astronomers wish to determine which of these sky objects belong to various classes of galaxies and stars. Unfortunately, the size of this data set precludes analysis in an exclusively manual fashion. Our approach is to develop a software system which integrates the functions of independently developed techniques for image processing and data classification. Digitized sky images are passed through image processing routines to identify sky objects and to extract a set of features for each object. These routines are used to help select a useful set of attributes for classifying sky objects. Then GID3 (Generalized ID3) and O-B Tree, two inductive learning techniques, learns classification decision trees from examples. These classifiers will then be applied to new data. These developmnent process is highly interactive, with astronomer input playing a vital role. Astronomers refine the feature set used to construct sky object descriptions, and evaluate the performance of the automated classification technique on new data. This paper gives an overview of the machine learning techniques with an emphasis on their general applicability, describes the details of our specific application, and reports the initial encouraging results. The results indicate that our machine learning approach is well-suited to the problem. The primary benefit of the approach is increased data reduction throughput. Another benefit is consistency of classification. The classification rules which are the product of the inductive learning techniques will form an objective, examinable basis for classifying sky objects. A final, not to be underestimated benefit is that astronomers will be freed from the tedium of an intensely visual task to pursue more challenging analysis and interpretation problems based on automatically catalogued data.

  6. Research of second harmonic generation images based on texture analysis

    NASA Astrophysics Data System (ADS)

    Liu, Yao; Li, Yan; Gong, Haiming; Zhu, Xiaoqin; Huang, Zufang; Chen, Guannan

    2014-09-01

    Texture analysis plays a crucial role in identifying objects or regions of interest in an image. It has been applied to a variety of medical image processing, ranging from the detection of disease and the segmentation of specific anatomical structures, to differentiation between healthy and pathological tissues. Second harmonic generation (SHG) microscopy as a potential noninvasive tool for imaging biological tissues has been widely used in medicine, with reduced phototoxicity and photobleaching. In this paper, we clarified the principles of texture analysis including statistical, transform, structural and model-based methods and gave examples of its applications, reviewing studies of the technique. Moreover, we tried to apply texture analysis to the SHG images for the differentiation of human skin scar tissues. Texture analysis method based on local binary pattern (LBP) and wavelet transform was used to extract texture features of SHG images from collagen in normal and abnormal scars, and then the scar SHG images were classified into normal or abnormal ones. Compared with other texture analysis methods with respect to the receiver operating characteristic analysis, LBP combined with wavelet transform was demonstrated to achieve higher accuracy. It can provide a new way for clinical diagnosis of scar types. At last, future development of texture analysis in SHG images were discussed.

  7. Cnn Based Retinal Image Upscaling Using Zero Component Analysis

    NASA Astrophysics Data System (ADS)

    Nasonov, A.; Chesnakov, K.; Krylov, A.

    2017-05-01

    The aim of the paper is to obtain high quality of image upscaling for noisy images that are typical in medical image processing. A new training scenario for convolutional neural network based image upscaling method is proposed. Its main idea is a novel dataset preparation method for deep learning. The dataset contains pairs of noisy low-resolution images and corresponding noiseless highresolution images. To achieve better results at edges and textured areas, Zero Component Analysis is applied to these images. The upscaling results are compared with other state-of-the-art methods like DCCI, SI-3 and SRCNN on noisy medical ophthalmological images. Objective evaluation of the results confirms high quality of the proposed method. Visual analysis shows that fine details and structures like blood vessels are preserved, noise level is reduced and no artifacts or non-existing details are added. These properties are essential in retinal diagnosis establishment, so the proposed algorithm is recommended to be used in real medical applications.

  8. Detection of reflecting surfaces by a statistical model

    NASA Astrophysics Data System (ADS)

    He, Qiang; Chu, Chee-Hung H.

    2009-02-01

    Remote sensing is widely used assess the destruction from natural disasters and to plan relief and recovery operations. How to automatically extract useful features and segment interesting objects from digital images, including remote sensing imagery, becomes a critical task for image understanding. Unfortunately, current research on automated feature extraction is ignorant of contextual information. As a result, the fidelity of populating attributes corresponding to interesting features and objects cannot be satisfied. In this paper, we present an exploration on meaningful object extraction integrating reflecting surfaces. Detection of specular reflecting surfaces can be useful in target identification and then can be applied to environmental monitoring, disaster prediction and analysis, military, and counter-terrorism. Our method is based on a statistical model to capture the statistical properties of specular reflecting surfaces. And then the reflecting surfaces are detected through cluster analysis.

  9. Image acquisition with immersion objective lenses using electrons emitted with several tenths of an electron volt energies: towards high spatial resolution ESCA analysis.

    PubMed

    Bernheim, M

    2006-03-01

    This study aims to evaluate the spatial resolution achievable with photoelectrons in order to perform localised UPS or XPS analyses on various heterogeneous samples. This investigation is intentionally restricted to direct image acquisition by immersion objective lenses, involving electrons ejected with initial energies of several tenths of an electron-volt. In order to characterise the contribution of all optical elements, analytical investigations were associated to numerical simulations based on SIMION 7 software. The acquisition of high-quality images implies a simultaneous reduction in spherical and chromatic aberrations by a narrow aperture stop placed at the output pupil of the objective. With such limitations in useful emission angles, it is shown that monochromatic electron beams build images with a resolution of about 1 nm, especially for the acceleration bias mode where the focussing electrode is biased at a positive high voltage. Even energy dispersed electron beams, limited by a 4 eV band pass spectrometer, can produce images convenient for highly localised ESCA analyses (resolution 3 nm), where the objective lens is associated with an aperture stop of 30 microm in diameter without using acceleration voltages above 5000 V.

  10. Fusing Image Data for Calculating Position of an Object

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance; Cheng, Yang; Liebersbach, Robert; Trebi-Ollenu, Ashitey

    2007-01-01

    A computer program has been written for use in maintaining the calibration, with respect to the positions of imaged objects, of a stereoscopic pair of cameras on each of the Mars Explorer Rovers Spirit and Opportunity. The program identifies and locates a known object in the images. The object in question is part of a Moessbauer spectrometer located at the tip of a robot arm, the kinematics of which are known. In the program, the images are processed through a module that extracts edges, combines the edges into line segments, and then derives ellipse centroids from the line segments. The images are also processed by a feature-extraction algorithm that performs a wavelet analysis, then performs a pattern-recognition operation in the wavelet-coefficient space to determine matches to a texture feature measure derived from the horizontal, vertical, and diagonal coefficients. The centroids from the ellipse finder and the wavelet feature matcher are then fused to determine co-location. In the event that a match is found, the centroid (or centroids if multiple matches are present) is reported. If no match is found, the process reports the results of the analyses for further examination by human experts.

  11. A robust object-based shadow detection method for cloud-free high resolution satellite images over urban areas and water bodies

    NASA Astrophysics Data System (ADS)

    Tatar, Nurollah; Saadatseresht, Mohammad; Arefi, Hossein; Hadavand, Ahmad

    2018-06-01

    Unwanted contrast in high resolution satellite images such as shadow areas directly affects the result of further processing in urban remote sensing images. Detecting and finding the precise position of shadows is critical in different remote sensing processing chains such as change detection, image classification and digital elevation model generation from stereo images. The spectral similarity between shadow areas, water bodies, and some dark asphalt roads makes the development of robust shadow detection algorithms challenging. In addition, most of the existing methods work on pixel-level and neglect the contextual information contained in neighboring pixels. In this paper, a new object-based shadow detection framework is introduced. In the proposed method a pixel-level shadow mask is built by extending established thresholding methods with a new C4 index which enables to solve the ambiguity of shadow and water bodies. Then the pixel-based results are further processed in an object-based majority analysis to detect the final shadow objects. Four different high resolution satellite images are used to validate this new approach. The result shows the superiority of the proposed method over some state-of-the-art shadow detection method with an average of 96% in F-measure.

  12. Design and applications of a multimodality image data warehouse framework.

    PubMed

    Wong, Stephen T C; Hoo, Kent Soo; Knowlton, Robert C; Laxer, Kenneth D; Cao, Xinhau; Hawkins, Randall A; Dillon, William P; Arenson, Ronald L

    2002-01-01

    A comprehensive data warehouse framework is needed, which encompasses imaging and non-imaging information in supporting disease management and research. The authors propose such a framework, describe general design principles and system architecture, and illustrate a multimodality neuroimaging data warehouse system implemented for clinical epilepsy research. The data warehouse system is built on top of a picture archiving and communication system (PACS) environment and applies an iterative object-oriented analysis and design (OOAD) approach and recognized data interface and design standards. The implementation is based on a Java CORBA (Common Object Request Broker Architecture) and Web-based architecture that separates the graphical user interface presentation, data warehouse business services, data staging area, and backend source systems into distinct software layers. To illustrate the practicality of the data warehouse system, the authors describe two distinct biomedical applications--namely, clinical diagnostic workup of multimodality neuroimaging cases and research data analysis and decision threshold on seizure foci lateralization. The image data warehouse framework can be modified and generalized for new application domains.

  13. Design and Applications of a Multimodality Image Data Warehouse Framework

    PubMed Central

    Wong, Stephen T.C.; Hoo, Kent Soo; Knowlton, Robert C.; Laxer, Kenneth D.; Cao, Xinhau; Hawkins, Randall A.; Dillon, William P.; Arenson, Ronald L.

    2002-01-01

    A comprehensive data warehouse framework is needed, which encompasses imaging and non-imaging information in supporting disease management and research. The authors propose such a framework, describe general design principles and system architecture, and illustrate a multimodality neuroimaging data warehouse system implemented for clinical epilepsy research. The data warehouse system is built on top of a picture archiving and communication system (PACS) environment and applies an iterative object-oriented analysis and design (OOAD) approach and recognized data interface and design standards. The implementation is based on a Java CORBA (Common Object Request Broker Architecture) and Web-based architecture that separates the graphical user interface presentation, data warehouse business services, data staging area, and backend source systems into distinct software layers. To illustrate the practicality of the data warehouse system, the authors describe two distinct biomedical applications—namely, clinical diagnostic workup of multimodality neuroimaging cases and research data analysis and decision threshold on seizure foci lateralization. The image data warehouse framework can be modified and generalized for new application domains. PMID:11971885

  14. Automated Ontology Generation Using Spatial Reasoning

    NASA Astrophysics Data System (ADS)

    Coalter, Alton; Leopold, Jennifer L.

    Recently there has been much interest in using ontologies to facilitate knowledge representation, integration, and reasoning. Correspondingly, the extent of the information embodied by an ontology is increasing beyond the conventional is_a and part_of relationships. To address these requirements, a vast amount of digitally available information may need to be considered when building ontologies, prompting a desire for software tools to automate at least part of the process. The main efforts in this direction have involved textual information retrieval and extraction methods. For some domains extension of the basic relationships could be enhanced further by the analysis of 2D and/or 3D images. For this type of media, image processing algorithms are more appropriate than textual analysis methods. Herein we present an algorithm that, given a collection of 3D image files, utilizes Qualitative Spatial Reasoning (QSR) to automate the creation of an ontology for the objects represented by the images, relating the objects in terms of is_a and part_of relationships and also through unambiguous Relational Connection Calculus (RCC) relations.

  15. Evaluation of browning ratio in an image analysis of apple slices at different stages of instant controlled pressure drop-assisted hot-air drying (AD-DIC).

    PubMed

    Gao, Kun; Zhou, Linyan; Bi, Jinfeng; Yi, Jianyong; Wu, Xinye; Zhou, Mo; Wang, Xueyuan; Liu, Xuan

    2017-06-01

    Computer vision-based image analysis systems are widely used in food processing to evaluate quality changes. They are able to objectively measure the surface colour of various products since, providing some obvious advantages with their objectivity and quantitative capabilities. In this study, a computer vision-based image analysis system was used to investigate the colour changes of apple slices dried by instant controlled pressure drop-assisted hot air drying (AD-DIC). The CIE L* value and polyphenol oxidase activity in apple slices decreased during the entire drying process, whereas other colour indexes, including CIE a*, b*, ΔE and C* values, increased. The browning ratio calculated by image analysis increased during the drying process, and a sharp increment was observed for the DIC process. The change in 5-hydroxymethylfurfural (5-HMF) and fluorescent compounds (FIC) showed the same trend with browning ratio due to Maillard reaction. Moreover, the concentrations of 5-HMF and FIC both had a good quadratic correlation (R 2  > 0.998) with the browning ratio. Browning ratio was a reliable indicator of 5-HMF and FIC changes in apple slices during drying. The image analysis system could be used to monitor colour changes, 5-HMF and FIC in dehydrated apple slices during the AD-DIC process. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  16. A novel visual saliency analysis model based on dynamic multiple feature combination strategy

    NASA Astrophysics Data System (ADS)

    Lv, Jing; Ye, Qi; Lv, Wen; Zhang, Libao

    2017-06-01

    The human visual system can quickly focus on a small number of salient objects. This process was known as visual saliency analysis and these salient objects are called focus of attention (FOA). The visual saliency analysis mechanism can be used to extract the salient regions and analyze saliency of object in an image, which is time-saving and can avoid unnecessary costs of computing resources. In this paper, a novel visual saliency analysis model based on dynamic multiple feature combination strategy is introduced. In the proposed model, we first generate multi-scale feature maps of intensity, color and orientation features using Gaussian pyramids and the center-surround difference. Then, we evaluate the contribution of all feature maps to the saliency map according to the area of salient regions and their average intensity, and attach different weights to different features according to their importance. Finally, we choose the largest salient region generated by the region growing method to perform the evaluation. Experimental results show that the proposed model cannot only achieve higher accuracy in saliency map computation compared with other traditional saliency analysis models, but also extract salient regions with arbitrary shapes, which is of great value for the image analysis and understanding.

  17. Estimation of the stand ages of tropical secondary forests after shifting cultivation based on the combination of WorldView-2 and time-series Landsat images

    NASA Astrophysics Data System (ADS)

    Fujiki, Shogoro; Okada, Kei-ichi; Nishio, Shogo; Kitayama, Kanehiro

    2016-09-01

    We developed a new method to estimate stand ages of secondary vegetation in the Bornean montane zone, where local people conduct traditional shifting cultivation and protected areas are surrounded by patches of recovering secondary vegetation of various ages. Identifying stand ages at the landscape level is critical to improve conservation policies. We combined a high-resolution satellite image (WorldView-2) with time-series Landsat images. We extracted stand ages (the time elapsed since the most recent slash and burn) from a change-detection analysis with Landsat time-series images and superimposed the derived stand ages on the segments classified by object-based image analysis using WorldView-2. We regarded stand ages as a response variable, and object-based metrics as independent variables, to develop regression models that explain stand ages. Subsequently, we classified the vegetation of the target area into six age units and one rubber plantation unit (1-3 yr, 3-5 yr, 5-7 yr, 7-30 yr, 30-50 yr, >50 yr and 'rubber plantation') using regression models and linear discriminant analyses. Validation demonstrated an accuracy of 84.3%. Our approach is particularly effective in classifying highly dynamic pioneer vegetation younger than 7 years into 2-yr intervals, suggesting that rapid changes in vegetation canopies can be detected with high accuracy. The combination of a spectral time-series analysis and object-based metrics based on high-resolution imagery enabled the classification of dynamic vegetation under intensive shifting cultivation and yielded an informative land cover map based on stand ages.

  18. Object-Based Image Analysis of WORLDVIEW-2 Satellite Data for the Classification of Mangrove Areas in the City of SÃO LUÍS, MARANHÃO State, Brazil

    NASA Astrophysics Data System (ADS)

    Kux, H. J. H.; Souza, U. D. V.

    2012-07-01

    Taking into account the importance of mangrove environments for the biodiversity of coastal areas, the objective of this paper is to classify the different types of irregular human occupation on the areas of mangrove vegetation in São Luis, capital of Maranhão State, Brazil, considering the OBIA (Object-based Image Analysis) approach with WorldView-2 satellite data and using InterIMAGE, a free image analysis software. A methodology for the study of the area covered by mangroves at the northern portion of the city was proposed to identify the main targets of this area, such as: marsh areas (known locally as Apicum), mangrove forests, tidal channels, blockhouses (irregular constructions), embankments, paved streets and different condominiums. Initially a databank including information on the main types of occupation and environments was established for the area under study. An image fusion (multispectral bands with panchromatic band) was done, to improve the information content of WorldView-2 data. Following an ortho-rectification was made with the dataset used, in order to compare with cartographical data from the municipality, using Ground Control Points (GCPs) collected during field survey. Using the data mining software GEODMA, a series of attributes which characterize the targets of interest was established. Afterwards the classes were structured, a knowledge model was created and the classification performed. The OBIA approach eased mapping of such sensitive areas, showing the irregular occupations and embankments of mangrove forests, reducing its area and damaging the marine biodiversity.

  19. Automatic morphological classification of galaxy images

    PubMed Central

    Shamir, Lior

    2009-01-01

    We describe an image analysis supervised learning algorithm that can automatically classify galaxy images. The algorithm is first trained using a manually classified images of elliptical, spiral, and edge-on galaxies. A large set of image features is extracted from each image, and the most informative features are selected using Fisher scores. Test images can then be classified using a simple Weighted Nearest Neighbor rule such that the Fisher scores are used as the feature weights. Experimental results show that galaxy images from Galaxy Zoo can be classified automatically to spiral, elliptical and edge-on galaxies with accuracy of ~90% compared to classifications carried out by the author. Full compilable source code of the algorithm is available for free download, and its general-purpose nature makes it suitable for other uses that involve automatic image analysis of celestial objects. PMID:20161594

  20. a Cognitive Approach to Teaching a Graduate-Level Geobia Course

    NASA Astrophysics Data System (ADS)

    Bianchetti, Raechel A.

    2016-06-01

    Remote sensing image analysis training occurs both in the classroom and the research lab. Education in the classroom for traditional pixel-based image analysis has been standardized across college curriculums. However, with the increasing interest in Geographic Object-Based Image Analysis (GEOBIA), there is a need to develop classroom instruction for this method of image analysis. While traditional remote sensing courses emphasize the expansion of skills and knowledge related to the use of computer-based analysis, GEOBIA courses should examine the cognitive factors underlying visual interpretation. This current paper provides an initial analysis of the development, implementation, and outcomes of a GEOBIA course that considers not only the computational methods of GEOBIA, but also the cognitive factors of expertise, that such software attempts to replicate. Finally, a reflection on the first instantiation of this course is presented, in addition to plans for development of an open-source repository for course materials.

  1. Multi-object segmentation using coupled nonparametric shape and relative pose priors

    NASA Astrophysics Data System (ADS)

    Uzunbas, Mustafa Gökhan; Soldea, Octavian; Çetin, Müjdat; Ünal, Gözde; Erçil, Aytül; Unay, Devrim; Ekin, Ahmet; Firat, Zeynep

    2009-02-01

    We present a new method for multi-object segmentation in a maximum a posteriori estimation framework. Our method is motivated by the observation that neighboring or coupling objects in images generate configurations and co-dependencies which could potentially aid in segmentation if properly exploited. Our approach employs coupled shape and inter-shape pose priors that are computed using training images in a nonparametric multi-variate kernel density estimation framework. The coupled shape prior is obtained by estimating the joint shape distribution of multiple objects and the inter-shape pose priors are modeled via standard moments. Based on such statistical models, we formulate an optimization problem for segmentation, which we solve by an algorithm based on active contours. Our technique provides significant improvements in the segmentation of weakly contrasted objects in a number of applications. In particular for medical image analysis, we use our method to extract brain Basal Ganglia structures, which are members of a complex multi-object system posing a challenging segmentation problem. We also apply our technique to the problem of handwritten character segmentation. Finally, we use our method to segment cars in urban scenes.

  2. Stereoscopic Machine-Vision System Using Projected Circles

    NASA Technical Reports Server (NTRS)

    Mackey, Jeffrey R.

    2010-01-01

    A machine-vision system capable of detecting obstacles large enough to damage or trap a robotic vehicle is undergoing development. The system includes (1) a pattern generator that projects concentric circles of laser light forward onto the terrain, (2) a stereoscopic pair of cameras that are aimed forward to acquire images of the circles, (3) a frame grabber and digitizer for acquiring image data from the cameras, and (4) a single-board computer that processes the data. The system is being developed as a prototype of machine- vision systems to enable robotic vehicles ( rovers ) on remote planets to avoid craters, large rocks, and other terrain features that could capture or damage the vehicles. Potential terrestrial applications of systems like this one could include terrain mapping, collision avoidance, navigation of robotic vehicles, mining, and robotic rescue. This system is based partly on the same principles as those of a prior stereoscopic machine-vision system in which the cameras acquire images of a single stripe of laser light that is swept forward across the terrain. However, this system is designed to afford improvements over some of the undesirable features of the prior system, including the need for a pan-and-tilt mechanism to aim the laser to generate the swept stripe, ambiguities in interpretation of the single-stripe image, the time needed to sweep the stripe across the terrain and process the data from many images acquired during that time, and difficulty of calibration because of the narrowness of the stripe. In this system, the pattern generator does not contain any moving parts and need not be mounted on a pan-and-tilt mechanism: the pattern of concentric circles is projected steadily in the forward direction. The system calibrates itself by use of data acquired during projection of the concentric-circle pattern onto a known target representing flat ground. The calibration- target image data are stored in the computer memory for use as a template in processing terrain images. During operation on terrain, the images acquired by the left and right cameras are analyzed. The analysis includes (1) computation of the horizontal and vertical dimensions and the aspect ratios of rectangles that bound the circle images and (2) comparison of these aspect ratios with those of the template. Coordinates of distortions of the circles are used to identify and locate objects. If the analysis leads to identification of an object of significant size, then stereoscopicvision algorithms are used to estimate the distance to the object. The time taken in performing this analysis on a single pair of images acquired by the left and right cameras in this system is a fraction of the time taken in processing the many pairs of images acquired in a sweep of the laser stripe across the field of view in the prior system. The results of the analysis include data on sizes and shapes of, and distances and directions to, objects. Coordinates of objects are updated as the vehicle moves so that intelligent decisions regarding speed and direction can be made. The results of the analysis are utilized in a computational decision-making process that generates obstacle-avoidance data and feeds those data to the control system of the robotic vehicle.

  3. GEOBIA For Land Use Mapping Using Worldview2 Image In Bengkak Village Coastal, Banyuwangi Regency, East Java

    NASA Astrophysics Data System (ADS)

    Alrassi, Fitzastri; Salim, Emil; Nina, Anastasia; Alwi, Luthfi; Danoedoro, Projo; Kamal, Muhammad

    2016-11-01

    The east coast of Banyuwangi regency has a diverse variety of land use such as ponds, mangroves, agricultural fields and settlements. WorldView-2 is a multispectral image with high spatial resolution that can display detailed information of land use. Geographic Object Based Image Analysis (GEOBIA) classification technique uses object segments as the smallest unit of analysis. The segmentation and classification process is not only based on spectral value of the image but also considering other elements of the image interpretation. This gives GEOBIA an opportunities and challenges in the mapping and monitoring of land use. This research aims to assess the GEOBIA classification method for generating the classification of land use in coastal areas of Banyuwangi. The result of this study is land use classification map produced by GEOBIA classification. We verified the accuracy of the resulted land use map by comparing the map with result from visual interpretation of the image that have been validated through field surveys. Variation of land use in most of the east coast of Banyuwangi regency is dominated by mangrove, agricultural fields, mixed farms, settlements and ponds.

  4. Object-oriented analysis and design of an ECG storage and retrieval system integrated with an HIS.

    PubMed

    Wang, C; Ohe, K; Sakurai, T; Nagase, T; Kaihara, S

    1996-03-01

    For a hospital information system, object-oriented methodology plays an increasingly important role, especially for the management of digitized data, e.g., the electrocardiogram, electroencephalogram, electromyogram, spirogram, X-ray, CT and histopathological images, which are not yet computerized in most hospitals. As a first step in an object-oriented approach to hospital information management and storing medical data in an object-oriented database, we connected electrocardiographs to a hospital network and established the integration of ECG storage and retrieval systems with a hospital information system. In this paper, the object-oriented analysis and design of the ECG storage and retrieval systems is reported.

  5. Virtual-reality techniques resolve the visual cues used by fruit flies to evaluate object distances.

    PubMed

    Schuster, Stefan; Strauss, Roland; Götz, Karl G

    2002-09-17

    Insects can estimate distance or time-to-contact of surrounding objects from locomotion-induced changes in their retinal position and/or size. Freely walking fruit flies (Drosophila melanogaster) use the received mixture of different distance cues to select the nearest objects for subsequent visits. Conventional methods of behavioral analysis fail to elucidate the underlying data extraction. Here we demonstrate first comprehensive solutions of this problem by substituting virtual for real objects; a tracker-controlled 360 degrees panorama converts a fruit fly's changing coordinates into object illusions that require the perception of specific cues to appear at preselected distances up to infinity. An application reveals the following: (1) en-route sampling of retinal-image changes accounts for distance discrimination within a surprising range of at least 8-80 body lengths (20-200 mm). Stereopsis and peering are not involved. (2) Distance from image translation in the expected direction (motion parallax) outweighs distance from image expansion, which accounts for impact-avoiding flight reactions to looming objects. (3) The ability to discriminate distances is robust to artificially delayed updating of image translation. Fruit flies appear to interrelate self-motion and its visual feedback within a surprisingly long time window of about 2 s. The comparative distance inspection practiced in the small fruit fly deserves utilization in self-moving robots.

  6. Heuristic Analysis Model of Nitrided Layers’ Formation Consisting of the Image Processing and Analysis and Elements of Artificial Intelligence

    PubMed Central

    Wójcicki, Tomasz; Nowicki, Michał

    2016-01-01

    The article presents a selected area of research and development concerning the methods of material analysis based on the automatic image recognition of the investigated metallographic sections. The objectives of the analyses of the materials for gas nitriding technology are described. The methods of the preparation of nitrided layers, the steps of the process and the construction and operation of devices for gas nitriding are given. We discuss the possibility of using the methods of digital images processing in the analysis of the materials, as well as their essential task groups: improving the quality of the images, segmentation, morphological transformations and image recognition. The developed analysis model of the nitrided layers formation, covering image processing and analysis techniques, as well as selected methods of artificial intelligence are presented. The model is divided into stages, which are formalized in order to better reproduce their actions. The validation of the presented method is performed. The advantages and limitations of the developed solution, as well as the possibilities of its practical use, are listed. PMID:28773389

  7. Interactive tele-radiological segmentation systems for treatment and diagnosis.

    PubMed

    Zimeras, S; Gortzis, L G

    2012-01-01

    Telehealth is the exchange of health information and the provision of health care services through electronic information and communications technology, where participants are separated by geographic, time, social and cultural barriers. The shift of telemedicine from desktop platforms to wireless and mobile technologies is likely to have a significant impact on healthcare in the future. It is therefore crucial to develop a general information exchange e-medical system to enables its users to perform online and offline medical consultations through diagnosis. During the medical diagnosis, image analysis techniques combined with doctor's opinions could be useful for final medical decisions. Quantitative analysis of digital images requires detection and segmentation of the borders of the object of interest. In medical images, segmentation has traditionally been done by human experts. Even with the aid of image processing software (computer-assisted segmentation tools), manual segmentation of 2D and 3D CT images is tedious, time-consuming, and thus impractical, especially in cases where a large number of objects must be specified. Substantial computational and storage requirements become especially acute when object orientation and scale have to be considered. Therefore automated or semi-automated segmentation techniques are essential if these software applications are ever to gain widespread clinical use. The main purpose of this work is to analyze segmentation techniques for the definition of anatomical structures under telemedical systems.

  8. Spectral features based tea garden extraction from digital orthophoto maps

    NASA Astrophysics Data System (ADS)

    Jamil, Akhtar; Bayram, Bulent; Kucuk, Turgay; Zafer Seker, Dursun

    2018-05-01

    The advancements in the photogrammetry and remote sensing technologies has made it possible to extract useful tangible information from data which plays a pivotal role in various application such as management and monitoring of forests and agricultural lands etc. This study aimed to evaluate the effectiveness of spectral signatures for extraction of tea gardens from 1 : 5000 scaled digital orthophoto maps obtained from Rize city in Turkey. First, the normalized difference vegetation index (NDVI) was derived from the input images to suppress the non-vegetation areas. NDVI values less than zero were discarded and the output images was normalized in the range 0-255. Individual pixels were then mapped into meaningful objects using global region growing technique. The resulting image was filtered and smoothed to reduce the impact of noise. Furthermore, geometrical constraints were applied to remove small objects (less than 500 pixels) followed by morphological opening operator to enhance the results. These objects served as building blocks for further image analysis. Finally, for the classification stage, a range of spectral values were empirically calculated for each band and applied on candidate objects to extract tea gardens. For accuracy assessment, we employed an area based similarity metric by overlapping obtained tea garden boundaries with the manually digitized tea garden boundaries created by experts of photogrammetry. The overall accuracy of the proposed method scored 89 % for tea gardens from 10 sample orthophoto maps. We concluded that exploiting the spectral signatures using object based analysis is an effective technique for extraction of dominant tree species from digital orthophoto maps.

  9. Vaccine Images on Twitter: Analysis of What Images are Shared.

    PubMed

    Chen, Tao; Dredze, Mark

    2018-04-03

    Visual imagery plays a key role in health communication; however, there is little understanding of what aspects of vaccine-related images make them effective communication aids. Twitter, a popular venue for discussions related to vaccination, provides numerous images that are shared with tweets. The objectives of this study were to understand how images are used in vaccine-related tweets and provide guidance with respect to the characteristics of vaccine-related images that correlate with the higher likelihood of being retweeted. We collected more than one million vaccine image messages from Twitter and characterized various properties of these images using automated image analytics. We fit a logistic regression model to predict whether or not a vaccine image tweet was retweeted, thus identifying characteristics that correlate with a higher likelihood of being shared. For comparison, we built similar models for the sharing of vaccine news on Facebook and for general image tweets. Most vaccine-related images are duplicates (125,916/237,478; 53.02%) or taken from other sources, not necessarily created by the author of the tweet. Almost half of the images contain embedded text, and many include images of people and syringes. The visual content is highly correlated with a tweet's textual topics. Vaccine image tweets are twice as likely to be shared as nonimage tweets. The sentiment of an image and the objects shown in the image were the predictive factors in determining whether an image was retweeted. We are the first to study vaccine images on Twitter. Our findings suggest future directions for the study and use of vaccine imagery and may inform communication strategies around vaccination. Furthermore, our study demonstrates an effective study methodology for image analysis. ©Tao Chen, Mark Dredze. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 03.04.2018.

  10. Building Change Detection in Very High Resolution Satellite Stereo Image Time Series

    NASA Astrophysics Data System (ADS)

    Tian, J.; Qin, R.; Cerra, D.; Reinartz, P.

    2016-06-01

    There is an increasing demand for robust methods on urban sprawl monitoring. The steadily increasing number of high resolution and multi-view sensors allows producing datasets with high temporal and spatial resolution; however, less effort has been dedicated to employ very high resolution (VHR) satellite image time series (SITS) to monitor the changes in buildings with higher accuracy. In addition, these VHR data are often acquired from different sensors. The objective of this research is to propose a robust time-series data analysis method for VHR stereo imagery. Firstly, the spatial-temporal information of the stereo imagery and the Digital Surface Models (DSMs) generated from them are combined, and building probability maps (BPM) are calculated for all acquisition dates. In the second step, an object-based change analysis is performed based on the derivative features of the BPM sets. The change consistence between object-level and pixel-level are checked to remove any outlier pixels. Results are assessed on six pairs of VHR satellite images acquired within a time span of 7 years. The evaluation results have proved the efficiency of the proposed method.

  11. CellProfiler Tracer: exploring and validating high-throughput, time-lapse microscopy image data.

    PubMed

    Bray, Mark-Anthony; Carpenter, Anne E

    2015-11-04

    Time-lapse analysis of cellular images is an important and growing need in biology. Algorithms for cell tracking are widely available; what researchers have been missing is a single open-source software package to visualize standard tracking output (from software like CellProfiler) in a way that allows convenient assessment of track quality, especially for researchers tuning tracking parameters for high-content time-lapse experiments. This makes quality assessment and algorithm adjustment a substantial challenge, particularly when dealing with hundreds of time-lapse movies collected in a high-throughput manner. We present CellProfiler Tracer, a free and open-source tool that complements the object tracking functionality of the CellProfiler biological image analysis package. Tracer allows multi-parametric morphological data to be visualized on object tracks, providing visualizations that have already been validated within the scientific community for time-lapse experiments, and combining them with simple graph-based measures for highlighting possible tracking artifacts. CellProfiler Tracer is a useful, free tool for inspection and quality control of object tracking data, available from http://www.cellprofiler.org/tracer/.

  12. Analysis of Variance in Statistical Image Processing

    NASA Astrophysics Data System (ADS)

    Kurz, Ludwik; Hafed Benteftifa, M.

    1997-04-01

    A key problem in practical image processing is the detection of specific features in a noisy image. Analysis of variance (ANOVA) techniques can be very effective in such situations, and this book gives a detailed account of the use of ANOVA in statistical image processing. The book begins by describing the statistical representation of images in the various ANOVA models. The authors present a number of computationally efficient algorithms and techniques to deal with such problems as line, edge, and object detection, as well as image restoration and enhancement. By describing the basic principles of these techniques, and showing their use in specific situations, the book will facilitate the design of new algorithms for particular applications. It will be of great interest to graduate students and engineers in the field of image processing and pattern recognition.

  13. The public cancer radiology imaging collections of The Cancer Imaging Archive.

    PubMed

    Prior, Fred; Smith, Kirk; Sharma, Ashish; Kirby, Justin; Tarbox, Lawrence; Clark, Ken; Bennett, William; Nolan, Tracy; Freymann, John

    2017-09-19

    The Cancer Imaging Archive (TCIA) is the U.S. National Cancer Institute's repository for cancer imaging and related information. TCIA contains 30.9 million radiology images representing data collected from approximately 37,568 subjects. This data is organized into collections by tumor-type with many collections also including analytic results or clinical data. TCIA staff carefully de-identify and curate all incoming collections prior to making the information available via web browser or programmatic interfaces. Each published collection within TCIA is assigned a Digital Object Identifier that references the collection. Additionally, researchers who use TCIA data may publish the subset of information used in their analysis by requesting a TCIA generated Digital Object Identifier. This data descriptor is a review of a selected subset of existing publicly available TCIA collections. It outlines the curation and publication methods employed by TCIA and makes available 15 collections of cancer imaging data.

  14. Fringe image processing based on structured light series

    NASA Astrophysics Data System (ADS)

    Gai, Shaoyan; Da, Feipeng; Li, Hongyan

    2009-11-01

    The code analysis of the fringe image is playing a vital role in the data acquisition of structured light systems, which affects precision, computational speed and reliability of the measurement processing. According to the self-normalizing characteristic, a fringe image processing method based on structured light is proposed. In this method, a series of projective patterns is used when detecting the fringe order of the image pixels. The structured light system geometry is presented, which consist of a white light projector and a digital camera, the former projects sinusoidal fringe patterns upon the object, and the latter acquires the fringe patterns that are deformed by the object's shape. Then the binary images with distinct white and black strips can be obtained and the ability to resist image noise is improved greatly. The proposed method can be implemented easily and applied for profile measurement based on special binary code in a wide field.

  15. Radar data processing and analysis

    NASA Technical Reports Server (NTRS)

    Ausherman, D.; Larson, R.; Liskow, C.

    1976-01-01

    Digitized four-channel radar images corresponding to particular areas from the Phoenix and Huntington test sites were generated in conjunction with prior experiments performed to collect X- and L-band synthetic aperture radar imagery of these two areas. The methods for generating this imagery are documented. A secondary objective was the investigation of digital processing techniques for extraction of information from the multiband radar image data. Following the digitization, the remaining resources permitted a preliminary machine analysis to be performed on portions of the radar image data. The results, although necessarily limited, are reported.

  16. Adaptive thresholding image series from fluorescence confocal scanning laser microscope using orientation intensity profiles

    NASA Astrophysics Data System (ADS)

    Feng, Judy J.; Ip, Horace H.; Cheng, Shuk H.

    2004-05-01

    Many grey-level thresholding methods based on histogram or other statistic information about the interest image such as maximum entropy and so on have been proposed in the past. However, most methods based on statistic analysis of the images concerned little about the characteristics of morphology of interest objects, which sometimes could provide very important indication which can help to find the optimum threshold, especially for those organisms which have special texture morphologies such as vasculature, neuro-network etc. in medical imaging. In this paper, we propose a novel method for thresholding the fluorescent vasculature image series recorded from Confocal Scanning Laser Microscope. After extracting the basic orientation of the slice of vessels inside a sub-region partitioned from the images, we analysis the intensity profiles perpendicular to the vessel orientation to get the reasonable initial threshold for each region. Then the threshold values of those regions near the interest one both in x-y and optical directions have been referenced to get the final result of thresholds of the region, which makes the whole stack of images look more continuous. The resulting images are characterized by suppressing both noise and non-interest tissues conglutinated to vessels, while improving the vessel connectivities and edge definitions. The value of the method for idealized thresholding the fluorescence images of biological objects is demonstrated by a comparison of the results of 3D vascular reconstruction.

  17. Automated Micro-Object Detection for Mobile Diagnostics Using Lens-Free Imaging Technology

    PubMed Central

    Roy, Mohendra; Seo, Dongmin; Oh, Sangwoo; Chae, Yeonghun; Nam, Myung-Hyun; Seo, Sungkyu

    2016-01-01

    Lens-free imaging technology has been extensively used recently for microparticle and biological cell analysis because of its high throughput, low cost, and simple and compact arrangement. However, this technology still lacks a dedicated and automated detection system. In this paper, we describe a custom-developed automated micro-object detection method for a lens-free imaging system. In our previous work (Roy et al.), we developed a lens-free imaging system using low-cost components. This system was used to generate and capture the diffraction patterns of micro-objects and a global threshold was used to locate the diffraction patterns. In this work we used the same setup to develop an improved automated detection and analysis algorithm based on adaptive threshold and clustering of signals. For this purpose images from the lens-free system were then used to understand the features and characteristics of the diffraction patterns of several types of samples. On the basis of this information, we custom-developed an automated algorithm for the lens-free imaging system. Next, all the lens-free images were processed using this custom-developed automated algorithm. The performance of this approach was evaluated by comparing the counting results with standard optical microscope results. We evaluated the counting results for polystyrene microbeads, red blood cells, HepG2, HeLa, and MCF7 cells lines. The comparison shows good agreement between the systems, with a correlation coefficient of 0.91 and linearity slope of 0.877. We also evaluated the automated size profiles of the microparticle samples. This Wi-Fi-enabled lens-free imaging system, along with the dedicated software, possesses great potential for telemedicine applications in resource-limited settings. PMID:27164146

  18. Bacterial cell identification in differential interference contrast microscopy images.

    PubMed

    Obara, Boguslaw; Roberts, Mark A J; Armitage, Judith P; Grau, Vicente

    2013-04-23

    Microscopy image segmentation lays the foundation for shape analysis, motion tracking, and classification of biological objects. Despite its importance, automated segmentation remains challenging for several widely used non-fluorescence, interference-based microscopy imaging modalities. For example in differential interference contrast microscopy which plays an important role in modern bacterial cell biology. Therefore, new revolutions in the field require the development of tools, technologies and work-flows to extract and exploit information from interference-based imaging data so as to achieve new fundamental biological insights and understanding. We have developed and evaluated a high-throughput image analysis and processing approach to detect and characterize bacterial cells and chemotaxis proteins. Its performance was evaluated using differential interference contrast and fluorescence microscopy images of Rhodobacter sphaeroides. Results demonstrate that the proposed approach provides a fast and robust method for detection and analysis of spatial relationship between bacterial cells and their chemotaxis proteins.

  19. Segmenting Images for a Better Diagnosis

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA's Hierarchical Segmentation (HSEG) software has been adapted by Bartron Medical Imaging, LLC, for use in segmentation feature extraction, pattern recognition, and classification of medical images. Bartron acquired licenses from NASA Goddard Space Flight Center for application of the HSEG concept to medical imaging, from the California Institute of Technology/Jet Propulsion Laboratory to incorporate pattern-matching software, and from Kennedy Space Center for data-mining and edge-detection programs. The Med-Seg[TM] united developed by Bartron provides improved diagnoses for a wide range of medical images, including computed tomography scans, positron emission tomography scans, magnetic resonance imaging, ultrasound, digitized Z-ray, digitized mammography, dental X-ray, soft tissue analysis, and moving object analysis. It also can be used in analysis of soft-tissue slides. Bartron's future plans include the application of HSEG technology to drug development. NASA is advancing it's HSEG software to learn more about the Earth's magnetosphere.

  20. Regional shape-based feature space for segmenting biomedical images using neural networks

    NASA Astrophysics Data System (ADS)

    Sundaramoorthy, Gopal; Hoford, John D.; Hoffman, Eric A.

    1993-07-01

    In biomedical images, structure of interest, particularly the soft tissue structures, such as the heart, airways, bronchial and arterial trees often have grey-scale and textural characteristics similar to other structures in the image, making it difficult to segment them using only gray- scale and texture information. However, these objects can be visually recognized by their unique shapes and sizes. In this paper we discuss, what we believe to be, a novel, simple scheme for extracting features based on regional shapes. To test the effectiveness of these features for image segmentation (classification), we use an artificial neural network and a statistical cluster analysis technique. The proposed shape-based feature extraction algorithm computes regional shape vectors (RSVs) for all pixels that meet a certain threshold criteria. The distance from each such pixel to a boundary is computed in 8 directions (or in 26 directions for a 3-D image). Together, these 8 (or 26) values represent the pixel's (or voxel's) RSV. All RSVs from an image are used to train a multi-layered perceptron neural network which uses these features to 'learn' a suitable classification strategy. To clearly distinguish the desired object from other objects within an image, several examples from inside and outside the desired object are used for training. Several examples are presented to illustrate the strengths and weaknesses of our algorithm. Both synthetic and actual biomedical images are considered. Future extensions to this algorithm are also discussed.

  1. A comparison of autonomous techniques for multispectral image analysis and classification

    NASA Astrophysics Data System (ADS)

    Valdiviezo-N., Juan C.; Urcid, Gonzalo; Toxqui-Quitl, Carina; Padilla-Vivanco, Alfonso

    2012-10-01

    Multispectral imaging has given place to important applications related to classification and identification of objects from a scene. Because of multispectral instruments can be used to estimate the reflectance of materials in the scene, these techniques constitute fundamental tools for materials analysis and quality control. During the last years, a variety of algorithms has been developed to work with multispectral data, whose main purpose has been to perform the correct classification of the objects in the scene. The present study introduces a brief review of some classical as well as a novel technique that have been used for such purposes. The use of principal component analysis and K-means clustering techniques as important classification algorithms is here discussed. Moreover, a recent method based on the min-W and max-M lattice auto-associative memories, that was proposed for endmember determination in hyperspectral imagery, is introduced as a classification method. Besides a discussion of their mathematical foundation, we emphasize their main characteristics and the results achieved for two exemplar images conformed by objects similar in appearance, but spectrally different. The classification results state that the first components computed from principal component analysis can be used to highlight areas with different spectral characteristics. In addition, the use of lattice auto-associative memories provides good results for materials classification even in the cases where some spectral similarities appears in their spectral responses.

  2. Multiscale Analysis of Solar Image Data

    NASA Astrophysics Data System (ADS)

    Young, C. A.; Myers, D. C.

    2001-12-01

    It is often said that the blessing and curse of solar physics is that there is too much data. Solar missions such as Yohkoh, SOHO and TRACE have shown us the Sun with amazing clarity but have also cursed us with an increased amount of higher complexity data than previous missions. We have improved our view of the Sun yet we have not improved our analysis techniques. The standard techniques used for analysis of solar images generally consist of observing the evolution of features in a sequence of byte scaled images or a sequence of byte scaled difference images. The determination of features and structures in the images are done qualitatively by the observer. There is little quantitative and objective analysis done with these images. Many advances in image processing techniques have occured in the past decade. Many of these methods are possibly suited for solar image analysis. Multiscale/Multiresolution methods are perhaps the most promising. These methods have been used to formulate the human ability to view and comprehend phenomena on different scales. So these techniques could be used to quantitify the imaging processing done by the observers eyes and brains. In this work we present a preliminary analysis of multiscale techniques applied to solar image data. Specifically, we explore the use of the 2-d wavelet transform and related transforms with EIT, LASCO and TRACE images. This work was supported by NASA contract NAS5-00220.

  3. Recording multiple spatially-heterodyned direct to digital holograms in one digital image

    DOEpatents

    Hanson, Gregory R [Clinton, TN; Bingham, Philip R [Knoxville, TN

    2008-03-25

    Systems and methods are described for recording multiple spatially-heterodyned direct to digital holograms in one digital image. A method includes digitally recording, at a first reference beam-object beam angle, a first spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; Fourier analyzing the recorded first spatially-heterodyned hologram by shifting a first original origin of the recorded first spatially-heterodyned hologram to sit on top of a first spatial-heterodyne carrier frequency defined by the first reference beam-object beam angle; digitally recording, at a second reference beam-object beam angle, a second spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; Fourier analyzing the recorded second spatially-heterodyned hologram by shifting a second original origin of the recorded second spatially-heterodyned hologram to sit on top of a second spatial-heterodyne carrier frequency defined by the second reference beam-object beam angle; applying a first digital filter to cut off signals around the first original origin and define a first result; performing a first inverse Fourier transform on the first result; applying a second digital filter to cut off signals around the second original origin and define a second result; and performing a second inverse Fourier transform on the second result, wherein the first reference beam-object beam angle is not equal to the second reference beam-object beam angle and a single digital image includes both the first spatially-heterodyned hologram and the second spatially-heterodyned hologram.

  4. Follow-up of solar lentigo depigmentation with a retinaldehyde-based cream by clinical evaluation and calibrated colour imaging.

    PubMed

    Questel, E; Durbise, E; Bardy, A-L; Schmitt, A-M; Josse, G

    2015-05-01

    To assess an objective method evaluating the effects of a retinaldehyde-based cream (RA-cream) on solar lentigines; 29 women randomly applied RA-cream on lentigines of one hand and a control cream on the other, once daily for 3 months. A specific method enabling a reliable visualisation of the lesions was proposed, using high-magnification colour-calibrated camera imaging. Assessment was performed using clinical evaluation by Physician Global Assessment score and image analysis. Luminance determination on the numeric images was performed either on the basis of 5 independent expert's consensus borders or probability map analysis via an algorithm automatically detecting the pigmented area. Both image analysis methods showed a similar lightening of ΔL* = 2 after a 3-month treatment by RA-cream, in agreement with single-blind clinical evaluation. High-magnification colour-calibrated camera imaging combined with probability map analysis is a fast and precise method to follow lentigo depigmentation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Tissue microarrays and quantitative tissue-based image analysis as a tool for oncology biomarker and diagnostic development.

    PubMed

    Dolled-Filhart, Marisa P; Gustavson, Mark D

    2012-11-01

    Translational oncology has been improved by using tissue microarrays (TMAs), which facilitate biomarker analysis of large cohorts on a single slide. This has allowed for rapid analysis and validation of potential biomarkers for prognostic and predictive value, as well as for evaluation of biomarker prevalence. Coupled with quantitative analysis of immunohistochemical (IHC) staining, objective and standardized biomarker data from tumor samples can further advance companion diagnostic approaches for the identification of drug-responsive or resistant patient subpopulations. This review covers the advantages, disadvantages and applications of TMAs for biomarker research. Research literature and reviews of TMAs and quantitative image analysis methodology have been surveyed for this review (with an AQUA® analysis focus). Applications such as multi-marker diagnostic development and pathway-based biomarker subpopulation analyses are described. Tissue microarrays are a useful tool for biomarker analyses including prevalence surveys, disease progression assessment and addressing potential prognostic or predictive value. By combining quantitative image analysis with TMAs, analyses will be more objective and reproducible, allowing for more robust IHC-based diagnostic test development. Quantitative multi-biomarker IHC diagnostic tests that can predict drug response will allow for greater success of clinical trials for targeted therapies and provide more personalized clinical decision making.

  6. Development and validation of a visual grading scale for assessing image quality of AP pelvis radiographic images.

    PubMed

    Mraity, Hussien A A B; England, Andrew; Cassidy, Simon; Eachus, Peter; Dominguez, Alejandro; Hogg, Peter

    2016-01-01

    The aim of this article was to apply psychometric theory to develop and validate a visual grading scale for assessing the visual perception of digital image quality anteroposterior (AP) pelvis. Psychometric theory was used to guide scale development. Seven phantom and seven cadaver images of visually and objectively predetermined quality were used to help assess scale reliability and validity. 151 volunteers scored phantom images, and 184 volunteers scored cadaver images. Factor analysis and Cronbach's alpha were used to assess scale validity and reliability. A 24-item scale was produced. Aggregated mean volunteer scores for each image correlated with the rank order of the visually and objectively predetermined image qualities. Scale items had good interitem correlation (≥0.2) and high factor loadings (≥0.3). Cronbach's alpha (reliability) revealed that the scale has acceptable levels of internal reliability for both phantom and cadaver images (α = 0.8 and 0.9, respectively). Factor analysis suggested that the scale is multidimensional (assessing multiple quality themes). This study represents the first full development and validation of a visual image quality scale using psychometric theory. It is likely that this scale will have clinical, training and research applications. This article presents data to create and validate visual grading scales for radiographic examinations. The visual grading scale, for AP pelvis examinations, can act as a validated tool for future research, teaching and clinical evaluations of image quality.

  7. Image formation analysis and high resolution image reconstruction for plenoptic imaging systems.

    PubMed

    Shroff, Sapna A; Berkner, Kathrin

    2013-04-01

    Plenoptic imaging systems are often used for applications like refocusing, multimodal imaging, and multiview imaging. However, their resolution is limited to the number of lenslets. In this paper we investigate paraxial, incoherent, plenoptic image formation, and develop a method to recover some of the resolution for the case of a two-dimensional (2D) in-focus object. This enables the recovery of a conventional-resolution, 2D image from the data captured in a plenoptic system. We show simulation results for a plenoptic system with a known response and Gaussian sensor noise.

  8. Quantitative metrics for assessment of chemical image quality and spatial resolution

    DOE PAGES

    Kertesz, Vilmos; Cahill, John F.; Van Berkel, Gary J.

    2016-02-28

    Rationale: Currently objective/quantitative descriptions of the quality and spatial resolution of mass spectrometry derived chemical images are not standardized. Development of these standardized metrics is required to objectively describe chemical imaging capabilities of existing and/or new mass spectrometry imaging technologies. Such metrics would allow unbiased judgment of intra-laboratory advancement and/or inter-laboratory comparison for these technologies if used together with standardized surfaces. Methods: We developed two image metrics, viz., chemical image contrast (ChemIC) based on signal-to-noise related statistical measures on chemical image pixels and corrected resolving power factor (cRPF) constructed from statistical analysis of mass-to-charge chronograms across features of interest inmore » an image. These metrics, quantifying chemical image quality and spatial resolution, respectively, were used to evaluate chemical images of a model photoresist patterned surface collected using a laser ablation/liquid vortex capture mass spectrometry imaging system under different instrument operational parameters. Results: The calculated ChemIC and cRPF metrics determined in an unbiased fashion the relative ranking of chemical image quality obtained with the laser ablation/liquid vortex capture mass spectrometry imaging system. These rankings were used to show that both chemical image contrast and spatial resolution deteriorated with increasing surface scan speed, increased lane spacing and decreasing size of surface features. Conclusions: ChemIC and cRPF, respectively, were developed and successfully applied for the objective description of chemical image quality and spatial resolution of chemical images collected from model surfaces using a laser ablation/liquid vortex capture mass spectrometry imaging system.« less

  9. Quantitative metrics for assessment of chemical image quality and spatial resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kertesz, Vilmos; Cahill, John F.; Van Berkel, Gary J.

    Rationale: Currently objective/quantitative descriptions of the quality and spatial resolution of mass spectrometry derived chemical images are not standardized. Development of these standardized metrics is required to objectively describe chemical imaging capabilities of existing and/or new mass spectrometry imaging technologies. Such metrics would allow unbiased judgment of intra-laboratory advancement and/or inter-laboratory comparison for these technologies if used together with standardized surfaces. Methods: We developed two image metrics, viz., chemical image contrast (ChemIC) based on signal-to-noise related statistical measures on chemical image pixels and corrected resolving power factor (cRPF) constructed from statistical analysis of mass-to-charge chronograms across features of interest inmore » an image. These metrics, quantifying chemical image quality and spatial resolution, respectively, were used to evaluate chemical images of a model photoresist patterned surface collected using a laser ablation/liquid vortex capture mass spectrometry imaging system under different instrument operational parameters. Results: The calculated ChemIC and cRPF metrics determined in an unbiased fashion the relative ranking of chemical image quality obtained with the laser ablation/liquid vortex capture mass spectrometry imaging system. These rankings were used to show that both chemical image contrast and spatial resolution deteriorated with increasing surface scan speed, increased lane spacing and decreasing size of surface features. Conclusions: ChemIC and cRPF, respectively, were developed and successfully applied for the objective description of chemical image quality and spatial resolution of chemical images collected from model surfaces using a laser ablation/liquid vortex capture mass spectrometry imaging system.« less

  10. MR image analytics to characterize upper airway architecture in children with OSAS

    NASA Astrophysics Data System (ADS)

    Tong, Yubing; Udupa, Jayaram K.; Torigian, Drew A.; Matsumoto, Monica M. S.; Sin, Sanghun; Arens, Raanan

    2015-03-01

    Mechanisms leading to Obstructive Sleep Apnea Syndrome (OSAS) in obese children are not well understood. We previously analyzed polysomnographic and demographic data to study the anatomical characteristics of the upper airway and body composition in two groups of obese children with and without OSAS, where object volume was evaluated. In this paper, in order to better understand the disease we expand the analysis considering a variety of features that include object-specific features such as size, surface area, sphericity, and image intensity properties of fourteen objects in the vicinity of the upper airway, as well as inter-object relationships such as distance between objects. Our preliminary results indicate several interesting phenomena: volumes and surface areas of adenoid and tonsils increase statistically significantly in OSAS. Standardized T2-weighted MR image intensities differ statistically significantly between the two groups, implying that perhaps intrinsic tissue composition undergoes changes in OSAS. Inter-object distances are significantly different between the two groups for object pairs (skin, oropharynx), (skin, fat pad), (skin, soft palate), (mandible, tongue), (oropharynx, soft palate), (left tonsil, oropharynx), (left tonsil, fat pad) and (left tonsil, right tonsil). We conclude that treatment methods for OSAS such as adenotonsillectomy should respect proportional object size relationships and spatial arrangement of objects as they exist in control subjects.

  11. Thread concept for automatic task parallelization in image analysis

    NASA Astrophysics Data System (ADS)

    Lueckenhaus, Maximilian; Eckstein, Wolfgang

    1998-09-01

    Parallel processing of image analysis tasks is an essential method to speed up image processing and helps to exploit the full capacity of distributed systems. However, writing parallel code is a difficult and time-consuming process and often leads to an architecture-dependent program that has to be re-implemented when changing the hardware. Therefore it is highly desirable to do the parallelization automatically. For this we have developed a special kind of thread concept for image analysis tasks. Threads derivated from one subtask may share objects and run in the same context but may process different threads of execution and work on different data in parallel. In this paper we describe the basics of our thread concept and show how it can be used as basis of an automatic task parallelization to speed up image processing. We further illustrate the design and implementation of an agent-based system that uses image analysis threads for generating and processing parallel programs by taking into account the available hardware. The tests made with our system prototype show that the thread concept combined with the agent paradigm is suitable to speed up image processing by an automatic parallelization of image analysis tasks.

  12. Analysis of off-axis holographic system based on improved Jamin interferometer

    NASA Astrophysics Data System (ADS)

    Li, Baosheng; Dong, Hang; Chen, Lijuan; Zhong, Qi

    2018-02-01

    In this paper, an improved Interferometer was introduced which based on traditional Jamin Interferometer to solve the twin image where appear in on-axis holographic. Adjust the angle of reference light and object light that projected onto the CCD by change the reflector of the system to separate the zero order of diffraction, the virtual image and the real image, so that could eliminate the influence of the twin image. The result of analysis shows that the system could be realized in theory. After actually building the system, the hologram of the calibration plate is reconstructed and the result is shown to be feasible.

  13. High-resolution electron microscopy and its applications.

    PubMed

    Li, F H

    1987-12-01

    A review of research on high-resolution electron microscopy (HREM) carried out at the Institute of Physics, the Chinese Academy of Sciences, is presented. Apart from the direct observation of crystal and quasicrystal defects for some alloys, oxides, minerals, etc., and the structure determination for some minute crystals, an approximate image-contrast theory named pseudo-weak-phase object approximation (PWPOA), which shows the image contrast change with crystal thickness, is described. Within the framework of PWPOA, the image contrast of lithium ions in the crystal of R-Li2Ti3O7 has been observed. The usefulness of diffraction analysis techniques such as the direct method and Patterson method in HREM is discussed. Image deconvolution and resolution enhancement for weak-phase objects by use of the direct method are illustrated. In addition, preliminary results of image restoration for thick crystals are given.

  14. IRIS: a novel spectral imaging system for the analysis of cultural heritage objects

    NASA Astrophysics Data System (ADS)

    Papadakis, V. M.; Orphanos, Y.; Kogou, S.; Melessanaki, K.; Pouli, P.; Fotakis, C.

    2011-06-01

    A new portable spectral imaging system is herein presented capable of acquiring images of high resolution (2MPixels) ranging from 380 nm up to 950 nm. The system consists of a digital color CCD camera, 15 interference filters covering all the sensitivity range of the detector and a robust filter changing system. The acquisition software has been developed in "LabView" programming language allowing easy handling and modification by end-users. The system has been tested and evaluated on a series of objects of Cultural Heritage (CH) value including paintings, encrusted stonework, ceramics etc. This paper aims to present the system, as well as, its application and advantages in the analysis of artworks with emphasis on the detailed compositional and structural information of layered surfaces based on reflection & fluorescence spectroscopy. Specific examples will be presented and discussed on the basis of system improvements.

  15. What Images Reveal: a Comparative Study of Science Images between Australian and Taiwanese Junior High School Textbooks

    NASA Astrophysics Data System (ADS)

    Ge, Yun-Ping; Unsworth, Len; Wang, Kuo-Hua; Chang, Huey-Por

    2017-07-01

    From a social semiotic perspective, image designs in science textbooks are inevitably influenced by the sociocultural context in which the books are produced. The learning environments of Australia and Taiwan vary greatly. Drawing on social semiotics and cognitive science, this study compares classificational images in Australian and Taiwanese junior high school science textbooks. Classificational images are important kinds of images, which can represent taxonomic relations among objects as reported by Kress and van Leeuwen (Reading images: the grammar of visual design, 2006). An analysis of the images from sample chapters in Australian and Taiwanese high school science textbooks showed that the majority of the Taiwanese images are covert taxonomies, which represent hierarchical relations implicitly. In contrast, Australian classificational images included diversified designs, but particularly types with a tree structure which depicted overt taxonomies, explicitly representing hierarchical super-ordinate and subordinate relations. Many of the Taiwanese images are reminiscent of the specimen images in eighteenth century science texts representing "what truly is", while more Australian images emphasize structural objectivity. Moreover, Australian images support cognitive functions which facilitate reading comprehension. The relationships between image designs and learning environments are discussed and implications for textbook research and design are addressed.

  16. Semi-Automated Digital Image Analysis of Pick’s Disease and TDP-43 Proteinopathy

    PubMed Central

    Irwin, David J.; Byrne, Matthew D.; McMillan, Corey T.; Cooper, Felicia; Arnold, Steven E.; Lee, Edward B.; Van Deerlin, Vivianna M.; Xie, Sharon X.; Lee, Virginia M.-Y.; Grossman, Murray; Trojanowski, John Q.

    2015-01-01

    Digital image analysis of histology sections provides reliable, high-throughput methods for neuropathological studies but data is scant in frontotemporal lobar degeneration (FTLD), which has an added challenge of study due to morphologically diverse pathologies. Here, we describe a novel method of semi-automated digital image analysis in FTLD subtypes including: Pick’s disease (PiD, n=11) with tau-positive intracellular inclusions and neuropil threads, and TDP-43 pathology type C (FTLD-TDPC, n=10), defined by TDP-43-positive aggregates predominantly in large dystrophic neurites. To do this, we examined three FTLD-associated cortical regions: mid-frontal gyrus (MFG), superior temporal gyrus (STG) and anterior cingulate gyrus (ACG) by immunohistochemistry. We used a color deconvolution process to isolate signal from the chromogen and applied both object detection and intensity thresholding algorithms to quantify pathological burden. We found object-detection algorithms had good agreement with gold-standard manual quantification of tau- and TDP-43-positive inclusions. Our sampling method was reliable across three separate investigators and we obtained similar results in a pilot analysis using open-source software. Regional comparisons using these algorithms finds differences in regional anatomic disease burden between PiD and FTLD-TDP not detected using traditional ordinal scale data, suggesting digital image analysis is a powerful tool for clinicopathological studies in morphologically diverse FTLD syndromes. PMID:26538548

  17. Semi-Automated Digital Image Analysis of Pick's Disease and TDP-43 Proteinopathy.

    PubMed

    Irwin, David J; Byrne, Matthew D; McMillan, Corey T; Cooper, Felicia; Arnold, Steven E; Lee, Edward B; Van Deerlin, Vivianna M; Xie, Sharon X; Lee, Virginia M-Y; Grossman, Murray; Trojanowski, John Q

    2016-01-01

    Digital image analysis of histology sections provides reliable, high-throughput methods for neuropathological studies but data is scant in frontotemporal lobar degeneration (FTLD), which has an added challenge of study due to morphologically diverse pathologies. Here, we describe a novel method of semi-automated digital image analysis in FTLD subtypes including: Pick's disease (PiD, n=11) with tau-positive intracellular inclusions and neuropil threads, and TDP-43 pathology type C (FTLD-TDPC, n=10), defined by TDP-43-positive aggregates predominantly in large dystrophic neurites. To do this, we examined three FTLD-associated cortical regions: mid-frontal gyrus (MFG), superior temporal gyrus (STG) and anterior cingulate gyrus (ACG) by immunohistochemistry. We used a color deconvolution process to isolate signal from the chromogen and applied both object detection and intensity thresholding algorithms to quantify pathological burden. We found object-detection algorithms had good agreement with gold-standard manual quantification of tau- and TDP-43-positive inclusions. Our sampling method was reliable across three separate investigators and we obtained similar results in a pilot analysis using open-source software. Regional comparisons using these algorithms finds differences in regional anatomic disease burden between PiD and FTLD-TDP not detected using traditional ordinal scale data, suggesting digital image analysis is a powerful tool for clinicopathological studies in morphologically diverse FTLD syndromes. © The Author(s) 2015.

  18. A benchmark for comparison of dental radiography analysis algorithms.

    PubMed

    Wang, Ching-Wei; Huang, Cheng-Ta; Lee, Jia-Hong; Li, Chung-Hsing; Chang, Sheng-Wei; Siao, Ming-Jhih; Lai, Tat-Ming; Ibragimov, Bulat; Vrtovec, Tomaž; Ronneberger, Olaf; Fischer, Philipp; Cootes, Tim F; Lindner, Claudia

    2016-07-01

    Dental radiography plays an important role in clinical diagnosis, treatment and surgery. In recent years, efforts have been made on developing computerized dental X-ray image analysis systems for clinical usages. A novel framework for objective evaluation of automatic dental radiography analysis algorithms has been established under the auspices of the IEEE International Symposium on Biomedical Imaging 2015 Bitewing Radiography Caries Detection Challenge and Cephalometric X-ray Image Analysis Challenge. In this article, we present the datasets, methods and results of the challenge and lay down the principles for future uses of this benchmark. The main contributions of the challenge include the creation of the dental anatomy data repository of bitewing radiographs, the creation of the anatomical abnormality classification data repository of cephalometric radiographs, and the definition of objective quantitative evaluation for comparison and ranking of the algorithms. With this benchmark, seven automatic methods for analysing cephalometric X-ray image and two automatic methods for detecting bitewing radiography caries have been compared, and detailed quantitative evaluation results are presented in this paper. Based on the quantitative evaluation results, we believe automatic dental radiography analysis is still a challenging and unsolved problem. The datasets and the evaluation software will be made available to the research community, further encouraging future developments in this field. (http://www-o.ntust.edu.tw/~cweiwang/ISBI2015/). Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. A scale-based connected coherence tree algorithm for image segmentation.

    PubMed

    Ding, Jundi; Ma, Runing; Chen, Songcan

    2008-02-01

    This paper presents a connected coherence tree algorithm (CCTA) for image segmentation with no prior knowledge. It aims to find regions of semantic coherence based on the proposed epsilon-neighbor coherence segmentation criterion. More specifically, with an adaptive spatial scale and an appropriate intensity-difference scale, CCTA often achieves several sets of coherent neighboring pixels which maximize the probability of being a single image content (including kinds of complex backgrounds). In practice, each set of coherent neighboring pixels corresponds to a coherence class (CC). The fact that each CC just contains a single equivalence class (EC) ensures the separability of an arbitrary image theoretically. In addition, the resultant CCs are represented by tree-based data structures, named connected coherence tree (CCT)s. In this sense, CCTA is a graph-based image analysis algorithm, which expresses three advantages: 1) its fundamental idea, epsilon-neighbor coherence segmentation criterion, is easy to interpret and comprehend; 2) it is efficient due to a linear computational complexity in the number of image pixels; 3) both subjective comparisons and objective evaluation have shown that it is effective for the tasks of semantic object segmentation and figure-ground separation in a wide variety of images. Those images either contain tiny, long and thin objects or are severely degraded by noise, uneven lighting, occlusion, poor illumination, and shadow.

  20. Fast periodic stimulation (FPS): a highly effective approach in fMRI brain mapping.

    PubMed

    Gao, Xiaoqing; Gentile, Francesco; Rossion, Bruno

    2018-06-01

    Defining the neural basis of perceptual categorization in a rapidly changing natural environment with low-temporal resolution methods such as functional magnetic resonance imaging (fMRI) is challenging. Here, we present a novel fast periodic stimulation (FPS)-fMRI approach to define face-selective brain regions with natural images. Human observers are presented with a dynamic stream of widely variable natural object images alternating at a fast rate (6 images/s). Every 9 s, a short burst of variable face images contrasting with object images in pairs induces an objective face-selective neural response at 0.111 Hz. A model-free Fourier analysis achieves a twofold increase in signal-to-noise ratio compared to a conventional block-design approach with identical stimuli and scanning duration, allowing to derive a comprehensive map of face-selective areas in the ventral occipito-temporal cortex, including the anterior temporal lobe (ATL), in all individual brains. Critically, periodicity of the desired category contrast and random variability among widely diverse images effectively eliminates the contribution of low-level visual cues, and lead to the highest values (80-90%) of test-retest reliability in the spatial activation map yet reported in imaging higher level visual functions. FPS-fMRI opens a new avenue for understanding brain function with low-temporal resolution methods.

  1. Rapid Extraction of Landslide and Spatial Distribution Analysis after Jiuzhaigou Ms7.0 Earthquake Based on Uav Images

    NASA Astrophysics Data System (ADS)

    Jiao, Q. S.; Luo, Y.; Shen, W. H.; Li, Q.; Wang, X.

    2018-04-01

    Jiuzhaigou earthquake led to the collapse of the mountains and formed lots of landslides in Jiuzhaigou scenic spot and surrounding roads which caused road blockage and serious ecological damage. Due to the urgency of the rescue, the authors carried unmanned aerial vehicle (UAV) and entered the disaster area as early as August 9 to obtain the aerial images near the epicenter. On the basis of summarizing the earthquake landslides characteristics in aerial images, by using the object-oriented analysis method, landslides image objects were obtained by multi-scale segmentation, and the feature rule set of each level was automatically built by SEaTH (Separability and Thresholds) algorithm to realize the rapid landslide extraction. Compared with visual interpretation, object-oriented automatic landslides extraction method achieved an accuracy of 94.3 %. The spatial distribution of the earthquake landslide had a significant positive correlation with slope and relief and had a negative correlation with the roughness, but no obvious correlation with the aspect. The relationship between the landslide and the aspect was not found and the probable reason may be that the distance between the study area and the seismogenic fault was too far away. This work provided technical support for the earthquake field emergency, earthquake landslide prediction and disaster loss assessment.

  2. Novel CT-based objective imaging biomarkers of long term radiation-induced lung damage.

    PubMed

    Veiga, Catarina; Landau, David; Devaraj, Anand; Doel, Tom; White, Jared; Ngai, Yenting; Hawkes, David J; McClelland, Jamie R

    2018-06-14

    and Purpose: Recent improvements in lung cancer survival have spurred an interest in understanding and minimizing long term radiation-induced lung damage (RILD). However, there is still no objective criteria to quantify RILD leading to variable reporting across centres and trials. We propose a set of objective imaging biomarkers to quantify common radiological findings observed 12-months after lung cancer radiotherapy (RT). Baseline and 12-month CT scans of 27 patients from a phase I/II clinical trial of isotoxic chemoradiation were included in this study. To detect and measure the severity of RILD, twelve quantitative imaging biomarkers were developed. These describe basic CT findings including parenchymal change, volume reduction and pleural change. The imaging biomarkers were implemented as semi-automated image analysis pipelines and assessed against visual assessment of the occurrence of each change. The majority of the biomarkers were measurable in each patient. Their continuous nature allows objective scoring of severity for each patient. For each imaging biomarker the cohort was split into two groups according to the presence or absence of the biomarker by visual assessment, testing the hypothesis that the imaging biomarkers were different in these two groups. All features were statistically significant except for rotation of the main bronchus and diaphragmatic curvature. The majority of the biomarkers were not strongly correlated with each other suggesting that each of the biomarkers is measuring a separate element of RILD pathology. We developed objective CT-based imaging biomarkers that quantify the severity of radiological lung damage after RT. These biomarkers are representative of typical radiological findings of RILD. Copyright © 2018. Published by Elsevier Inc.

  3. D Tracking Based Augmented Reality for Cultural Heritage Data Management

    NASA Astrophysics Data System (ADS)

    Battini, C.; Landi, G.

    2015-02-01

    The development of contactless documentation techniques is allowing researchers to collect high volumes of three-dimensional data in a short time but with high levels of accuracy. The digitalisation of cultural heritage opens up the possibility of using image processing and analysis, and computer graphics techniques, to preserve this heritage for future generations; augmenting it with additional information or with new possibilities for its enjoyment and use. The collection of precise datasets about cultural heritage status is crucial for its interpretation, its conservation and during the restoration processes. The application of digital-imaging solutions for various feature extraction, image data-analysis techniques, and three-dimensional reconstruction of ancient artworks, allows the creation of multidimensional models that can incorporate information coming from heterogeneous data sets, research results and historical sources. Real objects can be scanned and reconstructed virtually, with high levels of data accuracy and resolution. Real-time visualisation software and hardware is rapidly evolving and complex three-dimensional models can be interactively visualised and explored on applications developed for mobile devices. This paper will show how a 3D reconstruction of an object, with multiple layers of information, can be stored and visualised through a mobile application that will allow interaction with a physical object for its study and analysis, using 3D Tracking based Augmented Reality techniques.

  4. Comparison of performance of object-based image analysis techniques available in open source software (Spring and Orfeo Toolbox/Monteverdi) considering very high spatial resolution data

    NASA Astrophysics Data System (ADS)

    Teodoro, Ana C.; Araujo, Ricardo

    2016-01-01

    The use of unmanned aerial vehicles (UAVs) for remote sensing applications is becoming more frequent. However, this type of information can result in several software problems related to the huge amount of data available. Object-based image analysis (OBIA) has proven to be superior to pixel-based analysis for very high-resolution images. The main objective of this work was to explore the potentialities of the OBIA methods available in two different open source software applications, Spring and OTB/Monteverdi, in order to generate an urban land cover map. An orthomosaic derived from UAVs was considered, 10 different regions of interest were selected, and two different approaches were followed. The first one (Spring) uses the region growing segmentation algorithm followed by the Bhattacharya classifier. The second approach (OTB/Monteverdi) uses the mean shift segmentation algorithm followed by the support vector machine (SVM) classifier. Two strategies were followed: four classes were considered using Spring and thereafter seven classes were considered for OTB/Monteverdi. The SVM classifier produces slightly better results and presents a shorter processing time. However, the poor spectral resolution of the data (only RGB bands) is an important factor that limits the performance of the classifiers applied.

  5. DICOM for quantitative imaging biomarker development: a standards based approach to sharing clinical data and structured PET/CT analysis results in head and neck cancer research

    PubMed Central

    Clunie, David; Ulrich, Ethan; Bauer, Christian; Wahle, Andreas; Brown, Bartley; Onken, Michael; Riesmeier, Jörg; Pieper, Steve; Kikinis, Ron; Buatti, John; Beichel, Reinhard R.

    2016-01-01

    Background. Imaging biomarkers hold tremendous promise for precision medicine clinical applications. Development of such biomarkers relies heavily on image post-processing tools for automated image quantitation. Their deployment in the context of clinical research necessitates interoperability with the clinical systems. Comparison with the established outcomes and evaluation tasks motivate integration of the clinical and imaging data, and the use of standardized approaches to support annotation and sharing of the analysis results and semantics. We developed the methodology and tools to support these tasks in Positron Emission Tomography and Computed Tomography (PET/CT) quantitative imaging (QI) biomarker development applied to head and neck cancer (HNC) treatment response assessment, using the Digital Imaging and Communications in Medicine (DICOM®) international standard and free open-source software. Methods. Quantitative analysis of PET/CT imaging data collected on patients undergoing treatment for HNC was conducted. Processing steps included Standardized Uptake Value (SUV) normalization of the images, segmentation of the tumor using manual and semi-automatic approaches, automatic segmentation of the reference regions, and extraction of the volumetric segmentation-based measurements. Suitable components of the DICOM standard were identified to model the various types of data produced by the analysis. A developer toolkit of conversion routines and an Application Programming Interface (API) were contributed and applied to create a standards-based representation of the data. Results. DICOM Real World Value Mapping, Segmentation and Structured Reporting objects were utilized for standards-compliant representation of the PET/CT QI analysis results and relevant clinical data. A number of correction proposals to the standard were developed. The open-source DICOM toolkit (DCMTK) was improved to simplify the task of DICOM encoding by introducing new API abstractions. Conversion and visualization tools utilizing this toolkit were developed. The encoded objects were validated for consistency and interoperability. The resulting dataset was deposited in the QIN-HEADNECK collection of The Cancer Imaging Archive (TCIA). Supporting tools for data analysis and DICOM conversion were made available as free open-source software. Discussion. We presented a detailed investigation of the development and application of the DICOM model, as well as the supporting open-source tools and toolkits, to accommodate representation of the research data in QI biomarker development. We demonstrated that the DICOM standard can be used to represent the types of data relevant in HNC QI biomarker development, and encode their complex relationships. The resulting annotated objects are amenable to data mining applications, and are interoperable with a variety of systems that support the DICOM standard. PMID:27257542

  6. Navigation integrity monitoring and obstacle detection for enhanced-vision systems

    NASA Astrophysics Data System (ADS)

    Korn, Bernd; Doehler, Hans-Ullrich; Hecker, Peter

    2001-08-01

    Typically, Enhanced Vision (EV) systems consist of two main parts, sensor vision and synthetic vision. Synthetic vision usually generates a virtual out-the-window view using databases and accurate navigation data, e. g. provided by differential GPS (DGPS). The reliability of the synthetic vision highly depends on both, the accuracy of the used database and the integrity of the navigation data. But especially in GPS based systems, the integrity of the navigation can't be guaranteed. Furthermore, only objects that are stored in the database can be displayed to the pilot. Consequently, unexpected obstacles are invisible and this might cause severe problems. Therefore, additional information has to be extracted from sensor data to overcome these problems. In particular, the sensor data analysis has to identify obstacles and has to monitor the integrity of databases and navigation. Furthermore, if a lack of integrity arises, navigation data, e.g. the relative position of runway and aircraft, has to be extracted directly from the sensor data. The main contribution of this paper is about the realization of these three sensor data analysis tasks within our EV system, which uses the HiVision 35 GHz MMW radar of EADS, Ulm as the primary EV sensor. For the integrity monitoring, objects extracted from radar images are registered with both database objects and objects (e. g. other aircrafts) transmitted via data link. This results in a classification into known and unknown radar image objects and consequently, in a validation of the integrity of database and navigation. Furthermore, special runway structures are searched for in the radar image where they should appear. The outcome of this runway check contributes to the integrity analysis, too. Concurrent to this investigation a radar image based navigation is performed without using neither precision navigation nor detailed database information to determine the aircraft's position relative to the runway. The performance of our approach is demonstrated with real data acquired during extensive flight tests to several airports in Northern Germany.

  7. Silhouette-based approach of 3D image reconstruction for automated image acquisition using robotic arm

    NASA Astrophysics Data System (ADS)

    Azhar, N.; Saad, W. H. M.; Manap, N. A.; Saad, N. M.; Syafeeza, A. R.

    2017-06-01

    This study presents the approach of 3D image reconstruction using an autonomous robotic arm for the image acquisition process. A low cost of the automated imaging platform is created using a pair of G15 servo motor connected in series to an Arduino UNO as a main microcontroller. Two sets of sequential images were obtained using different projection angle of the camera. The silhouette-based approach is used in this study for 3D reconstruction from the sequential images captured from several different angles of the object. Other than that, an analysis based on the effect of different number of sequential images on the accuracy of 3D model reconstruction was also carried out with a fixed projection angle of the camera. The effecting elements in the 3D reconstruction are discussed and the overall result of the analysis is concluded according to the prototype of imaging platform.

  8. Fusion of an Ensemble of Augmented Image Detectors for Robust Object Detection

    PubMed Central

    Wei, Pan; Anderson, Derek T.

    2018-01-01

    A significant challenge in object detection is accurate identification of an object’s position in image space, whereas one algorithm with one set of parameters is usually not enough, and the fusion of multiple algorithms and/or parameters can lead to more robust results. Herein, a new computational intelligence fusion approach based on the dynamic analysis of agreement among object detection outputs is proposed. Furthermore, we propose an online versus just in training image augmentation strategy. Experiments comparing the results both with and without fusion are presented. We demonstrate that the augmented and fused combination results are the best, with respect to higher accuracy rates and reduction of outlier influences. The approach is demonstrated in the context of cone, pedestrian and box detection for Advanced Driver Assistance Systems (ADAS) applications. PMID:29562609

  9. Streak detection and analysis pipeline for optical images

    NASA Astrophysics Data System (ADS)

    Virtanen, J.; Granvik, M.; Torppa, J.; Muinonen, K.; Poikonen, J.; Lehti, J.; Säntti, T.; Komulainen, T.; Flohrer, T.

    2014-07-01

    We describe a novel data processing and analysis pipeline for optical observations of moving objects, either of natural (asteroids, meteors) or artificial origin (satellites, space debris). The monitoring of the space object populations requires reliable acquisition of observational data to support the development and validation of population models, and to build and maintain catalogues of orbital elements. The orbital catalogues are, in turn, needed for the assessment of close approaches (for asteroids, with the Earth; for satellites, with each other) and for the support of contingency situations or launches. For both types of populations, there is also increasing interest to detect fainter objects corresponding to the small end of the size distribution. We focus on the low signal-to-noise (SNR) detection of objects with high angular velocities, resulting in long and faint object trails, or streaks, in the optical images. The currently available, mature image processing algorithms for detection and astrometric reduction of optical data cover objects that cross the sensor field-of-view comparably slowly, and, particularly for satellites, within a rather narrow, predefined range of angular velocities. By applying specific tracking techniques, the objects appear point-like or as short trails in the exposures. However, the general survey scenario is always a 'track-before-detect' problem, resulting in streaks of arbitrary lengths. Although some considerations for low-SNR processing of streak-like features are available in the current image processing and computer vision literature, algorithms are not readily available yet. In the ESA-funded StreakDet (Streak detection and astrometric reduction) project, we develop and evaluate an automated processing pipeline applicable to single images (as compared to consecutive frames of the same field) obtained with any observing scenario, including space-based surveys and both low- and high-altitude populations. The algorithmic flow starts from the segmentation of the acquired image (i.e., the extraction of all sources), followed by the astrometric and photometric characterization of the candidate streaks, and ends with orbital validation of the detected streaks. For the low-SNR extraction of objects, we put forward an approach which does not rely on a priori information, such as the object velocities, a typical assumption in earlier implementations. Our algorithm is based on local grayscale mean difference evaluation, followed by a threshold operation and spatial filtering of black-and-white (1-bit) data to remove stars and other non-streak features. For long streaks, the challenge is to extract position information and related registered epochs with sufficient precision. Moreover, satellite streaks can show up in complex morphologies because of their fast, and often irregular lightcurve variations. A central concept of the pipeline is streak classification which guides the actual characterization process by aiming to identify the interesting sources and to filter out the uninteresting ones, as well as by allowing the tailoring of algorithms for specific streak classes (e.g. PSF fitting for point-like vs. long, disintegrated streaks). Finally, to validate the single-image detections, the processing is finalized by orbital analysis using our statistical inverse methods (see, Muinonen et al., this conference), resulting in preliminary orbital classification (e.g., Earth-bound vs. non-Earth-bound orbits) for the detected streaks.

  10. Fast algorithm of low power image reformation for OLED display

    NASA Astrophysics Data System (ADS)

    Lee, Myungwoo; Kim, Taewhan

    2014-04-01

    We propose a fast algorithm of low-power image reformation for organic light-emitting diode (OLED) display. The proposed algorithm scales the image histogram in a way to reduce power consumption in OLED display by remapping the gray levels of the pixels in the image based on the fast analysis of the histogram of the input image while maintaining contrast of the image. The key idea is that a large number of gray levels are never used in the images and these gray levels can be effectively exploited to reduce power consumption. On the other hand, to maintain the image contrast the gray level remapping is performed by taking into account the object size in the image to which each gray level is applied, that is, reforming little for the gray levels in the objects of large size. Through experiments with 24 Kodak images, it is shown that our proposed algorithm is able to reduce the power consumption by 10% even with 9% contrast enhancement. Our algorithm runs in a linear time so that it can be applied to moving pictures with high resolution.

  11. Machine learning for a Toolkit for Image Mining

    NASA Technical Reports Server (NTRS)

    Delanoy, Richard L.

    1995-01-01

    A prototype user environment is described that enables a user with very limited computer skills to collaborate with a computer algorithm to develop search tools (agents) that can be used for image analysis, creating metadata for tagging images, searching for images in an image database on the basis of image content, or as a component of computer vision algorithms. Agents are learned in an ongoing, two-way dialogue between the user and the algorithm. The user points to mistakes made in classification. The algorithm, in response, attempts to discover which image attributes are discriminating between objects of interest and clutter. It then builds a candidate agent and applies it to an input image, producing an 'interest' image highlighting features that are consistent with the set of objects and clutter indicated by the user. The dialogue repeats until the user is satisfied. The prototype environment, called the Toolkit for Image Mining (TIM) is currently capable of learning spectral and textural patterns. Learning exhibits rapid convergence to reasonable levels of performance and, when thoroughly trained, Fo appears to be competitive in discrimination accuracy with other classification techniques.

  12. New Directions in the Digital Signal Processing of Image Data.

    DTIC Science & Technology

    1987-05-01

    and identify by block number) FIELD GROUP SUB-GROUP Object detection and idLntification 12 01 restoration of photon noise limited imagery 15 04 image...from incomplete information, restoration of blurred images in additive and multiplicative noise , motion analysis with fast hierarchical algorithms...different resolutions. As is well known, the solution to the matched filter problem under additive white noise conditions is the correlation receiver

  13. Methods for magnetic resonance analysis using magic angle technique

    DOEpatents

    Hu, Jian Zhi [Richland, WA; Wind, Robert A [Kennewick, WA; Minard, Kevin R [Kennewick, WA; Majors, Paul D [Kennewick, WA

    2011-11-22

    Methods of performing a magnetic resonance analysis of a biological object are disclosed that include placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. In particular embodiments the method includes pulsing the radio frequency to provide at least two of a spatially selective read pulse, a spatially selective phase pulse, and a spatially selective storage pulse. Further disclosed methods provide pulse sequences that provide extended imaging capabilities, such as chemical shift imaging or multiple-voxel data acquisition.

  14. Analysis of Spatial Point Patterns in Nuclear Biology

    PubMed Central

    Weston, David J.; Adams, Niall M.; Russell, Richard A.; Stephens, David A.; Freemont, Paul S.

    2012-01-01

    There is considerable interest in cell biology in determining whether, and to what extent, the spatial arrangement of nuclear objects affects nuclear function. A common approach to address this issue involves analyzing a collection of images produced using some form of fluorescence microscopy. We assume that these images have been successfully pre-processed and a spatial point pattern representation of the objects of interest within the nuclear boundary is available. Typically in these scenarios, the number of objects per nucleus is low, which has consequences on the ability of standard analysis procedures to demonstrate the existence of spatial preference in the pattern. There are broadly two common approaches to look for structure in these spatial point patterns. First a spatial point pattern for each image is analyzed individually, or second a simple normalization is performed and the patterns are aggregated. In this paper we demonstrate using synthetic spatial point patterns drawn from predefined point processes how difficult it is to distinguish a pattern from complete spatial randomness using these techniques and hence how easy it is to miss interesting spatial preferences in the arrangement of nuclear objects. The impact of this problem is also illustrated on data related to the configuration of PML nuclear bodies in mammalian fibroblast cells. PMID:22615822

  15. Scene analysis for effective visual search in rough three-dimensional-modeling scenes

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Hu, Xiaopeng

    2016-11-01

    Visual search is a fundamental technology in the computer vision community. It is difficult to find an object in complex scenes when there exist similar distracters in the background. We propose a target search method in rough three-dimensional-modeling scenes based on a vision salience theory and camera imaging model. We give the definition of salience of objects (or features) and explain the way that salience measurements of objects are calculated. Also, we present one type of search path that guides to the target through salience objects. Along the search path, when the previous objects are localized, the search region of each subsequent object decreases, which is calculated through imaging model and an optimization method. The experimental results indicate that the proposed method is capable of resolving the ambiguities resulting from distracters containing similar visual features with the target, leading to an improvement of search speed by over 50%.

  16. Multiscale Image Processing of Solar Image Data

    NASA Astrophysics Data System (ADS)

    Young, C.; Myers, D. C.

    2001-12-01

    It is often said that the blessing and curse of solar physics is too much data. Solar missions such as Yohkoh, SOHO and TRACE have shown us the Sun with amazing clarity but have also increased the amount of highly complex data. We have improved our view of the Sun yet we have not improved our analysis techniques. The standard techniques used for analysis of solar images generally consist of observing the evolution of features in a sequence of byte scaled images or a sequence of byte scaled difference images. The determination of features and structures in the images are done qualitatively by the observer. There is little quantitative and objective analysis done with these images. Many advances in image processing techniques have occured in the past decade. Many of these methods are possibly suited for solar image analysis. Multiscale/Multiresolution methods are perhaps the most promising. These methods have been used to formulate the human ability to view and comprehend phenomena on different scales. So these techniques could be used to quantitify the imaging processing done by the observers eyes and brains. In this work we present several applications of multiscale techniques applied to solar image data. Specifically, we discuss uses of the wavelet, curvelet, and related transforms to define a multiresolution support for EIT, LASCO and TRACE images.

  17. Talbot self-imaging phenomenon under Bessel beam illumination

    NASA Astrophysics Data System (ADS)

    Chakraborty, Rijuparna; Chowdhury, Subhajit Dutta; Chakraborty, Ajoy Kumar

    2018-06-01

    In this paper, we report the results of our theoretical studies on the phenomenon of self-imaging of periodic object under the illumination of zero-order Bessel beam. Our theoretical analysis indicates that the self-images are visible only after the walk-off distance of the Bessel beam used. It is also observed that the self-images bend around the optical axis of the setup. Besides, the present study justifies the importance of the conditions stipulated by Montgomery.

  18. Quantitative Image Informatics for Cancer Research (QIICR) | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    Imaging has enormous untapped potential to improve cancer research through software to extract and process morphometric and functional biomarkers. In the era of non-cytotoxic treatment agents, multi- modality image-guided ablative therapies and rapidly evolving computational resources, quantitative imaging software can be transformative in enabling minimally invasive, objective and reproducible evaluation of cancer treatment response. Post-processing algorithms are integral to high-throughput analysis and fine- grained differentiation of multiple molecular targets.

  19. Applying time series Landsat data for vegetation change analysis in the Florida Everglades Water Conservation Area 2A during 1996-2016

    NASA Astrophysics Data System (ADS)

    Zhang, Caiyun; Smith, Molly; Lv, Jie; Fang, Chaoyang

    2017-05-01

    Mapping plant communities and documenting their changes is critical to the on-going Florida Everglades restoration project. In this study, a framework was designed to map dominant vegetation communities and inventory their changes in the Florida Everglades Water Conservation Area 2A (WCA-2A) using time series Landsat images spanning 1996-2016. The object-based change analysis technique was combined in the framework. A hybrid pixel/object-based change detection approach was developed to effectively collect training samples for historical images with sparse reference data. An object-based quantification approach was also developed to assess the expansion/reduction of a specific class such as cattail (an invasive species in the Everglades) from the object-based classifications of two dates of imagery. The study confirmed the results in the literature that cattail was largely expanded during 1996-2007. It also revealed that cattail expansion was constrained after 2007. Application of time series Landsat data is valuable to document vegetation changes for the WCA-2A impoundment. The digital techniques developed will benefit global wetland mapping and change analysis in general, and the Florida Everglades WCA-2A in particular.

  20. Objective detection of apoptosis in rat renal tissue sections using light microscopy and free image analysis software with subsequent machine learning: Detection of apoptosis in renal tissue.

    PubMed

    Macedo, Nayana Damiani; Buzin, Aline Rodrigues; de Araujo, Isabela Bastos Binotti Abreu; Nogueira, Breno Valentim; de Andrade, Tadeu Uggere; Endringer, Denise Coutinho; Lenz, Dominik

    2017-02-01

    The current study proposes an automated machine learning approach for the quantification of cells in cell death pathways according to DNA fragmentation. A total of 17 images of kidney histological slide samples from male Wistar rats were used. The slides were photographed using an Axio Zeiss Vert.A1 microscope with a 40x objective lens coupled with an Axio Cam MRC Zeiss camera and Zen 2012 software. The images were analyzed using CellProfiler (version 2.1.1) and CellProfiler Analyst open-source software. Out of the 10,378 objects, 4970 (47,9%) were identified as TUNEL positive, and 5408 (52,1%) were identified as TUNEL negative. On average, the sensitivity and specificity values of the machine learning approach were 0.80 and 0.77, respectively. Image cytometry provides a quantitative analytical alternative to the more traditional qualitative methods more commonly used in studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. [Application of Fourier transform profilometry in 3D-surface reconstruction].

    PubMed

    Shi, Bi'er; Lu, Kuan; Wang, Yingting; Li, Zhen'an; Bai, Jing

    2011-08-01

    With the improvement of system frame and reconstruction methods in fluorescent molecules tomography (FMT), the FMT technology has been widely used as an important experimental tool in biomedical research. It is necessary to get the 3D-surface profile of the experimental object as the boundary constraints of FMT reconstruction algorithms. We proposed a new 3D-surface reconstruction method based on Fourier transform profilometry (FTP) method under the blue-purple light condition. The slice images were reconstructed using proper image processing methods, frequency spectrum analysis and filtering. The results of experiment showed that the method properly reconstructed the 3D-surface of objects and has the mm-level accuracy. Compared to other methods, this one is simple and fast. Besides its well-reconstructed, the proposed method could help monitor the behavior of the object during the experiment to ensure the correspondence of the imaging process. Furthermore, the method chooses blue-purple light section as its light source to avoid the interference towards fluorescence imaging.

  2. Computer analysis of gallbladder ultrasonic images towards recognition of pathological lesions

    NASA Astrophysics Data System (ADS)

    Ogiela, M. R.; Bodzioch, S.

    2011-06-01

    This paper presents a new approach to gallbladder ultrasonic image processing and analysis towards automatic detection and interpretation of disease symptoms on processed US images. First, in this paper, there is presented a new heuristic method of filtering gallbladder contours from images. A major stage in this filtration is to segment and section off areas occupied by the said organ. This paper provides for an inventive algorithm for the holistic extraction of gallbladder image contours, based on rank filtration, as well as on the analysis of line profile sections on tested organs. The second part concerns detecting the most important lesion symptoms of the gallbladder. Automating a process of diagnosis always comes down to developing algorithms used to analyze the object of such diagnosis and verify the occurrence of symptoms related to given affection. The methodology of computer analysis of US gallbladder images presented here is clearly utilitarian in nature and after standardising can be used as a technique for supporting the diagnostics of selected gallbladder disorders using the images of this organ.

  3. Fusion and quality analysis for remote sensing images using contourlet transform

    NASA Astrophysics Data System (ADS)

    Choi, Yoonsuk; Sharifahmadian, Ershad; Latifi, Shahram

    2013-05-01

    Recent developments in remote sensing technologies have provided various images with high spatial and spectral resolutions. However, multispectral images have low spatial resolution and panchromatic images have low spectral resolution. Therefore, image fusion techniques are necessary to improve the spatial resolution of spectral images by injecting spatial details of high-resolution panchromatic images. The objective of image fusion is to provide useful information by improving the spatial resolution and the spectral information of the original images. The fusion results can be utilized in various applications, such as military, medical imaging, and remote sensing. This paper addresses two issues in image fusion: i) image fusion method and ii) quality analysis of fusion results. First, a new contourlet-based image fusion method is presented, which is an improvement over the wavelet-based fusion. This fusion method is then applied to a case study to demonstrate its fusion performance. Fusion framework and scheme used in the study are discussed in detail. Second, quality analysis for the fusion results is discussed. We employed various quality metrics in order to analyze the fusion results both spatially and spectrally. Our results indicate that the proposed contourlet-based fusion method performs better than the conventional wavelet-based fusion methods.

  4. Computer-assisted image analysis to quantify daily growth rates of broiler chickens.

    PubMed

    De Wet, L; Vranken, E; Chedad, A; Aerts, J M; Ceunen, J; Berckmans, D

    2003-09-01

    1. The objective was to investigate the possibility of detecting daily body weight changes of broiler chickens with computer-assisted image analysis. 2. The experiment included 50 broiler chickens reared under commercial conditions. Ten out of 50 chickens were randomly selected and video recorded (upper view) 18 times during the 42-d growing period. The number of surface and periphery pixels from the images was used to derive a relationship between body dimension and live weight. 3. The relative error in weight estimation, expressed in terms of the standard deviation of the residuals from image surface data was 10%, while it was found to be 15% for the image periphery data. 4. Image-processing systems could be developed to assist the farmer in making important management and marketing decisions.

  5. An open data mining framework for the analysis of medical images: application on obstructive nephropathy microscopy images.

    PubMed

    Doukas, Charalampos; Goudas, Theodosis; Fischer, Simon; Mierswa, Ingo; Chatziioannou, Aristotle; Maglogiannis, Ilias

    2010-01-01

    This paper presents an open image-mining framework that provides access to tools and methods for the characterization of medical images. Several image processing and feature extraction operators have been implemented and exposed through Web Services. Rapid-Miner, an open source data mining system has been utilized for applying classification operators and creating the essential processing workflows. The proposed framework has been applied for the detection of salient objects in Obstructive Nephropathy microscopy images. Initial classification results are quite promising demonstrating the feasibility of automated characterization of kidney biopsy images.

  6. A comparative analysis of pixel- and object-based detection of landslides from very high-resolution images

    NASA Astrophysics Data System (ADS)

    Keyport, Ren N.; Oommen, Thomas; Martha, Tapas R.; Sajinkumar, K. S.; Gierke, John S.

    2018-02-01

    A comparative analysis of landslides detected by pixel-based and object-oriented analysis (OOA) methods was performed using very high-resolution (VHR) remotely sensed aerial images for the San Juan La Laguna, Guatemala, which witnessed widespread devastation during the 2005 Hurricane Stan. A 3-band orthophoto of 0.5 m spatial resolution together with a 115 field-based landslide inventory were used for the analysis. A binary reference was assigned with a zero value for landslide and unity for non-landslide pixels. The pixel-based analysis was performed using unsupervised classification, which resulted in 11 different trial classes. Detection of landslides using OOA includes 2-step K-means clustering to eliminate regions based on brightness; elimination of false positives using object properties such as rectangular fit, compactness, length/width ratio, mean difference of objects, and slope angle. Both overall accuracy and F-score for OOA methods outperformed pixel-based unsupervised classification methods in both landslide and non-landslide classes. The overall accuracy for OOA and pixel-based unsupervised classification was 96.5% and 94.3%, respectively, whereas the best F-score for landslide identification for OOA and pixel-based unsupervised methods: were 84.3% and 77.9%, respectively.Results indicate that the OOA is able to identify the majority of landslides with a few false positive when compared to pixel-based unsupervised classification.

  7. Open-source software platform for medical image segmentation applications

    NASA Astrophysics Data System (ADS)

    Namías, R.; D'Amato, J. P.; del Fresno, M.

    2017-11-01

    Segmenting 2D and 3D images is a crucial and challenging problem in medical image analysis. Although several image segmentation algorithms have been proposed for different applications, no universal method currently exists. Moreover, their use is usually limited when detection of complex and multiple adjacent objects of interest is needed. In addition, the continually increasing volumes of medical imaging scans require more efficient segmentation software design and highly usable applications. In this context, we present an extension of our previous segmentation framework which allows the combination of existing explicit deformable models in an efficient and transparent way, handling simultaneously different segmentation strategies and interacting with a graphic user interface (GUI). We present the object-oriented design and the general architecture which consist of two layers: the GUI at the top layer, and the processing core filters at the bottom layer. We apply the framework for segmenting different real-case medical image scenarios on public available datasets including bladder and prostate segmentation from 2D MRI, and heart segmentation in 3D CT. Our experiments on these concrete problems show that this framework facilitates complex and multi-object segmentation goals while providing a fast prototyping open-source segmentation tool.

  8. IMAGE EXPLORER: Astronomical Image Analysis on an HTML5-based Web Application

    NASA Astrophysics Data System (ADS)

    Gopu, A.; Hayashi, S.; Young, M. D.

    2014-05-01

    Large datasets produced by recent astronomical imagers cause the traditional paradigm for basic visual analysis - typically downloading one's entire image dataset and using desktop clients like DS9, Aladin, etc. - to not scale, despite advances in desktop computing power and storage. This paper describes Image Explorer, a web framework that offers several of the basic visualization and analysis functionality commonly provided by tools like DS9, on any HTML5 capable web browser on various platforms. It uses a combination of the modern HTML5 canvas, JavaScript, and several layers of lossless PNG tiles producted from the FITS image data. Astronomers are able to rapidly and simultaneously open up several images on their web-browser, adjust the intensity min/max cutoff or its scaling function, and zoom level, apply color-maps, view position and FITS header information, execute typically used data reduction codes on the corresponding FITS data using the FRIAA framework, and overlay tiles for source catalog objects, etc.

  9. Acquiring 3-D information about thick objects from differential interference contrast images using texture extraction

    NASA Astrophysics Data System (ADS)

    Sierra, Heidy; Brooks, Dana; Dimarzio, Charles

    2010-07-01

    The extraction of 3-D morphological information about thick objects is explored in this work. We extract this information from 3-D differential interference contrast (DIC) images by applying a texture detection method. Texture extraction methods have been successfully used in different applications to study biological samples. A 3-D texture image is obtained by applying a local entropy-based texture extraction method. The use of this method to detect regions of blastocyst mouse embryos that are used in assisted reproduction techniques such as in vitro fertilization is presented as an example. Results demonstrate the potential of using texture detection methods to improve morphological analysis of thick samples, which is relevant to many biomedical and biological studies. Fluorescence and optical quadrature microscope phase images are used for validation.

  10. Seeing through walls at the nanoscale: Microwave microscopy of enclosed objects and processes in liquids

    DOE PAGES

    Velmurugan, Jeyavel; Kalinin, Sergei V.; Kolmakov, Andrei; ...

    2016-02-11

    Here, noninvasive in situ nanoscale imaging in liquid environments is a current imperative in the analysis of delicate biomedical objects and electrochemical processes at reactive liquid–solid interfaces. Microwaves of a few gigahertz frequencies offer photons with energies of ≈10 μeV, which can affect neither electronic states nor chemical bonds in condensed matter. Here, we describe an implementation of scanning near-field microwave microscopy for imaging in liquids using ultrathin molecular impermeable membranes separating scanning probes from samples enclosed in environmental cells. We imaged a model electroplating reaction as well as individual live cells. Through a side-by-side comparison of the microwave imagingmore » with scanning electron microscopy, we demonstrate the advantage of microwaves for artifact-free imaging.« less

  11. Geometric error analysis for shuttle imaging spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Wang, S. J.; Ih, C. H.

    1984-01-01

    The demand of more powerful tools for remote sensing and management of earth resources steadily increased over the last decade. With the recent advancement of area array detectors, high resolution multichannel imaging spectrometers can be realistically constructed. The error analysis study for the Shuttle Imaging Spectrometer Experiment system is documented for the purpose of providing information for design, tradeoff, and performance prediction. Error sources including the Shuttle attitude determination and control system, instrument pointing and misalignment, disturbances, ephemeris, Earth rotation, etc., were investigated. Geometric error mapping functions were developed, characterized, and illustrated extensively with tables and charts. Selected ground patterns and the corresponding image distortions were generated for direct visual inspection of how the various error sources affect the appearance of the ground object images.

  12. Effect that Smell Presentation Has on an Individual in Regards to Eye Catching and Memory

    NASA Astrophysics Data System (ADS)

    Tomono, Akira; Kanda, Koyori; Otake, Syunya

    If a person's eyes are greater attracted to the target objects by matching the smell to an important scene of a movie or commercial image, the value of the image contents will rise. In this paper, we attempt to describe the image system that can also present smells, and the reason behind the improvement, from gaze point analysis, of the presence of smell when it is matched to the image. The relationship between the eye catching property and the position of the sight object was examined using the image with the scene where someone eats three kinds of fruits. These objects were gazed at for a long time once releasing their smells. When the smell was not released, the gaze moved actively to try and receive a lot of information from the entire screen. On the other hand, when the smell was inserted, the subject was interested in the object and there was a tendency for their gaze to stay within the narrow area surrounding the image. Moreover, we investigated the effect on the memory by putting the smell on the flowers in the virtual flower shop using immersive virtual reality system (HoloStageTM). It was memorized more easily compared with a scentless case. It seems that the viewer obtains the information actively by reacting to its smell.

  13. Surface-region context in optimal multi-object graph-based segmentation: robust delineation of pulmonary tumors.

    PubMed

    Song, Qi; Chen, Mingqing; Bai, Junjie; Sonka, Milan; Wu, Xiaodong

    2011-01-01

    Multi-object segmentation with mutual interaction is a challenging task in medical image analysis. We report a novel solution to a segmentation problem, in which target objects of arbitrary shape mutually interact with terrain-like surfaces, which widely exists in the medical imaging field. The approach incorporates context information used during simultaneous segmentation of multiple objects. The object-surface interaction information is encoded by adding weighted inter-graph arcs to our graph model. A globally optimal solution is achieved by solving a single maximum flow problem in a low-order polynomial time. The performance of the method was evaluated in robust delineation of lung tumors in megavoltage cone-beam CT images in comparison with an expert-defined independent standard. The evaluation showed that our method generated highly accurate tumor segmentations. Compared with the conventional graph-cut method, our new approach provided significantly better results (p < 0.001). The Dice coefficient obtained by the conventional graph-cut approach (0.76 +/- 0.10) was improved to 0.84 +/- 0.05 when employing our new method for pulmonary tumor segmentation.

  14. Serial grouping of 2D-image regions with object-based attention in humans

    PubMed Central

    Jeurissen, Danique; Self, Matthew W; Roelfsema, Pieter R

    2016-01-01

    After an initial stage of local analysis within the retina and early visual pathways, the human visual system creates a structured representation of the visual scene by co-selecting image elements that are part of behaviorally relevant objects. The mechanisms underlying this perceptual organization process are only partially understood. We here investigate the time-course of perceptual grouping of two-dimensional image-regions by measuring the reaction times of human participants and report that it is associated with the gradual spread of object-based attention. Attention spreads fastest over large and homogeneous areas and is slowed down at locations that require small-scale processing. We find that the time-course of the object-based selection process is well explained by a 'growth-cone' model, which selects surface elements in an incremental, scale-dependent manner. We discuss how the visual cortical hierarchy can implement this scale-dependent spread of object-based attention, leveraging the different receptive field sizes in distinct cortical areas. DOI: http://dx.doi.org/10.7554/eLife.14320.001 PMID:27291188

  15. Exceptional Solar-System Objects

    NASA Astrophysics Data System (ADS)

    Zellner, Benjamin

    1990-12-01

    This is a target-of-opportunity proposal for HST observations to be executed if a previously unknown, truly exceptional solar-system object or phenomenon is discovered either in the normal course of HST work or by anyone, anywhere. Trails due to unknown moving objects will often appear on HST images made for other purposes. A short trail seen near the opposition point or at high ecliptic latitude could represent a major addition to our knowledge of the solar system. Thus we further propose that all short trials seen on HST images taken in favorable regions of the sky be given a quick analysis in the Observation Support System for their possible significance. If an unusual object is found we propose to: (1) Seek from the owner of data rights permission to proceed as may be appropriate; (2) Contact the Minor Planet Center for an evaluation of the significance of the discovery; and (3) For an object that appears to be of great significance where effective groundbased followup appears unlikely, request the HST schedule be replanned for followup images and physical studies using HST.

  16. Blind guidance system based on laser triangulation

    NASA Astrophysics Data System (ADS)

    Wu, Jih-Huah; Wang, Jinner-Der; Fang, Wei; Lee, Yun-Parn; Shan, Yi-Chia; Kao, Hai-Ko; Ma, Shih-Hsin; Jiang, Joe-Air

    2012-05-01

    We propose a new guidance system for the blind. An optical triangulation method is used in the system. The main components of the proposed system comprise of a notebook computer, a camera, and two laser modules. The track image of the light beam on the ground or on the object is captured by the camera and then the image is sent to the notebook computer for further processing and analysis. Using a developed signal-processing algorithm, our system can determine the object width and the distance between the object and the blind person through the calculation of the light line positions on the image. A series of feasibility tests of the developed blind guidance system were conducted. The experimental results show that the distance between the test object and the blind can be measured with a standard deviation of less than 8.5% within the range of 40 and 130 cm, while the test object width can be measured with a standard deviation of less than 4.5% within the range of 40 and 130 cm. The application potential of the designed system to the blind guidance can be expected.

  17. The Dizzying Depths of the Cylindrical Mirror

    NASA Astrophysics Data System (ADS)

    DeWeerd, Alan J.; Hill, S. Eric

    2005-02-01

    A typical introduction to geometrical optics treats plane and spherical mirrors. At first glance, it may be surprising that texts seldom mention the cylindrical mirror, except for the occasional reference to use in fun houses and to viewing anamorphic art.1,2 However, even a cursory treatment reveals its complexity. Holzberlein used an extended object to qualitatively illustrate that images are produced both before and behind a concave cylindrical mirror.3 He also speculated on how this extreme astigmatism results in an observer's dizziness. By considering a simple point object, we make a more detailed analysis of the cylindrical mirror and the dizziness it induces. First, we illustrate how rays from a point object reflect to form not one point image but two line images. Next, we describe how an observer perceives a likeness of the object. Finally, we suggest how confusing depth cues induce dizziness. Although we focus on the concave cylindrical mirror, the discussion is easy to generalize to the convex cylindrical mirror.

  18. Hierarchical object-based classification of ultra-high-resolution digital mapping camera (DMC) imagery for rangeland mapping and assessment

    USDA-ARS?s Scientific Manuscript database

    Ultra high resolution digital aerial photography has great potential to complement or replace ground measurements of vegetation cover for rangeland monitoring and assessment. We investigated object-based image analysis (OBIA) techniques for classifying vegetation in southwestern U.S. arid rangelands...

  19. Feature selection methods for object-based classification of sub-decimeter resolution digital aerial imagery

    USDA-ARS?s Scientific Manuscript database

    Due to the availability of numerous spectral, spatial, and contextual features, the determination of optimal features and class separabilities can be a time consuming process in object-based image analysis (OBIA). While several feature selection methods have been developed to assist OBIA, a robust c...

  20. Development of a quantitative assessment method of pigmentary skin disease using ultraviolet optical imaging.

    PubMed

    Lee, Onseok; Park, Sunup; Kim, Jaeyoung; Oh, Chilhwan

    2017-11-01

    The visual scoring method has been used as a subjective evaluation of pigmentary skin disorders. Severity of pigmentary skin disease, especially melasma, is evaluated using a visual scoring method, the MASI (melasma area severity index). This study differentiates between epidermal and dermal pigmented disease. The study was undertaken to determine methods to quantitatively measure the severity of pigmentary skin disorders under ultraviolet illumination. The optical imaging system consists of illumination (white LED, UV-A lamp) and image acquisition (DSLR camera, air cooling CMOS CCD camera). Each camera is equipped with a polarizing filter to remove glare. To analyze images of visible and UV light, images are divided into frontal, cheek, and chin regions of melasma patients. Each image must undergo image processing. To reduce the curvature error in facial contours, a gradient mask is used. The new method of segmentation of front and lateral facial images is more objective for face-area-measurement than the MASI score. Image analysis of darkness and homogeneity is adequate to quantify the conventional MASI score. Under visible light, active lesion margins appear in both epidermal and dermal melanin, whereas melanin is found in the epidermis under UV light. This study objectively analyzes severity of melasma and attempts to develop new methods of image analysis with ultraviolet optical imaging equipment. Based on the results of this study, our optical imaging system could be used as a valuable tool to assess the severity of pigmentary skin disease. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Virtual landmarks

    NASA Astrophysics Data System (ADS)

    Tong, Yubing; Udupa, Jayaram K.; Odhner, Dewey; Bai, Peirui; Torigian, Drew A.

    2017-03-01

    Much has been published on finding landmarks on object surfaces in the context of shape modeling. While this is still an open problem, many of the challenges of past approaches can be overcome by removing the restriction that landmarks must be on the object surface. The virtual landmarks we propose may reside inside, on the boundary of, or outside the object and are tethered to the object. Our solution is straightforward, simple, and recursive in nature, proceeding from global features initially to local features in later levels to detect landmarks. Principal component analysis (PCA) is used as an engine to recursively subdivide the object region. The object itself may be represented in binary or fuzzy form or with gray values. The method is illustrated in 3D space (although it generalizes readily to spaces of any dimensionality) on four objects (liver, trachea and bronchi, and outer boundaries of left and right lungs along pleura) derived from 5 patient computed tomography (CT) image data sets of the thorax and abdomen. The virtual landmark identification approach seems to work well on different structures in different subjects and seems to detect landmarks that are homologously located in different samples of the same object. The approach guarantees that virtual landmarks are invariant to translation, scaling, and rotation of the object/image. Landmarking techniques are fundamental for many computer vision and image processing applications, and we are currently exploring the use virtual landmarks in automatic anatomy recognition and object analytics.

  2. Objective measurement of accommodative biometric changes using ultrasound biomicroscopy

    PubMed Central

    Ramasubramanian, Viswanathan; Glasser, Adrian

    2015-01-01

    PURPOSE To demonstrate that ultrasound biomicroscopy (UBM) can be used for objective quantitative measurements of anterior segment accommodative changes. SETTING College of Optometry, University of Houston, Houston, Texas, USA. DESIGN Prospective cross-sectional study. METHODS Anterior segment biometric changes in response to 0 to 6.0 diopters (D) of accommodative stimuli in 1.0 D steps were measured in eyes of human subjects aged 21 to 36 years. Imaging was performed in the left eye using a 35 MHz UBM (Vumax) and an A-scan ultrasound (A-5500) while the right eye viewed the accommodative stimuli. An automated Matlab image-analysis program was developed to measure the biometry parameters from the UBM images. RESULTS The UBM-measured accommodative changes in anterior chamber depth (ACD), lens thickness, anterior lens radius of curvature, posterior lens radius of curvature, and anterior segment length were statistically significantly (P < .0001) linearly correlated with accommodative stimulus amplitudes. Standard deviations of the UBM-measured parameters were independent of the accommodative stimulus demands (ACD 0.0176 mm, lens thickness 0.0294 mm, anterior lens radius of curvature 0.3350 mm, posterior lens radius of curvature 0.1580 mm, and anterior segment length 0.0340 mm). The mean difference between the A-scan and UBM measurements was −0.070 mm for ACD and 0.166 mm for lens thickness. CONCLUSIONS Accommodating phakic eyes imaged using UBM allowed visualization of the accommodative response, and automated image analysis of the UBM images allowed reliable, objective, quantitative measurements of the accommodative intraocular biometric changes. PMID:25804579

  3. Digital Correction of Motion Artifacts in Microscopy Image Sequences Collected from Living Animals Using Rigid and Non-Rigid Registration

    PubMed Central

    Lorenz, Kevin S.; Salama, Paul; Dunn, Kenneth W.; Delp, Edward J.

    2013-01-01

    Digital image analysis is a fundamental component of quantitative microscopy. However, intravital microscopy presents many challenges for digital image analysis. In general, microscopy volumes are inherently anisotropic, suffer from decreasing contrast with tissue depth, lack object edge detail, and characteristically have low signal levels. Intravital microscopy introduces the additional problem of motion artifacts, resulting from respiratory motion and heartbeat from specimens imaged in vivo. This paper describes an image registration technique for use with sequences of intravital microscopy images collected in time-series or in 3D volumes. Our registration method involves both rigid and non-rigid components. The rigid registration component corrects global image translations, while the non-rigid component manipulates a uniform grid of control points defined by B-splines. Each control point is optimized by minimizing a cost function consisting of two parts: a term to define image similarity, and a term to ensure deformation grid smoothness. Experimental results indicate that this approach is promising based on the analysis of several image volumes collected from the kidney, lung, and salivary gland of living rodents. PMID:22092443

  4. Study of imaging fiber bundle coupling technique in IR system

    NASA Astrophysics Data System (ADS)

    Chen, Guoqing; Yang, Jianfeng; Yan, Xingtao; Song, Yansong

    2017-02-01

    Due to its advantageous imaging characteristic and banding flexibility, imaging fiber bundle can be used for line-plane-switching push-broom infrared imaging. How to precisely couple the fiber bundle in the optics system is the key to get excellent image for transmission. After introducing the basic system composition and structural characteristics of the infrared systems coupled with imaging fiber bundle, this article analysis the coupling efficiency and the design requirements of its relay lenses with the angle of the numerical aperture selecting in the system and cold stop matching of the refrigerant infrared detector. For an actual need, one relay coupling system has been designed with the magnification is -0.6, field of objective height is 4mm, objective numerical aperture is 0.15, which has excellent image quality and enough coupling efficiency. In the end, the push broom imaging experiment is carried out. The results show that the design meets the requirements of light energy efficiency and image quality. This design has a certain reference value for the design of the infrared fiber optical system.

  5. Data Quality Evaluation and Application Potential Analysis of TIANGONG-2 Wide-Band Imaging Spectrometer

    NASA Astrophysics Data System (ADS)

    Qin, B.; Li, L.; Li, S.

    2018-04-01

    Tiangong-2 is the first space laboratory in China, which launched in September 15, 2016. Wide-band Imaging Spectrometer is a medium resolution multispectral imager on Tiangong-2. In this paper, the authors introduced the indexes and parameters of Wideband Imaging Spectrometer, and made an objective evaluation about the data quality of Wide-band Imaging Spectrometer in radiation quality, image sharpness and information content, and compared the data quality evaluation results with that of Landsat-8. Although the data quality of Wide-band Imager Spectrometer has a certain disparity with Landsat-8 OLI data in terms of signal to noise ratio, clarity and entropy. Compared with OLI, Wide-band Imager Spectrometer has more bands, narrower bandwidth and wider swath, which make it a useful remote sensing data source in classification and identification of large and medium scale ground objects. In the future, Wide-band Imaging Spectrometer data will be widely applied in land cover classification, ecological environment assessment, marine and coastal zone monitoring, crop identification and classification, and other related areas.

  6. CMEIAS color segmentation: an improved computing technology to process color images for quantitative microbial ecology studies at single-cell resolution.

    PubMed

    Gross, Colin A; Reddy, Chandan K; Dazzo, Frank B

    2010-02-01

    Quantitative microscopy and digital image analysis are underutilized in microbial ecology largely because of the laborious task to segment foreground object pixels from background, especially in complex color micrographs of environmental samples. In this paper, we describe an improved computing technology developed to alleviate this limitation. The system's uniqueness is its ability to edit digital images accurately when presented with the difficult yet commonplace challenge of removing background pixels whose three-dimensional color space overlaps the range that defines foreground objects. Image segmentation is accomplished by utilizing algorithms that address color and spatial relationships of user-selected foreground object pixels. Performance of the color segmentation algorithm evaluated on 26 complex micrographs at single pixel resolution had an overall pixel classification accuracy of 99+%. Several applications illustrate how this improved computing technology can successfully resolve numerous challenges of complex color segmentation in order to produce images from which quantitative information can be accurately extracted, thereby gain new perspectives on the in situ ecology of microorganisms. Examples include improvements in the quantitative analysis of (1) microbial abundance and phylotype diversity of single cells classified by their discriminating color within heterogeneous communities, (2) cell viability, (3) spatial relationships and intensity of bacterial gene expression involved in cellular communication between individual cells within rhizoplane biofilms, and (4) biofilm ecophysiology based on ribotype-differentiated radioactive substrate utilization. The stand-alone executable file plus user manual and tutorial images for this color segmentation computing application are freely available at http://cme.msu.edu/cmeias/ . This improved computing technology opens new opportunities of imaging applications where discriminating colors really matter most, thereby strengthening quantitative microscopy-based approaches to advance microbial ecology in situ at individual single-cell resolution.

  7. Small blob identification in medical images using regional features from optimum scale.

    PubMed

    Zhang, Min; Wu, Teresa; Bennett, Kevin M

    2015-04-01

    Recent advances in medical imaging technology have greatly enhanced imaging-based diagnosis which requires computational effective and accurate algorithms to process the images (e.g., measure the objects) for quantitative assessment. In this research, we are interested in one type of imaging objects: small blobs. Examples of small blob objects are cells in histopathology images, glomeruli in MR images, etc. This problem is particularly challenging because the small blobs often have in homogeneous intensity distribution and an indistinct boundary against the background. Yet, in general, these blobs have similar sizes. Motivated by this finding, we propose a novel detector termed Hessian-based Laplacian of Gaussian (HLoG) using scale space theory as the foundation. Like most imaging detectors, an image is first smoothed via LoG. Hessian analysis is then launched to identify the single optimal scale on which a presegmentation is conducted. The advantage of the Hessian process is that it is capable of delineating the blobs. As a result, regional features can be retrieved. These features enable an unsupervised clustering algorithm for postpruning which should be more robust and sensitive than the traditional threshold-based postpruning commonly used in most imaging detectors. To test the performance of the proposed HLoG, two sets of 2-D grey medical images are studied. HLoG is compared against three state-of-the-art detectors: generalized LoG, Radial-Symmetry and LoG using precision, recall, and F-score metrics.We observe that HLoG statistically outperforms the compared detectors.

  8. Diagnostic support for glaucoma using retinal images: a hybrid image analysis and data mining approach.

    PubMed

    Yu, Jin; Abidi, Syed Sibte Raza; Artes, Paul; McIntyre, Andy; Heywood, Malcolm

    2005-01-01

    The availability of modern imaging techniques such as Confocal Scanning Laser Tomography (CSLT) for capturing high-quality optic nerve images offer the potential for developing automatic and objective methods for diagnosing glaucoma. We present a hybrid approach that features the analysis of CSLT images using moment methods to derive abstract image defining features. The features are then used to train classifers for automatically distinguishing CSLT images of normal and glaucoma patient. As a first, in this paper, we present investigations in feature subset selction methods for reducing the relatively large input space produced by the moment methods. We use neural networks and support vector machines to determine a sub-set of moments that offer high classification accuracy. We demonstratee the efficacy of our methods to discriminate between healthy and glaucomatous optic disks based on shape information automatically derived from optic disk topography and reflectance images.

  9. Real-time Image Processing for Microscopy-based Label-free Imaging Flow Cytometry in a Microfluidic Chip.

    PubMed

    Heo, Young Jin; Lee, Donghyeon; Kang, Junsu; Lee, Keondo; Chung, Wan Kyun

    2017-09-14

    Imaging flow cytometry (IFC) is an emerging technology that acquires single-cell images at high-throughput for analysis of a cell population. Rich information that comes from high sensitivity and spatial resolution of a single-cell microscopic image is beneficial for single-cell analysis in various biological applications. In this paper, we present a fast image-processing pipeline (R-MOD: Real-time Moving Object Detector) based on deep learning for high-throughput microscopy-based label-free IFC in a microfluidic chip. The R-MOD pipeline acquires all single-cell images of cells in flow, and identifies the acquired images as a real-time process with minimum hardware that consists of a microscope and a high-speed camera. Experiments show that R-MOD has the fast and reliable accuracy (500 fps and 93.3% mAP), and is expected to be used as a powerful tool for biomedical and clinical applications.

  10. The fundamentals of average local variance--Part I: Detecting regular patterns.

    PubMed

    Bøcher, Peder Klith; McCloy, Keith R

    2006-02-01

    The method of average local variance (ALV) computes the mean of the standard deviation values derived for a 3 x 3 moving window on a successively coarsened image to produce a function of ALV versus spatial resolution. In developing ALV, the authors used approximately a doubling of the pixel size at each coarsening of the image. They hypothesized that ALV is low when the pixel size is smaller than the size of scene objects because the pixels on the object will have similar response values. When the pixel and objects are of similar size, they will tend to vary in response and the ALV values will increase. As the size of pixels increase further, more objects will be contained in a single pixel and ALV will decrease. The authors showed that various cover types produced single peak ALV functions that inexplicitly peaked when the pixel size was 1/2 to 3/4 of the object size. This paper reports on work done to explore the characteristics of the various forms of the ALV function and to understand the location of the peaks that occur in this function. The work was conducted using synthetically generated image data. The investigation showed that the hypothesis originally proposed in is not adequate. A new hypothesis is proposed that the ALV function has peak locations that are related to the geometric size of pattern structures in the scene. These structures are not always the same as scene objects. Only in cases where the size of and separation between scene objects are equal does the ALV function detect the size of the objects. In situations where the distance between scene objects are larger than their size, the ALV function has a peak at the object separation, not at the object size. This work has also shown that multiple object structures of different sizes and distances in the image provide multiple peaks in the ALV function and that some of these structures are not implicitly recognized as such from our perspective. However, the magnitude of these peaks depends on the response mix in the structures, complicating their interpretation and analysis. The analysis of the ALV Function is, thus, more complex than that generally reported in the literature.

  11. Apparent size contrasts of retinal images and size constancy as determinants of the moon illusion.

    PubMed

    Smith, O W; Smith, P C; Geist, C C; Zimmermann, R R

    1978-06-01

    Kaufman and Rock (1962) and Rock and Kaufman (1962) concluded that the moon illusion is a function of and attributable to apparent distance. They also reported a large framing effect as an exception. Analysis of the effect suggests two components which can account for the illusion independently of apparent distance. These are apparent size contrasts of visual images of discriminable features or objects of the earth with the moon's image and size constancy of the features or objects plus the interactions of the two. Apparent distances to horizons are always a consequence of the necessary conditions for the illusion. They are related to the illusion but are not a determinant of it.

  12. Muon tomography imaging algorithms for nuclear threat detection inside large volume containers with the Muon Portal detector

    NASA Astrophysics Data System (ADS)

    Riggi, S.; Antonuccio-Delogu, V.; Bandieramonte, M.; Becciani, U.; Costa, A.; La Rocca, P.; Massimino, P.; Petta, C.; Pistagna, C.; Riggi, F.; Sciacca, E.; Vitello, F.

    2013-11-01

    Muon tomographic visualization techniques try to reconstruct a 3D image as close as possible to the real localization of the objects being probed. Statistical algorithms under test for the reconstruction of muon tomographic images in the Muon Portal Project are discussed here. Autocorrelation analysis and clustering algorithms have been employed within the context of methods based on the Point Of Closest Approach (POCA) reconstruction tool. An iterative method based on the log-likelihood approach was also implemented. Relative merits of all such methods are discussed, with reference to full GEANT4 simulations of different scenarios, incorporating medium and high-Z objects inside a container.

  13. Experimental research of digital holographic microscopic measuring

    NASA Astrophysics Data System (ADS)

    Zhu, Xueliang; Chen, Feifei; Li, Jicheng

    2013-06-01

    Digital holography is a new imaging technique, which is developed on the base of optical holography, Digital processing, and Computer techniques. It is using CCD instead of the conventional silver to record hologram, and then reproducing the 3D contour of the object by the way of computer simulation. Compared with the traditional optical holographic, the whole process is of simple measuring, lower production cost, faster the imaging speed, and with the advantages of non-contact real-time measurement. At present, it can be used in the fields of the morphology detection of tiny objects, micro deformation analysis, and biological cells shape measurement. It is one of the research hot spot at home and abroad. This paper introduced the basic principles and relevant theories about the optical holography and Digital holography, and researched the basic questions which influence the reproduce images in the process of recording and reconstructing of the digital holographic microcopy. In order to get a clear digital hologram, by analyzing the optical system structure, we discussed the recording distance and of the hologram. On the base of the theoretical studies, we established a measurement and analyzed the experimental conditions, then adjusted them to the system. To achieve a precise measurement of tiny object in three-dimension, we measured MEMS micro device for example, and obtained the reproduction three-dimensional contour, realized the three dimensional profile measurement of tiny object. According to the experiment results consider: analysis the reference factors between the zero-order term and a pair of twin-images by the choice of the object light and the reference light and the distance of the recording and reconstructing and the characteristics of reconstruction light on the measurement, the measurement errors were analyzed. The research result shows that the device owns certain reliability.

  14. Generation of synthetic image sequences for the verification of matching and tracking algorithms for deformation analysis

    NASA Astrophysics Data System (ADS)

    Bethmann, F.; Jepping, C.; Luhmann, T.

    2013-04-01

    This paper reports on a method for the generation of synthetic image data for almost arbitrary static or dynamic 3D scenarios. Image data generation is based on pre-defined 3D objects, object textures, camera orientation data and their imaging properties. The procedure does not focus on the creation of photo-realistic images under consideration of complex imaging and reflection models as they are used by common computer graphics programs. In contrast, the method is designed with main emphasis on geometrically correct synthetic images without radiometric impact. The calculation process includes photogrammetric distortion models, hence cameras with arbitrary geometric imaging characteristics can be applied. Consequently, image sets can be created that are consistent to mathematical photogrammetric models to be used as sup-pixel accurate data for the assessment of high-precision photogrammetric processing methods. In the first instance the paper describes the process of image simulation under consideration of colour value interpolation, MTF/PSF and so on. Subsequently the geometric quality of the synthetic images is evaluated with ellipse operators. Finally, simulated image sets are used to investigate matching and tracking algorithms as they have been developed at IAPG for deformation measurement in car safety testing.

  15. Imaging of conductivity distributions using audio-frequency electromagnetic data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ki Ha; Morrison, H.F.

    1990-10-01

    The objective of this study has been to develop mathematical methods for mapping conductivity distributions between boreholes using low frequency electromagnetic (em) data. In relation to this objective this paper presents two recent developments in high-resolution crosshole em imaging techniques. These are (1) audio-frequency diffusion tomography, and (2) a transform method in which low frequency data is first transformed into a wave-like field. The idea in the second approach is that we can then treat the transformed field using conventional techniques designed for wave field analysis.

  16. Time-Resolved Photoluminescence Spectroscopy and Imaging: New Approaches to the Analysis of Cultural Heritage and Its Degradation

    PubMed Central

    Nevin, Austin; Cesaratto, Anna; Bellei, Sara; D'Andrea, Cosimo; Toniolo, Lucia; Valentini, Gianluca; Comelli, Daniela

    2014-01-01

    Applications of time-resolved photoluminescence spectroscopy (TRPL) and fluorescence lifetime imaging (FLIM) to the analysis of cultural heritage are presented. Examples range from historic wall paintings and stone sculptures to 20th century iconic design objects. A detailed description of the instrumentation developed and employed for analysis in the laboratory or in situ is given. Both instruments rely on a pulsed laser source coupled to a gated detection system, but differ in the type of information they provide. Applications of FLIM to the analysis of model samples and for the in-situ monitoring of works of art range from the analysis of organic materials and pigments in wall paintings, the detection of trace organic substances on stone sculptures, to the mapping of luminescence in late 19th century paintings. TRPL and FLIM are employed as sensors for the detection of the degradation of design objects made in plastic. Applications and avenues for future research are suggested. PMID:24699285

  17. Towards photometry pipeline of the Indonesian space surveillance system

    NASA Astrophysics Data System (ADS)

    Priyatikanto, Rhorom; Religia, Bahar; Rachman, Abdul; Dani, Tiar

    2015-09-01

    Optical observation through sub-meter telescope equipped with CCD camera becomes alternative method for increasing orbital debris detection and surveillance. This observational mode is expected to eye medium-sized objects in higher orbits (e.g. MEO, GTO, GSO & GEO), beyond the reach of usual radar system. However, such observation of fast moving objects demands special treatment and analysis technique. In this study, we performed photometric analysis of the satellite track images photographed using rehabilitated Schmidt Bima Sakti telescope in Bosscha Observatory. The Hough transformation was implemented to automatically detect linear streak from the images. From this analysis and comparison to USSPACECOM catalog, two satellites were identified and associated with inactive Thuraya-3 satellite and Satcom-3 debris which are located at geostationary orbit. Further aperture photometry analysis revealed the periodicity of tumbling Satcom-3 debris. In the near future, it is not impossible to apply similar scheme to establish an analysis pipeline for optical space surveillance system hosted in Indonesia.

  18. The Impact of the Condenser on Cytogenetic Image Quality in Digital Microscope System

    PubMed Central

    Ren, Liqiang; Li, Zheng; Li, Yuhua; Zheng, Bin; Li, Shibo; Chen, Xiaodong; Liu, Hong

    2013-01-01

    Background: Optimizing operational parameters of the digital microscope system is an important technique to acquire high quality cytogenetic images and facilitate the process of karyotyping so that the efficiency and accuracy of diagnosis can be improved. OBJECTIVE: This study investigated the impact of the condenser on cytogenetic image quality and system working performance using a prototype digital microscope image scanning system. Methods: Both theoretical analysis and experimental validations through objectively evaluating a resolution test chart and subjectively observing large numbers of specimen were conducted. Results: The results show that the optimal image quality and large depth of field (DOF) are simultaneously obtained when the numerical aperture of condenser is set as 60%–70% of the corresponding objective. Under this condition, more analyzable chromosomes and diagnostic information are obtained. As a result, the system shows higher working stability and less restriction for the implementation of algorithms such as autofocusing especially when the system is designed to achieve high throughput continuous image scanning. Conclusions: Although the above quantitative results were obtained using a specific prototype system under the experimental conditions reported in this paper, the presented evaluation methodologies can provide valuable guidelines for optimizing operational parameters in cytogenetic imaging using the high throughput continuous scanning microscopes in clinical practice. PMID:23676284

  19. Audible sonar images generated with proprioception for target analysis.

    PubMed

    Kuc, Roman B

    2017-05-01

    Some blind humans have demonstrated the ability to detect and classify objects with echolocation using palatal clicks. An audible-sonar robot mimics human click emissions, binaural hearing, and head movements to extract interaural time and level differences from target echoes. Targets of various complexity are examined by transverse displacements of the sonar and by target pose rotations that model movements performed by the blind. Controlled sonar movements executed by the robot provide data that model proprioception information available to blind humans for examining targets from various aspects. The audible sonar uses this sonar location and orientation information to form two-dimensional target images that are similar to medical diagnostic ultrasound tomograms. Simple targets, such as single round and square posts, produce distinguishable and recognizable images. More complex targets configured with several simple objects generate diffraction effects and multiple reflections that produce image artifacts. The presentation illustrates the capabilities and limitations of target classification from audible sonar images.

  20. Study of pipe thickness loss using a neutron radiography method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, Abdul Aziz; Wahab, Aliff Amiru Bin; Yazid, Hafizal B.

    2014-02-12

    The purpose of this preliminary work is to study for thickness changes in objects using neutron radiography. In doing the project, the technique for the radiography was studied. The experiment was done at NUR-2 facility at TRIGA research reactor in Malaysian Nuclear Agency, Malaysia. Test samples of varying materials were used in this project. The samples were radiographed using direct technique. Radiographic images were recorded using Nitrocellulose film. The films obtained were digitized to processed and analyzed. Digital processing is done on the images using software Isee!. The images were processed to produce better image for analysis. The thickness changesmore » in the image were measured to be compared with real thickness of the objects. From the data collected, percentages difference between measured and real thickness are below than 2%. This is considerably very low variation from original values. Therefore, verifying the neutron radiography technique used in this project.« less

  1. SAND: an automated VLBI imaging and analysing pipeline - I. Stripping component trajectories

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Collioud, A.; Charlot, P.

    2018-02-01

    We present our implementation of an automated very long baseline interferometry (VLBI) data-reduction pipeline that is dedicated to interferometric data imaging and analysis. The pipeline can handle massive VLBI data efficiently, which makes it an appropriate tool to investigate multi-epoch multiband VLBI data. Compared to traditional manual data reduction, our pipeline provides more objective results as less human interference is involved. The source extraction is carried out in the image plane, while deconvolution and model fitting are performed in both the image plane and the uv plane for parallel comparison. The output from the pipeline includes catalogues of CLEANed images and reconstructed models, polarization maps, proper motion estimates, core light curves and multiband spectra. We have developed a regression STRIP algorithm to automatically detect linear or non-linear patterns in the jet component trajectories. This algorithm offers an objective method to match jet components at different epochs and to determine their proper motions.

  2. Use of laser range finders and range image analysis in automated assembly tasks

    NASA Technical Reports Server (NTRS)

    Alvertos, Nicolas; Dcunha, Ivan

    1990-01-01

    A proposition to study the effect of filtering processes on range images and to evaluate the performance of two different laser range mappers is made. Median filtering was utilized to remove noise from the range images. First and second order derivatives are then utilized to locate the similarities and dissimilarities between the processed and the original images. Range depth information is converted into spatial coordinates, and a set of coefficients which describe 3-D objects is generated using the algorithm developed in the second phase of this research. Range images of spheres and cylinders are used for experimental purposes. An algorithm was developed to compare the performance of two different laser range mappers based upon the range depth information of surfaces generated by each of the mappers. Furthermore, an approach based on 2-D analytic geometry is also proposed which serves as a basis for the recognition of regular 3-D geometric objects.

  3. StreakDet data processing and analysis pipeline for space debris optical observations

    NASA Astrophysics Data System (ADS)

    Virtanen, Jenni; Flohrer, Tim; Muinonen, Karri; Granvik, Mikael; Torppa, Johanna; Poikonen, Jonne; Lehti, Jussi; Santti, Tero; Komulainen, Tuomo; Naranen, Jyri

    We describe a novel data processing and analysis pipeline for optical observations of space debris. The monitoring of space object populations requires reliable acquisition of observational data, to support the development and validation of space debris environment models, the build-up and maintenance of a catalogue of orbital elements. In addition, data is needed for the assessment of conjunction events and for the support of contingency situations or launches. The currently available, mature image processing algorithms for detection and astrometric reduction of optical data cover objects that cross the sensor field-of-view comparably slowly, and within a rather narrow, predefined range of angular velocities. By applying specific tracking techniques, the objects appear point-like or as short trails in the exposures. However, the general survey scenario is always a “track before detect” problem, resulting in streaks, i.e., object trails of arbitrary lengths, in the images. The scope of the ESA-funded StreakDet (Streak detection and astrometric reduction) project is to investigate solutions for detecting and reducing streaks from optical images, particularly in the low signal-to-noise ratio (SNR) domain, where algorithms are not readily available yet. For long streaks, the challenge is to extract precise position information and related registered epochs with sufficient precision. Although some considerations for low-SNR processing of streak-like features are available in the current image processing and computer vision literature, there is a need to discuss and compare these approaches for space debris analysis, in order to develop and evaluate prototype implementations. In the StreakDet project, we develop algorithms applicable to single images (as compared to consecutive frames of the same field) obtained with any observing scenario, including space-based surveys and both low- and high-altitude populations. The proposed processing pipeline starts from the segmentation of the acquired image (i.e., the extraction of all sources), followed by the astrometric and photometric characterization of the candidate streaks, and ends with orbital validation of the detected streaks. A central concept of the pipeline is streak classification which guides the actual characterization process by aiming to identify the interesting sources and to filter out the uninteresting ones, as well as by allowing the tailoring of algorithms for specific streak classes (e.g. point-like vs. long, disintegrated streaks). To validate the single-image detections, the processing is finalized by orbital analysis, resulting in preliminary orbital classification (Earth-bound vs. non-Earth-bound orbit) for the detected streaks.

  4. Miniature injection-molded optics for fiber-optic, in vivo confocal microscopy

    NASA Astrophysics Data System (ADS)

    Chidley, Matthew D.; Liang, Chen; Descour, Michael R.; Sung, Kung-Bin; Richards-Kortum, Rebecca R.; Gillenwater, Ann

    2002-12-01

    In collaboration with the Department of Biomedical Engineering at the University of Texas at Austin and the UT MD Anderson Cancer Center, a laser scanning fiber confocal reflectance microscope (FCRM) system has been designed and tested for in vivo detection of cervical and oral pre-cancers. This system along with specially developed diagnosis algorithms and techniques can achieve an unprecedented specificity and sensitivity for the diagnosis of pre-cancers in epithelial tissue. The FCRM imaging system consists of an NdYAG laser (1064 nm), scanning mirrors/optics, precision pinhole, detector, and an endoscopic probe (the objective). The objective is connected to the rest of the imaging system via a fiber bundle. The fiber bundle allows the rest of the system to be remotely positioned in a convenient location. Only the objective comes into contact with the patient. It is our intent that inexpensive mass-produced disposable endoscopic probes would be produced for large clinical trials. This paper touches on the general design process of developing a miniature, high numerical aperture, injection-molded (IM) objective. These IM optical designs are evaluated and modified based on manufacturing and application constraints. Based on these driving criteria, one specific optical design was chosen and a detailed tolerance analysis was conducted. The tolerance analysis was custom built to create a realistic statistical analysis for integrated IM lens elements that can be stacked one on top of another using micro-spheres resting in tiny circular grooves. These configurations allow each lens element to be rotated and possibly help compensate for predicted manufacturing errors. This research was supported by a grant from the National Institutes of Health (RO1 CA82880). Special thanks go to Applied Image Group/Optics for the numerous fabrication meetings concerning the miniature IM objective.

  5. Media Stereotypes Analysis in the Classroom at the Student Audience

    ERIC Educational Resources Information Center

    Fedorov, Alexander

    2015-01-01

    Media Stereotypes Analysis is the identification and analysis of stereotypical images of people, ideas, events, stories, themes and etc. in media texts. Media stereotype reflects the well-established attitudes towards a particular object, it is schematic averaged, familiar, stable representation of genres, social processes/events, ideas, people,…

  6. Diagnostic analysis of liver B ultrasonic texture features based on LM neural network

    NASA Astrophysics Data System (ADS)

    Chi, Qingyun; Hua, Hu; Liu, Menglin; Jiang, Xiuying

    2017-03-01

    In this study, B ultrasound images of 124 benign and malignant patients were randomly selected as the study objects. The B ultrasound images of the liver were treated by enhanced de-noising. By constructing the gray level co-occurrence matrix which reflects the information of each angle, Principal Component Analysis of 22 texture features were extracted and combined with LM neural network for diagnosis and classification. Experimental results show that this method is a rapid and effective diagnostic method for liver imaging, which provides a quantitative basis for clinical diagnosis of liver diseases.

  7. Analysis of spatial pseudodepolarizers in imaging systems

    NASA Technical Reports Server (NTRS)

    Mcguire, James P., Jr.; Chipman, Russell A.

    1990-01-01

    The objective of a number of optical instruments is to measure the intensity accurately without bias as to the incident polarization state. One method to overcome polarization bias in optical systems is the insertion of a spatial pseudodepolarizer. Both the degree of depolarization and image degradation (from the polarization aberrations of the pseudodepolarizer) are analyzed for two depolarizer designs: (1) the Cornu pseudodepolarizer, effective for linearly polarized light, and (2) the dual Babinet compensator pseudodepolarizer, effective for all incident polarization states. The image analysis uses a matrix formalism to describe the polarization dependence of the diffraction patterns and optical transfer function.

  8. Optical design and system characterization of an imaging microscope at 121.6 nm

    NASA Astrophysics Data System (ADS)

    Gao, Weichuan; Finan, Emily; Kim, Geon-Hee; Kim, Youngsik; Milster, Thomas D.

    2018-03-01

    We present the optical design and system characterization of an imaging microscope prototype at 121.6 nm. System engineering processes are demonstrated through the construction of a Schwarzschild microscope objective, including tolerance analysis, fabrication, alignment, and testing. Further improvements on the as-built system with a correction phase plate are proposed and analyzed. Finally, the microscope assembly and the imaging properties of the prototype are demonstrated.

  9. Image Understanding by Image-Seeking Adaptive Networks (ISAN).

    DTIC Science & Technology

    1987-08-10

    our reserch on adaptive neural networks in the visual and sensory-motor cortex of cats. We demonstrate that, under certain conditions, plasticity is...understanding in organisms proceeds directly from adaptively seeking whole images and not via a preliminary analysis of elementary features, followed by object...empirical reserch has always been that ultimately any neural system has to serve behavior and that behavior serves survival. Evolutionary selection makes it

  10. Northeast Artificial Intelligence Consortium Annual Report for 1987. Volume 4. Research in Automated Photointerpretation

    DTIC Science & Technology

    1989-03-01

    KOWLEDGE INFERENCE IMAGE DAAAEENGINE DATABASE Automated Photointerpretation Testbed. 4.1.7 Fig. .1.1-2 An Initial Segmentation of an Image / zx...MRF) theory provide a powerful alternative texture model and have resulted in intensive research activity in MRF model- based texture analysis...interpretation process. 5. Additional, and perhaps more powerful , features have to be incorporated into the image segmentation procedure. 6. Object detection

  11. Phase contrast imaging simulation and measurements using polychromatic sources with small source-object distances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golosio, Bruno; Carpinelli, Massimo; Masala, Giovanni Luca

    Phase contrast imaging is a technique widely used in synchrotron facilities for nondestructive analysis. Such technique can also be implemented through microfocus x-ray tube systems. Recently, a relatively new type of compact, quasimonochromatic x-ray sources based on Compton backscattering has been proposed for phase contrast imaging applications. In order to plan a phase contrast imaging system setup, to evaluate the system performance and to choose the experimental parameters that optimize the image quality, it is important to have reliable software for phase contrast imaging simulation. Several software tools have been developed and tested against experimental measurements at synchrotron facilities devotedmore » to phase contrast imaging. However, many approximations that are valid in such conditions (e.g., large source-object distance, small transverse size of the object, plane wave approximation, monochromatic beam, and Gaussian-shaped source focal spot) are not generally suitable for x-ray tubes and other compact systems. In this work we describe a general method for the simulation of phase contrast imaging using polychromatic sources based on a spherical wave description of the beam and on a double-Gaussian model of the source focal spot, we discuss the validity of some possible approximations, and we test the simulations against experimental measurements using a microfocus x-ray tube on three types of polymers (nylon, poly-ethylene-terephthalate, and poly-methyl-methacrylate) at varying source-object distance. It will be shown that, as long as all experimental conditions are described accurately in the simulations, the described method yields results that are in good agreement with experimental measurements.« less

  12. Automatic classification of minimally invasive instruments based on endoscopic image sequences

    NASA Astrophysics Data System (ADS)

    Speidel, Stefanie; Benzko, Julia; Krappe, Sebastian; Sudra, Gunther; Azad, Pedram; Müller-Stich, Beat Peter; Gutt, Carsten; Dillmann, Rüdiger

    2009-02-01

    Minimally invasive surgery is nowadays a frequently applied technique and can be regarded as a major breakthrough in surgery. The surgeon has to adopt special operation-techniques and deal with difficulties like the complex hand-eye coordination and restricted mobility. To alleviate these constraints we propose to enhance the surgeon's capabilities by providing a context-aware assistance using augmented reality techniques. To analyze the current situation for context-aware assistance, we need intraoperatively gained sensor data and a model of the intervention. A situation consists of information about the performed activity, the used instruments, the surgical objects, the anatomical structures and defines the state of an intervention for a given moment in time. The endoscopic images provide a rich source of information which can be used for an image-based analysis. Different visual cues are observed in order to perform an image-based analysis with the objective to gain as much information as possible about the current situation. An important visual cue is the automatic recognition of the instruments which appear in the scene. In this paper we present the classification of minimally invasive instruments using the endoscopic images. The instruments are not modified by markers. The system segments the instruments in the current image and recognizes the instrument type based on three-dimensional instrument models.

  13. ELLIPTICAL WEIGHTED HOLICs FOR WEAK LENSING SHEAR MEASUREMENT. III. THE EFFECT OF RANDOM COUNT NOISE ON IMAGE MOMENTS IN WEAK LENSING ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okura, Yuki; Futamase, Toshifumi, E-mail: yuki.okura@nao.ac.jp, E-mail: tof@astr.tohoku.ac.jp

    This is the third paper on the improvement of systematic errors in weak lensing analysis using an elliptical weight function, referred to as E-HOLICs. In previous papers, we succeeded in avoiding errors that depend on the ellipticity of the background image. In this paper, we investigate the systematic error that depends on the signal-to-noise ratio of the background image. We find that the origin of this error is the random count noise that comes from the Poisson noise of sky counts. The random count noise makes additional moments and centroid shift error, and those first-order effects are canceled in averaging,more » but the second-order effects are not canceled. We derive the formulae that correct this systematic error due to the random count noise in measuring the moments and ellipticity of the background image. The correction formulae obtained are expressed as combinations of complex moments of the image, and thus can correct the systematic errors caused by each object. We test their validity using a simulated image and find that the systematic error becomes less than 1% in the measured ellipticity for objects with an IMCAT significance threshold of {nu} {approx} 11.7.« less

  14. Potential use of combining the diffusion equation with the free Shrödinger equation to improve the Optical Coherence Tomography image analysis

    NASA Astrophysics Data System (ADS)

    Cabrera Fernandez, Delia; Salinas, Harry M.; Somfai, Gabor; Puliafito, Carmen A.

    2006-03-01

    Optical coherence tomography (OCT) is a rapidly emerging medical imaging technology. In ophthalmology, OCT is a powerful tool because it enables visualization of the cross sectional structure of the retina and anterior eye with higher resolutions than any other non-invasive imaging modality. Furthermore, OCT image information can be quantitatively analyzed, enabling objective assessment of features such as macular edema and diabetes retinopathy. We present specific improvements in the quantitative analysis of the OCT system, by combining the diffusion equation with the free Shrödinger equation. In such formulation, important features of the image can be extracted by extending the analysis from the real axis to the complex domain. Experimental results indicate that our proposed novel approach has good performance in speckle noise removal, enhancement and segmentation of the various cellular layers of the retina using the OCT system.

  15. Classification and pose estimation of objects using nonlinear features

    NASA Astrophysics Data System (ADS)

    Talukder, Ashit; Casasent, David P.

    1998-03-01

    A new nonlinear feature extraction method called the maximum representation and discrimination feature (MRDF) method is presented for extraction of features from input image data. It implements transformations similar to the Sigma-Pi neural network. However, the weights of the MRDF are obtained in closed form, and offer advantages compared to nonlinear neural network implementations. The features extracted are useful for both object discrimination (classification) and object representation (pose estimation). We show its use in estimating the class and pose of images of real objects and rendered solid CAD models of machine parts from single views using a feature-space trajectory (FST) neural network classifier. We show more accurate classification and pose estimation results than are achieved by standard principal component analysis (PCA) and Fukunaga-Koontz (FK) feature extraction methods.

  16. The collection of images of an insulator taken outdoors in varying lighting conditions with additional laser spots.

    PubMed

    Tomaszewski, Michał; Ruszczak, Bogdan; Michalski, Paweł

    2018-06-01

    Electrical insulators are elements of power lines that require periodical diagnostics. Due to their location on the components of high-voltage power lines, their imaging can be cumbersome and time-consuming, especially under varying lighting conditions. Insulator diagnostics with the use of visual methods may require localizing insulators in the scene. Studies focused on insulator localization in the scene apply a number of methods, including: texture analysis, MRF (Markov Random Field), Gabor filters or GLCM (Gray Level Co-Occurrence Matrix) [1], [2]. Some methods, e.g. those which localize insulators based on colour analysis [3], rely on object and scene illumination, which is why the images from the dataset are taken under varying lighting conditions. The dataset may also be used to compare the effectiveness of different methods of localizing insulators in images. This article presents high-resolution images depicting a long rod electrical insulator under varying lighting conditions and against different backgrounds: crops, forest and grass. The dataset contains images with visible laser spots (generated by a device emitting light at the wavelength of 532 nm) and images without such spots, as well as complementary data concerning the illumination level and insulator position in the scene, the number of registered laser spots, and their coordinates in the image. The laser spots may be used to support object-localizing algorithms, while the images without spots may serve as a source of information for those algorithms which do not need spots to localize an insulator.

  17. Motion and Structure Estimation of Manoeuvring Objects in Multiple- Camera Image Sequences

    DTIC Science & Technology

    1992-11-01

    and Speckert [23], Gennery [24], Hallman [25], Legters and Young [26], Stuller and Krishnamurthy [27], Wu et al. [381, Matthies, Kanade, and Szeliski...26] G.R. Legters , T.Y. Young, "A mathematical model for computer image track- ing," IEEE Transactions on Pattern Analysis and Machine Intelligence

  18. Sharp-Focus Composite Microscope Imaging by Computer

    NASA Technical Reports Server (NTRS)

    Wall, R. J.

    1983-01-01

    Enhanced depth of focus aids medical analysis. Computer image-processing system synthesizes sharply-focused composite picture from series of photomicrographs of same object taken at different depths. Computer rejects blured parts of each photomicrograph. Remaining in focus portions form focused composite. System used to study alveolar lung tissue and has applications in medicine and physical sciences.

  19. Soil structure characterized using computed tomographic images

    Treesearch

    Zhanqi Cheng; Stephen H. Anderson; Clark J. Gantzer; J. W. Van Sambeek

    2003-01-01

    Fractal analysis of soil structure is a relatively new method for quantifying the effects of management systems on soil properties and quality. The objective of this work was to explore several methods of studying images to describe and quantify structure of soils under forest management. This research uses computed tomography and a topological method called Multiple...

  20. Imaging a soil fragipans using a high-frequency MASW method

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to noninvasively image a fragipan layer, a naturally occurring dense soil layer, using a high-frequency (HF) multi-channel analysis of surface wave (MASW) method. The HF-MASW is developed to measure the soil profile in terms of the shear (S) wave velocity at depths up...

  1. Point Analysis in Java applied to histological images of the perforant pathway: a user's account.

    PubMed

    Scorcioni, Ruggero; Wright, Susan N; Patrick Card, J; Ascoli, Giorgio A; Barrionuevo, Germán

    2008-01-01

    The freeware Java tool Point Analysis in Java (PAJ), created to perform 3D point analysis, was tested in an independent laboratory setting. The input data consisted of images of the hippocampal perforant pathway from serial immunocytochemical localizations of the rat brain in multiple views at different resolutions. The low magnification set (x2 objective) comprised the entire perforant pathway, while the high magnification set (x100 objective) allowed the identification of individual fibers. A preliminary stereological study revealed a striking linear relationship between the fiber count at high magnification and the optical density at low magnification. PAJ enabled fast analysis for down-sampled data sets and a friendly interface with automated plot drawings. Noted strengths included the multi-platform support as well as the free availability of the source code, conducive to a broad user base and maximum flexibility for ad hoc requirements. PAJ has great potential to extend its usability by (a) improving its graphical user interface, (b) increasing its input size limit, (c) improving response time for large data sets, and (d) potentially being integrated with other Java graphical tools such as ImageJ.

  2. An Aggregated Method for Determining Railway Defects and Obstacle Parameters

    NASA Astrophysics Data System (ADS)

    Loktev, Daniil; Loktev, Alexey; Stepanov, Roman; Pevzner, Viktor; Alenov, Kanat

    2018-03-01

    The method of combining algorithms of image blur analysis and stereo vision to determine the distance to objects (including external defects of railway tracks) and the speed of moving objects-obstacles is proposed. To estimate the deviation of the distance depending on the blur a statistical approach, logarithmic, exponential and linear standard functions are used. The statistical approach includes a method of estimating least squares and the method of least modules. The accuracy of determining the distance to the object, its speed and direction of movement is obtained. The paper develops a method of determining distances to objects by analyzing a series of images and assessment of depth using defocusing using its aggregation with stereoscopic vision. This method is based on a physical effect of dependence on the determined distance to the object on the obtained image from the focal length or aperture of the lens. In the calculation of the blur spot diameter it is assumed that blur occurs at the point equally in all directions. According to the proposed approach, it is possible to determine the distance to the studied object and its blur by analyzing a series of images obtained using the video detector with different settings. The article proposes and scientifically substantiates new and improved existing methods for detecting the parameters of static and moving objects of control, and also compares the results of the use of various methods and the results of experiments. It is shown that the aggregate method gives the best approximation to the real distances.

  3. Segmentation of fluorescence microscopy images for quantitative analysis of cell nuclear architecture.

    PubMed

    Russell, Richard A; Adams, Niall M; Stephens, David A; Batty, Elizabeth; Jensen, Kirsten; Freemont, Paul S

    2009-04-22

    Considerable advances in microscopy, biophysics, and cell biology have provided a wealth of imaging data describing the functional organization of the cell nucleus. Until recently, cell nuclear architecture has largely been assessed by subjective visual inspection of fluorescently labeled components imaged by the optical microscope. This approach is inadequate to fully quantify spatial associations, especially when the patterns are indistinct, irregular, or highly punctate. Accurate image processing techniques as well as statistical and computational tools are thus necessary to interpret this data if meaningful spatial-function relationships are to be established. Here, we have developed a thresholding algorithm, stable count thresholding (SCT), to segment nuclear compartments in confocal laser scanning microscopy image stacks to facilitate objective and quantitative analysis of the three-dimensional organization of these objects using formal statistical methods. We validate the efficacy and performance of the SCT algorithm using real images of immunofluorescently stained nuclear compartments and fluorescent beads as well as simulated images. In all three cases, the SCT algorithm delivers a segmentation that is far better than standard thresholding methods, and more importantly, is comparable to manual thresholding results. By applying the SCT algorithm and statistical analysis, we quantify the spatial configuration of promyelocytic leukemia nuclear bodies with respect to irregular-shaped SC35 domains. We show that the compartments are closer than expected under a null model for their spatial point distribution, and furthermore that their spatial association varies according to cell state. The methods reported are general and can readily be applied to quantify the spatial interactions of other nuclear compartments.

  4. Segmentation of Fluorescence Microscopy Images for Quantitative Analysis of Cell Nuclear Architecture

    PubMed Central

    Russell, Richard A.; Adams, Niall M.; Stephens, David A.; Batty, Elizabeth; Jensen, Kirsten; Freemont, Paul S.

    2009-01-01

    Abstract Considerable advances in microscopy, biophysics, and cell biology have provided a wealth of imaging data describing the functional organization of the cell nucleus. Until recently, cell nuclear architecture has largely been assessed by subjective visual inspection of fluorescently labeled components imaged by the optical microscope. This approach is inadequate to fully quantify spatial associations, especially when the patterns are indistinct, irregular, or highly punctate. Accurate image processing techniques as well as statistical and computational tools are thus necessary to interpret this data if meaningful spatial-function relationships are to be established. Here, we have developed a thresholding algorithm, stable count thresholding (SCT), to segment nuclear compartments in confocal laser scanning microscopy image stacks to facilitate objective and quantitative analysis of the three-dimensional organization of these objects using formal statistical methods. We validate the efficacy and performance of the SCT algorithm using real images of immunofluorescently stained nuclear compartments and fluorescent beads as well as simulated images. In all three cases, the SCT algorithm delivers a segmentation that is far better than standard thresholding methods, and more importantly, is comparable to manual thresholding results. By applying the SCT algorithm and statistical analysis, we quantify the spatial configuration of promyelocytic leukemia nuclear bodies with respect to irregular-shaped SC35 domains. We show that the compartments are closer than expected under a null model for their spatial point distribution, and furthermore that their spatial association varies according to cell state. The methods reported are general and can readily be applied to quantify the spatial interactions of other nuclear compartments. PMID:19383481

  5. Orthorectified High Resolution Multispectral Imagery for Application to Change Detection and Analysis

    NASA Technical Reports Server (NTRS)

    Benkelman, Cody A.

    1997-01-01

    The project team has outlined several technical objectives which will allow the companies to improve on their current capabilities. These include modifications to the imaging system, enabling it to operate more cost effectively and with greater ease of use, automation of the post-processing software to mosaic and orthorectify the image scenes collected, and the addition of radiometric calibration to greatly aid in the ability to perform accurate change detection. Business objectives include fine tuning of the market plan plus specification of future product requirements, expansion of sales activities (including identification of necessary additional resources required to meet stated revenue objectives), development of a product distribution plan, and implementation of a world wide sales effort.

  6. The Role of Visual and Semantic Properties in the Emergence of Category-Specific Patterns of Neural Response in the Human Brain.

    PubMed

    Coggan, David D; Baker, Daniel H; Andrews, Timothy J

    2016-01-01

    Brain-imaging studies have found distinct spatial and temporal patterns of response to different object categories across the brain. However, the extent to which these categorical patterns of response reflect higher-level semantic or lower-level visual properties of the stimulus remains unclear. To address this question, we measured patterns of EEG response to intact and scrambled images in the human brain. Our rationale for using scrambled images is that they have many of the visual properties found in intact images, but do not convey any semantic information. Images from different object categories (bottle, face, house) were briefly presented (400 ms) in an event-related design. A multivariate pattern analysis revealed categorical patterns of response to intact images emerged ∼80-100 ms after stimulus onset and were still evident when the stimulus was no longer present (∼800 ms). Next, we measured the patterns of response to scrambled images. Categorical patterns of response to scrambled images also emerged ∼80-100 ms after stimulus onset. However, in contrast to the intact images, distinct patterns of response to scrambled images were mostly evident while the stimulus was present (∼400 ms). Moreover, scrambled images were able to account only for all the variance in the intact images at early stages of processing. This direct manipulation of visual and semantic content provides new insights into the temporal dynamics of object perception and the extent to which different stages of processing are dependent on lower-level or higher-level properties of the image.

  7. A survey on deep learning in medical image analysis.

    PubMed

    Litjens, Geert; Kooi, Thijs; Bejnordi, Babak Ehteshami; Setio, Arnaud Arindra Adiyoso; Ciompi, Francesco; Ghafoorian, Mohsen; van der Laak, Jeroen A W M; van Ginneken, Bram; Sánchez, Clara I

    2017-12-01

    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks. Concise overviews are provided of studies per application area: neuro, retinal, pulmonary, digital pathology, breast, cardiac, abdominal, musculoskeletal. We end with a summary of the current state-of-the-art, a critical discussion of open challenges and directions for future research. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Ripening of salami: assessment of colour and aspect evolution using image analysis and multivariate image analysis.

    PubMed

    Fongaro, Lorenzo; Alamprese, Cristina; Casiraghi, Ernestina

    2015-03-01

    During ripening of salami, colour changes occur due to oxidation phenomena involving myoglobin. Moreover, shrinkage due to dehydration results in aspect modifications, mainly ascribable to fat aggregation. The aim of this work was the application of image analysis (IA) and multivariate image analysis (MIA) techniques to the study of colour and aspect changes occurring in salami during ripening. IA results showed that red, green, blue, and intensity parameters decreased due to the development of a global darker colour, while Heterogeneity increased due to fat aggregation. By applying MIA, different salami slice areas corresponding to fat and three different degrees of oxidised meat were identified and quantified. It was thus possible to study the trend of these different areas as a function of ripening, making objective an evaluation usually performed by subjective visual inspection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Simultaneously Discovering and Localizing Common Objects in Wild Images.

    PubMed

    Wang, Zhenzhen; Yuan, Junsong

    2018-09-01

    Motivated by the recent success of supervised and weakly supervised common object discovery, in this paper, we move forward one step further to tackle common object discovery in a fully unsupervised way. Generally, object co-localization aims at simultaneously localizing objects of the same class across a group of images. Traditional object localization/detection usually trains specific object detectors which require bounding box annotations of object instances, or at least image-level labels to indicate the presence/absence of objects in an image. Given a collection of images without any annotations, our proposed fully unsupervised method is to simultaneously discover images that contain common objects and also localize common objects in corresponding images. Without requiring to know the total number of common objects, we formulate this unsupervised object discovery as a sub-graph mining problem from a weighted graph of object proposals, where nodes correspond to object proposals, and edges represent the similarities between neighbouring proposals. The positive images and common objects are jointly discovered by finding sub-graphs of strongly connected nodes, with each sub-graph capturing one object pattern. The optimization problem can be efficiently solved by our proposed maximal-flow-based algorithm. Instead of assuming that each image contains only one common object, our proposed solution can better address wild images where each image may contain multiple common objects or even no common object. Moreover, our proposed method can be easily tailored to the task of image retrieval in which the nodes correspond to the similarity between query and reference images. Extensive experiments on PASCAL VOC 2007 and Object Discovery data sets demonstrate that even without any supervision, our approach can discover/localize common objects of various classes in the presence of scale, view point, appearance variation, and partial occlusions. We also conduct broad experiments on image retrieval benchmarks, Holidays and Oxford5k data sets, to show that our proposed method, which considers both the similarity between query and reference images and also similarities among reference images, can help to improve the retrieval results significantly.

  10. The Use of Neutron Analysis Techniques for Detecting The Concentration And Distribution of Chloride Ions in Archaeological Iron

    PubMed Central

    Watkinson, D; Rimmer, M; Kasztovszky, Z; Kis, Z; Maróti, B; Szentmiklósi, L

    2014-01-01

    Chloride (Cl) ions diffuse into iron objects during burial and drive corrosion after excavation. Located under corrosion layers, Cl is inaccessible to many analytical techniques. Neutron analysis offers non-destructive avenues for determining Cl content and distribution in objects. A pilot study used prompt gamma activation analysis (PGAA) and prompt gamma activation imaging (PGAI) to analyse the bulk concentration and longitudinal distribution of Cl in archaeological iron objects. This correlated with the object corrosion rate measured by oxygen consumption, and compared well with Cl measurement using a specific ion meter. High-Cl areas were linked with visible damage to the corrosion layers and attack of the iron core. Neutron techniques have significant advantages in the analysis of archaeological metals, including penetration depth and low detection limits. PMID:26028670

  11. Complex dark-field contrast and its retrieval in x-ray phase contrast imaging implemented with Talbot interferometry.

    PubMed

    Yang, Yi; Tang, Xiangyang

    2014-10-01

    Under the existing theoretical framework of x-ray phase contrast imaging methods implemented with Talbot interferometry, the dark-field contrast refers to the reduction in interference fringe visibility due to small-angle x-ray scattering of the subpixel microstructures of an object to be imaged. This study investigates how an object's subpixel microstructures can also affect the phase of the intensity oscillations. Instead of assuming that the object's subpixel microstructures distribute in space randomly, the authors' theoretical derivation starts by assuming that an object's attenuation projection and phase shift vary at a characteristic size that is not smaller than the period of analyzer grating G₂ and a characteristic length dc. Based on the paraxial Fresnel-Kirchhoff theory, the analytic formulae to characterize the zeroth- and first-order Fourier coefficients of the x-ray irradiance recorded at each detector cell are derived. Then the concept of complex dark-field contrast is introduced to quantify the influence of the object's microstructures on both the interference fringe visibility and the phase of intensity oscillations. A method based on the phase-attenuation duality that holds for soft tissues and high x-ray energies is proposed to retrieve the imaginary part of the complex dark-field contrast for imaging. Through computer simulation study with a specially designed numerical phantom, they evaluate and validate the derived analytic formulae and the proposed retrieval method. Both theoretical analysis and computer simulation study show that the effect of an object's subpixel microstructures on x-ray phase contrast imaging method implemented with Talbot interferometry can be fully characterized by a complex dark-field contrast. The imaginary part of complex dark-field contrast quantifies the influence of the object's subpixel microstructures on the phase of intensity oscillations. Furthermore, at relatively high energies, for soft tissues it can be retrieved for imaging with a method based on the phase-attenuation duality. The analytic formulae derived in this work to characterize the complex dark-field contrast in x-ray phase contrast imaging method implemented with Talbot interferometry are of significance, which may initiate more activities in the research and development of x-ray differential phase contrast imaging for extensive biomedical applications.

  12. Analysis of micro computed tomography images; a look inside historic enamelled metal objects

    NASA Astrophysics Data System (ADS)

    van der Linden, Veerle; van de Casteele, Elke; Thomas, Mienke Simon; de Vos, Annemie; Janssen, Elsje; Janssens, Koen

    2010-02-01

    In this study the usefulness of micro-Computed Tomography (µ-CT) for the in-depth analysis of enamelled metal objects was tested. Usually investigations of enamelled metal artefacts are restricted to non-destructive surface analysis or analysis of cross sections after destructive sampling. Radiography, a commonly used technique in the field of cultural heritage studies, is limited to providing two-dimensional information about a three-dimensional object (Lang and Middleton, Radiography of Cultural Material, pp. 60-61, Elsevier-Butterworth-Heinemann, Amsterdam-Stoneham-London, 2005). Obtaining virtual slices and information about the internal structure of these objects was made possible by CT analysis. With this technique the underlying metal work was studied without removing the decorative enamel layer. Moreover visible defects such as cracks were measured in both width and depth and as of yet invisible defects and weaker areas are visualised. All these features are of great interest to restorers and conservators as they allow a view inside these objects without so much as touching them.

  13. CosmoQuest Transient Tracker: Opensource Photometry & Astrometry software

    NASA Astrophysics Data System (ADS)

    Myers, Joseph L.; Lehan, Cory; Gay, Pamela; Richardson, Matthew; CosmoQuest Team

    2018-01-01

    CosmoQuest is moving from online citizen science, to observational astronomy with the creation of Transient Trackers. This open source software is designed to identify asteroids and other transient/variable objects in image sets. Transient Tracker’s features in final form will include: astrometric and photometric solutions, identification of moving/transient objects, identification of variable objects, and lightcurve analysis. In this poster we present our initial, v0.1 release and seek community input.This software builds on the existing NIH funded ImageJ libraries. Creation of this suite of opensource image manipulation routines is lead by Wayne Rasband and is released primarily under the MIT license. In this release, we are building on these libraries to add source identification for point / point-like sources, and to do astrometry. Our materials released under the Apache 2.0 license on github (http://github.com/CosmoQuestTeam) and documentation can be found at http://cosmoquest.org/TransientTracker.

  14. Simultaneous reconstruction of multiple depth images without off-focus points in integral imaging using a graphics processing unit.

    PubMed

    Yi, Faliu; Lee, Jieun; Moon, Inkyu

    2014-05-01

    The reconstruction of multiple depth images with a ray back-propagation algorithm in three-dimensional (3D) computational integral imaging is computationally burdensome. Further, a reconstructed depth image consists of a focus and an off-focus area. Focus areas are 3D points on the surface of an object that are located at the reconstructed depth, while off-focus areas include 3D points in free-space that do not belong to any object surface in 3D space. Generally, without being removed, the presence of an off-focus area would adversely affect the high-level analysis of a 3D object, including its classification, recognition, and tracking. Here, we use a graphics processing unit (GPU) that supports parallel processing with multiple processors to simultaneously reconstruct multiple depth images using a lookup table containing the shifted values along the x and y directions for each elemental image in a given depth range. Moreover, each 3D point on a depth image can be measured by analyzing its statistical variance with its corresponding samples, which are captured by the two-dimensional (2D) elemental images. These statistical variances can be used to classify depth image pixels as either focus or off-focus points. At this stage, the measurement of focus and off-focus points in multiple depth images is also implemented in parallel on a GPU. Our proposed method is conducted based on the assumption that there is no occlusion of the 3D object during the capture stage of the integral imaging process. Experimental results have demonstrated that this method is capable of removing off-focus points in the reconstructed depth image. The results also showed that using a GPU to remove the off-focus points could greatly improve the overall computational speed compared with using a CPU.

  15. Objected-oriented remote sensing image classification method based on geographic ontology model

    NASA Astrophysics Data System (ADS)

    Chu, Z.; Liu, Z. J.; Gu, H. Y.

    2016-11-01

    Nowadays, with the development of high resolution remote sensing image and the wide application of laser point cloud data, proceeding objected-oriented remote sensing classification based on the characteristic knowledge of multi-source spatial data has been an important trend on the field of remote sensing image classification, which gradually replaced the traditional method through improving algorithm to optimize image classification results. For this purpose, the paper puts forward a remote sensing image classification method that uses the he characteristic knowledge of multi-source spatial data to build the geographic ontology semantic network model, and carries out the objected-oriented classification experiment to implement urban features classification, the experiment uses protégé software which is developed by Stanford University in the United States, and intelligent image analysis software—eCognition software as the experiment platform, uses hyperspectral image and Lidar data that is obtained through flight in DaFeng City of JiangSu as the main data source, first of all, the experiment uses hyperspectral image to obtain feature knowledge of remote sensing image and related special index, the second, the experiment uses Lidar data to generate nDSM(Normalized DSM, Normalized Digital Surface Model),obtaining elevation information, the last, the experiment bases image feature knowledge, special index and elevation information to build the geographic ontology semantic network model that implement urban features classification, the experiment results show that, this method is significantly higher than the traditional classification algorithm on classification accuracy, especially it performs more evidently on the respect of building classification. The method not only considers the advantage of multi-source spatial data, for example, remote sensing image, Lidar data and so on, but also realizes multi-source spatial data knowledge integration and application of the knowledge to the field of remote sensing image classification, which provides an effective way for objected-oriented remote sensing image classification in the future.

  16. Beam Characterization at the Neutron Radiography Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarah Morgan; Jeffrey King

    The quality of a neutron imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam’s effective length-to-diameter ratio, neutron flux profile, energy spectrum, image quality, and beam divergence, is vital for producing quality radiographic images. This project characterized the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam’s effective length-to-diameter ratio and image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured themore » beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. Improvement of the existing NRAD MCNP beamline model includes validation of the model’s energy spectrum and the development of enhanced image simulation methods. The image simulation methods predict the radiographic image of an object based on the foil reaction rate data obtained by placing a model of the object in front of the image plane in an MCNP beamline model.« less

  17. Segmentation of white rat sperm image

    NASA Astrophysics Data System (ADS)

    Bai, Weiguo; Liu, Jianguo; Chen, Guoyuan

    2011-11-01

    The segmentation of sperm image exerts a profound influence in the analysis of sperm morphology, which plays a significant role in the research of animals' infertility and reproduction. To overcome the microscope image's properties of low contrast and highly polluted noise, and to get better segmentation results of sperm image, this paper presents a multi-scale gradient operator combined with a multi-structuring element for the micro-spermatozoa image of white rat, as the multi-scale gradient operator can smooth the noise of an image, while the multi-structuring element can retain more shape details of the sperms. Then, we use the Otsu method to segment the modified gradient image whose gray scale processed is strong in sperms and weak in the background, converting it into a binary sperm image. As the obtained binary image owns impurities that are not similar with sperms in the shape, we choose a form factor to filter those objects whose form factor value is larger than the select critical value, and retain those objects whose not. And then, we can get the final binary image of the segmented sperms. The experiment shows this method's great advantage in the segmentation of the micro-spermatozoa image.

  18. Particle detection, number estimation, and feature measurement in gene transfer studies: optical fractionator stereology integrated with digital image processing and analysis.

    PubMed

    King, Michael A; Scotty, Nicole; Klein, Ronald L; Meyer, Edwin M

    2002-10-01

    Assessing the efficacy of in vivo gene transfer often requires a quantitative determination of the number, size, shape, or histological visualization characteristics of biological objects. The optical fractionator has become a choice stereological method for estimating the number of objects, such as neurons, in a structure, such as a brain subregion. Digital image processing and analytic methods can increase detection sensitivity and quantify structural and/or spectral features located in histological specimens. We describe a hardware and software system that we have developed for conducting the optical fractionator process. A microscope equipped with a video camera and motorized stage and focus controls is interfaced with a desktop computer. The computer contains a combination live video/computer graphics adapter with a video frame grabber and controls the stage, focus, and video via a commercial imaging software package. Specialized macro programs have been constructed with this software to execute command sequences requisite to the optical fractionator method: defining regions of interest, positioning specimens in a systematic uniform random manner, and stepping through known volumes of tissue for interactive object identification (optical dissectors). The system affords the flexibility to work with count regions that exceed the microscope image field size at low magnifications and to adjust the parameters of the fractionator sampling to best match the demands of particular specimens and object types. Digital image processing can be used to facilitate object detection and identification, and objects that meet criteria for counting can be analyzed for a variety of morphometric and optical properties. Copyright 2002 Elsevier Science (USA)

  19. Exploiting core knowledge for visual object recognition.

    PubMed

    Schurgin, Mark W; Flombaum, Jonathan I

    2017-03-01

    Humans recognize thousands of objects, and with relative tolerance to variable retinal inputs. The acquisition of this ability is not fully understood, and it remains an area in which artificial systems have yet to surpass people. We sought to investigate the memory process that supports object recognition. Specifically, we investigated the association of inputs that co-occur over short periods of time. We tested the hypothesis that human perception exploits expectations about object kinematics to limit the scope of association to inputs that are likely to have the same token as a source. In several experiments we exposed participants to images of objects, and we then tested recognition sensitivity. Using motion, we manipulated whether successive encounters with an image took place through kinematics that implied the same or a different token as the source of those encounters. Images were injected with noise, or shown at varying orientations, and we included 2 manipulations of motion kinematics. Across all experiments, memory performance was better for images that had been previously encountered with kinematics that implied a single token. A model-based analysis similarly showed greater memory strength when images were shown via kinematics that implied a single token. These results suggest that constraints from physics are built into the mechanisms that support memory about objects. Such constraints-often characterized as 'Core Knowledge'-are known to support perception and cognition broadly, even in young infants. But they have never been considered as a mechanism for memory with respect to recognition. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  20. System for objective assessment of image differences in digital cinema

    NASA Astrophysics Data System (ADS)

    Fliegel, Karel; Krasula, Lukáš; Páta, Petr; Myslík, Jiří; Pecák, Josef; Jícha, Marek

    2014-09-01

    There is high demand for quick digitization and subsequent image restoration of archived film records. Digitization is very urgent in many cases because various invaluable pieces of cultural heritage are stored on aging media. Only selected records can be reconstructed perfectly using painstaking manual or semi-automatic procedures. This paper aims to answer the question what are the quality requirements on the restoration process in order to obtain acceptably close visual perception of the digitally restored film in comparison to the original analog film copy. This knowledge is very important to preserve the original artistic intention of the movie producers. Subjective experiment with artificially distorted images has been conducted in order to answer the question what is the visual impact of common image distortions in digital cinema. Typical color and contrast distortions were introduced and test images were presented to viewers using digital projector. Based on the outcome of this subjective evaluation a system for objective assessment of image distortions has been developed and its performance tested. The system utilizes calibrated digital single-lens reflex camera and subsequent analysis of suitable features of images captured from the projection screen. The evaluation of captured image data has been optimized in order to obtain predicted differences between the reference and distorted images while achieving high correlation with the results of subjective assessment. The system can be used to objectively determine the difference between analog film and digital cinema images on the projection screen.

Top