Sample records for objective perceptual video

  1. Perceptual video quality assessment in H.264 video coding standard using objective modeling.

    PubMed

    Karthikeyan, Ramasamy; Sainarayanan, Gopalakrishnan; Deepa, Subramaniam Nachimuthu

    2014-01-01

    Since usage of digital video is wide spread nowadays, quality considerations have become essential, and industry demand for video quality measurement is rising. This proposal provides a method of perceptual quality assessment in H.264 standard encoder using objective modeling. For this purpose, quality impairments are calculated and a model is developed to compute the perceptual video quality metric based on no reference method. Because of the shuttle difference between the original video and the encoded video the quality of the encoded picture gets degraded, this quality difference is introduced by the encoding process like Intra and Inter prediction. The proposed model takes into account of the artifacts introduced by these spatial and temporal activities in the hybrid block based coding methods and an objective modeling of these artifacts into subjective quality estimation is proposed. The proposed model calculates the objective quality metric using subjective impairments; blockiness, blur and jerkiness compared to the existing bitrate only calculation defined in the ITU G 1070 model. The accuracy of the proposed perceptual video quality metrics is compared against popular full reference objective methods as defined by VQEG.

  2. Perceptual tools for quality-aware video networks

    NASA Astrophysics Data System (ADS)

    Bovik, A. C.

    2014-01-01

    Monitoring and controlling the quality of the viewing experience of videos transmitted over increasingly congested networks (especially wireless networks) is a pressing problem owing to rapid advances in video-centric mobile communication and display devices that are straining the capacity of the network infrastructure. New developments in automatic perceptual video quality models offer tools that have the potential to be used to perceptually optimize wireless video, leading to more efficient video data delivery and better received quality. In this talk I will review key perceptual principles that are, or could be used to create effective video quality prediction models, and leading quality prediction models that utilize these principles. The goal is to be able to monitor and perceptually optimize video networks by making them "quality-aware."

  3. Reliable Adaptive Video Streaming Driven by Perceptual Semantics for Situational Awareness

    PubMed Central

    Pimentel-Niño, M. A.; Saxena, Paresh; Vazquez-Castro, M. A.

    2015-01-01

    A novel cross-layer optimized video adaptation driven by perceptual semantics is presented. The design target is streamed live video to enhance situational awareness in challenging communications conditions. Conventional solutions for recreational applications are inadequate and novel quality of experience (QoE) framework is proposed which allows fully controlled adaptation and enables perceptual semantic feedback. The framework relies on temporal/spatial abstraction for video applications serving beyond recreational purposes. An underlying cross-layer optimization technique takes into account feedback on network congestion (time) and erasures (space) to best distribute available (scarce) bandwidth. Systematic random linear network coding (SRNC) adds reliability while preserving perceptual semantics. Objective metrics of the perceptual features in QoE show homogeneous high performance when using the proposed scheme. Finally, the proposed scheme is in line with content-aware trends, by complying with information-centric-networking philosophy and architecture. PMID:26247057

  4. Frequent video game players resist perceptual interference.

    PubMed

    Berard, Aaron V; Cain, Matthew S; Watanabe, Takeo; Sasaki, Yuka

    2015-01-01

    Playing certain types of video games for a long time can improve a wide range of mental processes, from visual acuity to cognitive control. Frequent gamers have also displayed generalized improvements in perceptual learning. In the Texture Discrimination Task (TDT), a widely used perceptual learning paradigm, participants report the orientation of a target embedded in a field of lines and demonstrate robust over-night improvement. However, changing the orientation of the background lines midway through TDT training interferes with overnight improvements in overall performance on TDT. Interestingly, prior research has suggested that this effect will not occur if a one-hour break is allowed in between the changes. These results have suggested that after training is over, it may take some time for learning to become stabilized and resilient against interference. Here, we tested whether frequent gamers have faster stabilization of perceptual learning compared to non-gamers and examined the effect of daily video game playing on interference of training of TDT with one background orientation on perceptual learning of TDT with a different background orientation. As a result, we found that non-gamers showed overnight performance improvement only on one background orientation, replicating previous results with the interference in TDT. In contrast, frequent gamers demonstrated overnight improvements in performance with both background orientations, suggesting that they are better able to overcome interference in perceptual learning. This resistance to interference suggests that video game playing not only enhances the amplitude and speed of perceptual learning but also leads to faster and/or more robust stabilization of perceptual learning.

  5. Perceptual learning during action video game playing.

    PubMed

    Green, C Shawn; Li, Renjie; Bavelier, Daphne

    2010-04-01

    Action video games have been shown to enhance behavioral performance on a wide variety of perceptual tasks, from those that require effective allocation of attentional resources across the visual scene, to those that demand the successful identification of fleetingly presented stimuli. Importantly, these effects have not only been shown in expert action video game players, but a causative link has been established between action video game play and enhanced processing through training studies. Although an account based solely on attention fails to capture the variety of enhancements observed after action game playing, a number of models of perceptual learning are consistent with the observed results, with behavioral modeling favoring the hypothesis that avid video game players are better able to form templates for, or extract the relevant statistics of, the task at hand. This may suggest that the neural site of learning is in areas where information is integrated and actions are selected; yet changes in low-level sensory areas cannot be ruled out. Copyright © 2009 Cognitive Science Society, Inc.

  6. Thin-slice vision: inference of confidence measure from perceptual video quality

    NASA Astrophysics Data System (ADS)

    Hameed, Abdul; Balas, Benjamin; Dai, Rui

    2016-11-01

    There has been considerable research on thin-slice judgments, but no study has demonstrated the predictive validity of confidence measures when assessors watch videos acquired from communication systems, in which the perceptual quality of videos could be degraded by limited bandwidth and unreliable network conditions. This paper studies the relationship between high-level thin-slice judgments of human behavior and factors that contribute to perceptual video quality. Based on a large number of subjective test results, it has been found that the confidence of a single individual present in all the videos, called speaker's confidence (SC), could be predicted by a list of features that contribute to perceptual video quality. Two prediction models, one based on artificial neural network and the other based on a decision tree, were built to predict SC. Experimental results have shown that both prediction models can result in high correlation measures.

  7. Action video game play facilitates the development of better perceptual templates.

    PubMed

    Bejjanki, Vikranth R; Zhang, Ruyuan; Li, Renjie; Pouget, Alexandre; Green, C Shawn; Lu, Zhong-Lin; Bavelier, Daphne

    2014-11-25

    The field of perceptual learning has identified changes in perceptual templates as a powerful mechanism mediating the learning of statistical regularities in our environment. By measuring threshold-vs.-contrast curves using an orientation identification task under varying levels of external noise, the perceptual template model (PTM) allows one to disentangle various sources of signal-to-noise changes that can alter performance. We use the PTM approach to elucidate the mechanism that underlies the wide range of improvements noted after action video game play. We show that action video game players make use of improved perceptual templates compared with nonvideo game players, and we confirm a causal role for action video game play in inducing such improvements through a 50-h training study. Then, by adapting a recent neural model to this task, we demonstrate how such improved perceptual templates can arise from reweighting the connectivity between visual areas. Finally, we establish that action gamers do not enter the perceptual task with improved perceptual templates. Instead, although performance in action gamers is initially indistinguishable from that of nongamers, action gamers more rapidly learn the proper template as they experience the task. Taken together, our results establish for the first time to our knowledge the development of enhanced perceptual templates following action game play. Because such an improvement can facilitate the inference of the proper generative model for the task at hand, unlike perceptual learning that is quite specific, it thus elucidates a general learning mechanism that can account for the various behavioral benefits noted after action game play.

  8. Action video game play facilitates the development of better perceptual templates

    PubMed Central

    Bejjanki, Vikranth R.; Zhang, Ruyuan; Li, Renjie; Pouget, Alexandre; Green, C. Shawn; Lu, Zhong-Lin; Bavelier, Daphne

    2014-01-01

    The field of perceptual learning has identified changes in perceptual templates as a powerful mechanism mediating the learning of statistical regularities in our environment. By measuring threshold-vs.-contrast curves using an orientation identification task under varying levels of external noise, the perceptual template model (PTM) allows one to disentangle various sources of signal-to-noise changes that can alter performance. We use the PTM approach to elucidate the mechanism that underlies the wide range of improvements noted after action video game play. We show that action video game players make use of improved perceptual templates compared with nonvideo game players, and we confirm a causal role for action video game play in inducing such improvements through a 50-h training study. Then, by adapting a recent neural model to this task, we demonstrate how such improved perceptual templates can arise from reweighting the connectivity between visual areas. Finally, we establish that action gamers do not enter the perceptual task with improved perceptual templates. Instead, although performance in action gamers is initially indistinguishable from that of nongamers, action gamers more rapidly learn the proper template as they experience the task. Taken together, our results establish for the first time to our knowledge the development of enhanced perceptual templates following action game play. Because such an improvement can facilitate the inference of the proper generative model for the task at hand, unlike perceptual learning that is quite specific, it thus elucidates a general learning mechanism that can account for the various behavioral benefits noted after action game play. PMID:25385590

  9. Video quality pooling adaptive to perceptual distortion severity.

    PubMed

    Park, Jincheol; Seshadrinathan, Kalpana; Lee, Sanghoon; Bovik, Alan Conrad

    2013-02-01

    It is generally recognized that severe video distortions that are transient in space and/or time have a large effect on overall perceived video quality. In order to understand this phenomena, we study the distribution of spatio-temporally local quality scores obtained from several video quality assessment (VQA) algorithms on videos suffering from compression and lossy transmission over communication channels. We propose a content adaptive spatial and temporal pooling strategy based on the observed distribution. Our method adaptively emphasizes "worst" scores along both the spatial and temporal dimensions of a video sequence and also considers the perceptual effect of large-area cohesive motion flow such as egomotion. We demonstrate the efficacy of the method by testing it using three different VQA algorithms on the LIVE Video Quality database and the EPFL-PoliMI video quality database.

  10. Video gaming enhances psychomotor skills but not visuospatial and perceptual abilities in surgical trainees.

    PubMed

    Kennedy, A M; Boyle, E M; Traynor, O; Walsh, T; Hill, A D K

    2011-01-01

    There is considerable interest in the identification and assessment of underlying aptitudes or innate abilities that could potentially predict excellence in the technical aspects of operating. However, before the assessment of innate abilities is introduced for high-stakes assessment (such as competitive selection into surgical training programs), it is essential to determine that these abilities are stable and unchanging and are not influenced by other factors, such as the use of video games. The aim of this study was to investigate whether experience playing video games will predict psychomotor performance on a laparoscopic simulator or scores on tests of visuospatial and perceptual abilities, and to examine the correlation, if any, between these innate abilities. Institutional ethical approval was obtained. Thirty-eight undergraduate medical students with no previous surgical experience were recruited. All participants completed a self-reported questionnaire that asked them to detail their video game experience. They then underwent assessment of their psychomotor, visuospatial, and perceptual abilities using previously validated tests. The results were analyzed using independent samples t tests to compare means and linear regression curves for subsequent analysis. Students who played video games for at least 7 hours per week demonstrated significantly better psychomotor skills than students who did not play video games regularly. However, there was no difference on measures of visuospatial and perceptual abilities. There was no correlation between psychomotor tests and visuospatial or perceptual tests. Regular video gaming correlates positively with psychomotor ability, but it does not seem to influence visuospatial or perceptual ability. This study suggests that video game experience might be beneficial to a future career in surgery. It also suggests that relevant surgical skills may be gained usefully outside the operating room in activities that are not

  11. A unified framework of unsupervised subjective optimized bit allocation for multiple video object coding

    NASA Astrophysics Data System (ADS)

    Chen, Zhenzhong; Han, Junwei; Ngan, King Ngi

    2005-10-01

    MPEG-4 treats a scene as a composition of several objects or so-called video object planes (VOPs) that are separately encoded and decoded. Such a flexible video coding framework makes it possible to code different video object with different distortion scale. It is necessary to analyze the priority of the video objects according to its semantic importance, intrinsic properties and psycho-visual characteristics such that the bit budget can be distributed properly to video objects to improve the perceptual quality of the compressed video. This paper aims to provide an automatic video object priority definition method based on object-level visual attention model and further propose an optimization framework for video object bit allocation. One significant contribution of this work is that the human visual system characteristics are incorporated into the video coding optimization process. Another advantage is that the priority of the video object can be obtained automatically instead of fixing weighting factors before encoding or relying on the user interactivity. To evaluate the performance of the proposed approach, we compare it with traditional verification model bit allocation and the optimal multiple video object bit allocation algorithms. Comparing with traditional bit allocation algorithms, the objective quality of the object with higher priority is significantly improved under this framework. These results demonstrate the usefulness of this unsupervised subjective quality lifting framework.

  12. Action video games do not improve the speed of information processing in simple perceptual tasks.

    PubMed

    van Ravenzwaaij, Don; Boekel, Wouter; Forstmann, Birte U; Ratcliff, Roger; Wagenmakers, Eric-Jan

    2014-10-01

    Previous research suggests that playing action video games improves performance on sensory, perceptual, and attentional tasks. For instance, Green, Pouget, and Bavelier (2010) used the diffusion model to decompose data from a motion detection task and estimate the contribution of several underlying psychological processes. Their analysis indicated that playing action video games leads to faster information processing, reduced response caution, and no difference in motor responding. Because perceptual learning is generally thought to be highly context-specific, this transfer from gaming is surprising and warrants corroborative evidence from a large-scale training study. We conducted 2 experiments in which participants practiced either an action video game or a cognitive game in 5 separate, supervised sessions. Prior to each session and following the last session, participants performed a perceptual discrimination task. In the second experiment, we included a third condition in which no video games were played at all. Behavioral data and diffusion model parameters showed similar practice effects for the action gamers, the cognitive gamers, and the nongamers and suggest that, in contrast to earlier reports, playing action video games does not improve the speed of information processing in simple perceptual tasks.

  13. Action Video Games Do Not Improve the Speed of Information Processing in Simple Perceptual Tasks

    PubMed Central

    van Ravenzwaaij, Don; Boekel, Wouter; Forstmann, Birte U.; Ratcliff, Roger; Wagenmakers, Eric-Jan

    2015-01-01

    Previous research suggests that playing action video games improves performance on sensory, perceptual, and attentional tasks. For instance, Green, Pouget, and Bavelier (2010) used the diffusion model to decompose data from a motion detection task and estimate the contribution of several underlying psychological processes. Their analysis indicated that playing action video games leads to faster information processing, reduced response caution, and no difference in motor responding. Because perceptual learning is generally thought to be highly context-specific, this transfer from gaming is surprising and warrants corroborative evidence from a large-scale training study. We conducted 2 experiments in which participants practiced either an action video game or a cognitive game in 5 separate, supervised sessions. Prior to each session and following the last session, participants performed a perceptual discrimination task. In the second experiment, we included a third condition in which no video games were played at all. Behavioral data and diffusion model parameters showed similar practice effects for the action gamers, the cognitive gamers, and the nongamers and suggest that, in contrast to earlier reports, playing action video games does not improve the speed of information processing in simple perceptual tasks. PMID:24933517

  14. Learning-Based Just-Noticeable-Quantization- Distortion Modeling for Perceptual Video Coding.

    PubMed

    Ki, Sehwan; Bae, Sung-Ho; Kim, Munchurl; Ko, Hyunsuk

    2018-07-01

    Conventional predictive video coding-based approaches are reaching the limit of their potential coding efficiency improvements, because of severely increasing computation complexity. As an alternative approach, perceptual video coding (PVC) has attempted to achieve high coding efficiency by eliminating perceptual redundancy, using just-noticeable-distortion (JND) directed PVC. The previous JNDs were modeled by adding white Gaussian noise or specific signal patterns into the original images, which were not appropriate in finding JND thresholds due to distortion with energy reduction. In this paper, we present a novel discrete cosine transform-based energy-reduced JND model, called ERJND, that is more suitable for JND-based PVC schemes. Then, the proposed ERJND model is extended to two learning-based just-noticeable-quantization-distortion (JNQD) models as preprocessing that can be applied for perceptual video coding. The two JNQD models can automatically adjust JND levels based on given quantization step sizes. One of the two JNQD models, called LR-JNQD, is based on linear regression and determines the model parameter for JNQD based on extracted handcraft features. The other JNQD model is based on a convolution neural network (CNN), called CNN-JNQD. To our best knowledge, our paper is the first approach to automatically adjust JND levels according to quantization step sizes for preprocessing the input to video encoders. In experiments, both the LR-JNQD and CNN-JNQD models were applied to high efficiency video coding (HEVC) and yielded maximum (average) bitrate reductions of 38.51% (10.38%) and 67.88% (24.91%), respectively, with little subjective video quality degradation, compared with the input without preprocessing applied.

  15. Using game theory for perceptual tuned rate control algorithm in video coding

    NASA Astrophysics Data System (ADS)

    Luo, Jiancong; Ahmad, Ishfaq

    2005-03-01

    This paper proposes a game theoretical rate control technique for video compression. Using a cooperative gaming approach, which has been utilized in several branches of natural and social sciences because of its enormous potential for solving constrained optimization problems, we propose a dual-level scheme to optimize the perceptual quality while guaranteeing "fairness" in bit allocation among macroblocks. At the frame level, the algorithm allocates target bits to frames based on their coding complexity. At the macroblock level, the algorithm distributes bits to macroblocks by defining a bargaining game. Macroblocks play cooperatively to compete for shares of resources (bits) to optimize their quantization scales while considering the Human Visual System"s perceptual property. Since the whole frame is an entity perceived by viewers, macroblocks compete cooperatively under a global objective of achieving the best quality with the given bit constraint. The major advantage of the proposed approach is that the cooperative game leads to an optimal and fair bit allocation strategy based on the Nash Bargaining Solution. Another advantage is that it allows multi-objective optimization with multiple decision makers (macroblocks). The simulation results testify the algorithm"s ability to achieve accurate bit rate with good perceptual quality, and to maintain a stable buffer level.

  16. The role of perceptual load in object recognition.

    PubMed

    Lavie, Nilli; Lin, Zhicheng; Zokaei, Nahid; Thoma, Volker

    2009-10-01

    Predictions from perceptual load theory (Lavie, 1995, 2005) regarding object recognition across the same or different viewpoints were tested. Results showed that high perceptual load reduces distracter recognition levels despite always presenting distracter objects from the same view. They also showed that the levels of distracter recognition were unaffected by a change in the distracter object view under conditions of low perceptual load. These results were found both with repetition priming measures of distracter recognition and with performance on a surprise recognition memory test. The results support load theory proposals that distracter recognition critically depends on the level of perceptual load. The implications for the role of attention in object recognition theories are discussed. PsycINFO Database Record (c) 2009 APA, all rights reserved.

  17. Broad-based visual benefits from training with an integrated perceptual-learning video game.

    PubMed

    Deveau, Jenni; Lovcik, Gary; Seitz, Aaron R

    2014-06-01

    Perception is the window through which we understand all information about our environment, and therefore deficits in perception due to disease, injury, stroke or aging can have significant negative impacts on individuals' lives. Research in the field of perceptual learning has demonstrated that vision can be improved in both normally seeing and visually impaired individuals, however, a limitation of most perceptual learning approaches is their emphasis on isolating particular mechanisms. In the current study, we adopted an integrative approach where the goal is not to achieve highly specific learning but instead to achieve general improvements to vision. We combined multiple perceptual learning approaches that have individually contributed to increasing the speed, magnitude and generality of learning into a perceptual-learning based video-game. Our results demonstrate broad-based benefits of vision in a healthy adult population. Transfer from the game includes; improvements in acuity (measured with self-paced standard eye-charts), improvement along the full contrast sensitivity function, and improvements in peripheral acuity and contrast thresholds. The use of this type of this custom video game framework built up from psychophysical approaches takes advantage of the benefits found from video game training while maintaining a tight link to psychophysical designs that enable understanding of mechanisms of perceptual learning and has great potential both as a scientific tool and as therapy to help improve vision. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. The Role of Perceptual Load in Object Recognition

    ERIC Educational Resources Information Center

    Lavie, Nilli; Lin, Zhicheng; Zokaei, Nahid; Thoma, Volker

    2009-01-01

    Predictions from perceptual load theory (Lavie, 1995, 2005) regarding object recognition across the same or different viewpoints were tested. Results showed that high perceptual load reduces distracter recognition levels despite always presenting distracter objects from the same view. They also showed that the levels of distracter recognition were…

  19. Mid-level perceptual features distinguish objects of different real-world sizes.

    PubMed

    Long, Bria; Konkle, Talia; Cohen, Michael A; Alvarez, George A

    2016-01-01

    Understanding how perceptual and conceptual representations are connected is a fundamental goal of cognitive science. Here, we focus on a broad conceptual distinction that constrains how we interact with objects--real-world size. Although there appear to be clear perceptual correlates for basic-level categories (apples look like other apples, oranges look like other oranges), the perceptual correlates of broader categorical distinctions are largely unexplored, i.e., do small objects look like other small objects? Because there are many kinds of small objects (e.g., cups, keys), there may be no reliable perceptual features that distinguish them from big objects (e.g., cars, tables). Contrary to this intuition, we demonstrated that big and small objects have reliable perceptual differences that can be extracted by early stages of visual processing. In a series of visual search studies, participants found target objects faster when the distractor objects differed in real-world size. These results held when we broadly sampled big and small objects, when we controlled for low-level features and image statistics, and when we reduced objects to texforms--unrecognizable textures that loosely preserve an object's form. However, this effect was absent when we used more basic textures. These results demonstrate that big and small objects have reliably different mid-level perceptual features, and suggest that early perceptual information about broad-category membership may influence downstream object perception, recognition, and categorization processes. (c) 2015 APA, all rights reserved).

  20. Gamifying Video Object Segmentation.

    PubMed

    Spampinato, Concetto; Palazzo, Simone; Giordano, Daniela

    2017-10-01

    Video object segmentation can be considered as one of the most challenging computer vision problems. Indeed, so far, no existing solution is able to effectively deal with the peculiarities of real-world videos, especially in cases of articulated motion and object occlusions; limitations that appear more evident when we compare the performance of automated methods with the human one. However, manually segmenting objects in videos is largely impractical as it requires a lot of time and concentration. To address this problem, in this paper we propose an interactive video object segmentation method, which exploits, on one hand, the capability of humans to identify correctly objects in visual scenes, and on the other hand, the collective human brainpower to solve challenging and large-scale tasks. In particular, our method relies on a game with a purpose to collect human inputs on object locations, followed by an accurate segmentation phase achieved by optimizing an energy function encoding spatial and temporal constraints between object regions as well as human-provided location priors. Performance analysis carried out on complex video benchmarks, and exploiting data provided by over 60 users, demonstrated that our method shows a better trade-off between annotation times and segmentation accuracy than interactive video annotation and automated video object segmentation approaches.

  1. Perceptual Learning and Attention: Reduction of Object Attention Limitations with Practice

    PubMed Central

    Dosher, Barbara Anne; Han, Songmei; Lu, Zhong-Lin

    2012-01-01

    Perceptual learning has widely been claimed to be attention driven; attention assists in choosing the relevant sensory information and attention may be necessary in many cases for learning. In this paper, we focus on the interaction of perceptual learning and attention – that perceptual learning can reduce or eliminate the limitations of attention, or, correspondingly, that perceptual learning depends on the attention condition. Object attention is a robust limit on performance. Two attributes of a single attended object may be reported without loss, while the same two attributes of different objects can exhibit a substantial dual-report deficit due to the sharing of attention between objects. The current experiments document that this fundamental dual-object report deficit can be reduced, or eliminated, through perceptual learning that is partially specific to retinal location. This suggests that alternative routes established by practice may reduce the competition between objects for processing resources. PMID:19796653

  2. Real-Time Strategy Video Game Experience and Visual Perceptual Learning.

    PubMed

    Kim, Yong-Hwan; Kang, Dong-Wha; Kim, Dongho; Kim, Hye-Jin; Sasaki, Yuka; Watanabe, Takeo

    2015-07-22

    Visual perceptual learning (VPL) is defined as long-term improvement in performance on a visual-perception task after visual experiences or training. Early studies have found that VPL is highly specific for the trained feature and location, suggesting that VPL is associated with changes in the early visual cortex. However, the generality of visual skills enhancement attributable to action video-game experience suggests that VPL can result from improvement in higher cognitive skills. If so, experience in real-time strategy (RTS) video-game play, which may heavily involve cognitive skills, may also facilitate VPL. To test this hypothesis, we compared VPL between RTS video-game players (VGPs) and non-VGPs (NVGPs) and elucidated underlying structural and functional neural mechanisms. Healthy young human subjects underwent six training sessions on a texture discrimination task. Diffusion-tensor and functional magnetic resonance imaging were performed before and after training. VGPs performed better than NVGPs in the early phase of training. White-matter connectivity between the right external capsule and visual cortex and neuronal activity in the right inferior frontal gyrus (IFG) and anterior cingulate cortex (ACC) were greater in VGPs than NVGPs and were significantly correlated with RTS video-game experience. In both VGPs and NVGPs, there was task-related neuronal activity in the right IFG, ACC, and striatum, which was strengthened after training. These results indicate that RTS video-game experience, associated with changes in higher-order cognitive functions and connectivity between visual and cognitive areas, facilitates VPL in early phases of training. The results support the hypothesis that VPL can occur without involvement of only visual areas. Significance statement: Although early studies found that visual perceptual learning (VPL) is associated with involvement of the visual cortex, generality of visual skills enhancement by action video-game experience

  3. Attentional advantages in video-game experts are not related to perceptual tendencies.

    PubMed

    Wong, Nicole H L; Chang, Dorita H F

    2018-04-03

    Previous studies have suggested that extensive action video gaming may enhance perceptual and attentional capacities. Here, we probed whether attentional differences between video-game experts and non-experts hold when attention is selectively directed at global or local structures. We measured performance on a modified attentional-blink task using hierarchically structured stimuli that consisted of global and local elements. Stimuli carried congruent or incongruent information. In two experiments, we asked observers to direct their attention globally (Experiment 1) or locally (Experiment 2). In each RSVP trial, observers were asked to identify the identity of an initial target (T1), and detect the presence or absence of a second target (T2). Experts showed a markedly attenuated attentional blink, as quantified by higher T2 detection sensitivity, relative to non-experts, in both global and local tasks. Notably, experts and non-experts were comparably affected by stimulus congruency. We speculate that the observed visuo-attentional advantage is unlikely to be related to mere differences perceptual tendencies (i.e., greater global precedence), which has been previously associated with diminished attentional blink.

  4. Perceptual Plasticity for Auditory Object Recognition

    PubMed Central

    Heald, Shannon L. M.; Van Hedger, Stephen C.; Nusbaum, Howard C.

    2017-01-01

    In our auditory environment, we rarely experience the exact acoustic waveform twice. This is especially true for communicative signals that have meaning for listeners. In speech and music, the acoustic signal changes as a function of the talker (or instrument), speaking (or playing) rate, and room acoustics, to name a few factors. Yet, despite this acoustic variability, we are able to recognize a sentence or melody as the same across various kinds of acoustic inputs and determine meaning based on listening goals, expectations, context, and experience. The recognition process relates acoustic signals to prior experience despite variability in signal-relevant and signal-irrelevant acoustic properties, some of which could be considered as “noise” in service of a recognition goal. However, some acoustic variability, if systematic, is lawful and can be exploited by listeners to aid in recognition. Perceivable changes in systematic variability can herald a need for listeners to reorganize perception and reorient their attention to more immediately signal-relevant cues. This view is not incorporated currently in many extant theories of auditory perception, which traditionally reduce psychological or neural representations of perceptual objects and the processes that act on them to static entities. While this reduction is likely done for the sake of empirical tractability, such a reduction may seriously distort the perceptual process to be modeled. We argue that perceptual representations, as well as the processes underlying perception, are dynamically determined by an interaction between the uncertainty of the auditory signal and constraints of context. This suggests that the process of auditory recognition is highly context-dependent in that the identity of a given auditory object may be intrinsically tied to its preceding context. To argue for the flexible neural and psychological updating of sound-to-meaning mappings across speech and music, we draw upon examples

  5. Neural substrates of perceptual integration during bistable object perception

    PubMed Central

    Flevaris, Anastasia V.; Martínez, Antigona; Hillyard, Steven A.

    2013-01-01

    The way we perceive an object depends both on feedforward, bottom-up processing of its physical stimulus properties and on top-down factors such as attention, context, expectation, and task relevance. Here we compared neural activity elicited by varying perceptions of the same physical image—a bistable moving image in which perception spontaneously alternates between dissociated fragments and a single, unified object. A time-frequency analysis of EEG changes associated with the perceptual switch from object to fragment and vice versa revealed a greater decrease in alpha (8–12 Hz) accompanying the switch to object percept than to fragment percept. Recordings of event-related potentials elicited by irrelevant probes superimposed on the moving image revealed an enhanced positivity between 184 and 212 ms when the probes were contained within the boundaries of the perceived unitary object. The topography of the positivity (P2) in this latency range elicited by probes during object perception was distinct from the topography elicited by probes during fragment perception, suggesting that the neural processing of probes differed as a function of perceptual state. Two source localization algorithms estimated the neural generator of this object-related difference to lie in the lateral occipital cortex, a region long associated with object perception. These data suggest that perceived objects attract attention, incorporate visual elements occurring within their boundaries into unified object representations, and enhance the visual processing of elements occurring within their boundaries. Importantly, the perceived object in this case emerged as a function of the fluctuating perceptual state of the viewer. PMID:24246467

  6. Design and Evaluation of Perceptual-based Object Group Selection Techniques

    NASA Astrophysics Data System (ADS)

    Dehmeshki, Hoda

    Selecting groups of objects is a frequent task in graphical user interfaces. It is required prior to many standard operations such as deletion, movement, or modification. Conventional selection techniques are lasso, rectangle selection, and the selection and de-selection of items through the use of modifier keys. These techniques may become time-consuming and error-prone when target objects are densely distributed or when the distances between target objects are large. Perceptual-based selection techniques can considerably improve selection tasks when targets have a perceptual structure, for example when arranged along a line. Current methods to detect such groups use ad hoc grouping algorithms that are not based on results from perception science. Moreover, these techniques do not allow selecting groups with arbitrary arrangements or permit modifying a selection. This dissertation presents two domain-independent perceptual-based systems that address these issues. Based on established group detection models from perception research, the proposed systems detect perceptual groups formed by the Gestalt principles of good continuation and proximity. The new systems provide gesture-based or click-based interaction techniques for selecting groups with curvilinear or arbitrary structures as well as clusters. Moreover, the gesture-based system is adapted for the graph domain to facilitate path selection. This dissertation includes several user studies that show the proposed systems outperform conventional selection techniques when targets form salient perceptual groups and are still competitive when targets are semi-structured.

  7. The objects of visuospatial short-term memory: Perceptual organization and change detection.

    PubMed

    Nikolova, Atanaska; Macken, Bill

    2016-01-01

    We used a colour change-detection paradigm where participants were required to remember colours of six equally spaced circles. Items were superimposed on a background so as to perceptually group them within (a) an intact ring-shaped object, (b) a physically segmented but perceptually completed ring-shaped object, or (c) a corresponding background segmented into three arc-shaped objects. A nonpredictive cue at the location of one of the circles was followed by the memory items, which in turn were followed by a test display containing a probe indicating the circle to be judged same/different. Reaction times for correct responses revealed a same-object advantage; correct responses were faster to probes on the same object as the cue than to equidistant probes on a segmented object. This same-object advantage was identical for physically and perceptually completed objects, but was only evident in reaction times, and not in accuracy measures. Not only, therefore, is it important to consider object-level perceptual organization of stimulus elements when assessing the influence of a range of factors (e.g., number and complexity of elements) in visuospatial short-term memory, but a more detailed picture of the structure of information in memory may be revealed by measuring speed as well as accuracy.

  8. The objects of visuospatial short-term memory: Perceptual organization and change detection

    PubMed Central

    Nikolova, Atanaska; Macken, Bill

    2016-01-01

    We used a colour change-detection paradigm where participants were required to remember colours of six equally spaced circles. Items were superimposed on a background so as to perceptually group them within (a) an intact ring-shaped object, (b) a physically segmented but perceptually completed ring-shaped object, or (c) a corresponding background segmented into three arc-shaped objects. A nonpredictive cue at the location of one of the circles was followed by the memory items, which in turn were followed by a test display containing a probe indicating the circle to be judged same/different. Reaction times for correct responses revealed a same-object advantage; correct responses were faster to probes on the same object as the cue than to equidistant probes on a segmented object. This same-object advantage was identical for physically and perceptually completed objects, but was only evident in reaction times, and not in accuracy measures. Not only, therefore, is it important to consider object-level perceptual organization of stimulus elements when assessing the influence of a range of factors (e.g., number and complexity of elements) in visuospatial short-term memory, but a more detailed picture of the structure of information in memory may be revealed by measuring speed as well as accuracy. PMID:26286369

  9. Display device-adapted video quality-of-experience assessment

    NASA Astrophysics Data System (ADS)

    Rehman, Abdul; Zeng, Kai; Wang, Zhou

    2015-03-01

    Today's viewers consume video content from a variety of connected devices, including smart phones, tablets, notebooks, TVs, and PCs. This imposes significant challenges for managing video traffic efficiently to ensure an acceptable quality-of-experience (QoE) for the end users as the perceptual quality of video content strongly depends on the properties of the display device and the viewing conditions. State-of-the-art full-reference objective video quality assessment algorithms do not take into account the combined impact of display device properties, viewing conditions, and video resolution while performing video quality assessment. We performed a subjective study in order to understand the impact of aforementioned factors on perceptual video QoE. We also propose a full reference video QoE measure, named SSIMplus, that provides real-time prediction of the perceptual quality of a video based on human visual system behaviors, video content characteristics (such as spatial and temporal complexity, and video resolution), display device properties (such as screen size, resolution, and brightness), and viewing conditions (such as viewing distance and angle). Experimental results have shown that the proposed algorithm outperforms state-of-the-art video quality measures in terms of accuracy and speed.

  10. Size-Sensitive Perceptual Representations Underlie Visual and Haptic Object Recognition

    PubMed Central

    Craddock, Matt; Lawson, Rebecca

    2009-01-01

    A variety of similarities between visual and haptic object recognition suggests that the two modalities may share common representations. However, it is unclear whether such common representations preserve low-level perceptual features or whether transfer between vision and haptics is mediated by high-level, abstract representations. Two experiments used a sequential shape-matching task to examine the effects of size changes on unimodal and crossmodal visual and haptic object recognition. Participants felt or saw 3D plastic models of familiar objects. The two objects presented on a trial were either the same size or different sizes and were the same shape or different but similar shapes. Participants were told to ignore size changes and to match on shape alone. In Experiment 1, size changes on same-shape trials impaired performance similarly for both visual-to-visual and haptic-to-haptic shape matching. In Experiment 2, size changes impaired performance on both visual-to-haptic and haptic-to-visual shape matching and there was no interaction between the cost of size changes and direction of transfer. Together the unimodal and crossmodal matching results suggest that the same, size-specific perceptual representations underlie both visual and haptic object recognition, and indicate that crossmodal memory for objects must be at least partly based on common perceptual representations. PMID:19956685

  11. Perceptual video quality comparison of 3DTV broadcasting using multimode service systems

    NASA Astrophysics Data System (ADS)

    Ok, Jiheon; Lee, Chulhee

    2015-05-01

    Multimode service (MMS) systems allow broadcasters to provide multichannel services using a single HD channel. Using these systems, it is possible to provide 3DTV programs that can be watched either in three-dimensional (3-D) or two-dimensional (2-D) modes with backward compatibility. In the MMS system for 3DTV broadcasting using the Advanced Television Systems Committee standards, the left and the right views are encoded using MPEG-2 and H.264, respectively, and then transmitted using a dual HD streaming format. The left view, encoded using MPEG-2, assures 2-D backward compatibility while the right view, encoded using H.264, can be optionally combined with the left view to generate stereoscopic 3-D views. We analyze 2-D and 3-D perceptual quality when using the MMS system by comparing items in the frame-compatible format (top-bottom), which is a conventional transmission scheme for 3-D broadcasting. We performed perceptual 2-D and 3-D video quality evaluation assuming 3DTV programs are encoded using the MMS system and top-bottom format. The results show that MMS systems can be preferable with regard to perceptual 2-D and 3-D quality and backward compatibility.

  12. Objectification of perceptual image quality for mobile video

    NASA Astrophysics Data System (ADS)

    Lee, Seon-Oh; Sim, Dong-Gyu

    2011-06-01

    This paper presents an objective video quality evaluation method for quantifying the subjective quality of digital mobile video. The proposed method aims to objectify the subjective quality by extracting edgeness and blockiness parameters. To evaluate the performance of the proposed algorithms, we carried out subjective video quality tests with the double-stimulus continuous quality scale method and obtained differential mean opinion score values for 120 mobile video clips. We then compared the performance of the proposed methods with that of existing methods in terms of the differential mean opinion score with 120 mobile video clips. Experimental results showed that the proposed methods were approximately 10% better than the edge peak signal-to-noise ratio of the J.247 method in terms of the Pearson correlation.

  13. Perceptual Learning of Object Shape

    PubMed Central

    Golcu, Doruk; Gilbert, Charles D.

    2009-01-01

    Recognition of objects is accomplished through the use of cues that depend on internal representations of familiar shapes. We used a paradigm of perceptual learning during visual search to explore what features human observers use to identify objects. Human subjects were trained to search for a target object embedded in an array of distractors, until their performance improved from near-chance levels to over 80% of trials in an object specific manner. We determined the role of specific object components in the recognition of the object as a whole by measuring the transfer of learning from the trained object to other objects sharing components with it. Depending on the geometric relationship of the trained object with untrained objects, transfer to untrained objects was observed. Novel objects that shared a component with the trained object were identified at much higher levels than those that did not, and this could be used as an indicator of which features of the object were important for recognition. Training on an object also transferred to the components of the object when these components were embedded in an array of distractors of similar complexity. These results suggest that objects are not represented in a holistic manner during learning, but that their individual components are encoded. Transfer between objects was not complete, and occurred for more than one component, regardless of how well they distinguish the object from distractors. This suggests that a joint involvement of multiple components was necessary for full performance. PMID:19864574

  14. Perceptually tuned low-bit-rate video codec for ATM networks

    NASA Astrophysics Data System (ADS)

    Chou, Chun-Hsien

    1996-02-01

    In order to maintain high visual quality in transmitting low bit-rate video signals over asynchronous transfer mode (ATM) networks, a layered coding scheme that incorporates the human visual system (HVS), motion compensation (MC), and conditional replenishment (CR) is presented in this paper. An empirical perceptual model is proposed to estimate the spatio- temporal just-noticeable distortion (STJND) profile for each frame, by which perceptually important (PI) prediction-error signals can be located. Because of the limited channel capacity of the base layer, only coded data of motion vectors, the PI signals within a small strip of the prediction-error image and, if there are remaining bits, the PI signals outside the strip are transmitted by the cells of the base-layer channel. The rest of the coded data are transmitted by the second-layer cells which may be lost due to channel error or network congestion. Simulation results show that visual quality of the reconstructed CIF sequence is acceptable when the capacity of the base-layer channel is allocated with 2 multiplied by 64 kbps and the cells of the second layer are all lost.

  15. Perceptual Load Affects Eyewitness Accuracy and Susceptibility to Leading Questions.

    PubMed

    Murphy, Gillian; Greene, Ciara M

    2016-01-01

    Load Theory (Lavie, 1995, 2005) states that the level of perceptual load in a task (i.e., the amount of information involved in processing task-relevant stimuli) determines the efficiency of selective attention. There is evidence that perceptual load affects distractor processing, with increased inattentional blindness under high load. Given that high load can result in individuals failing to report seeing obvious objects, it is conceivable that load may also impair memory for the scene. The current study is the first to assess the effect of perceptual load on eyewitness memory. Across three experiments (two video-based and one in a driving simulator), the effect of perceptual load on eyewitness memory was assessed. The results showed that eyewitnesses were less accurate under high load, in particular for peripheral details. For example, memory for the central character in the video was not affected by load but memory for a witness who passed by the window at the edge of the scene was significantly worse under high load. High load memories were also more open to suggestion, showing increased susceptibility to leading questions. High visual perceptual load also affected recall for auditory information, illustrating a possible cross-modal perceptual load effect on memory accuracy. These results have implications for eyewitness memory researchers and forensic professionals.

  16. Perceptual Load Affects Eyewitness Accuracy and Susceptibility to Leading Questions

    PubMed Central

    Murphy, Gillian; Greene, Ciara M.

    2016-01-01

    Load Theory (Lavie, 1995, 2005) states that the level of perceptual load in a task (i.e., the amount of information involved in processing task-relevant stimuli) determines the efficiency of selective attention. There is evidence that perceptual load affects distractor processing, with increased inattentional blindness under high load. Given that high load can result in individuals failing to report seeing obvious objects, it is conceivable that load may also impair memory for the scene. The current study is the first to assess the effect of perceptual load on eyewitness memory. Across three experiments (two video-based and one in a driving simulator), the effect of perceptual load on eyewitness memory was assessed. The results showed that eyewitnesses were less accurate under high load, in particular for peripheral details. For example, memory for the central character in the video was not affected by load but memory for a witness who passed by the window at the edge of the scene was significantly worse under high load. High load memories were also more open to suggestion, showing increased susceptibility to leading questions. High visual perceptual load also affected recall for auditory information, illustrating a possible cross-modal perceptual load effect on memory accuracy. These results have implications for eyewitness memory researchers and forensic professionals. PMID:27625628

  17. Learning of perceptual grouping for object segmentation on RGB-D data☆

    PubMed Central

    Richtsfeld, Andreas; Mörwald, Thomas; Prankl, Johann; Zillich, Michael; Vincze, Markus

    2014-01-01

    Object segmentation of unknown objects with arbitrary shape in cluttered scenes is an ambitious goal in computer vision and became a great impulse with the introduction of cheap and powerful RGB-D sensors. We introduce a framework for segmenting RGB-D images where data is processed in a hierarchical fashion. After pre-clustering on pixel level parametric surface patches are estimated. Different relations between patch-pairs are calculated, which we derive from perceptual grouping principles, and support vector machine classification is employed to learn Perceptual Grouping. Finally, we show that object hypotheses generation with Graph-Cut finds a globally optimal solution and prevents wrong grouping. Our framework is able to segment objects, even if they are stacked or jumbled in cluttered scenes. We also tackle the problem of segmenting objects when they are partially occluded. The work is evaluated on publicly available object segmentation databases and also compared with state-of-the-art work of object segmentation. PMID:24478571

  18. Behavior analysis of video object in complicated background

    NASA Astrophysics Data System (ADS)

    Zhao, Wenting; Wang, Shigang; Liang, Chao; Wu, Wei; Lu, Yang

    2016-10-01

    This paper aims to achieve robust behavior recognition of video object in complicated background. Features of the video object are described and modeled according to the depth information of three-dimensional video. Multi-dimensional eigen vector are constructed and used to process high-dimensional data. Stable object tracing in complex scenes can be achieved with multi-feature based behavior analysis, so as to obtain the motion trail. Subsequently, effective behavior recognition of video object is obtained according to the decision criteria. What's more, the real-time of algorithms and accuracy of analysis are both improved greatly. The theory and method on the behavior analysis of video object in reality scenes put forward by this project have broad application prospect and important practical significance in the security, terrorism, military and many other fields.

  19. Exploring "fringe" consciousness: the subjective experience of perceptual fluency and its objective bases.

    PubMed

    Reber, Rolf; Wurtz, Pascal; Zimmermann, Thomas D

    2004-03-01

    Perceptual fluency is the subjective experience of ease with which an incoming stimulus is processed. Although perceptual fluency is assessed by speed of processing, it remains unclear how objective speed is related to subjective experiences of fluency. We present evidence that speed at different stages of the perceptual process contributes to perceptual fluency. In an experiment, figure-ground contrast influenced detection of briefly presented words, but not their identification at longer exposure durations. Conversely, font in which the word was written influenced identification, but not detection. Both contrast and font influenced subjective fluency. These findings suggest that speed of processing at different stages condensed into a unified subjective experience of perceptual fluency.

  20. Objective assessment of MPEG-2 video quality

    NASA Astrophysics Data System (ADS)

    Gastaldo, Paolo; Zunino, Rodolfo; Rovetta, Stefano

    2002-07-01

    The increasing use of video compression standards in broadcasting television systems has required, in recent years, the development of video quality measurements that take into account artifacts specifically caused by digital compression techniques. In this paper we present a methodology for the objective quality assessment of MPEG video streams by using circular back-propagation feedforward neural networks. Mapping neural networks can render nonlinear relationships between objective features and subjective judgments, thus avoiding any simplifying assumption on the complexity of the model. The neural network processes an instantaneous set of input values, and yields an associated estimate of perceived quality. Therefore, the neural-network approach turns objective quality assessment into adaptive modeling of subjective perception. The objective features used for the estimate are chosen according to the assessed relevance to perceived quality and are continuously extracted in real time from compressed video streams. The overall system mimics perception but does not require any analytical model of the underlying physical phenomenon. The capability to process compressed video streams represents an important advantage over existing approaches, like avoiding the stream-decoding process greatly enhances real-time performance. Experimental results confirm that the system provides satisfactory, continuous-time approximations for actual scoring curves concerning real test videos.

  1. Joint Perception of a Shared Object: A Minimalist Perceptual Crossing Experiment.

    PubMed

    Deschamps, Loïc; Lenay, Charles; Rovira, Katia; Le Bihan, Gabrielle; Aubert, Dominique

    2016-01-01

    The minimalist perceptual crossing paradigm has emphasized the essential role of interpersonal dynamics on social understanding. Within the particular case of minimalist interaction, it has been argued that interpersonal processes can constitute social cognition, at least partially, which calls for a paradigm shift in social cognition studies. In this paper, we review several perceptual crossing experiments and their theoretical implications, and propose an original experiment to go beyond strictly dyadic interactions. Whereas past experiments have used objects as distracters of dyadic interaction, our experiment aims at integrating objects themselves as the goal of interpersonal coordination. We asked 24 subjects to participate in a minimalist perceptual crossing experiment where they had to decide, based on their on-line interaction in a one-dimensional digital space, which of the objects they perceived was also perceptible by their partner. The main results suggest that the mutual awareness of a shared object (SO) arises from the quality of sensorimotor coordination between the partners. Indeed, the presence of a SO acts as a simultaneous affordance that attracts and structures individual perceptive activities, giving both partners the opportunity to co-construct a shared world where their respective actions make sense. We discuss our results by way of an enactive account of social cognition, taking the joint perception of a SO as a first step to account for joint attention.

  2. Joint Perception of a Shared Object: A Minimalist Perceptual Crossing Experiment

    PubMed Central

    Deschamps, Loïc; Lenay, Charles; Rovira, Katia; Le Bihan, Gabrielle; Aubert, Dominique

    2016-01-01

    The minimalist perceptual crossing paradigm has emphasized the essential role of interpersonal dynamics on social understanding. Within the particular case of minimalist interaction, it has been argued that interpersonal processes can constitute social cognition, at least partially, which calls for a paradigm shift in social cognition studies. In this paper, we review several perceptual crossing experiments and their theoretical implications, and propose an original experiment to go beyond strictly dyadic interactions. Whereas past experiments have used objects as distracters of dyadic interaction, our experiment aims at integrating objects themselves as the goal of interpersonal coordination. We asked 24 subjects to participate in a minimalist perceptual crossing experiment where they had to decide, based on their on-line interaction in a one-dimensional digital space, which of the objects they perceived was also perceptible by their partner. The main results suggest that the mutual awareness of a shared object (SO) arises from the quality of sensorimotor coordination between the partners. Indeed, the presence of a SO acts as a simultaneous affordance that attracts and structures individual perceptive activities, giving both partners the opportunity to co-construct a shared world where their respective actions make sense. We discuss our results by way of an enactive account of social cognition, taking the joint perception of a SO as a first step to account for joint attention. PMID:27462295

  3. Perceptual quality estimation of H.264/AVC videos using reduced-reference and no-reference models

    NASA Astrophysics Data System (ADS)

    Shahid, Muhammad; Pandremmenou, Katerina; Kondi, Lisimachos P.; Rossholm, Andreas; Lövström, Benny

    2016-09-01

    Reduced-reference (RR) and no-reference (NR) models for video quality estimation, using features that account for the impact of coding artifacts, spatio-temporal complexity, and packet losses, are proposed. The purpose of this study is to analyze a number of potentially quality-relevant features in order to select the most suitable set of features for building the desired models. The proposed sets of features have not been used in the literature and some of the features are used for the first time in this study. The features are employed by the least absolute shrinkage and selection operator (LASSO), which selects only the most influential of them toward perceptual quality. For comparison, we apply feature selection in the complete feature sets and ridge regression on the reduced sets. The models are validated using a database of H.264/AVC encoded videos that were subjectively assessed for quality in an ITU-T compliant laboratory. We infer that just two features selected by RR LASSO and two bitstream-based features selected by NR LASSO are able to estimate perceptual quality with high accuracy, higher than that of ridge, which uses more features. The comparisons with competing works and two full-reference metrics also verify the superiority of our models.

  4. Modeling Perceptual Decision Processes

    DTIC Science & Technology

    2014-09-17

    Ratcliff, & Wagenmakers, in press). Previous research suggests that playing action video games improves performance on sensory, perceptual, and...estimate the contribution of several underlying psychological processes. Their analysis indicated that playing action video games leads to faster...third condition in which no video games were played at all. Behavioral data and diffusion model parameters showed similar practice effects for the

  5. Creating Objects and Object Categories for Studying Perception and Perceptual Learning

    PubMed Central

    Hauffen, Karin; Bart, Eugene; Brady, Mark; Kersten, Daniel; Hegdé, Jay

    2012-01-01

    In order to quantitatively study object perception, be it perception by biological systems or by machines, one needs to create objects and object categories with precisely definable, preferably naturalistic, properties1. Furthermore, for studies on perceptual learning, it is useful to create novel objects and object categories (or object classes) with such properties2. Many innovative and useful methods currently exist for creating novel objects and object categories3-6 (also see refs. 7,8). However, generally speaking, the existing methods have three broad types of shortcomings. First, shape variations are generally imposed by the experimenter5,9,10, and may therefore be different from the variability in natural categories, and optimized for a particular recognition algorithm. It would be desirable to have the variations arise independently of the externally imposed constraints. Second, the existing methods have difficulty capturing the shape complexity of natural objects11-13. If the goal is to study natural object perception, it is desirable for objects and object categories to be naturalistic, so as to avoid possible confounds and special cases. Third, it is generally hard to quantitatively measure the available information in the stimuli created by conventional methods. It would be desirable to create objects and object categories where the available information can be precisely measured and, where necessary, systematically manipulated (or 'tuned'). This allows one to formulate the underlying object recognition tasks in quantitative terms. Here we describe a set of algorithms, or methods, that meet all three of the above criteria. Virtual morphogenesis (VM) creates novel, naturalistic virtual 3-D objects called 'digital embryos' by simulating the biological process of embryogenesis14. Virtual phylogenesis (VP) creates novel, naturalistic object categories by simulating the evolutionary process of natural selection9,12,13. Objects and object categories created

  6. Creating objects and object categories for studying perception and perceptual learning.

    PubMed

    Hauffen, Karin; Bart, Eugene; Brady, Mark; Kersten, Daniel; Hegdé, Jay

    2012-11-02

    In order to quantitatively study object perception, be it perception by biological systems or by machines, one needs to create objects and object categories with precisely definable, preferably naturalistic, properties. Furthermore, for studies on perceptual learning, it is useful to create novel objects and object categories (or object classes) with such properties. Many innovative and useful methods currently exist for creating novel objects and object categories (also see refs. 7,8). However, generally speaking, the existing methods have three broad types of shortcomings. First, shape variations are generally imposed by the experimenter, and may therefore be different from the variability in natural categories, and optimized for a particular recognition algorithm. It would be desirable to have the variations arise independently of the externally imposed constraints. Second, the existing methods have difficulty capturing the shape complexity of natural objects. If the goal is to study natural object perception, it is desirable for objects and object categories to be naturalistic, so as to avoid possible confounds and special cases. Third, it is generally hard to quantitatively measure the available information in the stimuli created by conventional methods. It would be desirable to create objects and object categories where the available information can be precisely measured and, where necessary, systematically manipulated (or 'tuned'). This allows one to formulate the underlying object recognition tasks in quantitative terms. Here we describe a set of algorithms, or methods, that meet all three of the above criteria. Virtual morphogenesis (VM) creates novel, naturalistic virtual 3-D objects called 'digital embryos' by simulating the biological process of embryogenesis. Virtual phylogenesis (VP) creates novel, naturalistic object categories by simulating the evolutionary process of natural selection. Objects and object categories created by these simulations can

  7. Supramodal Enhancement of Auditory Perceptual and Cognitive Learning by Video Game Playing.

    PubMed

    Zhang, Yu-Xuan; Tang, Ding-Lan; Moore, David R; Amitay, Sygal

    2017-01-01

    Medical rehabilitation involving behavioral training can produce highly successful outcomes, but those successes are obtained at the cost of long periods of often tedious training, reducing compliance. By contrast, arcade-style video games can be entertaining and highly motivating. We examine here the impact of video game play on contiguous perceptual training. We alternated several periods of auditory pure-tone frequency discrimination (FD) with the popular spatial visual-motor game Tetris played in silence. Tetris play alone did not produce any auditory or cognitive benefits. However, when alternated with FD training it enhanced learning of FD and auditory working memory. The learning-enhancing effects of Tetris play cannot be explained simply by the visual-spatial training involved, as the effects were gone when Tetris play was replaced with another visual-spatial task using Tetris-like stimuli but not incorporated into a game environment. The results indicate that game play enhances learning and transfer of the contiguous auditory experiences, pointing to a promising approach for increasing the efficiency and applicability of rehabilitative training.

  8. A Secure and Robust Object-Based Video Authentication System

    NASA Astrophysics Data System (ADS)

    He, Dajun; Sun, Qibin; Tian, Qi

    2004-12-01

    An object-based video authentication system, which combines watermarking, error correction coding (ECC), and digital signature techniques, is presented for protecting the authenticity between video objects and their associated backgrounds. In this system, a set of angular radial transformation (ART) coefficients is selected as the feature to represent the video object and the background, respectively. ECC and cryptographic hashing are applied to those selected coefficients to generate the robust authentication watermark. This content-based, semifragile watermark is then embedded into the objects frame by frame before MPEG4 coding. In watermark embedding and extraction, groups of discrete Fourier transform (DFT) coefficients are randomly selected, and their energy relationships are employed to hide and extract the watermark. The experimental results demonstrate that our system is robust to MPEG4 compression, object segmentation errors, and some common object-based video processing such as object translation, rotation, and scaling while securely preventing malicious object modifications. The proposed solution can be further incorporated into public key infrastructure (PKI).

  9. Object tracking using multiple camera video streams

    NASA Astrophysics Data System (ADS)

    Mehrubeoglu, Mehrube; Rojas, Diego; McLauchlan, Lifford

    2010-05-01

    Two synchronized cameras are utilized to obtain independent video streams to detect moving objects from two different viewing angles. The video frames are directly correlated in time. Moving objects in image frames from the two cameras are identified and tagged for tracking. One advantage of such a system involves overcoming effects of occlusions that could result in an object in partial or full view in one camera, when the same object is fully visible in another camera. Object registration is achieved by determining the location of common features in the moving object across simultaneous frames. Perspective differences are adjusted. Combining information from images from multiple cameras increases robustness of the tracking process. Motion tracking is achieved by determining anomalies caused by the objects' movement across frames in time in each and the combined video information. The path of each object is determined heuristically. Accuracy of detection is dependent on the speed of the object as well as variations in direction of motion. Fast cameras increase accuracy but limit the speed and complexity of the algorithm. Such an imaging system has applications in traffic analysis, surveillance and security, as well as object modeling from multi-view images. The system can easily be expanded by increasing the number of cameras such that there is an overlap between the scenes from at least two cameras in proximity. An object can then be tracked long distances or across multiple cameras continuously, applicable, for example, in wireless sensor networks for surveillance or navigation.

  10. Attention and perceptual implicit memory: effects of selective versus divided attention and number of visual objects.

    PubMed

    Mulligan, Neil W

    2002-08-01

    Extant research presents conflicting results on whether manipulations of attention during encoding affect perceptual priming. Two suggested mediating factors are type of manipulation (selective vs divided) and whether attention is manipulated across multiple objects or within a single object. Words printed in different colors (Experiment 1) or flanked by colored blocks (Experiment 2) were presented at encoding. In the full-attention condition, participants always read the word, in the unattended condition they always identified the color, and in the divided-attention conditions, participants attended to both word identity and color. Perceptual priming was assessed with perceptual identification and explicit memory with recognition. Relative to the full-attention condition, attending to color always reduced priming. Dividing attention between word identity and color, however, only disrupted priming when these attributes were presented as multiple objects (Experiment 2) but not when they were dimensions of a common object (Experiment 1). On the explicit test, manipulations of attention always affected recognition accuracy.

  11. Beyond perceptual expertise: revisiting the neural substrates of expert object recognition

    PubMed Central

    Harel, Assaf; Kravitz, Dwight; Baker, Chris I.

    2013-01-01

    Real-world expertise provides a valuable opportunity to understand how experience shapes human behavior and neural function. In the visual domain, the study of expert object recognition, such as in car enthusiasts or bird watchers, has produced a large, growing, and often-controversial literature. Here, we synthesize this literature, focusing primarily on results from functional brain imaging, and propose an interactive framework that incorporates the impact of high-level factors, such as attention and conceptual knowledge, in supporting expertise. This framework contrasts with the perceptual view of object expertise that has concentrated largely on stimulus-driven processing in visual cortex. One prominent version of this perceptual account has almost exclusively focused on the relation of expertise to face processing and, in terms of the neural substrates, has centered on face-selective cortical regions such as the Fusiform Face Area (FFA). We discuss the limitations of this face-centric approach as well as the more general perceptual view, and highlight that expert related activity is: (i) found throughout visual cortex, not just FFA, with a strong relationship between neural response and behavioral expertise even in the earliest stages of visual processing, (ii) found outside visual cortex in areas such as parietal and prefrontal cortices, and (iii) modulated by the attentional engagement of the observer suggesting that it is neither automatic nor driven solely by stimulus properties. These findings strongly support a framework in which object expertise emerges from extensive interactions within and between the visual system and other cognitive systems, resulting in widespread, distributed patterns of expertise-related activity across the entire cortex. PMID:24409134

  12. Objective video presentation QoE predictor for smart adaptive video streaming

    NASA Astrophysics Data System (ADS)

    Wang, Zhou; Zeng, Kai; Rehman, Abdul; Yeganeh, Hojatollah; Wang, Shiqi

    2015-09-01

    How to deliver videos to consumers over the network for optimal quality-of-experience (QoE) has been the central goal of modern video delivery services. Surprisingly, regardless of the large volume of videos being delivered everyday through various systems attempting to improve visual QoE, the actual QoE of end consumers is not properly assessed, not to say using QoE as the key factor in making critical decisions at the video hosting, network and receiving sites. Real-world video streaming systems typically use bitrate as the main video presentation quality indicator, but using the same bitrate to encode different video content could result in drastically different visual QoE, which is further affected by the display device and viewing condition of each individual consumer who receives the video. To correct this, we have to put QoE back to the driver's seat and redesign the video delivery systems. To achieve this goal, a major challenge is to find an objective video presentation QoE predictor that is accurate, fast, easy-to-use, display device adaptive, and provides meaningful QoE predictions across resolution and content. We propose to use the newly developed SSIMplus index (https://ece.uwaterloo.ca/~z70wang/research/ssimplus/) for this role. We demonstrate that based on SSIMplus, one can develop a smart adaptive video streaming strategy that leads to much smoother visual QoE impossible to achieve using existing adaptive bitrate video streaming approaches. Furthermore, SSIMplus finds many more applications, in live and file-based quality monitoring, in benchmarking video encoders and transcoders, and in guiding network resource allocations.

  13. Influence of audio triggered emotional attention on video perception

    NASA Astrophysics Data System (ADS)

    Torres, Freddy; Kalva, Hari

    2014-02-01

    Perceptual video coding methods attempt to improve compression efficiency by discarding visual information not perceived by end users. Most of the current approaches for perceptual video coding only use visual features ignoring the auditory component. Many psychophysical studies have demonstrated that auditory stimuli affects our visual perception. In this paper we present our study of audio triggered emotional attention and it's applicability to perceptual video coding. Experiments with movie clips show that the reaction time to detect video compression artifacts was longer when video was presented with the audio information. The results reported are statistically significant with p=0.024.

  14. Verbal definitions of familiar objects in blind children reflect their peculiar perceptual experience.

    PubMed

    Vinter, A; Fernandes, V; Orlandi, O; Morgan, P

    2013-11-01

    The aim of the present study was to examine to what extent the verbal definitions of familiar objects produced by blind children reflect their peculiar perceptual experience and, in consequence, differ from those produced by sighted children. Ninety-six visually impaired children, aged between 6 and 14 years, and 32 age-matched sighted children had to define 10 words denoting concrete animate or inanimate familiar objects. The blind children evoked the tactile and auditory characteristics of objects and expressed personal perceptual experiences in their definitions. The sighted children relied on visual perception, and produced more visually oriented verbalism. In contrast, no differences were observed between children in their propensity to include functional attributes in their verbal definitions. The results are discussed in line with embodied views of cognition that postulate mandatory perceptuomotor processing of words during access to their meaning. © 2012 John Wiley & Sons Ltd.

  15. A Standard-Compliant Virtual Meeting System with Active Video Object Tracking

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Wen; Chang, Yao-Jen; Wang, Chih-Ming; Chen, Yung-Chang; Sun, Ming-Ting

    2002-12-01

    This paper presents an H.323 standard compliant virtual video conferencing system. The proposed system not only serves as a multipoint control unit (MCU) for multipoint connection but also provides a gateway function between the H.323 LAN (local-area network) and the H.324 WAN (wide-area network) users. The proposed virtual video conferencing system provides user-friendly object compositing and manipulation features including 2D video object scaling, repositioning, rotation, and dynamic bit-allocation in a 3D virtual environment. A reliable, and accurate scheme based on background image mosaics is proposed for real-time extracting and tracking foreground video objects from the video captured with an active camera. Chroma-key insertion is used to facilitate video objects extraction and manipulation. We have implemented a prototype of the virtual conference system with an integrated graphical user interface to demonstrate the feasibility of the proposed methods.

  16. Social grouping: perceptual grouping of objects by cooperative but not competitive relationships in dynamic chase.

    PubMed

    Yin, Jun; Ding, Xiaowei; Zhou, Jifan; Shui, Rende; Li, Xinyu; Shen, Mowei

    2013-10-01

    Historically, perceptual grouping is associated with physical principles. This article reports a novel finding that social information-cooperative but not competitive relationships-can drive perceptual grouping of objects in dynamic chase. Particularly, each relationship was constructed with human-generated chasing motions (i.e., two predators and one prey), and its role on perceptual grouping was examined by grouping-induced effect-attentional consequences. The results showed that: (1) Predators can be perceived as a group due to their cooperative relationship, causing attention to automatically spread within grouped predators, thus the response to target appearing on uncued predator is also facilitated; and (2) The attentional effect on competitive predators has no difference from any condition which controls low-level motion patterns, even including the random-motion condition wherein no grouping factor was contained. These findings extend perceptual grouping into the social field, implying that social information gets involved in visual cognition at an early perceptual stage. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Neurophysiological indices of perceptual object priming in the absence of explicit recognition memory.

    PubMed

    Harris, Jill D; Cutmore, Tim R H; O'Gorman, John; Finnigan, Simon; Shum, David

    2009-02-01

    The aim of this study was to identify ERP correlates of perceptual object priming that are insensitive to factors affecting explicit, episodic memory. EEG was recorded from 21 participants while they performed a visual object recognition test on a combination of unstudied items and old items that were previously encountered during either a 'deep' or 'shallow' levels-of-processing (LOP) study task. The results demonstrated a midline P150 old/new effect which was sensitive only to objects' old/new status and not to the accuracy of recognition responses to old items, or to the LOP manipulation. Similar outcomes were observed for the subsequent P200 and N400 effects, the former of which had a parietal scalp maximum and the latter, a broadly distributed topography. In addition an LPC old/new effect typical of those reported in past ERP recognition studies was observed. These outcomes support the proposal that the P150 effect is reflective of perceptual object priming and moreover, provide novel evidence that this and the P200 effect are independent of explicit recognition memory process(es).

  18. Content-Aware Video Adaptation under Low-Bitrate Constraint

    NASA Astrophysics Data System (ADS)

    Hsiao, Ming-Ho; Chen, Yi-Wen; Chen, Hua-Tsung; Chou, Kuan-Hung; Lee, Suh-Yin

    2007-12-01

    With the development of wireless network and the improvement of mobile device capability, video streaming is more and more widespread in such an environment. Under the condition of limited resource and inherent constraints, appropriate video adaptations have become one of the most important and challenging issues in wireless multimedia applications. In this paper, we propose a novel content-aware video adaptation in order to effectively utilize resource and improve visual perceptual quality. First, the attention model is derived from analyzing the characteristics of brightness, location, motion vector, and energy features in compressed domain to reduce computation complexity. Then, through the integration of attention model, capability of client device and correlational statistic model, attractive regions of video scenes are derived. The information object- (IOB-) weighted rate distortion model is used for adjusting the bit allocation. Finally, the video adaptation scheme dynamically adjusts video bitstream in frame level and object level. Experimental results validate that the proposed scheme achieves better visual quality effectively and efficiently.

  19. Effects of dividing attention during encoding on perceptual priming of unfamiliar visual objects.

    PubMed

    Soldan, Anja; Mangels, Jennifer A; Cooper, Lynn A

    2008-11-01

    According to the distractor-selection hypothesis (Mulligan, 2003), dividing attention during encoding reduces perceptual priming when responses to non-critical (i.e., distractor) stimuli are selected frequently and simultaneously with critical stimulus encoding. Because direct support for this hypothesis comes exclusively from studies using familiar word stimuli, the present study tested whether the predictions of the distractor-selection hypothesis extend to perceptual priming of unfamiliar visual objects using the possible/impossible object decision test. Consistent with the distractor-selection hypothesis, Experiments 1 and 2 found no reduction in priming when the non-critical stimuli were presented infrequently and non-synchronously with the critical target stimuli, even though explicit recognition memory was reduced. In Experiment 3, non-critical stimuli were presented frequently and simultaneously during encoding of critical stimuli; however, no decrement in priming was detected, even when encoding time was reduced. These results suggest that priming in the possible/impossible object decision test is relatively immune to reductions in central attention and that not all aspects of the distractor-selection hypothesis generalise to priming of unfamiliar visual objects. Implications for theoretical models of object decision priming are discussed.

  20. Effects of dividing attention during encoding on perceptual priming of unfamiliar visual objects

    PubMed Central

    Soldan, Anja; Mangels, Jennifer A.; Cooper, Lynn A.

    2008-01-01

    According to the distractor-selection hypothesis (Mulligan, 2003), dividing attention during encoding reduces perceptual priming when responses to non-critical (i.e., distractor) stimuli are selected frequently and simultaneously with critical stimulus encoding. Because direct support for this hypothesis comes exclusively from studies using familiar word stimuli, the present study tested whether the predictions of the distractor-selection hypothesis extend to perceptual priming of unfamiliar visual objects using the possible/impossible object-decision test. Consistent with the distractor-selection hypothesis, Experiments 1 and 2 found no reduction in priming when the non-critical stimuli were presented infrequently and non-synchronously with the critical target stimuli, even though explicit recognition memory was reduced. In Experiment 3, non-critical stimuli were presented frequently and simultaneously during encoding of critical stimuli; however, no decrement in priming was detected, even when encoding time was reduced. These results suggest that priming in the possible/impossible object-decision test is relatively immune to reductions in central attention and that not all aspects of the distractor-selection hypothesis generalize to priming of unfamiliar visual objects. Implications for theoretical models of object-decision priming are discussed. PMID:18821167

  1. Object-based implicit learning in visual search: perceptual segmentation constrains contextual cueing.

    PubMed

    Conci, Markus; Müller, Hermann J; von Mühlenen, Adrian

    2013-07-09

    In visual search, detection of a target is faster when it is presented within a spatial layout of repeatedly encountered nontarget items, indicating that contextual invariances can guide selective attention (contextual cueing; Chun & Jiang, 1998). However, perceptual regularities may interfere with contextual learning; for instance, no contextual facilitation occurs when four nontargets form a square-shaped grouping, even though the square location predicts the target location (Conci & von Mühlenen, 2009). Here, we further investigated potential causes for this interference-effect: We show that contextual cueing can reliably occur for targets located within the region of a segmented object, but not for targets presented outside of the object's boundaries. Four experiments demonstrate an object-based facilitation in contextual cueing, with a modulation of context-based learning by relatively subtle grouping cues including closure, symmetry, and spatial regularity. Moreover, the lack of contextual cueing for targets located outside the segmented region was due to an absence of (latent) learning of contextual layouts, rather than due to an attentional bias towards the grouped region. Taken together, these results indicate that perceptual segmentation provides a basic structure within which contextual scene regularities are acquired. This in turn argues that contextual learning is constrained by object-based selection.

  2. Size Constancy in Bat Biosonar? Perceptual Interaction of Object Aperture and Distance

    PubMed Central

    Heinrich, Melina; Wiegrebe, Lutz

    2013-01-01

    Perception and encoding of object size is an important feature of sensory systems. In the visual system object size is encoded by the visual angle (visual aperture) on the retina, but the aperture depends on the distance of the object. As object distance is not unambiguously encoded in the visual system, higher computational mechanisms are needed. This phenomenon is termed “size constancy”. It is assumed to reflect an automatic re-scaling of visual aperture with perceived object distance. Recently, it was found that in echolocating bats, the ‘sonar aperture’, i.e., the range of angles from which sound is reflected from an object back to the bat, is unambiguously perceived and neurally encoded. Moreover, it is well known that object distance is accurately perceived and explicitly encoded in bat sonar. Here, we addressed size constancy in bat biosonar, recruiting virtual-object techniques. Bats of the species Phyllostomus discolor learned to discriminate two simple virtual objects that only differed in sonar aperture. Upon successful discrimination, test trials were randomly interspersed using virtual objects that differed in both aperture and distance. It was tested whether the bats spontaneously assigned absolute width information to these objects by combining distance and aperture. The results showed that while the isolated perceptual cues encoding object width, aperture, and distance were all perceptually well resolved by the bats, the animals did not assign absolute width information to the test objects. This lack of sonar size constancy may result from the bats relying on different modalities to extract size information at different distances. Alternatively, it is conceivable that familiarity with a behaviorally relevant, conspicuous object is required for sonar size constancy, as it has been argued for visual size constancy. Based on the current data, it appears that size constancy is not necessarily an essential feature of sonar perception in bats

  3. Size constancy in bat biosonar? Perceptual interaction of object aperture and distance.

    PubMed

    Heinrich, Melina; Wiegrebe, Lutz

    2013-01-01

    Perception and encoding of object size is an important feature of sensory systems. In the visual system object size is encoded by the visual angle (visual aperture) on the retina, but the aperture depends on the distance of the object. As object distance is not unambiguously encoded in the visual system, higher computational mechanisms are needed. This phenomenon is termed "size constancy". It is assumed to reflect an automatic re-scaling of visual aperture with perceived object distance. Recently, it was found that in echolocating bats, the 'sonar aperture', i.e., the range of angles from which sound is reflected from an object back to the bat, is unambiguously perceived and neurally encoded. Moreover, it is well known that object distance is accurately perceived and explicitly encoded in bat sonar. Here, we addressed size constancy in bat biosonar, recruiting virtual-object techniques. Bats of the species Phyllostomus discolor learned to discriminate two simple virtual objects that only differed in sonar aperture. Upon successful discrimination, test trials were randomly interspersed using virtual objects that differed in both aperture and distance. It was tested whether the bats spontaneously assigned absolute width information to these objects by combining distance and aperture. The results showed that while the isolated perceptual cues encoding object width, aperture, and distance were all perceptually well resolved by the bats, the animals did not assign absolute width information to the test objects. This lack of sonar size constancy may result from the bats relying on different modalities to extract size information at different distances. Alternatively, it is conceivable that familiarity with a behaviorally relevant, conspicuous object is required for sonar size constancy, as it has been argued for visual size constancy. Based on the current data, it appears that size constancy is not necessarily an essential feature of sonar perception in bats.

  4. Perceptual training yields rapid improvements in visually impaired youth.

    PubMed

    Nyquist, Jeffrey B; Lappin, Joseph S; Zhang, Ruyuan; Tadin, Duje

    2016-11-30

    Visual function demands coordinated responses to information over a wide field of view, involving both central and peripheral vision. Visually impaired individuals often seem to underutilize peripheral vision, even in absence of obvious peripheral deficits. Motivated by perceptual training studies with typically sighted adults, we examined the effectiveness of perceptual training in improving peripheral perception of visually impaired youth. Here, we evaluated the effectiveness of three training regimens: (1) an action video game, (2) a psychophysical task that combined attentional tracking with a spatially and temporally unpredictable motion discrimination task, and (3) a control video game. Training with both the action video game and modified attentional tracking yielded improvements in visual performance. Training effects were generally larger in the far periphery and appear to be stable 12 months after training. These results indicate that peripheral perception might be under-utilized by visually impaired youth and that this underutilization can be improved with only ~8 hours of perceptual training. Moreover, the similarity of improvements following attentional tracking and action video-game training suggest that well-documented effects of action video-game training might be due to the sustained deployment of attention to multiple dynamic targets while concurrently requiring rapid attending and perception of unpredictable events.

  5. Perceptual training yields rapid improvements in visually impaired youth

    PubMed Central

    Nyquist, Jeffrey B.; Lappin, Joseph S.; Zhang, Ruyuan; Tadin, Duje

    2016-01-01

    Visual function demands coordinated responses to information over a wide field of view, involving both central and peripheral vision. Visually impaired individuals often seem to underutilize peripheral vision, even in absence of obvious peripheral deficits. Motivated by perceptual training studies with typically sighted adults, we examined the effectiveness of perceptual training in improving peripheral perception of visually impaired youth. Here, we evaluated the effectiveness of three training regimens: (1) an action video game, (2) a psychophysical task that combined attentional tracking with a spatially and temporally unpredictable motion discrimination task, and (3) a control video game. Training with both the action video game and modified attentional tracking yielded improvements in visual performance. Training effects were generally larger in the far periphery and appear to be stable 12 months after training. These results indicate that peripheral perception might be under-utilized by visually impaired youth and that this underutilization can be improved with only ~8 hours of perceptual training. Moreover, the similarity of improvements following attentional tracking and action video-game training suggest that well-documented effects of action video-game training might be due to the sustained deployment of attention to multiple dynamic targets while concurrently requiring rapid attending and perception of unpredictable events. PMID:27901026

  6. An objective measure of hyperactivity aspects with compressed webcam video.

    PubMed

    Wehrmann, Thomas; Müller, Jörg Michael

    2015-01-01

    Objective measures of physical activity are currently not considered in clinical guidelines for the assessment of hyperactivity in the context of Attention-Deficit/Hyperactivity Disorder (ADHD) due to low and inconsistent associations between clinical ratings, missing age-related norm data and high technical requirements. This pilot study introduces a new objective measure for physical activity using compressed webcam video footage, which should be less affected by age-related variables. A pre-test established a preliminary standard procedure for testing a clinical sample of 39 children aged 6-16 years (21 with a clinical ADHD diagnosis, 18 without). Subjects were filmed for 6 min while solving a standardized cognitive performance task. Our webcam video-based video-activity score was compared with respect to two independent video-based movement ratings by students, ratings of Inattentiveness, Hyperactivity and Impulsivity by clinicians (DCL-ADHS) giving a clinical diagnosis of ADHD and parents (FBB-ADHD) and physical features (age, weight, height, BMI) using mean scores, correlations and multiple regression. Our video-activity score showed a high agreement (r = 0.81) with video-based movement ratings, but also considerable associations with age-related physical attributes. After controlling for age-related confounders, the video-activity score showed not the expected association with clinicians' or parents' hyperactivity ratings. Our preliminary conclusion is that our video-activity score assesses physical activity but not specific information related to hyperactivity. The general problem of defining and assessing hyperactivity with objective criteria remains.

  7. Toward a perceptual video-quality metric

    NASA Astrophysics Data System (ADS)

    Watson, Andrew B.

    1998-07-01

    The advent of widespread distribution of digital video creates a need for automated methods for evaluating the visual quality of digital video. This is particularly so since most digital video is compressed using lossy methods, which involve the controlled introduction of potentially visible artifacts. Compounding the problem is the bursty nature of digital video, which requires adaptive bit allocation based on visual quality metrics, and the economic need to reduce bit-rate to the lowest level that yields acceptable quality. In previous work, we have developed visual quality metrics for evaluating, controlling,a nd optimizing the quality of compressed still images. These metrics incorporate simplified models of human visual sensitivity to spatial and chromatic visual signals. Here I describe a new video quality metric that is an extension of these still image metrics into the time domain. Like the still image metrics, it is based on the Discrete Cosine Transform. An effort has been made to minimize the amount of memory and computation required by the metric, in order that might be applied in the widest range of applications. To calibrate the basic sensitivity of this metric to spatial and temporal signals we have made measurements of visual thresholds for temporally varying samples of DCT quantization noise.

  8. Moving object detection and tracking in videos through turbulent medium

    NASA Astrophysics Data System (ADS)

    Halder, Kalyan Kumar; Tahtali, Murat; Anavatti, Sreenatha G.

    2016-06-01

    This paper addresses the problem of identifying and tracking moving objects in a video sequence having a time-varying background. This is a fundamental task in many computer vision applications, though a very challenging one because of turbulence that causes blurring and spatiotemporal movements of the background images. Our proposed approach involves two major steps. First, a moving object detection algorithm that deals with the detection of real motions by separating the turbulence-induced motions using a two-level thresholding technique is used. In the second step, a feature-based generalized regression neural network is applied to track the detected objects throughout the frames in the video sequence. The proposed approach uses the centroid and area features of the moving objects and creates the reference regions instantly by selecting the objects within a circle. Simulation experiments are carried out on several turbulence-degraded video sequences and comparisons with an earlier method confirms that the proposed approach provides a more effective tracking of the targets.

  9. Object detection in cinematographic video sequences for automatic indexing

    NASA Astrophysics Data System (ADS)

    Stauder, Jurgen; Chupeau, Bertrand; Oisel, Lionel

    2003-06-01

    This paper presents an object detection framework applied to cinematographic post-processing of video sequences. Post-processing is done after production and before editing. At the beginning of each shot of a video, a slate (also called clapperboard) is shown. The slate contains notably an electronic audio timecode that is necessary for audio-visual synchronization. This paper presents an object detection framework to detect slates in video sequences for automatic indexing and post-processing. It is based on five steps. The first two steps aim to reduce drastically the video data to be analyzed. They ensure high recall rate but have low precision. The first step detects images at the beginning of a shot possibly showing up a slate while the second step searches in these images for candidates regions with color distribution similar to slates. The objective is to not miss any slate while eliminating long parts of video without slate appearance. The third and fourth steps are statistical classification and pattern matching to detected and precisely locate slates in candidate regions. These steps ensure high recall rate and high precision. The objective is to detect slates with very little false alarms to minimize interactive corrections. In a last step, electronic timecodes are read from slates to automize audio-visual synchronization. The presented slate detector has a recall rate of 89% and a precision of 97,5%. By temporal integration, much more than 89% of shots in dailies are detected. By timecode coherence analysis, the precision can be raised too. Issues for future work are to accelerate the system to be faster than real-time and to extend the framework for several slate types.

  10. Shadow Detection Based on Regions of Light Sources for Object Extraction in Nighttime Video

    PubMed Central

    Lee, Gil-beom; Lee, Myeong-jin; Lee, Woo-Kyung; Park, Joo-heon; Kim, Tae-Hwan

    2017-01-01

    Intelligent video surveillance systems detect pre-configured surveillance events through background modeling, foreground and object extraction, object tracking, and event detection. Shadow regions inside video frames sometimes appear as foreground objects, interfere with ensuing processes, and finally degrade the event detection performance of the systems. Conventional studies have mostly used intensity, color, texture, and geometric information to perform shadow detection in daytime video, but these methods lack the capability of removing shadows in nighttime video. In this paper, a novel shadow detection algorithm for nighttime video is proposed; this algorithm partitions each foreground object based on the object’s vertical histogram and screens out shadow objects by validating their orientations heading toward regions of light sources. From the experimental results, it can be seen that the proposed algorithm shows more than 93.8% shadow removal and 89.9% object extraction rates for nighttime video sequences, and the algorithm outperforms conventional shadow removal algorithms designed for daytime videos. PMID:28327515

  11. Fast Appearance Modeling for Automatic Primary Video Object Segmentation.

    PubMed

    Yang, Jiong; Price, Brian; Shen, Xiaohui; Lin, Zhe; Yuan, Junsong

    2016-02-01

    Automatic segmentation of the primary object in a video clip is a challenging problem as there is no prior knowledge of the primary object. Most existing techniques thus adapt an iterative approach for foreground and background appearance modeling, i.e., fix the appearance model while optimizing the segmentation and fix the segmentation while optimizing the appearance model. However, these approaches may rely on good initialization and can be easily trapped in local optimal. In addition, they are usually time consuming for analyzing videos. To address these limitations, we propose a novel and efficient appearance modeling technique for automatic primary video object segmentation in the Markov random field (MRF) framework. It embeds the appearance constraint as auxiliary nodes and edges in the MRF structure, and can optimize both the segmentation and appearance model parameters simultaneously in one graph cut. The extensive experimental evaluations validate the superiority of the proposed approach over the state-of-the-art methods, in both efficiency and effectiveness.

  12. Effect of tDCS on task relevant and irrelevant perceptual learning of complex objects.

    PubMed

    Van Meel, Chayenne; Daniels, Nicky; de Beeck, Hans Op; Baeck, Annelies

    2016-01-01

    During perceptual learning the visual representations in the brain are altered, but these changes' causal role has not yet been fully characterized. We used transcranial direct current stimulation (tDCS) to investigate the role of higher visual regions in lateral occipital cortex (LO) in perceptual learning with complex objects. We also investigated whether object learning is dependent on the relevance of the objects for the learning task. Participants were trained in two tasks: object recognition using a backward masking paradigm and an orientation judgment task. During both tasks, an object with a red line on top of it were presented in each trial. The crucial difference between both tasks was the relevance of the object: the object was relevant for the object recognition task, but not for the orientation judgment task. During training, half of the participants received anodal tDCS stimulation targeted at the lateral occipital cortex (LO). Afterwards, participants were tested on how well they recognized the trained objects, the irrelevant objects presented during the orientation judgment task and a set of completely new objects. Participants stimulated with tDCS during training showed larger improvements of performance compared to participants in the sham condition. No learning effect was found for the objects presented during the orientation judgment task. To conclude, this study suggests a causal role of LO in relevant object learning, but given the rather low spatial resolution of tDCS, more research on the specificity of this effect is needed. Further, mere exposure is not sufficient to train object recognition in our paradigm.

  13. Causal Video Object Segmentation From Persistence of Occlusions

    DTIC Science & Technology

    2015-05-01

    Precision, recall, and F-measure are reported on the ground truth anno - tations converted to binary masks. Note we cannot evaluate “number of...to lack of occlusions. References [1] P. Arbelaez, M. Maire, C. Fowlkes, and J . Malik. Con- tour detection and hierarchical image segmentation. TPAMI...X. Bai, J . Wang, D. Simons, and G. Sapiro. Video snapcut: robust video object cutout using localized classifiers. In ACM Transactions on Graphics

  14. Cognitive, perceptual and action-oriented representations of falling objects.

    PubMed

    Zago, Myrka; Lacquaniti, Francesco

    2005-01-01

    We interact daily with moving objects. How accurate are our predictions about objects' motions? What sources of information do we use? These questions have received wide attention from a variety of different viewpoints. On one end of the spectrum are the ecological approaches assuming that all the information about the visual environment is present in the optic array, with no need to postulate conscious or unconscious representations. On the other end of the spectrum are the constructivist approaches assuming that a more or less accurate representation of the external world is built in the brain using explicit or implicit knowledge or memory besides sensory inputs. Representations can be related to naive physics or to context cue-heuristics or to the construction of internal copies of environmental invariants. We address the issue of prediction of objects' fall at different levels. Cognitive understanding and perceptual judgment of simple Newtonian dynamics can be surprisingly inaccurate. By contrast, motor interactions with falling objects are often very accurate. We argue that the pragmatic action-oriented behaviour and the perception-oriented behaviour may use different modes of operation and different levels of representation.

  15. Perceptual training effects on anticipation of direct and deceptive 7-m throws in handball.

    PubMed

    Alsharji, Khaled E; Wade, Michael G

    2016-01-01

    We examined the effectiveness of perceptual training on the performance of handball goalkeepers when anticipating the direction of both direct and deceptive 7-m throws. Skilled goalkeepers were assigned equally to three matched-ability groups based on their pre-test performance: a perceptual training group (n = 14) received video-based perceptual training, a placebo training group (n = 14) received video-based regular training and a control group received no training. Participants in the perceptual training group significantly improved their performance compared to both placebo and control groups; however, anticipation of deceptive throws improved less than for direct throws. The results confirm that although anticipating deception in handball is a challenging task for goalkeepers, task-specific perceptual training can minimise its effect and improve performance.

  16. Consumer-based technology for distribution of surgical videos for objective evaluation.

    PubMed

    Gonzalez, Ray; Martinez, Jose M; Lo Menzo, Emanuele; Iglesias, Alberto R; Ro, Charles Y; Madan, Atul K

    2012-08-01

    The Global Operative Assessment of Laparoscopic Skill (GOALS) is one validated metric utilized to grade laparoscopic skills and has been utilized to score recorded operative videos. To facilitate easier viewing of these recorded videos, we are developing novel techniques to enable surgeons to view these videos. The objective of this study is to determine the feasibility of utilizing widespread current consumer-based technology to assist in distributing appropriate videos for objective evaluation. Videos from residents were recorded via a direct connection from the camera processor via an S-video output via a cable into a hub to connect to a standard laptop computer via a universal serial bus (USB) port. A standard consumer-based video editing program was utilized to capture the video and record in appropriate format. We utilized mp4 format, and depending on the size of the file, the videos were scaled down (compressed), their format changed (using a standard video editing program), or sliced into multiple videos. Standard available consumer-based programs were utilized to convert the video into a more appropriate format for handheld personal digital assistants. In addition, the videos were uploaded to a social networking website and video sharing websites. Recorded cases of laparoscopic cholecystectomy in a porcine model were utilized. Compression was required for all formats. All formats were accessed from home computers, work computers, and iPhones without difficulty. Qualitative analyses by four surgeons demonstrated appropriate quality to grade for these formats. Our preliminary results show promise that, utilizing consumer-based technology, videos can be easily distributed to surgeons to grade via GOALS via various methods. Easy accessibility may help make evaluation of resident videos less complicated and cumbersome.

  17. A Benchmark Dataset and Saliency-guided Stacked Autoencoders for Video-based Salient Object Detection.

    PubMed

    Li, Jia; Xia, Changqun; Chen, Xiaowu

    2017-10-12

    Image-based salient object detection (SOD) has been extensively studied in past decades. However, video-based SOD is much less explored due to the lack of large-scale video datasets within which salient objects are unambiguously defined and annotated. Toward this end, this paper proposes a video-based SOD dataset that consists of 200 videos. In constructing the dataset, we manually annotate all objects and regions over 7,650 uniformly sampled keyframes and collect the eye-tracking data of 23 subjects who free-view all videos. From the user data, we find that salient objects in a video can be defined as objects that consistently pop-out throughout the video, and objects with such attributes can be unambiguously annotated by combining manually annotated object/region masks with eye-tracking data of multiple subjects. To the best of our knowledge, it is currently the largest dataset for videobased salient object detection. Based on this dataset, this paper proposes an unsupervised baseline approach for video-based SOD by using saliencyguided stacked autoencoders. In the proposed approach, multiple spatiotemporal saliency cues are first extracted at the pixel, superpixel and object levels. With these saliency cues, stacked autoencoders are constructed in an unsupervised manner that automatically infers a saliency score for each pixel by progressively encoding the high-dimensional saliency cues gathered from the pixel and its spatiotemporal neighbors. In experiments, the proposed unsupervised approach is compared with 31 state-of-the-art models on the proposed dataset and outperforms 30 of them, including 19 imagebased classic (unsupervised or non-deep learning) models, six image-based deep learning models, and five video-based unsupervised models. Moreover, benchmarking results show that the proposed dataset is very challenging and has the potential to boost the development of video-based SOD.

  18. Emergent features and perceptual objects: re-examining fundamental principles in analogical display design.

    PubMed

    Holt, Jerred; Bennett, Kevin B; Flach, John M

    2015-01-01

    Two sets of design principles for analogical visual displays, based on the concepts of emergent features and perceptual objects, are described. An interpretation of previous empirical findings for three displays (bar graph, polar graphic, alphanumeric) is provided from both perspectives. A fourth display (configural coordinate) was designed using principles of ecological interface design (i.e. direct perception). An experiment was conducted to evaluate performance (accuracy and latency of state identification) with these four displays. Numerous significant effects were obtained and a clear rank ordering of performance emerged (from best to worst): configural coordinate, bar graph, alphanumeric and polar graphic. These findings are consistent with principles of design based on emergent features; they are inconsistent with principles based on perceptual objects. Some limitations of the configural coordinate display are discussed and a redesign is provided. Practitioner Summary: Principles of ecological interface design, which emphasise the quality of very specific mappings between domain, display and observer constraints, are described; these principles are applicable to the design of all analogical graphical displays.

  19. Object similarity affects the perceptual strategy underlying invariant visual object recognition in rats

    PubMed Central

    Rosselli, Federica B.; Alemi, Alireza; Ansuini, Alessio; Zoccolan, Davide

    2015-01-01

    In recent years, a number of studies have explored the possible use of rats as models of high-level visual functions. One central question at the root of such an investigation is to understand whether rat object vision relies on the processing of visual shape features or, rather, on lower-order image properties (e.g., overall brightness). In a recent study, we have shown that rats are capable of extracting multiple features of an object that are diagnostic of its identity, at least when those features are, structure-wise, distinct enough to be parsed by the rat visual system. In the present study, we have assessed the impact of object structure on rat perceptual strategy. We trained rats to discriminate between two structurally similar objects, and compared their recognition strategies with those reported in our previous study. We found that, under conditions of lower stimulus discriminability, rat visual discrimination strategy becomes more view-dependent and subject-dependent. Rats were still able to recognize the target objects, in a way that was largely tolerant (i.e., invariant) to object transformation; however, the larger structural and pixel-wise similarity affected the way objects were processed. Compared to the findings of our previous study, the patterns of diagnostic features were: (i) smaller and more scattered; (ii) only partially preserved across object views; and (iii) only partially reproducible across rats. On the other hand, rats were still found to adopt a multi-featural processing strategy and to make use of part of the optimal discriminatory information afforded by the two objects. Our findings suggest that, as in humans, rat invariant recognition can flexibly rely on either view-invariant representations of distinctive object features or view-specific object representations, acquired through learning. PMID:25814936

  20. Compression performance comparison in low delay real-time video for mobile applications

    NASA Astrophysics Data System (ADS)

    Bivolarski, Lazar

    2012-10-01

    This article compares the performance of several current video coding standards in the conditions of low-delay real-time in a resource constrained environment. The comparison is performed using the same content and the metrics and mix of objective and perceptual quality metrics. The metrics results in different coding schemes are analyzed from a point of view of user perception and quality of service. Multiple standards are compared MPEG-2, MPEG4 and MPEG-AVC and well and H.263. The metrics used in the comparison include SSIM, VQM and DVQ. Subjective evaluation and quality of service are discussed from a point of view of perceptual metrics and their incorporation in the coding scheme development process. The performance and the correlation of results are presented as a predictor of the performance of video compression schemes.

  1. The Diabeates Project: Perceptual, Affective and Psychophysiological Effects of Music and Music-Video in a Clinical Exercise Setting.

    PubMed

    Hutchinson, Jasmin C; Karageorghis, Costas I; Black, Jessica D

    2017-02-01

    The purpose of this study was to examine the effects of music and music-video on perceptual (attentional focus, rated perceived exertion), affective (affective valence and enjoyment) and psychophysiological (blood glucose, heart rate) variables in outpatients attending a diabetes exercise clinic. Participants were 24 females (age = 66.0 ± 8.5 years) enrolled in a supervised exercise program for people with diabetes. They engaged in mixed-modality exercise sessions that included a standardized combination of flexibility, aerobic and resistance activities under conditions of music, music-video and control. Analyses revealed a main effect of condition on attentional focus and affect during aerobic exercise only. The music-video condition elicited the highest level of attentional dissociation, while affective valence was more positive in the 2 experimental conditions when compared to control. Rated perceived exertion and heart rate did not differ across conditions. Measures of exercise enjoyment indicated a main effect of condition wherein scores were higher with the music-video condition when compared to control. There was an acute glucose-lowering effect of exercise in all conditions. Results lend support to the notion that auditory and visual stimuli can enhance affective responses to exercise in a clinical setting. This may have meaningful implications for adherence, given the link between affective judgements and future behaviour in an exercise context. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  2. Perceptual advantage for category-relevant perceptual dimensions: the case of shape and motion.

    PubMed

    Folstein, Jonathan R; Palmeri, Thomas J; Gauthier, Isabel

    2014-01-01

    Category learning facilitates perception along relevant stimulus dimensions, even when tested in a discrimination task that does not require categorization. While this general phenomenon has been demonstrated previously, perceptual facilitation along dimensions has been documented by measuring different specific phenomena in different studies using different kinds of objects. Across several object domains, there is support for acquired distinctiveness, the stretching of a perceptual dimension relevant to learned categories. Studies using faces and studies using simple separable visual dimensions have also found evidence of acquired equivalence, the shrinking of a perceptual dimension irrelevant to learned categories, and categorical perception, the local stretching across the category boundary. These later two effects are rarely observed with complex non-face objects. Failures to find these effects with complex non-face objects may have been because the dimensions tested previously were perceptually integrated. Here we tested effects of category learning with non-face objects categorized along dimensions that have been found to be processed by different areas of the brain, shape and motion. While we replicated acquired distinctiveness, we found no evidence for acquired equivalence or categorical perception.

  3. Topical video object discovery from key frames by modeling word co-occurrence prior.

    PubMed

    Zhao, Gangqiang; Yuan, Junsong; Hua, Gang; Yang, Jiong

    2015-12-01

    A topical video object refers to an object, that is, frequently highlighted in a video. It could be, e.g., the product logo and the leading actor/actress in a TV commercial. We propose a topic model that incorporates a word co-occurrence prior for efficient discovery of topical video objects from a set of key frames. Previous work using topic models, such as latent Dirichelet allocation (LDA), for video object discovery often takes a bag-of-visual-words representation, which ignored important co-occurrence information among the local features. We show that such data driven co-occurrence information from bottom-up can conveniently be incorporated in LDA with a Gaussian Markov prior, which combines top-down probabilistic topic modeling with bottom-up priors in a unified model. Our experiments on challenging videos demonstrate that the proposed approach can discover different types of topical objects despite variations in scale, view-point, color and lighting changes, or even partial occlusions. The efficacy of the co-occurrence prior is clearly demonstrated when compared with topic models without such priors.

  4. Weighted-MSE based on saliency map for assessing video quality of H.264 video streams

    NASA Astrophysics Data System (ADS)

    Boujut, H.; Benois-Pineau, J.; Hadar, O.; Ahmed, T.; Bonnet, P.

    2011-01-01

    Human vision system is very complex and has been studied for many years specifically for purposes of efficient encoding of visual, e.g. video content from digital TV. There have been physiological and psychological evidences which indicate that viewers do not pay equal attention to all exposed visual information, but only focus on certain areas known as focus of attention (FOA) or saliency regions. In this work, we propose a novel based objective quality assessment metric, for assessing the perceptual quality of decoded video sequences affected by transmission errors and packed loses. The proposed method weights the Mean Square Error (MSE), Weighted-MSE (WMSE), according to the calculated saliency map at each pixel. Our method was validated trough subjective quality experiments.

  5. Efficient Use of Video for 3d Modelling of Cultural Heritage Objects

    NASA Astrophysics Data System (ADS)

    Alsadik, B.; Gerke, M.; Vosselman, G.

    2015-03-01

    Currently, there is a rapid development in the techniques of the automated image based modelling (IBM), especially in advanced structure-from-motion (SFM) and dense image matching methods, and camera technology. One possibility is to use video imaging to create 3D reality based models of cultural heritage architectures and monuments. Practically, video imaging is much easier to apply when compared to still image shooting in IBM techniques because the latter needs a thorough planning and proficiency. However, one is faced with mainly three problems when video image sequences are used for highly detailed modelling and dimensional survey of cultural heritage objects. These problems are: the low resolution of video images, the need to process a large number of short baseline video images and blur effects due to camera shake on a significant number of images. In this research, the feasibility of using video images for efficient 3D modelling is investigated. A method is developed to find the minimal significant number of video images in terms of object coverage and blur effect. This reduction in video images is convenient to decrease the processing time and to create a reliable textured 3D model compared with models produced by still imaging. Two experiments for modelling a building and a monument are tested using a video image resolution of 1920×1080 pixels. Internal and external validations of the produced models are applied to find out the final predicted accuracy and the model level of details. Related to the object complexity and video imaging resolution, the tests show an achievable average accuracy between 1 - 5 cm when using video imaging, which is suitable for visualization, virtual museums and low detailed documentation.

  6. Implicit and Explicit Contributions to Object Recognition: Evidence from Rapid Perceptual Learning

    PubMed Central

    Hassler, Uwe; Friese, Uwe; Gruber, Thomas

    2012-01-01

    The present study investigated implicit and explicit recognition processes of rapidly perceptually learned objects by means of steady-state visual evoked potentials (SSVEP). Participants were initially exposed to object pictures within an incidental learning task (living/non-living categorization). Subsequently, degraded versions of some of these learned pictures were presented together with degraded versions of unlearned pictures and participants had to judge, whether they recognized an object or not. During this test phase, stimuli were presented at 15 Hz eliciting an SSVEP at the same frequency. Source localizations of SSVEP effects revealed for implicit and explicit processes overlapping activations in orbito-frontal and temporal regions. Correlates of explicit object recognition were additionally found in the superior parietal lobe. These findings are discussed to reflect facilitation of object-specific processing areas within the temporal lobe by an orbito-frontal top-down signal as proposed by bi-directional accounts of object recognition. PMID:23056558

  7. Blind prediction of natural video quality.

    PubMed

    Saad, Michele A; Bovik, Alan C; Charrier, Christophe

    2014-03-01

    We propose a blind (no reference or NR) video quality evaluation model that is nondistortion specific. The approach relies on a spatio-temporal model of video scenes in the discrete cosine transform domain, and on a model that characterizes the type of motion occurring in the scenes, to predict video quality. We use the models to define video statistics and perceptual features that are the basis of a video quality assessment (VQA) algorithm that does not require the presence of a pristine video to compare against in order to predict a perceptual quality score. The contributions of this paper are threefold. 1) We propose a spatio-temporal natural scene statistics (NSS) model for videos. 2) We propose a motion model that quantifies motion coherency in video scenes. 3) We show that the proposed NSS and motion coherency models are appropriate for quality assessment of videos, and we utilize them to design a blind VQA algorithm that correlates highly with human judgments of quality. The proposed algorithm, called video BLIINDS, is tested on the LIVE VQA database and on the EPFL-PoliMi video database and shown to perform close to the level of top performing reduced and full reference VQA algorithms.

  8. Animacy, perceptual load, and inattentional blindness.

    PubMed

    Calvillo, Dustin P; Jackson, Russell E

    2014-06-01

    Inattentional blindness is the failure to notice unexpected objects in a visual scene while engaging in an attention-demanding task. We examined the effects of animacy and perceptual load on inattentional blindness. Participants searched for a category exemplar under low or high perceptual load. On the last trial, the participants were exposed to an unexpected object that was either animate or inanimate. Unexpected objects were detected more frequently when they were animate rather than inanimate, and more frequently with low than with high perceptual loads. We also measured working memory capacity and found that it predicted the detection of unexpected objects, but only with high perceptual loads. The results are consistent with the animate-monitoring hypothesis, which suggests that animate objects capture attention because of the importance of the detection of animate objects in ancestral hunter-gatherer environments.

  9. Mechanisms of perceptual organization provide auto-zoom and auto-localization for attention to objects

    PubMed Central

    Mihalas, Stefan; Dong, Yi; von der Heydt, Rüdiger; Niebur, Ernst

    2011-01-01

    Visual attention is often understood as a modulatory field acting at early stages of processing, but the mechanisms that direct and fit the field to the attended object are not known. We show that a purely spatial attention field propagating downward in the neuronal network responsible for perceptual organization will be reshaped, repositioned, and sharpened to match the object's shape and scale. Key features of the model are grouping neurons integrating local features into coherent tentative objects, excitatory feedback to the same local feature neurons that caused grouping neuron activation, and inhibition between incompatible interpretations both at the local feature level and at the object representation level. PMID:21502489

  10. Object-Based Attention Overrides Perceptual Load to Modulate Visual Distraction

    ERIC Educational Resources Information Center

    Cosman, Joshua D.; Vecera, Shaun P.

    2012-01-01

    The ability to ignore task-irrelevant information and overcome distraction is central to our ability to efficiently carry out a number of tasks. One factor shown to strongly influence distraction is the perceptual load of the task being performed; as the perceptual load of task-relevant information processing increases, the likelihood that…

  11. A Perceptually Weighted Rank Correlation Indicator for Objective Image Quality Assessment

    NASA Astrophysics Data System (ADS)

    Wu, Qingbo; Li, Hongliang; Meng, Fanman; Ngan, King N.

    2018-05-01

    In the field of objective image quality assessment (IQA), the Spearman's $\\rho$ and Kendall's $\\tau$ are two most popular rank correlation indicators, which straightforwardly assign uniform weight to all quality levels and assume each pair of images are sortable. They are successful for measuring the average accuracy of an IQA metric in ranking multiple processed images. However, two important perceptual properties are ignored by them as well. Firstly, the sorting accuracy (SA) of high quality images are usually more important than the poor quality ones in many real world applications, where only the top-ranked images would be pushed to the users. Secondly, due to the subjective uncertainty in making judgement, two perceptually similar images are usually hardly sortable, whose ranks do not contribute to the evaluation of an IQA metric. To more accurately compare different IQA algorithms, we explore a perceptually weighted rank correlation indicator in this paper, which rewards the capability of correctly ranking high quality images, and suppresses the attention towards insensitive rank mistakes. More specifically, we focus on activating `valid' pairwise comparison towards image quality, whose difference exceeds a given sensory threshold (ST). Meanwhile, each image pair is assigned an unique weight, which is determined by both the quality level and rank deviation. By modifying the perception threshold, we can illustrate the sorting accuracy with a more sophisticated SA-ST curve, rather than a single rank correlation coefficient. The proposed indicator offers a new insight for interpreting visual perception behaviors. Furthermore, the applicability of our indicator is validated in recommending robust IQA metrics for both the degraded and enhanced image data.

  12. Another Way of Tracking Moving Objects Using Short Video Clips

    ERIC Educational Resources Information Center

    Vera, Francisco; Romanque, Cristian

    2009-01-01

    Physics teachers have long employed video clips to study moving objects in their classrooms and instructional labs. A number of approaches exist, both free and commercial, for tracking the coordinates of a point using video. The main characteristics of the method described in this paper are: it is simple to use; coordinates can be tracked using…

  13. Geometry of the perceptual space

    NASA Astrophysics Data System (ADS)

    Assadi, Amir H.; Palmer, Stephen; Eghbalnia, Hamid; Carew, John

    1999-09-01

    The concept of space and geometry varies across the subjects. Following Poincare, we consider the construction of the perceptual space as a continuum equipped with a notion of magnitude. The study of the relationships of objects in the perceptual space gives rise to what we may call perceptual geometry. Computational modeling of objects and investigation of their deeper perceptual geometrical properties (beyond qualitative arguments) require a mathematical representation of the perceptual space. Within the realm of such a mathematical/computational representation, visual perception can be studied as in the well-understood logic-based geometry. This, however, does not mean that one could reduce all problems of visual perception to their geometric counterparts. Rather, visual perception as reported by a human observer, has a subjective factor that could be analytically quantified only through statistical reasoning and in the course of repetitive experiments. Thus, the desire to experimentally verify the statements in perceptual geometry leads to an additional probabilistic structure imposed on the perceptual space, whose amplitudes are measured through intervention by human observers. We propose a model for the perceptual space and the case of perception of textured surfaces as a starting point for object recognition. To rigorously present these ideas and propose computational simulations for testing the theory, we present the model of the perceptual geometry of surfaces through an amplification of theory of Riemannian foliation in differential topology, augmented by statistical learning theory. When we refer to the perceptual geometry of a human observer, the theory takes into account the Bayesian formulation of the prior state of the knowledge of the observer and Hebbian learning. We use a Parallel Distributed Connectionist paradigm for computational modeling and experimental verification of our theory.

  14. Referential understanding of videos in chimpanzees (Pan troglodytes), orangutans (Pongo pygmaeus), and children (Homo sapiens).

    PubMed

    Poss, Sarah R; Rochat, Philippe

    2003-12-01

    Performance on identical search tasks based on cues directly perceived or indirectly perceived through video were compared among a group of 4 adult chimpanzees (Pan troglodytes), a group of 2 adult orangutans (Pongo pygmaeus), and a group of 36 children (between 2 and 3 years of age). Children comprehended directly perceived cues but had difficulty with video cues. In contrast, chimpanzees and 1 orangutan were successful in using video to guide their search for a hidden object. Two follow-up studies with 3-year-old children demonstrated the importance of more distinct perceptual and verbal cues in aiding children's understanding of video as referring to real-world events.

  15. Coupled auralization and virtual video for immersive multimedia displays

    NASA Astrophysics Data System (ADS)

    Henderson, Paul D.; Torres, Rendell R.; Shimizu, Yasushi; Radke, Richard; Lonsway, Brian

    2003-04-01

    The implementation of maximally-immersive interactive multimedia in exhibit spaces requires not only the presentation of realistic visual imagery but also the creation of a perceptually accurate aural experience. While conventional implementations treat audio and video problems as essentially independent, this research seeks to couple the visual sensory information with dynamic auralization in order to enhance perceptual accuracy. An implemented system has been developed for integrating accurate auralizations with virtual video techniques for both interactive presentation and multi-way communication. The current system utilizes a multi-channel loudspeaker array and real-time signal processing techniques for synthesizing the direct sound, early reflections, and reverberant field excited by a moving sound source whose path may be interactively defined in real-time or derived from coupled video tracking data. In this implementation, any virtual acoustic environment may be synthesized and presented in a perceptually-accurate fashion to many participants over a large listening and viewing area. Subject tests support the hypothesis that the cross-modal coupling of aural and visual displays significantly affects perceptual localization accuracy.

  16. Tactile Object Familiarity in the Blind Brain Reveals the Supramodal Perceptual-Mnemonic Nature of the Perirhinal Cortex

    PubMed Central

    Cacciamani, Laura; Likova, Lora T.

    2016-01-01

    This study is the first to investigate the neural underpinnings of tactile object familiarity in the blind during both perception and memory. In the sighted, the perirhinal cortex (PRC) has been implicated in the assessment of visual object familiarity—a crucial everyday task—as evidenced by reduced activation when an object becomes familiar. Here, to examine the PRC’s role in tactile object familiarity in the absence of vision, we trained blind participants on a unique memory-guided drawing technique and measured brain activity while they perceptually explored raised-line drawings, drew them from tactile memory, and scribbled (control). Functional magnetic resonance imaging (fMRI) before and after a week of training revealed a significant decrease in PRC activation from pre- to post-training (i.e., from unfamiliar to familiar) during perceptual exploration as well as memory-guided drawing, but not scribbling. This familiarity-based reduction is the first evidence that the PRC represents tactile object familiarity in the blind. Furthermore, the finding of this effect during both tactile perception and tactile memory provides the critical link in establishing the PRC as a structure whose representations are supramodal for both perception and memory. PMID:27148002

  17. Deep Spatial-Temporal Joint Feature Representation for Video Object Detection.

    PubMed

    Zhao, Baojun; Zhao, Boya; Tang, Linbo; Han, Yuqi; Wang, Wenzheng

    2018-03-04

    With the development of deep neural networks, many object detection frameworks have shown great success in the fields of smart surveillance, self-driving cars, and facial recognition. However, the data sources are usually videos, and the object detection frameworks are mostly established on still images and only use the spatial information, which means that the feature consistency cannot be ensured because the training procedure loses temporal information. To address these problems, we propose a single, fully-convolutional neural network-based object detection framework that involves temporal information by using Siamese networks. In the training procedure, first, the prediction network combines the multiscale feature map to handle objects of various sizes. Second, we introduce a correlation loss by using the Siamese network, which provides neighboring frame features. This correlation loss represents object co-occurrences across time to aid the consistent feature generation. Since the correlation loss should use the information of the track ID and detection label, our video object detection network has been evaluated on the large-scale ImageNet VID dataset where it achieves a 69.5% mean average precision (mAP).

  18. Enumeration versus multiple object tracking: the case of action video game players

    PubMed Central

    Green, C.S.; Bavelier, D.

    2010-01-01

    Here, we demonstrate that action video game play enhances subjects’ ability in two tasks thought to indicate the number of items that can be apprehended. Using an enumeration task, in which participants have to determine the number of quickly flashed squares, accuracy measures showed a near ceiling performance for low numerosities and a sharp drop in performance once a critical number of squares was reached. Importantly, this critical number was higher by about two items in video game players (VGPs) than in non-video game players (NVGPs). A following control study indicated that this improvement was not due to an enhanced ability to instantly apprehend the numerosity of the display, a process known as subitizing, but rather due to an enhancement in the slower more serial process of counting. To confirm that video game play facilitates the processing of multiple objects at once, we compared VGPs and NVGPs on the multiple object tracking task (MOT), which requires the allocation of attention to several items over time. VGPs were able to successfully track approximately two more items than NVGPs. Furthermore, NVGPs trained on an action video game established the causal effect of game playing in the enhanced performance on the two tasks. Together, these studies confirm the view that playing action video games enhances the number of objects that can be apprehended and suggest that this enhancement is mediated by changes in visual short-term memory skills. PMID:16359652

  19. Enumeration versus multiple object tracking: the case of action video game players.

    PubMed

    Green, C S; Bavelier, D

    2006-08-01

    Here, we demonstrate that action video game play enhances subjects' ability in two tasks thought to indicate the number of items that can be apprehended. Using an enumeration task, in which participants have to determine the number of quickly flashed squares, accuracy measures showed a near ceiling performance for low numerosities and a sharp drop in performance once a critical number of squares was reached. Importantly, this critical number was higher by about two items in video game players (VGPs) than in non-video game players (NVGPs). A following control study indicated that this improvement was not due to an enhanced ability to instantly apprehend the numerosity of the display, a process known as subitizing, but rather due to an enhancement in the slower more serial process of counting. To confirm that video game play facilitates the processing of multiple objects at once, we compared VGPs and NVGPs on the multiple object tracking task (MOT), which requires the allocation of attention to several items over time. VGPs were able to successfully track approximately two more items than NVGPs. Furthermore, NVGPs trained on an action video game established the causal effect of game playing in the enhanced performance on the two tasks. Together, these studies confirm the view that playing action video games enhances the number of objects that can be apprehended and suggest that this enhancement is mediated by changes in visual short-term memory skills.

  20. PSQM-based RR and NR video quality metrics

    NASA Astrophysics Data System (ADS)

    Lu, Zhongkang; Lin, Weisi; Ong, Eeping; Yang, Xiaokang; Yao, Susu

    2003-06-01

    This paper presents a new and general concept, PQSM (Perceptual Quality Significance Map), to be used in measuring the visual distortion. It makes use of the selectivity characteristic of HVS (Human Visual System) that it pays more attention to certain area/regions of visual signal due to one or more of the following factors: salient features in image/video, cues from domain knowledge, and association of other media (e.g., speech or audio). PQSM is an array whose elements represent the relative perceptual-quality significance levels for the corresponding area/regions for images or video. Due to its generality, PQSM can be incorporated into any visual distortion metrics: to improve effectiveness or/and efficiency of perceptual metrics; or even to enhance a PSNR-based metric. A three-stage PQSM estimation method is also proposed in this paper, with an implementation of motion, texture, luminance, skin-color and face mapping. Experimental results show the scheme can improve the performance of current image/video distortion metrics.

  1. Perceptual distortion analysis of color image VQ-based coding

    NASA Astrophysics Data System (ADS)

    Charrier, Christophe; Knoblauch, Kenneth; Cherifi, Hocine

    1997-04-01

    It is generally accepted that a RGB color image can be easily encoded by using a gray-scale compression technique on each of the three color planes. Such an approach, however, fails to take into account correlations existing between color planes and perceptual factors. We evaluated several linear and non-linear color spaces, some introduced by the CIE, compressed with the vector quantization technique for minimum perceptual distortion. To study these distortions, we measured contrast and luminance of the video framebuffer, to precisely control color. We then obtained psychophysical judgements to measure how well these methods work to minimize perceptual distortion in a variety of color space.

  2. Perceptual Grouping Enhances Visual Plasticity

    PubMed Central

    Mastropasqua, Tommaso; Turatto, Massimo

    2013-01-01

    Visual perceptual learning, a manifestation of neural plasticity, refers to improvements in performance on a visual task achieved by training. Attention is known to play an important role in perceptual learning, given that the observer's discriminative ability improves only for those stimulus feature that are attended. However, the distribution of attention can be severely constrained by perceptual grouping, a process whereby the visual system organizes the initial retinal input into candidate objects. Taken together, these two pieces of evidence suggest the interesting possibility that perceptual grouping might also affect perceptual learning, either directly or via attentional mechanisms. To address this issue, we conducted two experiments. During the training phase, participants attended to the contrast of the task-relevant stimulus (oriented grating), while two similar task-irrelevant stimuli were presented in the adjacent positions. One of the two flanking stimuli was perceptually grouped with the attended stimulus as a consequence of its similar orientation (Experiment 1) or because it was part of the same perceptual object (Experiment 2). A test phase followed the training phase at each location. Compared to the task-irrelevant no-grouping stimulus, orientation discrimination improved at the attended location. Critically, a perceptual learning effect equivalent to the one observed for the attended location also emerged for the task-irrelevant grouping stimulus, indicating that perceptual grouping induced a transfer of learning to the stimulus (or feature) being perceptually grouped with the task-relevant one. Our findings indicate that no voluntary effort to direct attention to the grouping stimulus or feature is necessary to enhance visual plasticity. PMID:23301100

  3. Perceptual grouping enhances visual plasticity.

    PubMed

    Mastropasqua, Tommaso; Turatto, Massimo

    2013-01-01

    Visual perceptual learning, a manifestation of neural plasticity, refers to improvements in performance on a visual task achieved by training. Attention is known to play an important role in perceptual learning, given that the observer's discriminative ability improves only for those stimulus feature that are attended. However, the distribution of attention can be severely constrained by perceptual grouping, a process whereby the visual system organizes the initial retinal input into candidate objects. Taken together, these two pieces of evidence suggest the interesting possibility that perceptual grouping might also affect perceptual learning, either directly or via attentional mechanisms. To address this issue, we conducted two experiments. During the training phase, participants attended to the contrast of the task-relevant stimulus (oriented grating), while two similar task-irrelevant stimuli were presented in the adjacent positions. One of the two flanking stimuli was perceptually grouped with the attended stimulus as a consequence of its similar orientation (Experiment 1) or because it was part of the same perceptual object (Experiment 2). A test phase followed the training phase at each location. Compared to the task-irrelevant no-grouping stimulus, orientation discrimination improved at the attended location. Critically, a perceptual learning effect equivalent to the one observed for the attended location also emerged for the task-irrelevant grouping stimulus, indicating that perceptual grouping induced a transfer of learning to the stimulus (or feature) being perceptually grouped with the task-relevant one. Our findings indicate that no voluntary effort to direct attention to the grouping stimulus or feature is necessary to enhance visual plasticity.

  4. Perceptual grouping and attention in visual search for features and for objects.

    PubMed

    Treisman, A

    1982-04-01

    This article explores the effects of perceptual grouping on search for targets defined by separate features or by conjunction of features. Treisman and Gelade proposed a feature-integration theory of attention, which claims that in the absence of prior knowledge, the separable features of objects are correctly combined only when focused attention is directed to each item in turn. If items are preattentively grouped, however, attention may be directed to groups rather than to single items whenever no recombination of features within a group could generate an illusory target. This prediction is confirmed: In search for conjunctions, subjects appear to scan serially between groups rather than items. The scanning rate shows little effect of the spatial density of distractors, suggesting that it reflects serial fixations of attention rather than eye movements. Search for features, on the other hand, appears to independent of perceptual grouping, suggesting that features are detected preattentively. A conjunction target can be camouflaged at the preattentive level by placing it at the boundary between two adjacent groups, each of which shares one of its features. This suggests that preattentive grouping creates separate feature maps within each separable dimension rather than one global configuration.

  5. An objective method for a video quality evaluation in a 3DTV service

    NASA Astrophysics Data System (ADS)

    Wilczewski, Grzegorz

    2015-09-01

    The following article describes proposed objective method for a 3DTV video quality evaluation, a Compressed Average Image Intensity (CAII) method. Identification of the 3DTV service's content chain nodes enables to design a versatile, objective video quality metric. It is based on an advanced approach to the stereoscopic videostream analysis. Insights towards designed metric mechanisms, as well as the evaluation of performance of the designed video quality metric, in the face of the simulated environmental conditions are herein discussed. As a result, created CAII metric might be effectively used in a variety of service quality assessment applications.

  6. Visible digital watermarking system using perceptual models

    NASA Astrophysics Data System (ADS)

    Cheng, Qiang; Huang, Thomas S.

    2001-03-01

    This paper presents a visible watermarking system using perceptual models. %how and why A watermark image is overlaid translucently onto a primary image, for the purposes of immediate claim of copyright, instantaneous recognition of owner or creator, or deterrence to piracy of digital images or video. %perceptual The watermark is modulated by exploiting combined DCT-domain and DWT-domain perceptual models. % so that the watermark is visually uniform. The resulting watermarked image is visually pleasing and unobtrusive. The location, size and strength of the watermark vary randomly with the underlying image. The randomization makes the automatic removal of the watermark difficult even though the algorithm is known publicly but the key to the random sequence generator. The experiments demonstrate that the watermarked images have pleasant visual effect and strong robustness. The watermarking system can be used in copyright notification and protection.

  7. Enhancing perceptual and attentional skills requires common demands between the action video games and transfer tasks.

    PubMed

    Oei, Adam C; Patterson, Michael D

    2015-01-01

    Despite increasing evidence that shows action video game play improves perceptual and cognitive skills, the mechanisms of transfer are not well-understood. In line with previous work, we suggest that transfer is dependent upon common demands between the game and transfer task. In the current study, participants played one of four action games with varying speed, visual, and attentional demands for 20 h. We examined whether training enhanced performance for attentional blink, selective attention, attending to multiple items, visual search and auditory detection. Non-gamers who played the game (Modern Combat) with the highest demands showed transfer to tasks of attentional blink and attending to multiple items. The game (MGS Touch) with fewer attentional demands also decreased attentional blink, but to a lesser degree. Other games failed to show transfer, despite having many action game characteristics but at a reduced intensity. The results support the common demands hypothesis.

  8. Enhancing perceptual and attentional skills requires common demands between the action video games and transfer tasks

    PubMed Central

    Oei, Adam C.; Patterson, Michael D.

    2015-01-01

    Despite increasing evidence that shows action video game play improves perceptual and cognitive skills, the mechanisms of transfer are not well-understood. In line with previous work, we suggest that transfer is dependent upon common demands between the game and transfer task. In the current study, participants played one of four action games with varying speed, visual, and attentional demands for 20 h. We examined whether training enhanced performance for attentional blink, selective attention, attending to multiple items, visual search and auditory detection. Non-gamers who played the game (Modern Combat) with the highest demands showed transfer to tasks of attentional blink and attending to multiple items. The game (MGS Touch) with fewer attentional demands also decreased attentional blink, but to a lesser degree. Other games failed to show transfer, despite having many action game characteristics but at a reduced intensity. The results support the common demands hypothesis. PMID:25713551

  9. Aging does not affect brain patterns of repetition effects associated with perceptual priming of novel objects.

    PubMed

    Soldan, Anja; Gazes, Yunglin; Hilton, H John; Stern, Yaakov

    2008-10-01

    This study examined how aging affects the spatial patterns of repetition effects associated with perceptual priming of unfamiliar visual objects. Healthy young (n = 14) and elderly adults (n = 13) viewed four repetitions of structurally possible and impossible figures while being scanned with blood oxygenation level-dependent functional magnetic resonance imaging. Although explicit recognition memory for the figures was reduced in the elder subjects, repetition priming did not differ across the two age groups. Using multivariate linear modeling, we found that the spatial networks of regions that demonstrated repetition-related increases and decreases in activity were identical in both age groups, although there was a trend for smaller magnitude repetition effects in these networks in the elder adults for objects that had been repeated thrice. Furthermore, repetition-related reductions in activity in the left inferior frontal cortex for possible objects correlated with repetition-related facilitation in reaction time across both young and elder subjects. Repetition-related increases of an initially negative response were observed for both object types in both age groups in parts of the default network, suggesting that less attention was required for processing repeated stimuli. These findings extend prior studies using verbal and semantic picture priming tasks and support the view that perceptual repetition priming remains intact in later adulthood because the same spatial networks of regions continue to show repetition-related neural plasticity across the adult life span.

  10. A data set for evaluating the performance of multi-class multi-object video tracking

    NASA Astrophysics Data System (ADS)

    Chakraborty, Avishek; Stamatescu, Victor; Wong, Sebastien C.; Wigley, Grant; Kearney, David

    2017-05-01

    One of the challenges in evaluating multi-object video detection, tracking and classification systems is having publically available data sets with which to compare different systems. However, the measures of performance for tracking and classification are different. Data sets that are suitable for evaluating tracking systems may not be appropriate for classification. Tracking video data sets typically only have ground truth track IDs, while classification video data sets only have ground truth class-label IDs. The former identifies the same object over multiple frames, while the latter identifies the type of object in individual frames. This paper describes an advancement of the ground truth meta-data for the DARPA Neovision2 Tower data set to allow both the evaluation of tracking and classification. The ground truth data sets presented in this paper contain unique object IDs across 5 different classes of object (Car, Bus, Truck, Person, Cyclist) for 24 videos of 871 image frames each. In addition to the object IDs and class labels, the ground truth data also contains the original bounding box coordinates together with new bounding boxes in instances where un-annotated objects were present. The unique IDs are maintained during occlusions between multiple objects or when objects re-enter the field of view. This will provide: a solid foundation for evaluating the performance of multi-object tracking of different types of objects, a straightforward comparison of tracking system performance using the standard Multi Object Tracking (MOT) framework, and classification performance using the Neovision2 metrics. These data have been hosted publically.

  11. Perceptual Discrimination of Basic Object Features Is Not Facilitated When Priming Stimuli Are Prevented From Reaching Awareness by Means of Visual Masking

    PubMed Central

    Peel, Hayden J.; Sperandio, Irene; Laycock, Robin; Chouinard, Philippe A.

    2018-01-01

    Our understanding of how form, orientation and size are processed within and outside of awareness is limited and requires further investigation. Therefore, we investigated whether or not the visual discrimination of basic object features can be influenced by subliminal processing of stimuli presented beforehand. Visual masking was used to render stimuli perceptually invisible. Three experiments examined if visible and invisible primes could facilitate the subsequent feature discrimination of visible targets. The experiments differed in the kind of perceptual discrimination that participants had to make. Namely, participants were asked to discriminate visual stimuli on the basis of their form, orientation, or size. In all three experiments, we demonstrated reliable priming effects when the primes were visible but not when the primes were made invisible. Our findings underscore the importance of conscious awareness in facilitating the perceptual discrimination of basic object features. PMID:29725292

  12. Perceptual Discrimination of Basic Object Features Is Not Facilitated When Priming Stimuli Are Prevented From Reaching Awareness by Means of Visual Masking.

    PubMed

    Peel, Hayden J; Sperandio, Irene; Laycock, Robin; Chouinard, Philippe A

    2018-01-01

    Our understanding of how form, orientation and size are processed within and outside of awareness is limited and requires further investigation. Therefore, we investigated whether or not the visual discrimination of basic object features can be influenced by subliminal processing of stimuli presented beforehand. Visual masking was used to render stimuli perceptually invisible. Three experiments examined if visible and invisible primes could facilitate the subsequent feature discrimination of visible targets. The experiments differed in the kind of perceptual discrimination that participants had to make. Namely, participants were asked to discriminate visual stimuli on the basis of their form, orientation, or size. In all three experiments, we demonstrated reliable priming effects when the primes were visible but not when the primes were made invisible. Our findings underscore the importance of conscious awareness in facilitating the perceptual discrimination of basic object features.

  13. Video quality assessment using a statistical model of human visual speed perception.

    PubMed

    Wang, Zhou; Li, Qiang

    2007-12-01

    Motion is one of the most important types of information contained in natural video, but direct use of motion information in the design of video quality assessment algorithms has not been deeply investigated. Here we propose to incorporate a recent model of human visual speed perception [Nat. Neurosci. 9, 578 (2006)] and model visual perception in an information communication framework. This allows us to estimate both the motion information content and the perceptual uncertainty in video signals. Improved video quality assessment algorithms are obtained by incorporating the model as spatiotemporal weighting factors, where the weight increases with the information content and decreases with the perceptual uncertainty. Consistent improvement over existing video quality assessment algorithms is observed in our validation with the video quality experts group Phase I test data set.

  14. Perceptual deficits of object identification: apperceptive agnosia.

    PubMed

    Milner, A David; Cavina-Pratesi, Cristiana

    2018-01-01

    It is argued here that apperceptive object agnosia (generally now known as visual form agnosia) is in reality not a kind of agnosia, but rather a form of "imperception" (to use the term coined by Hughlings Jackson). We further argue that its proximate cause is a bilateral loss (or functional loss) of the visual form processing systems embodied in the human lateral occipital cortex (area LO). According to the dual-system model of cortical visual processing elaborated by Milner and Goodale (2006), area LO constitutes a crucial component of the ventral stream, and indeed is essential for providing the figural qualities inherent in our normal visual perception of the world. According to this account, the functional loss of area LO would leave only spared visual areas within the occipito-parietal dorsal stream - dedicated to the control of visually-guided actions - potentially able to provide some aspects of visual shape processing in patients with apperceptive agnosia. We review the relevant evidence from such individuals, concentrating particularly on the well-researched patient D.F. We conclude that studies of this kind can provide useful pointers to an understanding of the processing characteristics of parietal-lobe visual mechanisms and their interactions with occipitotemporal perceptual systems in the guidance of action. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Comparison of Objective Measures for Predicting Perceptual Balance and Visual Aesthetic Preference

    PubMed Central

    Hübner, Ronald; Fillinger, Martin G.

    2016-01-01

    The aesthetic appreciation of a picture largely depends on the perceptual balance of its elements. The underlying mental mechanisms of this relation, however, are still poorly understood. For investigating these mechanisms, objective measures of balance have been constructed, such as the Assessment of Preference for Balance (APB) score of Wilson and Chatterjee (2005). In the present study we examined the APB measure and compared it to an alternative measure (DCM; Deviation of the Center of “Mass”) that represents the center of perceptual “mass” in a picture and its deviation from the geometric center. Additionally, we applied measures of homogeneity and of mirror symmetry. In a first experiment participants had to rate the balance and symmetry of simple pictures, whereas in a second experiment different participants rated their preference (liking) for these pictures. In a third experiment participants rated the balance as well as the preference of new pictures. Altogether, the results show that DCM scores accounted better for balance ratings than APB scores, whereas the opposite held with respect to preference. Detailed analyses revealed that these results were due to the fact that aesthetic preference does not only depend on balance but also on homogeneity, and that the APB measure takes this feature into account. PMID:27014143

  16. Statistical analysis of subjective preferences for video enhancement

    NASA Astrophysics Data System (ADS)

    Woods, Russell L.; Satgunam, PremNandhini; Bronstad, P. Matthew; Peli, Eli

    2010-02-01

    Measuring preferences for moving video quality is harder than for static images due to the fleeting and variable nature of moving video. Subjective preferences for image quality can be tested by observers indicating their preference for one image over another. Such pairwise comparisons can be analyzed using Thurstone scaling (Farrell, 1999). Thurstone (1927) scaling is widely used in applied psychology, marketing, food tasting and advertising research. Thurstone analysis constructs an arbitrary perceptual scale for the items that are compared (e.g. enhancement levels). However, Thurstone scaling does not determine the statistical significance of the differences between items on that perceptual scale. Recent papers have provided inferential statistical methods that produce an outcome similar to Thurstone scaling (Lipovetsky and Conklin, 2004). Here, we demonstrate that binary logistic regression can analyze preferences for enhanced video.

  17. Mission planning optimization of video satellite for ground multi-object staring imaging

    NASA Astrophysics Data System (ADS)

    Cui, Kaikai; Xiang, Junhua; Zhang, Yulin

    2018-03-01

    This study investigates the emergency scheduling problem of ground multi-object staring imaging for a single video satellite. In the proposed mission scenario, the ground objects require a specified duration of staring imaging by the video satellite. The planning horizon is not long, i.e., it is usually shorter than one orbit period. A binary decision variable and the imaging order are used as the design variables, and the total observation revenue combined with the influence of the total attitude maneuvering time is regarded as the optimization objective. Based on the constraints of the observation time windows, satellite attitude adjustment time, and satellite maneuverability, a constraint satisfaction mission planning model is established for ground object staring imaging by a single video satellite. Further, a modified ant colony optimization algorithm with tabu lists (Tabu-ACO) is designed to solve this problem. The proposed algorithm can fully exploit the intelligence and local search ability of ACO. Based on full consideration of the mission characteristics, the design of the tabu lists can reduce the search range of ACO and improve the algorithm efficiency significantly. The simulation results show that the proposed algorithm outperforms the conventional algorithm in terms of optimization performance, and it can obtain satisfactory scheduling results for the mission planning problem.

  18. Template-Based 3D Reconstruction of Non-rigid Deformable Object from Monocular Video

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Peng, Xiaodong; Zhou, Wugen; Liu, Bo; Gerndt, Andreas

    2018-06-01

    In this paper, we propose a template-based 3D surface reconstruction system of non-rigid deformable objects from monocular video sequence. Firstly, we generate a semi-dense template of the target object with structure from motion method using a subsequence video. This video can be captured by rigid moving camera orienting the static target object or by a static camera observing the rigid moving target object. Then, with the reference template mesh as input and based on the framework of classical template-based methods, we solve an energy minimization problem to get the correspondence between the template and every frame to get the time-varying mesh to present the deformation of objects. The energy terms combine photometric cost, temporal and spatial smoothness cost as well as as-rigid-as-possible cost which can enable elastic deformation. In this paper, an easy and controllable solution to generate the semi-dense template for complex objects is presented. Besides, we use an effective iterative Schur based linear solver for the energy minimization problem. The experimental evaluation presents qualitative deformation objects reconstruction results with real sequences. Compare against the results with other templates as input, the reconstructions based on our template have more accurate and detailed results for certain regions. The experimental results show that the linear solver we used performs better efficiency compared to traditional conjugate gradient based solver.

  19. Training of perceptual-cognitive skills in offside decision making.

    PubMed

    Catteeuw, Peter; Gilis, Bart; Jaspers, Arne; Wagemans, Johan; Helsen, Werner

    2010-12-01

    This study investigates the effect of two off-field training formats to improve offside decision making. One group trained with video simulations and another with computer animations. Feedback after every offside situation allowed assistant referees to compensate for the consequences of the flash-lag effect and to improve their decision-making accuracy. First, response accuracy improved and flag errors decreased for both training groups implying that training interventions with feedback taught assistant referees to better deal with the flash-lag effect. Second, the results demonstrated no effect of format, although assistant referees rated video simulations higher for fidelity than computer animations. This implies that a cognitive correction to a perceptual effect can be learned also when the format does not correspond closely with the original perceptual situation. Off-field offside decision-making training should be considered as part of training because it is a considerable help to gain more experience and to improve overall decision-making performance.

  20. A new taxonomy for perceptual filling-in

    PubMed Central

    Weil, Rimona S.; Rees, Geraint

    2011-01-01

    Perceptual filling-in occurs when structures of the visual system interpolate information across regions of visual space where that information is physically absent. It is a ubiquitous and heterogeneous phenomenon, which takes place in different forms almost every time we view the world around us, such as when objects are occluded by other objects or when they fall behind the blind spot. Yet, to date, there is no clear framework for relating these various forms of perceptual filling-in. Similarly, whether these and other forms of filling-in share common mechanisms is not yet known. Here we present a new taxonomy to categorize the different forms of perceptual filling-in. We then examine experimental evidence for the processes involved in each type of perceptual filling-in. Finally, we use established theories of general surface perception to show how contextualizing filling-in using this framework broadens our understanding of the possible shared mechanisms underlying perceptual filling-in. In particular, we consider the importance of the presence of boundaries in determining the phenomenal experience of perceptual filling-in. PMID:21059374

  1. Combining 3D structure of real video and synthetic objects

    NASA Astrophysics Data System (ADS)

    Kim, Man-Bae; Song, Mun-Sup; Kim, Do-Kyoon

    1998-04-01

    This paper presents a new approach of combining real video and synthetic objects. The purpose of this work is to use the proposed technology in the fields of advanced animation, virtual reality, games, and so forth. Computer graphics has been used in the fields previously mentioned. Recently, some applications have added real video to graphic scenes for the purpose of augmenting the realism that the computer graphics lacks in. This approach called augmented or mixed reality can produce more realistic environment that the entire use of computer graphics. Our approach differs from the virtual reality and augmented reality in the manner that computer- generated graphic objects are combined to 3D structure extracted from monocular image sequences. The extraction of the 3D structure requires the estimation of 3D depth followed by the construction of a height map. Graphic objects are then combined to the height map. The realization of our proposed approach is carried out in the following steps: (1) We derive 3D structure from test image sequences. The extraction of the 3D structure requires the estimation of depth and the construction of a height map. Due to the contents of the test sequence, the height map represents the 3D structure. (2) The height map is modeled by Delaunay triangulation or Bezier surface and each planar surface is texture-mapped. (3) Finally, graphic objects are combined to the height map. Because 3D structure of the height map is already known, Step (3) is easily manipulated. Following this procedure, we produced an animation video demonstrating the combination of the 3D structure and graphic models. Users can navigate the realistic 3D world whose associated image is rendered on the display monitor.

  2. Improving human object recognition performance using video enhancement techniques

    NASA Astrophysics Data System (ADS)

    Whitman, Lucy S.; Lewis, Colin; Oakley, John P.

    2004-12-01

    Atmospheric scattering causes significant degradation in the quality of video images, particularly when imaging over long distances. The principle problem is the reduction in contrast due to scattered light. It is known that when the scattering particles are not too large compared with the imaging wavelength (i.e. Mie scattering) then high spatial resolution information may be contained within a low-contrast image. Unfortunately this information is not easily perceived by a human observer, particularly when using a standard video monitor. A secondary problem is the difficulty of achieving a sharp focus since automatic focus techniques tend to fail in such conditions. Recently several commercial colour video processing systems have become available. These systems use various techniques to improve image quality in low contrast conditions whilst retaining colour content. These systems produce improvements in subjective image quality in some situations, particularly in conditions of haze and light fog. There is also some evidence that video enhancement leads to improved ATR performance when used as a pre-processing stage. Psychological literature indicates that low contrast levels generally lead to a reduction in the performance of human observers in carrying out simple visual tasks. The aim of this paper is to present the results of an empirical study on object recognition in adverse viewing conditions. The chosen visual task was vehicle number plate recognition at long ranges (500 m and beyond). Two different commercial video enhancement systems are evaluated using the same protocol. The results show an increase in effective range with some differences between the different enhancement systems.

  3. A new user-assisted segmentation and tracking technique for an object-based video editing system

    NASA Astrophysics Data System (ADS)

    Yu, Hong Y.; Hong, Sung-Hoon; Lee, Mike M.; Choi, Jae-Gark

    2004-03-01

    This paper presents a semi-automatic segmentation method which can be used to generate video object plane (VOP) for object based coding scheme and multimedia authoring environment. Semi-automatic segmentation can be considered as a user-assisted segmentation technique. A user can initially mark objects of interest around the object boundaries and then the user-guided and selected objects are continuously separated from the unselected areas through time evolution in the image sequences. The proposed segmentation method consists of two processing steps: partially manual intra-frame segmentation and fully automatic inter-frame segmentation. The intra-frame segmentation incorporates user-assistance to define the meaningful complete visual object of interest to be segmentation and decides precise object boundary. The inter-frame segmentation involves boundary and region tracking to obtain temporal coherence of moving object based on the object boundary information of previous frame. The proposed method shows stable efficient results that could be suitable for many digital video applications such as multimedia contents authoring, content based coding and indexing. Based on these results, we have developed objects based video editing system with several convenient editing functions.

  4. Objective Video Quality Assessment Based on Machine Learning for Underwater Scientific Applications

    PubMed Central

    Moreno-Roldán, José-Miguel; Luque-Nieto, Miguel-Ángel; Poncela, Javier; Otero, Pablo

    2017-01-01

    Video services are meant to be a fundamental tool in the development of oceanic research. The current technology for underwater networks (UWNs) imposes strong constraints in the transmission capacity since only a severely limited bitrate is available. However, previous studies have shown that the quality of experience (QoE) is enough for ocean scientists to consider the service useful, although the perceived quality can change significantly for small ranges of variation of video parameters. In this context, objective video quality assessment (VQA) methods become essential in network planning and real time quality adaptation fields. This paper presents two specialized models for objective VQA, designed to match the special requirements of UWNs. The models are built upon machine learning techniques and trained with actual user data gathered from subjective tests. Our performance analysis shows how both of them can successfully estimate quality as a mean opinion score (MOS) value and, for the second model, even compute a distribution function for user scores. PMID:28333123

  5. Studying real-world perceptual expertise

    PubMed Central

    Shen, Jianhong; Mack, Michael L.; Palmeri, Thomas J.

    2014-01-01

    Significant insights into visual cognition have come from studying real-world perceptual expertise. Many have previously reviewed empirical findings and theoretical developments from this work. Here we instead provide a brief perspective on approaches, considerations, and challenges to studying real-world perceptual expertise. We discuss factors like choosing to use real-world versus artificial object domains of expertise, selecting a target domain of real-world perceptual expertise, recruiting experts, evaluating their level of expertise, and experimentally testing experts in the lab and online. Throughout our perspective, we highlight expert birding (also called birdwatching) as an example, as it has been used as a target domain for over two decades in the perceptual expertise literature. PMID:25147533

  6. Moving object detection in top-view aerial videos improved by image stacking

    NASA Astrophysics Data System (ADS)

    Teutsch, Michael; Krüger, Wolfgang; Beyerer, Jürgen

    2017-08-01

    Image stacking is a well-known method that is used to improve the quality of images in video data. A set of consecutive images is aligned by applying image registration and warping. In the resulting image stack, each pixel has redundant information about its intensity value. This redundant information can be used to suppress image noise, resharpen blurry images, or even enhance the spatial image resolution as done in super-resolution. Small moving objects in the videos usually get blurred or distorted by image stacking and thus need to be handled explicitly. We use image stacking in an innovative way: image registration is applied to small moving objects only, and image warping blurs the stationary background that surrounds the moving objects. Our video data are coming from a small fixed-wing unmanned aerial vehicle (UAV) that acquires top-view gray-value images of urban scenes. Moving objects are mainly cars but also other vehicles such as motorcycles. The resulting images, after applying our proposed image stacking approach, are used to improve baseline algorithms for vehicle detection and segmentation. We improve precision and recall by up to 0.011, which corresponds to a reduction of the number of false positive and false negative detections by more than 3 per second. Furthermore, we show how our proposed image stacking approach can be implemented efficiently.

  7. Detecting and Analyzing Multiple Moving Objects in Crowded Environments with Coherent Motion Regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheriyadat, Anil M.

    Understanding the world around us from large-scale video data requires vision systems that can perform automatic interpretation. While human eyes can unconsciously perceive independent objects in crowded scenes and other challenging operating environments, automated systems have difficulty detecting, counting, and understanding their behavior in similar scenes. Computer scientists at ORNL have a developed a technology termed as "Coherent Motion Region Detection" that invloves identifying multiple indepedent moving objects in crowded scenes by aggregating low-level motion cues extracted from moving objects. Humans and other species exploit such low-level motion cues seamlessely to perform perceptual grouping for visual understanding. The algorithm detectsmore » and tracks feature points on moving objects resulting in partial trajectories that span coherent 3D region in the space-time volume defined by the video. In the case of multi-object motion, many possible coherent motion regions can be constructed around the set of trajectories. The unique approach in the algorithm is to identify all possible coherent motion regions, then extract a subset of motion regions based on an innovative measure to automatically locate moving objects in crowded environments.The software reports snapshot of the object, count, and derived statistics ( count over time) from input video streams. The software can directly process videos streamed over the internet or directly from a hardware device (camera).« less

  8. Perceptual dimensions differentiate emotions.

    PubMed

    Cavanaugh, Lisa A; MacInnis, Deborah J; Weiss, Allen M

    2015-08-26

    Individuals often describe objects in their world in terms of perceptual dimensions that span a variety of modalities; the visual (e.g., brightness: dark-bright), the auditory (e.g., loudness: quiet-loud), the gustatory (e.g., taste: sour-sweet), the tactile (e.g., hardness: soft vs. hard) and the kinaesthetic (e.g., speed: slow-fast). We ask whether individuals use perceptual dimensions to differentiate emotions from one another. Participants in two studies (one where respondents reported on abstract emotion concepts and a second where they reported on specific emotion episodes) rated the extent to which features anchoring 29 perceptual dimensions (e.g., temperature, texture and taste) are associated with 8 emotions (anger, fear, sadness, guilt, contentment, gratitude, pride and excitement). Results revealed that in both studies perceptual dimensions differentiate positive from negative emotions and high arousal from low arousal emotions. They also differentiate among emotions that are similar in arousal and valence (e.g., high arousal negative emotions such as anger and fear). Specific features that anchor particular perceptual dimensions (e.g., hot vs. cold) are also differentially associated with emotions.

  9. Video Salient Object Detection via Fully Convolutional Networks.

    PubMed

    Wang, Wenguan; Shen, Jianbing; Shao, Ling

    This paper proposes a deep learning model to efficiently detect salient regions in videos. It addresses two important issues: 1) deep video saliency model training with the absence of sufficiently large and pixel-wise annotated video data and 2) fast video saliency training and detection. The proposed deep video saliency network consists of two modules, for capturing the spatial and temporal saliency information, respectively. The dynamic saliency model, explicitly incorporating saliency estimates from the static saliency model, directly produces spatiotemporal saliency inference without time-consuming optical flow computation. We further propose a novel data augmentation technique that simulates video training data from existing annotated image data sets, which enables our network to learn diverse saliency information and prevents overfitting with the limited number of training videos. Leveraging our synthetic video data (150K video sequences) and real videos, our deep video saliency model successfully learns both spatial and temporal saliency cues, thus producing accurate spatiotemporal saliency estimate. We advance the state-of-the-art on the densely annotated video segmentation data set (MAE of .06) and the Freiburg-Berkeley Motion Segmentation data set (MAE of .07), and do so with much improved speed (2 fps with all steps).This paper proposes a deep learning model to efficiently detect salient regions in videos. It addresses two important issues: 1) deep video saliency model training with the absence of sufficiently large and pixel-wise annotated video data and 2) fast video saliency training and detection. The proposed deep video saliency network consists of two modules, for capturing the spatial and temporal saliency information, respectively. The dynamic saliency model, explicitly incorporating saliency estimates from the static saliency model, directly produces spatiotemporal saliency inference without time-consuming optical flow computation. We further

  10. Perceptual inference.

    PubMed

    Aggelopoulos, Nikolaos C

    2015-08-01

    Perceptual inference refers to the ability to infer sensory stimuli from predictions that result from internal neural representations built through prior experience. Methods of Bayesian statistical inference and decision theory model cognition adequately by using error sensing either in guiding action or in "generative" models that predict the sensory information. In this framework, perception can be seen as a process qualitatively distinct from sensation, a process of information evaluation using previously acquired and stored representations (memories) that is guided by sensory feedback. The stored representations can be utilised as internal models of sensory stimuli enabling long term associations, for example in operant conditioning. Evidence for perceptual inference is contributed by such phenomena as the cortical co-localisation of object perception with object memory, the response invariance in the responses of some neurons to variations in the stimulus, as well as from situations in which perception can be dissociated from sensation. In the context of perceptual inference, sensory areas of the cerebral cortex that have been facilitated by a priming signal may be regarded as comparators in a closed feedback loop, similar to the better known motor reflexes in the sensorimotor system. The adult cerebral cortex can be regarded as similar to a servomechanism, in using sensory feedback to correct internal models, producing predictions of the outside world on the basis of past experience. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Backwards compatible high dynamic range video compression

    NASA Astrophysics Data System (ADS)

    Dolzhenko, Vladimir; Chesnokov, Vyacheslav; Edirisinghe, Eran A.

    2014-02-01

    This paper presents a two layer CODEC architecture for high dynamic range video compression. The base layer contains the tone mapped video stream encoded with 8 bits per component which can be decoded using conventional equipment. The base layer content is optimized for rendering on low dynamic range displays. The enhancement layer contains the image difference, in perceptually uniform color space, between the result of inverse tone mapped base layer content and the original video stream. Prediction of the high dynamic range content reduces the redundancy in the transmitted data while still preserves highlights and out-of-gamut colors. Perceptually uniform colorspace enables using standard ratedistortion optimization algorithms. We present techniques for efficient implementation and encoding of non-uniform tone mapping operators with low overhead in terms of bitstream size and number of operations. The transform representation is based on human vision system model and suitable for global and local tone mapping operators. The compression techniques include predicting the transform parameters from previously decoded frames and from already decoded data for current frame. Different video compression techniques are compared: backwards compatible and non-backwards compatible using AVC and HEVC codecs.

  12. Study of moving object detecting and tracking algorithm for video surveillance system

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Zhang, Rongfu

    2010-10-01

    This paper describes a specific process of moving target detecting and tracking in the video surveillance.Obtain high-quality background is the key to achieving differential target detecting in the video surveillance.The paper is based on a block segmentation method to build clear background,and using the method of background difference to detecing moving target,after a series of treatment we can be extracted the more comprehensive object from original image,then using the smallest bounding rectangle to locate the object.In the video surveillance system, the delay of camera and other reasons lead to tracking lag,the model of Kalman filter based on template matching was proposed,using deduced and estimated capacity of Kalman,the center of smallest bounding rectangle for predictive value,predicted the position in the next moment may appare,followed by template matching in the region as the center of this position,by calculate the cross-correlation similarity of current image and reference image,can determine the best matching center.As narrowed the scope of searching,thereby reduced the searching time,so there be achieve fast-tracking.

  13. Perceptual organization and visual attention.

    PubMed

    Kimchi, Ruth

    2009-01-01

    Perceptual organization--the processes structuring visual information into coherent units--and visual attention--the processes by which some visual information in a scene is selected--are crucial for the perception of our visual environment and to visuomotor behavior. Recent research points to important relations between attentional and organizational processes. Several studies demonstrated that perceptual organization constrains attentional selectivity, and other studies suggest that attention can also constrain perceptual organization. In this chapter I focus on two aspects of the relationship between perceptual organization and attention. The first addresses the question of whether or not perceptual organization can take place without attention. I present findings demonstrating that some forms of grouping and figure-ground segmentation can occur without attention, whereas others require controlled attentional processing, depending on the processes involved and the conditions prevailing for each process. These findings challenge the traditional view, which assumes that perceptual organization is a unitary entity that operates preattentively. The second issue addresses the question of whether perceptual organization can affect the automatic deployment of attention. I present findings showing that the mere organization of some elements in the visual field by Gestalt factors into a coherent perceptual unit (an "object"), with no abrupt onset or any other unique transient, can capture attention automatically in a stimulus-driven manner. Taken together, the findings discussed in this chapter demonstrate the multifaceted, interactive relations between perceptual organization and visual attention.

  14. The relative importance of different perceptual-cognitive skills during anticipation.

    PubMed

    North, Jamie S; Hope, Ed; Williams, A Mark

    2016-10-01

    We examined whether anticipation is underpinned by perceiving structured patterns or postural cues and whether the relative importance of these processes varied as a function of task constraints. Skilled and less-skilled soccer players completed anticipation paradigms in video-film and point light display (PLD) format. Skilled players anticipated more accurately regardless of display condition, indicating that both perception of structured patterns between players and postural cues contribute to anticipation. However, the Skill×Display interaction showed skilled players' advantage was enhanced in the video-film condition, suggesting that they make better use of postural cues when available during anticipation. We also examined anticipation as a function of proximity to the ball. When participants were near the ball, anticipation was more accurate for video-film than PLD clips, whereas when the ball was far away there was no difference between viewing conditions. Perceiving advance postural cues appears more important than structured patterns when the ball is closer to the observer, whereas the reverse is true when the ball is far away. Various perceptual-cognitive skills contribute to anticipation with the relative importance of perceiving structured patterns and advance postural cues being determined by task constraints and the availability of perceptual information. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table.

    PubMed

    Kim, Seung-Cheol; Dong, Xiao-Bin; Kwon, Min-Woo; Kim, Eun-Soo

    2013-05-06

    A novel approach for fast generation of video holograms of three-dimensional (3-D) moving objects using a motion compensation-based novel-look-up-table (MC-N-LUT) method is proposed. Motion compensation has been widely employed in compression of conventional 2-D video data because of its ability to exploit high temporal correlation between successive video frames. Here, this concept of motion-compensation is firstly applied to the N-LUT based on its inherent property of shift-invariance. That is, motion vectors of 3-D moving objects are extracted between the two consecutive video frames, and with them motions of the 3-D objects at each frame are compensated. Then, through this process, 3-D object data to be calculated for its video holograms are massively reduced, which results in a dramatic increase of the computational speed of the proposed method. Experimental results with three kinds of 3-D video scenarios reveal that the average number of calculated object points and the average calculation time for one object point of the proposed method, have found to be reduced down to 86.95%, 86.53% and 34.99%, 32.30%, respectively compared to those of the conventional N-LUT and temporal redundancy-based N-LUT (TR-N-LUT) methods.

  16. Training-Induced Recovery of Low-Level Vision Followed by Mid-Level Perceptual Improvements in Developmental Object and Face Agnosia

    ERIC Educational Resources Information Center

    Lev, Maria; Gilaie-Dotan, Sharon; Gotthilf-Nezri, Dana; Yehezkel, Oren; Brooks, Joseph L.; Perry, Anat; Bentin, Shlomo; Bonneh, Yoram; Polat, Uri

    2015-01-01

    Long-term deprivation of normal visual inputs can cause perceptual impairments at various levels of visual function, from basic visual acuity deficits, through mid-level deficits such as contour integration and motion coherence, to high-level face and object agnosia. Yet it is unclear whether training during adulthood, at a post-developmental…

  17. Mid-level perceptual features contain early cues to animacy.

    PubMed

    Long, Bria; Störmer, Viola S; Alvarez, George A

    2017-06-01

    While substantial work has focused on how the visual system achieves basic-level recognition, less work has asked about how it supports large-scale distinctions between objects, such as animacy and real-world size. Previous work has shown that these dimensions are reflected in our neural object representations (Konkle & Caramazza, 2013), and that objects of different real-world sizes have different mid-level perceptual features (Long, Konkle, Cohen, & Alvarez, 2016). Here, we test the hypothesis that animates and manmade objects also differ in mid-level perceptual features. To do so, we generated synthetic images of animals and objects that preserve some texture and form information ("texforms"), but are not identifiable at the basic level. We used visual search efficiency as an index of perceptual similarity, as search is slower when targets are perceptually similar to distractors. Across three experiments, we find that observers can find animals faster among objects than among other animals, and vice versa, and that these results hold when stimuli are reduced to unrecognizable texforms. Electrophysiological evidence revealed that this mixed-animacy search advantage emerges during early stages of target individuation, and not during later stages associated with semantic processing. Lastly, we find that perceived curvature explains part of the mixed-animacy search advantage and that observers use perceived curvature to classify texforms as animate/inanimate. Taken together, these findings suggest that mid-level perceptual features, including curvature, contain cues to whether an object may be animate versus manmade. We propose that the visual system capitalizes on these early cues to facilitate object detection, recognition, and classification.

  18. Video stimuli reduce object-directed imitation accuracy: a novel two-person motion-tracking approach.

    PubMed

    Reader, Arran T; Holmes, Nicholas P

    2015-01-01

    Imitation is an important form of social behavior, and research has aimed to discover and explain the neural and kinematic aspects of imitation. However, much of this research has featured single participants imitating in response to pre-recorded video stimuli. This is in spite of findings that show reduced neural activation to video vs. real life movement stimuli, particularly in the motor cortex. We investigated the degree to which video stimuli may affect the imitation process using a novel motion tracking paradigm with high spatial and temporal resolution. We recorded 14 positions on the hands, arms, and heads of two individuals in an imitation experiment. One individual freely moved within given parameters (moving balls across a series of pegs) and a second participant imitated. This task was performed with either simple (one ball) or complex (three balls) movement difficulty, and either face-to-face or via a live video projection. After an exploratory analysis, three dependent variables were chosen for examination: 3D grip position, joint angles in the arm, and grip aperture. A cross-correlation and multivariate analysis revealed that object-directed imitation task accuracy (as represented by grip position) was reduced in video compared to face-to-face feedback, and in complex compared to simple difficulty. This was most prevalent in the left-right and forward-back motions, relevant to the imitator sitting face-to-face with the actor or with a live projected video of the same actor. The results suggest that for tasks which require object-directed imitation, video stimuli may not be an ecologically valid way to present task materials. However, no similar effects were found in the joint angle and grip aperture variables, suggesting that there are limits to the influence of video stimuli on imitation. The implications of these results are discussed with regards to previous findings, and with suggestions for future experimentation.

  19. Interference from familiar natural distractors is not eliminated by high perceptual load.

    PubMed

    He, Chunhong; Chen, Antao

    2010-05-01

    A crucial prediction of perceptual load theory is that high perceptual load can eliminate interference from distractors. However, Lavie et al. (Psychol Sci 14:510-515, 2003) found that high perceptual load did not eliminate interference when the distractor was a face. The current experiments examined the interaction between familiarity and perceptual load in modulating interference in a name search task. The data reveal that high perceptual load eliminated the interference effect for unfamiliar distractors that were faces or objects, but did not eliminate the interference for familiar distractors that were faces or objects. Based on these results, we proposed that the processing of familiar and natural stimuli may be immune to the effect of perceptual load.

  20. Perceptual integration without conscious access

    PubMed Central

    van Leeuwen, Jonathan; Olivers, Christian N. L.

    2017-01-01

    The visual system has the remarkable ability to integrate fragmentary visual input into a perceptually organized collection of surfaces and objects, a process we refer to as perceptual integration. Despite a long tradition of perception research, it is not known whether access to consciousness is required to complete perceptual integration. To investigate this question, we manipulated access to consciousness using the attentional blink. We show that, behaviorally, the attentional blink impairs conscious decisions about the presence of integrated surface structure from fragmented input. However, despite conscious access being impaired, the ability to decode the presence of integrated percepts remains intact, as shown through multivariate classification analyses of electroencephalogram (EEG) data. In contrast, when disrupting perception through masking, decisions about integrated percepts and decoding of integrated percepts are impaired in tandem, while leaving feedforward representations intact. Together, these data show that access consciousness and perceptual integration can be dissociated. PMID:28325878

  1. The Cleft Care UK study. Part 4: perceptual speech outcomes

    PubMed Central

    Sell, D; Mildinhall, S; Albery, L; Wills, A K; Sandy, J R; Ness, A R

    2015-01-01

    Structured Abstract Objectives To describe the perceptual speech outcomes from the Cleft Care UK (CCUK) study and compare them to the 1998 Clinical Standards Advisory Group (CSAG) audit. Setting and sample population A cross-sectional study of 248 children born with complete unilateral cleft lip and palate, between 1 April 2005 and 31 March 2007 who underwent speech assessment. Materials and methods Centre-based specialist speech and language therapists (SLT) took speech audio–video recordings according to nationally agreed guidelines. Two independent listeners undertook the perceptual analysis using the CAPS-A Audit tool. Intra- and inter-rater reliability were tested. Results For each speech parameter of intelligibility/distinctiveness, hypernasality, palatal/palatalization, backed to velar/uvular, glottal, weak and nasalized consonants, and nasal realizations, there was strong evidence that speech outcomes were better in the CCUK children compared to CSAG children. The parameters which did not show improvement were nasal emission, nasal turbulence, hyponasality and lateral/lateralization. Conclusion These results suggest that centralization of cleft care into high volume centres has resulted in improvements in UK speech outcomes in five-year-olds with unilateral cleft lip and palate. This may be associated with the development of a specialized workforce. Nevertheless, there still remains a group of children with significant difficulties at school entry. PMID:26567854

  2. "Can you see me now?" An objective metric for predicting intelligibility of compressed American Sign Language video

    NASA Astrophysics Data System (ADS)

    Ciaramello, Francis M.; Hemami, Sheila S.

    2007-02-01

    For members of the Deaf Community in the United States, current communication tools include TTY/TTD services, video relay services, and text-based communication. With the growth of cellular technology, mobile sign language conversations are becoming a possibility. Proper coding techniques must be employed to compress American Sign Language (ASL) video for low-rate transmission while maintaining the quality of the conversation. In order to evaluate these techniques, an appropriate quality metric is needed. This paper demonstrates that traditional video quality metrics, such as PSNR, fail to predict subjective intelligibility scores. By considering the unique structure of ASL video, an appropriate objective metric is developed. Face and hand segmentation is performed using skin-color detection techniques. The distortions in the face and hand regions are optimally weighted and pooled across all frames to create an objective intelligibility score for a distorted sequence. The objective intelligibility metric performs significantly better than PSNR in terms of correlation with subjective responses.

  3. Perceptual and conceptual similarities facilitate the generalization of instructed fear.

    PubMed

    Bennett, Marc; Vervoort, Ellen; Boddez, Yannick; Hermans, Dirk; Baeyens, Frank

    2015-09-01

    Learned fear can generalize to neutral events due their perceptual and conceptual similarity with threat relevant stimuli. This study simultaneously examined these forms of generalization to model the expansion of fear in anxiety disorders. First, artificial categories involving sounds, nonsense words and animal-like objects were established. Next, the words from one category were paired with threatening information while the words from the other category were paired with safety information. Lastly, we examined if fear generalized to (i) the conceptually related animal-like objects and (ii) other animal like-objects that were perceptually similar. This was measured using behavioral avoidance, US expectancy ratings and self-reported stimulus valence. Animal-like objects conceptually connected to the aversive words evoked heightened fear. Perceptual variants of these animal-like objects also elicit fear. Future research would benefit from the use of online-US expectancy ratings and physiological measures of fear. Investigating the role of both perceptual and conceptual fear generalization is important to better understand the etiology of anxiety disorders symptoms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Perceptual Calibration for Immersive Display Environments

    PubMed Central

    Ponto, Kevin; Gleicher, Michael; Radwin, Robert G.; Shin, Hyun Joon

    2013-01-01

    The perception of objects, depth, and distance has been repeatedly shown to be divergent between virtual and physical environments. We hypothesize that many of these discrepancies stem from incorrect geometric viewing parameters, specifically that physical measurements of eye position are insufficiently precise to provide proper viewing parameters. In this paper, we introduce a perceptual calibration procedure derived from geometric models. While most research has used geometric models to predict perceptual errors, we instead use these models inversely to determine perceptually correct viewing parameters. We study the advantages of these new psychophysically determined viewing parameters compared to the commonly used measured viewing parameters in an experiment with 20 subjects. The perceptually calibrated viewing parameters for the subjects generally produced new virtual eye positions that were wider and deeper than standard practices would estimate. Our study shows that perceptually calibrated viewing parameters can significantly improve depth acuity, distance estimation, and the perception of shape. PMID:23428454

  5. Does expert perceptual anticipation transfer to a dissimilar domain?

    PubMed

    Müller, Sean; McLaren, Michelle; Appleby, Brendyn; Rosalie, Simon M

    2015-06-01

    The purpose of this experiment was to extend theoretical understanding of transfer of learning by investigating whether expert perceptual anticipation skill transfers to a dissimilar domain. The capability of expert and near-expert rugby players as well as novices to anticipate skill type within rugby (learning sport) was first examined using a temporal occlusion paradigm. Participants watched video footage of an opponent performing rugby skill types that were temporally occluded at different points in the opponent's action and then made a written prediction. Thereafter, the capability of participants to transfer their anticipation skill to predict pitch type in baseball (transfer sport) was examined. Participants watched video footage of a pitcher throwing different pitch types that were temporally occluded and made a written prediction. Results indicated that expert and near-expert rugby players anticipated significantly better than novices across all occlusion conditions. However, none of the skill groups were able to transfer anticipation skill to predict pitch type in baseball. The findings of this paper, along with existing literature, support the theoretical prediction that transfer of perceptual anticipation is expertise dependent and restricted to similar domains. (c) 2015 APA, all rights reserved).

  6. Metacognitive Confidence Increases with, but Does Not Determine, Visual Perceptual Learning.

    PubMed

    Zizlsperger, Leopold; Kümmel, Florian; Haarmeier, Thomas

    2016-01-01

    While perceptual learning increases objective sensitivity, the effects on the constant interaction of the process of perception and its metacognitive evaluation have been rarely investigated. Visual perception has been described as a process of probabilistic inference featuring metacognitive evaluations of choice certainty. For visual motion perception in healthy, naive human subjects here we show that perceptual sensitivity and confidence in it increased with training. The metacognitive sensitivity-estimated from certainty ratings by a bias-free signal detection theoretic approach-in contrast, did not. Concomitant 3Hz transcranial alternating current stimulation (tACS) was applied in compliance with previous findings on effective high-low cross-frequency coupling subserving signal detection. While perceptual accuracy and confidence in it improved with training, there were no statistically significant tACS effects. Neither metacognitive sensitivity in distinguishing between their own correct and incorrect stimulus classifications, nor decision confidence itself determined the subjects' visual perceptual learning. Improvements of objective performance and the metacognitive confidence in it were rather determined by the perceptual sensitivity at the outset of the experiment. Post-decision certainty in visual perceptual learning was neither independent of objective performance, nor requisite for changes in sensitivity, but rather covaried with objective performance. The exact functional role of metacognitive confidence in human visual perception has yet to be determined.

  7. Face and object encoding under perceptual load: ERP evidence.

    PubMed

    Neumann, Markus F; Mohamed, Tarik N; Schweinberger, Stefan R

    2011-02-14

    According to the perceptual load theory, processing of a task-irrelevant distractor is abolished when attentional resources are fully consumed by task-relevant material. As an exception, however, famous faces have been shown to elicit repetition modulations in event-related potentials - an N250r - despite high load at initial presentation, suggesting preserved face-encoding. Here, we recorded N250r repetition modulations by unfamiliar faces, hands, and houses, and tested face specificity of preserved encoding under high load. In an immediate (S1-S2) repetition priming paradigm, participants performed a letter identification task on S1 by indicating whether an "X" vs. "N" was among 6 different (high load condition) or 6 identical (low load condition) letters. Letter strings were superimposed on distractor faces, hands, or houses. Subsequent S2 probes were either identical repetitions of S1 distractors, non-repeated exemplars from the same category, or infrequent butterflies, to which participants responded. Independent of attentional load at S1, an occipito-temporal N250r was found for unfamiliar faces. In contrast, no repetition-related neural modulation emerged for houses or hands. This strongly suggests that a putative face-selective attention module supports encoding under high load, and that similar mechanisms are unavailable for other natural or artificial objects. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Video based object representation and classification using multiple covariance matrices.

    PubMed

    Zhang, Yurong; Liu, Quan

    2017-01-01

    Video based object recognition and classification has been widely studied in computer vision and image processing area. One main issue of this task is to develop an effective representation for video. This problem can generally be formulated as image set representation. In this paper, we present a new method called Multiple Covariance Discriminative Learning (MCDL) for image set representation and classification problem. The core idea of MCDL is to represent an image set using multiple covariance matrices with each covariance matrix representing one cluster of images. Firstly, we use the Nonnegative Matrix Factorization (NMF) method to do image clustering within each image set, and then adopt Covariance Discriminative Learning on each cluster (subset) of images. At last, we adopt KLDA and nearest neighborhood classification method for image set classification. Promising experimental results on several datasets show the effectiveness of our MCDL method.

  9. Assessing cognitive dysfunction in Parkinson's disease: An online tool to detect visuo‐perceptual deficits

    PubMed Central

    Schwarzkopf, Dietrich S.; Bahrami, Bahador; Fleming, Stephen M.; Jackson, Ben M.; Goch, Tristam J. C.; Saygin, Ayse P.; Miller, Luke E.; Pappa, Katerina; Pavisic, Ivanna; Schade, Rachel N.; Noyce, Alastair J.; Crutch, Sebastian J.; O'Keeffe, Aidan G.; Schrag, Anette E.; Morris, Huw R.

    2018-01-01

    ABSTRACT Background: People with Parkinson's disease (PD) who develop visuo‐perceptual deficits are at higher risk of dementia, but we lack tests that detect subtle visuo‐perceptual deficits and can be performed by untrained personnel. Hallucinations are associated with cognitive impairment and typically involve perception of complex objects. Changes in object perception may therefore be a sensitive marker of visuo‐perceptual deficits in PD. Objective: We developed an online platform to test visuo‐perceptual function. We hypothesised that (1) visuo‐perceptual deficits in PD could be detected using online tests, (2) object perception would be preferentially affected, and (3) these deficits would be caused by changes in perception rather than response bias. Methods: We assessed 91 people with PD and 275 controls. Performance was compared using classical frequentist statistics. We then fitted a hierarchical Bayesian signal detection theory model to a subset of tasks. Results: People with PD were worse than controls at object recognition, showing no deficits in other visuo‐perceptual tests. Specifically, they were worse at identifying skewed images (P < .0001); at detecting hidden objects (P = .0039); at identifying objects in peripheral vision (P < .0001); and at detecting biological motion (P = .0065). In contrast, people with PD were not worse at mental rotation or subjective size perception. Using signal detection modelling, we found this effect was driven by change in perceptual sensitivity rather than response bias. Conclusions: Online tests can detect visuo‐perceptual deficits in people with PD, with object recognition particularly affected. Ultimately, visuo‐perceptual tests may be developed to identify at‐risk patients for clinical trials to slow PD dementia. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society. PMID:29473691

  10. Automatic textual annotation of video news based on semantic visual object extraction

    NASA Astrophysics Data System (ADS)

    Boujemaa, Nozha; Fleuret, Francois; Gouet, Valerie; Sahbi, Hichem

    2003-12-01

    In this paper, we present our work for automatic generation of textual metadata based on visual content analysis of video news. We present two methods for semantic object detection and recognition from a cross modal image-text thesaurus. These thesaurus represent a supervised association between models and semantic labels. This paper is concerned with two semantic objects: faces and Tv logos. In the first part, we present our work for efficient face detection and recogniton with automatic name generation. This method allows us also to suggest the textual annotation of shots close-up estimation. On the other hand, we were interested to automatically detect and recognize different Tv logos present on incoming different news from different Tv Channels. This work was done jointly with the French Tv Channel TF1 within the "MediaWorks" project that consists on an hybrid text-image indexing and retrieval plateform for video news.

  11. CUQI: cardiac ultrasound video quality index

    PubMed Central

    Razaak, Manzoor; Martini, Maria G.

    2016-01-01

    Abstract. Medical images and videos are now increasingly part of modern telecommunication applications, including telemedicinal applications, favored by advancements in video compression and communication technologies. Medical video quality evaluation is essential for modern applications since compression and transmission processes often compromise the video quality. Several state-of-the-art video quality metrics used for quality evaluation assess the perceptual quality of the video. For a medical video, assessing quality in terms of “diagnostic” value rather than “perceptual” quality is more important. We present a diagnostic-quality–oriented video quality metric for quality evaluation of cardiac ultrasound videos. Cardiac ultrasound videos are characterized by rapid repetitive cardiac motions and distinct structural information characteristics that are explored by the proposed metric. Cardiac ultrasound video quality index, the proposed metric, is a full reference metric and uses the motion and edge information of the cardiac ultrasound video to evaluate the video quality. The metric was evaluated for its performance in approximating the quality of cardiac ultrasound videos by testing its correlation with the subjective scores of medical experts. The results of our tests showed that the metric has high correlation with medical expert opinions and in several cases outperforms the state-of-the-art video quality metrics considered in our tests. PMID:27014715

  12. Conceptual and perceptual encoding instructions differently affect event recall.

    PubMed

    García-Bajos, Elvira; Migueles, Malen; Aizpurua, Alaitz

    2014-11-01

    When recalling an event, people usually retrieve the main facts and a reduced proportion of specific details. The objective of this experiment was to study the effects of conceptually and perceptually driven encoding in the recall of conceptual and perceptual information of an event. The materials selected for the experiment were two movie trailers. To enhance the encoding instructions, after watching the first trailer participants answered conceptual or perceptual questions about the event, while a control group answered general knowledge questions. After watching the second trailer, all of the participants completed a closed-ended recall task consisting of conceptual and perceptual items. Conceptual information was better recalled than perceptual details and participants made more perceptual than conceptual commission errors. Conceptually driven processing enhanced the recall of conceptual information, while perceptually driven processing not only did not improve the recall of descriptive details, but also damaged the standard conceptual/perceptual recall relationship.

  13. The Use of Video-Tacheometric Technology for Documenting and Analysing Geometric Features of Objects

    NASA Astrophysics Data System (ADS)

    Woźniak, Marek; Świerczyńska, Ewa; Jastrzębski, Sławomir

    2015-12-01

    This paper analyzes selected aspects of the use of video-tacheometric technology for inventorying and documenting geometric features of objects. Data was collected with the use of the video-tacheometer Topcon Image Station IS-3 and the professional camera Canon EOS 5D Mark II. During the field work and the development of data the following experiments have been performed: multiple determination of the camera interior orientation parameters and distortion parameters of five lenses with different focal lengths, reflectorless measurements of profiles for the elevation and inventory of decorative surface wall of the building of Warsaw Ballet School. During the research the process of acquiring and integrating video-tacheometric data was analysed as well as the process of combining "point cloud" acquired by using video-tacheometer in the scanning process with independent photographs taken by a digital camera. On the basis of tests performed, utility of the use of video-tacheometric technology in geodetic surveys of geometrical features of buildings has been established.

  14. Robust skin color-based moving object detection for video surveillance

    NASA Astrophysics Data System (ADS)

    Kaliraj, Kalirajan; Manimaran, Sudha

    2016-07-01

    Robust skin color-based moving object detection for video surveillance is proposed. The objective of the proposed algorithm is to detect and track the target under complex situations. The proposed framework comprises four stages, which include preprocessing, skin color-based feature detection, feature classification, and target localization and tracking. In the preprocessing stage, the input image frame is smoothed using averaging filter and transformed into YCrCb color space. In skin color detection, skin color regions are detected using Otsu's method of global thresholding. In the feature classification, histograms of both skin and nonskin regions are constructed and the features are classified into foregrounds and backgrounds based on Bayesian skin color classifier. The foreground skin regions are localized by a connected component labeling process. Finally, the localized foreground skin regions are confirmed as a target by verifying the region properties, and nontarget regions are rejected using the Euler method. At last, the target is tracked by enclosing the bounding box around the target region in all video frames. The experiment was conducted on various publicly available data sets and the performance was evaluated with baseline methods. It evidently shows that the proposed algorithm works well against slowly varying illumination, target rotations, scaling, fast, and abrupt motion changes.

  15. Task-relevant perceptual features can define categories in visual memory too.

    PubMed

    Antonelli, Karla B; Williams, Carrick C

    2017-11-01

    Although Konkle, Brady, Alvarez, and Oliva (2010, Journal of Experimental Psychology: General, 139(3), 558) claim that visual long-term memory (VLTM) is organized on underlying conceptual, not perceptual, information, visual memory results from visual search tasks are not well explained by this theory. We hypothesized that when viewing an object, any task-relevant visual information is critical to the organizational structure of VLTM. In two experiments, we examined the organization of VLTM by measuring the amount of retroactive interference created by objects possessing different combinations of task-relevant features. Based on task instructions, only the conceptual category was task relevant or both the conceptual category and a perceptual object feature were task relevant. Findings indicated that when made task relevant, perceptual object feature information, along with conceptual category information, could affect memory organization for objects in VLTM. However, when perceptual object feature information was task irrelevant, it did not contribute to memory organization; instead, memory defaulted to being organized around conceptual category information. These findings support the theory that a task-defined organizational structure is created in VLTM based on the relevance of particular object features and information.

  16. Perceptual learning.

    PubMed

    Seitz, Aaron R

    2017-07-10

    Perceptual learning refers to how experience can change the way we perceive sights, sounds, smells, tastes, and touch. Examples abound: music training improves our ability to discern tones; experience with food and wines can refine our pallet (and unfortunately more quickly empty our wallet), and with years of training radiologists learn to save lives by discerning subtle details of images that escape the notice of untrained viewers. We often take perceptual learning for granted, but it has a profound impact on how we perceive the world. In this Primer, I will explain how perceptual learning is transformative in guiding our perceptual processes, how research into perceptual learning provides insight into fundamental mechanisms of learning and brain processes, and how knowledge of perceptual learning can be used to develop more effective training approaches for those requiring expert perceptual skills or those in need of perceptual rehabilitation (such as individuals with poor vision). I will make a case that perceptual learning is ubiquitous, scientifically interesting, and has substantial practical utility to us all. Copyright © 2017. Published by Elsevier Ltd.

  17. Effects of domain-specific exercise load on speed and accuracy of a domain-specific perceptual-cognitive task.

    PubMed

    Schapschröer, M; Baker, J; Schorer, J

    2016-08-01

    In the context of perceptual-cognitive expertise it is important to know whether physiological loads influence perceptual-cognitive performance. This study examined whether a handball specific physical exercise load influenced participants' speed and accuracy in a flicker task. At rest and during a specific interval exercise of 86.5-90% HRmax, 35 participants (experts: n=8, advanced: n=13, novices, n=14) performed a handball specific flicker task with two types of patterns (structured and unstructured). For reaction time, results revealed moderate effect sizes for group, with experts reacting faster than advanced and advanced reacting faster than novices, and for structure, with structured videos being performed faster than unstructured ones. A significant interaction for structure×group was also found, with experts and advanced players faster for structured videos, and novices faster for unstructured videos. For accuracy, significant main effects were found for structure with structured videos solved more accurately. A significant interaction for structure×group was revealed, with experts and advanced more accurate for structured scenes and novices more accurate for unstructured scenes. A significant interaction was also found for condition×structure; at rest, unstructured and structured scenes were performed with the same accuracy while under physical exercise, structured scenes were solved more accurately. No other interactions were found. These results were somewhat surprising given previous work in this area, although the impact of a specific physical exercise on a specific perceptual-cognitive task may be different from those tested generally. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Learning viewpoint invariant perceptual representations from cluttered images.

    PubMed

    Spratling, Michael W

    2005-05-01

    In order to perform object recognition, it is necessary to form perceptual representations that are sufficiently specific to distinguish between objects, but that are also sufficiently flexible to generalize across changes in location, rotation, and scale. A standard method for learning perceptual representations that are invariant to viewpoint is to form temporal associations across image sequences showing object transformations. However, this method requires that individual stimuli be presented in isolation and is therefore unlikely to succeed in real-world applications where multiple objects can co-occur in the visual input. This paper proposes a simple modification to the learning method that can overcome this limitation and results in more robust learning of invariant representations.

  19. 3D modeling of architectural objects from video data obtained with the fixed focal length lens geometry

    NASA Astrophysics Data System (ADS)

    Deliś, Paulina; Kędzierski, Michał; Fryśkowska, Anna; Wilińska, Michalina

    2013-12-01

    The article describes the process of creating 3D models of architectural objects on the basis of video images, which had been acquired by a Sony NEX-VG10E fixed focal length video camera. It was assumed, that based on video and Terrestrial Laser Scanning data it is possible to develop 3D models of architectural objects. The acquisition of video data was preceded by the calibration of video camera. The process of creating 3D models from video data involves the following steps: video frames selection for the orientation process, orientation of video frames using points with known coordinates from Terrestrial Laser Scanning (TLS), generating a TIN model using automatic matching methods. The above objects have been measured with an impulse laser scanner, Leica ScanStation 2. Created 3D models of architectural objects were compared with 3D models of the same objects for which the self-calibration bundle adjustment process was performed. In this order a PhotoModeler Software was used. In order to assess the accuracy of the developed 3D models of architectural objects, points with known coordinates from Terrestrial Laser Scanning were used. To assess the accuracy a shortest distance method was used. Analysis of the accuracy showed that 3D models generated from video images differ by about 0.06 ÷ 0.13 m compared to TLS data. Artykuł zawiera opis procesu opracowania modeli 3D obiektów architektonicznych na podstawie obrazów wideo pozyskanych kamerą wideo Sony NEX-VG10E ze stałoogniskowym obiektywem. Przyjęto założenie, że na podstawie danych wideo i danych z naziemnego skaningu laserowego (NSL) możliwe jest opracowanie modeli 3D obiektów architektonicznych. Pozyskanie danych wideo zostało poprzedzone kalibracją kamery wideo. Model matematyczny kamery był oparty na rzucie perspektywicznym. Proces opracowania modeli 3D na podstawie danych wideo składał się z następujących etapów: wybór klatek wideo do procesu orientacji, orientacja klatek wideo na

  20. [Perceptual sharpness metric for visible and infrared color fusion images].

    PubMed

    Gao, Shao-Shu; Jin, Wei-Qi; Wang, Xia; Wang, Ling-Xue; Luo, Yuan

    2012-12-01

    For visible and infrared color fusion images, objective sharpness assessment model is proposed to measure the clarity of detail and edge definition of the fusion image. Firstly, the contrast sensitivity functions (CSF) of the human visual system is used to reduce insensitive frequency components under certain viewing conditions. Secondly, perceptual contrast model, which takes human luminance masking effect into account, is proposed based on local band-limited contrast model. Finally, the perceptual contrast is calculated in the region of interest (contains image details and edges) in the fusion image to evaluate image perceptual sharpness. Experimental results show that the proposed perceptual sharpness metrics provides better predictions, which are more closely matched to human perceptual evaluations, than five existing sharpness (blur) metrics for color images. The proposed perceptual sharpness metrics can evaluate the perceptual sharpness for color fusion images effectively.

  1. The temporal advantage for individuating objects of expertise: perceptual expertise is an early riser.

    PubMed

    Curby, Kim M; Gauthier, Isabel

    2009-06-10

    The identification of faces has a temporal advantage over that of other object categories. The orientation-specific nature of this advantage suggests that it stems from our extensive experience and resulting expertise with upright faces. While experts can identify objects faster than novices, it is unclear exactly how the temporal dynamics of identification are changed by expertise and whether the nature of this temporal advantage is similar for face and non-face objects of expertise. Here, we titrated encoding time using a backward-masking paradigm with variable stimulus-mask onset-asynchronies and mapped the resulting effect on recognition for upright and inverted faces (Experiment 1) and for cars among car experts and car novices (Experiment 2). Performance for upright faces and cars among car experts rose above chance between 33 and 70 ms before that for inverted faces or cars among car novices. A shifted exponential function fitted to these data suggested that performance started to rise earlier for experts than for novices, but that additional encoding time increased performance at a similar rate. Experience influences the availability of information early in processing, possibly through the recruitment of more category-selective neurons, while the rate of perceptual processing may be less flexible and limited by inherent physiological constraints.

  2. Early Development of Object Unity: Evidence for Perceptual Completion in Newborns

    ERIC Educational Resources Information Center

    Valenza, Eloisa; Bulf, Hermann

    2011-01-01

    The present study aimed to investigate whether perceptual completion is available at birth, in the absence of any visual experience. An extremely underspecified kinetic visual display composed of four spatially separated fragments arranged to give rise to an illusory rectangle that occluded a vertical rod (illusory condition) or rotated so as not…

  3. Perceptual processing during trauma, priming and the development of intrusive memories

    PubMed Central

    Sündermann, Oliver; Hauschildt, Marit; Ehlers, Anke

    2013-01-01

    Background Intrusive reexperiencing in posttraumatic stress disorder (PTSD) is commonly triggered by stimuli with perceptual similarity to those present during the trauma. Information processing theories suggest that perceptual processing during the trauma and enhanced perceptual priming contribute to the easy triggering of intrusive memories by these cues. Methods Healthy volunteers (N = 51) watched neutral and trauma picture stories on a computer screen. Neutral objects that were unrelated to the content of the stories briefly appeared in the interval between the pictures. Dissociation and data-driven processing (as indicators of perceptual processing) and state anxiety during the stories were assessed with self-report questionnaires. After filler tasks, participants completed a blurred object identification task to assess priming and a recognition memory task. Intrusive memories were assessed with telephone interviews 2 weeks and 3 months later. Results Neutral objects were more strongly primed if they occurred in the context of trauma stories than if they occurred during neutral stories, although the effect size was only moderate (ηp2=.08) and only significant when trauma stories were presented first. Regardless of story order, enhanced perceptual priming predicted intrusive memories at 2-week follow-up (N = 51), but not at 3 months (n = 40). Data-driven processing, dissociation and anxiety increases during the trauma stories also predicted intrusive memories. Enhanced perceptual priming and data-driven processing were associated with lower verbal intelligence. Limitations It is unclear to what extent these findings generalize to real-life traumatic events and whether they are specific to negative emotional events. Conclusions The results provide some support for the role of perceptual processing and perceptual priming in reexperiencing symptoms. PMID:23207970

  4. A novel no-reference objective stereoscopic video quality assessment method based on visual saliency analysis

    NASA Astrophysics Data System (ADS)

    Yang, Xinyan; Zhao, Wei; Ye, Long; Zhang, Qin

    2017-07-01

    This paper proposes a no-reference objective stereoscopic video quality assessment method with the motivation that making the effect of objective experiments close to that of subjective way. We believe that the image regions with different visual salient degree should not have the same weights when designing an assessment metric. Therefore, we firstly use GBVS algorithm to each frame pairs and separate both the left and right viewing images into the regions with strong, general and week saliency. Besides, local feature information like blockiness, zero-crossing and depth are extracted and combined with a mathematical model to calculate a quality assessment score. Regions with different salient degree are assigned with different weights in the mathematical model. Experiment results demonstrate the superiority of our method compared with the existed state-of-the-art no-reference objective Stereoscopic video quality assessment methods.

  5. THE EFFECTS OF SYSTEMATIC VARIATION OF SPEED AND DIRECTION OF OBJECT FLIGHT AND OF SKILL AND AGE CLASSIFICATIONS UPON VISUO-PERCEPTUAL JUDGMENTS OF MOVING OBJECTS IN THREE-DIMENSIONAL SPACE. FINAL REPORT.

    ERIC Educational Resources Information Center

    WILLIAMS, HARRIET G.

    THIS STUDY WAS CONDUCTED TO INVESTIGATE THE EFFECTS OF VARIATIONS IN THE SPEED AND DIRECTION OF A FLYING OBJECT ON VISUO-PERCEPTUAL JUDGMENTS MADE, DIFFERENCES IN THE ABILITY OF SKILLED AND UNSKILLED SUBJECTS IN MAKING SUCH JUDGMENTS, AND THE EFFECTS OF AGE OR MATURITY LEVEL ON THE SPEED AND ACCURACY OF SUCH JUDGMENTS. THE SUBJECTS WERE 54 MALE…

  6. An efficient fully unsupervised video object segmentation scheme using an adaptive neural-network classifier architecture.

    PubMed

    Doulamis, A; Doulamis, N; Ntalianis, K; Kollias, S

    2003-01-01

    In this paper, an unsupervised video object (VO) segmentation and tracking algorithm is proposed based on an adaptable neural-network architecture. The proposed scheme comprises: 1) a VO tracking module and 2) an initial VO estimation module. Object tracking is handled as a classification problem and implemented through an adaptive network classifier, which provides better results compared to conventional motion-based tracking algorithms. Network adaptation is accomplished through an efficient and cost effective weight updating algorithm, providing a minimum degradation of the previous network knowledge and taking into account the current content conditions. A retraining set is constructed and used for this purpose based on initial VO estimation results. Two different scenarios are investigated. The first concerns extraction of human entities in video conferencing applications, while the second exploits depth information to identify generic VOs in stereoscopic video sequences. Human face/ body detection based on Gaussian distributions is accomplished in the first scenario, while segmentation fusion is obtained using color and depth information in the second scenario. A decision mechanism is also incorporated to detect time instances for weight updating. Experimental results and comparisons indicate the good performance of the proposed scheme even in sequences with complicated content (object bending, occlusion).

  7. Nurse-surgeon object transfer: video analysis of communication and situation awareness in the operating theatre.

    PubMed

    Korkiakangas, Terhi; Weldon, Sharon-Marie; Bezemer, Jeff; Kneebone, Roger

    2014-09-01

    One of the most central collaborative tasks during surgical operations is the passing of objects, including instruments. Little is known about how nurses and surgeons achieve this. The aim of the present study was to explore what factors affect this routine-like task, resulting in fast or slow transfer of objects. A qualitative video study, informed by an observational ethnographic approach, was conducted in a major teaching hospital in the UK. A total of 20 general surgical operations were observed. In total, approximately 68 h of video data have been reviewed. A subsample of 225 min has been analysed in detail using interactional video-analysis developed within the social sciences. Two factors affecting object transfer were observed: (1) relative instrument trolley position and (2) alignment. The scrub nurse's instrument trolley position (close to vs. further back from the surgeon) and alignment (gaze direction) impacts on the communication with the surgeon, and consequently, on the speed of object transfer. When the scrub nurse was standing close to the surgeon, and "converged" to follow the surgeon's movements, the transfer occurred more seamlessly and faster (<1.0 s) than when the scrub nurse was standing further back from the surgeon and did not follow the surgeon's movements (>1.0 s). The smoothness of object transfer can be improved by adjusting the scrub nurse's instrument trolley position, enabling a better monitoring of surgeon's bodily conduct and affording early orientation (awareness) to an upcoming request (changing situation). Object transfer is facilitated by the surgeon's embodied practices, which can elicit the nurse's attention to the request and, as a response, maximise a faster object transfer. A simple intervention to highlight the significance of these factors could improve communication in the operating theatre. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Object Occlusion Detection Using Automatic Camera Calibration for a Wide-Area Video Surveillance System

    PubMed Central

    Jung, Jaehoon; Yoon, Inhye; Paik, Joonki

    2016-01-01

    This paper presents an object occlusion detection algorithm using object depth information that is estimated by automatic camera calibration. The object occlusion problem is a major factor to degrade the performance of object tracking and recognition. To detect an object occlusion, the proposed algorithm consists of three steps: (i) automatic camera calibration using both moving objects and a background structure; (ii) object depth estimation; and (iii) detection of occluded regions. The proposed algorithm estimates the depth of the object without extra sensors but with a generic red, green and blue (RGB) camera. As a result, the proposed algorithm can be applied to improve the performance of object tracking and object recognition algorithms for video surveillance systems. PMID:27347978

  9. Perceptual Averaging in Individuals with Autism Spectrum Disorder.

    PubMed

    Corbett, Jennifer E; Venuti, Paola; Melcher, David

    2016-01-01

    There is mounting evidence that observers rely on statistical summaries of visual information to maintain stable and coherent perception. Sensitivity to the mean (or other prototypical value) of a visual feature (e.g., mean size) appears to be a pervasive process in human visual perception. Previous studies in individuals diagnosed with Autism Spectrum Disorder (ASD) have uncovered characteristic patterns of visual processing that suggest they may rely more on enhanced local representations of individual objects instead of computing such perceptual averages. To further explore the fundamental nature of abstract statistical representation in visual perception, we investigated perceptual averaging of mean size in a group of 12 high-functioning individuals diagnosed with ASD using simplified versions of two identification and adaptation tasks that elicited characteristic perceptual averaging effects in a control group of neurotypical participants. In Experiment 1, participants performed with above chance accuracy in recalling the mean size of a set of circles ( mean task ) despite poor accuracy in recalling individual circle sizes ( member task ). In Experiment 2, their judgments of single circle size were biased by mean size adaptation. Overall, these results suggest that individuals with ASD perceptually average information about sets of objects in the surrounding environment. Our results underscore the fundamental nature of perceptual averaging in vision, and further our understanding of how autistic individuals make sense of the external environment.

  10. The Automaticity of Affordance of Dangerous Object.

    PubMed

    Zhao, Liang

    2016-11-03

    Objects observation automatically elicits the activation of a reach-to-grasp response specifically directed to interact with the object, which is termed affordance. Murphy, van Velzen, and de Fockert (2012) found that only when an irrelevant object receives sufficient attention, it can potentiate an action. However, it remains unclear whether the dangerous object would afford an action when it receives insufficient attention. In this study, we manipulated the perceptual load in a letter identification task. Participants were required to identify a target letter with the right or left hand while ignoring a neutral or dangerous graspable object. The target letter was presented either on its own (low perceptual load), alongside five non-target letters (high load), or alongside eight non-target letters (super high load). Under the low perceptual load, for both neutral and dangerous object, responses were faster when the action afforded by the ignored object was congruent (vs. incongruent) with the current target response (t(27) = 4.44, p < .001; t(27) = 7.99, p < .001, respectively). However, during the high perceptual load, for dangerous object, responses were slower when the action afforded by the ignored object was congruent (vs. incongruent) with the current target response (t(27) = 4.97, p < .001). There was not any effect for both neutral object and dangerous object under super high perceptual load. These results suggest the affordance of dangerous object is also sensitive to the perceptual load. An irrelevant dangerous object can't potentiate an action if it receives insufficient attention.

  11. Perceptual experience and posttest improvements in perceptual accuracy and consistency.

    PubMed

    Wagman, Jeffrey B; McBride, Dawn M; Trefzger, Amanda J

    2008-08-01

    Two experiments investigated the relationship between perceptual experience (during practice) and posttest improvements in perceptual accuracy and consistency. Experiment 1 investigated the potential relationship between how often knowledge of results (KR) is provided during a practice session and posttest improvements in perceptual accuracy. Experiment 2 investigated the potential relationship between how often practice (PR) is provided during a practice session and posttest improvements in perceptual consistency. The results of both experiments are consistent with previous findings that perceptual accuracy improves only when practice includes KR and that perceptual consistency improves regardless of whether practice includes KR. In addition, the results showed that although there is a relationship between how often KR is provided during a practice session and posttest improvements in perceptual accuracy, there is no relationship between how often PR is provided during a practice session and posttest improvements in consistency.

  12. Enhanced change detection performance reveals improved strategy use in avid action video game players.

    PubMed

    Clark, Kait; Fleck, Mathias S; Mitroff, Stephen R

    2011-01-01

    Recent research has shown that avid action video game players (VGPs) outperform non-video game players (NVGPs) on a variety of attentional and perceptual tasks. However, it remains unknown exactly why and how such differences arise; while some prior research has demonstrated that VGPs' improvements stem from enhanced basic perceptual processes, other work indicates that they can stem from enhanced attentional control. The current experiment used a change-detection task to explore whether top-down strategies can contribute to VGPs' improved abilities. Participants viewed alternating presentations of an image and a modified version of the image and were tasked with detecting and localizing the changed element. Consistent with prior claims of enhanced perceptual abilities, VGPs were able to detect the changes while requiring less exposure to the change than NVGPs. Further analyses revealed this improved change detection performance may result from altered strategy use; VGPs employed broader search patterns when scanning scenes for potential changes. These results complement prior demonstrations of VGPs' enhanced bottom-up perceptual benefits by providing new evidence of VGPs' potentially enhanced top-down strategic benefits. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Verbal predicates foster conscious recollection but not familiarity of a task-irrelevant perceptual feature--an ERP study.

    PubMed

    Ecker, Ullrich K H; Arend, Anna M; Bergström, Kirstin; Zimmer, Hubert D

    2009-09-01

    Research on the effects of perceptual manipulations on recognition memory has suggested that (a) recollection is selectively influenced by task-relevant information and (b) familiarity can be considered perceptually specific. The present experiment tested divergent assumptions that (a) perceptual features can influence conscious object recollection via verbal code despite being task-irrelevant and that (b) perceptual features do not influence object familiarity if study is verbal-conceptual. At study, subjects named objects and their presentation colour; this was followed by an old/new object recognition test. Event-related potentials (ERP) showed that a study-test manipulation of colour impacted selectively on the ERP effect associated with recollection, while a size manipulation showed no effect. It is concluded that (a) verbal predicates generated at study are potent episodic memory agents that modulate recollection even if the recovered feature information is task-irrelevant and (b) commonly found perceptual match effects on familiarity critically depend on perceptual processing at study.

  14. Meta-analysis of action video game impact on perceptual, attentional, and cognitive skills.

    PubMed

    Bediou, Benoit; Adams, Deanne M; Mayer, Richard E; Tipton, Elizabeth; Green, C Shawn; Bavelier, Daphne

    2018-01-01

    The ubiquity of video games in today's society has led to significant interest in their impact on the brain and behavior and in the possibility of harnessing games for good. The present meta-analyses focus on one specific game genre that has been of particular interest to the scientific community-action video games, and cover the period 2000-2015. To assess the long-lasting impact of action video game play on various domains of cognition, we first consider cross-sectional studies that inform us about the cognitive profile of habitual action video game players, and document a positive average effect of about half a standard deviation (g = 0.55). We then turn to long-term intervention studies that inform us about the possibility of causally inducing changes in cognition via playing action video games, and show a smaller average effect of a third of a standard deviation (g = 0.34). Because only intervention studies using other commercially available video game genres as controls were included, this latter result highlights the fact that not all games equally impact cognition. Moderator analyses indicated that action video game play robustly enhances the domains of top-down attention and spatial cognition, with encouraging signs for perception. Publication bias remains, however, a threat with average effects in the published literature estimated to be 30% larger than in the full literature. As a result, we encourage the field to conduct larger cohort studies and more intervention studies, especially those with more than 30 hours of training. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  15. Rethinking Residue: Determining the Perceptual Continuum of Residue on FEES to Enable Better Measurement.

    PubMed

    Pisegna, Jessica M; Kaneoka, Asako; Leonard, Rebecca; Langmore, Susan E

    2018-02-01

    The goal of this work was to better understand perceptual judgments of pharyngeal residue on flexible endoscopic evaluation of swallowing (FEES) and the influence of a visual analog scale (VAS) versus an ordinal scale on clinician ratings. The intent was to determine if perceptual judgments of residue were more accurately described by equal or unequal intervals. Thirty-three speech language pathologists rated pharyngeal residue from 75 FEES videos representing a wide range of residue severities for thin liquid, applesauce, and cracker boluses. Clinicians rated their impression of the overall residue amount in each video on a VAS and, in a different session, on a five-point ordinal scale. Residue ratings were made in two separate sessions separated by several weeks. Statistical correlations of the two rating methods were carried out and best-fit models were determined for each bolus type. A total of 2475 VAS ratings and 2473 ordinal ratings were collected. Residue ratings from both methods (VAS and ordinal) were strongly correlated for all bolus types. The best fit for the data was a quadratic model representing unequal intervals, which significantly improved the r 2 values for each bolus type (cracker r 2  = 0.98, applesauce r 2  = 0.99, thin liquid r 2  = 0.98, all p < 0.0001). Perceptual ratings of pharyngeal residue demonstrated a statistical relationship consistent with unequal intervals. The present findings support the use of a VAS to rate residue on FEES, allowing for greater precision as compared to traditional ordinal rating scales. Perceptual judgments of pharyngeal residue reflected unequal intervals, an important concept that should be considered in future rating scales.

  16. Perceptual load interacts with stimulus processing across sensory modalities.

    PubMed

    Klemen, J; Büchel, C; Rose, M

    2009-06-01

    According to perceptual load theory, processing of task-irrelevant stimuli is limited by the perceptual load of a parallel attended task if both the task and the irrelevant stimuli are presented to the same sensory modality. However, it remains a matter of debate whether the same principles apply to cross-sensory perceptual load and, more generally, what form cross-sensory attentional modulation in early perceptual areas takes in humans. Here we addressed these questions using functional magnetic resonance imaging. Participants undertook an auditory one-back working memory task of low or high perceptual load, while concurrently viewing task-irrelevant images at one of three object visibility levels. The processing of the visual and auditory stimuli was measured in the lateral occipital cortex (LOC) and auditory cortex (AC), respectively. Cross-sensory interference with sensory processing was observed in both the LOC and AC, in accordance with previous results of unisensory perceptual load studies. The present neuroimaging results therefore warrant the extension of perceptual load theory from a unisensory to a cross-sensory context: a validation of this cross-sensory interference effect through behavioural measures would consolidate the findings.

  17. Training-induced recovery of low-level vision followed by mid-level perceptual improvements in developmental object and face agnosia

    PubMed Central

    Lev, Maria; Gilaie-Dotan, Sharon; Gotthilf-Nezri, Dana; Yehezkel, Oren; Brooks, Joseph L; Perry, Anat; Bentin, Shlomo; Bonneh, Yoram; Polat, Uri

    2015-01-01

    Long-term deprivation of normal visual inputs can cause perceptual impairments at various levels of visual function, from basic visual acuity deficits, through mid-level deficits such as contour integration and motion coherence, to high-level face and object agnosia. Yet it is unclear whether training during adulthood, at a post-developmental stage of the adult visual system, can overcome such developmental impairments. Here, we visually trained LG, a developmental object and face agnosic individual. Prior to training, at the age of 20, LG's basic and mid-level visual functions such as visual acuity, crowding effects, and contour integration were underdeveloped relative to normal adult vision, corresponding to or poorer than those of 5–6 year olds (Gilaie-Dotan, Perry, Bonneh, Malach & Bentin, 2009). Intensive visual training, based on lateral interactions, was applied for a period of 9 months. LG's directly trained but also untrained visual functions such as visual acuity, crowding, binocular stereopsis and also mid-level contour integration improved significantly and reached near-age-level performance, with long-term (over 4 years) persistence. Moreover, mid-level functions that were tested post-training were found to be normal in LG. Some possible subtle improvement was observed in LG's higher-order visual functions such as object recognition and part integration, while LG's face perception skills have not improved thus far. These results suggest that corrective training at a post-developmental stage, even in the adult visual system, can prove effective, and its enduring effects are the basis for a revival of a developmental cascade that can lead to reduced perceptual impairments. PMID:24698161

  18. Training-induced recovery of low-level vision followed by mid-level perceptual improvements in developmental object and face agnosia.

    PubMed

    Lev, Maria; Gilaie-Dotan, Sharon; Gotthilf-Nezri, Dana; Yehezkel, Oren; Brooks, Joseph L; Perry, Anat; Bentin, Shlomo; Bonneh, Yoram; Polat, Uri

    2015-01-01

    Long-term deprivation of normal visual inputs can cause perceptual impairments at various levels of visual function, from basic visual acuity deficits, through mid-level deficits such as contour integration and motion coherence, to high-level face and object agnosia. Yet it is unclear whether training during adulthood, at a post-developmental stage of the adult visual system, can overcome such developmental impairments. Here, we visually trained LG, a developmental object and face agnosic individual. Prior to training, at the age of 20, LG's basic and mid-level visual functions such as visual acuity, crowding effects, and contour integration were underdeveloped relative to normal adult vision, corresponding to or poorer than those of 5-6 year olds (Gilaie-Dotan, Perry, Bonneh, Malach & Bentin, 2009). Intensive visual training, based on lateral interactions, was applied for a period of 9 months. LG's directly trained but also untrained visual functions such as visual acuity, crowding, binocular stereopsis and also mid-level contour integration improved significantly and reached near-age-level performance, with long-term (over 4 years) persistence. Moreover, mid-level functions that were tested post-training were found to be normal in LG. Some possible subtle improvement was observed in LG's higher-order visual functions such as object recognition and part integration, while LG's face perception skills have not improved thus far. These results suggest that corrective training at a post-developmental stage, even in the adult visual system, can prove effective, and its enduring effects are the basis for a revival of a developmental cascade that can lead to reduced perceptual impairments. © 2014 The Authors. Developmental Science Published by John Wiley & Sons Ltd.

  19. Differential interference effects of negative emotional states on subsequent semantic and perceptual processing

    PubMed Central

    Gorlick, Marissa A.; Mather, Mara

    2012-01-01

    Past studies have revealed that encountering negative events interferes with cognitive processing of subsequent stimuli. The present study investigated whether negative events affect semantic and perceptual processing differently. Presentation of negative pictures produced slower reaction times than neutral or positive pictures in tasks that require semantic processing, such as natural/man-made judgments about drawings of objects, commonness judgments about objects, and categorical judgments about pairs of words. In contrast, negative picture presentation did not slow down judgments in subsequent perceptual processing (e.g., color judgments about words, and size judgments about objects). The subjective arousal level of negative pictures did not modulate the interference effects on semantic/perceptual processing. These findings indicate that encountering negative emotional events interferes with semantic processing of subsequent stimuli more strongly than perceptual processing, and that not all types of subsequent cognitive processing are impaired by negative events. PMID:22142207

  20. Differential interference effects of negative emotional states on subsequent semantic and perceptual processing.

    PubMed

    Sakaki, Michiko; Gorlick, Marissa A; Mather, Mara

    2011-12-01

    Past studies have revealed that encountering negative events interferes with cognitive processing of subsequent stimuli. The present study investigates whether negative events affect semantic and perceptual processing differently. Presentation of negative pictures produced slower reaction times than neutral or positive pictures in tasks that require semantic processing, such as natural or man-made judgments about drawings of objects, commonness judgments about objects, and categorical judgments about pairs of words. In contrast, negative picture presentation did not slow down judgments in subsequent perceptual processing (e.g., color judgments about words, size judgments about objects). The subjective arousal level of negative pictures did not modulate the interference effects on semantic or perceptual processing. These findings indicate that encountering negative emotional events interferes with semantic processing of subsequent stimuli more strongly than perceptual processing, and that not all types of subsequent cognitive processing are impaired by negative events. (c) 2011 APA, all rights reserved.

  1. Neurofeedback training of gamma band oscillations improves perceptual processing.

    PubMed

    Salari, Neda; Büchel, Christian; Rose, Michael

    2014-10-01

    In this study, a noninvasive electroencephalography-based neurofeedback method is applied to train volunteers to deliberately increase gamma band oscillations (40 Hz) in the visual cortex. Gamma band oscillations in the visual cortex play a functional role in perceptual processing. In a previous study, we were able to demonstrate that gamma band oscillations prior to stimulus presentation have a significant influence on perceptual processing of visual stimuli. In the present study, we aimed to investigate longer lasting effects of gamma band neurofeedback training on perceptual processing. For this purpose, a feedback group was trained to modulate oscillations in the gamma band, while a control group participated in a task with an identical design setting but without gamma band feedback. Before and after training, both groups participated in a perceptual object detection task and a spatial attention task. Our results clearly revealed that only the feedback group but not the control group exhibited a visual processing advantage and an increase in oscillatory gamma band activity in the pre-stimulus period of the processing of the visual object stimuli after the neurofeedback training. Results of the spatial attention task showed no difference between the groups, which underlines the specific role of gamma band oscillations for perceptual processing. In summary, our results show that modulation of gamma band activity selectively affects perceptual processing and therefore supports the relevant role of gamma band activity for this specific process. Furthermore, our results demonstrate the eligibility of gamma band oscillations as a valuable tool for neurofeedback applications.

  2. Video enhancement workbench: an operational real-time video image processing system

    NASA Astrophysics Data System (ADS)

    Yool, Stephen R.; Van Vactor, David L.; Smedley, Kirk G.

    1993-01-01

    Video image sequences can be exploited in real-time, giving analysts rapid access to information for military or criminal investigations. Video-rate dynamic range adjustment subdues fluctuations in image intensity, thereby assisting discrimination of small or low- contrast objects. Contrast-regulated unsharp masking enhances differentially shadowed or otherwise low-contrast image regions. Real-time removal of localized hotspots, when combined with automatic histogram equalization, may enhance resolution of objects directly adjacent. In video imagery corrupted by zero-mean noise, real-time frame averaging can assist resolution and location of small or low-contrast objects. To maximize analyst efficiency, lengthy video sequences can be screened automatically for low-frequency, high-magnitude events. Combined zoom, roam, and automatic dynamic range adjustment permit rapid analysis of facial features captured by video cameras recording crimes in progress. When trying to resolve small objects in murky seawater, stereo video places the moving imagery in an optimal setting for human interpretation.

  3. Development of a perceptually calibrated objective metric of noise

    NASA Astrophysics Data System (ADS)

    Keelan, Brian W.; Jin, Elaine W.; Prokushkin, Sergey

    2011-01-01

    A system simulation model was used to create scene-dependent noise masks that reflect current performance of mobile phone cameras. Stimuli with different overall magnitudes of noise and with varying mixtures of red, green, blue, and luminance noises were included in the study. Eleven treatments in each of ten pictorial scenes were evaluated by twenty observers using the softcopy ruler method. In addition to determining the quality loss function in just noticeable differences (JNDs) for the average observer and scene, transformations for different combinations of observer sensitivity and scene susceptibility were derived. The psychophysical results were used to optimize an objective metric of isotropic noise based on system noise power spectra (NPS), which were integrated over a visual frequency weighting function to yield perceptually relevant variances and covariances in CIE L*a*b* space. Because the frequency weighting function is expressed in terms of cycles per degree at the retina, it accounts for display pixel size and viewing distance effects, so application-specific predictions can be made. Excellent results were obtained using only L* and a* variances and L*a* covariance, with relative weights of 100, 5, and 12, respectively. The positive a* weight suggests that the luminance (photopic) weighting is slightly narrow on the long wavelength side for predicting perceived noisiness. The L*a* covariance term, which is normally negative, reflects masking between L* and a* noise, as confirmed in informal evaluations. Test targets in linear sRGB and rendered L*a*b* spaces for each treatment are available at http://www.aptina.com/ImArch/ to enable other researchers to test metrics of their own design and calibrate them to JNDs of quality loss without performing additional observer experiments. Such JND-calibrated noise metrics are particularly valuable for comparing the impact of noise and other attributes, and for computing overall image quality.

  4. The Timing of Visual Object Categorization

    PubMed Central

    Mack, Michael L.; Palmeri, Thomas J.

    2011-01-01

    An object can be categorized at different levels of abstraction: as natural or man-made, animal or plant, bird or dog, or as a Northern Cardinal or Pyrrhuloxia. There has been growing interest in understanding how quickly categorizations at different levels are made and how the timing of those perceptual decisions changes with experience. We specifically contrast two perspectives on the timing of object categorization at different levels of abstraction. By one account, the relative timing implies a relative timing of stages of visual processing that are tied to particular levels of object categorization: Fast categorizations are fast because they precede other categorizations within the visual processing hierarchy. By another account, the relative timing reflects when perceptual features are available over time and the quality of perceptual evidence used to drive a perceptual decision process: Fast simply means fast, it does not mean first. Understanding the short-term and long-term temporal dynamics of object categorizations is key to developing computational models of visual object recognition. We briefly review a number of models of object categorization and outline how they explain the timing of visual object categorization at different levels of abstraction. PMID:21811480

  5. Importance of perceptual representation in the visual control of action

    NASA Astrophysics Data System (ADS)

    Loomis, Jack M.; Beall, Andrew C.; Kelly, Jonathan W.; Macuga, Kristen L.

    2005-03-01

    In recent years, many experiments have demonstrated that optic flow is sufficient for visually controlled action, with the suggestion that perceptual representations of 3-D space are superfluous. In contrast, recent research in our lab indicates that some visually controlled actions, including some thought to be based on optic flow, are indeed mediated by perceptual representations. For example, we have demonstrated that people are able to perform complex spatial behaviors, like walking, driving, and object interception, in virtual environments which are rendered visible solely by cyclopean stimulation (random-dot cinematograms). In such situations, the absence of any retinal optic flow that is correlated with the objects and surfaces within the virtual environment means that people are using stereo-based perceptual representations to perform the behavior. The fact that people can perform such behaviors without training suggests that the perceptual representations are likely the same as those used when retinal optic flow is present. Other research indicates that optic flow, whether retinal or a more abstract property of the perceptual representation, is not the basis for postural control, because postural instability is related to perceived relative motion between self and the visual surroundings rather than to optic flow, even in the abstract sense.

  6. Two mechanisms of constructive recollection: Perceptual recombination and conceptual fluency.

    PubMed

    Doss, Manoj K; Bluestone, Maximilian R; Gallo, David A

    2016-11-01

    Recollection is constructive and prone to distortion, but the mechanisms through which recollections can become embellished with rich yet illusory details are still debated. According to the conceptual fluency hypothesis, abstract semantic or conceptual activation increases the familiarity of a nonstudied event, causing one to falsely attribute imagined features to actual perception. In contrast, according to the perceptual recombination hypothesis, details from actually perceived events are partially recollected and become erroneously bound to a nonstudied event, again causing a detailed yet false recollection. Here, we report the first experiments aimed at disentangling these 2 mechanisms. Participants imagined pictures of common objects, and then they saw an actual picture of some of the imagined objects. We next presented misinformation associated with these studied items, designed to increase conceptual fluency (i.e., semantically related words) or perceptual recombination (i.e., perceptually similar picture fragments). Finally, we tested recollection for the originally seen pictures using verbal labels as retrieval cues. Consistent with conceptual fluency, processing-related words increased false recollection of pictures that were never seen, and consistent with perceptual recombination, processing picture fragments further increased false recollection. We also found that conceptual fluency was more short-lived than perceptual recombination, further dissociating these 2 mechanisms. These experiments provide strong evidence that conceptual fluency and perceptual recombination independently contribute to the constructive aspects of recollection. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  7. Effect of Implicit Perceptual-Motor Training on Decision-Making Skills and Underpinning Gaze Behavior in Combat Athletes.

    PubMed

    Milazzo, Nicolas; Farrow, Damian; Fournier, Jean F

    2016-08-01

    This study investigated the effect of a 12-session, implicit perceptual-motor training program on decision-making skills and visual search behavior of highly skilled junior female karate fighters (M age = 15.7 years, SD = 1.2). Eighteen participants were required to make (physical or verbal) reaction decisions to various attacks within different fighting scenarios. Fighters' performance and eye movements were assessed before and after the intervention, and during acquisition through the use of video-based and on-mat decision-making tests. The video-based test revealed that following training, only the implicit perceptual-motor group (n = 6) improved their decision-making accuracy significantly compared to a matched motor training (placebo, n = 6) group and a control group (n = 6). Further, the implicit training group significantly changed their visual search behavior by focusing on fewer locations for longer durations. In addition, the session-by-session analysis showed no significant improvement in decision accuracy between training session 1 and all the other sessions, except the last one. Coaches should devote more practice time to implicit learning approaches during perceptual-motor training program to achieve significant decision-making improvements and more efficient visual search strategy with elite athletes. © The Author(s) 2016.

  8. Using Japanese Onomatopoeias to Explore Perceptual Dimensions in Visual Material Perception.

    PubMed

    Hanada, Mitsuhiko

    2016-01-28

    This study examined the perceptual dimensions of visual material properties. Photographs of 50 objects were presented to the participants, and they reported a suitable onomatopoeia (mimetic word) for describing the material of the object in each photograph, based on visual appearance. The participants' responses were collated into a contingency table of photographs × onomatopoeias. After removing some items from the table, correspondence analysis was applied to the contingency table, and a six-dimensional biplot was obtained. By rotating the axes to maximize sparseness of the coordinates for the items in the biplot, three meaningful perceptual dimensions were derived: wetness/stickiness, fluffiness/softness, and smoothness-roughness/gloss-dullness. Two additional possible dimensions were obtained: crumbliness and coldness. These dimensions, except gloss-dullness, were paid little attention to in vision science, though they were suggested as perceptual dimensions of tactile texture. This suggests that the perceptual dimensions that are considered to be primarily related to haptics are also important in visual material perception. © The Author(s) 2016.

  9. Reduced Perceptual Exclusivity during Object and Grating Rivalry in Autism

    PubMed Central

    Freyberg, J.; Robertson, C.E.; Baron-Cohen, S.

    2015-01-01

    Background The dynamics of binocular rivalry may be a behavioural footprint of excitatory and inhibitory neural transmission in visual cortex. Given the presence of atypical visual features in Autism Spectrum Conditions (ASC), and evidence in support of the idea of an imbalance in excitatory/inhibitory neural transmission in ASC, we hypothesized that binocular rivalry might prove a simple behavioural marker of such a transmission imbalance in the autistic brain. In support of this hypothesis, we previously reported a slower rate of rivalry in ASC, driven by reduced perceptual exclusivity. Methods We tested whether atypical dynamics of binocular rivalry in ASC are specific to certain stimulus features. 53 participants (26 with ASC, matched for age, sex and IQ) participated in binocular rivalry experiments in which the dynamics of rivalry were measured at two levels of stimulus complexity, low (grayscale gratings) and high (coloured objects). Results Individuals with ASC experienced a slower rate of rivalry, driven by longer transitional states between dominant percepts. These exaggerated transitional states were present at both low and high levels of stimulus complexity, suggesting that atypical rivalry dynamics in autism are robust with respect to stimulus choice. Interactions between stimulus properties and rivalry dynamics in autism indicate that achromatic grating stimuli produce stronger group differences. Conclusion These results confirm the finding of atypical dynamics of binocular rivalry in ASC. These dynamics were present for stimuli of both low and high levels of visual complexity, suggesting an imbalance in competitive interactions throughout the visual system of individuals with ASC. PMID:26382002

  10. Perceptual Fading without Retinal Adaptation

    ERIC Educational Resources Information Center

    Hsieh, Po-Jang; Colas, Jaron T.

    2012-01-01

    A retinally stabilized object readily undergoes perceptual fading and disappears from consciousness. This startling phenomenon is commonly believed to arise from local bottom-up sensory adaptation to edge information that occurs early in the visual pathway, such as in the lateral geniculate nucleus of the thalamus or retinal ganglion cells. Here…

  11. The effect of action video game experience on task-switching

    PubMed Central

    Green, C.Shawn; Sugarman, Michael A.; Medford, Katherine; Klobusicky, Elizabeth; Daphne Bavelier

    2012-01-01

    There is now a substantial body of work demonstrating that action video game experience results in enhancements in a wide variety of perceptual skills. More recently, several groups have also demonstrated improvements in abilities that are more cognitive in nature, in particular, the ability to efficiently switch between tasks. In a series of four experiments, we add to this body of work, demonstrating that the action video game player advantage is not exclusively due to an ability to map manual responses onto arbitrary buttons, but rather generalizes to vocal responses, is not restricted to tasks that are perceptual in nature (e.g. respond to a physical dimension of the stimulus such as its color), but generalizes to more cognitive tasks (e.g. is a number odd or even), and is present whether the switch requires a goal-switch or only a motor switch. Finally, a training study establishes that the relationship between the reduction in switch cost and action game playing is causal. PMID:22393270

  12. Video quality assessment based on correlation between spatiotemporal motion energies

    NASA Astrophysics Data System (ADS)

    Yan, Peng; Mou, Xuanqin

    2016-09-01

    Video quality assessment (VQA) has been a hot research topic because of rapid increase of huge demand of video communications. From the earliest PSNR metric to advanced models that are perceptual aware, researchers have made great progress in this field by introducing properties of human vision system (HVS) into VQA model design. Among various algorithms that model the property of HVS perceiving motion, the spatiotemporal energy model has been validated to be high consistent with psychophysical experiments. In this paper, we take the spatiotemporal energy model into VQA model design by the following steps. 1) According to the pristine spatiotemporal energy model proposed by Adelson et al, we apply the linear filters, which are oriented in space-time and tuned in spatial frequency, to filter the reference and test videos respectively. The outputs of quadrature pairs of above filters are then squared and summed to give two measures of motion energy, which are named rightward and leftward energy responses, respectively. 2) Based on the pristine model, we calculate summation of the rightward and leftward energy responses as spatiotemporal features to represent perceptual quality information for videos, named total spatiotemporal motion energy maps. 3) The proposed FR-VQA model, named STME, is calculated with statistics based on the pixel-wise correlation between the total spatiotemporal motion energy maps of the reference and distorted videos. The STME model was validated on the LIVE VQA Database by comparing with existing FR-VQA models. Experimental results show that STME performs with excellent prediction accuracy and stays in state-of-the-art VQA models.

  13. Increasing Speed of Processing With Action Video Games

    PubMed Central

    Dye, Matthew W.G.; Green, C. Shawn; Bavelier, Daphne

    2010-01-01

    In many everyday situations, speed is of the essence. However, fast decisions typically mean more mistakes. To this day, it remains unknown whether reaction times can be reduced with appropriate training, within one individual, across a range of tasks, and without compromising accuracy. Here we review evidence that the very act of playing action video games significantly reduces reaction times without sacrificing accuracy. Critically, this increase in speed is observed across various tasks beyond game situations. Video gaming may therefore provide an efficient training regimen to induce a general speeding of perceptual reaction times without decreases in accuracy of performance. PMID:20485453

  14. Three Dimentional Reconstruction of Large Cultural Heritage Objects Based on Uav Video and Tls Data

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Wu, T. H.; Shen, Y.; Wu, L.

    2016-06-01

    This paper investigates the synergetic use of unmanned aerial vehicle (UAV) and terrestrial laser scanner (TLS) in 3D reconstruction of cultural heritage objects. Rather than capturing still images, the UAV that equips a consumer digital camera is used to collect dynamic videos to overcome its limited endurance capacity. Then, a set of 3D point-cloud is generated from video image sequences using the automated structure-from-motion (SfM) and patch-based multi-view stereo (PMVS) methods. The TLS is used to collect the information that beyond the reachability of UAV imaging e.g., partial building facades. A coarse to fine method is introduced to integrate the two sets of point clouds UAV image-reconstruction and TLS scanning for completed 3D reconstruction. For increased reliability, a variant of ICP algorithm is introduced using local terrain invariant regions in the combined designation. The experimental study is conducted in the Tulou culture heritage building in Fujian province, China, which is focused on one of the TuLou clusters built several hundred years ago. Results show a digital 3D model of the Tulou cluster with complete coverage and textural information. This paper demonstrates the usability of the proposed method for efficient 3D reconstruction of heritage object based on UAV video and TLS data.

  15. Perceptual load in sport and the heuristic value of the perceptual load paradigm in examining expertise-related perceptual-cognitive adaptations.

    PubMed

    Furley, Philip; Memmert, Daniel; Schmid, Simone

    2013-03-01

    In two experiments, we transferred perceptual load theory to the dynamic field of team sports and tested the predictions derived from the theory using a novel task and stimuli. We tested a group of college students (N = 33) and a group of expert team sport players (N = 32) on a general perceptual load task and a complex, soccer-specific perceptual load task in order to extend the understanding of the applicability of perceptual load theory and further investigate whether distractor interference may differ between the groups, as the sport-specific processing task may not exhaust the processing capacity of the expert participants. In both, the general and the specific task, the pattern of results supported perceptual load theory and demonstrates that the predictions of the theory also transfer to more complex, unstructured situations. Further, perceptual load was the only determinant of distractor processing, as we neither found expertise effects in the general perceptual load task nor the sport-specific task. We discuss the heuristic utility of using response-competition paradigms for studying both general and domain-specific perceptual-cognitive adaptations.

  16. A Completely Blind Video Integrity Oracle.

    PubMed

    Mittal, Anish; Saad, Michele A; Bovik, Alan C

    2016-01-01

    Considerable progress has been made toward developing still picture perceptual quality analyzers that do not require any reference picture and that are not trained on human opinion scores of distorted images. However, there do not yet exist any such completely blind video quality assessment (VQA) models. Here, we attempt to bridge this gap by developing a new VQA model called the video intrinsic integrity and distortion evaluation oracle (VIIDEO). The new model does not require the use of any additional information other than the video being quality evaluated. VIIDEO embodies models of intrinsic statistical regularities that are observed in natural vidoes, which are used to quantify disturbances introduced due to distortions. An algorithm derived from the VIIDEO model is thereby able to predict the quality of distorted videos without any external knowledge about the pristine source, anticipated distortions, or human judgments of video quality. Even with such a paucity of information, we are able to show that the VIIDEO algorithm performs much better than the legacy full reference quality measure MSE on the LIVE VQA database and delivers performance comparable with a leading human judgment trained blind VQA model. We believe that the VIIDEO algorithm is a significant step toward making real-time monitoring of completely blind video quality possible.

  17. Effects of Acute Cortisol Administration on Perceptual Priming of Trauma-Related Material

    PubMed Central

    Streb, Markus; Pfaltz, Monique; Michael, Tanja

    2014-01-01

    Intrusive memories are a hallmark symptom of posttraumatic stress disorder (PTSD). They reflect excessive and uncontrolled retrieval of the traumatic memory. Acute elevations of cortisol are known to impair the retrieval of already stored memory information. Thus, continuous cortisol administration might help in reducing intrusive memories in PTSD. Strong perceptual priming for neutral stimuli associated with a “traumatic” context has been shown to be one important learning mechanism that leads to intrusive memories. However, the memory modulating effects of cortisol have only been shown for explicit declarative memory processes. Thus, in our double blind, placebo controlled study we aimed to investigate whether cortisol influences perceptual priming of neutral stimuli that appeared in a “traumatic” context. Two groups of healthy volunteers (N = 160) watched either neutral or “traumatic” picture stories on a computer screen. Neutral objects were presented in between the pictures. Memory for these neutral objects was tested after 24 hours with a perceptual priming task and an explicit memory task. Prior to memory testing half of the participants in each group received 25 mg of cortisol, the other half received placebo. In the placebo group participants in the “traumatic” stories condition showed more perceptual priming for the neutral objects than participants in the neutral stories condition, indicating a strong perceptual priming effect for neutral stimuli presented in a “traumatic” context. In the cortisol group this effect was not present: Participants in the neutral stories and participants in the “traumatic” stories condition in the cortisol group showed comparable priming effects for the neutral objects. Our findings show that cortisol inhibits perceptual priming for neutral stimuli that appeared in a “traumatic” context. These findings indicate that cortisol influences PTSD-relevant memory processes and thus further support

  18. Object class segmentation of RGB-D video using recurrent convolutional neural networks.

    PubMed

    Pavel, Mircea Serban; Schulz, Hannes; Behnke, Sven

    2017-04-01

    Object class segmentation is a computer vision task which requires labeling each pixel of an image with the class of the object it belongs to. Deep convolutional neural networks (DNN) are able to learn and take advantage of local spatial correlations required for this task. They are, however, restricted by their small, fixed-sized filters, which limits their ability to learn long-range dependencies. Recurrent Neural Networks (RNN), on the other hand, do not suffer from this restriction. Their iterative interpretation allows them to model long-range dependencies by propagating activity. This property is especially useful when labeling video sequences, where both spatial and temporal long-range dependencies occur. In this work, a novel RNN architecture for object class segmentation is presented. We investigate several ways to train such a network. We evaluate our models on the challenging NYU Depth v2 dataset for object class segmentation and obtain competitive results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Objective grading of facial paralysis using Local Binary Patterns in video processing.

    PubMed

    He, Shu; Soraghan, John J; O'Reilly, Brian F

    2008-01-01

    This paper presents a novel framework for objective measurement of facial paralysis in biomedial videos. The motion information in the horizontal and vertical directions and the appearance features on the apex frames are extracted based on the Local Binary Patterns (LBP) on the temporal-spatial domain in each facial region. These features are temporally and spatially enhanced by the application of block schemes. A multi-resolution extension of uniform LBP is proposed to efficiently combine the micro-patterns and large-scale patterns into a feature vector, which increases the algorithmic robustness and reduces noise effects while still retaining computational simplicity. The symmetry of facial movements is measured by the Resistor-Average Distance (RAD) between LBP features extracted from the two sides of the face. Support Vector Machine (SVM) is applied to provide quantitative evaluation of facial paralysis based on the House-Brackmann (H-B) Scale. The proposed method is validated by experiments with 197 subject videos, which demonstrates its accuracy and efficiency.

  20. Designing online audiovisual heritage services: an empirical study of two comparable online video services

    NASA Astrophysics Data System (ADS)

    Ongena, G.; van de Wijngaert, L. A. L.; Huizer, E.

    2013-03-01

    The purpose of this study is to seek input for a new online audiovisual heritage service. In doing so, we assess comparable online video services to gain insights into the motivations and perceptual innovation characteristics of the video services. The research is based on data from a Dutch survey held among 1,939 online video service users. The results show that online video service held overlapping antecedents but does show differences in motivations and in perceived innovation characteristics. Hence, in general, one can state that in comparison, online video services comply with different needs and have differences in perceived innovation characteristics. This implies that one can design online video services for different needs. In addition to scientific implications, the outcomes also provide guidance for practitioners in implementing new online video services.

  1. Video Games as a Means to Reduce Age-Related Cognitive Decline: Attitudes, Compliance, and Effectiveness

    PubMed Central

    Boot, Walter R.; Champion, Michael; Blakely, Daniel P.; Wright, Timothy; Souders, Dustin J.; Charness, Neil

    2013-01-01

    Recent research has demonstrated broad benefits of video game play to perceptual and cognitive abilities. These broad improvements suggest that video game-based cognitive interventions may be ideal to combat the many perceptual and cognitive declines associated with advancing age. Furthermore, game interventions have the potential to induce higher rates of intervention compliance compared to other cognitive interventions as they are assumed to be inherently enjoyable and motivating. We explored these issues in an intervention that tested the ability of an action game and a “brain fitness” game to improve a variety of abilities. Cognitive abilities did not significantly improve, suggesting caution when recommending video game interventions as a means to reduce the effects of cognitive aging. However, the game expected to produce the largest benefit based on previous literature (an action game) induced the lowest intervention compliance. We explain this low compliance by participants’ ratings of the action game as less enjoyable and by their prediction that training would have few meaningful benefits. Despite null cognitive results, data provide valuable insights into the types of video games older adults are willing to play and why. PMID:23378841

  2. Video games as a means to reduce age-related cognitive decline: attitudes, compliance, and effectiveness.

    PubMed

    Boot, Walter R; Champion, Michael; Blakely, Daniel P; Wright, Timothy; Souders, Dustin J; Charness, Neil

    2013-01-01

    Recent research has demonstrated broad benefits of video game play to perceptual and cognitive abilities. These broad improvements suggest that video game-based cognitive interventions may be ideal to combat the many perceptual and cognitive declines associated with advancing age. Furthermore, game interventions have the potential to induce higher rates of intervention compliance compared to other cognitive interventions as they are assumed to be inherently enjoyable and motivating. We explored these issues in an intervention that tested the ability of an action game and a "brain fitness" game to improve a variety of abilities. Cognitive abilities did not significantly improve, suggesting caution when recommending video game interventions as a means to reduce the effects of cognitive aging. However, the game expected to produce the largest benefit based on previous literature (an action game) induced the lowest intervention compliance. We explain this low compliance by participants' ratings of the action game as less enjoyable and by their prediction that training would have few meaningful benefits. Despite null cognitive results, data provide valuable insights into the types of video games older adults are willing to play and why.

  3. Influence of semantic consistency and perceptual features on visual attention during scene viewing in toddlers.

    PubMed

    Helo, Andrea; van Ommen, Sandrien; Pannasch, Sebastian; Danteny-Dordoigne, Lucile; Rämä, Pia

    2017-11-01

    Conceptual representations of everyday scenes are built in interaction with visual environment and these representations guide our visual attention. Perceptual features and object-scene semantic consistency have been found to attract our attention during scene exploration. The present study examined how visual attention in 24-month-old toddlers is attracted by semantic violations and how perceptual features (i. e. saliency, centre distance, clutter and object size) and linguistic properties (i. e. object label frequency and label length) affect gaze distribution. We compared eye movements of 24-month-old toddlers and adults while exploring everyday scenes which either contained an inconsistent (e.g., soap on a breakfast table) or consistent (e.g., soap in a bathroom) object. Perceptual features such as saliency, centre distance and clutter of the scene affected looking times in the toddler group during the whole viewing time whereas looking times in adults were affected only by centre distance during the early viewing time. Adults looked longer to inconsistent than consistent objects either if the objects had a high or a low saliency. In contrast, toddlers presented semantic consistency effect only when objects were highly salient. Additionally, toddlers with lower vocabulary skills looked longer to inconsistent objects while toddlers with higher vocabulary skills look equally long to both consistent and inconsistent objects. Our results indicate that 24-month-old children use scene context to guide visual attention when exploring the visual environment. However, perceptual features have a stronger influence in eye movement guidance in toddlers than in adults. Our results also indicate that language skills influence cognitive but not perceptual guidance of eye movements during scene perception in toddlers. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Implementing the Study of Multicultural Aesthetics in Film and Video.

    ERIC Educational Resources Information Center

    Gutenko, Gregory

    Film and television in the western world are highly stylized and culturally specific products. A course on multicultural aesthetics in film and video should introduce the student to perceptual alternatives in film and television use. Some of these alternatives can be derived from three well-established areas of film/television study: the…

  5. Development of Neural Sensitivity to Face Identity Correlates with Perceptual Discriminability

    PubMed Central

    Barnett, Michael A.; Hartley, Jake; Gomez, Jesse; Stigliani, Anthony; Grill-Spector, Kalanit

    2016-01-01

    Face perception is subserved by a series of face-selective regions in the human ventral stream, which undergo prolonged development from childhood to adulthood. However, it is unknown how neural development of these regions relates to the development of face-perception abilities. Here, we used functional magnetic resonance imaging (fMRI) to measure brain responses of ventral occipitotemporal regions in children (ages, 5–12 years) and adults (ages, 19–34 years) when they viewed faces that parametrically varied in dissimilarity. Since similar faces generate lower responses than dissimilar faces due to fMRI adaptation, this design objectively evaluates neural sensitivity to face identity across development. Additionally, a subset of subjects participated in a behavioral experiment to assess perceptual discriminability of face identity. Our data reveal three main findings: (1) neural sensitivity to face identity increases with age in face-selective but not object-selective regions; (2) the amplitude of responses to faces increases with age in both face-selective and object-selective regions; and (3) perceptual discriminability of face identity is correlated with the neural sensitivity to face identity of face-selective regions. In contrast, perceptual discriminability is not correlated with the amplitude of response in face-selective regions or of responses of object-selective regions. These data suggest that developmental increases in neural sensitivity to face identity in face-selective regions improve perceptual discriminability of faces. Our findings significantly advance the understanding of the neural mechanisms of development of face perception and open new avenues for using fMRI adaptation to study the neural development of high-level visual and cognitive functions more broadly. SIGNIFICANCE STATEMENT Face perception, which is critical for daily social interactions, develops from childhood to adulthood. However, it is unknown what developmental changes in

  6. Development of Neural Sensitivity to Face Identity Correlates with Perceptual Discriminability.

    PubMed

    Natu, Vaidehi S; Barnett, Michael A; Hartley, Jake; Gomez, Jesse; Stigliani, Anthony; Grill-Spector, Kalanit

    2016-10-19

    Face perception is subserved by a series of face-selective regions in the human ventral stream, which undergo prolonged development from childhood to adulthood. However, it is unknown how neural development of these regions relates to the development of face-perception abilities. Here, we used functional magnetic resonance imaging (fMRI) to measure brain responses of ventral occipitotemporal regions in children (ages, 5-12 years) and adults (ages, 19-34 years) when they viewed faces that parametrically varied in dissimilarity. Since similar faces generate lower responses than dissimilar faces due to fMRI adaptation, this design objectively evaluates neural sensitivity to face identity across development. Additionally, a subset of subjects participated in a behavioral experiment to assess perceptual discriminability of face identity. Our data reveal three main findings: (1) neural sensitivity to face identity increases with age in face-selective but not object-selective regions; (2) the amplitude of responses to faces increases with age in both face-selective and object-selective regions; and (3) perceptual discriminability of face identity is correlated with the neural sensitivity to face identity of face-selective regions. In contrast, perceptual discriminability is not correlated with the amplitude of response in face-selective regions or of responses of object-selective regions. These data suggest that developmental increases in neural sensitivity to face identity in face-selective regions improve perceptual discriminability of faces. Our findings significantly advance the understanding of the neural mechanisms of development of face perception and open new avenues for using fMRI adaptation to study the neural development of high-level visual and cognitive functions more broadly. Face perception, which is critical for daily social interactions, develops from childhood to adulthood. However, it is unknown what developmental changes in the brain lead to improved

  7. Resolving occlusion and segmentation errors in multiple video object tracking

    NASA Astrophysics Data System (ADS)

    Cheng, Hsu-Yung; Hwang, Jenq-Neng

    2009-02-01

    In this work, we propose a method to integrate the Kalman filter and adaptive particle sampling for multiple video object tracking. The proposed framework is able to detect occlusion and segmentation error cases and perform adaptive particle sampling for accurate measurement selection. Compared with traditional particle filter based tracking methods, the proposed method generates particles only when necessary. With the concept of adaptive particle sampling, we can avoid degeneracy problem because the sampling position and range are dynamically determined by parameters that are updated by Kalman filters. There is no need to spend time on processing particles with very small weights. The adaptive appearance for the occluded object refers to the prediction results of Kalman filters to determine the region that should be updated and avoids the problem of using inadequate information to update the appearance under occlusion cases. The experimental results have shown that a small number of particles are sufficient to achieve high positioning and scaling accuracy. Also, the employment of adaptive appearance substantially improves the positioning and scaling accuracy on the tracking results.

  8. The Reviewing of Object Files: Object-Specific Integration of Information.

    ERIC Educational Resources Information Center

    Kahneman, Daniel; And Others

    1992-01-01

    Seven experiments involving a total of 203 college students explored a form of object-specific priming and established a robust object-specific benefit that indicates that a new stimulus will be named faster if it physically matches a previous stimulus seen as part of the same perceptual object. (SLD)

  9. Relationship of Perceptual Learning Styles and Academic Achievement among High School Students

    ERIC Educational Resources Information Center

    Rani, K. V.

    2016-01-01

    Perceptual Learning styles are different ways in which people process the information in the course of learning, intimately involved in producing more effective response stimuli. The objective of the study was to find out the correlation between the variables of Perceptual learning style in total and with its dimensions to Academic achievement.…

  10. Perceptual Repetition Blindness Effects

    NASA Technical Reports Server (NTRS)

    Hochhaus, Larry; Johnston, James C.; Null, Cynthia H. (Technical Monitor)

    1994-01-01

    The phenomenon of repetition blindness (RB) may reveal a new limitation on human perceptual processing. Recently, however, researchers have attributed RB to post-perceptual processes such as memory retrieval and/or reporting biases. The standard rapid serial visual presentation (RSVP) paradigm used in most RB studies is, indeed, open to such objections. Here we investigate RB using a "single-frame" paradigm introduced by Johnston and Hale (1984) in which memory demands are minimal. Subjects made only a single judgement about whether one masked target word was the same or different than a post-target probe. Confidence ratings permitted use of signal detection methods to assess sensitivity and bias effects. In the critical condition for RB a precue of the post-target word was provided prior to the target stimulus (identity precue), so that the required judgement amounted to whether the target did or did not repeat the precue word. In control treatments, the precue was either an unrelated word or a dummy.

  11. Functional dissociation between action and perception of object shape in developmental visual object agnosia.

    PubMed

    Freud, Erez; Ganel, Tzvi; Avidan, Galia; Gilaie-Dotan, Sharon

    2016-03-01

    According to the two visual systems model, the cortical visual system is segregated into a ventral pathway mediating object recognition, and a dorsal pathway mediating visuomotor control. In the present study we examined whether the visual control of action could develop normally even when visual perceptual abilities are compromised from early childhood onward. Using his fingers, LG, an individual with a rare developmental visual object agnosia, manually estimated (perceptual condition) the width of blocks that varied in width and length (but not in overall size), or simply picked them up across their width (grasping condition). LG's perceptual sensitivity to target width was profoundly impaired in the manual estimation task compared to matched controls. In contrast, the sensitivity to object shape during grasping, as measured by maximum grip aperture (MGA), the time to reach the MGA, the reaction time and the total movement time were all normal in LG. Further analysis, however, revealed that LG's sensitivity to object shape during grasping emerged at a later time stage during the movement compared to controls. Taken together, these results demonstrate a dissociation between action and perception of object shape, and also point to a distinction between different stages of the grasping movement, namely planning versus online control. Moreover, the present study implies that visuomotor abilities can develop normally even when perceptual abilities developed in a profoundly impaired fashion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Achieving perceptually-accurate aural telepresence

    NASA Astrophysics Data System (ADS)

    Henderson, Paul D.

    Immersive multimedia requires not only realistic visual imagery but also a perceptually-accurate aural experience. A sound field may be presented simultaneously to a listener via a loudspeaker rendering system using the direct sound from acoustic sources as well as a simulation or "auralization" of room acoustics. Beginning with classical Wave-Field Synthesis (WFS), improvements are made to correct for asymmetries in loudspeaker array geometry. Presented is a new Spatially-Equalized WFS (SE-WFS) technique to maintain the energy-time balance of a simulated room by equalizing the reproduced spectrum at the listener for a distribution of possible source angles. Each reproduced source or reflection is filtered according to its incidence angle to the listener. An SE-WFS loudspeaker array of arbitrary geometry reproduces the sound field of a room with correct spectral and temporal balance, compared with classically-processed WFS systems. Localization accuracy of human listeners in SE-WFS sound fields is quantified by psychoacoustical testing. At a loudspeaker spacing of 0.17 m (equivalent to an aliasing cutoff frequency of 1 kHz), SE-WFS exhibits a localization blur of 3 degrees, nearly equal to real point sources. Increasing the loudspeaker spacing to 0.68 m (for a cutoff frequency of 170 Hz) results in a blur of less than 5 degrees. In contrast, stereophonic reproduction is less accurate with a blur of 7 degrees. The ventriloquist effect is psychometrically investigated to determine the effect of an intentional directional incongruence between audio and video stimuli. Subjects were presented with prerecorded full-spectrum speech and motion video of a talker's head as well as broadband noise bursts with a static image. The video image was displaced from the audio stimulus in azimuth by varying amounts, and the perceived auditory location measured. A strong bias was detectable for small angular discrepancies between audio and video stimuli for separations of less than 8

  13. Temporal Sequences Quantify the Contributions of Individual Fixations in Complex Perceptual Matching Tasks

    ERIC Educational Resources Information Center

    Busey, Thomas; Yu, Chen; Wyatte, Dean; Vanderkolk, John

    2013-01-01

    Perceptual tasks such as object matching, mammogram interpretation, mental rotation, and satellite imagery change detection often require the assignment of correspondences to fuse information across views. We apply techniques developed for machine translation to the gaze data recorded from a complex perceptual matching task modeled after…

  14. Associative (prosop)agnosia without (apparent) perceptual deficits: a case-study.

    PubMed

    Anaki, David; Kaufman, Yakir; Freedman, Morris; Moscovitch, Morris

    2007-04-09

    In associative agnosia early perceptual processing of faces or objects are considered to be intact, while the ability to access stored semantic information about the individual face or object is impaired. Recent claims, however, have asserted that associative agnosia is also characterized by deficits at the perceptual level, which are too subtle to be detected by current neuropsychological tests. Thus, the impaired identification of famous faces or common objects in associative agnosia stems from difficulties in extracting the minute perceptual details required to identify a face or an object. In the present study, we report the case of a patient DBO with a left occipital infarct, who shows impaired object and famous face recognition. Despite his disability, he exhibits a face inversion effect, and is able to select a famous face from among non-famous distractors. In addition, his performance is normal in an immediate and delayed recognition memory for faces, whose external features were deleted. His deficits in face recognition are apparent only when he is required to name a famous face, or select two faces from among a triad of famous figures based on their semantic relationships (a task which does not require access to names). The nature of his deficits in object perception and recognition are similar to his impairments in the face domain. This pattern of behavior supports the notion that apperceptive and associative agnosia reflect distinct and dissociated deficits, which result from damage to different stages of the face and object recognition process.

  15. Objective and subjective quality assessment of geometry compression of reconstructed 3D humans in a 3D virtual room

    NASA Astrophysics Data System (ADS)

    Mekuria, Rufael; Cesar, Pablo; Doumanis, Ioannis; Frisiello, Antonella

    2015-09-01

    Compression of 3D object based video is relevant for 3D Immersive applications. Nevertheless, the perceptual aspects of the degradation introduced by codecs for meshes and point clouds are not well understood. In this paper we evaluate the subjective and objective degradations introduced by such codecs in a state of art 3D immersive virtual room. In the 3D immersive virtual room, users are captured with multiple cameras, and their surfaces are reconstructed as photorealistic colored/textured 3D meshes or point clouds. To test the perceptual effect of compression and transmission, we render degraded versions with different frame rates in different contexts (near/far) in the scene. A quantitative subjective study with 16 users shows that negligible distortion of decoded surfaces compared to the original reconstructions can be achieved in the 3D virtual room. In addition, a qualitative task based analysis in a full prototype field trial shows increased presence, emotion, user and state recognition of the reconstructed 3D Human representation compared to animated computer avatars.

  16. Perceptual processing affects conceptual processing.

    PubMed

    Van Dantzig, Saskia; Pecher, Diane; Zeelenberg, René; Barsalou, Lawrence W

    2008-04-05

    According to the Perceptual Symbols Theory of cognition (Barsalou, 1999), modality-specific simulations underlie the representation of concepts. A strong prediction of this view is that perceptual processing affects conceptual processing. In this study, participants performed a perceptual detection task and a conceptual property-verification task in alternation. Responses on the property-verification task were slower for those trials that were preceded by a perceptual trial in a different modality than for those that were preceded by a perceptual trial in the same modality. This finding of a modality-switch effect across perceptual processing and conceptual processing supports the hypothesis that perceptual and conceptual representations are partially based on the same systems. 2008 Cognitive Science Society, Inc.

  17. Objectively Determining the Educational Potential of Computer and Video-Based Courseware; or, Producing Reliable Evaluations Despite the Dog and Pony Show.

    ERIC Educational Resources Information Center

    Barrett, Andrew J.; And Others

    The Center for Interactive Technology, Applications, and Research at the College of Engineering of the University of South Florida (Tampa) has developed objective and descriptive evaluation models to assist in determining the educational potential of computer and video courseware. The computer-based courseware evaluation model and the video-based…

  18. Central mechanisms of odour object perception

    PubMed Central

    Gottfried, Jay A.

    2013-01-01

    The stimulus complexity of naturally occurring odours presents unique challenges for central nervous systems that are aiming to internalize the external olfactory landscape. One mechanism by which the brain encodes perceptual representations of behaviourally relevant smells is through the synthesis of different olfactory inputs into a unified perceptual experience — an odour object. Recent evidence indicates that the identification, categorization and discrimination of olfactory stimuli rely on the formation and modulation of odour objects in the piriform cortex. Convergent findings from human and rodent models suggest that distributed piriform ensemble patterns of olfactory qualities and categories are crucial for maintaining the perceptual constancy of ecologically inconstant stimuli. PMID:20700142

  19. Video Object Segmentation through Spatially Accurate and Temporally Dense Extraction of Primary Object Regions (Open Access)

    DTIC Science & Technology

    2013-10-03

    fol- low the setup in the literature ([13, 14]), and use 5 (birdfall, cheetah , girl, monkeydog and parachute) of the videos for evaluation (since the...segmentation labeling results of the method, GT is the ground-truth labeling of the video, and F is the (a) Birdfall (b) Cheetah (c) Girl (d) Monkeydog...Video Ours [14] [13] [20] [6] birdfall 155 189 288 252 454 cheetah 633 806 905 1142 1217 girl 1488 1698 1785 1304 1755 monkeydog 365 472 521 563 683

  20. Toward automating Hammersmith pulled-to-sit examination of infants using feature point based video object tracking.

    PubMed

    Dogra, Debi P; Majumdar, Arun K; Sural, Shamik; Mukherjee, Jayanta; Mukherjee, Suchandra; Singh, Arun

    2012-01-01

    Hammersmith Infant Neurological Examination (HINE) is a set of tests used for grading neurological development of infants on a scale of 0 to 3. These tests help in assessing neurophysiological development of babies, especially preterm infants who are born before (the fetus reaches) the gestational age of 36 weeks. Such tests are often conducted in the follow-up clinics of hospitals for grading infants with suspected disabilities. Assessment based on HINE depends on the expertise of the physicians involved in conducting the examinations. It has been noted that some of these tests, especially pulled-to-sit and lateral tilting, are difficult to assess solely based on visual observation. For example, during the pulled-to-sit examination, the examiner needs to observe the relative movement of the head with respect to torso while pulling the infant by holding wrists. The examiner may find it difficult to follow the head movement from the coronal view. Video object tracking based automatic or semi-automatic analysis can be helpful in this case. In this paper, we present a video based method to automate the analysis of pulled-to-sit examination. In this context, a dynamic programming and node pruning based efficient video object tracking algorithm has been proposed. Pulled-to-sit event detection is handled by the proposed tracking algorithm that uses a 2-D geometric model of the scene. The algorithm has been tested with normal as well as marker based videos of the examination recorded at the neuro-development clinic of the SSKM Hospital, Kolkata, India. It is found that the proposed algorithm is capable of estimating the pulled-to-sit score with sensitivity (80%-92%) and specificity (89%-96%).

  1. Perceptual attraction in tool use: evidence for a reliability-based weighting mechanism.

    PubMed

    Debats, Nienke B; Ernst, Marc O; Heuer, Herbert

    2017-04-01

    Humans are well able to operate tools whereby their hand movement is linked, via a kinematic transformation, to a spatially distant object moving in a separate plane of motion. An everyday example is controlling a cursor on a computer monitor. Despite these separate reference frames, the perceived positions of the hand and the object were found to be biased toward each other. We propose that this perceptual attraction is based on the principles by which the brain integrates redundant sensory information of single objects or events, known as optimal multisensory integration. That is, 1 ) sensory information about the hand and the tool are weighted according to their relative reliability (i.e., inverse variances), and 2 ) the unisensory reliabilities sum up in the integrated estimate. We assessed whether perceptual attraction is consistent with optimal multisensory integration model predictions. We used a cursor-control tool-use task in which we manipulated the relative reliability of the unisensory hand and cursor position estimates. The perceptual biases shifted according to these relative reliabilities, with an additional bias due to contextual factors that were present in experiment 1 but not in experiment 2 The biased position judgments' variances were, however, systematically larger than the predicted optimal variances. Our findings suggest that the perceptual attraction in tool use results from a reliability-based weighting mechanism similar to optimal multisensory integration, but that certain boundary conditions for optimality might not be satisfied. NEW & NOTEWORTHY Kinematic tool use is associated with a perceptual attraction between the spatially separated hand and the effective part of the tool. We provide a formal account for this phenomenon, thereby showing that the process behind it is similar to optimal integration of sensory information relating to single objects. Copyright © 2017 the American Physiological Society.

  2. Visual Perceptual Learning and Models.

    PubMed

    Dosher, Barbara; Lu, Zhong-Lin

    2017-09-15

    Visual perceptual learning through practice or training can significantly improve performance on visual tasks. Originally seen as a manifestation of plasticity in the primary visual cortex, perceptual learning is more readily understood as improvements in the function of brain networks that integrate processes, including sensory representations, decision, attention, and reward, and balance plasticity with system stability. This review considers the primary phenomena of perceptual learning, theories of perceptual learning, and perceptual learning's effect on signal and noise in visual processing and decision. Models, especially computational models, play a key role in behavioral and physiological investigations of the mechanisms of perceptual learning and for understanding, predicting, and optimizing human perceptual processes, learning, and performance. Performance improvements resulting from reweighting or readout of sensory inputs to decision provide a strong theoretical framework for interpreting perceptual learning and transfer that may prove useful in optimizing learning in real-world applications.

  3. The roles of perceptual and conceptual information in face recognition.

    PubMed

    Schwartz, Linoy; Yovel, Galit

    2016-11-01

    The representation of familiar objects is comprised of perceptual information about their visual properties as well as the conceptual knowledge that we have about them. What is the relative contribution of perceptual and conceptual information to object recognition? Here, we examined this question by designing a face familiarization protocol during which participants were either exposed to rich perceptual information (viewing each face in different angles and illuminations) or with conceptual information (associating each face with a different name). Both conditions were compared with single-view faces presented with no labels. Recognition was tested on new images of the same identities to assess whether learning generated a view-invariant representation. Results showed better recognition of novel images of the learned identities following association of a face with a name label, but no enhancement following exposure to multiple face views. Whereas these findings may be consistent with the role of category learning in object recognition, face recognition was better for labeled faces only when faces were associated with person-related labels (name, occupation), but not with person-unrelated labels (object names or symbols). These findings suggest that association of meaningful conceptual information with an image shifts its representation from an image-based percept to a view-invariant concept. They further indicate that the role of conceptual information should be considered to account for the superior recognition that we have for familiar faces and objects. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  4. Camera Control and Geo-Registration for Video Sensor Networks

    NASA Astrophysics Data System (ADS)

    Davis, James W.

    With the use of large video networks, there is a need to coordinate and interpret the video imagery for decision support systems with the goal of reducing the cognitive and perceptual overload of human operators. We present computer vision strategies that enable efficient control and management of cameras to effectively monitor wide-coverage areas, and examine the framework within an actual multi-camera outdoor urban video surveillance network. First, we construct a robust and precise camera control model for commercial pan-tilt-zoom (PTZ) video cameras. In addition to providing a complete functional control mapping for PTZ repositioning, the model can be used to generate wide-view spherical panoramic viewspaces for the cameras. Using the individual camera control models, we next individually map the spherical panoramic viewspace of each camera to a large aerial orthophotograph of the scene. The result provides a unified geo-referenced map representation to permit automatic (and manual) video control and exploitation of cameras in a coordinated manner. The combined framework provides new capabilities for video sensor networks that are of significance and benefit to the broad surveillance/security community.

  5. Measuring perceived video quality of MPEG enhancement by people with impaired vision

    PubMed Central

    Fullerton, Matthew; Woods, Russell L.; Vera-Diaz, Fuensanta A.; Peli, Eli

    2007-01-01

    We used a new method to measure the perceived quality of contrast-enhanced motion video. Patients with impaired vision (n = 24) and normally-sighted subjects (n = 6) adjusted the level of MPEG-based enhancement of 8 videos (4 minutes each) drawn from 4 categories. They selected the level of enhancement that provided the preferred view of the videos, using a reducing-step-size staircase procedure. Most patients made consistent selections of the preferred level of enhancement, indicating an appreciation of and a perceived benefit from the MPEG-based enhancement. The selections varied between patients and were correlated with letter contrast sensitivity, but the selections were not affected by training, experience or video category. We measured just noticeable differences (JNDs) directly for videos, and mapped the image manipulation (enhancement in our case) onto an approximately linear perceptual space. These tools and approaches will be of value in other evaluations of the image quality of motion video manipulations. PMID:18059909

  6. Collaborative real-time scheduling of multiple PTZ cameras for multiple object tracking in video surveillance

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Che; Huang, Chung-Lin

    2013-03-01

    This paper proposes a multi-PTZ-camera control mechanism to acquire close-up imagery of human objects in a surveillance system. The control algorithm is based on the output of multi-camera, multi-target tracking. Three main concerns of the algorithm are (1) the imagery of human object's face for biometric purposes, (2) the optimal video quality of the human objects, and (3) minimum hand-off time. Here, we define an objective function based on the expected capture conditions such as the camera-subject distance, pan tile angles of capture, face visibility and others. Such objective function serves to effectively balance the number of captures per subject and quality of captures. In the experiments, we demonstrate the performance of the system which operates in real-time under real world conditions on three PTZ cameras.

  7. Efficient Hybrid Watermarking Scheme for Security and Transmission Bit Rate Enhancement of 3D Color-Plus-Depth Video Communication

    NASA Astrophysics Data System (ADS)

    El-Shafai, W.; El-Rabaie, S.; El-Halawany, M.; Abd El-Samie, F. E.

    2018-03-01

    Three-Dimensional Video-plus-Depth (3DV + D) comprises diverse video streams captured by different cameras around an object. Therefore, there is a great need to fulfill efficient compression to transmit and store the 3DV + D content in compressed form to attain future resource bounds whilst preserving a decisive reception quality. Also, the security of the transmitted 3DV + D is a critical issue for protecting its copyright content. This paper proposes an efficient hybrid watermarking scheme for securing the 3DV + D transmission, which is the homomorphic transform based Singular Value Decomposition (SVD) in Discrete Wavelet Transform (DWT) domain. The objective of the proposed watermarking scheme is to increase the immunity of the watermarked 3DV + D to attacks and achieve adequate perceptual quality. Moreover, the proposed watermarking scheme reduces the transmission-bandwidth requirements for transmitting the color-plus-depth 3DV over limited-bandwidth wireless networks through embedding the depth frames into the color frames of the transmitted 3DV + D. Thus, it saves the transmission bit rate and subsequently it enhances the channel bandwidth-efficiency. The performance of the proposed watermarking scheme is compared with those of the state-of-the-art hybrid watermarking schemes. The comparisons depend on both the subjective visual results and the objective results; the Peak Signal-to-Noise Ratio (PSNR) of the watermarked frames and the Normalized Correlation (NC) of the extracted watermark frames. Extensive simulation results on standard 3DV + D sequences have been conducted in the presence of attacks. The obtained results confirm that the proposed hybrid watermarking scheme is robust in the presence of attacks. It achieves not only very good perceptual quality with appreciated PSNR values and saving in the transmission bit rate, but also high correlation coefficient values in the presence of attacks compared to the existing hybrid watermarking schemes.

  8. Perceptual learning and human expertise

    NASA Astrophysics Data System (ADS)

    Kellman, Philip J.; Garrigan, Patrick

    2009-06-01

    We consider perceptual learning: experience-induced changes in the way perceivers extract information. Often neglected in scientific accounts of learning and in instruction, perceptual learning is a fundamental contributor to human expertise and is crucial in domains where humans show remarkable levels of attainment, such as language, chess, music, and mathematics. In Section 2, we give a brief history and discuss the relation of perceptual learning to other forms of learning. We consider in Section 3 several specific phenomena, illustrating the scope and characteristics of perceptual learning, including both discovery and fluency effects. We describe abstract perceptual learning, in which structural relationships are discovered and recognized in novel instances that do not share constituent elements or basic features. In Section 4, we consider primary concepts that have been used to explain and model perceptual learning, including receptive field change, selection, and relational recoding. In Section 5, we consider the scope of perceptual learning, contrasting recent research, focused on simple sensory discriminations, with earlier work that emphasized extraction of invariance from varied instances in more complex tasks. Contrary to some recent views, we argue that perceptual learning should not be confined to changes in early sensory analyzers. Phenomena at various levels, we suggest, can be unified by models that emphasize discovery and selection of relevant information. In a final section, we consider the potential role of perceptual learning in educational settings. Most instruction emphasizes facts and procedures that can be verbalized, whereas expertise depends heavily on implicit pattern recognition and selective extraction skills acquired through perceptual learning. We consider reasons why perceptual learning has not been systematically addressed in traditional instruction, and we describe recent successful efforts to create a technology of perceptual

  9. Incremental Structured Dictionary Learning for Video Sensor-Based Object Tracking

    PubMed Central

    Xue, Ming; Yang, Hua; Zheng, Shibao; Zhou, Yi; Yu, Zhenghua

    2014-01-01

    To tackle robust object tracking for video sensor-based applications, an online discriminative algorithm based on incremental discriminative structured dictionary learning (IDSDL-VT) is presented. In our framework, a discriminative dictionary combining both positive, negative and trivial patches is designed to sparsely represent the overlapped target patches. Then, a local update (LU) strategy is proposed for sparse coefficient learning. To formulate the training and classification process, a multiple linear classifier group based on a K-combined voting (KCV) function is proposed. As the dictionary evolves, the models are also trained to timely adapt the target appearance variation. Qualitative and quantitative evaluations on challenging image sequences compared with state-of-the-art algorithms demonstrate that the proposed tracking algorithm achieves a more favorable performance. We also illustrate its relay application in visual sensor networks. PMID:24549252

  10. Incorporating perceptual decision-making training into high-intensity interval training for Australian football umpires.

    PubMed

    Kittel, Aden; Elsworthy, Nathan; Spittle, Michael

    2018-05-30

    Existing methods for developing decision-making skill for Australian football umpires separate the physical and perceptual aspects of their performance. This study aimed to determine the efficacy of incorporating video-based decision-making training during high-intensity interval training sessions, specific for Australian football umpires. 20 amateur Australian football umpires volunteered to participate in a randomised control trial. Participants completed an 8-week training intervention in a conditioning only (CON; n=7), combined video-based training and conditioning (COM; n=7), or separated conditioning and video-based training (SEP; n=6) group. Preliminary and post-testing involved a Yo-Yo Intermittent Recovery Test (Yo-YoIR1), and 10x300m run test with an Australian football specific video-based decision-making task. Overall, changes in decision-making accuracy following the intervention were unclear between groups. SEP was possibly beneficial compared to COM in Yo-YoIR1 performance, whereas CON was likely beneficial compared to COM in 10x300m sprint performance. There was no additional benefit to completing video-based training, whether combined with, or separate to physical training, suggesting that this was not an optimal training method. For video-based training to be an effective decision-making tool, detailed feedback should be incorporated into training. It is recommended that longer conditioning and video-based training interventions be implemented to determine training effectiveness.

  11. Using video playbacks to study visual communication in a marine fish, Salaria pavo.

    PubMed

    Gonçalves; Oliveira; Körner; Poschadel; Schlupp

    2000-09-01

    Video playbacks have been successfully applied to the study of visual communication in several groups of animals. However, this technique is controversial as video monitors are designed with the human visual system in mind. Differences between the visual capabilities of humans and other animals will lead to perceptually different interpretations of video images. We simultaneously presented males and females of the peacock blenny, Salaria pavo, with a live conspecific male and an online video image of the same individual. Video images failed to elicit appropriate responses. Males were aggressive towards the live male but not towards video images of the same male. Similarly, females courted only the live male and spent more time near this stimulus. In contrast, females of the gynogenetic poecilid Poecilia formosa showed an equal preference for a live and video image of a P. mexicana male, suggesting a response to live animals as strong as to video images. We discuss differences between the species that may explain their opposite reaction to video images. Copyright 2000 The Association for the Study of Animal Behaviour.

  12. Pupil dilation reflects perceptual selection and predicts subsequent stability in perceptual rivalry

    PubMed Central

    Einhäuser, Wolfgang; Stout, James; Koch, Christof; Carter, Olivia

    2008-01-01

    During sustained viewing of an ambiguous stimulus, an individual's perceptual experience will generally switch between the different possible alternatives rather than stay fixed on one interpretation (perceptual rivalry). Here, we measured pupil diameter while subjects viewed different ambiguous visual and auditory stimuli. For all stimuli tested, pupil diameter increased just before the reported perceptual switch and the relative amount of dilation before this switch was a significant predictor of the subsequent duration of perceptual stability. These results could not be explained by blink or eye-movement effects, the motor response or stimulus driven changes in retinal input. Because pupil dilation reflects levels of norepinephrine (NE) released from the locus coeruleus (LC), we interpret these results as suggestive that the LC–NE complex may play the same role in perceptual selection as in behavioral decision making. PMID:18250340

  13. Language within your reach: near-far perceptual space and spatial demonstratives.

    PubMed

    Coventry, Kenny R; Valdés, Berenice; Castillo, Alejandro; Guijarro-Fuentes, Pedro

    2008-09-01

    Spatial demonstratives (this/that) play a crucial role when indicating object locations using language. However, the relationship between the use of these proximal and distal linguistic descriptors and the near (peri-personal) versus far (extra-personal) perceptual space distinction is a source of controversy [Kemmerer, D. (1999). "Near" and "far" in language and perception. Cognition 73, 35-63], and has been hitherto under investigated. Two experiments examined the influence of object distance from speaker, tool use (participants pointed at objects with their finger/arm or with a stick), and interaction with objects (whether or not participants placed objects themselves) on spatial demonstrative use (e.g. this/that red triangle) in English (this/that) and Spanish (este/ese/aquel). The results show that the use of demonstratives across two languages is affected by distance from speaker and by both tool use and interaction with objects. These results support the view that spatial demonstrative use corresponds with a basic distinction between near and far perceptual space.

  14. Examining Chemistry Students Visual-Perceptual Skills Using the VSCS Tool and Interview Data

    ERIC Educational Resources Information Center

    Christian, Caroline

    2010-01-01

    The Visual-Spatial Chemistry Specific (VSCS) assessment tool was developed to test students' visual-perceptual skills, which are required to form a mental image of an object. The VSCS was designed around the theoretical framework of Rochford and Archer that provides eight distinct and well-defined visual-perceptual skills with identified problems…

  15. A perceptual metric for photo retouching.

    PubMed

    Kee, Eric; Farid, Hany

    2011-12-13

    In recent years, advertisers and magazine editors have been widely criticized for taking digital photo retouching to an extreme. Impossibly thin, tall, and wrinkle- and blemish-free models are routinely splashed onto billboards, advertisements, and magazine covers. The ubiquity of these unrealistic and highly idealized images has been linked to eating disorders and body image dissatisfaction in men, women, and children. In response, several countries have considered legislating the labeling of retouched photos. We describe a quantitative and perceptually meaningful metric of photo retouching. Photographs are rated on the degree to which they have been digitally altered by explicitly modeling and estimating geometric and photometric changes. This metric correlates well with perceptual judgments of photo retouching and can be used to objectively judge by how much a retouched photo has strayed from reality.

  16. Linkage of additional contents to moving objects and video shots in a generic media framework for interactive television

    NASA Astrophysics Data System (ADS)

    Lopez, Alejandro; Noe, Miquel; Fernandez, Gabriel

    2004-10-01

    The GMF4iTV project (Generic Media Framework for Interactive Television) is an IST European project that consists of an end-to-end broadcasting platform providing interactivity on heterogeneous multimedia devices such as Set-Top-Boxes and PCs according to the Multimedia Home Platform (MHP) standard from DVB. This platform allows the content providers to create enhanced audiovisual contents with a degree of interactivity at moving object level or shot change from a video. The end user is then able to interact with moving objects from the video or individual shots allowing the enjoyment of additional contents associated to them (MHP applications, HTML pages, JPEG, MPEG4 files...). This paper focus the attention to the issues related to metadata and content transmission, synchronization, signaling and bitrate allocation of the GMF4iTV project.

  17. Violent video game players and non-players differ on facial emotion recognition.

    PubMed

    Diaz, Ruth L; Wong, Ulric; Hodgins, David C; Chiu, Carina G; Goghari, Vina M

    2016-01-01

    Violent video game playing has been associated with both positive and negative effects on cognition. We examined whether playing two or more hours of violent video games a day, compared to not playing video games, was associated with a different pattern of recognition of five facial emotions, while controlling for general perceptual and cognitive differences that might also occur. Undergraduate students were categorized as violent video game players (n = 83) or non-gamers (n = 69) and completed a facial recognition task, consisting of an emotion recognition condition and a control condition of gender recognition. Additionally, participants completed questionnaires assessing their video game and media consumption, aggression, and mood. Violent video game players recognized fearful faces both more accurately and quickly and disgusted faces less accurately than non-gamers. Desensitization to violence, constant exposure to fear and anxiety during game playing, and the habituation to unpleasant stimuli, are possible mechanisms that could explain these results. Future research should evaluate the effects of violent video game playing on emotion processing and social cognition more broadly. © 2015 Wiley Periodicals, Inc.

  18. Learning a Continuous-Time Streaming Video QoE Model.

    PubMed

    Ghadiyaram, Deepti; Pan, Janice; Bovik, Alan C

    2018-05-01

    Over-the-top adaptive video streaming services are frequently impacted by fluctuating network conditions that can lead to rebuffering events (stalling events) and sudden bitrate changes. These events visually impact video consumers' quality of experience (QoE) and can lead to consumer churn. The development of models that can accurately predict viewers' instantaneous subjective QoE under such volatile network conditions could potentially enable the more efficient design of quality-control protocols for media-driven services, such as YouTube, Amazon, Netflix, and so on. However, most existing models only predict a single overall QoE score on a given video and are based on simple global video features, without accounting for relevant aspects of human perception and behavior. We have created a QoE evaluator, called the time-varying QoE Indexer, that accounts for interactions between stalling events, analyzes the spatial and temporal content of a video, predicts the perceptual video quality, models the state of the client-side data buffer, and consequently predicts continuous-time quality scores that agree quite well with human opinion scores. The new QoE predictor also embeds the impact of relevant human cognitive factors, such as memory and recency, and their complex interactions with the video content being viewed. We evaluated the proposed model on three different video databases and attained standout QoE prediction performance.

  19. High-resolution imaging of expertise reveals reliable object selectivity in the fusiform face area related to perceptual performance

    PubMed Central

    McGugin, Rankin Williams; Gatenby, J. Christopher; Gore, John C.; Gauthier, Isabel

    2012-01-01

    The fusiform face area (FFA) is a region of human cortex that responds selectively to faces, but whether it supports a more general function relevant for perceptual expertise is debated. Although both faces and objects of expertise engage many brain areas, the FFA remains the focus of the strongest modular claims and the clearest predictions about expertise. Functional MRI studies at standard-resolution (SR-fMRI) have found responses in the FFA for nonface objects of expertise, but high-resolution fMRI (HR-fMRI) in the FFA [Grill-Spector K, et al. (2006) Nat Neurosci 9:1177–1185] and neurophysiology in face patches in the monkey brain [Tsao DY, et al. (2006) Science 311:670–674] reveal no reliable selectivity for objects. It is thus possible that FFA responses to objects with SR-fMRI are a result of spatial blurring of responses from nonface-selective areas, potentially driven by attention to objects of expertise. Using HR-fMRI in two experiments, we provide evidence of reliable responses to cars in the FFA that correlate with behavioral car expertise. Effects of expertise in the FFA for nonface objects cannot be attributed to spatial blurring beyond the scale at which modular claims have been made, and within the lateral fusiform gyrus, they are restricted to a small area (200 mm2 on the right and 50 mm2 on the left) centered on the peak of face selectivity. Experience with a category may be sufficient to explain the spatially clustered face selectivity observed in this region. PMID:23027970

  20. High-resolution imaging of expertise reveals reliable object selectivity in the fusiform face area related to perceptual performance.

    PubMed

    McGugin, Rankin Williams; Gatenby, J Christopher; Gore, John C; Gauthier, Isabel

    2012-10-16

    The fusiform face area (FFA) is a region of human cortex that responds selectively to faces, but whether it supports a more general function relevant for perceptual expertise is debated. Although both faces and objects of expertise engage many brain areas, the FFA remains the focus of the strongest modular claims and the clearest predictions about expertise. Functional MRI studies at standard-resolution (SR-fMRI) have found responses in the FFA for nonface objects of expertise, but high-resolution fMRI (HR-fMRI) in the FFA [Grill-Spector K, et al. (2006) Nat Neurosci 9:1177-1185] and neurophysiology in face patches in the monkey brain [Tsao DY, et al. (2006) Science 311:670-674] reveal no reliable selectivity for objects. It is thus possible that FFA responses to objects with SR-fMRI are a result of spatial blurring of responses from nonface-selective areas, potentially driven by attention to objects of expertise. Using HR-fMRI in two experiments, we provide evidence of reliable responses to cars in the FFA that correlate with behavioral car expertise. Effects of expertise in the FFA for nonface objects cannot be attributed to spatial blurring beyond the scale at which modular claims have been made, and within the lateral fusiform gyrus, they are restricted to a small area (200 mm(2) on the right and 50 mm(2) on the left) centered on the peak of face selectivity. Experience with a category may be sufficient to explain the spatially clustered face selectivity observed in this region.

  1. Analysis and segmentation of images in case of solving problems of detecting and tracing objects on real-time video

    NASA Astrophysics Data System (ADS)

    Ezhova, Kseniia; Fedorenko, Dmitriy; Chuhlamov, Anton

    2016-04-01

    The article deals with the methods of image segmentation based on color space conversion, and allow the most efficient way to carry out the detection of a single color in a complex background and lighting, as well as detection of objects on a homogeneous background. The results of the analysis of segmentation algorithms of this type, the possibility of their implementation for creating software. The implemented algorithm is very time-consuming counting, making it a limited application for the analysis of the video, however, it allows us to solve the problem of analysis of objects in the image if there is no dictionary of images and knowledge bases, as well as the problem of choosing the optimal parameters of the frame quantization for video analysis.

  2. The effect of a sequential structure of practice for the training of perceptual-cognitive skills in tennis

    PubMed Central

    2017-01-01

    Objective Anticipation of opponent actions, through the use of advanced (i.e., pre-event) kinematic information, can be trained using video-based temporal occlusion. Typically, this involves isolated opponent skills/shots presented as trials in a random order. However, two different areas of research concerning representative task design and contextual (non-kinematic) information, suggest this structure of practice restricts expert performance. The aim of this study was to examine the effect of a sequential structure of practice during video-based training of anticipatory behavior in tennis, as well as the transfer of these skills to the performance environment. Methods In a pre-practice-retention-transfer design, participants viewed life-sized video of tennis rallies across practice in either a sequential order (sequential group), in which participants were exposed to opponent skills/shots in the order they occur in the sport, or a non-sequential (non-sequential group) random order. Results In the video-based retention test, the sequential group was significantly more accurate in their anticipatory judgments when the retention condition replicated the sequential structure compared to the non-sequential group. In the non-sequential retention condition, the non-sequential group was more accurate than the sequential group. In the field-based transfer test, overall decision time was significantly faster in the sequential group compared to the non-sequential group. Conclusion Findings highlight the benefits of a sequential structure of practice for the transfer of anticipatory behavior in tennis. We discuss the role of contextual information, and the importance of representative task design, for the testing and training of perceptual-cognitive skills in sport. PMID:28355263

  3. Visual prediction and perceptual expertise

    PubMed Central

    Cheung, Olivia S.; Bar, Moshe

    2012-01-01

    Making accurate predictions about what may happen in the environment requires analogies between perceptual input and associations in memory. These elements of predictions are based on cortical representations, but little is known about how these processes can be enhanced by experience and training. On the other hand, studies on perceptual expertise have revealed that the acquisition of expertise leads to strengthened associative processing among features or objects, suggesting that predictions and expertise may be tightly connected. Here we review the behavioral and neural findings regarding the mechanisms involving prediction and expert processing, and highlight important possible overlaps between them. Future investigation should examine the relations among perception, memory and prediction skills as a function of expertise. The knowledge gained by this line of research will have implications for visual cognition research, and will advance our understanding of how the human brain can improve its ability to predict by learning from experience. PMID:22123523

  4. Semantic-based surveillance video retrieval.

    PubMed

    Hu, Weiming; Xie, Dan; Fu, Zhouyu; Zeng, Wenrong; Maybank, Steve

    2007-04-01

    Visual surveillance produces large amounts of video data. Effective indexing and retrieval from surveillance video databases are very important. Although there are many ways to represent the content of video clips in current video retrieval algorithms, there still exists a semantic gap between users and retrieval systems. Visual surveillance systems supply a platform for investigating semantic-based video retrieval. In this paper, a semantic-based video retrieval framework for visual surveillance is proposed. A cluster-based tracking algorithm is developed to acquire motion trajectories. The trajectories are then clustered hierarchically using the spatial and temporal information, to learn activity models. A hierarchical structure of semantic indexing and retrieval of object activities, where each individual activity automatically inherits all the semantic descriptions of the activity model to which it belongs, is proposed for accessing video clips and individual objects at the semantic level. The proposed retrieval framework supports various queries including queries by keywords, multiple object queries, and queries by sketch. For multiple object queries, succession and simultaneity restrictions, together with depth and breadth first orders, are considered. For sketch-based queries, a method for matching trajectories drawn by users to spatial trajectories is proposed. The effectiveness and efficiency of our framework are tested in a crowded traffic scene.

  5. Effects of Perceptually Rich Manipulatives on Preschoolers' Counting Performance: Established Knowledge Counts

    ERIC Educational Resources Information Center

    Petersen, Lori A.; McNeil, Nicole M.

    2013-01-01

    Educators often use concrete objects to help children understand mathematics concepts. However, findings on the effectiveness of concrete objects are mixed. The present study examined how two factors--perceptual richness and established knowledge of the objects--combine to influence children's counting performance. In two experiments, preschoolers…

  6. Video Game Rehabilitation of Velopharyngeal Dysfunction: A Case Series

    PubMed Central

    Mittelman, Talia; Braden, Maia N.; Woodnorth, Geralyn Harvey; Stepp, Cara E.

    2017-01-01

    Purpose Video games provide a promising platform for rehabilitation of speech disorders. Although video games have been used to train speech perception in foreign language learners and have been proposed for aural rehabilitation, their use in speech therapy has been limited thus far. We present feasibility results from at-home use in a case series of children with velopharyngeal dysfunction (VPD) using an interactive video game that provided real-time biofeedback to facilitate appropriate nasalization. Method Five participants were recruited across a range of ages, VPD severities, and VPD etiologies. Participants completed multiple weeks of individual game play with a video game that provides feedback on nasalization measured via nasal accelerometry. Nasalization was assessed before and after training by using nasometry, aerodynamic measures, and expert perceptual judgments. Results Four participants used the game at home or school, with the remaining participant unwilling to have the nasal accelerometer secured to his nasal skin, perhaps due to his young age. The remaining participants showed a tendency toward decreased nasalization after training, particularly for the words explicitly trained in the video game. Conclusion Results suggest that video game–based systems may provide a useful rehabilitation platform for providing real-time feedback of speech nasalization in VPD. Supplemental Material https://doi.org/10.23641/asha.5116828 PMID:28655049

  7. Video Game Rehabilitation of Velopharyngeal Dysfunction: A Case Series.

    PubMed

    Cler, Gabriel J; Mittelman, Talia; Braden, Maia N; Woodnorth, Geralyn Harvey; Stepp, Cara E

    2017-06-22

    Video games provide a promising platform for rehabilitation of speech disorders. Although video games have been used to train speech perception in foreign language learners and have been proposed for aural rehabilitation, their use in speech therapy has been limited thus far. We present feasibility results from at-home use in a case series of children with velopharyngeal dysfunction (VPD) using an interactive video game that provided real-time biofeedback to facilitate appropriate nasalization. Five participants were recruited across a range of ages, VPD severities, and VPD etiologies. Participants completed multiple weeks of individual game play with a video game that provides feedback on nasalization measured via nasal accelerometry. Nasalization was assessed before and after training by using nasometry, aerodynamic measures, and expert perceptual judgments. Four participants used the game at home or school, with the remaining participant unwilling to have the nasal accelerometer secured to his nasal skin, perhaps due to his young age. The remaining participants showed a tendency toward decreased nasalization after training, particularly for the words explicitly trained in the video game. Results suggest that video game-based systems may provide a useful rehabilitation platform for providing real-time feedback of speech nasalization in VPD. https://doi.org/10.23641/asha.5116828.

  8. Interactive floating windows: a new technique for stereoscopic video games

    NASA Astrophysics Data System (ADS)

    Zerebecki, Chris; Stanfield, Brodie; Tawadrous, Mina; Buckstein, Daniel; Hogue, Andrew; Kapralos, Bill

    2012-03-01

    The film industry has a long history of creating compelling experiences in stereoscopic 3D. Recently, the video game as an artistic medium has matured into an effective way to tell engaging and immersive stories. Given the current push to bring stereoscopic 3D technology into the consumer market there is considerable interest to develop stereoscopic 3D video games. Game developers have largely ignored the need to design their games specifically for stereoscopic 3D and have thus relied on automatic conversion and driver technology. Game developers need to evaluate solutions used in other media, such as film, to correct perceptual problems such as window violations, and modify or create new solutions to work within an interactive framework. In this paper we extend the dynamic floating window technique into the interactive domain enabling the player to position a virtual window in space. Interactively changing the position, size, and the 3D rotation of the virtual window, objects can be made to 'break the mask' dramatically enhancing the stereoscopic effect. By demonstrating that solutions from the film industry can be extended into the interactive space, it is our hope that this initiates further discussion in the game development community to strengthen their story-telling mechanisms in stereoscopic 3D games.

  9. A focus group study of the use of video-recorded simulated objective structured clinical examinations in nurse practitioner education.

    PubMed

    Barratt, Julian

    2010-05-01

    The objective structured clinical examination (OSCE) is a common method of clinical skills assessment used for advanced nurse practitioner students across the United Kingdom. The purpose of an advanced nursing OSCE is to assess a nurse practitioner student's competence and safety in the performance of commonly used advanced clinical practice skills. Students often feel nervous when preparing for and participating in an OSCE. Consideration of these identified anxieties led to the development of an alternative method of meeting students' OSCE learning and preparation needs; namely video-recorded simulated OSCEs. Video-recording was appealing for the following reasons: it provides a flexible usage of staff resources and time; OSCE performance mistakes can be rectified; it is possible to use the same video-recordings with multiple cohorts of students, and the recordings can be made conveniently available for students with video streaming on internet-based video-sharing sites or virtual learning environments. The aim of the study was to explore the value of using such recordings amongst nurse practitioner students, via online and face-to-face focus groups, to see if they are a suitable OSCE educational preparation technique. The study findings indicate that simulated OSCE video-recordings are an effective method for supporting nurse practitioner educational development. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. Action and puzzle video games prime different speed/accuracy tradeoffs.

    PubMed

    Nelson, Rolf A; Strachan, Ian

    2009-01-01

    To understand the way in which video-game play affects subsequent perception and cognitive strategy, two experiments were performed in which participants played either a fast-action game or a puzzle-solving game. Before and after video-game play, participants performed a task in which both speed and accuracy were emphasized. In experiment 1 participants engaged in a location task in which they clicked a mouse on the spot where a target had appeared, and in experiment 2 they were asked to judge which of four shapes was most similar to a target shape. In both experiments, participants were much faster but less accurate after playing the action game, while they were slower but more accurate after playing the puzzle game. Results are discussed in terms of a taxonomy of video games by their cognitive and perceptual demands.

  11. Perceptual Anomalies in Schizophrenia: Integrating Phenomenology and Cognitive Neuroscience

    PubMed Central

    Uhlhaas, Peter J.; Mishara, Aaron L.

    2007-01-01

    From phenomenological and experimental perspectives, research in schizophrenia has emphasized deficits in “higher” cognitive functions, including attention, executive function, as well as memory. In contrast, general consensus has viewed dysfunctions in basic perceptual processes to be relatively unimportant in the explanation of more complex aspects of the disorder, including changes in self-experience and the development of symptoms such as delusions. We present evidence from phenomenology and cognitive neuroscience that changes in the perceptual field in schizophrenia may represent a core impairment. After introducing the phenomenological approach to perception (Husserl, the Gestalt School), we discuss the views of Paul Matussek, Klaus Conrad, Ludwig Binswanger, and Wolfgang Blankenburg on perception in schizophrenia. These 4 psychiatrists describe changes in perception and automatic processes that are related to the altered experience of self. The altered self-experience, in turn, may be responsible for the emergence of delusions. The phenomenological data are compatible with current research that conceptualizes dysfunctions in perceptual processing as a deficit in the ability to combine stimulus elements into coherent object representations. Relationships of deficits in perceptual organization to cognitive and social dysfunction as well as the possible neurobiological mechanisms are discussed. PMID:17118973

  12. Improved probabilistic inference as a general learning mechanism with action video games.

    PubMed

    Green, C Shawn; Pouget, Alexandre; Bavelier, Daphne

    2010-09-14

    Action video game play benefits performance in an array of sensory, perceptual, and attentional tasks that go well beyond the specifics of game play [1-9]. That a training regimen may induce improvements in so many different skills is notable because the majority of studies on training-induced learning report improvements on the trained task but limited transfer to other, even closely related, tasks ([10], but see also [11-13]). Here we ask whether improved probabilistic inference may explain such broad transfer. By using a visual perceptual decision making task [14, 15], the present study shows for the first time that action video game experience does indeed improve probabilistic inference. A neural model of this task [16] establishes how changing a single parameter, namely the strength of the connections between the neural layer providing the momentary evidence and the layer integrating the evidence over time, captures improvements in action-gamers behavior. These results were established in a visual, but also in a novel auditory, task, indicating generalization across modalities. Thus, improved probabilistic inference provides a general mechanism for why action video game playing enhances performance in a wide variety of tasks. In addition, this mechanism may serve as a signature of training regimens that are likely to produce transfer of learning. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Interplay Between the Object and Its Symbol: The Size-Congruency Effect

    PubMed Central

    Shen, Manqiong; Xie, Jiushu; Liu, Wenjuan; Lin, Wenjie; Chen, Zhuoming; Marmolejo-Ramos, Fernando; Wang, Ruiming

    2016-01-01

    Grounded cognition suggests that conceptual processing shares cognitive resources with perceptual processing. Hence, conceptual processing should be affected by perceptual processing, and vice versa. The current study explored the relationship between conceptual and perceptual processing of size. Within a pair of words, we manipulated the font size of each word, which was either congruent or incongruent with the actual size of the referred object. In Experiment 1a, participants compared object sizes that were referred to by word pairs. Higher accuracy was observed in the congruent condition (e.g., word pairs referring to larger objects in larger font sizes) than in the incongruent condition. This is known as the size-congruency effect. In Experiments 1b and 2, participants compared the font sizes of these word pairs. The size-congruency effect was not observed. In Experiments 3a and 3b, participants compared object and font sizes of word pairs depending on a task cue. Results showed that perceptual processing affected conceptual processing, and vice versa. This suggested that the association between conceptual and perceptual processes may be bidirectional but further modulated by semantic processing. Specifically, conceptual processing might only affect perceptual processing when semantic information is activated. The current study PMID:27512529

  14. Video quality assesment using M-SVD

    NASA Astrophysics Data System (ADS)

    Tao, Peining; Eskicioglu, Ahmet M.

    2007-01-01

    Objective video quality measurement is a challenging problem in a variety of video processing application ranging from lossy compression to printing. An ideal video quality measure should be able to mimic the human observer. We present a new video quality measure, M-SVD, to evaluate distorted video sequences based on singular value decomposition. A computationally efficient approach is developed for full-reference (FR) video quality assessment. This measure is tested on the Video Quality Experts Group (VQEG) phase I FR-TV test data set. Our experiments show the graphical measure displays the amount of distortion as well as the distribution of error in all frames of the video sequence while the numerical measure has a good correlation with perceived video quality outperforms PSNR and other objective measures by a clear margin.

  15. Practical, Real-Time, and Robust Watermarking on the Spatial Domain for High-Definition Video Contents

    NASA Astrophysics Data System (ADS)

    Kim, Kyung-Su; Lee, Hae-Yeoun; Im, Dong-Hyuck; Lee, Heung-Kyu

    Commercial markets employ digital right management (DRM) systems to protect valuable high-definition (HD) quality videos. DRM system uses watermarking to provide copyright protection and ownership authentication of multimedia contents. We propose a real-time video watermarking scheme for HD video in the uncompressed domain. Especially, our approach is in aspect of practical perspectives to satisfy perceptual quality, real-time processing, and robustness requirements. We simplify and optimize human visual system mask for real-time performance and also apply dithering technique for invisibility. Extensive experiments are performed to prove that the proposed scheme satisfies the invisibility, real-time processing, and robustness requirements against video processing attacks. We concentrate upon video processing attacks that commonly occur in HD quality videos to display on portable devices. These attacks include not only scaling and low bit-rate encoding, but also malicious attacks such as format conversion and frame rate change.

  16. Video library for video imaging detection at intersection stop lines.

    DOT National Transportation Integrated Search

    2010-04-01

    The objective of this activity was to record video that could be used for controlled : evaluation of video image vehicle detection system (VIVDS) products and software upgrades to : existing products based on a list of conditions that might be diffic...

  17. Keeping up with video game technology: objective analysis of Xbox Kinect™ and PlayStation 3 Move™ for use in burn rehabilitation.

    PubMed

    Parry, Ingrid; Carbullido, Clarissa; Kawada, Jason; Bagley, Anita; Sen, Soman; Greenhalgh, David; Palmieri, Tina

    2014-08-01

    Commercially available interactive video games are commonly used in rehabilitation to aide in physical recovery from a variety of conditions and injuries, including burns. Most video games were not originally designed for rehabilitation purposes and although some games have shown therapeutic potential in burn rehabilitation, the physical demands of more recently released video games, such as Microsoft Xbox Kinect™ (Kinect) and Sony PlayStation 3 Move™ (PS Move), have not been objectively evaluated. Video game technology is constantly evolving and demonstrating different immersive qualities and interactive demands that may or may not have therapeutic potential for patients recovering from burns. This study analyzed the upper extremity motion demands of Kinect and PS Move using three-dimensional motion analysis to determine their applicability in burn rehabilitation. Thirty normal children played each video game while real-time movement of their upper extremities was measured to determine maximal excursion and amount of elevation time. Maximal shoulder flexion, shoulder abduction and elbow flexion range of motion were significantly greater while playing Kinect than the PS Move (p≤0.01). Elevation time of the arms above 120° was also significantly longer with Kinect (p<0.05). The physical demands for shoulder and elbow range of motion while playing the Kinect, and to a lesser extent PS Move, are comparable to functional motion needed for daily tasks such as eating with a utensil and hair combing. Therefore, these more recently released commercially available video games show therapeutic potential in burn rehabilitation. Objectively quantifying the physical demands of video games commonly used in rehabilitation aides clinicians in the integration of them into practice and lays the framework for further research on their efficacy. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  18. The fate of task-irrelevant visual motion: perceptual load versus feature-based attention.

    PubMed

    Taya, Shuichiro; Adams, Wendy J; Graf, Erich W; Lavie, Nilli

    2009-11-18

    We tested contrasting predictions derived from perceptual load theory and from recent feature-based selection accounts. Observers viewed moving, colored stimuli and performed low or high load tasks associated with one stimulus feature, either color or motion. The resultant motion aftereffect (MAE) was used to evaluate attentional allocation. We found that task-irrelevant visual features received less attention than co-localized task-relevant features of the same objects. Moreover, when color and motion features were co-localized yet perceived to belong to two distinct surfaces, feature-based selection was further increased at the expense of object-based co-selection. Load theory predicts that the MAE for task-irrelevant motion would be reduced with a higher load color task. However, this was not seen for co-localized features; perceptual load only modulated the MAE for task-irrelevant motion when this was spatially separated from the attended color location. Our results suggest that perceptual load effects are mediated by spatial selection and do not generalize to the feature domain. Feature-based selection operates to suppress processing of task-irrelevant, co-localized features, irrespective of perceptual load.

  19. Emotional memory is perceptual.

    PubMed

    Arntz, Arnoud; de Groot, Corlijn; Kindt, Merel

    2005-03-01

    In two experiments it was investigated which aspects of memory are influenced by emotion. Using a framework proposed by Roediger (American Psychologist 45 (1990) 1043-1056), two dimensions relevant for memory were distinguished the implicit-explicit distinction, and the perceptual versus conceptual distinction. In week 1, subjects viewed a series of slides accompanied with a spoken story in either of the two versions, a neutral version, or a version with an emotional mid-phase. In week 2, memory performance for the slides and story was assessed unexpectedly. A free recall test revealed superior memory in the emotional condition for the story's mid-phase stimuli as compared to the neutral condition, replicating earlier findings. Furthermore, memory performance was assessed using tests that systematically assessed all combinations of implicit versus explicit and perceptual versus conceptual memory. Subjects who had listened to the emotional story had superior perceptual memory, on both implicit and explicit level, compared to those who had listened to the neutral story. Conceptual memory was not superior in the emotional condition. The results suggest that emotion specifically promotes perceptual memory, probably by better encoding of perceptual aspects of emotional experiences. This might be related to the prominent position of perceptual memories in traumatic memory, manifest in intrusions, nightmares and reliving experiences.

  20. Perceptual Wholes Can Reduce the Conscious Accessibility of Their Parts

    ERIC Educational Resources Information Center

    Poljac, Ervin; de-Wit, Lee; Wagemans, Johan

    2012-01-01

    Humans can rapidly extract object and category information from an image despite surprising limitations in detecting changes to the individual parts of that image. In this article we provide evidence that the construction of a perceptual whole, or Gestalt, reduces awareness of changes to the parts of this object. This result suggests that the…

  1. The mere exposure effect is sensitive to color information: evidence for color effects in a perceptual implicit memory test.

    PubMed

    Hupbach, Almut; Melzer, André; Hardt, Oliver

    2006-01-01

    Priming effects in perceptual tests of implicit memory are assumed to be perceptually specific. Surprisingly, changing object colors from study to test did not diminish priming in most previous studies. However, these studies used implicit tests that are based on object identification, which mainly depends on the analysis of the object shape and therefore operates color-independently. The present study shows that color effects can be found in perceptual implicit tests when the test task requires the processing of color information. In Experiment 1, reliable color priming was found in a mere exposure design (preference test). In Experiment 2, the preference test was contrasted with a conceptually driven color-choice test. Altering the shape of object from study to test resulted in significant priming in the color-choice test but eliminated priming in the preference test. Preference judgments thus largely depend on perceptual processes. In Experiment 3, the preference and the color-choice test were studied under explicit test instructions. Differences in reaction times between the implicit and the explicit test suggest that the implicit test results were not an artifact of explicit retrieval attempts. In contrast with previous assumptions, it is therefore concluded that color is part of the representation that mediates perceptual priming.

  2. Perceptual Processing Affects Conceptual Processing

    ERIC Educational Resources Information Center

    van Dantzig, Saskia; Pecher, Diane; Zeelenberg, Rene; Barsalou, Lawrence W.

    2008-01-01

    According to the Perceptual Symbols Theory of cognition (Barsalou, 1999), modality-specific simulations underlie the representation of concepts. A strong prediction of this view is that perceptual processing affects conceptual processing. In this study, participants performed a perceptual detection task and a conceptual property-verification task…

  3. Kinematic cues in perceptual weight judgement and their origins in box lifting

    PubMed Central

    Hamilton, A.; Joyce, D. W.; Flanagan, R.; Frith, C. D.; Wolpert, D. M.

    2009-01-01

    When accepting a parcel from another person, we are able to use information about that person’s movement to estimate in advance the weight of the parcel, that is, to judge its weight from observed action. Perceptual weight judgment provides a powerful method to study our interpretation of other people’s actions, but it is not known what sources of information are used in judging weight. We have manipulated full form videos to obtain precise control of the perceived kinematics of a box lifting action, and use this technique to explore the kinematic cues that affect weight judgment. We find that observers rely most on the duration of the lifting movement to judge weight, and make less use of the durations of the grasp phase, when the box is first gripped, or the place phase, when the box is put down. These findings can be compared to the kinematics of natural box lifting behaviour, where we find that the duration of the grasp component is the best predictor of true box weight. The lack of accord between the optimal cues predicted by the natural behaviour and the cues actually used in the perceptual task has implications for our understanding of action observation in terms of a motor simulation. The differences between perceptual and motor behaviour are evidence against a strong version of the motor simulation hypothesis. PMID:16311765

  4. Annotation of UAV surveillance video

    NASA Astrophysics Data System (ADS)

    Howlett, Todd; Robertson, Mark A.; Manthey, Dan; Krol, John

    2004-08-01

    Significant progress toward the development of a video annotation capability is presented in this paper. Research and development of an object tracking algorithm applicable for UAV video is described. Object tracking is necessary for attaching the annotations to the objects of interest. A methodology and format is defined for encoding video annotations using the SMPTE Key-Length-Value encoding standard. This provides the following benefits: a non-destructive annotation, compliance with existing standards, video playback in systems that are not annotation enabled and support for a real-time implementation. A model real-time video annotation system is also presented, at a high level, using the MPEG-2 Transport Stream as the transmission medium. This work was accomplished to meet the Department of Defense"s (DoD"s) need for a video annotation capability. Current practices for creating annotated products are to capture a still image frame, annotate it using an Electric Light Table application, and then pass the annotated image on as a product. That is not adequate for reporting or downstream cueing. It is too slow and there is a severe loss of information. This paper describes a capability for annotating directly on the video.

  5. Perceptual Aspects of Motor Performance.

    ERIC Educational Resources Information Center

    Gallahue, David L.

    Perceptual-motor functioning is a cyclic process involving: (1) organizing incoming sensory stimuli with past or stored perceptual information; (2) making motor (internal) decisions based on the combination of sensory (present) and perceptual (past) information; (3) executing the actual movement (observable act) itself; and (4) evaluating the act…

  6. Perceptual thresholds for non-ideal diffuse field reverberation.

    PubMed

    Romblom, David; Guastavino, Catherine; Depalle, Philippe

    2016-11-01

    The objective of this study is to understand listeners' sensitivity to directional variations in non-ideal diffuse field reverberation. An ABX discrimination test was conducted using a semi-spherical 28-loudspeaker array; perceptual thresholds were estimated by systematically varying the level of a segment of loudspeakers for lateral, height, and frontal conditions. The overall energy was held constant using a gain compensation scheme. When compared to an ideal diffuse field, the perceptual threshold for detection is -2.5 dB for the lateral condition, -6.8 dB for the height condition, and -3.2 dB for the frontal condition. Measurements of the experimental stimuli were analyzed using a Head and Torso Simulator as well as with opposing cardioid microphones aligned on the three Cartesian axes. Additionally, opposing cardioid measurements made in an acoustic space demonstrate that level differences corresponding to the perceptual thresholds can be found in practice. These results suggest that non-ideal diffuse field reverberation may be a previously unrecognized component of spatial impression.

  7. Perceptual learning in sensorimotor adaptation.

    PubMed

    Darainy, Mohammad; Vahdat, Shahabeddin; Ostry, David J

    2013-11-01

    Motor learning often involves situations in which the somatosensory targets of movement are, at least initially, poorly defined, as for example, in learning to speak or learning the feel of a proper tennis serve. Under these conditions, motor skill acquisition presumably requires perceptual as well as motor learning. That is, it engages both the progressive shaping of sensory targets and associated changes in motor performance. In the present study, we test the idea that perceptual learning alters somatosensory function and in so doing produces changes to human motor performance and sensorimotor adaptation. Subjects in these experiments undergo perceptual training in which a robotic device passively moves the subject's arm on one of a set of fan-shaped trajectories. Subjects are required to indicate whether the robot moved the limb to the right or the left and feedback is provided. Over the course of training both the perceptual boundary and acuity are altered. The perceptual learning is observed to improve both the rate and extent of learning in a subsequent sensorimotor adaptation task and the benefits persist for at least 24 h. The improvement in the present studies varies systematically with changes in perceptual acuity and is obtained regardless of whether the perceptual boundary shift serves to systematically increase or decrease error on subsequent movements. The beneficial effects of perceptual training are found to be substantially dependent on reinforced decision-making in the sensory domain. Passive-movement training on its own is less able to alter subsequent learning in the motor system. Overall, this study suggests perceptual learning plays an integral role in motor learning.

  8. Acetylcholine and Olfactory Perceptual Learning

    ERIC Educational Resources Information Center

    Wilson, Donald A.; Fletcher, Max L.; Sullivan, Regina M.

    2004-01-01

    Olfactory perceptual learning is a relatively long-term, learned increase in perceptual acuity, and has been described in both humans and animals. Data from recent electrophysiological studies have indicated that olfactory perceptual learning may be correlated with changes in odorant receptive fields of neurons in the olfactory bulb and piriform…

  9. Medial perirhinal cortex disambiguates confusable objects

    PubMed Central

    Tyler, Lorraine K.; Monsch, Andreas U.; Taylor, Kirsten I.

    2012-01-01

    Our brain disambiguates the objects in our cluttered visual world seemingly effortlessly, enabling us to understand their significance and to act appropriately. The role of anteromedial temporal structures in this process, particularly the perirhinal cortex, is highly controversial. In some accounts, the perirhinal cortex is necessary for differentiating between perceptually and semantically confusable objects. Other models claim that the perirhinal cortex neither disambiguates perceptually confusable objects nor plays a unique role in semantic processing. One major hurdle to resolving this central debate is the fact that brain damage in human patients typically encompasses large portions of the anteromedial temporal lobe, such that the identification of individual substructures and precise neuroanatomical locus of the functional impairments has been difficult. We tested these competing accounts in patients with Alzheimer’s disease with varying degrees of atrophy in anteromedial structures, including the perirhinal cortex. To assess the functional contribution of each anteromedial temporal region separately, we used a detailed region of interest approach. From each participant, we obtained magnetic resonance imaging scans and behavioural data from a picture naming task that contrasted naming performance with living and non-living things as a way of manipulating perceptual and semantic confusability; living things are more similar to one another than non-living things, which have more distinctive features. We manually traced neuroanatomical regions of interest on native-space cortical surface reconstructions to obtain mean thickness estimates for the lateral and medial perirhinal cortex and entorhinal cortex. Mean cortical thickness in each region of interest, and hippocampal volume, were submitted to regression analyses predicting naming performance. Importantly, atrophy of the medial perirhinal cortex, but not lateral perirhinal cortex, entorhinal cortex or

  10. A no-reference bitstream-based perceptual model for video quality estimation of videos affected by coding artifacts and packet losses

    NASA Astrophysics Data System (ADS)

    Pandremmenou, K.; Shahid, M.; Kondi, L. P.; Lövström, B.

    2015-03-01

    In this work, we propose a No-Reference (NR) bitstream-based model for predicting the quality of H.264/AVC video sequences, affected by both compression artifacts and transmission impairments. The proposed model is based on a feature extraction procedure, where a large number of features are calculated from the packet-loss impaired bitstream. Many of the features are firstly proposed in this work, and the specific set of the features as a whole is applied for the first time for making NR video quality predictions. All feature observations are taken as input to the Least Absolute Shrinkage and Selection Operator (LASSO) regression method. LASSO indicates the most important features, and using only them, it is possible to estimate the Mean Opinion Score (MOS) with high accuracy. Indicatively, we point out that only 13 features are able to produce a Pearson Correlation Coefficient of 0.92 with the MOS. Interestingly, the performance statistics we computed in order to assess our method for predicting the Structural Similarity Index and the Video Quality Metric are equally good. Thus, the obtained experimental results verified the suitability of the features selected by LASSO as well as the ability of LASSO in making accurate predictions through sparse modeling.

  11. Video-based training to improve perceptual-cognitive decision-making performance of Australian football umpires.

    PubMed

    Larkin, Paul; Mesagno, Christopher; Berry, Jason; Spittle, Michael; Harvey, Jack

    2018-02-01

    Decision-making is a central component of the in-game performance of Australian football umpires; however, current umpire training focuses largely on physiological development with decision-making skills development conducted via explicit lecture-style meetings with limited practice devoted to making actual decisions. Therefore, this study investigated the efficacy of a video-based training programme, aimed to provide a greater amount of contextualised visual experiences without explicit instruction, to improve decision-making skills of umpires. Australian football umpires (n = 52) were recruited from metropolitan and regional Division 1 competitions. Participants were randomly assigned to an intervention or control group and classified according to previous umpire game experience (i.e., experienced; less experienced). The intervention group completed a 12-week video-based decision-making training programme, with decision-making performance assessed at pre-training, and 1-week retention and 3-week retention periods. The control group did not complete any video-based training. Results indicated a significant Group (intervention; Control) × Test interaction (F(1, 100) = 3.98; P = 0.02, partial ῆ 2  = 0.074), with follow-up pairwise comparisons indicating significant within-group differences over time for the intervention group. In addition, decision-making performance of the less experienced umpires in the intervention group significantly improved (F(2, 40) = 5.03, P = 0.01, partial ῆ 2  = 0.201). Thus, video-based training programmes may be a viable adjunct to current training programmes to hasten decision-making development, especially for less experienced umpires.

  12. Perceptual Real-Time 2D-to-3D Conversion Using Cue Fusion.

    PubMed

    Leimkuhler, Thomas; Kellnhofer, Petr; Ritschel, Tobias; Myszkowski, Karol; Seidel, Hans-Peter

    2018-06-01

    We propose a system to infer binocular disparity from a monocular video stream in real-time. Different from classic reconstruction of physical depth in computer vision, we compute perceptually plausible disparity, that is numerically inaccurate, but results in a very similar overall depth impression with plausible overall layout, sharp edges, fine details and agreement between luminance and disparity. We use several simple monocular cues to estimate disparity maps and confidence maps of low spatial and temporal resolution in real-time. These are complemented by spatially-varying, appearance-dependent and class-specific disparity prior maps, learned from example stereo images. Scene classification selects this prior at runtime. Fusion of prior and cues is done by means of robust MAP inference on a dense spatio-temporal conditional random field with high spatial and temporal resolution. Using normal distributions allows this in constant-time, parallel per-pixel work. We compare our approach to previous 2D-to-3D conversion systems in terms of different metrics, as well as a user study and validate our notion of perceptually plausible disparity.

  13. Understanding Perceptual Differences; An Exploration of Neurological-Perceptual Roots of Learning Disabilities with Suggestions for Diagnosis and Treatment.

    ERIC Educational Resources Information Center

    Monroe, George E.

    In exploring the bases of learning disabilities, the following areas are considered: a working definition of perceptual handicaps; the relationship of perceptual handicaps to IQ; diagnosing perceptual handicaps; effective learning experiences for the perceptually handicapped child; and recommendations for developing new curricula. The appendixes…

  14. About subjective evaluation of adaptive video streaming

    NASA Astrophysics Data System (ADS)

    Tavakoli, Samira; Brunnström, Kjell; Garcia, Narciso

    2015-03-01

    The usage of HTTP Adaptive Streaming (HAS) technology by content providers is increasing rapidly. Having available the video content in multiple qualities, using HAS allows to adapt the quality of downloaded video to the current network conditions providing smooth video-playback. However, the time-varying video quality by itself introduces a new type of impairment. The quality adaptation can be done in different ways. In order to find the best adaptation strategy maximizing users perceptual quality it is necessary to investigate about the subjective perception of adaptation-related impairments. However, the novelties of these impairments and their comparably long time duration make most of the standardized assessment methodologies fall less suited for studying HAS degradation. Furthermore, in traditional testing methodologies, the quality of the video in audiovisual services is often evaluated separated and not in the presence of audio. Nevertheless, the requirement of jointly evaluating the audio and the video within a subjective test is a relatively under-explored research field. In this work, we address the research question of determining the appropriate assessment methodology to evaluate the sequences with time-varying quality due to the adaptation. This was done by studying the influence of different adaptation related parameters through two different subjective experiments using a methodology developed to evaluate long test sequences. In order to study the impact of audio presence on quality assessment by the test subjects, one of the experiments was done in the presence of audio stimuli. The experimental results were subsequently compared with another experiment using the standardized single stimulus Absolute Category Rating (ACR) methodology.

  15. Hemispheric Differences in the Activation of Perceptual Information during Sentence Comprehension

    ERIC Educational Resources Information Center

    Lincoln, Amy E.; Long, Debra L.; Baynes, Kathleen

    2007-01-01

    Previous research has suggested that perceptual information about objects is activated during sentence comprehension [Zwaan, R. A., Stanfield, R. A., & Yaxley, R. H. (2002). Language comprehenders mentally represent the shapes of objects. "Psychological Science, 13"(2), 168-171]. The goal in the current study was to examine the role of the two…

  16. Decoupling Object Detection and Categorization

    ERIC Educational Resources Information Center

    Mack, Michael L.; Palmeri, Thomas J.

    2010-01-01

    We investigated whether there exists a behavioral dependency between object detection and categorization. Previous work (Grill-Spector & Kanwisher, 2005) suggests that object detection and basic-level categorization may be the very same perceptual mechanism: As objects are parsed from the background they are categorized at the basic level. In…

  17. Atypicalities in Perceptual Adaptation in Autism Do Not Extend to Perceptual Causality

    PubMed Central

    Karaminis, Themelis; Turi, Marco; Neil, Louise; Badcock, Nicholas A.; Burr, David; Pellicano, Elizabeth

    2015-01-01

    A recent study showed that adaptation to causal events (collisions) in adults caused subsequent events to be less likely perceived as causal. In this study, we examined if a similar negative adaptation effect for perceptual causality occurs in children, both typically developing and with autism. Previous studies have reported diminished adaptation for face identity, facial configuration and gaze direction in children with autism. To test whether diminished adaptive coding extends beyond high-level social stimuli (such as faces) and could be a general property of autistic perception, we developed a child-friendly paradigm for adaptation of perceptual causality. We compared the performance of 22 children with autism with 22 typically developing children, individually matched on age and ability (IQ scores). We found significant and equally robust adaptation aftereffects for perceptual causality in both groups. There were also no differences between the two groups in their attention, as revealed by reaction times and accuracy in a change-detection task. These findings suggest that adaptation to perceptual causality in autism is largely similar to typical development and, further, that diminished adaptive coding might not be a general characteristic of autism at low levels of the perceptual hierarchy, constraining existing theories of adaptation in autism. PMID:25774507

  18. Conceptual Distinctiveness Supports Detailed Visual Long-Term Memory for Real-World Objects

    PubMed Central

    Konkle, Talia; Brady, Timothy F.; Alvarez, George A.; Oliva, Aude

    2012-01-01

    Humans have a massive capacity to store detailed information in visual long-term memory. The present studies explored the fidelity of these visual long-term memory representations and examined how conceptual and perceptual features of object categories support this capacity. Observers viewed 2,800 object images with a different number of exemplars presented from each category. At test, observers indicated which of 2 exemplars they had previously studied. Memory performance was high and remained quite high (82% accuracy) with 16 exemplars from a category in memory, demonstrating a large memory capacity for object exemplars. However, memory performance decreased as more exemplars were held in memory, implying systematic categorical interference. Object categories with conceptually distinctive exemplars showed less interference in memory as the number of exemplars increased. Interference in memory was not predicted by the perceptual distinctiveness of exemplars from an object category, though these perceptual measures predicted visual search rates for an object target among exemplars. These data provide evidence that observers’ capacity to remember visual information in long-term memory depends more on conceptual structure than perceptual distinctiveness. PMID:20677899

  19. The Perceptual Root of Object-Based Storage: An Interactive Model of Perception and Visual Working Memory

    ERIC Educational Resources Information Center

    Gao, Tao; Gao, Zaifeng; Li, Jie; Sun, Zhongqiang; Shen, Mowei

    2011-01-01

    Mainstream theories of visual perception assume that visual working memory (VWM) is critical for integrating online perceptual information and constructing coherent visual experiences in changing environments. Given the dynamic interaction between online perception and VWM, we propose that how visual information is processed during visual…

  20. Video conference quality assessment based on cooperative sensing of video and audio

    NASA Astrophysics Data System (ADS)

    Wang, Junxi; Chen, Jialin; Tian, Xin; Zhou, Cheng; Zhou, Zheng; Ye, Lu

    2015-12-01

    This paper presents a method to video conference quality assessment, which is based on cooperative sensing of video and audio. In this method, a proposed video quality evaluation method is used to assess the video frame quality. The video frame is divided into noise image and filtered image by the bilateral filters. It is similar to the characteristic of human visual, which could also be seen as a low-pass filtering. The audio frames are evaluated by the PEAQ algorithm. The two results are integrated to evaluate the video conference quality. A video conference database is built to test the performance of the proposed method. It could be found that the objective results correlate well with MOS. Then we can conclude that the proposed method is efficiency in assessing video conference quality.

  1. The neural systems for perceptual updating.

    PubMed

    Stöttinger, Elisabeth; Aichhorn, Markus; Anderson, Britt; Danckert, James

    2018-04-01

    In a constantly changing environment we must adapt to both abrupt and gradual changes to incoming information. Previously, we demonstrated that a distributed network (including the anterior insula and anterior cingulate cortex) was active when participants updated their initial representations (e.g., it's a cat) in a gradually morphing picture task (e.g., now it's a rabbit; Stöttinger et al., 2015). To shed light on whether these activations reflect the proactive decisions to update or perceptual uncertainty, we introduced two additional conditions. By presenting picture morphs twice we controlled for uncertainty in perceptual decision making. Inducing an abrupt shift in a third condition allowed us to differentiate between a proactive decision in uncertainty-driven updating and a reactive decision in surprise-based updating. We replicated our earlier result, showing the robustness of the effect. In addition, we found activation in the anterior insula (bilaterally) and the mid frontal area/ACC in all three conditions, indicative of the importance of these areas in updating of all kinds. When participants were naïve as to the identity of the second object, we found higher activations in the mid-cingulate cortex and cuneus - areas typically associated with task difficulty, in addition to higher activations in the right TPJ most likely reflecting the shift to a new perspective. Activations associated with the proactive decision to update to a new interpretation were found in a network including the dorsal ACC known to be involved in exploration and the endogenous decision to switch to a new interpretation. These findings suggest a general network commonly engaged in all types of perceptual decision making supported by additional networks associated with perceptual uncertainty or updating provoked by either proactive or reactive decision making. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Visual-perceptual mismatch in robotic surgery.

    PubMed

    Abiri, Ahmad; Tao, Anna; LaRocca, Meg; Guan, Xingmin; Askari, Syed J; Bisley, James W; Dutson, Erik P; Grundfest, Warren S

    2017-08-01

    The principal objective of the experiment was to analyze the effects of the clutch operation of robotic surgical systems on the performance of the operator. The relative coordinate system introduced by the clutch operation can introduce a visual-perceptual mismatch which can potentially have negative impact on a surgeon's performance. We also assess the impact of the introduction of additional tactile sensory information on reducing the impact of visual-perceptual mismatch on the performance of the operator. We asked 45 novice subjects to complete peg transfers using the da Vinci IS 1200 system with grasper-mounted, normal force sensors. The task involves picking up a peg with one of the robotic arms, passing it to the other arm, and then placing it on the opposite side of the view. Subjects were divided into three groups: aligned group (no mismatch), the misaligned group (10 cm z axis mismatch), and the haptics-misaligned group (haptic feedback and z axis mismatch). Each subject performed the task five times, during which the grip force, time of completion, and number of faults were recorded. Compared to the subjects that performed the tasks using a properly aligned controller/arm configuration, subjects with a single-axis misalignment showed significantly more peg drops (p = 0.011) and longer time to completion (p < 0.001). Additionally, it was observed that addition of tactile feedback helps reduce the negative effects of visual-perceptual mismatch in some cases. Grip force data recorded from grasper-mounted sensors showed no difference between the different groups. The visual-perceptual mismatch created by the misalignment of the robotic controls relative to the robotic arms has a negative impact on the operator of a robotic surgical system. Introduction of other sensory information and haptic feedback systems can help in potentially reducing this effect.

  3. The Role of Inhibition in Moving beyond Perceptually Focused Noun Extensions

    ERIC Educational Resources Information Center

    Snape, Simon; Krott, Andrea

    2018-01-01

    When young children interpret novel nouns, they tend to be very much affected by the perceptual features of the referent objects, especially shape. This article investigates whether children might inhibit a prepotent tendency to base novel nouns on the shape of referent objects in order to base them on conceptual features (i.e. taxonomic object…

  4. Interdisciplinary Adventures in Perceptual Ecology

    NASA Astrophysics Data System (ADS)

    Bocast, Christopher S.

    A portfolio dissertation that began as acoustic ecology and matured into perceptual ecology, centered on ecomusicology, bioacoustics, and translational audio-based media works with environmental perspectives. The place of music in Western eco-cosmology through time provides a basis for structuring an environmental history of human sound perception. That history suggests that music may stabilize human mental activity, and that an increased musical practice may be essential for the human project. An overview of recent antecedents preceding the emergence of acoustic ecology reveals structural foundations from 20th century culture that underpin modern sound studies. The contextual role that Aldo Leopold, Jacob von Uexkull, John Cage, Marshall McLuhan, and others played in anticipating the development of acoustic ecology as an interdiscipline is detailed. This interdisciplinary aspect of acoustic ecology is defined and defended, while new developments like soundscape ecology are addressed, though ultimately sound studies will need to embrace a broader concept of full-spectrum "sensory" or "perceptual" ecology. The bioacoustic fieldwork done on spawning sturgeon emphasized this necessity. That study yielded scientific recordings and spectrographic analyses of spawning sounds produced by lake sturgeon, Acipenser fulvescens, during reproduction in natural habitats in the Lake Winnebago watershed in Wisconsin. Recordings were made on the Wolf and Embarrass River during the 2011-2013 spawning seasons. Several specimens were dissected to investigate possible sound production mechanisms; no sonic musculature was found. Drumming sounds, ranging from 5 to 7 Hz fundamental frequency, verified the infrasonic nature of previously undocumented "sturgeon thunder". Other characteristic noises of sturgeon spawning including low-frequency rumbles and hydrodynamic sounds were identified. Intriguingly, high-frequency signals resembling electric organ discharges were discovered. These

  5. Integrated approaches to perceptual learning.

    PubMed

    Jacobs, Robert A

    2010-04-01

    New technologies and new ways of thinking have recently led to rapid expansions in the study of perceptual learning. We describe three themes shared by many of the nine articles included in this topic on Integrated Approaches to Perceptual Learning. First, perceptual learning cannot be studied on its own because it is closely linked to other aspects of cognition, such as attention, working memory, decision making, and conceptual knowledge. Second, perceptual learning is sensitive to both the stimulus properties of the environment in which an observer exists and to the properties of the tasks that the observer needs to perform. Moreover, the environmental and task properties can be characterized through their statistical regularities. Finally, the study of perceptual learning has important implications for society, including implications for science education and medical rehabilitation. Contributed articles relevant to each theme are summarized. Copyright © 2010 Cognitive Science Society, Inc.

  6. Evaluating the relationship between white matter integrity, cognition, and varieties of video game learning.

    PubMed

    Ray, Nicholas R; O'Connell, Margaret A; Nashiro, Kaoru; Smith, Evan T; Qin, Shuo; Basak, Chandramallika

    2017-01-01

    Many studies are currently researching the effects of video games, particularly in the domain of cognitive training. Great variability exists among video games however, and few studies have attempted to compare different types of video games. Little is known, for instance, about the cognitive processes or brain structures that underlie learning of different genres of video games. To examine the cognitive and neural underpinnings of two different types of game learning in order to evaluate their common and separate correlates, with the hopes of informing future intervention research. Participants (31 younger adults and 31 older adults) completed an extensive cognitive battery and played two different genres of video games, one action game and one strategy game, for 1.5 hours each. DTI scans were acquired for each participant, and regional fractional anisotropy (FA) values were extracted using the JHU atlas. Behavioral results indicated that better performance on tasks of working memory and perceptual discrimination was related to enhanced learning in both games, even after controlling for age, whereas better performance on a perceptual speed task was uniquely related with enhanced learning of the strategy game. DTI results indicated that white matter FA in the right fornix/stria terminalis was correlated with action game learning, whereas white matter FA in the left cingulum/hippocampus was correlated with strategy game learning, even after controlling for age. Although cognition, to a large extent, was a common predictor of both types of game learning, regional white matter FA could separately predict action and strategy game learning. Given the neural and cognitive correlates of strategy game learning, strategy games may provide a more beneficial training tool for adults suffering from memory-related disorders or declines in processing speed, particularly older adults.

  7. A video event trigger for high frame rate, high resolution video technology

    NASA Astrophysics Data System (ADS)

    Williams, Glenn L.

    1991-12-01

    When video replaces film the digitized video data accumulates very rapidly, leading to a difficult and costly data storage problem. One solution exists for cases when the video images represent continuously repetitive 'static scenes' containing negligible activity, occasionally interrupted by short events of interest. Minutes or hours of redundant video frames can be ignored, and not stored, until activity begins. A new, highly parallel digital state machine generates a digital trigger signal at the onset of a video event. High capacity random access memory storage coupled with newly available fuzzy logic devices permits the monitoring of a video image stream for long term or short term changes caused by spatial translation, dilation, appearance, disappearance, or color change in a video object. Pretrigger and post-trigger storage techniques are then adaptable for archiving the digital stream from only the significant video images.

  8. A video event trigger for high frame rate, high resolution video technology

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L.

    1991-01-01

    When video replaces film the digitized video data accumulates very rapidly, leading to a difficult and costly data storage problem. One solution exists for cases when the video images represent continuously repetitive 'static scenes' containing negligible activity, occasionally interrupted by short events of interest. Minutes or hours of redundant video frames can be ignored, and not stored, until activity begins. A new, highly parallel digital state machine generates a digital trigger signal at the onset of a video event. High capacity random access memory storage coupled with newly available fuzzy logic devices permits the monitoring of a video image stream for long term or short term changes caused by spatial translation, dilation, appearance, disappearance, or color change in a video object. Pretrigger and post-trigger storage techniques are then adaptable for archiving the digital stream from only the significant video images.

  9. Perceptual Learning: Use-Dependent Cortical Plasticity.

    PubMed

    Li, Wu

    2016-10-14

    Our perceptual abilities significantly improve with practice. This phenomenon, known as perceptual learning, offers an ideal window for understanding use-dependent changes in the adult brain. Different experimental approaches have revealed a diversity of behavioral and cortical changes associated with perceptual learning, and different interpretations have been given with respect to the cortical loci and neural processes responsible for the learning. Accumulated evidence has begun to put together a coherent picture of the neural substrates underlying perceptual learning. The emerging view is that perceptual learning results from a complex interplay between bottom-up and top-down processes, causing a global reorganization across cortical areas specialized for sensory processing, engaged in top-down attentional control, and involved in perceptual decision making. Future studies should focus on the interactions among cortical areas for a better understanding of the general rules and mechanisms underlying various forms of skill learning.

  10. Selection in spatial working memory is independent of perceptual selective attention, but they interact in a shared spatial priority map.

    PubMed

    Hedge, Craig; Oberauer, Klaus; Leonards, Ute

    2015-11-01

    We examined the relationship between the attentional selection of perceptual information and of information in working memory (WM) through four experiments, using a spatial WM-updating task. Participants remembered the locations of two objects in a matrix and worked through a sequence of updating operations, each mentally shifting one dot to a new location according to an arrow cue. Repeatedly updating the same object in two successive steps is typically faster than switching to the other object; this object switch cost reflects the shifting of attention in WM. In Experiment 1, the arrows were presented in random peripheral locations, drawing perceptual attention away from the selected object in WM. This manipulation did not eliminate the object switch cost, indicating that the mechanisms of perceptual selection do not underlie selection in WM. Experiments 2a and 2b corroborated the independence of selection observed in Experiment 1, but showed a benefit to reaction times when the placement of the arrow cue was aligned with the locations of relevant objects in WM. Experiment 2c showed that the same benefit also occurs when participants are not able to mark an updating location through eye fixations. Together, these data can be accounted for by a framework in which perceptual selection and selection in WM are separate mechanisms that interact through a shared spatial priority map.

  11. Perceptual Grouping Affects Pitch Judgments Across Time and Frequency

    PubMed Central

    Borchert, Elizabeth M. O.; Micheyl, Christophe; Oxenham, Andrew J.

    2010-01-01

    Pitch, the perceptual correlate of fundamental frequency (F0), plays an important role in speech, music and animal vocalizations. Changes in F0 over time help define musical melodies and speech prosody, while comparisons of simultaneous F0 are important for musical harmony, and for segregating competing sound sources. This study compared listeners’ ability to detect differences in F0 between pairs of sequential or simultaneous tones that were filtered into separate, non-overlapping spectral regions. The timbre differences induced by filtering led to poor F0 discrimination in the sequential, but not the simultaneous, conditions. Temporal overlap of the two tones was not sufficient to produce good performance; instead performance appeared to depend on the two tones being integrated into the same perceptual object. The results confirm the difficulty of comparing the pitches of sequential sounds with different timbres and suggest that, for simultaneous sounds, pitch differences may be detected through a decrease in perceptual fusion rather than an explicit coding and comparison of the underlying F0s. PMID:21077719

  12. Perceptual-motor regulation in locomotor pointing while approaching a curb.

    PubMed

    Andel, Steven van; Cole, Michael H; Pepping, Gert-Jan

    2018-02-01

    Locomotor pointing is a task that has been the focus of research in the context of sport (e.g. long jumping and cricket) as well as normal walking. Collectively, these studies have produced a broad understanding of locomotor pointing, but generalizability has been limited to laboratory type tasks and/or tasks with high spatial demands. The current study aimed to generalize previous findings in locomotor pointing to the common daily task of approaching and stepping on to a curb. Sixteen people completed 33 repetitions of a task that required them to walk up to and step onto a curb. Information about their foot placement was collected using a combination of measures derived from a pressure-sensitive walkway and video data. Variables related to perceptual-motor regulation were analyzed on an inter-trial, intra-step and inter-step level. Similar to previous studies, analysis of the foot placements showed that, variability in foot placement decreased as the participants drew closer to the curb. Regulation seemed to be initiated earlier in this study compared to previous studies, as shown by a decreasing variability in foot placement as early as eight steps before reaching the curb. Furthermore, it was shown that when walking up to the curb, most people regulated their walk in a way so as to achieve minimal variability in the foot placement on top of the curb, rather than a placement in front of the curb. Combined, these results showed a strong perceptual-motor coupling in the task of approaching and stepping up a curb, rendering this task a suitable test for perceptual-motor regulation in walking. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Automated Video Quality Assessment for Deep-Sea Video

    NASA Astrophysics Data System (ADS)

    Pirenne, B.; Hoeberechts, M.; Kalmbach, A.; Sadhu, T.; Branzan Albu, A.; Glotin, H.; Jeffries, M. A.; Bui, A. O. V.

    2015-12-01

    Video provides a rich source of data for geophysical analysis, often supplying detailed information about the environment when other instruments may not. This is especially true of deep-sea environments, where direct visual observations cannot be made. As computer vision techniques improve and volumes of video data increase, automated video analysis is emerging as a practical alternative to labor-intensive manual analysis. Automated techniques can be much more sensitive to video quality than their manual counterparts, so performing quality assessment before doing full analysis is critical to producing valid results.Ocean Networks Canada (ONC), an initiative of the University of Victoria, operates cabled ocean observatories that supply continuous power and Internet connectivity to a broad suite of subsea instruments from the coast to the deep sea, including video and still cameras. This network of ocean observatories has produced almost 20,000 hours of video (about 38 hours are recorded each day) and an additional 8,000 hours of logs from remotely operated vehicle (ROV) dives. We begin by surveying some ways in which deep-sea video poses challenges for automated analysis, including: 1. Non-uniform lighting: Single, directional, light sources produce uneven luminance distributions and shadows; remotely operated lighting equipment are also susceptible to technical failures. 2. Particulate noise: Turbidity and marine snow are often present in underwater video; particles in the water column can have sharper focus and higher contrast than the objects of interest due to their proximity to the light source and can also influence the camera's autofocus and auto white-balance routines. 3. Color distortion (low contrast): The rate of absorption of light in water varies by wavelength, and is higher overall than in air, altering apparent colors and lowering the contrast of objects at a distance.We also describe measures under development at ONC for detecting and mitigating

  14. The Cleft Care UK study. Part 4: perceptual speech outcomes.

    PubMed

    Sell, D; Mildinhall, S; Albery, L; Wills, A K; Sandy, J R; Ness, A R

    2015-11-01

    To describe the perceptual speech outcomes from the Cleft Care UK (CCUK) study and compare them to the 1998 Clinical Standards Advisory Group (CSAG) audit. A cross-sectional study of 248 children born with complete unilateral cleft lip and palate, between 1 April 2005 and 31 March 2007 who underwent speech assessment. Centre-based specialist speech and language therapists (SLT) took speech audio-video recordings according to nationally agreed guidelines. Two independent listeners undertook the perceptual analysis using the CAPS-A Audit tool. Intra- and inter-rater reliability were tested. For each speech parameter of intelligibility/distinctiveness, hypernasality, palatal/palatalization, backed to velar/uvular, glottal, weak and nasalized consonants, and nasal realizations, there was strong evidence that speech outcomes were better in the CCUK children compared to CSAG children. The parameters which did not show improvement were nasal emission, nasal turbulence, hyponasality and lateral/lateralization. These results suggest that centralization of cleft care into high volume centres has resulted in improvements in UK speech outcomes in five-year-olds with unilateral cleft lip and palate. This may be associated with the development of a specialized workforce. Nevertheless, there still remains a group of children with significant difficulties at school entry. © The Authors. Orthodontics & Craniofacial Research Published by John Wiley & Sons Ltd.

  15. Two-dimensional thermal video analysis of offshore bird and bat flight

    DOE PAGES

    Matzner, Shari; Cullinan, Valerie I.; Duberstein, Corey A.

    2015-09-11

    Thermal infrared video can provide essential information about bird and bat presence and activity for risk assessment studies, but the analysis of recorded video can be time-consuming and may not extract all of the available information. Automated processing makes continuous monitoring over extended periods of time feasible, and maximizes the information provided by video. This is especially important for collecting data in remote locations that are difficult for human observers to access, such as proposed offshore wind turbine sites. We present guidelines for selecting an appropriate thermal camera based on environmental conditions and the physical characteristics of the target animals.more » We developed new video image processing algorithms that automate the extraction of bird and bat flight tracks from thermal video, and that characterize the extracted tracks to support animal identification and behavior inference. The algorithms use a video peak store process followed by background masking and perceptual grouping to extract flight tracks. The extracted tracks are automatically quantified in terms that could then be used to infer animal type and possibly behavior. The developed automated processing generates results that are reproducible and verifiable, and reduces the total amount of video data that must be retained and reviewed by human experts. Finally, we suggest models for interpreting thermal imaging information.« less

  16. Two-dimensional thermal video analysis of offshore bird and bat flight

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matzner, Shari; Cullinan, Valerie I.; Duberstein, Corey A.

    Thermal infrared video can provide essential information about bird and bat presence and activity for risk assessment studies, but the analysis of recorded video can be time-consuming and may not extract all of the available information. Automated processing makes continuous monitoring over extended periods of time feasible, and maximizes the information provided by video. This is especially important for collecting data in remote locations that are difficult for human observers to access, such as proposed offshore wind turbine sites. We present guidelines for selecting an appropriate thermal camera based on environmental conditions and the physical characteristics of the target animals.more » We developed new video image processing algorithms that automate the extraction of bird and bat flight tracks from thermal video, and that characterize the extracted tracks to support animal identification and behavior inference. The algorithms use a video peak store process followed by background masking and perceptual grouping to extract flight tracks. The extracted tracks are automatically quantified in terms that could then be used to infer animal type and possibly behavior. The developed automated processing generates results that are reproducible and verifiable, and reduces the total amount of video data that must be retained and reviewed by human experts. Finally, we suggest models for interpreting thermal imaging information.« less

  17. Object tracking mask-based NLUT on GPUs for real-time generation of holographic videos of three-dimensional scenes.

    PubMed

    Kwon, M-W; Kim, S-C; Yoon, S-E; Ho, Y-S; Kim, E-S

    2015-02-09

    A new object tracking mask-based novel-look-up-table (OTM-NLUT) method is proposed and implemented on graphics-processing-units (GPUs) for real-time generation of holographic videos of three-dimensional (3-D) scenes. Since the proposed method is designed to be matched with software and memory structures of the GPU, the number of compute-unified-device-architecture (CUDA) kernel function calls and the computer-generated hologram (CGH) buffer size of the proposed method have been significantly reduced. It therefore results in a great increase of the computational speed of the proposed method and enables real-time generation of CGH patterns of 3-D scenes. Experimental results show that the proposed method can generate 31.1 frames of Fresnel CGH patterns with 1,920 × 1,080 pixels per second, on average, for three test 3-D video scenarios with 12,666 object points on three GPU boards of NVIDIA GTX TITAN, and confirm the feasibility of the proposed method in the practical application of electro-holographic 3-D displays.

  18. Electrophysiological evidence for effects of color knowledge in object recognition.

    PubMed

    Lu, Aitao; Xu, Guiping; Jin, Hua; Mo, Lei; Zhang, Jijia; Zhang, John X

    2010-01-29

    Knowledge about the typical colors associated with familiar everyday objects (i.e., strawberries are red) is well-known to be represented in the conceptual semantic system. Evidence that such knowledge may also play a role in early perceptual processes for object recognition is scant. In the present ERP study, participants viewed a list of object pictures and detected infrequent stimulus repetitions. Results show that shortly after stimulus onset, ERP components indexing early perceptual processes, including N1, P2, and N2, differentiated between objects in their appropriate or congruent color from these objects in an inappropriate or incongruent color. Such congruence effect also occurred in N3 associated with semantic processing of pictures but not in N4 for domain-general semantic processing. Our results demonstrate a clear effect of color knowledge in early object recognition stages and support the following proposal-color as a surface property is stored in a multiple-memory system where pre-semantic perceptual and semantic conceptual representations interact during object recognition. (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  19. Evaluative pressure overcomes perceptual load effects.

    PubMed

    Normand, Alice; Autin, Frédérique; Croizet, Jean-Claude

    2015-06-01

    Perceptual load has been found to be a powerful bottom-up determinant of distractibility, with high perceptual load preventing distraction by any irrelevant information. However, when under evaluative pressure, individuals exert top-down attentional control by giving greater weight to task-relevant features, making them more distractible from task-relevant distractors. One study tested whether the top-down modulation of attention under evaluative pressure overcomes the beneficial bottom-up effect of high perceptual load on distraction. Using a response-competition task, we replicated previous findings that high levels of perceptual load suppress task-relevant distractor response interference, but only for participants in a control condition. Participants under evaluative pressure (i.e., who believed their intelligence was assessed) showed interference from task-relevant distractor at all levels of perceptual load. This research challenges the assumptions of the perceptual load theory and sheds light on a neglected determinant of distractibility: the self-relevance of the performance situation in which attentional control is solicited.

  20. Perceptuo-motor interactions in the perceptual organization of speech: evidence from the verbal transformation effect

    PubMed Central

    Basirat, Anahita; Schwartz, Jean-Luc; Sato, Marc

    2012-01-01

    The verbal transformation effect (VTE) refers to perceptual switches while listening to a speech sound repeated rapidly and continuously. It is a specific case of perceptual multistability providing a rich paradigm for studying the processes underlying the perceptual organization of speech. While the VTE has been mainly considered as a purely auditory effect, this paper presents a review of recent behavioural and neuroimaging studies investigating the role of perceptuo-motor interactions in the effect. Behavioural data show that articulatory constraints and visual information from the speaker's articulatory gestures can influence verbal transformations. In line with these data, functional magnetic resonance imaging and intracranial electroencephalography studies demonstrate that articulatory-based representations play a key role in the emergence and the stabilization of speech percepts during a verbal transformation task. Overall, these results suggest that perceptuo (multisensory)-motor processes are involved in the perceptual organization of speech and the formation of speech perceptual objects. PMID:22371618

  1. Analysis of Clinicians' Perceptual Cough Evaluation.

    PubMed

    Laciuga, Helena; Brandimore, Alexandra E; Troche, Michelle S; Hegland, Karen W

    2016-08-01

    This study examined the relationships between subjective descriptors and objective airflow measures of cough. We hypothesized that coughs with specific airflow characteristics would share common subjective perceptual descriptions. Thirty clinicians (speech-language pathologists, otolaryngologists, and neurologists) perceptually evaluated ten cough audio samples with specific airflow characteristics determined by peak expiratory flow rate, cough expired volume, cough duration, and number of coughs in the cough epoch. Participants rated coughs by strength, duration, quality, quantity, and overall potential effectiveness for airway protection. Perception of cough strength and effectiveness was determined by the combination of presence of pre-expulsive compression phase, short peak expiratory airflow rate rise time, high peak expiratory flow rates, and high cough volume acceleration. Perception of cough abnormality was defined predominantly by descriptors of breathiness and strain. Breathiness was characteristic for coughs with either absent compression phases and relatively high expiratory airflow rates or coughs with significantly low expired volumes and reduced peak flow rates. In contrast, excessive strain was associated with prolonged compression phases and low expiratory airflow rates or the absence of compression phase with high peak expiratory rates. The study participants reached greatest agreement in distinguishing between single and multiple coughs. Their assessment of cough strength and effectiveness was less consistent. Finally, the least agreement was shown in determining the quality categories. Modifications of cough airflow can influence perceptual cough evaluation outcomes. However, the inconsistency of cough ratings among our participants suggests that a uniform cough rating system is required.

  2. New definitions of 6 clinical signs of perceptual disorder in children with cerebral palsy: an observational study through reliability measures.

    PubMed

    Ferrari, A; Sghedoni, A; Alboresi, S; Pedroni, E; Lombardi, F

    2014-12-01

    Recently authors have begun to emphasize the non-motor aspects of Cerebral Palsy and their influence on motor control and recovery prognosis. Much has been written about single clinical signs (i.e., startle reaction) but so far no definitions of the six perceptual signs presented in this study have appeared in literature. This study defines 6 signs (startle reaction, upper limbs in startle position, frequent eye blinking, posture freezing, averted eye gaze, grimacing) suggestive of perceptual disorders in children with cerebral palsy and measures agreement on sign recognition among independent observers and consistency of opinions over time. Observational study with both cross-sectional and prospective components. Fifty-six videos presented to observers in random order. Videos were taken from 19 children with a bilateral form of cerebral palsy referred to the Children Rehabilitation Unit in Reggio Emilia. Thirty-five rehabilitation professionals from all over Italy: 9 doctors and 26 physiotherapists. Measure of agreement among 35 independent observers was compiled from a sample of 56 videos. Interobserver reliability was determined using the K index of Fleiss and reliability intra-observer was calculated by the Spearman correlation index between ranks (rho - ρ). Percentage of agreement between observers and Gold Standard was used as criterion validity. Interobserver reliability was moderate for startle reaction, upper limb in startle position, adverted eye gaze and eye-blinking and fair for posture freezing and grimacing. Intraobserver reliability remained consistent over time. Criterion validity revealed very high agreement between independent observer evaluation and gold standard. Semiotics of perceptual disorders can be used as a specific and sensitive instrument in order to identify a new class of patients within existing heterogeneous clinical types of bilateral cerebral palsy forms and could help clinicians in identifying functional prognosis. To provide

  3. Video-Based Big Data Analytics in Cyberlearning

    ERIC Educational Resources Information Center

    Wang, Shuangbao; Kelly, William

    2017-01-01

    In this paper, we present a novel system, inVideo, for video data analytics, and its use in transforming linear videos into interactive learning objects. InVideo is able to analyze video content automatically without the need for initial viewing by a human. Using a highly efficient video indexing engine we developed, the system is able to analyze…

  4. Age-related effects on perceptual and semantic encoding in memory.

    PubMed

    Kuo, M C C; Liu, K P Y; Ting, K H; Chan, C C H

    2014-03-07

    This study examined the age-related subsequent memory effect (SME) in perceptual and semantic encoding using event-related potentials (ERPs). Seventeen younger adults and 17 older adults studied a series of Chinese characters either perceptually (by inspecting orthographic components) or semantically (by determining whether the depicted object makes sounds). The two tasks had similar levels of difficulty. The participants made studied or unstudied judgments during the recognition phase. Younger adults performed better in both conditions, with significant SMEs detected in the time windows of P2, N3, P550, and late positive component (LPC). In the older group, SMEs were observed in the P2 and N3 latencies in both conditions but were only detected in the P550 in the semantic condition. Between-group analyses showed larger frontal and central SMEs in the younger sample in the LPC latency regardless of encoding type. Aging effect appears to be stronger on influencing perceptual than semantic encoding processes. The effects seem to be associated with a decline in updating and maintaining representations during perceptual encoding. The age-related decline in the encoding function may be due in part to changes in frontal lobe function. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Differentiation of perceptual and semantic subsequent memory effects using an orthographic paradigm.

    PubMed

    Kuo, Michael C C; Liu, Karen P Y; Ting, Kin Hung; Chan, Chetwyn C H

    2012-11-27

    This study aimed to differentiate perceptual and semantic encoding processes using subsequent memory effects (SMEs) elicited by the recognition of orthographs of single Chinese characters. Participants studied a series of Chinese characters perceptually (by inspecting orthographic components) or semantically (by determining the object making sounds), and then made studied or unstudied judgments during the recognition phase. Recognition performance in terms of d-prime measure in the semantic condition was higher, though not significant, than that of the perceptual condition. The between perceptual-semantic condition differences in SMEs at P550 and late positive component latencies (700-1000ms) were not significant in the frontal area. An additional analysis identified larger SME in the semantic condition during 600-1000ms in the frontal pole regions. These results indicate that coordination and incorporation of orthographic information into mental representation is essential to both task conditions. The differentiation was also revealed in earlier SMEs (perceptual>semantic) at N3 (240-360ms) latency, which is a novel finding. The left-distributed N3 was interpreted as more efficient processing of meaning with semantically learned characters. Frontal pole SMEs indicated strategic processing by executive functions, which would further enhance memory. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Perceptual learning modifies untrained pursuit eye movements.

    PubMed

    Szpiro, Sarit F A; Spering, Miriam; Carrasco, Marisa

    2014-07-07

    Perceptual learning improves detection and discrimination of relevant visual information in mature humans, revealing sensory plasticity. Whether visual perceptual learning affects motor responses is unknown. Here we implemented a protocol that enabled us to address this question. We tested a perceptual response (motion direction estimation, in which observers overestimate motion direction away from a reference) and a motor response (voluntary smooth pursuit eye movements). Perceptual training led to greater overestimation and, remarkably, it modified untrained smooth pursuit. In contrast, pursuit training did not affect overestimation in either pursuit or perception, even though observers in both training groups were exposed to the same stimuli for the same time period. A second experiment revealed that estimation training also improved discrimination, indicating that overestimation may optimize perceptual sensitivity. Hence, active perceptual training is necessary to alter perceptual responses, and an acquired change in perception suffices to modify pursuit, a motor response. © 2014 ARVO.

  7. Perceptual learning modifies untrained pursuit eye movements

    PubMed Central

    Szpiro, Sarit F. A.; Spering, Miriam; Carrasco, Marisa

    2014-01-01

    Perceptual learning improves detection and discrimination of relevant visual information in mature humans, revealing sensory plasticity. Whether visual perceptual learning affects motor responses is unknown. Here we implemented a protocol that enabled us to address this question. We tested a perceptual response (motion direction estimation, in which observers overestimate motion direction away from a reference) and a motor response (voluntary smooth pursuit eye movements). Perceptual training led to greater overestimation and, remarkably, it modified untrained smooth pursuit. In contrast, pursuit training did not affect overestimation in either pursuit or perception, even though observers in both training groups were exposed to the same stimuli for the same time period. A second experiment revealed that estimation training also improved discrimination, indicating that overestimation may optimize perceptual sensitivity. Hence, active perceptual training is necessary to alter perceptual responses, and an acquired change in perception suffices to modify pursuit, a motor response. PMID:25002412

  8. A dichoptic custom-made action video game as a treatment for adult amblyopia.

    PubMed

    Vedamurthy, Indu; Nahum, Mor; Huang, Samuel J; Zheng, Frank; Bayliss, Jessica; Bavelier, Daphne; Levi, Dennis M

    2015-09-01

    Previous studies have employed different experimental approaches to enhance visual function in adults with amblyopia including perceptual learning, videogame play, and dichoptic training. Here, we evaluated the efficacy of a novel dichoptic action videogame combining all three approaches. This experimental intervention was compared to a conventional, yet unstudied method of supervised occlusion while watching movies. Adults with unilateral amblyopia were assigned to either play the dichoptic action game (n=23; 'game' group), or to watch movies monocularly while the fellow eye was patched (n=15; 'movies' group) for a total of 40hours. Following training, visual acuity (VA) improved on average by ≈0.14logMAR (≈28%) in the game group, with improvements noted in both anisometropic and strabismic patients. This improvement is similar to that obtained following perceptual learning, video game play or dichoptic training. Surprisingly, patients with anisometropic amblyopia in the movies group showed similar improvement, revealing a greater impact of supervised occlusion in adults than typically thought. Stereoacuity, reading speed, and contrast sensitivity improved more for game group participants compared with movies group participants. Most improvements were largely retained following a 2-month no-contact period. This novel video game, which combines action gaming, perceptual learning and dichoptic presentation, results in VA improvements equivalent to those previously documented with each of these techniques alone. Our game intervention led to greater improvement than control training in a variety of visual functions, thus suggesting that this approach has promise for the treatment of adult amblyopia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. A dichoptic custom-made action video game as a treatment for adult amblyopia

    PubMed Central

    Vedamurthy, Indu; Nahum, Mor; Huang, Samuel J.; Zheng, Frank; Bayliss, Jessica; Bavelier, Daphne; Levi, Dennis M.

    2015-01-01

    Previous studies have employed different experimental approaches to enhance visual function in adults with amblyopia including perceptual learning, videogame play, and dichoptic training. Here, we evaluated the efficacy of a novel dichoptic action videogame combining all three approaches. This experimental intervention was compared to a conventional, yet unstudied method of supervised occlusion while watching movies. Adults with unilateral amblyopia were assigned to either playing the dichoptic action game (n = 23; ‘game’ group), or to watching movies monocularly while the fellow eye was patched (n = 15; ‘movies’ group) for a total of 40 h. Following training, visual acuity (VA) improved on average by ≈0.14 logMAR (≈27%) in the game group, with improvements noted in both anisometropic and strabismic patients. This improvement is similar to that described after perceptual learning, video game play or dichoptic training. Surprisingly, patients with anisometropic amblyopia in the movies group showed similar improvement, revealing a greater impact of supervised occlusion in adults than typically thought. Stereoacuity, reading speed, and contrast sensitivity improved more for game group participants compared with movies group participants. Most improvements were largely retained following a 2-month no-contact period. This novel video game, which combines action gaming, perceptual learning and dichoptic presentation, results in VA improvements equivalent to those previously documented with each of these techniques alone. Interestingly, however, our game intervention led to greater improvement than control training in a variety of visual functions, thus suggesting that this approach has promise for the treatment of adult amblyopia. PMID:25917239

  10. Geographic Video 3d Data Model And Retrieval

    NASA Astrophysics Data System (ADS)

    Han, Z.; Cui, C.; Kong, Y.; Wu, H.

    2014-04-01

    Geographic video includes both spatial and temporal geographic features acquired through ground-based or non-ground-based cameras. With the popularity of video capture devices such as smartphones, the volume of user-generated geographic video clips has grown significantly and the trend of this growth is quickly accelerating. Such a massive and increasing volume poses a major challenge to efficient video management and query. Most of the today's video management and query techniques are based on signal level content extraction. They are not able to fully utilize the geographic information of the videos. This paper aimed to introduce a geographic video 3D data model based on spatial information. The main idea of the model is to utilize the location, trajectory and azimuth information acquired by sensors such as GPS receivers and 3D electronic compasses in conjunction with video contents. The raw spatial information is synthesized to point, line, polygon and solid according to the camcorder parameters such as focal length and angle of view. With the video segment and video frame, we defined the three categories geometry object using the geometry model of OGC Simple Features Specification for SQL. We can query video through computing the spatial relation between query objects and three categories geometry object such as VFLocation, VSTrajectory, VSFOView and VFFovCone etc. We designed the query methods using the structured query language (SQL) in detail. The experiment indicate that the model is a multiple objective, integration, loosely coupled, flexible and extensible data model for the management of geographic stereo video.

  11. Conflict-Induced Perceptual Filtering

    ERIC Educational Resources Information Center

    Wendt, Mike; Luna-Rodriguez, Aquiles; Jacobsen, Thomas

    2012-01-01

    In a variety of conflict paradigms, target and distractor stimuli are defined in terms of perceptual features. Interference evoked by distractor stimuli tends to be reduced when the ratio of congruent to incongruent trials is decreased, suggesting conflict-induced perceptual filtering (i.e., adjusting the processing weights assigned to stimuli…

  12. Video Games: Utilization of a Novel Strategy to Improve Perceptual-Motor Skills in the Non-Institutionalized Elderly.

    ERIC Educational Resources Information Center

    Drew, Benjamin; Waters, Judith

    One of the most serious problems associated with aging concerns the decline in perceptual-motor skills, due to illness and/or lack of use based on poor motivation. Investigations of training programs to improve hand-eye coordination have yielded mixed results. A study was conducted to examine the effects of a training program to improve hand-eye…

  13. Acoustic and Perceptual Analyses of Adductor Spasmodic Dysphonia in Mandarin-speaking Chinese.

    PubMed

    Chen, Zhipeng; Li, Jingyuan; Ren, Qingyi; Ge, Pingjiang

    2018-02-12

    The objective of this study was to examine the perceptual structure and acoustic characteristics of speech of patients with adductor spasmodic dysphonia (ADSD) in Mandarin. Case-Control Study MATERIALS AND METHODS: For the estimation of dysphonia level, perceptual and acoustic analysis were used for patients with ADSD (N = 20) and the control group (N = 20) that are Mandarin-Chinese speakers. For both subgroups, a sustained vowel and connected speech samples were obtained. The difference of perceptual and acoustic parameters between the two subgroups was assessed and analyzed. For acoustic assessment, the percentage of phonatory breaks (PBs) of connected reading and the percentage of aperiodic segments and frequency shifts (FS) of vowel and reading in patients with ADSD were significantly worse than controls, the mean harmonics-to-noise ratio and the fundamental frequency standard deviation of vowel as well. For perceptual evaluation, the rating of speech and vowel in patients with ADSD are significantly higher than controls. The percentage of aberrant acoustic events (PB, frequency shift, and aperiodic segment) and the fundamental frequency standard deviation and mean harmonics-to-noise ratio were significantly correlated with the perceptual rating in the vowel and reading productions. The perceptual and acoustic parameters of connected vowel and reading in patients with ADSD are worse than those in normal controls, and could validly and reliably estimate dysphonia of ADSD in Mandarin-speaking Chinese. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  14. Attentional capture under high perceptual load.

    PubMed

    Cosman, Joshua D; Vecera, Shaun P

    2010-12-01

    Attentional capture by abrupt onsets can be modulated by several factors, including the complexity, or perceptual load, of a scene. We have recently demonstrated that observers are less likely to be captured by abruptly appearing, task-irrelevant stimuli when they perform a search that is high, as opposed to low, in perceptual load (Cosman & Vecera, 2009), consistent with perceptual load theory. However, recent results indicate that onset frequency can influence stimulus-driven capture, with infrequent onsets capturing attention more often than did frequent onsets. Importantly, in our previous task, an abrupt onset was present on every trial, and consequently, attentional capture might have been affected by both onset frequency and perceptual load. In the present experiment, we examined whether onset frequency influences attentional capture under conditions of high perceptual load. When onsets were presented frequently, we replicated our earlier results; attentional capture by onsets was modulated under conditions of high perceptual load. Importantly, however, when onsets were presented infrequently, we observed robust capture effects. These results conflict with a strong form of load theory and, instead, suggest that exposure to the elements of a task (e.g., abrupt onsets) combines with high perceptual load to modulate attentional capture by task-irrelevant information.

  15. Knowledge-based understanding of aerial surveillance video

    NASA Astrophysics Data System (ADS)

    Cheng, Hui; Butler, Darren

    2006-05-01

    Aerial surveillance has long been used by the military to locate, monitor and track the enemy. Recently, its scope has expanded to include law enforcement activities, disaster management and commercial applications. With the ever-growing amount of aerial surveillance video acquired daily, there is an urgent need for extracting actionable intelligence in a timely manner. Furthermore, to support high-level video understanding, this analysis needs to go beyond current approaches and consider the relationships, motivations and intentions of the objects in the scene. In this paper we propose a system for interpreting aerial surveillance videos that automatically generates a succinct but meaningful description of the observed regions, objects and events. For a given video, the semantics of important regions and objects, and the relationships between them, are summarised into a semantic concept graph. From this, a textual description is derived that provides new search and indexing options for aerial video and enables the fusion of aerial video with other information modalities, such as human intelligence, reports and signal intelligence. Using a Mixture-of-Experts video segmentation algorithm an aerial video is first decomposed into regions and objects with predefined semantic meanings. The objects are then tracked and coerced into a semantic concept graph and the graph is summarized spatially, temporally and semantically using ontology guided sub-graph matching and re-writing. The system exploits domain specific knowledge and uses a reasoning engine to verify and correct the classes, identities and semantic relationships between the objects. This approach is advantageous because misclassifications lead to knowledge contradictions and hence they can be easily detected and intelligently corrected. In addition, the graph representation highlights events and anomalies that a low-level analysis would overlook.

  16. Characterizing Perceptual Learning with External Noise

    ERIC Educational Resources Information Center

    Gold, Jason M.; Sekuler, Allison B.; Bennett, Partrick J.

    2004-01-01

    Performance in perceptual tasks often improves with practice. This effect is known as "perceptual learning," and it has been the source of a great deal of interest and debate over the course of the last century. Here, we consider the effects of perceptual learning within the context of signal detection theory. According to signal detection theory,…

  17. Video Communication Program.

    ERIC Educational Resources Information Center

    Haynes, Leonard Stanley

    This thesis describes work done as part of the Video Console Indexing Project (VICI), a program to improve the quality and reduce the time and work involved in indexing documents. The objective of the work described was to design a video terminal system which could be connected to a main computer to provide rapid natural communication between the…

  18. Representing and Inferring Visual Perceptual Skills in Dermatological Image Understanding

    ERIC Educational Resources Information Center

    Li, Rui

    2013-01-01

    Experts have a remarkable capability of locating, perceptually organizing, identifying, and categorizing objects in images specific to their domains of expertise. Eliciting and representing their visual strategies and some aspects of domain knowledge will benefit a wide range of studies and applications. For example, image understanding may be…

  19. Content fragile watermarking for H.264/AVC video authentication

    NASA Astrophysics Data System (ADS)

    Ait Sadi, K.; Guessoum, A.; Bouridane, A.; Khelifi, F.

    2017-04-01

    Discrete cosine transform is exploited in this work to generate the authentication data that are treated as a fragile watermark. This watermark is embedded in the motion vectors. The advances in multimedia technologies and digital processing tools have brought with them new challenges for the source and content authentication. To ensure the integrity of the H.264/AVC video stream, we introduce an approach based on a content fragile video watermarking method using an independent authentication of each group of pictures (GOPs) within the video. This technique uses robust visual features extracted from the video pertaining to the set of selected macroblocs (MBs) which hold the best partition mode in a tree-structured motion compensation process. An additional security degree is offered by the proposed method through using a more secured keyed function HMAC-SHA-256 and randomly choosing candidates from already selected MBs. In here, the watermark detection and verification processes are blind, whereas the tampered frames detection is not since it needs the original frames within the tampered GOPs. The proposed scheme achieves an accurate authentication technique with a high fragility and fidelity whilst maintaining the original bitrate and the perceptual quality. Furthermore, its ability to detect the tampered frames in case of spatial, temporal and colour manipulations is confirmed.

  20. The what, where and how of auditory-object perception.

    PubMed

    Bizley, Jennifer K; Cohen, Yale E

    2013-10-01

    The fundamental perceptual unit in hearing is the 'auditory object'. Similar to visual objects, auditory objects are the computational result of the auditory system's capacity to detect, extract, segregate and group spectrotemporal regularities in the acoustic environment; the multitude of acoustic stimuli around us together form the auditory scene. However, unlike the visual scene, resolving the component objects within the auditory scene crucially depends on their temporal structure. Neural correlates of auditory objects are found throughout the auditory system. However, neural responses do not become correlated with a listener's perceptual reports until the level of the cortex. The roles of different neural structures and the contribution of different cognitive states to the perception of auditory objects are not yet fully understood.

  1. Video sensor with range measurement capability

    NASA Technical Reports Server (NTRS)

    Howard, Richard T. (Inventor); Briscoe, Jeri M. (Inventor); Corder, Eric L. (Inventor); Broderick, David J. (Inventor)

    2008-01-01

    A video sensor device is provided which incorporates a rangefinder function. The device includes a single video camera and a fixed laser spaced a predetermined distance from the camera for, when activated, producing a laser beam. A diffractive optic element divides the beam so that multiple light spots are produced on a target object. A processor calculates the range to the object based on the known spacing and angles determined from the light spots on the video images produced by the camera.

  2. Oxytocin enhances gaze-following responses to videos of natural social behavior in adult male rhesus monkeys

    PubMed Central

    Putnam, P.T.; Roman, J.M.; Zimmerman, P.E.; Gothard, K.M.

    2017-01-01

    Gaze following is a basic building block of social behavior that has been observed in multiple species, including primates. The absence of gaze following is associated with abnormal development of social cognition, such as in autism spectrum disorders (ASD). Some social deficits in ASD, including the failure to look at eyes and the inability to recognize facial expressions, are ameliorated by intranasal administration of oxytocin (IN-OT). Here we tested the hypothesis that IN-OT might enhance social processes that require active engagement with a social partner, such as gaze following. Alternatively, IN-OT may only enhance the perceptual salience of the eyes, and may not modify behavioral responses to social signals. To test this hypothesis, we presented four monkeys with videos of conspecifics displaying natural behaviors. Each video was viewed multiple times before and after the monkeys received intranasally either 50 IU of OT or saline. We found that despite a gradual decrease in attention to the repeated viewing of the same videos (habituation), IN-OT consistently increased the frequency of gaze following saccades. Further analysis confirmed that these behaviors did not occur randomly, but rather predictably in response to the same segments of the videos. These findings suggest that in response to more naturalistic social stimuli IN-OT enhances the propensity to interact with a social partner rather than merely elevating the perceptual salience of the eyes. In light of these findings, gaze following may serve as a metric for pro-social effects of oxytocin that target social action more than social perception. PMID:27343726

  3. Demonstration of an ebbinghaus illusion at a memory level: manipulation of the memory size and not the perceptual size.

    PubMed

    Rey, Amandine Eve; Riou, Benoit; Versace, Rémy

    2014-01-01

    Based on recent behavioral and neuroimaging data suggesting that memory and perception are partially based on the same sensorimotor system, the theoretical aim of the present study was to show that it is difficult to dissociate memory mechanisms from perceptual mechanisms other than on the basis of the presence (perceptual processing) or absence (memory processing) of the characteristics of the objects involved in the processing. In line with this assumption, two experiments using an adaptation of the Ebbinghaus illusion paradigm revealed similar effects irrespective of whether the size difference between the inner circles and the surrounding circles was manipulated perceptually (the size difference was perceptually present, Experiment 1) or merely reactivated in memory (the difference was perceptually absent, Experiment 2).

  4. Immersive audiomotor game play enhances neural and perceptual salience of weak signals in noise

    PubMed Central

    Whitton, Jonathon P.; Hancock, Kenneth E.; Polley, Daniel B.

    2014-01-01

    All sensory systems face the fundamental challenge of encoding weak signals in noisy backgrounds. Although discrimination abilities can improve with practice, these benefits rarely generalize to untrained stimulus dimensions. Inspired by recent findings that action video game training can impart a broader spectrum of benefits than traditional perceptual learning paradigms, we trained adult humans and mice in an immersive audio game that challenged them to forage for hidden auditory targets in a 2D soundscape. Both species learned to modulate their angular search vectors and target approach velocities based on real-time changes in the level of a weak tone embedded in broadband noise. In humans, mastery of this tone in noise task generalized to an improved ability to comprehend spoken sentences in speech babble noise. Neural plasticity in the auditory cortex of trained mice supported improved decoding of low-intensity sounds at the training frequency and an enhanced resistance to interference from background masking noise. These findings highlight the potential to improve the neural and perceptual salience of degraded sensory stimuli through immersive computerized games. PMID:24927596

  5. Immersive audiomotor game play enhances neural and perceptual salience of weak signals in noise.

    PubMed

    Whitton, Jonathon P; Hancock, Kenneth E; Polley, Daniel B

    2014-06-24

    All sensory systems face the fundamental challenge of encoding weak signals in noisy backgrounds. Although discrimination abilities can improve with practice, these benefits rarely generalize to untrained stimulus dimensions. Inspired by recent findings that action video game training can impart a broader spectrum of benefits than traditional perceptual learning paradigms, we trained adult humans and mice in an immersive audio game that challenged them to forage for hidden auditory targets in a 2D soundscape. Both species learned to modulate their angular search vectors and target approach velocities based on real-time changes in the level of a weak tone embedded in broadband noise. In humans, mastery of this tone in noise task generalized to an improved ability to comprehend spoken sentences in speech babble noise. Neural plasticity in the auditory cortex of trained mice supported improved decoding of low-intensity sounds at the training frequency and an enhanced resistance to interference from background masking noise. These findings highlight the potential to improve the neural and perceptual salience of degraded sensory stimuli through immersive computerized games.

  6. Language, procedures, and the non-perceptual origin of number word meanings.

    PubMed

    Barner, David

    2017-05-01

    Perceptual representations of objects and approximate magnitudes are often invoked as building blocks that children combine to acquire the positive integers. Systems of numerical perception are either assumed to contain the logical foundations of arithmetic innately, or to supply the basis for their induction. I propose an alternative to this framework, and argue that the integers are not learned from perceptual systems, but arise to explain perception. Using cross-linguistic and developmental data, I show that small (~1-4) and large (~5+) numbers arise both historically and in individual children via distinct mechanisms, constituting independent learning problems, neither of which begins with perceptual building blocks. Children first learn small numbers using the same logic that supports other linguistic number marking (e.g. singular/plural). Years later, they infer the logic of counting from the relations between large number words and their roles in blind counting procedures, only incidentally associating number words with approximate magnitudes.

  7. Experimental design and analysis of JND test on coded image/video

    NASA Astrophysics Data System (ADS)

    Lin, Joe Yuchieh; Jin, Lina; Hu, Sudeng; Katsavounidis, Ioannis; Li, Zhi; Aaron, Anne; Kuo, C.-C. Jay

    2015-09-01

    The visual Just-Noticeable-Difference (JND) metric is characterized by the detectable minimum amount of two visual stimuli. Conducting the subjective JND test is a labor-intensive task. In this work, we present a novel interactive method in performing the visual JND test on compressed image/video. JND has been used to enhance perceptual visual quality in the context of image/video compression. Given a set of coding parameters, a JND test is designed to determine the distinguishable quality level against a reference image/video, which is called the anchor. The JND metric can be used to save coding bitrates by exploiting the special characteristics of the human visual system. The proposed JND test is conducted using a binary-forced choice, which is often adopted to discriminate the difference in perception in a psychophysical experiment. The assessors are asked to compare coded image/video pairs and determine whether they are of the same quality or not. A bisection procedure is designed to find the JND locations so as to reduce the required number of comparisons over a wide range of bitrates. We will demonstrate the efficiency of the proposed JND test, report experimental results on the image and video JND tests.

  8. Video segmentation using keywords

    NASA Astrophysics Data System (ADS)

    Ton-That, Vinh; Vong, Chi-Tai; Nguyen-Dao, Xuan-Truong; Tran, Minh-Triet

    2018-04-01

    At DAVIS-2016 Challenge, many state-of-art video segmentation methods achieve potential results, but they still much depend on annotated frames to distinguish between background and foreground. It takes a lot of time and efforts to create these frames exactly. In this paper, we introduce a method to segment objects from video based on keywords given by user. First, we use a real-time object detection system - YOLOv2 to identify regions containing objects that have labels match with the given keywords in the first frame. Then, for each region identified from the previous step, we use Pyramid Scene Parsing Network to assign each pixel as foreground or background. These frames can be used as input frames for Object Flow algorithm to perform segmentation on entire video. We conduct experiments on a subset of DAVIS-2016 dataset in half the size of its original size, which shows that our method can handle many popular classes in PASCAL VOC 2012 dataset with acceptable accuracy, about 75.03%. We suggest widely testing by combining other methods to improve this result in the future.

  9. Magnetic Braking: A Video Analysis

    NASA Astrophysics Data System (ADS)

    Molina-Bolívar, J. A.; Abella-Palacios, A. J.

    2012-10-01

    This paper presents a laboratory exercise that introduces students to the use of video analysis software and the Lenz's law demonstration. Digital techniques have proved to be very useful for the understanding of physical concepts. In particular, the availability of affordable digital video offers students the opportunity to actively engage in kinematics in introductory-level physics.1,2 By using digital videos frame advance features and "marking" the position of a moving object in each frame, students are able to more precisely determine the position of an object at much smaller time increments than would be possible with common time devices. Once the student collects data consisting of positions and times, these values may be manipulated to determine velocity and acceleration. There are a variety of commercial and free applications that can be used for video analysis. Because the relevant technology has become inexpensive, video analysis has become a prevalent tool in introductory physics courses.

  10. Tiny videos: a large data set for nonparametric video retrieval and frame classification.

    PubMed

    Karpenko, Alexandre; Aarabi, Parham

    2011-03-01

    In this paper, we present a large database of over 50,000 user-labeled videos collected from YouTube. We develop a compact representation called "tiny videos" that achieves high video compression rates while retaining the overall visual appearance of the video as it varies over time. We show that frame sampling using affinity propagation-an exemplar-based clustering algorithm-achieves the best trade-off between compression and video recall. We use this large collection of user-labeled videos in conjunction with simple data mining techniques to perform related video retrieval, as well as classification of images and video frames. The classification results achieved by tiny videos are compared with the tiny images framework [24] for a variety of recognition tasks. The tiny images data set consists of 80 million images collected from the Internet. These are the largest labeled research data sets of videos and images available to date. We show that tiny videos are better suited for classifying scenery and sports activities, while tiny images perform better at recognizing objects. Furthermore, we demonstrate that combining the tiny images and tiny videos data sets improves classification precision in a wider range of categories.

  11. Multiple-object permanence tracking: limitation in maintenance and transformation of perceptual objects.

    PubMed

    Saiki, Jun

    2002-01-01

    Research on change blindness and transsaccadic memory revealed that a limited amount of information is retained across visual disruptions in visual working memory. It has been proposed that visual working memory can hold four to five coherent object representations. To investigate their maintenance and transformation in dynamic situations, I devised an experimental paradigm called multiple-object permanence tracking (MOPT) that measures memory for multiple feature-location bindings in dynamic situations. Observers were asked to detect any color switch in the middle of a regular rotation of a pattern with multiple colored disks behind an occluder. The color-switch detection performance dramatically declined as the pattern rotation velocity increased, and this effect of object motion was independent of the number of targets. The MOPT task with various shapes and colors showed that color-shape conjunctions are not available in the MOPT task. These results suggest that even completely predictable motion severely reduces our capacity of object representations, from four to only one or two.

  12. Camera network video summarization

    NASA Astrophysics Data System (ADS)

    Panda, Rameswar; Roy-Chowdhury, Amit K.

    2017-05-01

    Networks of vision sensors are deployed in many settings, ranging from security needs to disaster response to environmental monitoring. Many of these setups have hundreds of cameras and tens of thousands of hours of video. The difficulty of analyzing such a massive volume of video data is apparent whenever there is an incident that requires foraging through vast video archives to identify events of interest. As a result, video summarization, that automatically extract a brief yet informative summary of these videos, has attracted intense attention in the recent years. Much progress has been made in developing a variety of ways to summarize a single video in form of a key sequence or video skim. However, generating a summary from a set of videos captured in a multi-camera network still remains as a novel and largely under-addressed problem. In this paper, with the aim of summarizing videos in a camera network, we introduce a novel representative selection approach via joint embedding and capped l21-norm minimization. The objective function is two-fold. The first is to capture the structural relationships of data points in a camera network via an embedding, which helps in characterizing the outliers and also in extracting a diverse set of representatives. The second is to use a capped l21-norm to model the sparsity and to suppress the influence of data outliers in representative selection. We propose to jointly optimize both of the objectives, such that embedding can not only characterize the structure, but also indicate the requirements of sparse representative selection. Extensive experiments on standard multi-camera datasets well demonstrate the efficacy of our method over state-of-the-art methods.

  13. Perceptual issues in scientific visualization

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.; Proffitt, Dennis R.

    1989-01-01

    In order to develop effective tools for scientific visulaization, consideration must be given to the perceptual competencies, limitations, and biases of the human operator. Perceptual psychology has amassed a rich body of research on these issues and can lend insight to the development of visualization tehcniques. Within a perceptual psychological framework, the computer display screen can best be thought of as a special kind of impoverished visual environemnt. Guidelines can be gleaned from the psychological literature to help visualization tool designers avoid ambiguities and/or illusions in the resulting data displays.

  14. More About The Video Event Trigger

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L.

    1996-01-01

    Report presents additional information about system described in "Video Event Trigger" (LEW-15076). Digital electronic system processes video-image data to generate trigger signal when image shows significant change, such as motion, or appearance, disappearance, change in color, brightness, or dilation of object. Potential uses include monitoring of hallways, parking lots, and other areas during hours when supposed unoccupied, looking for fires, tracking airplanes or other moving objects, identification of missing or defective parts on production lines, and video recording of automobile crash tests.

  15. Perceptual factors that influence use of computer enhanced visual displays

    NASA Technical Reports Server (NTRS)

    Littman, David; Boehm-Davis, Debbie

    1993-01-01

    This document is the final report for the NASA/Langley contract entitled 'Perceptual Factors that Influence Use of Computer Enhanced Visual Displays.' The document consists of two parts. The first part contains a discussion of the problem to which the grant was addressed, a brief discussion of work performed under the grant, and several issues suggested for follow-on work. The second part, presented as Appendix I, contains the annual report produced by Dr. Ann Fulop, the Postdoctoral Research Associate who worked on-site in this project. The main focus of this project was to investigate perceptual factors that might affect a pilot's ability to use computer generated information that is projected into the same visual space that contains information about real world objects. For example, computer generated visual information can identify the type of an attacking aircraft, or its likely trajectory. Such computer generated information must not be so bright that it adversely affects a pilot's ability to perceive other potential threats in the same volume of space. Or, perceptual attributes of computer generated and real display components should not contradict each other in ways that lead to problems of accommodation and, thus, distance judgments. The purpose of the research carried out under this contract was to begin to explore the perceptual factors that contribute to effective use of these displays.

  16. Speech Synthesis Using Perceptually Motivated Features

    DTIC Science & Technology

    2012-01-23

    with others a few years prior (with the concurrence of the project’s program manager. Willard Larkin). The Perceptual Flow of Phonetic Information and...34The Perceptual Flow of Phonetic Processing," consonant confusion matrices are analyzed for patterns of phonetic-feature decoding errors conditioned...decoding) is also observed. From these conditional probability patterns, it is proposed that they reflect a temporal flow of perceptual processing

  17. Explaining seeing? Disentangling qualia from perceptual organization.

    PubMed

    Ibáñez, Agustin; Bekinschtein, Tristan

    2010-09-01

    Abstract Visual perception and integration seem to play an essential role in our conscious phenomenology. Relatively local neural processing of reentrant nature may explain several visual integration processes (feature binding or figure-ground segregation, object recognition, inference, competition), even without attention or cognitive control. Based on the above statements, should the neural signatures of visual integration (via reentrant process) be non-reportable phenomenological qualia? We argue that qualia are not required to understand this perceptual organization.

  18. Generation and Perceptual Implicit Memory: Different Generation Tasks Produce Different Effects on Perceptual Priming

    ERIC Educational Resources Information Center

    Mulligan, Neil W.; Dew, Ilana T. Z.

    2009-01-01

    The generation manipulation has been critical in delineating differences between implicit and explicit memory. In contrast to past research, the present experiments indicate that generating from a rhyme cue produces as much perceptual priming as does reading. This is demonstrated for 3 visual priming tasks: perceptual identification, word-fragment…

  19. Real-time detection of small and dim moving objects in IR video sequences using a robust background estimator and a noise-adaptive double thresholding

    NASA Astrophysics Data System (ADS)

    Zingoni, Andrea; Diani, Marco; Corsini, Giovanni

    2016-10-01

    We developed an algorithm for automatically detecting small and poorly contrasted (dim) moving objects in real-time, within video sequences acquired through a steady infrared camera. The algorithm is suitable for different situations since it is independent of the background characteristics and of changes in illumination. Unlike other solutions, small objects of any size (up to single-pixel), either hotter or colder than the background, can be successfully detected. The algorithm is based on accurately estimating the background at the pixel level and then rejecting it. A novel approach permits background estimation to be robust to changes in the scene illumination and to noise, and not to be biased by the transit of moving objects. Care was taken in avoiding computationally costly procedures, in order to ensure the real-time performance even using low-cost hardware. The algorithm was tested on a dataset of 12 video sequences acquired in different conditions, providing promising results in terms of detection rate and false alarm rate, independently of background and objects characteristics. In addition, the detection map was produced frame by frame in real-time, using cheap commercial hardware. The algorithm is particularly suitable for applications in the fields of video-surveillance and computer vision. Its reliability and speed permit it to be used also in critical situations, like in search and rescue, defence and disaster monitoring.

  20. Interacting with target tracking algorithms in a gaze-enhanced motion video analysis system

    NASA Astrophysics Data System (ADS)

    Hild, Jutta; Krüger, Wolfgang; Heinze, Norbert; Peinsipp-Byma, Elisabeth; Beyerer, Jürgen

    2016-05-01

    Motion video analysis is a challenging task, particularly if real-time analysis is required. It is therefore an important issue how to provide suitable assistance for the human operator. Given that the use of customized video analysis systems is more and more established, one supporting measure is to provide system functions which perform subtasks of the analysis. Recent progress in the development of automated image exploitation algorithms allow, e.g., real-time moving target tracking. Another supporting measure is to provide a user interface which strives to reduce the perceptual, cognitive and motor load of the human operator for example by incorporating the operator's visual focus of attention. A gaze-enhanced user interface is able to help here. This work extends prior work on automated target recognition, segmentation, and tracking algorithms as well as about the benefits of a gaze-enhanced user interface for interaction with moving targets. We also propose a prototypical system design aiming to combine both the qualities of the human observer's perception and the automated algorithms in order to improve the overall performance of a real-time video analysis system. In this contribution, we address two novel issues analyzing gaze-based interaction with target tracking algorithms. The first issue extends the gaze-based triggering of a target tracking process, e.g., investigating how to best relaunch in the case of track loss. The second issue addresses the initialization of tracking algorithms without motion segmentation where the operator has to provide the system with the object's image region in order to start the tracking algorithm.

  1. The Spatial Distribution of Attention within and across Objects

    PubMed Central

    Hollingworth, Andrew; Maxcey-Richard, Ashleigh M.; Vecera, Shaun P.

    2011-01-01

    Attention operates to select both spatial locations and perceptual objects. However, the specific mechanism by which attention is oriented to objects is not well understood. We examined the means by which object structure constrains the distribution of spatial attention (i.e., a “grouped array”). Using a modified version of the Egly et al. object cuing task, we systematically manipulated within-object distance and object boundaries. Four major findings are reported: 1) spatial attention forms a gradient across the attended object; 2) object boundaries limit the distribution of this gradient, with the spread of attention constrained by a boundary; 3) boundaries within an object operate similarly to across-object boundaries: we observed object-based effects across a discontinuity within a single object, without the demand to divide or switch attention between discrete object representations; and 4) the gradient of spatial attention across an object directly modulates perceptual sensitivity, implicating a relatively early locus for the grouped array representation. PMID:21728455

  2. The what, where and how of auditory-object perception

    PubMed Central

    Bizley, Jennifer K.; Cohen, Yale E.

    2014-01-01

    The fundamental perceptual unit in hearing is the ‘auditory object’. Similar to visual objects, auditory objects are the computational result of the auditory system's capacity to detect, extract, segregate and group spectrotemporal regularities in the acoustic environment; the multitude of acoustic stimuli around us together form the auditory scene. However, unlike the visual scene, resolving the component objects within the auditory scene crucially depends on their temporal structure. Neural correlates of auditory objects are found throughout the auditory system. However, neural responses do not become correlated with a listener's perceptual reports until the level of the cortex. The roles of different neural structures and the contribution of different cognitive states to the perception of auditory objects are not yet fully understood. PMID:24052177

  3. Perceptual and Motor Inhibition in Adolescents/Young Adults with Childhood-Diagnosed ADHD

    PubMed Central

    Bedard, Anne-Claude V.; Trampush, Joey W.; Newcorn, Jeffrey H.; Halperin, Jeffrey M.

    2010-01-01

    Objective This study examined perceptual and motor inhibition in a longitudinal sample of adolescents/young adults who were diagnosed with ADHD in childhood, and as a function of the relative persistence of ADHD. Method Ninety-eight participants diagnosed with ADHD in childhood were re-evaluated approximately 10 years later. Eighty-five never-ADHD controls similar in age, IQ, sociodemographic background, and gender distribution served as a comparison group. Participants were administered a psychiatric interview and the Stimulus and Response Conflict Tasks (Nassauer & Halperin, 2003). Results Participants with childhood ADHD demonstrated slower and less accurate responses to both control and conflict conditions relative to the comparison group, as well as more variable responses in both conditions of the motor inhibition task; there was no specific effect of childhood ADHD on perceptual or motor inhibition. ADHD persisters and partial remitters did not differ in overall accuracy, speed or variability in responding, but relative to partial remitters, persisters demonstrated greater slowing in response to perceptual conflict. Conclusions These findings are consistent with theories positing state regulation, but not inhibitory control deficits in the etiology of ADHD, and suggest that improved perceptual inhibition may be associated with better outcome for ADHD. PMID:20604617

  4. Perceptual evaluation of visual alerts in surveillance videos

    NASA Astrophysics Data System (ADS)

    Rogowitz, Bernice E.; Topkara, Mercan; Pfeiffer, William; Hampapur, Arun

    2015-03-01

    Visual alerts are commonly used in video monitoring and surveillance systems to mark events, presumably making them more salient to human observers. Surprisingly, the effectiveness of computer-generated alerts in improving human performance has not been widely studied. To address this gap, we have developed a tool for simulating different alert parameters in a realistic visual monitoring situation, and have measured human detection performance under conditions that emulated different set-points in a surveillance algorithm. In the High-Sensitivity condition, the simulated alerts identified 100% of the events with many false alarms. In the Lower-Sensitivity condition, the simulated alerts correctly identified 70% of the targets, with fewer false alarms. In the control condition, no simulated alerts were provided. To explore the effects of learning, subjects performed these tasks in three sessions, on separate days, in a counterbalanced, within subject design. We explore these results within the context of cognitive models of human attention and learning. We found that human observers were more likely to respond to events when marked by a visual alert. Learning played a major role in the two alert conditions. In the first session, observers generated almost twice as many False Alarms as in the No-Alert condition, as the observers responded pre-attentively to the computer-generated false alarms. However, this rate dropped equally dramatically in later sessions, as observers learned to discount the false cues. Highest observer Precision, Hits/(Hits + False Alarms), was achieved in the High Sensitivity condition, but only after training. The successful evaluation of surveillance systems depends on understanding human attention and performance.

  5. Intelligent keyframe extraction for video printing

    NASA Astrophysics Data System (ADS)

    Zhang, Tong

    2004-10-01

    Nowadays most digital cameras have the functionality of taking short video clips, with the length of video ranging from several seconds to a couple of minutes. The purpose of this research is to develop an algorithm which extracts an optimal set of keyframes from each short video clip so that the user could obtain proper video frames to print out. In current video printing systems, keyframes are normally obtained by evenly sampling the video clip over time. Such an approach, however, may not reflect highlights or regions of interest in the video. Keyframes derived in this way may also be improper for video printing in terms of either content or image quality. In this paper, we present an intelligent keyframe extraction approach to derive an improved keyframe set by performing semantic analysis of the video content. For a video clip, a number of video and audio features are analyzed to first generate a candidate keyframe set. These features include accumulative color histogram and color layout differences, camera motion estimation, moving object tracking, face detection and audio event detection. Then, the candidate keyframes are clustered and evaluated to obtain a final keyframe set. The objective is to automatically generate a limited number of keyframes to show different views of the scene; to show different people and their actions in the scene; and to tell the story in the video shot. Moreover, frame extraction for video printing, which is a rather subjective problem, is considered in this work for the first time, and a semi-automatic approach is proposed.

  6. Can perceptual learning be used to treat amblyopia beyond the critical period of visual development?

    PubMed

    Astle, Andrew T; Webb, Ben S; McGraw, Paul V

    2011-11-01

    Amblyopia presents early in childhood and affects approximately 3% of western populations. The monocular visual acuity loss is conventionally treated during the 'critical periods' of visual development by occluding or penalising the fellow eye to encourage use of the amblyopic eye. Despite the measurable success of this approach in many children, substantial numbers of people still suffer with amblyopia later in life because either they were never diagnosed in childhood, did not respond to the original treatment, the amblyopia was only partially remediated, or their acuity loss returned after cessation of treatment. In this review, we consider whether the visual deficits of this largely overlooked amblyopic group are amenable to conventional and innovative therapeutic interventions later in life, well beyond the age at which treatment is thought to be effective. There is a considerable body of evidence that residual plasticity is present in the adult visual brain and this can be harnessed to improve function in adults with amblyopia. Perceptual training protocols have been developed to optimise visual gains in this clinical population. Results thus far are extremely encouraging; marked visual improvements have been demonstrated, the perceptual benefits transfer to new visual tasks and appear to be relatively enduring. The essential ingredients of perceptual training protocols are being incorporated into video game formats, facilitating home-based interventions. Many studies support perceptual training as a tool for improving vision in amblyopes beyond the critical period. Should this novel form of treatment stand up to the scrutiny of a randomised controlled trial, clinicians may need to re-evaluate their therapeutic approach to adults with amblyopia. Ophthalmic & Physiological Optics © 2011 The College of Optometrists.

  7. Can perceptual learning be used to treat amblyopia beyond the critical period of visual development?

    PubMed Central

    Astle, Andrew T.; Webb, Ben S.; McGraw, Paul V.

    2012-01-01

    Background Amblyopia presents early in childhood and affects approximately 3% of western populations. The monocular visual acuity loss is conventionally treated during the “critical periods” of visual development by occluding or penalising the fellow eye to encourage use of the amblyopic eye. Despite the measurable success of this approach in many children, substantial numbers of people still suffer with amblyopia later in life because either they were never diagnosed in childhood, did not respond to the original treatment, the amblyopia was only partially remediated, or their acuity loss returned after cessation of treatment. Purpose In this review, we consider whether the visual deficits of this largely overlooked amblyopic group are amenable to conventional and innovative therapeutic interventions later in life, well beyond the age at which treatment is thought to be effective. Recent findings There is a considerable body of evidence that residual plasticity is present in the adult visual brain and this can be harnessed to improve function in adults with amblyopia. Perceptual training protocols have been developed to optimise visual gains in this clinical population. Results thus far are extremely encouraging: marked visual improvements have been demonstrated, the perceptual benefits transfer to new visual tasks and appear to be relatively enduring. The essential ingredients of perceptual training protocols are being incorporated into video game formats, facilitating home-based interventions. Summary Many studies support perceptual training as a tool for improving vision in amblyopes beyond the critical period. Should this novel form of treatment stand up to the scrutiny of a randomised controlled trial, clinicians may need to re-evaluate their therapeutic approach to adults with amblyopia. PMID:21981034

  8. Moving the Weber Fraction: The Perceptual Precision for Moment of Inertia Increases with Exploration Force

    PubMed Central

    Debats, Nienke B.; Kingma, Idsart; Beek, Peter J.; Smeets, Jeroen B. J.

    2012-01-01

    How does the magnitude of the exploration force influence the precision of haptic perceptual estimates? To address this question, we examined the perceptual precision for moment of inertia (i.e., an object's “angular mass”) under different force conditions, using the Weber fraction to quantify perceptual precision. Participants rotated a rod around a fixed axis and judged its moment of inertia in a two-alternative forced-choice task. We instructed different levels of exploration force, thereby manipulating the magnitude of both the exploration force and the angular acceleration. These are the two signals that are needed by the nervous system to estimate moment of inertia. Importantly, one can assume that the absolute noise on both signals increases with an increase in the signals' magnitudes, while the relative noise (i.e., noise/signal) decreases with an increase in signal magnitude. We examined how the perceptual precision for moment of inertia was affected by this neural noise. In a first experiment we found that a low exploration force caused a higher Weber fraction (22%) than a high exploration force (13%), which suggested that the perceptual precision was constrained by the relative noise. This hypothesis was supported by the result of a second experiment, in which we found that the relationship between exploration force and Weber fraction had a similar shape as the theoretical relationship between signal magnitude and relative noise. The present study thus demonstrated that the amount of force used to explore an object can profoundly influence the precision by which its properties are perceived. PMID:23028437

  9. Nonchronological video synopsis and indexing.

    PubMed

    Pritch, Yael; Rav-Acha, Alex; Peleg, Shmuel

    2008-11-01

    The amount of captured video is growing with the increased numbers of video cameras, especially the increase of millions of surveillance cameras that operate 24 hours a day. Since video browsing and retrieval is time consuming, most captured video is never watched or examined. Video synopsis is an effective tool for browsing and indexing of such a video. It provides a short video representation, while preserving the essential activities of the original video. The activity in the video is condensed into a shorter period by simultaneously showing multiple activities, even when they originally occurred at different times. The synopsis video is also an index into the original video by pointing to the original time of each activity. Video Synopsis can be applied to create a synopsis of an endless video streams, as generated by webcams and by surveillance cameras. It can address queries like "Show in one minute the synopsis of this camera broadcast during the past day''. This process includes two major phases: (i) An online conversion of the endless video stream into a database of objects and activities (rather than frames). (ii) A response phase, generating the video synopsis as a response to the user's query.

  10. Perceptual learning: top to bottom.

    PubMed

    Amitay, Sygal; Zhang, Yu-Xuan; Jones, Pete R; Moore, David R

    2014-06-01

    Perceptual learning has traditionally been portrayed as a bottom-up phenomenon that improves encoding or decoding of the trained stimulus. Cognitive skills such as attention and memory are thought to drive, guide and modulate learning but are, with notable exceptions, not generally considered to undergo changes themselves as a result of training with simple perceptual tasks. Moreover, shifts in threshold are interpreted as shifts in perceptual sensitivity, with no consideration for non-sensory factors (such as response bias) that may contribute to these changes. Accumulating evidence from our own research and others shows that perceptual learning is a conglomeration of effects, with training-induced changes ranging from the lowest (noise reduction in the phase locking of auditory signals) to the highest (working memory capacity) level of processing, and includes contributions from non-sensory factors that affect decision making even on a "simple" auditory task such as frequency discrimination. We discuss our emerging view of learning as a process that increases the signal-to-noise ratio associated with perceptual tasks by tackling noise sources and inefficiencies that cause performance bottlenecks, and present some implications for training populations other than young, smart, attentive and highly-motivated college students. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  11. Qualitative and quantitative assessment of video transmitted by DVTS (digital video transport system) in surgical telemedicine.

    PubMed

    Shima, Yoichiro; Suwa, Akina; Gomi, Yuichiro; Nogawa, Hiroki; Nagata, Hiroshi; Tanaka, Hiroshi

    2007-01-01

    Real-time video pictures can be transmitted inexpensively via a broadband connection using the DVTS (digital video transport system). However, the degradation of video pictures transmitted by DVTS has not been sufficiently evaluated. We examined the application of DVTS to remote consultation by using images of laparoscopic and endoscopic surgeries. A subjective assessment by the double stimulus continuous quality scale (DSCQS) method of the transmitted video pictures was carried out by eight doctors. Three of the four video recordings were assessed as being transmitted with no degradation in quality. None of the doctors noticed any degradation in the images due to encryption by the VPN (virtual private network) system. We also used an automatic picture quality assessment system to make an objective assessment of the same images. The objective DSCQS values were similar to the subjective ones. We conclude that although the quality of video pictures transmitted by the DVTS was slightly reduced, they were useful for clinical purposes. Encryption with a VPN did not degrade image quality.

  12. Optimizing Linked Perceptual Class Formation and Transfer of Function

    ERIC Educational Resources Information Center

    Fields, Lanny; Garruto, Michelle

    2009-01-01

    A linked perceptual class consists of two distinct perceptual classes, A' and B', the members of which have become related to each other. For example, a linked perceptual class might be composed of many pictures of a woman (one perceptual class) and the sounds of that woman's voice (the other perceptual class). In this case, any sound of the…

  13. Neurally Constrained Modeling of Perceptual Decision Making

    ERIC Educational Resources Information Center

    Purcell, Braden A.; Heitz, Richard P.; Cohen, Jeremiah Y.; Schall, Jeffrey D.; Logan, Gordon D.; Palmeri, Thomas J.

    2010-01-01

    Stochastic accumulator models account for response time in perceptual decision-making tasks by assuming that perceptual evidence accumulates to a threshold. The present investigation mapped the firing rate of frontal eye field (FEF) visual neurons onto perceptual evidence and the firing rate of FEF movement neurons onto evidence accumulation to…

  14. Storage, retrieval, and edit of digital video using Motion JPEG

    NASA Astrophysics Data System (ADS)

    Sudharsanan, Subramania I.; Lee, D. H.

    1994-04-01

    In a companion paper we describe a Micro Channel adapter card that can perform real-time JPEG (Joint Photographic Experts Group) compression of a 640 by 480 24-bit image within 1/30th of a second. Since this corresponds to NTSC video rates at considerably good perceptual quality, this system can be used for real-time capture and manipulation of continuously fed video. To facilitate capturing the compressed video in a storage medium, an IBM Bus master SCSI adapter with cache is utilized. Efficacy of the data transfer mechanism is considerably improved using the System Control Block architecture, an extension to Micro Channel bus masters. We show experimental results that the overall system can perform at compressed data rates of about 1.5 MBytes/second sustained and with sporadic peaks to about 1.8 MBytes/second depending on the image sequence content. We also describe mechanisms to access the compressed data very efficiently through special file formats. This in turn permits creation of simpler sequence editors. Another advantage of the special file format is easy control of forward, backward and slow motion playback. The proposed method can be extended for design of a video compression subsystem for a variety of personal computing systems.

  15. Bayesian Hierarchical Grouping: perceptual grouping as mixture estimation

    PubMed Central

    Froyen, Vicky; Feldman, Jacob; Singh, Manish

    2015-01-01

    We propose a novel framework for perceptual grouping based on the idea of mixture models, called Bayesian Hierarchical Grouping (BHG). In BHG we assume that the configuration of image elements is generated by a mixture of distinct objects, each of which generates image elements according to some generative assumptions. Grouping, in this framework, means estimating the number and the parameters of the mixture components that generated the image, including estimating which image elements are “owned” by which objects. We present a tractable implementation of the framework, based on the hierarchical clustering approach of Heller and Ghahramani (2005). We illustrate it with examples drawn from a number of classical perceptual grouping problems, including dot clustering, contour integration, and part decomposition. Our approach yields an intuitive hierarchical representation of image elements, giving an explicit decomposition of the image into mixture components, along with estimates of the probability of various candidate decompositions. We show that BHG accounts well for a diverse range of empirical data drawn from the literature. Because BHG provides a principled quantification of the plausibility of grouping interpretations over a wide range of grouping problems, we argue that it provides an appealing unifying account of the elusive Gestalt notion of Prägnanz. PMID:26322548

  16. Dutch modality exclusivity norms: Simulating perceptual modality in space.

    PubMed

    Speed, Laura J; Majid, Asifa

    2017-12-01

    Perceptual information is important for the meaning of nouns. We present modality exclusivity norms for 485 Dutch nouns rated on visual, auditory, haptic, gustatory, and olfactory associations. We found these nouns are highly multimodal. They were rated most dominant in vision, and least in olfaction. A factor analysis identified two main dimensions: one loaded strongly on olfaction and gustation (reflecting joint involvement in flavor), and a second loaded strongly on vision and touch (reflecting joint involvement in manipulable objects). In a second study, we validated the ratings with similarity judgments. As expected, words from the same dominant modality were rated more similar than words from different dominant modalities; but - more importantly - this effect was enhanced when word pairs had high modality strength ratings. We further demonstrated the utility of our ratings by investigating whether perceptual modalities are differentially experienced in space, in a third study. Nouns were categorized into their dominant modality and used in a lexical decision experiment where the spatial position of words was either in proximal or distal space. We found words dominant in olfaction were processed faster in proximal than distal space compared to the other modalities, suggesting olfactory information is mentally simulated as "close" to the body. Finally, we collected ratings of emotion (valence, dominance, and arousal) to assess its role in perceptual space simulation, but the valence did not explain the data. So, words are processed differently depending on their perceptual associations, and strength of association is captured by modality exclusivity ratings.

  17. Perceptual Load Alters Visual Excitability

    ERIC Educational Resources Information Center

    Carmel, David; Thorne, Jeremy D.; Rees, Geraint; Lavie, Nilli

    2011-01-01

    Increasing perceptual load reduces the processing of visual stimuli outside the focus of attention, but the mechanism underlying these effects remains unclear. Here we tested an account attributing the effects of perceptual load to modulations of visual cortex excitability. In contrast to stimulus competition accounts, which propose that load…

  18. Perceptual learning and adult cortical plasticity.

    PubMed

    Gilbert, Charles D; Li, Wu; Piech, Valentin

    2009-06-15

    The visual cortex retains the capacity for experience-dependent changes, or plasticity, of cortical function and cortical circuitry, throughout life. These changes constitute the mechanism of perceptual learning in normal visual experience and in recovery of function after CNS damage. Such plasticity can be seen at multiple stages in the visual pathway, including primary visual cortex. The manifestation of the functional changes associated with perceptual learning involve both long term modification of cortical circuits during the course of learning, and short term dynamics in the functional properties of cortical neurons. These dynamics are subject to top-down influences of attention, expectation and perceptual task. As a consequence, each cortical area is an adaptive processor, altering its function in accordance to immediate perceptual demands.

  19. Conflict between object structural and functional affordances in peripersonal space.

    PubMed

    Kalénine, Solène; Wamain, Yannick; Decroix, Jérémy; Coello, Yann

    2016-10-01

    Recent studies indicate that competition between conflicting action representations slows down planning of object-directed actions. The present study aims to assess whether similar conflict effects exist during manipulable object perception. Twenty-six young adults performed reach-to-grasp and semantic judgements on conflictual objects (with competing structural and functional gestures) and non-conflictual objects (with similar structural and functional gestures) presented at difference distances in a 3D virtual environment. Results highlight a space-dependent conflict between structural and functional affordances. Perceptual judgments on conflictual objects were slower that perceptual judgments on non-conflictual objects, but only when objects were presented within reach. Findings demonstrate that competition between structural and functional affordances during object perception induces a processing cost, and further show that object position in space can bias affordance competition. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Perceptual Simulations and Linguistic Representations Have Differential Effects on Speeded Relatedness Judgments and Recognition Memory

    PubMed Central

    Tse, Chi-Shing; Kurby, Christopher A.; Du, Feng

    2010-01-01

    We examined the effect of spatial iconicity (a perceptual simulation of canonical locations of objects) and word-order frequency on language processing and episodic memory of orientation. Participants made speeded relatedness judgments to pairs of words presented in locations typical to their real world arrangements (e.g., ceiling on top and floor on bottom). They then engaged in a surprise orientation recognition task for the word pairs. We replicated Louwerse’s finding (2008) that word-order frequency has a stronger effect on semantic relatedness judgments than spatial iconicity. This is consistent with recent suggestions that linguistic representations have a stronger impact on immediate decisions about verbal materials than perceptual simulations. In contrast, spatial iconicity enhanced episodic memory of orientation to a greater extent than word-order frequency did. This new finding indicates that perceptual simulations have an important role in episodic memory. Results are discussed with respect to theories of perceptual representation and linguistic processing. PMID:19742388

  1. Adaptation and perceptual norms

    NASA Astrophysics Data System (ADS)

    Webster, Michael A.; Yasuda, Maiko; Haber, Sara; Leonard, Deanne; Ballardini, Nicole

    2007-02-01

    We used adaptation to examine the relationship between perceptual norms--the stimuli observers describe as psychologically neutral, and response norms--the stimulus levels that leave visual sensitivity in a neutral or balanced state. Adapting to stimuli on opposite sides of a neutral point (e.g. redder or greener than white) biases appearance in opposite ways. Thus the adapting stimulus can be titrated to find the unique adapting level that does not bias appearance. We compared these response norms to subjectively defined neutral points both within the same observer (at different retinal eccentricities) and between observers. These comparisons were made for visual judgments of color, image focus, and human faces, stimuli that are very different and may depend on very different levels of processing, yet which share the property that for each there is a well defined and perceptually salient norm. In each case the adaptation aftereffects were consistent with an underlying sensitivity basis for the perceptual norm. Specifically, response norms were similar to and thus covaried with the perceptual norm, and under common adaptation differences between subjectively defined norms were reduced. These results are consistent with models of norm-based codes and suggest that these codes underlie an important link between visual coding and visual experience.

  2. Compression evaluation of surgery video recordings retaining diagnostic credibility (compression evaluation of surgery video)

    NASA Astrophysics Data System (ADS)

    Duplaga, M.; Leszczuk, M. I.; Papir, Z.; Przelaskowski, A.

    2008-12-01

    Wider dissemination of medical digital video libraries is affected by two correlated factors, resource effective content compression that directly influences its diagnostic credibility. It has been proved that it is possible to meet these contradictory requirements halfway for long-lasting and low motion surgery recordings at compression ratios close to 100 (bronchoscopic procedures were a case study investigated). As the main supporting assumption, it has been accepted that the content can be compressed as far as clinicians are not able to sense a loss of video diagnostic fidelity (a visually lossless compression). Different market codecs were inspected by means of the combined subjective and objective tests toward their usability in medical video libraries. Subjective tests involved a panel of clinicians who had to classify compressed bronchoscopic video content according to its quality under the bubble sort algorithm. For objective tests, two metrics (hybrid vector measure and hosaka Plots) were calculated frame by frame and averaged over a whole sequence.

  3. Fast repurposing of high-resolution stereo video content for mobile use

    NASA Astrophysics Data System (ADS)

    Karaoglu, Ali; Lee, Bong Ho; Boev, Atanas; Cheong, Won-Sik; Gotchev, Atanas

    2012-06-01

    3D video content is captured and created mainly in high resolution targeting big cinema or home TV screens. For 3D mobile devices, equipped with small-size auto-stereoscopic displays, such content has to be properly repurposed, preferably in real-time. The repurposing requires not only spatial resizing but also properly maintaining the output stereo disparity, as it should deliver realistic, pleasant and harmless 3D perception. In this paper, we propose an approach to adapt the disparity range of the source video to the comfort disparity zone of the target display. To achieve this, we adapt the scale and the aspect ratio of the source video. We aim at maximizing the disparity range of the retargeted content within the comfort zone, and minimizing the letterboxing of the cropped content. The proposed algorithm consists of five stages. First, we analyse the display profile, which characterises what 3D content can be comfortably observed in the target display. Then, we perform fast disparity analysis of the input stereoscopic content. Instead of returning the dense disparity map, it returns an estimate of the disparity statistics (min, max, meanand variance) per frame. Additionally, we detect scene cuts, where sharp transitions in disparities occur. Based on the estimated input, and desired output disparity ranges, we derive the optimal cropping parameters and scale of the cropping window, which would yield the targeted disparity range and minimize the area of cropped and letterboxed content. Once the rescaling and cropping parameters are known, we perform resampling procedure using spline-based and perceptually optimized resampling (anti-aliasing) kernels, which have also a very efficient computational structure. Perceptual optimization is achieved through adjusting the cut-off frequency of the anti-aliasing filter with the throughput of the target display.

  4. How Object-Specific Are Object Files? Evidence for Integration by Location

    ERIC Educational Resources Information Center

    van Dam, Wessel O.; Hommel, Bernhard

    2010-01-01

    Given the distributed representation of visual features in the human brain, binding mechanisms are necessary to integrate visual information about the same perceptual event. It has been assumed that feature codes are bound into object files--pointers to the neural codes of the features of a given event. The present study investigated the…

  5. A web-based video annotation system for crowdsourcing surveillance videos

    NASA Astrophysics Data System (ADS)

    Gadgil, Neeraj J.; Tahboub, Khalid; Kirsh, David; Delp, Edward J.

    2014-03-01

    Video surveillance systems are of a great value to prevent threats and identify/investigate criminal activities. Manual analysis of a huge amount of video data from several cameras over a long period of time often becomes impracticable. The use of automatic detection methods can be challenging when the video contains many objects with complex motion and occlusions. Crowdsourcing has been proposed as an effective method for utilizing human intelligence to perform several tasks. Our system provides a platform for the annotation of surveillance video in an organized and controlled way. One can monitor a surveillance system using a set of tools such as training modules, roles and labels, task management. This system can be used in a real-time streaming mode to detect any potential threats or as an investigative tool to analyze past events. Annotators can annotate video contents assigned to them for suspicious activity or criminal acts. First responders are then able to view the collective annotations and receive email alerts about a newly reported incident. They can also keep track of the annotators' training performance, manage their activities and reward their success. By providing this system, the process of video analysis is made more efficient.

  6. Object-Based Attention and Cognitive Tunneling

    ERIC Educational Resources Information Center

    Jarmasz, Jerzy; Herdman, Chris M.; Johannsdottir, Kamilla Run

    2005-01-01

    Simulator-based research has shown that pilots cognitively tunnel their attention on head-up displays (HUDs). Cognitive tunneling has been linked to object-based visual attention on the assumption that HUD symbology is perceptually grouped into an object that is perceived and attended separately from the external scene. The present research…

  7. Contextual information and perceptual-cognitive expertise in a dynamic, temporally-constrained task.

    PubMed

    Murphy, Colm P; Jackson, Robin C; Cooke, Karl; Roca, André; Benguigui, Nicolas; Williams, A Mark

    2016-12-01

    Skilled performers extract and process postural information from an opponent during anticipation more effectively than their less-skilled counterparts. In contrast, the role and importance of contextual information in anticipation has received only minimal attention. We evaluate the importance of contextual information in anticipation and examine the underlying perceptual-cognitive processes. We present skilled and less-skilled tennis players with normal video or animated footage of the same rallies. In the animated condition, sequences were created using player movement and ball trajectory data, and postural information from the players was removed, constraining participants to anticipate based on contextual information alone. Participants judged ball bounce location of the opponent's final occluded shot. The 2 groups were more accurate than chance in both display conditions with skilled being more accurate than less-skilled (Exp. 1) participants. When anticipating based on contextual information alone, skilled participants employed different gaze behaviors to less-skilled counterparts and provided verbal reports of thoughts which were indicative of more thorough evaluation of contextual information (Exp. 2). Findings highlight the importance of both postural and contextual information in anticipation and indicate that perceptual-cognitive expertise is underpinned by processes that facilitate more effective processing of contextual information, in the absence of postural information. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  8. Language, Procedures, and the Non-Perceptual Origin of Number Word Meanings

    ERIC Educational Resources Information Center

    Barner, David

    2017-01-01

    Perceptual representations of objects and approximate magnitudes are often invoked as building blocks that children combine to acquire the positive integers. Systems of numerical perception are either assumed to contain the logical foundations of arithmetic innately, or to supply the basis for their induction. I propose an alternative to this…

  9. Perceptual Training Strongly Improves Visual Motion Perception in Schizophrenia

    ERIC Educational Resources Information Center

    Norton, Daniel J.; McBain, Ryan K.; Ongur, Dost; Chen, Yue

    2011-01-01

    Schizophrenia patients exhibit perceptual and cognitive deficits, including in visual motion processing. Given that cognitive systems depend upon perceptual inputs, improving patients' perceptual abilities may be an effective means of cognitive intervention. In healthy people, motion perception can be enhanced through perceptual learning, but it…

  10. Visualizing and Writing Video Programs.

    ERIC Educational Resources Information Center

    Floyd, Steve

    1979-01-01

    Reviews 10 steps which serve as guidelines to simplify the creative process of producing a video training program: (1) audience analysis, (2) task analysis, (3) definition of objective, (4) conceptualization, (5) visualization, (6) storyboard, (7) video storyboard, (8) evaluation, (9) revision, and (10) production. (LRA)

  11. Effects of action video game training on visual working memory.

    PubMed

    Blacker, Kara J; Curby, Kim M; Klobusicky, Elizabeth; Chein, Jason M

    2014-10-01

    The ability to hold visual information in mind over a brief delay is critical for acquiring information and navigating a complex visual world. Despite the ubiquitous nature of visual working memory (VWM) in our everyday lives, this system is fundamentally limited in capacity. Therefore, the potential to improve VWM through training is a growing area of research. An emerging body of literature suggests that extensive experience playing action video games yields a myriad of perceptual and attentional benefits. Several lines of converging work suggest that action video game play may influence VWM as well. The current study utilized a training paradigm to examine whether action video games cause improvements to the quantity and/or the quality of information stored in VWM. The results suggest that VWM capacity, as measured by a change detection task, is increased after action video game training, as compared with training on a control game, and that some improvement to VWM precision occurs with action game training as well. However, these findings do not appear to extend to a complex span measure of VWM, which is often thought to tap into higher-order executive skills. The VWM improvements seen in individuals trained on an action video game cannot be accounted for by differences in motivation or engagement, differential expectations, or baseline differences in demographics as compared with the control group used. In sum, action video game training represents a potentially unique and engaging platform by which this severely capacity-limited VWM system might be enhanced.

  12. The role of convexity in perceptual completion: beyond good continuation.

    PubMed

    Liu, Z; Jacobs, D W; Basri, R

    1999-01-01

    Since the seminal work of the Gestalt psychologists, there has been great interest in understanding what factors determine the perceptual organization of images. While the Gestaltists demonstrated the significance of grouping cues such as similarity, proximity and good continuation, it has not been well understood whether their catalog of grouping cues is complete--in part due to the paucity of effective methodologies for examining the significance of various grouping cues. We describe a novel, objective method to study perceptual grouping of planar regions separated by an occluder. We demonstrate that the stronger the grouping between two such regions, the harder it will be to resolve their relative stereoscopic depth. We use this new method to call into question many existing theories of perceptual completion (Ullman, S. (1976). Biological Cybernetics, 25, 1-6; Shashua, A., & Ullman, S. (1988). 2nd International Conference on Computer Vision (pp. 321-327); Parent, P., & Zucker, S. (1989). IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, 823-839; Kellman, P. J., & Shipley, T. F. (1991). Cognitive psychology, Liveright, New York; Heitger, R., & von der Heydt, R. (1993). A computational model of neural contour processing, figure-ground segregation and illusory contours. In Internal Conference Computer Vision (pp. 32-40); Mumford, D. (1994). Algebraic geometry and its applications, Springer, New York; Williams, L. R., & Jacobs, D. W. (1997). Neural Computation, 9, 837-858) that are based on Gestalt grouping cues by demonstrating that convexity plays a strong role in perceptual completion. In some cases convexity dominates the effects of the well known Gestalt cue of good continuation. While convexity has been known to play a role in figure/ground segmentation (Rubin, 1927; Kanizsa & Gerbino, 1976), this is the first demonstration of its importance in perceptual completion.

  13. Adaptive and perceptual learning technologies in medical education and training.

    PubMed

    Kellman, Philip J

    2013-10-01

    Recent advances in the learning sciences offer remarkable potential to improve medical education and maximize the benefits of emerging medical technologies. This article describes 2 major innovation areas in the learning sciences that apply to simulation and other aspects of medical learning: Perceptual learning (PL) and adaptive learning technologies. PL technology offers, for the first time, systematic, computer-based methods for teaching pattern recognition, structural intuition, transfer, and fluency. Synergistic with PL are new adaptive learning technologies that optimize learning for each individual, embed objective assessment, and implement mastery criteria. The author describes the Adaptive Response-Time-based Sequencing (ARTS) system, which uses each learner's accuracy and speed in interactive learning to guide spacing, sequencing, and mastery. In recent efforts, these new technologies have been applied in medical learning contexts, including adaptive learning modules for initial medical diagnosis and perceptual/adaptive learning modules (PALMs) in dermatology, histology, and radiology. Results of all these efforts indicate the remarkable potential of perceptual and adaptive learning technologies, individually and in combination, to improve learning in a variety of medical domains. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.

  14. Video Tutorial of Continental Food

    NASA Astrophysics Data System (ADS)

    Nurani, A. S.; Juwaedah, A.; Mahmudatussa'adah, A.

    2018-02-01

    This research is motivated by the belief in the importance of media in a learning process. Media as an intermediary serves to focus on the attention of learners. Selection of appropriate learning media is very influential on the success of the delivery of information itself both in terms of cognitive, affective and skills. Continental food is a course that studies food that comes from Europe and is very complex. To reduce verbalism and provide more real learning, then the tutorial media is needed. Media tutorials that are audio visual can provide a more concrete learning experience. The purpose of this research is to develop tutorial media in the form of video. The method used is the development method with the stages of analyzing the learning objectives, creating a story board, validating the story board, revising the story board and making video tutorial media. The results show that the making of storyboards should be very thorough, and detailed in accordance with the learning objectives to reduce errors in video capture so as to save time, cost and effort. In video capturing, lighting, shooting angles, and soundproofing make an excellent contribution to the quality of tutorial video produced. In shooting should focus more on tools, materials, and processing. Video tutorials should be interactive and two-way.

  15. An unsupervised method for summarizing egocentric sport videos

    NASA Astrophysics Data System (ADS)

    Habibi Aghdam, Hamed; Jahani Heravi, Elnaz; Puig, Domenec

    2015-12-01

    People are getting more interested to record their sport activities using head-worn or hand-held cameras. This type of videos which is called egocentric sport videos has different motion and appearance patterns compared with life-logging videos. While a life-logging video can be defined in terms of well-defined human-object interactions, notwithstanding, it is not trivial to describe egocentric sport videos using well-defined activities. For this reason, summarizing egocentric sport videos based on human-object interaction might fail to produce meaningful results. In this paper, we propose an unsupervised method for summarizing egocentric videos by identifying the key-frames of the video. Our method utilizes both appearance and motion information and it automatically finds the number of the key-frames. Our blind user study on the new dataset collected from YouTube shows that in 93:5% cases, the users choose the proposed method as their first video summary choice. In addition, our method is within the top 2 choices of the users in 99% of studies.

  16. Auditory perceptual simulation: Simulating speech rates or accents?

    PubMed

    Zhou, Peiyun; Christianson, Kiel

    2016-07-01

    When readers engage in Auditory Perceptual Simulation (APS) during silent reading, they mentally simulate characteristics of voices attributed to a particular speaker or a character depicted in the text. Previous research found that auditory perceptual simulation of a faster native English speaker during silent reading led to shorter reading times that auditory perceptual simulation of a slower non-native English speaker. Yet, it was uncertain whether this difference was triggered by the different speech rates of the speakers, or by the difficulty of simulating an unfamiliar accent. The current study investigates this question by comparing faster Indian-English speech and slower American-English speech in the auditory perceptual simulation paradigm. Analyses of reading times of individual words and the full sentence reveal that the auditory perceptual simulation effect again modulated reading rate, and auditory perceptual simulation of the faster Indian-English speech led to faster reading rates compared to auditory perceptual simulation of the slower American-English speech. The comparison between this experiment and the data from Zhou and Christianson (2016) demonstrate further that the "speakers'" speech rates, rather than the difficulty of simulating a non-native accent, is the primary mechanism underlying auditory perceptual simulation effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. A Neural Signature Encoding Decisions under Perceptual Ambiguity

    PubMed Central

    Sun, Sai; Yu, Rongjun

    2017-01-01

    Abstract People often make perceptual decisions with ambiguous information, but it remains unclear whether the brain has a common neural substrate that encodes various forms of perceptual ambiguity. Here, we used three types of perceptually ambiguous stimuli as well as task instructions to examine the neural basis for both stimulus-driven and task-driven perceptual ambiguity. We identified a neural signature, the late positive potential (LPP), that encoded a general form of stimulus-driven perceptual ambiguity. In addition to stimulus-driven ambiguity, the LPP was also modulated by ambiguity in task instructions. To further specify the functional role of the LPP and elucidate the relationship between stimulus ambiguity, behavioral response, and the LPP, we employed regression models and found that the LPP was specifically associated with response latency and confidence rating, suggesting that the LPP encoded decisions under perceptual ambiguity. Finally, direct behavioral ratings of stimulus and task ambiguity confirmed our neurophysiological findings, which could not be attributed to differences in eye movements either. Together, our findings argue for a common neural signature that encodes decisions under perceptual ambiguity but is subject to the modulation of task ambiguity. Our results represent an essential first step toward a complete neural understanding of human perceptual decision making. PMID:29177189

  18. A Neural Signature Encoding Decisions under Perceptual Ambiguity.

    PubMed

    Sun, Sai; Yu, Rongjun; Wang, Shuo

    2017-01-01

    People often make perceptual decisions with ambiguous information, but it remains unclear whether the brain has a common neural substrate that encodes various forms of perceptual ambiguity. Here, we used three types of perceptually ambiguous stimuli as well as task instructions to examine the neural basis for both stimulus-driven and task-driven perceptual ambiguity. We identified a neural signature, the late positive potential (LPP), that encoded a general form of stimulus-driven perceptual ambiguity. In addition to stimulus-driven ambiguity, the LPP was also modulated by ambiguity in task instructions. To further specify the functional role of the LPP and elucidate the relationship between stimulus ambiguity, behavioral response, and the LPP, we employed regression models and found that the LPP was specifically associated with response latency and confidence rating, suggesting that the LPP encoded decisions under perceptual ambiguity. Finally, direct behavioral ratings of stimulus and task ambiguity confirmed our neurophysiological findings, which could not be attributed to differences in eye movements either. Together, our findings argue for a common neural signature that encodes decisions under perceptual ambiguity but is subject to the modulation of task ambiguity. Our results represent an essential first step toward a complete neural understanding of human perceptual decision making.

  19. Is sequence awareness mandatory for perceptual sequence learning: An assessment using a pure perceptual sequence learning design.

    PubMed

    Deroost, Natacha; Coomans, Daphné

    2018-02-01

    We examined the role of sequence awareness in a pure perceptual sequence learning design. Participants had to react to the target's colour that changed according to a perceptual sequence. By varying the mapping of the target's colour onto the response keys, motor responses changed randomly. The effect of sequence awareness on perceptual sequence learning was determined by manipulating the learning instructions (explicit versus implicit) and assessing the amount of sequence awareness after the experiment. In the explicit instruction condition (n = 15), participants were instructed to intentionally search for the colour sequence, whereas in the implicit instruction condition (n = 15), they were left uninformed about the sequenced nature of the task. Sequence awareness after the sequence learning task was tested by means of a questionnaire and the process-dissociation-procedure. The results showed that the instruction manipulation had no effect on the amount of perceptual sequence learning. Based on their report to have actively applied their sequence knowledge during the experiment, participants were subsequently regrouped in a sequence strategy group (n = 14, of which 4 participants from the implicit instruction condition and 10 participants from the explicit instruction condition) and a no-sequence strategy group (n = 16, of which 11 participants from the implicit instruction condition and 5 participants from the explicit instruction condition). Only participants of the sequence strategy group showed reliable perceptual sequence learning and sequence awareness. These results indicate that perceptual sequence learning depends upon the continuous employment of strategic cognitive control processes on sequence knowledge. Sequence awareness is suggested to be a necessary but not sufficient condition for perceptual learning to take place. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Probing perceptual antinomies with the watercolor illusion and explaining how the brain resolves them.

    PubMed

    Tanca, Maria; Grossberg, Stephen; Pinna, Baingio

    2010-01-01

    The purpose of this work is to study how the brain solves perceptual antinomies, induced by the watercolor illusion in the color and in the figure-ground segregation domain, when they are present in different parts of the same object. The watercolor illusion shows two main effects: a long-range coloration and an object-hole effect across large enclosed areas (Pinna, 1987, 2005, 2008a, b; Pinna and Grossberg, 2005; Pinna et al., 2001). This illusion strongly enhances the unilateral belongingness of the boundaries (Rubin, 1915) determining grouping and figure-ground segregation more strongly than the well-known Gestalt principles. Due to the watercolor illusion, both the figure and the background assume new properties becoming, respectively, a bulging object and a hole both with a 3-D volumetric appearance (object-hole effect). When the coloration and the object-hole effects induced by the watercolor illusion are opposite (antinomic) within different portions of the same shape, some questions emerge: Do the antinomies split the shape in two parts (a half shape appears as an object and the other half as a hole) or are they solved through a new emergent perceptual result beyond the single effects? Is there a predominance of one component over the other that is less visible or totally invisible? What is perceptible and what is invisible? Is there a wholeness process under conditions where perceptual antinomies coexist? By imparting motion to a watercolored object that gradually should become a hole while overlapping another object placed behind, is the wholeness of the watercolor object weakened or reorganized in a new way? The results of phenomenological experiments suggested that the antinomies tend to be solved through two complement processes of phenomenal wholeness and partialness. These processes are explained in the light of the FACADE neural model of 3-D vision and figure-ground separation (Grossberg, 1994, 2003), notably of how complementary cortical boundary

  1. Physical and perceptual estimation of differences between loudspeakers

    NASA Astrophysics Data System (ADS)

    Lavandier, Mathieu; Herzog, Philippe; Meunier, Sabine

    2006-12-01

    Differentiating the restitution of timbre by several loudspeakers may result from standard measurements, or from listening tests. This work proposes a protocol keeping a close relationship between the objective and perceptual evaluations: the stimuli are musical excerpts, and the measuring environment is a standard listening room. The protocol involves recordings made at a listener position, and objective dissimilarities are computed using an auditory model simulating masking effects. The resulting data correlate very well with listening tests using the same recordings, and show similar dependencies on the major parameters identified from the dissimilarity matrices. To cite this article: M. Lavandier et al., C. R. Mecanique 334 (2006).

  2. Examining Chemistry Students Visual-Perceptual Skills Using the VSCS tool and Interview Data

    NASA Astrophysics Data System (ADS)

    Christian, Caroline

    The Visual-Spatial Chemistry Specific (VSCS) assessment tool was developed to test students' visual-perceptual skills, which are required to form a mental image of an object. The VSCS was designed around the theoretical framework of Rochford and Archer that provides eight distinct and well-defined visual-perceptual skills with identified problems students might have with each skill set. Factor analysis was used to analyze the results during the validation process of the VSCS. Results showed that the eight factors could not be separated from each other, but instead two factors emerged as significant to the data. These two factors have been defined and described as a general visual-perceptual skill (factor 1) and a skill that adds on a second level of complexity by involving multiple viewpoints such as changing frames of reference. The questions included in the factor analysis were bolstered by the addition of an item response theory (IRT) analysis. Interviews were also conducted with twenty novice students to test face validity of the tool, and to document student approaches at solving visualization problems of this type. Students used five main physical resources or processes to solve the questions, but the resource that was the most successful was handling or building a physical representation of an object.

  3. Multisensory training can promote or impede visual perceptual learning of speech stimuli: visual-tactile vs. visual-auditory training.

    PubMed

    Eberhardt, Silvio P; Auer, Edward T; Bernstein, Lynne E

    2014-01-01

    In a series of studies we have been investigating how multisensory training affects unisensory perceptual learning with speech stimuli. Previously, we reported that audiovisual (AV) training with speech stimuli can promote auditory-only (AO) perceptual learning in normal-hearing adults but can impede learning in congenitally deaf adults with late-acquired cochlear implants. Here, impeder and promoter effects were sought in normal-hearing adults who participated in lipreading training. In Experiment 1, visual-only (VO) training on paired associations between CVCVC nonsense word videos and nonsense pictures demonstrated that VO words could be learned to a high level of accuracy even by poor lipreaders. In Experiment 2, visual-auditory (VA) training in the same paradigm but with the addition of synchronous vocoded acoustic speech impeded VO learning of the stimuli in the paired-associates paradigm. In Experiment 3, the vocoded AO stimuli were shown to be less informative than the VO speech. Experiment 4 combined vibrotactile speech stimuli with the visual stimuli during training. Vibrotactile stimuli were shown to promote visual perceptual learning. In Experiment 5, no-training controls were used to show that training with visual speech carried over to consonant identification of untrained CVCVC stimuli but not to lipreading words in sentences. Across this and previous studies, multisensory training effects depended on the functional relationship between pathways engaged during training. Two principles are proposed to account for stimulus effects: (1) Stimuli presented to the trainee's primary perceptual pathway will impede learning by a lower-rank pathway. (2) Stimuli presented to the trainee's lower rank perceptual pathway will promote learning by a higher-rank pathway. The mechanisms supporting these principles are discussed in light of multisensory reverse hierarchy theory (RHT).

  4. Multisensory training can promote or impede visual perceptual learning of speech stimuli: visual-tactile vs. visual-auditory training

    PubMed Central

    Eberhardt, Silvio P.; Auer Jr., Edward T.; Bernstein, Lynne E.

    2014-01-01

    In a series of studies we have been investigating how multisensory training affects unisensory perceptual learning with speech stimuli. Previously, we reported that audiovisual (AV) training with speech stimuli can promote auditory-only (AO) perceptual learning in normal-hearing adults but can impede learning in congenitally deaf adults with late-acquired cochlear implants. Here, impeder and promoter effects were sought in normal-hearing adults who participated in lipreading training. In Experiment 1, visual-only (VO) training on paired associations between CVCVC nonsense word videos and nonsense pictures demonstrated that VO words could be learned to a high level of accuracy even by poor lipreaders. In Experiment 2, visual-auditory (VA) training in the same paradigm but with the addition of synchronous vocoded acoustic speech impeded VO learning of the stimuli in the paired-associates paradigm. In Experiment 3, the vocoded AO stimuli were shown to be less informative than the VO speech. Experiment 4 combined vibrotactile speech stimuli with the visual stimuli during training. Vibrotactile stimuli were shown to promote visual perceptual learning. In Experiment 5, no-training controls were used to show that training with visual speech carried over to consonant identification of untrained CVCVC stimuli but not to lipreading words in sentences. Across this and previous studies, multisensory training effects depended on the functional relationship between pathways engaged during training. Two principles are proposed to account for stimulus effects: (1) Stimuli presented to the trainee’s primary perceptual pathway will impede learning by a lower-rank pathway. (2) Stimuli presented to the trainee’s lower rank perceptual pathway will promote learning by a higher-rank pathway. The mechanisms supporting these principles are discussed in light of multisensory reverse hierarchy theory (RHT). PMID:25400566

  5. Fostering Teacher Candidates' Reflective Practice through Video Editing

    ERIC Educational Resources Information Center

    Trent, Margaret; Gurvitch, Rachel

    2015-01-01

    Recently, interest in using video to promote the reflective practice in preservice teacher education has increased. Video recordings of teaching incidents inspire the reflective practice in preservice teachers by allowing them to analyze instruction and view teaching in an objective light. As an extension of video recording, video editing has…

  6. Open-source telemedicine platform for wireless medical video communication.

    PubMed

    Panayides, A; Eleftheriou, I; Pantziaris, M

    2013-01-01

    An m-health system for real-time wireless communication of medical video based on open-source software is presented. The objective is to deliver a low-cost telemedicine platform which will allow for reliable remote diagnosis m-health applications such as emergency incidents, mass population screening, and medical education purposes. The performance of the proposed system is demonstrated using five atherosclerotic plaque ultrasound videos. The videos are encoded at the clinically acquired resolution, in addition to lower, QCIF, and CIF resolutions, at different bitrates, and four different encoding structures. Commercially available wireless local area network (WLAN) and 3.5G high-speed packet access (HSPA) wireless channels are used to validate the developed platform. Objective video quality assessment is based on PSNR ratings, following calibration using the variable frame delay (VFD) algorithm that removes temporal mismatch between original and received videos. Clinical evaluation is based on atherosclerotic plaque ultrasound video assessment protocol. Experimental results show that adequate diagnostic quality wireless medical video communications are realized using the designed telemedicine platform. HSPA cellular networks provide for ultrasound video transmission at the acquired resolution, while VFD algorithm utilization bridges objective and subjective ratings.

  7. Open-Source Telemedicine Platform for Wireless Medical Video Communication

    PubMed Central

    Panayides, A.; Eleftheriou, I.; Pantziaris, M.

    2013-01-01

    An m-health system for real-time wireless communication of medical video based on open-source software is presented. The objective is to deliver a low-cost telemedicine platform which will allow for reliable remote diagnosis m-health applications such as emergency incidents, mass population screening, and medical education purposes. The performance of the proposed system is demonstrated using five atherosclerotic plaque ultrasound videos. The videos are encoded at the clinically acquired resolution, in addition to lower, QCIF, and CIF resolutions, at different bitrates, and four different encoding structures. Commercially available wireless local area network (WLAN) and 3.5G high-speed packet access (HSPA) wireless channels are used to validate the developed platform. Objective video quality assessment is based on PSNR ratings, following calibration using the variable frame delay (VFD) algorithm that removes temporal mismatch between original and received videos. Clinical evaluation is based on atherosclerotic plaque ultrasound video assessment protocol. Experimental results show that adequate diagnostic quality wireless medical video communications are realized using the designed telemedicine platform. HSPA cellular networks provide for ultrasound video transmission at the acquired resolution, while VFD algorithm utilization bridges objective and subjective ratings. PMID:23573082

  8. The one that does, leads: action relations influence the perceived temporal order of graspable objects.

    PubMed

    Roberts, Katherine L; Humphreys, Glyn W

    2010-06-01

    Perception and action are influenced by the "possibilities for action" in the environment. Neuropsychological studies (e.g., Riddoch, Humphreys, Edwards, Baker, & Willson, 2003) have demonstrated that objects that are perceived to be interacting (e.g., a corkscrew going toward the top of a wine bottle) are perceptually integrated into a functional unit, facilitating report of both objects. In addition, patients with parietal damage tend to report the "active" item of the pair (the corkscrew in the above example) when the objects are positioned for action, overriding their spatial bias toward the ipsilesional side. Using a temporal order judgment task we show for the first time that normal viewers judge that active objects appear earlier when they are positioned correctly for action. This effect is not dependent on a learned relationship between objects, or on the active object being integrated at a perceptual level with the object it is paired with. The data suggest that actions afforded by a correctly positioned active object permeate normal perceptual judgments.

  9. Perceptual upright: the relative effectiveness of dynamic and static images under different gravity States.

    PubMed

    Jenkin, Michael R; Dyde, Richard T; Jenkin, Heather L; Zacher, James E; Harris, Laurence R

    2011-01-01

    The perceived direction of up depends on both gravity and visual cues to orientation. Static visual cues to orientation have been shown to be less effective in influencing the perception of upright (PU) under microgravity conditions than they are on earth (Dyde et al., 2009). Here we introduce dynamic orientation cues into the visual background to ascertain whether they might increase the effectiveness of visual cues in defining the PU under different gravity conditions. Brief periods of microgravity and hypergravity were created using parabolic flight. Observers viewed a polarized, natural scene presented at various orientations on a laptop viewed through a hood which occluded all other visual cues. The visual background was either an animated video clip in which actors moved along the visual ground plane or an individual static frame taken from the same clip. We measured the perceptual upright using the oriented character recognition test (OCHART). Dynamic visual cues significantly enhance the effectiveness of vision in determining the perceptual upright under normal gravity conditions. Strong trends were found for dynamic visual cues to produce an increase in the visual effect under both microgravity and hypergravity conditions.

  10. Objective analysis of image quality of video image capture systems

    NASA Astrophysics Data System (ADS)

    Rowberg, Alan H.

    1990-07-01

    As Picture Archiving and Communication System (PACS) technology has matured, video image capture has become a common way of capturing digital images from many modalities. While digital interfaces, such as those which use the ACR/NEMA standard, will become more common in the future, and are preferred because of the accuracy of image transfer, video image capture will be the dominant method in the short term, and may continue to be used for some time because of the low cost and high speed often associated with such devices. Currently, virtually all installed systems use methods of digitizing the video signal that is produced for display on the scanner viewing console itself. A series of digital test images have been developed for display on either a GE CT9800 or a GE Signa MRI scanner. These images have been captured with each of five commercially available image capture systems, and the resultant images digitally transferred on floppy disk to a PC1286 computer containing Optimast' image analysis software. Here the images can be displayed in a comparative manner for visual evaluation, in addition to being analyzed statistically. Each of the images have been designed to support certain tests, including noise, accuracy, linearity, gray scale range, stability, slew rate, and pixel alignment. These image capture systems vary widely in these characteristics, in addition to the presence or absence of other artifacts, such as shading and moire pattern. Other accessories such as video distribution amplifiers and noise filters can also add or modify artifacts seen in the captured images, often giving unusual results. Each image is described, together with the tests which were performed using them. One image contains alternating black and white lines, each one pixel wide, after equilibration strips ten pixels wide. While some systems have a slew rate fast enough to track this correctly, others blur it to an average shade of gray, and do not resolve the lines, or give

  11. A no-reference video quality assessment metric based on ROI

    NASA Astrophysics Data System (ADS)

    Jia, Lixiu; Zhong, Xuefei; Tu, Yan; Niu, Wenjuan

    2015-01-01

    A no reference video quality assessment metric based on the region of interest (ROI) was proposed in this paper. In the metric, objective video quality was evaluated by integrating the quality of two compressed artifacts, i.e. blurring distortion and blocking distortion. The Gaussian kernel function was used to extract the human density maps of the H.264 coding videos from the subjective eye tracking data. An objective bottom-up ROI extraction model based on magnitude discrepancy of discrete wavelet transform between two consecutive frames, center weighted color opponent model, luminance contrast model and frequency saliency model based on spectral residual was built. Then only the objective saliency maps were used to compute the objective blurring and blocking quality. The results indicate that the objective ROI extraction metric has a higher the area under the curve (AUC) value. Comparing with the conventional video quality assessment metrics which measured all the video quality frames, the metric proposed in this paper not only decreased the computation complexity, but improved the correlation between subjective mean opinion score (MOS) and objective scores.

  12. Single-layer HDR video coding with SDR backward compatibility

    NASA Astrophysics Data System (ADS)

    Lasserre, S.; François, E.; Le Léannec, F.; Touzé, D.

    2016-09-01

    The migration from High Definition (HD) TV to Ultra High Definition (UHD) is already underway. In addition to an increase of picture spatial resolution, UHD will bring more color and higher contrast by introducing Wide Color Gamut (WCG) and High Dynamic Range (HDR) video. As both Standard Dynamic Range (SDR) and HDR devices will coexist in the ecosystem, the transition from Standard Dynamic Range (SDR) to HDR will require distribution solutions supporting some level of backward compatibility. This paper presents a new HDR content distribution scheme, named SL-HDR1, using a single layer codec design and providing SDR compatibility. The solution is based on a pre-encoding HDR-to-SDR conversion, generating a backward compatible SDR video, with side dynamic metadata. The resulting SDR video is then compressed, distributed and decoded using standard-compliant decoders (e.g. HEVC Main 10 compliant). The decoded SDR video can be directly rendered on SDR displays without adaptation. Dynamic metadata of limited size are generated by the pre-processing and used to reconstruct the HDR signal from the decoded SDR video, using a post-processing that is the functional inverse of the pre-processing. Both HDR quality and artistic intent are preserved. Pre- and post-processing are applied independently per picture, do not involve any inter-pixel dependency, and are codec agnostic. Compression performance, and SDR quality are shown to be solidly improved compared to the non-backward and backward-compatible approaches, respectively using the Perceptual Quantization (PQ) and Hybrid Log Gamma (HLG) Opto-Electronic Transfer Functions (OETF).

  13. Evaluating the Relationship between Cognitive Style and Pre-Service Teachers' Preconceived Notions about Adopting Console Video Games for Use in Future Classrooms

    ERIC Educational Resources Information Center

    McDaniel, Rudy; Kenny, Robert

    2013-01-01

    This article explores the impact of perceptual cognitive styles on pre-service teachers' attitudes toward video games. Using a cognitive style continuum measuring field dependence and field independence, the authors conducted an exploratory study to measure the potential impact of cognitive style on pre-service teachers' dispositions towards the…

  14. Exploiting spatio-temporal characteristics of human vision for mobile video applications

    NASA Astrophysics Data System (ADS)

    Jillani, Rashad; Kalva, Hari

    2008-08-01

    Video applications on handheld devices such as smart phones pose a significant challenge to achieve high quality user experience. Recent advances in processor and wireless networking technology are producing a new class of multimedia applications (e.g. video streaming) for mobile handheld devices. These devices are light weight and have modest sizes, and therefore very limited resources - lower processing power, smaller display resolution, lesser memory, and limited battery life as compared to desktop and laptop systems. Multimedia applications on the other hand have extensive processing requirements which make the mobile devices extremely resource hungry. In addition, the device specific properties (e.g. display screen) significantly influence the human perception of multimedia quality. In this paper we propose a saliency based framework that exploits the structure in content creation as well as the human vision system to find the salient points in the incoming bitstream and adapt it according to the target device, thus improving the quality of new adapted area around salient points. Our experimental results indicate that the adaptation process that is cognizant of video content and user preferences can produce better perceptual quality video for mobile devices. Furthermore, we demonstrated how such a framework can affect user experience on a handheld device.

  15. What is the Bandwidth of Perceptual Experience?

    PubMed

    Cohen, Michael A; Dennett, Daniel C; Kanwisher, Nancy

    2016-05-01

    Although our subjective impression is of a richly detailed visual world, numerous empirical results suggest that the amount of visual information observers can perceive and remember at any given moment is limited. How can our subjective impressions be reconciled with these objective observations? Here, we answer this question by arguing that, although we see more than the handful of objects, claimed by prominent models of visual attention and working memory, we still see far less than we think we do. Taken together, we argue that these considerations resolve the apparent conflict between our subjective impressions and empirical data on visual capacity, while also illuminating the nature of the representations underlying perceptual experience. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Beyond Perceptual Symbols: A Call for Representational Pluralism

    ERIC Educational Resources Information Center

    Dove, Guy

    2009-01-01

    Recent evidence from cognitive neuroscience suggests that certain cognitive processes employ perceptual representations. Inspired by this evidence, a few researchers have proposed that cognition is inherently perceptual. They have developed an innovative theoretical approach that rests on the notion of perceptual simulation and marshaled several…

  17. The Nature of Experience Determines Object Representations in the Visual System

    ERIC Educational Resources Information Center

    Wong, Yetta K.; Folstein, Jonathan R.; Gauthier, Isabel

    2012-01-01

    Visual perceptual learning (PL) and perceptual expertise (PE) traditionally lead to different training effects and recruit different brain areas, but reasons for these differences are largely unknown. Here, we tested how the learning history influences visual object representations. Two groups were trained with tasks typically used in PL or PE…

  18. Object-based warping: an illusory distortion of space within objects.

    PubMed

    Vickery, Timothy J; Chun, Marvin M

    2010-12-01

    Visual objects are high-level primitives that are fundamental to numerous perceptual functions, such as guidance of attention. We report that objects warp visual perception of space in such a way that spatial distances within objects appear to be larger than spatial distances in ground regions. When two dots were placed inside a rectangular object, they appeared farther apart from one another than two dots with identical spacing outside of the object. To investigate whether this effect was object based, we measured the distortion while manipulating the structure surrounding the dots. Object displays were constructed with a single object, multiple objects, a partially occluded object, and an illusory object. Nonobject displays were constructed to be comparable to object displays in low-level visual attributes. In all cases, the object displays resulted in a more powerful distortion of spatial perception than comparable non-object-based displays. These results suggest that perception of space within objects is warped.

  19. Audiomotor Perceptual Training Enhances Speech Intelligibility in Background Noise.

    PubMed

    Whitton, Jonathon P; Hancock, Kenneth E; Shannon, Jeffrey M; Polley, Daniel B

    2017-11-06

    Sensory and motor skills can be improved with training, but learning is often restricted to practice stimuli. As an exception, training on closed-loop (CL) sensorimotor interfaces, such as action video games and musical instruments, can impart a broad spectrum of perceptual benefits. Here we ask whether computerized CL auditory training can enhance speech understanding in levels of background noise that approximate a crowded restaurant. Elderly hearing-impaired subjects trained for 8 weeks on a CL game that, like a musical instrument, challenged them to monitor subtle deviations between predicted and actual auditory feedback as they moved their fingertip through a virtual soundscape. We performed our study as a randomized, double-blind, placebo-controlled trial by training other subjects in an auditory working-memory (WM) task. Subjects in both groups improved at their respective auditory tasks and reported comparable expectations for improved speech processing, thereby controlling for placebo effects. Whereas speech intelligibility was unchanged after WM training, subjects in the CL training group could correctly identify 25% more words in spoken sentences or digit sequences presented in high levels of background noise. Numerically, CL audiomotor training provided more than three times the benefit of our subjects' hearing aids for speech processing in noisy listening conditions. Gains in speech intelligibility could be predicted from gameplay accuracy and baseline inhibitory control. However, benefits did not persist in the absence of continuing practice. These studies employ stringent clinical standards to demonstrate that perceptual learning on a computerized audio game can transfer to "real-world" communication challenges. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Model-based video segmentation for vision-augmented interactive games

    NASA Astrophysics Data System (ADS)

    Liu, Lurng-Kuo

    2000-04-01

    This paper presents an architecture and algorithms for model based video object segmentation and its applications to vision augmented interactive game. We are especially interested in real time low cost vision based applications that can be implemented in software in a PC. We use different models for background and a player object. The object segmentation algorithm is performed in two different levels: pixel level and object level. At pixel level, the segmentation algorithm is formulated as a maximizing a posteriori probability (MAP) problem. The statistical likelihood of each pixel is calculated and used in the MAP problem. Object level segmentation is used to improve segmentation quality by utilizing the information about the spatial and temporal extent of the object. The concept of an active region, which is defined based on motion histogram and trajectory prediction, is introduced to indicate the possibility of a video object region for both background and foreground modeling. It also reduces the overall computation complexity. In contrast with other applications, the proposed video object segmentation system is able to create background and foreground models on the fly even without introductory background frames. Furthermore, we apply different rate of self-tuning on the scene model so that the system can adapt to the environment when there is a scene change. We applied the proposed video object segmentation algorithms to several prototype virtual interactive games. In our prototype vision augmented interactive games, a player can immerse himself/herself inside a game and can virtually interact with other animated characters in a real time manner without being constrained by helmets, gloves, special sensing devices, or background environment. The potential applications of the proposed algorithms including human computer gesture interface and object based video coding such as MPEG-4 video coding.

  1. Is Content Really King? An Objective Analysis of the Public's Response to Medical Videos on YouTube

    PubMed Central

    Desai, Tejas; Shariff, Afreen; Dhingra, Vibhu; Minhas, Deeba; Eure, Megan; Kats, Mark

    2013-01-01

    Medical educators and patients are turning to YouTube to teach and learn about medical conditions. These videos are from authors whose credibility cannot be verified & are not peer reviewed. As a result, studies that have analyzed the educational content of YouTube have reported dismal results. These studies have been unable to exclude videos created by questionable sources and for non-educational purposes. We hypothesize that medical education YouTube videos, authored by credible sources, are of high educational value and appropriately suited to educate the public. Credible videos about cardiovascular diseases were identified using the Mayo Clinic's Center for Social Media Health network. Content in each video was assessed by the presence/absence of 7 factors. Each video was also evaluated for understandability using the Suitability Assessment of Materials (SAM). User engagement measurements were obtained for each video. A total of 607 videos (35 hours) were analyzed. Half of all videos contained 3 educational factors: treatment, screening, or prevention. There was no difference between the number of educational factors present & any user engagement measurement (p NS). SAM scores were higher in videos whose content discussed more educational factors (p<0.0001). However, none of the user engagement measurements correlated with higher SAM scores. Videos with greater educational content are more suitable for patient education but unable to engage users more than lower quality videos. It is unclear if the notion “content is king” applies to medical videos authored by credible organizations for the purposes of patient education on YouTube. PMID:24367517

  2. Improving the Perceptual Performance of Learning Disabled Second Graders through Computer Assisted Instruction.

    ERIC Educational Resources Information Center

    Burke, James P.

    The practicum designed a perceptual activities program for learning disabled second graders using computer-assisted instruction. The program develops skills involving visual motor coordination, figure-ground differentiation, form constancy, position in space, and spatial relationships. Five behavioral objectives for each developmental area were…

  3. Selecting salient frames for spatiotemporal video modeling and segmentation.

    PubMed

    Song, Xiaomu; Fan, Guoliang

    2007-12-01

    We propose a new statistical generative model for spatiotemporal video segmentation. The objective is to partition a video sequence into homogeneous segments that can be used as "building blocks" for semantic video segmentation. The baseline framework is a Gaussian mixture model (GMM)-based video modeling approach that involves a six-dimensional spatiotemporal feature space. Specifically, we introduce the concept of frame saliency to quantify the relevancy of a video frame to the GMM-based spatiotemporal video modeling. This helps us use a small set of salient frames to facilitate the model training by reducing data redundancy and irrelevance. A modified expectation maximization algorithm is developed for simultaneous GMM training and frame saliency estimation, and the frames with the highest saliency values are extracted to refine the GMM estimation for video segmentation. Moreover, it is interesting to find that frame saliency can imply some object behaviors. This makes the proposed method also applicable to other frame-related video analysis tasks, such as key-frame extraction, video skimming, etc. Experiments on real videos demonstrate the effectiveness and efficiency of the proposed method.

  4. Viewing Artworks: Contributions of Cognitive Control and Perceptual Facilitation to Aesthetic Experience

    ERIC Educational Resources Information Center

    Cupchik, Gerald C.; Vartanian, Oshin; Crawley, Adrian; Mikulis, David J.

    2009-01-01

    When we view visual images in everyday life, our perception is oriented toward object identification. In contrast, when viewing visual images "as artworks", we also tend to experience subjective reactions to their stylistic and structural properties. This experiment sought to determine how cognitive control and perceptual facilitation contribute…

  5. Perceptual-Attentional and Motor-Intentional Bias in Near and Far Space

    PubMed Central

    Garza, John P.; Eslinger, Paul J.; Barrett, Anna M.

    2008-01-01

    Spatial bias demonstrated in tasks such as line-bisection may stem from perceptual-attentional (PA) “where” and motor-intentional (MI) “aiming” influences. We tested normal participants’ line bisection performance in the presence of an asymmetric visual distracter with a video apparatus designed to dissociate PA from MI bias. An experimenter stood as a distractor to the left or right of a video monitor positioned in either near or far space, where participants viewed lines and a laser point they directed under 1) natural and 2) mirror-reversed conditions. Each trial started with the pointer positioned at either the top left or top right corner of the screen, and alternated thereafter. Data analysis indicated that participants made primarily PA leftward errors in near space, but not in far space. Furthermore, PA, but not MI, bias increased bilaterally in the direction of distraction. In contrast, MI, but not PA, bias was shifted bilaterally in the direction of startside. Results support the conclusion that a primarily PA left sided bias in near space is consistent with right hemisphere spatial attentional dominance. A bottom-up visual distractor specifically affected PA “where” spatial bias while top-down motor cuing influenced MI “aiming” bias. PMID:18381226

  6. Natural texture retrieval based on perceptual similarity measurement

    NASA Astrophysics Data System (ADS)

    Gao, Ying; Dong, Junyu; Lou, Jianwen; Qi, Lin; Liu, Jun

    2018-04-01

    A typical texture retrieval system performs feature comparison and might not be able to make human-like judgments of image similarity. Meanwhile, it is commonly known that perceptual texture similarity is difficult to be described by traditional image features. In this paper, we propose a new texture retrieval scheme based on texture perceptual similarity. The key of the proposed scheme is that prediction of perceptual similarity is performed by learning a non-linear mapping from image features space to perceptual texture space by using Random Forest. We test the method on natural texture dataset and apply it on a new wallpapers dataset. Experimental results demonstrate that the proposed texture retrieval scheme with perceptual similarity improves the retrieval performance over traditional image features.

  7. Are gamers better crossers? An examination of action video game experience and dual task effects in a simulated street crossing task.

    PubMed

    Gaspar, John G; Neider, Mark B; Crowell, James A; Lutz, Aubrey; Kaczmarski, Henry; Kramer, Arthur F

    2014-05-01

    A high-fidelity street crossing simulator was used to test the hypothesis that experienced action video game players are less vulnerable than non-gamers to dual task costs in complex tasks. Previous research has shown that action video game players outperform nonplayers on many single task measures of perception and attention. It is unclear, however, whether action video game players outperform nonplayers in complex, divided attention tasks. Experienced action video game players and nongamers completed a street crossing task in a high-fidelity simulator. Participants walked on a manual treadmill to cross the street. During some crossings, a cognitively demanding working memory task was added. Dividing attention resulted in more collisions and increased decision making time. Of importance, these dual task costs were equivalent for the action video game players and the nongamers. These results suggest that action video game players are equally susceptible to the costs of dividing attention in a complex task. Perceptual and attentional benefits associated with action video game experience may not translate to performance benefits in complex, real-world tasks.

  8. Perceptually specific and perceptually non-specific influences on rereading benefits for spatially transformed text: evidence from eye movements.

    PubMed

    Sheridan, Heather; Reingold, Eyal M

    2012-12-01

    The present study used eye tracking methodology to examine rereading benefits for spatially transformed text. Eye movements were monitored while participants read the same target word twice, in two different low-constraint sentence frames. The congruency of perceptual processing was manipulated by either applying the same type of transformation to the word during the first and second presentations (i.e., the congruent condition), or employing two different types of transformations across the two presentations of the word (i.e., the incongruent condition). Perceptual specificity effects were demonstrated such that fixation times for the second presentation of the target word were shorter for the congruent condition compared to the incongruent condition. Moreover, we demonstrated an additional perceptually non-specific effect such that second reading fixation times were shorter for the incongruent condition relative to a baseline condition that employed a normal typography (i.e., non-transformed) during the first presentation and a transformation during the second presentation. Both of these effects (i.e., perceptually specific and perceptually non-specific) were similar in magnitude for high and low frequency words, and both effects persisted across a 1 week lag between the first and second readings. We discuss the present findings in the context of the distinction between conscious and unconscious memory, and the distinction between perceptually versus conceptually driven processing. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Topographic generalization of tactile perceptual learning.

    PubMed

    Harrar, Vanessa; Spence, Charles; Makin, Tamar R

    2014-02-01

    Perceptual learning can improve our sensory abilities. Understanding its underlying mechanisms, in particular, when perceptual learning generalizes, has become a focus of research and controversy. Specifically, there is little consensus regarding the extent to which tactile perceptual learning generalizes across fingers. We measured tactile orientation discrimination abilities on 4 fingers (index and middle fingers of both hands), using psychophysical measures, before and after 4 training sessions on 1 finger. Given the somatotopic organization of the hand representation in the somatosensory cortex, the topography of the cortical areas underlying tactile perceptual learning can be inferred from the pattern of generalization across fingers; only fingers sharing cortical representation with the trained finger ought to improve with it. Following training, performance improved not only for the trained finger but also for its adjacent and homologous fingers. Although these fingers were not exposed to training, they nevertheless demonstrated similar levels of learning as the trained finger. Conversely, the performance of the finger that was neither adjacent nor homologous to the trained finger was unaffected by training, despite the fact that our procedure was designed to enhance generalization, as described in recent visual perceptual learning research. This pattern of improved performance is compatible with previous reports of neuronal receptive fields (RFs) in the primary somatosensory cortex (SI) spanning adjacent and homologous digits. We conclude that perceptual learning rooted in low-level cortex can still generalize, and suggest potential applications for the neurorehabilitation of syndromes associated with maladaptive plasticity in SI. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  10. Referenceless perceptual fog density prediction model

    NASA Astrophysics Data System (ADS)

    Choi, Lark Kwon; You, Jaehee; Bovik, Alan C.

    2014-02-01

    We propose a perceptual fog density prediction model based on natural scene statistics (NSS) and "fog aware" statistical features, which can predict the visibility in a foggy scene from a single image without reference to a corresponding fogless image, without side geographical camera information, without training on human-rated judgments, and without dependency on salient objects such as lane markings or traffic signs. The proposed fog density predictor only makes use of measurable deviations from statistical regularities observed in natural foggy and fog-free images. A fog aware collection of statistical features is derived from a corpus of foggy and fog-free images by using a space domain NSS model and observed characteristics of foggy images such as low contrast, faint color, and shifted intensity. The proposed model not only predicts perceptual fog density for the entire image but also provides a local fog density index for each patch. The predicted fog density of the model correlates well with the measured visibility in a foggy scene as measured by judgments taken in a human subjective study on a large foggy image database. As one application, the proposed model accurately evaluates the performance of defog algorithms designed to enhance the visibility of foggy images.

  11. What Is Being Masked in Object Substitution Masking?

    ERIC Educational Resources Information Center

    Gellatly, Angus; Pilling, Michael; Cole, Geoff; Skarratt, Paul

    2006-01-01

    Object substitution masking (OSM) is said to occur when a perceptual object is hypothesized that is mismatched by subsequent sensory evidence, leading to a new hypothesized object being substituted for the first. For example, when a brief target is accompanied by a longer lasting display of nonoverlapping mask elements, reporting of target…

  12. Perceptual-Motor Behavior and Educational Processes.

    ERIC Educational Resources Information Center

    Cratty, Bryant J.

    Addressed to elementary school and special class teachers, the text presents research-based information on perceptual-motor behavior and education, including movement and the human personality, research guidelines, and movement activities in general education. Special education is considered and perceptual motor abilities are discussed with…

  13. ViA: a perceptual visualization assistant

    NASA Astrophysics Data System (ADS)

    Healey, Chris G.; St. Amant, Robert; Elhaddad, Mahmoud S.

    2000-05-01

    This paper describes an automated visualized assistant called ViA. ViA is designed to help users construct perceptually optical visualizations to represent, explore, and analyze large, complex, multidimensional datasets. We have approached this problem by studying what is known about the control of human visual attention. By harnessing the low-level human visual system, we can support our dual goals of rapid and accurate visualization. Perceptual guidelines that we have built using psychophysical experiments form the basis for ViA. ViA uses modified mixed-initiative planning algorithms from artificial intelligence to search of perceptually optical data attribute to visual feature mappings. Our perceptual guidelines are integrated into evaluation engines that provide evaluation weights for a given data-feature mapping, and hints on how that mapping might be improved. ViA begins by asking users a set of simple questions about their dataset and the analysis tasks they want to perform. Answers to these questions are used in combination with the evaluation engines to identify and intelligently pursue promising data-feature mappings. The result is an automatically-generated set of mappings that are perceptually salient, but that also respect the context of the dataset and users' preferences about how they want to visualize their data.

  14. Comparing perceptual and preferential decision making.

    PubMed

    Dutilh, Gilles; Rieskamp, Jörg

    2016-06-01

    Perceptual and preferential decision making have been studied largely in isolation. Perceptual decisions are considered to be at a non-deliberative cognitive level and have an outside criterion that defines the quality of decisions. Preferential decisions are considered to be at a higher cognitive level and the quality of decisions depend on the decision maker's subjective goals. Besides these crucial differences, both types of decisions also have in common that uncertain information about the choice situation has to be processed before a decision can be made. The present work aims to acknowledge the commonalities of both types of decision making to lay bare the crucial differences. For this aim we examine perceptual and preferential decisions with a novel choice paradigm that uses the identical stimulus material for both types of decisions. This paradigm allows us to model the decisions and response times of both types of decisions with the same sequential sampling model, the drift diffusion model. The results illustrate that the different incentive structure in both types of tasks changes people's behavior so that they process information more efficiently and respond more cautiously in the perceptual as compared to the preferential task. These findings set out a perspective for further integration of perceptual and preferential decision making in a single ramework.

  15. Video bandwidth compression system

    NASA Astrophysics Data System (ADS)

    Ludington, D.

    1980-08-01

    The objective of this program was the development of a Video Bandwidth Compression brassboard model for use by the Air Force Avionics Laboratory, Wright-Patterson Air Force Base, in evaluation of bandwidth compression techniques for use in tactical weapons and to aid in the selection of particular operational modes to be implemented in an advanced flyable model. The bandwidth compression system is partitioned into two major divisions: the encoder, which processes the input video with a compression algorithm and transmits the most significant information; and the decoder where the compressed data is reconstructed into a video image for display.

  16. Motion video analysis using planar parallax

    NASA Astrophysics Data System (ADS)

    Sawhney, Harpreet S.

    1994-04-01

    Motion and structure analysis in video sequences can lead to efficient descriptions of objects and their motions. Interesting events in videos can be detected using such an analysis--for instance independent object motion when the camera itself is moving, figure-ground segregation based on the saliency of a structure compared to its surroundings. In this paper we present a method for 3D motion and structure analysis that uses a planar surface in the environment as a reference coordinate system to describe a video sequence. The motion in the video sequence is described as the motion of the reference plane, and the parallax motion of all the non-planar components of the scene. It is shown how this method simplifies the otherwise hard general 3D motion analysis problem. In addition, a natural coordinate system in the environment is used to describe the scene which can simplify motion based segmentation. This work is a part of an ongoing effort in our group towards video annotation and analysis for indexing and retrieval. Results from a demonstration system being developed are presented.

  17. Internet-based perceptual learning in treating amblyopia.

    PubMed

    Zhang, Wenqiu; Yang, Xubo; Liao, Meng; Zhang, Ning; Liu, Longqian

    2013-01-01

    Amblyopia is a common childhood condition, which affects 2%-3% of the population. The efficacy of conventional treatment in amblyopia seems not to be high and recently perceptual learning has been used for treating amblyopia. The aim of this study was to address the efficacy of Internet-based perceptual learning in treating amblyopia. A total of 530 eyes of 341 patients with amblyopia presenting to the outpatient department of West China Hospital of Sichuan University between February 2011 and December 2011 were reviewed. A retrospective cohort study was conducted to compare the efficacy of Internet-based perceptual learning and conventional treatment in amblyopia. The efficacy was evaluated by the change in visual acuity between pretreatment and posttreatment. The change in visual acuity between pretreatment and posttreatment by Internet-based perceptual learning was larger than that by conventional treatment in ametropic and strabismic amblyopia (p<0.05), but smaller than that in anisometropic and other types of amblyopia (p<0.05). The improvement in visual acuity by Internet-based perceptual learning was larger for patients with amblyopia not younger than 7 years (p<0.05). The mean cure time of patients with amblyopia by Internet-based perceptual learning was 3.06 ± 1.42 months, while conventional treatment required 3.52 ± 1.67 months to reach the same improvement (p<0.05). Internet-based perceptual learning can be considered as an alternative to conventional treatment. It is especially suitable for ametropic and strabismic patients with amblyopia who are older than 7 years and can shorten the cure time of amblyopia.

  18. Pupil size tracks perceptual content and surprise.

    PubMed

    Kloosterman, Niels A; Meindertsma, Thomas; van Loon, Anouk M; Lamme, Victor A F; Bonneh, Yoram S; Donner, Tobias H

    2015-04-01

    Changes in pupil size at constant light levels reflect the activity of neuromodulatory brainstem centers that control global brain state. These endogenously driven pupil dynamics can be synchronized with cognitive acts. For example, the pupil dilates during the spontaneous switches of perception of a constant sensory input in bistable perceptual illusions. It is unknown whether this pupil dilation only indicates the occurrence of perceptual switches, or also their content. Here, we measured pupil diameter in human subjects reporting the subjective disappearance and re-appearance of a physically constant visual target surrounded by a moving pattern ('motion-induced blindness' illusion). We show that the pupil dilates during the perceptual switches in the illusion and a stimulus-evoked 'replay' of that illusion. Critically, the switch-related pupil dilation encodes perceptual content, with larger amplitude for disappearance than re-appearance. This difference in pupil response amplitude enables prediction of the type of report (disappearance vs. re-appearance) on individual switches (receiver-operating characteristic: 61%). The amplitude difference is independent of the relative durations of target-visible and target-invisible intervals and subjects' overt behavioral report of the perceptual switches. Further, we show that pupil dilation during the replay also scales with the level of surprise about the timing of switches, but there is no evidence for an interaction between the effects of surprise and perceptual content on the pupil response. Taken together, our results suggest that pupil-linked brain systems track both the content of, and surprise about, perceptual events. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. Eye tracking measures of uncertainty during perceptual decision making.

    PubMed

    Brunyé, Tad T; Gardony, Aaron L

    2017-10-01

    Perceptual decision making involves gathering and interpreting sensory information to effectively categorize the world and inform behavior. For instance, a radiologist distinguishing the presence versus absence of a tumor, or a luggage screener categorizing objects as threatening or non-threatening. In many cases, sensory information is not sufficient to reliably disambiguate the nature of a stimulus, and resulting decisions are done under conditions of uncertainty. The present study asked whether several oculomotor metrics might prove sensitive to transient states of uncertainty during perceptual decision making. Participants viewed images with varying visual clarity and were asked to categorize them as faces or houses, and rate the certainty of their decisions, while we used eye tracking to monitor fixations, saccades, blinks, and pupil diameter. Results demonstrated that decision certainty influenced several oculomotor variables, including fixation frequency and duration, the frequency, peak velocity, and amplitude of saccades, and phasic pupil diameter. Whereas most measures tended to change linearly along with decision certainty, pupil diameter revealed more nuanced and dynamic information about the time course of perceptual decision making. Together, results demonstrate robust alterations in eye movement behavior as a function of decision certainty and attention demands, and suggest that monitoring oculomotor variables during applied task performance may prove valuable for identifying and remediating transient states of uncertainty. Published by Elsevier B.V.

  20. Plugging the Attention Deficit: Perceptual Load Counters Increased Distraction in ADHD

    PubMed Central

    2013-01-01

    Objective: Increased vulnerability to extraneous distraction is a key symptom of Attention-Deficit Hyperactivity Disorder (ADHD), which may have particularly disruptive consequences. Here we apply Load Theory of attention to increase understanding of this symptom, and to explore a potential method for ameliorating it. Previous research in nonclinical populations has highlighted increased perceptual load as a means of improving the ability to focus attention and avoid distraction. The present study examines whether adults with ADHD can also benefit from conditions of high perceptual load to improve their focused attention abilities. Method: We tested adults with ADHD and age- and IQ-matched controls on a novel measure of irrelevant distraction under load, designed to parallel the form of distraction that is symptomatic of ADHD. During a letter search task, in which perceptual load was varied through search set size, participants were required to ignore salient yet entirely irrelevant distractors (colorful images of cartoon characters) presented infrequently (10% of trials). Results: The presence of these distractors produced a significantly greater interference effect on the search RTs for the adults with ADHD compared with controls, p = .005, ηp2 = .231. Perceptual load, however, significantly reduced distractor interference for the ADHD group and was as effective in reducing the elevated distractor interference in ADHD as it was for controls. Conclusions: These findings clarify the nature of the attention deficit underlying increased distraction in ADHD, and demonstrate a tangible method for overcoming it. PMID:24219607

  1. Teasing Apart Complex Motions using VideoPoint

    NASA Astrophysics Data System (ADS)

    Fischer, Mark

    2002-10-01

    Using video analysis software such as VideoPoint, it is possible to explore the physics of any phenomenon that can be captured on videotape. The good news is that complex motions can be filmed and analyzed. The bad news is that the motions can become very complex very quickly. An example of such a complicated motion, the 2-dimensional motion of an object as filmed by a camera that is moving and rotating in the same plane will be discussed. Methods for extracting the desired object motion will be given as well as suggestions for shooting more easily analyzable video clips.

  2. Object Correspondence across Brief Occlusion Is Established on the Basis of both Spatiotemporal and Surface Feature Cues

    ERIC Educational Resources Information Center

    Hollingworth, Andrew; Franconeri, Steven L.

    2009-01-01

    The "correspondence problem" is a classic issue in vision and cognition. Frequent perceptual disruptions, such as saccades and brief occlusion, create gaps in perceptual input. How does the visual system establish correspondence between objects visible before and after the disruption? Current theories hold that object correspondence is established…

  3. The role of perceptual load in inattentional blindness.

    PubMed

    Cartwright-Finch, Ula; Lavie, Nilli

    2007-03-01

    Perceptual load theory offers a resolution to the long-standing early vs. late selection debate over whether task-irrelevant stimuli are perceived, suggesting that irrelevant perception depends upon the perceptual load of task-relevant processing. However, previous evidence for this theory has relied on RTs and neuroimaging. Here we tested the effects of load on conscious perception using the "inattentional blindness" paradigm. As predicted by load theory, awareness of a task-irrelevant stimulus was significantly reduced by higher perceptual load (with increased numbers of search items, or a harder discrimination vs. detection task). These results demonstrate that conscious perception of task-irrelevant stimuli critically depends upon the level of task-relevant perceptual load rather than intentions or expectations, thus enhancing the resolution to the early vs. late selection debate offered by the perceptual load theory.

  4. Perceptual fluency and judgments of vocal aesthetics and stereotypicality.

    PubMed

    Babel, Molly; McGuire, Grant

    2015-05-01

    Research has shown that processing dynamics on the perceiver's end determine aesthetic pleasure. Specifically, typical objects, which are processed more fluently, are perceived as more attractive. We extend this notion of perceptual fluency to judgments of vocal aesthetics. Vocal attractiveness has traditionally been examined with respect to sexual dimorphism and the apparent size of a talker, as reconstructed from the acoustic signal, despite evidence that gender-specific speech patterns are learned social behaviors. In this study, we report on a series of three experiments using 60 voices (30 females) to compare the relationship between judgments of vocal attractiveness, stereotypicality, and gender categorization fluency. Our results indicate that attractiveness and stereotypicality are highly correlated for female and male voices. Stereotypicality and categorization fluency were also correlated for male voices, but not female voices. Crucially, stereotypicality and categorization fluency interacted to predict attractiveness, suggesting the role of perceptual fluency is present, but nuanced, in judgments of human voices. © 2014 Cognitive Science Society, Inc.

  5. Greater perceptual sensitivity to happy facial expression.

    PubMed

    Maher, Stephen; Ekstrom, Tor; Chen, Yue

    2014-01-01

    Perception of subtle facial expressions is essential for social functioning; yet it is unclear if human perceptual sensitivities differ in detecting varying types of facial emotions. Evidence diverges as to whether salient negative versus positive emotions (such as sadness versus happiness) are preferentially processed. Here, we measured perceptual thresholds for the detection of four types of emotion in faces--happiness, fear, anger, and sadness--using psychophysical methods. We also evaluated the association of the perceptual performances with facial morphological changes between neutral and respective emotion types. Human observers were highly sensitive to happiness compared with the other emotional expressions. Further, this heightened perceptual sensitivity to happy expressions can be attributed largely to the emotion-induced morphological change of a particular facial feature (end-lip raise).

  6. Video Game Based Learning in English Grammar

    ERIC Educational Resources Information Center

    Singaravelu, G.

    2008-01-01

    The study enlightens the effectiveness of Video Game Based Learning in English Grammar at standard VI. A Video Game package was prepared and it consisted of self-learning activities in play way manner which attracted the minds of the young learners. Chief objective: Find out the effectiveness of Video-Game based learning in English grammar.…

  7. No-reference video quality measurement: added value of machine learning

    NASA Astrophysics Data System (ADS)

    Mocanu, Decebal Constantin; Pokhrel, Jeevan; Garella, Juan Pablo; Seppänen, Janne; Liotou, Eirini; Narwaria, Manish

    2015-11-01

    Video quality measurement is an important component in the end-to-end video delivery chain. Video quality is, however, subjective, and thus, there will always be interobserver differences in the subjective opinion about the visual quality of the same video. Despite this, most existing works on objective quality measurement typically focus only on predicting a single score and evaluate their prediction accuracies based on how close it is to the mean opinion scores (or similar average based ratings). Clearly, such an approach ignores the underlying diversities in the subjective scoring process and, as a result, does not allow further analysis on how reliable the objective prediction is in terms of subjective variability. Consequently, the aim of this paper is to analyze this issue and present a machine-learning based solution to address it. We demonstrate the utility of our ideas by considering the practical scenario of video broadcast transmissions with focus on digital terrestrial television (DTT) and proposing a no-reference objective video quality estimator for such application. We conducted meaningful verification studies on different video content (including video clips recorded from real DTT broadcast transmissions) in order to verify the performance of the proposed solution.

  8. Audiovisual speech perception development at varying levels of perceptual processing.

    PubMed

    Lalonde, Kaylah; Holt, Rachael Frush

    2016-04-01

    This study used the auditory evaluation framework [Erber (1982). Auditory Training (Alexander Graham Bell Association, Washington, DC)] to characterize the influence of visual speech on audiovisual (AV) speech perception in adults and children at multiple levels of perceptual processing. Six- to eight-year-old children and adults completed auditory and AV speech perception tasks at three levels of perceptual processing (detection, discrimination, and recognition). The tasks differed in the level of perceptual processing required to complete them. Adults and children demonstrated visual speech influence at all levels of perceptual processing. Whereas children demonstrated the same visual speech influence at each level of perceptual processing, adults demonstrated greater visual speech influence on tasks requiring higher levels of perceptual processing. These results support previous research demonstrating multiple mechanisms of AV speech processing (general perceptual and speech-specific mechanisms) with independent maturational time courses. The results suggest that adults rely on both general perceptual mechanisms that apply to all levels of perceptual processing and speech-specific mechanisms that apply when making phonetic decisions and/or accessing the lexicon. Six- to eight-year-old children seem to rely only on general perceptual mechanisms across levels. As expected, developmental differences in AV benefit on this and other recognition tasks likely reflect immature speech-specific mechanisms and phonetic processing in children.

  9. Object formation in visual working memory: Evidence from object-based attention.

    PubMed

    Zhou, Jifan; Zhang, Haihang; Ding, Xiaowei; Shui, Rende; Shen, Mowei

    2016-09-01

    We report on how visual working memory (VWM) forms intact perceptual representations of visual objects using sub-object elements. Specifically, when objects were divided into fragments and sequentially encoded into VWM, the fragments were involuntarily integrated into objects in VWM, as evidenced by the occurrence of both positive and negative object-based attention effects: In Experiment 1, when subjects' attention was cued to a location occupied by the VWM object, the target presented at the location of that object was perceived as occurring earlier than that presented at the location of a different object. In Experiment 2, responses to a target were significantly slower when a distractor was presented at the same location as the cued object (Experiment 2). These results suggest that object fragments can be integrated into objects within VWM in a manner similar to that of visual perception. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Low level perceptual, not attentional, processes modulate distractor interference in high perceptual load displays: evidence from neglect/extinction.

    PubMed

    Mevorach, Carmel; Tsal, Yehoshua; Humphreys, Glyn W

    2014-01-10

    According to perceptual load theory (Lavie, 2005) distractor interference is determined by the availability of attentional resources. If target processing does not exhaust resources (with low perceptual load) distractor processing will take place resulting in interference with a primary task; however, when target processing uses-up attentional capacity (with high perceptual load) interference can be avoided. An alternative account (Tsal and Benoni, 2010a) suggests that perceptual load effects can be based on distractor dilution by the mere presence of additional neutral items in high-load displays so that the effect is not driven by the amount of attention resources required for target processing. Here we tested whether patients with unilateral neglect or extinction would show dilution effects from neutral items in their contralesional (neglected/extinguished) field, even though these items do not impose increased perceptual load on the target and at the same time attract reduced attentional resources compared to stimuli in the ipsilesional field. Thus, such items do not affect the amount of attention resources available for distractor processing. We found that contralesional neutral elements can eliminate distractor interference as strongly as centrally presented ones in neglect/extinction patients, despite contralesional items being less well attended. The data are consistent with an account in terms of perceptual dilution of distracters rather than available resources for distractor processing. We conclude that distractor dilution can underlie the elimination of distractor interference in visual displays.

  11. A Perceptual Repetition Blindness Effect

    NASA Technical Reports Server (NTRS)

    Hochhaus, Larry; Johnston, James C.; Null, Cynthia H. (Technical Monitor)

    1994-01-01

    Before concluding Repetition Blindness is a perceptual phenomenon, alternative explanations based on memory retrieval problems and report bias must be rejected. Memory problems were minimized by requiring a judgment about only a single briefly displayed field. Bias and sensitivity effects were empirically measured with an ROC-curve analysis method based on confidence ratings. Results from five experiments support the hypothesis that Repetition Blindness can be a perceptual phenomenon.

  12. Associative fear learning and perceptual discrimination: a perceptual pathway in the development of chronic pain.

    PubMed

    Zaman, Jonas; Vlaeyen, Johan W S; Van Oudenhove, Lukas; Wiech, Katja; Van Diest, Ilse

    2015-04-01

    Recent neuropsychological theories emphasize the influence of maladaptive learning and memory processes on pain perception. However, the precise relationship between these processes as well as the underlying mechanisms remain poorly understood; especially the role of perceptual discrimination and its modulation by associative fear learning has received little attention so far. Experimental work with exteroceptive stimuli consistently points to effects of fear learning on perceptual discrimination acuity. In addition, clinical observations have revealed that in individuals with chronic pain perceptual discrimination is impaired, and that tactile discrimination training reduces pain. Based on these findings, we present a theoretical model of which the central tenet is that associative fear learning contributes to the development of chronic pain through impaired interoceptive and proprioceptive discrimination acuity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Competition explains limited attention and perceptual resources: implications for perceptual load and dilution theories.

    PubMed

    Scalf, Paige E; Torralbo, Ana; Tapia, Evelina; Beck, Diane M

    2013-01-01

    Both perceptual load theory and dilution theory purport to explain when and why task-irrelevant information, or so-called distractors are processed. Central to both explanations is the notion of limited resources, although the theories differ in the precise way in which those limitations affect distractor processing. We have recently proposed a neurally plausible explanation of limited resources in which neural competition among stimuli hinders their representation in the brain. This view of limited capacity can also explain distractor processing, whereby the competitive interactions and bias imposed to resolve the competition determine the extent to which a distractor is processed. This idea is compatible with aspects of both perceptual load and dilution models of distractor processing, but also serves to highlight their differences. Here we review the evidence in favor of a biased competition view of limited resources and relate these ideas to both classic perceptual load theory and dilution theory.

  14. Perceptual load influences selective attention across development.

    PubMed

    Couperus, Jane W

    2011-09-01

    Research suggests that visual selective attention develops across childhood. However, there is relatively little understanding of the neurological changes that accompany this development, particularly in the context of adult theories of selective attention, such as N. Lavie's (1995) perceptual load theory of attention. This study examined visual selective attention across development from 7 years of age to adulthood. Specifically, the author examined if changes in processing as a function of selective attention are similarly influenced by perceptual load across development. Participants were asked to complete a task at either low or high perceptual load while processing of an unattended probe stimulus was examined using event related potentials. Similar to adults, children and teens showed reduced processing of the unattended stimulus as perceptual load increased at the P1 visual component. However, although there were no qualitative differences in changes in processing, there were quantitative differences, with shorter P1 latencies in teens and adults compared with children, suggesting increases in the speed of processing across development. In addition, younger children did not need as high a perceptual load to achieve the same difference in performance between low and high perceptual load as adults. Thus, this study demonstrates that although there are developmental changes in visual selective attention, the mechanisms by which visual selective attention is achieved in children may share similarities with adults.

  15. Is Statistical Learning Constrained by Lower Level Perceptual Organization?

    PubMed Central

    Emberson, Lauren L.; Liu, Ran; Zevin, Jason D.

    2013-01-01

    In order for statistical information to aid in complex developmental processes such as language acquisition, learning from higher-order statistics (e.g. across successive syllables in a speech stream to support segmentation) must be possible while perceptual abilities (e.g. speech categorization) are still developing. The current study examines how perceptual organization interacts with statistical learning. Adult participants were presented with multiple exemplars from novel, complex sound categories designed to reflect some of the spectral complexity and variability of speech. These categories were organized into sequential pairs and presented such that higher-order statistics, defined based on sound categories, could support stream segmentation. Perceptual similarity judgments and multi-dimensional scaling revealed that participants only perceived three perceptual clusters of sounds and thus did not distinguish the four experimenter-defined categories, creating a tension between lower level perceptual organization and higher-order statistical information. We examined whether the resulting pattern of learning is more consistent with statistical learning being “bottom-up,” constrained by the lower levels of organization, or “top-down,” such that higher-order statistical information of the stimulus stream takes priority over the perceptual organization, and perhaps influences perceptual organization. We consistently find evidence that learning is constrained by perceptual organization. Moreover, participants generalize their learning to novel sounds that occupy a similar perceptual space, suggesting that statistical learning occurs based on regions of or clusters in perceptual space. Overall, these results reveal a constraint on learning of sound sequences, such that statistical information is determined based on lower level organization. These findings have important implications for the role of statistical learning in language acquisition. PMID:23618755

  16. Shared mechanisms of perceptual learning and decision making.

    PubMed

    Law, Chi-Tat; Gold, Joshua I

    2010-04-01

    Perceptual decisions require the brain to weigh noisy evidence from sensory neurons to form categorical judgments that guide behavior. Here we review behavioral and neurophysiological findings suggesting that at least some forms of perceptual learning do not appear to affect the response properties of neurons that represent the sensory evidence. Instead, improved perceptual performance results from changes in how the sensory evidence is selected and weighed to form the decision. We discuss the implications of this idea for possible sites and mechanisms of training-induced improvements in perceptual processing in the brain. Copyright © 2009 Cognitive Science Society, Inc.

  17. Prediction-guided quantization for video tone mapping

    NASA Astrophysics Data System (ADS)

    Le Dauphin, Agnès.; Boitard, Ronan; Thoreau, Dominique; Olivier, Yannick; Francois, Edouard; LeLéannec, Fabrice

    2014-09-01

    Tone Mapping Operators (TMOs) compress High Dynamic Range (HDR) content to address Low Dynamic Range (LDR) displays. However, before reaching the end-user, this tone mapped content is usually compressed for broadcasting or storage purposes. Any TMO includes a quantization step to convert floating point values to integer ones. In this work, we propose to adapt this quantization, in the loop of an encoder, to reduce the entropy of the tone mapped video content. Our technique provides an appropriate quantization for each mode of both the Intra and Inter-prediction that is performed in the loop of a block-based encoder. The mode that minimizes a rate-distortion criterion uses its associated quantization to provide integer values for the rest of the encoding process. The method has been implemented in HEVC and was tested over two different scenarios: the compression of tone mapped LDR video content (using the HM10.0) and the compression of perceptually encoded HDR content (HM14.0). Results show an average bit-rate reduction under the same PSNR for all the sequences and TMO considered of 20.3% and 27.3% for tone mapped content and 2.4% and 2.7% for HDR content.

  18. Object-based attention in chimpanzees (Pan troglodytes).

    PubMed

    Ushitani, Tomokazu; Imura, Tomoko; Tomonaga, Masaki

    2010-03-17

    We conducted three experiments to investigate how object-based components contribute to the attentional processes of chimpanzees and to examine how such processes operate with regard to perceptually structured objects. In Experiment 1, chimpanzees responded to a spatial cueing task that required them to touch a target appearing at either end of two parallel rectangles. We compared the time involved in shifting attention (cost of attentional shift) when the locations of targets were cued and non cued. Results showed that the cost of the attentional shift within one rectangle was smaller than that beyond the object's boundary, demonstrating object-based attention in chimpanzees. The results of Experiment 2, conducted with different stimulus configurations, replicated the results of Experiment 1, supporting that object-based attention operates in chimpanzees. In Experiment 3, the cost of attentional shift within a cued but partly occluded rectangle was shorter than that within a rectangle that was cued but divided in the middle. The results suggest that the attention of chimpanzees is activated not only by an explicit object but also by fragmented patches represented as an object at a higher-order perceptual level. Chimpanzees' object-based attention may be similar to that of humans. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. Children's use of comparison and function in novel object categorization.

    PubMed

    Kimura, Katherine; Hunley, Samuel B; Namy, Laura L

    2018-06-01

    Although young children often rely on salient perceptual cues, such as shape, when categorizing novel objects, children eventually shift towards deeper relational reasoning about category membership. This study investigates what information young children use to classify novel instances of familiar categories. Specifically, we investigated two sources of information that have the potential to facilitate the classification of novel exemplars: (1) comparison of familiar category instances, and (2) attention to function information that might direct children's attention to functionally relevant perceptual features. Across two experiments, we found that comparing two perceptually similar category members-particularly when function information was also highlighted-led children to discover non-obvious relational features that supported their categorization of novel category instances. Together, these findings demonstrate that comparison may aid in novel object categorization by heightening the salience of less obvious, yet functionally relevant, relational structures that support conceptual reasoning. Copyright © 2018. Published by Elsevier Inc.

  20. Self Occlusion and Disocclusion in Causal Video Object Segmentation

    DTIC Science & Technology

    2015-12-18

    computation is parameter- free in contrast to [4, 32, 10]. Taylor et al . [30] perform layer segmentation in longer video sequences leveraging occlusion cues...shows that our method recovers from errors in the first frame (short of failed detection). 4413 image ground truth Lee et al . [19] Grundman et al . [14...Ochs et al . [23] Taylor et al . [30] ours Figure 7. Sample Visual Results on FBMS-59. Comparison of various state-of-the-art methods. Only a single

  1. Perceptual grouping across eccentricity.

    PubMed

    Tannazzo, Teresa; Kurylo, Daniel D; Bukhari, Farhan

    2014-10-01

    Across the visual field, progressive differences exist in neural processing as well as perceptual abilities. Expansion of stimulus scale across eccentricity compensates for some basic visual capacities, but not for high-order functions. It was hypothesized that as with many higher-order functions, perceptual grouping ability should decline across eccentricity. To test this prediction, psychophysical measurements of grouping were made across eccentricity. Participants indicated the dominant grouping of dot grids in which grouping was based upon luminance, motion, orientation, or proximity. Across trials, the organization of stimuli was systematically decreased until perceived grouping became ambiguous. For all stimulus features, grouping ability remained relatively stable until 40°, beyond which thresholds significantly elevated. The pattern of change across eccentricity varied across stimulus feature, in which stimulus scale, dot size, or stimulus size interacted with eccentricity effects. These results demonstrate that perceptual grouping of such stimuli is not reliant upon foveal viewing, and suggest that selection of dominant grouping patterns from ambiguous displays operates similarly across much of the visual field. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Exogenous attention facilitates location transfer of perceptual learning.

    PubMed

    Donovan, Ian; Szpiro, Sarit; Carrasco, Marisa

    2015-01-01

    Perceptual skills can be improved through practice on a perceptual task, even in adulthood. Visual perceptual learning is known to be mostly specific to the trained retinal location, which is considered as evidence of neural plasticity in retinotopic early visual cortex. Recent findings demonstrate that transfer of learning to untrained locations can occur under some specific training procedures. Here, we evaluated whether exogenous attention facilitates transfer of perceptual learning to untrained locations, both adjacent to the trained locations (Experiment 1) and distant from them (Experiment 2). The results reveal that attention facilitates transfer of perceptual learning to untrained locations in both experiments, and that this transfer occurs both within and across visual hemifields. These findings show that training with exogenous attention is a powerful regime that is able to overcome the major limitation of location specificity.

  3. Exogenous attention facilitates location transfer of perceptual learning

    PubMed Central

    Donovan, Ian; Szpiro, Sarit; Carrasco, Marisa

    2015-01-01

    Perceptual skills can be improved through practice on a perceptual task, even in adulthood. Visual perceptual learning is known to be mostly specific to the trained retinal location, which is considered as evidence of neural plasticity in retinotopic early visual cortex. Recent findings demonstrate that transfer of learning to untrained locations can occur under some specific training procedures. Here, we evaluated whether exogenous attention facilitates transfer of perceptual learning to untrained locations, both adjacent to the trained locations (Experiment 1) and distant from them (Experiment 2). The results reveal that attention facilitates transfer of perceptual learning to untrained locations in both experiments, and that this transfer occurs both within and across visual hemifields. These findings show that training with exogenous attention is a powerful regime that is able to overcome the major limitation of location specificity. PMID:26426818

  4. Task switching in video game players: Benefits of selective attention but not resistance to proactive interference.

    PubMed

    Karle, James W; Watter, Scott; Shedden, Judith M

    2010-05-01

    Research into the perceptual and cognitive effects of playing video games is an area of increasing interest for many investigators. Over the past decade, expert video game players (VGPs) have been shown to display superior performance compared to non-video game players (nVGPs) on a range of visuospatial and attentional tasks. A benefit of video game expertise has recently been shown for task switching, suggesting that VGPs also have superior cognitive control abilities compared to nVGPs. In two experiments, we examined which aspects of task switching performance this VGP benefit may be localized to. With minimal trial-to-trial interference from minimally overlapping task set rules, VGPs demonstrated a task switching benefit compared to nVGPs. However, this benefit disappeared when proactive interference between tasks was increased, with substantial stimulus and response overlap in task set rules. We suggest that VGPs have no generalized benefit in task switching-related cognitive control processes compared to nVGPs, with switch cost reductions due instead to a specific benefit in controlling selective attention. Copyright 2009 Elsevier B.V. All rights reserved.

  5. Multi-view video segmentation and tracking for video surveillance

    NASA Astrophysics Data System (ADS)

    Mohammadi, Gelareh; Dufaux, Frederic; Minh, Thien Ha; Ebrahimi, Touradj

    2009-05-01

    Tracking moving objects is a critical step for smart video surveillance systems. Despite the complexity increase, multiple camera systems exhibit the undoubted advantages of covering wide areas and handling the occurrence of occlusions by exploiting the different viewpoints. The technical problems in multiple camera systems are several: installation, calibration, objects matching, switching, data fusion, and occlusion handling. In this paper, we address the issue of tracking moving objects in an environment covered by multiple un-calibrated cameras with overlapping fields of view, typical of most surveillance setups. Our main objective is to create a framework that can be used to integrate objecttracking information from multiple video sources. Basically, the proposed technique consists of the following steps. We first perform a single-view tracking algorithm on each camera view, and then apply a consistent object labeling algorithm on all views. In the next step, we verify objects in each view separately for inconsistencies. Correspondent objects are extracted through a Homography transform from one view to the other and vice versa. Having found the correspondent objects of different views, we partition each object into homogeneous regions. In the last step, we apply the Homography transform to find the region map of first view in the second view and vice versa. For each region (in the main frame and mapped frame) a set of descriptors are extracted to find the best match between two views based on region descriptors similarity. This method is able to deal with multiple objects. Track management issues such as occlusion, appearance and disappearance of objects are resolved using information from all views. This method is capable of tracking rigid and deformable objects and this versatility lets it to be suitable for different application scenarios.

  6. Feature Quantization and Pooling for Videos

    DTIC Science & Technology

    2014-05-01

    does not score high on this metric. The exceptions are videos where objects move - for exam- ple, the ice skaters (“ice”) and the tennis player , tracked...convincing me that my future path should include a PhD. Martial and Fernando, your energy is exceptional! Its influence can be seen in the burning...3.17 BMW enables Interpretation of similar regions across videos ( tennis ). . . . . . . 50 3.18 Common Motion Words across videos with large camera

  7. Audiovisual speech perception development at varying levels of perceptual processing

    PubMed Central

    Lalonde, Kaylah; Holt, Rachael Frush

    2016-01-01

    This study used the auditory evaluation framework [Erber (1982). Auditory Training (Alexander Graham Bell Association, Washington, DC)] to characterize the influence of visual speech on audiovisual (AV) speech perception in adults and children at multiple levels of perceptual processing. Six- to eight-year-old children and adults completed auditory and AV speech perception tasks at three levels of perceptual processing (detection, discrimination, and recognition). The tasks differed in the level of perceptual processing required to complete them. Adults and children demonstrated visual speech influence at all levels of perceptual processing. Whereas children demonstrated the same visual speech influence at each level of perceptual processing, adults demonstrated greater visual speech influence on tasks requiring higher levels of perceptual processing. These results support previous research demonstrating multiple mechanisms of AV speech processing (general perceptual and speech-specific mechanisms) with independent maturational time courses. The results suggest that adults rely on both general perceptual mechanisms that apply to all levels of perceptual processing and speech-specific mechanisms that apply when making phonetic decisions and/or accessing the lexicon. Six- to eight-year-old children seem to rely only on general perceptual mechanisms across levels. As expected, developmental differences in AV benefit on this and other recognition tasks likely reflect immature speech-specific mechanisms and phonetic processing in children. PMID:27106318

  8. 77 FR 75659 - Certain Video Analytics Software, Systems, Components Thereof, and Products Containing Same...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-21

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-852] Certain Video Analytics Software..., 2012, based on a complaint filed by ObjectVideo, Inc. (``ObjectVideo'') of Reston, Virginia. 77 FR... United States after importation of certain video analytics software systems, components thereof, and...

  9. Cross-Modal Correspondence Among Vision, Audition, and Touch in Natural Objects: An Investigation of the Perceptual Properties of Wood.

    PubMed

    Kanaya, Shoko; Kariya, Kenji; Fujisaki, Waka

    2016-10-01

    Certain systematic relationships are often assumed between information conveyed from multiple sensory modalities; for instance, a small figure and a high pitch may be perceived as more harmonious. This phenomenon, termed cross-modal correspondence, may result from correlations between multi-sensory signals learned in daily experience of the natural environment. If so, we would observe cross-modal correspondences not only in the perception of artificial stimuli but also in perception of natural objects. To test this hypothesis, we reanalyzed data collected previously in our laboratory examining perceptions of the material properties of wood using vision, audition, and touch. We compared participant evaluations of three perceptual properties (surface brightness, sharpness of sound, and smoothness) of the wood blocks obtained separately via vision, audition, and touch. Significant positive correlations were identified for all properties in the audition-touch comparison, and for two of the three properties regarding in the vision-touch comparison. By contrast, no properties exhibited significant positive correlations in the vision-audition comparison. These results suggest that we learn correlations between multi-sensory signals through experience; however, the strength of this statistical learning is apparently dependent on the particular combination of sensory modalities involved. © The Author(s) 2016.

  10. Perceptual impressions of causality are affected by common fate.

    PubMed

    White, Peter A

    2017-03-24

    Many studies of perceptual impressions of causality have used a stimulus in which a moving object (the launcher) contacts a stationary object (the target) and the latter then moves off. Such stimuli give rise to an impression that the launcher makes the target move. In the present experiments, instead of a single target object, an array of four vertically aligned objects was used. The launcher contacted none of them, but stopped at a point between the two central objects. The four objects then moved with similar motion properties, exhibiting the Gestalt property of common fate. Strong impressions of causality were reported for this stimulus. It is argued that the array of four objects was perceived, by the likelihood principle, as a single object with some parts unseen, that the launcher was perceived as contacting one of the unseen parts of this object, and that the causal impression resulted from that. Supporting that argument, stimuli in which kinematic features were manipulated so as to weaken or eliminate common fate yielded weaker impressions of causality.

  11. A model of proto-object based saliency

    PubMed Central

    Russell, Alexander F.; Mihalaş, Stefan; von der Heydt, Rudiger; Niebur, Ernst; Etienne-Cummings, Ralph

    2013-01-01

    Organisms use the process of selective attention to optimally allocate their computational resources to the instantaneously most relevant subsets of a visual scene, ensuring that they can parse the scene in real time. Many models of bottom-up attentional selection assume that elementary image features, like intensity, color and orientation, attract attention. Gestalt psychologists, how-ever, argue that humans perceive whole objects before they analyze individual features. This is supported by recent psychophysical studies that show that objects predict eye-fixations better than features. In this report we present a neurally inspired algorithm of object based, bottom-up attention. The model rivals the performance of state of the art non-biologically plausible feature based algorithms (and outperforms biologically plausible feature based algorithms) in its ability to predict perceptual saliency (eye fixations and subjective interest points) in natural scenes. The model achieves this by computing saliency as a function of proto-objects that establish the perceptual organization of the scene. All computational mechanisms of the algorithm have direct neural correlates, and our results provide evidence for the interface theory of attention. PMID:24184601

  12. The emerging High Efficiency Video Coding standard (HEVC)

    NASA Astrophysics Data System (ADS)

    Raja, Gulistan; Khan, Awais

    2013-12-01

    High definition video (HDV) is becoming popular day by day. This paper describes the performance analysis of latest upcoming video standard known as High Efficiency Video Coding (HEVC). HEVC is designed to fulfil all the requirements for future high definition videos. In this paper, three configurations (intra only, low delay and random access) of HEVC are analyzed using various 480p, 720p and 1080p high definition test video sequences. Simulation results show the superior objective and subjective quality of HEVC.

  13. The effects of attention on perceptual implicit memory.

    PubMed

    Rajaram, S; Srinivas, K; Travers, S

    2001-10-01

    Reports on the effects of dividing attention at study on subsequent perceptual priming suggest that perceptual priming is generally unaffected by attentional manipulations as long as word identity is processed. We tested this hypothesis in three experiments by using the implicit word fragment completion and word stem completion tasks. Division of attention was instantiated with the Stroop task in order to ensure the processing of word identity even when the participant's attention was directed to a stimulus attribute other than the word itself. Under these conditions, we found that even though perceptual priming was significant, it was significantly reduced in magnitude. A stem cued recall test in Experiment 2 confirmed a more deleterious effect of divided attention on explicit memory. Taken together, our findings delineate the relative contributions of perceptual analysis and attentional processes in mediating perceptual priming on two ubiquitously used tasks of word fragment completion and word stem completion.

  14. Advanced Computer Image Generation Techniques Exploiting Perceptual Characteristics

    DTIC Science & Technology

    1981-08-01

    the capabilities/limitations of the human visual perceptual processing system and improve the training effectiveness of visual simulation systems...Myron Braunstein of the University of California at Irvine performed all the work in the perceptual area. Mr. Timothy A. Zimmerlin contributed the... work . Thus, while some areas are related, each is resolved independently in order to focus on the basic perceptual limitation. In addition, the

  15. Perceptual Space of Superimposed Dual-Frequency Vibrations in the Hands.

    PubMed

    Hwang, Inwook; Seo, Jeongil; Choi, Seungmoon

    2017-01-01

    The use of distinguishable complex vibrations that have multiple spectral components can improve the transfer of information by vibrotactile interfaces. We investigated the qualitative characteristics of dual-frequency vibrations as the simplest complex vibrations compared to single-frequency vibrations. Two psychophysical experiments were conducted to elucidate the perceptual characteristics of these vibrations by measuring the perceptual distances among single-frequency and dual-frequency vibrations. The perceptual distances of dual-frequency vibrations between their two frequency components along their relative intensity ratio were measured in Experiment I. The estimated perceptual spaces for three frequency conditions showed non-linear perceptual differences between the dual-frequency and single-frequency vibrations. A perceptual space was estimated from the measured perceptual distances among ten dual-frequency compositions and five single-frequency vibrations in Experiment II. The effect of the component frequency and the frequency ratio was revealed in the perceptual space. In a percept of dual-frequency vibration, the lower frequency component showed a dominant effect. Additionally, the perceptual difference among single-frequency and dual-frequency vibrations were increased with a low relative difference between two frequencies of a dual-frequency vibration. These results are expected to provide a fundamental understanding about the perception of complex vibrations to enrich the transfer of information using vibrotactile stimuli.

  16. Perceptual Contrast Enhancement with Dynamic Range Adjustment

    PubMed Central

    Zhang, Hong; Li, Yuecheng; Chen, Hao; Yuan, Ding; Sun, Mingui

    2013-01-01

    Recent years, although great efforts have been made to improve its performance, few Histogram equalization (HE) methods take human visual perception (HVP) into account explicitly. The human visual system (HVS) is more sensitive to edges than brightness. This paper proposes to take use of this nature intuitively and develops a perceptual contrast enhancement approach with dynamic range adjustment through histogram modification. The use of perceptual contrast connects the image enhancement problem with the HVS. To pre-condition the input image before the HE procedure is implemented, a perceptual contrast map (PCM) is constructed based on the modified Difference of Gaussian (DOG) algorithm. As a result, the contrast of the image is sharpened and high frequency noise is suppressed. A modified Clipped Histogram Equalization (CHE) is also developed which improves visual quality by automatically detecting the dynamic range of the image with improved perceptual contrast. Experimental results show that the new HE algorithm outperforms several state-of-the-art algorithms in improving perceptual contrast and enhancing details. In addition, the new algorithm is simple to implement, making it suitable for real-time applications. PMID:24339452

  17. The Spatial Distribution of Attention within and across Objects

    ERIC Educational Resources Information Center

    Hollingworth, Andrew; Maxcey-Richard, Ashleigh M.; Vecera, Shaun P.

    2012-01-01

    Attention operates to select both spatial locations and perceptual objects. However, the specific mechanism by which attention is oriented to objects is not well understood. We examined the means by which object structure constrains the distribution of spatial attention (i.e., a "grouped array"). Using a modified version of the Egly et…

  18. Videos Determine the Moon's "g"

    ERIC Educational Resources Information Center

    Persson, J. R.; Hagen, J. E.

    2011-01-01

    Determining the acceleration of a free-falling object due to gravity is a standard experiment in physics. Different methods to do this have been developed over the years. This article discusses the use of video-analysis tools as another method. If there is a video available and a known scale it is possible to analyse the motion. The use of video…

  19. Problem Video Game Use and Dimensions of Psychopathology

    ERIC Educational Resources Information Center

    Starcevic, Vladan; Berle, David; Porter, Guy; Fenech, Pauline

    2011-01-01

    The objective of this study was to examine associations between problem video game use and psychopathology. The Video Game Use Questionnaire (VGUQ) and the Symptom Checklist 90 (SCL-90) were administered in an international anonymous online survey. The VGUQ was used to identify problem video game users and SCL-90 assessed dimensions of…

  20. Accurate expectancies diminish perceptual distraction during visual search

    PubMed Central

    Sy, Jocelyn L.; Guerin, Scott A.; Stegman, Anna; Giesbrecht, Barry

    2014-01-01

    The load theory of visual attention proposes that efficient selective perceptual processing of task-relevant information during search is determined automatically by the perceptual demands of the display. If the perceptual demands required to process task-relevant information are not enough to consume all available capacity, then the remaining capacity automatically and exhaustively “spills-over” to task-irrelevant information. The spill-over of perceptual processing capacity increases the likelihood that task-irrelevant information will impair performance. In two visual search experiments, we tested the automaticity of the allocation of perceptual processing resources by measuring the extent to which the processing of task-irrelevant distracting stimuli was modulated by both perceptual load and top-down expectations using behavior, functional magnetic resonance imaging, and electrophysiology. Expectations were generated using a trial-by-trial cue that provided information about the likely load of the upcoming visual search task. When the cues were valid, behavioral interference was eliminated and the influence of load on frontoparietal and visual cortical responses was attenuated relative to when the cues were invalid. In conditions in which task-irrelevant information interfered with performance and modulated visual activity, individual differences in mean blood oxygenation level dependent responses measured from the left intraparietal sulcus were negatively correlated with individual differences in the severity of distraction. These results are consistent with the interpretation that a top-down biasing mechanism interacts with perceptual load to support filtering of task-irrelevant information. PMID:24904374

  1. Visual saliency-based fast intracoding algorithm for high efficiency video coding

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Shi, Guangming; Zhou, Wei; Duan, Zhemin

    2017-01-01

    Intraprediction has been significantly improved in high efficiency video coding over H.264/AVC with quad-tree-based coding unit (CU) structure from size 64×64 to 8×8 and more prediction modes. However, these techniques cause a dramatic increase in computational complexity. An intracoding algorithm is proposed that consists of perceptual fast CU size decision algorithm and fast intraprediction mode decision algorithm. First, based on the visual saliency detection, an adaptive and fast CU size decision method is proposed to alleviate intraencoding complexity. Furthermore, a fast intraprediction mode decision algorithm with step halving rough mode decision method and early modes pruning algorithm is presented to selectively check the potential modes and effectively reduce the complexity of computation. Experimental results show that our proposed fast method reduces the computational complexity of the current HM to about 57% in encoding time with only 0.37% increases in BD rate. Meanwhile, the proposed fast algorithm has reasonable peak signal-to-noise ratio losses and nearly the same subjective perceptual quality.

  2. Perceptual memory drives learning of retinotopic biases for bistable stimuli.

    PubMed

    Murphy, Aidan P; Leopold, David A; Welchman, Andrew E

    2014-01-01

    The visual system exploits past experience at multiple timescales to resolve perceptual ambiguity in the retinal image. For example, perception of a bistable stimulus can be biased toward one interpretation over another when preceded by a brief presentation of a disambiguated version of the stimulus (positive priming) or through intermittent presentations of the ambiguous stimulus (stabilization). Similarly, prior presentations of unambiguous stimuli can be used to explicitly "train" a long-lasting association between a percept and a retinal location (perceptual association). These phenonema have typically been regarded as independent processes, with short-term biases attributed to perceptual memory and longer-term biases described as associative learning. Here we tested for interactions between these two forms of experience-dependent perceptual bias and demonstrate that short-term processes strongly influence long-term outcomes. We first demonstrate that the establishment of long-term perceptual contingencies does not require explicit training by unambiguous stimuli, but can arise spontaneously during the periodic presentation of brief, ambiguous stimuli. Using rotating Necker cube stimuli, we observed enduring, retinotopically specific perceptual biases that were expressed from the outset and remained stable for up to 40 min, consistent with the known phenomenon of perceptual stabilization. Further, bias was undiminished after a break period of 5 min, but was readily reset by interposed periods of continuous, as opposed to periodic, ambiguous presentation. Taken together, the results demonstrate that perceptual biases can arise naturally and may principally reflect the brain's tendency to favor recent perceptual interpretation at a given retinal location. Further, they suggest that an association between retinal location and perceptual state, rather than a physical stimulus, is sufficient to generate long-term biases in perceptual organization.

  3. Illusory color mixing upon perceptual fading and filling-in does not result in 'forbidden colors'.

    PubMed

    Hsieh, P-J; Tse, P U

    2006-07-01

    A retinally stabilized object readily undergoes perceptual fading. It is commonly believed that the color of the apparently vanished object is filled in with the color of the background because the features of the filled-in area are determined by features located outside the stabilized boundary. Crane, H. D., & Piantanida, T. P. (1983) (On seeing reddish green and yellowish blue. Science, 221, 1078-1080) reported that the colors that are perceived upon full or partial perceptual fading can be 'forbidden' in the sense that they violate color opponency theory. For example, they claimed that their subjects could perceive "reddish greens" and "yellowish blues." Here we use visual stimuli composed of spatially alternating stripes of two different colors to investigate the characteristics of color mixing during perceptual filling-in, and to determine whether 'forbidden colors' really occur. Our results show that (1) the filled-in color is not solely determined by the background color, but can be the mixture of the background and the foreground color; (2) apparent color mixing can occur even when the two colors are presented to different eyes, implying that color mixing during filling-in is in part a cortical phenomenon; and (3) perceived colors are not 'forbidden colors' at all, but rather intermediate colors.

  4. Learning to Control Collisions: The Role of Perceptual Attunement and Action Boundaries

    ERIC Educational Resources Information Center

    Fajen, Brett R.; Devaney, Michael C.

    2006-01-01

    The authors investigated the role of perceptual attunement in an emergency braking task in which participants waited until the last possible moment to slam on the brakes. Effects of the size of the approached object and initial speed on the initiation of braking were used to identify the optical variables on which participants relied at various…

  5. Orientation congruency effects for familiar objects: coordinate transformations in object recognition.

    PubMed

    Graf, M; Kaping, D; Bülthoff, H H

    2005-03-01

    How do observers recognize objects after spatial transformations? Recent neurocomputational models have proposed that object recognition is based on coordinate transformations that align memory and stimulus representations. If the recognition of a misoriented object is achieved by adjusting a coordinate system (or reference frame), then recognition should be facilitated when the object is preceded by a different object in the same orientation. In the two experiments reported here, two objects were presented in brief masked displays that were in close temporal contiguity; the objects were in either congruent or incongruent picture-plane orientations. Results showed that naming accuracy was higher for congruent than for incongruent orientations. The congruency effect was independent of superordinate category membership (Experiment 1) and was found for objects with different main axes of elongation (Experiment 2). The results indicate congruency effects for common familiar objects even when they have dissimilar shapes. These findings are compatible with models in which object recognition is achieved by an adjustment of a perceptual coordinate system.

  6. Greater sensitivity of the cortical face processing system to perceptually-equated face detection

    PubMed Central

    Maher, S.; Ekstrom, T.; Tong, Y.; Nickerson, L.D.; Frederick, B.; Chen, Y.

    2015-01-01

    Face detection, the perceptual capacity to identify a visual stimulus as a face before probing deeper into specific attributes (such as its identity or emotion), is essential for social functioning. Despite the importance of this functional capacity, face detection and its underlying brain mechanisms are not well understood. This study evaluated the roles that the cortical face processing system, which is identified largely through studying other aspects of face perception, play in face detection. Specifically, we used functional magnetic resonance imaging (fMRI) to examine the activations of the fusifom face area (FFA), occipital face area (OFA) and superior temporal sulcus (STS) when face detection was isolated from other aspects of face perception and when face detection was perceptually-equated across individual human participants (n=20). During face detection, FFA and OFA were significantly activated, even for stimuli presented at perceptual-threshold levels, whereas STS was not. During tree detection, however, FFA and OFA were responsive only for highly salient (i.e., high contrast) stimuli. Moreover, activation of FFA during face detection predicted a significant portion of the perceptual performance levels that were determined psychophysically for each participant. This pattern of result indicates that FFA and OFA have a greater sensitivity to face detection signals and selectively support the initial process of face vs. non-face object perception. PMID:26592952

  7. Age Differences in Face Processing: The Role of Perceptual Degradation and Holistic Processing.

    PubMed

    Boutet, Isabelle; Meinhardt-Injac, Bozana

    2018-01-24

    We simultaneously investigated the role of three hypotheses regarding age-related differences in face processing: perceptual degradation, impaired holistic processing, and an interaction between the two. Young adults (YA) aged 20-33-year olds, middle-age adults (MA) aged 50-64-year olds, and older adults (OA) aged 65-82-year olds were tested on the context congruency paradigm, which allows measurement of face-specific holistic processing across the life span (Meinhardt-Injac, Persike & Meinhardt, 2014. Acta Psychologica, 151, 155-163). Perceptual degradation was examined by measuring performance with faces that were not filtered (FSF), with faces filtered to preserve low spatial frequencies (LSF), and with faces filtered to preserve high spatial frequencies (HSF). We found that reducing perceptual signal strength had a greater impact on MA and OA for HSF faces, but not LSF faces. Context congruency effects were significant and of comparable magnitude across ages for FSF, LSF, and HSF faces. By using watches as control objects, we show that these holistic effects reflect face-specific mechanisms in all age groups. Our results support the perceptual degradation hypothesis for faces containing only HSF and suggest that holistic processing is preserved in aging even under conditions of reduced signal strength. © The Author(s) 2018. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Cognitive training with casual video games: points to consider

    PubMed Central

    Baniqued, Pauline L.; Kranz, Michael B.; Voss, Michelle W.; Lee, Hyunkyu; Cosman, Joshua D.; Severson, Joan; Kramer, Arthur F.

    2014-01-01

    Brain training programs have proliferated in recent years, with claims that video games or computer-based tasks can broadly enhance cognitive function. However, benefits are commonly seen only in trained tasks. Assessing generalized improvement and practicality of laboratory exercises complicates interpretation and application of findings. In this study, we addressed these issues by using active control groups, training tasks that more closely resemble real-world demands and multiple tests to determine transfer of training. We examined whether casual video games can broadly improve cognition, and selected training games from a study of the relationship between game performance and cognitive abilities. A total of 209 young adults were randomized into a working memory–reasoning group, an adaptive working memory–reasoning group, an active control game group, and a no-contact control group. Before and after 15 h of training, participants completed tests of reasoning, working memory, attention, episodic memory, perceptual speed, and self-report measures of executive function, game experience, perceived improvement, knowledge of brain training research, and game play outside the laboratory. Participants improved on the training games, but transfer to untrained tasks was limited. No group showed gains in reasoning, working memory, episodic memory, or perceptual speed, but the working memory–reasoning groups improved in divided attention, with better performance in an attention-demanding game, a decreased attentional blink and smaller trail-making costs. Perceived improvements did not differ across training groups and those with low reasoning ability at baseline showed larger gains. Although there are important caveats, our study sheds light on the mixed effects in the training and transfer literature and offers a novel and potentially practical training approach. Still, more research is needed to determine the real-world benefits of computer programs such as casual

  9. Cognitive training with casual video games: points to consider.

    PubMed

    Baniqued, Pauline L; Kranz, Michael B; Voss, Michelle W; Lee, Hyunkyu; Cosman, Joshua D; Severson, Joan; Kramer, Arthur F

    2014-01-07

    Brain training programs have proliferated in recent years, with claims that video games or computer-based tasks can broadly enhance cognitive function. However, benefits are commonly seen only in trained tasks. Assessing generalized improvement and practicality of laboratory exercises complicates interpretation and application of findings. In this study, we addressed these issues by using active control groups, training tasks that more closely resemble real-world demands and multiple tests to determine transfer of training. We examined whether casual video games can broadly improve cognition, and selected training games from a study of the relationship between game performance and cognitive abilities. A total of 209 young adults were randomized into a working memory-reasoning group, an adaptive working memory-reasoning group, an active control game group, and a no-contact control group. Before and after 15 h of training, participants completed tests of reasoning, working memory, attention, episodic memory, perceptual speed, and self-report measures of executive function, game experience, perceived improvement, knowledge of brain training research, and game play outside the laboratory. Participants improved on the training games, but transfer to untrained tasks was limited. No group showed gains in reasoning, working memory, episodic memory, or perceptual speed, but the working memory-reasoning groups improved in divided attention, with better performance in an attention-demanding game, a decreased attentional blink and smaller trail-making costs. Perceived improvements did not differ across training groups and those with low reasoning ability at baseline showed larger gains. Although there are important caveats, our study sheds light on the mixed effects in the training and transfer literature and offers a novel and potentially practical training approach. Still, more research is needed to determine the real-world benefits of computer programs such as casual games.

  10. Perceptual Differences between Hippies and College Students

    ERIC Educational Resources Information Center

    Brothers, Robert; Gaines, Rosslyn

    1973-01-01

    Perceptual differences were investigated between 50 college students who were non-drug users and 50 hippies who used LSD. The major hypothesis predicted was that hippies would score differently from college students in a specific direction on each of the perceptual tasks. (Author)

  11. The effects of acute stress and perceptual load on distractor interference.

    PubMed

    Sato, Hirotsune; Takenaka, Ippei; Kawahara, Jun I

    2012-01-01

    Selective attention can be improved under conditions in which a high perceptual load is assumed to exhaust cognitive resources, leaving scarce resources for distractor processing. The present study examined whether perceptual load and acute stress share common attentional resources by manipulating perceptual and stress loads. Participants identified a target within an array of nontargets that were flanked by compatible or incompatible distractors. Attentional selectivity was measured by longer reaction times in response to the incompatible than to the compatible distractors. Participants in the stress group participated in a speech test that increased anxiety and threatened self-esteem. The effect of perceptual load interacted with the stress manipulation in that participants in the control group demonstrated an interference effect under the low perceptual load condition, whereas such interference disappeared under the high perceptual load condition. Importantly, the stress group showed virtually no interference under the low perceptual load condition, whereas substantial interference occurred under the high perceptual load condition. These results suggest that perceptual and stress related demands consume the same attentional resources.

  12. Perceptual Load-Dependent Neural Correlates of Distractor Interference Inhibition

    PubMed Central

    Xu, Jiansong; Monterosso, John; Kober, Hedy; Balodis, Iris M.; Potenza, Marc N.

    2011-01-01

    Background The load theory of selective attention hypothesizes that distractor interference is suppressed after perceptual processing (i.e., in the later stage of central processing) at low perceptual load of the central task, but in the early stage of perceptual processing at high perceptual load. Consistently, studies on the neural correlates of attention have found a smaller distractor-related activation in the sensory cortex at high relative to low perceptual load. However, it is not clear whether the distractor-related activation in brain regions linked to later stages of central processing (e.g., in the frontostriatal circuits) is also smaller at high rather than low perceptual load, as might be predicted based on the load theory. Methodology/Principal Findings We studied 24 healthy participants using functional magnetic resonance imaging (fMRI) during a visual target identification task with two perceptual loads (low vs. high). Participants showed distractor-related increases in activation in the midbrain, striatum, occipital and medial and lateral prefrontal cortices at low load, but distractor-related decreases in activation in the midbrain ventral tegmental area and substantia nigra (VTA/SN), striatum, thalamus, and extensive sensory cortices at high load. Conclusions Multiple levels of central processing involving midbrain and frontostriatal circuits participate in suppressing distractor interference at either low or high perceptual load. For suppressing distractor interference, the processing of sensory inputs in both early and late stages of central processing are enhanced at low load but inhibited at high load. PMID:21267080

  13. Perceptual load-dependent neural correlates of distractor interference inhibition.

    PubMed

    Xu, Jiansong; Monterosso, John; Kober, Hedy; Balodis, Iris M; Potenza, Marc N

    2011-01-18

    The load theory of selective attention hypothesizes that distractor interference is suppressed after perceptual processing (i.e., in the later stage of central processing) at low perceptual load of the central task, but in the early stage of perceptual processing at high perceptual load. Consistently, studies on the neural correlates of attention have found a smaller distractor-related activation in the sensory cortex at high relative to low perceptual load. However, it is not clear whether the distractor-related activation in brain regions linked to later stages of central processing (e.g., in the frontostriatal circuits) is also smaller at high rather than low perceptual load, as might be predicted based on the load theory. We studied 24 healthy participants using functional magnetic resonance imaging (fMRI) during a visual target identification task with two perceptual loads (low vs. high). Participants showed distractor-related increases in activation in the midbrain, striatum, occipital and medial and lateral prefrontal cortices at low load, but distractor-related decreases in activation in the midbrain ventral tegmental area and substantia nigra (VTA/SN), striatum, thalamus, and extensive sensory cortices at high load. Multiple levels of central processing involving midbrain and frontostriatal circuits participate in suppressing distractor interference at either low or high perceptual load. For suppressing distractor interference, the processing of sensory inputs in both early and late stages of central processing are enhanced at low load but inhibited at high load.

  14. Perceptual load corresponds with factors known to influence visual search.

    PubMed

    Roper, Zachary J J; Cosman, Joshua D; Vecera, Shaun P

    2013-10-01

    One account of the early versus late selection debate in attention proposes that perceptual load determines the locus of selection. Attention selects stimuli at a late processing level under low-load conditions but selects stimuli at an early level under high-load conditions. Despite the successes of perceptual load theory, a noncircular definition of perceptual load remains elusive. We investigated the factors that influence perceptual load by using manipulations that have been studied extensively in visual search, namely target-distractor similarity and distractor-distractor similarity. Consistent with previous work, search was most efficient when targets and distractors were dissimilar and the displays contained homogeneous distractors; search became less efficient when target-distractor similarity increased irrespective of display heterogeneity. Importantly, we used these same stimuli in a typical perceptual load task that measured attentional spillover to a task-irrelevant flanker. We found a strong correspondence between search efficiency and perceptual load; stimuli that generated efficient searches produced flanker interference effects, suggesting that such displays involved low perceptual load. Flanker interference effects were reduced in displays that produced less efficient searches. Furthermore, our results demonstrate that search difficulty, as measured by search intercept, has little bearing on perceptual load. We conclude that rather than be arbitrarily defined, perceptual load might be defined by well-characterized, continuous factors that influence visual search. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  15. Perceptual load corresponds with factors known to influence visual search

    PubMed Central

    Roper, Zachary J. J.; Cosman, Joshua D.; Vecera, Shaun P.

    2014-01-01

    One account of the early versus late selection debate in attention proposes that perceptual load determines the locus of selection. Attention selects stimuli at a late processing level under low-load conditions but selects stimuli at an early level under high-load conditions. Despite the successes of perceptual load theory, a non-circular definition of perceptual load remains elusive. We investigated the factors that influence perceptual load by using manipulations that have been studied extensively in visual search, namely target-distractor similarity and distractor-distractor similarity. Consistent with previous work, search was most efficient when targets and distractors were dissimilar and the displays contained homogeneous distractors; search became less efficient when target-distractor similarity increased irrespective of display heterogeneity. Importantly, we used these same stimuli in a typical perceptual load task that measured attentional spill-over to a task-irrelevant flanker. We found a strong correspondence between search efficiency and perceptual load; stimuli that generated efficient searches produced flanker interference effects, suggesting that such displays involved low perceptual load. Flanker interference effects were reduced in displays that produced less efficient searches. Furthermore, our results demonstrate that search difficulty, as measured by search intercept, has little bearing on perceptual load. These results suggest that perceptual load might be defined in part by well-characterized, continuous factors that influence visual search. PMID:23398258

  16. Chromatic Perceptual Learning but No Category Effects without Linguistic Input.

    PubMed

    Grandison, Alexandra; Sowden, Paul T; Drivonikou, Vicky G; Notman, Leslie A; Alexander, Iona; Davies, Ian R L

    2016-01-01

    Perceptual learning involves an improvement in perceptual judgment with practice, which is often specific to stimulus or task factors. Perceptual learning has been shown on a range of visual tasks but very little research has explored chromatic perceptual learning. Here, we use two low level perceptual threshold tasks and a supra-threshold target detection task to assess chromatic perceptual learning and category effects. Experiment 1 investigates whether chromatic thresholds reduce as a result of training and at what level of analysis learning effects occur. Experiment 2 explores the effect of category training on chromatic thresholds, whether training of this nature is category specific and whether it can induce categorical responding. Experiment 3 investigates the effect of category training on a higher level, lateralized target detection task, previously found to be sensitive to category effects. The findings indicate that performance on a perceptual threshold task improves following training but improvements do not transfer across retinal location or hue. Therefore, chromatic perceptual learning is category specific and can occur at relatively early stages of visual analysis. Additionally, category training does not induce category effects on a low level perceptual threshold task, as indicated by comparable discrimination thresholds at the newly learned hue boundary and adjacent test points. However, category training does induce emerging category effects on a supra-threshold target detection task. Whilst chromatic perceptual learning is possible, learnt category effects appear to be a product of left hemisphere processing, and may require the input of higher level linguistic coding processes in order to manifest.

  17. Chromatic Perceptual Learning but No Category Effects without Linguistic Input

    PubMed Central

    Grandison, Alexandra; Sowden, Paul T.; Drivonikou, Vicky G.; Notman, Leslie A.; Alexander, Iona; Davies, Ian R. L.

    2016-01-01

    Perceptual learning involves an improvement in perceptual judgment with practice, which is often specific to stimulus or task factors. Perceptual learning has been shown on a range of visual tasks but very little research has explored chromatic perceptual learning. Here, we use two low level perceptual threshold tasks and a supra-threshold target detection task to assess chromatic perceptual learning and category effects. Experiment 1 investigates whether chromatic thresholds reduce as a result of training and at what level of analysis learning effects occur. Experiment 2 explores the effect of category training on chromatic thresholds, whether training of this nature is category specific and whether it can induce categorical responding. Experiment 3 investigates the effect of category training on a higher level, lateralized target detection task, previously found to be sensitive to category effects. The findings indicate that performance on a perceptual threshold task improves following training but improvements do not transfer across retinal location or hue. Therefore, chromatic perceptual learning is category specific and can occur at relatively early stages of visual analysis. Additionally, category training does not induce category effects on a low level perceptual threshold task, as indicated by comparable discrimination thresholds at the newly learned hue boundary and adjacent test points. However, category training does induce emerging category effects on a supra-threshold target detection task. Whilst chromatic perceptual learning is possible, learnt category effects appear to be a product of left hemisphere processing, and may require the input of higher level linguistic coding processes in order to manifest. PMID:27252669

  18. Applications of just-noticeable depth difference model in joint multiview video plus depth coding

    NASA Astrophysics Data System (ADS)

    Liu, Chao; An, Ping; Zuo, Yifan; Zhang, Zhaoyang

    2014-10-01

    A new multiview just-noticeable-depth-difference(MJNDD) Model is presented and applied to compress the joint multiview video plus depth. Many video coding algorithms remove spatial and temporal redundancies and statistical redundancies but they are not capable of removing the perceptual redundancies. Since the final receptor of video is the human eyes, we can remove the perception redundancy to gain higher compression efficiency according to the properties of human visual system (HVS). Traditional just-noticeable-distortion (JND) model in pixel domain contains luminance contrast and spatial-temporal masking effects, which describes the perception redundancy quantitatively. Whereas HVS is very sensitive to depth information, a new multiview-just-noticeable-depth-difference(MJNDD) model is proposed by combining traditional JND model with just-noticeable-depth-difference (JNDD) model. The texture video is divided into background and foreground areas using depth information. Then different JND threshold values are assigned to these two parts. Later the MJNDD model is utilized to encode the texture video on JMVC. When encoding the depth video, JNDD model is applied to remove the block artifacts and protect the edges. Then we use VSRS3.5 (View Synthesis Reference Software) to generate the intermediate views. Experimental results show that our model can endure more noise and the compression efficiency is improved by 25.29 percent at average and by 54.06 percent at most compared to JMVC while maintaining the subject quality. Hence it can gain high compress ratio and low bit rate.

  19. Multi-Frame Convolutional Neural Networks for Object Detection in Temporal Data

    DTIC Science & Technology

    2017-03-01

    maximum 200 words) Given the problem of detecting objects in video , existing neural-network solutions rely on a post-processing step to combine...information across frames and strengthen conclusions. This technique has been successful for videos with simple, dominant objects but it cannot detect objects...Computer Science iii THIS PAGE INTENTIONALLY LEFT BLANK iv ABSTRACT Given the problem of detecting objects in video , existing neural-network solutions rely

  20. Non-Attended Representations are Perceptual Rather than Unconscious in Nature

    PubMed Central

    Fahrenfort, Johannes J.; Ambroziak, Klaudia B.; Lamme, Victor A. F.

    2012-01-01

    Introspectively we experience a phenomenally rich world. In stark contrast, many studies show that we can only report on the few items that we happen to attend to. So what happens to the unattended objects? Are these consciously processed as our first person perspective would have us believe, or are they – in fact – entirely unconscious? Here, we attempt to resolve this question by investigating the perceptual characteristics of visual sensory memory. Sensory memory is a fleeting, high-capacity form of memory that precedes attentional selection and working memory. We found that memory capacity benefits from figural information induced by the Kanizsa illusion. Importantly, this benefit was larger for sensory memory than for working memory and depended critically on the illusion, not on the stimulus configuration. This shows that pre-attentive sensory memory contains representations that have a genuinely perceptual nature, suggesting that non-attended representations are phenomenally experienced rather than unconscious. PMID:23209639

  1. Auditory-Perceptual Learning Improves Speech Motor Adaptation in Children

    PubMed Central

    Shiller, Douglas M.; Rochon, Marie-Lyne

    2015-01-01

    Auditory feedback plays an important role in children’s speech development by providing the child with information about speech outcomes that is used to learn and fine-tune speech motor plans. The use of auditory feedback in speech motor learning has been extensively studied in adults by examining oral motor responses to manipulations of auditory feedback during speech production. Children are also capable of adapting speech motor patterns to perceived changes in auditory feedback, however it is not known whether their capacity for motor learning is limited by immature auditory-perceptual abilities. Here, the link between speech perceptual ability and the capacity for motor learning was explored in two groups of 5–7-year-old children who underwent a period of auditory perceptual training followed by tests of speech motor adaptation to altered auditory feedback. One group received perceptual training on a speech acoustic property relevant to the motor task while a control group received perceptual training on an irrelevant speech contrast. Learned perceptual improvements led to an enhancement in speech motor adaptation (proportional to the perceptual change) only for the experimental group. The results indicate that children’s ability to perceive relevant speech acoustic properties has a direct influence on their capacity for sensory-based speech motor adaptation. PMID:24842067

  2. Video Image Stabilization and Registration (VISAR) Software

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Two scientists at NASA Marshall Space Flight Center, atmospheric scientist Paul Meyer (left) and solar physicist Dr. David Hathaway, have developed promising new software, called Video Image Stabilization and Registration (VISAR), that may help law enforcement agencies to catch criminals by improving the quality of video recorded at crime scenes, VISAR stabilizes camera motion in the horizontal and vertical as well as rotation and zoom effects; produces clearer images of moving objects; smoothes jagged edges; enhances still images; and reduces video noise of snow. VISAR could also have applications in medical and meteorological imaging. It could steady images of Ultrasounds which are infamous for their grainy, blurred quality. It would be especially useful for tornadoes, tracking whirling objects and helping to determine the tornado's wind speed. This image shows two scientists reviewing an enhanced video image of a license plate taken from a moving automobile.

  3. Perceptually-Based Adaptive JPEG Coding

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Rosenholtz, Ruth; Null, Cynthia H. (Technical Monitor)

    1996-01-01

    An extension to the JPEG standard (ISO/IEC DIS 10918-3) allows spatial adaptive coding of still images. As with baseline JPEG coding, one quantization matrix applies to an entire image channel, but in addition the user may specify a multiplier for each 8 x 8 block, which multiplies the quantization matrix, yielding the new matrix for the block. MPEG 1 and 2 use much the same scheme, except there the multiplier changes only on macroblock boundaries. We propose a method for perceptual optimization of the set of multipliers. We compute the perceptual error for each block based upon DCT quantization error adjusted according to contrast sensitivity, light adaptation, and contrast masking, and pick the set of multipliers which yield maximally flat perceptual error over the blocks of the image. We investigate the bitrate savings due to this adaptive coding scheme and the relative importance of the different sorts of masking on adaptive coding.

  4. Auditory perceptual load: A review.

    PubMed

    Murphy, Sandra; Spence, Charles; Dalton, Polly

    2017-09-01

    Selective attention is a crucial mechanism in everyday life, allowing us to focus on a portion of incoming sensory information at the expense of other less relevant stimuli. The circumstances under which irrelevant stimuli are successfully ignored have been a topic of scientific interest for several decades now. Over the last 20 years, the perceptual load theory (e.g. Lavie, 1995) has provided one robust framework for understanding these effects within the visual modality. The suggestion is that successful selection depends on the perceptual demands imposed by the task-relevant information. However, less research has addressed the question of whether the same principles hold in audition and, to date, the existing literature provides a mixed picture. Here, we review the evidence for and against the applicability of perceptual load theory in hearing, concluding that this question still awaits resolution. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Between-object and within-object saccade programming in a visual search task.

    PubMed

    Vergilino-Perez, Dorine; Findlay, John M

    2006-07-01

    The role of the perceptual organization of the visual display on eye movement control was examined in two experiments using a task where a two-saccade sequence was directed toward either a single elongated object or three separate shorter objects. In the first experiment, we examined the consequences for the second saccade of a small displacement of the whole display during the first saccade. We found that between-object saccades compensated for the displacement to aim for a target position on the new object whereas within-object saccades did not show compensation but were coded as a fixed motor vector applied irrespective of wherever the preceding saccade landed. In the second experiment, we extended the paradigm to examine saccades performed in different directions. The results suggest that the within-object and between-object saccade distinction is an essential feature of saccadic planning.

  6. Watermarking textures in video games

    NASA Astrophysics Data System (ADS)

    Liu, Huajian; Berchtold, Waldemar; Schäfer, Marcel; Lieb, Patrick; Steinebach, Martin

    2014-02-01

    Digital watermarking is a promising solution to video game piracy. In this paper, based on the analysis of special challenges and requirements in terms of watermarking textures in video games, a novel watermarking scheme for DDS textures in video games is proposed. To meet the performance requirements in video game applications, the proposed algorithm embeds the watermark message directly in the compressed stream in DDS files and can be straightforwardly applied in watermark container technique for real-time embedding. Furthermore, the embedding approach achieves high watermark payload to handle collusion secure fingerprinting codes with extreme length. Hence, the scheme is resistant to collusion attacks, which is indispensable in video game applications. The proposed scheme is evaluated in aspects of transparency, robustness, security and performance. Especially, in addition to classical objective evaluation, the visual quality and playing experience of watermarked games is assessed subjectively in game playing.

  7. Smart sensing surveillance video system

    NASA Astrophysics Data System (ADS)

    Hsu, Charles; Szu, Harold

    2016-05-01

    An intelligent video surveillance system is able to detect and identify abnormal and alarming situations by analyzing object movement. The Smart Sensing Surveillance Video (S3V) System is proposed to minimize video processing and transmission, thus allowing a fixed number of cameras to be connected on the system, and making it suitable for its applications in remote battlefield, tactical, and civilian applications including border surveillance, special force operations, airfield protection, perimeter and building protection, and etc. The S3V System would be more effective if equipped with visual understanding capabilities to detect, analyze, and recognize objects, track motions, and predict intentions. In addition, alarm detection is performed on the basis of parameters of the moving objects and their trajectories, and is performed using semantic reasoning and ontologies. The S3V System capabilities and technologies have great potential for both military and civilian applications, enabling highly effective security support tools for improving surveillance activities in densely crowded environments. It would be directly applicable to solutions for emergency response personnel, law enforcement, and other homeland security missions, as well as in applications requiring the interoperation of sensor networks with handheld or body-worn interface devices.

  8. Perceptual and memorial contributions to developmental prosopagnosia.

    PubMed

    Ulrich, Philip I N; Wilkinson, David T; Ferguson, Heather J; Smith, Laura J; Bindemann, Markus; Johnston, Robert A; Schmalzl, Laura

    2017-02-01

    Developmental prosopagnosia (DP) is commonly associated with the failure to properly perceive individuating facial properties, notably those conveying configural or holistic content. While this may indicate that the primary impairment is perceptual, it is conceivable that some cases of DP are instead caused by a memory impairment, with any perceptual complaint merely allied rather than causal. To investigate this possibility, we administered a battery of face perception tasks to 11 individuals who reported that their face recognition difficulties disrupt daily activity and who also performed poorly on two formal tests of face recognition. Group statistics identified, relative to age- and gender-matched controls, difficulties in apprehending global-local relations and the holistic properties of faces, and in matching across viewpoints, but these were mild in nature and were not consistently evident at the level of individual participants. Six of the 11 individuals failed to show any evidence of perceptual impairment. In the remaining five individuals, no single perceptual deficit, or combination of deficits, was necessary or sufficient for poor recognition performance. These data suggest that some cases of DP are better explained by a memorial rather than perceptual deficit, and highlight the relevance of the apperceptive/associative distinction more commonly applied to the allied syndrome of acquired prosopagnosia.

  9. Improved segmentation of occluded and adjoining vehicles in traffic surveillance videos

    NASA Astrophysics Data System (ADS)

    Juneja, Medha; Grover, Priyanka

    2013-12-01

    Occlusion in image processing refers to concealment of any part of the object or the whole object from view of an observer. Real time videos captured by static cameras on roads often encounter overlapping and hence, occlusion of vehicles. Occlusion in traffic surveillance videos usually occurs when an object which is being tracked is hidden by another object. This makes it difficult for the object detection algorithms to distinguish all the vehicles efficiently. Also morphological operations tend to join the close proximity vehicles resulting in formation of a single bounding box around more than one vehicle. Such problems lead to errors in further video processing, like counting of vehicles in a video. The proposed system brings forward efficient moving object detection and tracking approach to reduce such errors. The paper uses successive frame subtraction technique for detection of moving objects. Further, this paper implements the watershed algorithm to segment the overlapped and adjoining vehicles. The segmentation results have been improved by the use of noise and morphological operations.

  10. Fast and accurate edge orientation processing during object manipulation

    PubMed Central

    Flanagan, J Randall; Johansson, Roland S

    2018-01-01

    Quickly and accurately extracting information about a touched object’s orientation is a critical aspect of dexterous object manipulation. However, the speed and acuity of tactile edge orientation processing with respect to the fingertips as reported in previous perceptual studies appear inadequate in these respects. Here we directly establish the tactile system’s capacity to process edge-orientation information during dexterous manipulation. Participants extracted tactile information about edge orientation very quickly, using it within 200 ms of first touching the object. Participants were also strikingly accurate. With edges spanning the entire fingertip, edge-orientation resolution was better than 3° in our object manipulation task, which is several times better than reported in previous perceptual studies. Performance remained impressive even with edges as short as 2 mm, consistent with our ability to precisely manipulate very small objects. Taken together, our results radically redefine the spatial processing capacity of the tactile system. PMID:29611804

  11. Video game use and cognitive performance: does it vary with the presence of problematic video game use?

    PubMed

    Collins, Emily; Freeman, Jonathan

    2014-03-01

    Action video game players have been found to outperform nonplayers on a variety of cognitive tasks. However, several failures to replicate these video game player advantages have indicated that this relationship may not be straightforward. Moreover, despite the discovery that problematic video game players do not appear to demonstrate the same superior performance as nonproblematic video game players in relation to multiple object tracking paradigms, this has not been investigated for other tasks. Consequently, this study compared gamers and nongamers in task switching ability, visual short-term memory, mental rotation, enumeration, and flanker interference, as well as investigated the influence of self-reported problematic video game use. A total of 66 participants completed the experiment, 26 of whom played action video games, including 20 problematic players. The results revealed no significant effect of playing action video games, nor any influence of problematic video game play. This indicates that the previously reported cognitive advantages in video game players may be restricted to specific task features or samples. Furthermore, problematic video game play may not have a detrimental effect on cognitive performance, although this is difficult to ascertain considering the lack of video game player advantage. More research is therefore sorely needed.

  12. Acoustic and perceptual characteristics of the voice in patients with vocal polyps after surgery and voice therapy.

    PubMed

    Petrovic-Lazic, Mirjana; Jovanovic, Nadica; Kulic, Milan; Babac, Snezana; Jurisic, Vladimir

    2015-03-01

    The aim of the study was to assess the effect of endolaryngeal phonomicrosurgery (EPM) and voice therapy in patients with vocal fold polyps using perceptual and acoustic analysis before and after both therapies. The acoustic tests and perceptual evaluation of voice were carried out on 41 female patients with vocal fold polyp before and after EPM and voice therapy. Both therapy strategies were performed. Used acoustic parameters were Jitter percent (Jitt), pitch perturbation quotient (PPQ), shimmer percent (Shim), amplitude perturbation quotient (APQ), fundamental frequency variation (vF0), noise-to-harmonic ratio (NHR), Voice Turbulence Index (VTI). For perceptual evaluation, GRB scale was used. Results indicated higher values of investigated parameters in patients' group than in the control group (P < 0.01). Good correlation between the perceptual hoarseness factors of GRB scale and objective acoustic voice parameters were observed. All analyzed acoustic parameters improved after the phonomicrosurgery and voice therapy and tend to approach to values of the control group. For Jitt percent, Shim percent, vF0, VTI, and NHR, there were statistically significant differences. Perceptual voice evaluation revealed statistically significantly (P < 0.01) decreased rating of G (grade), R (rough) and B (breathy) after surgery and voice therapy. Our data indicated that both acoustic and perceptual characteristic of voice in patients with vocal polyps significantly improved after phonomicrosurgical and voice treatment. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  13. Perceptual asymmetries in greyscales: object-based versus space-based influences.

    PubMed

    Thomas, Nicole A; Elias, Lorin J

    2012-05-01

    Neurologically normal individuals exhibit leftward spatial biases, resulting from object- and space-based biases; however their relative contributions to the overall bias remain unknown. Relative position within the display has not often been considered, with similar spatial conditions being collapsed across. Study 1 used the greyscales task to investigate the influence of relative position and object- and space-based contributions. One image in each greyscale pair was shifted towards the left or the right. A leftward object-based bias moderated by a bias to the centre was expected. Results confirmed this as a left object-based bias occurred in the right visual field, where the left side of the greyscale pairs was located in the centre visual field. Further, only lower visual field images exhibited a significant left bias in the left visual field. The left bias was also stronger when images were partially overlapping in the right visual field, demonstrating the importance of examining proximity. The second study examined whether object-based biases were stronger when actual objects, with directional lighting biases, were used. Direction of luminosity was congruent or incongruent with spatial location. A stronger object-based bias emerged overall; however a leftward bias was seen in congruent conditions and a rightward bias was seen in incongruent conditions. In conditions with significant biases, the lower visual field image was chosen most often. Results show that object- and space-based biases both contribute; however stimulus type allows either space- or object-based biases to be stronger. A lower visual field bias also interacts with these biases, leading the left bias to be eliminated under certain conditions. The complex interaction occurring between frame of reference and visual field makes spatial location extremely important in determining the strength of the leftward bias. Copyright © 2010 Elsevier Srl. All rights reserved.

  14. Enhanced Perceptual Processing of Speech in Autism

    ERIC Educational Resources Information Center

    Jarvinen-Pasley, Anna; Wallace, Gregory L.; Ramus, Franck; Happe, Francesca; Heaton, Pamela

    2008-01-01

    Theories of autism have proposed that a bias towards low-level perceptual information, or a featural/surface-biased information-processing style, may compromise higher-level language processing in such individuals. Two experiments, utilizing linguistic stimuli with competing low-level/perceptual and high-level/semantic information, tested…

  15. Semantic Shot Classification in Sports Video

    NASA Astrophysics Data System (ADS)

    Duan, Ling-Yu; Xu, Min; Tian, Qi

    2003-01-01

    In this paper, we present a unified framework for semantic shot classification in sports videos. Unlike previous approaches, which focus on clustering by aggregating shots with similar low-level features, the proposed scheme makes use of domain knowledge of a specific sport to perform a top-down video shot classification, including identification of video shot classes for each sport, and supervised learning and classification of the given sports video with low-level and middle-level features extracted from the sports video. It is observed that for each sport we can predefine a small number of semantic shot classes, about 5~10, which covers 90~95% of sports broadcasting video. With the supervised learning method, we can map the low-level features to middle-level semantic video shot attributes such as dominant object motion (a player), camera motion patterns, and court shape, etc. On the basis of the appropriate fusion of those middle-level shot classes, we classify video shots into the predefined video shot classes, each of which has a clear semantic meaning. The proposed method has been tested over 4 types of sports videos: tennis, basketball, volleyball and soccer. Good classification accuracy of 85~95% has been achieved. With correctly classified sports video shots, further structural and temporal analysis, such as event detection, video skimming, table of content, etc, will be greatly facilitated.

  16. Prior expectations facilitate metacognition for perceptual decision.

    PubMed

    Sherman, M T; Seth, A K; Barrett, A B; Kanai, R

    2015-09-01

    The influential framework of 'predictive processing' suggests that prior probabilistic expectations influence, or even constitute, perceptual contents. This notion is evidenced by the facilitation of low-level perceptual processing by expectations. However, whether expectations can facilitate high-level components of perception remains unclear. We addressed this question by considering the influence of expectations on perceptual metacognition. To isolate the effects of expectation from those of attention we used a novel factorial design: expectation was manipulated by changing the probability that a Gabor target would be presented; attention was manipulated by instructing participants to perform or ignore a concurrent visual search task. We found that, independently of attention, metacognition improved when yes/no responses were congruent with expectations of target presence/absence. Results were modeled under a novel Bayesian signal detection theoretic framework which integrates bottom-up signal propagation with top-down influences, to provide a unified description of the mechanisms underlying perceptual decision and metacognition. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Automated segmentation and tracking of non-rigid objects in time-lapse microscopy videos of polymorphonuclear neutrophils.

    PubMed

    Brandes, Susanne; Mokhtari, Zeinab; Essig, Fabian; Hünniger, Kerstin; Kurzai, Oliver; Figge, Marc Thilo

    2015-02-01

    Time-lapse microscopy is an important technique to study the dynamics of various biological processes. The labor-intensive manual analysis of microscopy videos is increasingly replaced by automated segmentation and tracking methods. These methods are often limited to certain cell morphologies and/or cell stainings. In this paper, we present an automated segmentation and tracking framework that does not have these restrictions. In particular, our framework handles highly variable cell shapes and does not rely on any cell stainings. Our segmentation approach is based on a combination of spatial and temporal image variations to detect moving cells in microscopy videos. This method yields a sensitivity of 99% and a precision of 95% in object detection. The tracking of cells consists of different steps, starting from single-cell tracking based on a nearest-neighbor-approach, detection of cell-cell interactions and splitting of cell clusters, and finally combining tracklets using methods from graph theory. The segmentation and tracking framework was applied to synthetic as well as experimental datasets with varying cell densities implying different numbers of cell-cell interactions. We established a validation framework to measure the performance of our tracking technique. The cell tracking accuracy was found to be >99% for all datasets indicating a high accuracy for connecting the detected cells between different time points. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Load theory behind the wheel; perceptual and cognitive load effects.

    PubMed

    Murphy, Gillian; Greene, Ciara M

    2017-09-01

    Perceptual Load Theory has been proposed as a resolution to the longstanding early versus late selection debate in cognitive psychology. There is much evidence in support of Load Theory but very few applied studies, despite the potential for the model to shed light on everyday attention and distraction. Using a driving simulator, the effect of perceptual and cognitive load on drivers' visual search was assessed. The findings were largely in line with Load Theory, with reduced distractor processing under high perceptual load, but increased distractor processing under high cognitive load. The effect of load on driving behaviour was also analysed, with significant differences in driving behaviour under perceptual and cognitive load. In addition, the effect of perceptual load on drivers' levels of awareness was investigated. High perceptual load significantly increased inattentional blindness and deafness, for stimuli that were both relevant and irrelevant to driving. High perceptual load also increased RTs to hazards. The current study helps to advance Load Theory by illustrating its usefulness outside of traditional paradigms. There are also applied implications for driver safety and roadway design, as the current study suggests that perceptual and cognitive load are important factors in driver attention. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. Neurological Evidence Linguistic Processes Precede Perceptual Simulation in Conceptual Processing

    PubMed Central

    Louwerse, Max; Hutchinson, Sterling

    2012-01-01

    There is increasing evidence from response time experiments that language statistics and perceptual simulations both play a role in conceptual processing. In an EEG experiment we compared neural activity in cortical regions commonly associated with linguistic processing and visual perceptual processing to determine to what extent symbolic and embodied accounts of cognition applied. Participants were asked to determine the semantic relationship of word pairs (e.g., sky – ground) or to determine their iconic relationship (i.e., if the presentation of the pair matched their expected physical relationship). A linguistic bias was found toward the semantic judgment task and a perceptual bias was found toward the iconicity judgment task. More importantly, conceptual processing involved activation in brain regions associated with both linguistic and perceptual processes. When comparing the relative activation of linguistic cortical regions with perceptual cortical regions, the effect sizes for linguistic cortical regions were larger than those for the perceptual cortical regions early in a trial with the reverse being true later in a trial. These results map upon findings from other experimental literature and provide further evidence that processing of concept words relies both on language statistics and on perceptual simulations, whereby linguistic processes precede perceptual simulation processes. PMID:23133427

  20. Neurological evidence linguistic processes precede perceptual simulation in conceptual processing.

    PubMed

    Louwerse, Max; Hutchinson, Sterling

    2012-01-01

    There is increasing evidence from response time experiments that language statistics and perceptual simulations both play a role in conceptual processing. In an EEG experiment we compared neural activity in cortical regions commonly associated with linguistic processing and visual perceptual processing to determine to what extent symbolic and embodied accounts of cognition applied. Participants were asked to determine the semantic relationship of word pairs (e.g., sky - ground) or to determine their iconic relationship (i.e., if the presentation of the pair matched their expected physical relationship). A linguistic bias was found toward the semantic judgment task and a perceptual bias was found toward the iconicity judgment task. More importantly, conceptual processing involved activation in brain regions associated with both linguistic and perceptual processes. When comparing the relative activation of linguistic cortical regions with perceptual cortical regions, the effect sizes for linguistic cortical regions were larger than those for the perceptual cortical regions early in a trial with the reverse being true later in a trial. These results map upon findings from other experimental literature and provide further evidence that processing of concept words relies both on language statistics and on perceptual simulations, whereby linguistic processes precede perceptual simulation processes.