Quantitative endoscopy: initial accuracy measurements.
Truitt, T O; Adelman, R A; Kelly, D H; Willging, J P
2000-02-01
The geometric optics of an endoscope can be used to determine the absolute size of an object in an endoscopic field without knowing the actual distance from the object. This study explores the accuracy of a technique that estimates absolute object size from endoscopic images. Quantitative endoscopy involves calibrating a rigid endoscope to produce size estimates from 2 images taken with a known traveled distance between the images. The heights of 12 samples, ranging in size from 0.78 to 11.80 mm, were estimated with this calibrated endoscope. Backup distances of 5 mm and 10 mm were used for comparison. The mean percent error for all estimated measurements when compared with the actual object sizes was 1.12%. The mean errors for 5-mm and 10-mm backup distances were 0.76% and 1.65%, respectively. The mean errors for objects <2 mm and > or =2 mm were 0.94% and 1.18%, respectively. Quantitative endoscopy estimates endoscopic image size to within 5% of the actual object size. This method remains promising for quantitatively evaluating object size from endoscopic images. It does not require knowledge of the absolute distance of the endoscope from the object, rather, only the distance traveled by the endoscope between images.
ERIC Educational Resources Information Center
Marrus, Natasha; Faughn, Carley; Shuman, Jeremy; Petersen, Steve E.; Constantino, John N.; Povinelli, Daniel J.; Pruett, John R., Jr.
2011-01-01
Objective: Comparative studies of social responsiveness, an ability that is impaired in autism spectrum disorders, can inform our understanding of both autism and the cognitive architecture of social behavior. Because there is no existing quantitative measure of social responsiveness in chimpanzees, we generated a quantitative, cross-species…
Comparison of DNA fragmentation and color thresholding for objective quantitation of apoptotic cells
NASA Technical Reports Server (NTRS)
Plymale, D. R.; Ng Tang, D. S.; Fermin, C. D.; Lewis, D. E.; Martin, D. S.; Garry, R. F.
1995-01-01
Apoptosis is a process of cell death characterized by distinctive morphological changes and fragmentation of cellular DNA. Using video imaging and color thresholding techniques, we objectively quantitated the number of cultured CD4+ T-lymphoblastoid cells (HUT78 cells, RH9 subclone) displaying morphological signs of apoptosis before and after exposure to gamma-irradiation. The numbers of apoptotic cells measured by objective video imaging techniques were compared to numbers of apoptotic cells measured in the same samples by sensitive apoptotic assays that quantitate DNA fragmentation. DNA fragmentation assays gave consistently higher values compared with the video imaging assays that measured morphological changes associated with apoptosis. These results suggest that substantial DNA fragmentation can precede or occur in the absence of the morphological changes which are associated with apoptosis in gamma-irradiated RH9 cells.
Quantitative phase retrieval with arbitrary pupil and illumination
Claus, Rene A.; Naulleau, Patrick P.; Neureuther, Andrew R.; ...
2015-10-02
We present a general algorithm for combining measurements taken under various illumination and imaging conditions to quantitatively extract the amplitude and phase of an object wave. The algorithm uses the weak object transfer function, which incorporates arbitrary pupil functions and partially coherent illumination. The approach is extended beyond the weak object regime using an iterative algorithm. Finally, we demonstrate the method on measurements of Extreme Ultraviolet Lithography (EUV) multilayer mask defects taken in an EUV zone plate microscope with both a standard zone plate lens and a zone plate implementing Zernike phase contrast.
Quantitative method for measuring heat flux emitted from a cryogenic object
Duncan, Robert V.
1993-01-01
The present invention is a quantitative method for measuring the total heat flux, and of deriving the total power dissipation, of a heat-fluxing object which includes the steps of placing an electrical noise-emitting heat-fluxing object in a liquid helium bath and measuring the superfluid transition temperature of the bath. The temperature of the liquid helium bath is thereafter reduced until some measurable parameter, such as the electrical noise, exhibited by the heat-fluxing object or a temperature-dependent resistive thin film in intimate contact with the heat-fluxing object, becomes greatly reduced. The temperature of the liquid helum bath is measured at this point. The difference between the superfluid transition temperature of the liquid helium bath surrounding the heat-fluxing object, and the temperature of the liquid helium bath when the electrical noise emitted by the heat-fluxing object becomes greatly reduced, is determined. The total heat flux from the heat-fluxing object is determined as a function of this difference between these temperatures. In certain applications, the technique can be used to optimize thermal design parameters of cryogenic electronics, for example, Josephson junction and infra-red sensing devices.
Quantitative method for measuring heat flux emitted from a cryogenic object
Duncan, R.V.
1993-03-16
The present invention is a quantitative method for measuring the total heat flux, and of deriving the total power dissipation, of a heat-fluxing object which includes the steps of placing an electrical noise-emitting heat-fluxing object in a liquid helium bath and measuring the superfluid transition temperature of the bath. The temperature of the liquid helium bath is thereafter reduced until some measurable parameter, such as the electrical noise, exhibited by the heat-fluxing object or a temperature-dependent resistive thin film in intimate contact with the heat-fluxing object, becomes greatly reduced. The temperature of the liquid helum bath is measured at this point. The difference between the superfluid transition temperature of the liquid helium bath surrounding the heat-fluxing object, and the temperature of the liquid helium bath when the electrical noise emitted by the heat-fluxing object becomes greatly reduced, is determined. The total heat flux from the heat-fluxing object is determined as a function of this difference between these temperatures. In certain applications, the technique can be used to optimize thermal design parameters of cryogenic electronics, for example, Josephson junction and infrared sensing devices.
Physical therapy in Huntington's disease--toward objective assessments?
Bohlen, S; Ekwall, C; Hellström, K; Vesterlin, H; Björnefur, M; Wiklund, L; Reilmann, R
2013-02-01
Physical therapy is recommended for the treatment of Huntington's disease, but reliable studies investigating its efficacy are almost non-existent. This may in part be due to the lack of suitable outcome measures. Therefore, we investigated the applicability of novel quantitative and objective assessments of motor dysfunction in the evaluation of physical therapy interventions aimed at improving gait and posture. Twelve patients with Huntington disease received a predefined twice-weekly intervention focusing on posture and gait over 6 weeks. The GAITRite mat and a force plate were used for objective and quantitative assessments. The Unified Huntingtons Disease Rating Scale Total Motor Score, the timed Up &Go test, and the Berg Balance Scale were used as clinical outcome measures. Significant improvements were seen in GAITRite measures after therapy. Improvements were also seen in the Up & Go test and Berg Balance Scale, whereas force plate measures and Total Motor Scores did not change. The results suggest that physical therapy has a positive effect on gait in Huntington's disease. The study shows that objective and quantitative measures of gait and posture may serve as endpoints in trials assessing the efficacy of physical therapy. They should be explored further in larger trials applying a randomized controlled setting. © 2012 The Author(s) European Journal of Neurology © 2012 EFNS.
Herbort, Carl P; Tugal-Tutkun, Ilknur; Neri, Piergiorgio; Pavésio, Carlos; Onal, Sumru; LeHoang, Phuc
2017-05-01
Uveitis is one of the fields in ophthalmology where a tremendous evolution took place in the past 25 years. Not only did we gain access to more efficient, more targeted, and better tolerated therapies, but also in parallel precise and quantitative measurement methods developed allowing the clinician to evaluate these therapies and adjust therapeutic intervention with a high degree of precision. Objective and quantitative measurement of the global level of intraocular inflammation became possible for most inflammatory diseases with direct or spill-over anterior chamber inflammation, thanks to laser flare photometry. The amount of retinal inflammation could be quantified by using fluorescein angiography to score retinal angiographic signs. Indocyanine green angiography gave imaging insight into the hitherto inaccessible choroidal compartment, rendering possible the quantification of choroiditis by scoring indocyanine green angiographic signs. Optical coherence tomography has enabled measurement and objective monitoring of retinal and choroidal thickness. This multimodal quantitative appraisal of intraocular inflammation represents an exquisite security in monitoring uveitis. What is enigmatic, however, is the slow pace with which these improvements are integrated in some areas. What is even more difficult to understand is the fact that clinical trials to assess new therapeutic agents still mostly rely on subjective parameters such as clinical evaluation of vitreous haze as a main endpoint; whereas a whole array of precise, quantitative, and objective modalities are available for the design of clinical studies. The scope of this work was to review the quantitative investigations that improved the management of uveitis in the past 2-3 decades.
DOT National Transportation Integrated Search
1995-10-01
The primary objective of this study is to provide information relative to the development of a set of performance measures for intermodal freight transportation. To accomplish this objective, data was collected, processed, and analyzed on the basis o...
Evaluation of macrozone dimensions by ultrasound and EBSD techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreau, Andre, E-mail: Andre.Moreau@cnrc-nrc.gc.ca; Toubal, Lotfi; Ecole de technologie superieure, 1100, rue Notre-Dame Ouest, Montreal, QC, Canada H3C 1K3
2013-01-15
Titanium alloys are known to have texture heterogeneities, i.e. regions much larger than the grain dimensions, where the local orientation distribution of the grains differs from one region to the next. The electron backscattering diffraction (EBSD) technique is the method of choice to characterize these macro regions, which are called macrozones. Qualitatively, the images obtained by EBSD show that these macrozones may be larger or smaller, elongated or equiaxed. However, often no well-defined boundaries are observed between the macrozones and it is very hard to obtain objective and quantitative estimates of the macrozone dimensions from these data. In the presentmore » work, we present a novel, non-destructive ultrasonic technique that provides objective and quantitative characteristic dimensions of the macrozones. The obtained dimensions are based on the spatial autocorrelation function of fluctuations in the sound velocity. Thus, a pragmatic definition of macrozone dimensions naturally arises from the ultrasonic measurement. This paper has three objectives: 1) to disclose the novel, non-destructive ultrasonic technique to measure macrozone dimensions, 2) to propose a quantitative and objective definition of macrozone dimensions adapted to and arising from the ultrasonic measurement, and which is also applicable to the orientation data obtained by EBSD, and 3) to compare the macrozone dimensions obtained using the two techniques on two samples of the near-alpha titanium alloy IMI834. In addition, it was observed that macrozones may present a semi-periodical arrangement. - Highlights: Black-Right-Pointing-Pointer Discloses a novel, ultrasonic NDT technique to measure macrozone dimensions Black-Right-Pointing-Pointer Proposes a quantitative and objective definition of macrozone dimensions Black-Right-Pointing-Pointer Compares macrozone dimensions obtained using EBSD and ultrasonics on 2 Ti samples Black-Right-Pointing-Pointer Observes that macrozones may have a semi-periodical arrangement.« less
A Historical Analysis of Internal Review
1981-03-01
the background material presented. In such a study as this, the absence of quantitative data forces narrative descriptions and arguments vice... difinitive graphic displays. The chapter seeked to convey a sense of history and development of auditing in general and internal review in particular. In...measure represents the closest feasible way of measuring the accomplishment of an objective that cannot itself be expressed quantitatively . Such a measure
Hong, Ha; Solomon, Ethan A.; DiCarlo, James J.
2015-01-01
To go beyond qualitative models of the biological substrate of object recognition, we ask: can a single ventral stream neuronal linking hypothesis quantitatively account for core object recognition performance over a broad range of tasks? We measured human performance in 64 object recognition tests using thousands of challenging images that explore shape similarity and identity preserving object variation. We then used multielectrode arrays to measure neuronal population responses to those same images in visual areas V4 and inferior temporal (IT) cortex of monkeys and simulated V1 population responses. We tested leading candidate linking hypotheses and control hypotheses, each postulating how ventral stream neuronal responses underlie object recognition behavior. Specifically, for each hypothesis, we computed the predicted performance on the 64 tests and compared it with the measured pattern of human performance. All tested hypotheses based on low- and mid-level visually evoked activity (pixels, V1, and V4) were very poor predictors of the human behavioral pattern. However, simple learned weighted sums of distributed average IT firing rates exactly predicted the behavioral pattern. More elaborate linking hypotheses relying on IT trial-by-trial correlational structure, finer IT temporal codes, or ones that strictly respect the known spatial substructures of IT (“face patches”) did not improve predictive power. Although these results do not reject those more elaborate hypotheses, they suggest a simple, sufficient quantitative model: each object recognition task is learned from the spatially distributed mean firing rates (100 ms) of ∼60,000 IT neurons and is executed as a simple weighted sum of those firing rates. SIGNIFICANCE STATEMENT We sought to go beyond qualitative models of visual object recognition and determine whether a single neuronal linking hypothesis can quantitatively account for core object recognition behavior. To achieve this, we designed a database of images for evaluating object recognition performance. We used multielectrode arrays to characterize hundreds of neurons in the visual ventral stream of nonhuman primates and measured the object recognition performance of >100 human observers. Remarkably, we found that simple learned weighted sums of firing rates of neurons in monkey inferior temporal (IT) cortex accurately predicted human performance. Although previous work led us to expect that IT would outperform V4, we were surprised by the quantitative precision with which simple IT-based linking hypotheses accounted for human behavior. PMID:26424887
Stenner, A Jackson; Fisher, William P; Stone, Mark H; Burdick, Donald S
2013-01-01
Rasch's unidimensional models for measurement show how to connect object measures (e.g., reader abilities), measurement mechanisms (e.g., machine-generated cloze reading items), and observational outcomes (e.g., counts correct on reading instruments). Substantive theory shows what interventions or manipulations to the measurement mechanism can be traded off against a change to the object measure to hold the observed outcome constant. A Rasch model integrated with a substantive theory dictates the form and substance of permissible interventions. Rasch analysis, absent construct theory and an associated specification equation, is a black box in which understanding may be more illusory than not. Finally, the quantitative hypothesis can be tested by comparing theory-based trade-off relations with observed trade-off relations. Only quantitative variables (as measured) support such trade-offs. Note that to test the quantitative hypothesis requires more than manipulation of the algebraic equivalencies in the Rasch model or descriptively fitting data to the model. A causal Rasch model involves experimental intervention/manipulation on either reader ability or text complexity or a conjoint intervention on both simultaneously to yield a successful prediction of the resultant observed outcome (count correct). We conjecture that when this type of manipulation is introduced for individual reader text encounters and model predictions are consistent with observations, the quantitative hypothesis is sustained.
Stenner, A. Jackson; Fisher, William P.; Stone, Mark H.; Burdick, Donald S.
2013-01-01
Rasch's unidimensional models for measurement show how to connect object measures (e.g., reader abilities), measurement mechanisms (e.g., machine-generated cloze reading items), and observational outcomes (e.g., counts correct on reading instruments). Substantive theory shows what interventions or manipulations to the measurement mechanism can be traded off against a change to the object measure to hold the observed outcome constant. A Rasch model integrated with a substantive theory dictates the form and substance of permissible interventions. Rasch analysis, absent construct theory and an associated specification equation, is a black box in which understanding may be more illusory than not. Finally, the quantitative hypothesis can be tested by comparing theory-based trade-off relations with observed trade-off relations. Only quantitative variables (as measured) support such trade-offs. Note that to test the quantitative hypothesis requires more than manipulation of the algebraic equivalencies in the Rasch model or descriptively fitting data to the model. A causal Rasch model involves experimental intervention/manipulation on either reader ability or text complexity or a conjoint intervention on both simultaneously to yield a successful prediction of the resultant observed outcome (count correct). We conjecture that when this type of manipulation is introduced for individual reader text encounters and model predictions are consistent with observations, the quantitative hypothesis is sustained. PMID:23986726
Nonparticipatory Stiffness in the Male Perioral Complex
ERIC Educational Resources Information Center
Chu, Shin-Ying; Barlow, Steven M.; Lee, Jaehoon
2009-01-01
Purpose: The objective of this study was to extend previous published findings in the authors' laboratory using a new automated technology to quantitatively characterize nonparticipatory perioral stiffness in healthy male adults. Method: Quantitative measures of perioral stiffness were sampled during a nonparticipatory task using a…
Majaj, Najib J; Hong, Ha; Solomon, Ethan A; DiCarlo, James J
2015-09-30
To go beyond qualitative models of the biological substrate of object recognition, we ask: can a single ventral stream neuronal linking hypothesis quantitatively account for core object recognition performance over a broad range of tasks? We measured human performance in 64 object recognition tests using thousands of challenging images that explore shape similarity and identity preserving object variation. We then used multielectrode arrays to measure neuronal population responses to those same images in visual areas V4 and inferior temporal (IT) cortex of monkeys and simulated V1 population responses. We tested leading candidate linking hypotheses and control hypotheses, each postulating how ventral stream neuronal responses underlie object recognition behavior. Specifically, for each hypothesis, we computed the predicted performance on the 64 tests and compared it with the measured pattern of human performance. All tested hypotheses based on low- and mid-level visually evoked activity (pixels, V1, and V4) were very poor predictors of the human behavioral pattern. However, simple learned weighted sums of distributed average IT firing rates exactly predicted the behavioral pattern. More elaborate linking hypotheses relying on IT trial-by-trial correlational structure, finer IT temporal codes, or ones that strictly respect the known spatial substructures of IT ("face patches") did not improve predictive power. Although these results do not reject those more elaborate hypotheses, they suggest a simple, sufficient quantitative model: each object recognition task is learned from the spatially distributed mean firing rates (100 ms) of ∼60,000 IT neurons and is executed as a simple weighted sum of those firing rates. Significance statement: We sought to go beyond qualitative models of visual object recognition and determine whether a single neuronal linking hypothesis can quantitatively account for core object recognition behavior. To achieve this, we designed a database of images for evaluating object recognition performance. We used multielectrode arrays to characterize hundreds of neurons in the visual ventral stream of nonhuman primates and measured the object recognition performance of >100 human observers. Remarkably, we found that simple learned weighted sums of firing rates of neurons in monkey inferior temporal (IT) cortex accurately predicted human performance. Although previous work led us to expect that IT would outperform V4, we were surprised by the quantitative precision with which simple IT-based linking hypotheses accounted for human behavior. Copyright © 2015 the authors 0270-6474/15/3513402-17$15.00/0.
A Quantitative and Qualitative Exploration of Photoaversion in Achromatopsia
Aboshiha, Jonathan; Kumaran, Neruban; Kalitzeos, Angelos; Hogg, Chris; Rubin, Gary; Michaelides, Michel
2017-01-01
Purpose Photoaversion (PA) is a disabling and ubiquitous feature of achromatopsia (ACHM). We aimed to help define the characteristics of this important symptom, and present the first published assessment of its impact on patients' lives, as well as quantitative and qualitative PA assessments. Methods Molecularly confirmed ACHM subjects were assessed for PA using four tasks: structured survey of patient experience, novel quantitative subjective measurement of PA, visual acuities in differing ambient lighting, and objective palpebral aperture-related PA testing. Results Photoaversion in ACHM was found to be the most significant symptom for a substantial proportion (38%) of patients. A novel subjective PA measurement technique was developed and demonstrated fidelity with more invasive paradigms without exposing often very photosensitive patients to brighter light intensities used elsewhere. An objective PA measurement was also refined for use in trials, indicating that higher light intensities than previously published are likely to be needed. Monocular testing, as required for trials, was also validated for the first time. Conclusions This study offers new insights into PA in ACHM. It provides the first structured evidence of the great significance of this symptom to patients, suggesting that PA should be considered as an additional outcome measure in therapeutic trials. It also offers new insights into the characteristics of PA in ACHM, and describes both subjective and objective measures of PA that could be employed in clinical trials. PMID:28715587
Decision support intended to improve ecosystem sustainability requires that we link stakeholder priorities directly to quantitative tools and measures of desired outcomes. Actions taken at the community level can have large impacts on production and delivery of ecosystem service...
Proof of the quantitative potential of immunofluorescence by mass spectrometry.
Toki, Maria I; Cecchi, Fabiola; Hembrough, Todd; Syrigos, Konstantinos N; Rimm, David L
2017-03-01
Protein expression in formalin-fixed, paraffin-embedded patient tissue is routinely measured by Immunohistochemistry (IHC). However, IHC has been shown to be subject to variability in sensitivity, specificity and reproducibility, and is generally, at best, considered semi-quantitative. Mass spectrometry (MS) is considered by many to be the criterion standard for protein measurement, offering high sensitivity, specificity, and objective molecular quantification. Here, we seek to show that quantitative immunofluorescence (QIF) with standardization can achieve quantitative results comparable to MS. Epidermal growth factor receptor (EGFR) was measured by quantitative immunofluorescence in 15 cell lines with a wide range of EGFR expression, using different primary antibody concentrations, including the optimal signal-to-noise concentration after quantitative titration. QIF target measurement was then compared to the absolute EGFR concentration measured by Liquid Tissue-selected reaction monitoring mass spectrometry. The best agreement between the two assays was found when the EGFR primary antibody was used at the optimal signal-to-noise concentration, revealing a strong linear regression (R 2 =0.88). This demonstrates that quantitative optimization of titration by calculation of signal-to-noise ratio allows QIF to be standardized to MS and can therefore be used to assess absolute protein concentration in a linear and reproducible manner.
ERIC Educational Resources Information Center
Chinello, Alessandro; Cattani, Veronica; Bonfiglioli, Claudia; Dehaene, Stanislas; Piazza, Manuela
2013-01-01
In the primate brain, sensory information is processed along two partially segregated cortical streams: the ventral stream, mainly coding for objects' shape and identity, and the dorsal stream, mainly coding for objects' quantitative information (including size, number, and spatial position). Neurophysiological measures indicate that such…
Wendin, Karin; Ekman, Susanne; Bülow, Margareta; Ekberg, Olle; Johansson, Daniel; Rothenberg, Elisabet; Stading, Mats
2010-01-01
Introduction Patients who suffer from chewing and swallowing disorders, i.e. dysphagia, may have difficulties ingesting normal food and liquids. In these patients a texture modified diet may enable that the patient maintain adequate nutrition. However, there is no generally accepted definition of ‘texture’ that includes measurements describing different food textures. Objective Objectively define and quantify categories of texture-modified food by conducting rheological measurements and sensory analyses. A further objective was to facilitate the communication and recommendations of appropriate food textures for patients with dysphagia. Design About 15 food samples varying in texture qualities were characterized by descriptive sensory and rheological measurements. Results Soups were perceived as homogenous; thickened soups were perceived as being easier to swallow, more melting and creamy compared with soups without thickener. Viscosity differed between the two types of soups. Texture descriptors for pâtés were characterized by high chewing resistance, firmness, and having larger particles compared with timbales and jellied products. Jellied products were perceived as wobbly, creamy, and easier to swallow. Concerning the rheological measurements, all solid products were more elastic than viscous (G′>G″), belonging to different G′ intervals: jellied products (low G′) and timbales together with pâtés (higher G′). Conclusion By combining sensory and rheological measurements, a system of objective, quantitative, and well-defined food textures was developed that characterizes the different texture categories. PMID:20592965
Xiao, Xia; Lei, Kin Fong; Huang, Chia-Hao
2015-01-01
Cell migration is a cellular response and results in various biological processes such as cancer metastasis, that is, the primary cause of death for cancer patients. Quantitative investigation of the correlation between cell migration and extracellular stimulation is essential for developing effective therapeutic strategies for controlling invasive cancer cells. The conventional method to determine cell migration rate based on comparison of successive images may not be an objective approach. In this work, a microfluidic chip embedded with measurement electrodes has been developed to quantitatively monitor the cell migration activity based on the impedimetric measurement technique. A no-damage wound was constructed by microfluidic phenomenon and cell migration activity under the stimulation of cytokine and an anti-cancer drug, i.e., interleukin-6 and doxorubicin, were, respectively, investigated. Impedance measurement was concurrently performed during the cell migration process. The impedance change was directly correlated to the cell migration activity; therefore, the migration rate could be calculated. In addition, a good match was found between impedance measurement and conventional imaging analysis. But the impedimetric measurement technique provides an objective and quantitative measurement. Based on our technique, cell migration rates were calculated to be 8.5, 19.1, and 34.9 μm/h under the stimulation of cytokine at concentrations of 0 (control), 5, and 10 ng/ml. This technique has high potential to be developed into a powerful analytical platform for cancer research. PMID:26180566
Swary, Jillian H; West, Dennis P; Kakar, Rohit; Ortiz, Sara; Schaeffer, Matthew R; Veledar, Emir; Alam, Murad
2015-12-01
There is a lack of studies objectively comparing the efficacy of topical antiperspirants in reducing sweat. To objectively and quantitatively compare the efficacy of two aluminum salt solutions for the reduction of induced sweating. A subject, rater, and statistician-blinded, randomized, controlled trial. Nineteen subjects were exposed to a standardized heat challenge for 3 h. Topical agent A (20% aluminum chloride hexahydrate) was randomized to either axilla, and topical agent B (1% aluminum acetate) assigned to the contralateral side. A sauna suit induced sweating during three 30-min heat intervals: (1) with no study agents (pre); (2) with both study agents, one on each side; and (3) after the agents were washed off (post). Sweat levels were measured by securing Whatman(®) filter paper to each axilla and measuring the paper weight after each heat interval. The difference in paper weight following each heat interval between Study Agent A and Study Agent B was measured by a gravimetric scale. Topical agent A had a significantly greater effect at reducing axillary sweating than B (P = 0.0002). In a sweating simulation, 20% aluminum chloride hexahydrate quantitatively and objectively appeared to reduce sweat more effectively than 1% aluminum acetate. © 2015 Wiley Periodicals, Inc.
A Fuzzy Description Logic with Automatic Object Membership Measurement
NASA Astrophysics Data System (ADS)
Cai, Yi; Leung, Ho-Fung
In this paper, we propose a fuzzy description logic named f om -DL by combining the classical view in cognitive psychology and fuzzy set theory. A formal mechanism used to determine object memberships automatically in concepts is also proposed, which is lacked in previous work fuzzy description logics. In this mechanism, object membership is based on the defining properties of concept definition and properties in object description. Moreover, while previous works cannot express the qualitative measurements of an object possessing a property, we introduce two kinds of properties named N-property and L-property, which are quantitative measurements and qualitative measurements of an object possessing a property respectively. The subsumption and implication of concepts and properties are also explored in our work. We believe that it is useful to the Semantic Web community for reasoning the fuzzy membership of objects for concepts in fuzzy ontologies.
Quantitative polarized Raman spectroscopy in highly turbid bone tissue
NASA Astrophysics Data System (ADS)
Raghavan, Mekhala; Sahar, Nadder D.; Wilson, Robert H.; Mycek, Mary-Ann; Pleshko, Nancy; Kohn, David H.; Morris, Michael D.
2010-05-01
Polarized Raman spectroscopy allows measurement of molecular orientation and composition and is widely used in the study of polymer systems. Here, we extend the technique to the extraction of quantitative orientation information from bone tissue, which is optically thick and highly turbid. We discuss multiple scattering effects in tissue and show that repeated measurements using a series of objectives of differing numerical apertures can be employed to assess the contributions of sample turbidity and depth of field on polarized Raman measurements. A high numerical aperture objective minimizes the systematic errors introduced by multiple scattering. We test and validate the use of polarized Raman spectroscopy using wild-type and genetically modified (oim/oim model of osteogenesis imperfecta) murine bones. Mineral orientation distribution functions show that mineral crystallites are not as well aligned (p<0.05) in oim/oim bones (28+/-3 deg) compared to wild-type bones (22+/-3 deg), in agreement with small-angle X-ray scattering results. In wild-type mice, backbone carbonyl orientation is 76+/-2 deg and in oim/oim mice, it is 72+/-4 deg (p>0.05). We provide evidence that simultaneous quantitative measurements of mineral and collagen orientations on intact bone specimens are possible using polarized Raman spectroscopy.
Quantitative polarized Raman spectroscopy in highly turbid bone tissue.
Raghavan, Mekhala; Sahar, Nadder D; Wilson, Robert H; Mycek, Mary-Ann; Pleshko, Nancy; Kohn, David H; Morris, Michael D
2010-01-01
Polarized Raman spectroscopy allows measurement of molecular orientation and composition and is widely used in the study of polymer systems. Here, we extend the technique to the extraction of quantitative orientation information from bone tissue, which is optically thick and highly turbid. We discuss multiple scattering effects in tissue and show that repeated measurements using a series of objectives of differing numerical apertures can be employed to assess the contributions of sample turbidity and depth of field on polarized Raman measurements. A high numerical aperture objective minimizes the systematic errors introduced by multiple scattering. We test and validate the use of polarized Raman spectroscopy using wild-type and genetically modified (oim/oim model of osteogenesis imperfecta) murine bones. Mineral orientation distribution functions show that mineral crystallites are not as well aligned (p<0.05) in oim/oim bones (28+/-3 deg) compared to wild-type bones (22+/-3 deg), in agreement with small-angle X-ray scattering results. In wild-type mice, backbone carbonyl orientation is 76+/-2 deg and in oim/oim mice, it is 72+/-4 deg (p>0.05). We provide evidence that simultaneous quantitative measurements of mineral and collagen orientations on intact bone specimens are possible using polarized Raman spectroscopy.
Quantitative magnetic resonance imaging phantoms: A review and the need for a system phantom.
Keenan, Kathryn E; Ainslie, Maureen; Barker, Alex J; Boss, Michael A; Cecil, Kim M; Charles, Cecil; Chenevert, Thomas L; Clarke, Larry; Evelhoch, Jeffrey L; Finn, Paul; Gembris, Daniel; Gunter, Jeffrey L; Hill, Derek L G; Jack, Clifford R; Jackson, Edward F; Liu, Guoying; Russek, Stephen E; Sharma, Samir D; Steckner, Michael; Stupic, Karl F; Trzasko, Joshua D; Yuan, Chun; Zheng, Jie
2018-01-01
The MRI community is using quantitative mapping techniques to complement qualitative imaging. For quantitative imaging to reach its full potential, it is necessary to analyze measurements across systems and longitudinally. Clinical use of quantitative imaging can be facilitated through adoption and use of a standard system phantom, a calibration/standard reference object, to assess the performance of an MRI machine. The International Society of Magnetic Resonance in Medicine AdHoc Committee on Standards for Quantitative Magnetic Resonance was established in February 2007 to facilitate the expansion of MRI as a mainstream modality for multi-institutional measurements, including, among other things, multicenter trials. The goal of the Standards for Quantitative Magnetic Resonance committee was to provide a framework to ensure that quantitative measures derived from MR data are comparable over time, between subjects, between sites, and between vendors. This paper, written by members of the Standards for Quantitative Magnetic Resonance committee, reviews standardization attempts and then details the need, requirements, and implementation plan for a standard system phantom for quantitative MRI. In addition, application-specific phantoms and implementation of quantitative MRI are reviewed. Magn Reson Med 79:48-61, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Quantitative ptychographic reconstruction by applying a probe constraint
NASA Astrophysics Data System (ADS)
Reinhardt, J.; Schroer, C. G.
2018-04-01
The coherent scanning technique X-ray ptychography has become a routine tool for high-resolution imaging and nanoanalysis in various fields of research such as chemistry, biology or materials science. Often the ptychographic reconstruction results are analysed in order to yield absolute quantitative values for the object transmission and illuminating probe function. In this work, we address a common ambiguity encountered in scaling the object transmission and probe intensity via the application of an additional constraint to the reconstruction algorithm. A ptychographic measurement of a model sample containing nanoparticles is used as a test data set against which to benchmark in the reconstruction results depending on the type of constraint used. Achieving quantitative absolute values for the reconstructed object transmission is essential for advanced investigation of samples that are changing over time, e.g., during in-situ experiments or in general when different data sets are compared.
ERIC Educational Resources Information Center
Reese, Debbie Denise; Tabachnick, Barbara G.
2010-01-01
In this paper, the authors summarize a quantitative analysis demonstrating that the CyGaMEs toolset for embedded assessment of learning within instructional games measures growth in conceptual knowledge by quantifying player behavior. CyGaMEs stands for Cyberlearning through GaME-based, Metaphor Enhanced Learning Objects. Some scientists of…
Fällman, Erik; Schedin, Staffan; Jass, Jana; Andersson, Magnus; Uhlin, Bernt Eric; Axner, Ove
2004-06-15
An optical force measurement system for quantitating forces in the pN range between micrometer-sized objects has been developed. The system was based upon optical tweezers in combination with a sensitive position detection system and constructed around an inverted microscope. A trapped particle in the focus of the high numerical aperture microscope-objective behaves like an omnidirectional mechanical spring in response to an external force. The particle's displacement from the equilibrium position is therefore a direct measure of the exerted force. A weak probe laser beam, focused directly below the trapping focus, was used for position detection of the trapped particle (a polystyrene bead). The bead and the condenser focus the light to a distinct spot in the far field, monitored by a position sensitive detector. Various calibration procedures were implemented in order to provide absolute force measurements. The system has been used to measure the binding forces between Escherichia coli bacterial adhesins and galabiose-functionalized beads.
Traffic Noise Measurements at FM 3009 Greenfield Village Subdivision, City of Schertz, Texas
DOT National Transportation Integrated Search
1997-08-01
Objectives of the studies were to: (1) determine by quantitative measurements and computer simulation modeling the effectiveness of the noise barriers; (2) determine the traffic noise intrusion through openings in the barriers at streets entering the...
Object Recognition and Random Image Structure Evolution
ERIC Educational Resources Information Center
Sadr, Jvid; Sinha, Pawan
2004-01-01
We present a technique called Random Image Structure Evolution (RISE) for use in experimental investigations of high-level visual perception. Potential applications of RISE include the quantitative measurement of perceptual hysteresis and priming, the study of the neural substrates of object perception, and the assessment and detection of subtle…
Quantitative optical metrology with CMOS cameras
NASA Astrophysics Data System (ADS)
Furlong, Cosme; Kolenovic, Ervin; Ferguson, Curtis F.
2004-08-01
Recent advances in laser technology, optical sensing, and computer processing of data, have lead to the development of advanced quantitative optical metrology techniques for high accuracy measurements of absolute shapes and deformations of objects. These techniques provide noninvasive, remote, and full field of view information about the objects of interest. The information obtained relates to changes in shape and/or size of the objects, characterizes anomalies, and provides tools to enhance fabrication processes. Factors that influence selection and applicability of an optical technique include the required sensitivity, accuracy, and precision that are necessary for a particular application. In this paper, sensitivity, accuracy, and precision characteristics in quantitative optical metrology techniques, and specifically in optoelectronic holography (OEH) based on CMOS cameras, are discussed. Sensitivity, accuracy, and precision are investigated with the aid of National Institute of Standards and Technology (NIST) traceable gauges, demonstrating the applicability of CMOS cameras in quantitative optical metrology techniques. It is shown that the advanced nature of CMOS technology can be applied to challenging engineering applications, including the study of rapidly evolving phenomena occurring in MEMS and micromechatronics.
Wendin, Karin; Ekman, Susanne; Bülow, Margareta; Ekberg, Olle; Johansson, Daniel; Rothenberg, Elisabet; Stading, Mats
2010-06-28
Patients who suffer from chewing and swallowing disorders, i.e. dysphagia, may have difficulties ingesting normal food and liquids. In these patients a texture modified diet may enable that the patient maintain adequate nutrition. However, there is no generally accepted definition of 'texture' that includes measurements describing different food textures. Objectively define and quantify categories of texture-modified food by conducting rheological measurements and sensory analyses. A further objective was to facilitate the communication and recommendations of appropriate food textures for patients with dysphagia. About 15 food samples varying in texture qualities were characterized by descriptive sensory and rheological measurements. Soups were perceived as homogenous; thickened soups were perceived as being easier to swallow, more melting and creamy compared with soups without thickener. Viscosity differed between the two types of soups. Texture descriptors for pâtés were characterized by high chewing resistance, firmness, and having larger particles compared with timbales and jellied products. Jellied products were perceived as wobbly, creamy, and easier to swallow. Concerning the rheological measurements, all solid products were more elastic than viscous (G'>G''), belonging to different G' intervals: jellied products (low G') and timbales together with pâtés (higher G'). By combining sensory and rheological measurements, a system of objective, quantitative, and well-defined food textures was developed that characterizes the different texture categories.
Herbort, Carl P; Tugal-Tutkun, Ilknur
2017-06-01
Laser flare photometry (LFP) is an objective and quantitative method to measure intraocular inflammation. The LFP technology was developed in Japan and has been commercially available since 1990. The aim of this work was to review the application of LFP in uveitis practice in Europe compared to Japan where the technology was born. We reviewed PubMed articles published on LFP and uveitis. Although LFP has been largely integrated in routine uveitis practice in Europe, it has been comparatively neglected in Japan and still has not received FDA approval in the USA. As LFP is the only method that provides a precise measure of intraocular inflammation, it should be used as a gold standard in uveitis centres worldwide.
Xu, Yihua; Pitot, Henry C
2006-03-01
In the studies of quantitative stereology of rat hepatocarcinogenesis, we have used image analysis technology (automatic particle analysis) to obtain data such as liver tissue area, size and location of altered hepatic focal lesions (AHF), and nuclei counts. These data are then used for three-dimensional estimation of AHF occurrence and nuclear labeling index analysis. These are important parameters for quantitative studies of carcinogenesis, for screening and classifying carcinogens, and for risk estimation. To take such measurements, structures or cells of interest should be separated from the other components based on the difference of color and density. Common background problems seen on the captured sample image such as uneven light illumination or color shading can cause severe problems in the measurement. Two application programs (BK_Correction and Pixel_Separator) have been developed to solve these problems. With BK_Correction, common background problems such as incorrect color temperature setting, color shading, and uneven light illumination background, can be corrected. With Pixel_Separator different types of objects can be separated from each other in relation to their color, such as seen with different colors in immunohistochemically stained slides. The resultant images of such objects separated from other components are then ready for particle analysis. Objects that have the same darkness but different colors can be accurately differentiated in a grayscale image analysis system after application of these programs.
Statistical significance of trace evidence matches using independent physicochemical measurements
NASA Astrophysics Data System (ADS)
Almirall, Jose R.; Cole, Michael; Furton, Kenneth G.; Gettinby, George
1997-02-01
A statistical approach to the significance of glass evidence is proposed using independent physicochemical measurements and chemometrics. Traditional interpretation of the significance of trace evidence matches or exclusions relies on qualitative descriptors such as 'indistinguishable from,' 'consistent with,' 'similar to' etc. By performing physical and chemical measurements with are independent of one another, the significance of object exclusions or matches can be evaluated statistically. One of the problems with this approach is that the human brain is excellent at recognizing and classifying patterns and shapes but performs less well when that object is represented by a numerical list of attributes. Chemometrics can be employed to group similar objects using clustering algorithms and provide statistical significance in a quantitative manner. This approach is enhanced when population databases exist or can be created and the data in question can be evaluated given these databases. Since the selection of the variables used and their pre-processing can greatly influence the outcome, several different methods could be employed in order to obtain a more complete picture of the information contained in the data. Presently, we report on the analysis of glass samples using refractive index measurements and the quantitative analysis of the concentrations of the metals: Mg, Al, Ca, Fe, Mn, Ba, Sr, Ti and Zr. The extension of this general approach to fiber and paint comparisons also is discussed. This statistical approach should not replace the current interpretative approaches to trace evidence matches or exclusions but rather yields an additional quantitative measure. The lack of sufficient general population databases containing the needed physicochemical measurements and the potential for confusion arising from statistical analysis currently hamper this approach and ways of overcoming these obstacles are presented.
ERIC Educational Resources Information Center
Storfer-Isser, Amy; Musher-Eizenman, Dara
2013-01-01
Objective: To examine the psychometric properties of 9 quantitative items that assess time scarcity and fatigue as parent barriers to planning and preparing meals for their children. Methods: A convenience sample of 342 parents of children aged 2-6 years completed a 20-minute online survey. Exploratory factor analysis was used to examine the…
Taxonomy based analysis of force exchanges during object grasping and manipulation
Martin-Brevet, Sandra; Jarrassé, Nathanaël; Burdet, Etienne
2017-01-01
The flexibility of the human hand in object manipulation is essential for daily life activities, but remains relatively little explored with quantitative methods. On the one hand, recent taxonomies describe qualitatively the classes of hand postures for object grasping and manipulation. On the other hand, the quantitative analysis of hand function has been generally restricted to precision grip (with thumb and index opposition) during lifting tasks. The aim of the present study is to fill the gap between these two kinds of descriptions, by investigating quantitatively the forces exerted by the hand on an instrumented object in a set of representative manipulation tasks. The object was a parallelepiped object able to measure the force exerted on the six faces and its acceleration. The grasping force was estimated from the lateral force and the unloading force from the bottom force. The protocol included eleven tasks with complementary constraints inspired by recent taxonomies: four tasks corresponding to lifting and holding the object with different grasp configurations, and seven to manipulating the object (rotation around each of its axis and translation). The grasping and unloading forces and object rotations were measured during the five phases of the actions: unloading, lifting, holding or manipulation, preparation to deposit, and deposit. The results confirm the tight regulation between grasping and unloading forces during lifting, and extend this to the deposit phase. In addition, they provide a precise description of the regulation of force exchanges during various manipulation tasks spanning representative actions of daily life. The timing of manipulation showed both sequential and overlapping organization of the different sub-actions, and micro-errors could be detected. This phenomenological study confirms the feasibility of using an instrumented object to investigate complex manipulative behavior in humans. This protocol will be used in the future to investigate upper-limb dexterity in patients with sensory-motor impairments. PMID:28562617
Quantitative motor assessment of muscular weakness in myasthenia gravis: a pilot study.
Hoffmann, Sarah; Siedler, Jana; Brandt, Alexander U; Piper, Sophie K; Kohler, Siegfried; Sass, Christian; Paul, Friedemann; Reilmann, Ralf; Meisel, Andreas
2015-12-23
Muscular weakness in myasthenia gravis (MG) is commonly assessed using Quantitative Myasthenia Gravis Score (QMG). More objective and quantitative measures may complement the use of clinical scales and might detect subclinical affection of muscles. We hypothesized that muscular weakness in patients with MG can be quantified with the non-invasive Quantitative Motor (Q-Motor) test for Grip Force Assessment (QGFA) and Involuntary Movement Assessment (QIMA) and that pathological findings correlate with disease severity as measured by QMG. This was a cross-sectional pilot study investigating patients with confirmed diagnosis of MG. Data was compared to healthy controls (HC). Subjects were asked to lift a device (250 and 500 g) equipped with electromagnetic sensors that measured grip force (GF) and three-dimensional changes in position and orientation. These were used to calculate the position index (PI) and orientation index (OI) as measures for involuntary movements due to muscular weakness. Overall, 40 MG patients and 23 HC were included. PI and OI were significantly higher in MG patients for both weights in the dominant and non-dominant hand. Subgroup analysis revealed that patients with clinically ocular myasthenia gravis (OMG) also showed significantly higher values for PI and OI in both hands and for both weights. Disease severity correlates with QIMA performance in the non-dominant hand. Q-Motor tests and particularly QIMA may be useful objective tools for measuring motor impairment in MG and seem to detect subclinical generalized motor signs in patients with OMG. Q-Motor parameters might serve as sensitive endpoints for clinical trials in MG.
Change Detection Algorithms for Surveillance in Visual IoT: A Comparative Study
NASA Astrophysics Data System (ADS)
Akram, Beenish Ayesha; Zafar, Amna; Akbar, Ali Hammad; Wajid, Bilal; Chaudhry, Shafique Ahmad
2018-01-01
The VIoT (Visual Internet of Things) connects virtual information world with real world objects using sensors and pervasive computing. For video surveillance in VIoT, ChD (Change Detection) is a critical component. ChD algorithms identify regions of change in multiple images of the same scene recorded at different time intervals for video surveillance. This paper presents performance comparison of histogram thresholding and classification ChD algorithms using quantitative measures for video surveillance in VIoT based on salient features of datasets. The thresholding algorithms Otsu, Kapur, Rosin and classification methods k-means, EM (Expectation Maximization) were simulated in MATLAB using diverse datasets. For performance evaluation, the quantitative measures used include OSR (Overall Success Rate), YC (Yule's Coefficient) and JC (Jaccard's Coefficient), execution time and memory consumption. Experimental results showed that Kapur's algorithm performed better for both indoor and outdoor environments with illumination changes, shadowing and medium to fast moving objects. However, it reflected degraded performance for small object size with minor changes. Otsu algorithm showed better results for indoor environments with slow to medium changes and nomadic object mobility. k-means showed good results in indoor environment with small object size producing slow change, no shadowing and scarce illumination changes.
Validation of Greyscale-Based Quantitative Ultrasound in Manual Wheelchair Users
Collinger, Jennifer L.; Fullerton, Bradley; Impink, Bradley G.; Koontz, Alicia M.; Boninger, Michael L.
2010-01-01
Objective The primary aim of this study is to establish the validity of greyscale-based quantitative ultrasound (QUS) measures of the biceps and supraspinatus tendons. Design Nine QUS measures of the biceps and supraspinatus tendons were computed from ultrasound images collected from sixty-seven manual wheelchair users. Shoulder pathology was measured using questionnaires, physical examination maneuvers, and a clinical ultrasound grading scale. Results Increased age, duration of wheelchair use, and body mass correlated with a darker, more homogenous tendon appearance. Subjects with pain during physical examination tests for biceps tenderness and acromioclavicular joint tenderness exhibited significantly different supraspinatus QUS values. Even when controlling for tendon depth, QUS measures of the biceps tendon differed significantly between subjects with healthy tendons, mild tendinosis, and severe tendinosis. Clinical grading of supraspinatus tendon health was correlated with QUS measures of the supraspinatus tendon. Conclusions Quantitative ultrasound is valid method to quantify tendinopathy and may allow for early detection of tendinosis. Manual wheelchair users are at a high risk for developing shoulder tendon pathology and may benefit from quantitative ultrasound-based research that focuses on identifying interventions designed to reduce this risk. PMID:20407304
Quantitative phase microscopy for cellular dynamics based on transport of intensity equation.
Li, Ying; Di, Jianglei; Ma, Chaojie; Zhang, Jiwei; Zhong, Jinzhan; Wang, Kaiqiang; Xi, Teli; Zhao, Jianlin
2018-01-08
We demonstrate a simple method for quantitative phase imaging of tiny transparent objects such as living cells based on the transport of intensity equation. The experiments are performed using an inverted bright field microscope upgraded with a flipping imaging module, which enables to simultaneously create two laterally separated images with unequal defocus distances. This add-on module does not include any lenses or gratings and is cost-effective and easy-to-alignment. The validity of this method is confirmed by the measurement of microlens array and human osteoblastic cells in culture, indicating its potential in the applications of dynamically measuring living cells and other transparent specimens in a quantitative, non-invasive and label-free manner.
A flexible skin piloerection monitoring sensor
NASA Astrophysics Data System (ADS)
Kim, Jaemin; Seo, Dae Geon; Cho, Young-Ho
2014-06-01
We have designed, fabricated, and tested a capacitive-type flexible micro sensor for measurement of the human skin piloerection arisen from sudden emotional and environmental change. The present skin piloerection monitoring methods are limited in objective and quantitative measurement by physical disturbance stimulation to the skin due to bulky size and heavy weight of measuring devices. The proposed flexible skin piloerection monitoring sensor is composed of 3 × 3 spiral coplanar capacitor array using conductive polymer for having high capacitive density and thin enough thickness to be attached to human skin. The performance of the skin piloerection monitoring sensor is characterized using the artificial bump, representing human skin goosebump; thus, resulting in the sensitivity of -0.00252%/μm and the nonlinearity of 25.9% for the artificial goosebump deformation in the range of 0-326 μm. We also verified successive human skin piloerection having 3.5 s duration on the subject's dorsal forearms, thus resulting in the capacitance change of -6.2 fF and -9.2 fF for the piloerection intensity of 145 μm and 194 μm, respectively. It is demonstrated experimentally that the proposed sensor is capable to measure the human skin piloerection objectively and quantitatively, thereby suggesting the quantitative evaluation method of the qualitative human emotional status for cognitive human-machine interfaces applications.
Linear and ultrafast nonlinear plasmonics of single nano-objects
NASA Astrophysics Data System (ADS)
Crut, Aurélien; Maioli, Paolo; Vallée, Fabrice; Del Fatti, Natalia
2017-03-01
Single-particle optical investigations have greatly improved our understanding of the fundamental properties of nano-objects, avoiding the spurious inhomogeneous effects that affect ensemble experiments. Correlation with high-resolution imaging techniques providing morphological information (e.g. electron microscopy) allows a quantitative interpretation of the optical measurements by means of analytical models and numerical simulations. In this topical review, we first briefly recall the principles underlying some of the most commonly used single-particle optical techniques: near-field, dark-field, spatial modulation and photothermal microscopies/spectroscopies. We then focus on the quantitative investigation of the surface plasmon resonance (SPR) of metallic nano-objects using linear and ultrafast optical techniques. While measured SPR positions and spectral areas are found in good agreement with predictions based on Maxwell’s equations, SPR widths are strongly influenced by quantum confinement (or, from a classical standpoint, surface-induced electron scattering) and, for small nano-objects, cannot be reproduced using the dielectric functions of bulk materials. Linear measurements on single nano-objects (silver nanospheres and gold nanorods) allow a quantification of the size and geometry dependences of these effects in confined metals. Addressing the ultrafast response of an individual nano-object is also a powerful tool to elucidate the physical mechanisms at the origin of their optical nonlinearities, and their electronic, vibrational and thermal relaxation processes. Experimental investigations of the dynamical response of gold nanorods are shown to be quantitatively modeled in terms of modifications of the metal dielectric function enhanced by plasmonic effects. Ultrafast spectroscopy can also be exploited to unveil hidden physical properties of more complex nanosystems. In this context, two-color femtosecond pump-probe experiments performed on individual bimetallic heterodimers are discussed in the last part of the review, demonstrating the existence of Fano interferences in the optical absorption of a gold nanoparticle under the influence of a nearby silver one.
Saito, Akira; Numata, Yasushi; Hamada, Takuya; Horisawa, Tomoyoshi; Cosatto, Eric; Graf, Hans-Peter; Kuroda, Masahiko; Yamamoto, Yoichiro
2016-01-01
Recent developments in molecular pathology and genetic/epigenetic analysis of cancer tissue have resulted in a marked increase in objective and measurable data. In comparison, the traditional morphological analysis approach to pathology diagnosis, which can connect these molecular data and clinical diagnosis, is still mostly subjective. Even though the advent and popularization of digital pathology has provided a boost to computer-aided diagnosis, some important pathological concepts still remain largely non-quantitative and their associated data measurements depend on the pathologist's sense and experience. Such features include pleomorphism and heterogeneity. In this paper, we propose a method for the objective measurement of pleomorphism and heterogeneity, using the cell-level co-occurrence matrix. Our method is based on the widely used Gray-level co-occurrence matrix (GLCM), where relations between neighboring pixel intensity levels are captured into a co-occurrence matrix, followed by the application of analysis functions such as Haralick features. In the pathological tissue image, through image processing techniques, each nucleus can be measured and each nucleus has its own measureable features like nucleus size, roundness, contour length, intra-nucleus texture data (GLCM is one of the methods). In GLCM each nucleus in the tissue image corresponds to one pixel. In this approach the most important point is how to define the neighborhood of each nucleus. We define three types of neighborhoods of a nucleus, then create the co-occurrence matrix and apply Haralick feature functions. In each image pleomorphism and heterogeneity are then determined quantitatively. For our method, one pixel corresponds to one nucleus feature, and we therefore named our method Cell Feature Level Co-occurrence Matrix (CFLCM). We tested this method for several nucleus features. CFLCM is showed as a useful quantitative method for pleomorphism and heterogeneity on histopathological image analysis.
Thermal Imaging with Novel Infrared Focal Plane Arrays and Quantitative Analysis of Thermal Imagery
NASA Technical Reports Server (NTRS)
Gunapala, S. D.; Rafol, S. B.; Bandara, S. V.; Liu, J. K.; Mumolo, J. M.; Soibel, A.; Ting, D. Z.; Tidrow, Meimei
2012-01-01
We have developed a single long-wavelength infrared (LWIR) quantum well infrared photodetector (QWIP) camera for thermography. This camera has been used to measure the temperature profile of patients. A pixel coregistered simultaneously reading mid-wavelength infrared (MWIR)/LWIR dual-band QWIP camera was developed to improve the accuracy of temperature measurements especially with objects with unknown emissivity. Even the dualband measurement can provide inaccurate results due to the fact that emissivity is a function of wavelength. Thus we have been developing a four-band QWIP camera for accurate temperature measurement of remote object.
Peters, Megan A. K.; Balzer, Jonathan; Shams, Ladan
2015-01-01
If one nondescript object’s volume is twice that of another, is it necessarily twice as heavy? As larger objects are typically heavier than smaller ones, one might assume humans use such heuristics in preparing to lift novel objects if other informative cues (e.g., material, previous lifts) are unavailable. However, it is also known that humans are sensitive to statistical properties of our environments, and that such sensitivity can bias perception. Here we asked whether statistical regularities in properties of liftable, everyday objects would bias human observers’ predictions about objects’ weight relationships. We developed state-of-the-art computer vision techniques to precisely measure the volume of everyday objects, and also measured their weight. We discovered that for liftable man-made objects, “twice as large” doesn’t mean “twice as heavy”: Smaller objects are typically denser, following a power function of volume. Interestingly, this “smaller is denser” relationship does not hold for natural or unliftable objects, suggesting some ideal density range for objects designed to be lifted. We then asked human observers to predict weight relationships between novel objects without lifting them; crucially, these weight predictions quantitatively match typical weight relationships shown by similarly-sized objects in everyday environments. These results indicate that the human brain represents the statistics of everyday objects and that this representation can be quantitatively abstracted and applied to novel objects. Finally, that the brain possesses and can use precise knowledge of the nonlinear association between size and weight carries important implications for implementation of forward models of motor control in artificial systems. PMID:25768977
Biomarkers and Surrogate Endpoints in Uveitis: The Impact of Quantitative Imaging.
Denniston, Alastair K; Keane, Pearse A; Srivastava, Sunil K
2017-05-01
Uveitis is a major cause of sight loss across the world. The reliable assessment of intraocular inflammation in uveitis ('disease activity') is essential in order to score disease severity and response to treatment. In this review, we describe how 'quantitative imaging', the approach of using automated analysis and measurement algorithms across both standard and emerging imaging modalities, can develop objective instrument-based measures of disease activity. This is a narrative review based on searches of the current world literature using terms related to quantitative imaging techniques in uveitis, supplemented by clinical trial registry data, and expert knowledge of surrogate endpoints and outcome measures in ophthalmology. Current measures of disease activity are largely based on subjective clinical estimation, and are relatively insensitive, with poor discrimination and reliability. The development of quantitative imaging in uveitis is most established in the use of optical coherence tomographic (OCT) measurement of central macular thickness (CMT) to measure severity of macular edema (ME). The transformative effect of CMT in clinical assessment of patients with ME provides a paradigm for the development and impact of other forms of quantitative imaging. Quantitative imaging approaches are now being developed and validated for other key inflammatory parameters such as anterior chamber cells, vitreous haze, retinovascular leakage, and chorioretinal infiltrates. As new forms of quantitative imaging in uveitis are proposed, the uveitis community will need to evaluate these tools against the current subjective clinical estimates and reach a new consensus for how disease activity in uveitis should be measured. The development, validation, and adoption of sensitive and discriminatory measures of disease activity is an unmet need that has the potential to transform both drug development and routine clinical care for the patient with uveitis.
Tugal-Tutkun, Ilknur; Herbort, Carl P
2010-10-01
Aqueous flare and cells are the two inflammatory parameters of anterior chamber inflammation resulting from disruption of the blood-ocular barriers. When examined with the slit lamp, measurement of intraocular inflammation remains subjective with considerable intra- and interobserver variations. Laser flare cell photometry is an objective quantitative method that enables accurate measurement of these parameters with very high reproducibility. Laser flare photometry allows detection of subclinical alterations in the blood-ocular barriers, identifying subtle pathological changes that could not have been recorded otherwise. With the use of this method, it has been possible to compare the effect of different surgical techniques, surgical adjuncts, and anti-inflammatory medications on intraocular inflammation. Clinical studies of uveitis patients have shown that flare measurements by laser flare photometry allowed precise monitoring of well-defined uveitic entities and prediction of disease relapse. Relationships of laser flare photometry values with complications of uveitis and visual loss further indicate that flare measurement by laser flare photometry should be included in the routine follow-up of patients with uveitis.
ERIC Educational Resources Information Center
Metos, Julie; Gren, Lisa; Brusseau, Timothy; Moric, Endi; O'Toole, Karen; Mokhtari, Tahereh; Buys, Saundra; Frost, Caren
2018-01-01
Objective: The objective of this study was to understand adolescent girls' experiences using practical diet and physical activity measurement tools and to explore the food and physical activity settings that influence their lifestyle habits. Design: Mixed methods study using quantitative and qualitative methods. Setting: Large city in the western…
Large-Scale Diffraction Patterns from Circular Objects
ERIC Educational Resources Information Center
Rinard, Phillip M.
1976-01-01
Investigates quantitatively the diffractions of light by a U.S. penny and an aperture of the same size. Differences noted between the theory and measurements are discussed, with probable causes indicated. (Author/CP)
An Investigation of the Eighteenth-Century Achromatic Telescope
ERIC Educational Resources Information Center
Jaecks, Duane H.
2010-01-01
The optical quality and properties of over 200 telescopes residing in museums and private collections have been measured and tested with the goal of obtaining new information about the early development of the achromatic lens (1757-1770). Quantitative measurements of the chromatic and spherical aberration of telescope objective lenses were made…
Measuring landscape esthetics: the scenic beauty estimation method
Terry C. Daniel; Ron S. Boster
1976-01-01
The Scenic Beauty Estimation Method (SBE) provides quantitative measures of esthetic preferences for alternative wildland management systems. Extensive experimentation and testing with user, interest, and professional groups validated the method. SBE shows promise as an efficient and objective means for assessing the scenic beauty of public forests and wildlands, and...
ERIC Educational Resources Information Center
Hulsey, John D.
2010-01-01
This study uses a quantitative approach to evaluate the trustworthiness of e-businesses as measured by the E-business Trustworthy Index, EBTI, developed as part of this research. The problem is that despite the importance of e-business trustworthiness and the findings from many studies, there are few if any objective measures that evaluate the…
NASA Astrophysics Data System (ADS)
Festa, G.; Senesi, R.; Alessandroni, M.; Andreani, C.; Vitali, G.; Porcinai, S.; Giusti, A. M.; Materna, T.; Paradowska, A. M.
2011-03-01
Quantitative neutron studies of cultural heritage objects provide access to microscopic, mesoscopic, and macroscopic structures in a nondestructive manner. In this paper we present a neutron diffraction investigation of a Ghiberti Renaissance gilded bronze relief devoted to the measurement of cavities and inhomogeneities in the bulk of the sample, along with the bulk phase composition and residual strain distribution. The quantitative measurements allowed the determination of the re-melting parts extension, as well as improving current knowledge about the manufacturing process. The study provides significant and unique information to conservators and restorators about the history of the relief.
Measurement Tools for the Immersive Visualization Environment: Steps Toward the Virtual Laboratory.
Hagedorn, John G; Dunkers, Joy P; Satterfield, Steven G; Peskin, Adele P; Kelso, John T; Terrill, Judith E
2007-01-01
This paper describes a set of tools for performing measurements of objects in a virtual reality based immersive visualization environment. These tools enable the use of the immersive environment as an instrument for extracting quantitative information from data representations that hitherto had be used solely for qualitative examination. We provide, within the virtual environment, ways for the user to analyze and interact with the quantitative data generated. We describe results generated by these methods to obtain dimensional descriptors of tissue engineered medical products. We regard this toolbox as our first step in the implementation of a virtual measurement laboratory within an immersive visualization environment.
High Resolution Qualitative and Quantitative MR Evaluation of the Glenoid Labrum
Iwasaki, Kenyu; Tafur, Monica; Chang, Eric Y.; SherondaStatum; Biswas, Reni; Tran, Betty; Bae, Won C.; Du, Jiang; Bydder, Graeme M.; Chung, Christine B.
2015-01-01
Objective To implement qualitative and quantitative MR sequences for the evaluation of labral pathology. Methods Six glenoid labra were dissected and the anterior and posterior portions were divided into normal, mildly degenerated, or severely degenerated groups using gross and MR findings. Qualitative evaluation was performed using T1-weighted, proton density-weighted (PD), spoiled gradient echo (SPGR) and ultra-short echo time (UTE) sequences. Quantitative evaluation included T2 and T1rho measurements as well as T1, T2*, and T1rho measurements acquired with UTE techniques. Results SPGR and UTE sequences best demonstrated labral fiber structure. Degenerated labra had a tendency towards decreased T1 values, increased T2/T2* values and increased T1 rho values. T2* values obtained with the UTE sequence allowed for delineation between normal, mildly degenerated and severely degenerated groups (p<0.001). Conclusion Quantitative T2* measurements acquired with the UTE technique are useful for distinguishing between normal, mildly degenerated and severely degenerated labra. PMID:26359581
A Method to Measure and Estimate Normalized Contrast in Infrared Flash Thermography
NASA Technical Reports Server (NTRS)
Koshti, Ajay M.
2016-01-01
The paper presents further development in normalized contrast processing used in flash infrared thermography method. Method of computing normalized image or pixel intensity contrast, and normalized temperature contrast are provided. Methods of converting image contrast to temperature contrast and vice versa are provided. Normalized contrast processing in flash thermography is useful in quantitative analysis of flash thermography data including flaw characterization and comparison of experimental results with simulation. Computation of normalized temperature contrast involves use of flash thermography data acquisition set-up with high reflectivity foil and high emissivity tape such that the foil, tape and test object are imaged simultaneously. Methods of assessing other quantitative parameters such as emissivity of object, afterglow heat flux, reflection temperature change and surface temperature during flash thermography are also provided. Temperature imaging and normalized temperature contrast processing provide certain advantages over normalized image contrast processing by reducing effect of reflected energy in images and measurements, therefore providing better quantitative data. Examples of incorporating afterglow heat-flux and reflection temperature evolution in flash thermography simulation are also discussed.
Quantitative analysis of facial paralysis using local binary patterns in biomedical videos.
He, Shu; Soraghan, John J; O'Reilly, Brian F; Xing, Dongshan
2009-07-01
Facial paralysis is the loss of voluntary muscle movement of one side of the face. A quantitative, objective, and reliable assessment system would be an invaluable tool for clinicians treating patients with this condition. This paper presents a novel framework for objective measurement of facial paralysis. The motion information in the horizontal and vertical directions and the appearance features on the apex frames are extracted based on the local binary patterns (LBPs) on the temporal-spatial domain in each facial region. These features are temporally and spatially enhanced by the application of novel block processing schemes. A multiresolution extension of uniform LBP is proposed to efficiently combine the micropatterns and large-scale patterns into a feature vector. The symmetry of facial movements is measured by the resistor-average distance (RAD) between LBP features extracted from the two sides of the face. Support vector machine is applied to provide quantitative evaluation of facial paralysis based on the House-Brackmann (H-B) scale. The proposed method is validated by experiments with 197 subject videos, which demonstrates its accuracy and efficiency.
Self-guided training for deep brain stimulation planning using objective assessment.
Holden, Matthew S; Zhao, Yulong; Haegelen, Claire; Essert, Caroline; Fernandez-Vidal, Sara; Bardinet, Eric; Ungi, Tamas; Fichtinger, Gabor; Jannin, Pierre
2018-04-04
Deep brain stimulation (DBS) is an increasingly common treatment for neurodegenerative diseases. Neurosurgeons must have thorough procedural, anatomical, and functional knowledge to plan electrode trajectories and thus ensure treatment efficacy and patient safety. Developing this knowledge requires extensive training. We propose a training approach with objective assessment of neurosurgeon proficiency in DBS planning. To assess proficiency, we propose analyzing both the viability of the planned trajectory and the manner in which the operator arrived at the trajectory. To improve understanding, we suggest a self-guided training course for DBS planning using real-time feedback. To validate the proposed measures of proficiency and training course, two experts and six novices followed the training course, and we monitored their proficiency measures throughout. At baseline, experts planned higher quality trajectories and did so more efficiently. As novices progressed through the training course, their proficiency measures increased significantly, trending toward expert measures. We developed and validated measures which reliably discriminate proficiency levels. These measures are integrated into a training course, which quantitatively improves trainee performance. The proposed training course can be used to improve trainees' proficiency, and the quantitative measures allow trainees' progress to be monitored.
A phantom for quantitation of partial volume effects in ECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mullani, N.A.
1989-02-01
A special phantom has been designed, built and tested to measure the quantitative recovery of ECT data from the heart as a function of the size of the object and the angulation of a 1 cm thick simulated myocardium inclined with respect to the image plane. The phantom consists of five objects of 0.5, 1.0, 1.5. 2.0, and 3.0 cm width and six 1 cm thick strips inclined at 0, 30, 45, 60, 90, and -90 degrees with respect to the axial direction. Recovery coefficients for different object sizes and simulated 1 cm thick myocardium inclined at different angles canmore » be obtained from a single scan. Adequacy of axial sampling can be observed visually by creating the long axis view of the phantom.« less
Development of iPad application "Postima" for quantitative analysis of the effects of manual therapy
NASA Astrophysics Data System (ADS)
Sugiyama, Naruhisa; Shirakawa, Tomohiro
2017-07-01
The technical difficulty of diagnosing joint misalignment and/or dysfunction by quantitative evaluation is commonly acknowledged among manual therapists. Usually, manual therapists make a diagnosis based on a combination of observing patient symptoms and performing physical examinations, both of which rely on subjective criteria and thus contain some uncertainty. We thus sought to investigate the correlations among posture, skeletal misalignment, and pain severity over the course of manual therapy treatment, and to explore the possibility of establishing objective criteria for diagnosis. For this purpose, we developed an iPad application that realizes the measurement of patients' postures and analyzes them quantitatively. We also discuss the results and effectiveness of the measurement and analysis.
Reuse Metrics for Object Oriented Software
NASA Technical Reports Server (NTRS)
Bieman, James M.
1998-01-01
One way to increase the quality of software products and the productivity of software development is to reuse existing software components when building new software systems. In order to monitor improvements in reuse, the level of reuse must be measured. In this NASA supported project we (1) derived a suite of metrics which quantify reuse attributes for object oriented, object based, and procedural software, (2) designed prototype tools to take these measurements in Ada, C++, Java, and C software, (3) evaluated the reuse in available software, (4) analyzed the relationship between coupling, cohesion, inheritance, and reuse, (5) collected object oriented software systems for our empirical analyses, and (6) developed quantitative criteria and methods for restructuring software to improve reusability.
NASA Technical Reports Server (NTRS)
1986-01-01
Digital Imaging is the computer processed numerical representation of physical images. Enhancement of images results in easier interpretation. Quantitative digital image analysis by Perceptive Scientific Instruments, locates objects within an image and measures them to extract quantitative information. Applications are CAT scanners, radiography, microscopy in medicine as well as various industrial and manufacturing uses. The PSICOM 327 performs all digital image analysis functions. It is based on Jet Propulsion Laboratory technology, is accurate and cost efficient.
Student Microwave Experiments Involving the Doppler Effect.
ERIC Educational Resources Information Center
Weber, F. Neff; And Others
1980-01-01
Described is the use of the Doppler Effect with microwaves in the measurement of the acceleration due to gravity of falling objects. The experiments described add to the repertoire of quantitative student microwave experiments. (Author/DS)
Smile line assessment comparing quantitative measurement and visual estimation.
Van der Geld, Pieter; Oosterveld, Paul; Schols, Jan; Kuijpers-Jagtman, Anne Marie
2011-02-01
Esthetic analysis of dynamic functions such as spontaneous smiling is feasible by using digital videography and computer measurement for lip line height and tooth display. Because quantitative measurements are time-consuming, digital videography and semiquantitative (visual) estimation according to a standard categorization are more practical for regular diagnostics. Our objective in this study was to compare 2 semiquantitative methods with quantitative measurements for reliability and agreement. The faces of 122 male participants were individually registered by using digital videography. Spontaneous and posed smiles were captured. On the records, maxillary lip line heights and tooth display were digitally measured on each tooth and also visually estimated according to 3-grade and 4-grade scales. Two raters were involved. An error analysis was performed. Reliability was established with kappa statistics. Interexaminer and intraexaminer reliability values were high, with median kappa values from 0.79 to 0.88. Agreement of the 3-grade scale estimation with quantitative measurement showed higher median kappa values (0.76) than the 4-grade scale estimation (0.66). Differentiating high and gummy smile lines (4-grade scale) resulted in greater inaccuracies. The estimation of a high, average, or low smile line for each tooth showed high reliability close to quantitative measurements. Smile line analysis can be performed reliably with a 3-grade scale (visual) semiquantitative estimation. For a more comprehensive diagnosis, additional measuring is proposed, especially in patients with disproportional gingival display. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Sensorized toys for measuring manipulation capabilities of infants at home.
Passetti, Giovanni; Cecchi, Francesca; Baldoli, Ilaria; Sgandurra, Giuseppina; Beani, Elena; Cioni, Giovanni; Laschi, Cecilia; Dario, Paolo
2015-01-01
Preterm infants, i.e. babies born after a gestation period shorter than 37 weeks, spend less time exploring objects. The quantitative measurement of grasping actions and forces in infants can give insights on their typical or atypical motor development. The aim of this work was to test a new tool, a kit of sensorized toys, to longitudinally measure, monitor and promote preterm infants manipulation capabilities with a purposive training in an ecological environment. This study presents preliminary analysis of grasping activity. Three preterm infants performed 4 weeks of daily training at home. Sensorized toys with embedded pressure sensors were used as part of the training to allow quantitative analysis of grasping (pressure and acceleration applied to toys while playing). Each toy was placed on the midline, while the infant was in supine position. Preliminary data show differences in the grasping parameters in relation to infants age and the performed daily training. Ongoing clinical trial will allow a full validation of this new tool for promoting object exploration in preterm infants.
Himes Boor, Gina K
2014-02-01
For species listed under the U.S. Endangered Species Act (ESA), the U.S. Fish and Wildlife Service and National Marine Fisheries Service are tasked with writing recovery plans that include "objective, measurable criteria" that define when a species is no longer at risk of extinction, but neither the act itself nor agency guidelines provide an explicit definition of objective, measurable criteria. Past reviews of recovery plans, including one published in 2012, show that many criteria lack quantitative metrics with clear biological rationale and are not meeting the measureable and objective mandate. I reviewed how objective, measureable criteria have been defined implicitly and explicitly in peer-reviewed literature, the ESA, other U.S. statutes, and legal decisions. Based on a synthesis of these sources, I propose the following 6 standards be used as minimum requirements for objective, measurable criteria: contain a quantitative threshold with calculable units, stipulate a timeframe over which they must be met, explicitly define the spatial extent or population to which they apply, specify a sampling procedure that includes sample size, specify a statistical significance level, and include justification by providing scientific evidence that the criteria define a species whose extinction risk has been reduced to the desired level. To meet these 6 standards, I suggest that recovery plans be explicitly guided by and organized around a population viability modeling framework even if data or agency resources are too limited to complete a viability model. When data and resources are available, recovery criteria can be developed from the population viability model results, but when data and resources are insufficient for model implementation, extinction risk thresholds can be used as criteria. A recovery-planning approach centered on viability modeling will also yield appropriately focused data-acquisition and monitoring plans and will facilitate a seamless transition from recovery planning to delisting. © 2013 Society for Conservation Biology.
Force Exertion Capacity Measurements in Haptic Virtual Environments
ERIC Educational Resources Information Center
Munih, Marko; Bardorfer, Ales; Ceru, Bojan; Bajd, Tadej; Zupan, Anton
2010-01-01
An objective test for evaluating functional status of the upper limbs (ULs) in patients with muscular distrophy (MD) is presented. The method allows for quantitative assessment of the UL functional state with an emphasis on force exertion capacity. The experimental measurement setup and the methodology for the assessment of maximal exertable force…
ERIC Educational Resources Information Center
Heffernan, Bernadette M.
1998-01-01
Describes work done to provide staff of the Sandy Point Discovery Center with methods for evaluating exhibits and interpretive programming. Quantitative and qualitative evaluation measures were designed to assess the program's objective of estuary education. Pretest-posttest questionnaires and interviews are used to measure subjects' knowledge and…
ERIC Educational Resources Information Center
Zheng, Lanqin; Huang, Ronghuai; Hwang, Gwo-Jen; Yang, Kaicheng
2015-01-01
The purpose of this study is to quantitatively measure the level of knowledge elaboration and explore the relationships between prior knowledge of a group, group performance, and knowledge elaboration in collaborative learning. Two experiments were conducted to investigate the level of knowledge elaboration. The collaborative learning objective in…
3D methodology for evaluating rail crossing roughness.
DOT National Transportation Integrated Search
2015-03-02
Description of Research Project The overall objective of this project is to investigate develop a quantitative method or measure for determining the need to rehabilitate rail crossings. The scope of the project includes investigation of sensor capabi...
NASA Astrophysics Data System (ADS)
Chien, Kuang-Che Chang; Tu, Han-Yen; Hsieh, Ching-Huang; Cheng, Chau-Jern; Chang, Chun-Yen
2018-01-01
This study proposes a regional fringe analysis (RFA) method to detect the regions of a target object in captured shifted images to improve depth measurement in phase-shifting fringe projection profilometry (PS-FPP). In the RFA method, region-based segmentation is exploited to segment the de-fringed image of a target object, and a multi-level fuzzy-based classification with five presented features is used to analyze and discriminate the regions of an object from the segmented regions, which were associated with explicit fringe information. Then, in the experiment, the performance of the proposed method is tested and evaluated on 26 test cases made of five types of materials. The qualitative and quantitative results demonstrate that the proposed RFA method can effectively detect the desired regions of an object to improve depth measurement in the PS-FPP system.
Breach Risk Magnitude: A Quantitative Measure of Database Security.
Yasnoff, William A
2016-01-01
A quantitative methodology is described that provides objective evaluation of the potential for health record system breaches. It assumes that breach risk increases with the number of potential records that could be exposed, while it decreases when more authentication steps are required for access. The breach risk magnitude (BRM) is the maximum value for any system user of the common logarithm of the number of accessible database records divided by the number of authentication steps needed to achieve such access. For a one million record relational database, the BRM varies from 5.52 to 6 depending on authentication protocols. For an alternative data architecture designed specifically to increase security by separately storing and encrypting each patient record, the BRM ranges from 1.3 to 2.6. While the BRM only provides a limited quantitative assessment of breach risk, it may be useful to objectively evaluate the security implications of alternative database organization approaches.
Jung, Jae-Hwang; Jang, Jaeduck; Park, Yongkeun
2013-11-05
We present a novel spectroscopic quantitative phase imaging technique with a wavelength swept-source, referred to as swept-source diffraction phase microscopy (ssDPM), for quantifying the optical dispersion of microscopic individual samples. Employing the swept-source and the principle of common-path interferometry, ssDPM measures the multispectral full-field quantitative phase imaging and spectroscopic microrefractometry of transparent microscopic samples in the visible spectrum with a wavelength range of 450-750 nm and a spectral resolution of less than 8 nm. With unprecedented precision and sensitivity, we demonstrate the quantitative spectroscopic microrefractometry of individual polystyrene beads, 30% bovine serum albumin solution, and healthy human red blood cells.
Micro-vibration detection with heterodyne holography based on time-averaged method
NASA Astrophysics Data System (ADS)
Qin, XiaoDong; Pan, Feng; Chen, ZongHui; Hou, XueQin; Xiao, Wen
2017-02-01
We propose a micro-vibration detection method by introducing heterodyne interferometry to time-averaged holography. This method compensates for the deficiency of time-average holography in quantitative measurements and widens its range of application effectively. Acousto-optic modulators are used to modulate the frequencies of the reference beam and the object beam. Accurate detection of the maximum amplitude of each point in the vibration plane is performed by altering the frequency difference of both beams. The range of amplitude detection of plane vibration is extended. In the stable vibration mode, the distribution of the maximum amplitude of each point is measured and the fitted curves are plotted. Hence the plane vibration mode of the object is demonstrated intuitively and detected quantitatively. We analyzed the method in theory and built an experimental system with a sine signal as the excitation source and a typical piezoelectric ceramic plate as the target. The experimental results indicate that, within a certain error range, the detected vibration mode agrees with the intrinsic vibration characteristics of the object, thus proving the validity of this method.
Phase calibration target for quantitative phase imaging with ptychography.
Godden, T M; Muñiz-Piniella, A; Claverley, J D; Yacoot, A; Humphry, M J
2016-04-04
Quantitative phase imaging (QPI) utilizes refractive index and thickness variations that lead to optical phase shifts. This gives contrast to images of transparent objects. In quantitative biology, phase images are used to accurately segment cells and calculate properties such as dry mass, volume and proliferation rate. The fidelity of the measured phase shifts is of critical importance in this field. However to date, there has been no standardized method for characterizing the performance of phase imaging systems. Consequently, there is an increasing need for protocols to test the performance of phase imaging systems using well-defined phase calibration and resolution targets. In this work, we present a candidate for a standardized phase resolution target, and measurement protocol for the determination of the transfer of spatial frequencies, and sensitivity of a phase imaging system. The target has been carefully designed to contain well-defined depth variations over a broadband range of spatial frequencies. In order to demonstrate the utility of the target, we measure quantitative phase images on a ptychographic microscope, and compare the measured optical phase shifts with Atomic Force Microscopy (AFM) topography maps and surface profile measurements from coherence scanning interferometry. The results show that ptychography has fully quantitative nanometer sensitivity in optical path differences over a broadband range of spatial frequencies for feature sizes ranging from micrometers to hundreds of micrometers.
Elovic, Elie P; Simone, Lisa K; Zafonte, Ross
2004-01-01
The objective of this article was to (1) review the engineering and medical literature to structure the available information concerning the assessment of spasticity in the neurological population; (2) to discuss the strengths and weaknesses of the different methods currently in use in spasticity assessment; and (3) make recommendations for future efforts in spasticity outcome assessment. Spasticity textbooks, Web sites, and OVID, IEEE, and Medline searches from 1966 through 2003 of spasticity, quantitative measure, or outcome assessment in the rehabilitation population were used as data sources. Over 500 articles were reviewed. Articles that discussed outcome measures used to assess interventions and evaluation of spasticity were included. Authors reviewed the articles looking at inclusion criteria, data collection, methodology, assessment methods, and conclusions for validity and relevance to this article. Issues such as clinical relevance, real-world function and lack of objectivity, and time consumed during performance are important issues for spasticity assessment. Some measures such as the Ashworth Scale remain in common use secondary to ease of use despite their obvious functional limitations. More functional outcome goals are plagued by being more time consuming and a general inability to demonstrate changes after an intervention. This may be secondary to the other factors that combine with spasticity to cause dysfunction at that level. Quantitative metrics can provide more objective measurements but their clinical relevance is sometimes problematic. The assessment of spasticity outcome is still somewhat problematic. Further work is necessary to develop measures that have real-world functional significance to both the individuals being treated and the clinicians. A lack of objectivity is still a problem. In the future it is important for clinicians and the engineers to work together in the development of better outcome measures.
Objective measurement of accommodative biometric changes using ultrasound biomicroscopy
Ramasubramanian, Viswanathan; Glasser, Adrian
2015-01-01
PURPOSE To demonstrate that ultrasound biomicroscopy (UBM) can be used for objective quantitative measurements of anterior segment accommodative changes. SETTING College of Optometry, University of Houston, Houston, Texas, USA. DESIGN Prospective cross-sectional study. METHODS Anterior segment biometric changes in response to 0 to 6.0 diopters (D) of accommodative stimuli in 1.0 D steps were measured in eyes of human subjects aged 21 to 36 years. Imaging was performed in the left eye using a 35 MHz UBM (Vumax) and an A-scan ultrasound (A-5500) while the right eye viewed the accommodative stimuli. An automated Matlab image-analysis program was developed to measure the biometry parameters from the UBM images. RESULTS The UBM-measured accommodative changes in anterior chamber depth (ACD), lens thickness, anterior lens radius of curvature, posterior lens radius of curvature, and anterior segment length were statistically significantly (P < .0001) linearly correlated with accommodative stimulus amplitudes. Standard deviations of the UBM-measured parameters were independent of the accommodative stimulus demands (ACD 0.0176 mm, lens thickness 0.0294 mm, anterior lens radius of curvature 0.3350 mm, posterior lens radius of curvature 0.1580 mm, and anterior segment length 0.0340 mm). The mean difference between the A-scan and UBM measurements was −0.070 mm for ACD and 0.166 mm for lens thickness. CONCLUSIONS Accommodating phakic eyes imaged using UBM allowed visualization of the accommodative response, and automated image analysis of the UBM images allowed reliable, objective, quantitative measurements of the accommodative intraocular biometric changes. PMID:25804579
Link-Based Similarity Measures Using Reachability Vectors
Yoon, Seok-Ho; Kim, Ji-Soo; Ryu, Minsoo; Choi, Ho-Jin
2014-01-01
We present a novel approach for computing link-based similarities among objects accurately by utilizing the link information pertaining to the objects involved. We discuss the problems with previous link-based similarity measures and propose a novel approach for computing link based similarities that does not suffer from these problems. In the proposed approach each target object is represented by a vector. Each element of the vector corresponds to all the objects in the given data, and the value of each element denotes the weight for the corresponding object. As for this weight value, we propose to utilize the probability of reaching from the target object to the specific object, computed using the “Random Walk with Restart” strategy. Then, we define the similarity between two objects as the cosine similarity of the two vectors. In this paper, we provide examples to show that our approach does not suffer from the aforementioned problems. We also evaluate the performance of the proposed methods in comparison with existing link-based measures, qualitatively and quantitatively, with respect to two kinds of data sets, scientific papers and Web documents. Our experimental results indicate that the proposed methods significantly outperform the existing measures. PMID:24701188
ERIC Educational Resources Information Center
McArthur, Laura H.; Greathouse, Karen R.; Smith, Erskine R.; Holbert, Donald
2011-01-01
Objective: To assess the cultural competence of dietetics majors. Design: Self-administered questionnaire. Setting: Classrooms at 7 universities. Participants: Two hundred eighty-three students--98 juniors (34.6%) and 185 seniors (65.4%)--recruited during class time. Main Outcome Measures: Knowledge was measured using a multiple-choice test,…
ERIC Educational Resources Information Center
Mulligan, Marilyn
The underlying theme of this review is that fine motor assessment for skills acquired during the first year of life includes a description of the coordination of reach and grasp behaviors into functional understanding, purposeful retention of an object, and manipulatian. The developmental sequence of these responses is listed in various…
ERIC Educational Resources Information Center
Dix, Yvette Ellsworth
2013-01-01
The objective of this quasi-experimental quantitative study was to determine if the use of a student response system, combined with an interactive whiteboard, led to increased student achievement in mathematics within a fifth grade classroom as measured by a district benchmark assessment and the annual Arizona Instrument to Measure Standards…
Kendall, Katherine A; Ellerston, Julia; Heller, Amanda; Houtz, Daniel R; Zhang, Chong; Presson, Angela P
2016-08-01
Quantitative, reliable measures of swallowing physiology can be made from an modified barium swallowing study. These quantitative measures have not been previously employed to study large dysphagic patient populations. The present retrospective study of 139 consecutive patients with dysphagia seen in a university tertiary voice and swallowing clinic sought to use objective measures of swallowing physiology to (1) quantify the most prevalent deficits seen in the patient population, (2) identify commonly associated diagnoses and describe the most prevalent swallowing deficits, and (3) determine any correlation between objective deficits and Eating Assessment Tool (EAT-10) scores and body mass index. Poor pharyngeal constriction (34.5 %) and airway protection deficits (65.5 %) were the most common swallowing abnormalities. Reflux-related dysphagia (36 %), nonspecific pharyngeal dysphagia (24 %), Parkinson disease (16 %), esophageal abnormality (13 %), and brain insult (10 %) were the most common diagnoses. Poor pharyngeal constriction was significantly associated with an esophageal motility abnormality (p < 0.001) and central neurologic insult. In general, dysphagia symptoms as determined by the EAT-10 did not correlate with swallowing function abnormalities. This preliminary study indicates that reflux disease is common in patients with dysphagia and that associated esophageal abnormalities are common in dysphagic populations and may be associated with specific pharyngeal swallowing abnormalities. However, symptom scores from the EAT-10 did not correspond to swallowing pathophysiology.
Direct Measurement of Photon Recoil from a Levitated Nanoparticle
NASA Astrophysics Data System (ADS)
Jain, Vijay; Gieseler, Jan; Moritz, Clemens; Dellago, Christoph; Quidant, Romain; Novotny, Lukas
2016-06-01
The momentum transfer between a photon and an object defines a fundamental limit for the precision with which the object can be measured. If the object oscillates at a frequency Ω0 , this measurement backaction adds quanta ℏΩ0 to the oscillator's energy at a rate Γrecoil, a process called photon recoil heating, and sets bounds to coherence times in cavity optomechanical systems. Here, we use an optically levitated nanoparticle in ultrahigh vacuum to directly measure Γrecoil. By means of a phase-sensitive feedback scheme, we cool the harmonic motion of the nanoparticle from ambient to microkelvin temperatures and measure its reheating rate under the influence of the radiation field. The recoil heating rate is measured for different particle sizes and for different excitation powers, without the need for cavity optics or cryogenic environments. The measurements are in quantitative agreement with theoretical predictions and provide valuable guidance for the realization of quantum ground-state cooling protocols and the measurement of ultrasmall forces.
Application of magnetic carriers to two examples of quantitative cell analysis
NASA Astrophysics Data System (ADS)
Zhou, Chen; Qian, Zhixi; Choi, Young Suk; David, Allan E.; Todd, Paul; Hanley, Thomas R.
2017-04-01
The use of magnetophoretic mobility as a surrogate for fluorescence intensity in quantitative cell analysis was investigated. The objectives of quantitative fluorescence flow cytometry include establishing a level of labeling for the setting of parameters in fluorescence activated cell sorters (FACS) and the determination of levels of uptake of fluorescently labeled substrates by living cells. Likewise, the objectives of quantitative magnetic cytometry include establishing a level of labeling for the setting of parameters in flowing magnetic cell sorters and the determination of levels of uptake of magnetically labeled substrates by living cells. The magnetic counterpart to fluorescence intensity is magnetophoretic mobility, defined as the velocity imparted to a suspended cell per unit of magnetic ponderomotive force. A commercial velocimeter available for making this measurement was used to demonstrate both applications. Cultured Gallus lymphoma cells were immunolabeled with commercial magnetic beads and shown to have adequate magnetophoretic mobility to be separated by a novel flowing magnetic separator. Phagocytosis of starch nanoparticles having magnetic cores by cultured Chinese hamster ovary cells, a CHO line, was quantified on the basis of magnetophoretic mobility.
Physiology Laboratories Quantifying Gas Exchange in Health and Disease.
ERIC Educational Resources Information Center
Olson, L. E.
1985-01-01
Describes two quantitatively-oriented physiology laboratories for veterinary students. The laboratory exercises incorporate the procedures of radiology and physical examination with measurement of pulmonary function. Specific laboratory objectives, procedures and equipment needed for diagnoses of the pathologies are listed. (ML)
Quantitative and Isolated Measurement of Far-Field Light Scattering by a Single Nanostructure
NASA Astrophysics Data System (ADS)
Kim, Donghyeong; Jeong, Kwang-Yong; Kim, Jinhyung; Ee, Ho-Seok; Kang, Ju-Hyung; Park, Hong-Gyu; Seo, Min-Kyo
2017-11-01
Light scattering by nanostructures has facilitated research on various optical phenomena and applications by interfacing the near fields and free-propagating radiation. However, direct quantitative measurement of far-field scattering by a single nanostructure on the wavelength scale or less is highly challenging. Conventional back-focal-plane imaging covers only a limited solid angle determined by the numerical aperture of the objectives and suffers from optical aberration and distortion. Here, we present a quantitative measurement of the differential far-field scattering cross section of a single nanostructure over the full hemisphere. In goniometer-based far-field scanning with a high signal-to-noise ratio of approximately 27.4 dB, weak scattering signals are efficiently isolated and detected under total-internal-reflection illumination. Systematic measurements reveal that the total and differential scattering cross sections of a Au nanorod are determined by the plasmonic Fabry-Perot resonances and the phase-matching conditions to the free-propagating radiation, respectively. We believe that our angle-resolved far-field measurement scheme provides a way to investigate and evaluate the physical properties and performance of nano-optical materials and phenomena.
de Certaines, J D; Henriksen, O; Spisni, A; Cortsen, M; Ring, P B
1993-01-01
Quantitative magnetic resonance imaging may offer unique potential for tissue characterization in vivo. In this connection texture analysis of quantitative MR images may be of special importance. Because evaluation of texture analysis needs large data material, multicenter approaches become mandatory. Within the frame of BME Concerted Action on Tissue Characterization by MRI and MRS, a pilot multicenter study was launched in order to evaluate the technical problems including comparability of relaxation time measurements carried out in the individual sites. Human brain, skeletal muscle, and liver were used as models. A total of 218 healthy volunteers were studied. Fifteen MRI scanners with field strength ranging from 0.08 T to 1.5 T were induced. Measurement accuracy was tested on the Eurospin relaxation time test object (TO5) and the obtained calibration curve was used for correction of the in vivo data. The results established that, by following a standardized procedure, comparable quantitative measurements can be obtained in vivo from a number of MR sites. The overall variation coefficient in vivo was in the same order of magnitude as ex vivo relaxometry. Thus, it is possible to carry out international multicenter studies on quantitative imaging, provided that quality control with respect to measurement accuracy and calibration of the MR equipments are performed.
On the Formal-Logical Analysis of the Foundations of Mathematics Applied to Problems in Physics
NASA Astrophysics Data System (ADS)
Kalanov, Temur Z.
2016-03-01
Analysis of the foundations of mathematics applied to problems in physics was proposed. The unity of formal logic and of rational dialectics is methodological basis of the analysis. It is shown that critical analysis of the concept of mathematical quantity - central concept of mathematics - leads to the following conclusion: (1) The concept of ``mathematical quantity'' is the result of the following mental operations: (a) abstraction of the ``quantitative determinacy of physical quantity'' from the ``physical quantity'' at that the ``quantitative determinacy of physical quantity'' is an independent object of thought; (b) abstraction of the ``amount (i.e., abstract number)'' from the ``quantitative determinacy of physical quantity'' at that the ``amount (i.e., abstract number)'' is an independent object of thought. In this case, unnamed, abstract numbers are the only sign of the ``mathematical quantity''. This sign is not an essential sign of the material objects. (2) The concept of mathematical quantity is meaningless, erroneous, and inadmissible concept in science because it represents the following formal-logical and dialectical-materialistic error: negation of the existence of the essential sign of the concept (i.e., negation of the existence of the essence of the concept) and negation of the existence of measure of material object.
McGowan, Conor P.; Lyons, James E.; Smith, David
2015-01-01
Structured decision making (SDM) is an increasingly utilized approach and set of tools for addressing complex decisions in environmental management. SDM is a value-focused thinking approach that places paramount importance on first establishing clear management objectives that reflect core values of stakeholders. To be useful for management, objectives must be transparently stated in unambiguous and measurable terms. We used these concepts to develop consensus objectives for the multiple stakeholders of horseshoe crab harvest in Delaware Bay. Participating stakeholders first agreed on a qualitative statement of fundamental objectives, and then worked to convert those objectives to specific and measurable quantities, so that management decisions could be assessed. We used a constraint-based approach where the conservation objectives for Red Knots, a species of migratory shorebird that relies on horseshoe crab eggs as a food resource during migration, constrained the utility of crab harvest. Developing utility functions to effectively reflect the management objectives allowed us to incorporate stakeholder risk aversion even though different stakeholder groups were averse to different or competing risks. While measurable objectives and quantitative utility functions seem scientific, developing these objectives was fundamentally driven by the values of the participating stakeholders.
NASA Astrophysics Data System (ADS)
McGowan, Conor P.; Lyons, James E.; Smith, David R.
2015-04-01
Structured decision making (SDM) is an increasingly utilized approach and set of tools for addressing complex decisions in environmental management. SDM is a value-focused thinking approach that places paramount importance on first establishing clear management objectives that reflect core values of stakeholders. To be useful for management, objectives must be transparently stated in unambiguous and measurable terms. We used these concepts to develop consensus objectives for the multiple stakeholders of horseshoe crab harvest in Delaware Bay. Participating stakeholders first agreed on a qualitative statement of fundamental objectives, and then worked to convert those objectives to specific and measurable quantities, so that management decisions could be assessed. We used a constraint-based approach where the conservation objectives for Red Knots, a species of migratory shorebird that relies on horseshoe crab eggs as a food resource during migration, constrained the utility of crab harvest. Developing utility functions to effectively reflect the management objectives allowed us to incorporate stakeholder risk aversion even though different stakeholder groups were averse to different or competing risks. While measurable objectives and quantitative utility functions seem scientific, developing these objectives was fundamentally driven by the values of the participating stakeholders.
de los Reyes-Guzmán, Ana; Dimbwadyo-Terrer, Iris; Trincado-Alonso, Fernando; Monasterio-Huelin, Félix; Torricelli, Diego; Gil-Agudo, Angel
2014-08-01
Quantitative measures of human movement quality are important for discriminating healthy and pathological conditions and for expressing the outcomes and clinically important changes in subjects' functional state. However the most frequently used instruments for the upper extremity functional assessment are clinical scales, that previously have been standardized and validated, but have a high subjective component depending on the observer who scores the test. But they are not enough to assess motor strategies used during movements, and their use in combination with other more objective measures is necessary. The objective of the present review is to provide an overview on objective metrics found in literature with the aim of quantifying the upper extremity performance during functional tasks, regardless of the equipment or system used for registering kinematic data. A search in Medline, Google Scholar and IEEE Xplore databases was performed following a combination of a series of keywords. The full scientific papers that fulfilled the inclusion criteria were included in the review. A set of kinematic metrics was found in literature in relation to joint displacements, analysis of hand trajectories and velocity profiles. These metrics were classified into different categories according to the movement characteristic that was being measured. These kinematic metrics provide the starting point for a proposed objective metrics for the functional assessment of the upper extremity in people with movement disorders as a consequence of neurological injuries. Potential areas of future and further research are presented in the Discussion section. Copyright © 2014 Elsevier Ltd. All rights reserved.
Application of NIR spectroscopy in the assessment of diabetic foot disorders
NASA Astrophysics Data System (ADS)
Schleicher, Eckhard; Hampel, Uwe; Freyer, Richard
2001-10-01
Diabetic foot syndrome (DFS) is a common sequel of long-term diabetes mellitus. There is a urgent need of noninvasive, objective and quantitative diagnostic tools to assess tissue viability and perfusion for a successful therapy. NIR spectroscopy seems to be qualified to measure local capillary hemoglobin saturation of the outer extremities in patients with progressive diabetic disorders. We investigate how NIR spectroscopy can be applied to the assessment of diabetic foot problems such as neuropathy and angiopathy. Thereby we use spatially resolved spectroscopy in conjunction with a specially developed continuous-wave laser spectrometer. Comparison of intra- and interindividual measurements is expected to yield quantitative measures of local tissue viability which is a prerequisite for a successful therapy.
Multi-color phase imaging and sickle cell anemia (Conference Presentation)
NASA Astrophysics Data System (ADS)
Hosseini, Poorya; Zhou, Renjie; Yaqoob, Zahid; So, Peter T. C.
2016-03-01
Quantitative phase measurements at multiple wavelengths has created an opportunity for exploring new avenues in phase microscopy such as enhancing imaging-depth (1), measuring hemoglobin concentrations in erythrocytes (2), and more recently in tomographic mapping of the refractive index of live cells (3). To this end, quantitative phase imaging has been demonstrated both at few selected spectral points as well as with high spectral resolution (4,5). However, most of these developed techniques compromise imaging speed, field of view, or the spectral resolution to perform interferometric measurements at multiple colors. In the specific application of quantitative phase in studying blood diseases and red blood cells, current techniques lack the required sensitivity to quantify biological properties of interest at individual cell level. Recently, we have set out to develop a stable quantitative interferometric microscope allowing for measurements of such properties for red cells without compromising field of view or speed of the measurements. The feasibility of the approach will be initially demonstrated in measuring dispersion curves of known solutions, followed by measuring biological properties of red cells in sickle cell anemia. References: 1. Mann CJ, Bingham PR, Paquit VC, Tobin KW. Quantitative phase imaging by three-wavelength digital holography. Opt Express. 2008;16(13):9753-64. 2. Park Y, Yamauchi T, Choi W, Dasari R, Feld MS. Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells. Opt Lett. 2009;34(23):3668-70. 3. Hosseini P, Sung Y, Choi Y, Lue N, Yaqoob Z, So P. Scanning color optical tomography (SCOT). Opt Express. 2015;23(15):19752-62. 4. Jung J-H, Jang J, Park Y. Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging. Anal Chem. 2013;85(21):10519-25. 5. Rinehart M, Zhu Y, Wax A. Quantitative phase spectroscopy. Biomed Opt Express. 2012;3(5):958-65.
NASA Technical Reports Server (NTRS)
Buck, Gregory M. (Inventor)
1989-01-01
A thermal imaging system provides quantitative temperature information and is particularly useful in hypersonic wind tunnel applications. An object to be measured is prepared by coating with a two-color, ultraviolet-activated, thermographic phosphor. The colors emitted by the phosphor are detected by a conventional color video camera. A phosphor emitting blue and green light with a ratio that varies depending on temperature is used so that the intensity of light in the blue and green wavelengths detected by the blue and green tubes in the video camera can be compared. Signals representing the intensity of blue and green light at points on the surface of a model in a hypersonic wind tunnel are used to calculate a ratio of blue to green light intensity which provides quantitative temperature information for the surface of the model.
An Approach to Extract Moving Objects from Mls Data Using a Volumetric Background Representation
NASA Astrophysics Data System (ADS)
Gehrung, J.; Hebel, M.; Arens, M.; Stilla, U.
2017-05-01
Data recorded by mobile LiDAR systems (MLS) can be used for the generation and refinement of city models or for the automatic detection of long-term changes in the public road space. Since for this task only static structures are of interest, all mobile objects need to be removed. This work presents a straightforward but powerful approach to remove the subclass of moving objects. A probabilistic volumetric representation is utilized to separate MLS measurements recorded by a Velodyne HDL-64E into mobile objects and static background. The method was subjected to a quantitative and a qualitative examination using multiple datasets recorded by a mobile mapping platform. The results show that depending on the chosen octree resolution 87-95% of the measurements are labeled correctly.
Quantitative label-free sperm imaging by means of transport of intensity
NASA Astrophysics Data System (ADS)
Poola, Praveen Kumar; Pandiyan, Vimal Prabhu; Jayaraman, Varshini; John, Renu
2016-03-01
Most living cells are optically transparent which makes it difficult to visualize them under bright field microscopy. Use of contrast agents or markers and staining procedures are often followed to observe these cells. However, most of these staining agents are toxic and not applicable for live cell imaging. In the last decade, quantitative phase imaging has become an indispensable tool for morphological characterization of the phase objects without any markers. In this paper, we report noninterferometric quantitative phase imaging of live sperm cells by solving transport of intensity equations with recorded intensity measurements along optical axis on a commercial bright field microscope.
NASA Technical Reports Server (NTRS)
Kazem, Sayyed M.
1992-01-01
Materials and Processes 1 (MET 141) is offered to freshmen by the Mechanical Engineering Department at Purdue University. The goal of MET 141 is to broaden the technical background of students who have not had any college science courses. Hence, applied physics, chemistry, and mathematics are included and quantitative problem solving is involved. In the elementary metallography experiment of this course, the objectives are: (1) introduce the vocabulary and establish outlook; (2) make qualitative observations and quantitative measurements; (3) demonstrate the proper use of equipment; and (4) review basic mathematics and science.
Ranacher, Peter; Tzavella, Katerina
2014-05-27
In geographic information science, a plethora of different approaches and methods is used to assess the similarity of movement. Some of these approaches term two moving objects similar if they share akin paths. Others require objects to move at similar speed and yet others consider movement similar if it occurs at the same time. We believe that a structured and comprehensive classification of movement comparison measures is missing. We argue that such a classification not only depicts the status quo of qualitative and quantitative movement analysis, but also allows for identifying those aspects of movement for which similarity measures are scarce or entirely missing. In this review paper we, first, decompose movement into its spatial, temporal, and spatiotemporal movement parameters. A movement parameter is a physical quantity of movement, such as speed, spatial path, or temporal duration. For each of these parameters we then review qualitative and quantitative methods of how to compare movement. Thus, we provide a systematic and comprehensive classification of different movement similarity measures used in geographic information science. This classification is a valuable first step toward a GIS toolbox comprising all relevant movement comparison methods.
Mullan, Barbara A; Kothe, Emily J
2010-11-01
Effective communication is a vital component of nursing care, however, nurses often lack the skills to communicate with patients, carers and other health care professionals. Communication skills training programs are frequently used to develop these skills. However, there is a paucity of data on how best to evaluate such courses. The aim of the current study was to evaluate the relationship between student self rating of their own ability and their satisfaction with a nurse training course as compared with an objective measure of communication skills. 209 first year nursing students completed a communication skills program. Both qualitative and quantitative data were collected and associations between measures were investigated. Paired samples t-tests showed significant improvement in self-rated ability over the course of the program. Students generally were very satisfied with the course which was reflected in both qualitative and quantitative measures. However, neither self-rated ability nor satisfaction was significantly correlated with the objective measure of performance, but self-rated ability and satisfaction were highly correlated with one another. The importance of these findings is discussed and implications for nurse education are proposed. Copyright © 2010 Elsevier Ltd. All rights reserved.
Ranacher, Peter; Tzavella, Katerina
2014-01-01
In geographic information science, a plethora of different approaches and methods is used to assess the similarity of movement. Some of these approaches term two moving objects similar if they share akin paths. Others require objects to move at similar speed and yet others consider movement similar if it occurs at the same time. We believe that a structured and comprehensive classification of movement comparison measures is missing. We argue that such a classification not only depicts the status quo of qualitative and quantitative movement analysis, but also allows for identifying those aspects of movement for which similarity measures are scarce or entirely missing. In this review paper we, first, decompose movement into its spatial, temporal, and spatiotemporal movement parameters. A movement parameter is a physical quantity of movement, such as speed, spatial path, or temporal duration. For each of these parameters we then review qualitative and quantitative methods of how to compare movement. Thus, we provide a systematic and comprehensive classification of different movement similarity measures used in geographic information science. This classification is a valuable first step toward a GIS toolbox comprising all relevant movement comparison methods. PMID:27019646
Quantitative Hyperspectral Reflectance Imaging
Klein, Marvin E.; Aalderink, Bernard J.; Padoan, Roberto; de Bruin, Gerrit; Steemers, Ted A.G.
2008-01-01
Hyperspectral imaging is a non-destructive optical analysis technique that can for instance be used to obtain information from cultural heritage objects unavailable with conventional colour or multi-spectral photography. This technique can be used to distinguish and recognize materials, to enhance the visibility of faint or obscured features, to detect signs of degradation and study the effect of environmental conditions on the object. We describe the basic concept, working principles, construction and performance of a laboratory instrument specifically developed for the analysis of historical documents. The instrument measures calibrated spectral reflectance images at 70 wavelengths ranging from 365 to 1100 nm (near-ultraviolet, visible and near-infrared). By using a wavelength tunable narrow-bandwidth light-source, the light energy used to illuminate the measured object is minimal, so that any light-induced degradation can be excluded. Basic analysis of the hyperspectral data includes a qualitative comparison of the spectral images and the extraction of quantitative data such as mean spectral reflectance curves and statistical information from user-defined regions-of-interest. More sophisticated mathematical feature extraction and classification techniques can be used to map areas on the document, where different types of ink had been applied or where one ink shows various degrees of degradation. The developed quantitative hyperspectral imager is currently in use by the Nationaal Archief (National Archives of The Netherlands) to study degradation effects of artificial samples and original documents, exposed in their permanent exhibition area or stored in their deposit rooms. PMID:27873831
Quantitative CT Measures of Bronchiectasis in Smokers.
Diaz, Alejandro A; Young, Thomas P; Maselli, Diego J; Martinez, Carlos H; Gill, Ritu; Nardelli, Pietro; Wang, Wei; Kinney, Gregory L; Hokanson, John E; Washko, George R; San Jose Estepar, Raul
2017-06-01
Bronchiectasis is frequent in smokers with COPD; however, there are only limited data on objective assessments of this process. The objective was to assess bronchovascular morphology, calculate the ratio of the diameters of bronchial lumen and adjacent artery (BA ratio), and identify those measurements able to discriminate bronchiectasis. We collected quantitative CT (QCT) measures of BA ratios, peak wall attenuation, wall thickness (WT), wall area, and wall area percent (WA%) at matched fourth through sixth airway generations in 21 ever smokers with bronchiectasis (cases) and 21 never-smoking control patients (control airways). In cases, measurements were collected at both bronchiectatic and nonbronchiectatic airways. Logistic analysis and the area under receiver operating characteristic curve (AUC) were used to assess the predictive ability of QCT measurements for bronchiectasis. The whole-lung and fourth through sixth airway generation BA ratio, WT, and WA% were significantly greater in bronchiectasis cases than control patients. The AUCs for the BA ratio to predict bronchiectasis ranged from 0.90 (whole lung) to 0.79 (fourth-generation). AUCs for WT and WA% ranged from 0.72 to 0.75 and from 0.71 to 0.75. The artery diameters but not bronchial diameters were smaller in bronchiectatic than both nonbronchiectatic and control airways (P < .01 for both). Smoking-related increases in the BA ratio appear to be driven by reductions in vascular caliber. QCT measures of BA ratio, WT, and WA% may be useful to objectively identify and quantify bronchiectasis in smokers. ClinicalTrials.gov; No.: NCT00608764; URL: www.clinicaltrials.gov. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Jha, Abhinav K; Caffo, Brian; Frey, Eric C
2016-01-01
The objective optimization and evaluation of nuclear-medicine quantitative imaging methods using patient data is highly desirable but often hindered by the lack of a gold standard. Previously, a regression-without-truth (RWT) approach has been proposed for evaluating quantitative imaging methods in the absence of a gold standard, but this approach implicitly assumes that bounds on the distribution of true values are known. Several quantitative imaging methods in nuclear-medicine imaging measure parameters where these bounds are not known, such as the activity concentration in an organ or the volume of a tumor. We extended upon the RWT approach to develop a no-gold-standard (NGS) technique for objectively evaluating such quantitative nuclear-medicine imaging methods with patient data in the absence of any ground truth. Using the parameters estimated with the NGS technique, a figure of merit, the noise-to-slope ratio (NSR), can be computed, which can rank the methods on the basis of precision. An issue with NGS evaluation techniques is the requirement of a large number of patient studies. To reduce this requirement, the proposed method explored the use of multiple quantitative measurements from the same patient, such as the activity concentration values from different organs in the same patient. The proposed technique was evaluated using rigorous numerical experiments and using data from realistic simulation studies. The numerical experiments demonstrated that the NSR was estimated accurately using the proposed NGS technique when the bounds on the distribution of true values were not precisely known, thus serving as a very reliable metric for ranking the methods on the basis of precision. In the realistic simulation study, the NGS technique was used to rank reconstruction methods for quantitative single-photon emission computed tomography (SPECT) based on their performance on the task of estimating the mean activity concentration within a known volume of interest. Results showed that the proposed technique provided accurate ranking of the reconstruction methods for 97.5% of the 50 noise realizations. Further, the technique was robust to the choice of evaluated reconstruction methods. The simulation study pointed to possible violations of the assumptions made in the NGS technique under clinical scenarios. However, numerical experiments indicated that the NGS technique was robust in ranking methods even when there was some degree of such violation. PMID:26982626
Jha, Abhinav K; Caffo, Brian; Frey, Eric C
2016-04-07
The objective optimization and evaluation of nuclear-medicine quantitative imaging methods using patient data is highly desirable but often hindered by the lack of a gold standard. Previously, a regression-without-truth (RWT) approach has been proposed for evaluating quantitative imaging methods in the absence of a gold standard, but this approach implicitly assumes that bounds on the distribution of true values are known. Several quantitative imaging methods in nuclear-medicine imaging measure parameters where these bounds are not known, such as the activity concentration in an organ or the volume of a tumor. We extended upon the RWT approach to develop a no-gold-standard (NGS) technique for objectively evaluating such quantitative nuclear-medicine imaging methods with patient data in the absence of any ground truth. Using the parameters estimated with the NGS technique, a figure of merit, the noise-to-slope ratio (NSR), can be computed, which can rank the methods on the basis of precision. An issue with NGS evaluation techniques is the requirement of a large number of patient studies. To reduce this requirement, the proposed method explored the use of multiple quantitative measurements from the same patient, such as the activity concentration values from different organs in the same patient. The proposed technique was evaluated using rigorous numerical experiments and using data from realistic simulation studies. The numerical experiments demonstrated that the NSR was estimated accurately using the proposed NGS technique when the bounds on the distribution of true values were not precisely known, thus serving as a very reliable metric for ranking the methods on the basis of precision. In the realistic simulation study, the NGS technique was used to rank reconstruction methods for quantitative single-photon emission computed tomography (SPECT) based on their performance on the task of estimating the mean activity concentration within a known volume of interest. Results showed that the proposed technique provided accurate ranking of the reconstruction methods for 97.5% of the 50 noise realizations. Further, the technique was robust to the choice of evaluated reconstruction methods. The simulation study pointed to possible violations of the assumptions made in the NGS technique under clinical scenarios. However, numerical experiments indicated that the NGS technique was robust in ranking methods even when there was some degree of such violation.
Ohira, Shingo; Kanayama, Naoyuki; Wada, Kentaro; Karino, Tsukasa; Nitta, Yuya; Ueda, Yoshihiro; Miyazaki, Masayoshi; Koizumi, Masahiko; Teshima, Teruki
2018-04-02
The objective of this study was to assess the accuracy of the quantitative measurements obtained using dual-energy computed tomography with metal artifact reduction software (MARS). Dual-energy computed tomography scans (fast kV-switching) are performed on a phantom, by varying the number of metal rods (Ti and Pb) and reference iodine materials. Objective and subjective image analyses are performed on retroreconstructed virtual monochromatic images (VMIs) (VMI at 70 keV). The maximum artifact indices for VMI-Ti and VMI-Pb (5 metal rods) with MARS (without MARS) were 17.4 (166.7) and 34.6 (810.6), respectively; MARS significantly improved the mean subjective 5-point score (P < 0.05). The maximum differences between the measured Hounsfield unit and theoretical values for 5 mg/mL iodine and 2-mm core rods were -42.2% and -68.5%, for VMI-Ti and VMI-Pb (5 metal rods), respectively, and the corresponding differences in the iodine concentration were -64.7% and -73.0%, respectively. Metal artifact reduction software improved the objective and subjective image quality; however, the quantitative values were underestimated.
Progress in quantitative GPR development at CNDE
NASA Astrophysics Data System (ADS)
Eisenmann, David; Margetan, F. J.; Chiou, C.-P.; Roberts, Ron; Wendt, Scott
2014-02-01
Ground penetrating radar (GPR) uses electromagnetic (EM) radiation pulses to locate and map embedded objects. Commercial GPR instruments are generally geared toward producing images showing the location and extent of buried objects, and often do not make full use of available absolute amplitude information. At the Center for Nondestructive Evaluation (CNDE) at Iowa State University efforts are underway to develop a more quantitative approach to GPR inspections in which absolute amplitudes and spectra of measured signals play a key role. Guided by analogous work in ultrasonic inspection, there are three main thrusts to the effort. These focus, respectively, on the development of tools for: (1) analyzing raw GPR data; (2) measuring the EM properties of soils and other embedding media; and (3) simulating GPR inspections. This paper reviews progress in each category. The ultimate goal of the work is to develop model-based simulation tools that can be used assess the usefulness of GPR for a given inspection scenario, to optimize inspection choices, and to determine inspection reliability.
The SCHEIE Visual Field Grading System
Sankar, Prithvi S.; O’Keefe, Laura; Choi, Daniel; Salowe, Rebecca; Miller-Ellis, Eydie; Lehman, Amanda; Addis, Victoria; Ramakrishnan, Meera; Natesh, Vikas; Whitehead, Gideon; Khachatryan, Naira; O’Brien, Joan
2017-01-01
Objective No method of grading visual field (VF) defects has been widely accepted throughout the glaucoma community. The SCHEIE (Systematic Classification of Humphrey visual fields-Easy Interpretation and Evaluation) grading system for glaucomatous visual fields was created to convey qualitative and quantitative information regarding visual field defects in an objective, reproducible, and easily applicable manner for research purposes. Methods The SCHEIE grading system is composed of a qualitative and quantitative score. The qualitative score consists of designation in one or more of the following categories: normal, central scotoma, paracentral scotoma, paracentral crescent, temporal quadrant, nasal quadrant, peripheral arcuate defect, expansive arcuate, or altitudinal defect. The quantitative component incorporates the Humphrey visual field index (VFI), location of visual defects for superior and inferior hemifields, and blind spot involvement. Accuracy and speed at grading using the qualitative and quantitative components was calculated for non-physician graders. Results Graders had a median accuracy of 96.67% for their qualitative scores and a median accuracy of 98.75% for their quantitative scores. Graders took a mean of 56 seconds per visual field to assign a qualitative score and 20 seconds per visual field to assign a quantitative score. Conclusion The SCHEIE grading system is a reproducible tool that combines qualitative and quantitative measurements to grade glaucomatous visual field defects. The system aims to standardize clinical staging and to make specific visual field defects more easily identifiable. Specific patterns of visual field loss may also be associated with genetic variants in future genetic analysis. PMID:28932621
NASA Astrophysics Data System (ADS)
Darudi, Ahmad; Bakhshi, Hadi; Asgari, Reza
2015-05-01
In this paper we present the results of image restoration using the data taken by a Hartmann sensor. The aberration is measure by a Hartmann sensor in which the object itself is used as reference. Then the Point Spread Function (PSF) is simulated and used for image reconstruction using the Lucy-Richardson technique. A technique is presented for quantitative evaluation the Lucy-Richardson technique for deconvolution.
2012-05-18
by the AWAC. It is a surface- penetrating device that measures continuous changes in the water elevations over time at much higher sampling rates of...background subtraction, a technique based on detecting change from a background scene. Their study highlights the difficulty in object detection and tracking...movements (Zhang et al. 2009) Alternatively, another common object detection method , known as Optical Flow Analysis , may be utilized for vessel
Photogrammetry Applied to Wind Tunnel Testing
NASA Technical Reports Server (NTRS)
Liu, Tian-Shu; Cattafesta, L. N., III; Radeztsky, R. H.; Burner, A. W.
2000-01-01
In image-based measurements, quantitative image data must be mapped to three-dimensional object space. Analytical photogrammetric methods, which may be used to accomplish this task, are discussed from the viewpoint of experimental fluid dynamicists. The Direct Linear Transformation (DLT) for camera calibration, used in pressure sensitive paint, is summarized. An optimization method for camera calibration is developed that can be used to determine the camera calibration parameters, including those describing lens distortion, from a single image. Combined with the DLT method, this method allows a rapid and comprehensive in-situ camera calibration and therefore is particularly useful for quantitative flow visualization and other measurements such as model attitude and deformation in production wind tunnels. The paper also includes a brief description of typical photogrammetric applications to temperature- and pressure-sensitive paint measurements and model deformation measurements in wind tunnels.
Reducing misfocus-related motion artefacts in laser speckle contrast imaging.
Ringuette, Dene; Sigal, Iliya; Gad, Raanan; Levi, Ofer
2015-01-01
Laser Speckle Contrast Imaging (LSCI) is a flexible, easy-to-implement technique for measuring blood flow speeds in-vivo. In order to obtain reliable quantitative data from LSCI the object must remain in the focal plane of the imaging system for the duration of the measurement session. However, since LSCI suffers from inherent frame-to-frame noise, it often requires a moving average filter to produce quantitative results. This frame-to-frame noise also makes the implementation of rapid autofocus system challenging. In this work, we demonstrate an autofocus method and system based on a novel measure of misfocus which serves as an accurate and noise-robust feedback mechanism. This measure of misfocus is shown to enable the localization of best focus with sub-depth-of-field sensitivity, yielding more accurate estimates of blood flow speeds and blood vessel diameters.
Normalized Temperature Contrast Processing in Infrared Flash Thermography
NASA Technical Reports Server (NTRS)
Koshti, Ajay M.
2016-01-01
The paper presents further development in normalized contrast processing used in flash infrared thermography method. Method of computing normalized image or pixel intensity contrast, and normalized temperature contrast are provided. Methods of converting image contrast to temperature contrast and vice versa are provided. Normalized contrast processing in flash thermography is useful in quantitative analysis of flash thermography data including flaw characterization and comparison of experimental results with simulation. Computation of normalized temperature contrast involves use of flash thermography data acquisition set-up with high reflectivity foil and high emissivity tape such that the foil, tape and test object are imaged simultaneously. Methods of assessing other quantitative parameters such as emissivity of object, afterglow heat flux, reflection temperature change and surface temperature during flash thermography are also provided. Temperature imaging and normalized temperature contrast processing provide certain advantages over normalized image contrast processing by reducing effect of reflected energy in images and measurements, therefore providing better quantitative data. Examples of incorporating afterglow heat-flux and reflection temperature evolution in flash thermography simulation are also discussed.
A new approach for the quantitative evaluation of drawings in children with learning disabilities.
Galli, Manuela; Vimercati, Sara Laura; Stella, Giacomo; Caiazzo, Giorgia; Norveti, Federica; Onnis, Francesca; Rigoldi, Chiara; Albertini, Giorgio
2011-01-01
A new method for a quantitative and objective description of drawing and for the quantification of drawing ability in children with learning disabilities (LD) is hereby presented. Twenty-four normally developing children (N) (age 10.6 ± 0.5) and 18 children with learning disabilities (LD) (age 10.3 ± 2.4) took part to the study. The drawing tasks were chosen among those already used in clinical daily experience (Denver Developmental Screening Test). Some parameters were defined in order to quantitatively describe the features of the children's drawings, introducing new objective measurements beside the subjective standard clinical evaluation. The experimental set-up revealed to be valid for clinical application with LD children. The parameters highlighted the presence of differences in the drawing features of N and LD children. This paper suggests the applicability of this protocol to other fields of motor and cognitive valuation, as well as the possibility to study the upper limbs position and muscle activation during drawing. Copyright © 2011 Elsevier Ltd. All rights reserved.
Dunbar, Richard L.; Goel, Harsh; Tuteja, Sony; Song, Wen-Liang; Nathanson, Grace; Babar, Zeeshan; Lalic, Dusanka; Gelfand, Joel M.; Rader, Daniel J.; Grove, Gary L.
2017-01-01
Though cardioprotective, niacin monotherapy is limited by unpleasant cutaneous symptoms mimicking dermatitis: niacin-associated skin toxicity (NASTy). Niacin is prototypical of several emerging drugs suffering off-target rubefacient properties whereby agonizing the GPR109A receptor on cutaneous immune cells provokes vasodilation, prompting skin plethora and rubor, as well as dolor, tumor, and calor, and systemically, heat loss, frigor, chills, and rigors. Typically, NASTy effects are described by subjective patient-reported perception, at best semi-quantitative and bias-prone. Conversely, objective, quantitative, and unbiased methods measuring NASTy stigmata would facilitate research to abolish them, motivating development of several objective methods. In early drug development, such methods might better predict clinical tolerability in larger clinical trials. Measuring cutaneous stigmata may also aid investigations of vasospastic, ischemic, and inflammatory skin conditions. We present methods to measure NASTy physical stigmata to facilitate research into novel niacin mimetics/analogs, detailing characteristics of each technique following niacin, and how NASTy stigmata relate to symptom perception. We gave niacin orally and measured rubor by colorimetry and white-light spectroscopy, plethora by laser Doppler flowmetry, and calor/frigor by thermometry. Surprisingly, each stigma’s abruptness predicted symptom perception, whereas peak intensity did not. These methods are adaptable to study other rubefacient drugs or dermatologic and vascular disorders. PMID:28119443
Comparison of two laboratory-based systems for evaluation of halos in intraocular lenses
Alexander, Elsinore; Wei, Xin; Lee, Shinwook
2018-01-01
Purpose Multifocal intraocular lenses (IOLs) can be associated with unwanted visual phenomena, including halos. Predicting potential for halos is desirable when designing new multifocal IOLs. Halo images from 6 IOL models were compared using the Optikos modulation transfer function bench system and a new high dynamic range (HDR) system. Materials and methods One monofocal, 1 extended depth of focus, and 4 multifocal IOLs were evaluated. An off-the-shelf optical bench was used to simulate a distant (>50 m) car headlight and record images. A custom HDR system was constructed using an imaging photometer to simulate headlight images and to measure quantitative halo luminance data. A metric was developed to characterize halo luminance properties. Clinical relevance was investigated by correlating halo measurements to visual outcomes questionnaire data. Results The Optikos system produced halo images useful for visual comparisons; however, measurements were relative and not quantitative. The HDR halo system provided objective and quantitative measurements used to create a metric from the area under the curve (AUC) of the logarithmic normalized halo profile. This proposed metric differentiated between IOL models, and linear regression analysis found strong correlations between AUC and subjective clinical ratings of halos. Conclusion The HDR system produced quantitative, preclinical metrics that correlated to patients’ subjective perception of halos. PMID:29503526
Lee, Hyunjong; Kim, Ji Hyun; Kang, Yeon-koo; Moon, Jae Hoon; So, Young; Lee, Won Woo
2016-01-01
Abstract Objectives: Technetium pertechnetate (99mTcO4) is a radioactive tracer used to assess thyroid function by thyroid uptake system (TUS). However, the TUS often fails to deliver accurate measurements of the percent of thyroid uptake (%thyroid uptake) of 99mTcO4. Here, we investigated the usefulness of quantitative single-photon emission computed tomography/computed tomography (SPECT/CT) after injection of 99mTcO4 in detecting thyroid function abnormalities. Materials and methods: We retrospectively reviewed data from 50 patients (male:female = 15:35; age, 46.2 ± 16.3 years; 17 Graves disease, 13 thyroiditis, and 20 euthyroid). All patients underwent 99mTcO4 quantitative SPECT/CT (185 MBq = 5 mCi), which yielded %thyroid uptake and standardized uptake value (SUV). Twenty-one (10 Graves disease and 11 thyroiditis) of the 50 patients also underwent conventional %thyroid uptake measurements using a TUS. Results: Quantitative SPECT/CT parameters (%thyroid uptake, SUVmean, and SUVmax) were the highest in Graves disease, second highest in euthyroid, and lowest in thyroiditis (P < 0.0001, Kruskal–Wallis test). TUS significantly overestimated the %thyroid uptake compared with SPECT/CT (P < 0.0001, paired t test) because other 99mTcO4 sources in addition to thyroid, such as salivary glands and saliva, contributed to the %thyroid uptake result by TUS, whereas %thyroid uptake, SUVmean and SUVmax from the SPECT/CT were associated with the functional status of thyroid. Conclusions: Quantitative SPECT/CT is more accurate than conventional TUS for measuring 99mTcO4 %thyroid uptake. Quantitative measurements using SPECT/CT may facilitate more accurate assessment of thyroid tracer uptake. PMID:27399139
Portable smartphone based quantitative phase microscope
NASA Astrophysics Data System (ADS)
Meng, Xin; Tian, Xiaolin; Yu, Wei; Kong, Yan; Jiang, Zhilong; Liu, Fei; Xue, Liang; Liu, Cheng; Wang, Shouyu
2018-01-01
To realize portable device with high contrast imaging capability, we designed a quantitative phase microscope using transport of intensity equation method based on a smartphone. The whole system employs an objective and an eyepiece as imaging system and a cost-effective LED as illumination source. A 3-D printed cradle is used to align these components. Images of different focal planes are captured by manual focusing, followed by calculation of sample phase via a self-developed Android application. To validate its accuracy, we first tested the device by measuring a random phase plate with known phases, and then red blood cell smear, Pap smear, broad bean epidermis sections and monocot root were also measured to show its performance. Owing to its advantages as accuracy, high-contrast, cost-effective and portability, the portable smartphone based quantitative phase microscope is a promising tool which can be future adopted in remote healthcare and medical diagnosis.
Spector, P E; Jex, S M
1998-10-01
Despite the widespread use of self-report measures of both job-related stressors and strains, relatively few carefully developed scales for which validity data exist are available. In this article, we discuss 3 job stressor scales (Interpersonal Conflict at Work Scale, Organizational Constraints Scale, and Quantitative Workload Inventory) and 1 job strain scale (Physical Symptoms Inventory). Using meta-analysis, we combined the results of 18 studies to provide estimates of relations between our scales and other variables. Data showed moderate convergent validity for the 3 job stressor scales, suggesting some objectively to these self-reports. Norms for each scale are provided.
Creating objects and object categories for studying perception and perceptual learning.
Hauffen, Karin; Bart, Eugene; Brady, Mark; Kersten, Daniel; Hegdé, Jay
2012-11-02
In order to quantitatively study object perception, be it perception by biological systems or by machines, one needs to create objects and object categories with precisely definable, preferably naturalistic, properties. Furthermore, for studies on perceptual learning, it is useful to create novel objects and object categories (or object classes) with such properties. Many innovative and useful methods currently exist for creating novel objects and object categories (also see refs. 7,8). However, generally speaking, the existing methods have three broad types of shortcomings. First, shape variations are generally imposed by the experimenter, and may therefore be different from the variability in natural categories, and optimized for a particular recognition algorithm. It would be desirable to have the variations arise independently of the externally imposed constraints. Second, the existing methods have difficulty capturing the shape complexity of natural objects. If the goal is to study natural object perception, it is desirable for objects and object categories to be naturalistic, so as to avoid possible confounds and special cases. Third, it is generally hard to quantitatively measure the available information in the stimuli created by conventional methods. It would be desirable to create objects and object categories where the available information can be precisely measured and, where necessary, systematically manipulated (or 'tuned'). This allows one to formulate the underlying object recognition tasks in quantitative terms. Here we describe a set of algorithms, or methods, that meet all three of the above criteria. Virtual morphogenesis (VM) creates novel, naturalistic virtual 3-D objects called 'digital embryos' by simulating the biological process of embryogenesis. Virtual phylogenesis (VP) creates novel, naturalistic object categories by simulating the evolutionary process of natural selection. Objects and object categories created by these simulations can be further manipulated by various morphing methods to generate systematic variations of shape characteristics. The VP and morphing methods can also be applied, in principle, to novel virtual objects other than digital embryos, or to virtual versions of real-world objects. Virtual objects created in this fashion can be rendered as visual images using a conventional graphical toolkit, with desired manipulations of surface texture, illumination, size, viewpoint and background. The virtual objects can also be 'printed' as haptic objects using a conventional 3-D prototyper. We also describe some implementations of these computational algorithms to help illustrate the potential utility of the algorithms. It is important to distinguish the algorithms from their implementations. The implementations are demonstrations offered solely as a 'proof of principle' of the underlying algorithms. It is important to note that, in general, an implementation of a computational algorithm often has limitations that the algorithm itself does not have. Together, these methods represent a set of powerful and flexible tools for studying object recognition and perceptual learning by biological and computational systems alike. With appropriate extensions, these methods may also prove useful in the study of morphogenesis and phylogenesis.
ERIC Educational Resources Information Center
Goldhaber, Dan
2010-01-01
The formula is simple: Highly effective teachers equal student academic success. Yet, the physics of American education is anything but. Thus, the question facing education reformers is how can teacher effectiveness be accurately measured in order to improve the teacher workforce? Given the demand for objective, quantitative measures of teacher…
NASA Astrophysics Data System (ADS)
Odagiri, Yoshitaka; Hasegawa, Hideyuki; Kanai, Hiroshi
2008-05-01
One possible way to evaluate acupuncture therapy quantitatively is to measure the change in the elastic property of muscle after application of the therapy. Many studies have been conducted to measure mechanical properties of tissues using ultrasound-induced acoustic radiation force. To assess mechanical properties, strain must be generated in an object. However, a single radiation force is not effective because it mainly generates translational motion when the object is much harder than the surrounding medium. In this study, two cyclic radiation forces are simultaneously applied to a muscle phantom from two opposite horizontal directions so that the object is cyclically compressed in the horizontal direction. By the horizontal compression, the object is expanded vertically based on its incompressibility. The resultant vertical displacement is measured using another ultrasound pulse. Two ultrasonic transducers for actuation were both driven by the sum of two continuous sinusoidal signals at two slightly different frequencies [1 MHz and (1 M + 5) Hz]. The displacement of several micrometers in amplitude, which fluctuated at 5 Hz, was measured by the ultrasonic phased tracking method. Increase in thickness inside the object was observed just when acoustic radiation forces increased. Such changes in thickness correspond to vertical expansion due to horizontal compression.
Neurophysiology and Neuroanatomy of Smooth Pursuit in Humans
ERIC Educational Resources Information Center
Lencer, Rebekka; Trillenberg, Peter
2008-01-01
Smooth pursuit eye movements enable us to focus our eyes on moving objects by utilizing well-established mechanisms of visual motion processing, sensorimotor transformation and cognition. Novel smooth pursuit tasks and quantitative measurement techniques can help unravel the different smooth pursuit components and complex neural systems involved…
Deformation of Water by a Magnetic Field
ERIC Educational Resources Information Center
Chen, Zijun; Dahlberg, E. Dan
2011-01-01
After the discovery that superconducting magnets could levitate diamagnetic objects, researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields, which was given the name "The Moses Effect." Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary…
Student Learning and the Menstrual Cycle: Myths and Realities.
ERIC Educational Resources Information Center
Richardson, John T. E.
1988-01-01
Available research evidence indicates that the process of menstruation has no effect on academic performance as measured by quantitative tests, and that subjective complaints of paramenstrual dysfunction originate in socially mediated beliefs rather than any objective impairment. The consequences for higher education institutions and student…
NASA Astrophysics Data System (ADS)
Galadí-Enríquez, D.
2018-02-01
Correlated color temperature (CCT) is a semi-quantitative system that roughly describes the spectra of lamps. This parameter gives the temperature (measured in kelvins) of the black body that would show the hue more similar to that of the light emitted by the lamp. Modern lamps for indoor and outdoor lighting display many spectral energy distributions, most of them extremely different to those of black bodies, what makes CCT to be far from a perfect descriptor from the physical point of view. The spectral index system presented in this work provides an accurate, objective, quantitative procedure to characterize the spectral properties of lamps, with just a few numbers. The system is an adaptation to lighting technology of the classical procedures of multi-band astronomical photometry with wide and intermediate-band filters. We describe the basic concepts and we apply the system to a representative set of lamps of many kinds. The results lead to interesting, sometimes surprising conclusions. The spectral index system is extremely easy to implement from the spectral data that are routinely measured at laboratories. Thus, including this kind of computations in the standard protocols for the certification of lamps will be really straightforward, and will enrich the technical description of lighting devices.
Quantification of EEG reactivity in comatose patients
Hermans, Mathilde C.; Westover, M. Brandon; van Putten, Michel J.A.M.; Hirsch, Lawrence J.; Gaspard, Nicolas
2016-01-01
Objective EEG reactivity is an important predictor of outcome in comatose patients. However, visual analysis of reactivity is prone to subjectivity and may benefit from quantitative approaches. Methods In EEG segments recorded during reactivity testing in 59 comatose patients, 13 quantitative EEG parameters were used to compare the spectral characteristics of 1-minute segments before and after the onset of stimulation (spectral temporal symmetry). Reactivity was quantified with probability values estimated using combinations of these parameters. The accuracy of probability values as a reactivity classifier was evaluated against the consensus assessment of three expert clinical electroencephalographers using visual analysis. Results The binary classifier assessing spectral temporal symmetry in four frequency bands (delta, theta, alpha and beta) showed best accuracy (Median AUC: 0.95) and was accompanied by substantial agreement with the individual opinion of experts (Gwet’s AC1: 65–70%), at least as good as inter-expert agreement (AC1: 55%). Probability values also reflected the degree of reactivity, as measured by the inter-experts’ agreement regarding reactivity for each individual case. Conclusion Automated quantitative EEG approaches based on probabilistic description of spectral temporal symmetry reliably quantify EEG reactivity. Significance Quantitative EEG may be useful for evaluating reactivity in comatose patients, offering increased objectivity. PMID:26183757
Quantitating Human Optic Disc Topography
NASA Astrophysics Data System (ADS)
Graebel, William P.; Cohan, Bruce E.; Pearch, Andrew C.
1980-07-01
A method is presented for quantitatively expressing the topography of the human optic disc, applicable in a clinical setting to the diagnosis and management of glaucoma. Pho-tographs of the disc illuminated by a pattern of fine, high contrast parallel lines are digitized. From the measured deviation of the lines as they traverse the disc surface, disc topography is calculated, using the principles of optical sectioning. The quantitators applied to express this topography have the the following advantages : sensitivity to disc shape; objectivity; going beyond the limits of cup-disc ratio estimates and volume calculations; perfect generality in a mathematical sense; an inherent scheme for determining a non-subjective reference frame to compare different discs or the same disc over time.
Qualification of a Quantitative Laryngeal Imaging System Using Videostroboscopy and Videokymography
Popolo, Peter S.; Titze, Ingo R.
2008-01-01
Objectives: We sought to determine whether full-cycle glottal width measurements could be obtained with a quantitative laryngeal imaging system using videostroboscopy, and whether glottal width and vocal fold length measurements were repeatable and reliable. Methods: Synthetic vocal folds were phonated on a laboratory bench, and dynamic images were obtained in repeated trials by use of videostroboscopy and videokymography (VKG) with an imaging system equipped with a 2-point laser projection device for measuring absolute dimensions. Video images were also obtained with an industrial videoscope system with a built-in laser measurement capability. Maximum glottal width and vocal fold length were compared among these 3 methods. Results: The average variation in maximum glottal width measurements between stroboscopic data and VKG data was 3.10%. The average variations in width measurements between the clinical system and the industrial system were 1.93% (stroboscopy) and 3.49% (VKG). The variations in vocal fold length were similarly small. The standard deviations across trials were 0.29 mm for width and 0.48 mm for length (stroboscopy), 0.18 mm for width (VKG), and 0.25 mm for width and 0.84 mm for length (industrial). Conclusions: For stable, periodic vibration, the full extent of the glottal width can be reliably measured with the quantitative videostroboscopy system. PMID:18646436
A programmable light engine for quantitative single molecule TIRF and HILO imaging.
van 't Hoff, Marcel; de Sars, Vincent; Oheim, Martin
2008-10-27
We report on a simple yet powerful implementation of objective-type total internal reflection fluorescence (TIRF) and highly inclined and laminated optical sheet (HILO, a type of dark-field) illumination. Instead of focusing the illuminating laser beam to a single spot close to the edge of the microscope objective, we are scanning during the acquisition of a fluorescence image the focused spot in a circular orbit, thereby illuminating the sample from various directions. We measure parameters relevant for quantitative image analysis during fluorescence image acquisition by capturing an image of the excitation light distribution in an equivalent objective backfocal plane (BFP). Operating at scan rates above 1 MHz, our programmable light engine allows directional averaging by circular spinning the spot even for sub-millisecond exposure times. We show that restoring the symmetry of TIRF/HILO illumination reduces scattering and produces an evenly lit field-of-view that affords on-line analysis of evanescnt-field excited fluorescence without pre-processing. Utilizing crossed acousto-optical deflectors, our device generates arbitrary intensity profiles in BFP, permitting variable-angle, multi-color illumination, or objective lenses to be rapidly exchanged.
Marrus, Natasha; Faughn, Carley; Shuman, Jeremy; Petersen, Steve; Constantino, John; Povinelli, Daniel; Pruett, John R.
2011-01-01
Objective Comparative studies of social responsiveness, an ability that is impaired in autistic spectrum disorders, can inform our understanding of both autism and the cognitive architecture of social behavior. Because there is no existing quantitative measure of social responsiveness in chimpanzees, we generated a quantitative, cross-species (human-chimpanzee) social responsiveness measure. Method We translated the Social Responsiveness Scale (SRS), an instrument that quantifies human social responsiveness, into an analogous instrument for chimpanzees. We then retranslated this "Chimp SRS" into a human "Cross-Species SRS" (XSRS). We evaluated three groups of chimpanzees (n=29) with the Chimp SRS and typical and autistic spectrum disorder (ASD) human children (n=20) with the XSRS. Results The Chimp SRS demonstrated strong inter-rater reliability at the three sites (ranges for individual ICCs: .534–.866 and mean ICCs: .851–.970). As has been observed in humans, exploratory principal components analysis of Chimp SRS scores supports a single factor underlying chimpanzee social responsiveness. Human subjects' XSRS scores were fully concordant with their SRS scores (r=.976, p=.001) and distinguished appropriately between typical and ASD subjects. One chimpanzee known for inappropriate social behavior displayed a significantly higher score than all other chimpanzees at its site, demonstrating the scale's ability to detect impaired social responsiveness in chimpanzees. Conclusion Our initial cross-species social responsiveness scale proved reliable and discriminated differences in social responsiveness across (in a relative sense) and within (in a more objectively quantifiable manner) humans and chimpanzees. PMID:21515200
A comparison of manual and quantitative elbow strength testing.
Shahgholi, Leili; Bengtson, Keith A; Bishop, Allen T; Shin, Alexander Y; Spinner, Robert J; Basford, Jeffrey R; Kaufman, Kenton R
2012-10-01
The aim of this study was to compare the clinical ratings of elbow strength obtained by skilled clinicians with objective strength measurement obtained through quantitative testing. A retrospective comparison of subject clinical records with quantitative strength testing results in a motion analysis laboratory was conducted. A total of 110 individuals between the ages of 8 and 65 yrs with traumatic brachial plexus injuries were identified. Patients underwent manual muscle strength testing as assessed on the 5-point British Medical Research Council Scale (5/5, normal; 0/5, absent) and quantitative elbow flexion and extension strength measurements. A total of 92 subjects had elbow flexion testing. Half of the subjects clinically assessed as having normal (5/5) elbow flexion strength on manual muscle testing exhibited less than 42% of their age-expected strength on quantitative testing. Eighty-four subjects had elbow extension strength testing. Similarly, half of those displaying normal elbow extension strength on manual muscle testing were found to have less than 62% of their age-expected values on quantitative testing. Significant differences between manual muscle testing and quantitative findings were not detected for the lesser (0-4) strength grades. Manual muscle testing, even when performed by experienced clinicians, may be more misleading than expected for subjects graded as having normal (5/5) strength. Manual muscle testing estimates for the lesser strength grades (1-4/5) seem reasonably accurate.
Student Attrition in Mathematics E-Learning
ERIC Educational Resources Information Center
Smith, Glenn Gordon; Ferguson, David
2005-01-01
Qualitative studies indicate that mathematics does not work well in e-learning. The current study used quantitative methods to investigate more objectively the extent of problems with mathematics in e-learning. The authors used student attrition as a simple measure of student satisfaction and course viability in two studies, one investigating…
Promoting Physical Activity through Student Life and Academics
ERIC Educational Resources Information Center
McDaniel, Tyler; Melton, Bridget F.; Langdon, Jody
2014-01-01
Objective: A physical activity passport (PAP) was developed to increase student's physical activity through the collaboration of student life and academics. The purpose was to measure the effectiveness of the PAP. Design: The research design used was a quantitative, descriptive, quasi-experimental design with experimental and control groups.…
USDA-ARS?s Scientific Manuscript database
Quantitative risk assessments of pollution and data related to the effectiveness of mitigating best management practices (BMPs) are important aspects of nonpoint source (NPS) pollution control efforts, particularly those driven by specific water quality objectives and by measurable improvement goals...
VISUALLY OBSERVED MOLD AND MOLDY ODOR VERSUS QUANTITATIVELY MEASURED MICROBIAL EXPOSURE IN HOMES
The main study objective was to compare different methods for assessing mold exposure in conjunction with an epidemiologic study on the development of children's asthma. Homes of 184 children were assessed for mold by visual observations and dust sampling at child's age 1 (Year ...
A QUANTITATIVE MEASURE FOR PROGRAMMED INSTRUCTION.
ERIC Educational Resources Information Center
HOLLAND, JAMES G.
IN AN ATTEMPT TO PROVIDE AN OBJECTIVE MEANS FOR IDENTIFYING THE DEGREE TO WHICH MATERIAL CAN BE TECHNICALLY TERMED "PROGRAMMED", THE SO-CALLED "BLACKOUT" TECHNIQUE HAS BEEN DEVELOPED. ALL WORDS IN A PROGRAM WHICH ARE NOT DIRECTLY NEEDED IN ORDER TO PROVIDE THE REQUIRED ANSWERS ARE COVERED WITH BLACK CRAYON, AND THIS EDITED…
USDA-ARS?s Scientific Manuscript database
Quantitative information on sediment provenance is badly needed for calibration and validation of process-based soil erosion models. However, sediment source data are rather limited due to difficulties in direct measurement of various source contributions at a watershed scale. The objectives are t...
Animal behavior as a conceptual framework for the study of obsessive-compulsive disorder (OCD).
Eilam, David; Zor, Rama; Fineberg, Naomi; Hermesh, Haggai
2012-06-01
Research on affective disorders may benefit from the methodology of studying animal behavior, in which tools are available for qualitatively and quantitatively measuring and assessing behavior with as much sophistication and attention to detail as in the analysis of the brain. To illustrate this, we first briefly review the characteristics of obsessive-compulsive disorder (OCD), and then demonstrate how the quinpirole rat model is used as a conceptual model in studying human OCD patients. Like the rat model, the study of OCD in humans is based on video-telemetry, whereby observable, measurable, and relatively objective characteristics of OCD behavior may be extracted. In this process, OCD rituals are defined in terms of the space in which they are executed and the movements (acts) that are performed at each location or object in this space. Accordingly, OCD behavior is conceived of as comprising three hierarchical components: (i) rituals (as defined by the patients); (ii) visits to objects/locations in the environment at which the patient stops during the ritual; and (iii) acts performed at each object/location during visits. Scoring these structural components (behavioral units) is conveniently possible with readily available tools for behavioral description and analysis, providing quantitative and qualitative measures of the OCD hallmarks of repetition and addition, as well as the reduced functionality in OCD behavior. Altogether, the concept that was developed in the context of an animal model provides a useful tool that may facilitate OCD diagnosis, assessment and treatment, and may be similarly applied for other psychiatric disorders. Copyright © 2011 Elsevier B.V. All rights reserved.
Quantitative measurement of marginal disintegration of ceramic inlays.
Hayashi, Mikako; Tsubakimoto, Yuko; Takeshige, Fumio; Ebisu, Shigeyuki
2004-01-01
The objectives of this study include establishing a method for quantitative measurement of marginal change in ceramic inlays and clarifying their marginal disintegration in vivo. An accurate CCD optical laser scanner system was used for morphological measurement of the marginal change of ceramic inlays. The accuracy of the CCD measurement was assessed by comparing it with microscopic measurement. Replicas of 15 premolars restored with Class II ceramic inlays at the time of placement and eight years after restoration were used for morphological measurement by means of the CCD laser scanner system. Occlusal surfaces of the restored teeth were scanned and cross-sections of marginal areas were computed with software. Marginal change was defined as the area enclosed by two profiles obtained by superimposing two cross-sections of the same location at two different times and expressing the maximum depth and mean area of the area enclosed. The accuracy of this method of measurement was 4.3 +/- 3.2 microm in distance and 2.0 +/- 0.6% in area. Quantitative marginal changes for the eight-year period were 10 x 10 microm in depth and 50 x 10(3) microm2 in area at the functional cusp area and 7 x 10 microm in depth and 28 x 10(3) microm2 in area at the non-functional cusp area. Marginal disintegration at the functional cusp area was significantly greater than at the non-functional cusp area (Wilcoxon signed-ranks test, p < 0.05). This study constitutes a quantitative measurement of in vivo deterioration in marginal adaptation of ceramic inlays and indicates that occlusal force may accelerate marginal disintegration.
NASA Astrophysics Data System (ADS)
Yuan, Zhen; Li, Xiaoqi; Xi, Lei
2014-06-01
Biomedical photoacoustic tomography (PAT), as a potential imaging modality, can visualize tissue structure and function with high spatial resolution and excellent optical contrast. It is widely recognized that the ability of quantitatively imaging optical absorption and scattering coefficients from photoacoustic measurements is essential before PAT can become a powerful imaging modality. Existing quantitative PAT (qPAT), while successful, has been focused on recovering absorption coefficient only by assuming scattering coefficient a constant. An effective method for photoacoustically recovering optical scattering coefficient is presently not available. Here we propose and experimentally validate such a method for quantitative scattering coefficient imaging using photoacoustic data from one-wavelength illumination. The reconstruction method developed combines conventional PAT with the photon diffusion equation in a novel way to realize the recovery of scattering coefficient. We demonstrate the method using various objects having scattering contrast only or both absorption and scattering contrasts embedded in turbid media. The listening-to-light-scattering method described will be able to provide high resolution scattering imaging for various biomedical applications ranging from breast to brain imaging.
NASA Astrophysics Data System (ADS)
Hilsenbeck-Fajardo, Jacqueline L.
2009-08-01
The research described herein is a multi-dimensional attempt to measure student's abilities to recall, conceptualize, and transfer fundamental and dynamic protein structure concepts as revealed by their own diagrammatic (pictorial) representations and written self-explanations. A total of 120 participants enrolled in a 'Fundamentals of Biochemistry' course contributed to this mixed-methodological study. The population of interest consisted primarily of pre-nursing and sport and exercise science majors. This course is typically associated with a high (<30%) combined drop/failure rate, thus the course provided the researcher with an ideal context in which to apply novel transfer assessment strategies. In the past, students within this population have reported very little chemistry background. In the following study, student-generated diagrammatic representations and written explanations were coded thematically using a highly objective rubric that was designed specifically for this study. Responses provided by the students were characterized on the macroscopic, microscopic, molecular-level, and integrated scales. Recall knowledge gain (i.e., knowledge that was gained through multiple-choice questioning techniques) was quantitatively correlated to learning style preferences (i.e., high-object, low-object, and non-object). Quantitative measures revealed that participants tended toward an object (i.e., snapshot) -based visualization preference, a potentially limiting factor in their desire to consider dynamic properties of fundamental biochemical contexts such as heat-induced protein denaturation. When knowledge transfer was carefully assessed within the predefined context, numerous misconceptions pertaining to the fundamental and dynamic nature of protein structure were revealed. Misconceptions tended to increase as the transfer model shifted away from the context presented in the original learning material. Ultimately, a fundamentally new, novel, and unique measure of knowledge transfer was developed as a main result of this study. It is envisioned by the researcher that this new measure of learning is applicable specifically to physical and chemical science education-based research in the form of deep transfer on the atomic-level scale.
Tracer Methods for Characterizing Fracture Creation in Engineered Geothermal Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, Peter; Harris, Joel
2014-05-08
The aim of this proposal is to develop, through novel high-temperature-tracing approaches, three technologies for characterizing fracture creation within Engineered Geothermal Systems (EGS). The objective of a first task is to identify, develop and demonstrate adsorbing tracers for characterizing interwell reservoir-rock surface areas and fracture spacing. The objective of a second task is to develop and demonstrate a methodology for measuring fracture surface areas adjacent to single wells. The objective of a third task is to design, fabricate and test an instrument that makes use of tracers for measuring fluid flow between newly created fractures and wellbores. In one methodmore » of deployment, it will be used to identify qualitatively which fractures were activated during a hydraulic stimulation experiment. In a second method of deployment, it will serve to measure quantitatively the rate of fluid flowing from one or more activated fracture during a production test following a hydraulic stimulation.« less
Determining characteristics of artificial near-Earth objects using observability analysis
NASA Astrophysics Data System (ADS)
Friedman, Alex M.; Frueh, Carolin
2018-03-01
Observability analysis is a method for determining whether a chosen state of a system can be determined from the output or measurements. Knowledge of state information availability resulting from observability analysis leads to improved sensor tasking for observation of orbital debris and better control of active spacecraft. This research performs numerical observability analysis of artificial near-Earth objects. Analysis of linearization methods and state transition matrices is performed to determine the viability of applying linear observability methods to the nonlinear orbit problem. Furthermore, pre-whitening is implemented to reformulate classical observability analysis. In addition, the state in observability analysis is typically composed of position and velocity; however, including object characteristics beyond position and velocity can be crucial for precise orbit propagation. For example, solar radiation pressure has a significant impact on the orbit of high area-to-mass ratio objects in geosynchronous orbit. Therefore, determining the time required for solar radiation pressure parameters to become observable is important for understanding debris objects. In order to compare observability analysis results with and without measurement noise and an extended state, quantitative measures of observability are investigated and implemented.
Electromagnetic Model Reliably Predicts Radar Scattering Characteristics of Airborne Organisms
NASA Astrophysics Data System (ADS)
Mirkovic, Djordje; Stepanian, Phillip M.; Kelly, Jeffrey F.; Chilson, Phillip B.
2016-10-01
The radar scattering characteristics of aerial animals are typically obtained from controlled laboratory measurements of a freshly harvested specimen. These measurements are tedious to perform, difficult to replicate, and typically yield only a small subset of the full azimuthal, elevational, and polarimetric radio scattering data. As an alternative, biological applications of radar often assume that the radar cross sections of flying animals are isotropic, since sophisticated computer models are required to estimate the 3D scattering properties of objects having complex shapes. Using the method of moments implemented in the WIPL-D software package, we show for the first time that such electromagnetic modeling techniques (typically applied to man-made objects) can accurately predict organismal radio scattering characteristics from an anatomical model: here the Brazilian free-tailed bat (Tadarida brasiliensis). The simulated scattering properties of the bat agree with controlled measurements and radar observations made during a field study of bats in flight. This numerical technique can produce the full angular set of quantitative polarimetric scattering characteristics, while eliminating many practical difficulties associated with physical measurements. Such a modeling framework can be applied for bird, bat, and insect species, and will help drive a shift in radar biology from a largely qualitative and phenomenological science toward quantitative estimation of animal densities and taxonomic identification.
Electromagnetic Model Reliably Predicts Radar Scattering Characteristics of Airborne Organisms
Mirkovic, Djordje; Stepanian, Phillip M.; Kelly, Jeffrey F.; Chilson, Phillip B.
2016-01-01
The radar scattering characteristics of aerial animals are typically obtained from controlled laboratory measurements of a freshly harvested specimen. These measurements are tedious to perform, difficult to replicate, and typically yield only a small subset of the full azimuthal, elevational, and polarimetric radio scattering data. As an alternative, biological applications of radar often assume that the radar cross sections of flying animals are isotropic, since sophisticated computer models are required to estimate the 3D scattering properties of objects having complex shapes. Using the method of moments implemented in the WIPL-D software package, we show for the first time that such electromagnetic modeling techniques (typically applied to man-made objects) can accurately predict organismal radio scattering characteristics from an anatomical model: here the Brazilian free-tailed bat (Tadarida brasiliensis). The simulated scattering properties of the bat agree with controlled measurements and radar observations made during a field study of bats in flight. This numerical technique can produce the full angular set of quantitative polarimetric scattering characteristics, while eliminating many practical difficulties associated with physical measurements. Such a modeling framework can be applied for bird, bat, and insect species, and will help drive a shift in radar biology from a largely qualitative and phenomenological science toward quantitative estimation of animal densities and taxonomic identification. PMID:27762292
Electromagnetic Model Reliably Predicts Radar Scattering Characteristics of Airborne Organisms.
Mirkovic, Djordje; Stepanian, Phillip M; Kelly, Jeffrey F; Chilson, Phillip B
2016-10-20
The radar scattering characteristics of aerial animals are typically obtained from controlled laboratory measurements of a freshly harvested specimen. These measurements are tedious to perform, difficult to replicate, and typically yield only a small subset of the full azimuthal, elevational, and polarimetric radio scattering data. As an alternative, biological applications of radar often assume that the radar cross sections of flying animals are isotropic, since sophisticated computer models are required to estimate the 3D scattering properties of objects having complex shapes. Using the method of moments implemented in the WIPL-D software package, we show for the first time that such electromagnetic modeling techniques (typically applied to man-made objects) can accurately predict organismal radio scattering characteristics from an anatomical model: here the Brazilian free-tailed bat (Tadarida brasiliensis). The simulated scattering properties of the bat agree with controlled measurements and radar observations made during a field study of bats in flight. This numerical technique can produce the full angular set of quantitative polarimetric scattering characteristics, while eliminating many practical difficulties associated with physical measurements. Such a modeling framework can be applied for bird, bat, and insect species, and will help drive a shift in radar biology from a largely qualitative and phenomenological science toward quantitative estimation of animal densities and taxonomic identification.
Quantitative measurement of oxygen in microgravity combustion
NASA Technical Reports Server (NTRS)
Silver, Joel A.
1995-01-01
This research combines two innovations in an experimental system which should result in a new capability for quantitative, nonintrusive measurement of major combustion species. Using a newly available vertical cavity surface-emitting diode laser (VCSEL) and an improved spatial scanning method, we plan to measure the temporal and spatial profiles of the concentrations and temperatures of molecular oxygen in a candle flame and in a solid fuel (cellulose sheet) system. The required sensitivity for detecting oxygen is achieved by the use of high frequency wavelength modulation spectroscopy (WMS). Measurements will be performed in the NASA Lewis 2.2-second Drop Tower Facility. The objective of this research is twofold. First, we want to develop a better understanding of the relative roles of diffusion and reaction of oxygen in microgravity combustion. As the primary oxidizer species, oxygen plays a major role in controlling the observed properties of flames, including flame front speed (in solid or liquid flames), extinguishment characteristics, flame size, and flame temperature. The second objective is to develop better diagnostics based on diode laser absorption which can be of real value in microgravity combustion research. We will also demonstrate diode lasers' potential usefulness for compact, intrinsically-safe monitoring sensors aboard spacecraft. Such sensors could be used to monitor any of the major cabin gases as well as important pollutants.
Candille, Sophie I.; Absher, Devin M.; Beleza, Sandra; Bauchet, Marc; McEvoy, Brian; Garrison, Nanibaa’ A.; Li, Jun Z.; Myers, Richard M.; Barsh, Gregory S.; Tang, Hua; Shriver, Mark D.
2012-01-01
Pigmentation of the skin, hair, and eyes varies both within and between human populations. Identifying the genes and alleles underlying this variation has been the goal of many candidate gene and several genome-wide association studies (GWAS). Most GWAS for pigmentary traits to date have been based on subjective phenotypes using categorical scales. But skin, hair, and eye pigmentation vary continuously. Here, we seek to characterize quantitative variation in these traits objectively and accurately and to determine their genetic basis. Objective and quantitative measures of skin, hair, and eye color were made using reflectance or digital spectroscopy in Europeans from Ireland, Poland, Italy, and Portugal. A GWAS was conducted for the three quantitative pigmentation phenotypes in 176 women across 313,763 SNP loci, and replication of the most significant associations was attempted in a sample of 294 European men and women from the same countries. We find that the pigmentation phenotypes are highly stratified along axes of European genetic differentiation. The country of sampling explains approximately 35% of the variation in skin pigmentation, 31% of the variation in hair pigmentation, and 40% of the variation in eye pigmentation. All three quantitative phenotypes are correlated with each other. In our two-stage association study, we reproduce the association of rs1667394 at the OCA2/HERC2 locus with eye color but we do not identify new genetic determinants of skin and hair pigmentation supporting the lack of major genes affecting skin and hair color variation within Europe and suggesting that not only careful phenotyping but also larger cohorts are required to understand the genetic architecture of these complex quantitative traits. Interestingly, we also see that in each of these four populations, men are more lightly pigmented in the unexposed skin of the inner arm than women, a fact that is underappreciated and may vary across the world. PMID:23118974
Industrial inspection of specular surfaces using a new calibration procedure
NASA Astrophysics Data System (ADS)
Aswendt, Petra; Hofling, Roland; Gartner, Soren
2005-06-01
The methodology of phase encoded reflection measurements has become a valuable tool for the industrial inspection of components with glossy surfaces. The measuring principle provides outstanding sensitivity for tiny variations of surface curvature so that sub-micron waviness and flaws are reliably detected. Quantitative curvature measurements can be obtained from a simple approach if the object is almost flat. 3D-objects with a high aspect ratio require more effort to determine both coordinates and normal direction of a surface point unambiguously. Stereoscopic solutions have been reported using more than one camera for a certain surface area. This paper will describe the combined double camera steady surface approach (DCSS) that is well suited for the implementation in industrial testing stations
Valdés, Pablo A.; Leblond, Frederic; Kim, Anthony; Harris, Brent T.; Wilson, Brian C.; Fan, Xiaoyao; Tosteson, Tor D.; Hartov, Alex; Ji, Songbai; Erkmen, Kadir; Simmons, Nathan E.; Paulsen, Keith D.; Roberts, David W.
2011-01-01
Object Accurate discrimination between tumor and normal tissue is crucial for optimal tumor resection. Qualitative fluorescence of protoporphyrin IX (PpIX), synthesized endogenously following δ-aminolevulinic acid (ALA) administration, has been used for this purpose in high-grade glioma (HGG). The authors show that diagnostically significant but visually imperceptible concentrations of PpIX can be quantitatively measured in vivo and used to discriminate normal from neoplastic brain tissue across a range of tumor histologies. Methods The authors studied 14 patients with diagnoses of low-grade glioma (LGG), HGG, meningioma, and metastasis under an institutional review board–approved protocol for fluorescence-guided resection. The primary aim of the study was to compare the diagnostic capabilities of a highly sensitive, spectrally resolved quantitative fluorescence approach to conventional fluorescence imaging for detection of neoplastic tissue in vivo. Results A significant difference in the quantitative measurements of PpIX concentration occurred in all tumor groups compared with normal brain tissue. Receiver operating characteristic (ROC) curve analysis of PpIX concentration as a diagnostic variable for detection of neoplastic tissue yielded a classification efficiency of 87% (AUC = 0.95, specificity = 92%, sensitivity = 84%) compared with 66% (AUC = 0.73, specificity = 100%, sensitivity = 47%) for conventional fluorescence imaging (p < 0.0001). More than 81% (57 of 70) of the quantitative fluorescence measurements that were below the threshold of the surgeon's visual perception were classified correctly in an analysis of all tumors. Conclusions These findings are clinically profound because they demonstrate that ALA-induced PpIX is a targeting biomarker for a variety of intracranial tumors beyond HGGs. This study is the first to measure quantitative ALA-induced PpIX concentrations in vivo, and the results have broad implications for guidance during resection of intracranial tumors. PMID:21438658
Surface pressure measurement by oxygen quenching of luminescence
NASA Technical Reports Server (NTRS)
Gouterman, Martin P. (Inventor); Kavandi, Janet L. (Inventor); Gallery, Jean (Inventor); Callis, James B. (Inventor)
1993-01-01
Methods and compositions for measuring the pressure of an oxygen-containing gas on an aerodynamic surface, by oxygen-quenching of luminescence of molecular sensors is disclosed. Objects are coated with luminescent films containing a first sensor and at least one of two additional sensors, each of the sensors having luminescences that have different dependencies on temperature and oxygen pressure. Methods and compositions are also provided for improving pressure measurements (qualitative or quantitive) on surfaces coated with a film having one or more types of sensor.
Surface pressure measurement by oxygen quenching of luminescence
NASA Technical Reports Server (NTRS)
Gouterman, Martin P. (Inventor); Kavandi, Janet L. (Inventor); Gallery, Jean (Inventor); Callis, James B. (Inventor)
1994-01-01
Methods and compositions for measuring the pressure of an oxygen-containing gas on an aerodynamic surface, by oxygen-quenching of luminescence of molecular sensors is disclosed. Objects are coated with luminescent films containing a first sensor and at least one of two additional sensors, each of the sensors having luminescences that have different dependencies on temperature and oxygen pressure. Methods and compositions are also provided for improving pressure measurements (qualitative or quantitive) on surfaces coated with a film having one or more types of sensor.
Imaging Performance of Quantitative Transmission Ultrasound
Lenox, Mark W.; Wiskin, James; Lewis, Matthew A.; Darrouzet, Stephen; Borup, David; Hsieh, Scott
2015-01-01
Quantitative Transmission Ultrasound (QTUS) is a tomographic transmission ultrasound modality that is capable of generating 3D speed-of-sound maps of objects in the field of view. It performs this measurement by propagating a plane wave through the medium from a transmitter on one side of a water tank to a high resolution receiver on the opposite side. This information is then used via inverse scattering to compute a speed map. In addition, the presence of reflection transducers allows the creation of a high resolution, spatially compounded reflection map that is natively coregistered to the speed map. A prototype QTUS system was evaluated for measurement and geometric accuracy as well as for the ability to correctly determine speed of sound. PMID:26604918
Agley, Chibeza C.; Velloso, Cristiana P.; Lazarus, Norman R.
2012-01-01
The accurate measurement of the morphological characteristics of cells with nonuniform conformations presents difficulties. We report here a straightforward method using immunofluorescent staining and the commercially available imaging program Adobe Photoshop, which allows objective and precise information to be gathered on irregularly shaped cells. We have applied this measurement technique to the analysis of human muscle cells and their immunologically marked intracellular constituents, as these cells are prone to adopting a highly branched phenotype in culture. Use of this method can be used to overcome many of the long-standing limitations of conventional approaches for quantifying muscle cell size in vitro. In addition, wider applications of Photoshop as a quantitative and semiquantitative tool in immunocytochemistry are explored. PMID:22511600
Sornborger, Andrew; Broder, Josef; Majumder, Anirban; Srinivasamoorthy, Ganesh; Porter, Erika; Reagin, Sean S; Keith, Charles; Lauderdale, James D
2008-09-01
Ratiometric fluorescent indicators are used for making quantitative measurements of a variety of physiological variables. Their utility is often limited by noise. This is the second in a series of papers describing statistical methods for denoising ratiometric data with the aim of obtaining improved quantitative estimates of variables of interest. Here, we outline a statistical optimization method that is designed for the analysis of ratiometric imaging data in which multiple measurements have been taken of systems responding to the same stimulation protocol. This method takes advantage of correlated information across multiple datasets for objectively detecting and estimating ratiometric signals. We demonstrate our method by showing results of its application on multiple, ratiometric calcium imaging experiments.
Influence of corrosion layers on quantitative analysis
NASA Astrophysics Data System (ADS)
Denker, A.; Bohne, W.; Opitz-Coutureau, J.; Rauschenberg, J.; Röhrich, J.; Strub, E.
2005-09-01
Art historians and restorers in charge of ancient metal objects are often reluctant to remove the corrosion layer evolved over time, as this would change the appearance of the artefact dramatically. Therefore, when an elemental analysis of the objects is required, this has to be done by penetrating the corrosion layer. In this work the influence of corrosion was studied on Chinese and Roman coins, where removal of oxidized material was possible. Measurements on spots with and without corrosion are presented and the results discussed.
Quantitative tomographic imaging of intermolecular FRET in small animals
Venugopal, Vivek; Chen, Jin; Barroso, Margarida; Intes, Xavier
2012-01-01
Forster resonance energy transfer (FRET) is a nonradiative transfer of energy between two fluorescent molecules (a donor and an acceptor) in nanometer range proximity. FRET imaging methods have been applied to proteomic studies and drug discovery applications based on intermolecular FRET efficiency measurements and stoichiometric measurements of FRET interaction as quantitative parameters of interest. Importantly, FRET provides information about biomolecular interactions at a molecular level, well beyond the diffraction limits of standard microscopy techniques. The application of FRET to small animal imaging will allow biomedical researchers to investigate physiological processes occurring at nanometer range in vivo as well as in situ. In this work a new method for the quantitative reconstruction of FRET measurements in small animals, incorporating a full-field tomographic acquisition system with a Monte Carlo based hierarchical reconstruction scheme, is described and validated in murine models. Our main objective is to estimate the relative concentration of two forms of donor species, i.e., a donor molecule involved in FRETing to an acceptor close by and a nonFRETing donor molecule. PMID:23243567
Quantitative measures detect sensory and motor impairments in multiple sclerosis
Newsome, Scott D.; Wang, Joseph I.; Kang, Jonathan Y.; Calabresi, Peter A.; Zackowski, Kathleen M.
2011-01-01
Background Sensory and motor dysfunction in multiple sclerosis (MS) is often assessed with rating scales which rely heavily on clinical judgment. Quantitative devices may be more precise than rating scales. Objective To quantify lower extremity sensorimotor measures in individuals with MS, evaluate the extent to which they can detect functional systems impairments, and determine their relationship to global disability measures. Methods We tested 145 MS subjects and 58 controls. Vibration thresholds were quantified using a Vibratron-II device. Strength was quantified by a hand-held dynamometer. We also recorded Expanded Disability Status Scale (EDSS) and timed 25-foot walk (T25FW). T-tests and Wilcoxon-rank sum were used to compare group data. Spearman correlations were used to assess relationships between each measure. We also used a step-wise linear regression model to determine how much the quantitative measures explain the variance in the respective functional systems scores (FSS). Results EDSS scores ranged from 0-7.5, mean disease duration was 10.4±9.6 years, and 66% were female. In RRMS, but not progressive MS, poorer vibration sensation correlated with a worse EDSS score, whereas progressive groups’ ankle/hip strength changed significantly with EDSS progression. Interestingly, not only did sensorimotor measures significantly correlate with global disability measures (EDSS), but they had improved sensitivity, as they detected impairments in up to 32% of MS subjects with normal sensory FSS. Conclusions Sensory and motor deficits can be quantified using clinically accessible tools and distinguish differences among MS subtypes. We show that quantitative sensorimotor measures are more sensitive than FSS from the EDSS. These tools have the potential to be used as clinical outcome measures in practice and for future MS clinical trials of neurorehabilitative and neuroreparative interventions. PMID:21458828
TH-A-207B-00: Shear-Wave Imaging and a QIBA US Biomarker Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Imaging of tissue elastic properties is a relatively new and powerful approach to one of the oldest and most important diagnostic tools. Imaging of shear wave speed with ultrasound is has been added to most high-end ultrasound systems. Understanding this exciting imaging mode aiding its most effective use in medicine can be a rewarding effort for medical physicists and other medical imaging and treatment professionals. Assuring consistent, quantitative measurements across the many ultrasound systems in a typical imaging department will constitute a major step toward realizing the great potential of this technique and other quantitative imaging. This session will targetmore » these two goals with two presentations. A. Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity - Shigao Chen, Ph.D. Learning objectives-To understand: Introduction: Importance of tissue elasticity measurement Strain vs. shear wave elastography (SWE), beneficial features of SWE The link between shear wave speed and material properties, influence of viscosity Generation of shear waves External vibration (Fibroscan) ultrasound radiation force Point push Supersonic push (Aixplorer) Comb push (GE Logiq E9) Detection of shear waves Motion detection from pulse-echo ultrasound Importance of frame rate for shear wave imaging Plane wave imaging detection How to achieve high effective frame rate using line-by-line scanners Shear wave speed calculation Time to peak Random sample consensus (RANSAC) Cross correlation Sources of bias and variation in SWE Tissue viscosity Transducer compression or internal pressure of organ Reflection of shear waves at boundaries B. Elasticity Imaging System Biomarker Qualification and User Testing of Systems – Brian Garra, M.D. Learning objectives-To understand: Goals Review the need for quantitative medical imaging Provide examples of quantitative imaging biomarkers Acquaint the participant with the purpose of the RSNA Quantitative Imaging Biomarker Alliance and the need for such an organization Review the QIBA process for creating a quantitative biomarker Summarize steps needed to verify adherence of site, operators, and imaging systems to a QIBA profile Underlying Premise and Assumptions Objective, quantifiable results are needed to enhance the value of diagnostic imaging in clinical practice Reasons for quantification Evidence based medicine requires objective, not subjective observer data Computerized decision support tools (eg CAD) generally require quantitative input. Quantitative, reproducible measures are more easily used to develop personalized molecular medical diagnostic and treatment systems What is quantitative imaging? Definition from Imaging Metrology Workshop The Quantitative Imaging Biomarker Alliance Formation 2008 Mission Structure Example Imaging Biomarkers Being Explored Biomarker Selection Groundwork Draft Protocol for imaging and data evaluation QIBA Profile Drafting Equipment and Site Validation Technical Clinical Site and Equipment QA and Compliance Checking Ultrasound Elasticity Estimation Biomarker US Elasticity Estimation Background Current Status and Problems Biomarker Selection-process and outcome US SWS for Liver Fibrosis Biomarker Work Groundwork Literature search and analysis results Phase I phantom testing-Elastic phantoms Phase II phantom testing-Viscoelastic phantoms Digital Simulated Data Protocol and Profile Drafting Protocol: based on UPICT and existing literature and standards bodies protocols Profile-Current claims, Manufacturer specific appendices What comes after the profile Profile Validation Technical validation Clinical validation QA and Compliance Possible approaches Site Operator testing Site protocol re-evaluation Imaging system Manufacturer testing and attestation User acceptance testing and periodic QA Phantom Tests Digital Phantom Based Testing Standard QA Testing Remediation Schemes Profile Evolution Towards additional applications Towards higher accuracy and precision Supported in part by NIH contract HHSN268201300071C from NIBIB. Collaboration with GE Global Research, no personal support.; S. Chen, Some technologies described in this presentation have been licensed. Mayo Clinic and Dr. Chen have financial interests these technologies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, S.
Imaging of tissue elastic properties is a relatively new and powerful approach to one of the oldest and most important diagnostic tools. Imaging of shear wave speed with ultrasound is has been added to most high-end ultrasound systems. Understanding this exciting imaging mode aiding its most effective use in medicine can be a rewarding effort for medical physicists and other medical imaging and treatment professionals. Assuring consistent, quantitative measurements across the many ultrasound systems in a typical imaging department will constitute a major step toward realizing the great potential of this technique and other quantitative imaging. This session will targetmore » these two goals with two presentations. A. Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity - Shigao Chen, Ph.D. Learning objectives-To understand: Introduction: Importance of tissue elasticity measurement Strain vs. shear wave elastography (SWE), beneficial features of SWE The link between shear wave speed and material properties, influence of viscosity Generation of shear waves External vibration (Fibroscan) ultrasound radiation force Point push Supersonic push (Aixplorer) Comb push (GE Logiq E9) Detection of shear waves Motion detection from pulse-echo ultrasound Importance of frame rate for shear wave imaging Plane wave imaging detection How to achieve high effective frame rate using line-by-line scanners Shear wave speed calculation Time to peak Random sample consensus (RANSAC) Cross correlation Sources of bias and variation in SWE Tissue viscosity Transducer compression or internal pressure of organ Reflection of shear waves at boundaries B. Elasticity Imaging System Biomarker Qualification and User Testing of Systems – Brian Garra, M.D. Learning objectives-To understand: Goals Review the need for quantitative medical imaging Provide examples of quantitative imaging biomarkers Acquaint the participant with the purpose of the RSNA Quantitative Imaging Biomarker Alliance and the need for such an organization Review the QIBA process for creating a quantitative biomarker Summarize steps needed to verify adherence of site, operators, and imaging systems to a QIBA profile Underlying Premise and Assumptions Objective, quantifiable results are needed to enhance the value of diagnostic imaging in clinical practice Reasons for quantification Evidence based medicine requires objective, not subjective observer data Computerized decision support tools (eg CAD) generally require quantitative input. Quantitative, reproducible measures are more easily used to develop personalized molecular medical diagnostic and treatment systems What is quantitative imaging? Definition from Imaging Metrology Workshop The Quantitative Imaging Biomarker Alliance Formation 2008 Mission Structure Example Imaging Biomarkers Being Explored Biomarker Selection Groundwork Draft Protocol for imaging and data evaluation QIBA Profile Drafting Equipment and Site Validation Technical Clinical Site and Equipment QA and Compliance Checking Ultrasound Elasticity Estimation Biomarker US Elasticity Estimation Background Current Status and Problems Biomarker Selection-process and outcome US SWS for Liver Fibrosis Biomarker Work Groundwork Literature search and analysis results Phase I phantom testing-Elastic phantoms Phase II phantom testing-Viscoelastic phantoms Digital Simulated Data Protocol and Profile Drafting Protocol: based on UPICT and existing literature and standards bodies protocols Profile-Current claims, Manufacturer specific appendices What comes after the profile Profile Validation Technical validation Clinical validation QA and Compliance Possible approaches Site Operator testing Site protocol re-evaluation Imaging system Manufacturer testing and attestation User acceptance testing and periodic QA Phantom Tests Digital Phantom Based Testing Standard QA Testing Remediation Schemes Profile Evolution Towards additional applications Towards higher accuracy and precision Supported in part by NIH contract HHSN268201300071C from NIBIB. Collaboration with GE Global Research, no personal support.; S. Chen, Some technologies described in this presentation have been licensed. Mayo Clinic and Dr. Chen have financial interests these technologies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garra, B.
Imaging of tissue elastic properties is a relatively new and powerful approach to one of the oldest and most important diagnostic tools. Imaging of shear wave speed with ultrasound is has been added to most high-end ultrasound systems. Understanding this exciting imaging mode aiding its most effective use in medicine can be a rewarding effort for medical physicists and other medical imaging and treatment professionals. Assuring consistent, quantitative measurements across the many ultrasound systems in a typical imaging department will constitute a major step toward realizing the great potential of this technique and other quantitative imaging. This session will targetmore » these two goals with two presentations. A. Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity - Shigao Chen, Ph.D. Learning objectives-To understand: Introduction: Importance of tissue elasticity measurement Strain vs. shear wave elastography (SWE), beneficial features of SWE The link between shear wave speed and material properties, influence of viscosity Generation of shear waves External vibration (Fibroscan) ultrasound radiation force Point push Supersonic push (Aixplorer) Comb push (GE Logiq E9) Detection of shear waves Motion detection from pulse-echo ultrasound Importance of frame rate for shear wave imaging Plane wave imaging detection How to achieve high effective frame rate using line-by-line scanners Shear wave speed calculation Time to peak Random sample consensus (RANSAC) Cross correlation Sources of bias and variation in SWE Tissue viscosity Transducer compression or internal pressure of organ Reflection of shear waves at boundaries B. Elasticity Imaging System Biomarker Qualification and User Testing of Systems – Brian Garra, M.D. Learning objectives-To understand: Goals Review the need for quantitative medical imaging Provide examples of quantitative imaging biomarkers Acquaint the participant with the purpose of the RSNA Quantitative Imaging Biomarker Alliance and the need for such an organization Review the QIBA process for creating a quantitative biomarker Summarize steps needed to verify adherence of site, operators, and imaging systems to a QIBA profile Underlying Premise and Assumptions Objective, quantifiable results are needed to enhance the value of diagnostic imaging in clinical practice Reasons for quantification Evidence based medicine requires objective, not subjective observer data Computerized decision support tools (eg CAD) generally require quantitative input. Quantitative, reproducible measures are more easily used to develop personalized molecular medical diagnostic and treatment systems What is quantitative imaging? Definition from Imaging Metrology Workshop The Quantitative Imaging Biomarker Alliance Formation 2008 Mission Structure Example Imaging Biomarkers Being Explored Biomarker Selection Groundwork Draft Protocol for imaging and data evaluation QIBA Profile Drafting Equipment and Site Validation Technical Clinical Site and Equipment QA and Compliance Checking Ultrasound Elasticity Estimation Biomarker US Elasticity Estimation Background Current Status and Problems Biomarker Selection-process and outcome US SWS for Liver Fibrosis Biomarker Work Groundwork Literature search and analysis results Phase I phantom testing-Elastic phantoms Phase II phantom testing-Viscoelastic phantoms Digital Simulated Data Protocol and Profile Drafting Protocol: based on UPICT and existing literature and standards bodies protocols Profile-Current claims, Manufacturer specific appendices What comes after the profile Profile Validation Technical validation Clinical validation QA and Compliance Possible approaches Site Operator testing Site protocol re-evaluation Imaging system Manufacturer testing and attestation User acceptance testing and periodic QA Phantom Tests Digital Phantom Based Testing Standard QA Testing Remediation Schemes Profile Evolution Towards additional applications Towards higher accuracy and precision Supported in part by NIH contract HHSN268201300071C from NIBIB. Collaboration with GE Global Research, no personal support.; S. Chen, Some technologies described in this presentation have been licensed. Mayo Clinic and Dr. Chen have financial interests these technologies.« less
Creating Objects and Object Categories for Studying Perception and Perceptual Learning
Hauffen, Karin; Bart, Eugene; Brady, Mark; Kersten, Daniel; Hegdé, Jay
2012-01-01
In order to quantitatively study object perception, be it perception by biological systems or by machines, one needs to create objects and object categories with precisely definable, preferably naturalistic, properties1. Furthermore, for studies on perceptual learning, it is useful to create novel objects and object categories (or object classes) with such properties2. Many innovative and useful methods currently exist for creating novel objects and object categories3-6 (also see refs. 7,8). However, generally speaking, the existing methods have three broad types of shortcomings. First, shape variations are generally imposed by the experimenter5,9,10, and may therefore be different from the variability in natural categories, and optimized for a particular recognition algorithm. It would be desirable to have the variations arise independently of the externally imposed constraints. Second, the existing methods have difficulty capturing the shape complexity of natural objects11-13. If the goal is to study natural object perception, it is desirable for objects and object categories to be naturalistic, so as to avoid possible confounds and special cases. Third, it is generally hard to quantitatively measure the available information in the stimuli created by conventional methods. It would be desirable to create objects and object categories where the available information can be precisely measured and, where necessary, systematically manipulated (or 'tuned'). This allows one to formulate the underlying object recognition tasks in quantitative terms. Here we describe a set of algorithms, or methods, that meet all three of the above criteria. Virtual morphogenesis (VM) creates novel, naturalistic virtual 3-D objects called 'digital embryos' by simulating the biological process of embryogenesis14. Virtual phylogenesis (VP) creates novel, naturalistic object categories by simulating the evolutionary process of natural selection9,12,13. Objects and object categories created by these simulations can be further manipulated by various morphing methods to generate systematic variations of shape characteristics15,16. The VP and morphing methods can also be applied, in principle, to novel virtual objects other than digital embryos, or to virtual versions of real-world objects9,13. Virtual objects created in this fashion can be rendered as visual images using a conventional graphical toolkit, with desired manipulations of surface texture, illumination, size, viewpoint and background. The virtual objects can also be 'printed' as haptic objects using a conventional 3-D prototyper. We also describe some implementations of these computational algorithms to help illustrate the potential utility of the algorithms. It is important to distinguish the algorithms from their implementations. The implementations are demonstrations offered solely as a 'proof of principle' of the underlying algorithms. It is important to note that, in general, an implementation of a computational algorithm often has limitations that the algorithm itself does not have. Together, these methods represent a set of powerful and flexible tools for studying object recognition and perceptual learning by biological and computational systems alike. With appropriate extensions, these methods may also prove useful in the study of morphogenesis and phylogenesis. PMID:23149420
Uncertainty in the use of MAMA software to measure particle morphological parameters from SEM images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwartz, Daniel S.; Tandon, Lav
The MAMA software package developed at LANL is designed to make morphological measurements on a wide variety of digital images of objects. At LANL, we have focused on using MAMA to measure scanning electron microscope (SEM) images of particles, as this is a critical part of our forensic analysis of interdicted radiologic materials. In order to successfully use MAMA to make such measurements, we must understand the level of uncertainty involved in the process, so that we can rigorously support our quantitative conclusions.
NASA Technical Reports Server (NTRS)
Barkstrom, B. R.
1983-01-01
The measurement of the earth's radiation budget has been chosen to illustrate the technique of objective system design. The measurement process is an approximately linear transformation of the original field of radiant exitances, so that linear statistical techniques may be employed. The combination of variability, measurement strategy, and error propagation is presently made with the help of information theory, as suggested by Kondratyev et al. (1975) and Peckham (1974). Covariance matrices furnish the quantitative statement of field variability.
Fritz, Nora E; Keller, Jennifer; Calabresi, Peter A; Zackowski, Kathleen M
2017-01-01
At least 85% of individuals with multiple sclerosis report walking dysfunction as their primary complaint. Walking and strength measures are common clinical measures to mark increasing disability or improvement with rehabilitation. Previous studies have shown an association between strength or walking ability and spinal cord MRI measures, and strength measures with brainstem corticospinal tract magnetization transfer ratio. However, the relationship between walking performance and brain corticospinal tract magnetization transfer imaging measures and the contribution of clinical measurements of walking and strength to the underlying integrity of the corticospinal tract has not been explored in multiple sclerosis. The objectives of this study were explore the relationship of quantitative measures of walking and strength to whole-brain corticospinal tract-specific MRI measures and to determine the contribution of quantitative measures of function in addition to basic clinical measures (age, gender, symptom duration and Expanded Disability Status Scale) to structural imaging measures of the corticospinal tract. We hypothesized that quantitative walking and strength measures would be related to brain corticospinal tract-specific measures, and would provide insight into the heterogeneity of brain pathology. Twenty-nine individuals with relapsing-remitting multiple sclerosis (mean(SD) age 48.7 (11.5) years; symptom duration 11.9(8.7); 17 females; median[range] Expanded Disability Status Scale 4.0 [1.0-6.5]) and 29 age and gender-matched healthy controls (age 50.8(11.6) years; 20 females) participated in clinical tests of strength and walking (Timed Up and Go, Timed 25 Foot Walk, Two Minute Walk Test ) as well as 3 T imaging including diffusion tensor imaging and magnetization transfer imaging. Individuals with multiple sclerosis were weaker (p = 0.0024) and walked slower (p = 0.0013) compared to controls. Quantitative measures of walking and strength were significantly related to corticospinal tract fractional anisotropy (r > 0.26; p < 0.04) and magnetization transfer ratio (r > 0.29; p < 0.03) measures. Although the Expanded Disability Status Scale was highly correlated with walking measures, it was not significantly related to either corticospinal tract fractional anisotropy or magnetization transfer ratio (p > 0.05). Walk velocity was a significant contributor to magnetization transfer ratio (p = 0.006) and fractional anisotropy (p = 0.011) in regression modeling that included both quantitative measures of function and basic clinical information. Quantitative measures of strength and walking are associated with brain corticospinal tract pathology. The addition of these quantitative measures to basic clinical information explains more of the variance in corticospinal tract fractional anisotropy and magnetization transfer ratio than the basic clinical information alone. Outcome measurement for multiple sclerosis clinical trials has been notoriously challenging; the use of quantitative measures of strength and walking along with tract-specific imaging methods may improve our ability to monitor disease change over time, with intervention, and provide needed guidelines for developing more effective targeted rehabilitation strategies.
Image-Based Quantification of Plant Immunity and Disease.
Laflamme, Bradley; Middleton, Maggie; Lo, Timothy; Desveaux, Darrell; Guttman, David S
2016-12-01
Measuring the extent and severity of disease is a critical component of plant pathology research and crop breeding. Unfortunately, existing visual scoring systems are qualitative, subjective, and the results are difficult to transfer between research groups, while existing quantitative methods can be quite laborious. Here, we present plant immunity and disease image-based quantification (PIDIQ), a quantitative, semi-automated system to rapidly and objectively measure disease symptoms in a biologically relevant context. PIDIQ applies an ImageJ-based macro to plant photos in order to distinguish healthy tissue from tissue that has yellowed due to disease. It can process a directory of images in an automated manner and report the relative ratios of healthy to diseased leaf area, thereby providing a quantitative measure of plant health that can be statistically compared with appropriate controls. We used the Arabidopsis thaliana-Pseudomonas syringae model system to show that PIDIQ is able to identify both enhanced plant health associated with effector-triggered immunity as well as elevated disease symptoms associated with effector-triggered susceptibility. Finally, we show that the quantitative results provided by PIDIQ correspond to those obtained via traditional in planta pathogen growth assays. PIDIQ provides a simple and effective means to nondestructively quantify disease from whole plants and we believe it will be equally effective for monitoring disease on excised leaves and stems.
Modern projection of the old electroscope for nuclear radiation quantitative work and demonstrations
NASA Astrophysics Data System (ADS)
Oliveira Bastos, Rodrigo; Baltokoski Boch, Layara
2017-11-01
Although quantitative measurements in radioactivity teaching and research are only believed to be possible with high technology, early work in this area was fully accomplished with very simple apparatus such as zinc sulphide screens and electroscopes. This article presents an experimental practice using the electroscope, which is a very simple apparatus that has been widely used for educational purposes, although generally for qualitative work. The main objective is to show the possibility of measuring radioactivity not only in qualitative demonstrations, but also in quantitative experimental practices. The experimental set-up is a low-cost ion chamber connected to an electroscope in a configuration that is very similar to that used by Marie and Pierre Currie, Rutherford, Geiger, Pacini, Hess and other great researchers from the time of the big discoveries in nuclear and high-energy particle physics. An electroscope leaf is filmed and projected, permitting the collection of quantitative data for the measurement of the 220Rn half-life, collected from the emanation of the lantern mantles. The article presents the experimental procedures and the expected results, indicating that the experiment may provide support for nuclear physics classes. These practices could spread widely to either university or school didactic laboratories, and the apparatus has the potential to allow the development of new teaching activity for nuclear physics.
Savel'eva, N B; Bykovskaia, N Iu; Dikunets, M A; Bolotov, S L; Rodchenkov, G M
2010-01-01
The objective of this study was to demonstrate the possibility to use deuterated compounds as internal standards for the quantitative analysis of morphine by gas chromatography with mass-selective detection for the purpose of doping control. The paper is focused on the problems associated with the use of deuterated morphine-D3 as the internal standard. Quantitative characteristics of the calibration dependence thus documented are presented along with uncertainty values obtained in the measurements with the use of deuterated morphine-D6. An approach to the assessment of method bias associated with the application of morphine-D6 as the deuterated internal standard is described.
ERIC Educational Resources Information Center
Al-Nashash, Hasan; Khaliq, Abdul; Qaddoumi, Nasser; Al-Assaf, Yousef; Assaleh, Khaled; Dhaouadi, Rached; El-Tarhuni, Mohamed
2009-01-01
The electrical engineering (ELE) program at the American University of Sharjah (AUS) is designed to fulfill the ABET criteria. Several assessment tools are used to qualitatively and quantitatively measure the level of achievement of the program's educational objectives and outcomes. These tools include alumni, employer, and graduate advisor…
ERIC Educational Resources Information Center
US Department of Agriculture, 2016
2016-01-01
Many people have definitions for the term rural, but seldom are these rural definitions in agreement. For some, rural is a subjective state of mind. For others, rural is an objective quantitative measure. In this brief report the United States Department of Agriculture presents the following information along with helpful links for the reader: (1)…
ERIC Educational Resources Information Center
Wilson, Lisa; Catalano, Denise; Sung, Connie; Phillips, Brian; Chou, Chih-Chin; Chan, Jacob Yui Chung; Chan, Fong
2013-01-01
Objective: To examine the roles of attachment, social support, and coping as psychosocial correlates in predicting happiness in people with spinal cord injuries. Design: Quantitative descriptive research design using multiple regression and correlation techniques. Participants: 274 individuals with spinal cord injuries. Outcome Measures: Happiness…
Motor Impairment in Sibling Pairs Concordant and Discordant for Autism Spectrum Disorders
ERIC Educational Resources Information Center
Hilton, Claudia List; Zhang, Yi; Whilte, Megan R.; Klohr, Cheryl L.; Constantino, John
2012-01-01
Aim: Although motor impairment is frequently observed in children with autism spectrum disorders (ASD), the manner in which these impairments aggregate in families affected by autism is unknown. We used a standardized measure of motor proficiency to objectively examine quantitative variation in motor proficiency in sibling pairs concordant and…
DEVELOPMENT OF CRITERIA AND METHODS FOR EVALUATING TRAINER AIRCRAFT EFFECTIVENESS.
ERIC Educational Resources Information Center
KUSEWITT, J.B.
THE PURPOSE OF THIS STUDY WAS TO DEVELOP A METHOD FOR DETERMINING OBJECTIVE MEASURES OF TRAINER AIRCRAFT EFFECTIVENESS TO EVALUATE PROGRAM ALTERNATIVES FOR TRAINING PILOTS FOR FLEET FIGHTER AND ATTACK-TYPE AIRCRAFT. THE TRAINING SYLLABUS WAS BASED ON AVERAGE STUDENT ABILITY. THE BASIC PROBLEM WAS TO ESTABLISH QUANTITATIVE TIME-DIFFICULTY…
Maize and soybean root front velocity and maximum depth in the Iowa, USA
USDA-ARS?s Scientific Manuscript database
Quantitative measurements of root traits can improve our understanding of how crops respond to soil-weather conditions. However, such data are rare. Our objective was to quantify maximum root depth and root front velocity (RFV) for corn and soybean crops across a range of growing conditions in the M...
Process Evaluation of a Parenting Program for Low-Income Families in South Africa
ERIC Educational Resources Information Center
Lachman, Jamie M.; Kelly, Jane; Cluver, Lucie; Ward, Catherine L.; Hutchings, Judy; Gardner, Frances
2018-01-01
Objective: This mixed-methods process evaluation examined the feasibility of a parenting program delivered by community facilitators to reduce the risk of child maltreatment in low-income families with children aged 3-8 years in Cape Town, South Africa (N = 68). Method: Quantitative measures included attendance registers, fidelity checklists,…
A Cultural Epistemology of Success: Perspectives from within Three Cambodian Families.
ERIC Educational Resources Information Center
Canniff, Julie G.
Noting that success defines the American identity, this ethnographic case study examined the dynamics of culture, spirituality, and success in the lives of three generations of three Cambodian families. The study pursued three research objectives: (1) to challenge the dominance of quantitative measures to judge refugee students' academic success;…
ERIC Educational Resources Information Center
Duwe, Elise A. G.; Koerner, Kari M.; Madison, Anna M.; Falk, Nikki A.; Insel, Kathleen C.; Morrow, Daniel G.
2014-01-01
Objectives: This study sought to make the Brief Illness Perception Questionnaire (BIPQ) to be more informative about illness representation among older adults with hypertension. The authors developed categories for coding the open-ended question regarding cause of illness in the BIPQ--a pervasive quantitative measure for illness representation.…
Teaching Research and Practice Evaluation Skills to Graduate Social Work Students
ERIC Educational Resources Information Center
Wong, Stephen E.; Vakharia, Sheila P.
2012-01-01
Objective: The authors examined outcomes of a graduate course on evaluating social work practice that required students to use published research, quantitative measures, and single-system designs in a simulated practice evaluation project. Method: Practice evaluation projects from a typical class were analyzed for the number of research references…
Kellman, Philip J; Mnookin, Jennifer L; Erlikhman, Gennady; Garrigan, Patrick; Ghose, Tandra; Mettler, Everett; Charlton, David; Dror, Itiel E
2014-01-01
Latent fingerprint examination is a complex task that, despite advances in image processing, still fundamentally depends on the visual judgments of highly trained human examiners. Fingerprints collected from crime scenes typically contain less information than fingerprints collected under controlled conditions. Specifically, they are often noisy and distorted and may contain only a portion of the total fingerprint area. Expertise in fingerprint comparison, like other forms of perceptual expertise, such as face recognition or aircraft identification, depends on perceptual learning processes that lead to the discovery of features and relations that matter in comparing prints. Relatively little is known about the perceptual processes involved in making comparisons, and even less is known about what characteristics of fingerprint pairs make particular comparisons easy or difficult. We measured expert examiner performance and judgments of difficulty and confidence on a new fingerprint database. We developed a number of quantitative measures of image characteristics and used multiple regression techniques to discover objective predictors of error as well as perceived difficulty and confidence. A number of useful predictors emerged, and these included variables related to image quality metrics, such as intensity and contrast information, as well as measures of information quantity, such as the total fingerprint area. Also included were configural features that fingerprint experts have noted, such as the presence and clarity of global features and fingerprint ridges. Within the constraints of the overall low error rates of experts, a regression model incorporating the derived predictors demonstrated reasonable success in predicting objective difficulty for print pairs, as shown both in goodness of fit measures to the original data set and in a cross validation test. The results indicate the plausibility of using objective image metrics to predict expert performance and subjective assessment of difficulty in fingerprint comparisons.
Kyoda, Koji; Tohsato, Yukako; Ho, Kenneth H. L.; Onami, Shuichi
2015-01-01
Motivation: Recent progress in live-cell imaging and modeling techniques has resulted in generation of a large amount of quantitative data (from experimental measurements and computer simulations) on spatiotemporal dynamics of biological objects such as molecules, cells and organisms. Although many research groups have independently dedicated their efforts to developing software tools for visualizing and analyzing these data, these tools are often not compatible with each other because of different data formats. Results: We developed an open unified format, Biological Dynamics Markup Language (BDML; current version: 0.2), which provides a basic framework for representing quantitative biological dynamics data for objects ranging from molecules to cells to organisms. BDML is based on Extensible Markup Language (XML). Its advantages are machine and human readability and extensibility. BDML will improve the efficiency of development and evaluation of software tools for data visualization and analysis. Availability and implementation: A specification and a schema file for BDML are freely available online at http://ssbd.qbic.riken.jp/bdml/. Contact: sonami@riken.jp Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:25414366
Kyoda, Koji; Tohsato, Yukako; Ho, Kenneth H L; Onami, Shuichi
2015-04-01
Recent progress in live-cell imaging and modeling techniques has resulted in generation of a large amount of quantitative data (from experimental measurements and computer simulations) on spatiotemporal dynamics of biological objects such as molecules, cells and organisms. Although many research groups have independently dedicated their efforts to developing software tools for visualizing and analyzing these data, these tools are often not compatible with each other because of different data formats. We developed an open unified format, Biological Dynamics Markup Language (BDML; current version: 0.2), which provides a basic framework for representing quantitative biological dynamics data for objects ranging from molecules to cells to organisms. BDML is based on Extensible Markup Language (XML). Its advantages are machine and human readability and extensibility. BDML will improve the efficiency of development and evaluation of software tools for data visualization and analysis. A specification and a schema file for BDML are freely available online at http://ssbd.qbic.riken.jp/bdml/. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.
CCTV Coverage Index Based on Surveillance Resolution and Its Evaluation Using 3D Spatial Analysis
Choi, Kyoungah; Lee, Impyeong
2015-01-01
We propose a novel approach to evaluating how effectively a closed circuit television (CCTV) system can monitor a targeted area. With 3D models of the target area and the camera parameters of the CCTV system, the approach produces surveillance coverage index, which is newly defined in this study as a quantitative measure for surveillance performance. This index indicates the proportion of the space being monitored with a sufficient resolution to the entire space of the target area. It is determined by computing surveillance resolution at every position and orientation, which indicates how closely a specific object can be monitored with a CCTV system. We present full mathematical derivation for the resolution, which depends on the location and orientation of the object as well as the geometric model of a camera. With the proposed approach, we quantitatively evaluated the surveillance coverage of a CCTV system in an underground parking area. Our evaluation process provided various quantitative-analysis results, compelling us to examine the design of the CCTV system prior to its installation and understand the surveillance capability of an existing CCTV system. PMID:26389909
Leder, Helmut
2017-01-01
Visual complexity is relevant for many areas ranging from improving usability of technical displays or websites up to understanding aesthetic experiences. Therefore, many attempts have been made to relate objective properties of images to perceived complexity in artworks and other images. It has been argued that visual complexity is a multidimensional construct mainly consisting of two dimensions: A quantitative dimension that increases complexity through number of elements, and a structural dimension representing order negatively related to complexity. The objective of this work is to study human perception of visual complexity utilizing two large independent sets of abstract patterns. A wide range of computational measures of complexity was calculated, further combined using linear models as well as machine learning (random forests), and compared with data from human evaluations. Our results confirm the adequacy of existing two-factor models of perceived visual complexity consisting of a quantitative and a structural factor (in our case mirror symmetry) for both of our stimulus sets. In addition, a non-linear transformation of mirror symmetry giving more influence to small deviations from symmetry greatly increased explained variance. Thus, we again demonstrate the multidimensional nature of human complexity perception and present comprehensive quantitative models of the visual complexity of abstract patterns, which might be useful for future experiments and applications. PMID:29099832
Novaes, Tatiane Fernandes; Reyes, Alessandra; Matos, Ronilza; Antunes-Pontes, Laura Regina; Marques, Renata Pereira de Samuel; Braga, Mariana Minatel; Diniz, Michele Baffi; Mendes, Fausto Medeiros
2017-05-01
Fluorescence-based methods (FBM) can add objectiveness to diagnosis strategy for caries. Few studies, however, have focused on the evaluation of caries activity. To evaluate the association between quantitative measures obtained with FBM, clinical parameters acquired from the patients, caries detection, and assessment of activity status in occlusal surfaces of primary molars. Six hundred and six teeth from 113 children (4-14 years) were evaluated. The presence of a biofilm, caries experience, and the number of active lesions were recorded. The teeth were assessed using FBM: DIAGNOdent pen (Lfpen) and Quantitative light-induced fluorescence (QLF). As reference standard, all teeth were evaluated using the ICDAS (International Caries Detection and Assessment System) associated with clinical activity assessments. Multilevel regressions compared the FBM values and evaluated the association between the FBM measures and clinical variables related to the caries activity. The measures from the FBM were higher in cavitated lesions. Only, ∆F values distinguished active and inactive lesions. The LFpen measures were higher in active lesions, at the cavitated threshold (56.95 ± 29.60). Following regression analyses, only the presence of visible biofilm on occlusal surfaces (adjusted prevalence ratio = 1.43) and ∆R values of the teeth (adjusted prevalence ratio = 1.02) were associated with caries activity. Some quantitative measures from FBM parameters are associated with caries activity evaluation, which is similar to the clinical evaluation of the presence of visible biofilm. © 2016 BSPD, IAPD and John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Quantitative analysis of multiple sclerosis: a feasibility study
NASA Astrophysics Data System (ADS)
Li, Lihong; Li, Xiang; Wei, Xinzhou; Sturm, Deborah; Lu, Hongbing; Liang, Zhengrong
2006-03-01
Multiple Sclerosis (MS) is an inflammatory and demyelinating disorder of the central nervous system with a presumed immune-mediated etiology. For treatment of MS, the measurements of white matter (WM), gray matter (GM), and cerebral spinal fluid (CSF) are often used in conjunction with clinical evaluation to provide a more objective measure of MS burden. In this paper, we apply a new unifying automatic mixture-based algorithm for segmentation of brain tissues to quantitatively analyze MS. The method takes into account the following effects that commonly appear in MR imaging: 1) The MR data is modeled as a stochastic process with an inherent inhomogeneity effect of smoothly varying intensity; 2) A new partial volume (PV) model is built in establishing the maximum a posterior (MAP) segmentation scheme; 3) Noise artifacts are minimized by a priori Markov random field (MRF) penalty indicating neighborhood correlation from tissue mixture. The volumes of brain tissues (WM, GM) and CSF are extracted from the mixture-based segmentation. Experimental results of feasibility studies on quantitative analysis of MS are presented.
NASA Astrophysics Data System (ADS)
Wu, Tao; Cheung, Tak-Hong; Yim, So-Fan; Qu, Jianan Y.
2010-03-01
A quantitative colposcopic imaging system for the diagnosis of early cervical cancer is evaluated in a clinical study. This imaging technology based on 3-D active stereo vision and motion tracking extracts diagnostic information from the kinetics of acetowhitening process measured from the cervix of human subjects in vivo. Acetowhitening kinetics measured from 137 cervical sites of 57 subjects are analyzed and classified using multivariate statistical algorithms. Cross-validation methods are used to evaluate the performance of the diagnostic algorithms. The results show that an algorithm for screening precancer produced 95% sensitivity (SE) and 96% specificity (SP) for discriminating normal and human papillomavirus (HPV)-infected tissues from cervical intraepithelial neoplasia (CIN) lesions. For a diagnostic algorithm, 91% SE and 90% SP are achieved for discriminating normal tissue, HPV infected tissue, and low-grade CIN lesions from high-grade CIN lesions. The results demonstrate that the quantitative colposcopic imaging system could provide objective screening and diagnostic information for early detection of cervical cancer.
NASA Astrophysics Data System (ADS)
Zhang, Jialin; Chen, Qian; Li, Jiaji; Zuo, Chao
2017-02-01
The transport of intensity equation (TIE) is a powerful tool for direct quantitative phase retrieval in microscopy imaging. However, there may be some problems when dealing with the boundary condition of the TIE. The previous work introduces a hard-edged aperture to the camera port of the traditional bright field microscope to generate the boundary signal for the TIE solver. Under this Neumann boundary condition, we can obtain the quantitative phase without any assumption or prior knowledge about the test object and the setup. In this paper, we will demonstrate the effectiveness of this method based on some experiments in practice. The micro lens array will be used for the comparison of two TIE solvers results based on introducing the aperture or not and this accurate quantitative phase imaging technique allows measuring cell dry mass which is used in biology to follow cell cycle, to investigate cell metabolism, or to address effects of drugs.
Samiei, A; Liang, J B; Ghorbani, G R; Hirooka, H; Yaakub, H; Tabatabaei, M
2010-01-01
The first objective of this study was to investigate the relationship between concentrations of beta-hydroxybutyrate (BHBA) in milk and blood to assess the reliability of the BHBA concentrations in milk measured by a semi quantitative keto-test paper to detect subclinical ketosis (SCK) in 50 fresh high-producing Iranian Holstein cows in Golestan Province, Iran. The second objective was the effects of SCK on milk yield and components. Concentrations of nonesterified fatty acids (NEFA) and BHBA were analyzed quantitatively in blood plasma and commercial keto-test paper was used for semi quantitative determination of BHBA concentration in milk. Milk yield was measured until 60 d after calving but milk compositions were measured until 30 d after calving. The mean plasma BHBA, milk BHBA, plasma NEFA, milk yield, milk fat percentage and milk fat: protein ratio were 1,234 micromol/L, 145 micromol/L, 0.482 mEq/L, 29.5 kg, 3.9% and 1.4, respectively. Fifty eight percent of the cows had SCK during the first month of lactation. High correlation coefficients were observed between blood BHBA and blood NEFA, and between blood and milk BHBA. The milk yield of cattle with SCK decreased (P < 0.01) but the fat percentage and milk fat: protein ratio increased (P < 0.01). The commercial keto-test paper used had a low false positive result at a cut-off point of 200 fmol of BHBA/L of milk. The results showed that the best time to assess SCK using the commercial keto-test paper was d 10, 14 and 17 after calving.
Tanaka, Yohei; Tsunemi, Yuichiro; Kawashima, Makoto; Tatewaki, Naoto; Nishida, Hiroshi
2013-01-01
Background Near-infrared has been shown to penetrate deeper than optical light sources independent of skin color, allowing safer treatment for the Asian skin type. Many studies have indicated the efficacy of various types of devices, but have not included a sufficiently objective evaluation. In this study, we used three-dimensional imaging for objective evaluation of facial skin tightening using a water-filtered near-infrared device. Methods Twenty Japanese patients were treated with the water-filtered near-infrared (1,000–1,800 nm) device using a contact-cooling and nonfreezing gel stored in a freezer. Three-dimensional imaging was performed, and quantitative volume measurements were taken to evaluate the change in post-treatment volume. The patients then provided their subjective assessments. Results Objective assessments of the treated cheek volume evaluated by a three-dimensional color schematic representation with quantitative volume measurements showed significant improvement 3 months after treatment. The mean volume reduction at the last post-treatment visit was 2.554 ± 0.999 mL. The post-treatment volume was significantly reduced compared with the pretreatment volume in all patients (P < 0.0001). Eighty-five percent of patients reported satisfaction with the improvement of skin laxity, and 80% of patients reported satisfaction with improvement of rhytids, such as the nasolabial folds. Side effects, such as epidermal burns and scar formation, were not observed throughout the study. Conclusion The advantages of this water-filtered near-infrared treatment are its high efficacy for skin tightening, associated with a minimal level of discomfort and minimal side effects. Together, these characteristics facilitate our ability to administer repeated treatments and provide alternative or adjunctive treatment for patients, with improved results. This study provides a qualitative and quantitative volumetric assessment, establishing the ability of this technology to reduce volume through noninvasive skin tightening. PMID:23837000
Measuring causal perception: connections to representational momentum?
Choi, Hoon; Scholl, Brian J
2006-01-01
In a collision between two objects, we can perceive not only low-level properties, such as color and motion, but also the seemingly high-level property of causality. It has proven difficult, however, to measure causal perception in a quantitatively rigorous way which goes beyond perceptual reports. Here we focus on the possibility of measuring perceived causality using the phenomenon of representational momentum (RM). Recent studies suggest a relationship between causal perception and RM, based on the fact that RM appears to be attenuated for causally 'launched' objects. This is explained by appeal to the visual expectation that a 'launched' object is inert and thus should eventually cease its movement after a collision, without a source of self-propulsion. We first replicated these demonstrations, and then evaluated this alleged connection by exploring RM for different types of displays, including the contrast between causal launching and non-causal 'passing'. These experiments suggest that the RM-attenuation effect is not a pure measure of causal perception, but rather may reflect lower-level spatiotemporal correlates of only some causal displays. We conclude by discussing the strengths and pitfalls of various methods of measuring causal perception.
Accuracy of quantitative visual soil assessment
NASA Astrophysics Data System (ADS)
van Leeuwen, Maricke; Heuvelink, Gerard; Stoorvogel, Jetse; Wallinga, Jakob; de Boer, Imke; van Dam, Jos; van Essen, Everhard; Moolenaar, Simon; Verhoeven, Frank; Stoof, Cathelijne
2016-04-01
Visual soil assessment (VSA) is a method to assess soil quality visually, when standing in the field. VSA is increasingly used by farmers, farm organisations and companies, because it is rapid and cost-effective, and because looking at soil provides understanding about soil functioning. Often VSA is regarded as subjective, so there is a need to verify VSA. Also, many VSAs have not been fine-tuned for contrasting soil types. This could lead to wrong interpretation of soil quality and soil functioning when contrasting sites are compared to each other. We wanted to assess accuracy of VSA, while taking into account soil type. The first objective was to test whether quantitative visual field observations, which form the basis in many VSAs, could be validated with standardized field or laboratory measurements. The second objective was to assess whether quantitative visual field observations are reproducible, when used by observers with contrasting backgrounds. For the validation study, we made quantitative visual observations at 26 cattle farms. Farms were located at sand, clay and peat soils in the North Friesian Woodlands, the Netherlands. Quantitative visual observations evaluated were grass cover, number of biopores, number of roots, soil colour, soil structure, number of earthworms, number of gley mottles and soil compaction. Linear regression analysis showed that four out of eight quantitative visual observations could be well validated with standardized field or laboratory measurements. The following quantitative visual observations correlated well with standardized field or laboratory measurements: grass cover with classified images of surface cover; number of roots with root dry weight; amount of large structure elements with mean weight diameter; and soil colour with soil organic matter content. Correlation coefficients were greater than 0.3, from which half of the correlations were significant. For the reproducibility study, a group of 9 soil scientists and 7 farmers carried out quantitative visual observations all independently from each other. All observers assessed five sites, having a sand, peat or clay soil. For almost all quantitative visual observations the spread of observed values was low (coefficient of variation < 1.0), except for the number of biopores and gley mottles. Furthermore, farmers' observed mean values were significantly higher than soil scientists' mean values, for soil structure, amount of gley mottles and compaction. This study showed that VSA could be a valuable tool to assess soil quality. Subjectivity, due to the background of the observer, might influence the outcome of visual assessment of some soil properties. In countries where soil analyses can easily be carried out, VSA might be a good replenishment to available soil chemical analyses, and in countries where it is not feasible to carry out soil analyses, VSA might be a good start to assess soil quality.
Performance and Maqasid al-Shari'ah's Pentagon-Shaped Ethical Measurement.
Bedoui, Houssem Eddine; Mansour, Walid
2015-06-01
Business performance is traditionally viewed from the one-dimensional financial angle. This paper develops a new approach that links performance to the ethical vision of Islam based on maqasid al-shari'ah (i.e., the objectives of Islamic law). The approach involves a Pentagon-shaped performance scheme structure via five pillars, namely wealth, posterity, intellect, faith, and human self. Such a scheme ensures that any firm or organization can ethically contribute to the promotion of human welfare, prevent corruption, and enhance social and economic stability and not merely maximize its own performance in terms of its financial return. A quantitative measure of ethical performance is developed. It surprisingly shows that a firm or organization following only the financial aspect at the expense of the others performs poorly. This paper discusses further the practical instances of the quantitative measurement of the ethical aspects of the system taken at an aggregate level.
Holographic 3D imaging through diffuse media by compressive sampling of the mutual intensity
NASA Astrophysics Data System (ADS)
Falldorf, Claas; Klein, Thorsten; Agour, Mostafa; Bergmann, Ralf B.
2017-05-01
We present a method for holographic imaging through a volume scattering material, which is based on selfreference and light with good spatial but limited temporal coherence. In contrast to existing techniques, we do not require a separate reference wave, thus our approach provides great advantages towards the flexibility of the measurement system. The main applications are remote sensing and investigation of moving objects through gaseous streams, bubbles or foggy water for example. Furthermore, due to the common path nature, the system is also insensitive to mechanical disturbances. The measurement result is a complex amplitude which is comparable to a phase shifted digital hologramm and therefore allows 3D imaging, numerical refocusing and quantitative phase contrast imaging. As an example of application, we present measurements of the quantitative phase contrast of the epidermis of an onion through a volume scattering material.
Three-dimensional surface profile intensity correction for spatially modulated imaging
NASA Astrophysics Data System (ADS)
Gioux, Sylvain; Mazhar, Amaan; Cuccia, David J.; Durkin, Anthony J.; Tromberg, Bruce J.; Frangioni, John V.
2009-05-01
We describe a noncontact profile correction technique for quantitative, wide-field optical measurement of tissue absorption (μa) and reduced scattering (μs') coefficients, based on geometric correction of the sample's Lambertian (diffuse) reflectance intensity. Because the projection of structured light onto an object is the basis for both phase-shifting profilometry and modulated imaging, we were able to develop a single instrument capable of performing both techniques. In so doing, the surface of the three-dimensional object could be acquired and used to extract the object's optical properties. The optical properties of flat polydimethylsiloxane (silicone) phantoms with homogenous tissue-like optical properties were extracted, with and without profilometry correction, after vertical translation and tilting of the phantoms at various angles. Objects having a complex shape, including a hemispheric silicone phantom and human fingers, were acquired and similarly processed, with vascular constriction of a finger being readily detectable through changes in its optical properties. Using profilometry correction, the accuracy of extracted absorption and reduced scattering coefficients improved from two- to ten-fold for surfaces having height variations as much as 3 cm and tilt angles as high as 40 deg. These data lay the foundation for employing structured light for quantitative imaging during surgery.
Rosen, Robert; Marmur, Ellen; Anderson, Lawrence; Welburn, Peter; Katsamas, Janelle
2014-12-01
Local skin responses (LSRs) are the most common adverse effects of topical actinic keratosis (AK) therapy. There is currently no method available that allows objective characterization of LSRs. Here, the authors describe a new scale developed to quantitatively and objectively assess the six most common LSRs resulting from topical AK therapy with ingenol mebutate. The LSR grading scale was developed using a 0-4 numerical rating, with clinical descriptors and representative photographic images for each rating. Good inter-observer grading concordance was demonstrated in peer review during development of the tool. Data on the use of the scale are described from four phase III double-blind studies of ingenol mebutate (n = 1,005). LSRs peaked on days 4 (face/scalp) or 8 (trunk/extremities), with mean maximum composite LSR scores of 9.1 and 6.8, respectively, and a rapid return toward baseline by day 15 in most cases. Mean composite LSR score at day 57 was generally lower than at baseline. The LSR grading scale is an objective tool allowing practicing dermatologists to characterize and compare LSRs to existing and, potentially, future AK therapies.
Network of TAMCNS: Identifying Influence Regions Within the GCSS-MC Database
2017-06-01
relationships between objects and provides tools to quantitatively determine objects whose influence impacts other objects or the system as a whole. This... methodology identifies the most important TAMCN and provides a list of TAMCNs in order of importance. We also analyze the community and core structure of...relationships between objects and provides tools to quantitatively determine objects whose influence impacts other objects or the system as a whole. This
Subjective and objective scales to assess the development of children cerebral palsy.
Pietrzak, S; Jóźwiak, M
2001-01-01
Many scoring systems hale been constructed to assess the motor development of cerebral palsy children and to evaluate the effectiveness of treatment. According to the purposes they fulfill, these instruments may be divided into three types: discriminative, evaluative and predictive. The design and measurement methodology are the criteria that determine whether a given scale is quantitative or qualitative in nature, and whether is should be considered to be objective or subjective. The article presents the "reaching, losing and regaining" scale (constructed by the authors to assess functional development and its changes in certain periods of time), the Munich Functional Development Diagnostics, and the Gross Motor Function Measure (GMFM). Special attention is given to the GMFM, its methods, evaluation of results, and application. A comparison of subjective and objective assessment of two cerebral palsy children is included.
Comparative analysis of imaging configurations and objectives for Fourier microscopy.
Kurvits, Jonathan A; Jiang, Mingming; Zia, Rashid
2015-11-01
Fourier microscopy is becoming an increasingly important tool for the analysis of optical nanostructures and quantum emitters. However, achieving quantitative Fourier space measurements requires a thorough understanding of the impact of aberrations introduced by optical microscopes that have been optimized for conventional real-space imaging. Here we present a detailed framework for analyzing the performance of microscope objectives for several common Fourier imaging configurations. To this end, we model objectives from Nikon, Olympus, and Zeiss using parameters that were inferred from patent literature and confirmed, where possible, by physical disassembly. We then examine the aberrations most relevant to Fourier microscopy, including the alignment tolerances of apodization factors for different objective classes, the effect of magnification on the modulation transfer function, and vignetting-induced reductions of the effective numerical aperture for wide-field measurements. Based on this analysis, we identify an optimal objective class and imaging configuration for Fourier microscopy. In addition, the Zemax files for the objectives and setups used in this analysis have been made publicly available as a resource for future studies.
NASA Astrophysics Data System (ADS)
Dwiyanti, Stephani; Soeroso, Yuniarti; Sunarto, Hari; Radi, Basuni
2017-02-01
Coronary heart disease is a narrowing of coronary artery due to plaque build-up. [1] Chronic periodontitis increases risk of cardiovascular disease. P.gingivalis is linked to both diseases. Objective: to analyse quantitative difference of P.gingivalis on dental plaque and its relationship with periodontal status of CHD patient and control. Methods: Periodontal status of 66 CHD patient and 40 control was checked. Subgingival plaque was isolated and P.gingivalis was measured using real-time PCR. Result: P.gingivalis of CHD patient differs from control. P.gingivalis is linked to pocket depth of CHD patient. Conclusion: P.gingivalis count of CHD patient is higher than control. P.gingivalis count is not linked to any periodontal status, except for pocket depth of CHD patient.
Hagen, C K; Diemoz, P C; Endrizzi, M; Rigon, L; Dreossi, D; Arfelli, F; Lopez, F C M; Longo, R; Olivo, A
2014-04-07
X-ray phase contrast imaging (XPCi) methods are sensitive to phase in addition to attenuation effects and, therefore, can achieve improved image contrast for weakly attenuating materials, such as often encountered in biomedical applications. Several XPCi methods exist, most of which have already been implemented in computed tomographic (CT) modality, thus allowing volumetric imaging. The Edge Illumination (EI) XPCi method had, until now, not been implemented as a CT modality. This article provides indications that quantitative 3D maps of an object's phase and attenuation can be reconstructed from EI XPCi measurements. Moreover, a theory for the reconstruction of combined phase and attenuation maps is presented. Both reconstruction strategies find applications in tissue characterisation and the identification of faint, weakly attenuating details. Experimental results for wires of known materials and for a biological object validate the theory and confirm the superiority of the phase over conventional, attenuation-based image contrast.
Deformation of Water by a Magnetic Field
NASA Astrophysics Data System (ADS)
Chen, Zijun; Dahlberg, E. Dan
2011-03-01
After the discovery that superconducting magnets could levitate diamagnetic objects,1,2 researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields,3-5 which was given the name "The Moses Effect."5 Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary were produced by superconducting magnets.
A Comparison of Urban School- and Community-Based Dental Clinics
ERIC Educational Resources Information Center
Larsen, Charles D.; Larsen, Michael D.; Handwerker, Lisa B.; Kim, Maile S.; Rosenthal, Murray
2009-01-01
Background: The objective of the study was to quantitatively compare school- and community-based dental clinics in New York City that provide dental services to children in need. It was hypothesized that the school-based clinics would perform better in terms of several measures. Methods: We reviewed billing and visit data derived from encounter…
CIU and Main Event Analyses of the Structured Discourse of Older and Younger Adults
ERIC Educational Resources Information Center
Capilouto, Gilson; Wright, Heather Harris; Wagovich, Stacy A.
2005-01-01
Correct information unit (CIU) and main event analyses are quantitative measures for analyzing discourse of individuals with aphasia. Comparative data from healthy younger (YG) and older (OD) adults and an investigation of the influence of stimuli type would considerably extend the usefulness of such analyses. The objectives were (a) to compare…
The Development of a Test to Assess Drug Using Behavior.
ERIC Educational Resources Information Center
Althoff, Michael E.
The objective of the study was to develop a test which could measure both the qualitative and quantitative aspects of drug-using behavior, including such factors as attitudes toward drugs, experience with drugs, and knowledge about drugs. The Drug Use Scale was developed containing 134 items and dealing with five classes of drugs: marijuana,…
ERIC Educational Resources Information Center
Putzer, Manfred; Barry, William J.; Moringlane, Jean Richard
2008-01-01
The effect of deep brain stimulation on the two speech-production subsystems, articulation and phonation, of nine Parkinsonian patients is examined. Production parameters (stop closure voicing; stop closure, VOT, vowel) in fast syllable-repetitions were defined and measured and quantitative, objective metrics of vocal fold function were obtained…
Physiological considerations in radionuclide imaging of the penis during impotence therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaudhuri, T.K.; Fink, S.; Burger, R.H.
1989-01-01
The increased use of intracorporeal drugs in the treatment of impotence has advanced our understanding of erectile physiology. Radionuclide imaging of the penis (nuclear penogram) has provided clinicians with a noninvasive, objective measure of blood flow and blood pool changes during erection and with assistance in the quantitative documentation of therapeutic effect. 39 references.
Digital micromirror device-based common-path quantitative phase imaging.
Zheng, Cheng; Zhou, Renjie; Kuang, Cuifang; Zhao, Guangyuan; Yaqoob, Zahid; So, Peter T C
2017-04-01
We propose a novel common-path quantitative phase imaging (QPI) method based on a digital micromirror device (DMD). The DMD is placed in a plane conjugate to the objective back-aperture plane for the purpose of generating two plane waves that illuminate the sample. A pinhole is used in the detection arm to filter one of the beams after sample to create a reference beam. Additionally, a transmission-type liquid crystal device, placed at the objective back-aperture plane, eliminates the specular reflection noise arising from all the "off" state DMD micromirrors, which is common in all DMD-based illuminations. We have demonstrated high sensitivity QPI, which has a measured spatial and temporal noise of 4.92 nm and 2.16 nm, respectively. Experiments with calibrated polystyrene beads illustrate the desired phase measurement accuracy. In addition, we have measured the dynamic height maps of red blood cell membrane fluctuations, showing the efficacy of the proposed system for live cell imaging. Most importantly, the DMD grants the system convenience in varying the interference fringe period on the camera to easily satisfy the pixel sampling conditions. This feature also alleviates the pinhole alignment complexity. We envision that the proposed DMD-based common-path QPI system will allow for system miniaturization and automation for a broader adaption.
Digital micromirror device-based common-path quantitative phase imaging
Zheng, Cheng; Zhou, Renjie; Kuang, Cuifang; Zhao, Guangyuan; Yaqoob, Zahid; So, Peter T. C.
2017-01-01
We propose a novel common-path quantitative phase imaging (QPI) method based on a digital micromirror device (DMD). The DMD is placed in a plane conjugate to the objective back-aperture plane for the purpose of generating two plane waves that illuminate the sample. A pinhole is used in the detection arm to filter one of the beams after sample to create a reference beam. Additionally, a transmission-type liquid crystal device, placed at the objective back-aperture plane, eliminates the specular reflection noise arising from all the “off” state DMD micromirrors, which is common in all DMD-based illuminations. We have demonstrated high sensitivity QPI, which has a measured spatial and temporal noise of 4.92 nm and 2.16 nm, respectively. Experiments with calibrated polystyrene beads illustrate the desired phase measurement accuracy. In addition, we have measured the dynamic height maps of red blood cell membrane fluctuations, showing the efficacy of the proposed system for live cell imaging. Most importantly, the DMD grants the system convenience in varying the interference fringe period on the camera to easily satisfy the pixel sampling conditions. This feature also alleviates the pinhole alignment complexity. We envision that the proposed DMD-based common-path QPI system will allow for system miniaturization and automation for a broader adaption. PMID:28362789
Tuk, B; Oberyé, J J; Pieters, M S; Schoemaker, R C; Kemp, B; van Gerven, J; Danhof, M; Kamphuisen, H A; Cohen, A F; Breimer, D D; Peck, C C
1997-10-01
Quantitative electroencephalographic parameters and saccadic eye movements are frequently used as pharmacodynamic measures of benzodiazepine effect. We investigated the relationship between these measures and the hypnotic effect. The correlation between the pharmacodynamic measures and sleep quality was determined in 21 patients with primary insomnia. The pharmacokinetic-pharmacodynamic relationships were characterized after administration of 20 mg oral temazepam. The hypnotic effect was determined on the basis of polysomnographic sleep recordings and a subjective sleep evaluation questionnaire. Correlations between pharmacodynamic measures and the improvement of sleep were investigated. The pharmacokinetic-pharmacodynamic relationships for the parameters derived from electroencephalography and saccadic eye movements showed considerable interindividual variability. Administration of temazepam led to a significant improvement in the objective parameters sleep period efficiency, wake time after sleep onset, and sleep efficiency and in the subjective assessment of sleep quality. No significant correlations were observed between the pharmacokinetic-pharmacodynamic-derived parameters and the improvement in objective or subjective sleep parameters. In subjects with primary insomnia the administration of 20 mg oral temazepam results in changes in both the pharmacodynamic measures and in quality of sleep. No individual correlations between the pharmacodynamic measures and quality of sleep were observed. We concluded that the investigated pharmacodynamic measures are of value in the first assessment of clinical efficacy and for the selection of the dose(s) to be investigated in subsequent trials that aim at showing clinical efficacy. However, the conclusive quantification of clinical efficacy should be performed only on the basis of the clinical end point itself.
Laboratory techniques and rhythmometry
NASA Technical Reports Server (NTRS)
Halberg, F.
1973-01-01
Some of the procedures used for the analysis of rhythms are illustrated, notably as these apply to current medical and biological practice. For a quantitative approach to medical and broader socio-ecologic goals, the chronobiologist gathers numerical objective reference standards for rhythmic biophysical, biochemical, and behavioral variables. These biological reference standards can be derived by specialized computer analyses of largely self-measured (until eventually automatically recorded) time series (autorhythmometry). Objective numerical values for individual and population parameters of reproductive cycles can be obtained concomitantly with characteristics of about-yearly (circannual), about-daily (circadian) and other rhythms.
On the stability and instantaneous velocity of grasped frictionless objects
NASA Technical Reports Server (NTRS)
Trinkle, Jeffrey C.
1992-01-01
A quantitative test for form closure valid for any number of contact points is formulated as a linear program, the optimal objective value of which provides a measure of how far a grasp is from losing form closure. Another contribution of the study is the formulation of a linear program whose solution yields the same information as the classical approach. The benefit of the formulation is that explicit testing of all possible combinations of contact interactions can be avoided by the algorithm used to solve the linear program.
Badawi, A M; Derbala, A S; Youssef, A M
1999-08-01
Computerized ultrasound tissue characterization has become an objective means for diagnosis of liver diseases. It is difficult to differentiate diffuse liver diseases, namely cirrhotic and fatty liver by visual inspection from the ultrasound images. The visual criteria for differentiating diffused diseases are rather confusing and highly dependent upon the sonographer's experience. This often causes a bias effects in the diagnostic procedure and limits its objectivity and reproducibility. Computerized tissue characterization to assist quantitatively the sonographer for the accurate differentiation and to minimize the degree of risk is thus justified. Fuzzy logic has emerged as one of the most active area in classification. In this paper, we present an approach that employs Fuzzy reasoning techniques to automatically differentiate diffuse liver diseases using numerical quantitative features measured from the ultrasound images. Fuzzy rules were generated from over 140 cases consisting of normal, fatty, and cirrhotic livers. The input to the fuzzy system is an eight dimensional vector of feature values: the mean gray level (MGL), the percentile 10%, the contrast (CON), the angular second moment (ASM), the entropy (ENT), the correlation (COR), the attenuation (ATTEN) and the speckle separation. The output of the fuzzy system is one of the three categories: cirrhosis, fatty or normal. The steps done for differentiating the pathologies are data acquisition and feature extraction, dividing the input spaces of the measured quantitative data into fuzzy sets. Based on the expert knowledge, the fuzzy rules are generated and applied using the fuzzy inference procedures to determine the pathology. Different membership functions are developed for the input spaces. This approach has resulted in very good sensitivities and specificity for classifying diffused liver pathologies. This classification technique can be used in the diagnostic process, together with the history information, laboratory, clinical and pathological examinations.
Visser, Cobus; Kieser, Eduard; Dellimore, Kiran; van den Heever, Dawie; Smith, Johan
2017-10-01
This study explores the feasibility of prospectively assessing infant dehydration using four non-invasive, optical sensors based on the quantitative and objective measurement of various clinical markers of dehydration. The sensors were investigated to objectively and unobtrusively assess the hydration state of an infant based on the quantification of capillary refill time (CRT), skin recoil time (SRT), skin temperature profile (STP) and skin tissue hydration by means of infrared spectrometry (ISP). To evaluate the performance of the sensors a clinical study was conducted on a cohort of 10 infants (aged 6-36 months) with acute gastroenteritis. High sensitivity and specificity were exhibited by the sensors, in particular the STP and SRT sensors, when combined into a fusion regression model (sensitivity: 0.90, specificity: 0.78). The SRT and STP sensors and the fusion model all outperformed the commonly used "gold standard" clinical dehydration scales including the Gorelick scale (sensitivity: 0.56, specificity: 0.56), CDS scale (sensitivity: 1.0, specificity: 0.2) and WHO scale (sensitivity: 0.13, specificity: 0.79). These results suggest that objective and quantitative assessment of infant dehydration may be possible using the sensors investigated. However, further evaluation of the sensors on a larger sample population is needed before deploying them in a clinical setting. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Liquid-Crystal Point-Diffraction Interferometer for Wave-Front Measurements
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Creath, Katherine
1996-01-01
A new instrument, the liquid-crystal point-diffraction interferometer (LCPDI), is developed for the measurement of phase objects. This instrument maintains the compact, robust design of Linnik's point-diffraction interferometer and adds to it a phase-stepping capability for quantitative interferogram analysis. The result is a compact, simple to align, environmentally insensitive interferometer capable of accurately measuring optical wave fronts with very high data density and with automated data reduction. We describe the theory and design of the LCPDI. A focus shift was measured with the LCPDI, and the results are compared with theoretical results,
Interventions for preventing neuropathy caused by cisplatin and related compounds.
Albers, James W; Chaudhry, Vinay; Cavaletti, Guido; Donehower, Ross C
2014-03-31
Cisplatin and several related antineoplastic drugs used to treat many types of solid tumours are neurotoxic, and most patients completing a full course of cisplatin chemotherapy develop a clinically detectable sensory neuropathy. Effective neuroprotective therapies have been sought. To examine the efficacy and safety of purported chemoprotective agents to prevent or limit the neurotoxicity of cisplatin and related drugs. On 4 March 2013, we searched the Cochrane Neuromuscular Disease Group Specialized Register, CENTRAL, MEDLINE, EMBASE, LILACS, and CINAHL Plus for randomised trials designed to evaluate neuroprotective agents used to prevent or limit neurotoxicity of cisplatin and related drugs among human patients. We included randomised controlled trials (RCTs) or quasi-RCTs in which the participants received chemotherapy with cisplatin or related compounds, with a potential chemoprotectant (acetylcysteine, amifostine, adrenocorticotrophic hormone (ACTH), BNP7787, calcium and magnesium (Ca/Mg), diethyldithiocarbamate (DDTC), glutathione, Org 2766, oxcarbazepine, or vitamin E) compared to placebo, no treatment, or other treatments. We considered trials in which participants underwent evaluation zero to six months after completing chemotherapy using quantitative sensory testing (the primary outcome) or other measures including nerve conduction studies or neurological impairment rating using validated scales (secondary outcomes). Two review authors assessed each study, extracted the data and reached consensus, according to standard Cochrane methodology. As of 2013, the review includes 29 studies describing nine possible chemoprotective agents, as well as description of two published meta-analyses. Among these trials, there were sufficient data in some instances to combine the results from different studies, most often using data from secondary non-quantitative measures. Nine of the studies were newly included at this update. Few of the included studies were at a high risk of bias overall, although often there was too little information to make an assessment. At least two review authors performed a formal review of an additional 44 articles but we did not include them in the final review for a variety of reasons.Of seven eligible amifostine trials (743 participants in total), one used quantitative sensory testing (vibration perception threshold) and demonstrated a favourable outcome in terms of amifostine neuroprotection, but the vibration perception threshold result was based on data from only 14 participants receiving amifostine who completed the post-treatment evaluation and should be regarded with caution. Furthermore the change measured was subclinical. None of the three eligible Ca/Mg trials (or four trials if a single retrospective study was included) described our primary outcome measures. The four Ca/Mg trials included a total of 886 participants. Of the seven eligible glutathione trials (387 participants), one used quantitative sensory testing but reported only qualitative analyses. Four eligible Org 2766 trials (311 participants) employed quantitative sensory testing but reported disparate results; meta-analyses of three of these trials using comparable measures showed no significant vibration perception threshold neuroprotection. The remaining trial reported only descriptive analyses. Similarly, none of the three eligible vitamin E trials (246 participants) reported quantitative sensory testing. The eligible single trials involving acetylcysteine (14 participants), diethyldithiocarbamate (195 participants), oxcarbazepine (32 participants), and retinoic acid (92 participants) did not perform quantitative sensory testing. In all, this review includes data from 2906 participants. However, only seven trials reported data for the primary outcome measure of this review, (quantitative sensory testing) and only nine trials reported our objective secondary measure, nerve conduction test results. Additionally, methodological heterogeneity precluded pooling of the results in most cases. Nonetheless, a larger number of trials reported the results of secondary (non-quantitative and subjective) measures such as the National Cancer Institute Common Toxicity Criteria (NCI-CTC) for neuropathy (15 trials), and these results we pooled and reported as meta-analysis. Amifostine showed a significantly reduced risk of developing neurotoxicity NCI-CTC (or equivalent) ≥ 2 compared to placebo (RR 0.26, 95% CI 0.11 to 0.61). Glutathione was also efficacious with an RR of 0.29 (95% CI 0.10 to 0.85). In three vitamin E studies subjective measures not suitable for combination in meta analysis each favoured vitamin E. For other interventions the qualitative toxicity measures were either negative (N-acetyl cysteine, Ca/Mg, DDTC and retinoic acid) or not evaluated (oxcarbazepine and Org 2766).Adverse events were infrequent or not reported for most interventions. Amifostine was associated with transient hypotension in 8% to 62% of participants, retinoic acid with hypocalcaemia in 11%, and approximately 20% of participantss withdrew from treatment with DDTC because of toxicity. At present, the data are insufficient to conclude that any of the purported chemoprotective agents (acetylcysteine, amifostine, calcium and magnesium, diethyldithiocarbamate, glutathione, Org 2766, oxcarbazepine, retinoic acid, or vitamin E) prevent or limit the neurotoxicity of platin drugs among human patients, as determined using quantitative, objective measures of neuropathy. Amifostine, calcium and magnesium, glutathione, and vitamin E showed modest but promising (borderline statistically significant) results favouring their ability to reduce the neurotoxicity of cisplatin and related chemotherapies, as measured using secondary, non-quantitative and subjective measures such as the NCI-CTC neuropathy grading scale. Among these interventions, the efficacy of only vitamin E was evaluated using quantitative nerve conduction studies; the results were negative and did not support the positive findings based on the qualitative measures. In summary, the present studies are limited by the small number of participants receiving any particular agent, a lack of objective measures of neuropathy, and differing results among similar trials, which make it impossible to conclude that any of the neuroprotective agents tested prevent or limit the neurotoxicity of platinum drugs.
2012-01-01
Background Clinicians frequently rely on subjective categorization of impairments in mobility, strength, and endurance for clinical decision-making; however, these assessments are often unreliable and lack sensitivity to change. The objective of this study was to determine the inter-rater reliability, minimum detectable change (MDC), and group differences in quantitative cervicothoracic measures for individuals with and without chronic neck pain (NP). Methods Nineteen individuals with NP and 20 healthy controls participated in this case control study. Two physical therapists performed a 30-minute examination on separate days. A handheld dynamometer, gravity inclinometer, ruler, and stopwatch were used to quantify cervical range of motion (ROM), cervical muscle strength and endurance, and scapulothoracic muscle length and strength, respectively. Results Intraclass correlation coefficients for inter-rater reliability were significantly greater than zero for most impairment measures, with point estimates ranging from 0.45 to 0.93. The NP group exhibited reduced cervical ROM (P ≤ 0.012) and muscle strength (P ≤ 0.038) in most movement directions, reduced cervical extensor endurance (P = 0.029), and reduced rhomboid and middle trapezius muscle strength (P ≤ 0.049). Conclusions Results demonstrate the feasibility of obtaining objective cervicothoracic impairment measures with acceptable inter-rater agreement across time. The clinical utility of these measures is supported by evidence of impaired mobility, strength, and endurance among patients with NP, with corresponding MDC values that can help establish benchmarks for clinically significant change. PMID:23114092
What information on measurement uncertainty should be communicated to clinicians, and how?
Plebani, Mario; Sciacovelli, Laura; Bernardi, Daniela; Aita, Ada; Antonelli, Giorgia; Padoan, Andrea
2018-02-02
The communication of laboratory results to physicians and the quality of reports represent fundamental requirements of the post-analytical phase in order to assure the right interpretation and utilization of laboratory information. Accordingly, the International Standard for clinical laboratories accreditation (ISO 15189) requires that "laboratory reports shall include the information necessary for the interpretation of the examination results". Measurement uncertainty (MU) is an inherent property of any quantitative measurement result which express the lack of knowledge of the true value and quantify the uncertainty of a result, incorporating the factors known to influence it. Even if the MU is not included in the report attributes of ISO 15189 and cannot be considered a post-analytical requirement, it is suggested as an information which should facilitate an appropriate interpretation of quantitative results (quantity values). Therefore, MU has two intended uses: for laboratory professionals, it gives information about the quality of measurements, providing evidence of the compliance with analytical performance characteristics; for physicians (and patients) it may help in interpretation of measurement results, especially when values are compared with reference intervals or clinical decision limits, providing objective information. Here we describe the way that MU should be added to laboratory reports in order to facilitate the interpretation of laboratory results and connecting efforts performed within laboratory to provide more accurate and reliable results with a more objective tool for their interpretation by physicians. Copyright © 2018 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Automatic trajectory measurement of large numbers of crowded objects
NASA Astrophysics Data System (ADS)
Li, Hui; Liu, Ye; Chen, Yan Qiu
2013-06-01
Complex motion patterns of natural systems, such as fish schools, bird flocks, and cell groups, have attracted great attention from scientists for years. Trajectory measurement of individuals is vital for quantitative and high-throughput study of their collective behaviors. However, such data are rare mainly due to the challenges of detection and tracking of large numbers of objects with similar visual features and frequent occlusions. We present an automatic and effective framework to measure trajectories of large numbers of crowded oval-shaped objects, such as fish and cells. We first use a novel dual ellipse locator to detect the coarse position of each individual and then propose a variance minimization active contour method to obtain the optimal segmentation results. For tracking, cost matrix of assignment between consecutive frames is trainable via a random forest classifier with many spatial, texture, and shape features. The optimal trajectories are found for the whole image sequence by solving two linear assignment problems. We evaluate the proposed method on many challenging data sets.
Descriptive quantitative analysis of hallux abductovalgus transverse plane radiographic parameters.
Meyr, Andrew J; Myers, Adam; Pontious, Jane
2014-01-01
Although the transverse plane radiographic parameters of the first intermetatarsal angle (IMA), hallux abductus angle (HAA), and the metatarsal-sesamoid position (MSP) form the basis of preoperative procedure selection and postoperative surgical evaluation of the hallux abductovalgus deformity, the so-called normal values of these measurements have not been well established. The objectives of the present study were to (1) evaluate the descriptive statistics of the first IMA, HAA, and MSP from a large patient population and (2) to determine an objective basis for defining "normal" versus "abnormal" measurements. Anteroposterior foot radiographs from 373 consecutive patients without a history of previous foot and ankle surgery and/or trauma were evaluated for the measurements of the first IMA, HAA, and MSP. The results revealed a mean measurement of 9.93°, 17.59°, and position 3.63 for the first IMA, HAA, and MSP, respectively. An advanced descriptive analysis demonstrated data characteristics of both parametric and nonparametric distributions. Furthermore, clear differentiations in deformity progression were appreciated when the variables were graphically depicted against each other. This could represent a quantitative basis for defining "normal" versus "abnormal" values. From the results of the present study, we have concluded that these radiographic parameters can be more conservatively reported and analyzed using nonparametric descriptive and comparative statistics within medical studies and that the combination of a first IMA, HAA, and MSP at or greater than approximately 10°, 18°, and position 4, respectively, appears to be an objective "tipping point" in terms of deformity progression and might represent an upper limit of acceptable in terms of surgical deformity correction. Copyright © 2014 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Pepper, Stephen V.
1995-01-01
A grazing angle objective on an infrared microspectrometer is studied for quantitative spectroscopy by considering the angular dependence of the incident intensity within the objective's angular aperture. The assumption that there is no angular dependence is tested by comparing the experimental reflectance of Si and KBr surfaces with the reflectance calculated by integrating the Fresnel reflection coefficient over the angular aperture under this assumption. Good agreement was found, indicating that the specular reflectance of surfaces can straight-forwardly be quantitatively integrated over the angular aperture without considering non-uniform incident intensity. This quantitative approach is applied to the thickness determination of dipcoated Krytox on gold. The infrared optical constants of both materials are known, allowing the integration to be carried out. The thickness obtained is in fair agreement with the value determined by ellipsometry in the visible. Therefore, this paper illustrates a method for more quantitative use of a grazing angle objective for infrared reflectance microspectroscopy.
Mordini, Federico E; Haddad, Tariq; Hsu, Li-Yueh; Kellman, Peter; Lowrey, Tracy B; Aletras, Anthony H; Bandettini, W Patricia; Arai, Andrew E
2014-01-01
This study's primary objective was to determine the sensitivity, specificity, and accuracy of fully quantitative stress perfusion cardiac magnetic resonance (CMR) versus a reference standard of quantitative coronary angiography. We hypothesized that fully quantitative analysis of stress perfusion CMR would have high diagnostic accuracy for identifying significant coronary artery stenosis and exceed the accuracy of semiquantitative measures of perfusion and qualitative interpretation. Relatively few studies apply fully quantitative CMR perfusion measures to patients with coronary disease and comparisons to semiquantitative and qualitative methods are limited. Dual bolus dipyridamole stress perfusion CMR exams were performed in 67 patients with clinical indications for assessment of myocardial ischemia. Stress perfusion images alone were analyzed with a fully quantitative perfusion (QP) method and 3 semiquantitative methods including contrast enhancement ratio, upslope index, and upslope integral. Comprehensive exams (cine imaging, stress/rest perfusion, late gadolinium enhancement) were analyzed qualitatively with 2 methods including the Duke algorithm and standard clinical interpretation. A 70% or greater stenosis by quantitative coronary angiography was considered abnormal. The optimum diagnostic threshold for QP determined by receiver-operating characteristic curve occurred when endocardial flow decreased to <50% of mean epicardial flow, which yielded a sensitivity of 87% and specificity of 93%. The area under the curve for QP was 92%, which was superior to semiquantitative methods: contrast enhancement ratio: 78%; upslope index: 82%; and upslope integral: 75% (p = 0.011, p = 0.019, p = 0.004 vs. QP, respectively). Area under the curve for QP was also superior to qualitative methods: Duke algorithm: 70%; and clinical interpretation: 78% (p < 0.001 and p < 0.001 vs. QP, respectively). Fully quantitative stress perfusion CMR has high diagnostic accuracy for detecting obstructive coronary artery disease. QP outperforms semiquantitative measures of perfusion and qualitative methods that incorporate a combination of cine, perfusion, and late gadolinium enhancement imaging. These findings suggest a potential clinical role for quantitative stress perfusion CMR. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Van Lierde, Kristiane M; De Bodt, Marc; Dhaeseleer, Evelien; Wuyts, Floris; Claeys, Sofie
2010-05-01
The purpose of the present study is to measure the effectiveness of two treatment techniques--vocalization with abdominal breath support and manual circumlaryngeal therapy (MCT)--in patients with muscle tension dysphonia (MTD). The vocal quality before and after the two treatment techniques was measured by means of the dysphonia severity index (DSI), which is designed to establish an objective and quantitative correlate of the perceived vocal quality. The DSI is based on the weighted combination of the following set of voice measurements: maximum phonation time (MPT), highest frequency, lowest intensity, and jitter. The repeated-measures analysis of variance (ANOVA) revealed a significant difference between the objective overall vocal quality before and after MCT. No significant differences were measured between the objective overall vocal quality before and after vocalization with abdominal breath support. This study showed evidence that MCT is an effective treatment technique for patients with elevated laryngeal position, increased laryngeal muscle tension, and MTD. The precise way in which MCT has an effect on vocal quality has not been addressed in this experiment, but merits study. Further research into this topic could focus on electromyography (EMG) recordings in relation to vocal improvements with larger sample of subjects. (c) 2010 The Voice Foundation. Published by Mosby, Inc. All rights reserved.
Raina, Abhay; Hennessy, Ricky; Rains, Michael; Allred, James; Hirshburg, Jason M; Diven, Dayna; Markey, Mia K.
2016-01-01
Background Traditional metrics for evaluating the severity of psoriasis are subjective, which complicates efforts to measure effective treatments in clinical trials. Methods We collected images of psoriasis plaques and calibrated the coloration of the images according to an included color card. Features were extracted from the images and used to train a linear discriminant analysis classifier with cross-validation to automatically classify the degree of erythema. The results were tested against numerical scores obtained by a panel of dermatologists using a standard rating system. Results Quantitative measures of erythema based on the digital color images showed good agreement with subjective assessment of erythema severity (κ = 0.4203). The color calibration process improved the agreement from κ = 0.2364 to κ = 0.4203. Conclusions We propose a method for the objective measurement of the psoriasis severity parameter of erythema and show that the calibration process improved the results. PMID:26517973
Sandhu, Rupninder; Chollet-Hinton, Lynn; Kirk, Erin L; Midkiff, Bentley; Troester, Melissa A
2016-02-01
Complete age-related regression of mammary epithelium, often termed postmenopausal involution, is associated with decreased breast cancer risk. However, most studies have qualitatively assessed involution. We quantitatively analyzed epithelium, stroma, and adipose tissue from histologically normal breast tissue of 454 patients in the Normal Breast Study. High-resolution digital images of normal breast hematoxylin and eosin-stained slides were partitioned into epithelium, adipose tissue, and nonfatty stroma. Percentage area and nuclei per unit area (nuclear density) were calculated for each component. Quantitative data were evaluated in association with age using linear regression and cubic spline models. Stromal area decreased (P = 0.0002), and adipose tissue area increased (P < 0.0001), with an approximate 0.7% change in area for each component, until age 55 years when these area measures reached a steady state. Although epithelial area did not show linear changes with age, epithelial nuclear density decreased linearly beginning in the third decade of life. No significant age-related trends were observed for stromal or adipose nuclear density. Digital image analysis offers a high-throughput method for quantitatively measuring tissue morphometry and for objectively assessing age-related changes in adipose tissue, stroma, and epithelium. Epithelial nuclear density is a quantitative measure of age-related breast involution that begins to decline in the early premenopausal period. Copyright © 2015 Elsevier Inc. All rights reserved.
Haralanov, Svetlozar; Haralanova, Evelina; Milushev, Emil; Shkodrova, Diana; Claussen, Claus-Frenz
2018-04-17
Psychiatry is the only medical specialty that lacks clinically applicable biomarkers for objective evaluation of the existing pathology at a single-patient level. On the basis of an original translational equilibriometric method for evaluation of movement patterns, we have introduced in the everyday clinical practice of psychiatry an easy-to-perform computerized objective quantification of the individual locomotor behaviour during execution of the Unterberger stepping test. For the last 20 years, we have gradually collected a large database of more than 1000 schizophrenic patients, their relatives, and matched psychiatric, neurological, and healthy controls via cross-sectional and longitudinal investigations. Comparative analyses revealed transdiagnostic locomotor similarities among schizophrenic patients, high-risk schizotaxic individuals, and neurological patients with multiple sclerosis and cerebellar ataxia, thus suggesting common underlying brain mechanisms. In parallel, intradiagnostic dissimilarities were revealed, which allow to separate out subclinical locomotor subgroups within the diagnostic categories. Prototypical qualitative (dysmetric and ataxic) locomotor abnormalities in schizophrenic patients were differentiated from 2 atypical quantitative ones, manifested as either hypolocomotion or hyperlocomotion. Theoretical analyses suggested that these 3 subtypes of locomotor abnormalities could be conceived as objectively measurable biomarkers of 3 schizophrenic subgroups with dissimilar brain mechanisms, which require different treatment strategies. Analogies with the prominent role of locomotor measures in some well-known animal models of mental disorders advocate for a promising objective translational research in the so far over-subjective field of psychiatry. Distinctions among prototypical, atypical, and diagnostic biomarkers, as well as between neuromotor and psychomotor locomotor abnormalities, are discussed. Conclusions are drawn about the translational and clinical implications of the new approach and its future perspectives. © 2018 John Wiley & Sons, Ltd.
Crouch, Edmund A; Labarre, David; Golden, Neal J; Kause, Janell R; Dearfield, Kerry L
2009-10-01
The U.S. Department of Agriculture, Food Safety and Inspection Service is exploring quantitative risk assessment methodologies to incorporate the use of the Codex Alimentarius' newly adopted risk management metrics (e.g., food safety objectives and performance objectives). It is suggested that use of these metrics would more closely tie the results of quantitative microbial risk assessments (QMRAs) to public health outcomes. By estimating the food safety objective (the maximum frequency and/or concentration of a hazard in a food at the time of consumption) and the performance objective (the maximum frequency and/or concentration of a hazard in a food at a specified step in the food chain before the time of consumption), risk managers will have a better understanding of the appropriate level of protection (ALOP) from microbial hazards for public health protection. We here demonstrate a general methodology that allows identification of an ALOP and evaluation of corresponding metrics at appropriate points in the food chain. It requires a two-dimensional probabilistic risk assessment, the example used being the Monte Carlo QMRA for Clostridium perfringens in ready-to eat and partially cooked meat and poultry products, with minor modifications to evaluate and abstract required measures. For demonstration purposes, the QMRA model was applied specifically to hot dogs produced and consumed in the United States. Evaluation of the cumulative uncertainty distribution for illness rate allows a specification of an ALOP that, with defined confidence, corresponds to current industry practices.
2017-01-01
Background The Information Assessment Method (IAM) allows clinicians to report the cognitive impact, clinical relevance, intention to use, and expected patient health benefits associated with clinical information received by email. More than 15,000 Canadian physicians and pharmacists use the IAM in continuing education programs. In addition, information providers can use IAM ratings and feedback comments from clinicians to improve their products. Objective Our general objective was to validate the IAM questionnaire for the delivery of educational material (ecological and logical content validity). Our specific objectives were to measure the relevance and evaluate the representativeness of IAM items for assessing information received by email. Methods A 3-part mixed methods study was conducted (convergent design). In part 1 (quantitative longitudinal study), the relevance of IAM items was measured. Participants were 5596 physician members of the Canadian Medical Association who used the IAM. A total of 234,196 ratings were collected in 2012. The relevance of IAM items with respect to their main construct was calculated using descriptive statistics (relevance ratio R). In part 2 (qualitative descriptive study), the representativeness of IAM items was evaluated. A total of 15 family physicians completed semistructured face-to-face interviews. For each construct, we evaluated the representativeness of IAM items using a deductive-inductive thematic qualitative data analysis. In part 3 (mixing quantitative and qualitative parts), results from quantitative and qualitative analyses were reviewed, juxtaposed in a table, discussed with experts, and integrated. Thus, our final results are derived from the views of users (ecological content validation) and experts (logical content validation). Results Of the 23 IAM items, 21 were validated for content, while 2 were removed. In part 1 (quantitative results), 21 items were deemed relevant, while 2 items were deemed not relevant (R=4.86% [N=234,196] and R=3.04% [n=45,394], respectively). In part 2 (qualitative results), 22 items were deemed representative, while 1 item was not representative. In part 3 (mixing quantitative and qualitative results), the content validity of 21 items was confirmed, and the 2 nonrelevant items were excluded. A fully validated version was generated (IAM-v2014). Conclusions This study produced a content validated IAM questionnaire that is used by clinicians and information providers to assess the clinical information delivered in continuing education programs. PMID:28292738
Photogrammetry and Its Potential Application in Medical Science on the Basis of Selected Literature.
Ey-Chmielewska, Halina; Chruściel-Nogalska, Małgorzata; Frączak, Bogumiła
2015-01-01
Photogrammetry is a science and technology which allows quantitative traits to be determined, i.e. the reproduction of object shapes, sizes and positions on the basis of their photographs. Images can be recorded in a wide range of wavelengths of electromagnetic radiation. The most common is the visible range, but near- and medium-infrared, thermal infrared, microwaves and X-rays are also used. The importance of photogrammetry has increased with the development of computer software. Digital image processing and real-time measurement have allowed the automation of many complex manufacturing processes. Photogrammetry has been widely used in many areas, especially in geodesy and cartography. In medicine, this method is used for measuring the widely understood human body for the planning and monitoring of therapeutic treatment and its results. Digital images obtained from optical-electronic sensors combined with computer technology have the potential of objective measurement thanks to the remote nature of the data acquisition, with no contact with the measured object and with high accuracy. Photogrammetry also allows the adoption of common standards for archiving and processing patient data.
NASA Astrophysics Data System (ADS)
Apperl, B.; Pulido-Velazquez, M.; Andreu, J.; Llopis-Albert, C.
2012-04-01
The implementation of the EU Water Framework Directive, with consideration of environmental, economic and social objectives, claims for participatory water resource management methods. To deal with different conflicting objectives it is necessary to apply a method for clarifying stakeholders' positions (identifying values and opinions of stakeholders, and quantifying their valuations), improving transparency with respect to outcomes of alternatives, and moving the discussion from alternatives towards fundamental objectives (value-thinking approach) and valuing trade-offs, facilitating negotiation. The method allows the incorporation of stakeholders in the planning process, which should guarantee a higher acceptance of the policies to be implemented. This research has been conducted in the Mancha Oriental groundwater system Spain, subject to an intensive use of groundwater for irrigation. The main goals according to the WFD are: a good qualitative and quantitative status of the aquifer and a good quantitative and ecological status of related surface water resources (mainly the Jucar river and dependent ecosystems). The aim is to analyze the contribution of the MAVT for conflict resolution and a sustainable groundwater management, involving the stakeholders in the valuation process. A complex set of objectives and attributes has been defined. The alternatives have been evaluated according to the compliance of ecological, economic and social interests. Results show that the acceptation of alternatives depends strongly on the combination of measures and the implementation status. A high conflict potential is expected from alternatives consisting of one unique measure. Uncertainties of the results are notable, but do not influence heavily on the alternative ranking. Different future scenarios also influence on the preference of alternatives. For instance, an expected reduction of future groundwater resources by climate change increases the conflict potential, with two observed reactions: acceptance of more rigorous measures, on one hand, and a tendency to soft measures with the same cost, as a reaction to the decreased effectiveness of the alternatives. The implementation of the method to a very complex case study, with many conflicting objectives and alternatives and uncertain outcomes, including future scenarios (climate change) illustrate the potential of the method for supporting management decisions.
Keizer, D; van Wijhe, M; Post, W J; Uges, D R A; Wierda, J M K H
2007-08-01
Allodynia is a common and disabling symptom in many patients with neuropathic pain. Whereas quantification of pain mostly depends on subjective pain reports, allodynia can also be measured objectively with quantitative sensory testing. In this pilot study, we investigated the clinical relevance of quantitative sensory testing with Von Frey monofilaments in patients with allodynia as a consequence of a neuropathic pain syndrome, by means of correlating subjective pain scores with pain thresholds obtained with quantitative sensory testing. During a 4-week trial, we administered a cannabis extract to 17 patients with allodynia. We quantified the severity of the allodynia with Von Frey monofilaments before, during and after the patients finished the trial. We also asked the patients to rate their pain on a numeric rating scale at these three moments. We found that most of the effect of the cannabis occurred in the last 2 weeks of the trial. In this phase, we observed that the pain thresholds, as measured with Von Frey monofilaments, were inversely correlated with a decrease of the perceived pain intensity. These preliminary findings indicate clinical relevance of quantitative sensory testing with Von Frey monofilaments in the quantification of allodynia in patients with neuropathic pain, although confirmation of our data is still required in further studies to position this method of quantitative sensory testing as a valuable tool, for example, in the evaluation of therapeutic interventions for neuropathic pain.
Using measurement uncertainty in decision-making and conformity assessment
NASA Astrophysics Data System (ADS)
Pendrill, L. R.
2014-08-01
Measurements often provide an objective basis for making decisions, perhaps when assessing whether a product conforms to requirements or whether one set of measurements differs significantly from another. There is increasing appreciation of the need to account for the role of measurement uncertainty when making decisions, so that a ‘fit-for-purpose’ level of measurement effort can be set prior to performing a given task. Better mutual understanding between the metrologist and those ordering such tasks about the significance and limitations of the measurements when making decisions of conformance will be especially useful. Decisions of conformity are, however, currently made in many important application areas, such as when addressing the grand challenges (energy, health, etc), without a clear and harmonized basis for sharing the risks that arise from measurement uncertainty between the consumer, supplier and third parties. In reviewing, in this paper, the state of the art of the use of uncertainty evaluation in conformity assessment and decision-making, two aspects in particular—the handling of qualitative observations and of impact—are considered key to bringing more order to the present diverse rules of thumb of more or less arbitrary limits on measurement uncertainty and percentage risk in the field. (i) Decisions of conformity can be made on a more or less quantitative basis—referred in statistical acceptance sampling as by ‘variable’ or by ‘attribute’ (i.e. go/no-go decisions)—depending on the resources available or indeed whether a full quantitative judgment is needed or not. There is, therefore, an intimate relation between decision-making, relating objects to each other in terms of comparative or merely qualitative concepts, and nominal and ordinal properties. (ii) Adding measures of impact, such as the costs of incorrect decisions, can give more objective and more readily appreciated bases for decisions for all parties concerned. Such costs are associated with a variety of consequences, such as unnecessary re-manufacturing by the supplier as well as various consequences for the customer, arising from incorrect measures of quantity, poor product performance and so on.
A measure of the denseness of a phylogenetic network. [by sequenced proteins from extant species
NASA Technical Reports Server (NTRS)
Holmquist, R.
1978-01-01
An objective measure of phylogenetic denseness is developed to examine various phylogenetic criteria: alpha- and beta-hemoglobin, myoglobin, cytochrome c, and the parvalbumin family. Attention is given to the number of nucleotide replacements separating homologous sequences, and to the topology of the network (in other words, to the qualitative nature of the network as defined by how closely the studied species are related). Applications include quantitative comparisons of species origin, relation, and rates of evolution.
Getting started on metrics - Jet Propulsion Laboratory productivity and quality
NASA Technical Reports Server (NTRS)
Bush, M. W.
1990-01-01
A review is presented to describe the effort and difficulties of reconstructing fifteen years of JPL software history. In 1987 the collection and analysis of project data were started with the objective of creating laboratory-wide measures of quality and productivity for software development. As a result of this two-year Software Product Assurance metrics study, a rough measurement foundation for software productivity and software quality, and an order-of-magnitude quantitative baseline for software systems and subsystems are now available.
Quantitative Analysis of TDLUs using Adaptive Morphological Shape Techniques
Rosebrock, Adrian; Caban, Jesus J.; Figueroa, Jonine; Gierach, Gretchen; Linville, Laura; Hewitt, Stephen; Sherman, Mark
2014-01-01
Within the complex branching system of the breast, terminal duct lobular units (TDLUs) are the anatomical location where most cancer originates. With aging, TDLUs undergo physiological involution, reflected in a loss of structural components (acini) and a reduction in total number. Data suggest that women undergoing benign breast biopsies that do not show age appropriate involution are at increased risk of developing breast cancer. To date, TDLU assessments have generally been made by qualitative visual assessment, rather than by objective quantitative analysis. This paper introduces a technique to automatically estimate a set of quantitative measurements and use those variables to more objectively describe and classify TDLUs. To validate the accuracy of our system, we compared the computer-based morphological properties of 51 TDLUs in breast tissues donated for research by volunteers in the Susan G. Komen Tissue Bank and compared results to those of a pathologist, demonstrating 70% agreement. Secondly, in order to show that our method is applicable to a wider range of datasets, we analyzed 52 TDLUs from biopsies performed for clinical indications in the National Cancer Institute’s Breast Radiology Evaluation and Study of Tissues (BREAST) Stamp Project and obtained 82% correlation with visual assessment. Lastly, we demonstrate the ability to uncover novel measures when researching the structural properties of the acini by applying machine learning and clustering techniques. Through our study we found that while the number of acini per TDLU increases exponentially with the TDLU diameter, the average elongation and roundness remain constant. PMID:25722829
A Workstation for Interactive Display and Quantitative Analysis of 3-D and 4-D Biomedical Images
Robb, R.A.; Heffeman, P.B.; Camp, J.J.; Hanson, D.P.
1986-01-01
The capability to extract objective and quantitatively accurate information from 3-D radiographic biomedical images has not kept pace with the capabilities to produce the images themselves. This is rather an ironic paradox, since on the one hand the new 3-D and 4-D imaging capabilities promise significant potential for providing greater specificity and sensitivity (i.e., precise objective discrimination and accurate quantitative measurement of body tissue characteristics and function) in clinical diagnostic and basic investigative imaging procedures than ever possible before, but on the other hand, the momentous advances in computer and associated electronic imaging technology which have made these 3-D imaging capabilities possible have not been concomitantly developed for full exploitation of these capabilities. Therefore, we have developed a powerful new microcomputer-based system which permits detailed investigations and evaluation of 3-D and 4-D (dynamic 3-D) biomedical images. The system comprises a special workstation to which all the information in a large 3-D image data base is accessible for rapid display, manipulation, and measurement. The system provides important capabilities for simultaneously representing and analyzing both structural and functional data and their relationships in various organs of the body. This paper provides a detailed description of this system, as well as some of the rationale, background, theoretical concepts, and practical considerations related to system implementation. ImagesFigure 5Figure 7Figure 8Figure 9Figure 10Figure 11Figure 12Figure 13Figure 14Figure 15Figure 16
Rink, Cameron L; Wernke, Matthew M; Powell, Heather M; Tornero, Mark; Gnyawali, Surya C; Schroeder, Ryan M; Kim, Jayne Y; Denune, Jeffrey A; Albury, Alexander W; Gordillo, Gayle M; Colvin, James M; Sen, Chandan K
2017-07-01
Objective: (1) Develop a standardized approach to quantitatively measure residual limb skin health. (2) Report reference residual limb skin health values in people with transtibial and transfemoral amputation. Approach: Residual limb health outcomes in individuals with transtibial ( n = 5) and transfemoral ( n = 5) amputation were compared to able-limb controls ( n = 4) using noninvasive imaging (hyperspectral imaging and laser speckle flowmetry) and probe-based approaches (laser doppler flowmetry, transcutaneous oxygen, transepidermal water loss, surface electrical capacitance). Results: A standardized methodology that employs noninvasive imaging and probe-based approaches to measure residual limb skin health are described. Compared to able-limb controls, individuals with transtibial and transfemoral amputation have significantly lower transcutaneous oxygen tension, higher transepidermal water loss, and higher surface electrical capacitance in the residual limb. Innovation: Residual limb health as a critical component of prosthesis rehabilitation for individuals with lower limb amputation is understudied in part due to a lack of clinical measures. Here, we present a standardized approach to measure residual limb health in people with transtibial and transfemoral amputation. Conclusion: Technology advances in noninvasive imaging and probe-based measures are leveraged to develop a standardized approach to quantitatively measure residual limb health in individuals with lower limb loss. Compared to able-limb controls, resting residual limb physiology in people that have had transfemoral or transtibial amputation is characterized by lower transcutaneous oxygen tension and poorer skin barrier function.
Sommerville, Jessica A; Bernstein, Daniel M; Meltzoff, Andrew N
2013-01-01
A novel task, using a continuous spatial layout, was created to investigate the degree to which (in centimeters) 3-year-old children's (N = 63), 5-year-old children's (N = 60), and adults' (N = 60) own privileged knowledge of the location of an object biased their representation of a protagonist's false belief about the object's location. At all ages, participants' knowledge of the object's actual location biased their search estimates, independent of the attentional or memory demands of the task. Children's degree of bias correlated with their performance on a classic change-of-location false belief task, controlling for age. This task is a novel tool for providing a quantitative measurement of the degree to which self-knowledge can bias estimates of others' beliefs. © 2013 The Authors. Child Development © 2013 Society for Research in Child Development, Inc.
Calibrating excitation light fluxes for quantitative light microscopy in cell biology
Grünwald, David; Shenoy, Shailesh M; Burke, Sean; Singer, Robert H
2011-01-01
Power output of light bulbs changes over time and the total energy delivered will depend on the optical beam path of the microscope, filter sets and objectives used, thus making comparison between experiments performed on different microscopes complicated. Using a thermocoupled power meter, it is possible to measure the exact amount of light applied to a specimen in fluorescence microscopy, regardless of the light source, as the light power measured can be translated into a power density at the sample. This widely used and simple tool forms the basis of a new degree of calibration precision and comparability of results among experiments and setups. Here we describe an easy-to-follow protocol that allows researchers to precisely estimate excitation intensities in the object plane, using commercially available opto-mechanical components. The total duration of this protocol for one objective and six filter cubes is 75 min including start-up time for the lamp. PMID:18974739
The book availability study as an objective measure of performance in a health sciences library.
Kolner, S J; Welch, E C
1985-01-01
In its search for an objective overall diagnostic evaluation, the University of Illinois Library of the Health Sciences' Program Evaluation Committee selected a book availability measure; it is easy to administer and repeat, results are reproducible, and comparable data exist for other academic and health sciences libraries. The study followed the standard methodology in the literature with minor modifications. Patrons searching for particular books were asked to record item(s) needed and the outcome of the search. Library staff members then determined the reasons for failures in obtaining desired items. The results of the study are five performance scores. The first four represent the percentage probability of a library's operating with ideal effectiveness; the last provides an overall performance score. The scores of the Library of the Health Sciences demonstrated no unusual availability problems. The study was easy to implement and provided meaningful, quantitative, and objective data. PMID:3995202
Absolute Scale Quantitative Off-Axis Electron Holography at Atomic Resolution
NASA Astrophysics Data System (ADS)
Winkler, Florian; Barthel, Juri; Tavabi, Amir H.; Borghardt, Sven; Kardynal, Beata E.; Dunin-Borkowski, Rafal E.
2018-04-01
An absolute scale match between experiment and simulation in atomic-resolution off-axis electron holography is demonstrated, with unknown experimental parameters determined directly from the recorded electron wave function using an automated numerical algorithm. We show that the local thickness and tilt of a pristine thin WSe2 flake can be measured uniquely, whereas some electron optical aberrations cannot be determined unambiguously for a periodic object. The ability to determine local specimen and imaging parameters directly from electron wave functions is of great importance for quantitative studies of electrostatic potentials in nanoscale materials, in particular when performing in situ experiments and considering that aberrations change over time.
Andrzejak, Ralph G.; Hauf, Martinus; Pollo, Claudio; Müller, Markus; Weisstanner, Christian; Wiest, Roland; Schindler, Kaspar
2015-01-01
Background Epilepsy surgery is a potentially curative treatment option for pharmacoresistent patients. If non-invasive methods alone do not allow to delineate the epileptogenic brain areas the surgical candidates undergo long-term monitoring with intracranial EEG. Visual EEG analysis is then used to identify the seizure onset zone for targeted resection as a standard procedure. Methods Despite of its great potential to assess the epileptogenicty of brain tissue, quantitative EEG analysis has not yet found its way into routine clinical practice. To demonstrate that quantitative EEG may yield clinically highly relevant information we retrospectively investigated how post-operative seizure control is associated with four selected EEG measures evaluated in the resected brain tissue and the seizure onset zone. Importantly, the exact spatial location of the intracranial electrodes was determined by coregistration of pre-operative MRI and post-implantation CT and coregistration with post-resection MRI was used to delineate the extent of tissue resection. Using data-driven thresholding, quantitative EEG results were separated into normally contributing and salient channels. Results In patients with favorable post-surgical seizure control a significantly larger fraction of salient channels in three of the four quantitative EEG measures was resected than in patients with unfavorable outcome in terms of seizure control (median over the whole peri-ictal recordings). The same statistics revealed no association with post-operative seizure control when EEG channels contributing to the seizure onset zone were studied. Conclusions We conclude that quantitative EEG measures provide clinically relevant and objective markers of target tissue, which may be used to optimize epilepsy surgery. The finding that differentiation between favorable and unfavorable outcome was better for the fraction of salient values in the resected brain tissue than in the seizure onset zone is consistent with growing evidence that spatially extended networks might be more relevant for seizure generation, evolution and termination than a single highly localized brain region (i.e. a “focus”) where seizures start. PMID:26513359
ERIC Educational Resources Information Center
Evans, Carolyn
2012-01-01
Although social stratification usually calls to mind the hierarchical ranking of individuals, sociology often broadly considers it the ranking of any social objects. The Treiman Socio-Economic Index (SEI), for example, provides a quantitative assessment of the hierarchical ranking of occupations. This dissertation considers the hierarchical…
ERIC Educational Resources Information Center
Abouelenein, Mahmoud S.
2012-01-01
The purpose of this quantitative, descriptive research study was to determine, through statistical analysis, any correlation between the perceived transformational leadership traits of CIOs at two-year community colleges in Kansas and measures of the job satisfaction among IT workers at those community colleges. The objectives of this research…
Complementary Curves of Descent
2012-11-16
a lemniscate of Bernoulli . Alternatively, the wires can be tracks down which round objects undergo a rolling race. The level of presentation is...A common mechanics demonstration consists of racing cars or balls down tracks of various shapes and qualitatively or quantitatively measuring the...problem), which is self complementary. A striking example is a straight wire whose complement is a lemniscate of Bernoulli . Alternatively the wires can
ERIC Educational Resources Information Center
Hume, C.; Salmon, J.; Ball, K.
2005-01-01
Environmental factors may have an important influence on children's physical activity, yet children's perspectives of their home and neighborhood environments have not been widely assessed. The aim of this study was to investigate children's perceptions of their environments, and to examine associations between these perceptions and objectively…
How America Pays for College, 2010. Sallie Mae's National Study of College Students and Parents
ERIC Educational Resources Information Center
Sallie Mae, Inc., 2010
2010-01-01
This report presents the findings of a quantitative survey research program that Gallup, Inc. conducted on behalf of Sallie Mae. The overall objective of the study was to determine how American families are paying for higher education. The study also measures public attitudes toward college and various topics related to funding college. To achieve…
Wang, Tao; He, Fuhong; Zhang, Anding; Gu, Lijuan; Wen, Yangmao; Jiang, Weiguo; Shao, Hongbo
2014-01-01
This paper took a subregion in a small watershed gully system at Beiyanzikou catchment of Qixia, China, as a study and, using object-orientated image analysis (OBIA), extracted shoulder line of gullies from high spatial resolution digital orthophoto map (DOM) aerial photographs. Next, it proposed an accuracy assessment method based on the adjacent distance between the boundary classified by remote sensing and points measured by RTK-GPS along the shoulder line of gullies. Finally, the original surface was fitted using linear regression in accordance with the elevation of two extracted edges of experimental gullies, named Gully 1 and Gully 2, and the erosion volume was calculated. The results indicate that OBIA can effectively extract information of gullies; average range difference between points field measured along the edge of gullies and classified boundary is 0.3166 m, with variance of 0.2116 m. The erosion area and volume of two gullies are 2141.6250 m(2), 5074.1790 m(3) and 1316.1250 m(2), 1591.5784 m(3), respectively. The results of the study provide a new method for the quantitative study of small gully erosion.
Surface plasmon resonance microscopy: achieving a quantitative optical response
Peterson, Alexander W.; Halter, Michael; Plant, Anne L.; Elliott, John T.
2016-01-01
Surface plasmon resonance (SPR) imaging allows real-time label-free imaging based on index of refraction, and changes in index of refraction at an interface. Optical parameter analysis is achieved by application of the Fresnel model to SPR data typically taken by an instrument in a prism based configuration. We carry out SPR imaging on a microscope by launching light into a sample, and collecting reflected light through a high numerical aperture microscope objective. The SPR microscope enables spatial resolution that approaches the diffraction limit, and has a dynamic range that allows detection of subnanometer to submicrometer changes in thickness of biological material at a surface. However, unambiguous quantitative interpretation of SPR changes using the microscope system could not be achieved using the Fresnel model because of polarization dependent attenuation and optical aberration that occurs in the high numerical aperture objective. To overcome this problem, we demonstrate a model to correct for polarization diattenuation and optical aberrations in the SPR data, and develop a procedure to calibrate reflectivity to index of refraction values. The calibration and correction strategy for quantitative analysis was validated by comparing the known indices of refraction of bulk materials with corrected SPR data interpreted with the Fresnel model. Subsequently, we applied our SPR microscopy method to evaluate the index of refraction for a series of polymer microspheres in aqueous media and validated the quality of the measurement with quantitative phase microscopy. PMID:27782542
An approach for quantitative image quality analysis for CT
NASA Astrophysics Data System (ADS)
Rahimi, Amir; Cochran, Joe; Mooney, Doug; Regensburger, Joe
2016-03-01
An objective and standardized approach to assess image quality of Compute Tomography (CT) systems is required in a wide variety of imaging processes to identify CT systems appropriate for a given application. We present an overview of the framework we have developed to help standardize and to objectively assess CT image quality for different models of CT scanners used for security applications. Within this framework, we have developed methods to quantitatively measure metrics that should correlate with feature identification, detection accuracy and precision, and image registration capabilities of CT machines and to identify strengths and weaknesses in different CT imaging technologies in transportation security. To that end we have designed, developed and constructed phantoms that allow for systematic and repeatable measurements of roughly 88 image quality metrics, representing modulation transfer function, noise equivalent quanta, noise power spectra, slice sensitivity profiles, streak artifacts, CT number uniformity, CT number consistency, object length accuracy, CT number path length consistency, and object registration. Furthermore, we have developed a sophisticated MATLAB based image analysis tool kit to analyze CT generated images of phantoms and report these metrics in a format that is standardized across the considered models of CT scanners, allowing for comparative image quality analysis within a CT model or between different CT models. In addition, we have developed a modified sparse principal component analysis (SPCA) method to generate a modified set of PCA components as compared to the standard principal component analysis (PCA) with sparse loadings in conjunction with Hotelling T2 statistical analysis method to compare, qualify, and detect faults in the tested systems.
McCord, Layne K; Scarfe, William C; Naylor, Rachel H; Scheetz, James P; Silveira, Anibal; Gillespie, Kevin R
2007-05-01
The objectives of this study were to compare the effect of JPEG 2000 compression of hand-wrist radiographs on observer image quality qualitative assessment and to compare with a software-derived quantitative image quality index. Fifteen hand-wrist radiographs were digitized and saved as TIFF and JPEG 2000 images at 4 levels of compression (20:1, 40:1, 60:1, and 80:1). The images, including rereads, were viewed by 13 orthodontic residents who determined the image quality rating on a scale of 1 to 5. A quantitative analysis was also performed by using a readily available software based on the human visual system (Image Quality Measure Computer Program, version 6.2, Mitre, Bedford, Mass). ANOVA was used to determine the optimal compression level (P < or =.05). When we compared subjective indexes, JPEG compression greater than 60:1 significantly reduced image quality. When we used quantitative indexes, the JPEG 2000 images had lower quality at all compression ratios compared with the original TIFF images. There was excellent correlation (R2 >0.92) between qualitative and quantitative indexes. Image Quality Measure indexes are more sensitive than subjective image quality assessments in quantifying image degradation with compression. There is potential for this software-based quantitative method in determining the optimal compression ratio for any image without the use of subjective raters.
Buchman, Aron S.; Leurgans, Sue E.; Weiss, Aner; VanderHorst, Veronique; Mirelman, Anat; Dawe, Robert; Barnes, Lisa L.; Wilson, Robert S.; Hausdorff, Jeffrey M.; Bennett, David A.
2014-01-01
Objective To provide objective measures which characterize mobility in older adults assessed in the community setting and to examine the extent to which these measures are associated with parkinsonian gait. Methods During conventional mobility testing in the community-setting, 351 ambulatory non-demented Memory and Aging Project participants wore a belt with a whole body sensor that recorded both acceleration and angular velocity in 3 directions. We used measures derived from these recordings to quantify 5 subtasks including a) walking, b) transition from sit to stand, c) transition from stand to sit, d) turning and e) standing posture. Parkinsonian gait and other mild parkinsonian signs were assessed with a modified version of the original Unified Parkinson’s Disease Rating Scale (mUPDRS). Results In a series of separate regression models which adjusted for age and sex, all 5 mobility subtask measures were associated with parkinsonian gait and accounted for 2% to 32% of its variance. When all 5 subtask measures were considered in a single model, backward elimination showed that measures of walking sit to stand and turning showed independent associations with parkinsonian gait and together accounted for more than 35% of its variance. Cross-validation using data from a 2nd group of 258 older adults showed similar results. In similar analyses, only walking was associated with bradykinesia and sway with tremor. Interpretation Quantitative mobility subtask measures vary in their associations with parkinsonian gait scores and other parkinsonian signs in older adults. Quantifying the different facets of mobility has the potential to facilitate the clinical characterization and understanding the biologic basis for impaired mobility in older adults. PMID:24465997
Liu, Chao; Cai, Hong-Xin; Zhang, Jian-Feng; Ma, Jian-Jun; Lu, Yin-Jiang; Fan, Shun-Wu
2014-03-01
The high-intensity zone (HIZ) on magnetic resonance imaging (MRI) has been studied for more than 20 years, but its diagnostic value in low back pain (LBP) is limited by the high incidence in asymptomatic subjects. Little effort has been made to improve the objective assessment of HIZ. To develop quantitative measurements for HIZ and estimate intra- and interobserver reliability and to clarify different signal intensity of HIZ in patients with or without LBP. A measurement reliability and prospective comparative study. A consecutive series of patients with LBP between June 2010 and May 2011 (group A) and a successive series of asymptomatic controls during the same period (group B). Incidence of HIZ; quantitative measures, including area of disc, area and signal intensity of HIZ, and magnetic resonance imaging index; and intraclass correlation coefficients (ICCs) for intra- and interobserver reliability. On the basis of HIZ criteria, a series of quantitative dimension and signal intensity measures was developed for assessing HIZ. Two experienced spine surgeons traced the region of interest twice within 4 weeks for assessment of the intra- and interobserver reliability. The quantitative variables were compared between groups A and B. There were 72 patients with LBP and 79 asymptomatic controls enrolling in this study. The prevalence of HIZ in group A and group B was 45.8% and 20.2%, respectively. The intraobserver agreement was excellent for the quantitative measures (ICC=0.838-0.977) as well as interobserver reliability (ICC=0.809-0.935). The mean signal of HIZ in group A was significantly brighter than in group B (57.55±14.04% vs. 45.61±7.22%, p=.000). There was no statistical difference of area of disc and HIZ between the two groups. The magnetic resonance imaging index was found to be higher in group A when compared with group B (3.94±1.71 vs. 3.06±1.50), but with a p value of .050. A series of quantitative measurements for HIZ was established and demonstrated excellent intra- and interobserver reliability. The signal intensity of HIZ was different in patients with or without LBP, and significant brighter signal was observed in symptomatic subjects. Copyright © 2014 Elsevier Inc. All rights reserved.
An Objective Measure of Interconnection Usage for High Levels of Wind Integration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yasuda, Yoh; Gomez-Lazaro, Emilio; Holttinen, Hannele
2014-11-13
This paper analyzes selected interconnectors in Europe using several evaluation factors; capacity factor, congested time, and congestion ratio. In a quantitative and objective evaluation, the authors propose to use publically available data on maximum net transmission capacity (NTC) levels during a single year to study congestion rates, realizing that the capacity factor depends upon the chosen capacity of the selected interconnector. This value will be referred to as 'the annual maximum transmission capacity (AMTC)', which gives a transparent and objective evaluation of interconnector usage based on the published grid data. While the method is general, its initial application is motivatedmore » by transfer of renewable energy.« less
Quantitative Market Research Regarding Funding of District 8 Construction Projects
DOT National Transportation Integrated Search
1995-05-01
The primary objective of this quantitative research is to provide information : for more effective decision making regarding the level of investment in various : transportation systems in District 8. : This objective was accomplished by establishing ...
NASA Astrophysics Data System (ADS)
Burton, Mike
2015-07-01
Magmatic degassing plays a key role in the dynamics of volcanic activity and also in contributing to the carbon, water and sulphur volatile cycles on Earth. Quantifying the fluxes of magmatic gas emitted from volcanoes is therefore of fundamental importance in Earth Science. This has been recognised since the beginning of modern volcanology, with initial measurements of volcanic SO2 flux being conducted with COrrelation SPECtrometer instruments from the late seventies. While COSPEC measurements continue today, they have been largely superseded by compact grating spectrometers, which were first introduced soon after the start of the 21st Century. Since 2006, a new approach to measuring fluxes has appeared, that of quantitative imaging of the SO2 slant column amount in a volcanic plume. Quantitative imaging of volcanic plumes has created new opportunities and challenges, and in April 2013 an ESF-funded MeMoVolC workshop was held, with the objectives of bringing together the main research groups, create a vibrant, interconnected, community, and examine the current state of the art of this new research frontier. This special issue of sixteen papers within the Journal of Volcanology and Geothermal Research is the direct result of the discussions, intercomparisons and results reported in that workshop. The papers report on the volcanological objectives of the plume imaging community, the state of the art of the technology used, intercomparisons, validations, novel methods and results from field applications. Quantitative plume imaging of volcanic plumes is achieved by using both infrared and ultraviolet wavelengths, with each wavelength offering a different trade-off of strengths and weaknesses, and the papers in this issue reflect this wavelength flexibility. Gas compositions can also be imaged, and this approach offers much promise in the quantification of chemical processing within plumes. One of the key advantages of the plume imaging approach is that we can achieve gas flux measurements at 1-10 Hz frequencies, allowing direct comparisons with geophysical measurements, opening new, interdisciplinary opportunities to deepen our understanding of volcanological processes. Several challenges still can be improved upon, such as dealing with light scattering issues and full automation of data processing. However, it is clear that quantitative plume imaging will have a lasting and profound impact on how volcano observatories operate, our ability to forecast and manage volcanic eruptions, our constraints of global volcanic gas fluxes, and on our understanding of magma dynamics.
Ha, Richard; Mema, Eralda; Guo, Xiaotao; Mango, Victoria; Desperito, Elise; Ha, Jason; Wynn, Ralph; Zhao, Binsheng
2016-04-01
The amount of fibroglandular tissue (FGT) has been linked to breast cancer risk based on mammographic density studies. Currently, the qualitative assessment of FGT on mammogram (MG) and magnetic resonance imaging (MRI) is prone to intra and inter-observer variability. The purpose of this study is to develop an objective quantitative FGT measurement tool for breast MRI that could provide significant clinical value. An IRB approved study was performed. Sixty breast MRI cases with qualitative assessment of mammographic breast density and MRI FGT were randomly selected for quantitative analysis from routine breast MRIs performed at our institution from 1/2013 to 12/2014. Blinded to the qualitative data, whole breast and FGT contours were delineated on T1-weighted pre contrast sagittal images using an in-house, proprietary segmentation algorithm which combines the region-based active contours and a level set approach. FGT (%) was calculated by: [segmented volume of FGT (mm(3))/(segmented volume of whole breast (mm(3))] ×100. Statistical correlation analysis was performed between quantified FGT (%) on MRI and qualitative assessments of mammographic breast density and MRI FGT. There was a significant positive correlation between quantitative MRI FGT assessment and qualitative MRI FGT (r=0.809, n=60, P<0.001) and mammographic density assessment (r=0.805, n=60, P<0.001). There was a significant correlation between qualitative MRI FGT assessment and mammographic density assessment (r=0.725, n=60, P<0.001). The four qualitative assessment categories of FGT correlated with the calculated mean quantitative FGT (%) of 4.61% (95% CI, 0-12.3%), 8.74% (7.3-10.2%), 18.1% (15.1-21.1%), 37.4% (29.5-45.3%). Quantitative measures of FGT (%) were computed with data derived from breast MRI and correlated significantly with conventional qualitative assessments. This quantitative technique may prove to be a valuable tool in clinical use by providing computer generated standardized measurements with limited intra or inter-observer variability.
Analogous on-axis interference topographic phase microscopy (AOITPM).
Xiu, P; Liu, Q; Zhou, X; Xu, Y; Kuang, C; Liu, X
2018-05-01
The refractive index (RI) of a sample as an endogenous contrast agent plays an important role in transparent live cell imaging. In tomographic phase microscopy (TPM), 3D quantitative RI maps can be reconstructed based on the measured projections of the RI in multiple directions. The resolution of the RI maps not only depends on the numerical aperture of the employed objective lens, but also is determined by the accuracy of the quantitative phase of the sample measured at multiple scanning illumination angles. This paper reports an analogous on-axis interference TPM, where the interference angle between the sample and reference beams is kept constant for projections in multiple directions to improve the accuracy of the phase maps and the resolution of RI tomograms. The system has been validated with both silica beads and red blood cells. Compared with conventional TPM, the proposed system acquires quantitative RI maps with higher resolution (420 nm @λ = 633 nm) and signal-to-noise ratio that can be beneficial for live cell imaging in biomedical applications. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.
Stylization levels of industrial design objects
NASA Astrophysics Data System (ADS)
Kukhta, M. S.; Sokolov, A. P.; Krauinsh, D. P.; Bouchard, C.
2017-01-01
The urgency of the research of form making problem in design is associated with the necessity of new understanding of visual culture and new approaches to design engineering representing the integration of artistic and designed problems. The aim of this research is to study the levels of stylization of design objects and dependance (relation) on the specific project objectives and existing technologies. On the ground of quantitative evaluation, the stylization measures are emphasized: figurative image, stylized image and abstract image. Theoretic conclusions are complemented by practical problem solution over creating openwork metal lantern. Variants of both the traditional mains supply of the lantern and the autonomic supply system based on solar energy were offered. The role of semantic factor, affecting the depth of perception of design objects semantic space, is represented in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, R.N.; Cooper, M.D.
1990-09-01
This report summarizes goals and accomplishments of the research program supported under DOE Grant No. FG02-86ER60418 entitled Instrumentation and Quantitative Methods of Evaluation, with R. Beck, P. I. and M. Cooper, Co-P.I. during the period January 15, 1990 through September 1, 1990. This program addresses the problems involving the basic science and technology underlying the physical and conceptual tools of radioactive tracer methodology as they relate to the measurement of structural and functional parameters of physiologic importance in health and disease. The principal tool is quantitative radionuclide imaging. The overall objective of this program is to further the development andmore » transfer of radiotracer methodology from basic theory to routine clinical practice in order that individual patients and society as a whole will receive the maximum net benefit from the new knowledge gained. The focus of the research is on the development of new instruments and radiopharmaceuticals, and the evaluation of these through the phase of clinical feasibility. 7 figs.« less
Long, Zaiyang; Tradup, Donald J; Stekel, Scott F; Gorny, Krzysztof R; Hangiandreou, Nicholas J
2018-03-01
We evaluated a commercially available software package that uses B-mode images to semi-automatically measure quantitative metrics of ultrasound image quality, such as contrast response, depth of penetration (DOP), and spatial resolution (lateral, axial, and elevational). Since measurement of elevational resolution is not a part of the software package, we achieved it by acquiring phantom images with transducers tilted at 45 degrees relative to the phantom. Each measurement was assessed in terms of measurement stability, sensitivity, repeatability, and semi-automated measurement success rate. All assessments were performed on a GE Logiq E9 ultrasound system with linear (9L or 11L), curved (C1-5), and sector (S1-5) transducers, using a CIRS model 040GSE phantom. In stability tests, the measurements of contrast, DOP, and spatial resolution remained within a ±10% variation threshold in 90%, 100%, and 69% of cases, respectively. In sensitivity tests, contrast, DOP, and spatial resolution measurements followed the expected behavior in 100%, 100%, and 72% of cases, respectively. In repeatability testing, intra- and inter-individual coefficients of variations were equal to or less than 3.2%, 1.3%, and 4.4% for contrast, DOP, and spatial resolution (lateral and axial), respectively. The coefficients of variation corresponding to the elevational resolution test were all within 9.5%. Overall, in our assessment, the evaluated package performed well for objective and quantitative assessment of the above-mentioned image qualities under well-controlled acquisition conditions. We are finding it to be useful for various clinical ultrasound applications including performance comparison between scanners from different vendors. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Lawrence, D. J.; Maurice, S.; Patterson, G. W.; Hibbitts, C. A.
2010-05-01
Understanding the global composition of Ganymede's surface is a key goal of the Europa Jupiter System Mission (EJSM) that is being jointly planned by NASA and ESA. Current plans for obtaining surface information with the Jupiter Ganymede Orbiter (JGO) use spectral imaging measurements. While spectral imaging can provide good mineralogy-related information, quantitative data about elemental abundances can often be hindered by non-composition variations due to surface effects (e.g., space weathering, grain effects, temperature, etc.). Orbital neutron and gamma-ray spectroscopy can provide quantitative composition information that is complementary to spectral imaging measurements, as has been demonstrated with similar instrumental combinations at the Moon, Mars, and Mercury. Neutron and gamma-ray measurements have successfully returned abundance information in a hydrogen-rich environment on Mars. In regards to neutrons and gamma-rays, there are many similarities between the Mars and Ganymede hydrogen-rich environments. In this study, we present results of neutron transport models, which show that quantitative composition information from Ganymede's surface can be obtained in a realistic mission scenario. Thermal and epithermal neutrons are jointly sensitive to the abundances of hydrogen and neutron absorbing elements, such as iron and titanium. These neutron measurements can discriminate between regions that are rich or depleted in neutron absorbing elements, even in the presence of large amounts of hydrogen. Details will be presented about how the neutron composition parameters can be used to meet high-level JGO science objectives, as well as an overview of a neutron spectrometer than can meet various mission and stringent environmental requirements.
Measurement of in vivo local shear modulus using MR elastography multiple-phase patchwork offsets.
Suga, Mikio; Matsuda, Tetsuya; Minato, Kotaro; Oshiro, Osamu; Chihara, Kunihiro; Okamoto, Jun; Takizawa, Osamu; Komori, Masaru; Takahashi, Takashi
2003-07-01
Magnetic resonance elastography (MRE) is a method that can visualize the propagating and standing shear waves in an object being measured. The quantitative value of a shear modulus can be calculated by estimating the local shear wavelength. Low-frequency mechanical motion must be used for soft, tissue-like objects because a propagating shear wave rapidly attenuates at a higher frequency. Moreover, a propagating shear wave is distorted by reflections from the boundaries of objects. However, the distortions are minimal around the wave front of the propagating shear wave. Therefore, we can avoid the effect of reflection on a region of interest (ROI) by adjusting the duration of mechanical vibrations. Thus, the ROI is often shorter than the propagating shear wavelength. In the MRE sequence, a motion-sensitizing gradient (MSG) is synchronized with mechanical cyclic motion. MRE images with multiple initial phase offsets can be generated with increasing delays between the MSG and mechanical vibrations. This paper proposes a method for measuring the local shear wavelength using MRE multiple initial phase patchwork offsets that can be used when the size of the object being measured is shorter than the local wavelength. To confirm the reliability of the proposed method, computer simulations, a simulated tissue study and in vitro and in vivo studies were performed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
WIELOPOLSKI, L.
In this short report, I reassess the feasibility of measuring iron in vivo in the liver and heart of thalassemia patients undergoing chelation therapy. Despite the multiplicity of analytical methods for analyzing iron, only two, magnetic resonance imaging, and magnetic susceptibility, are suitable for in vivo applications, and these are limited to the liver because of the heart's beat. Previously, a nuclear method, gamma-resonance scattering, offered a quantitative measure of iron in these organs; however, it was abandoned because it necessitated a nuclear reactor to produce the radioactive source. I reviewed and reassessed the status of two alternative nuclear methods,more » based on iron spectroscopy of gamma rays induced by fast neutron inelastic scattering and delayed activation in iron. Both are quantitative methods with high specificity for iron and adequate penetrating power to measure it in organs sited deep within the human body. My experiments demonstrated that both modalities met the stated qualitative objectives to measure iron. However, neutron dosimetry revealed that the intensity of the neutron radiation field was too weak to reliably assess the minimum detection limits, and to allow quantitative extrapolations to measurements in people. A review of the literature, included in this report, showed that these findings agree qualitatively with the published results, although the doses reported were about three orders-of-magnitude higher than those I used. Reviewing the limitations of the present work, steps were outlined for overcoming some of the shortcomings. Due to a dearth of valid quantitative alternatives for determining iron in vivo, I conclude that nuclear methods remain the only viable option. However, from the lessons learned, further systematic work is required before embarking on clinical studies.« less
Kellman, Philip J.; Mnookin, Jennifer L.; Erlikhman, Gennady; Garrigan, Patrick; Ghose, Tandra; Mettler, Everett; Charlton, David; Dror, Itiel E.
2014-01-01
Latent fingerprint examination is a complex task that, despite advances in image processing, still fundamentally depends on the visual judgments of highly trained human examiners. Fingerprints collected from crime scenes typically contain less information than fingerprints collected under controlled conditions. Specifically, they are often noisy and distorted and may contain only a portion of the total fingerprint area. Expertise in fingerprint comparison, like other forms of perceptual expertise, such as face recognition or aircraft identification, depends on perceptual learning processes that lead to the discovery of features and relations that matter in comparing prints. Relatively little is known about the perceptual processes involved in making comparisons, and even less is known about what characteristics of fingerprint pairs make particular comparisons easy or difficult. We measured expert examiner performance and judgments of difficulty and confidence on a new fingerprint database. We developed a number of quantitative measures of image characteristics and used multiple regression techniques to discover objective predictors of error as well as perceived difficulty and confidence. A number of useful predictors emerged, and these included variables related to image quality metrics, such as intensity and contrast information, as well as measures of information quantity, such as the total fingerprint area. Also included were configural features that fingerprint experts have noted, such as the presence and clarity of global features and fingerprint ridges. Within the constraints of the overall low error rates of experts, a regression model incorporating the derived predictors demonstrated reasonable success in predicting objective difficulty for print pairs, as shown both in goodness of fit measures to the original data set and in a cross validation test. The results indicate the plausibility of using objective image metrics to predict expert performance and subjective assessment of difficulty in fingerprint comparisons. PMID:24788812
Application of Neutron Tomography in Culture Heritage research.
Mongy, T
2014-02-01
Neutron Tomography (NT) investigation of Culture Heritages (CH) is an efficient tool for understanding the culture of ancient civilizations. Neutron imaging (NI) is a-state-of-the-art non-destructive tool in the area of CH and plays an important role in the modern archeology. The NI technology can be widely utilized in the field of elemental analysis. At Egypt Second Research Reactor (ETRR-2), a collimated Neutron Radiography (NR) beam is employed for neutron imaging purposes. A digital CCD camera is utilized for recording the beam attenuation in the sample. This helps for the detection of hidden objects and characterization of material properties. Research activity can be extended to use computer software for quantitative neutron measurement. Development of image processing algorithms can be used to obtain high quality images. In this work, full description of ETRR-2 was introduced with up to date neutron imaging system as well. Tomographic investigation of a clay forged artifact represents CH object was studied by neutron imaging methods in order to obtain some hidden information and highlight some attractive quantitative measurements. Computer software was used for imaging processing and enhancement. Also the Astra Image 3.0 Pro software was employed for high precise measurements and imaging enhancement using advanced algorithms. This work increased the effective utilization of the ETRR-2 Neutron Radiography/Tomography (NR/T) technique in Culture Heritages activities. © 2013 Elsevier Ltd. All rights reserved.
Cui, Xiquan; Ren, Jian; Tearney, Guillermo J.; Yang, Changhuei
2010-01-01
We report the implementation of an image sensor chip, termed wavefront image sensor chip (WIS), that can measure both intensity/amplitude and phase front variations of a light wave separately and quantitatively. By monitoring the tightly confined transmitted light spots through a circular aperture grid in a high Fresnel number regime, we can measure both intensity and phase front variations with a high sampling density (11 µm) and high sensitivity (the sensitivity of normalized phase gradient measurement is 0.1 mrad under the typical working condition). By using WIS in a standard microscope, we can collect both bright-field (transmitted light intensity) and normalized phase gradient images. Our experiments further demonstrate that the normalized phase gradient images of polystyrene microspheres, unstained and stained starfish embryos, and strongly birefringent potato starch granules are improved versions of their corresponding differential interference contrast (DIC) microscope images in that they are artifact-free and quantitative. Besides phase microscopy, WIS can benefit machine recognition, object ranging, and texture assessment for a variety of applications. PMID:20721059
An exploratory sequential design to validate measures of moral emotions.
Márquez, Margarita G; Delgado, Ana R
2017-05-01
This paper presents an exploratory and sequential mixed methods approach in validating measures of knowledge of the moral emotions of contempt, anger and disgust. The sample comprised 60 participants in the qualitative phase when a measurement instrument was designed. Item stems, response options and correction keys were planned following the results obtained in a descriptive phenomenological analysis of the interviews. In the quantitative phase, the scale was used with a sample of 102 Spanish participants, and the results were analysed with the Rasch model. In the qualitative phase, salient themes included reasons, objects and action tendencies. In the quantitative phase, good psychometric properties were obtained. The model fit was adequate. However, some changes had to be made to the scale in order to improve the proportion of variance explained. Substantive and methodological im-plications of this mixed-methods study are discussed. Had the study used a single re-search method in isolation, aspects of the global understanding of contempt, anger and disgust would have been lost.
Moore, Dana W.; Kovanlikaya, Ilhami; Heier, Linda A.; Raj, Ashish; Huang, Chaorui; Chu, King-Wai; Relkin, Norman R.
2012-01-01
Current radiologic diagnosis of normal pressure hydrocephalus (NPH) requires a subjective judgment of whether lateral ventricular enlargement is disproportionate to cerebral atrophy based on visual inspection of brain images. We investigated whether quantitative measurements of lateral ventricular volume and total cortical thickness (a correlate of cerebral atrophy) could be used to more objectively distinguish NPH from normal controls (NC), Alzheimer's (AD), and Parkinson's disease (PD). Volumetric MRIs were obtained prospectively from patients with NPH (n = 5), PD (n = 5), and NC (5). Additional NC (n = 5) and AD patients (n = 10) from the ADNI cohort were examined. Although mean ventricular volume was significantly greater in the NPH group than all others, the range of values overlapped those of the AD group. Individuals with NPH could be better distinguished when ventricular volume and total cortical thickness were considered in combination. This pilot study suggests that volumetric MRI measurements hold promise for improving NPH differential diagnosis. PMID:21860791
2015-09-30
TREX13 data analysis /modeling Dajun (DJ) Tang Applied Physics Laboratory, University of Washington 1013 NE 40th Street, Seattle, WA 98105...accuracy in those predictions. With extensive TREX13 data in hand, the objective now shifts to realizing the long-term goals using data analysis and...be quantitatively addressed. The approach to analysis can be summarized into the following steps: 1. Based on measurements, assess to what degree
Mohler, M. Jane; Coons, Stephen Joel; Hornbrook, Mark C.; Herrinton, Lisa J.; Wendel, Christopher S.; Grant, Marcia; Krouse, Robert S.
2008-01-01
Objectives The objective of this paper is to describe the complex mixed-methods design of a study conducted to assess health-related quality of life (HRQOL) outcomes and ostomy-related obstacles and adjustments among long-term (>five years) colorectal cancer (CRC) survivors with ostomies (cases) and without ostomies (controls). In addition, details are provided regarding the study sample and the psychometric properties of the quantitative data collection measures used. Subsequent manuscripts will present the study findings. Research Design and Methods The study design involved a cross-sectional mail survey for collecting quantitative data and focus groups for collecting qualitative data. The study subjects were individuals identified as long-term CRC survivors within a community-based health maintenance organization's enrolled population. Focus groups comprised of cases and divided by gender and HRQOL high and low quartile contrasts (based on the mail survey data) were conducted. Main Outcome Measures The modified City of Hope Quality of Life (mCOH-QOL)-Ostomy and SF-36v2 questionnaires were used in the mail survey. An abridged version of the mCOH-QOL-Ostomy was used for the control subjects. Focus groups explored ostomy-related barriers to self-care, adaptation methods/skills, and advice for others with an ostomy. Results The survey response rate was 52% (679/1308) and 34 subjects participated in focus groups. The internal consistency reliability estimates for the mCOH-QOL-Ostomy and SF-36v2 questionnaires were very acceptable for group comparisons. In addition, evidence supports the construct validity of the abridged version of the mCOH-QOL-Ostomy. Study limitations include potential non-response bias and limited minority participation. Conclusions We were able to successfully recruit long-term CRC survivors into this study and the psychometric properties of the quantitative measures used were quite acceptable. Mixed-methods designs, such as the one used in this study, may be useful in identification and further elucidation of common problems, coping strategies, and HRQOL outcomes among long-term cancer survivors. PMID:18544186
Detailed Modeling and Analysis of the CPFM Dataset
NASA Technical Reports Server (NTRS)
Swartz, William H.; Lloyd, Steven A.; DeMajistre, Robert
2004-01-01
A quantitative understanding of photolysis rate coefficients (or "j-values") is essential to determining the photochemical reaction rates that define ozone loss and other crucial processes in the atmosphere. j-Values can be calculated with radiative transfer models, derived from actinic flux observations, or inferred from trace gas measurements. The principal objective of this study is to cross-validate j-values from the Composition and Photodissociative Flux Measurement (CPFM) instrument during the Photochemistry of Ozone Loss in the Arctic Region In Summer (POLARIS) and SAGE I11 Ozone Loss and Validation Experiment (SOLVE) field campaigns with model calculations and other measurements and to use this detailed analysis to improve our ability to determine j-values. Another objective is to analyze the spectral flux from the CPFM (not just the j-values) and, using a multi-wavelength/multi-species spectral fitting technique, determine atmospheric composition.
Compliance with removable orthodontic appliances.
Shah, Nirmal
2017-12-22
Data sourcesMedline via OVID, PubMed, Cochrane Central Register of Controlled Trials, Web of Science Core Collection, LILACS and BBO databases. Unpublished clinical trials accessed using ClinicalTrials.gov, National Research Register, ProQuest Dissertation and Thesis database.Study selectionTwo authors searched studies from inception until May 2016 without language restrictions. Quantitative and qualitative studies incorporating objective data on compliance with removable appliances, barriers to appliance wear compliance, and interventions to improve compliance were included.Data extraction and synthesisQuality of research was assessed using the Cochrane Collaboration's risk of bias tool, the risk of bias in non-randomised studies of interventions (ROBINS-I), and the mixed methods appraisal tool. Statistical heterogeneity was investigated by examining a graphic display of the estimated compliance levels in conjunction with 95% confidence intervals and quantified using the I-squared statistic. A weighted estimate of objective compliance levels for different appliances in relation to stipulated wear and self-reported levels was also calculated. Risk of publication bias was assessed using funnel plots. Meta-regression was undertaken to assess the relative effects of appliance type on compliance levels.ResultsTwenty-four studies met the inclusion criteria. Of these, 11 were included in the quantitative synthesis. The mean duration of objectively measured wear was considerably lower than stipulated wear time amongst all appliances. Headgear had the greatest discrepancy (5.81 hours, 95% confidence interval, 4.98, 6.64). Self-reported wear time was consistently higher than objectively measured wear time amongst all appliances. Headgear had the greatest discrepancy (5.02 hours, 95% confidence interval, 3.64, 6.40). Two studies found an increase in compliance with headgear and Hawley retainers when patients were aware of monitoring. Five studies found younger age groups to be more compliant than older groups. Three studies also found compliance to be better in the early stages of treatment. Integration between quantitative and qualitative studies was not possible.ConclusionsCompliance with removable orthodontic appliances is suboptimal. Patients wear appliances for considerably less time than stipulated and self-reported. Compliance may be increased when patients are aware of monitoring; however, further research is required to identify effective interventions and possible barriers in order to improve removable orthodontic appliance compliance.
Harris, Laura Florence; Awoonor-Williams, John Koku; Gerdts, Caitlin; Gil Urbano, Laura; González Vélez, Ana Cristina; Halpern, Jodi; Prata, Ndola; Baffoe, Peter
2016-01-01
Conscientious objection to abortion, clinicians' refusal to perform legal abortions because of their religious or moral beliefs, has been the subject of increasing debate among bioethicists, policymakers, and public health advocates in recent years. Conscientious objection policies are intended to balance reproductive rights and clinicians' beliefs. However, in practice, clinician objection can act as a barrier to abortion access-impinging on reproductive rights, and increasing unsafe abortion and related morbidity and mortality. There is little information about conscientious objection from a medical or public health perspective. A quantitative instrument is needed to assess prevalence of conscientious objection and to provide insight on its practice. This paper describes the development of a survey instrument to measure conscientious objection to abortion provision. A literature review, and in-depth formative interviews with stakeholders in Colombia were used to develop a conceptual model of conscientious objection. This model led to the development of a survey, which was piloted, and then administered, in Ghana. The model posits three domains of conscientious objection that form the basis for the survey instrument: 1) beliefs about abortion and conscientious objection; 2) actions related to conscientious objection and abortion; and 3) self-identification as a conscientious objector. The instrument is intended to be used to assess prevalence among clinicians trained to provide abortions, and to gain insight on how conscientious objection is practiced in a variety of settings. Its results can inform more effective and appropriate strategies to regulate conscientious objection.
Pineda, F D; Medved, M; Fan, X; Ivancevic, M K; Abe, H; Shimauchi, A; Newstead, G M
2015-01-01
Objective: To compare dynamic contrast-enhanced (DCE) MRI parameters from scans of breast lesions at 1.5 and 3.0 T. Methods: 11 patients underwent paired MRI examinations in both Philips 1.5 and 3.0 T systems (Best, Netherlands) using a standard clinical fat-suppressed, T1 weighted DCE-MRI protocol, with 70–76 s temporal resolution. Signal intensity vs time curves were fit with an empirical mathematical model to obtain semi-quantitative measures of uptake and washout rates as well as time-to-peak enhancement (TTP). Maximum percent enhancement and signal enhancement ratio (SER) were also measured for each lesion. Percent differences between parameters measured at the two field strengths were compared. Results: TTP and SER parameters measured at 1.5 and 3.0 T were similar; with mean absolute differences of 19% and 22%, respectively. Maximum percent signal enhancement was significantly higher at 3 T than at 1.5 T (p = 0.006). Qualitative assessment showed that image quality was significantly higher at 3 T (p = 0.005). Conclusion: Our results suggest that TTP and SER are more robust to field strength change than other measured kinetic parameters, and therefore measurements of these parameters can be more easily standardized than measurements of other parameters derived from DCE-MRI. Semi-quantitative measures of overall kinetic curve shape showed higher reproducibility than do discrete classification of kinetic curve early and delayed phases in a majority of the cases studied. Advances in knowledge: Qualitative measures of curve shape are not consistent across field strength even when acquisition parameters are standardized. Quantitative measures of overall kinetic curve shape, by contrast, have higher reproducibility. PMID:25785918
[Studies on measurement of oral mucosal color with non-contact spectrum colorimeter].
Ohata, Yohei
2006-03-01
Color inspection plays an important role in the diagnosis of oral mucosal lesions. However, it is sometimes difficult to diagnose by color, because color is always evaluated subjectively. In order to measure color objectively and quantitatively, we decided to use a newly developed spectrum colorimeter for the oral mucosa. To keep the same angle and distance, a special stick was utilized. Various experiments were performed and suitable conditions for accurate colorimetric measurement were decided, including room temperature with cooling fan, onset time of the device, calibration timing, and the angle between light and the measured surface. The reproducibility of this method was confirmed by measuring the color of the buccal mucosa in healthy persons.
Quantification of osteoblastic activity in epiphyseal growth plates by quantitative bone SPECT/CT.
Yamane, Tomohiko; Kuji, Ichiei; Seto, Akira; Matsunari, Ichiro
2018-06-01
Quantifying the function of the epiphyseal plate is worthwhile for the management of children with growth disorders. The aim of this retrospective study was to quantify the osteoblastic activity at the epiphyseal plate using the quantitative bone SPECT/CT. We enrolled patients under the age of 20 years who received Tc-99m hydroxymethylene diphosphonate bone scintigraphy acquired by a quantitative SPECT/CT scanner. The images were reconstructed by ordered subset conjugate-gradient minimizer, and the uptake on the distal margin of the femur was quantified by peak standardized uptake value (SUVpeak). A public database of standard body height was used to calculate growth velocities (cm/year). Fifteen patients (6.9-19.7 years, 9 female, 6 male) were enrolled and a total of 25 legs were analyzed. SUVpeak in the epiphyseal plate was 18.9 ± 2.4 (average ± standard deviation) in the subjects under 15 years and decreased gradually by aging. The SUVpeak correlated significantly with the age- and sex-matched growth velocity obtained from the database (R 2 = 0.83, p < 0.0001). The SUV measured by quantitative bone SPECT/CT was increased at the epiphyseal plates of children under the age of 15 years in comparison with the older group, corresponding to higher osteoblastic activity. Moreover, this study suggested a correlation between growth velocity and the SUV. Although this is a small retrospective pilot study, the objective and quantitative values measured by the quantitative bone SPECT/CT has the potential to improve the management of children with growth disorder.
Remote Imaging of Exploration Flight Test-1 (EFT-1) Entry Heating Risk Reduction
NASA Technical Reports Server (NTRS)
Schuster, David M.; Horvath, Thomas J.; Schwartz, Richard J.
2016-01-01
A Measure of Performance (MOP) identified with an Exploration Flight Test-1 (EFT-1) Multi- Purpose Crew Vehicle (MPCV) Program Flight Test Objective (FTO) (OFT1.091) specified an observation during reentry though external ground-based or airborne assets with thermal detection capabilities. The objective of this FTO was to be met with onboard Developmental Flight Instrumentation (DFI), but the MOP for external observation was intended to provide complementary quantitative data and serve as a risk reduction in the event of anomalous DFI behavior (or failure). Mr. Gavin Mendeck, the Entry, Descent, and Landing (EDL) Phase Engineer for the MPCV Program (Vehicle Integration Office/Systems & Mission Integration) requested a risk-reduction assessment from the NASA Engineering and Safety Center (NESC) to determine whether quantitative imagery could be obtained from remote aerial assets to support the external observation MOP. If so, then a viable path forward was to be determined, risks identified, and an observation pursued. If not, then the MOP for external observation was to be eliminated.
An Overview of data science uses in bioimage informatics.
Chessel, Anatole
2017-02-15
This review aims at providing a practical overview of the use of statistical features and associated data science methods in bioimage informatics. To achieve a quantitative link between images and biological concepts, one typically replaces an object coming from an image (a segmented cell or intracellular object, a pattern of expression or localisation, even a whole image) by a vector of numbers. They range from carefully crafted biologically relevant measurements to features learnt through deep neural networks. This replacement allows for the use of practical algorithms for visualisation, comparison and inference, such as the ones from machine learning or multivariate statistics. While originating mainly, for biology, in high content screening, those methods are integral to the use of data science for the quantitative analysis of microscopy images to gain biological insight, and they are sure to gather more interest as the need to make sense of the increasing amount of acquired imaging data grows more pressing. Copyright © 2017 Elsevier Inc. All rights reserved.
Objective evaluation of cutaneous thermal sensivity
NASA Technical Reports Server (NTRS)
Vanbeaumont, W.
1972-01-01
The possibility of obtaining reliable and objective quantitative responses was investigated under conditions where only temperature changes in localized cutaneous areas evoked measurable changes in remote sudomotor activity. Both male and female subjects were studied to evaluate sex difference in thermal sensitivity. The results discussed include: sweat rate responses to contralateral cooling, comparison of sweat rate responses between men and women to contralateral cooling, influence of the menstrual cycle on the sweat rate responses to contralateral cooling, comparison of threshold of sweating responses between men and women, and correlation of latency to threshold for whole body sweating. It is concluded that the quantitative aspects of the reflex response is affected by both the density and activation of receptors as well as the rate of heat loss; men responded 8-10% more frequently than women to thermode cooling, the magnitude of responses being greater for men; and women responded 7-9% more frequently to thermode cooling on day 1 of menstruation, as compared to day 15.
Museum activities in dementia care: Using visual analog scales to measure subjective wellbeing.
Johnson, Joana; Culverwell, Alison; Hulbert, Sabina; Robertson, Mitch; Camic, Paul M
2017-07-01
Introduction Previous research has shown that people with dementia and caregivers derive wellbeing-related benefits from viewing art in a group, and that facilitated museum object handling is effective in increasing subjective wellbeing for people with a range of health conditions. The present study quantitatively compared the impact of two museum-based activities and a social activity on the subjective wellbeing of people with dementia and their caregivers. Methods A quasi-experimental crossover design was used. People with early to middle stage dementia and caregivers ( N = 66) participated in museum object handling, a refreshment break, and art viewing in small groups. Visual analog scales were used to rate subjective wellbeing pre and post each activity. Results Mixed-design analysis of variances indicated wellbeing significantly increased during the session, irrespective of the order in which the activities were presented. Wellbeing significantly increased from object handling and art viewing for those with dementia and caregivers across pooled orders, but did not in the social activity of a refreshment break. An end-of-intervention questionnaire indicated that experiences of the session were positive. Conclusion Results provide a rationale for considering museum activities as part of a broader psychosocial, relational approach to dementia care and support the use of easy to administer visual analog scales as a quantitative outcome measure. Further partnership working is also supported between museums and healthcare professionals in the development of nonclinical, community-based programs for this population.
Assessing physical activity using wearable monitors: measures of physical activity.
Butte, Nancy F; Ekelund, Ulf; Westerterp, Klaas R
2012-01-01
Physical activity may be defined broadly as "all bodily actions produced by the contraction of skeletal muscle that increase energy expenditure above basal level." Physical activity is a complex construct that can be classified into major categories qualitatively, quantitatively, or contextually. The quantitative assessment of physical activity using wearable monitors is grounded in the measurement of energy expenditure. Six main categories of wearable monitors are currently available to investigators: pedometers, load transducers/foot-contact monitors, accelerometers, HR monitors, combined accelerometer and HR monitors, and multiple sensor systems. Currently available monitors are capable of measuring total physical activity as well as components of physical activity that play important roles in human health. The selection of wearable monitors for measuring physical activity will depend on the physical activity component of interest, study objectives, characteristics of the target population, and study feasibility in terms of cost and logistics. Future development of sensors and analytical techniques for assessing physical activity should focus on the dynamic ranges of sensors, comparability for sensor output across manufacturers, and the application of advanced modeling techniques to predict energy expenditure and classify physical activities. New approaches for qualitatively classifying physical activity should be validated using direct observation or recording. New sensors and methods for quantitatively assessing physical activity should be validated in laboratory and free-living populations using criterion methods of calorimetry or doubly labeled water.
Analyser-based phase contrast image reconstruction using geometrical optics.
Kitchen, M J; Pavlov, K M; Siu, K K W; Menk, R H; Tromba, G; Lewis, R A
2007-07-21
Analyser-based phase contrast imaging can provide radiographs of exceptional contrast at high resolution (<100 microm), whilst quantitative phase and attenuation information can be extracted using just two images when the approximations of geometrical optics are satisfied. Analytical phase retrieval can be performed by fitting the analyser rocking curve with a symmetric Pearson type VII function. The Pearson VII function provided at least a 10% better fit to experimentally measured rocking curves than linear or Gaussian functions. A test phantom, a hollow nylon cylinder, was imaged at 20 keV using a Si(1 1 1) analyser at the ELETTRA synchrotron radiation facility. Our phase retrieval method yielded a more accurate object reconstruction than methods based on a linear fit to the rocking curve. Where reconstructions failed to map expected values, calculations of the Takagi number permitted distinction between the violation of the geometrical optics conditions and the failure of curve fitting procedures. The need for synchronized object/detector translation stages was removed by using a large, divergent beam and imaging the object in segments. Our image acquisition and reconstruction procedure enables quantitative phase retrieval for systems with a divergent source and accounts for imperfections in the analyser.
Image enhancement using MCNP5 code and MATLAB in neutron radiography.
Tharwat, Montaser; Mohamed, Nader; Mongy, T
2014-07-01
This work presents a method that can be used to enhance the neutron radiography (NR) image for objects with high scattering materials like hydrogen, carbon and other light materials. This method used Monte Carlo code, MCNP5, to simulate the NR process and get the flux distribution for each pixel of the image and determines the scattered neutron distribution that caused image blur, and then uses MATLAB to subtract this scattered neutron distribution from the initial image to improve its quality. This work was performed before the commissioning of digital NR system in Jan. 2013. The MATLAB enhancement method is quite a good technique in the case of static based film neutron radiography, while in neutron imaging (NI) technique, image enhancement and quantitative measurement were efficient by using ImageJ software. The enhanced image quality and quantitative measurements were presented in this work. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nursing Activities Score: nursing work load in a burns Intensive Care Unit1
Camuci, Marcia Bernadete; Martins, Júlia Trevisan; Cardeli, Alexandrina Aparecida Maciel; Robazzi, Maria Lúcia do Carmo Cruz
2014-01-01
Objective to evaluate the nursing work load in a Burns Intensive Care Unit according to the Nursing Activities Score. Method an exploratory, descriptive cross-sectional study with a quantitative approach. The Nursing Activities Score was used for data collection between October 2011 and May 2012, totalling 1,221 measurements, obtained from 50 patients' hospital records. Data for qualitative variables was described in tables; for the quantitative variables, calculations using statistical measurements were used. Results the mean score for the Nursing Activities Score was 70.4% and the median was 70.3%, corresponding to the percentage of the time spent on direct care to the patient in 24 hours. Conclusion the Nursing Activities Score provided information which involves the process of caring for patients hospitalized in a Burns Intensive Care Unit, and indicated that there is a high work load for the nursing team of the sector studied. PMID:26107842
A quantitative approach to evaluating caring in nursing simulation.
Eggenberger, Terry L; Keller, Kathryn B; Chase, Susan K; Payne, Linda
2012-01-01
This study was designed to test a quantitative method of measuring caring in the simulated environment. Since competency in caring is central to nursing practice, ways of including caring concepts in designing scenarios and in evaluation of performance need to be developed. Coates' Caring Efficacy scales were adapted for simulation and named the Caring Efficacy Scale-Simulation Student Version (CES-SSV) and Caring Efficacy Scale-Simulation Faculty Version (CES-SFV). A correlational study was designed to compare student self-ratings with faculty ratings on caring efficacy during an adult acute simulation experience with traditional and accelerated baccalaureate students in a nursing program grounded in caring theory. Student self-ratings were significantly correlated with objective ratings (r = 0.345, 0.356). Both the CES-SSV and the CES-SFV were found to have excellent internal consistency and significantly correlated interrater reliability. They were useful in measuring caring in the simulated learning environment.
Miller, Christopher B.; Bartlett, Delwyn J.; Mullins, Anna E.; Dodds, Kirsty L.; Gordon, Christopher J.; Kyle, Simon D.; Kim, Jong Won; D'Rozario, Angela L.; Lee, Rico S.C.; Comas, Maria; Marshall, Nathaniel S.; Yee, Brendon J.; Espie, Colin A.; Grunstein, Ronald R.
2016-01-01
Study Objectives: To empirically derive and evaluate potential clusters of Insomnia Disorder through cluster analysis from polysomnography (PSG). We hypothesized that clusters would differ on neurocognitive performance, sleep-onset measures of quantitative (q)-EEG and heart rate variability (HRV). Methods: Research volunteers with Insomnia Disorder (DSM-5) completed a neurocognitive assessment and overnight PSG measures of total sleep time (TST), wake time after sleep onset (WASO), and sleep onset latency (SOL) were used to determine clusters. Results: From 96 volunteers with Insomnia Disorder, cluster analysis derived at least two clusters from objective sleep parameters: Insomnia with normal objective sleep duration (I-NSD: n = 53) and Insomnia with short sleep duration (I-SSD: n = 43). At sleep onset, differences in HRV between I-NSD and I-SSD clusters suggest attenuated parasympathetic activity in I-SSD (P < 0.05). Preliminary work suggested three clusters by retaining the I-NSD and splitting the I-SSD cluster into two: I-SSD A (n = 29): defined by high WASO and I-SSD B (n = 14): a second I-SSD cluster with high SOL and medium WASO. The I-SSD B cluster performed worse than I-SSD A and I-NSD for sustained attention (P ≤ 0.05). In an exploratory analysis, q-EEG revealed reduced spectral power also in I-SSD B before (Delta, Alpha, Beta-1) and after sleep-onset (Beta-2) compared to I-SSD A and I-NSD (P ≤ 0.05). Conclusions: Two insomnia clusters derived from cluster analysis differ in sleep onset HRV. Preliminary data suggest evidence for three clusters in insomnia with differences for sustained attention and sleep-onset q-EEG. Clinical Trial Registration: Insomnia 100 sleep study: Australia New Zealand Clinical Trials Registry (ANZCTR) identification number 12612000049875. URL: https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=347742. Citation: Miller CB, Bartlett DJ, Mullins AE, Dodds KL, Gordon CJ, Kyle SD, Kim JW, D'Rozario AL, Lee RS, Comas M, Marshall NS, Yee BJ, Espie CA, Grunstein RR. Clusters of Insomnia Disorder: an exploratory cluster analysis of objective sleep parameters reveals differences in neurocognitive functioning, quantitative EEG, and heart rate variability. SLEEP 2016;39(11):1993–2004. PMID:27568796
Hyun, Jong Jin; Keum, Bora; Seo, Yeon Seok; Kim, Yong Sik; Jeen, Yoon Tae; Lee, Hong Sik; Um, Soon Ho; Kim, Chang Duck; Ryu, Ho Sang; Lim, Jong-Wook; Woo, Dong-Gi; Kim, Young-Joong; Lim, Myo-Taeg
2012-01-01
Background/Aims Three-dimensional (3D) imaging is gaining popularity and has been partly adopted in laparoscopic surgery or robotic surgery but has not been applied to gastrointestinal endoscopy. As a first step, we conducted an experiment to evaluate whether images obtained by conventional gastrointestinal endoscopy could be used to acquire quantitative 3D information. Methods Two endoscopes (GIF-H260) were used in a Borrmann type I tumor model made of clay. The endoscopes were calibrated by correcting the barrel distortion and perspective distortion. Obtained images were converted to gray-level image, and the characteristics of the images were obtained by edge detection. Finally, data on 3D parameters were measured by using epipolar geometry, two view geometry, and pinhole camera model. Results The focal length (f) of endoscope at 30 mm was 258.49 pixels. Two endoscopes were fixed at predetermined distance, 12 mm (d12). After matching and calculating disparity (v2-v1), which was 106 pixels, the calculated length between the camera and object (L) was 29.26 mm. The height of the object projected onto the image (h) was then applied to the pinhole camera model, and the result of H (height and width) was 38.21 mm and 41.72 mm, respectively. Measurements were conducted from 2 different locations. The measurement errors ranged from 2.98% to 7.00% with the current Borrmann type I tumor model. Conclusions It was feasible to obtain parameters necessary for 3D analysis and to apply the data to epipolar geometry with conventional gastrointestinal endoscope to calculate the size of an object. PMID:22977798
How much is enough? The recurrent problem of setting measurable objectives in conservation
Tear, T.H.; Kareiva, P.; Angermeier, P.L.; Comer, P.; Czech, B.; Kautz, R.; Landon, L.; Mehlman, D.; Murphy, K.; Ruckelshaus, M.; Scott, J.M.; Wilhere, G.
2005-01-01
International agreements, environmental laws, resource management agencies, and environmental nongovernmental organizations all establish objectives that define what they hope to accomplish. Unfortunately, quantitative objectives in conservation are typically set without consistency and scientific rigor. As a result, conservationists are failing to provide credible answers to the question "How much is enough?" This is a serious problem because objectives profoundly shape where and how limited conservation resources are spent, and help to create a shared vision for the future. In this article we develop guidelines to help steer conservation biologists and practitioners through the process of objective setting. We provide three case studies to highlight the practical challenges of objective setting in different social, political, and legal contexts. We also identify crucial gaps in our science, including limited knowledge of species distributions and of large-scale, long-term ecosystem dynamics, that must be filled if we hope to do better than setting conservation objectives through intuition and best guesses. ?? 2005 American Institute of Biological Sciences.
NecroQuant: quantitative assessment of radiological necrosis
NASA Astrophysics Data System (ADS)
Hwang, Darryl H.; Mohamed, Passant; Varghese, Bino A.; Cen, Steven Y.; Duddalwar, Vinay
2017-11-01
Clinicians can now objectively quantify tumor necrosis by Hounsfield units and enhancement characteristics from multiphase contrast enhanced CT imaging. NecroQuant has been designed to work as part of a radiomics pipelines. The software is a departure from the conventional qualitative assessment of tumor necrosis, as it provides the user (radiologists and researchers) a simple interface to precisely and interactively define and measure necrosis in contrast-enhanced CT images. Although, the software is tested here on renal masses, it can be re-configured to assess tumor necrosis across variety of tumors from different body sites, providing a generalized, open, portable, and extensible quantitative analysis platform that is widely applicable across cancer types to quantify tumor necrosis.
Spectrophotometer and ultrasound evaluation of late toxicity following breast-cancer radiotherapy
Yoshida, E. J.; Chen, H.; Torres, M. A.; Curran, W. J.; Liu, T.
2011-01-01
Purpose: Radiation-induced normal-tissue toxicities are common, complex, and distressing side effects that affect 90% of patients receiving breast-cancer radiotherapy and 40% of patients post radiotherapy. In this study, the authors investigated the use of spectrophotometry and ultrasound to quantitatively measure radiation-induced skin discoloration and subcutaneous-tissue fibrosis. The study’s purpose is to determine whether skin discoloration correlates with the development of fibrosis in breast-cancer radiotherapy.Methods : Eighteen breast-cancer patients were enrolled in our initial study. All patients were previously treated with a standard course of radiation, and the median follow-up time was 22 months. The treated and untreated breasts were scanned with a spectrophotometer and an ultrasound. Two spectrophotometer parameters—melanin and erythema indices—were used to quantitatively assess skin discoloration. Two ultrasound parameters—skin thickness and Pearson coefficient of the hypodermis—were used to quantitatively assess severity of fibrosis. These measurements were correlated with clinical assessments (RTOG late morbidity scores).Results: Significant measurement differences between the treated and contralateral breasts were observed among all patients: 27.3% mean increase in skin thickness (p < 0.001), 34.1% mean decrease in Pearson coefficient (p < 0.001), 27.3% mean increase in melanin (p < 0.001), and 22.6% mean increase in erythema (p < 0.001). All parameters except skin thickness correlated with RTOG scores. A moderate correlation exists between melanin and erythema; however, spectrophotometer parameters do not correlate with ultrasound parameters.Conclusions: Spectrophotometry and quantitative ultrasound are objective tools that assess radiation-induced tissue injury. Spectrophotometer parameters did not correlate with those of quantitative ultrasound suggesting that skin discoloration cannot be used as a marker for subcutaneous fibrosis. These tools may prove useful for the reduction of radiation morbidities and improvement of patient quality of life. PMID:21992389
Spectrophotometer and ultrasound evaluation of late toxicity following breast-cancer radiotherapy.
Yoshida, E J; Chen, H; Torres, M A; Curran, W J; Liu, T
2011-10-01
Radiation-induced normal-tissue toxicities are common, complex, and distressing side effects that affect 90% of patients receiving breast-cancer radiotherapy and 40% of patients post radiotherapy. In this study, the authors investigated the use of spectrophotometry and ultrasound to quantitatively measure radiation-induced skin discoloration and subcutaneous-tissue fibrosis. The study's purpose is to determine whether skin discoloration correlates with the development of fibrosis in breast-cancer radiotherapy. Eighteen breast-cancer patients were enrolled in our initial study. All patients were previously treated with a standard course of radiation, and the median follow-up time was 22 months. The treated and untreated breasts were scanned with a spectrophotometer and an ultrasound. Two spectrophotometer parameters-melanin and erythema indices-were used to quantitatively assess skin discoloration. Two ultrasound parameters-skin thickness and Pearson coefficient of the hypodermis-were used to quantitatively assess severity of fibrosis. These measurements were correlated with clinical assessments (RTOG late morbidity scores). Significant measurement differences between the treated and contralateral breasts were observed among all patients: 27.3% mean increase in skin thickness (p < 0.001), 34.1% mean decrease in Pearson coefficient (p < 0.001), 27.3% mean increase in melanin (p < 0.001), and 22.6% mean increase in erythema (p < 0.001). All parameters except skin thickness correlated with RTOG scores. A moderate correlation exists between melanin and erythema; however, spectrophotometer parameters do not correlate with ultrasound parameters. Spectrophotometry and quantitative ultrasound are objective tools that assess radiation-induced tissue injury. Spectrophotometer parameters did not correlate with those of quantitative ultrasound suggesting that skin discoloration cannot be used as a marker for subcutaneous fibrosis. These tools may prove useful for the reduction of radiation morbidities and improvement of patient quality of life.
Onsum, Matthew D; Geretti, Elena; Paragas, Violette; Kudla, Arthur J; Moulis, Sharon P; Luus, Lia; Wickham, Thomas J; McDonagh, Charlotte F; MacBeath, Gavin; Hendriks, Bart S
2013-11-01
Human epidermal growth factor receptor 2 (HER2) is an important biomarker for breast and gastric cancer prognosis and patient treatment decisions. HER2 positivity, as defined by IHC or fluorescent in situ hybridization testing, remains an imprecise predictor of patient response to HER2-targeted therapies. Challenges to correct HER2 assessment and patient stratification include intratumoral heterogeneity, lack of quantitative and/or objective assays, and differences between measuring HER2 amplification at the protein versus gene level. We developed a novel immunofluorescence method for quantitation of HER2 protein expression at the single-cell level on FFPE patient samples. Our assay uses automated image analysis to identify and classify tumor versus non-tumor cells, as well as quantitate the HER2 staining for each tumor cell. The HER2 staining level is converted to HER2 protein expression using a standard cell pellet array stained in parallel with the tissue sample. This approach allows assessment of HER2 expression and heterogeneity within a tissue section at the single-cell level. By using this assay, we identified distinct subgroups of HER2 heterogeneity within traditional definitions of HER2 positivity in both breast and gastric cancers. Quantitative assessment of intratumoral HER2 heterogeneity may offer an opportunity to improve the identification of patients likely to respond to HER2-targeted therapies. The broad applicability of the assay was demonstrated by measuring HER2 expression profiles on multiple tumor types, and on normal and diseased heart tissues. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Quantitative Radiology Reporting in Oncology: Survey of Oncologists and Radiologists
Folio, Les R.; Nelson, Chelsye J.; Benjamin, Menashe; Ran, Ayelet; Engelhard, Guy; Bluemke, David A.
2017-01-01
OBJECTIVE Tumor quantification is essential for determining the clinical efficacy and response to established and evolving therapeutic agents in cancer trials. The purpose of this study was to seek the opinions of oncologists and radiologists about quantitative interactive and multimedia reporting. SUBJECTS AND METHODS Questionnaires were distributed to 253 oncologists and registrars and to 35 radiologists at our institution through an online survey application. Questions were asked about current reporting methods, methods for Response Evaluation Criteria in Solid Tumors (RECIST) tumor measurement, and preferred reporting format. RESULTS The overall response rates were 43.1% (109/253) for oncologists and 80.0% (28/35) for radiologists. The oncologists treated more than 40 tumor types. Most of the oncologists (65.7% [67/102]) and many radiologists (44.4% [12/27]) (p = 0.020) deemed the current traditional qualitative radiology reports insufficient for reporting tumor burden and communicating measurements. Most of the radiologists (77.8% [21/27]) and oncologists (85.5% [71/83]) (p = 0.95) agreed that key images with measurement annotations helped in finding previously measured tumors; however, only 43% of radiologists regularly saved key images. Both oncologists (64.2% [70/109]) and radiologists (67.9% [19/28]) (p = 0.83) preferred the ability to hyperlink measurements from reports to images of lesions as opposed to text-only reports. Approximately 60% of oncologists indicated that they handwrote tumor measurements on RECIST forms, and 40% used various digital formats. Most of the oncologists (93%) indicated that managing tumor measurements within a PACS would be superior to handwritten data entry and retyping of data into a cancer database. CONCLUSION Oncologists and radiologists agree that quantitative interactive reporting would be superior to traditional text-only qualitative reporting for assessing tumor burden in cancer trials. A PACS reporting system that enhances and promotes collaboration between radiologists and oncologists improves quantitative reporting of tumors. PMID:26295661
Physical activity among South Asian women: a systematic, mixed-methods review
2012-01-01
Introduction The objective of this systematic mixed-methods review is to assess what is currently known about the levels of physical activity (PA) and sedentary time (ST) and to contextualize these behaviors among South Asian women with an immigrant background. Methods A systematic search of the literature was conducted using combinations of the key words PA, ST, South Asian, and immigrant. A mixed-methods approach was used to analyze and synthesize all evidence, both quantitative and qualitative. Twenty-six quantitative and twelve qualitative studies were identified as meeting the inclusion criteria. Results Studies quantifying PA and ST among South Asian women showed low levels of PA compared with South Asian men and with white European comparison populations. However making valid comparisons between studies was challenging due to a lack of standardized PA measurement. The majority of studies indicated that South Asian women did not meet recommended amounts of PA for health benefits. Few studies assessed ST. Themes emerging from qualitative studies included cultural and structural barriers to PA, faith and education as facilitators, and a lack of understanding of the recommended amounts of PA and its benefits among South Asian women. Conclusions Quantitative and qualitative evidence indicate that South Asian women do not perform the recommended level of PA for health benefits. Both types of studies suffer from limitations due to methods of data collection. More research should be dedicated to standardizing objective PA measurement and to understanding how to utilize the resources of the individuals and communities to increase PA levels and overall health of South Asian women. PMID:23256686
Physical activity among South Asian women: a systematic, mixed-methods review.
Babakus, Whitney S; Thompson, Janice L
2012-12-20
The objective of this systematic mixed-methods review is to assess what is currently known about the levels of physical activity (PA) and sedentary time (ST) and to contextualize these behaviors among South Asian women with an immigrant background. A systematic search of the literature was conducted using combinations of the key words PA, ST, South Asian, and immigrant. A mixed-methods approach was used to analyze and synthesize all evidence, both quantitative and qualitative. Twenty-six quantitative and twelve qualitative studies were identified as meeting the inclusion criteria. Studies quantifying PA and ST among South Asian women showed low levels of PA compared with South Asian men and with white European comparison populations. However making valid comparisons between studies was challenging due to a lack of standardized PA measurement. The majority of studies indicated that South Asian women did not meet recommended amounts of PA for health benefits. Few studies assessed ST. Themes emerging from qualitative studies included cultural and structural barriers to PA, faith and education as facilitators, and a lack of understanding of the recommended amounts of PA and its benefits among South Asian women. Quantitative and qualitative evidence indicate that South Asian women do not perform the recommended level of PA for health benefits. Both types of studies suffer from limitations due to methods of data collection. More research should be dedicated to standardizing objective PA measurement and to understanding how to utilize the resources of the individuals and communities to increase PA levels and overall health of South Asian women.
Experimental Study of Turbine Fuel Thermal Stability in an Aircraft Fuel System Simulator
NASA Technical Reports Server (NTRS)
Vranos, A.; Marteney, P. J.
1980-01-01
The thermal stability of aircraft gas turbines fuels was investigated. The objectives were: (1) to design and build an aircraft fuel system simulator; (2) to establish criteria for quantitative assessment of fuel thermal degradation; and (3) to measure the thermal degradation of Jet A and an alternative fuel. Accordingly, an aircraft fuel system simulator was built and the coking tendencies of Jet A and a model alternative fuel (No. 2 heating oil) were measured over a range of temperatures, pressures, flows, and fuel inlet conditions.
The prevalence of extreme Middle Eastern ideologies around the world.
Loza, Wagdy; Abd-el-Fatah, Youssef; Prinsloo, Johan; Hesselink-Louw, Anni; Seidler, Katie
2011-02-01
The Belief Diversity Scale (BDS) was administered to Australian, Canadian, Egyptian, and South African participants of different religious backgrounds. The BDS is a 33-item, six subscale instrument that is designed to quantitatively measure Middle Eastern extremist ideologies on risk areas that are reported in the literature. Results demonstrated the reliability and validity of the BDS, thus suggesting that the BDS could be used as an objective tool to measure Middle Eastern extremist ideologies. Results also supported the hypothesis of prevalence of Middle Eastern extremist ideologies around different parts of the world.
Quantitative structural MRI for early detection of Alzheimer’s disease
McEvoy, Linda K; Brewer, James B
2011-01-01
Alzheimer’s disease (AD) is a common progressive neurodegenerative disorder that is not currently diagnosed until a patient reaches the stage of dementia. There is a pressing need to identify AD at an earlier stage, so that treatment, when available, can begin early. Quantitative structural MRI is sensitive to the neurodegeneration that occurs in mild and preclinical AD, and is predictive of decline to dementia in individuals with mild cognitive impairment. Objective evidence of ongoing brain atrophy will be critical for risk/benefit decisions once potentially aggressive, disease-modifying treatments become available. Recent advances have paved the way for the use of quantitative structural MRI in clinical practice, and initial clinical use has been promising. However, further experience with these measures in the relatively unselected patient populations seen in clinical practice is needed to complete translation of the recent enormous advances in scientific knowledge of AD into the clinical realm. PMID:20977326
Randhawa, Parmjeet S; Farasati, Noush A; Huang, Yuchen; Mapara, Markus Y; Shapiro, Ron
2010-12-01
Our objective was to determine whether quantitative polymerase chain reaction (PCR) can be used to measure the effect of tyrosine kinase (TK) inhibition on polyomavirus BK (BKV) replication. The BKV was grown in a cell culture system. The rate of viral replication in the presence or absence of the drug being tested was assessed by amplifying the viral genome using primers directed against the viral capsid 1 protein. Dasatinib, erlotinib, gefitinib, imatinib, sunitinib, and sorafenib all showed antiviral activity at micromolar concentrations. The 50% effective concentration for erlotinib and sorafenib was within blood concentrations readily achieved in human subjects. Quantitative PCR is a convenient method for viral drug sensitivity testing for slow-growing viruses that do not readily produce cytopathic effect. TK inhibitors deserve further consideration as a potential therapeutic option for BKV-associated nephropathy and hemorrhagic cystitis.
Quantitative imaging of aggregated emulsions.
Penfold, Robert; Watson, Andrew D; Mackie, Alan R; Hibberd, David J
2006-02-28
Noise reduction, restoration, and segmentation methods are developed for the quantitative structural analysis in three dimensions of aggregated oil-in-water emulsion systems imaged by fluorescence confocal laser scanning microscopy. Mindful of typical industrial formulations, the methods are demonstrated for concentrated (30% volume fraction) and polydisperse emulsions. Following a regularized deconvolution step using an analytic optical transfer function and appropriate binary thresholding, novel application of the Euclidean distance map provides effective discrimination of closely clustered emulsion droplets with size variation over at least 1 order of magnitude. The a priori assumption of spherical nonintersecting objects provides crucial information to combat the ill-posed inverse problem presented by locating individual particles. Position coordinates and size estimates are recovered with sufficient precision to permit quantitative study of static geometrical features. In particular, aggregate morphology is characterized by a novel void distribution measure based on the generalized Apollonius problem. This is also compared with conventional Voronoi/Delauney analysis.
Cardiovascular and pulmonary dynamics by quantitative imaging
NASA Technical Reports Server (NTRS)
Wood, E. H.
1976-01-01
The accuracy and range of studies on cardiovascular and pulmonary functions can be greatly facilitated if the motions of the underlying organ systems throughout individual cycles can be directly visualized and readily measured with minimum or preferably no effect on these motions. Achievement of this objective requires development of techniques for quantitative noninvasive or minimally invasive dynamic and stop-action imaging of the organ systems. A review of advances in dynamic quantitative imaging of moving organs reveals that the revolutionary value of cross-sectional and three-dimensional images produced by various types of radiant energy such as X-rays and gamma rays, positrons, electrons, protons, light, and ultrasound for clinical diagnostic and biomedical research applications is just beginning to be realized. The fabrication of a clinically useful cross-section reconstruction device with sensing capabilities for both anatomical structural composition and chemical composition may be possible and awaits future development.
A clustering approach to segmenting users of internet-based risk calculators.
Harle, C A; Downs, J S; Padman, R
2011-01-01
Risk calculators are widely available Internet applications that deliver quantitative health risk estimates to consumers. Although these tools are known to have varying effects on risk perceptions, little is known about who will be more likely to accept objective risk estimates. To identify clusters of online health consumers that help explain variation in individual improvement in risk perceptions from web-based quantitative disease risk information. A secondary analysis was performed on data collected in a field experiment that measured people's pre-diabetes risk perceptions before and after visiting a realistic health promotion website that provided quantitative risk information. K-means clustering was performed on numerous candidate variable sets, and the different segmentations were evaluated based on between-cluster variation in risk perception improvement. Variation in responses to risk information was best explained by clustering on pre-intervention absolute pre-diabetes risk perceptions and an objective estimate of personal risk. Members of a high-risk overestimater cluster showed large improvements in their risk perceptions, but clusters of both moderate-risk and high-risk underestimaters were much more muted in improving their optimistically biased perceptions. Cluster analysis provided a unique approach for segmenting health consumers and predicting their acceptance of quantitative disease risk information. These clusters suggest that health consumers were very responsive to good news, but tended not to incorporate bad news into their self-perceptions much. These findings help to quantify variation among online health consumers and may inform the targeted marketing of and improvements to risk communication tools on the Internet.
Raina, A; Hennessy, R; Rains, M; Allred, J; Hirshburg, J M; Diven, D G; Markey, M K
2016-08-01
Traditional metrics for evaluating the severity of psoriasis are subjective, which complicates efforts to measure effective treatments in clinical trials. We collected images of psoriasis plaques and calibrated the coloration of the images according to an included color card. Features were extracted from the images and used to train a linear discriminant analysis classifier with cross-validation to automatically classify the degree of erythema. The results were tested against numerical scores obtained by a panel of dermatologists using a standard rating system. Quantitative measures of erythema based on the digital color images showed good agreement with subjective assessment of erythema severity (κ = 0.4203). The color calibration process improved the agreement from κ = 0.2364 to κ = 0.4203. We propose a method for the objective measurement of the psoriasis severity parameter of erythema and show that the calibration process improved the results. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A phase-stepped point diffraction interferometer using liquid crystals
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Creath, Katherine; Rashidnia, Nasser
1995-01-01
A new instrument, the liquid crystal point diffraction interferometer (LCPDI), has been developed for the measurement of phase objects. This instrument maintains the compact, robust design of Linnik's point diffraction interferometer (PDI) and adds to it phase stepping capability for quantitative interferogram analysis. The result is a compact, simple to align, environmentally insensitive interferometer capable of accurately measuring optical wavefronts with high data density and with automated data reduction. The design of the LCPDI is briefly discussed. An algorithm is presented for eliminating phase measurement error caused by object beam intensity variation from frame-to-frame. The LCPDI is demonstrated by measuring the temperature distribution across a heated chamber filled with silicone oil. The measured results are compared to independently measured results and show excellent agreement with them. It is expected that this instrument will have application in the fluid sciences as a diagnostic tool, particularly in space based applications where autonomy, robustness, and compactness are desirable qualities. It should also be useful for the testing of optical elements, provided a master is available for comparison.
Wang, Tao; He, Fuhong; Zhang, Anding; Gu, Lijuan; Wen, Yangmao; Jiang, Weiguo; Shao, Hongbo
2014-01-01
This paper took a subregion in a small watershed gully system at Beiyanzikou catchment of Qixia, China, as a study and, using object-orientated image analysis (OBIA), extracted shoulder line of gullies from high spatial resolution digital orthophoto map (DOM) aerial photographs. Next, it proposed an accuracy assessment method based on the adjacent distance between the boundary classified by remote sensing and points measured by RTK-GPS along the shoulder line of gullies. Finally, the original surface was fitted using linear regression in accordance with the elevation of two extracted edges of experimental gullies, named Gully 1 and Gully 2, and the erosion volume was calculated. The results indicate that OBIA can effectively extract information of gullies; average range difference between points field measured along the edge of gullies and classified boundary is 0.3166 m, with variance of 0.2116 m. The erosion area and volume of two gullies are 2141.6250 m2, 5074.1790 m3 and 1316.1250 m2, 1591.5784 m3, respectively. The results of the study provide a new method for the quantitative study of small gully erosion. PMID:24616626
The clinical utility of posturography.
Visser, Jasper E; Carpenter, Mark G; van der Kooij, Herman; Bloem, Bastiaan R
2008-11-01
Postural instability and falls are common and devastating features of ageing and many neurological, visual, vestibular or orthopedic disorders. Current management of these problems is hampered by the subjective and variable nature of the available clinical balance measures. In this narrative review, we discuss the clinical utility of posturography as a more objective and quantitative measure of balance and postural instability, focusing on several areas where clinicians presently experience the greatest difficulties in managing their patients: (a) to make an appropriate differential diagnosis in patients presenting with falls or balance impairment; (b) to reliably identify those subjects who are at risk of falling; (c) to objectively and quantitatively document the outcome of therapeutic interventions; and (d) to gain a better pathophysiological understanding of postural instability and falls, as a basis for the development of improved treatment strategies to prevent falling. In each of these fields, posturography offers several theoretical advantages and, when applied correctly, provides a useful tool to gain a better understanding of pathophysiological mechanisms in patients with balance disorders, at the group level. However, based on the available evidence, none of the existing techniques is currently able to significantly influence the clinical decision making in individual patients. We critically review the shortcomings of posturography as it is presently used, and conclude with several recommendations for future research.
Sermeus, Luc A; Hans, Guy H; Schepens, Tom; Bosserez, Nathalie M-L; Breebaart, Margaretha B; Smitz, Carine J; Vercauteren, Marcel P
2016-01-01
This study investigated whether quantitative sensory testing (QST) with thermal stimulations can quantitatively measure the characteristics of an ultrasound-guided interscalene brachial plexus block (US-ISB). This was a prospective randomized trial in patients scheduled for arthroscopic shoulder surgery under general anesthesia and US-ISB. Participants and observers were blinded for the study. We assigned the study participants to one of three groups: 0.5% levobupivacaine 15 mL, 0.5% levobupivacaine 15 mL with 1:200,000 epinephrine, and 0.75% ropivacaine 15 mL. We performed thermal QST within dermatomes C4, C5, C6, and C7 before infiltration and 30 min, six hours, ten hours, and 24 hr after performing the US-ISB. In addition, we used QST, a semi-objective quantitative testing method, to measure the onset, intensity, duration, extent, and functional recovery of the sensory block. We also measured detection thresholds for cold/warm sensations and cold/heat pain. Detection thresholds for all thermal sensations within the ipsilateral C4, C5, C6, and C7 dermatomes increased rapidly (indicating the development of a hypoesthetic state) and reached a steady state after 30 min. This lasted for approximately ten hours and returned to normal detection thresholds by 24 hr. There were no differences detected between the three groups at 24 hr when we compared warm sensation thresholds on one dermatome. Visual inspection of the pooled results per dermatome suggests the ability of QST to detect clinically relevant differences in block intensity per dermatome. Quantitative sensory testing can be useful as a method for detecting the presence and characteristics of regional anesthesia-induced sensory block and may be used for the evaluation of clinical protocols. The three local anesthetic solutions exhibited a similar anesthetic effect. The results support the use of QST to assess block characteristics quantitatively under clinical research conditions. This trial was registered at Clinicaltrals.gov, NCT02271867.
A new method to evaluate image quality of CBCT images quantitatively without observers
Shimizu, Mayumi; Okamura, Kazutoshi; Yoshida, Shoko; Weerawanich, Warangkana; Tokumori, Kenji; Jasa, Gainer R; Yoshiura, Kazunori
2017-01-01
Objectives: To develop an observer-free method for quantitatively evaluating the image quality of CBCT images by applying just-noticeable difference (JND). Methods: We used two test objects: (1) a Teflon (polytetrafluoroethylene) plate phantom attached to a dry human mandible; and (2) a block phantom consisting of a Teflon step phantom and an aluminium step phantom. These phantoms had holes with different depths. They were immersed in water and scanned with a CB MercuRay (Hitachi Medical Corporation, Tokyo, Japan) at tube voltages of 120 kV, 100 kV, 80 kV and 60 kV. Superimposed images of the phantoms with holes were used for evaluation. The number of detectable holes was used as an index of image quality. In detecting holes quantitatively, the threshold grey value (ΔG), which differentiated holes from the background, was calculated using a specific threshold (the JND), and we extracted the holes with grey values above ΔG. The indices obtained by this quantitative method (the extracted hole values) were compared with the observer evaluations (the observed hole values). In addition, the contrast-to-noise ratio (CNR) of the shallowest detectable holes and the deepest undetectable holes were measured to evaluate the contribution of CNR to detectability. Results: The results of this evaluation method corresponded almost exactly with the evaluations made by observers. The extracted hole values reflected the influence of different tube voltages. All extracted holes had an area with a CNR of ≥1.5. Conclusions: This quantitative method of evaluating CBCT image quality may be more useful and less time-consuming than evaluation by observation. PMID:28045343
English, Devin; Bowleg, Lisa; del Río-González, Ana Maria; Tschann, Jeanne M.; Agans, Robert; Malebranche, David J
2017-01-01
Objectives Although social science research has examined police and law enforcement-perpetrated discrimination against Black men using policing statistics and implicit bias studies, there is little quantitative evidence detailing this phenomenon from the perspective of Black men. Consequently, there is a dearth of research detailing how Black men’s perspectives on police and law enforcement-related stress predict negative physiological and psychological health outcomes. This study addresses these gaps with the qualitative development and quantitative test of the Police and Law Enforcement (PLE) scale. Methods In Study 1, we employed thematic analysis on transcripts of individual qualitative interviews with 90 Black men to assess key themes and concepts and develop quantitative items. In Study 2, we used 2 focus groups comprised of 5 Black men each (n=10), intensive cognitive interviewing with a separate sample of Black men (n=15), and piloting with another sample of Black men (n=13) to assess the ecological validity of the quantitative items. For study 3, we analyzed data from a sample of 633 Black men between the ages of 18 and 65 to test the factor structure of the PLE, as we all as its concurrent validity and convergent/discriminant validity. Results Qualitative analyses and confirmatory factor analyses suggested that a 5-item, 1-factor measure appropriately represented respondents’ experiences of police/law enforcement discrimination. As hypothesized, the PLE was positively associated with measures of racial discrimination and depressive symptoms. Conclusions Preliminary evidence suggests that the PLE is a reliable and valid measure of Black men’s experiences of discrimination with police/law enforcement. PMID:28080104
Jungmann, Pia M.; Baum, Thomas; Bauer, Jan S.; Karampinos, Dimitrios C.; Link, Thomas M.; Li, Xiaojuan; Trattnig, Siegfried; Rummeny, Ernst J.; Woertler, Klaus; Welsch, Goetz H.
2014-01-01
Background. New quantitative magnetic resonance imaging (MRI) techniques are increasingly applied as outcome measures after cartilage repair. Objective. To review the current literature on the use of quantitative MRI biomarkers for evaluation of cartilage repair at the knee and ankle. Methods. Using PubMed literature research, studies on biochemical, quantitative MR imaging of cartilage repair were identified and reviewed. Results. Quantitative MR biomarkers detect early degeneration of articular cartilage, mainly represented by an increasing water content, collagen disruption, and proteoglycan loss. Recently, feasibility of biochemical MR imaging of cartilage repair tissue and surrounding cartilage was demonstrated. Ultrastructural properties of the tissue after different repair procedures resulted in differences in imaging characteristics. T2 mapping, T1rho mapping, delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), and diffusion weighted imaging (DWI) are applicable on most clinical 1.5 T and 3 T MR scanners. Currently, a standard of reference is difficult to define and knowledge is limited concerning correlation of clinical and MR findings. The lack of histological correlations complicates the identification of the exact tissue composition. Conclusions. A multimodal approach combining several quantitative MRI techniques in addition to morphological and clinical evaluation might be promising. Further investigations are required to demonstrate the potential for outcome evaluation after cartilage repair. PMID:24877139
Destounis, Stamatia; Arieno, Andrea; Morgan, Renee; Roberts, Christina; Chan, Ariane
2017-01-01
Mammographic breast density (MBD) has been proven to be an important risk factor for breast cancer and an important determinant of mammographic screening performance. The measurement of density has changed dramatically since its inception. Initial qualitative measurement methods have been found to have limited consistency between readers, and in regards to breast cancer risk. Following the introduction of full-field digital mammography, more sophisticated measurement methodology is now possible. Automated computer-based density measurements can provide consistent, reproducible, and objective results. In this review paper, we describe various methods currently available to assess MBD, and provide a discussion on the clinical utility of such methods for breast cancer screening. PMID:28561776
Assessment and monitoring of forest ecosystem structure
Oscar A. Aguirre Calderón; Javier Jiménez Pérez; Horst Kramer
2006-01-01
Characterization of forest ecosystems structure must be based on quantitative indices that allow objective analysis of human influences or natural succession processes. The objective of this paper is the compilation of diverse quantitative variables to describe structural attributes from the arboreal stratum of the ecosystem, as well as different methods of forest...
A practical and objective approach to scar colour assessment.
Hallam, M J; McNaught, K; Thomas, A N; Nduka, C
2013-10-01
Scarring is a significant clinical problem following dermal injury. However, scars are not a single describable entity and huge phenotypic variability is evident. Quantitative, reproducible inter-observer scar assessment is essential to monitor wound healing and the effect of scar treatments. Scar colour, reflecting the biological processes occurring within a scar, is integral to any assessment. The objective of this study was to analyse scar colour using the non-invasive Eykona® Wound Measurement System (the System) as compared against the Manchester Scar Scale (MSS). Three dimensional images of 43 surgical scars were acquired post-operatively from 35 patients at 3-6 months and the colour difference between the scar and surrounding skin was calculated (giving ΔLab values). The colourimetric results were then compared against subjective MSS gradings. A significant difference in ΔLab values between MSS gradings of "slight mismatch" and "obvious mismatch" (p<0.025) and between "obvious mismatch" and "gross mismatch" (p<0.05) were noted. The System creates objective, reproducible data, without the need for any specialist expertise and compares favourably with the MSS. Greater scar numbers are required to further clinically validate this device--however, with this potential to calculate scar length, width, volume and other characteristics, it could provide a complete, objective, quantitative record of scarring throughout the wound-healing process. Copyright © 2013 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Visual conspicuity: a new simple standard, its reliability, validity and applicability.
Wertheim, A H
2010-03-01
A general standard for quantifying conspicuity is described. It derives from a simple and easy method to quantitatively measure the visual conspicuity of an object. The method stems from the theoretical view that the conspicuity of an object is not a property of that object, but describes the degree to which the object is perceptually embedded in, i.e. laterally masked by, its visual environment. First, three variations of a simple method to measure the strength of such lateral masking are described and empirical evidence for its reliability and its validity is presented, as are several tests of predictions concerning the effects of viewing distance and ambient light. It is then shown how this method yields a conspicuity standard, expressed as a number, which can be made part of a rule of law, and which can be used to test whether or not, and to what extent, the conspicuity of a particular object, e.g. a traffic sign, meets a predetermined criterion. An additional feature is that, when used under different ambient light conditions, the method may also yield an index of the amount of visual clutter in the environment. Taken together the evidence illustrates the methods' applicability in both the laboratory and in real-life situations. STATEMENT OF RELEVANCE: This paper concerns a proposal for a new method to measure visual conspicuity, yielding a numerical index that can be used in a rule of law. It is of importance to ergonomists and human factor specialists who are asked to measure the conspicuity of an object, such as a traffic or rail-road sign, or any other object. The new method is simple and circumvents the need to perform elaborate (search) experiments and thus has great relevance as a simple tool for applied research.
Adly, Amr A.; Abd-El-Hafiz, Salwa K.
2014-01-01
Transformers are regarded as crucial components in power systems. Due to market globalization, power transformer manufacturers are facing an increasingly competitive environment that mandates the adoption of design strategies yielding better performance at lower costs. In this paper, a power transformer design methodology using multi-objective evolutionary optimization is proposed. Using this methodology, which is tailored to be target performance design-oriented, quick rough estimation of transformer design specifics may be inferred. Testing of the suggested approach revealed significant qualitative and quantitative match with measured design and performance values. Details of the proposed methodology as well as sample design results are reported in the paper. PMID:26257939
Adly, Amr A; Abd-El-Hafiz, Salwa K
2015-05-01
Transformers are regarded as crucial components in power systems. Due to market globalization, power transformer manufacturers are facing an increasingly competitive environment that mandates the adoption of design strategies yielding better performance at lower costs. In this paper, a power transformer design methodology using multi-objective evolutionary optimization is proposed. Using this methodology, which is tailored to be target performance design-oriented, quick rough estimation of transformer design specifics may be inferred. Testing of the suggested approach revealed significant qualitative and quantitative match with measured design and performance values. Details of the proposed methodology as well as sample design results are reported in the paper.
Objective comparison of particle tracking methods.
Chenouard, Nicolas; Smal, Ihor; de Chaumont, Fabrice; Maška, Martin; Sbalzarini, Ivo F; Gong, Yuanhao; Cardinale, Janick; Carthel, Craig; Coraluppi, Stefano; Winter, Mark; Cohen, Andrew R; Godinez, William J; Rohr, Karl; Kalaidzidis, Yannis; Liang, Liang; Duncan, James; Shen, Hongying; Xu, Yingke; Magnusson, Klas E G; Jaldén, Joakim; Blau, Helen M; Paul-Gilloteaux, Perrine; Roudot, Philippe; Kervrann, Charles; Waharte, François; Tinevez, Jean-Yves; Shorte, Spencer L; Willemse, Joost; Celler, Katherine; van Wezel, Gilles P; Dan, Han-Wei; Tsai, Yuh-Show; Ortiz de Solórzano, Carlos; Olivo-Marin, Jean-Christophe; Meijering, Erik
2014-03-01
Particle tracking is of key importance for quantitative analysis of intracellular dynamic processes from time-lapse microscopy image data. Because manually detecting and following large numbers of individual particles is not feasible, automated computational methods have been developed for these tasks by many groups. Aiming to perform an objective comparison of methods, we gathered the community and organized an open competition in which participating teams applied their own methods independently to a commonly defined data set including diverse scenarios. Performance was assessed using commonly defined measures. Although no single method performed best across all scenarios, the results revealed clear differences between the various approaches, leading to notable practical conclusions for users and developers.
Speech graphs provide a quantitative measure of thought disorder in psychosis.
Mota, Natalia B; Vasconcelos, Nivaldo A P; Lemos, Nathalia; Pieretti, Ana C; Kinouchi, Osame; Cecchi, Guillermo A; Copelli, Mauro; Ribeiro, Sidarta
2012-01-01
Psychosis has various causes, including mania and schizophrenia. Since the differential diagnosis of psychosis is exclusively based on subjective assessments of oral interviews with patients, an objective quantification of the speech disturbances that characterize mania and schizophrenia is in order. In principle, such quantification could be achieved by the analysis of speech graphs. A graph represents a network with nodes connected by edges; in speech graphs, nodes correspond to words and edges correspond to semantic and grammatical relationships. To quantify speech differences related to psychosis, interviews with schizophrenics, manics and normal subjects were recorded and represented as graphs. Manics scored significantly higher than schizophrenics in ten graph measures. Psychopathological symptoms such as logorrhea, poor speech, and flight of thoughts were grasped by the analysis even when verbosity differences were discounted. Binary classifiers based on speech graph measures sorted schizophrenics from manics with up to 93.8% of sensitivity and 93.7% of specificity. In contrast, sorting based on the scores of two standard psychiatric scales (BPRS and PANSS) reached only 62.5% of sensitivity and specificity. The results demonstrate that alterations of the thought process manifested in the speech of psychotic patients can be objectively measured using graph-theoretical tools, developed to capture specific features of the normal and dysfunctional flow of thought, such as divergence and recurrence. The quantitative analysis of speech graphs is not redundant with standard psychometric scales but rather complementary, as it yields a very accurate sorting of schizophrenics and manics. Overall, the results point to automated psychiatric diagnosis based not on what is said, but on how it is said.
Helmerhorst, Hendrik J F; Brage, Søren; Warren, Janet; Besson, Herve; Ekelund, Ulf
2012-08-31
Physical inactivity is one of the four leading risk factors for global mortality. Accurate measurement of physical activity (PA) and in particular by physical activity questionnaires (PAQs) remains a challenge. The aim of this paper is to provide an updated systematic review of the reliability and validity characteristics of existing and more recently developed PAQs and to quantitatively compare the performance between existing and newly developed PAQs.A literature search of electronic databases was performed for studies assessing reliability and validity data of PAQs using an objective criterion measurement of PA between January 1997 and December 2011. Articles meeting the inclusion criteria were screened and data were extracted to provide a systematic overview of measurement properties. Due to differences in reported outcomes and criterion methods a quantitative meta-analysis was not possible.In total, 31 studies testing 34 newly developed PAQs, and 65 studies examining 96 existing PAQs were included. Very few PAQs showed good results on both reliability and validity. Median reliability correlation coefficients were 0.62-0.71 for existing, and 0.74-0.76 for new PAQs. Median validity coefficients ranged from 0.30-0.39 for existing, and from 0.25-0.41 for new PAQs.Although the majority of PAQs appear to have acceptable reliability, the validity is moderate at best. Newly developed PAQs do not appear to perform substantially better than existing PAQs in terms of reliability and validity. Future PAQ studies should include measures of absolute validity and the error structure of the instrument.
2012-01-01
Physical inactivity is one of the four leading risk factors for global mortality. Accurate measurement of physical activity (PA) and in particular by physical activity questionnaires (PAQs) remains a challenge. The aim of this paper is to provide an updated systematic review of the reliability and validity characteristics of existing and more recently developed PAQs and to quantitatively compare the performance between existing and newly developed PAQs. A literature search of electronic databases was performed for studies assessing reliability and validity data of PAQs using an objective criterion measurement of PA between January 1997 and December 2011. Articles meeting the inclusion criteria were screened and data were extracted to provide a systematic overview of measurement properties. Due to differences in reported outcomes and criterion methods a quantitative meta-analysis was not possible. In total, 31 studies testing 34 newly developed PAQs, and 65 studies examining 96 existing PAQs were included. Very few PAQs showed good results on both reliability and validity. Median reliability correlation coefficients were 0.62–0.71 for existing, and 0.74–0.76 for new PAQs. Median validity coefficients ranged from 0.30–0.39 for existing, and from 0.25–0.41 for new PAQs. Although the majority of PAQs appear to have acceptable reliability, the validity is moderate at best. Newly developed PAQs do not appear to perform substantially better than existing PAQs in terms of reliability and validity. Future PAQ studies should include measures of absolute validity and the error structure of the instrument. PMID:22938557
Subjective perception of sleep benefit in Parkinson's disease: Valid or irrelevant?
Lee, Will; Evans, Andrew; Williams, David R
2017-09-01
The phenomenon of sleep benefit (SB) in Parkinson's disease (PD), whereby waking motor function is improved despite no dopaminergic treatment overnight, is controversial. Previous studies suggested a significant discrepancy between subjective functional and objective motor improvement. The aim of this study was to determine how well subjective reporting of SB correlates with objective measures and if true motor improvement can be predicted by a standardized questionnaire. Ninety-two patients with PD participated. A structured questionnaire was developed to assess subjective SB. Quantitative motor assessment was performed using a validated smartphone application. Objective motor SB was considered to be present when the waking motor function was similar or superior to the daytime on-state. Twenty (22%) patients showed objective motor improvement on waking compared to end-of-dose. Most patients (77%) reported subjective SB without corresponding objective motor benefit. Our structured questionnaire could not predict Motor SB. The ability to delay morning medications and a perception of indifference or paradoxical worsening following the morning levodopa dose may suggest Motor SB. Most patients experience subjective SB with no measureable motor improvement. This perceived benefit could be related to non-motor improvement that is distinctly different to objective motor benefit. Copyright © 2017 Elsevier Ltd. All rights reserved.
12 CFR 614.4362 - Loan and lease concentration risk mitigation policy.
Code of Federal Regulations, 2012 CFR
2012-01-01
... include: (1) A purpose and objective; (2) Clearly defined and consistently used terms; (3) Quantitative... exceptions and reporting requirements. (b) Quantitative methods. (1) At a minimum, the quantitative methods...
12 CFR 614.4362 - Loan and lease concentration risk mitigation policy.
Code of Federal Regulations, 2014 CFR
2014-01-01
... include: (1) A purpose and objective; (2) Clearly defined and consistently used terms; (3) Quantitative... exceptions and reporting requirements. (b) Quantitative methods. (1) At a minimum, the quantitative methods...
12 CFR 614.4362 - Loan and lease concentration risk mitigation policy.
Code of Federal Regulations, 2013 CFR
2013-01-01
... include: (1) A purpose and objective; (2) Clearly defined and consistently used terms; (3) Quantitative... exceptions and reporting requirements. (b) Quantitative methods. (1) At a minimum, the quantitative methods...
NASA Astrophysics Data System (ADS)
Andrae, Peter; Beeck, Manfred-Andreas; Jueptner, Werner P. O.; Nadeborn, Werner; Osten, Wolfgang
1996-09-01
Holographic interferometry makes it possible to measure high precision displacement data in the range of the wavelength of the used laser light. However, the determination of 3D- displacement vectors of objects with complex surfaces requires the measurement of 3D-object coordinates not only to consider local sensitivities but to distinguish between in-plane deformation, i.e. strains, and out-of-plane components, i.e. shears, too. To this purpose both the surface displacement and coordinates have to be combined and it is advantageous to make the data available for CAE- systems. The object surface has to be approximated analytically from the measured point cloud to generate a surface mesh. The displacement vectors can be assigned to the nodes of this surface mesh for visualization of the deformation of the object under test. They also can be compared to the results of FEM-calculations or can be used as boundary conditions for further numerical investigations. Here the 3D-object coordinates are measured in a separate topometric set-up using a modified fringe projection technique to acquire absolute phase values and a sophisticated geometrical model to map these phase data onto coordinates precisely. The determination of 3D-displacement vectors requires the measurement of several interference phase distributions for at least three independent sensitivity directions depending on the observation and illumination directions as well as the 3D-position of each measuring point. These geometric quantities have to be transformed into a reference coordinate system of the interferometric set-up in order to calculate the geometric matrix. The necessary transformation can be realized by means of a detection of object features in both data sets and a subsequent determination of the external camera orientation. This paper presents a consistent solution for the measurement and combination of shape and displacement data including their transformation into simulation systems. The described procedure will be demonstrated on an automotive component. Thus more accurate and effective measurement techniques make it possible to bring experimental and numerical displacement analysis closer.
Quantitative 3D analysis of shape dynamics of the left ventricle
NASA Astrophysics Data System (ADS)
Scowen, Barry C.; Smith, Stephen L.; Vannan, Mani A.; Arsenault, Marie
1998-07-01
There is an established link between Left Ventricular (LV) geometry and its performance. As a consequence of ischemic heart disease and the attempt to relieve myocardial tissue stress, ventricle shape begins to distort from a conical to spherical geometry with a reduction in pumping efficiency of the chamber. If untreated, premature heart failure will result. To increase the changes of successful treatment it is obviously important for the benefit of the patient to detect these abnormalities as soon as possible. It is the development of a technique to characterize and quantify the shape of the left ventricle that is described here. The system described in this paper uses a novel helix model which combines the advantages of current two dimensional (2D) quantitative measures which provide limited information, with 3D qualitative methods which provide accurate reconstructions of the LV using computationally expensive rendering schemes. A phantom object and dog ventricle (normal/abnormal) were imaged and helical models constructed. The result are encouraging with differences between normal and abnormal ventricles in both diastole and systole able to be determined. Further work entails building a library of subjects in order to determine the relationship between ventricle geometry and quantitative measurements.
Does architectural lighting contribute to breast cancer?
Figueiro, Mariana G; Rea, Mark S; Bullough, John D
2006-01-01
Objectives There is a growing interest in the role that light plays on nocturnal melatonin production and, perhaps thereby, the incidence of breast cancer in modern societies. The direct causal relationships in this logical chain have not, however, been fully established and the weakest link is an inability to quantitatively specify architectural lighting as a stimulus for the circadian system. The purpose of the present paper is to draw attention to this weakness. Data Sources and Extraction We reviewed the literature on the relationship between melatonin, light at night, and cancer risk in humans and tumor growth in animals. More specifically, we focused on the impact of light on nocturnal melatonin suppression in humans and on the applicability of these data to women in real-life situations. Photometric measurement data from the lighted environment of women at work and at home is also reported. Data Synthesis The literature review and measurement data demonstrate that more quantitative knowledge is needed about circadian light exposures actually experienced by women and girls in modern societies. Conclusion Without such quantitative knowledge, limited insights can be gained about the causal relationship between melatonin and the etiology of breast cancer from epidemiological studies and from parametric studies using animal models. PMID:16901343
Quantitative assessment of upper extremities motor function in multiple sclerosis.
Daunoraviciene, Kristina; Ziziene, Jurgita; Griskevicius, Julius; Pauk, Jolanta; Ovcinikova, Agne; Kizlaitiene, Rasa; Kaubrys, Gintaras
2018-05-18
Upper extremity (UE) motor function deficits are commonly noted in multiple sclerosis (MS) patients and assessing it is challenging because of the lack of consensus regarding its definition. Instrumented biomechanical analysis of upper extremity movements can quantify coordination with different spatiotemporal measures and facilitate disability rating in MS patients. To identify objective quantitative parameters for more accurate evaluation of UE disability and relate it to existing clinical scores. Thirty-four MS patients and 24 healthy controls (CG) performed a finger-to-nose test as fast as possible and, in addition, clinical evaluation kinematic parameters of UE were measured by using inertial sensors. Generally, a higher disability score was associated with an increase of several temporal parameters, like slower task performance. The time taken to touch their nose was longer when the task was fulfilled with eyes closed. Time to peak angular velocity significantly changed in MS patients (EDSS > 5.0). The inter-joint coordination significantly decreases in MS patients (EDSS 3.0-5.5). Spatial parameters indicated that maximal ROM changes were in elbow flexion. Our findings have revealed that spatiotemporal parameters are related to the UE motor function and MS disability level. Moreover, they facilitate clinical rating by supporting clinical decisions with quantitative data.
NASA Astrophysics Data System (ADS)
Capineri, Lorenzo; Castellini, Guido; Masotti, Leonardo F.; Rocchi, Santina
1992-06-01
This paper explores the applications of a high-resolution imaging technique to vascular ultrasound diagnosis, with emphasis on investigation of the carotid vessel. With the present diagnostic systems, it is difficult to measure quantitatively the extension of the lesions and to characterize the tissue; quantitative images require enough spatial resolution and dynamic to reveal fine high-risk pathologies. A broadband synthetic aperture technique with multi-offset probes is developed to improve the lesion characterization by the evaluation of local scattering parameters. This technique works with weak scatterers embedded in a constant velocity medium, large aperture, and isotropic sources and receivers. The features of this technique are: axial and lateral spatial resolution of the order of the wavelength, high dynamic range, quantitative measurements of the size and scattering intensity of the inhomogeneities, and capabilities of investigation of inclined layer. The evaluation of the performances in real condition is carried out by a software simulator in which different experimental situations can be reproduced. Images of simulated anatomic test-objects are presented. The images are obtained with an inversion process of the synthesized ultrasonic signals, collected on the linear aperture by a limited number of finite size transducers.
Ando, Katsuya; Kurosawa, Masahiro; Fuwa, Yuji; Kondo, Takamasa; Goto, Shigemi
2007-11-01
The aim of this study was to establish an objective and quantitative method of measuring occlusal contact areas. To this end, bite records were taken with a silicone impression material and a light transmission device was used to read the silicone impression material. To examine the effectiveness of this novel method, the occlusal contact area of the silicone impression material and its thickness limit of readable range were measured. Results of this study suggested that easy and highly accurate measurements of occlusal contact area could be obtained by selecting an optimal applied voltage of the light transmission device and an appropriate color of the silicone impression material.
Common-path digital holographic microscopy based on a beam displacer unit
NASA Astrophysics Data System (ADS)
Di, Jianglei; Zhang, Jiwei; Song, Yu; Wang, Kaiqiang; Wei, Kun; Zhao, Jianlin
2018-02-01
Digital holographic microscopy (DHM) has become a novel tool with advantages of full field, non-destructive, high-resolution and 3D imaging, which captures the quantitative amplitude and phase information of microscopic specimens. It's a well-established method for digital recording and numerical reconstructing the full complex field of wavefront of the samples with a diffraction-limited lateral resolution down to 0.3 μm depending on the numerical aperture of microscope objective. Meanwhile, its axial resolution through axial direction is less than 10 nm due to the interferometric nature in phase imaging. Compared with the typical optical configurations such as Mach-Zehnder interferometer and Michelson interferometer, the common-path DHM has the advantages of simple and compact configuration, high stability, and so on. Here, a simple, compact, and low-cost common-path DHM based on a beam displacer unit is proposed for quantitative phase imaging of biological cells. The beam displacer unit is completely compatible with commercial microscope and can be easily set up in the output port of the microscope as a compact independent device. This technique can be used to achieve the quantitative phase measurement of biological cells with an excellent temporal stability of 0.51 nm, which makes it having a good prospect in the fields of biological and medical science. Living mouse osteoblastic cells are quantitatively measured with the system to demonstrate its capability and applicability.
Lee, Alex Pui-Wai; Fang, Fang; Jin, Chun-Na; Kam, Kevin Ka-Ho; Tsui, Gary K W; Wong, Kenneth K Y; Looi, Jen-Li; Wong, Randolph H L; Wan, Song; Sun, Jing Ping; Underwood, Malcolm J; Yu, Cheuk-Man
2014-01-01
The mitral valve (MV) has complex 3-dimensional (3D) morphology and motion. Advance in real-time 3D echocardiography (RT3DE) has revolutionized clinical imaging of the MV by providing clinicians with realistic visualization of the valve. Thus far, RT3DE of the MV structure and dynamics has adopted an approach that depends largely on subjective and qualitative interpretation of the 3D images of the valve, rather than objective and reproducible measurement. RT3DE combined with image-processing computer techniques provides precise segmentation and reliable quantification of the complex 3D morphology and rapid motion of the MV. This new approach to imaging may provide additional quantitative descriptions that are useful in diagnostic and therapeutic decision-making. Quantitative analysis of the MV using RT3DE has increased our understanding of the pathologic mechanism of degenerative, ischemic, functional, and rheumatic MV disease. Most recently, 3D morphologic quantification has entered into clinical use to provide more accurate diagnosis of MV disease and for planning surgery and transcatheter interventions. Current limitations of this quantitative approach to MV imaging include labor-intensiveness during image segmentation and lack of a clear definition of the clinical significance of many of the morphologic parameters. This review summarizes the current development and applications of quantitative analysis of the MV morphology using RT3DE.
Measure Landscape Diversity with Logical Scout Agents
NASA Astrophysics Data System (ADS)
Wirth, E.; Szabó, G.; Czinkóczky, A.
2016-06-01
The Common Agricultural Policy reform of the EU focuses on three long-term objectives: viable food production, sustainable management of natural resources and climate action with balanced territorial development. To achieve these goals, the EU farming and subsidizing policies (EEA, 2014) support landscape heterogeneity and diversity. Current paper introduces an agent-based method to calculate the potential of landscape diversity. The method tries to catch the nature of heterogeneity using logic and modelling as opposed to the traditional statistical reasoning. The outlined Random Walk Scouting algorithm registers the land cover crossings of the scout agents to a Monte Carlo integral. The potential is proportional with the composition and the configuration (spatial character) of the landscape. Based on the measured points a potential map is derived to give an objective and quantitative basis to the stakeholders (policy makers, farmers).
Boselli, Emmanuel; Musellec, Hervé; Bernard, Franck; Guillou, Nicolas; Hugot, Pierre; Augris-Mathieu, Caroline; Diot-Junique, Nathalie; Bouvet, Lionel; Allaouchiche, Bernard
2018-01-01
This two-center quasiexperimental pilot study was to determine the effect of conversational hypnosis on patient comfort and parasympathetic tone, which may represent a quantitative measure of hypnotic depth, during regional anesthesia. The patients received conversational hypnosis in one center and oral premedication in the other. The patients' subjective comfort (0-10 rating scale) and objective parasympathetic tone, as assessed by the Analgesia/Nociception Index (ANI), were measured before and after regional anesthesia. The parasympathetic tone and comfort scores evidenced a significantly greater increase in the hypnosis patients than in controls. These findings suggest that using conversational hypnosis during regional anesthesia may be followed by a subjective increase in patient comfort and an objective increase in parasympathetic tone, monitored by ANI.
Hume, C; Salmon, J; Ball, K
2005-02-01
Environmental factors may have an important influence on children's physical activity, yet children's perspectives of their home and neighborhood environments have not been widely assessed. The aim of this study was to investigate children's perceptions of their environments, and to examine associations between these perceptions and objectively measured physical activity. The sample consisted of 147, 10-year-old Australian children, who drew maps of their home and neighborhood environments. A subsample of children photographed places and things in these environments that were important to them. The maps were analyzed for themes, and for the frequency with which particular objects and locations appeared. Physical activity was objectively measured using accelerometers. Six themes emerged from the qualitative analysis of the maps and photographs: the family home; opportunities for physical activity and sedentary pursuits; food items and locations; green space and outside areas; the school and opportunities for social interaction. Of the 11 variables established from these themes, one home and two neighborhood factors were associated with children's physical activity. These findings contribute to a broader understanding of children's perceptions of their environment, and highlight the potential importance of the home and neighborhood environments for promoting physical activity behavior.
Optimization of Dual-Energy Xenon-CT for Quantitative Assessment of Regional Pulmonary Ventilation
Fuld, Matthew K.; Halaweish, Ahmed; Newell, John D.; Krauss, Bernhard; Hoffman, Eric A.
2013-01-01
Objective Dual-energy X-ray computed tomography (DECT) offers visualization of the airways and quantitation of regional pulmonary ventilation using a single breath of inhaled xenon gas. In this study we seek to optimize scanning protocols for DECT xenon gas ventilation imaging of the airways and lung parenchyma and to characterize the quantitative nature of the developed protocols through a series of test-object and animal studies. Materials and Methods The Institutional Animal Care and Use Committee approved all animal studies reported here. A range of xenon-oxygen gas mixtures (0, 20, 25, 33, 50, 66, 100%; balance oxygen) were scanned in syringes and balloon test-objects to optimize the delivered gas mixture for assessment of regional ventilation while allowing for the development of improved three-material decomposition calibration parameters. Additionally, to alleviate gravitational effects on xenon gas distribution, we replaced a portion of the oxygen in the xenon/oxygen gas mixture with helium and compared gas distributions in a rapid-prototyped human central-airway test-object. Additional syringe tests were performed to determine if the introduction of helium had any effect on xenon quantitation. Xenon gas mixtures were delivered to anesthetized swine in order to assess airway and lung parenchymal opacification while evaluating various DECT scan acquisition settings. Results Attenuation curves for xenon were obtained from the syringe test objects and were used to develop improved three-material decomposition parameters (HU enhancement per percent xenon: Within the chest phantom: 2.25 at 80kVp, 1.7 at 100 kVp, and 0.76 at 140 kVp with tin filtration; In open air: 2.5 at 80kVp, 1.95 at 100 kVp, and 0.81 at 140 kVp with tin filtration). The addition of helium improved the distribution of xenon gas to the gravitationally non-dependent portion of the airway tree test-object, while not affecting quantitation of xenon in the three-material decomposition DECT. 40%Xe/40%He/20%O2 provided good signal-to-noise, greater than the Rose Criterion (SNR > 5), while avoiding gravitational effects of similar concentrations of xenon in a 60%O2 mixture. 80/140-kVp (tin-filtered) provided improved SNR compared with 100/140-kVp in a swine with an equivalent thoracic transverse density to a human subject with body mass index of 33. Airways were brighter in the 80/140 kVp scan (80/140Sn, 31.6%; 100/140Sn, 25.1%) with considerably lower noise (80/140Sn, CV of 0.140; 100/140Sn, CV of 0.216). Conclusion In order to provide a truly quantitative measure of regional lung function with xenon-DECT, the basic protocols and parameter calibrations needed to be better understood and quantified. It is critically important to understand the fundamentals of new techniques in order to allow for proper implementation and interpretation of their results prior to wide spread usage. With the use of an in house derived xenon calibration curve for three-material decomposition rather than the scanner supplied calibration and a xenon/helium/oxygen mixture we demonstrate highly accurate quantitation of xenon gas volumes and avoid gravitational effects on gas distribution. This study provides a foundation for other researchers to use and test these methods with the goal of clinical translation. PMID:23571834
Polarization digital holographic microscopy using low-cost liquid crystal polarization rotators
NASA Astrophysics Data System (ADS)
Dovhaliuk, Rostyslav Yu
2018-02-01
Polarization imaging methods are actively used to study anisotropic objects. A number of methods and systems, such as imaging polarimeters, were proposed to measure the state of polarization of light that passed through the object. Digital holographic and interferometric approaches can be used to quantitatively measure both amplitude and phase of a wavefront. Using polarization modulation optics, the measurement capabilities of such interference-based systems can be extended to measure polarization-dependent parameters, such as phase retardation. Different kinds of polarization rotators can be used to alternate the polarization of a reference beam. Liquid crystals are used in a rapidly increasing number of different optoelectronic devices. Twisted nematic liquid crystals are widely used as amplitude modulators in electronic displays and light valves or shutter glass. Such devices are of particular interest for polarization imaging, as they can be used as polarization rotators, and due to large-scale manufacturing have relatively low cost. A simple Mach-Zehnder polarized holographic setup that uses modified shutter glass as a polarization rotator is demonstrated. The suggested approach is experimentally validated by measuring retardation of quarter-wave film.
Wass, Val; Roberts, Celia; Hoogenboom, Ron; Jones, Roger; Van der Vleuten, Cees
2003-01-01
Objective To assess the effect of ethnicity on student performance in stations assessing communication skills within an objective structured clinical examination. Design Quantitative and qualitative study. Setting A final UK clinical examination consisting of a two day objective structured clinical examination with 22 stations. Participants 82 students from ethnic minorities and 97 white students. Main outcome measures Mean scores for stations (quantitative) and observations made using discourse analysis on selected communication stations (qualitative). Results Mean performance of students from ethnic minorities was significantly lower than that of white students for stations assessing communication skills on days 1 (67.0% (SD 6.8%) and 72.3% (7.6%); P=0.001) and 2 (65.2% (6.6%) and 69.5% (6.3%); P=0.003). No examples of overt discrimination were found in 309 video recordings. Transcriptions showed subtle differences in communication styles in some students from ethnic minorities who performed poorly. Examiners' assumptions about what is good communication may have contributed to differences in grading. Conclusions There was no evidence of explicit discrimination between students from ethnic minorities and white students in the objective structured clinical examination. A small group of male students from ethnic minorities used particularly poorly rated communicative styles, and some subtle problems in assessing communication skills may have introduced bias. Tests need to reflect issues of diversity to ensure that students from ethnic minorities are not disadvantaged. What is already known on this topicUK medical schools are concerned that students from ethnic minorities may perform less well than white students in examinationsIt is important to understand whether our examination system disadvantages themWhat this study addsMean performance of students from ethnic minorities was significantly lower than that of white students in a final year objective structured clinical examinationTwo possible reasons for the difference were poor communicative performance of a small group of male students from ethnic minorities and examiners' use of a textbook patient centred notion of good communicationIssues of diversity in test construction and implementation must be addressed to ensure that students from ethnic minorities are not disadvantaged PMID:12689978
Tooth color measurement using Chroma Meter: techniques, advantages, and disadvantages.
Li, Yiming
2003-01-01
Tooth whitening has become a popular and routine dental procedure, and its efficacy and safety have been well documented. However, the measurement of tooth color, particularly in the evaluation of the efficacy of a system intended to enhance tooth whiteness, remains a challenge. One of the instruments used for assessing tooth color in clinical whitening studies is the Minolta Chroma Meter CR-321 (Minolta Corporation USA, Ramsey, NJ, USA). This article describes the instrument and discusses various measuring procedures and the Chroma Meter's advantages, limitations, and disadvantages. The available information indicates that, although Minolta Chroma Meter CR-321 provides quantitative and objective measurements of tooth color, it can be tedious to use with a custom alignment device. The Chroma Meter data are inconsistent with the commonly used visual instruments such as Vitapan Classical Shade Guide (Vita Zahnfabrik, Bad Säckingen, Germany), although in many cases the general trends are similar. It is also questionable whether the small area measured adequately represents the color of the whole tooth. A more critical challenge is the lack of methods for interpreting the Chroma Meter data regarding tooth color change in studies evaluating the efficacy of whitening systems. Consequently, at present the Chroma Meter data alone do not appear to be adequate for determining tooth color change in whitening research, although the quantitative measurements may be useful as supplemental or supportive data. Research is needed to develop and improve the instrument and technique for quantitative measurement of tooth color and interpretation of the data for evaluating tooth color change. This paper will help readers to understand the advantages and limitations of the Minolta Chroma Meter used for evaluating the efficacy of tooth-whitening systems so that proper judgment can be made in the interpretation of the results of clinical studies.
Maintenance = reuse-oriented software development
NASA Technical Reports Server (NTRS)
Basili, Victor R.
1989-01-01
Maintenance is viewed as a reuse process. In this context, a set of models that can be used to support the maintenance process is discussed. A high level reuse framework is presented that characterizes the object of reuse, the process for adapting that object for its target application, and the reused object within its target application. Based upon this framework, a qualitative comparison is offered of the three maintenance process models with regard to their strengths and weaknesses and the circumstances in which they are appropriate. To provide a more systematic, quantitative approach for evaluating the appropriateness of the particular maintenance model, a measurement scheme is provided, based upon the reuse framework, in the form of an organized set of questions that need to be answered. To support the reuse perspective, a set of reuse enablers are discussed.
Quantitative fluorescence microscopy and image deconvolution.
Swedlow, Jason R
2013-01-01
Quantitative imaging and image deconvolution have become standard techniques for the modern cell biologist because they can form the basis of an increasing number of assays for molecular function in a cellular context. There are two major types of deconvolution approaches--deblurring and restoration algorithms. Deblurring algorithms remove blur but treat a series of optical sections as individual two-dimensional entities and therefore sometimes mishandle blurred light. Restoration algorithms determine an object that, when convolved with the point-spread function of the microscope, could produce the image data. The advantages and disadvantages of these methods are discussed in this chapter. Image deconvolution in fluorescence microscopy has usually been applied to high-resolution imaging to improve contrast and thus detect small, dim objects that might otherwise be obscured. Their proper use demands some consideration of the imaging hardware, the acquisition process, fundamental aspects of photon detection, and image processing. This can prove daunting for some cell biologists, but the power of these techniques has been proven many times in the works cited in the chapter and elsewhere. Their usage is now well defined, so they can be incorporated into the capabilities of most laboratories. A major application of fluorescence microscopy is the quantitative measurement of the localization, dynamics, and interactions of cellular factors. The introduction of green fluorescent protein and its spectral variants has led to a significant increase in the use of fluorescence microscopy as a quantitative assay system. For quantitative imaging assays, it is critical to consider the nature of the image-acquisition system and to validate its response to known standards. Any image-processing algorithms used before quantitative analysis should preserve the relative signal levels in different parts of the image. A very common image-processing algorithm, image deconvolution, is used to remove blurred signal from an image. There are two major types of deconvolution approaches, deblurring and restoration algorithms. Deblurring algorithms remove blur, but treat a series of optical sections as individual two-dimensional entities, and therefore sometimes mishandle blurred light. Restoration algorithms determine an object that, when convolved with the point-spread function of the microscope, could produce the image data. The advantages and disadvantages of these methods are discussed. Copyright © 1998 Elsevier Inc. All rights reserved.
Yaqoob, Zahid; Choi, Wonshik; Oh, Seungeun; Lue, Niyom; Park, Yongkeun; Fang-Yen, Christopher; Dasari, Ramachandra R.; Badizadegan, Kamran; Feld, Michael S.
2010-01-01
We report a quantitative phase microscope based on spectral domain optical coherence tomography and line-field illumination. The line illumination allows self phase-referencing method to reject common-mode phase noise. The quantitative phase microscope also features a separate reference arm, permitting the use of high numerical aperture (NA > 1) microscope objectives for high resolution phase measurement at multiple points along the line of illumination. We demonstrate that the path-length sensitivity of the instrument can be as good as 41 pm/Hz, which makes it suitable for nanometer scale study of cell motility. We present the detection of natural motions of cell surface and two-dimensional surface profiling of a HeLa cell. PMID:19550464
Nuclear medicine and imaging research (Instrumentation and quantitative methods of evaluation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, R.N.; Cooper, M.D.
1989-09-01
This program addresses the problems involving the basic science and technology underlying the physical and conceptual tools of radioactive tracer methodology as they relate to the measurement of structural and functional parameters of physiologic importance in health and disease. The principal tool is quantitative radionuclide imaging. The overall objective of this program is to further the development and transfer of radiotracer methodology from basic theory to routine clinical practice in order that individual patients and society as a whole will receive the maximum net benefit from the new knowledge gained. The focus of the research is on the development ofmore » new instruments and radiopharmaceuticals, and the evaluation of these through the phase of clinical feasibility.« less
NASA Technical Reports Server (NTRS)
Dong, Y.; Spedding, G. R.; Egolfopoulos, F. N.; Miller, F. J.
2003-01-01
The main objective of this research is to introduce accurate fluid mechanics measurements diagnostics in the 2.2-s drop tower for the determination of the detailed flow-field at the states of extinction. These results are important as they can then be compared with confidence with detailed numerical simulations so that important insight is provided into near-limit phenomena that are controlled by not well-understood kinetics and thermal radiation processes. Past qualitative studies did enhance our general understanding on the subject. However, quantitative studies are essential for the validation of existing models that subsequently be used to describe near-limit phenomena that can initiate catastrophic events in micro- and/or reduced gravity environments.
Petriwskyj, Andrea; Parker, Deborah; O'Dwyer, Siobhan; Moyle, Wendy; Nucifora, Nikki
2016-06-01
Recent studies have indicated that family caregivers of people with dementia have higher rates of depression, anxiety and hopelessness, as well as higher levels of burden, stress and distress. Not all caregivers, however, succumb to the negative effects of caring. Caregivers who are able to recover from, resist or adapt to the physical and psychological demands of caring can be considered "resilient". The objective of this review was to examine the existing evidence regarding interventions for building resilience in family caregivers of people living with dementia. This review considered studies that included family caregivers of people with dementia. Studies investigating interventions to build resilience in family caregivers were considered by the review. For qualitative studies, the phenomena of interest were family caregivers' experiences of the interventions including factors affecting implementation and their subjective experience of outcomes. Studies conducted in any cultural or geographical context and any settings including participants' homes in the community, residential aged care or hospital, medical or allied health practice were considered for inclusion. Quantitative studies incorporating experimental and descriptive study designs and qualitative studies, including, but not limited to, phenomenology, grounded theory, ethnography, action research and feminist research were considered for inclusion. Quantitative studies were included that contained either objective or subjective outcome measures (or a combination of both). In cases in which proxy measures of resilience were used, only those papers that explicitly related the aims of the intervention and the measurement of outcomes to resilience itself were considered for inclusion. Proxies could include, but were not limited to, self-efficacy, locus of control, perceived burden, psychological wellbeing, strength, coping, positive adjustment and resourcefulness. Qualitative studies were similarly considered for inclusion if they explicitly related the aims of the intervention to resilience. Eleven electronic databases were searched for research studies published in English in or after 1990. Quantitative and qualitative studies selected for retrieval were assessed by two independent reviewers for methodological validity using standardized critical appraisal instruments from the Joanna Briggs Institute Meta-Analysis of Statistics Assessment and Review Instrument (JBI-MAStARI) and Joanna Briggs Institute Qualitative Assessment and Review Instrument (JBI-QARI). Quantitative and qualitative data were extracted from publications included in the review using the standardized data extraction tools from JBI-MAStARI and JBI-QARI. It was not possible to pool quantitative findings for statistical meta-analysis using JBI-MAStARI. Qualitative research findings were too limited to be pooled using the JBI-QARI. The findings are presented in narrative form. The review included three publications reporting one quantitative intervention study and one mixed-method intervention study. There was a lack of available studies and, of the two intervention studies that were identified, neither found any statistically significant change in quantitative measures of resilience. Qualitative data suggested positive impacts of a poetry writing intervention and a positive experience of the intervention. The studies differed in both the nature of the intervention and the way resilience was conceptualized and operationalized. Consequently, it was not possible to offer any recommendations for practice. Implications for research relate to the development of a more comprehensive theory of resilience in family caregivers that can be used to develop and rigorously evaluate reliable and valid measures of resilience in line with that theory. Further, well-designed, sufficiently powered intervention studies informed by theory are needed.
Quantitative Ultrasound: Transition from the Laboratory to the Clinic
NASA Astrophysics Data System (ADS)
Hall, Timothy
2014-03-01
There is a long history of development and testing of quantitative methods in medical ultrasound. From the initial attempts to scan breasts with ultrasound in the early 1950's, there was a simultaneous attempt to classify tissue as benign or malignant based on the appearance of the echo signal on an oscilloscope. Since that time, there has been substantial improvement in the ultrasound systems used, the models to describe wave propagation in random media, the methods of signal detection theory, and the combination of those models and methods into parameter estimation techniques. One particularly useful measure in ultrasonics is the acoustic differential scattering cross section per unit volume in the special case of the 180° (as occurs in pulse-echo ultrasound imaging) which is known as the backscatter coefficient. The backscatter coefficient, and parameters derived from it, can be used to objectively measure quantities that are used clinically to subjectively describe ultrasound images. For example, the ``echogenicity'' (relative ultrasound image brightness) of the renal cortex is commonly compared to that of the liver. Investigating the possibility of liver disease, it is assumed the renal cortex echogenicity is normal. Investigating the kidney, it is assumed the liver echogenicity is normal. Objective measures of backscatter remove these assumptions. There is a 30-year history of accurate estimates of acoustic backscatter coefficients with laboratory systems. Twenty years ago that ability was extended to clinical imaging systems with array transducers. Recent studies involving multiple laboratories and a variety of clinical imaging systems has demonstrated system-independent estimates of acoustic backscatter coefficients in well-characterized media (agreement within about 1.5dB over about a 1-decade frequency range). Advancements that made this possible, transition of this and similar capabilities into medical practice and the prospects for quantitative image-based biomarkers will be discussed. This work was supported, in part, by NIH grants R01CA140271 and R01HD072077.
Jha, Abhinav K; Song, Na; Caffo, Brian; Frey, Eric C
2015-04-13
Quantitative single-photon emission computed tomography (SPECT) imaging is emerging as an important tool in clinical studies and biomedical research. There is thus a need for optimization and evaluation of systems and algorithms that are being developed for quantitative SPECT imaging. An appropriate objective method to evaluate these systems is by comparing their performance in the end task that is required in quantitative SPECT imaging, such as estimating the mean activity concentration in a volume of interest (VOI) in a patient image. This objective evaluation can be performed if the true value of the estimated parameter is known, i.e. we have a gold standard. However, very rarely is this gold standard known in human studies. Thus, no-gold-standard techniques to optimize and evaluate systems and algorithms in the absence of gold standard are required. In this work, we developed a no-gold-standard technique to objectively evaluate reconstruction methods used in quantitative SPECT when the parameter to be estimated is the mean activity concentration in a VOI. We studied the performance of the technique with realistic simulated image data generated from an object database consisting of five phantom anatomies with all possible combinations of five sets of organ uptakes, where each anatomy consisted of eight different organ VOIs. Results indicate that the method provided accurate ranking of the reconstruction methods. We also demonstrated the application of consistency checks to test the no-gold-standard output.
Increased gait unsteadiness in community-dwelling elderly fallers
NASA Technical Reports Server (NTRS)
Hausdorff, J. M.; Edelberg, H. K.; Mitchell, S. L.; Goldberger, A. L.; Wei, J. Y.
1997-01-01
OBJECTIVE: To test the hypothesis that quantitative measures of gait unsteadiness are increased in community-dwelling elderly fallers. STUDY DESIGN: Retrospective, case-control study. SETTING: General community. PARTICIPANTS: Thirty-five community-dwelling elderly subjects older than 70 years of age who were capable of ambulating independently for 6 minutes were categorized as fallers (age, 82.2 +/- 4.9 yrs [mean +/- SD]; n = 18) and nonfallers (age, 76.5 +/- 4.0 yrs; n = 17) based on history; 22 young (age, 24.6 +/- 1.9 yrs), healthy subjects also participated as a second reference group. MAIN OUTCOME MEASURES: Stride-to-stride variability (standard deviation and coefficient of variation) of stride time, stance time, swing time, and percent stance time measured during a 6-minute walk. RESULTS: All measures of gait variability were significantly greater in the elderly fallers compared with both the elderly nonfallers and the young subjects (p < .0002). In contrast, walking speed of the elderly fallers was similar to that of the nonfallers. There were little or no differences in the variability measures of the elderly nonfallers compared with the young subjects. CONCLUSIONS: Stride-to-stride temporal variations of gait are relatively unchanged in community-dwelling elderly nonfallers, but are significantly increased in elderly fallers. Quantitative measurement of gait unsteadiness may be useful in assessing fall risk in the elderly.
Measurement of smaller colon polyp in CT colonography images using morphological image processing.
Manjunath, K N; Siddalingaswamy, P C; Prabhu, G K
2017-11-01
Automated measurement of the size and shape of colon polyps is one of the challenges in Computed tomography colonography (CTC). The objective of this retrospective study was to improve the sensitivity and specificity of smaller polyp measurement in CTC using image processing techniques. A domain knowledge-based method has been implemented with hybrid method of colon segmentation, morphological image processing operators for detecting the colonic structures, and the decision-making system for delineating the smaller polyp-based on a priori knowledge. The method was applied on 45 CTC dataset. The key finding was that the smaller polyps were accurately measured. In addition to 6-9 mm range, polyps of even <5 mm were also detected. The results were validated qualitatively and quantitatively using both 2D MPR and 3D view. Implementation was done on a high-performance computer with parallel processing. It takes [Formula: see text] min for measuring the smaller polyp in a dataset of 500 CTC images. With this method, [Formula: see text] and [Formula: see text] were achieved. The domain-based approach with morphological image processing has given good results. The smaller polyps were measured accurately which helps in making right clinical decisions. Qualitatively and quantitatively the results were acceptable when compared to the ground truth at [Formula: see text].
Using ultrasound to quantify tongue shape and movement characteristics.
Zharkova, Natalia
2013-01-01
Objective : Previous experimental studies have demonstrated abnormal lingual articulatory patterns characterizing cleft palate speech. Most articulatory information to date has been collected using electropalatography, which records the location and size of tongue-palate contact but not the tongue shape. The latter type of data can be provided by ultrasound. The present paper aims to describe ultrasound tongue imaging as a potential tool for quantitative analysis of tongue function in speakers with cleft palate. A description of the ultrasound technique as applied to analyzing tongue movements is given, followed by the requirements for quantitative analysis. Several measures are described, and example calculations are provided. Measures : Two measures aim to quantify overuse of tongue dorsum in cleft palate articulations. Crucially for potential clinical applications, these measures do not require head-to-transducer stabilization because both are based on a single tongue curve. The other three measures compare sets of tongue curves, with the aim to quantify the dynamics of tongue displacement, token-to-token variability in tongue position, and the extent of separation between tongue curves for different speech sounds. Conclusions : All measures can be used to compare tongue function in speakers with cleft palate before and after therapy, as well as to assess their performance against that in typical speakers and to help in selecting more effective treatments.
Shields, Richard K.; Dudley-Javoroski, Shauna; Boaldin, Kathryn M.; Corey, Trent A.; Fog, Daniel B.; Ruen, Jacquelyn M.
2012-01-01
Objectives To determine (1) the error attributable to external tibia-length measurements by using peripheral quantitative computed tomography (pQCT) and (2) the effect these errors have on scan location and tibia trabecular bone mineral density (BMD) after spinal cord injury (SCI). Design Blinded comparison and criterion standard in matched cohorts. Setting Primary care university hospital. Participants Eight able-bodied subjects underwent tibia length measurement. A separate cohort of 7 men with SCI and 7 able-bodied age-matched male controls underwent pQCT analysis. Interventions Not applicable. Main Outcome Measures The projected worst-case tibia-length–measurement error translated into a pQCT slice placement error of ±3mm. We collected pQCT slices at the distal 4% tibia site, 3mm proximal and 3mm distal to that site, and then quantified BMD error attributable to slice placement. Results Absolute BMD error was greater for able-bodied than for SCI subjects (5.87mg/cm3 vs 4.5mg/cm3). However, the percentage error in BMD was larger for SCI than able-bodied subjects (4.56% vs 2.23%). Conclusions During cross-sectional studies of various populations, BMD differences up to 5% may be attributable to variation in limb-length–measurement error. PMID:17023249
Liu, L; Kan, A; Leckie, C; Hodgkin, P D
2017-04-01
Time-lapse fluorescence microscopy is a valuable technology in cell biology, but it suffers from the inherent problem of intensity inhomogeneity due to uneven illumination or camera nonlinearity, known as shading artefacts. This will lead to inaccurate estimates of single-cell features such as average and total intensity. Numerous shading correction methods have been proposed to remove this effect. In order to compare the performance of different methods, many quantitative performance measures have been developed. However, there is little discussion about which performance measure should be generally applied for evaluation on real data, where the ground truth is absent. In this paper, the state-of-the-art shading correction methods and performance evaluation methods are reviewed. We implement 10 popular shading correction methods on two artificial datasets and four real ones. In order to make an objective comparison between those methods, we employ a number of quantitative performance measures. Extensive validation demonstrates that the coefficient of joint variation (CJV) is the most applicable measure in time-lapse fluorescence images. Based on this measure, we have proposed a novel shading correction method that performs better compared to well-established methods for a range of real data tested. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Office-Based Elastographic Technique for Quantifying Mechanical Properties of Skeletal Muscle
Ballyns, Jeffrey J.; Turo, Diego; Otto, Paul; Shah, Jay P.; Hammond, Jennifer; Gebreab, Tadesse; Gerber, Lynn H.; Sikdar, Siddhartha
2012-01-01
Objectives Our objectives were to develop a new, efficient, and easy-to-administer approach to ultrasound elastography and assess its ability to provide quantitative characterization of viscoelastic properties of skeletal muscle in an outpatient clinical environment. We sought to show its validity and clinical utility in assessing myofascial trigger points, which are associated with myofascial pain syndrome. Methods Ultrasound imaging was performed while the muscle was externally vibrated at frequencies in the range of 60 to 200 Hz using a handheld vibrator. The spatial gradient of the vibration phase yielded the shear wave speed, which is related to the viscoelastic properties of tissue. The method was validated using a calibrated experimental phantom, the biceps brachii muscle in healthy volunteers (n = 6), and the upper trapezius muscle in symptomatic patients with axial neck pain (n = 13) and asymptomatic (pain-free) control participants (n = 9). Results Using the experimental phantom, our method was able to quantitatively measure the shear moduli with error rates of less than 20%. The mean shear modulus ± SD in the normal biceps brachii measured 12.5 ± 3.4 kPa, within the range of published values using more sophisticated methods. Shear wave speeds in active myofascial trigger points and the surrounding muscle tissue were significantly higher than those in normal tissue at high frequency excitations (>100 Hz; P < .05). Conclusions Off-the-shelf office-based equipment can be used to quantitatively characterize skeletal muscle viscoelastic properties with estimates comparable to those using more sophisticated methods. Our preliminary results using this method indicate that patients with spontaneous neck pain and symptomatic myofascial trigger points have increased tissue heterogeneity at the trigger point site and the surrounding muscle tissue. PMID:22837285
A method for rapid quantitative assessment of biofilms with biomolecular staining and image analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larimer, Curtis J.; Winder, Eric M.; Jeters, Robert T.
Here, the accumulation of bacteria in surface attached biofilms, or biofouling, can be detrimental to human health, dental hygiene, and many industrial processes. A critical need in identifying and preventing the deleterious effects of biofilms is the ability to observe and quantify their development. Analytical methods capable of assessing early stage fouling are cumbersome or lab-confined, subjective, and qualitative. Herein, a novel photographic method is described that uses biomolecular staining and image analysis to enhance contrast of early stage biofouling. A robust algorithm was developed to objectively and quantitatively measure surface accumulation of Pseudomonas putida from photographs and results weremore » compared to independent measurements of cell density. Results from image analysis quantified biofilm growth intensity accurately and with approximately the same precision of the more laborious cell counting method. This simple method for early stage biofilm detection enables quantifiable measurement of surface fouling and is flexible enough to be applied from the laboratory to the field. Broad spectrum staining highlights fouling biomass, photography quickly captures a large area of interest, and image analysis rapidly quantifies fouling in the image.« less
A method for rapid quantitative assessment of biofilms with biomolecular staining and image analysis
Larimer, Curtis J.; Winder, Eric M.; Jeters, Robert T.; ...
2015-12-07
Here, the accumulation of bacteria in surface attached biofilms, or biofouling, can be detrimental to human health, dental hygiene, and many industrial processes. A critical need in identifying and preventing the deleterious effects of biofilms is the ability to observe and quantify their development. Analytical methods capable of assessing early stage fouling are cumbersome or lab-confined, subjective, and qualitative. Herein, a novel photographic method is described that uses biomolecular staining and image analysis to enhance contrast of early stage biofouling. A robust algorithm was developed to objectively and quantitatively measure surface accumulation of Pseudomonas putida from photographs and results weremore » compared to independent measurements of cell density. Results from image analysis quantified biofilm growth intensity accurately and with approximately the same precision of the more laborious cell counting method. This simple method for early stage biofilm detection enables quantifiable measurement of surface fouling and is flexible enough to be applied from the laboratory to the field. Broad spectrum staining highlights fouling biomass, photography quickly captures a large area of interest, and image analysis rapidly quantifies fouling in the image.« less
Cross-Section Measurements in the Fast Neutron Energy Range
NASA Astrophysics Data System (ADS)
Plompen, Arjan
2006-04-01
Generation IV focuses research for advanced nuclear reactors on six concepts. Three of these concepts, the lead, gas and sodium fast reactors (LFR, GFR and SFR) have fast neutron spectra, whereas a fourth, the super-critical water reactor (SCWR), can be configured to have a fast spectrum. Such fast neutron spectra are essential to meet the sustainability objective of GenIV. Nuclear data requirements for GenIV concepts will therefore emphasize the energy region from about 1 keV to 10 MeV. Here, the potential is illustrated of the GELINA neutron time-of-flight facility and the Van de Graaff laboratory at IRMM to measure the relevant nuclear data in this energy range: the total, capture, fission and inelastic-scattering cross sections. In particular, measurement results will be shown for lead and bismuth inelastic scattering for which the need was recently expressed in a quantitative way by Aliberti et al. for Accelerator Driven Systems. Even without completion of the quantitative assessment of the data needs for GenIV concepts at ANL it is clear that this particular effort is of relevance to LFR system studies.
Assessing Microneurosurgical Skill with Medico-Engineering Technology.
Harada, Kanako; Morita, Akio; Minakawa, Yoshiaki; Baek, Young Min; Sora, Shigeo; Sugita, Naohiko; Kimura, Toshikazu; Tanikawa, Rokuya; Ishikawa, Tatsuya; Mitsuishi, Mamoru
2015-10-01
Most methods currently used to assess surgical skill are rather subjective or not adequate for microneurosurgery. Objective and quantitative microneurosurgical skill assessment systems that are capable of accurate measurements are necessary for the further development of microneurosurgery. Infrared optical motion tracking markers, an inertial measurement unit, and strain gauges were mounted on tweezers to measure many parameters related to instrument manipulation. We then recorded the activity of 23 neurosurgeons. The task completion time, tool path, and needle-gripping force were evaluated for three stitches made in an anastomosis of 0.7-mm artificial blood vessels. Videos of the activity were evaluated by three blinded expert surgeons. Surgeons who had recently done many bypass procedures demonstrated better skills. These skilled surgeons performed the anastomosis with in a shorter time, with a shorter tool path, and with a lesser force when extracting the needle. These results show the potential contribution of the system to microsurgical skill assessment. Quantitative and detailed analysis of surgical tasks helps surgeons better understand the key features of the required skills. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Dietrich, Klaus; Brülisauer, Martina; ćaǧin, Emine; Bertsch, Dietmar; Lüthi, Stefan; Heeb, Peter; Stärker, Ulrich; Bernard, André
2017-06-01
The applications of fluorescence microscopy span medical diagnostics, bioengineering and biomaterial analytics. Full exploitation of fluorescent microscopy is hampered by imperfections in illumination, detection and filtering. Mainly, errors stem from deviations induced by real-world components inducing spatial or angular variations of propagation properties along the optical path, and they can be addressed through consistent and accurate calibration. For many applications, uniform signal to noise ratio (SNR) over the imaging area is required. Homogeneous SNR can be achieved by quantifying and compensating for the signal bias. We present a method to quantitatively characterize novel reference materials as a calibration reference for biomaterials analytics. The reference materials under investigation comprise thin layers of fluorophores embedded in polymer matrices. These layers are highly homogeneous in their fluorescence response, where cumulative variations do not exceed 1% over the field of view (1.5 x 1.1 mm). An automated and reproducible measurement methodology, enabling sufficient correction for measurement artefacts, is reported. The measurement setup is equipped with an autofocus system, ensuring that the measured film quality is not artificially increased by out-of-focus reduction of the system modulation transfer function. The quantitative characterization method is suitable for analysis of modified bio-materials, especially through patterned protein decoration. The imaging method presented here can be used to statistically analyze protein patterns, thereby increasing both precision and throughput. Further, the method can be developed to include a reference emitter and detector pair on the image surface of the reference object, in order to provide traceable measurements.
Geometric, Kinematic and Radiometric Aspects of Image-Based Measurements
NASA Technical Reports Server (NTRS)
Liu, Tianshu
2002-01-01
This paper discusses theoretical foundations of quantitative image-based measurements for extracting and reconstructing geometric, kinematic and dynamic properties of observed objects. New results are obtained by using a combination of methods in perspective geometry, differential geometry. radiometry, kinematics and dynamics. Specific topics include perspective projection transformation. perspective developable conical surface, perspective projection under surface constraint, perspective invariants, the point correspondence problem. motion fields of curves and surfaces. and motion equations of image intensity. The methods given in this paper arc useful for determining morphology and motion fields of deformable bodies such as elastic bodies. viscoelastic mediums and fluids.
Quantifying Disease Progression in Amyotrophic Lateral Sclerosis
Simon, Neil G; Turner, Martin R; Vucic, Steve; Al-Chalabi, Ammar; Shefner, Jeremy; Lomen-Hoerth, Catherine; Kiernan, Matthew C
2014-01-01
Amyotrophic lateral sclerosis (ALS) exhibits characteristic variability of onset and rate of disease progression, with inherent clinical heterogeneity making disease quantitation difficult. Recent advances in understanding pathogenic mechanisms linked to the development of ALS impose an increasing need to develop strategies to predict and more objectively measure disease progression. This review explores phenotypic and genetic determinants of disease progression in ALS, and examines established and evolving biomarkers that may contribute to robust measurement in longitudinal clinical studies. With targeted neuroprotective strategies on the horizon, developing efficiencies in clinical trial design may facilitate timely entry of novel treatments into the clinic. PMID:25223628
Tian, Jie; Liu, Qianqi; Wang, Xi; Xing, Ping; Yang, Zhuowen; Wu, Changjun
2017-01-20
As breast cancer tissues are stiffer than normal tissues, shear wave elastography (SWE) can locally quantify tissue stiffness and provide histological information. Moreover, tissue stiffness can be observed on three-dimensional (3D) colour-coded elasticity maps. Our objective was to evaluate the diagnostic performances of quantitative features in differentiating breast masses by two-dimensional (2D) and 3D SWE. Two hundred ten consecutive women with 210 breast masses were examined with B-mode ultrasound (US) and SWE. Quantitative features of 3D and 2D SWE were assessed, including elastic modulus standard deviation (E SD E ) measured on SWE mode images and E SD U measured on B-mode images, as well as maximum elasticity (E max ). Adding quantitative features to B-mode US improved the diagnostic performance (p < 0.05) and reduced false-positive biopsies (p < 0.0001). The area under the receiver operating characteristic curve (AUC) of 3D SWE was similar to that of 2D SWE for E SD E (p = 0.026) and E SD U (p = 0.159) but inferior to that of 2D SWE for E max (p = 0.002). Compared with E SD U , E SD E showed a higher AUC on 2D (p = 0.0038) and 3D SWE (p = 0.0057). Our study indicates that quantitative features of 3D and 2D SWE can significantly improve the diagnostic performance of B-mode US, especially 3D SWE E SD E , which shows considerable clinical value.
Methods for collecting algal samples as part of the National Water-Quality Assessment Program
Porter, Stephen D.; Cuffney, Thomas F.; Gurtz, Martin E.; Meador, Michael R.
1993-01-01
Benthic algae (periphyton) and phytoplankton communities are characterized in the U.S. Geological Survey's National Water-Quality Assessment Program as part of an integrated physical, chemical, and biological assessment of the Nation's water quality. This multidisciplinary approach provides multiple lines of evidence for evaluating water-quality status and trends, and for refining an understanding of the factors that affect water-quality conditions locally, regionally, and nationally. Water quality can be characterized by evaluating the results of qualitative and quantitative measurements of the algal community. Qualitative periphyton samples are collected to develop of list of taxa present in the sampling reach. Quantitative periphyton samples are collected to measure algal community structure within selected habitats. These samples of benthic algal communities are collected from natural substrates, using the sampling methods that are most appropriate for the habitat conditions. Phytoplankton samples may be collected in large nonwadeable streams and rivers to meet specific program objectives. Estimates of algal biomass (chlorophyll content and ash-free dry mass) also are optional measures that may be useful for interpreting water-quality conditions. A nationally consistent approach provides guidance on site, reach, and habitat selection, as well as information on methods and equipment for qualitative and quantitative sampling. Appropriate quality-assurance and quality-control guidelines are used to maximize the ability to analyze data locally, regionally, and nationally.
Gastrointestinal Traits: Individualizing Therapy for Obesity with Drugs and Devices
Camilleri, Michael; Acosta, Andres
2015-01-01
Objectives The objectives were to review the discrepancy between numbers of people requiring weight loss treatment and results, and to assess the potential effects of pharmacological treatments (recently approved for obesity) and endoscopically deployed devices on quantitative gastrointestinal traits in development for obesity treatment. Methods We conducted a review of relevant literature to achieve our objectives. Results The 2013 guidelines increased the number of adults recommended for weight loss treatment by 20.9% (116.0 million to 140.2 million). There is an imbalance between efficacy and costs of commercial weight loss programs and drug therapy (average weight loss ~5 kg). The number of bariatric procedures performed in the United States has doubled in the past decade. The efficacy of bariatric surgery is attributed to reduction in the volume of the stomach, nutrient malabsorption with some types of surgery, increased postprandial incretin responses, and activation of farnesoid X receptor mechanisms. These gastrointestinal and behavioral traits identify sub-phenotypes of obesity based on recent research. Conclusions The mechanisms or traits targeted by drug and device treatments include centrally mediated alterations of appetite or satiation, diversion of nutrients, and alteration of stomach capacity, gastric emptying, or incretin hormones. Future treatment may be individualized based on quantitative gastrointestinal and behavioral traits measured in obese patients. PMID:26271184
Jin, Brian; Wang, Dingxin; Lewandowski, Robert J.; Ryu, Robert K.; Sato, Kent T.; Larson, Andrew C.; Salem, Riad; Omary, Reed A.
2011-01-01
PURPOSE We aimed to test the hypothesis that subjective angiographic endpoints during transarterial chemoembolization (TACE) of hepatocellular carcinoma (HCC) exhibit consistency and correlate with objective intraprocedural reductions in tumor perfusion as determined by quantitative four dimensional (4D) transcatheter intraarterial perfusion (TRIP) magnetic resonance (MR) imaging. MATERIALS AND METHODS This prospective study was approved by the institutional review board. Eighteen consecutive patients underwent TACE in a combined MR/interventional radiology (MR-IR) suite. Three board-certified interventional radiologists independently graded the angiographic endpoint of each procedure based on a previously described subjective angiographic chemoembolization endpoint (SACE) scale. A consensus SACE rating was established for each patient. Patients underwent quantitative 4D TRIP-MR imaging immediately before and after TACE, from which mean whole tumor perfusion (Fρ) was calculated. Consistency of SACE ratings between observers was evaluated using the intraclass correlation coefficient (ICC). The relationship between SACE ratings and intraprocedural TRIP-MR imaging perfusion changes was evaluated using Spearman’s rank correlation coefficient. RESULTS The SACE rating scale demonstrated very good consistency among all observers (ICC = 0.80). The consensus SACE rating was significantly correlated with both absolute (r = 0.54, P = 0.022) and percent (r = 0.85, P < 0.001) intraprocedural perfusion reduction. CONCLUSION The SACE rating scale demonstrates very good consistency between raters, and significantly correlates with objectively measured intraprocedural perfusion reductions during TACE. These results support the use of the SACE scale as a standardized alternative method to quantitative 4D TRIP-MR imaging to classify patients based on embolic endpoints of TACE. PMID:22021520
Pilot clinical study for quantitative spectral diagnosis of non-melanoma skin cancer.
Rajaram, Narasimhan; Reichenberg, Jason S; Migden, Michael R; Nguyen, Tri H; Tunnell, James W
2010-12-01
Several research groups have demonstrated the non-invasive diagnostic potential of diffuse optical spectroscopy (DOS) and laser-induced fluorescence (LIF) techniques for early cancer detection. By combining both modalities, one can simultaneously measure quantitative parameters related to the morphology, function and biochemical composition of tissue and use them to diagnose malignancy. The objective of this study was to use a quantitative reflectance/fluorescence spectroscopic technique to determine the optical properties of normal skin and non-melanoma skin cancers and the ability to accurately classify them. An additional goal was to determine the ability of the technique to differentiate non-melanoma skin cancers from normal skin. The study comprised 48 lesions measured from 40 patients scheduled for a biopsy of suspected non-melanoma skin cancers. White light reflectance and laser-induced fluorescence spectra (wavelength range = 350-700 nm) were collected from each suspected lesion and adjacent clinically normal skin using a custom-built, optical fiber-based clinical instrument. After measurement, the skin sites were biopsied and categorized according to histopathology. Using a quantitative model, we extracted various optical parameters from the measured spectra that could be correlated to the physiological state of tissue. Scattering from cancerous lesions was significantly lower than normal skin for every lesion group, whereas absorption parameters were significantly higher. Using numerical cut-offs for our optical parameters, our clinical instrument could classify basal cell carcinomas with a sensitivity and specificity of 94% and 89%, respectively. Similarly, the instrument classified actinic keratoses and squamous cell carcinomas with a sensitivity of 100% and specificity of 50%. The measured optical properties and fluorophore contributions of normal skin and non-melanoma skin cancers are significantly different from each other and correlate well with tissue pathology. A diagnostic algorithm that combines these extracted properties holds promise for the potential non-invasive diagnosis of skin cancer. Copyright © 2010 Wiley-Liss, Inc.
Object Segmentation and Ground Truth in 3D Embryonic Imaging.
Rajasekaran, Bhavna; Uriu, Koichiro; Valentin, Guillaume; Tinevez, Jean-Yves; Oates, Andrew C
2016-01-01
Many questions in developmental biology depend on measuring the position and movement of individual cells within developing embryos. Yet, tools that provide this data are often challenged by high cell density and their accuracy is difficult to measure. Here, we present a three-step procedure to address this problem. Step one is a novel segmentation algorithm based on image derivatives that, in combination with selective post-processing, reliably and automatically segments cell nuclei from images of densely packed tissue. Step two is a quantitative validation using synthetic images to ascertain the efficiency of the algorithm with respect to signal-to-noise ratio and object density. Finally, we propose an original method to generate reliable and experimentally faithful ground truth datasets: Sparse-dense dual-labeled embryo chimeras are used to unambiguously measure segmentation errors within experimental data. Together, the three steps outlined here establish a robust, iterative procedure to fine-tune image analysis algorithms and microscopy settings associated with embryonic 3D image data sets.
Object Segmentation and Ground Truth in 3D Embryonic Imaging
Rajasekaran, Bhavna; Uriu, Koichiro; Valentin, Guillaume; Tinevez, Jean-Yves; Oates, Andrew C.
2016-01-01
Many questions in developmental biology depend on measuring the position and movement of individual cells within developing embryos. Yet, tools that provide this data are often challenged by high cell density and their accuracy is difficult to measure. Here, we present a three-step procedure to address this problem. Step one is a novel segmentation algorithm based on image derivatives that, in combination with selective post-processing, reliably and automatically segments cell nuclei from images of densely packed tissue. Step two is a quantitative validation using synthetic images to ascertain the efficiency of the algorithm with respect to signal-to-noise ratio and object density. Finally, we propose an original method to generate reliable and experimentally faithful ground truth datasets: Sparse-dense dual-labeled embryo chimeras are used to unambiguously measure segmentation errors within experimental data. Together, the three steps outlined here establish a robust, iterative procedure to fine-tune image analysis algorithms and microscopy settings associated with embryonic 3D image data sets. PMID:27332860
CCD Camera Lens Interface for Real-Time Theodolite Alignment
NASA Technical Reports Server (NTRS)
Wake, Shane; Scott, V. Stanley, III
2012-01-01
Theodolites are a common instrument in the testing, alignment, and building of various systems ranging from a single optical component to an entire instrument. They provide a precise way to measure horizontal and vertical angles. They can be used to align multiple objects in a desired way at specific angles. They can also be used to reference a specific location or orientation of an object that has moved. Some systems may require a small margin of error in position of components. A theodolite can assist with accurately measuring and/or minimizing that error. The technology is an adapter for a CCD camera with lens to attach to a Leica Wild T3000 Theodolite eyepiece that enables viewing on a connected monitor, and thus can be utilized with multiple theodolites simultaneously. This technology removes a substantial part of human error by relying on the CCD camera and monitors. It also allows image recording of the alignment, and therefore provides a quantitative means to measure such error.
Bischoff, Guido; Böröcz, Zoltan; Proll, Christian; Kleinheinz, Johannes; von Bally, Gert; Dirksen, Dieter
2007-08-01
Optical topometric 3D sensors such as laser scanners and fringe projection systems allow detailed digital acquisition of human body surfaces. For many medical applications, however, not only the current shape is important, but also its changes, e.g., in the course of surgical treatment. In such cases, time delays of several months between subsequent measurements frequently occur. A modular 3D coordinate measuring system based on the fringe projection technique is presented that allows 3D coordinate acquisition including calibrated color information, as well as the detection and visualization of deviations between subsequent measurements. In addition, parameters describing the symmetry of body structures are determined. The quantitative results of the analysis may be used as a basis for objective documentation of surgical therapy. The system is designed in a modular way, and thus, depending on the object of investigation, two or three cameras with different capabilities in terms of resolution and color reproduction can be utilized to optimize the set-up.
An interactive tool for semi-automatic feature extraction of hyperspectral data
NASA Astrophysics Data System (ADS)
Kovács, Zoltán; Szabó, Szilárd
2016-09-01
The spectral reflectance of the surface provides valuable information about the environment, which can be used to identify objects (e.g. land cover classification) or to estimate quantities of substances (e.g. biomass). We aimed to develop an MS Excel add-in - Hyperspectral Data Analyst (HypDA) - for a multipurpose quantitative analysis of spectral data in VBA programming language. HypDA was designed to calculate spectral indices from spectral data with user defined formulas (in all possible combinations involving a maximum of 4 bands) and to find the best correlations between the quantitative attribute data of the same object. Different types of regression models reveal the relationships, and the best results are saved in a worksheet. Qualitative variables can also be involved in the analysis carried out with separability and hypothesis testing; i.e. to find the wavelengths responsible for separating data into predefined groups. HypDA can be used both with hyperspectral imagery and spectrometer measurements. This bivariate approach requires significantly fewer observations than popular multivariate methods; it can therefore be applied to a wide range of research areas.
Using Live-Crown Ratio to Control Wood Quality: An Example of Quantitative Silviculture
Thomas J. Dean
1999-01-01
Quantitative silviculture is the application of biological relationships in meeting specific, quantitative management objectives. It is a two-sided approach requiring the identification and application of biological relationships. An example of quantitative silviculture is presented that uses a relationship between average-live crown ratio and relative stand density...
Objective fitting of hemoglobin dynamics in traumatic bruises based on temperature depth profiling
NASA Astrophysics Data System (ADS)
Vidovič, Luka; Milanič, Matija; Majaron, Boris
2014-02-01
Pulsed photothermal radiometry (PPTR) allows noninvasive measurement of laser-induced temperature depth profiles. The obtained profiles provide information on depth distribution of absorbing chromophores, such as melanin and hemoglobin. We apply this technique to objectively characterize mass diffusion and decomposition rate of extravasated hemoglobin during the bruise healing process. In present study, we introduce objective fitting of PPTR data obtained over the course of the bruise healing process. By applying Monte Carlo simulation of laser energy deposition and simulation of the corresponding PPTR signal, quantitative analysis of underlying bruise healing processes is possible. Introduction of objective fitting enables an objective comparison between the simulated and experimental PPTR signals. In this manner, we avoid reconstruction of laser-induced depth profiles and thus inherent loss of information in the process. This approach enables us to determine the value of hemoglobin mass diffusivity, which is controversial in existing literature. Such information will be a valuable addition to existing bruise age determination techniques.
Carvajal-Hausdorf, Daniel E; Schalper, Kurt A; Bai, Yalai; Black, Jonathan; Santin, Alessandro D; Rimm, David L
2017-04-01
HER2 overexpression/amplification is identified in up to 40% of uterine serous carcinomas (USC) and 10% of ovarian serous carcinomas (OSC). However, clinical trials using various HER2-targeted agents failed to show significant responses. FDA-approved HER2 assays target only the protein's intracellular domain (ICD) and not the extracellular domain (ECD). Previous quantitative studies in breast cancer by our group have shown that ICD of HER2 is expressed in some cases that do not express the HER2 ECD. We measured HER2 ICD and ECD in USC and OSC samples, and determined their relationship with clinico-pathologic characteristics and survival. We measured HER2 ICD and ECD levels in 2 cohorts of USC and OSC comprising 102 and 175 patients, respectively. HER2 antibodies targeting ICD (CB11) and ECD (SP3) were validated and standardized using the AQUA® method of quantitative immunofluorescence (QIF) and a previously reported HER2 standardization tissue microarray (TMA). Objective, population-based cut-points were used to stratify patients according to HER2 ICD/ECD status. In USC, 8% of patients with high HER2 ICD had low ECD levels (6/75 patients). In OSC, 42% of patients with high HER2 ICD had low ECD levels (29/69 patients). HER2 ICD/ECD status in USC and OSC was not significantly associated with major clinico-pathological features or survival. Using objective, domain-specific HER2 measurement, 8% of USC and 42% of OSC patients with high HER2 ICD levels do not show uniform overexpression of the ECD. This may be related to the presence of p95 HER2, an oncogenic fragment generated by full protein cleavage or alternative initiation of translation. These observations raise the possibility that USC/OSCs expressing low ECD despite being HER2-positive by ICD measurement, may benefit from therapies directed against the intracellular domain (e.g. lapatinib or afatinib) alone or in combination with extracellular domain-directed drugs (e.g. trastuzumab, pertuzumab, T-DM1). Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Forensic 3D Scene Reconstruction
DOE Office of Scientific and Technical Information (OSTI.GOV)
LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN
Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3Dmore » measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.« less
Representational Similarity Analysis – Connecting the Branches of Systems Neuroscience
Kriegeskorte, Nikolaus; Mur, Marieke; Bandettini, Peter
2008-01-01
A fundamental challenge for systems neuroscience is to quantitatively relate its three major branches of research: brain-activity measurement, behavioral measurement, and computational modeling. Using measured brain-activity patterns to evaluate computational network models is complicated by the need to define the correspondency between the units of the model and the channels of the brain-activity data, e.g., single-cell recordings or voxels from functional magnetic resonance imaging (fMRI). Similar correspondency problems complicate relating activity patterns between different modalities of brain-activity measurement (e.g., fMRI and invasive or scalp electrophysiology), and between subjects and species. In order to bridge these divides, we suggest abstracting from the activity patterns themselves and computing representational dissimilarity matrices (RDMs), which characterize the information carried by a given representation in a brain or model. Building on a rich psychological and mathematical literature on similarity analysis, we propose a new experimental and data-analytical framework called representational similarity analysis (RSA), in which multi-channel measures of neural activity are quantitatively related to each other and to computational theory and behavior by comparing RDMs. We demonstrate RSA by relating representations of visual objects as measured with fMRI in early visual cortex and the fusiform face area to computational models spanning a wide range of complexities. The RDMs are simultaneously related via second-level application of multidimensional scaling and tested using randomization and bootstrap techniques. We discuss the broad potential of RSA, including novel approaches to experimental design, and argue that these ideas, which have deep roots in psychology and neuroscience, will allow the integrated quantitative analysis of data from all three branches, thus contributing to a more unified systems neuroscience. PMID:19104670
Survey statistics of automated segmentations applied to optical imaging of mammalian cells.
Bajcsy, Peter; Cardone, Antonio; Chalfoun, Joe; Halter, Michael; Juba, Derek; Kociolek, Marcin; Majurski, Michael; Peskin, Adele; Simon, Carl; Simon, Mylene; Vandecreme, Antoine; Brady, Mary
2015-10-15
The goal of this survey paper is to overview cellular measurements using optical microscopy imaging followed by automated image segmentation. The cellular measurements of primary interest are taken from mammalian cells and their components. They are denoted as two- or three-dimensional (2D or 3D) image objects of biological interest. In our applications, such cellular measurements are important for understanding cell phenomena, such as cell counts, cell-scaffold interactions, cell colony growth rates, or cell pluripotency stability, as well as for establishing quality metrics for stem cell therapies. In this context, this survey paper is focused on automated segmentation as a software-based measurement leading to quantitative cellular measurements. We define the scope of this survey and a classification schema first. Next, all found and manually filteredpublications are classified according to the main categories: (1) objects of interests (or objects to be segmented), (2) imaging modalities, (3) digital data axes, (4) segmentation algorithms, (5) segmentation evaluations, (6) computational hardware platforms used for segmentation acceleration, and (7) object (cellular) measurements. Finally, all classified papers are converted programmatically into a set of hyperlinked web pages with occurrence and co-occurrence statistics of assigned categories. The survey paper presents to a reader: (a) the state-of-the-art overview of published papers about automated segmentation applied to optical microscopy imaging of mammalian cells, (b) a classification of segmentation aspects in the context of cell optical imaging, (c) histogram and co-occurrence summary statistics about cellular measurements, segmentations, segmented objects, segmentation evaluations, and the use of computational platforms for accelerating segmentation execution, and (d) open research problems to pursue. The novel contributions of this survey paper are: (1) a new type of classification of cellular measurements and automated segmentation, (2) statistics about the published literature, and (3) a web hyperlinked interface to classification statistics of the surveyed papers at https://isg.nist.gov/deepzoomweb/resources/survey/index.html.
Han, Xue; Jiang, Hong; Han, Li; Xiong, Xi; He, Yanan; Fu, Chaomei; Xu, Runchun; Zhang, Dingkun; Lin, Junzhi; Yang, Ming
2018-03-01
Traditional Chinese herbs (TCH) are currently gaining attention in disease prevention and health care plans. However, their general bitter taste hinders their use. Despite the development of a variety of taste evaluation methods, it is still a major challenge to establish a quantitative detection technique that is objective, authentic and sensitive. Based on the two-bottle preference test (TBP), we proposed a novel quantitative strategy using a standardized animal test and a unified quantitative benchmark. To reduce the difference of results, the methodology of TBP was optimized. The relationship between the concentration of quinine and animal preference index (PI) was obtained. Then the PI of TCH was measured through TBP, and bitterness results were converted into a unified numerical system using the relationship of concentration and PI. To verify the authenticity and sensitivity of quantified results, human sensory testing and electronic tongue testing were applied. The quantified results showed a good discrimination ability. For example, the bitterness of Coptidis Rhizoma was equal to 0.0579 mg/mL quinine, and Nelumbinis Folium was equal to 0.0001 mg/mL. The validation results proved that the new assessment method for TCH was objective and reliable. In conclusion, this study provides an option for the quantification of bitterness and the evaluation of taste masking effects.
Multiview hyperspectral topography of tissue structural and functional characteristics
NASA Astrophysics Data System (ADS)
Zhang, Shiwu; Liu, Peng; Huang, Jiwei; Xu, Ronald
2012-12-01
Accurate and in vivo characterization of structural, functional, and molecular characteristics of biological tissue will facilitate quantitative diagnosis, therapeutic guidance, and outcome assessment in many clinical applications, such as wound healing, cancer surgery, and organ transplantation. However, many clinical imaging systems have limitations and fail to provide noninvasive, real time, and quantitative assessment of biological tissue in an operation room. To overcome these limitations, we developed and tested a multiview hyperspectral imaging system. The multiview hyperspectral imaging system integrated the multiview and the hyperspectral imaging techniques in a single portable unit. Four plane mirrors are cohered together as a multiview reflective mirror set with a rectangular cross section. The multiview reflective mirror set was placed between a hyperspectral camera and the measured biological tissue. For a single image acquisition task, a hyperspectral data cube with five views was obtained. The five-view hyperspectral image consisted of a main objective image and four reflective images. Three-dimensional topography of the scene was achieved by correlating the matching pixels between the objective image and the reflective images. Three-dimensional mapping of tissue oxygenation was achieved using a hyperspectral oxygenation algorithm. The multiview hyperspectral imaging technique is currently under quantitative validation in a wound model, a tissue-simulating blood phantom, and an in vivo biological tissue model. The preliminary results have demonstrated the technical feasibility of using multiview hyperspectral imaging for three-dimensional topography of tissue functional properties.
High-fidelity, low-cost, automated method to assess laparoscopic skills objectively.
Gray, Richard J; Kahol, Kanav; Islam, Gazi; Smith, Marshall; Chapital, Alyssa; Ferrara, John
2012-01-01
We sought to define the extent to which a motion analysis-based assessment system constructed with simple equipment could measure technical skill objectively and quantitatively. An "off-the-shelf" digital video system was used to capture the hand and instrument movement of surgical trainees (beginner level = PGY-1, intermediate level = PGY-3, and advanced level = PGY-5/fellows) while they performed a peg transfer exercise. The video data were passed through a custom computer vision algorithm that analyzed incoming pixels to measure movement smoothness objectively. The beginner-level group had the poorest performance, whereas those in the advanced group generated the highest scores. Intermediate-level trainees scored significantly (p < 0.04) better than beginner trainees. Advanced-level trainees scored significantly better than intermediate-level trainees and beginner-level trainees (p < 0.04 and p < 0.03, respectively). A computer vision-based analysis of surgical movements provides an objective basis for technical expertise-level analysis with construct validity. The technology to capture the data is simple, low cost, and readily available, and it obviates the need for expert human assessment in this setting. Copyright © 2012 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Object-oriented Persistent Homology
Wang, Bao; Wei, Guo-Wei
2015-01-01
Persistent homology provides a new approach for the topological simplification of big data via measuring the life time of intrinsic topological features in a filtration process and has found its success in scientific and engineering applications. However, such a success is essentially limited to qualitative data classification and analysis. Indeed, persistent homology has rarely been employed for quantitative modeling and prediction. Additionally, the present persistent homology is a passive tool, rather than a proactive technique, for classification and analysis. In this work, we outline a general protocol to construct object-oriented persistent homology methods. By means of differential geometry theory of surfaces, we construct an objective functional, namely, a surface free energy defined on the data of interest. The minimization of the objective functional leads to a Laplace-Beltrami operator which generates a multiscale representation of the initial data and offers an objective oriented filtration process. The resulting differential geometry based object-oriented persistent homology is able to preserve desirable geometric features in the evolutionary filtration and enhances the corresponding topological persistence. The cubical complex based homology algorithm is employed in the present work to be compatible with the Cartesian representation of the Laplace-Beltrami flow. The proposed Laplace-Beltrami flow based persistent homology method is extensively validated. The consistence between Laplace-Beltrami flow based filtration and Euclidean distance based filtration is confirmed on the Vietoris-Rips complex for a large amount of numerical tests. The convergence and reliability of the present Laplace-Beltrami flow based cubical complex filtration approach are analyzed over various spatial and temporal mesh sizes. The Laplace-Beltrami flow based persistent homology approach is utilized to study the intrinsic topology of proteins and fullerene molecules. Based on a quantitative model which correlates the topological persistence of fullerene central cavity with the total curvature energy of the fullerene structure, the proposed method is used for the prediction of fullerene isomer stability. The efficiency and robustness of the present method are verified by more than 500 fullerene molecules. It is shown that the proposed persistent homology based quantitative model offers good predictions of total curvature energies for ten types of fullerene isomers. The present work offers the first example to design object-oriented persistent homology to enhance or preserve desirable features in the original data during the filtration process and then automatically detect or extract the corresponding topological traits from the data. PMID:26705370
Burmester, Bridget; Leathem, Janet; Merrick, Paul
2016-12-01
Research investigating how subjective cognitive complaints (SCCs) might reliably indicate impairments in objective cognitive functioning has produced highly varied findings, and despite attempts to synthesise this literature (e.g., Jonker et al. International Journal of Geriatric Psychiatry, 15, 983-991, 2000; Reid and MacLullich Dementia and Geriatric Cognitive Disorders, 22(5-6), 471-485, 2006; Crumley et al. Psychology and Aging, 29(2), 250-263, 2014), recent work continues to offer little resolution. This review provides both quantitative and qualitative synthesis of research conducted since the last comprehensive review in 2006, with the aim of identifying reasons for these discrepancies that might provide fruitful avenues for future exploration. Meta-analysis found a small but significant association between SCCs and objective cognitive function, although it was limited by large heterogeneity between studies and evidence of potential publication bias. Often, assessments of SCCs and objective cognitive function were brief or not formally validated. However, studies that employed more comprehensive SCC measures tended to find that SCCs were associated independently with both objective cognitive function and depressive symptoms. Further explicit investigation of how assessment measures relate to reports of SCCs, and the validity of the proposed 'compensation theory' of SCC aetiology, is recommended.
Dalgard, Clifton L; Polston, Keith F; Sukumar, Gauthaman; Mallon, Col Timothy M; Wilkerson, Matthew D; Pollard, Harvey B
2016-08-01
The aim of this study was to identify serum microRNA (miRNA) biomarkers that indicate deployment-associated exposures in service members at military installations with open burn pits. Another objective was to determine detection rates of miRNAs in Department of Defense Serum Repository (DoDSR) samples with a high-throughput methodology. Low-volume serum samples (n = 800) were profiled by miRNA-capture isolation, pre-amplification, and measurement by a quantitative PCR-based OpenArray platform. Normalized quantitative cycle values were used for differential expression analysis between groups. Assay specificity, dynamic range, reproducibility, and detection rates by OpenArray passed target desired specifications. Serum abundant miRNAs were consistently measured in study specimens. Four miRNAs were differentially expressed in the case deployment group subjects. miRNAs are suitable RNA species for biomarker discovery in the DoDSR serum specimens. Serum miRNAs are candidate biomarkers for deployment and environmental exposure in military service members.
Objective comparison of particle tracking methods
Chenouard, Nicolas; Smal, Ihor; de Chaumont, Fabrice; Maška, Martin; Sbalzarini, Ivo F.; Gong, Yuanhao; Cardinale, Janick; Carthel, Craig; Coraluppi, Stefano; Winter, Mark; Cohen, Andrew R.; Godinez, William J.; Rohr, Karl; Kalaidzidis, Yannis; Liang, Liang; Duncan, James; Shen, Hongying; Xu, Yingke; Magnusson, Klas E. G.; Jaldén, Joakim; Blau, Helen M.; Paul-Gilloteaux, Perrine; Roudot, Philippe; Kervrann, Charles; Waharte, François; Tinevez, Jean-Yves; Shorte, Spencer L.; Willemse, Joost; Celler, Katherine; van Wezel, Gilles P.; Dan, Han-Wei; Tsai, Yuh-Show; de Solórzano, Carlos Ortiz; Olivo-Marin, Jean-Christophe; Meijering, Erik
2014-01-01
Particle tracking is of key importance for quantitative analysis of intracellular dynamic processes from time-lapse microscopy image data. Since manually detecting and following large numbers of individual particles is not feasible, automated computational methods have been developed for these tasks by many groups. Aiming to perform an objective comparison of methods, we gathered the community and organized, for the first time, an open competition, in which participating teams applied their own methods independently to a commonly defined data set including diverse scenarios. Performance was assessed using commonly defined measures. Although no single method performed best across all scenarios, the results revealed clear differences between the various approaches, leading to important practical conclusions for users and developers. PMID:24441936
Coherent diffraction surface imaging in reflection geometry.
Marathe, Shashidhara; Kim, S S; Kim, S N; Kim, Chan; Kang, H C; Nickles, P V; Noh, D Y
2010-03-29
We present a reflection based coherent diffraction imaging method which can be used to reconstruct a non periodic surface image from a diffraction amplitude measured in reflection geometry. Using a He-Ne laser, we demonstrated that a surface image can be reconstructed solely from the reflected intensity from a surface without relying on any prior knowledge of the sample object or the object support. The reconstructed phase image of the exit wave is particularly interesting since it can be used to obtain quantitative information of the surface depth profile or the phase change during the reflection process. We believe that this work will broaden the application areas of coherent diffraction imaging techniques using light sources with limited penetration depth.
Measuring the gradualist approach to internationalization: Empirical evidence from the wine sector
2018-01-01
The objective of this paper is to fill a gap in the literature on internationalization, in relation to the absence of objective and measurable performance indicators for the process of how firms sequentially enter external markets. To that end, this research develops a quantitative tool for use as a performance indicator of gradualness for firms entering external markets at a sectoral level. The performance indicator is based on firms’ export volumes, number of years operating in the export market, geographic areas targeted for export and when exports began to each area. The indicator is tested empirically in the wine sector. The main contribution of this study is the creation of a reliable international priority index, which can serve more widely as a valuable tool because of its potential use in other industry sectors and geographic areas, and which would allow the analysis of how geographically differentiated internationalization strategies develop. PMID:29727461
Measuring the gradualist approach to internationalization: Empirical evidence from the wine sector.
Clavel San Emeterio, Mónica; Fernández-Ortiz, Rubén; Arteaga-Ortiz, Jesús; Dorta-González, Pablo
2018-01-01
The objective of this paper is to fill a gap in the literature on internationalization, in relation to the absence of objective and measurable performance indicators for the process of how firms sequentially enter external markets. To that end, this research develops a quantitative tool for use as a performance indicator of gradualness for firms entering external markets at a sectoral level. The performance indicator is based on firms' export volumes, number of years operating in the export market, geographic areas targeted for export and when exports began to each area. The indicator is tested empirically in the wine sector. The main contribution of this study is the creation of a reliable international priority index, which can serve more widely as a valuable tool because of its potential use in other industry sectors and geographic areas, and which would allow the analysis of how geographically differentiated internationalization strategies develop.
Isotropic differential phase contrast microscopy for quantitative phase bio-imaging.
Chen, Hsi-Hsun; Lin, Yu-Zi; Luo, Yuan
2018-05-16
Quantitative phase imaging (QPI) has been investigated to retrieve optical phase information of an object and applied to biological microscopy and related medical studies. In recent examples, differential phase contrast (DPC) microscopy can recover phase image of thin sample under multi-axis intensity measurements in wide-field scheme. Unlike conventional DPC, based on theoretical approach under partially coherent condition, we propose a new method to achieve isotropic differential phase contrast (iDPC) with high accuracy and stability for phase recovery in simple and high-speed fashion. The iDPC is simply implemented with a partially coherent microscopy and a programmable thin-film transistor (TFT) shield to digitally modulate structured illumination patterns for QPI. In this article, simulation results show consistency of our theoretical approach for iDPC under partial coherence. In addition, we further demonstrate experiments of quantitative phase images of a standard micro-lens array, as well as label-free live human cell samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, M.D.; Beck, R.N.
1988-06-01
This document describes several years research to improve PET imaging and diagnostic techniques in man. This program addresses the problems involving the basic science and technology underlying the physical and conceptual tools of radioactive tracer methodology as they relate to the measurement of structural and functional parameters of physiologic importance in health and disease. The principal tool is quantitative radionuclide imaging. The overall objective of this program is to further the development and transfer of radiotracer methodology from basic theory to routine clinical practice in order that individual patients and society as a whole will receive the maximum net benefitmore » from the new knowledge gained. The focus of the research is on the development of new instruments and radiopharmaceuticals, and the evaluation of these through the phase of clinical feasibility. The reports in the study were processed separately for the data bases. (TEM)« less
Knowles, D.B.
1955-01-01
The objective of the Ground Water Branch is to evaluate the occurrence, availability, and quality of ground water. The science of ground-water hydrology is applied toward attaining that goal. Although many ground-water investigations are of a qualitative nature, quantitative studies are necessarily an integral component of the complete evaluation of occurrence and availability. The worth of an aquifer as a fully developed source of water depends largely on two inherent characteristics: its ability to store, and its ability to transmit water. Furthermore, quantitative knowledge of these characteristics facilitates measurement of hydrologic entities such as recharge, leakage, evapotranspiration, etc. It is recognized that these two characteristics, referred to as the coefficients of storage and transmissibility, generally provide the very foundation on which quantitative studies are constructed. Within the science of ground-water hydrology, ground-water hydraulics methods are applied to determine these constats from field data.
NASA Astrophysics Data System (ADS)
Hermawan, Hermawan; Prianto, Eddy
2017-12-01
A building can be considered as having a good thermal performance if it can make the occupant comfortable. Thermal comfort can be seen from the occupant's respond toward the architectural elements and the environment, such as lighting, the room crowding, air temperature, humidity, oxygen level, and occupant's behaviours. The objective of this research is to analyse the thermal performance of four different orientation houses in mountainous area. The research was conducted on the four expose stone houses with four different orientations in the slope of Sindoro Mountain which has relative cool temperature, about 26°C. The measurement of the elements above was done quantitatively and qualitatively for 24 hours. The results are as follows. First, the most comfortable house is west-orientation house. Second, based on the quantitative and qualitative observation, there is no significant difference (±5 %). Third, the occupant's behaviours (caring and genen) also become factors influencing occupant's comfort.
Fortin, Carole; Ehrmann Feldman, Debbie; Cheriet, Farida; Labelle, Hubert
2013-08-01
The objective of this study was to explore whether differences in standing and sitting postures of youth with idiopathic scoliosis could be detected from quantitative analysis of digital photographs. Standing and sitting postures of 50 participants aged 10-20-years-old with idiopathic scoliosis (Cobb angle: 15° to 60°) were assessed from digital photographs using a posture evaluation software program. Based on the XY coordinates of markers, 13 angular and linear posture indices were calculated in both positions. Paired t-tests were used to compare values of standing and sitting posture indices. Significant differences between standing and sitting positions (p < 0.05) were found for head protraction, shoulder elevation, scapula asymmetry, trunk list, scoliosis angle, waist angles, and frontal and sagittal plane pelvic tilt. Quantitative analysis of digital photographs is a clinically feasible method to measure standing and sitting postures among youth with scoliosis and to assist in decisions on therapeutic interventions.
Studying Food Reward and Motivation in Humans
Ziauddeen, Hisham; Subramaniam, Naresh; Cambridge, Victoria C.; Medic, Nenad; Farooqi, Ismaa Sadaf; Fletcher, Paul C.
2014-01-01
A key challenge in studying reward processing in humans is to go beyond subjective self-report measures and quantify different aspects of reward such as hedonics, motivation, and goal value in more objective ways. This is particularly relevant for the understanding of overeating and obesity as well as their potential treatments. In this paper are described a set of measures of food-related motivation using handgrip force as a motivational measure. These methods can be used to examine changes in food related motivation with metabolic (satiety) and pharmacological manipulations and can be used to evaluate interventions targeted at overeating and obesity. However to understand food-related decision making in the complex food environment it is essential to be able to ascertain the reward goal values that guide the decisions and behavioral choices that people make. These values are hidden but it is possible to ascertain them more objectively using metrics such as the willingness to pay and a method for this is described. Both these sets of methods provide quantitative measures of motivation and goal value that can be compared within and between individuals. PMID:24686284
Studying food reward and motivation in humans.
Ziauddeen, Hisham; Subramaniam, Naresh; Cambridge, Victoria C; Medic, Nenad; Farooqi, Ismaa Sadaf; Fletcher, Paul C
2014-03-19
A key challenge in studying reward processing in humans is to go beyond subjective self-report measures and quantify different aspects of reward such as hedonics, motivation, and goal value in more objective ways. This is particularly relevant for the understanding of overeating and obesity as well as their potential treatments. In this paper are described a set of measures of food-related motivation using handgrip force as a motivational measure. These methods can be used to examine changes in food related motivation with metabolic (satiety) and pharmacological manipulations and can be used to evaluate interventions targeted at overeating and obesity. However to understand food-related decision making in the complex food environment it is essential to be able to ascertain the reward goal values that guide the decisions and behavioral choices that people make. These values are hidden but it is possible to ascertain them more objectively using metrics such as the willingness to pay and a method for this is described. Both these sets of methods provide quantitative measures of motivation and goal value that can be compared within and between individuals.
Non-invasive, investigative methods in skin aging.
Longo, C; Ciardo, S; Pellacani, G
2015-12-01
A precise and noninvasive quantification of aging is of outmost importance for in vivo assessment of the skin aging "stage", and thus acts to minimize it. Several bioengineering methods have been proposed to objectively, precisely, and non-invasively measure skin aging, and to detect early skin damage, that is sub-clinically observable. In this review we have described the most relevant methods that have emerged from recently introduced technologies, aiming at quantitatively assessing the effects of aging on the skin.
Magnetic resonance imaging of cartilage repair.
Potter, Hollis G; Chong, Le Roy; Sneag, Darryl B
2008-12-01
Magnetic resonance imaging is an important noninvasive modality in characterizing cartilage morphology, biochemistry, and function. It serves as a valuable objective outcome measure in diagnosing pathology at the time of initial injury, guiding surgical planning, and evaluating postsurgical repair. This article reviews the current literature addressing the recent advances in qualitative and quantitative magnetic resonance imaging techniques in the preoperative setting, and in patients who have undergone cartilage repair techniques such as microfracture, autologous cartilage transplantation, or osteochondral transplantation.
Developing a Social, Cultural and Economic Report Card for a Regional Industrial Harbour.
Pascoe, Sean; Tobin, Renae; Windle, Jill; Cannard, Toni; Marshall, Nadine; Kabir, Zobaidul; Flint, Nicole
2016-01-01
Report cards are increasingly used to provide ongoing snap-shots of progress towards specific ecosystem health goals, particularly in coastal regions where planners need to balance competing demands for coastal resources from a range of industries. While most previous report cards focus on the biophysical components of the system, there is a growing interest in including the social and economic implications of ecosystem management to provide a greater social-ecological system understanding. Such a report card was requested on the Gladstone Harbour area in central Queensland, Australia. Gladstone Harbour adjoins the southern Great Barrier Reef, and is also a major industrial and shipping port. Balancing social, economic and environmental interests is therefore of great concern to the regional managers. While environmental benchmarking procedures are well established within Australia (and elsewhere), a method for assessing social and economic performance of coastal management is generally lacking. The key aim of this study was to develop and pilot a system for the development of a report card relating to appropriate cultural, social and economic objectives. The approach developed uses a range of multicriteria decision analysis methods to assess and combine different qualitative and quantitative measures, including the use of Bayesian Belief Networks to combine the different measures and provide an overall quantitative score for each of the key management objectives. The approach developed is readily transferable for purposes of similar assessments in other regions.
Developing a Social, Cultural and Economic Report Card for a Regional Industrial Harbour
Pascoe, Sean; Tobin, Renae; Windle, Jill; Cannard, Toni; Marshall, Nadine; Kabir, Zobaidul; Flint, Nicole
2016-01-01
Report cards are increasingly used to provide ongoing snap-shots of progress towards specific ecosystem health goals, particularly in coastal regions where planners need to balance competing demands for coastal resources from a range of industries. While most previous report cards focus on the biophysical components of the system, there is a growing interest in including the social and economic implications of ecosystem management to provide a greater social-ecological system understanding. Such a report card was requested on the Gladstone Harbour area in central Queensland, Australia. Gladstone Harbour adjoins the southern Great Barrier Reef, and is also a major industrial and shipping port. Balancing social, economic and environmental interests is therefore of great concern to the regional managers. While environmental benchmarking procedures are well established within Australia (and elsewhere), a method for assessing social and economic performance of coastal management is generally lacking. The key aim of this study was to develop and pilot a system for the development of a report card relating to appropriate cultural, social and economic objectives. The approach developed uses a range of multicriteria decision analysis methods to assess and combine different qualitative and quantitative measures, including the use of Bayesian Belief Networks to combine the different measures and provide an overall quantitative score for each of the key management objectives. The approach developed is readily transferable for purposes of similar assessments in other regions. PMID:26839949
Assessment of Intervertebral Disc Degeneration Based on Quantitative MRI Analysis: an in vivo study
Grunert, Peter; Hudson, Katherine D.; Macielak, Michael R.; Aronowitz, Eric; Borde, Brandon H.; Alimi, Marjan; Njoku, Innocent; Ballon, Douglas; Tsiouris, Apostolos John; Bonassar, Lawrence J.; Härtl, Roger
2015-01-01
Study design Animal experimental study Objective To evaluate a novel quantitative imaging technique for assessing disc degeneration. Summary of Background Data T2-relaxation time (T2-RT) measurements have been used to quantitatively assess disc degeneration. T2 values correlate with the water content of inter vertebral disc tissue and thereby allow for the indirect measurement of nucleus pulposus (NP) hydration. Methods We developed an algorithm to subtract out MRI voxels not representing NP tissue based on T2-RT values. Filtered NP voxels were used to measure nuclear size by their amount and nuclear hydration by their mean T2-RT. This technique was applied to 24 rat-tail intervertebral discs’ (IVDs), which had been punctured with an 18-gauge needle according to different techniques to induce varying degrees of degeneration. NP voxel count and average T2-RT were used as parameters to assess the degeneration process at 1 and 3 months post puncture. NP voxel counts were evaluated against X-ray disc height measurements and qualitative MRI studies based on the Pfirrmann grading system. Tails were collected for histology to correlate NP voxel counts to histological disc degeneration grades and to NP cross-sectional area measurements. Results NP voxel count measurements showed strong correlations to qualitative MRI analyses (R2=0.79, p<0.0001), histological degeneration grades (R2=0.902, p<0.0001) and histological NP cross-sectional area measurements (R2=0.887, p<0.0001). In contrast to NP voxel counts, the mean T2-RT for each punctured group remained constant between months 1 and 3. The mean T2-RTs for the punctured groups did not show a statistically significant difference from those of healthy IVDs (63.55ms ±5.88ms month 1 and 62.61ms ±5.02ms) at either time point. Conclusion The NP voxel count proved to be a valid parameter to quantitatively assess disc degeneration in a needle puncture model. The mean NP T2-RT does not change significantly in needle-puncture induced degenerated IVDs. IVDs can be segmented into different tissue components according to their innate T2-RT. PMID:24384655
Taylor, Helena O; Morrison, Clinton S; Linden, Olivia; Phillips, Benjamin; Chang, Johnny; Byrne, Margaret E; Sullivan, Stephen R; Forrest, Christopher R
2014-01-01
Although symmetry is hailed as a fundamental goal of aesthetic and reconstructive surgery, our tools for measuring this outcome have been limited and subjective. With the advent of three-dimensional photogrammetry, surface geometry can be captured, manipulated, and measured quantitatively. Until now, few normative data existed with regard to facial surface symmetry. Here, we present a method for reproducibly calculating overall facial symmetry and present normative data on 100 subjects. We enrolled 100 volunteers who underwent three-dimensional photogrammetry of their faces in repose. We collected demographic data on age, sex, and race and subjectively scored facial symmetry. We calculated the root mean square deviation (RMSD) between the native and reflected faces, reflecting about a plane of maximum symmetry. We analyzed the interobserver reliability of the subjective assessment of facial asymmetry and the quantitative measurements and compared the subjective and objective values. We also classified areas of greatest asymmetry as localized to the upper, middle, or lower facial thirds. This cluster of normative data was compared with a group of patients with subtle but increasing amounts of facial asymmetry. We imaged 100 subjects by three-dimensional photogrammetry. There was a poor interobserver correlation between subjective assessments of asymmetry (r = 0.56). There was a high interobserver reliability for quantitative measurements of facial symmetry RMSD calculations (r = 0.91-0.95). The mean RMSD for this normative population was found to be 0.80 ± 0.24 mm. Areas of greatest asymmetry were distributed as follows: 10% upper facial third, 49% central facial third, and 41% lower facial third. Precise measurement permitted discrimination of subtle facial asymmetry within this normative group and distinguished norms from patients with subtle facial asymmetry, with placement of RMSDs along an asymmetry ruler. Facial surface symmetry, which is poorly assessed subjectively, can be easily and reproducibly measured using three-dimensional photogrammetry. The RMSD for facial asymmetry of healthy volunteers clusters at approximately 0.80 ± 0.24 mm. Patients with facial asymmetry due to a pathologic process can be differentiated from normative facial asymmetry based on their RMSDs.
John Archibald Wheeler: A study of mentoring in modern physics
NASA Astrophysics Data System (ADS)
Christensen, Terry M.
This dissertation has two objectives. The first objective is to determine where best to situate the study of mentoring (i.e. the 'making of scientists') on the landscape of the history of science and science studies. This task is accomplished by establishing mentoring studies as a link between the robust body of literature dealing with Research Schools and the emerging scholarship surrounding the development, dispersion, and evolution of pedagogy in the training of twentieth century physicists. The second, and perhaps more significant and novel objective, is to develop a means to quantitatively assess the mentoring workmanship of scientific craftsmen who preside over the final stages of preparation when apprentices are transformed into professional scientists. The project builds upon a 2006 Master's Thesis that examined John Archibald Wheeler's work as a mentor of theoretical physicists at Princeton University in the years 1938--1976. It includes Wheeler's work as a mentor at the University of Texas and is qualitatively and quantitatively enhanced by virtue of the author having access to five separate collections with archival holdings of John Wheeler's papers and correspondence, as well as having access to thirty one tape recorded interviews that feature John Wheeler as either the interviewee or a prominent subject of discussion. The project also benefited from the opportunity to meet with and gather background information from a number of John Wheeler's former colleagues and students. Included in the dissertation is a content analysis of the acknowledgements in 949 Ph.D. dissertations, 122 Master's Theses, and 670 Senior Theses that were submitted during Wheeler's career as an active mentor. By establishing a census of the students of the most active mentors at Princeton and Texas, it is possible to tabulate the publication record of these apprentice groups and obtain objective measures of mentoring efficacy. The dissertation concludes by discussing the wider applicability of the quantitative methodology and the qualitative analysis for the history of science and science studies.
NASA Astrophysics Data System (ADS)
Min, Junwei; Yao, Baoli; Ketelhut, Steffi; Kemper, Björn
2017-02-01
The modular combination of optical microscopes with digital holographic microscopy (DHM) has been proven to be a powerful tool for quantitative live cell imaging. The introduction of condenser and different microscope objectives (MO) simplifies the usage of the technique and makes it easier to measure different kinds of specimens with different magnifications. However, the high flexibility of illumination and imaging also causes variable phase aberrations that need to be eliminated for high resolution quantitative phase imaging. The existent phase aberrations compensation methods either require add additional elements into the reference arm or need specimen free reference areas or separate reference holograms to build up suitable digital phase masks. These inherent requirements make them unpractical for usage with highly variable illumination and imaging systems and prevent on-line monitoring of living cells. In this paper, we present a simple numerical method for phase aberration compensation based on the analysis of holograms in spatial frequency domain with capabilities for on-line quantitative phase imaging. From a single shot off-axis hologram, the whole phase aberration can be eliminated automatically without numerical fitting or pre-knowledge of the setup. The capabilities and robustness for quantitative phase imaging of living cancer cells are demonstrated.
Quantitative reflectance spectroscopy of buddingtonite from the Cuprite mining district, Nevada
NASA Technical Reports Server (NTRS)
Felzer, Benjamin; Hauff, Phoebe; Goetz, Alexander F. H.
1994-01-01
Buddingtonite, an ammonium-bearing feldspar diagnostic of volcanic-hosted alteration, can be identified and, in some cases, quantitatively measured using short-wave infrared (SWIR) reflectance spectroscopy. In this study over 200 samples from Cuprite, Nevada, were evaluated by X ray diffraction, chemical analysis, scanning electron microscopy, and SWIR reflectance spectroscopy with the objective of developing a quantitative remote-sensing technique for rapid determination of the amount of ammonium or buddingtonite present, and its distribution across the site. Based upon the Hapke theory of radiative transfer from particulate surfaces, spectra from quantitative, physical mixtures were compared with computed mixture spectra. We hypothesized that the concentration of ammonium in each sample is related to the size and shape of the ammonium absorption bands and tested this hypothesis for samples of relatively pure buddingtonite. We found that the band depth of the 2.12-micron NH4 feature is linearly related to the NH4 concentration for the Cuprite buddingtonite, and that the relationship is approximately exponential for a larger range of NH4 concentrations. Associated minerals such as smectite and jarosite suppress the depth of the 2.12-micron NH4 absorption band. Quantitative reflectance spectroscopy is possible when the effects of these associated minerals are also considered.
Baka, Łukasz; Bazińska, Róża
2016-01-01
The objective of the present study was to test the psychometric properties, reliability and validity of three job stressor measures, namely, the Interpersonal Conflict at Work Scale, the Organizational Constraints Scale and the Quantitative Workload Inventory. The study was conducted on two samples (N = 382 and 3368) representing a wide range of occupations. The estimation of internal consistency with Cronbach's α and the test-retest method as well as both exploratory and confirmatory factor analyses were the main statistical methods. The internal consistency of the scales proved satisfactory, ranging from 0.80 to 0.90 for Cronbach's α test and from 0.72 to 0.86 for the test-retest method. The one-dimensional structure of the three measurements was confirmed. The three scales have acceptable fit to the data. The one-factor structures and other psychometric properties of the Polish version of the scales seem to be similar to those found in the US version of the scales. It was also proved that the three job stressors are positively related to all the job strain measures. The Polish versions of the three analysed scales can be used to measure the job stressors in Polish conditions.
Baka, Łukasz; Bazińska, Róża
2016-01-01
Aim. The objective of the present study was to test the psychometric properties, reliability and validity of three job stressor measures, namely, the Interpersonal Conflict at Work Scale, the Organizational Constraints Scale and the Quantitative Workload Inventory. Method. The study was conducted on two samples (N = 382 and 3368) representing a wide range of occupations. The estimation of internal consistency with Cronbach's α and the test–retest method as well as both exploratory and confirmatory factor analyses were the main statistical methods. Results. The internal consistency of the scales proved satisfactory, ranging from 0.80 to 0.90 for Cronbach's α test and from 0.72 to 0.86 for the test–retest method. The one-dimensional structure of the three measurements was confirmed. The three scales have acceptable fit to the data. The one-factor structures and other psychometric properties of the Polish version of the scales seem to be similar to those found in the US version of the scales. It was also proved that the three job stressors are positively related to all the job strain measures. Conclusions. The Polish versions of the three analysed scales can be used to measure the job stressors in Polish conditions. PMID:26652317
Günay, S M; Tuna, Z; Oskay, D
2016-12-31
Rheumatoid arthritis (RA) often results in impairments in upper extremities, especially in the small joints of hand. Involvement of hand brings limitations in activities of daily living. However, it is commonly observed that patient-reported functional status of hand does not always corresponds to their actual physical performance in the clinical setting. The aim of this pilot study is to investigate the relationship between patient self-reported and objectively measured hand functions in patients with RA. Twenty-six patients (51±13 years) with RA diagnosis participated in the study. Hand grip and pinch (lateral, bipod, tripod) strengths were measured and Jebsen Hand Function Test (JHFT) was performed for objective functional performance. Duruöz Hand Index and Beck Depression Inventory - Turkish version were completed by patients. Grip and all three-pinch strength results significantly correlated with Duruöz Hand Index scores (p<0.05). JHFT results except the sentence writing also correlated with the Duruöz scores (p<0.05). Our results showed that self-reported outcome scales might be used for determining functional level of hand in patients with RA in rheumatology practice. Objective quantitative functional tests are the best methods in evaluating functional level of hand, but require valid and reliable equipment with accurate calibration. Therefore, in case of unavailability of objective assessment tools, patient-reported scales may also reflect the real status of hand functions.
SpArcFiRe: Scalable automated detection of spiral galaxy arm segments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Darren R.; Hayes, Wayne B., E-mail: drdavis@uci.edu, E-mail: whayes@uci.edu
Given an approximately centered image of a spiral galaxy, we describe an entirely automated method that finds, centers, and sizes the galaxy (possibly masking nearby stars and other objects if necessary in order to isolate the galaxy itself) and then automatically extracts structural information about the spiral arms. For each arm segment found, we list the pixels in that segment, allowing image analysis on a per-arm-segment basis. We also perform a least-squares fit of a logarithmic spiral arc to the pixels in that segment, giving per-arc parameters, such as the pitch angle, arm segment length, location, etc. The algorithm takesmore » about one minute per galaxies, and can easily be scaled using parallelism. We have run it on all ∼644,000 Sloan objects that are larger than 40 pixels across and classified as 'galaxies'. We find a very good correlation between our quantitative description of a spiral structure and the qualitative description provided by Galaxy Zoo humans. Our objective, quantitative measures of structure demonstrate the difficulty in defining exactly what constitutes a spiral 'arm', leading us to prefer the term 'arm segment'. We find that pitch angle often varies significantly segment-to-segment in a single spiral galaxy, making it difficult to define the pitch angle for a single galaxy. We demonstrate how our new database of arm segments can be queried to find galaxies satisfying specific quantitative visual criteria. For example, even though our code does not explicitly find rings, a good surrogate is to look for galaxies having one long, low-pitch-angle arm—which is how our code views ring galaxies. SpArcFiRe is available at http://sparcfire.ics.uci.edu.« less
Doganay, Selim; Gumus, Kazim; Koc, Gonca; Bayram, Ayse Kacar; Dogan, Mehmet Sait; Arslan, Duran; Gumus, Hakan; Gorkem, Sureyya Burcu; Ciraci, Saliha; Serin, Halil Ibrahim; Coskun, Abdulhakim
2018-01-10
Wilson's disease (WD) is characterized with the accumulation of copper in the liver and brain. The objective of this study is to quantitatively measure the susceptibility changes of basal ganglia and brain stem of pediatric patients with neurological WD using quantitative susceptibility mapping (QSM) in comparison to healthy controls. Eleven patients with neurological WD (mean age 15 ± 3.3 years, range 10-22 years) and 14 agematched controls were prospectively recruited. Both groups were scanned on a 1.5 Tesla clinical scanner. In addition to T 1 - and T 2 -weighted MR images, a 3D multi-echo spoiled gradient echo (GRE) sequence was acquired and QSM images were derived offline. The quantitative measurement of susceptibility of corpus striatum, thalamus of each hemisphere, midbrain, and pons were assessed with the region of interest analysis on the QSM images. The susceptibility values for the patient and control groups were compared using twosample t-test. One patient with WD had T 1 shortening in the bilateral globus pallidus. Another one had hyperintensity in the bilateral putamen, caudate nuclei, and substantia nigra on T 2 -weighted images. The rest of the patients with WD and all subjects of the control group had no signal abnormalities on conventional MR images. The susceptibility measures of right side of globus pallidus, putamen, thalamus, midbrain, and entire pons were significantly different in patients compared to controls (P < 0.05). QSM method exhibits increased susceptibility differences of basal ganglia and brain stem in patients with WD that have neurologic impairment even if no signal alteration is detected on T 1 - and T 2 -weighted MR images.
Bao, Yijun; Gaylord, Thomas K
2016-11-01
Multifilter phase imaging with partially coherent light (MFPI-PC) is a promising new quantitative phase imaging method. However, the existing MFPI-PC method is based on the paraxial approximation. In the present work, an analytical nonparaxial partially coherent phase optical transfer function is derived. This enables the MFPI-PC to be extended to the realistic nonparaxial case. Simulations over a wide range of test phase objects as well as experimental measurements on a microlens array verify higher levels of imaging accuracy compared to the paraxial method. Unlike the paraxial version, the nonparaxial MFPI-PC with obliquity factor correction exhibits no systematic error. In addition, due to its analytical expression, the increase in computation time compared to the paraxial version is negligible.
Inverse transport problems in quantitative PAT for molecular imaging
NASA Astrophysics Data System (ADS)
Ren, Kui; Zhang, Rongting; Zhong, Yimin
2015-12-01
Fluorescence photoacoustic tomography (fPAT) is a molecular imaging modality that combines photoacoustic tomography with fluorescence imaging to obtain high-resolution imaging of fluorescence distributions inside heterogeneous media. The objective of this work is to study inverse problems in the quantitative step of fPAT where we intend to reconstruct physical coefficients in a coupled system of radiative transport equations using internal data recovered from ultrasound measurements. We derive uniqueness and stability results on the inverse problems and develop some efficient algorithms for image reconstructions. Numerical simulations based on synthetic data are presented to validate the theoretical analysis. The results we present here complement these in Ren K and Zhao H (2013 SIAM J. Imaging Sci. 6 2024-49) on the same problem but in the diffusive regime.
A quantitative analysis of IRAS maps of molecular clouds
NASA Technical Reports Server (NTRS)
Wiseman, Jennifer J.; Adams, Fred C.
1994-01-01
We present an analysis of IRAS maps of five molecular clouds: Orion, Ophiuchus, Perseus, Taurus, and Lupus. For the classification and description of these astrophysical maps, we use a newly developed technique which considers all maps of a given type to be elements of a pseudometric space. For each physical characteristic of interest, this formal system assigns a distance function (a pseudometric) to the space of all maps: this procedure allows us to measure quantitatively the difference between any two maps and to order the space of all maps. We thus obtain a quantitative classification scheme for molecular clouds. In this present study we use the IRAS continuum maps at 100 and 60 micrometer(s) to produce column density (or optical depth) maps for the five molecular cloud regions given above. For this sample of clouds, we compute the 'output' functions which measure the distribution of density, the distribution of topological components, the self-gravity, and the filamentary nature of the clouds. The results of this work provide a quantitative description of the structure in these molecular cloud regions. We then order the clouds according to the overall environmental 'complexity' of these star-forming regions. Finally, we compare our results with the observed populations of young stellar objects in these clouds and discuss the possible environmental effects on the star-formation process. Our results are consistent with the recently stated conjecture that more massive stars tend to form in more 'complex' environments.
Quantifying the Time Course of Visual Object Processing Using ERPs: It's Time to Up the Game
Rousselet, Guillaume A.; Pernet, Cyril R.
2011-01-01
Hundreds of studies have investigated the early ERPs to faces and objects using scalp and intracranial recordings. The vast majority of these studies have used uncontrolled stimuli, inappropriate designs, peak measurements, poor figures, and poor inferential and descriptive group statistics. These problems, together with a tendency to discuss any effect p < 0.05 rather than to report effect sizes, have led to a research field very much qualitative in nature, despite its quantitative inspirations, and in which predictions do not go beyond condition A > condition B. Here we describe the main limitations of face and object ERP research and suggest alternative strategies to move forward. The problems plague intracranial and surface ERP studies, but also studies using more advanced techniques – e.g., source space analyses and measurements of network dynamics, as well as many behavioral, fMRI, TMS, and LFP studies. In essence, it is time to stop amassing binary results and start using single-trial analyses to build models of visual perception. PMID:21779262
Terziivanova, Petya; Haralanov, Svetlozar
2012-12-01
Psychomotor disturbances have been regarded as cardinal symptoms of depression for centuries and their objective assessment may have predictive value with respect to the severity of clinical depression, treatment outcome and prognosis of the affective disorder. Montgomery-Åsberg Depression Rating Scale (MADRS) and Hamilton Rating Scale for Anxiety (HAM-A). Psychomotor indicators of activity and reactivity were objectively recorded and measured by means of computerized ultrasonographic craniocorpography. We found a statistically significant correlation between disturbances in psychomotor indicators and MADRS total score (r = 0.4; P < 0.0001). The severity of HAM-A total score had no statistically significant correlation with psychomotor indicators (P > 0.05). We found that different items of MADRS and HAM-A correlated with psychomotor disturbances of different strength and significance. Objectively, measured psychomotor retardation was associated with greater severity of depressive symptoms assessed at the clinical level. Integration between different methods is needed in order to improve understanding of the psychopathology and the neurobiology of a disputable diagnosis such as clinical depression. © 2012 Blackwell Publishing Ltd.
XRF Experiment for Elementary Surface Analysis
NASA Astrophysics Data System (ADS)
Köhler, E.; Dreißigacker, A.; Fabel, O.; van Gasselt, S.; Meyer, M.
2014-04-01
The proposed X-Ray Fluorescence Instrument Package (XRF-X and XRF-E) is being designed to quantitatively measure the composition and map the distribution of rock-surface materials in order to support the target area selection process for exploration, sampling, and mining. While energydispersive X-Ray fluorescence (EDX) makes use of Solar X-Rays for excitation to probe materials over arbitrary distances (by XRF-X), electron-beam excitation can be used for proximity measurements (by XRF-E) over short-distance of up to about 10 - 20m. This design is targeted at observing and analyzing surface compositions from orbital platforms and it is in particular applicable to all atmosphereless solidsurface bodies. While the instrument design for observing objects in the outer solar system is challenging due to low count rates, the Moon and objects of the asteroid belt usually receive solar X-ray radiation that allows to integrate a statistically reliable data basis. Asteroids are attractive targets and have been visited using X-ray fluorescence instruments by orbiting spacecraft in the past (Itokawa, Eros). They are wellaccessible objects for determining elemental compositions and assessing potential mineral resources.
Paddon, Hannah L.; Thomson, Linda J.M.; Menon, Usha; Lanceley, Anne E.; Chatterjee, Helen J.
2013-01-01
Background This study sought to determine the effects of a heritage-in-health intervention on well-being. Benefits of arts-in-health interventions are relatively well-documented yet little robust research has been conducted using heritage-in-health interventions, such as those involving museum objects. Methods Hospital patients (n = 57) participated in semi-structured, 30–40 minute facilitated interview sessions, discussing and handling museum objects comprising selections of six artefacts and specimens loaned from archaeology, art, geology and natural history collections. Well-being measures (Positive Affect Negative Affect Scale, Visual Analogue Scales) evaluated the sessions while inductive and deductive thematic analysis investigated psycho-educational features accounting for changes. Results Comparison of pre- and post-session quantitative measures showed significant increases in well-being and happiness. Qualitative investigation revealed thinking and meaning-making opportunities for participants engaged with objects. Conclusions Heritage-in-health sessions enhanced positive mood and social interaction, endorsing the need for provision of well-being-related museum and gallery activities for socially excluded or vulnerable healthcare audiences. PMID:25621005
Measuring the electromagnetic chirality of 2D arrays under normal illumination.
Garcia-Santiago, X; Burger, S; Rockstuhl, C; Fernandez-Corbaton, I
2017-10-15
We present an electromagnetic chirality measure for 2D arrays of subwavelength periodicities under normal illumination. The calculation of the measure uses only the complex reflection and transmission coefficients from the array. The measure allows the ordering of arrays according to their electromagnetic chirality, which further allows a quantitative comparison of different design strategies. The measure is upper bounded, and the extreme properties of objects with high values of electromagnetic chirality make them useful in both near- and far-field applications. We analyze the consequences that different possible symmetries of the array have on its electromagnetic chirality. We use the measure to study four different arrays. The results indicate the suitability of helices for building arrays of high electromagnetic chirality, and the low effectiveness of a substrate for breaking the transverse mirror symmetry.
Neurovascular Modeling: Small-Batch Manufacturing of Silicone Vascular Replicas
Chueh, J.Y.; Wakhloo, A.K.; Gounis, M.J.
2009-01-01
BACKGROUND AND PURPOSE Realistic, population based cerebrovascular replicas are required for the development of neuroendovascular devices. The objective of this work was to develop an efficient methodology for manufacturing realistic cerebrovascular replicas. MATERIALS AND METHODS Brain MR angiography data from 20 patients were acquired. The centerline of the vasculature was calculated, and geometric parameters were measured to describe quantitatively the internal carotid artery (ICA) siphon. A representative model was created on the basis of the quantitative measurements. Using this virtual model, we designed a mold with core-shell structure and converted it into a physical object by fused-deposit manufacturing. Vascular replicas were created by injection molding of different silicones. Mechanical properties, including the stiffness and luminal coefficient of friction, were measured. RESULTS The average diameter, length, and curvature of the ICA siphon were 4.15 ± 0.09 mm, 22.60 ± 0.79 mm, and 0.34 ± 0.02 mm-1 (average ± standard error of the mean), respectively. From these image datasets, we created a median virtual model, which was transformed into a physical replica by an efficient batch-manufacturing process. The coefficient of friction of the luminal surface of the replica was reduced by up to 55% by using liquid silicone rubber coatings. The modulus ranged from 0.67 to 1.15 MPa compared with 0.42 MPa from human postmortem studies, depending on the material used to make the replica. CONCLUSIONS Population-representative, smooth, and true-to-scale silicone arterial replicas with uniform wall thickness were successfully built for in vitro neurointerventional device-testing by using a batch-manufacturing process. PMID:19321626
Fluorescence imaging of tryptophan and collagen cross-links to evaluate wound closure ex vivo
NASA Astrophysics Data System (ADS)
Wang, Ying; Ortega-Martinez, Antonio; Farinelli, Bill; Anderson, R. R.; Franco, Walfre
2016-02-01
Wound size is a key parameter in monitoring healing. Current methods to measure wound size are often subjective, time-consuming and marginally invasive. Recently, we developed a non-invasive, non-contact, fast and simple but robust fluorescence imaging (u-FEI) method to monitor the healing of skin wounds. This method exploits the fluorescence of native molecules to tissue as functional and structural markers. The objective of the present study is to demonstrate the feasibility of using variations in the fluorescence intensity of tryptophan and cross-links of collagen to evaluate proliferation of keratinocyte cells and quantitate size of wound during healing, respectively. Circular dermal wounds were created in ex vivo human skin and cultured in different media. Two serial fluorescence images of tryptophan and collagen cross-links were acquired every two days. Histology and immunohistology were used to validate correlation between fluorescence and epithelialization. Images of collagen cross-links show fluorescence of the exposed dermis and, hence, are a measure of wound area. Images of tryptophan show higher fluorescence intensity of proliferating keratinocytes forming new epithelium, as compared to surrounding keratinocytes not involved in epithelialization. These images are complementary since collagen cross-links report on structure while tryptophan reports on function. HE and immunohistology show that tryptophan fluorescence correlates with newly formed epidermis. We have established a fluorescence imaging method for studying epithelialization processes during wound healing in a skin organ culture model, our approach has the potential to provide a non-invasive, non-contact, quick, objective and direct method for quantitative measurements in wound healing in vivo.
Automated CT Scan Scores of Bronchiectasis and Air Trapping in Cystic Fibrosis
Swiercz, Waldemar; Heltshe, Sonya L.; Anthony, Margaret M.; Szefler, Paul; Klein, Rebecca; Strain, John; Brody, Alan S.; Sagel, Scott D.
2014-01-01
Background: Computer analysis of high-resolution CT (HRCT) scans may improve the assessment of structural lung injury in children with cystic fibrosis (CF). The goal of this cross-sectional pilot study was to validate automated, observer-independent image analysis software to establish objective, simple criteria for bronchiectasis and air trapping. Methods: HRCT scans of the chest were performed in 35 children with CF and compared with scans from 12 disease control subjects. Automated image analysis software was developed to count visible airways on inspiratory images and to measure a low attenuation density (LAD) index on expiratory images. Among the children with CF, relationships among automated measures, Brody HRCT scanning scores, lung function, and sputum markers of inflammation were assessed. Results: The number of total, central, and peripheral airways on inspiratory images and LAD (%) on expiratory images were significantly higher in children with CF compared with control subjects. Among subjects with CF, peripheral airway counts correlated strongly with Brody bronchiectasis scores by two raters (r = 0.86, P < .0001; r = 0.91, P < .0001), correlated negatively with lung function, and were positively associated with sputum free neutrophil elastase activity. LAD (%) correlated with Brody air trapping scores (r = 0.83, P < .0001; r = 0.69, P < .0001) but did not correlate with lung function or sputum inflammatory markers. Conclusions: Quantitative airway counts and LAD (%) on HRCT scans appear to be useful surrogates for bronchiectasis and air trapping in children with CF. Our automated methodology provides objective quantitative measures of bronchiectasis and air trapping that may serve as end points in CF clinical trials. PMID:24114359
Curtis, Tyler E; Roeder, Ryan K
2017-10-01
Advances in photon-counting detectors have enabled quantitative material decomposition using multi-energy or spectral computed tomography (CT). Supervised methods for material decomposition utilize an estimated attenuation for each material of interest at each photon energy level, which must be calibrated based upon calculated or measured values for known compositions. Measurements using a calibration phantom can advantageously account for system-specific noise, but the effect of calibration methods on the material basis matrix and subsequent quantitative material decomposition has not been experimentally investigated. Therefore, the objective of this study was to investigate the influence of the range and number of contrast agent concentrations within a modular calibration phantom on the accuracy of quantitative material decomposition in the image domain. Gadolinium was chosen as a model contrast agent in imaging phantoms, which also contained bone tissue and water as negative controls. The maximum gadolinium concentration (30, 60, and 90 mM) and total number of concentrations (2, 4, and 7) were independently varied to systematically investigate effects of the material basis matrix and scaling factor calibration on the quantitative (root mean squared error, RMSE) and spatial (sensitivity and specificity) accuracy of material decomposition. Images of calibration and sample phantoms were acquired using a commercially available photon-counting spectral micro-CT system with five energy bins selected to normalize photon counts and leverage the contrast agent k-edge. Material decomposition of gadolinium, calcium, and water was performed for each calibration method using a maximum a posteriori estimator. Both the quantitative and spatial accuracy of material decomposition were most improved by using an increased maximum gadolinium concentration (range) in the basis matrix calibration; the effects of using a greater number of concentrations were relatively small in magnitude by comparison. The material basis matrix calibration was more sensitive to changes in the calibration methods than the scaling factor calibration. The material basis matrix calibration significantly influenced both the quantitative and spatial accuracy of material decomposition, while the scaling factor calibration influenced quantitative but not spatial accuracy. Importantly, the median RMSE of material decomposition was as low as ~1.5 mM (~0.24 mg/mL gadolinium), which was similar in magnitude to that measured by optical spectroscopy on the same samples. The accuracy of quantitative material decomposition in photon-counting spectral CT was significantly influenced by calibration methods which must therefore be carefully considered for the intended diagnostic imaging application. © 2017 American Association of Physicists in Medicine.
Yorifuji, Takashi; Tsuda, Toshihide; Doi, Hiroyuki
2016-01-01
Abstract Objectives: Ayurvedic oil-dripping treatment (Shirodhara) is often used for treating sleep problems. However, few properly designed studies have been conducted, and the quantitative effect of Shirodhara is unclear. This study sought to quantitatively evaluate the effect of sesame oil Shirodhara (SOS) against warm water Shirodhara (WWS) on improving sleep quality and quality of life (QOL) among persons reporting sleep problems. Methods: This randomized, single-blinded, crossover study recruited 20 participants. Each participant received seven 30-minute sessions within 2 weeks with either liquid. The washout period was at least 2 months. The Shirodhara procedure was conducted by a robotic oil-drip system. The outcomes were assessed by the Pittsburgh Sleep Quality Index (PSQI) for sleep quality, Epworth Sleepiness Scale (ESS) for daytime sleepiness, World Health Organization Quality of Life 26 (WHO-QOL26) for QOL, and a sleep monitor instrument for objective sleep measures. Changes between baseline and follow-up periods were compared between the two types of Shirodhara. Analysis was performed with generalized estimating equations. Results: Of 20 participants, 15 completed the study. SOS improved sleep quality, as measured by PSQI. The SOS score was 1.83 points lower (95% confidence interval [CI], −3.37 to −0.30) at 2-week follow-up and 1.73 points lower (95% CI, −3.84 to 0.38) than WWS at 6-week follow-up. Although marginally significant, SOS also improved QOL by 0.22 points at 2-week follow-up and 0.19 points at 6-week follow-up compared with WWS. After SOS, no beneficial effects were observed on daytime sleepiness or objective sleep measures. Conclusions: This pilot study demonstrated that SOS may be a safe potential treatment to improve sleep quality and QOL in persons with sleep problems. PMID:26669255
Storey, Bob; Marcellino, Chris; Miller, Melissa; Maclean, Mary; Mostafa, Eman; Howell, Sue; Sakanari, Judy; Wolstenholme, Adrian; Kaplan, Ray
2014-12-01
A major hindrance to evaluating nematode populations for anthelmintic resistance, as well as for screening existing drugs, new compounds, or bioactive plant extracts for anthelmintic properties, is the lack of an efficient, objective, and reproducible in vitro assay that is adaptable to multiple life stages and parasite genera. To address this need we have developed the "Worminator" system, which objectively and quantitatively measures the motility of microscopic stages of parasitic nematodes. The system is built around the computer application "WormAssay", developed at the Center for Discovery and Innovation in Parasitic Diseases at the University of California, San Francisco. WormAssay was designed to assess motility of macroscopic parasites for the purpose of high throughput screening of potential anthelmintic compounds, utilizing high definition video as an input to assess motion of adult stage (macroscopic) parasites (e.g. Brugia malayi). We adapted this assay for use with microscopic parasites by modifying the software to support a full frame analysis mode that applies the motion algorithm to the entire video frame. Thus, the motility of all parasites in a given well are recorded and measured simultaneously. Assays performed on third-stage larvae (L3) of the bovine intestinal nematode Cooperia spp., as well as microfilariae (mf) of the filarioid nematodes B. malayi and Dirofilaria immitis, yielded reproducible dose responses using the macrocyclic lactones ivermectin, doramectin, and moxidectin, as well as the nicotinic agonists, pyrantel, oxantel, morantel, and tribendimidine. This new computer based-assay is simple to use, requires minimal new investment in equipment, is robust across nematode genera and developmental stage, and does not require subjective scoring of motility by an observer. Thus, the "Worminator" provides a relatively low-cost platform for developing genera- and stage-specific assays with high efficiency and reproducibility, low labor input, and yields objective motility data that is not subject to scorer bias.
NASA Astrophysics Data System (ADS)
Wang, Yu; Wang, Min; Jiang, Jingfeng
2017-02-01
Shear wave elastography is increasingly being used to non-invasively stage liver fibrosis by measuring shear wave speed (SWS). This study quantitatively investigates intrinsic variations among SWS measurements obtained from heterogeneous media such as fibrotic livers. More specifically, it aims to demonstrate that intrinsic variations in SWS measurements, in general, follow a non-Gaussian distribution and are related to the heterogeneous nature of the medium being measured. Using the principle of maximum entropy (ME), our primary objective is to derive a probability density function (PDF) of the SWS distribution in conjunction with a lossless stochastic tissue model. Our secondary objective is to evaluate the performance of the proposed PDF using Monte Carlo (MC)-simulated shear wave (SW) data against three other commonly used PDFs. Based on statistical evaluation criteria, initial results showed that the derived PDF fits better to MC-simulated SWS data than the other three PDFs. It was also found that SW fronts stabilized after a short (compared with the SW wavelength) travel distance in lossless media. Furthermore, in lossless media, the distance required to stabilize the SW propagation was not correlated to the SW wavelength at the low frequencies investigated (i.e. 50, 100 and 150 Hz). Examination of the MC simulation data suggests that elastic (shear) wave scattering became more pronounced when the volume fraction of hard inclusions increased from 10 to 30%. In conclusion, using the principle of ME, we theoretically demonstrated for the first time that SWS measurements in this model follow a non-Gaussian distribution. Preliminary data indicated that the proposed PDF can quantitatively represent intrinsic variations in SWS measurements simulated using a two-phase random medium model. The advantages of the proposed PDF are its physically meaningful parameters and solid theoretical basis.
Bekker, Cindy; Voogd, Eef; Fransman, Wouter; Vermeulen, Roel
2016-11-01
Control banding can be used as a first-tier assessment to control worker exposure to nano-objects and their aggregates and agglomerates (NOAA). In a second tier, more advanced modelling approaches are needed to produce quantitative exposure estimates. As currently no general quantitative nano-specific exposure models are available, this study evaluated the validity and applicability of using a generic exposure assessment model (the Advanced REACH Tool-ART) for occupational exposure to NOAA. The predictive capability of ART for occupational exposure to NOAA was tested by calculating the relative bias and correlations (Pearson) between the model estimates and measured concentrations using a dataset of 102 NOAA exposure measurements collected during experimental and workplace exposure studies. Moderate to (very) strong correlations between the ART estimates and measured concentrations were found. Estimates correlated better to measured concentration levels of dust (r = 0.76, P < 0.01) than liquid aerosols (r = 0.51, P = 0.19). However, ART overestimated the measured NOAA concentrations for both the experimental and field measurements (factor 2-127). Overestimation was highest at low concentrations and decreased with increasing concentration. Correlations seemed to be better when looking at the nanomaterials individually compared to combined scenarios, indicating that nanomaterial-specific characteristics are not well captured within the mechanistic model of the ART. Although ART in its current state is not capable to estimate occupational exposure to NOAA, the strong correlations for the individual nanomaterials indicate that the ART (and potentially other generic exposure models) have the potential to be extended or adapted for exposure to NOAA. In the future, studies investigating the potential to estimate exposure to NOAA should incorporate more explicitly nanomaterial-specific characteristics in their models. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Office procedures for quantitative assessment of olfactory function.
Doty, Richard L
2007-01-01
Despite the importance of the sense of smell for establishing the flavor of foods and beverages, as well as protecting against environmental dangers, this primary sensory system is commonly ignored by the rhinologist. In this article basic issues related to practical measurement of olfactory function in the clinic are described and examples of the application of the two most common paradigms for such measurement--odor identification and detection--are presented. A listing is made of the 27 olfactory tests currently used clinically, along with their strengths and weaknesses. A brief review of common nasosinus-related disorders for which quantitative olfactory testing has been performed is provided. Although many psychophysical tests are available for quantifying olfactory loss, it is apparent that a number are limited in terms of practicality, sensitivity, and reliability. In general, sensitivity and reliability are positively correlated with test length. Given the strengths of the more reliable forced-choice pyschophysical tests and the limitations of electrophysiological tests, the common distinction between "subjective" and "objective" tests is misleading and should not be used. Complete recovery of olfactory function, as measured quantitatively, rarely follows surgical or medical interventions in patients with rhinosinusitis. Given the availability of practical clinical olfactory tests, the modern rhinologist can easily quantify cranial nerve (CN) I function. The application of such tests has led to a new understanding of the effects of nasal disease on olfactory function. Except in cases of total or near-total nasal obstruction, olfactory and airway patency measures usually are unrelated, in accord with the concept that rhinosinusitis primarily influences olfactory function by apoptotic pathological changes within the olfactory neuroepithelium.
Fuld, Matthew K; Halaweish, Ahmed F; Newell, John D; Krauss, Bernhard; Hoffman, Eric A
2013-09-01
Dual-energy x-ray computed tomography (DECT) offers visualization of the airways and quantitation of regional pulmonary ventilation using a single breath of inhaled xenon gas. In this study, we sought to optimize scanning protocols for DECT xenon gas ventilation imaging of the airways and lung parenchyma and to characterize the quantitative nature of the developed protocols through a series of test-object and animal studies. The Institutional Animal Care and Use Committee approved all animal studies reported here. A range of xenon/oxygen gas mixtures (0%, 20%, 25%, 33%, 50%, 66%, 100%; balance oxygen) were scanned in syringes and balloon test-objects to optimize the delivered gas mixture for assessment of regional ventilation while allowing for the development of improved 3-material decomposition calibration parameters. In addition, to alleviate gravitational effects on xenon gas distribution, we replaced a portion of the oxygen in the xenon/oxygen gas mixture with helium and compared gas distributions in a rapid-prototyped human central-airway test-object. Additional syringe tests were performed to determine if the introduction of helium had any effect on xenon quantitation. Xenon gas mixtures were delivered to anesthetized swine to assess airway and lung parenchymal opacification while evaluating various DECT scan acquisition settings. Attenuation curves for xenon were obtained from the syringe test-objects and were used to develop improved 3-material decomposition parameters (Hounsfield unit enhancement per percentage xenon: within the chest phantom, 2.25 at 80 kVp, 1.7 at 100 kVp, and 0.76 at 140 kVp with tin filtration; in open air, 2.5 at 80 kVp, 1.95 at 100 kVp, and 0.81 at 140 kVp with tin filtration). The addition of helium improved the distribution of xenon gas to the gravitationally nondependent portion of the airway tree test-object, while not affecting the quantitation of xenon in the 3-material decomposition DECT. The mixture 40% Xe/40% He/20% O2 provided good signal-to-noise ratio (SNR), greater than the Rose criterion (SNR > 5), while avoiding gravitational effects of similar concentrations of xenon in a 60% O2 mixture. Compared with 100/140 Sn kVp, 80/140 Sn kVp (Sn = tin filtered) provided improved SNR in a swine with an equivalent thoracic transverse density to a human subject with a body mass index of 33 kg/m. Airways were brighter in the 80/140 Sn kVp scan (80/140 Sn, 31.6%; 100/140 Sn, 25.1%) with considerably lower noise (80/140 Sn, coefficient of variation of 0.140; 100/140 Sn, coefficient of variation of 0.216). To provide a truly quantitative measure of regional lung function with xenon-DECT, the basic protocols and parameter calibrations need to be better understood and quantified. It is critically important to understand the fundamentals of new techniques to allow for proper implementation and interpretation of their results before widespread usage. With the use of an in-house derived xenon calibration curve for 3-material decomposition rather than the scanner supplied calibration and a xenon/helium/oxygen mixture, we demonstrate highly accurate quantitation of xenon gas volumes and avoid gravitational effects on gas distribution. This study provides a foundation for other researchers to use and test these methods with the goal of clinical translation.
Chen, Li-Li; Xu, Tian-Min; Jiang, Jiu-Hui; Zhang, Xing-Zhong; Lin, Jiu-Xiang
2008-12-01
The purpose of this study was to establish a quantitative cervical vertebral maturation (CVM) system for adolescents with normal occlusion. Mixed longitudinal data were used. The subjects included 87 children and adolescents from 8 to 18 years old with normal occlusion (32 boys, 55 girls) selected from 901 candidates. Sequential lateral cephalograms and hand-wrist films were taken once a year for 6 years. The lateral cephalograms of all subjects were divided into 11 maturation groups according to the Fishman skeletal maturity indicators. The morphologic characteristics of the second, third, and fourth cervical vertebrae at 11 developmental stages were measured and analyzed. Three characteristic parameters (H4/W4, AH3/PH3, @2) were selected to determine the classification of CVM. With 3 morphologic variables, the quantitative CVM system including 4 maturational stages was established. An equation that can accurately estimate the maturation of the cervical vertebrae was established: CVM stage=-4.13+3.57xH4/W4+4.07xAH3/PH3+0.03x@2. The quantitative CVM method is an efficient, objective, and relatively simple approach to assess the level of skeletal maturation during adolescence.
Quantitative methods in assessment of neurologic function.
Potvin, A R; Tourtellotte, W W; Syndulko, K; Potvin, J
1981-01-01
Traditionally, neurologists have emphasized qualitative techniques for assessing results of clinical trials. However, in recent years qualitative evaluations have been increasingly augmented by quantitative tests for measuring neurologic functions pertaining to mental state, strength, steadiness, reactions, speed, coordination, sensation, fatigue, gait, station, and simulated activities of daily living. Quantitative tests have long been used by psychologists for evaluating asymptomatic function, assessing human information processing, and predicting proficiency in skilled tasks; however, their methodology has never been directly assessed for validity in a clinical environment. In this report, relevant contributions from the literature on asymptomatic human performance and that on clinical quantitative neurologic function are reviewed and assessed. While emphasis is focused on tests appropriate for evaluating clinical neurologic trials, evaluations of tests for reproducibility, reliability, validity, and examiner training procedures, and for effects of motivation, learning, handedness, age, and sex are also reported and interpreted. Examples of statistical strategies for data analysis, scoring systems, data reduction methods, and data display concepts are presented. Although investigative work still remains to be done, it appears that carefully selected and evaluated tests of sensory and motor function should be an essential factor for evaluating clinical trials in an objective manner.
Faron, Gilles; Vancutsem, Ellen; Naessens, Anne; Buyl, Ronald; Gucciardo, Leonardo; Foulon, Walter
2017-01-01
Objective . This study aimed to compare the qualitative and quantitative reproducibility of quantitative PCR (qPCR) for Ureaplasma species (Ureaplasma spp.) throughout pregnancy and according to the genital sampling site. Study Design . Between 5 and 14 weeks of gestation (T1), vaginal, fornix, and two cervical samples were taken. Sampling was repeated during the 2nd (T2) and 3rd (T3) trimester in randomly selected T1 positive and negative women. Qualitative and quantitative reproducibility were evaluated using, respectively, Cohen's kappa ( κ ) and interclass correlation coefficients (ICC) and repeated measures ANOVA on the log-transformed mean number of DNA copies for each sampling site. Results . During T1, 51/127 women were positive for U. parvum and 8 for U. urealyticum (4 patients for both). Sampling was repeated for 44/55 women at T2 and/or T3; 43 (97.7%) remained positive at the three timepoints. κ ranged between 0.83 and 0.95 and the ICC for cervical samples was 0.86. Conclusions . Colonization by Ureaplasma spp. seems to be very constant during pregnancy and vaginal samples have the highest detection rate.
Watts, Christopher; Barnes-Burroughs, Kathryn; Estis, Julie; Blanton, Debra
2006-03-01
A growing body of contemporary research has investigated differences between trained and untrained singing voices. However, few studies have separated untrained singers into those who do and do not express abilities related to singing talent, including accurate pitch control and production of a pleasant timbre (voice quality). This investigation studied measures of the singing power ratio (SPR), which is a quantitative measure of the resonant quality of the singing voice. SPR reflects the amplification or suppression in the vocal tract of the harmonics produced by the sound source. This measure was acquired from the voices of untrained talented and nontalented singers as a means to objectively investigate voice quality differences. Measures of SPR were acquired from vocal samples with fast Fourier transform (FFT) power spectra to analyze the amplitude level of the partials in the acoustic spectrum. Long-term average spectra (LTAS) were also analyzed. Results indicated significant differences in SPR between groups, which suggest that vocal tract resonance, and its effect on perceived vocal timbre or quality, may be an important variable related to the perception of singing talent. LTAS confirmed group differences in the tuning of vocal tract harmonics.
Quantitative vibro-acoustography of tissue-like objects by measurement of resonant modes
NASA Astrophysics Data System (ADS)
Mazumder, Dibbyan; Umesh, Sharath; Mohan Vasu, Ram; Roy, Debasish; Kanhirodan, Rajan; Asokan, Sundarrajan
2017-01-01
We demonstrate a simple and computationally efficient method to recover the shear modulus pertaining to the focal volume of an ultrasound transducer from the measured vibro-acoustic spectral peaks. A model that explains the transport of local deformation information with the acoustic wave acting as a carrier is put forth. It is also shown that the peaks correspond to the natural frequencies of vibration of the focal volume, which may be readily computed by solving an eigenvalue problem associated with the vibrating region. Having measured the first natural frequency with a fibre Bragg grating sensor, and armed with an expedient means of computing the same, we demonstrate a simple procedure, based on the method of bisection, to recover the average shear modulus of the object in the ultrasound focal volume. We demonstrate this recovery for four homogeneous agarose slabs of different stiffness and verify the accuracy of the recovery using independent rheometer-based measurements. Extension of the method to anisotropic samples through the measurement of a more complete set of resonant modes and the recovery of an elasticity tensor distribution, as is done in resonant ultrasound spectroscopy, is suggested.
The prevalence of the Middle-Eastern extreme ideologies among some Canadians.
Loza, Wagdy
2011-05-01
A total of 183 Canadian participants of different religious backgrounds completed the Belief Diversity Scale (BDS). The BDS is an 80-item, 6-subscale instrument designed to quantitatively measure the religious attitudes, beliefs, and ideologies of Middle-Eastern extremists' on risk areas that are reported in the literature. The results demonstrated the reliability and validity of the BDS as well as indicated the prevalence of Middle-Eastern extremists' ideologies among Muslim Canadians. Results were similar to those obtained from similar study completed on South African participants. These findings suggested that the BDS has the potential to be used as an objective tool to measure Middle-Eastern religious extremism.
Resistive method for measuring the disintegration speed of Prince Rupert's drops
NASA Astrophysics Data System (ADS)
Bochkov, Mark; Gusenkova, Daria; Glushkov, Evgenii; Zotova, Julia; Zhabin, S. N.
2016-09-01
We have successfully applied the resistance grid technique to measure the disintegration speed in a special type of glass objects, widely known as Prince Rupert's drops. We use a fast digital oscilloscope and a simple electrical circuit, glued to the surface of the drops, to detect the voltage changes, corresponding to the breaks in the specific parts of the drops. The results obtained using this method are in good qualitative and quantitative agreement with theoretical predictions and previously published data. Moreover, the proposed experimental setup does not include any expensive equipment (such as a high-speed camera) and can therefore be widely used in high schools and universities.
Rigoard, P; Nivole, K; Blouin, P; Monlezun, O; Roulaud, M; Lorgeoux, B; Bataille, B; Guetarni, F
2015-03-01
One of the major challenges of neurostimulation is actually to address the back pain component in patients suffering from refractory chronic back and leg pain. Facing a tremendous expansion of neurostimulation techniques and available devices, implanters and patients can still remain confused as they need to select the right tool for the right indication. To be able to evaluate and compare objectively patient outcomes, depending on therapeutical strategies, it appears essential to develop a rational and quantitative approach to pain assessment for those who undergo neurostimulation implantation. We developed a touch screen interface, in Poitiers University Hospital and N(3)Lab, called the "Neuro-Pain'T", to detect, record and quantify the painful area surface and intensity changes in an implanted patient within time. The second aim of this software is to analyse the link between a paraesthesia coverage generated by a type of neurostimulation and a potential analgesic effect, measured by pain surface reduction, pain intensity reduction within the painful surface and local change in pain characteristics distribution. The third aim of Neuro-Pain'T is to correlate these clinical parameters to global patient data and functional outcome analysis, via a network database (Neuro-Database), to be able to provide a concise but objective approach of the neurostimulation efficacy, summarized by an index called "RFG Index". This software has been used in more than 190 patients since 2012, leading us to define three clinical parameters grouped as a clinical component of the RFG Index, which might be helpful to assess neurostimulation efficacy and compare implanted devices. The Neuro-Pain'T is an original software designed to objectively and quantitatively characterize reduction of a painful area in a given individual, in terms of intensity, surface and pain typology, in response to a treatment strategy or implantation of an analgesic device. Because pain is a physical sensation, which integrates a psychological dimension, its assessment justifies the use of multidimensional and global evaluation scales. However, in the context of neurostimulation and comparative clinical trials designed to test the technical efficacy of a given device, a simple, objective and quantitative evaluation tool could help to guide tomorrow's treatment options by transforming personal convictions into a more robust scientific rationale based on data collection and data mining techniques. Copyright © 2014. Published by Elsevier Masson SAS.
1990-10-01
type of approach for finding a dense displacement vector field has a time complexity that allows a real - time implementation when an appropriate control...hardly vector fields as they appear in Stereo or motion. The reason for this is the fact that local displacement vector field ( DVF ) esti- mates bave...2 objects’ motion, but that the quantitative optical flow is not a reliable measure of the real motion [VP87, SU87]. This applies even more to the
The local lymph node assay in 2014.
Basketter, David A; Gerberick, G Frank; Kimber, Ian
2014-01-01
Toxicology endeavors to predict the potential of materials to cause adverse health (and environmental) effects and to assess the risk(s) associated with exposure. For skin sensitizers, the local lymph node assay was the first method to be fully and independently validated, as well as the first to offer an objective end point with a quantitative measure of sensitizing potency (in addition to hazard identification). Fifteen years later, it serves as the primary standard for the development of in vitro/in chemico/in silico alternatives.
Management of natural resources through automatic cartographic inventory
NASA Technical Reports Server (NTRS)
Rey, P.; Gourinard, Y.; Cambou, F. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Significant results of the ARNICA program from August 1972 - January 1973 have been: (1) establishment of image to object correspondence codes for all types of soil use and forestry in northern Spain; (2) establishment of a transfer procedure between qualitative (remote identification and remote interpretation) and quantitative (numerization, storage, automatic statistical cartography) use of images; (3) organization of microdensitometric data processing and automatic cartography software; and (4) development of a system for measuring reflectance simultaneous with imagery.
NASA Astrophysics Data System (ADS)
Jackson, Edward F.
2016-04-01
Over the past decade, there has been an increasing focus on quantitative imaging biomarkers (QIBs), which are defined as "objectively measured characteristics derived from in vivo images as indicators of normal biological processes, pathogenic processes, or response to a therapeutic intervention"1. To evolve qualitative imaging assessments to the use of QIBs requires the development and standardization of data acquisition, data analysis, and data display techniques, as well as appropriate reporting structures. As such, successful implementation of QIB applications relies heavily on expertise from the fields of medical physics, radiology, statistics, and informatics as well as collaboration from vendors of imaging acquisition, analysis, and reporting systems. When successfully implemented, QIBs will provide image-derived metrics with known bias and variance that can be validated with anatomically and physiologically relevant measures, including treatment response (and the heterogeneity of that response) and outcome. Such non-invasive quantitative measures can then be used effectively in clinical and translational research and will contribute significantly to the goals of precision medicine. This presentation will focus on 1) outlining the opportunities for QIB applications, with examples to demonstrate applications in both research and patient care, 2) discussing key challenges in the implementation of QIB applications, and 3) providing overviews of efforts to address such challenges from federal, scientific, and professional organizations, including, but not limited to, the RSNA, NCI, FDA, and NIST. 1Sullivan, Obuchowski, Kessler, et al. Radiology, epub August 2015.
Salem, Ran; Matityahu, Shlomi; Melchior, Aviva; Nikolaevsky, Mark; Noked, Ori; Sterer, Eran
2015-09-01
The precision of melting curve measurements using laser-heated diamond anvil cell (LHDAC) is largely limited by the correct and reliable determination of the onset of melting. We present a novel image analysis of speckle interference patterns in the LHDAC as a way to define quantitative measures which enable an objective determination of the melting transition. Combined with our low-temperature customized IR pyrometer, designed for measurements down to 500 K, our setup allows studying the melting curve of materials with low melting temperatures, with relatively high precision. As an application, the melting curve of Te was measured up to 35 GPa. The results are found to be in good agreement with previous data obtained at pressures up to 10 GPa.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Claus, Rene A.; Wang, Yow-Gwo; Wojdyla, Antoine
Extreme Ultraviolet (EUV) Lithography mask defects were examined on the actinic mask imaging system, SHARP, at Lawrence Berkeley National Laboratory. Also, a quantitative phase retrieval algorithm based on the Weak Object Transfer Function was applied to the measured through-focus aerial images to examine the amplitude and phase of the defects. The accuracy of the algorithm was demonstrated by comparing the results of measurements using a phase contrast zone plate and a standard zone plate. Using partially coherent illumination to measure frequencies that would otherwise fall outside the numerical aperture (NA), it was shown that some defects are smaller than themore » conventional resolution of the microscope. We found that the programmed defects of various sizes were measured and shown to have both an amplitude and a phase component that the algorithm is able to recover.« less
Wirth, Troy A.; Pyke, David A.
2007-01-01
Emergency Stabilization and Rehabilitation (ES&R) and Burned Area Emergency Response (BAER) treatments are short-term, high-intensity treatments designed to mitigate the adverse effects of wildfire on public lands. The federal government expends significant resources implementing ES&R and BAER treatments after wildfires; however, recent reviews have found that existing data from monitoring and research are insufficient to evaluate the effects of these activities. The purpose of this report is to: (1) document what monitoring methods are generally used by personnel in the field; (2) describe approaches and methods for post-fire vegetation and soil monitoring documented in agency manuals; (3) determine the common elements of monitoring programs recommended in these manuals; and (4) describe a common monitoring approach to determine the effectiveness of future ES&R and BAER treatments in non-forested regions. Both qualitative and quantitative methods to measure effectiveness of ES&R treatments are used by federal land management agencies. Quantitative methods are used in the field depending on factors such as funding, personnel, and time constraints. There are seven vegetation monitoring manuals produced by the federal government that address monitoring methods for (primarily) vegetation and soil attributes. These methods vary in their objectivity and repeatability. The most repeatable methods are point-intercept, quadrat-based density measurements, gap intercepts, and direct measurement of soil erosion. Additionally, these manuals recommend approaches for designing monitoring programs for the state of ecosystems or the effect of management actions. The elements of a defensible monitoring program applicable to ES&R and BAER projects that most of these manuals have in common are objectives, stratification, control areas, random sampling, data quality, and statistical analysis. The effectiveness of treatments can be determined more accurately if data are gathered using an approach that incorporates these six monitoring program design elements and objectives, as well as repeatable procedures to measure cover, density, gap intercept, and soil erosion within each ecoregion and plant community. Additionally, using a common monitoring program design with comparable methods, consistently documenting results, and creating and maintaining a central database for query and reporting, will ultimately allow a determination of the effectiveness of post-fire rehabilitation activities region-wide.
An approach to computing direction relations between separated object groups
NASA Astrophysics Data System (ADS)
Yan, H.; Wang, Z.; Li, J.
2013-06-01
Direction relations between object groups play an important role in qualitative spatial reasoning, spatial computation and spatial recognition. However, none of existing models can be used to compute direction relations between object groups. To fill this gap, an approach to computing direction relations between separated object groups is proposed in this paper, which is theoretically based on Gestalt principles and the idea of multi-directions. The approach firstly triangulates the two object groups; and then it constructs the Voronoi Diagram between the two groups using the triangular network; after this, the normal of each Vornoi edge is calculated, and the quantitative expression of the direction relations is constructed; finally, the quantitative direction relations are transformed into qualitative ones. The psychological experiments show that the proposed approach can obtain direction relations both between two single objects and between two object groups, and the results are correct from the point of view of spatial cognition.
An approach to computing direction relations between separated object groups
NASA Astrophysics Data System (ADS)
Yan, H.; Wang, Z.; Li, J.
2013-09-01
Direction relations between object groups play an important role in qualitative spatial reasoning, spatial computation and spatial recognition. However, none of existing models can be used to compute direction relations between object groups. To fill this gap, an approach to computing direction relations between separated object groups is proposed in this paper, which is theoretically based on gestalt principles and the idea of multi-directions. The approach firstly triangulates the two object groups, and then it constructs the Voronoi diagram between the two groups using the triangular network. After this, the normal of each Voronoi edge is calculated, and the quantitative expression of the direction relations is constructed. Finally, the quantitative direction relations are transformed into qualitative ones. The psychological experiments show that the proposed approach can obtain direction relations both between two single objects and between two object groups, and the results are correct from the point of view of spatial cognition.
Phase measurements of EUV mask defects
Claus, Rene A.; Wang, Yow-Gwo; Wojdyla, Antoine; ...
2015-02-22
Extreme Ultraviolet (EUV) Lithography mask defects were examined on the actinic mask imaging system, SHARP, at Lawrence Berkeley National Laboratory. Also, a quantitative phase retrieval algorithm based on the Weak Object Transfer Function was applied to the measured through-focus aerial images to examine the amplitude and phase of the defects. The accuracy of the algorithm was demonstrated by comparing the results of measurements using a phase contrast zone plate and a standard zone plate. Using partially coherent illumination to measure frequencies that would otherwise fall outside the numerical aperture (NA), it was shown that some defects are smaller than themore » conventional resolution of the microscope. We found that the programmed defects of various sizes were measured and shown to have both an amplitude and a phase component that the algorithm is able to recover.« less
Athlete leadership: a review of the theoretical, measurement, and empirical literature.
Loughead, Todd M
2017-08-01
Athlete leadership is defined as an athlete who occupies a formal or informal leadership role within a team and influences team members to achieve a common objective. The area of athlete leadership has been shaped by theories and measurement tools from organizational and sport coaching literatures. The present article describes the conceptual developments within athlete leadership by providing an operational definition of this construct, followed by the theories and measurement tools used to examine athlete leadership. Finally, the present paper describes both qualitative and quantitative research that has emerged over the last decade. The results suggest the importance of this source of leadership within sport teams. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Medical student attitudes towards older people: a critical review of quantitative measures.
Wilson, Mark A G; Kurrle, Susan; Wilson, Ian
2018-01-24
Further research into medical student attitudes towards older people is important, and requires accurate and detailed evaluative methodology. The two objectives for this paper are: (1) From the literature, to critically review instruments of measure for medical student attitudes towards older people, and (2) To recommend the most appropriate quantitative instrument for future research into medical student attitudes towards older people. A SCOPUS and Ovid cross search was performed using the keywords Attitude and medical student and aged or older or elderly. This search was supplemented by manual searching, guided by citations in articles identified by the initial literature search, using the SCOPUS and PubMed databases. International studies quantifying medical student attitudes have demonstrated neutral to positive attitudes towards older people, using various instruments. The most commonly used instruments are the Ageing Semantic Differential (ASD) and the University of California Los Angeles Geriatric Attitudes Scale, with several other measures occasionally used. All instruments used to date have inherent weaknesses. A reliable and valid instrument with which to quantify modern medical student attitudes towards older people has not yet been developed. Adaptation of the ASD for contemporary usage is recommended.
Developing a more useful surface quality metric for laser optics
NASA Astrophysics Data System (ADS)
Turchette, Quentin; Turner, Trey
2011-02-01
Light scatter due to surface defects on laser resonator optics produces losses which lower system efficiency and output power. The traditional methodology for surface quality inspection involves visual comparison of a component to scratch and dig (SAD) standards under controlled lighting and viewing conditions. Unfortunately, this process is subjective and operator dependent. Also, there is no clear correlation between inspection results and the actual performance impact of the optic in a laser resonator. As a result, laser manufacturers often overspecify surface quality in order to ensure that optics will not degrade laser performance due to scatter. This can drive up component costs and lengthen lead times. Alternatively, an objective test system for measuring optical scatter from defects can be constructed with a microscope, calibrated lighting, a CCD detector and image processing software. This approach is quantitative, highly repeatable and totally operator independent. Furthermore, it is flexible, allowing the user to set threshold levels as to what will or will not constitute a defect. This paper details how this automated, quantitative type of surface quality measurement can be constructed, and shows how its results correlate against conventional loss measurement techniques such as cavity ringdown times.
Integrating regional conservation priorities for multiple objectives into national policy
Beger, Maria; McGowan, Jennifer; Treml, Eric A.; Green, Alison L.; White, Alan T.; Wolff, Nicholas H.; Klein, Carissa J.; Mumby, Peter J.; Possingham, Hugh P.
2015-01-01
Multinational conservation initiatives that prioritize investment across a region invariably navigate trade-offs among multiple objectives. It seems logical to focus where several objectives can be achieved efficiently, but such multi-objective hotspots may be ecologically inappropriate, or politically inequitable. Here we devise a framework to facilitate a regionally cohesive set of marine-protected areas driven by national preferences and supported by quantitative conservation prioritization analyses, and illustrate it using the Coral Triangle Initiative. We identify areas important for achieving six objectives to address ecosystem representation, threatened fauna, connectivity and climate change. We expose trade-offs between areas that contribute substantially to several objectives and those meeting one or two objectives extremely well. Hence there are two strategies to guide countries choosing to implement regional goals nationally: multi-objective hotspots and complementary sets of single-objective priorities. This novel framework is applicable to any multilateral or global initiative seeking to apply quantitative information in decision making. PMID:26364769
Comparing implementations of penalized weighted least-squares sinogram restoration.
Forthmann, Peter; Koehler, Thomas; Defrise, Michel; La Riviere, Patrick
2010-11-01
A CT scanner measures the energy that is deposited in each channel of a detector array by x rays that have been partially absorbed on their way through the object. The measurement process is complex and quantitative measurements are always and inevitably associated with errors, so CT data must be preprocessed prior to reconstruction. In recent years, the authors have formulated CT sinogram preprocessing as a statistical restoration problem in which the goal is to obtain the best estimate of the line integrals needed for reconstruction from the set of noisy, degraded measurements. The authors have explored both penalized Poisson likelihood (PL) and penalized weighted least-squares (PWLS) objective functions. At low doses, the authors found that the PL approach outperforms PWLS in terms of resolution-noise tradeoffs, but at standard doses they perform similarly. The PWLS objective function, being quadratic, is more amenable to computational acceleration than the PL objective. In this work, the authors develop and compare two different methods for implementing PWLS sinogram restoration with the hope of improving computational performance relative to PL in the standard-dose regime. Sinogram restoration is still significant in the standard-dose regime since it can still outperform standard approaches and it allows for correction of effects that are not usually modeled in standard CT preprocessing. The authors have explored and compared two implementation strategies for PWLS sinogram restoration: (1) A direct matrix-inversion strategy based on the closed-form solution to the PWLS optimization problem and (2) an iterative approach based on the conjugate-gradient algorithm. Obtaining optimal performance from each strategy required modifying the naive off-the-shelf implementations of the algorithms to exploit the particular symmetry and sparseness of the sinogram-restoration problem. For the closed-form approach, the authors subdivided the large matrix inversion into smaller coupled problems and exploited sparseness to minimize matrix operations. For the conjugate-gradient approach, the authors exploited sparseness and preconditioned the problem to speed up convergence. All methods produced qualitatively and quantitatively similar images as measured by resolution-variance tradeoffs and difference images. Despite the acceleration strategies, the direct matrix-inversion approach was found to be uncompetitive with iterative approaches, with a computational burden higher by an order of magnitude or more. The iterative conjugate-gradient approach, however, does appear promising, with computation times half that of the authors' previous penalized-likelihood implementation. Iterative conjugate-gradient based PWLS sinogram restoration with careful matrix optimizations has computational advantages over direct matrix PWLS inversion and over penalized-likelihood sinogram restoration and can be considered a good alternative in standard-dose regimes.
Mehdi, Muhammad Zain; Nagi, Abdul Hanan; Naseem, Nadia
2016-01-01
ABSTRACT Introduction/Background: Fuhrman nuclear grade is the most important histological parameter to predict prognosis in a patient of renal cell carcinoma (RCC). However, it suffers from inter-observer and intra-observer variation giving rise to need of a parameter that not only correlates with nuclear grade but is also objective and reproducible. Proliferation is the measure of aggressiveness of a tumour and it is strongly correlated with Fuhrman nuclear grade, clinical survival and recurrence in RCC. Ki-67 is conventionally used to assess proliferation. Mini-chromosome maintenance 2 (MCM-2) is a lesser known marker of proliferation and identifies a greater proliferation faction. This study was designed to assess the prognostic significance of MCM-2 by comparing it with Fuhrman nuclear grade and Ki-67. Material and Methods: n=50 cases of various ages, stages, histological subtypes and grades of RCC were selected for this study. Immunohistochemical staining using Ki-67(MIB-1, Mouse monoclonal antibody, Dako) and MCM-2 (Mouse monoclonal antibody, Thermo) was performed on the paraffin embedded blocks in the department of Morbid anatomy and Histopathology, University of Health Sciences, Lahore. Labeling indices (LI) were determined by two pathologists independently using quantitative and semi-quantitative analysis. Statistical analysis was carried out using SPSS 20.0. Kruskall-Wallis test was used to determine a correlation of proliferation markers with grade, and Pearson's correlate was used to determine correlation between the two proliferation markers. Results: Labeling index of MCM-2 (median=24.29%) was found to be much higher than Ki-67(median=13.05%). Both markers were significantly related with grade (p=0.00; Kruskall-Wallis test). LI of MCM-2 was found to correlate significantly with LI of Ki-67(r=0.0934;p=0.01 with Pearson's correlate). Results of semi-quantitative analysis correlated well with quantitative analysis. Conclusion: Both Ki-67 and MCM-2 are markers of proliferation which are closely linked to grade. Therefore, they can act as surrogate markers for grade in a manner that is more objective and reproducible. PMID:27532114
Mehdi, Muhammad Zain; Nagi, Abdul Hanan; Naseem, Nadia
2016-01-01
Fuhrman nuclear grade is the most important histological parameter to predict prognosis in a patient of renal cell carcinoma (RCC). However, it suffers from inter-observer and intra-observer variation giving rise to need of a parameter that not only correlates with nuclear grade but is also objective and reproducible. Proliferation is the measure of aggressiveness of a tumour and it is strongly correlated with Fuhrman nuclear grade, clinical survival and recurrence in RCC. Ki-67 is conventionally used to assess proliferation. Mini-chromosome maintenance 2 (MCM-2) is a lesser known marker of proliferation and identifies a greater proliferation faction. This study was designed to assess the prognostic significance of MCM-2 by comparing it with Fuhrman nuclear grade and Ki-67. n=50 cases of various ages, stages, histological subtypes and grades of RCC were selected for this study. Immunohistochemical staining using Ki-67(MIB-1, Mouse monoclonal antibody, Dako) and MCM-2 (Mouse monoclonal antibody, Thermo) was performed on the paraffin embedded blocks in the department of Morbid anatomy and Histopathology, University of Health Sciences, Lahore. Labeling indices (LI) were determined by two pathologists independently using quantitative and semi-quantitative analysis. Statistical analysis was carried out using SPSS 20.0. Kruskall-Wallis test was used to determine a correlation of proliferation markers with grade, and Pearson's correlate was used to determine correlation between the two proliferation markers. Labeling index of MCM-2 (median=24.29%) was found to be much higher than Ki-67(median=13.05%). Both markers were significantly related with grade (p=0.00; Kruskall-Wallis test). LI of MCM-2 was found to correlate significantly with LI of Ki-67(r=0.0934;p=0.01 with Pearson's correlate). Results of semi-quantitative analysis correlated well with quantitative analysis. Both Ki-67 and MCM-2 are markers of proliferation which are closely linked to grade. Therefore, they can act as surrogate markers for grade in a manner that is more objective and reproducible. Copyright® by the International Brazilian Journal of Urology.
Information measures for terrain visualization
NASA Astrophysics Data System (ADS)
Bonaventura, Xavier; Sima, Aleksandra A.; Feixas, Miquel; Buckley, Simon J.; Sbert, Mateu; Howell, John A.
2017-02-01
Many quantitative and qualitative studies in geoscience research are based on digital elevation models (DEMs) and 3D surfaces to aid understanding of natural and anthropogenically-influenced topography. As well as their quantitative uses, the visual representation of DEMs can add valuable information for identifying and interpreting topographic features. However, choice of viewpoints and rendering styles may not always be intuitive, especially when terrain data are augmented with digital image texture. In this paper, an information-theoretic framework for object understanding is applied to terrain visualization and terrain view selection. From a visibility channel between a set of viewpoints and the component polygons of a 3D terrain model, we obtain three polygonal information measures. These measures are used to visualize the information associated with each polygon of the terrain model. In order to enhance the perception of the terrain's shape, we explore the effect of combining the calculated information measures with the supplementary digital image texture. From polygonal information, we also introduce a method to select a set of representative views of the terrain model. Finally, we evaluate the behaviour of the proposed techniques using example datasets. A publicly available framework for both the visualization and the view selection of a terrain has been created in order to provide the possibility to analyse any terrain model.
Understanding measurement in light of its origins.
Humphry, Stephen
2013-01-01
During the course of history, the natural sciences have seen the development of increasingly convenient short-hand symbolic devices for denoting physical quantities. These devices ultimately took the form of physical algebra. However, the convenience of algebra arguably came at a cost - a loss of the clarity of direct insights by Euclid, Galileo, and Newton into natural quantitative relations. Physical algebra is frequently interpreted as ordinary algebra; i.e., it is interpreted as though symbols denote (a) numbers and operations on numbers, as opposed to (b) physical quantities and quantitative relations. The paper revisits the way in which Newton understood and expressed physical definitions and laws. Accordingly, it reviews a compact form of notation that has been used to denote both: (a) ratios of physical quantities; and (b) compound ratios, involving two or more kinds of quantity. The purpose is to show that it is consistent with historical developments to regard physical algebra as a device for denoting relations among ratios. Understood in the historical context, the objective of measurement is to establish that a physical quantity stands in a specific ratio to another quantity of the same kind. To clarify the meaning of measurement in terms of the historical origins of physics carries basic implications for the way in which measurement is understood and approached. Possible implications for the social sciences are considered.
Vectra DA for the objective measurement of disease activity in patients with rheumatoid arthritis.
Segurado, O G; Sasso, E H
2014-01-01
Quantitative and regular assessment of disease activity in rheumatoid arthritis (RA) is required to achieve treatment targets such as remission and to optimize clinical outcomes. To assess inflammation accurately, predict joint damage and monitor treatment response, a measure of disease activity in RA should reflect the pathological processes resulting in irreversible joint damage and functional disability. The Vectra DA blood test is an objective measure of disease activity for patients with RA. Vectra DA provides an accurate, reproducible score on a scale of 1 to 100 based on the concentrations of 12 biomarkers that reflect the pathophysiologic diversity of RA. The analytical validity, clinical validity, and clinical utility of Vectra DA have been evaluated for patients with RA in registries and prospective and retrospective clinical studies. As a biomarker-based instrument for assessing disease activity in RA, the Vectra DA test can help monitor therapeutic response to methotrexate and biologic agents and assess clinically challenging situations, such as when clinical measures are confounded by non-inflammatory pain from fibromyalgia. Vectra DA scores correlate with imaging of joint inflammation and are predictive for radiographic progression, with high Vectra DA scores being associated with more frequent and severe progression and low scores being predictive for non-progression. In summary, the Vectra DA score is an objective measure of RA disease activity that quantifies inflammatory status. By predicting risk for joint damage more effectively than conventional clinical and laboratory measures, it has the potential to complement these measures and optimise clinical decision making.
NASA Astrophysics Data System (ADS)
Vidovič, Luka; Milanič, Matija; Majaron, Boris
2015-01-01
Pulsed photothermal radiometry (PPTR) allows noninvasive determination of laser-induced temperature depth profiles in optically scattering layered structures. The obtained profiles provide information on spatial distribution of selected chromophores such as melanin and hemoglobin in human skin. We apply the described approach to study time evolution of incidental bruises (hematomas) in human subjects. By combining numerical simulations of laser energy deposition in bruised skin with objective fitting of the predicted and measured PPTR signals, we can quantitatively characterize the key processes involved in bruise evolution (i.e., hemoglobin mass diffusion and biochemical decomposition). Simultaneous analysis of PPTR signals obtained at various times post injury provides an insight into the variations of these parameters during the bruise healing process. The presented methodology and results advance our understanding of the bruise evolution and represent an important step toward development of an objective technique for age determination of traumatic bruises in forensic medicine.
Objective, Quantitative, Data-Driven Assessment of Chemical Probes.
Antolin, Albert A; Tym, Joseph E; Komianou, Angeliki; Collins, Ian; Workman, Paul; Al-Lazikani, Bissan
2018-02-15
Chemical probes are essential tools for understanding biological systems and for target validation, yet selecting probes for biomedical research is rarely based on objective assessment of all potential compounds. Here, we describe the Probe Miner: Chemical Probes Objective Assessment resource, capitalizing on the plethora of public medicinal chemistry data to empower quantitative, objective, data-driven evaluation of chemical probes. We assess >1.8 million compounds for their suitability as chemical tools against 2,220 human targets and dissect the biases and limitations encountered. Probe Miner represents a valuable resource to aid the identification of potential chemical probes, particularly when used alongside expert curation. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Ernst, Marielle; Kriston, Levente; Romero, Javier M; Frölich, Andreas M; Jansen, Olav; Fiehler, Jens; Buhk, Jan-Hendrik
2016-01-01
We sought to develop a standardized curriculum capable of assessing key competencies in Interventional Neuroradiology by the use of models and simulators in an objective, quantitative, and efficient way. In this evaluation we analyzed the associations between the practical experience, theoretical knowledge, and the skills lab performance of interventionalists. We evaluated the endovascular skills of 26 participants of the Advanced Course in Endovascular Interventional Neuroradiology of the European Society of Neuroradiology with a set of three tasks (aneurysm coiling and thrombectomy in a virtual simulator and placement of an intra-aneurysmal flow disruptor in a flow model). Practical experience was assessed by a survey. Participants completed a written and oral examination to evaluate theoretical knowledge. Bivariate and multivariate analyses were performed. In multivariate analysis knowledge of materials and techniques in Interventional Neuroradiology was moderately associated with skills in aneurysm coiling and thrombectomy. Experience in mechanical thrombectomy was moderately associated with thrombectomy skills, while age was negatively associated with thrombectomy skills. We found no significant association between age, sex, or work experience and skills in aneurysm coiling. Our study gives an example of how an integrated curriculum for reasonable and cost-effective assessment of key competences of an interventional neuroradiologist could look. In addition to traditional assessment of theoretical knowledge practical skills are measured by the use of endovascular simulators yielding objective, quantitative, and constructive data for the evaluation of the current performance status of participants as well as the evolution of their technical competency over time.
Karisto, Petteri; Hund, Andreas; Yu, Kang; Anderegg, Jonas; Walter, Achim; Mascher, Fabio; McDonald, Bruce A; Mikaberidze, Alexey
2018-05-01
Quantitative resistance is likely to be more durable than major gene resistance for controlling Septoria tritici blotch (STB) on wheat. Earlier studies hypothesized that resistance affecting the degree of host damage, as measured by the percentage of leaf area covered by STB lesions, is distinct from resistance that affects pathogen reproduction, as measured by the density of pycnidia produced within lesions. We tested this hypothesis using a collection of 335 elite European winter wheat cultivars that was naturally infected by a diverse population of Zymoseptoria tritici in a replicated field experiment. We used automated image analysis of 21,420 scanned wheat leaves to obtain quantitative measures of conditional STB intensity that were precise, objective, and reproducible. These measures allowed us to explicitly separate resistance affecting host damage from resistance affecting pathogen reproduction, enabling us to confirm that these resistance traits are largely independent. The cultivar rankings based on host damage were different from the rankings based on pathogen reproduction, indicating that the two forms of resistance should be considered separately in breeding programs aiming to increase STB resistance. We hypothesize that these different forms of resistance are under separate genetic control, enabling them to be recombined to form new cultivars that are highly resistant to STB. We found a significant correlation between rankings based on automated image analysis and rankings based on traditional visual scoring, suggesting that image analysis can complement conventional measurements of STB resistance, based largely on host damage, while enabling a much more precise measure of pathogen reproduction. We showed that measures of pathogen reproduction early in the growing season were the best predictors of host damage late in the growing season, illustrating the importance of breeding for resistance that reduces pathogen reproduction in order to minimize yield losses caused by STB. These data can already be used by breeding programs to choose wheat cultivars that are broadly resistant to naturally diverse Z. tritici populations according to the different classes of resistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, R.N.; Cooper, M.D.
1988-06-01
This program addresses the problems involving the basic science and technology underlying the physical and conceptual tools of radioactive tracer methodology as they relate to the measurement of structural and functional parameters of physiologic importance in health and disease. The principal tool is quantitative radionuclide imaging. The overall objective of this program is to further the development and transfer of radiotracer methodology from basic theory to routine clinical practice in order that individual patients and society as a whole will receive the maximum net benefit from the new knowledge gained. The focus of the research is on the development ofmore » new instruments and radiopharmaceuticals, and the evaluation of these through the phase of clinical feasibility. 58 refs., 15 figs., 4 tabs.« less
Salamat, Sara; Hutchings, John; Kwong, Clemens; Magnussen, John; Hancock, Mark J
2016-01-01
To assess the relationship between quantitative measures of disc height and signal intensity with the Pfirrmann disc degeneration scoring system and to test the inter-rater reliability of the quantitative measures. Participants were 76 people who had recently recovered from their last episode of acute low back pain and underwent MRI scan on a single 3T machine. At all 380 lumbar discs, quantitative measures of disc height and signal intensity were made by 2 independent raters and compared to Pfirrmann scores from a single radiologist. For quantitative measures of disc height and signal intensity a "raw" score and 2 adjusted ratios were calculated and the relationship with Pfirrmann scores was assessed. The inter-tester reliability of quantitative measures was also investigated. There was a strong linear relationship between quantitative disc signal intensity and Pfirrmann scores for grades 1-4, but not for grades 4 and 5. For disc height only, Pfirrmann grade 5 had significantly reduced disc height compared to all other grades. Results were similar regardless of whether raw or adjusted scores were used. Inter-rater reliability for the quantitative measures was excellent (ICC > 0.97). Quantitative measures of disc signal intensity were strongly related to Pfirrmann scores from grade 1 to 4; however disc height only differentiated between grade 4 and 5 Pfirrmann scores. Using adjusted ratios for quantitative measures of disc height or signal intensity did not significantly alter the relationship with Pfirrmann scores.
Towards standardized assessment of endoscope optical performance: geometric distortion
NASA Astrophysics Data System (ADS)
Wang, Quanzeng; Desai, Viraj N.; Ngo, Ying Z.; Cheng, Wei-Chung; Pfefer, Joshua
2013-12-01
Technological advances in endoscopes, such as capsule, ultrathin and disposable devices, promise significant improvements in safety, clinical effectiveness and patient acceptance. Unfortunately, the industry lacks test methods for preclinical evaluation of key optical performance characteristics (OPCs) of endoscopic devices that are quantitative, objective and well-validated. As a result, it is difficult for researchers and developers to compare image quality and evaluate equivalence to, or improvement upon, prior technologies. While endoscope OPCs include resolution, field of view, and depth of field, among others, our focus in this paper is geometric image distortion. We reviewed specific test methods for distortion and then developed an objective, quantitative test method based on well-defined experimental and data processing steps to evaluate radial distortion in the full field of view of an endoscopic imaging system. Our measurements and analyses showed that a second-degree polynomial equation could well describe the radial distortion curve of a traditional endoscope. The distortion evaluation method was effective for correcting the image and can be used to explain other widely accepted evaluation methods such as picture height distortion. Development of consensus standards based on promising test methods for image quality assessment, such as the method studied here, will facilitate clinical implementation of innovative endoscopic devices.
NASA Astrophysics Data System (ADS)
Gil Gómez, Gaspar L.; Nybacka, Mikael; Drugge, Lars; Bakker, Egbert
2018-01-01
Objective measurements and computer-aided engineering simulations cannot be exploited to their full potential because of the high importance of driver feel in vehicle development. Furthermore, despite many studies, it is not easy to identify the relationship between objective metrics (OM) and subjective assessments (SA), a task further complicated by the fact that SA change between drivers and geographical locations or with time. This paper presents a method which uses two artificial neural networks built on top of each other that helps to close this gap. The first network, based solely on OM, generates a map that groups together similar vehicles, thus allowing a classification of measured vehicles to be visualised. This map objectively demonstrates that there exist brand and vehicle class identities. It also foresees the subjective characteristics of a new vehicle, based on its requirements, simulations and measurements. These characteristics are described by the neighbourhood of the new vehicle in the map, which is made up of known vehicles that are accompanied by word-clouds that enhance this description. This forecast is also extended to perform a sensitivity analysis of the tolerances in the requirements, as well as to validate previously published preferred range of steering feel metrics. The results suggest a few new modifications. Finally, the qualitative information given by this measurement-based classification is complemented with a second superimposed network. This network describes a regression surface that enables quantitative predictions, for example the SA of the steering feel of a new vehicle from its OM.
Kim, Yong-Wook
2013-01-01
. [Purpose] The purpose of the present study was to investigate the clinical usefulness (reliability and validity) of the pendulum test using a Noland-Kuckhoff (NK) table with an attached electrogoniometer to measure the spasticity of patients with brain lesions. [Subjects] The subjects were 31 patients with stroke or traumatic brain injury. [Methods] The intraclass correlation coefficient (ICC) was used to verify the test–retest reliability of spasticity measures obtained using the pendulum test. Pearson's product correlation coefficient was used to examine the validity of the pendulum test using the amplitude of the patellar tendon reflex (PTR) test, an objective and quantitative measure of spasticity. [Results] The test–retest reliability was high, reflecting a significant correlation between the test and the retest (ICCs = 0.95–0.97). A significant negative correlation was found between the amplitude of the PTR test and the four variables measured in the pendulum test (r = −0.77– −0.85). [Conclusion] The pendulum test using a NK table is an objective measure of spasticity and can be used in the clinical setting in place of more expensive and complicated equipment. Further studies are needed to investigate the therapeutic effect of this method on spasticity. PMID:24259775
Kim, Yong-Wook
2013-10-01
. [Purpose] The purpose of the present study was to investigate the clinical usefulness (reliability and validity) of the pendulum test using a Noland-Kuckhoff (NK) table with an attached electrogoniometer to measure the spasticity of patients with brain lesions. [Subjects] The subjects were 31 patients with stroke or traumatic brain injury. [Methods] The intraclass correlation coefficient (ICC) was used to verify the test-retest reliability of spasticity measures obtained using the pendulum test. Pearson's product correlation coefficient was used to examine the validity of the pendulum test using the amplitude of the patellar tendon reflex (PTR) test, an objective and quantitative measure of spasticity. [Results] The test-retest reliability was high, reflecting a significant correlation between the test and the retest (ICCs = 0.95-0.97). A significant negative correlation was found between the amplitude of the PTR test and the four variables measured in the pendulum test (r = -0.77- -0.85). [Conclusion] The pendulum test using a NK table is an objective measure of spasticity and can be used in the clinical setting in place of more expensive and complicated equipment. Further studies are needed to investigate the therapeutic effect of this method on spasticity.
DeMonte, Tim P; Wang, Dinghui; Ma, Weijing; Gao, Jia-Hong; Joy, Michael L G
2009-01-01
Current density imaging (CDI) is a magnetic resonance imaging (MRI) technique used to quantitatively measure current density vectors throughout the volume of an object/subject placed in the MRI system. Electrical current pulses are applied externally to the object/subject and are synchronized with the MRI sequence. In this work, CDI is used to measure average current density magnitude in the torso region of an in-vivo piglet for applied current pulse amplitudes ranging from 10 mA to 110 mA. The relationship between applied current amplitude and current density magnitude is linear in simple electronic elements such as wires and resistors; however, this relationship may not be linear in living tissue. An understanding of this relationship is useful for research in defibrillation, human electro-muscular incapacitation (e.g. TASER(R)) and other bioelectric stimulation devices. This work will show that the current amplitude to current density magnitude relationship is slightly nonlinear in living tissue in the range of 10 mA to 110 mA.
Lungu, Codrin; Tarulli, Andrew W; Tarsy, Daniel; Mongiovi, Phillip; Vanderhorst, Veronique G; Rutkove, Seward B
2010-01-01
Objective Cervical Dystonia (CD) lacks an objective quantitative measure. Electrical impedance myography (EIM) is a non-invasive assessment method sensitive to changes in muscle structure and physiology. We evaluate the potential role of EIM in quantifying CD, hypothesizing that patients would demonstrate differences in the symmetry of muscle electrical resistance compared to controls, and that this asymmetry would decrease after botulinum neurotoxin (BoNT) treatment. Methods EIM was performed on the sternocleidomastoid (SCM) and cervical paraspinal (PS) muscles of CD patients and age-matched controls. 50kHz Resistance was analyzed, comparing side-to-side asymmetry in patients and controls, and, in patients, before and after BoNT treatment. Results 16 patients and 10 controls were included. Resistance asymmetry was on average 3-5 times higher in patients than controls. Receiver operating characteristic analysis demonstrated 91% accuracy of discriminating CD from normal. From pre-treatment to maximum BoNT effect, asymmetry decreased from 20.8 (13.9-26.1)% to 6.2 (3.1-9.9)% (SCM), and from 16.0(14.3-16.0)% to 8.4(7.0-9.2)% (PS), p<0.05 (median, interquartile range). Conclusions EIM effectively differentiates normal subjects from CD patients by revealing asymmetries in resistance values and detects improvement in muscle symmetry after treatment. Significance These results suggest that EIM, a painless, non-invasive measure, can provide a useful quantitative metric in CD evaluation and deserves further study. PMID:20943436
[Appropriateness of ketorolac use in a trauma hospital].
Angeles González-Fernández, M
2009-06-01
To evaluate the suitability of ketorolac and non-steroidal anti-inflamatory drugs (NSAIDs) and other analgesic drugs currently used in the hospital. We have followed the steps to develop a PDCA cycle (plan, do, check, act) or quality improvement cycle. The quality problem was analysed using an Ishikawa diagram. We defined both qualitative quality indicators, those that measure prescription quality, and quantitative ones (defined daily dose, DDD/100BDs), which measure drug consumption, being the objectives to achieve. The study was conducted in all patients admitted to the hospital and who were admitted to orthopaedic and trauma surgery and plastic surgery departments with unit-dose dispensing systems. The strategy used was to give information to physicians through meetings and documentation. Finally, the results were analysed and compared with the initial objectives. The study was performed on 260 patients in the first study period and 292 in the second. Qualitative indicators: intravenous ketorolac use < or =2 days, increased in 25.5% (p<0.001); in patients > or =65 years old at dose < or =60 mg/day it increased 27.7% (p<0.05). Quantitative indicators: in the second study period, ketorolac use decreased (plastic surgery department: 61.8 DDD/100BDs to 14.8), whereas tramadol, ibuprofen and metamizole increased (plastic surgery department: 0 to 14.1 in tramadol, 8.7 to 48.6 in ibuprofen and 50.1 to 71 in metamizole). Appropriateness of ketorolac, NSAIDs and tramadol use has been achieved, thus improving patient safety. Strategies have been effective.
Experimental Influences in the Accurate Measurement of Cartilage Thickness in MRI.
Wang, Nian; Badar, Farid; Xia, Yang
2018-01-01
Objective To study the experimental influences to the measurement of cartilage thickness by magnetic resonance imaging (MRI). Design The complete thicknesses of healthy and trypsin-degraded cartilage were measured at high-resolution MRI under different conditions, using two intensity-based imaging sequences (ultra-short echo [UTE] and multislice-multiecho [MSME]) and 3 quantitative relaxation imaging sequences (T 1 , T 2 , and T 1 ρ). Other variables included different orientations in the magnet, 2 soaking solutions (saline and phosphate buffered saline [PBS]), and external loading. Results With cartilage soaked in saline, UTE and T 1 methods yielded complete and consistent measurement of cartilage thickness, while the thickness measurement by T 2 , T 1 ρ, and MSME methods were orientation dependent. The effect of external loading on cartilage thickness is also sequence and orientation dependent. All variations in cartilage thickness in MRI could be eliminated with the use of a 100 mM PBS or imaged by UTE sequence. Conclusions The appearance of articular cartilage and the measurement accuracy of cartilage thickness in MRI can be influenced by a number of experimental factors in ex vivo MRI, from the use of various pulse sequences and soaking solutions to the health of the tissue. T 2 -based imaging sequence, both proton-intensity sequence and quantitative relaxation sequence, similarly produced the largest variations. With adequate resolution, the accurate measurement of whole cartilage tissue in clinical MRI could be utilized to detect differences between healthy and osteoarthritic cartilage after compression.
NASA Technical Reports Server (NTRS)
Russell, Louis M.; Thurman, Douglas R.; Poinsatte, Philip E.; Hippensteele, Steven A.
1998-01-01
An experimental study was made to obtain quantitative information on heat transfer, flow, and pressure distribution in a branched duct test section that had several significant features of an internal cooling passage of a turbine blade. The objective of this study was to generate a set of experimental data that could be used for validation of computer codes that would be used to model internal cooling. Surface heat transfer coefficients and entrance flow conditions were measured at nominal entrance Reynolds numbers of 45,000, 335,000, and 726,000. Heat transfer data were obtained by using a steady-state technique in which an Inconel heater sheet is attached to the surface and coated with liquid crystals. Visual and quantitative flow-field data from particle image velocimetry measurements for a plane at midchannel height for a Reynolds number of 45,000 were also obtained. The flow was seeded with polystyrene particles and illuminated by a laser light sheet. Pressure distribution measurements were made both on the surface with discrete holes and in the flow field with a total pressure probe. The flow-field measurements yielded flow-field velocities at selected locations. A relatively new method, pressure sensitive paint, was also used to measure surface pressure distribution. The pressure paint data obtained at Reynolds numbers of 335,000 and 726,000 compared well with the more standard method of measuring pressures by using discrete holes.
Alfred binet and the concept of heterogeneous orders.
Michell, Joel
2012-01-01
In a comment, hitherto unremarked upon, Alfred Binet, well known for constructing the first intelligence scale, claimed that his scale did not measure intelligence, but only enabled classification with respect to a hierarchy of intellectual qualities. Attempting to understand the reasoning behind this comment leads to an historical excursion, beginning with the ancient mathematician, Euclid and ending with the modern French philosopher, Henri Bergson. As Euclid explained (Heath, 1908), magnitudes constituting a given quantitative attribute are all of the same kind (i.e., homogeneous), but his criterion covered only extensive magnitudes. Duns Scotus (Cross, 1998) included intensive magnitudes by considering differences, which raised the possibility (later considered by Sutherland, 2004) of ordered attributes with heterogeneous differences between degrees ("heterogeneous orders"). Of necessity, such attributes are non-measurable. Subsequently, this became a basis for the "quantity objection" to psychological measurement, as developed first by Tannery (1875a,b) and then by Bergson (1889). It follows that for attributes investigated in science, there are three structural possibilities: (1) classificatory attributes (with heterogeneous differences between categories); (2) heterogeneous orders (with heterogeneous differences between degrees); and (3) quantitative attributes (with thoroughly homogeneous differences between magnitudes). Measurement is possible only with attributes of kind (3) and, as far as we know, psychological attributes are exclusively of kinds (1) or (2). However, contrary to the known facts, psychometricians, for their own special reasons insist that test scores provide measurements.
Accuracy of Blood Loss Measurement during Cesarean Delivery.
Doctorvaladan, Sahar V; Jelks, Andrea T; Hsieh, Eric W; Thurer, Robert L; Zakowski, Mark I; Lagrew, David C
2017-04-01
Objective This study aims to compare the accuracy of visual, quantitative gravimetric, and colorimetric methods used to determine blood loss during cesarean delivery procedures employing a hemoglobin extraction assay as the reference standard. Study Design In 50 patients having cesarean deliveries blood loss determined by assays of hemoglobin content on surgical sponges and in suction canisters was compared with obstetricians' visual estimates, a quantitative gravimetric method, and the blood loss determined by a novel colorimetric system. Agreement between the reference assay and other measures was evaluated by the Bland-Altman method. Results Compared with the blood loss measured by the reference assay (470 ± 296 mL), the colorimetric system (572 ± 334 mL) was more accurate than either visual estimation (928 ± 261 mL) or gravimetric measurement (822 ± 489 mL). The correlation between the assay method and the colorimetric system was more predictive (standardized coefficient = 0.951, adjusted R 2 = 0.902) than either visual estimation (standardized coefficient = 0.700, adjusted R 2 = 00.479) or the gravimetric determination (standardized coefficient = 0.564, adjusted R 2 = 0.304). Conclusion During cesarean delivery, measuring blood loss using colorimetric image analysis is superior to visual estimation and a gravimetric method. Implementation of colorimetric analysis may enhance the ability of management protocols to improve clinical outcomes.
Pilot study of Iopamidol-based quantitative pH imaging on a clinical 3T MR scanner.
Müller-Lutz, Anja; Khalil, Nadia; Schmitt, Benjamin; Jellus, Vladimir; Pentang, Gael; Oeltzschner, Georg; Antoch, Gerald; Lanzman, Rotem S; Wittsack, Hans-Jörg
2014-12-01
The objective of this study was to show the feasibility to perform Iopamidol-based pH imaging via clinical 3T magnetic resonance imaging (MRI) using chemical exchange saturation transfer (CEST) imaging with pulse train presaturation. The pulse train presaturation scheme of a CEST sequence was investigated for Iopamidol-based pH measurements using a 3T magnetic resonance (MR) scanner. The CEST sequence was applied to eight tubes filled with 100-mM Iopamidol solutions with pH values ranging from 5.6 to 7.0. Calibration curves for pH quantification were determined. The dependence of pH values on the concentration of Iopamidol was investigated. An in vivo measurement was performed in one patient who had undergone a previous contrast-enhanced computed tomography (CT) scan with Iopamidol. The pH values of urine measured with CEST MRI and with a pH meter were compared. In the measured pH range, pH imaging using CEST imaging with pulse train presaturation was possible. Dependence between the pH value and the concentration of Iopamidol was not observed. In the in vivo investigation, the pH values in the human bladder measured by the Iopamidol CEST sequence and in urine were consistent. Our study shows the feasibility of using CEST imaging with Iopamidol for quantitative pH mapping in vitro and in vivo on a 3T MR scanner.
Exposure assessment of tetrafluoroethylene and ammonium perfluorooctanoate 1951-2002.
Sleeuwenhoek, Anne; Cherrie, John W
2012-03-01
To develop a method to reconstruct exposure to tetrafluoroethylene (TFE) and ammonium perfluorooctanoate (APFO) in plants producing polytetrafluoroethylene (PTFE) in the absence of suitable objective measurements. These data were used to inform an epidemiological study being carried out to investigate possible risks in workers employed in the manufacture of PTFE and to study trends in exposure over time. For each plant, detailed descriptions of all occupational titles, including tasks and changes over time, were obtained during semi-structured interviews with key plant personnel. A semi-quantitative assessment method was used to assess inhalation exposure to TFE and inhalation plus dermal exposure to APFO. Temporal trends in exposure to TFE and APFO were investigated. In each plant the highest exposures for both TFE and APFO occurred in the polymerisation area. Due to the introduction of control measures, increasing process automation and other improvements, exposures generally decreased over time. In the polymerisation area, the annual decline in exposure to TFE varied by plant from 3.8 to 5.7% and for APFO from 2.2 to 5.5%. A simple method for assessing exposure was developed which used detailed process information and job descriptions to estimate average annual TFE and APFO exposure on an arbitrary semi-quantitative scale. These semi-quantitative estimates are sufficient to identify relative differences in exposure for the epidemiological study and should good data become available, they could be used to provide quantitative estimates for all plants across the whole period of operation. This journal is © The Royal Society of Chemistry 2012
Novel method for quantitative ANA measurement using near-infrared imaging.
Peterson, Lisa K; Wells, Daniel; Shaw, Laura; Velez, Maria-Gabriela; Harbeck, Ronald; Dragone, Leonard L
2009-09-30
Antinuclear antibodies (ANA) have been detected in patients with systemic rheumatic diseases and are used in the screening and/or diagnosis of autoimmunity in patients as well as mouse models of systemic autoimmunity. Indirect immunofluorescence (IIF) on HEp-2 cells is the gold standard for ANA screening. However, its usefulness is limited in diagnosis, prognosis and monitoring of disease activity due to the lack of standardization in performing the technique, subjectivity in interpreting the results and the fact that it is only semi-quantitative. Various immunological techniques have been developed in an attempt to improve upon the method to quantify ANA, including enzyme-linked immunosorbent assays (ELISAs), line immunoassays (LIAs), multiplexed bead immunoassays and IIF on substrates other than HEp-2 cells. Yet IIF on HEp-2 cells remains the most common screening method for ANA. In this study, we describe a simple quantitative method to detect ANA which combines IIF on HEp-2 coated slides with analysis using a near-infrared imaging (NII) system. Using NII to determine ANA titer, 86.5% (32 of 37) of the titers for human patient samples were within 2 dilutions of those determined by IIF, which is the acceptable range for proficiency testing. Combining an initial screening for nuclear staining using microscopy with titration by NII resulted in 97.3% (36 of 37) of the titers detected to be within two dilutions of those determined by IIF. The NII method for quantitative ANA measurements using serum from both patients and mice with autoimmunity provides a fast, relatively simple, objective, sensitive and reproducible assay, which could easily be standardized for comparison between laboratories.
McMullin, Brian T; Leung, Ming-Ying; Shanbhag, Arun S; McNulty, Donald; Mabrey, Jay D; Agrawal, C Mauli
2006-02-01
A total of 750 images of individual ultra-high molecular weight polyethylene (UHMWPE) particles isolated from periprosthetic failed hip, knee, and shoulder arthroplasties were extracted from archival scanning electron micrographs. Particle size and morphology was subsequently analyzed using computerized image analysis software utilizing five descriptors found in ASTM F1877-98, a standard for quantitative description of wear debris. An online survey application was developed to display particle images, and allowed ten respondents to classify particle morphologies according to commonly used terminology as fibers, flakes, or granules. Particles were categorized based on a simple majority of responses. All descriptors were evaluated using a one-way ANOVA and Tukey-Kramer test for all-pairs comparison among each class of particles. A logistic regression model using half of the particles included in the survey was then used to develop a mathematical scheme to predict whether a given particle should be classified as a fiber, flake, or granule based on its quantitative measurements. The validity of the model was then assessed using the other half of the survey particles and compared with human responses. Comparison of the quantitative measurements of isolated particles showed that the morphologies of each particle type classified by respondents were statistically different from one another (p<0.05). The average agreement between mathematical prediction and human respondents was 83.5% (standard error 0.16%). These data suggest that computerized descriptors can be feasibly correlated with subjective terminology, thus providing a basis for a common vocabulary for particle description which can be translated into quantitative dimensions.
McMullin, Brian T.; Leung, Ming-Ying; Shanbhag, Arun S.; McNulty, Donald; Mabrey, Jay D.; Agrawal, C. Mauli
2014-01-01
A total of 750 images of individual ultra-high molecular weight polyethylene (UHMWPE) particles isolated from periprosthetic failed hip, knee, and shoulder arthroplasties were extracted from archival scanning electron micrographs. Particle size and morphology was subsequently analyzed using computerized image analysis software utilizing five descriptors found in ASTM F1877-98, a standard for quantitative description of wear debris. An online survey application was developed to display particle images, and allowed ten respondents to classify particle morphologies according to commonly used terminology as fibers, flakes, or granules. Particles were categorized based on a simple majority of responses. All descriptors were evaluated using a one-way ANOVA and Tukey–Kramer test for all-pairs comparison among each class of particles. A logistic regression model using half of the particles included in the survey was then used to develop a mathematical scheme to predict whether a given particle should be classified as a fiber, flake, or granule based on its quantitative measurements. The validity of the model was then assessed using the other half of the survey particles and compared with human responses. Comparison of the quantitative measurements of isolated particles showed that the morphologies of each particle type classified by respondents were statistically different from one another (po0:05). The average agreement between mathematical prediction and human respondents was 83.5% (standard error 0.16%). These data suggest that computerized descriptors can be feasibly correlated with subjective terminology, thus providing a basis for a common vocabulary for particle description which can be translated into quantitative dimensions. PMID:16112725
Systematic review of quantitative clinical gait analysis in patients with dementia.
van Iersel, M B; Hoefsloot, W; Munneke, M; Bloem, B R; Olde Rikkert, M G M
2004-02-01
Diminished mobility often accompanies dementia and has a great impact on independence and quality of life. New treatment strategies for dementia are emerging, but the effects on gait remains to be studied objectively. In this review we address the general effects of dementia on gait as revealed by quantitative gait analysis. A systematic literature search with the (MESH) terms: 'dementia' and 'gait disorders' in Medline, CC, Psychlit and CinaHL between 1980-2002. Main inclusion criteria: controlled studies; patients with dementia; quantitative gait data. Seven publications met the inclusion criteria. All compared gait in Alzheimer's Disease (AD) with healthy elderly controls; one also assessed gait in Vascular Dementia (VaD). The methodology used was inconsistent and often had many shortcomings. However, there were several consistent findings: walking velocity decreased in dementia compared to healthy controls and decreased further with progressing severity of dementia. VaD was associated with a significant decrease in walking velocity compared to AD subjects. Dementia was associated with a shortened step length, an increased double support time and step to step variability. Gait in dementia is hardly analyzed in a well-designed manner. Despite this, the literature suggests that quantitative gait analysis can be sufficiently reliable and responsive to measure decline in walking velocity between subjects with and without dementia. More research is required to assess, both on an individual and a group level, how the minimal clinically relevant changes in gait in elderly demented patients should be defined and what would be the most responsive method to measure these changes.
Development and assessment of a hand assist device: GRIPIT.
Kim, Byungchul; In, Hyunki; Lee, Dae-Young; Cho, Kyu-Jin
2017-02-21
Although various hand assist devices have been commercialized for people with paralysis, they are somewhat limited in terms of tool fixation and device attachment method. Hand exoskeleton robots allow users to grasp a wider range of tools but are heavy, complicated, and bulky owing to the presence of numerous actuators and controllers. The GRIPIT hand assist device overcomes the limitations of both conventional devices and exoskeleton robots by providing improved tool fixation and device attachment in a lightweight and compact device. GRIPIT has been designed to assist tripod grasp for people with spinal cord injury because this grasp posture is frequently used in school and offices for such activities as writing and grasping small objects. The main development objective of GRIPIT is to assist users to grasp tools with their own hand using a lightweight, compact assistive device that is manually operated via a single wire. GRIPIT consists of only a glove, a wire, and a small structure that maintains tendon tension to permit a stable grasp. The tendon routing points are designed to apply force to the thumb, index finger, and middle finger to form a tripod grasp. A tension-maintenance structure sustains the grasp posture with appropriate tension. Following device development, four people with spinal cord injury were recruited to verify the writing performance of GRIPIT compared to the performance of a conventional penholder and handwriting. Writing was chosen as the assessment task because it requires a tripod grasp, which is one of the main performance objectives of GRIPIT. New assessment, which includes six different writing tasks, was devised to measure writing ability from various viewpoints including both qualitative and quantitative methods, while most conventional assessments include only qualitative methods or simple time measuring assessments. Appearance, portability, difficulty of wearing, difficulty of grasping the subject, writing sensation, fatigability, and legibility were measured to assess qualitative performance while writing various words and sentences. Results showed that GRIPIT is relatively complicated to wear and use compared to a conventional assist device but has advantages for writing sensation, fatigability, and legibility because it affords sufficient grasp force during writing. Two quantitative performance factors were assessed, accuracy of writing and solidity of writing. To assess accuracy of writing, we asked subjects to draw various figures under given conditions. To assess solidity of writing, pen tip force and the angle variation of the pen were measured. Quantitative evaluation results showed that GRIPIT helps users to write accurately without pen shakes even high force is applied on the pen. Qualitative and quantitative results were better when subjects used GRIPIT than when they used the conventional penholder, mainly because GRIPIT allowed them to exert a higher grasp force. Grasp force is important because disabled people cannot control their fingers and thus need to move their entire arm to write, while non-disabled people only need to move their fingers to write. The tension-maintenance structure developed for GRIPIT provides appropriate grasp force and moment balance on the user's hand, but the other writing method only fixes the pen using friction force or requires the user's arm to generate a grasp force.
ERIC Educational Resources Information Center
Luyt, Russell
2012-01-01
A framework for quantitative measurement development, validation, and revision that incorporates both qualitative and quantitative methods is introduced. It extends and adapts Adcock and Collier's work, and thus, facilitates understanding of quantitative measurement development, validation, and revision as an integrated and cyclical set of…
Saliency predicts change detection in pictures of natural scenes.
Wright, Michael J
2005-01-01
It has been proposed that the visual system encodes the salience of objects in the visual field in an explicit two-dimensional map that guides visual selective attention. Experiments were conducted to determine whether salience measurements applied to regions of pictures of outdoor scenes could predict the detection of changes in those regions. To obtain a quantitative measure of change detection, observers located changes in pairs of colour pictures presented across an interstimulus interval (ISI). Salience measurements were then obtained from different observers for image change regions using three independent methods, and all were positively correlated with change detection. Factor analysis extracted a single saliency factor that accounted for 62% of the variance contained in the four measures. Finally, estimates of the magnitude of the image change in each picture pair were obtained, using nine separate visual filters representing low-level vision features (luminance, colour, spatial frequency, orientation, edge density). None of the feature outputs was significantly associated with change detection or saliency. On the other hand it was shown that high-level (structural) properties of the changed region were related to saliency and to change detection: objects were more salient than shadows and more detectable when changed.
40 CFR 35.102 - Definitions of terms.
Code of Federal Regulations, 2010 CFR
2010-07-01
... that is related to an environmental or programmatic goal or objective. Outcomes must be quantitative... will be produced or provided over a period of time or by a specified date. Outputs may be quantitative...
40 CFR 35.102 - Definitions of terms.
Code of Federal Regulations, 2012 CFR
2012-07-01
... that is related to an environmental or programmatic goal or objective. Outcomes must be quantitative... will be produced or provided over a period of time or by a specified date. Outputs may be quantitative...
40 CFR 35.102 - Definitions of terms.
Code of Federal Regulations, 2014 CFR
2014-07-01
... that is related to an environmental or programmatic goal or objective. Outcomes must be quantitative... will be produced or provided over a period of time or by a specified date. Outputs may be quantitative...
40 CFR 35.102 - Definitions of terms.
Code of Federal Regulations, 2011 CFR
2011-07-01
... that is related to an environmental or programmatic goal or objective. Outcomes must be quantitative... will be produced or provided over a period of time or by a specified date. Outputs may be quantitative...
40 CFR 35.102 - Definitions of terms.
Code of Federal Regulations, 2013 CFR
2013-07-01
... that is related to an environmental or programmatic goal or objective. Outcomes must be quantitative... will be produced or provided over a period of time or by a specified date. Outputs may be quantitative...
Analysis of objects in binary images. M.S. Thesis - Old Dominion Univ.
NASA Technical Reports Server (NTRS)
Leonard, Desiree M.
1991-01-01
Digital image processing techniques are typically used to produce improved digital images through the application of successive enhancement techniques to a given image or to generate quantitative data about the objects within that image. In support of and to assist researchers in a wide range of disciplines, e.g., interferometry, heavy rain effects on aerodynamics, and structure recognition research, it is often desirable to count objects in an image and compute their geometric properties. Therefore, an image analysis application package, focusing on a subset of image analysis techniques used for object recognition in binary images, was developed. This report describes the techniques and algorithms utilized in three main phases of the application and are categorized as: image segmentation, object recognition, and quantitative analysis. Appendices provide supplemental formulas for the algorithms employed as well as examples and results from the various image segmentation techniques and the object recognition algorithm implemented.
Tokinobu, Akiko; Yorifuji, Takashi; Tsuda, Toshihide; Doi, Hiroyuki
2016-01-01
Ayurvedic oil-dripping treatment (Shirodhara) is often used for treating sleep problems. However, few properly designed studies have been conducted, and the quantitative effect of Shirodhara is unclear. This study sought to quantitatively evaluate the effect of sesame oil Shirodhara (SOS) against warm water Shirodhara (WWS) on improving sleep quality and quality of life (QOL) among persons reporting sleep problems. This randomized, single-blinded, crossover study recruited 20 participants. Each participant received seven 30-minute sessions within 2 weeks with either liquid. The washout period was at least 2 months. The Shirodhara procedure was conducted by a robotic oil-drip system. The outcomes were assessed by the Pittsburgh Sleep Quality Index (PSQI) for sleep quality, Epworth Sleepiness Scale (ESS) for daytime sleepiness, World Health Organization Quality of Life 26 (WHO-QOL26) for QOL, and a sleep monitor instrument for objective sleep measures. Changes between baseline and follow-up periods were compared between the two types of Shirodhara. Analysis was performed with generalized estimating equations. Of 20 participants, 15 completed the study. SOS improved sleep quality, as measured by PSQI. The SOS score was 1.83 points lower (95% confidence interval [CI], -3.37 to -0.30) at 2-week follow-up and 1.73 points lower (95% CI, -3.84 to 0.38) than WWS at 6-week follow-up. Although marginally significant, SOS also improved QOL by 0.22 points at 2-week follow-up and 0.19 points at 6-week follow-up compared with WWS. After SOS, no beneficial effects were observed on daytime sleepiness or objective sleep measures. This pilot study demonstrated that SOS may be a safe potential treatment to improve sleep quality and QOL in persons with sleep problems.
NASA Astrophysics Data System (ADS)
Tokkari, Niki; Verdaasdonk, Rudolf M.; Liberton, Niels; Wolff, Jan; den Heijer, Martin; van der Veen, Albert; Klaessens, John H.
2017-02-01
It is difficult to obtain quantitative measurements as to surface areas and volumes from standard photos of the body parts of patients which is highly desirable for objective follow up of treatments in e.g. dermatology. plastic, aesthetic and reconstructive surgery. Recently, 3-D scanners have become available to provide quantification. Phantoms (3-D printed hand, nose and ear, colored bread sculpture) were developed to compare a range from low-cost (Sense), medium (HP Sprout) to high end (Artec Spider, Vectra M3) scanners using different 3D imaging technologies, as to resolution, working range, surface color representation, user friendliness. The 3D scans files (STL, OBJ) were processed with Artec studio and GOM software as to deviation compared to the high resolution Artec Spider scanner taken as `golden' standard. The HP Spout, which uses a fringe projection, proved to be nearly as good as the Artec, however, needs to be converted for clinical use. Photogrammetry as used by the Vectra M3 scanner is limited to provide sufficient data points for accurate surface mapping however provides good color/structure representation. The low performance of the Sense is not recommended for clinical use. The Artec scanner was successfully used to measure the structure/volume changes in the face after hormone treatment in transgender patients. 3D scanners can greatly improve quantitative measurements of surfaces and volumes as objective follow up in clinical studies performed by various clinical specialisms (dermatology, aesthetic and reconstructive surgery). New scanning technologies, like fringe projection, are promising for development of low-cost, high precision scanners.
Staggers, Nancy
2016-01-01
Objective Mobile health (mHealth) systems are becoming more common for chronic disease management, but usability studies are still needed on patients’ perspectives and mHealth interaction performance. This deficiency is addressed by our quantitative usability study of a mHealth diabetes system evaluating patients’ task performance, satisfaction, and the relationship of these measures to user characteristics. Materials and Methods We used metrics in the International Organization for Standardization (ISO) 9241-11 standard. After standardized training, 10 patients performed representative tasks and were assessed on individual task success, errors, efficiency (time on task), satisfaction (System Usability Scale [SUS]) and user characteristics. Results Tasks of exporting and correcting values proved the most difficult, had the most errors, the lowest task success rates, and consumed the longest times on task. The average SUS satisfaction score was 80.5, indicating good but not excellent system usability. Data trends showed males were more successful in task completion, and younger participants had higher performance scores. Educational level did not influence performance, but a more recent diabetes diagnosis did. Patients with more experience in information technology (IT) also had higher performance rates. Discussion Difficult task performance indicated areas for redesign. Our methods can assist others in identifying areas in need of improvement. Data about user background and IT skills also showed how user characteristics influence performance and can provide future considerations for targeted mHealth designs. Conclusion Using the ISO 9241-11 usability standard, the SUS instrument for satisfaction and measuring user characteristics provided objective measures of patients’ experienced usability. These could serve as an exemplar for standardized, quantitative methods for usability studies on mHealth systems. PMID:26377990
Soler, Zachary M; Pallanch, John F; Sansoni, Eugene Ritter; Jones, Cameron S; Lawrence, Lauren A; Schlosser, Rodney J; Mace, Jess C; Smith, Timothy L
2015-09-01
Commonly used computed tomography (CT) staging systems for chronic rhinosinusitis (CRS) focus on the sinuses and do not quantify disease in the olfactory cleft. The goal of the current study was to determine whether precise measurements of olfactory cleft opacification better correlate with olfaction in patients with CRS. Olfaction was assessed using the 40-item Smell Identification Test (SIT-40) before and after sinus surgery in adult patients. Olfactory cleft opacification was quantified precisely using three-dimensional (3D), computerized volumetric analysis, as well as via semiquantitative Likert scale estimations at predetermined anatomic sites. Sinus opacification was also quantified using the Lund-Mackay staging system. The overall cohort (n = 199) included 89 (44.7%) patients with CRS with nasal polyposis (CRSwNP) and 110 (55.3%) with CRS without nasal polyposis (CRSsNP). The olfactory cleft opacified volume correlated with objective olfaction as determined by the SIT-40 (Spearman's rank correlation coefficient [Rs ] = -0.461; p < 0.001). The correlation was significantly stronger in the CRSwNP subgroup (Rs = -0.573; p < 0.001), whereas no appreciable correlation was found in the CRSsNP group (Rs = -0.141; p = 0.141). Correlations between sinus-specific Lund-Mackay CT scoring and SIT-40 scores were weaker in the CRSwNP (Rs = -0.377; p < 0.001) subgroup but stronger in the CRSsNP (Rs = -0.225; p = 0.018) group when compared to olfactory cleft correlations. Greater intraclass correlations (ICCs) were found between quantitative volumetric measures of olfactory cleft opacification (ICC = 0.844; p < 0.001) as compared with semiquantitative Likert grading (ICC = 0.627; p < 0.001). Quantitative measures of olfactory cleft opacification correlate with objective olfaction, with the strongest correlations seen in patients with nasal polyps. © 2015 ARS-AAOA, LLC.
Gait disorders in patients with fibromyalgia.
Auvinet, Bernard; Bileckot, Richard; Alix, Anne-Sophie; Chaleil, Denis; Barrey, Eric
2006-10-01
The objective of this study was to compare gait in patients with fibromyalgia and in matched controls. Measurements must be obtained in patients with fibromyalgia, as the evaluation scales for this disorder are semi-quantitative. We used a patented gait analysis system (Locometrix Centaure Metrix, France) developed by the French National Institute for Agricultural Research. Relaxed walking was evaluated in 14 women (mean age 50+/-5 years; mean height 162+/-5 cm; and mean body weight 68+/-13 kg) meeting American College of Rheumatology criteria for fibromyalgia and in 14 controls matched on sex, age, height, and body weight. Gait during stable walking was severely altered in the patients. Walking speed was significantly diminished (P<0.001) as a result of reductions in stride length (P<0.001) and cycle frequency (P<0.001). The resulting bradykinesia (P<0.001) was the best factor for separating the two groups. Regularity was affected in the patients (P<0.01); this variable is interesting because it is independent of age and sex in healthy, active adults. Measuring the variables that characterize relaxed walking provides useful quantitative data in patients with fibromyalgia.
Quantitative Laughter Detection, Measurement, and Classification-A Critical Survey.
Cosentino, Sarah; Sessa, Salvatore; Takanishi, Atsuo
2016-01-01
The study of human nonverbal social behaviors has taken a more quantitative and computational approach in recent years due to the development of smart interfaces and virtual agents or robots able to interact socially. One of the most interesting nonverbal social behaviors, producing a characteristic vocal signal, is laughing. Laughter is produced in several different situations: in response to external physical, cognitive, or emotional stimuli; to negotiate social interactions; and also, pathologically, as a consequence of neural damage. For this reason, laughter has attracted researchers from many disciplines. A consequence of this multidisciplinarity is the absence of a holistic vision of this complex behavior: the methods of analysis and classification of laughter, as well as the terminology used, are heterogeneous; the findings sometimes contradictory and poorly documented. This survey aims at collecting and presenting objective measurement methods and results from a variety of different studies in different fields, to contribute to build a unified model and taxonomy of laughter. This could be successfully used for advances in several fields, from artificial intelligence and human-robot interaction to medicine and psychiatry.
Quantitative research on critical thinking and predicting nursing students' NCLEX-RN performance.
Romeo, Elizabeth M
2010-07-01
The concept of critical thinking has been influential in several disciplines. Both education and nursing in general have been attempting to define, teach, and measure this concept for decades. Nurse educators realize that critical thinking is the cornerstone of the objectives and goals for nursing students. The purpose of this article is to review and analyze quantitative research findings relevant to the measurement of critical thinking abilities and skills in undergraduate nursing students and the usefulness of critical thinking as a predictor of National Council Licensure Examination-Registered Nurse (NCLEX-RN) performance. The specific issues that this integrative review examined include assessment and analysis of the theoretical and operational definitions of critical thinking, theoretical frameworks used to guide the studies, instruments used to evaluate critical thinking skills and abilities, and the role of critical thinking as a predictor of NCLEX-RN outcomes. A list of key assumptions related to critical thinking was formulated. The limitations and gaps in the literature were identified, as well as the types of future research needed in this arena. Copyright 2010, SLACK Incorporated.
Detection of water in jet fuel using layer-by-layer thin film coated long period grating sensor.
Puckett, Sean D; Pacey, Gilbert E
2009-04-15
The quantitative measurement of jet fuel additives in the field is of interest to the Air Force. The "smart nozzle" project was designed as a state-of-the-art diagnostics package attached to a single-point refueling nozzle for assessing key fuel properties as the fuel is dispensed. The objective of the work was to show proof of concept that a layer-by-layer thin film and long period grating fibers could be used to detect the presence of water in jet fuel. The data for the nafion/PDMA film and a long period grating fiber is a combination capable of quantitative measurement of water in kerosene. The average response (spectral loss wavelength shift) to the kerosene sample ranged from -6.0 for 15 ppm to -126.5 for 60 ppm water. The average calculated value for the check standard was 21.71 and ranged from 21.25 to 22.00 with a true value of 22.5 ppm water. Potential interferences were observed and are judged to be insignificant in real samples.
Lee, Won-Joon; Wilkinson, Caroline M; Hwang, Hyeon-Shik; Lee, Sang-Mi
2015-05-01
Accuracy is the most important factor supporting the reliability of forensic facial reconstruction (FFR) comparing to the corresponding actual face. A number of methods have been employed to evaluate objective accuracy of FFR. Recently, it has been attempted that the degree of resemblance between computer-generated FFR and actual face is measured by geometric surface comparison method. In this study, three FFRs were produced employing live adult Korean subjects and three-dimensional computerized modeling software. The deviations of the facial surfaces between the FFR and the head scan CT of the corresponding subject were analyzed in reverse modeling software. The results were compared with those from a previous study which applied the same methodology as this study except average facial soft tissue depth dataset. Three FFRs of this study that applied updated dataset demonstrated lesser deviation errors between the facial surfaces of the FFR and corresponding subject than those from the previous study. The results proposed that appropriate average tissue depth data are important to increase quantitative accuracy of FFR. © 2015 American Academy of Forensic Sciences.
Nuclear medicine and imaging research (quantitative studies in radiopharmaceutical science)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, M.D.; Beck, R.N.
1990-09-01
This is a report of progress in Year Two (January 1, 1990--December 31, 1990) of Grant FG02-86ER60438, Quantitative Studies in Radiopharmaceutical Science,'' awarded for the three-year period January 1, 1989--December 31, 1991 as a competitive renewal following site visit in the fall of 1988. This program addresses the problems involving the basic science and technology underlying the physical and conceptual tools of radioactive tracer methodology as they relate to the measurement of structural and functional parameters of physiologic importance in health and disease. The principal tool is quantitative radionuclide imaging. The overall objective of this program is to further themore » development and transfer of radiotracer methodology from basic theory to routine clinical practice in order that individual patients and society as a whole will receive the maximum net benefit from the new knowledge gained. The focus of the research is on the development of new instruments and radiopharmaceuticals, and the evaluation of these through the phase of clinical feasibility. 25 refs., 13 figs., 1 tab.« less
Gao, Fan; Rodriguez, Johanan; Kapp, Susan
2016-06-01
Harness fitting in the body-powered prosthesis remains more art than science due to a lack of consistent and quantitative evaluation. The aim of this study was to develop a mechanical, human-body-shaped apparatus to simulate body-powered upper limb prosthetic usage and evaluate its capability of quantitative examination of harness configuration. The apparatus was built upon a torso of a wooden mannequin and integrated major mechanical joints to simulate terminal device operation. Sensors were used to register cable tension, cable excursion, and grip force simultaneously. The apparatus allowed the scapula to move up to 127 mm laterally and the load cell can measure the cable tension up to 445 N. Our preliminary evaluation highlighted the needs and importance of investigating harness configurations in a systematic and controllable manner. The apparatus allows objective, systematic, and quantitative evaluation of effects of realistic harness configurations and will provide insightful and working knowledge on harness fitting in upper limb amputees using body-powered prosthesis. © The International Society for Prosthetics and Orthotics 2015.
Smith, Jerome P; Sammons, Deborah L; Robertson, Shirley A; Pretty, Jack; Debord, D Gayle; Connor, Thomas H; Snawder, John
2015-01-01
Objectives Contamination of workplace surfaces by antineoplastic drugs presents an exposure risk for healthcare workers. Traditional instrumental methods to detect contamination such as liquid chromatography-tandem mass spectrometry (LC-MS/MS) are sensitive and accurate but expensive. Since immunochemical methods may be cheaper and faster than instrumental methods, we wanted to explore their use for routine drug residue detection for preventing worker exposure. Methods In this study we examined the feasibility of using fluorescence covalent microbead immunosorbent assay (FCMIA) for simultaneous detection and semi-quantitative measurement of three antineoplastic drugs (5-fluorouracil, paclitaxel, and doxorubicin). The concentration ranges for the assay were 0–1000 ng/ml for 5-fluorouracil, 0–100 ng/ml for paclitaxel, and 0–2 ng/ml for doxorubicin. The surface sampling technique involved wiping a loaded surface with a swab wetted with wash buffer, extracting the swab in storage/blocking buffer, and measuring drugs in the extract using FCMIA. Results There was no significant cross reactivity between these drugs at the ranges studied indicated by a lack of response in the assay to cross analytes. The limit of detection (LOD) for 5-fluorouracil on the surface studied was 0.93 ng/cm2 with a limit of quantitation (LOQ) of 2.8 ng/cm2, the LOD for paclitaxel was 0.57 ng/cm2 with an LOQ of 2.06 ng/cm2, and the LOD for doxorubicin was 0.0036 ng/cm2 with an LOQ of 0.013 ng/cm2. Conclusion The use of FCMIA with a simple sampling technique has potential for low cost simultaneous detection and semi-quantitative measurement of surface contamination from multiple antineoplastic drugs. PMID:25293722