Sample records for objectives process contaminants

  1. PROCESS OF DECONTAMINATING MATERIAL CONTAMINATED WITH RADIOACTIVITY

    DOEpatents

    Overholt, D.C.; Peterson, M.D.; Acken, M.F.

    1958-09-16

    A process is described for decontaminating metallic objects, such as stainless steel equipment, which consists in contacting such objects with nltric acid in a concentration of 35 to 60% to remove the major portion of the contamination; and thereafter contacting the partially decontaminated object with a second solution containing up to 20% of alkali metal hydroxide and up to 20% sodium tartrate to remove the remaining radioactive contaminats.

  2. Microbiologic contamination during dental radiographic film processing.

    PubMed

    Stanczyk, D A; Paunovich, E D; Broome, J C; Fatone, M A

    1993-07-01

    This study investigated microbiologic contamination of an automatic dental radiograph processor and daylight loader during a week of simulated clinical use. Pure cultures of Candida albicans, Streptococcus pneumoniae, Staphylococcus aureus, or Klebsiella pneumoniae were used to contaminate 320 vinyl intraoral radiograph packets. Each end of the films was deliberately contaminated during opening. These films and 24 uncontaminated control films were processed. Daylight loader ports, inlet and outlet rollers, fixer and developer samples, and 12 processed films were cultured daily. To simulate a weekend, the processor sites were cultured during 72 hours of inactivity after the contaminated runs. The results showed that contamination of the processor and daylight loader occurred and remained even after 48 hours of inactivity. Films remained contaminated after processing. In addition, cross-contamination of films occurred in the processor.

  3. A multi-objective simulation-optimization model for in situ bioremediation of groundwater contamination: Application of bargaining theory

    NASA Astrophysics Data System (ADS)

    Raei, Ehsan; Nikoo, Mohammad Reza; Pourshahabi, Shokoufeh

    2017-08-01

    In the present study, a BIOPLUME III simulation model is coupled with a non-dominating sorting genetic algorithm (NSGA-II)-based model for optimal design of in situ groundwater bioremediation system, considering preferences of stakeholders. Ministry of Energy (MOE), Department of Environment (DOE), and National Disaster Management Organization (NDMO) are three stakeholders in the groundwater bioremediation problem in Iran. Based on the preferences of these stakeholders, the multi-objective optimization model tries to minimize: (1) cost; (2) sum of contaminant concentrations that violate standard; (3) contaminant plume fragmentation. The NSGA-II multi-objective optimization method gives Pareto-optimal solutions. A compromised solution is determined using fallback bargaining with impasse to achieve a consensus among the stakeholders. In this study, two different approaches are investigated and compared based on two different domains for locations of injection and extraction wells. At the first approach, a limited number of predefined locations is considered according to previous similar studies. At the second approach, all possible points in study area are investigated to find optimal locations, arrangement, and flow rate of injection and extraction wells. Involvement of the stakeholders, investigating all possible points instead of a limited number of locations for wells, and minimizing the contaminant plume fragmentation during bioremediation are new innovations in this research. Besides, the simulation period is divided into smaller time intervals for more efficient optimization. Image processing toolbox in MATLAB® software is utilized for calculation of the third objective function. In comparison with previous studies, cost is reduced using the proposed methodology. Dispersion of the contaminant plume is reduced in both presented approaches using the third objective function. Considering all possible points in the study area for determining the optimal locations

  4. Contamination control in hybrid microelectronic modules. Identification of critical process and contaminants, part 1

    NASA Technical Reports Server (NTRS)

    Himmel, R. P.

    1975-01-01

    Hybrid processes, handling procedures, and materials were examined to identify the critical process steps in which contamination is most likely to occur, to identify the particular contaminants associated with these critical steps, and to propose method for the control of these contaminants.

  5. Object-processing neural efficiency differentiates object from spatial visualizers.

    PubMed

    Motes, Michael A; Malach, Rafael; Kozhevnikov, Maria

    2008-11-19

    The visual system processes object properties and spatial properties in distinct subsystems, and we hypothesized that this distinction might extend to individual differences in visual processing. We conducted a functional MRI study investigating the neural underpinnings of individual differences in object versus spatial visual processing. Nine participants of high object-processing ability ('object' visualizers) and eight participants of high spatial-processing ability ('spatial' visualizers) were scanned, while they performed an object-processing task. Object visualizers showed lower bilateral neural activity in lateral occipital complex and lower right-lateralized neural activity in dorsolateral prefrontal cortex. The data indicate that high object-processing ability is associated with more efficient use of visual-object resources, resulting in less neural activity in the object-processing pathway.

  6. Contamination Control and Hardware Processing Solutions at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Burns, DeWitt H.; Hampton, Tammy; Huey, LaQuieta; Mitchell, Mark; Norwood, Joey; Lowrey, Nikki

    2012-01-01

    The Contamination Control Team of Marshall Space Flight Center's Materials and Processes Laboratory supports many Programs/ Projects that design, manufacture, and test a wide range of hardware types that are sensitive to contamination and foreign object damage (FOD). Examples where contamination/FOD concerns arise include sensitive structural bondline failure, critical orifice blockage, seal leakage, and reactive fluid compatibility (liquid oxygen, hydrazine) as well as performance degradation of sensitive instruments or spacecraft surfaces such as optical elements and thermal control systems. During the design phase, determination of the sensitivity of a hardware system to different types or levels of contamination/FOD is essential. A contamination control and FOD control plan must then be developed and implemented through all phases of ground processing, and, sometimes, on-orbit use, recovery, and refurbishment. Implementation of proper controls prevents cost and schedule impacts due to hardware damage or rework and helps assure mission success. Current capabilities are being used to support recent and on-going activities for multiple Mission Directorates / Programs such as International Space Station (ISS), James Webb Space Telescope (JWST), Space Launch System (SLS) elements (tanks, engines, booster), etc. The team also advances Green Technology initiatives and addresses materials obsolescence issues for NASA and external customers, most notably in the area of solvent replacement (e.g. aqueous cleaners containing hexavalent chrome, ozone depleting chemicals (CFC s and HCFC's), suspect carcinogens). The team evaluates new surface cleanliness inspection and cleaning technologies (e.g. plasma cleaning), and maintains databases for processing support materials as well as outgassing and optical compatibility test results for spaceflight environments.

  7. [Contamination of health care institutions environmental objects by Legionella pneumophila].

    PubMed

    Shkarin, V V; Blagonravova, A S; Chubukova, O A; Korotaeva, S V

    2011-01-01

    AIM. The extent of environmental objects contamination by Legionella pneumophila in Nizhny Novgorod and Nizhny Novgorod region hospitals evaluation, and detection of potentially hazardous objects. 433 swabs of environmental objects, and 43 hot water supply and pool water samples from various departments of 4 multi-disciplinary hospitals were studies. DNA from environmental samples was detected by using real time PCR. L. pneumophila DNA was detected in 41 (9,47%) samples from environmental objects and in 2 (4,65%) samples from hot water supply. These bacteria were more frequently detected in environmental samples from physiotherapy departments. Repeated detection of legionellae from the same objects was registered. Circulation of legionellae in multidisciplinary hospitals was determined. Circulation high risk departments and risk objects--reservoirs of L. pneumophila in health care institutions were determined.

  8. Contamination Control in Hybrid Microelectronic Modules. Part 1: Identification of Critical Process and Contaminants

    NASA Technical Reports Server (NTRS)

    Himmel, R. P.

    1975-01-01

    Various hybrid processing steps, handling procedures, and materials are examined in an attempt to identify sources of contamination and to propose methods for the control of these contaminants. It is found that package sealing, assembly, and rework are especially susceptible to contamination. Moisture and loose particles are identified as the worst contaminants. The points at which contaminants are most likely to enter the hybrid package are also identified, and both general and specific methods for their detection and control are developed. In general, the most effective controls for contaminants are: clean working areas, visual inspection at each step of the process, and effective cleaning at critical process steps. Specific methods suggested include the detection of loose particles by a precap visual inspection, by preseal and post-seal electrical testing, and by a particle impact noise test. Moisture is best controlled by sealing all packages in a clean, dry, inert atmosphere after a thorough bake-out of all parts.

  9. Contamination detection NDE for cleaning process inspection

    NASA Technical Reports Server (NTRS)

    Marinelli, W. J.; Dicristina, V.; Sonnenfroh, D.; Blair, D.

    1995-01-01

    In the joining of multilayer materials, and in welding, the cleanliness of the joining surface may play a large role in the quality of the resulting bond. No non-intrusive techniques are currently available for the rapid measurement of contamination on large or irregularly shaped structures prior to the joining process. An innovative technique for the measurement of contaminant levels in these structures using laser based imaging is presented. The approach uses an ultraviolet excimer laser to illuminate large and/or irregular surface areas. The UV light induces fluorescence and is scattered from the contaminants. The illuminated area is viewed by an image-intensified CCD (charge coupled device) camera interfaced to a PC-based computer. The camera measures the fluorescence and/or scattering from the contaminants for comparison with established standards. Single shot measurements of contamination levels are possible. Hence, the technique may be used for on-line NDE testing during manufacturing processes.

  10. Fluorescence Imaging Reveals Surface Contamination

    NASA Technical Reports Server (NTRS)

    Schirato, Richard; Polichar, Raulf

    1992-01-01

    In technique to detect surface contamination, object inspected illuminated by ultraviolet light to make contaminants fluoresce; low-light-level video camera views fluorescence. Image-processing techniques quantify distribution of contaminants. If fluorescence of material expected to contaminate surface is not intense, tagged with low concentration of dye.

  11. Catalyst regeneration process including metal contaminants removal

    DOEpatents

    Ganguli, Partha S.

    1984-01-01

    Spent catalysts removed from a catalytic hydrogenation process for hydrocarbon feedstocks, and containing undesired metals contaminants deposits, are regenerated. Following solvent washing to remove process oils, the catalyst is treated either with chemicals which form sulfate or oxysulfate compounds with the metals contaminants, or with acids which remove the metal contaminants, such as 5-50 W % sulfuric acid in aqueous solution and 0-10 W % ammonium ion solutions to substantially remove the metals deposits. The acid treating occurs within the temperature range of 60.degree.-250.degree. F. for 5-120 minutes at substantially atmospheric pressure. Carbon deposits are removed from the treated catalyst by carbon burnoff at 800.degree.-900.degree. F. temperature, using 1-6 V % oxygen in an inert gas mixture, after which the regenerated catalyst can be effectively reused in the catalytic process.

  12. Simulating Heterogeneous Infiltration and Contaminant leaching Processes at Chalk River, Ontario

    NASA Astrophysics Data System (ADS)

    Ali, M. A.; Ireson, A. M.; Keim, D.

    2015-12-01

    A study is conducted at a waste management area in Chalk River, Ontario to characterize flow and contaminant transport with the aim of contributing to improved hydrogeological risk assessment in the context of waste management. Field monitoring has been performed to gain insights into the unsaturated zone characteristics, moisture dynamics, and contaminant transport rates. The objective is to provide quantitative estimates of surface fluxes (quantification of infiltration and evaporation) and investigations of unsaturated zone processes controlling water infiltration and spatial variability in head distributions and flow rates. One particular issue is to examine the effectiveness of the clayey soil cap installed to prevent infiltration of water into the waste repository and the top sand soil cover above the clayey layer to divert the infiltrated water laterally. The spatial variability in the unsaturated zone properties and associated effects on water flow and contaminant transport observed at the site, have led to a concerted effort to develop improved model of flow and transport based on stochastic concepts. Results obtained through the unsaturated zone model investigations are combined with the hydrogeological and geochemical components and develop predictive tools to assess the long term fate of the contaminants at the waste management site.

  13. Mobilisation processes responsible for iron and manganese contamination of groundwater in Central Adriatic Italy.

    PubMed

    Palmucci, William; Rusi, Sergio; Di Curzio, Diego

    2016-06-01

    Iron and manganese are two of the most common contaminants that exceed the threshold imposed by international and national legislation. When these contamination occurs in groundwater, the use of the water resource is forbidden for any purposes. Several studies investigated these two metals in groundwater, but research focused in the Central Adriatic area are still lacking. Thus, the objective of this study is to identify the origin of Fe and Mn contamination in groundwater and the hydrogeochemical processes that can enrich aquifers with these metals. This work is based on hydrogeochemical and multivariate statistical analysis of analytical results undertaken on soils and groundwater. Fe and Mn contamination are widespread in the alluvial aquifers, and their distribution is regulated by local conditions (i.e. long residence time, presence of peat or organic-rich fine sediments or anthropic pollution) that control redox processes in the aquifers and favour the mobilisation of these two metals in groundwater. The concentration of iron and manganese identified within soil indicates that the latter are a concrete source of the two metals. Anthropic impact on Fe and Mn contamination of groundwater is not related to agricultural activities, but on the contrary, the contribution of hydrocarbons (e.g. spills) is evident.

  14. Multi-Objective Optimization of an In situ Bioremediation Technology to Treat Perchlorate-Contaminated Groundwater

    EPA Science Inventory

    The presentation shows how a multi-objective optimization method is integrated into a transport simulator (MT3D) for estimating parameters and cost of in-situ bioremediation technology to treat perchlorate-contaminated groundwater.

  15. Contamination concerns in the modular containerless processing facility

    NASA Technical Reports Server (NTRS)

    Seshan, P. K.; Trinh, E. H.

    1989-01-01

    This paper describes the problems of the control and management of contamination in the Modular Containerless Processing Facility (MCPF), that is being currently developed at the JPL for the Space Station, and in the MCPF's precursor version, called the Drop Physics Module (DPM), which will be carried aboard one or more Space Shuttle missions. Attention is given to the identification of contamination sources, their mode of transport to the sample positioned within the chamber, and the protection of the sample, as well as to the mathematical simulatiom of the contaminant transport. It is emphasized that, in order to choose and implement the most appropriate contamination control strategy for each investigator, a number of simplified mathematical simulations will have to be developed, and ground-based contamination experiments will have to be carried out with identical materials.

  16. Processing plutonium-contaminated soil on Johnston Atoll

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moroney, K.; Moroney, J. III; Turney, J.

    1994-07-01

    This article describes a cleanup project to process plutonium- and americium-contaminated soil on Johnston Atoll for volume reduction. Thermo Analytical`s (TMA`s) segmented gate system (SGS) for this remedial operation has been in successful on-site operation since 1992. Topics covered include the basis for development, a description of the Johnston Atoll; the significance of results; the benefits of the technology; applicability to other radiologically contaminated sites. 7 figs., 1 tab.

  17. Characterizing Salmonella Contamination in Two Rendering Processing Plants.

    PubMed

    Gong, Chao; Jiang, Xiuping

    2017-02-01

    A microbiological investigation on Salmonella contamination was conducted in two U.S. rendering plants to investigate the potential cross-contamination of Salmonella in the rendering processing environment. Sampling locations were predetermined at the areas where Salmonella contamination may potentially occur, including raw materials receiving, crax (rendered materials before grinding process) grinding, and finished meal loading-out areas. Salmonella was either enumerated directly on xylose lysine Tergitol 4 agar plates or enriched in Rappaport-Vassiliadis and tetrathionate broths. The presumptive Salmonella isolates were confirmed using CHROMagar plating and latex agglutination testing and then characterized using pulsed-field gel electrophoresis, serotyping, and biofilm-forming determination. Among 108 samples analyzed, 79 (73%) samples were Salmonella positive after enrichment. Selected Salmonella isolates (n = 65) were assigned to 31 unique pulsed-field gel electrophoresis patterns, with 16 Salmonella serotypes, including Typhimurium and Mbandaka, identified as predominant serotypes and 10 Salmonella strains determined as strong biofilm formers. Our results indicated that the raw materials receiving area was the primary source of Salmonella and that the surfaces surrounding crax grinding and finished meal loading-out areas harbor Salmonella in biofilms that may recontaminate the finished meals. The same Salmonella serotypes found in both raw materials receiving and the finished meal loading-out areas suggested a potential of cross-contamination between different areas in the rendering processing environment.

  18. Contamination control methods for gases used in the microlithography process

    NASA Astrophysics Data System (ADS)

    Rabellino, Larry; Applegarth, Chuck; Vergani, Giorgio

    2002-07-01

    Sensitivity to contamination continues to increase as the technology shrinks from 365 nm I-line lamp illumination to 13.4 nm Extreme Ultraviolet laser activated plasma. Gas borne impurities can be readily distributed within the system, remaining both suspended in the gas and attached to critical surfaces. Effects from a variety of contamination, some well characterized and others not, remain a continuing obstacle for stepper manufacturers and users. Impurities like oxygen, moisture and hydrocarbons in parts per billion levels can absorb light, reducing the light intensity and subsequently reducing the consistence of the process. Moisture, sulfur compounds, ammonia, acid compounds and organic compounds such as hydrocarbons can deposit on lens or mirror surfaces affecting image quality. Regular lens replacement or removal for cleaning is a costly option and in-situ cleaning processes must be carefully managed to avoid recontamination of the system. The contamination can come from outside the controlled environment (local gas supply, piping system, & leaks), or from the materials moving into the controlled environment; or contamination may be generated inside the controlled environment as a result of the process itself. The release of amines can occur as a result of the degassing of the photo-resists. For the manufacturer and user of stepper equipment, the challenge is not in predictable contamination, but the variable or unpredictable contamination in the process. One type of unpredictable contamination may be variation in the environmental conditions when producing the nitrogen gas and Clean Dry Air (CDA). Variation in the CDA, nitrogen and xenon may range from parts per billion to parts per million. The risk due to uncontrolled or unmonitored variation in gas quality can be directly related to product defects. Global location can significantly affect the gas quality, due to the ambient air quality (for nitrogen and CDA), production methods, gas handling equipment

  19. Processes of contaminant accumulation in an Arctic beluga whale population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hickie, B.E.; Muir, D.; Kingsley, M.

    1995-12-31

    As long-lived top predators in marine food chains, marine mammals accumulate high levels of persistent organic contaminants. While arctic marine mammal contaminant concentrations are lower than those from temperate regions, levels are sufficiently high to be a health concern to people who rely on marine mammals as food. Monitoring programs developed to address this problem and to define spatial and temporal trends often are difficult to interpret since tissue contaminant concentrations vary with species, age, sex, reproductive effort, and condition (ie blubber thickness). It can be difficult to relate contaminant concentrations in other environmental compartments to those in marine mammalsmore » since their residues reflect exposure over their entire life, often 20 to 30 years. Contaminant accumulation models for marine mammals enable us to better understand the importance of, and interaction between, factors affecting contaminant accumulation, and can provide a dynamic framework for interpreting contaminant monitoring data. The authors developed two models for the beluga whale (Delphinapterus leucas): one provides a detailed view of processes at the individual level, the other examines population-based processes. The models quantify uptake, release and disposition of organic contaminants over their entire lifespan by incorporating all aspects of life-history. These models are used together to examine impact of a variety of factors on patterns and variability of PCBs found in the West Greenland beluga population (sample size: 696, 729). Factors examined include: energetics, growth, birth rate, lactation, contaminant assimilation and clearance rates, and dietary contaminant concentrations. Results are discussed in relation to the use of marine mammals for monitoring contaminant trends.« less

  20. Tracing the contamination origin of coliform bacteria in two small food-processing factories.

    PubMed

    Tominaga, Tatsuya; Sekine, Masahiro; Oyaizu, Hiroshi

    2008-09-01

    The objective of this study was to trace contamination sources of coliform bacteria by comparing the types of coliforms between food samples and the processing environments in two small food-processing factories (factories A and B). Fermentation tests of five sugars enabled the successful classification of 16 representative type strains into eight distinct groups. The grouping procedure was then applied to comparison of the coliform flora between food products and various locations in their processing environments. The consistency between each food and the tested locations was evaluated using the Jaccard index. The air conditioner and refrigeration room floor in factory A showed an index of 1.00, while the shaping machine in factory B showed an index of 0.98, indicating that these locations could be contamination sources. The validity of our results was confirmed by randomly amplified polymorphic DNA, which showed 100% matched profiles between the air conditioner and the food in factory A, and highly matched profiles between the machine and the food in factory B. This method for comparing the coliform flora between food and environments has the potential to be a reliable tracing tool for various food industries.

  1. Salmonella contamination risk points in broiler carcasses during slaughter line processing.

    PubMed

    Rivera-Pérez, Walter; Barquero-Calvo, Elías; Zamora-Sanabria, Rebeca

    2014-12-01

    Salmonella is one of the foodborne pathogens most commonly associated with poultry products. The aim of this work was to identify and analyze key sampling points creating risk of Salmonella contamination in a chicken processing plant in Costa Rica and perform a salmonellosis risk analysis. Accordingly, the following examinations were performed: (i) qualitative testing (presence or absence of Salmonella), (ii) quantitative testing (Salmonella CFU counts), and (iii) salmonellosis risk analysis, assuming consumption of contaminated meat from the processing plant selected. Salmonella was isolated in 26% of the carcasses selected, indicating 60% positive in the flocks sampled. The highest Salmonella counts were observed after bleeding (6.1 log CFU per carcass), followed by a gradual decrease during the subsequent control steps. An increase in the percentage of contamination (10 to 40%) was observed during evisceration and spray washing (after evisceration), with Salmonella counts increasing from 3.9 to 5.1 log CFU per carcass. According to the prevalence of Salmonella -contaminated carcasses released to trade (20%), we estimated a risk of 272 cases of salmonellosis per year as a result of the consumption of contaminated chicken. Our study suggests that the processes of evisceration and spray washing represent a risk of Salmonella cross-contamination and/ or recontamination in broilers during slaughter line processing.

  2. Preliminary Results of Cleaning Process for Lubricant Contamination

    NASA Astrophysics Data System (ADS)

    Eisenmann, D.; Brasche, L.; Lopez, R.

    2006-03-01

    Fluorescent penetrant inspection (FPI) is widely used for aviation and other components for surface-breaking crack detection. As with all inspection methods, adherence to the process parameters is critical to the successful detection of defects. Prior to FPI, components are cleaned using a variety of cleaning methods which are selected based on the alloy and the soil types which must be removed. It is also important that the cleaning process not adversely affect the FPI process. There are a variety of lubricants and surface coatings used in the aviation industry which must be removed prior to FPI. To assess the effectiveness of typical cleaning processes on removal of these contaminants, a study was initiated at an airline overhaul facility. Initial results of the cleaning study for lubricant contamination in nickel, titanium and aluminum alloys will be presented.

  3. Object-oriented models of cognitive processing.

    PubMed

    Mather, G

    2001-05-01

    Information-processing models of vision and cognition are inspired by procedural programming languages. Models that emphasize object-based representations are closely related to object-oriented programming languages. The concepts underlying object-oriented languages provide a theoretical framework for cognitive processing that differs markedly from that offered by procedural languages. This framework is well-suited to a system designed to deal flexibly with discrete objects and unpredictable events in the world.

  4. In-Line Detection and Measurement of Molecular Contamination in Semiconductor Process Solutions

    NASA Astrophysics Data System (ADS)

    Wang, Jason; West, Michael; Han, Ye; McDonald, Robert C.; Yang, Wenjing; Ormond, Bob; Saini, Harmesh

    2005-09-01

    This paper discusses a fully automated metrology tool for detection and quantitative measurement of contamination, including cationic, anionic, metallic, organic, and molecular species present in semiconductor process solutions. The instrument is based on an electrospray ionization time-of-flight mass spectrometer (ESI-TOF/MS) platform. The tool can be used in diagnostic or analytical modes to understand process problems in addition to enabling routine metrology functions. Metrology functions include in-line contamination measurement with near real-time trend analysis. This paper discusses representative organic and molecular contamination measurement results in production process problem solving efforts. The examples include the analysis and identification of organic compounds in SC-1 pre-gate clean solution; urea, NMP (N-Methyl-2-pyrrolidone) and phosphoric acid contamination in UPW; and plasticizer and an organic sulfur-containing compound found in isopropyl alcohol (IPA). It is expected that these unique analytical and metrology capabilities will improve the understanding of the effect of organic and molecular contamination on device performance and yield. This will permit the development of quantitative correlations between contamination levels and process degradation. It is also expected that the ability to perform routine process chemistry metrology will lead to corresponding improvements in manufacturing process control and yield, the ability to avoid excursions and will improve the overall cost effectiveness of the semiconductor manufacturing process.

  5. Process for treating waste water having low concentrations of metallic contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looney, Brian B; Millings, Margaret R; Nichols, Ralph L

    A process for treating waste water having a low level of metallic contaminants by reducing the toxicity level of metallic contaminants to an acceptable level and subsequently discharging the treated waste water into the environment without removing the treated contaminants.

  6. Reducing the potential for processing contaminant formation in cereal products.

    PubMed

    Curtis, Tanya Y; Postles, Jennifer; Halford, Nigel G

    2014-05-01

    Processing contaminants may be defined as substances that are produced in a food when it is cooked or processed, are not present or are present at much lower concentrations in the raw, unprocessed food, and are undesirable either because they have an adverse effect on product quality or because they are potentially harmful. The presence of very low levels of processing contaminants in common foods is becoming an increasingly important issue for the food industry, as developments in analytical techniques and equipment bring foods under closer and closer scrutiny. This review considers the formation of lipid oxidation products, hydrogenation of polyunsaturated fatty acids to prevent lipid oxidation and the associated risk of trans fatty acid formation. The formation of acrylamide in the Maillard reaction is described, as well as the genetic and agronomic approaches being taken to reduce the acrylamide-forming potential of cereal grain. The multiple routes for the formation of furan and associated chemicals, including hydroxymethylfurfuryl, are also described. The evolving regulatory and public perception situations for these processing contaminants and their implications for the cereal supply chain are discussed, emphasising the need for cereal breeders to engage with the contaminants issue.

  7. Polyhexamethyl biguanide can eliminate contaminant yeasts from fuel-ethanol fermentation process.

    PubMed

    Elsztein, Carolina; de Menezes, João Assis Scavuzzi; de Morais, Marcos Antonio

    2008-09-01

    Industrial ethanol fermentation is a non-sterile process and contaminant microorganisms can lead to a decrease in industrial productivity and significant economic loss. Nowadays, some distilleries in Northeastern Brazil deal with bacterial contamination by decreasing must pH and adding bactericides. Alternatively, contamination can be challenged by adding a pure batch of Saccharomyces cerevisiae-a time-consuming and costly process. A better strategy might involve the development of a fungicide that kills contaminant yeasts while preserving S. cerevisiae cells. Here, we show that polyhexamethyl biguanide (PHMB) inhibits and kills the most important contaminant yeasts detected in the distilleries of Northeastern Brazil without affecting the cell viability and fermentation capacity of S. cerevisiae. Moreover, some physiological data suggest that PHMB acts through interaction with the yeast membrane. These results support the development of a new strategy for controlling contaminant yeast population whilst keeping industrial yields high.

  8. Feasibility Process for Remediation of the Crude Oil Contaminated Soil

    NASA Astrophysics Data System (ADS)

    Keum, H.; Choi, H.; Heo, H.; Lee, S.; Kang, G.

    2015-12-01

    More than 600 oil wells were destroyed in Kuwait by Iraqi in 1991. During the war, over 300 oil lakes with depth of up to 2m at more than 500 different locations which has been over 49km2. Therefore, approximately 22 million m3was crude oil contaminated. As exposure of more than 20 years under atmospheric conditions of Kuwait, the crude oil has volatile hydrocarbons and covered heavy oily sludge under the crude oil lake. One of crude oil contaminated soil which located Burgan Oilfield area was collected by Kuwait Oil Company and got by H-plus Company. This contaminated soil has about 42% crude oil and could not biodegraded itself due to the extremely high toxicity. This contaminated soil was separated by 2mm sieve for removal oil sludge ball. Total petroleum hydrocarbons (TPH) was analysis by GC FID and initial TPH concentration was average 48,783 mg/kg. Ten grams of the contaminated soil replaced in two micro reactors with 20mL of bio surfactant produce microorganism. Reactor 1 was added 0.1g powder hemoglobin and other reactor was not added hemoglobin at time 0 day. Those reactors shake 120 rpm on the shaker for 7 days and CO2 produced about 150mg/L per day. After 7 days under the slurry systems, the rest days operated by hemoglobin as primary carbon source for enhanced biodegradation. The crude oil contaminated soil was degraded from 48,783mg/kg to 20,234mg/kg by slurry process and final TPH concentration degraded 11,324mg/kg for 21days. Therefore, highly contaminated soil by crude oil will be combined bio slurry process and biodegradation process with hemoglobin as bio catalytic source. Keywords: crude-oil contaminated soil, bio slurry, biodegradation, hemoglobin ACKOWLEDGEMENTS This project was supported by the Korea Ministry of Environment (MOE) GAIA Program

  9. Distinct cognitive mechanisms involved in the processing of single objects and object ensembles

    PubMed Central

    Cant, Jonathan S.; Sun, Sol Z.; Xu, Yaoda

    2015-01-01

    Behavioral research has demonstrated that the shape and texture of single objects can be processed independently. Similarly, neuroimaging results have shown that an object's shape and texture are processed in distinct brain regions with shape in the lateral occipital area and texture in parahippocampal cortex. Meanwhile, objects are not always seen in isolation and are often grouped together as an ensemble. We recently showed that the processing of ensembles also involves parahippocampal cortex and that the shape and texture of ensemble elements are processed together within this region. These neural data suggest that the independence seen between shape and texture in single-object perception would not be observed in object-ensemble perception. Here we tested this prediction by examining whether observers could attend to the shape of ensemble elements while ignoring changes in an unattended texture feature and vice versa. Across six behavioral experiments, we replicated previous findings of independence between shape and texture in single-object perception. In contrast, we observed that changes in an unattended ensemble feature negatively impacted the processing of an attended ensemble feature only when ensemble features were attended globally. When they were attended locally, thereby making ensemble processing similar to single-object processing, interference was abolished. Overall, these findings confirm previous neuroimaging results and suggest that distinct cognitive mechanisms may be involved in single-object and object-ensemble perception. Additionally, they show that the scope of visual attention plays a critical role in determining which type of object processing (ensemble or single object) is engaged by the visual system. PMID:26360156

  10. Microbiological contamination in peanut confectionery processing plants.

    PubMed

    Carminati, J de A; Amorim Neto, D P; Morishita, K N; Takano, L V; Olivier Bernardi, A; Copetti, M V; do Nascimento, M da S

    2016-10-01

    In order to investigate Enterobacteriaceae, coliforms, Escherichia coli and Salmonella contamination, a survey was conducted at three peanut confectionery processing companies (A, B and C) in Brazil. Samples of different peanut confectionery products (n = 59), peanut raw material (n = 30), manufacturing environment (n = 116) and workers' hand surfaces (n = 12) were analysed. Salmonella and E. coli were not detected in any final product or raw material analysed. Enterobacteriaceae was isolated from 15% of final products. Coliforms were detected in only one sample. Referring to the raw material, six samples showed contamination by Enterobacteriaceae and three samples by coliforms. For the process environment, 19% and 11% of samples presented Enterobacteriaceae and coliforms. Escherichia coli was detected in 5% of samples, and one of these samples tested positive for Salmonella; this strain was serotyping as S. Heidelberg. All food handlers surveyed in Company C showed Enterobacteriaceae and coliforms on their hands. Escherichia coli was isolated from one food worker's hand. The results showed that the manufacturing environment, including food handlers were considered the main sources for possible contamination of peanut confectionery products. This has been the first study to investigate the occurrence of Salmonella and other Enterobacteriaceae throughout peanut confectionery processing lines. The results might be used to assist risk assessment studies and to establish more effective control measures. © 2016 The Society for Applied Microbiology.

  11. Sub-ppb Oxygen Contaminant Detection in Semi-Conductor Processing

    NASA Technical Reports Server (NTRS)

    Man, K. F.

    1995-01-01

    Gaseous contaminants such as oxygen, water vapor, nitrogen and hydrocarbons are often present in the processing environment in semiconductor device fabrication and in containerless materials processing. The contaminants arise as a result of outgassing from hot surfaces or they may be part of the impurities in commercial ultra-high purity gases. Among these gaseous contaminants, oxygen is the most reactive and, therefore, has the most adverse effects on the end product. There has been an intense effort at the Jet Propulsion Laboratory to develop different types of oxygen sorbents to reduce oxygen concentration in a microgravity processing environment to sub-ppb (parts-per-billion) levels. Higher concentrations can lead to rapid surface oxide formation, hence reducing the quality of semiconductor devices. If the concentration of oxygen in a processing chamber at 1000oC is in the ppb level, it will only take approximately 10 seconds for an oxide layer to form on the surface of a sample. The interaction of oxygen with the water surface can lead to the formation of localized defects in semi-conductor devices, hence decreasing the manufacturing yield. For example, efficient production of 64 Mb RAM chips requires contaminations below ppb levels. This paper describes a technique for measuring trace quantities of oxygen contaminants by recording the monoatomic negative ions, O-, using mass spectrometry. The O- formation from the e--O2 interaction utilizes the electron dissociative attachment method that is greatly enhanced at the resonant energy (6.8 eV). The device combines a small gridded electron ionizer with a compact mass spectrometer. The concentrations of oxygen have been measured using the method of standard additions by diluting O2 in N2. The lowest detection limit obtained was 1.2 kHz (O- count rate) at a concentration of 10-10, corresponding to 0.1 ppb.

  12. Biogeochemical redox processes and their impact on contaminant dynamics

    USGS Publications Warehouse

    Borch, Thomas; Kretzschmar, Ruben; Kappler, Andreas; Van Cappellen, Philippe; Ginder-Vogel, Matthew; Campbell, Kate M.

    2010-01-01

    Life and element cycling on Earth is directly related to electron transfer (or redox) reactions. An understanding of biogeochemical redox processes is crucial for predicting and protecting environmental health and can provide new opportunities for engineered remediation strategies. Energy can be released and stored by means of redox reactions via the oxidation of labile organic carbon or inorganic compounds (electron donors) by microorganisms coupled to the reduction of electron acceptors including humic substances, iron-bearing minerals, transition metals, metalloids, and actinides. Environmental redox processes play key roles in the formation and dissolution of mineral phases. Redox cycling of naturally occurring trace elements and their host minerals often controls the release or sequestration of inorganic contaminants. Redox processes control the chemical speciation, bioavailability, toxicity, and mobility of many major and trace elements including Fe, Mn, C, P, N, S, Cr, Cu, Co, As, Sb, Se, Hg, Tc, and U. Redox-active humic substances and mineral surfaces can catalyze the redox transformation and degradation of organic contaminants. In this review article, we highlight recent advances in our understanding of biogeochemical redox processes and their impact on contaminant fate and transport, including future research needs.

  13. Processes affecting the remediation of chromium-contaminated sites.

    PubMed

    Palmer, C D; Wittbrodt, P R

    1991-05-01

    The remediation of chromium-contaminated sites requires knowledge of the processes that control the migration and transformation of chromium. Advection, dispersion, and diffusion are physical processes affecting the rate at which contaminants can migrate in the subsurface. Heterogeneity is an important factor that affects the contribution of each of these mechanisms to the migration of chromium-laden waters. Redox reactions, chemical speciation, adsorption/desorption phenomena, and precipitation/dissolution reactions control the transformation and mobility of chromium. The reduction of CrVI to CrIII can occur in the presence of ferrous iron in solution or in mineral phases, reduced sulfur compounds, or soil organic matter. At neutral to alkaline pH, the CrIII precipitates as amorphous hydroxides or forms complexes with organic matter. CrIII is oxidized by manganese dioxide, a common mineral found in many soils. Solid-phase precipitates of hexavalent chromium such as barium chromate can serve either as sources or sinks for CrVI. Adsorption of CrVI in soils increases with decreasing chromium concentration, making it more difficult to remove the chromium as the concentration decreases during pump-and-treat remediation. Knowledge of these chemical and physical processes is important in developing and selecting effective, cost-efficient remediation designs for chromium-contaminated sites.

  14. Object-based neglect in number processing

    PubMed Central

    2013-01-01

    Recent evidence suggests that neglect patients seem to have particular problems representing relatively smaller numbers corresponding to the left part of the mental number line. However, while this indicates space-based neglect for representational number space little is known about whether and - if so - how object-based neglect influences number processing. To evaluate influences of object-based neglect in numerical cognition, a group of neglect patients and two control groups had to compare two-digit numbers to an internally represented standard. Conceptualizing two-digit numbers as objects of which the left part (i.e., the tens digit should be specifically neglected) we were able to evaluate object-based neglect for number magnitude processing. Object-based neglect was indicated by a larger unit-decade compatibility effect actually reflecting impaired processing of the leftward tens digits. Additionally, faster processing of within- as compared to between-decade items provided further evidence suggesting particular difficulties in integrating tens and units into the place-value structure of the Arabic number system. In summary, the present study indicates that, in addition to the spatial representation of number magnitude, also the processing of place-value information of multi-digit numbers seems specifically impaired in neglect patients. PMID:23343126

  15. Integrating Electrokinetic and Bioremediation Process for Treating Oil Contaminated Low Permeability Soil

    NASA Astrophysics Data System (ADS)

    Ramadan, Bimastyaji Surya; Effendi, Agus Jatnika; Helmy, Qomarudin

    2018-02-01

    Traditional oil mining activities always ignores environmental regulation which may cause contamination in soil and environment. Crude oil contamination in low-permeability soil complicates recovery process because it requires substantial energy for excavating and crushing the soil. Electrokinetic technology can be used as an alternative technology to treat contaminated soil and improve bioremediation process (biostimulation) through transfer of ions and nutrient that support microorganism growth. This study was conducted using a combination of electrokinetic and bioremediation processes. Result shows that the application of electrokinetic and bioremediation in low permeability soils can provide hydrocarbon removal efficiency up to 46,3% in 7 days operation. The highest amount of microorganism can be found in 3-days operation, which is 2x108 CFU/ml using surfactant as flushing fluid for solubilizing hydrocarbon molecules. Enhancing bioremediation using electrokinetic process is very potential to recover oil contaminated low permeability soil in the future.

  16. Hybrid joule heating/electro-osmosis process for extracting contaminants from soil layers

    DOEpatents

    Carrigan, Charles R.; Nitao, John J.

    2003-06-10

    Joule (ohmic) heating and electro-osmosis are combined in a hybrid process for removal of both water-soluble contaminants and non-aqueous phase liquids from contaminated, low-permeability soil formations that are saturated. Central to this hybrid process is the partial desaturation of the formation or layer using electro-osmosis to remove a portion of the pore fluids by induction of a ground water flow to extraction wells. Joule heating is then performed on a partially desaturated formation. The joule heating and electro-osmosis operations can be carried out simultaneously or sequentially if the desaturation by electro-osmosis occurs initially. Joule heating of the desaturated formation results in a very effective transfer or partitioning of liquid state contaminants to the vapor phase. The heating also substantially increases the vapor phase pressure in the porous formation. As a result, the contaminant laden vapor phase is forced out into soil layers of a higher permeability where other conventional removal processes, such as steam stripping or ground water extraction can be used to capture the contaminants. This hybrid process is more energy efficient than joule heating or steam stripping for cleaning low permeability formations and can share electrodes to minimize facility costs.

  17. STakeholder-Objective Risk Model (STORM): Determining the aggregated risk of multiple contaminant hazards in groundwater well catchments

    NASA Astrophysics Data System (ADS)

    Enzenhoefer, R.; Binning, P. J.; Nowak, W.

    2015-09-01

    Risk is often defined as the product of probability, vulnerability and value. Drinking water supply from groundwater abstraction is often at risk due to multiple hazardous land use activities in the well catchment. Each hazard might or might not introduce contaminants into the subsurface at any point in time, which then affects the pumped quality upon transport through the aquifer. In such situations, estimating the overall risk is not trivial, and three key questions emerge: (1) How to aggregate the impacts from different contaminants and spill locations to an overall, cumulative impact on the value at risk? (2) How to properly account for the stochastic nature of spill events when converting the aggregated impact to a risk estimate? (3) How will the overall risk and subsequent decision making depend on stakeholder objectives, where stakeholder objectives refer to the values at risk, risk attitudes and risk metrics that can vary between stakeholders. In this study, we provide a STakeholder-Objective Risk Model (STORM) for assessing the total aggregated risk. Or concept is a quantitative, probabilistic and modular framework for simulation-based risk estimation. It rests on the source-pathway-receptor concept, mass-discharge-based aggregation of stochastically occuring spill events, accounts for uncertainties in the involved flow and transport models through Monte Carlo simulation, and can address different stakeholder objectives. We illustrate the application of STORM in a numerical test case inspired by a German drinking water catchment. As one may expect, the results depend strongly on the chosen stakeholder objectives, but they are equally sensitive to different approaches for risk aggregation across different hazards, contaminant types, and over time.

  18. An object-oriented description method of EPMM process

    NASA Astrophysics Data System (ADS)

    Jiang, Zuo; Yang, Fan

    2017-06-01

    In order to use the object-oriented mature tools and language in software process model, make the software process model more accord with the industrial standard, it’s necessary to study the object-oriented modelling of software process. Based on the formal process definition in EPMM, considering the characteristics that Petri net is mainly formal modelling tool and combining the Petri net modelling with the object-oriented modelling idea, this paper provides this implementation method to convert EPMM based on Petri net into object models based on object-oriented description.

  19. Method of treating contaminated HEPA filter media in pulp process

    DOEpatents

    Hu, Jian S.; Argyle, Mark D.; Demmer, Ricky L.; Mondok, Emilio P.

    2003-07-29

    A method for reducing contamination of HEPA filters with radioactive and/or hazardous materials is described. The method includes pre-processing of the filter for removing loose particles. Next, the filter medium is removed from the housing, and the housing is decontaminated. Finally, the filter medium is processed as pulp for removing contaminated particles by physical and/or chemical methods, including gravity, flotation, and dissolution of the particles. The decontaminated filter medium is then disposed of as non-RCRA waste; the particles are collected, stabilized, and disposed of according to well known methods of handling such materials; and the liquid medium in which the pulp was processed is recycled.

  20. Exposure assessment of process-related contaminants in food by biomarker monitoring

    DOE PAGES

    Rietjens, Ivonne M. C. M.; Dussort, P.; Gunther, Helmut; ...

    2018-01-04

    Exposure assessment is a fundamental part of the risk assessment paradigm, but can often present a number of challenges and uncertainties. This is especially the case for process contaminants formed during the processing, e.g. heating of food, since they are in part highly reactive and/or volatile, thus making exposure assessment by analysing contents in food unreliable. New approaches are therefore required to accurately assess consumer exposure and thus better inform the risk assessment. Such novel approaches may include the use of biomarkers, physiologically based kinetic (PBK) modelling-facilitated reverse dosimetry, and/or duplicate diet studies. This review focuses on the state ofmore » the art with respect to the use of biomarkers of exposure for the process contaminants acrylamide, 3-MCPD esters, glycidyl esters, furan and acrolein. From the overview presented, it becomes clear that the field of assessing human exposure to process-related contaminants in food by biomarker monitoring is promising and strongly developing. The current state of the art as well as the existing data gaps and challenges for the future were defined. They include (1) using PBK modelling and duplicate diet studies to establish, preferably in humans, correlations between external exposure and biomarkers; (2) elucidation of the possible endogenous formation of the process-related contaminants and the resulting biomarker levels; (3) the influence of inter-individual variations and how to include that in the biomarker-based exposure predictions; (4) the correction for confounding factors; (5) the value of the different biomarkers in relation to exposure scenario’s and risk assessment, and (6) the possibilities of novel methodologies. Here, in spite of these challenges it can be concluded that biomarker-based exposure assessment provides a unique opportunity to more accurately assess consumer exposure to process-related contaminants in food and thus to better inform risk assessment.« less

  1. Exposure assessment of process-related contaminants in food by biomarker monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rietjens, Ivonne M. C. M.; Dussort, P.; Gunther, Helmut

    Exposure assessment is a fundamental part of the risk assessment paradigm, but can often present a number of challenges and uncertainties. This is especially the case for process contaminants formed during the processing, e.g. heating of food, since they are in part highly reactive and/or volatile, thus making exposure assessment by analysing contents in food unreliable. New approaches are therefore required to accurately assess consumer exposure and thus better inform the risk assessment. Such novel approaches may include the use of biomarkers, physiologically based kinetic (PBK) modelling-facilitated reverse dosimetry, and/or duplicate diet studies. This review focuses on the state ofmore » the art with respect to the use of biomarkers of exposure for the process contaminants acrylamide, 3-MCPD esters, glycidyl esters, furan and acrolein. From the overview presented, it becomes clear that the field of assessing human exposure to process-related contaminants in food by biomarker monitoring is promising and strongly developing. The current state of the art as well as the existing data gaps and challenges for the future were defined. They include (1) using PBK modelling and duplicate diet studies to establish, preferably in humans, correlations between external exposure and biomarkers; (2) elucidation of the possible endogenous formation of the process-related contaminants and the resulting biomarker levels; (3) the influence of inter-individual variations and how to include that in the biomarker-based exposure predictions; (4) the correction for confounding factors; (5) the value of the different biomarkers in relation to exposure scenario’s and risk assessment, and (6) the possibilities of novel methodologies. Here, in spite of these challenges it can be concluded that biomarker-based exposure assessment provides a unique opportunity to more accurately assess consumer exposure to process-related contaminants in food and thus to better inform risk assessment.« less

  2. Exposure assessment of process-related contaminants in food by biomarker monitoring.

    PubMed

    Rietjens, Ivonne M C M; Dussort, P; Günther, Helmut; Hanlon, Paul; Honda, Hiroshi; Mally, Angela; O'Hagan, Sue; Scholz, Gabriele; Seidel, Albrecht; Swenberg, James; Teeguarden, Justin; Eisenbrand, Gerhard

    2018-01-01

    Exposure assessment is a fundamental part of the risk assessment paradigm, but can often present a number of challenges and uncertainties. This is especially the case for process contaminants formed during the processing, e.g. heating of food, since they are in part highly reactive and/or volatile, thus making exposure assessment by analysing contents in food unreliable. New approaches are therefore required to accurately assess consumer exposure and thus better inform the risk assessment. Such novel approaches may include the use of biomarkers, physiologically based kinetic (PBK) modelling-facilitated reverse dosimetry, and/or duplicate diet studies. This review focuses on the state of the art with respect to the use of biomarkers of exposure for the process contaminants acrylamide, 3-MCPD esters, glycidyl esters, furan and acrolein. From the overview presented, it becomes clear that the field of assessing human exposure to process-related contaminants in food by biomarker monitoring is promising and strongly developing. The current state of the art as well as the existing data gaps and challenges for the future were defined. They include (1) using PBK modelling and duplicate diet studies to establish, preferably in humans, correlations between external exposure and biomarkers; (2) elucidation of the possible endogenous formation of the process-related contaminants and the resulting biomarker levels; (3) the influence of inter-individual variations and how to include that in the biomarker-based exposure predictions; (4) the correction for confounding factors; (5) the value of the different biomarkers in relation to exposure scenario's and risk assessment, and (6) the possibilities of novel methodologies. In spite of these challenges it can be concluded that biomarker-based exposure assessment provides a unique opportunity to more accurately assess consumer exposure to process-related contaminants in food and thus to better inform risk assessment.

  3. Laser cutting eliminates nucleic acid cross-contamination in dried-blood-spot processing.

    PubMed

    Murphy, Sean C; Daza, Glenda; Chang, Ming; Coombs, Robert

    2012-12-01

    Dried blood spots (DBS) are useful for molecular assays but are prone to false positives from cross-contamination. In our malaria DBS assay, cross-contamination was encountered despite cleaning techniques suitable for HIV-1. We therefore developed a contact-free laser cutting system that effectively eliminated cross-contamination during DBS processing.

  4. Laser Cutting Eliminates Nucleic Acid Cross-Contamination in Dried-Blood-Spot Processing

    PubMed Central

    Daza, Glenda; Chang, Ming; Coombs, Robert

    2012-01-01

    Dried blood spots (DBS) are useful for molecular assays but are prone to false positives from cross-contamination. In our malaria DBS assay, cross-contamination was encountered despite cleaning techniques suitable for HIV-1. We therefore developed a contact-free laser cutting system that effectively eliminated cross-contamination during DBS processing. PMID:23052309

  5. Dissociating verbal and nonverbal audiovisual object processing.

    PubMed

    Hocking, Julia; Price, Cathy J

    2009-02-01

    This fMRI study investigates how audiovisual integration differs for verbal stimuli that can be matched at a phonological level and nonverbal stimuli that can be matched at a semantic level. Subjects were presented simultaneously with one visual and one auditory stimulus and were instructed to decide whether these stimuli referred to the same object or not. Verbal stimuli were simultaneously presented spoken and written object names, and nonverbal stimuli were photographs of objects simultaneously presented with naturally occurring object sounds. Stimulus differences were controlled by including two further conditions that paired photographs of objects with spoken words and object sounds with written words. Verbal matching, relative to all other conditions, increased activation in a region of the left superior temporal sulcus that has previously been associated with phonological processing. Nonverbal matching, relative to all other conditions, increased activation in a right fusiform region that has previously been associated with structural and conceptual object processing. Thus, we demonstrate how brain activation for audiovisual integration depends on the verbal content of the stimuli, even when stimulus and task processing differences are controlled.

  6. Practicing safe cell culture: applied process designs for minimizing virus contamination risk.

    PubMed

    Kiss, Robert D

    2011-01-01

    CONFERENCE PROCEEDING Proceedings of the PDA/FDA Adventitious Viruses in Biologics: Detection and Mitigation Strategies Workshop in Bethesda, MD, USA; December 1-3, 2010 Guest Editors: Arifa Khan (Bethesda, MD), Patricia Hughes (Bethesda, MD) and Michael Wiebe (San Francisco, CA) Genentech responded to a virus contamination in its biologics manufacturing facility by developing and implementing a series of barriers specifically designed to prevent recurrence of this significant and impactful event. The barriers included steps to inactivate or remove potential virus particles from the many raw materials used in cell culture processing. Additionally, analytical testing barriers provided protection of the downstream processing areas should a culture contamination occur, and robust virus clearance capability provided further assurance of virus safety should a low level contamination go undetected. This conference proceeding will review Genentech's approach, and lessons learned, in minimizing virus contamination risk in cell culture processes through multiple layers of targeted barriers designed to deliver biologics products with high success rates.

  7. Contamination or changes of food factors during processing and modleing-safety related issue

    USDA-ARS?s Scientific Manuscript database

    Cross-contamination and food property changes, including chemical and physical, are common during food processing and preservation. The contamination may involve microbial and chemical aspects resulted in food-borne pathogen outbreaks and/or poisons. Chemical contaminations are most likely from th...

  8. Recycled Fiber Properties as Affected by Contaminants and Removal Processes.

    DTIC Science & Technology

    Five materials were applied to either a kraft pulp furnish or to a kraft paper and were removed by conventional removal processes. Uncontaminated... kraft paper subjected to the same removal processes determined that the process, not the contaminant, was responsible for changes in sheet properties

  9. Objects and categories: feature statistics and object processing in the ventral stream.

    PubMed

    Tyler, Lorraine K; Chiu, Shannon; Zhuang, Jie; Randall, Billi; Devereux, Barry J; Wright, Paul; Clarke, Alex; Taylor, Kirsten I

    2013-10-01

    Recognizing an object involves more than just visual analyses; its meaning must also be decoded. Extensive research has shown that processing the visual properties of objects relies on a hierarchically organized stream in ventral occipitotemporal cortex, with increasingly more complex visual features being coded from posterior to anterior sites culminating in the perirhinal cortex (PRC) in the anteromedial temporal lobe (aMTL). The neurobiological principles of the conceptual analysis of objects remain more controversial. Much research has focused on two neural regions-the fusiform gyrus and aMTL, both of which show semantic category differences, but of different types. fMRI studies show category differentiation in the fusiform gyrus, based on clusters of semantically similar objects, whereas category-specific deficits, specifically for living things, are associated with damage to the aMTL. These category-specific deficits for living things have been attributed to problems in differentiating between highly similar objects, a process that involves the PRC. To determine whether the PRC and the fusiform gyri contribute to different aspects of an object's meaning, with differentiation between confusable objects in the PRC and categorization based on object similarity in the fusiform, we carried out an fMRI study of object processing based on a feature-based model that characterizes the degree of semantic similarity and difference between objects and object categories. Participants saw 388 objects for which feature statistic information was available and named the objects at the basic level while undergoing fMRI scanning. After controlling for the effects of visual information, we found that feature statistics that capture similarity between objects formed category clusters in fusiform gyri, such that objects with many shared features (typical of living things) were associated with activity in the lateral fusiform gyri whereas objects with fewer shared features (typical

  10. A Study of Space Station Contamination Effects. [conference

    NASA Technical Reports Server (NTRS)

    Torr, M. R. (Editor); Spann, J. F. (Editor); Moorehead, T. W. (Editor)

    1988-01-01

    A workshop was held with the specific objective of reviewing the state-of-knowledge regarding Space Station contamination, the extent to which the various categories of contamination can be predicted, and the extent to which the predicted levels would interfere with onboard scientific investigations or space station functions. The papers presented at the workshop are compiled and address the following topics: natural environment, plasma electromagnetic environment, optical environment, particulate environment, spacecraft contamination, surface physics processes, laboratory experiments and vented chemicals/contaminants.

  11. Corporate objectives and the planning process.

    PubMed

    White, S

    1990-02-01

    The embodiment of corporate objectives in a workable planning process enables all employees to develop an identity larger than themselves. This results in a more cohesive body and makes it easier to implement the organization's strategy and mission. The senior executives at University Hospital have a long history with the organization and therefore know it well. Whether the new process makes planning more coordinated and comprehensive will be measured by both the subjective and the objective assessment of these executives.

  12. On-farm and postharvest processing sources of bacterial contamination to melon rinds.

    PubMed

    Gagliardi, J V; Millner, P D; Lester, G; Ingram, D

    2003-01-01

    Multistate and international foodborne illness outbreaks, particularly involving cantaloupe and often involving rare Salmonella spp., have increased dramatically over the past 13 years. This study assessed the sources and extent of melon rind contamination in production fields and at processing and packing facilities. In the spring of 1999, cantaloupe (Cucumis melo L. [reticulatus group] cv. Cruiser) sampled from two sites in the Rio Grande River Valley showed that postharvest-processed melon rinds often had greater plate counts of bacterial contaminants than field-fresh melons. Cantaloupe in the field had 2.5 to 3.5 log CFU g(-1) rind total coliforms by aerobic plate counts, whereas washed melons had 4.0 to 5.0 log CFU g(-1). In the fall of 1999, coliforms on honeydew melons (C. melo [inodorous group] cv. Honey Brew) ranged from 2.6 to 3.7 log CFU g(-1) after processing, and total and fecal coliforms and enterococci never fell below 2.5 log CFU g(-1). A hydrocooler at another site contaminated cantaloupe rinds with up to 3.4 log CFU g(-1) total and fecal enterococci; a secondary rinse with chlorinated water incompletely removed these bacteria. Sources of coliforms and enterococci were at high levels in melon production soils, especially in furrows that were flood irrigated, in standing water at one field, and in irrigation water at both sites. At one processing facility, wash water pumped from the Rio Grande River may not have been sufficiently disinfected prior to use. Because soil, irrigation water, and process water were potential sources of bacterial contamination, monitoring and management on-farm and at processing and packing facilities should focus on water quality as an important control point for growers and packers to reduce bacterial contamination on melon rinds.

  13. Emotion and Object Processing in Parkinson's Disease

    ERIC Educational Resources Information Center

    Cohen, Henri; Gagne, Marie-Helene; Hess, Ursula; Pourcher, Emmanuelle

    2010-01-01

    The neuropsychological literature on the processing of emotions in Parkinson's disease (PD) reveals conflicting evidence about the role of the basal ganglia in the recognition of facial emotions. Hence, the present study had two objectives. One was to determine the extent to which the visual processing of emotions and objects differs in PD. The…

  14. Ecotoxicological evaluation of diesel-contaminated soil before and after a bioremediation process.

    PubMed

    Molina-Barahona, L; Vega-Loyo, L; Guerrero, M; Ramírez, S; Romero, I; Vega-Jarquín, C; Albores, A

    2005-02-01

    Evaluation of contaminated sites is usually performed by chemical analysis of pollutants in soil. This is not enough either to evaluate the environmental risk of contaminated soil nor to evaluate the efficiency of soil cleanup techniques. Information on the bioavailability of complex mixtures of xenobiotics and degradation products cannot be totally provided by chemical analytical data, but results from bioassays can integrate the effects of pollutants in complex mixtures. In the preservation of human health and environment quality, it is important to assess the ecotoxicological effects of contaminated soils to obtain a better evaluation of the healthiness of this system. The monitoring of a diesel-contaminated soil and the evaluation of a bioremediation technique conducted on a microcosm scale were performed by a battery of ecotoxicological tests including phytotoxicity, Daphnia magna, and nematode assays. In this study we biostimulated the native microflora of soil contaminated with diesel by adding nutrients and crop residue (corn straw) as a bulking agent and as a source of microorganisms and nutrients; in addition, moisture was adjusted to enhance diesel removal. The bioremediation process efficiency was evaluated directly by an innovative, simple phytotoxicity test system and the diesel extracts by Daphnia magna and nematode assays. Contaminated soil samples were revealed to have toxic effects on seed germination, seedling growth, and Daphnia survival. After biostimulation, the diesel concentration was reduced by 50.6%, and the soil samples showed a significant reduction in phytotoxicity (9%-15%) and Daphnia assays (3-fold), confirming the effectiveness of the bioremediation process. Results from our microcosm study suggest that in addition to the evaluation of the bioremediation processes efficiency, toxicity testing is different with organisms representative of diverse phylogenic levels. The integration of analytical, toxicological and bioremediation data

  15. Comparison of contamination of femoral heads and pre-processed bone chips during hip revision arthroplasty.

    PubMed

    Mathijssen, N M C; Sturm, P D; Pilot, P; Bloem, R M; Buma, P; Petit, P L; Schreurs, B W

    2013-12-01

    With bone impaction grafting, cancellous bone chips made from allograft femoral heads are impacted in a bone defect, which introduces an additional source of infection. The potential benefit of the use of pre-processed bone chips was investigated by comparing the bacterial contamination of bone chips prepared intraoperatively with the bacterial contamination of pre-processed bone chips at different stages in the surgical procedure. To investigate baseline contamination of the bone grafts, specimens were collected during 88 procedures before actual use or preparation of the bone chips: in 44 procedures intraoperatively prepared chips were used (Group A) and in the other 44 procedures pre-processed bone chips were used (Group B). In 64 of these procedures (32 using locally prepared bone chips and 32 using pre-processed bone chips) specimens were also collected later in the procedure to investigate contamination after use and preparation of the bone chips. In total, 8 procedures had one or more positive specimen(s) (12.5 %). Contamination rates were not significantly different between bone chips prepared at the operating theatre and pre-processed bone chips. In conclusion, there was no difference in bacterial contamination between bone chips prepared from whole femoral heads in the operating room and pre-processed bone chips, and therefore, both types of bone allografts are comparable with respect to risk of infection.

  16. The probability of object-scene co-occurrence influences object identification processes.

    PubMed

    Sauvé, Geneviève; Harmand, Mariane; Vanni, Léa; Brodeur, Mathieu B

    2017-07-01

    Contextual information allows the human brain to make predictions about the identity of objects that might be seen and irregularities between an object and its background slow down perception and identification processes. Bar and colleagues modeled the mechanisms underlying this beneficial effect suggesting that the brain stocks information about the statistical regularities of object and scene co-occurrence. Their model suggests that these recurring regularities could be conceptualized along a continuum in which the probability of seeing an object within a given scene can be high (probable condition), moderate (improbable condition) or null (impossible condition). In the present experiment, we propose to disentangle the electrophysiological correlates of these context effects by directly comparing object-scene pairs found along this continuum. We recorded the event-related potentials of 30 healthy participants (18-34 years old) and analyzed their brain activity in three time windows associated with context effects. We observed anterior negativities between 250 and 500 ms after object onset for the improbable and impossible conditions (improbable more negative than impossible) compared to the probable condition as well as a parieto-occipital positivity (improbable more positive than impossible). The brain may use different processing pathways to identify objects depending on whether the probability of co-occurrence with the scene is moderate (rely more on top-down effects) or null (rely more on bottom-up influences). The posterior positivity could index error monitoring aimed to ensure that no false information is integrated into mental representations of the world.

  17. Process for removal of ammonia and acid gases from contaminated waters

    DOEpatents

    King, C. Judson; MacKenzie, Patricia D.

    1985-01-01

    Contaminating basic gases, i.e., ammonia, and acid gases, e.g., carbon dioxide, are removed from process waters or waste waters in a combined extraction and stripping process. Ammonia in the form of ammonium ion is extracted by an immiscible organic phase comprising a liquid cation exchange component, especially an organic phosphoric acid derivative, and preferably di-2-ethyl hexyl phosphoric acid, dissolved in an alkyl hydrocarbon, aryl hydrocarbon, higher alcohol, oxygenated hydrocarbon, halogenated hydrocarbon, and mixtures thereof. Concurrently, the acidic gaseous contaminants are stripped from the process or waste waters by stripping with steam, air, nitrogen, or the like. The liquid cation exchange component has the ammonia stripped therefrom by heating, and the component may be recycled to extract additional amounts of ammonia.

  18. Process for removal of ammonia and acid gases from contaminated waters

    DOEpatents

    King, C.J.; Mackenzie, P.D.

    1982-09-03

    Contaminating basic gases, i.e., ammonia and acid gases, e.g., carbon dioxide, are removed from process waters or waste waters in a combined extraction and stripping process. Ammonia in the form of ammonium ion is extracted by an immiscible organic phase comprising a liquid cation exchange component, especially an organic phosphoric acid derivative, and preferably di-2-ethyl hexyl phosphoric acid, dissolved in an alkyl hydrocarbon, aryl hydrocarbon, higher alcohol, oxygenated hydrocarbon, halogenated hydrocarbon, and mixtures thereof. Concurrently, the acidic gaseous contaminants are stripped from the process or waste waters by stripping with stream, air, nitrogen, or the like. The liquid cation exchange component has the ammonia stripped therefrom by heating, and the component may be recycled to extract additional amounts of ammonia.

  19. Ultraviolet Laser Damage Dependence on Contamination Concentration in Fused Silica Optics during Reactive Ion Etching Process

    PubMed Central

    Sun, Laixi; Shao, Ting; Shi, Zhaohua; Huang, Jin; Ye, Xin; Jiang, Xiaodong; Wu, Weidong; Yang, Liming; Zheng, Wanguo

    2018-01-01

    The reactive ion etching (RIE) process of fused silica is often accompanied by surface contamination, which seriously degrades the ultraviolet laser damage performance of the optics. In this study, we find that the contamination behavior on the fused silica surface is very sensitive to the RIE process which can be significantly optimized by changing the plasma generating conditions such as discharge mode, etchant gas and electrode material. Additionally, an optimized RIE process is proposed to thoroughly remove polishing-introduced contamination and efficiently prevent the introduction of other contamination during the etching process. The research demonstrates the feasibility of improving the damage performance of fused silica optics by using the RIE technique. PMID:29642571

  20. Chemical coagulation-based processes for trace organic contaminant removal: current state and future potential.

    PubMed

    Alexander, Jonathan T; Hai, Faisal I; Al-Aboud, Turki M

    2012-11-30

    Trace organic contaminants have become an increasing cause of concern for governments and water authorities as they attempt to respond to the potential challenges posed by climate change by implementing sustainable water cycle management practices. The augmentation of potable water supplies through indirect potable water reuse is one such method currently being employed. Given the uncertainty surrounding the potential human health impacts of prolonged ingestion of trace organic contaminants, it is vital that effective and sustainable treatment methods are utilized. The purpose of this article is to provide a comprehensive literature review of the performance of the chemical coagulation process in removing trace organic contaminants from water. This study evaluated the removal data collated from recent research relating to various trace organic contaminants during the coagulation process. It was observed that there is limited research data relating to the removal of trace organic contaminants using coagulation. The findings of this study suggest that there is a gap in the current research investigating the potential of new types of coagulants and exploring coagulation-based hybrid processes to remove trace organic contaminants from water. The data analysed in this study regarding removal efficiency suggests that, even for the significantly hydrophobic compounds, hydrophobicity is not the sole factor governing removal of trace organic contaminants by coagulation. This has important implications in that the usual practice of screening coagulants based on turbidity (suspended solid) removal proves inadequate in the case of trace organic contaminant removal. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Parallel Processing of Objects in a Naming Task

    ERIC Educational Resources Information Center

    Meyer, Antje S.; Ouellet, Marc; Hacker, Christine

    2008-01-01

    The authors investigated whether speakers who named several objects processed them sequentially or in parallel. Speakers named object triplets, arranged in a triangle, in the order left, right, and bottom object. The left object was easy or difficult to identify and name. During the saccade from the left to the right object, the right object shown…

  2. Depth-of-processing effects on priming in stem completion: tests of the voluntary-contamination, conceptual-processing, and lexical-processing hypotheses.

    PubMed

    Richardson-Klavehn, A; Gardiner, J M

    1998-05-01

    Depth-of-processing effects on incidental perceptual memory tests could reflect (a) contamination by voluntary retrieval, (b) sensitivity of involuntary retrieval to prior conceptual processing, or (c) a deficit in lexical processing during graphemic study tasks that affects involuntary retrieval. The authors devised an extension of incidental test methodology--making conjunctive predictions about response times as well as response proportions--to discriminate among these alternatives. They used graphemic, phonemic, and semantic study tasks, and a word-stem completion test with incidental, intentional, and inclusion instructions. Semantic study processing was superior to phonemic study processing in the intentional and inclusion tests, but semantic and phonemic study processing produced equal priming in the incidental test, showing that priming was uncontaminated by voluntary retrieval--a conclusion reinforced by the response-time data--and that priming was insensitive to prior conceptual processing. The incidental test nevertheless showed a priming deficit following graphemic study processing, supporting the lexical-processing hypothesis. Adding a lexical decision to the 3 study tasks eliminated the priming deficit following graphemic study processing, but did not influence priming following phonemic and semantic processing. The results provide the first clear evidence that depth-of-processing effects on perceptual priming can reflect lexical processes, rather than voluntary contamination or conceptual processes.

  3. Teacher Trainees as Learning Object Designers: Problems and Issues in Learning Object Development Process

    ERIC Educational Resources Information Center

    Guler, Cetin; Altun, Arif

    2010-01-01

    Learning objects (LOs) can be defined as resources that are reusable, digital with the aim of fulfilling learning objectives (or expectations). Educators, both at the individual and institutional levels, are cautioned about the fact that LOs are to be processed through a proper development process. Who should be involved in the LO development…

  4. Object processing in the infant: lessons from neuroscience.

    PubMed

    Wilcox, Teresa; Biondi, Marisa

    2015-07-01

    Object identification is a fundamental cognitive capacity that forms the basis for complex thought and behavior. The adult cortex is organized into functionally distinct visual object-processing pathways that mediate this ability. Insights into the origin of these pathways have begun to emerge through the use of neuroimaging techniques with infant populations. The outcome of this work supports the view that, from the early days of life, object-processing pathways are organized in a way that resembles that of the adult. At the same time, theoretically important changes in patterns of cortical activation are observed during the first year. These findings lead to a new understanding of the cognitive and neural architecture in infants that supports their emerging object-processing capacities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Linking metatranscriptomic to bioremediation processes of oil contaminated marine sediments

    NASA Astrophysics Data System (ADS)

    Cuny, P.; Atkinson, A.; Léa, S.; Guasco, S.; Jezequel, R.; Armougom, F.; Michotey, V.; Bonin, P.; Militon, C.

    2016-02-01

    Oil-derived hydrocarbons are one major source of pollution of marine ecosystems. In coastal marine areas they tend to accumulate in the sediment where they can impact the benthic communities. Oil hydrocarbons biodegradation by microorganisms is known to be one of the prevalent processes acting in the removal of these contaminants from sediments. The redox oscillation regimes generated by bioturbation, and the efficiency of metabolic coupling between functional groups associated to these specific redox regimes, are probably determinant factors controlling hydrocarbon biodegradation. Metatranscriptomic analysis appears like a promising approach to shed new light on the metabolic processes involved in the response of microbial communities to oil contamination in such oxic/anoxic oscillating environments. In the framework of the DECAPAGE project (ANR CESA-2011-006 01), funded by the French National Agency for Research, the metatranscriptomes (RNA-seq) of oil contaminated or not (Ural blend crude oil, 5 000 ppm) and bioturbated or not (addition of the common burrowing organism Hediste diversicolor, 1000 ind/m2) mudflat sediments, incubated in microcosms during 4 months at 19±1°C, were compared. The analysis of active microbial communities by SSU rRNA barcoding shows that the main observable changes are due to the presence of H. diversicolor. On the contrary, oil addition is the main factor explaining the observed changes in the genes expression patterns with 1949 genes specifically up or down-regulated (which is the case of only 245 genes when only H. diversicolor worms are added). In particular, the oil contamination leads to a marked overexpression (i) of benzyl- and alkylsuccinate synthase genes (ass and bss) that are involved in the anaerobic metabolism of aromatics (toluene) and alkanes, respectively and, (ii) of genes coding for nucleotide excision repair exonucleases indicating that DNA repair processes are also activated.

  6. Unit Process Wetlands for Removal of Trace Organic Contaminants and Pathogens from Municipal Wastewater Effluents

    PubMed Central

    Jasper, Justin T.; Nguyen, Mi T.; Jones, Zackary L.; Ismail, Niveen S.; Sedlak, David L.; Sharp, Jonathan O.; Luthy, Richard G.; Horne, Alex J.; Nelson, Kara L.

    2013-01-01

    Abstract Treatment wetlands have become an attractive option for the removal of nutrients from municipal wastewater effluents due to their low energy requirements and operational costs, as well as the ancillary benefits they provide, including creating aesthetically appealing spaces and wildlife habitats. Treatment wetlands also hold promise as a means of removing other wastewater-derived contaminants, such as trace organic contaminants and pathogens. However, concerns about variations in treatment efficacy of these pollutants, coupled with an incomplete mechanistic understanding of their removal in wetlands, hinder the widespread adoption of constructed wetlands for these two classes of contaminants. A better understanding is needed so that wetlands as a unit process can be designed for their removal, with individual wetland cells optimized for the removal of specific contaminants, and connected in series or integrated with other engineered or natural treatment processes. In this article, removal mechanisms of trace organic contaminants and pathogens are reviewed, including sorption and sedimentation, biotransformation and predation, photolysis and photoinactivation, and remaining knowledge gaps are identified. In addition, suggestions are provided for how these treatment mechanisms can be enhanced in commonly employed unit process wetland cells or how they might be harnessed in novel unit process cells. It is hoped that application of the unit process concept to a wider range of contaminants will lead to more widespread application of wetland treatment trains as components of urban water infrastructure in the United States and around the globe. PMID:23983451

  7. Unit Process Wetlands for Removal of Trace Organic Contaminants and Pathogens from Municipal Wastewater Effluents.

    PubMed

    Jasper, Justin T; Nguyen, Mi T; Jones, Zackary L; Ismail, Niveen S; Sedlak, David L; Sharp, Jonathan O; Luthy, Richard G; Horne, Alex J; Nelson, Kara L

    2013-08-01

    Treatment wetlands have become an attractive option for the removal of nutrients from municipal wastewater effluents due to their low energy requirements and operational costs, as well as the ancillary benefits they provide, including creating aesthetically appealing spaces and wildlife habitats. Treatment wetlands also hold promise as a means of removing other wastewater-derived contaminants, such as trace organic contaminants and pathogens. However, concerns about variations in treatment efficacy of these pollutants, coupled with an incomplete mechanistic understanding of their removal in wetlands, hinder the widespread adoption of constructed wetlands for these two classes of contaminants. A better understanding is needed so that wetlands as a unit process can be designed for their removal, with individual wetland cells optimized for the removal of specific contaminants, and connected in series or integrated with other engineered or natural treatment processes. In this article, removal mechanisms of trace organic contaminants and pathogens are reviewed, including sorption and sedimentation, biotransformation and predation, photolysis and photoinactivation, and remaining knowledge gaps are identified. In addition, suggestions are provided for how these treatment mechanisms can be enhanced in commonly employed unit process wetland cells or how they might be harnessed in novel unit process cells. It is hoped that application of the unit process concept to a wider range of contaminants will lead to more widespread application of wetland treatment trains as components of urban water infrastructure in the United States and around the globe.

  8. Mouthing of Soil Contaminated Objects is Associated with Environmental Enteropathy in Young Children.

    PubMed

    Morita, Tomohiko; Perin, Jamie; Oldja, Lauren; Biswas, Shwapon; Sack, R Bradley; Ahmed, Shahnawaz; Haque, Rashidul; Bhuiyan, Nurul Amin; Parvin, Tahmina; Bhuyian, Sazzadul Islam; Akter, Mahmuda; Talukder, Kaisar A; Shahnaij, Mohammad; Faruque, Abu G; George, Christine Marie

    2017-06-01

    To characterise childhood mouthing behaviours and to investigate the association between object-to-mouth and food-to-mouth contacts, diarrhoea prevalence and environmental enteropathy. A prospective cohort study was conducted of 216 children ≤30 months of age in rural Bangladesh. Mouthing contacts with soil and food and objects with visible soil were assessed by 5-h structured observation. Stool was analysed for four faecal markers of intestinal inflammation: alpha-1-antitrypsin, myeloperoxidase, neopterin and calprotectin. Overall 82% of children were observed mouthing soil, objects with visible soil, or food with visible soil during the structured observation period. Sixty two percent of children were observed mouthing objects with visible soil, 63% were observed mouthing food with visible soil, and 18% were observed mouthing soil only. Children observed mouthing objects with visible soil had significantly elevated faecal calprotectin concentrations (206.81 μg/g, 95% confidence interval [CI]: 6.27, 407.36). There was also a marginally significant association between Escherichia coli counts in soil from a child's play space and the prevalence rate of diarrhoea (diarrhoea prevalence ratio: 2.03, 95% CI 0.97, 4.25). These findings provide further evidence to support the hypothesis that childhood mouthing behaviour in environments with faecal contamination can lead to environmental enteropathy in susceptible paediatric populations. Furthermore, these findings suggest that young children mouthing objects with soil, which occurred more frequently than soil directly (60% vs. 18%), was an important exposure route to faecal pathogens and a risk factor for environmental enteropathy. © 2017 John Wiley & Sons Ltd.

  9. High pressure processing as an intervention for raw virus-contaminated shellfish

    USDA-ARS?s Scientific Manuscript database

    Over the past 7 years, the USDA ARS Seafood Safety Laboratory has evaluated the potential use of high pressure processing (HPP) as a processing strategy for virus-contaminated shellfish. HPP can inactivate hepatitis A virus, (HAV), the human norovirus surrogates feline calicivirus and murine norovi...

  10. The highs and lows of object impossibility: effects of spatial frequency on holistic processing of impossible objects.

    PubMed

    Freud, Erez; Avidan, Galia; Ganel, Tzvi

    2015-02-01

    Holistic processing, the decoding of a stimulus as a unified whole, is a basic characteristic of object perception. Recent research using Garner's speeded classification task has shown that this processing style is utilized even for impossible objects that contain an inherent spatial ambiguity. In particular, similar Garner interference effects were found for possible and impossible objects, indicating similar holistic processing styles for the two object categories. In the present study, we further investigated the perceptual mechanisms that mediate such holistic representation of impossible objects. We relied on the notion that, whereas information embedded in the high-spatial-frequency (HSF) content supports fine-detailed processing of object features, the information conveyed by low spatial frequencies (LSF) is more crucial for the emergence of a holistic shape representation. To test the effects of image frequency on the holistic processing of impossible objects, participants performed the Garner speeded classification task on images of possible and impossible cubes filtered for their LSF and HSF information. For images containing only LSF, similar interference effects were observed for possible and impossible objects, indicating that the two object categories were processed in a holistic manner. In contrast, for the HSF images, Garner interference was obtained only for possible, but not for impossible objects. Importantly, we provided evidence to show that this effect could not be attributed to a lack of sensitivity to object possibility in the LSF images. Particularly, even for full-spectrum images, Garner interference was still observed for both possible and impossible objects. Additionally, performance in an object classification task revealed high sensitivity to object possibility, even for LSF images. Taken together, these findings suggest that the visual system can tolerate the spatial ambiguity typical to impossible objects by relying on information

  11. REMEDIATION OF RADIUM FROM CONTAMINATED SOIL

    EPA Science Inventory

    The objective of this study was to demonstrate the application of a physico-chemical separation process for the removal of radium from a sample of contaminated soil at the Ottawa, Illinois, site near Chicago. The size/activity distribution analyzed among the particles coarser tha...

  12. -The Influence of Scene Context on Parafoveal Processing of Objects.

    PubMed

    Castelhano, Monica S; Pereira, Effie J

    2017-04-21

    Many studies in reading have shown the enhancing effect of context on the processing of a word before it is directly fixated (parafoveal processing of words; Balota et al., 1985; Balota & Rayner, 1983; Ehrlich & Rayner, 1981). Here, we examined whether scene context influences the parafoveal processing of objects and enhances the extraction of object information. Using a modified boundary paradigm (Rayner, 1975), the Dot-Boundary paradigm, participants fixated on a suddenly-onsetting cue before the preview object would onset 4° away. The preview object could be identical to the target, visually similar, visually dissimilar, or a control (black rectangle). The preview changed to the target object once a saccade toward the object was made. Critically, the objects were presented on either a consistent or an inconsistent scene background. Results revealed that there was a greater processing benefit for consistent than inconsistent scene backgrounds and that identical and visually similar previews produced greater processing benefits than other previews. In the second experiment, we added an additional context condition in which the target location was inconsistent, but the scene semantics remained consistent. We found that changing the location of the target object disrupted the processing benefit derived from the consistent context. Most importantly, across both experiments, the effect of preview was not enhanced by scene context. Thus, preview information and scene context appear to independently boost the parafoveal processing of objects without any interaction from object-scene congruency.

  13. Whole-leaf wash improves chlorine efficacy for microbial reduction and prevents pathogen cross-contamination during fresh-cut lettuce processing.

    PubMed

    Nou, Xiangwu; Luo, Yaguang

    2010-06-01

    Currently, most fresh-cut processing facilities in the United States use chlorinated water or other sanitizer solutions for microbial reduction after lettuce is cut. Freshly cut lettuce releases significant amounts of organic matter that negatively impacts the effectiveness of chlorine or other sanitizers for microbial reduction. The objective of this study is to evaluate whether a sanitizer wash before cutting improves microbial reduction efficacy compared to a traditional postcutting sanitizer wash. Romaine lettuce leaves were quantitatively inoculated with E. coli O157:H7 strains and washed in chlorinated water before or after cutting, and E. coli O157:H7 cells that survived the washing process were enumerated to determine the effectiveness of microbial reduction for the 2 cutting and washing sequences. Whole-leaf washing in chlorinated water improved pathogen reduction by approximately 1 log unit over traditional cut-leaf sanitization. Similar improvement in the reduction of background microflora was also observed. Inoculated "Lollo Rossa" red lettuce leaves were mixed with noninoculated Green-Leaf lettuce leaves to evaluate pathogen cross-contamination during processing. High level (96.7% subsamples, average MPN 0.6 log CFU/g) of cross-contamination of noninoculated green leaves by inoculated red leaves was observed when mixed lettuce leaves were cut prior to washing in chlorinated water. In contrast, cross-contamination of noninoculated green leaves was significantly reduced (3.3% of subsamples, average MPN contamination prevention.

  14. Process envelopes for stabilisation/solidification of contaminated soil using lime-slag blend.

    PubMed

    Kogbara, Reginald B; Yi, Yaolin; Al-Tabbaa, Abir

    2011-09-01

    Stabilisation/solidification (S/S) has emerged as an efficient and cost-effective technology for the treatment of contaminated soils. However, the performance of S/S-treated soils is governed by several intercorrelated variables, which complicates the optimisation of the treatment process design. Therefore, it is desirable to develop process envelopes, which define the range of operating variables that result in acceptable performance. In this work, process envelopes were developed for S/S treatment of contaminated soil with a blend of hydrated lime (hlime) and ground granulated blast furnace slag (GGBS) as the binder (hlime/GGBS = 1:4). A sand contaminated with a mixture of heavy metals and petroleum hydrocarbons was treated with 5%, 10% and 20% binder dosages, at different water contents. The effectiveness of the treatment was assessed using unconfined compressive strength (UCS), permeability, acid neutralisation capacity and contaminant leachability with pH, at set periods. The UCS values obtained after 28 days of treatment were up to ∼800 kPa, which is quite low, and permeability was ∼10(-8) m/s, which is higher than might be required. However, these values might be acceptable in some scenarios. The binder significantly reduced the leachability of cadmium and nickel. With the 20% dosage, both metals met the waste acceptance criteria for inert waste landfill and relevant environmental quality standards. The results show that greater than 20% dosage would be required to achieve a balance of acceptable mechanical and leaching properties. Overall, the process envelopes for different performance criteria depend on the end-use of the treated material.

  15. Coagulation-flocculation process applied to wastewaters generated in hydrocarbon-contaminated soil washing: Interactions among coagulant and flocculant concentrations and pH value.

    PubMed

    Torres, Luis G; Belloc, Claudia; Vaca, Mabel; Iturbe, Rosario; Bandala, Erick R

    2009-11-01

    Wastewater produced in the contaminated soil washing was treated by means of coagulation-flocculation (CF) process. The wastewater contained petroleum hydrocarbons, a surfactant, i.e., sodium dodecyl sulfate (SDS) as well as salts, brownish organic matter and other constituents that were lixiviated from the soil during the washing process. The main goal of this work was to develop a process for treating the wastewaters generated when washing hydrocarbon-contaminated soils in such a way that it could be recycled to the washing process, and also be disposed at the end of the process properly. A second objective was to study the relationship among the coagulant and flocculant doses and the pH at which the CF process is developed, for systems where methylene blue active substances (MBAS) as well as oil and greases were present. The results for the selection of the right coagulant and flocculant type and dose, the optimum pH value for the CF process and the interactions among the three parameters are detailed along this work. The best coagulant and flocculant were FeCl(3) and Tecnifloc 998 at doses of 4,000 and 1 mg/L, correspondingly at pH of 5. These conditions gave color, turbidity, chemical oxygen demand (COD) and conductivity removals of 99.8, 99.6, 97.1 and 35%, respectively. It was concluded that it is feasible to treat the wastewaters generated in the contaminated soil washing process through CF process, and therefore, wastewaters could be recycled to the washing process or disposed to drainage.

  16. Evaluation of processing factors for selected organic contaminants during virgin olive oil production: Distribution of BTEXS during olives processing.

    PubMed

    López-Blanco, Rafael; Gilbert-López, Bienvenida; Rojas-Jiménez, Rubén; Robles-Molina, José; Ramos-Martos, Natividad; García-Reyes, Juan F; Molina-Díaz, Antonio

    2016-05-15

    The presence of BTEXS (benzene, toluene, ethylbenzene, xylenes and styrene) in virgin olive oils can be attributed to environmental contamination, but also to biological processes during oil lipogenesis (styrene). In this work, the processing factor of BTEXS from olives to olive oil during its production was evaluated at lab-scale with an Abencor system. Benzene showed the lowest processing factor (15%), whereas toluene and xylenes showed an intermediate behavior (with 40-60% efficiency), and ethylbenzene and styrene were completely transferred (100%). In addition, an attempt to examine the contribution of potential sources to olives contamination with BTEXS was carried out for the first time. Two types of olives samples were classified according to their proximity to the contamination source (road). Although higher levels of BTEXS were found in samples close to roads, the concentrations were relatively low and do not constitute a major contribution to BTEXS usually detected in olive oil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Contamination and changes of food factors during processing with modeling applications-safety related issues

    USDA-ARS?s Scientific Manuscript database

    Chemical and microbiological contamination of food during processing and preservation can result in foodborne illness outbreaks and food poisoning. Chemical contaminations can occur through exposure of foods to illegal additives, pesticides and fertilizer residues, toxic compounds formed by microbes...

  18. Process Upsets Involving Trace Contaminant Control Systems

    NASA Technical Reports Server (NTRS)

    Graf, John C.; Perry, Jay; Wright, John; Bahr, Jim

    2000-01-01

    Paradoxically, trace contaminant control systems that suffer unexpected upsets and malfunctions can release hazardous gaseous contaminants into a spacecraft cabin atmosphere causing potentially serious toxicological problems. Trace contaminant control systems designed for spaceflight typically employ a combination of adsorption beds and catalytic oxidation reactors to remove organic and inorganic trace contaminants from the cabin atmosphere. Interestingly, the same design features and attributes which make these systems so effective for purifying a spacecraft's atmosphere can also make them susceptible to system upsets. Cabin conditions can be contributing causes of phenomena such as adsorbent "rollover" and catalyst poisoning can alter a systems performance and in some in stances release contamination into the cabin. Evidence of these phenomena has been observed both in flight and during ground-based tests. The following discussion describes specific instances of system upsets found in trace contaminant control systems, groups these specific upsets into general hazard classifications, and recommends ways to minimize these hazards.

  19. Electrochemical Processes for In-Situ Treatment of Contaminated Soils - Final Report - 09/15/1996 - 01/31/2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Chin-Pao

    2001-05-31

    This project will study electrochemical processes for the in situ treatment of soils contaminated by mixed wastes, i.e., organic and inorganic. Soil samples collected form selected DOE waste sites will be characterized for specific organic and metal contaminants and hydraulic permeability. The soil samples are then subject to desorption experiments under various physical-chemical conditions such as pH and the presence of surfactants. Batch electro-osmosis experiments will be conducted to study the transport of contaminants in the soil-water systems. Organic contaminants that are released from the soil substrate will be treated by an advanced oxidation process, i.e., electron-Fantan. Finally, laboratory reactormore » integrating the elector-osmosis and elector-Fantan processes will be used to study the treatment of contaminated soil in situ.« less

  20. A Mathematical Model for Pathogen Cross-Contamination Dynamics during the Postharvest Processing of Leafy Greens.

    PubMed

    Mokhtari, Amir; Oryang, David; Chen, Yuhuan; Pouillot, Regis; Van Doren, Jane

    2018-01-08

    We developed a probabilistic mathematical model for the postharvest processing of leafy greens focusing on Escherichia coli O157:H7 contamination of fresh-cut romaine lettuce as the case study. Our model can (i) support the investigation of cross-contamination scenarios, and (ii) evaluate and compare different risk mitigation options. We used an agent-based modeling framework to predict the pathogen prevalence and levels in bags of fresh-cut lettuce and quantify spread of E. coli O157:H7 from contaminated lettuce to surface areas of processing equipment. Using an unbalanced factorial design, we were able to propagate combinations of random values assigned to model inputs through different processing steps and ranked statistically significant inputs with respect to their impacts on selected model outputs. Results indicated that whether contamination originated on incoming lettuce heads or on the surface areas of processing equipment, pathogen prevalence among bags of fresh-cut lettuce and batches was most significantly impacted by the level of free chlorine in the flume tank and frequency of replacing the wash water inside the tank. Pathogen levels in bags of fresh-cut lettuce were most significantly influenced by the initial levels of contamination on incoming lettuce heads or surface areas of processing equipment. The influence of surface contamination on pathogen prevalence or levels in fresh-cut bags depended on the location of that surface relative to the flume tank. This study demonstrates that developing a flexible yet mathematically rigorous modeling tool, a "virtual laboratory," can provide valuable insights into the effectiveness of individual and combined risk mitigation options. © 2018 The Authors Risk Analysis published by Wiley Periodicals, Inc. on behalf of Society for Risk Analysis.

  1. Object reasoning for waste remediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pennock, K.A.; Bohn, S.J.; Franklin, A.L.

    1991-08-01

    A large number of contaminated waste sites across the United States await size remediation efforts. These sites can be physically complex, composed of multiple, possibly interacting, contaminants distributed throughout one or more media. The Remedial Action Assessment System (RAAS) is being designed and developed to support decisions concerning the selection of remediation alternatives. The goal of this system is to broaden the consideration of remediation alternatives, while reducing the time and cost of making these considerations. The Remedial Action Assessment System is a hybrid system, designed and constructed using object-oriented, knowledge- based systems, and structured programming techniques. RAAS uses amore » combination of quantitative and qualitative reasoning to consider and suggest remediation alternatives. The reasoning process that drives this application is centered around an object-oriented organization of remediation technology information. This paper describes the information structure and organization used to support this reasoning process. In addition, the paper describes the level of detail of the technology related information used in RAAS, discusses required assumptions and procedural implications of these assumptions, and provides rationale for structuring RAAS in this manner. 3 refs., 3 figs.« less

  2. Bacterial contamination of ex vivo processed PBPC products under clean room conditions.

    PubMed

    Ritter, Markus; Schwedler, Joachim; Beyer, Jörg; Movassaghi, Kamran; Mutters, Reinier; Neubauer, Andreas; Schwella, Nimrod

    2003-11-01

    Patients undergoing high-dose radio- and/or chemotherapy and autologous or allogeneic PBPC transplantation are at high risk for infections owing to profound immunosuppression. In this study, the rate of microbial contamination of ex vivo processed PBPC products was analyzed, comparing preparation under clean room conditions to standard laboratory conditions. After implementation of good manufacturing practice conditions in the two participating institutions, the microbial contamination rate of 366 PBPC harvests from 198 patients was determined under certified clean room conditions (Group A) from 2000 until 2002. To investigate influence of improved environmental conditions along with other parameters, this set of samples was compared with a historical control set of 1413 PBPC products, which have been processed ex vivo under a clean bench in a regular laboratory room and were harvested from 626 patients (Group B) from 1989 until 2000. In Group B microbial contamination was found in 74 PBPC products (5.2%) from 57 patients. In Group A microbial growth was detected in 3 leukapheresis products (0.8%) from 3 patients. After exclusion of PBPC products, which were probably contaminated before manipulation, statistical analysis showed a significant difference (chi2= 10.339; p < 0.001). These data suggest an impact of clean room conditions on the bacterial contamination rate of PBPC products. To identify confounding variables, variables like technique of leukapheresis, culture methodology, and microbial colonization of central venous catheters were taken into account. Further variables might be identified in following studies.

  3. Impact of Transport Crate Reuse and of Catching and Processing on Campylobacter and Salmonella Contamination of Broiler Chickens

    PubMed Central

    Slader, J.; Domingue, G.; Jørgensen, F.; McAlpine, K.; Owen, R. J.; Bolton, F. J.; Humphrey, T. J.

    2002-01-01

    The influence of transport, catching, and processing on contamination of broiler chickens with Salmonella and Campylobacter was investigated. Transport crates were reused with high frequency and were often still contaminated with Salmonella and Campylobacter when they arrived at the farm despite the fact that they were washed at the factory, and thus they were a potential route of infection. These organisms contaminated the feathers of previously Campylobacter- and Salmonella-negative birds going to the processing plant and were isolated from processed carcasses, albeit at a low frequency. The Campylobacter types which were the predominant organisms on the live birds when they arrived at the processing plant were not necessarily the types that were most frequently isolated from processed carcasses. This finding may reflect cross-contamination that occurred during processing or differences in the tolerance of the strains to the hostile environments that the bacteria experienced. The process of catching and putting the birds in crates significantly increased the chance of contamination with Campylobacter (P < 0.001). PMID:11823211

  4. Links between contaminant hotspots in low flow estuarine systems and altered sediment biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Sutherland, Michael D.; Dafforn, Katherine A.; Scanes, Peter; Potts, Jaimie; Simpson, Stuart L.; Sim, Vivian X. Y.; Johnston, Emma L.

    2017-11-01

    The urbanisation of coastal zones is a major threat to the health of global estuaries and has been linked to increased contamination (e.g. metals) and excess organic matter. Urban stormwater networks collect and funnel contaminants into waterways at point sources (e.g. stormdrains). Under dry, low flow conditions, these stormwater contaminants can accumulate in sediments over time and result in modifications to benthic sediment biogeochemical processes. To quantify these processes, this field study measured differences in benthic metabolism (CR, GPP, NEM) and sediment-water nutrient fluxes (NH3, NOx, PO4) associated with stormdrains (0 m, 200 m and 1000 m away) and increased water-retention (embayments vs channels). Significant changes to benthic metabolism were detected with distance from stormdrains, and with differences in water-retention rates, above natural spatial and temporal variation. Oxygen consumption was ∼50% higher at stormdrains (0 m) compared to 1000 m away and >70% higher at stormdrains (0 m) located in embayments compared to channels. Oxygen production also appeared to decrease with distance from stormdrains in embayments, but patterns were variable. These changes to benthic metabolism were of a magnitude expected to influence benthic nutrient cycling, but NH3, NOx and PO4 fluxes were generally low, and highly spatially and temporally variable. Overall, metal (Cu) contamination explained most of the variation in sediment biogeochemical processes between embayments and channels, while sediment grain size explained differences in fluxes with distance from stormdrains. Importantly, although there was evidence of increased productivity associated with stormdrains, we also detected evidence of early hypoxia suggesting that systems with legacy stormwater contaminants exist on a tipping point. Future work should investigate changes to sediment processes after a major rainfall event, when large and sudden inputs of potentially toxic contaminants occur

  5. Adaptive Image Processing Methods for Improving Contaminant Detection Accuracy on Poultry Carcasses

    USDA-ARS?s Scientific Manuscript database

    Technical Abstract A real-time multispectral imaging system has demonstrated a science-based tool for fecal and ingesta contaminant detection during poultry processing. In order to implement this imaging system at commercial poultry processing industry, the false positives must be removed. For doi...

  6. Investigating the Influence of Remedial Capping on the Hydrological, Geochemical, and Microbial Processes that Control Subsurface Contaminant Migration at WAG 5 on the Oak Ridge Reservation: Implications toward Long-Term Stewardship

    NASA Astrophysics Data System (ADS)

    Jardine, P. M.; Mehlhorn, T. L.

    2006-05-01

    The following research investigated the effectiveness of an aggressive, large scale remedial action that is occurring to subsurface waste trenches containing radioactive and organic waste at the Oak Ridge National Laboratory. The site is being remediated as one of the top cleanup prioritization for the Oak Ridge Accelerated Remediation endeavor. Site landlords, Bechtel Jacobs Co., LLC (BJC) are installing a minimal RCRA cap with the primary objective of controlling the infiltration of storm water into the hundreds of unconfined waste trenches containing radioactive and organic waste. The site now offers a unique scientific opportunity to track the kinetic evolution of post-cap processes influencing contaminant migration and immobilization, because we have many years of pre-cap coupled processes information and knowledge. Since the cap is certain to disrupt the near steady-state contaminant discharge profiles that have existed for many years from the site, we have been quantifying the influence of post-cap hydrological, geochemical, and microbial processes on contaminant discharge as a function of scale and time in an effort to assess local-scale cap influences versus regional scale groundwater flow influences on contaminant discharge. We have been allowed to maintain numerous groundwater monitoring wells at a field site and these have a rich historical data set with regard to hydrology, geochemistry, microbiology, and contaminant flux. Our objectives are to investigate cap induced changes in (1) groundwater and surface hydrology and contaminant flux, (2) geochemistry and contaminant speciation, and (3) microbial community structure and organic contaminant degradation and inorganic contaminant immobilization. Our approach monitors coupled processes during base-flow and during storm events in both the groundwater and surface water discharge from the site and the surrounding watershed. Pre- and post-cap data will than be modeled with a multiprocess, multicomponent

  7. Detection of microbial contamination during human islet isolation.

    PubMed

    Kin, Tatsuya; Rosichuk, Shawn; Shapiro, A M James; Lakey, Jonathan R T

    2007-01-01

    Current good manufacturing practice (cGMP) islet processing facilities provide an ultraclean environment for the safe production of clinical grade islets for transplantation into immunosuppressed diabetic recipients. The objective of this study was to monitor the rate of microbial contamination in islet products after implementation of good manufacturing practice conditions. Fluid samples for microbial contamination were collected at the following steps: from the pancreas transport solution upon arrival of the organ (n=157), after surface decontamination of the pancreas with antiseptic agents (n=89), from islet supernatant at the end of the isolation (n=104), and from islet supernatant as a final transplantable product after culture (n=53). Bacterial, fungal, and mycoplasma cultures were conducted for 2, 2, and 3 weeks, respectively. Microbial contamination was detected in 31% of transport solution. The contamination was not associated with the presence of the duodenum during the preservation, cold ischemia time, or procurement team (local vs. distant). Surface decontamination of the pancreas resulted in clearance of 92% of the microbial contamination. Six preparations at the end of the isolation revealed microbial growth. All were de novo contamination during the processing. Fifty-three preparations that met our release criteria in terms of product sterility were transplanted into type 1 diabetic patients. In two instances, positive culture of the islet preparation was reported after transplantation had occurred. No patient showed any clinical findings suggestive of infection or any radiological abnormalities suggestive of abscess; a single dose of antibiotic coverage was given routinely to recipients prior to islet infusion. Although transport solution carries a high risk of microbial contamination, most contaminants become undetectable during islet processing. Microbial contamination in final products is rare, but de novo contamination still occurs during

  8. Detection of Microbial Contamination during Human Islet Isolation.

    PubMed

    Kin, Tatsuya; Rosichuk, Shawn; Shapiro, A M James; Lakey, Jonathan R T

    2007-01-01

    Current good manufacturing practice (cGMP) islet processing facilities provide an ultraclean environment for the safe production of clinical grade islets for transplantation into immunosuppressed diabetic recipients. The objective of this study was to monitor the rate of microbial contamination in islet products after implementation of good manufacturing practice conditions. Fluid samples for microbial contamination were collected at the following steps: from the pancreas transport solution upon arrival of the organ (n = 157), after surface decontamination of the pancreas with antiseptic agents (n = 89), from islet supernatant at the end of the isolation (n = 104), and from islet supernatant as a final transplantable product after culture (n = 53). Bacterial, fungal, and mycoplasma cultures were conducted for 2, 2, and 3 weeks, respectively. Microbial contamination was detected in 31% of transport solution. The contamination was not associated with the presence of the duodenum during the preservation, cold ischemia time, or procurement team (local vs. distant). Surface decontamination of the pancreas resulted in clearance of 92% of the microbial contamination. Six preparations at the end of the isolation revealed microbial growth. All were de novo contamination during the processing. Fifty-three preparations that met our release criteria in terms of product sterility were transplanted into type 1 diabetic patients. In two instances, positive culture of the islet preparation was reported after transplantation had occurred. No patient showed any clinical findings suggestive of infection or any radiological abnormalities suggestive of abscess; a single dose of antibiotic coverage was given routinely to recipients prior to islet infusion. Although transport solution carries a high risk of microbial contamination, most contaminants become undetectable during islet processing. Microbial contamination in final products is rare, but de novo contamination still occurs

  9. Evaluation of a Candidate Trace Contaminant Control Subsystem Architecture: The High Velocity, Low Aspect Ratio (HVLA) Adsorption Process

    NASA Technical Reports Server (NTRS)

    Kayatin, Matthew J.; Perry, Jay L.

    2017-01-01

    Traditional gas-phase trace contaminant control adsorption process flow is constrained as required to maintain high contaminant single-pass adsorption efficiency. Specifically, the bed superficial velocity is controlled to limit the adsorption mass-transfer zone length relative to the physical adsorption bed; this is aided by traditional high-aspect ratio bed design. Through operation in this manner, most contaminants, including those with relatively high potential energy are readily adsorbed. A consequence of this operational approach, however, is a limited available operational flow margin. By considering a paradigm shift in adsorption architecture design and operations, in which flows of high superficial velocity are treated by low-aspect ratio sorbent beds, the range of well-adsorbed contaminants becomes limited, but the process flow is increased such that contaminant leaks or emerging contaminants of interest may be effectively controlled. To this end, the high velocity, low aspect ratio (HVLA) adsorption process architecture was demonstrated against a trace contaminant load representative of the International Space Station atmosphere. Two HVLA concept packaging designs (linear flow and radial flow) were tested. The performance of each design was evaluated and compared against computer simulation. Utilizing the HVLA process, long and sustained control of heavy organic contaminants was demonstrated.

  10. 36 CFR 218.10 - Objection time periods and process.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Objection time periods and... Objection time periods and process. (a) Time to file an objection. Written objections, including any... of objectors to ensure that their objection is received in a timely manner. (b) Computation of time...

  11. 36 CFR 218.10 - Objection time periods and process.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... calendar day (11:59 p.m. in the time zone of the receiving office) for objections filed by electronic means... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Objection time periods and... Objection time periods and process. (a) Time to file an objection. Written objections, including any...

  12. Identification of pixels with stray light and cloud shadow contaminations in the satellite ocean color data processing.

    PubMed

    Jiang, Lide; Wang, Menghua

    2013-09-20

    A new flag/masking scheme has been developed for identifying stray light and cloud shadow pixels that significantly impact the quality of satellite-derived ocean color products. Various case studies have been carried out to evaluate the performance of the new cloud contamination flag/masking scheme on ocean color products derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP). These include direct visual assessments, detailed quantitative case studies, objective statistic analyses, and global image examinations and comparisons. The National Oceanic and Atmospheric Administration (NOAA) Multisensor Level-1 to Level-2 (NOAA-MSL12) ocean color data processing system has been used in the study. The new stray light and cloud shadow identification method has been shown to outperform the current stray light flag in both valid data coverage and data quality of satellite-derived ocean color products. In addition, some cloud-related flags from the official VIIRS-SNPP data processing software, i.e., the Interface Data Processing System (IDPS), have been assessed. Although the data quality with the IDPS flags is comparable to that of the new flag implemented in the NOAA-MSL12 ocean color data processing system, the valid data coverage from the IDPS is significantly less than that from the NOAA-MSL12 using the new stray light and cloud shadow flag method. Thus, the IDPS flag/masking algorithms need to be refined and modified to reduce the pixel loss, e.g., the proposed new cloud contamination flag/masking can be implemented in IDPS VIIRS ocean color data processing.

  13. Remediating ethylbenzene-contaminated clayey soil by a surfactant-aided electrokinetic (SAEK) process.

    PubMed

    Yuan, Ching; Weng, Chih-Huang

    2004-10-01

    The objectives of this research are to investigate the remediation efficiency and electrokinetic behavior of ethylbenzene-contaminated clay by a surfactant-aided electrokinetic (SAEK) process under a potential gradient of 2 Vcm(-1). Experimental results indicated that the type of processing fluids played a key role in determining the removal performance of ethylbenzene from clay in the SAEK process. A mixed surfactant system consisted of 0.5% SDS and 2.0% PANNOX 110 showed the best performance of ethylbenzene removed in the SAEK system. The removal efficiency of ethylbenzene was determined to be 63-98% in SAEK system while only 40% was achieved in an electrokinetic system with tap water as processing fluid. It was found that ethylbenzene was accumulated in the vicinity of anode in an electrokinetic system with tap water as processing fluid. However, the concentration front of ethylbenzene was shifted toward cathode in the SAEK system. The electroosmotic permeability and power consumption were 0.17 x 10(-6)-3.01 x 10(-6) cm(2)V(-1)s(-1) and 52-123 kW h m(-3), respectively. The cost, including the expense of energy and surfactants, was estimated to be 5.15-12.65 USD m(-3) for SAEK systems, which was 2.0-4.9 times greater than that in the system of electrokinetic alone (2.6 USD m(-3)). Nevertheless, by taking the remediation efficiency of ethylbenzene and the energy expenditure into account for the overall process performance evaluation, the system SAEK was still a cost-effective alternative treatment method.

  14. Electrokinetic-enhanced bioremediation of organic contaminants: a review of processes and environmental applications.

    PubMed

    Gill, R T; Harbottle, M J; Smith, J W N; Thornton, S F

    2014-07-01

    There is current interest in finding sustainable remediation technologies for the removal of contaminants from soil and groundwater. This review focuses on the combination of electrokinetics, the use of an electric potential to move organic and inorganic compounds, or charged particles/organisms in the subsurface independent of hydraulic conductivity; and bioremediation, the destruction of organic contaminants or attenuation of inorganic compounds by the activity of microorganisms in situ or ex situ. The objective of the review is to examine the state of knowledge on electrokinetic bioremediation and critically evaluate factors which affect the up-scaling of laboratory and bench-scale research to field-scale application. It discusses the mechanisms of electrokinetic bioremediation in the subsurface environment at different micro and macroscales, the influence of environmental processes on electrokinetic phenomena and the design options available for application to the field scale. The review also presents results from a modelling exercise to illustrate the effectiveness of electrokinetics on the supply electron acceptors to a plume scale scenario where these are limiting. Current research needs include analysis of electrokinetic bioremediation in more representative environmental settings, such as those in physically heterogeneous systems in order to gain a greater understanding of the controlling mechanisms on both electrokinetics and bioremediation in those scenarios. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Contamination control in hybrid microelectronic modules. Part 3: Specifications for coating material and process controls

    NASA Technical Reports Server (NTRS)

    Himmel, R. P.

    1975-01-01

    Resin systems for coating hybrids prior to hermetic sealing are described. The resin systems are a flexible silicone junction resin system and a flexible cycloaliphatic epoxy resin system. The coatings are intended for application to the hybrid after all the chips have been assembled and wire bonded, but prior to hermetic sealing of the package. The purpose of the coating is to control particulate contamination by immobilizing particles and by passivating the hybrid. Recommended process controls for the purpose of minimizing contamination in hybrid microcircuit packages are given. Emphasis is placed on those critical hybrid processing steps in which contamination is most likely to occur.

  16. A signal processing framework for simultaneous detection of multiple environmental contaminants

    NASA Astrophysics Data System (ADS)

    Chakraborty, Subhadeep; Manahan, Michael P.; Mench, Matthew M.

    2013-11-01

    The possibility of large-scale attacks using chemical warfare agents (CWAs) has exposed the critical need for fundamental research enabling the reliable, unambiguous and early detection of trace CWAs and toxic industrial chemicals. This paper presents a unique approach for the identification and classification of simultaneously present multiple environmental contaminants by perturbing an electrochemical (EC) sensor with an oscillating potential for the extraction of statistically rich information from the current response. The dynamic response, being a function of the degree and mechanism of contamination, is then processed with a symbolic dynamic filter for the extraction of representative patterns, which are then classified using a trained neural network. The approach presented in this paper promises to extend the sensing power and sensitivity of these EC sensors by augmenting and complementing sensor technology with state-of-the-art embedded real-time signal processing capabilities.

  17. Analysis of Environmental Contamination resulting from ...

    EPA Pesticide Factsheets

    Catastrophic incidents can generate a large number of samples with analytically diverse types including forensic, clinical, environmental, food, and others. Environmental samples include water, wastewater, soil, air, urban building and infrastructure materials, and surface residue. Such samples may arise not only from contamination from the incident but also from the multitude of activities surrounding the response to the incident, including decontamination. This document summarizes a range of activities to help build laboratory capability in preparation for analysis following a catastrophic incident, including selection and development of fit-for-purpose analytical methods for chemical, biological, and radiological contaminants. Fit-for-purpose methods are those which have been selected to meet project specific data quality objectives. For example, methods could be fit for screening contamination in the early phases of investigation of contamination incidents because they are rapid and easily implemented, but those same methods may not be fit for the purpose of remediating the environment to safe levels when a more sensitive method is required. While the exact data quality objectives defining fitness-for-purpose can vary with each incident, a governing principle of the method selection and development process for environmental remediation and recovery is based on achieving high throughput while maintaining high quality analytical results. This paper illu

  18. Dynamic information processing states revealed through neurocognitive models of object semantics

    PubMed Central

    Clarke, Alex

    2015-01-01

    Recognising objects relies on highly dynamic, interactive brain networks to process multiple aspects of object information. To fully understand how different forms of information about objects are represented and processed in the brain requires a neurocognitive account of visual object recognition that combines a detailed cognitive model of semantic knowledge with a neurobiological model of visual object processing. Here we ask how specific cognitive factors are instantiated in our mental processes and how they dynamically evolve over time. We suggest that coarse semantic information, based on generic shared semantic knowledge, is rapidly extracted from visual inputs and is sufficient to drive rapid category decisions. Subsequent recurrent neural activity between the anterior temporal lobe and posterior fusiform supports the formation of object-specific semantic representations – a conjunctive process primarily driven by the perirhinal cortex. These object-specific representations require the integration of shared and distinguishing object properties and support the unique recognition of objects. We conclude that a valuable way of understanding the cognitive activity of the brain is though testing the relationship between specific cognitive measures and dynamic neural activity. This kind of approach allows us to move towards uncovering the information processing states of the brain and how they evolve over time. PMID:25745632

  19. [Contamination with genetically modified maize MON863 of processed foods on the market].

    PubMed

    Ohgiya, Yoko; Sakai, Masaaki; Miyashita, Taeko; Yano, Koichi

    2009-06-01

    Genetically modified maize MON863 (MON863), which has passed a safety examination in Japan, is commercially cultivated in the United States as a food and a resource for fuel. Maize is an anemophilous flower, which easily hybridizes. However, an official method for quantifying the content of MON863 has not been provided yet in Japan. We here examined MON863 contamination in maize-processed foods that had no labeling indicating of the use of genetically modified maize.From March 2006 to July 2008, we purchased 20 frozen maize products, 8 maize powder products, 7 canned maize products and 4 other maize processed foods. Three primer pairs named MON 863 primer, MON863-1, and M3/M4 for MON863-specific integrated cassette were used for qualitative polymerase chain reaction (PCR). A primer pair "SSIIb-3" for starch synthase gene was used to confirm the quality of extracted DNA. The starch synthase gene was detected in all samples. In qualitative tests, the MON863-specific fragments were detected in 7 (18%) maize powder products out of the 39 processed foods with all the three primer pairs.We concluded that various maize processed foods on the market were contaminated with MON863. It is important to accumulate further information on MON863 contamination in maize-processed foods that have no label indication of the use of genetically modified maize.

  20. Color Image Processing and Object Tracking System

    NASA Technical Reports Server (NTRS)

    Klimek, Robert B.; Wright, Ted W.; Sielken, Robert S.

    1996-01-01

    This report describes a personal computer based system for automatic and semiautomatic tracking of objects on film or video tape, developed to meet the needs of the Microgravity Combustion and Fluids Science Research Programs at the NASA Lewis Research Center. The system consists of individual hardware components working under computer control to achieve a high degree of automation. The most important hardware components include 16-mm and 35-mm film transports, a high resolution digital camera mounted on a x-y-z micro-positioning stage, an S-VHS tapedeck, an Hi8 tapedeck, video laserdisk, and a framegrabber. All of the image input devices are remotely controlled by a computer. Software was developed to integrate the overall operation of the system including device frame incrementation, grabbing of image frames, image processing of the object's neighborhood, locating the position of the object being tracked, and storing the coordinates in a file. This process is performed repeatedly until the last frame is reached. Several different tracking methods are supported. To illustrate the process, two representative applications of the system are described. These applications represent typical uses of the system and include tracking the propagation of a flame front and tracking the movement of a liquid-gas interface with extremely poor visibility.

  1. Contaminant Attenuation Processes at Mining Sites

    EPA Science Inventory

    Monitored natural attenuation is sometimes used in combination with active treatment technologies to achieve site-specific remediation objectives. The global imprint of acid drainage problems at mining sites, however, is a clear reminder that in most cases natural processes are ...

  2. Fast and accurate edge orientation processing during object manipulation

    PubMed Central

    Flanagan, J Randall; Johansson, Roland S

    2018-01-01

    Quickly and accurately extracting information about a touched object’s orientation is a critical aspect of dexterous object manipulation. However, the speed and acuity of tactile edge orientation processing with respect to the fingertips as reported in previous perceptual studies appear inadequate in these respects. Here we directly establish the tactile system’s capacity to process edge-orientation information during dexterous manipulation. Participants extracted tactile information about edge orientation very quickly, using it within 200 ms of first touching the object. Participants were also strikingly accurate. With edges spanning the entire fingertip, edge-orientation resolution was better than 3° in our object manipulation task, which is several times better than reported in previous perceptual studies. Performance remained impressive even with edges as short as 2 mm, consistent with our ability to precisely manipulate very small objects. Taken together, our results radically redefine the spatial processing capacity of the tactile system. PMID:29611804

  3. REMOVAL OF PCBS FROM A CONTAMINATED SOIL USING CF-SYSTEMS SOLVENT EXTRACTION PROCESS

    EPA Science Inventory

    The US EPA's START team in cooperation with EPA's SITE program evaluated a pilot scale solvent extraction process developed by CF-Systems. This process uses liquified propane to extract organic contaminants from soils, sludges, and sediments. A pilot-scale evaluation was conducte...

  4. Development of an Integrated Multi-Contaminant Removal Process Applied to Warm Syngas Cleanup for Coal-Based Advanced Gasification Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Howard

    2010-11-30

    This project met the objective to further the development of an integrated multi-contaminant removal process in which H2S, NH3, HCl and heavy metals including Hg, As, Se and Cd present in the coal-derived syngas can be removed to specified levels in a single/integrated process step. The process supports the mission and goals of the Department of Energy's Gasification Technologies Program, namely to enhance the performance of gasification systems, thus enabling U.S. industry to improve the competitiveness of gasification-based processes. The gasification program will reduce equipment costs, improve process environmental performance, and increase process reliability and flexibility. Two sulfur conversion conceptsmore » were tested in the laboratory under this project, i.e., the solventbased, high-pressure University of California Sulfur Recovery Process High Pressure (UCSRP-HP) and the catalytic-based, direct oxidation (DO) section of the CrystaSulf-DO process. Each process required a polishing unit to meet the ultra-clean sulfur content goals of <50 ppbv (parts per billion by volume) as may be necessary for fuel cells or chemical production applications. UCSRP-HP was also tested for the removal of trace, non-sulfur contaminants, including ammonia, hydrogen chloride, and heavy metals. A bench-scale unit was commissioned and limited testing was performed with simulated syngas. Aspen-Plus®-based computer simulation models were prepared and the economics of the UCSRP-HP and CrystaSulf-DO processes were evaluated for a nominal 500 MWe, coal-based, IGCC power plant with carbon capture. This report covers the progress on the UCSRP-HP technology development and the CrystaSulf-DO technology.« less

  5. MICROBIAL PROCESSES AFFECTING MONITORED NATURAL ATTENUATION OF CONTAMINANTS IN THE SUBSURFACE

    EPA Science Inventory

    Among the alternatives considered for the remediation of soil and ground water at hazardous wastes sites are the use of natural processes to reduce or remove the contaminants of concern. Under favorable conditions, the use of natural attenuation can result in significant cost sa...

  6. Ozone contamination in aircraft cabins: Objectives and approach

    NASA Technical Reports Server (NTRS)

    Perkins, P. J.

    1979-01-01

    Three panels were developed to solve the problem of ozone contamination in aircraft cabins. The problem is defined from direct in-flight measurements of ozone concentrations inside and outside airliners in their normal operations. Solutions to the cabin ozone problem are discussed under two areas: (1) flight planning to avoid high ozone concentrations, and (2) ozone destruction techniques installed in the cabin air systems.

  7. Research of polishing process to control the iron contamination on the magnetorheological finished KDP crystal surface.

    PubMed

    Chen, Shaoshan; Li, Shengyi; Peng, Xiaoqiang; Hu, Hao; Tie, Guipeng

    2015-02-20

    A new nonaqueous and abrasive-free magnetorheological finishing (MRF) method is adopted for processing a KDP crystal. MRF polishing is easy to result in the embedding of carbonyl iron (CI) powders; meanwhile, Fe contamination on the KDP crystal surface will affect the laser induced damage threshold seriously. This paper puts forward an appropriate MRF polishing process to avoid the embedding. Polishing results show that the embedding of CI powders can be avoided by controlling the polishing parameters. Furthermore, on the KDP crystal surface, magnetorheological fluids residua inevitably exist after polishing and in which the Fe contamination cannot be removed completely by initial ultrasonic cleaning. To solve this problem, a kind of ion beam figuring (IBF) polishing is introduced to remove the impurity layer. Then the content of Fe element contamination and the depth of impurity elements are measured by time of flight secondary ion mass spectrometry. The measurement results show that there are no CI powders embedding in the MRF polished surface and no Fe contamination after the IBF polishing process, respectively. That verifies the feasibility of MRF polishing-IBF polishing (cleaning) for processing a KDP crystal.

  8. Materials SIG quantification and characterization of surface contaminants

    NASA Technical Reports Server (NTRS)

    Crutcher, E. Russ

    1992-01-01

    When LDEF entered orbit its cleanliness was approximately a MIL-STD-1246B Level 2000C. Its burden of contaminants included particles from every part of its history including a relatively small contribution from the shuttle bay itself. Although this satellite was far from what is normally considered clean in the aerospace industry, contaminating events in orbit and from processing after recovery were easily detected. The molecular contaminants carried into orbit were dwarfed by the heavy deposition of UV polymerized films from outgassing urethane paints and silicone based materials. Impacts by relatively small objects in orbit could create particulate contaminants that easily dominated the particle counts within a centimeter of the impact site. During the recovery activities LDEF was 'sprayed' with a liquid high in organics and water soluble salts. With reentry turbulence, vibration, and gravitational loading particulate contaminants were redistributed about LDEF and the shuttle bay.

  9. Remediation of nitrate-contaminated groundwater by PRB-Electrokinetic integrated process.

    PubMed

    Ghaeminia, Mahdyar; Mokhtarani, Nader

    2018-05-30

    Activated carbon is used as a reactive media in Permeable Reactive Barrier (PRB) for the removal of inorganic contaminants such as nitrate from groundwater. Since removal rate by this media decreases by time and due to the high costs of excavation and replacement of new media, the usage of activated carbon as an adsorbent in PRB is limited. The present study aimed to solve this defect by integrating electrokinetic process and PRB, using in-situ regeneration of activated carbon. This research was carried out on a laboratory scale using synthetically contaminated water and modified activated carbon as a reactive media in PRB. The effects of pH, nitrate concentration, carbon to sand ratio, and also electric gradient on the performance of the process were evaluated, and optimal conditions were determined, to increase the system longevity. According to the results, by applying an electric gradient of 1.25 V cm -1 to the PRB alone process in optimum operating condition (135 mg L -1 initial nitrate concentration, flow rate of 2.3 L min -1 , pH = 6.8, and carbon to sand ratios of 1:1) the adsorbent capacity increased by 90%. Under these conditions, the integrated process could keep nitrate concentration in the effluent below the standard limit for about 111 h, while the PRB alone process could do the same job for about 59 h. Also, SEM analysis showed that by applying electrokinetic process, activated carbon was regenerated. Integration of electrokinetic process and PRB was also caused nitrate to transfer from activated carbon media into the soil layer above the system. This nitrate-rich soil has the potential for reuse in agricultural activities. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Holistic processing of impossible objects: evidence from Garner's speeded-classification task.

    PubMed

    Freud, Erez; Avidan, Galia; Ganel, Tzvi

    2013-12-18

    Holistic processing, the decoding of the global structure of a stimulus while the local parts are not explicitly represented, is a basic characteristic of object perception. The current study was aimed to test whether such a representation could be created even for objects that violate fundamental principles of spatial organization, namely impossible objects. Previous studies argued that these objects cannot be represented holistically in long-term memory because they lack coherent 3D structure. Here, we utilized Garner's speeded classification task to test whether the perception of possible and impossible objects is mediated by similar holistic processing mechanisms. To this end, participants were asked to make speeded classifications of one object dimension while an irrelevant dimension was kept constant (baseline condition) or when this dimension varied (filtering condition). It is well accepted that ignoring the irrelevant dimension is impossible when holistic perception is mandatory, thus the extent of Garner interference in performance between the baseline and filtering conditions serves as an index of holistic processing. Critically, in Experiment 1, similar levels of Garner interference were found for possible and impossible objects implying holistic perception of both object types. Experiment 2 extended these results and demonstrated that even when depth information was explicitly processed, participants were still unable to process one dimension (width/depth) while ignoring the irrelevant dimension (depth/width, respectively). The results of Experiment 3 replicated the basic pattern found in Experiments 1 and 2 using a novel set of object exemplars. In Experiment 4, we used possible and impossible versions of the Penrose triangles in which information about impossibility is embedded in the internal elements of the objects which participant were explicitly asked to judge. As in Experiments 1-3, similar Garner interference was found for possible and

  11. Verbal Labels Modulate Perceptual Object Processing in 1-Year-Old Children

    ERIC Educational Resources Information Center

    Gliga, Teodora; Volein, Agnes; Csibra, Gergely

    2010-01-01

    Whether verbal labels help infants visually process and categorize objects is a contentious issue. Using electroencephalography, we investigated whether possessing familiar or novel labels for objects directly enhances 1-year-old children's neural processes underlying the perception of those objects. We found enhanced gamma-band (20-60 Hz)…

  12. Hydrous pyrolysis/oxidation process for in situ destruction of chlorinated hydrocarbon and fuel hydrocarbon contaminants in water and soil

    DOEpatents

    Knauss, Kevin G.; Copenhaver, Sally C.; Aines, Roger D.

    2000-01-01

    In situ hydrous pyrolysis/oxidation process is useful for in situ degradation of hydrocarbon water and soil contaminants. Fuel hydrocarbons, chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, petroleum distillates and other organic contaminants present in the soil and water are degraded by the process involving hydrous pyrolysis/oxidation into non-toxic products of the degradation. The process uses heat which is distributed through soils and water, optionally combined with oxygen and/or hydrocarbon degradation catalysts, and is particularly useful for remediation of solvent, fuel or other industrially contaminated sites.

  13. Selective visual attention in object detection processes

    NASA Astrophysics Data System (ADS)

    Paletta, Lucas; Goyal, Anurag; Greindl, Christian

    2003-03-01

    Object detection is an enabling technology that plays a key role in many application areas, such as content based media retrieval. Attentive cognitive vision systems are here proposed where the focus of attention is directed towards the most relevant target. The most promising information is interpreted in a sequential process that dynamically makes use of knowledge and that enables spatial reasoning on the local object information. The presented work proposes an innovative application of attention mechanisms for object detection which is most general in its understanding of information and action selection. The attentive detection system uses a cascade of increasingly complex classifiers for the stepwise identification of regions of interest (ROIs) and recursively refined object hypotheses. While the most coarse classifiers are used to determine first approximations on a region of interest in the input image, more complex classifiers are used for more refined ROIs to give more confident estimates. Objects are modelled by local appearance based representations and in terms of posterior distributions of the object samples in eigenspace. The discrimination function to discern between objects is modeled by a radial basis functions (RBF) network that has been compared with alternative networks and been proved consistent and superior to other artifical neural networks for appearance based object recognition. The experiments were led for the automatic detection of brand objects in Formula One broadcasts within the European Commission's cognitive vision project DETECT.

  14. Using Multi-Objective Genetic Programming to Synthesize Stochastic Processes

    NASA Astrophysics Data System (ADS)

    Ross, Brian; Imada, Janine

    Genetic programming is used to automatically construct stochastic processes written in the stochastic π-calculus. Grammar-guided genetic programming constrains search to useful process algebra structures. The time-series behaviour of a target process is denoted with a suitable selection of statistical feature tests. Feature tests can permit complex process behaviours to be effectively evaluated. However, they must be selected with care, in order to accurately characterize the desired process behaviour. Multi-objective evaluation is shown to be appropriate for this application, since it permits heterogeneous statistical feature tests to reside as independent objectives. Multiple undominated solutions can be saved and evaluated after a run, for determination of those that are most appropriate. Since there can be a vast number of candidate solutions, however, strategies for filtering and analyzing this set are required.

  15. Figure-ground organization and object recognition processes: an interactive account.

    PubMed

    Vecera, S P; O'Reilly, R C

    1998-04-01

    Traditional bottom-up models of visual processing assume that figure-ground organization precedes object recognition. This assumption seems logically necessary: How can object recognition occur before a region is labeled as figure? However, some behavioral studies find that familiar regions are more likely to be labeled figure than less familiar regions, a problematic finding for bottom-up models. An interactive account is proposed in which figure-ground processes receive top-down input from object representations in a hierarchical system. A graded, interactive computational model is presented that accounts for behavioral results in which familiarity effects are found. The interactive model offers an alternative conception of visual processing to bottom-up models.

  16. Occurrence of rhodamine B contamination in capsicum caused by agricultural materials during the vegetation process.

    PubMed

    Gao, Wei; Wu, Naiying; Du, Jingjing; Zhou, Li; Lian, Yunhe; Wang, Lei; Liu, Dengshuai

    2016-08-15

    This paper reports on the environmental rhodamine B (RhB) contamination in capsicum caused by agricultural materials during the vegetation process. Ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was applied to detect 64 capsicum samples from China, Peru, India and Burma. Results demonstrated that RhB was found in all samples at low concentrations (0.11-0.98 μg/kg), indicating RhB contamination in capsicums is probably a ubiquitous phenomenon. In addition, studies into soils, roots, stems and leaves in Handan of Hebei province, China showed that the whole ecologic chain had been contaminated with RhB with the highest levels in leaves. The investigation into the agricultural environment in Handan of Hebei province and Korla of Xinjiang province, China demonstrated that the appearances of RhB contamination in the tested capsicums are mainly due to the agricultural materials contamination. The study verified that environmental contamination should be an important origin for the RhB contamination in capsicum fruits. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Discourse accessibility constraints in children’s processing of object relative clauses

    PubMed Central

    Haendler, Yair; Kliegl, Reinhold; Adani, Flavia

    2015-01-01

    Children’s poor performance on object relative clauses has been explained in terms of intervention locality. This approach predicts that object relatives with a full DP head and an embedded pronominal subject are easier than object relatives in which both the head noun and the embedded subject are full DPs. This prediction is shared by other accounts formulated to explain processing mechanisms. We conducted a visual-world study designed to test the off-line comprehension and on-line processing of object relatives in German-speaking 5-year-olds. Children were tested on three types of object relatives, all having a full DP head noun and differing with respect to the type of nominal phrase that appeared in the embedded subject position: another full DP, a 1st- or a 3rd-person pronoun. Grammatical skills and memory capacity were also assessed in order to see whether and how they affect children’s performance. Most accurately processed were object relatives with 1st-person pronoun, independently of children’s language and memory skills. Performance on object relatives with two full DPs was overall more accurate than on object relatives with 3rd-person pronoun. In the former condition, children with stronger grammatical skills accurately processed the structure and their memory abilities determined how fast they were; in the latter condition, children only processed accurately the structure if they were strong both in their grammatical skills and in their memory capacity. The results are discussed in the light of accounts that predict different pronoun effects like the ones we find, which depend on the referential properties of the pronouns. We then discuss which role language and memory abilities might have in processing object relatives with various embedded nominal phrases. PMID:26157410

  18. An efficient multi-objective optimization method for water quality sensor placement within water distribution systems considering contamination probability variations.

    PubMed

    He, Guilin; Zhang, Tuqiao; Zheng, Feifei; Zhang, Qingzhou

    2018-06-20

    Water quality security within water distribution systems (WDSs) has been an important issue due to their inherent vulnerability associated with contamination intrusion. This motivates intensive studies to identify optimal water quality sensor placement (WQSP) strategies, aimed to timely/effectively detect (un)intentional intrusion events. However, these available WQSP optimization methods have consistently presumed that each WDS node has an equal contamination probability. While being simple in implementation, this assumption may do not conform to the fact that the nodal contamination probability may be significantly regionally varied owing to variations in population density and user properties. Furthermore, the low computational efficiency is another important factor that has seriously hampered the practical applications of the currently available WQSP optimization approaches. To address these two issues, this paper proposes an efficient multi-objective WQSP optimization method to explicitly account for contamination probability variations. Four different contamination probability functions (CPFs) are proposed to represent the potential variations of nodal contamination probabilities within the WDS. Two real-world WDSs are used to demonstrate the utility of the proposed method. Results show that WQSP strategies can be significantly affected by the choice of the CPF. For example, when the proposed method is applied to the large case study with the CPF accounting for user properties, the event detection probabilities of the resultant solutions are approximately 65%, while these values are around 25% for the traditional approach, and such design solutions are achieved approximately 10,000 times faster than the traditional method. This paper provides an alternative method to identify optimal WQSP solutions for the WDS, and also builds knowledge regarding the impacts of different CPFs on sensor deployments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Contamination of salmon fillets and processing plants with spoilage bacteria.

    PubMed

    Møretrø, Trond; Moen, Birgitte; Heir, Even; Hansen, Anlaug Å; Langsrud, Solveig

    2016-11-21

    The processing environment of salmon processing plants represents a potential major source of bacteria causing spoilage of fresh salmon. In this study, we have identified major contamination routes of important spoilage associated species within the genera Pseudomonas, Shewanella and Photobacterium in pre-rigor processing of salmon. Bacterial counts and culture-independent 16S rRNA gene analysis on salmon fillet from seven processing plants showed higher levels of Pseudomonas spp. and Shewanella spp. in industrially processed fillets compared to salmon processed under strict hygienic conditions. Higher levels of Pseudomonas spp. and Shewanella spp. were found on fillets produced early on the production day compared to later processed fillets. The levels of Photobacterium spp. were not dependent on the processing method or time of processing. In follow-up studies of two plants, bacterial isolates (n=2101) from the in-plant processing environments (sanitized equipment/machines and seawater) and from salmon collected at different sites in the production were identified by partial 16S rRNA gene sequencing. Pseudomonas spp. dominated in equipment/machines after sanitation with 72 and 91% of samples from the two plants being Pseudomonas-positive. The phylogenetic analyses, based on partial 16S rRNA gene sequencing, showed 48 unique sequence profiles of Pseudomonas of which two were dominant. Only six profiles were found on both machines and in fillets in both plants. Shewanella spp. were found on machines after sanitation in the slaughter department while Photobacterium spp. were not detected after sanitation in any parts of the plants. Shewanella spp. and Photobacterium spp. were found on salmon in the slaughter departments. Shewanella was frequently present in seawater tanks used for bleeding/short term storage. In conclusion, this study provides new knowledge on the processing environment as a source of contamination of salmon fillets with Pseudomonas spp. and

  20. Decontamination and decommissioning plan for processing contaminated NaK at the INEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaRue, D.M.; Dolenc, M.R.

    1986-09-01

    This decontamination and decommissioning (D D) plan describes the work elements and project management plan for processing four containers of contaminated sodium/potassium (NaK) and returning the Army Reentry Vehicle Facility Site (ARVFS) to a reusable condition. The document reflects the management plan for this project before finalizing the conceptual design and preliminary prototype tests of the reaction kinetics. As a result, the safety, environmental, and accident analyses are addressed as preliminary assessments before completion at a later date. ARVFS contains an earth-covered bunker, a cylindrical test pit and metal shed, and a cable trench connecting the two items. The bunkermore » currently stores the four containers of NaK from the meltdown of the EBR-1 Mark II core. The D D project addressed in this plan involves processing the contaminated NaK and returning the ARVFS to potential reuse after cleanup.« less

  1. Decontamination and decommissioning plan for processing contaminated NaK at the INEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaRue, D.M.; Dolenc, M.R.

    1986-09-01

    This decontamination and decommissioning (D&D) plan describes the work elements and project management plan for processing four containers of contaminated sodium/potassium (NaK) and returning the Army Reentry Vehicle Facility Site (ARVFS) to a reusable condition. The document reflects the management plan for this project before finalizing the conceptual design and preliminary prototype tests of the reaction kinetics. As a result, the safety, environmental, and accident analyses are addressed as preliminary assessments before completion at a later date. ARVFS contains an earth-covered bunker, a cylindrical test pit and metal shed, and a cable trench connecting the two items. The bunker currentlymore » stores the four containers of NaK from the meltdown of the EBR-1 Mark II core. The D&D project addressed in this plan involves processing the contaminated NaK and returning the ARVFS to potential reuse after cleanup.« less

  2. Listeria monocytogenes in Food-Processing Facilities, Food Contamination, and Human Listeriosis: The Brazilian Scenario.

    PubMed

    Camargo, Anderson Carlos; Woodward, Joshua John; Call, Douglas Ruben; Nero, Luís Augusto

    2017-11-01

    Listeria monocytogenes is a foodborne pathogen that contaminates food-processing environments and persists within biofilms on equipment, utensils, floors, and drains, ultimately reaching final products by cross-contamination. This pathogen grows even under high salt conditions or refrigeration temperatures, remaining viable in various food products until the end of their shelf life. While the estimated incidence of listeriosis is lower than other enteric illnesses, infections caused by L. monocytogenes are more likely to lead to hospitalizations and fatalities. Despite the description of L. monocytogenes occurrence in Brazilian food-processing facilities and foods, there is a lack of consistent data regarding listeriosis cases and outbreaks directly associated with food consumption. Listeriosis requires rapid treatment with antibiotics and most drugs suitable for Gram-positive bacteria are effective against L. monocytogenes. Only a minority of clinical antibiotic-resistant L. monocytogenes strains have been described so far; whereas many strains recovered from food-processing facilities and foods exhibited resistance to antimicrobials not suitable against listeriosis. L. monocytogenes control in food industries is a challenge, demanding proper cleaning and application of sanitization procedures to eliminate this foodborne pathogen from the food-processing environment and ensure food safety. This review focuses on presenting the L. monocytogenes distribution in food-processing environment, food contamination, and control in the food industry, as well as the consequences of listeriosis to human health, providing a comparison of the current Brazilian situation with the international scenario.

  3. Expert reasoning within an object-oriented framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohn, S.J.; Pennock, K.A.

    1991-10-01

    A large number of contaminated waste sites across the United States await site remediation efforts. These sites can be physically complex, composed of multiple, possibly interacting, contaminants distributed throughout one or more media. The Remedial Action Assessment System (RAAS) is being designed and developed to support decisions concerning the selection of remediation alternatives. The goal of this system is to broaden the consideration of remediation alternatives, while reducing the time and cost of making these considerations. The Remedial Action Assessment System was designed and constructed using object-oriented techniques. It is a hybrid system which uses a combination of quantitative andmore » qualitative reasoning to consider and suggest remediation alternatives. the reasoning process that drives this application is centered around an object-oriented organization of remediation technology information. This paper briefly describes the waste remediation problem and then discusses the information structure and organization RAAS utilizes to address it. 4 refs., 4 figs.« less

  4. EXPERIMENTS WITH A RESIN-IN-PULP PROCESS FOR TREATING LEAD-CONTAMINATED SOIL

    EPA Science Inventory

    This paper presents the results of experiments to evaluate the potential for using a resin-in-pulp process to remove lead contamination from soil. These experiments examined the kinetics and equilibrium partitioning of lead, lead carbonate, lead oxide, and lead sulfate in resin-s...

  5. Geophysical Signitures From Hydrocarbon Contaminated Aquifers

    NASA Astrophysics Data System (ADS)

    Abbas, M.; Jardani, A.

    2015-12-01

    The task of delineating the contamination plumes as well as studying their impact on the soil and groundwater biogeochemical properties is needed to support the remediation efforts and plans. Geophysical methods including electrical resistivity tomography (ERT), induced polarization (IP), ground penetrating radar (GPR), and self-potential (SP) have been previously used to characterize contaminant plumes and investigate their impact on soil and groundwater properties (Atekwana et al., 2002, 2004; Benson et al., 1997; Campbell et al., 1996; Cassidy et al., 2001; Revil et al., 2003; Werkema et al., 2000). Our objective was to: estimate the hydrocarbon contamination extent in a contaminated site in northern France, and to adverse the effects of the oil spill on the groundwater properties. We aim to find a good combination of non-intrusive and low cost methods which we can use to follow the bio-remediation process, which is planned to proceed next year. We used four geophysical methods including electrical resistivity tomography, IP, GPR, and SP. The geophysical data was compared to geochemical ones obtained from 30 boreholes installed in the site during the geophysical surveys. Our results have shown: low electrical resistivity values; high chargeability values; negative SP anomalies; and attenuated GPR reflections coincident with groundwater contamination. Laboratory and field geochemical measurements have demonstrated increased groundwater electrical conductivity and increased microbial activity associated with hydrocarbon contamination of groundwater. Our study results support the conductive model suggested by studies such as Sauck (2000) and Atekwana et al., (2004), who suggest that biological alterations of hydrocarbon contamination can substantially modify the chemical and physical properties of the subsurface, producing a dramatic shift in the geo-electrical signature from resistive to conductive. The next stage of the research will include time lapse borehole

  6. Modeling the Kinetics of Contaminants Oxidation and the Generation of Manganese(III) in the Permanganate/Bisulfite Process.

    PubMed

    Sun, Bo; Dong, Hongyu; He, Di; Rao, Dandan; Guan, Xiaohong

    2016-02-02

    Permanganate can be activated by bisulfite to generate soluble Mn(III) (noncomplexed with ligands other than H2O and OH(-)) which oxidizes organic contaminants at extraordinarily high rates. However, the generation of Mn(III) in the permanganate/bisulfite (PM/BS) process and the reactivity of Mn(III) toward emerging contaminants have never been quantified. In this work, Mn(III) generated in the PM/BS process was shown to absorb at 230-290 nm for the first time and disproportionated more easily at higher pH, and thus, the utilization rate of Mn(III) for decomposing organic contaminant was low under alkaline conditions. A Mn(III) generation and utilization model was developed to get the second-order reaction rate parameters of benzene oxidation by soluble Mn(III), and then, benzene was chosen as the reference probe to build a competition kinetics method, which was employed to obtain the second-order rate constants of organic contaminants oxidation by soluble Mn(III). The results revealed that the second-order rate constants of aniline and bisphenol A oxidation by soluble Mn(III) were in the range of 10(5)-10(6) M(-1) s(-1). With the presence of soluble Mn(III) at micromolar concentration, contaminants could be oxidized with the observed rates several orders of magnitude higher than those by common oxidation processes, implying the great potential application of the PM/BS process in water and wastewater treatment.

  7. Contamination Revealed by Indicator Microorganism Levels during Veal Processing.

    PubMed

    Bosilevac, Joseph M; Wang, Rong; Luedtke, Brandon E; Wheeler, Tommy L; Koohmaraie, Mohammad

    2016-08-01

    During site visits of veal processors, the U.S. Department of Agriculture, Food Safety Inspection Service (FSIS) has reported processing deficiencies that likely contribute to increased levels of veal contamination. Here, we report the results of measuring aerobic plate count bacteria (APC), Enterobacteriaceae, coliforms (CF), and Escherichia coli during eight sample collections at five veal processors to assess contamination during the harvest of bob veal and formula-fed veal before (n = 5 plants) and after (n = 3 plants) changes to interventions and processing practices. Hides of veal calves at each plant had mean log CFU/100 cm(2) APC, Enterobacteriaceae, CF, and E. coli of 6.02 to 8.07, 2.95 to 5.24, 3.28 to 5.83, and 3.08 to 5.59, respectively. Preintervention carcasses had mean log CFU/100 cm(2) APC, Enterobacteriaceae, CF, and E. coli of 3.08 to 5.22, 1.16 to 3.47, 0.21 to 3.06, and -0.07 to 3.10, respectively, before and 2.72 to 4.50, 0.99 to 2.76, 0.69 to 2.26, and 0.33 to 2.12, respectively, after changes were made to improve sanitary dressing procedures. Final veal carcasses had mean log CFU/100 cm(2) APC, Enterobacteriaceae, CF, and E. coli of 0.36 to 2.84, -0.21 to 1.59, -0.23 to 1.59, and -0.38 to 1.45 before and 0.44 to 2.64, -0.16 to 1.33, -0.42 to 1.20, and 0.48 to 1.09 after changes were made to improve carcass-directed interventions. Whereas the improved dressing procedures resulted in improved carcass cleanliness, the changes to carcass-directed interventions were less successful, and veal processors are urged to use techniques that ensure uniform and consistent delivery of antimicrobials to carcasses. Analysis of results comparing bob veal to formula-fed veal found bob veal hides, preintervention carcasses, and final carcasses to have increased (P < 0.05) APC, Enterobacteriaceae, CF, and E. coli (with the exception of hide Enterobacteriaceae; P > 0.05) relative to formula fed veal. When both veal categories were harvested at the same plant on

  8. Standard setting processes and regulations for environmental contaminants in drinking water: State versus federal needs and viewpoints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sidhu, K.S.

    1991-06-01

    The primary objective of a standard setting process is to arrive at a drinking water concentration at which exposure to a contaminant would result in no known or potential adverse health effect on human health. The drinking water standards also serve as guidelines to prevent pollution of water sources and may be applicable in some cases as regulatory remediation levels. The risk assessment methods along with various decision making parameters are used to establish drinking water standards. For carcinogens classified in Groups A and B by the United States Environmental Protection Agency (USEPA) the standards are set by using nonthresholdmore » cancer risk models. The linearized multistage model is commonly used for computation of potency factors for carcinogenic contaminants. The acceptable excess risk level may vary from 10(-6) to 10(-4). For noncarcinogens, a threshold model approach based on application of an uncertainty factor is used to arrive at a reference dose (RfD). The RfD approach may also be used for carcinogens classified in Group C by the USEPA. The RfD approach with an additional uncertainty factory of 10 for carcinogenicity has been applied in the formulation of risk assessment for Group C carcinogens. The assumptions commonly used in arriving at drinking water standards are human life expectancy, 70 years; average human body weight, 70 kg; human daily drinking water consumption, 2 liters; and contribution of exposure to the contaminant from drinking water (expressed as a part of the total environmental exposure), 20%. Currently, there are over 80 USEPA existing or proposed primary standards for organic and inorganic contaminants in drinking water. Some of the state versus federal needs and viewpoints are discussed.« less

  9. Support system, excavation arrangement, and process of supporting an object

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, Bill W.

    2017-08-01

    A support system, an excavation arrangement, and a process of supporting an object are disclosed. The support system includes a weight-bearing device and a camming mechanism positioned below the weight-bearing device. A downward force on the weight-bearing device at least partially secures the camming mechanism to opposing surfaces. The excavation arrangement includes a borehole, a support system positioned within and secured to the borehole, and an object positioned on and supported by the support system. The process includes positioning and securing the support system and positioning the object on the weight-bearing device.

  10. L. monocytogenes in a cheese processing facility: Learning from contamination scenarios over three years of sampling.

    PubMed

    Rückerl, I; Muhterem-Uyar, M; Muri-Klinger, S; Wagner, K-H; Wagner, M; Stessl, B

    2014-10-17

    The aim of this study was to analyze the changing patterns of Listeria monocytogenes contamination in a cheese processing facility manufacturing a wide range of ready-to-eat products. Characterization of L. monocytogenes isolates included genotyping by pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). Disinfectant-susceptibility tests and the assessment of L. monocytogenes survival in fresh cheese were also conducted. During the sampling period between 2010 and 2013, a total of 1284 environmental samples were investigated. Overall occurrence rates of Listeria spp. and L. monocytogenes were 21.9% and 19.5%, respectively. Identical L. monocytogenes genotypes were found in the food processing environment (FPE), raw materials and in products. Interventions after the sampling events changed contamination scenarios substantially. The high diversity of globally, widely distributed L. monocytogenes genotypes was reduced by identifying the major sources of contamination. Although susceptible to a broad range of disinfectants and cleaners, one dominant L. monocytogenes sequence type (ST) 5 could not be eradicated from drains and floors. Significantly, intense humidity and steam could be observed in all rooms and water residues were visible on floors due to increased cleaning strategies. This could explain the high L. monocytogenes contamination of the FPE (drains, shoes and floors) throughout the study (15.8%). The outcome of a challenge experiment in fresh cheese showed that L. monocytogenes could survive after 14days of storage at insufficient cooling temperatures (8 and 16°C). All efforts to reduce L. monocytogenes environmental contamination eventually led to a transition from dynamic to stable contamination scenarios. Consequently, implementation of systematic environmental monitoring via in-house systems should either aim for total avoidance of FPE colonization, or emphasize a first reduction of L. monocytogenes to sites where

  11. INNOVATIVE PROCESSES FOR RECLAMATION OF CONTAMINATED SUBSURFACE ENVIRONMENTS

    EPA Science Inventory

    Research to better assess the capabilities and limitations of fixed-film bioreactors for removing selected organic contaminants from ground water or from contaminated vapor streams produced by air stripping of polluted ground water and by soil venting operations is described. ...

  12. A neuroanatomical model of space-based and object-centered processing in spatial neglect.

    PubMed

    Pedrazzini, Elena; Schnider, Armin; Ptak, Radek

    2017-11-01

    Visual attention can be deployed in space-based or object-centered reference frames. Right-hemisphere damage may lead to distinct deficits of space- or object-based processing, and such dissociations are thought to underlie the heterogeneous nature of spatial neglect. Previous studies have suggested that object-centered processing deficits (such as in copying, reading or line bisection) result from damage to retro-rolandic regions while impaired spatial exploration reflects damage to more anterior regions. However, this evidence is based on small samples and heterogeneous tasks. Here, we tested a theoretical model of neglect that takes in account the space- and object-based processing and relates them to neuroanatomical predictors. One hundred and one right-hemisphere-damaged patients were examined with classic neuropsychological tests and structural brain imaging. Relations between neglect measures and damage to the temporal-parietal junction, intraparietal cortex, insula and middle frontal gyrus were examined with two structural equation models by assuming that object-centered processing (involved in line bisection and single-word reading) and space-based processing (involved in cancelation tasks) either represented a unique latent variable or two distinct variables. Of these two models the latter had better explanatory power. Damage to the intraparietal sulcus was a significant predictor of object-centered, but not space-based processing, while damage to the temporal-parietal junction predicted space-based, but not object-centered processing. Space-based processing and object-centered processing were strongly intercorrelated, indicating that they rely on similar, albeit partly dissociated processes. These findings indicate that object-centered and space-based deficits in neglect are partly independent and result from superior parietal and inferior parietal damage, respectively.

  13. Systematic procedure for designing processes with multiple environmental objectives.

    PubMed

    Kim, Ki-Joo; Smith, Raymond L

    2005-04-01

    Evaluation of multiple objectives is very important in designing environmentally benign processes. It requires a systematic procedure for solving multiobjective decision-making problems due to the complex nature of the problems, the need for complex assessments, and the complicated analysis of multidimensional results. In this paper, a novel systematic procedure is presented for designing processes with multiple environmental objectives. This procedure has four steps: initialization, screening, evaluation, and visualization. The first two steps are used for systematic problem formulation based on mass and energy estimation and order of magnitude analysis. In the third step, an efficient parallel multiobjective steady-state genetic algorithm is applied to design environmentally benign and economically viable processes and to provide more accurate and uniform Pareto optimal solutions. In the last step a new visualization technique for illustrating multiple objectives and their design parameters on the same diagram is developed. Through these integrated steps the decision-maker can easily determine design alternatives with respect to his or her preferences. Most importantly, this technique is independent of the number of objectives and design parameters. As a case study, acetic acid recovery from aqueous waste mixtures is investigated by minimizing eight potential environmental impacts and maximizing total profit. After applying the systematic procedure, the most preferred design alternatives and their design parameters are easily identified.

  14. Exposure pathway evaluations for sites that processed asbestos-contaminated vermiculite.

    PubMed

    Anderson, Barbara A; Dearwent, Steve M; Durant, James T; Dyken, Jill J; Freed, Jennifer A; Moore, Susan McAfee; Wheeler, John S

    2005-01-01

    The Agency for Toxic Substances and Disease Registry (ATSDR) is currently evaluating the potential public health impacts associated with the processing of asbestos-contaminated vermiculite at various facilities around the country. Vermiculite ore contaminated with significant levels of asbestos was mined and milled in Libby, Montana, from the early 1920s until 1990. The majority of the Libby ore was then shipped to processing facilities for exfoliation. ATSDR initiated the National Asbestos Exposure Review (NAER) to identify and evaluate exposure pathways associated with these processing facilities. This manuscript details ATSDR's phased approach in addressing exposure potential around these sites. As this is an ongoing project, only the results from a selected set of completed site analyses are presented. Historical occupational exposures are the most significant exposure pathway for the site evaluations completed to date. Former workers also probably brought asbestos fibers home on their clothing, shoes, and hair, and their household contacts may have been exposed. Currently, most site-related worker and community exposure pathways have been eliminated. One community exposure pathway of indeterminate significance is the current exposure of individuals through direct contact with waste rock brought home for personal use as fill material, driveway surfacing, or soil amendment. Trace levels of asbestos are present in soil at many of the sites and buried waste rock has been discovered at a few sites; therefore, future worker and community exposure associated with disturbing on-site soil during construction or redevelopment at these sites is also a potential exposure pathway.

  15. Process for vitrification of contaminated sodium oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blair, H.T.; Mellinger, G.B.

    1983-03-01

    A glass composition was developed to accommodate 30 wt % sodium oxide and resist devitrification and leaching. An in-can melting process that is compatible with a comtaminated sodium calciner developed by Argonne National Laboratory was tested both on a laboratory and on an engineering scale and found to be viable. The Liquid Metal Fast Breeder Reactor experimental program continues to produce elemental sodium contaminated with radionuclides. This material is presently in temporary storage facilities because the current criterion will not permit alkali metals to be disposed of in shallow land burials. As a first step in treatment, Argonne National Laboratorymore » (ANL) has developed a calciner that will convert the sodium metal to an oxide. In work supported by the U.S. Department of Energy, Pacific Northwest Laboratory (PNL) is developing and demonstrating a process that is compatible with the calciner and facilities at ANL-West for incorporating sodium oxide into a glass. Glass, which normally contains sodium oxide, was chosen as the waste form because it is chemically durable and nondispersible. It is simple to produce, and the technology for incorporating nuclear wastes into glass is well developed.« less

  16. Task and spatial frequency modulations of object processing: an EEG study.

    PubMed

    Craddock, Matt; Martinovic, Jasna; Müller, Matthias M

    2013-01-01

    Visual object processing may follow a coarse-to-fine sequence imposed by fast processing of low spatial frequencies (LSF) and slow processing of high spatial frequencies (HSF). Objects can be categorized at varying levels of specificity: the superordinate (e.g. animal), the basic (e.g. dog), or the subordinate (e.g. Border Collie). We tested whether superordinate and more specific categorization depend on different spatial frequency ranges, and whether any such dependencies might be revealed by or influence signals recorded using EEG. We used event-related potentials (ERPs) and time-frequency (TF) analysis to examine the time course of object processing while participants performed either a grammatical gender-classification task (which generally forces basic-level categorization) or a living/non-living judgement (superordinate categorization) on everyday, real-life objects. Objects were filtered to contain only HSF or LSF. We found a greater positivity and greater negativity for HSF than for LSF pictures in the P1 and N1 respectively, but no effects of task on either component. A later, fronto-central negativity (N350) was more negative in the gender-classification task than the superordinate categorization task, which may indicate that this component relates to semantic or syntactic processing. We found no significant effects of task or spatial frequency on evoked or total gamma band responses. Our results demonstrate early differences in processing of HSF and LSF content that were not modulated by categorization task, with later responses reflecting such higher-level cognitive factors.

  17. Quantifying Linkages between Biogeochemical Processes in a Contaminated Aquifer-Wetland System Using Multivariate Statistics and HP1

    NASA Astrophysics Data System (ADS)

    Arora, B.; Mohanty, B. P.; McGuire, J. T.

    2009-12-01

    Fate and transport of contaminants in saturated and unsaturated zones in the subsurface is controlled by complex biogeochemical processes such as precipitation, sorption-desorption, ion-exchange, redox, etc. In dynamic systems such as wetlands and anaerobic aquifers, these processes are coupled and can interact non-linearly with each other. Variability in measured hydrological, geochemical and microbiological parameters thus corresponds to multiple processes simultaneously. To infer the contributing processes, it is important to eliminate correlations and to identify inter-linkages between factors. The objective of this study is to develop quantitative relationships between hydrological (initial and boundary conditions, hydraulic conductivity ratio, and soil layering), geochemical (mineralogy, surface area, redox potential, and organic matter) and microbiological factors (MPN) that alter the biogeochemical processes at the column scale. Data used in this study were collected from controlled flow experiments in: i) two homogeneous soil columns, ii) a layered soil column, iii) a soil column with embedded clay lenses, and iv) a soil column with embedded clay lenses and one central macropore. The soil columns represent increasing level of soil structural heterogeneity to better mimic the Norman Landfill research site. The Norman Landfill is a closed municipal facility with prevalent organic contamination. The sources of variation in the dataset were explored using multivariate statistical techniques and dominant biogeochemical processes were obtained using principal component analysis (PCA). Furthermore, artificial neural networks (ANN) coupled with HP1 was used to develop mathematical rules identifying different combinations of factors that trigger, sustain, accelerate/decelerate, or discontinue the biogeochemical processes. Experimental observations show that infiltrating water triggers biogeochemical processes in all soil columns. Similarly, slow release of water

  18. The COGs (context, object, and goals) in multisensory processing.

    PubMed

    ten Oever, Sanne; Romei, Vincenzo; van Atteveldt, Nienke; Soto-Faraco, Salvador; Murray, Micah M; Matusz, Pawel J

    2016-05-01

    Our understanding of how perception operates in real-world environments has been substantially advanced by studying both multisensory processes and "top-down" control processes influencing sensory processing via activity from higher-order brain areas, such as attention, memory, and expectations. As the two topics have been traditionally studied separately, the mechanisms orchestrating real-world multisensory processing remain unclear. Past work has revealed that the observer's goals gate the influence of many multisensory processes on brain and behavioural responses, whereas some other multisensory processes might occur independently of these goals. Consequently, other forms of top-down control beyond goal dependence are necessary to explain the full range of multisensory effects currently reported at the brain and the cognitive level. These forms of control include sensitivity to stimulus context as well as the detection of matches (or lack thereof) between a multisensory stimulus and categorical attributes of naturalistic objects (e.g. tools, animals). In this review we discuss and integrate the existing findings that demonstrate the importance of such goal-, object- and context-based top-down control over multisensory processing. We then put forward a few principles emerging from this literature review with respect to the mechanisms underlying multisensory processing and discuss their possible broader implications.

  19. Salmonella typhimurium contamination of processed broiler chickens after a subclinical infection

    PubMed Central

    Knivett, V. A.

    1971-01-01

    A subclinical infection of Salmonella typhimurium in a broiler flock was investigated and attempts were made to eradicate the infection by treatment with furazolidone. One-quarter of the chickens were still infected after they had been through the processing plant. Washing in heavily chlorinated water reduced the number of contaminated carcasses. Infected chickens were also found in four other companion flocks on the same farm. PMID:4937856

  20. Auditory-visual object recognition time suggests specific processing for animal sounds.

    PubMed

    Suied, Clara; Viaud-Delmon, Isabelle

    2009-01-01

    Recognizing an object requires binding together several cues, which may be distributed across different sensory modalities, and ignoring competing information originating from other objects. In addition, knowledge of the semantic category of an object is fundamental to determine how we should react to it. Here we investigate the role of semantic categories in the processing of auditory-visual objects. We used an auditory-visual object-recognition task (go/no-go paradigm). We compared recognition times for two categories: a biologically relevant one (animals) and a non-biologically relevant one (means of transport). Participants were asked to react as fast as possible to target objects, presented in the visual and/or the auditory modality, and to withhold their response for distractor objects. A first main finding was that, when participants were presented with unimodal or bimodal congruent stimuli (an image and a sound from the same object), similar reaction times were observed for all object categories. Thus, there was no advantage in the speed of recognition for biologically relevant compared to non-biologically relevant objects. A second finding was that, in the presence of a biologically relevant auditory distractor, the processing of a target object was slowed down, whether or not it was itself biologically relevant. It seems impossible to effectively ignore an animal sound, even when it is irrelevant to the task. These results suggest a specific and mandatory processing of animal sounds, possibly due to phylogenetic memory and consistent with the idea that hearing is particularly efficient as an alerting sense. They also highlight the importance of taking into account the auditory modality when investigating the way object concepts of biologically relevant categories are stored and retrieved.

  1. Campylobacter spp. contamination of chicken carcasses during processing in relation to flock colonisation.

    PubMed

    Allen, V M; Bull, S A; Corry, J E L; Domingue, G; Jørgensen, F; Frost, J A; Whyte, R; Gonzalez, A; Elviss, N; Humphrey, T J

    2007-01-01

    The presence and numbers of campylobacters on chicken carcasses from 26 slaughter groups, originating from 22 single-house flocks and processed in four UK plants, were studied in relation to the level of flock colonisation determined by examining the caecal contents of at least ten birds per group. The prevalence of campylobacters on carcasses from five campylobacter-negative flocks processed just after other negative flocks was low (processed after fully colonised flocks. All carcasses from the remaining fully colonised flocks were contaminated with campylobacters, and they had significantly (P<0.001) higher numbers per carcass (average of 5.3 log(10) cfu; range: 1.3 to >8.0 log(10) cfu) than carcasses originating from low prevalence flocks (average of 2.3 log(10) cfu; range: <1.1 to 4.1 log(10) cfu). There was a reduction in the numbers of campylobacters on carcasses between plucking and chilling in eight of ten fully colonised flocks. In another eight flocks, a significant (P<0.001) decrease (0.8 log(10) cfu) in the number of campylobacters on carcasses from just before to after chilling was detected. Campylobacter spp. could be isolated from aerosols, particles and droplets in considerable numbers in the hanging-on, defeathering and evisceration areas but not in the chillers. This was the case even when campylobacters were not isolated from the target flock. Campylobacters on carcasses from two partly colonised flocks were either the same subtype, as determined by speciation, Multi-Locus Sequence Typing (MLST) and flaA Restricted Fragment Length Polymorphism (RFLP) typing, as those in the fully colonised flocks processed previously, although not necessarily the most prevalent ones; or were the same subtypes as those found in the caeca of the flock itself. The prevalences of the different

  2. Action and object processing in brain-injured speakers of Chinese.

    PubMed

    Arévalo, Analia L; Lu, Ching-Ching; Huang, Lydia B-Y; Bates, Elizabeth A; Dronkers, Nina F

    2011-11-01

    To see whether action and object processing across different tasks and modalities differs in brain-injured speakers of Chinese with varying fluency and lesion locations within the left hemisphere. Words and pictures representing actions and objects were presented to a group of 33 participants whose native and/or dominant language was Mandarin Chinese: 23 patients with left-hemisphere lesions due to stroke and 10 language-, age- and education-matched healthy control participants. A set of 120 stimulus items was presented to each participant in three different forms: as black and white line drawings (for picture-naming), as written words (for reading) and as aurally presented words (for word repetition). Patients were divided into groups for two separate analyses: Analysis 1 divided and compared patients based on fluency (Fluent vs. Nonfluent) and Analysis 2 compared patients based on lesion location (Anterior vs. Posterior). Both analyses yielded similar results: Fluent, Nonfluent, Anterior, and Posterior patients all produced significantly more errors when processing action (M = 0.73, SD = 0.45) relative to object (M = 0.79, SD = 0.41) stimuli, and this effect was strongest in the picture-naming task. As in our previous study with English-speaking participants using the same experimental design (Arévalo et al., 2007, Arévalo, Moineau, Saygin, Ludy, & Bates, 2005), we did not find evidence for a double-dissociation in action and object processing between groups with different lesion and fluency profiles. These combined data bring us closer to a more informed view of action/object processing in the brain in both healthy and brain-injured individuals.

  3. Longitudinal study on the sources of Listeria monocytogenes contamination in cold-smoked salmon and its processing environment in Italy.

    PubMed

    Di Ciccio, Pierluigi; Meloni, Domenico; Festino, Anna Rita; Conter, Mauro; Zanardi, Emanuela; Ghidini, Sergio; Vergara, Alberto; Mazzette, Rina; Ianieri, Adriana

    2012-08-01

    The aim of the present study was to investigate the sources of Listeria monocytogenes contamination in a cold smoked salmon processing environment over a period of six years (2003-2008). A total of 170 samples of raw material, semi-processed, final product and processing surfaces at different production stages were tested for the presence of L. monocytogenes. The L. monocytogenes isolates were characterized by multiplex PCR for the analysis of virulence factors and for serogrouping. The routes of contamination over the six year period were traced by PFGE. L. monocytogenes was isolated from 24% of the raw salmon samples, 14% of the semi-processed products and 12% of the final products. Among the environmental samples, 16% were positive for L. monocytogenes. Serotyping yielded three serovars: 1/2a, 1/2b, 4b, with the majority belonging to serovars 1/2a (46%) and 1/2b (39%). PFGE yielded 14 profiles: two of them were repeatedly isolated in 2005-2006 and in 2007-2008 mainly from the processing environment and final products but also from raw materials. The results of this longitudinal study highlighted that contamination of smoked salmon occurs mainly during processing rather than originating from raw materials, even if raw fish can be a contamination source of the working environment. Molecular subtyping is critical for the identification of the contamination routes of L. monocytogenes and its niches into the production plant when control strategies must be implemented with the aim to reduce its prevalence during manufacturing. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. A SYSTEMATIC PROCEDURE FOR DESIGNING PROCESSES WITH MULTIPLE ENVIRONMENTAL OBJECTIVES

    EPA Science Inventory

    Evaluation and analysis of multiple objectives are very important in designing environmentally benign processes. They require a systematic procedure for solving multi-objective decision-making problems due to the complex nature of the problems and the need for complex assessment....

  5. Neural correlates of the object-recall process in semantic memory.

    PubMed

    Assaf, Michal; Calhoun, Vince D; Kuzu, Cheedem H; Kraut, Michael A; Rivkin, Paul R; Hart, John; Pearlson, Godfrey D

    2006-10-30

    The recall of an object from features is a specific operation in semantic memory in which the thalamus and pre-supplementary motor area (pre-SMA) are integrally involved. Other higher-order semantic cortices are also likely to be involved. We used the object-recall-from-features paradigm, with more sensitive scanning techniques and larger sample size, to replicate and extend our previous results. Eighteen right-handed healthy participants performed an object-recall task and an association semantic task, while undergoing functional magnetic resonance imaging. During object-recall, subjects determined whether words pairs describing object features combined to recall an object; during the association task they decided if two words were related. Of brain areas specifically involved in object recall, in addition to the thalamus and pre-SMA, other regions included the left dorsolateral prefrontal cortex, inferior parietal lobule, and middle temporal gyrus, and bilateral rostral anterior cingulate and inferior frontal gyri. These regions are involved in semantic processing, verbal working memory and response-conflict detection and monitoring. The thalamus likely helps to coordinate activity of these different brain areas. Understanding the circuit that normally mediates this process is relevant for schizophrenia, where many regions in this circuit are functionally abnormal and semantic memory is impaired.

  6. Toxicological benchmarks for screening potential contaminants of concern for effects on soil and litter invertebrates and heterotrophic process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Will, M.E.; Suter, G.W. II

    1994-09-01

    One of the initial stages in ecological risk assessments for hazardous waste sites is the screening of contaminants to determine which of them are worthy of further consideration as {open_quotes}contaminants of potential concern.{close_quotes} This process is termed {open_quotes}contaminant screening.{close_quotes} It is performed by comparing measured ambient concentrations of chemicals to benchmark concentrations. Currently, no standard benchmark concentrations exist for assessing contaminants in soil with respect to their toxicity to soil- and litter-dwelling invertebrates, including earthworms, other micro- and macroinvertebrates, or heterotrophic bacteria and fungi. This report presents a standard method for deriving benchmarks for this purpose, sets of data concerningmore » effects of chemicals in soil on invertebrates and soil microbial processes, and benchmarks for chemicals potentially associated with United States Department of Energy sites. In addition, literature describing the experiments from which data were drawn for benchmark derivation. Chemicals that are found in soil at concentrations exceeding both the benchmarks and the background concentration for the soil type should be considered contaminants of potential concern.« less

  7. Color image processing and object tracking workstation

    NASA Technical Reports Server (NTRS)

    Klimek, Robert B.; Paulick, Michael J.

    1992-01-01

    A system is described for automatic and semiautomatic tracking of objects on film or video tape which was developed to meet the needs of the microgravity combustion and fluid science experiments at NASA Lewis. The system consists of individual hardware parts working under computer control to achieve a high degree of automation. The most important hardware parts include 16 mm film projector, a lens system, a video camera, an S-VHS tapedeck, a frame grabber, and some storage and output devices. Both the projector and tapedeck have a computer interface enabling remote control. Tracking software was developed to control the overall operation. In the automatic mode, the main tracking program controls the projector or the tapedeck frame incrementation, grabs a frame, processes it, locates the edge of the objects being tracked, and stores the coordinates in a file. This process is performed repeatedly until the last frame is reached. Three representative applications are described. These applications represent typical uses and include tracking the propagation of a flame front, tracking the movement of a liquid-gas interface with extremely poor visibility, and characterizing a diffusion flame according to color and shape.

  8. Hierarchical Processing of Auditory Objects in Humans

    PubMed Central

    Kumar, Sukhbinder; Stephan, Klaas E; Warren, Jason D; Friston, Karl J; Griffiths, Timothy D

    2007-01-01

    This work examines the computational architecture used by the brain during the analysis of the spectral envelope of sounds, an important acoustic feature for defining auditory objects. Dynamic causal modelling and Bayesian model selection were used to evaluate a family of 16 network models explaining functional magnetic resonance imaging responses in the right temporal lobe during spectral envelope analysis. The models encode different hypotheses about the effective connectivity between Heschl's Gyrus (HG), containing the primary auditory cortex, planum temporale (PT), and superior temporal sulcus (STS), and the modulation of that coupling during spectral envelope analysis. In particular, we aimed to determine whether information processing during spectral envelope analysis takes place in a serial or parallel fashion. The analysis provides strong support for a serial architecture with connections from HG to PT and from PT to STS and an increase of the HG to PT connection during spectral envelope analysis. The work supports a computational model of auditory object processing, based on the abstraction of spectro-temporal “templates” in the PT before further analysis of the abstracted form in anterior temporal lobe areas. PMID:17542641

  9. Process for coating an object with silicon carbide

    NASA Technical Reports Server (NTRS)

    Levin, Harry (Inventor)

    1989-01-01

    A process for coating a carbon or graphite object with silicon carbide by contacting it with silicon liquid and vapor over various lengths of contact time. In the process, a stream of silicon-containing precursor material in gaseous phase below the decomposition temperature of said gas and a co-reactant, carrier or diluent gas such as hydrogen is passed through a hole within a high emissivity, thin, insulating septum into a reaction chamber above the melting point of silicon. The thin septum has one face below the decomposition temperature of the gas and an opposite face exposed to the reaction chamber. The precursor gas is decomposed directly to silicon in the reaction chamber. A stream of any decomposition gas and any unreacted precursor gas from said reaction chamber is removed. The object within the reaction chamber is then contacted with silicon, and recovered after it has been coated with silicon carbide.

  10. Sources of Salmonella on broiler carcasses during transportation and processing: modes of contamination and methods of control.

    PubMed

    Corry, Janet E L; Allen, V M; Hudson, W R; Breslin, M F; Davies, R H

    2002-01-01

    The prevalence and types of salmonella in broiler chickens during transportation and during slaughter and dressing were studied. This was part of a comprehensive investigation of salmonellas in two UK poultry companies, which aimed to find the origins and mechanisms of salmonella contamination. Salmonellas were isolated using cultural methods. Serovars of Salmonella detected during rearing were usually also found in a small proportion of birds on the day of slaughter and on the carcasses at various points during processing. There was little evidence of salmonellas spreading to large numbers of carcasses during processing. Many serovars found in the feedmills or hatcheries were also detected in the birds during rearing and/or slaughter. Transport crates were contaminated with salmonellas after washing and disinfection. Prevalence of salmonellas fell in the two companies during this survey. A small number of serovars predominated in the processing plants of each company. These serovars originated from the feed mills. Reasons for transport crate contamination were: (1) inadequate cleaning, resulting in residual faecal soiling; (2) disinfectant concentration and temperature of disinfectant too low; (3) contaminated recycled flume water used to soak the crates. Efforts to control salmonella infection in broilers need to concentrate on crate cleaning and disinfection and hygiene in the feed mills.

  11. Automated processing of forensic casework samples using robotic workstations equipped with nondisposable tips: contamination prevention.

    PubMed

    Frégeau, Chantal J; Lett, C Marc; Elliott, Jim; Yensen, Craig; Fourney, Ron M

    2008-05-01

    An automated process has been developed for the analysis of forensic casework samples using TECAN Genesis RSP 150/8 or Freedom EVO liquid handling workstations equipped exclusively with nondisposable tips. Robot tip cleaning routines have been incorporated strategically within the DNA extraction process as well as at the end of each session. Alternative options were examined for cleaning the tips and different strategies were employed to verify cross-contamination. A 2% sodium hypochlorite wash (1/5th dilution of the 10.8% commercial bleach stock) proved to be the best overall approach for preventing cross-contamination of samples processed using our automated protocol. The bleach wash steps do not adversely impact the short tandem repeat (STR) profiles developed from DNA extracted robotically and allow for major cost savings through the implementation of fixed tips. We have demonstrated that robotic workstations equipped with fixed pipette tips can be used with confidence with properly designed tip washing routines to process casework samples using an adapted magnetic bead extraction protocol.

  12. Electrowinning process with electrode compartment to avoid contamination of electrolyte

    DOEpatents

    Poa, Davis S.; Pierce, R. Dean; Mulcahey, Thomas P.; Johnson, Gerald K.

    1993-01-01

    An electrolytic process and apparatus for reducing calcium oxide in a molten electrolyte of CaCl.sub.2 -CaF.sub.2 with a graphite anode in which particles or other contamination from the anode is restricted by the use of a porous barrier in the form of a basket surrounding the anode which may be removed from the electrolyte to burn the graphite particles, and wherein the calcium oxide feed is introduced to the anode compartment to increase the oxygen ion concentration at the anode.

  13. Reducing the complexity of the software design process with object-oriented design

    NASA Technical Reports Server (NTRS)

    Schuler, M. P.

    1991-01-01

    Designing software is a complex process. How object-oriented design (OOD), coupled with formalized documentation and tailored object diagraming techniques, can reduce the complexity of the software design process is described and illustrated. The described OOD methodology uses a hierarchical decomposition approach in which parent objects are decomposed into layers of lower level child objects. A method of tracking the assignment of requirements to design components is also included. Increases in the reusability, portability, and maintainability of the resulting products are also discussed. This method was built on a combination of existing technology, teaching experience, consulting experience, and feedback from design method users. The discussed concepts are applicable to hierarchal OOD processes in general. Emphasis is placed on improving the design process by documenting the details of the procedures involved and incorporating improvements into those procedures as they are developed.

  14. Reduction of carbon contamination during the melting process of Czochralski silicon crystal growth

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Gao, Bing; Nakano, Satoshi; Kakimoto, Koichi

    2017-09-01

    Generation, incorporation, and accumulation of carbon (C) were investigated by transient global simulations of heat and mass transport during the melting process of Czochralski silicon (CZ-Si) crystal growth. Contact reaction between the quartz crucible and graphite susceptor was introduced as an extra origin of C contamination. The contribution of the contact reaction on C accumulation is affected by the back diffusion of C monoxide (CO) from the gap between the gas-guide and the crucible. The effect of the gas-guide coating on C reduction was elucidated by taking the reaction between the silicon carbide (SiC) coating and gaseous Si monoxide (SiO) into account. Application of the SiC coating on the gas-guide could effectively reduce the C contamination because of its higher thermochemical stability relative to that of graphite. Gas flow control on the back diffusion of the generated CO was examined by the parametric study of argon gas flow rate. Generation and back diffusion of CO were both effectively suppressed by the increase in the gas flow rate because of the high Péclet number of species transport. Strategies for C content reduction were discussed by analyzing the mechanisms of C accumulation process. According to the elucidated mechanisms of C accumulation, the final C content depends on the growth duration and contamination flux at the gas/melt interface.

  15. Contaminated water treatment

    NASA Technical Reports Server (NTRS)

    Gormly, Sherwin J. (Inventor); Flynn, Michael T. (Inventor)

    2010-01-01

    Method and system for processing of a liquid ("contaminant liquid") containing water and containing urine and/or other contaminants in a two step process. Urine, or a contaminated liquid similar to and/or containing urine and thus having a relatively high salt and urea content is passed through an activated carbon filter to provide a resulting liquid, to remove most of the organic molecules. The resulting liquid is passed through a semipermeable membrane from a membrane first side to a membrane second side, where a fortified drink having a lower water concentration (higher osmotic potential) than the resulting liquid is positioned. Osmotic pressure differential causes the water, but not most of the remaining inorganic (salts) contaminant(s) to pass through the membrane to the fortified drink. Optionally, the resulting liquid is allowed to precipitate additional organic molecules before passage through the membrane.

  16. Invariant visual object recognition and shape processing in rats

    PubMed Central

    Zoccolan, Davide

    2015-01-01

    Invariant visual object recognition is the ability to recognize visual objects despite the vastly different images that each object can project onto the retina during natural vision, depending on its position and size within the visual field, its orientation relative to the viewer, etc. Achieving invariant recognition represents such a formidable computational challenge that is often assumed to be a unique hallmark of primate vision. Historically, this has limited the invasive investigation of its neuronal underpinnings to monkey studies, in spite of the narrow range of experimental approaches that these animal models allow. Meanwhile, rodents have been largely neglected as models of object vision, because of the widespread belief that they are incapable of advanced visual processing. However, the powerful array of experimental tools that have been developed to dissect neuronal circuits in rodents has made these species very attractive to vision scientists too, promoting a new tide of studies that have started to systematically explore visual functions in rats and mice. Rats, in particular, have been the subjects of several behavioral studies, aimed at assessing how advanced object recognition and shape processing is in this species. Here, I review these recent investigations, as well as earlier studies of rat pattern vision, to provide an historical overview and a critical summary of the status of the knowledge about rat object vision. The picture emerging from this survey is very encouraging with regard to the possibility of using rats as complementary models to monkeys in the study of higher-level vision. PMID:25561421

  17. [Electrophysiological bases of semantic processing of objects].

    PubMed

    Kahlaoui, Karima; Baccino, Thierry; Joanette, Yves; Magnié, Marie-Noële

    2007-02-01

    How pictures and words are stored and processed in the human brain constitute a long-standing question in cognitive psychology. Behavioral studies have yielded a large amount of data addressing this issue. Generally speaking, these data show that there are some interactions between the semantic processing of pictures and words. However, behavioral methods can provide only limited insight into certain findings. Fortunately, Event-Related Potential (ERP) provides on-line cues about the temporal nature of cognitive processes and contributes to the exploration of their neural substrates. ERPs have been used in order to better understand semantic processing of words and pictures. The main objective of this article is to offer an overview of the electrophysiologic bases of semantic processing of words and pictures. Studies presented in this article showed that the processing of words is associated with an N 400 component, whereas pictures elicited both N 300 and N 400 components. Topographical analysis of the N 400 distribution over the scalp is compatible with the idea that both image-mediated concrete words and pictures access an amodal semantic system. However, given the distinctive N 300 patterns, observed only during picture processing, it appears that picture and word processing rely upon distinct neuronal networks, even if they end up activating more or less similar semantic representations.

  18. In situ removal of contamination from soil

    DOEpatents

    Lindgren, E.R.; Brady, P.V.

    1997-10-14

    A process of remediation of cationic heavy metal contamination from soil utilizes gas phase manipulation to inhibit biodegradation of a chelating agent that is used in an electrokinesis process to remove the contamination. The process also uses further gas phase manipulation to stimulate biodegradation of the chelating agent after the contamination has been removed. The process ensures that the chelating agent is not attacked by bioorganisms in the soil prior to removal of the contamination, and that the chelating agent does not remain as a new contaminant after the process is completed. 5 figs.

  19. Radioactive contamination of the Balchug (Upper Yenisey) floodplain, Russia in relation to sedimentation processes and geomorphology.

    PubMed

    Linnik, V G; Brown, J E; Dowdall, M; Potapov, V N; Surkov, V V; Korobova, E M; Volosov, A G; Vakulovsky, S M; Tertyshnik, E G

    2005-03-01

    The radioactive contamination of a riverine floodplain, heavily influenced by discharges from Krasnoyarsk-26, has been studied with respect to sedimentation processes and the geomorphology of the Upper Yenisey floodplain. The study was effected by implementation of a regime of in situ observations and measurements, sampling, and the interpretation of satellite images. The results of the study indicate that on the Balchug Bypass Floodplain, radionuclide contamination is primarily influenced by the thickness of the deposited sediments, and the area can be considered as two depositional environments. The Balchug floodplain area was contaminated due to sedimentation of radionuclide-contaminated alluvium, whose depositional regime significantly changed after the construction of a hydroelectric power station in 1967. Contamination levels are lower on the upstream part of the floodplain where sediment depth is less than 0.2-0.3 m, and this contamination started to accumulate in 1967, while the downstream part of the floodplain, exhibiting deeper deposits, displays higher levels of radionuclide contamination because radionuclides began to deposit here in 1958 when the Krasnoyarsk-26 Mining and Chemical Combine (KMCC) commenced operation. Radionuclide contamination of the floodplain is also related to the elevation of the floodplain, higher regions of the floodplain typically having lower contamination than low-lying areas, which tend to be frequently inundated with sediments being deposited during such inundations. Local relief, its orientation, and vegetation cover have also combined to form sediment traps with significantly higher radionuclide contamination. Lithological analysis combined with radiometric assay indicates a total 137Cs floodplain inventory of 33.7 GBq.

  20. In situ remediation of uranium contaminated groundwater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwyer, B.P.; Marozas, D.C.

    1997-02-01

    In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptablemore » regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field results are discussed with regard to other potential contaminated groundwater treatment applications.« less

  1. In situ remediation of uranium contaminated groundwater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwyer, B.P.; Marozas, D.C.

    1997-12-31

    In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment - various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ tomore » acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field preliminary results are discussed with regard to other potential contaminated groundwater treatment applications.« less

  2. ERPs Differentially Reflect Automatic and Deliberate Processing of the Functional Manipulability of Objects

    PubMed Central

    Madan, Christopher R.; Chen, Yvonne Y.; Singhal, Anthony

    2016-01-01

    It is known that the functional properties of an object can interact with perceptual, cognitive, and motor processes. Previously we have found that a between-subjects manipulation of judgment instructions resulted in different manipulability-related memory biases in an incidental memory test. To better understand this effect we recorded electroencephalography (EEG) while participants made judgments about images of objects that were either high or low in functional manipulability (e.g., hammer vs. ladder). Using a between-subjects design, participants judged whether they had seen the object recently (Personal Experience), or could manipulate the object using their hand (Functionality). We focused on the P300 and slow-wave event-related potentials (ERPs) as reflections of attentional allocation. In both groups, we observed higher P300 and slow wave amplitudes for high-manipulability objects at electrodes Pz and C3. As P300 is thought to reflect bottom-up attentional processes, this may suggest that the processing of high-manipulability objects recruited more attentional resources. Additionally, the P300 effect was greater in the Functionality group. A more complex pattern was observed at electrode C3 during slow wave: processing the high-manipulability objects in the Functionality instruction evoked a more positive slow wave than in the other three conditions, likely related to motor simulation processes. These data provide neural evidence that effects of manipulability on stimulus processing are further mediated by automatic vs. deliberate motor-related processing. PMID:27536224

  3. Contamination control of the space shuttle Orbiter crew compartment

    NASA Technical Reports Server (NTRS)

    Bartelson, Donald W.

    1986-01-01

    Effective contamination control as applied to manned space flight environments is a discipline characterized and controlled by many parameters. An introduction is given to issues involving Orbiter crew compartment contamination control. An effective ground processing contamination control program is an essential building block to a successful shuttle mission. Personnel are required to don cleanroom-grade clothing ensembles before entering the crew compartment and follow cleanroom rules and regulations. Prior to crew compartment entry, materials and equipment must be checked by an orbiter integrity clerk stationed outside the white-room entrance for compliance to program requirements. Analysis and source identification of crew compartment debris studies have been going on for two years. The objective of these studies is to determine and identify particulate generating materials and activities in the crew compartment. Results show a wide spectrum of many different types of materials. When source identification is made, corrective action is implemented to minimize or curtail further contaminate generation.

  4. NATURAL ARSENIC CONTAMINATION OF HOLOCENE ALLUVIAL AQUIFERS BY LINKED TECTONIC, WEATHERING, AND MICROBIAL PROCESSES

    EPA Science Inventory

    Linked tectonic, geochemical, and biologic processes lead to natural arsenic contamination of groundwater in Holocene alluvial aquifers, which are the main threat to human health around the world. These groundwaters are commonly found a long distance from their ultimate source of...

  5. Natural attenuation processes for remediation of arsenic contaminated soils and groundwater.

    PubMed

    Wang, Suiling; Mulligan, Catherine N

    2006-12-01

    Arsenic (As) contamination presents a hazard in many countries. Natural attenuation (NA) of As-contaminated soils and groundwater may be a cost-effective in situ remedial option. It relies on the site intrinsic assimilative capacity and allows in-place cleanup. Sorption to solid phases is the principal mechanism immobilizing As in soils and removing it from groundwater. Hydroxides of iron, aluminum and manganese, clay and sulfide minerals, and natural organic matter are commonly associated with soils and aquifer sediments, and have been shown to be significant As adsorbents. The extent of sorption is influenced by As speciation and the site geochemical conditions such as pH, redox potential, and the co-occurring ions. Microbial activity may catalyze the transformation of As species, or mediate redox reactions thus influencing As mobility. Plants that are capable of hyperaccumulating As may translocate As from contaminated soils and groundwater to their tissues, providing the basis for phytoremediation. However, NA is subject to hydrological changes and may take substantial periods of time, thus requiring long-term monitoring. The current understanding of As NA processes remains limited. Sufficient site characterization is critical to the success of NA. Further research is required to develop conceptual and mathematical models to predict the fate and transport of As and to evaluate the site NA capacity. Engineering enhanced NA using environmentally benign products may be an effective alternative.

  6. Multigeneration Cross Contamination of Mail with Bacillus Species Spores by Tumbling ▿

    PubMed Central

    Edmonds, Jason; Clark, Paul; Williams, Leslie; Lindquist, H. D. Alan; Martinez, Kenneth; Gardner, Warren; Shadomy, Sean; Hornsby-Myers, Jennifer

    2010-01-01

    In 2001, envelopes loaded with Bacillus anthracis spores were mailed to Senators Daschle and Leahy as well as to the New York Post and NBC News buildings. Additional letters may have been mailed to other news agencies because there was confirmed anthrax infection of employees at these locations. These events heightened the awareness of the lack of understanding of the mechanism(s) by which objects contaminated with a biological agent might spread disease. This understanding is crucial for the estimation of the potential for exposure to ensure the appropriate response in the event of future attacks. In this study, equipment to simulate interactions between envelopes and procedures to analyze the spread of spores from a “payload” envelope (i.e., loaded internally with a powdered spore preparation) onto neighboring envelopes were developed. Another process to determine whether an aerosol could be generated by opening contaminated envelopes was developed. Subsequent generations of contaminated envelopes originating from a single payload envelope showed a consistent two-log decrease in the number of spores transferred from one generation to the next. Opening a tertiary contaminated envelope resulted in an aerosol containing 103 B. anthracis spores. We developed a procedure for sampling contaminated letters by a nondestructive method aimed at providing information useful for consequence management while preserving the integrity of objects contaminated during the incident and preserving evidence for law enforcement agencies. PMID:20511424

  7. Sources of Listeria monocytogenes Contamination in a Cold-Smoked Rainbow Trout Processing Plant Detected by Pulsed-Field Gel Electrophoresis Typing

    PubMed Central

    Autio, Tiina; Hielm, Sebastian; Miettinen, Maria; Sjöberg, Anna-Maija; Aarnisalo, Kaarina; Björkroth, Johanna; Mattila-Sandholm, Tiina; Korkeala, Hannu

    1999-01-01

    Sites of Listeria monocytogenes contamination in a cold-smoked rainbow trout (Oncorhynchus mykiss) processing plant were detected by sampling the production line, environment, and fish at different production stages. Two lots were monitored. The frequency of raw fish samples containing L. monocytogenes was low. During processing, the frequency of fish contaminated with L. monocytogenes clearly rose after brining, and the most contaminated sites of the processing plant were the brining and postbrining areas. A total of 303 isolates from the raw fish, product, and the environment were characterized by pulsed-field gel electrophoresis (PFGE). PFGE yielded nine pulsotypes, which formed four clusters. The predominating L. monocytogenes pulsotypes of the final product were associated with brining and slicing, whereas contaminants of raw fish were not detected in the final product. Air-mediated contamination in the plant could not be proved. In accordance with these results, an L. monocytogenes eradication program was planned. The use of hot steam, hot air, and hot water seemed to be useful in eliminating L. monocytogenes. None of the control samples taken in the 5 months after the eradication program was implemented contained L. monocytogenes. PMID:9872773

  8. In situ removal of contamination from soil

    DOEpatents

    Lindgren, Eric R.; Brady, Patrick V.

    1997-01-01

    A process of remediation of cationic heavy metal contamination from soil utilizes gas phase manipulation to inhibit biodegradation of a chelating agent that is used in an electrokinesis process to remove the contamination, and further gas phase manipulation to stimulate biodegradation of the chelating agent after the contamination has been removed. The process ensures that the chelating agent is not attacked by bioorganisms in the soil prior to removal of the contamination, and that the chelating agent does not remain as a new contaminant after the process is completed.

  9. Simulating complex intracellular processes using object-oriented computational modelling.

    PubMed

    Johnson, Colin G; Goldman, Jacki P; Gullick, William J

    2004-11-01

    The aim of this paper is to give an overview of computer modelling and simulation in cellular biology, in particular as applied to complex biochemical processes within the cell. This is illustrated by the use of the techniques of object-oriented modelling, where the computer is used to construct abstractions of objects in the domain being modelled, and these objects then interact within the computer to simulate the system and allow emergent properties to be observed. The paper also discusses the role of computer simulation in understanding complexity in biological systems, and the kinds of information which can be obtained about biology via simulation.

  10. Trace chemical contaminant generation rates for spacecraft contamination control system design

    NASA Technical Reports Server (NTRS)

    Perry, J. L.

    1995-01-01

    A spacecraft presents a unique design challenge with respect to providing a comfortable environment in which people can live and work. All aspects of the spacecraft environmental design including the size of the habitable volume, its temperature, relative humidity, and composition must be considered to ensure the comfort and health of the occupants. The crew members and the materials selected for outfitting the spacecraft play an integral part in designing a habitable spacecraft because material offgassing and human metabolism are the primary sources for continuous trace chemical contaminant generation onboard a spacecraft. Since these contamination sources cannot be completely eliminated, active control processes must be designed and deployed onboard the spacecraft to ensure an acceptably clean cabin atmosphere. Knowledge of the expected rates at which contaminants are generated is very important to the design of these processes. Data from past spacecraft missions and human contaminant production studies have been analyzed to provide this knowledge. The resulting compilation of contaminants and generation rates serve as a firm basis for past, present, and future contamination control system designs for space and aeronautics applications.

  11. Effective treatment of PAH contaminated Superfund site soil with the peroxy-acid process.

    PubMed

    Scott Alderman, N; N'Guessan, Adeola L; Nyman, Marianne C

    2007-07-31

    Peroxy-organic acids are formed by the chemical reaction between organic acids and hydrogen peroxide. The peroxy-acid process was applied to two Superfund site soils provided by the U.S. Environmental Protection Agency (EPA). Initial small-scale experiments applied ratios of 3:5:7 (v/v/v) or 3:3:9 (v/v/v) hydrogen peroxide:acetic acid:deionized (DI) water solution to 5g of Superfund site soil. The experiment using 3:5:7 (v/v/v) ratio resulted in an almost complete degradation of the 14 EPA regulated polycyclic aromatic hydrocarbons (PAHs) in Bedford LT soil during a 24-h reaction period, while the 3:3:9 (v/v/v) ratio resulted in no applicable degradation in Bedford LT lot 10 soil over the same reaction period. Specific Superfund site soil characteristics (e.g., pH, total organic carbon content and particle size distribution) were found to play an important role in the availability of the PAHs and the efficiency of the transformation during the peroxy-acid process. A scaled-up experiment followed treating 150g of Bedford LT lot 10 soil with and without mixing. The scaled-up processes applied a 3:3:9 (v/v/v) solution resulting in significant decrease in PAH contamination. These findings demonstrate the peroxy-acid process as a viable option for the treatment of PAH contaminated soils. Further work is necessary in order to elucidate the mechanisms of this process.

  12. 9 CFR 310.25 - Contamination with microorganisms; process control verification criteria and testing; pathogen...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... CERTIFICATION POST-MORTEM INSPECTION § 310.25 Contamination with microorganisms; process control verification... testing. (1) Each official establishment that slaughters livestock must test for Escherichia coli Biotype... poultry, shall test the type of livestock or poultry slaughtered in the greatest number. The establishment...

  13. 9 CFR 310.25 - Contamination with microorganisms; process control verification criteria and testing; pathogen...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... CERTIFICATION POST-MORTEM INSPECTION § 310.25 Contamination with microorganisms; process control verification... testing. (1) Each official establishment that slaughters livestock must test for Escherichia coli Biotype... poultry, shall test the type of livestock or poultry slaughtered in the greatest number. The establishment...

  14. 9 CFR 310.25 - Contamination with microorganisms; process control verification criteria and testing; pathogen...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... CERTIFICATION POST-MORTEM INSPECTION § 310.25 Contamination with microorganisms; process control verification... testing. (1) Each official establishment that slaughters livestock must test for Escherichia coli Biotype... poultry, shall test the type of livestock or poultry slaughtered in the greatest number. The establishment...

  15. 9 CFR 310.25 - Contamination with microorganisms; process control verification criteria and testing; pathogen...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... CERTIFICATION POST-MORTEM INSPECTION § 310.25 Contamination with microorganisms; process control verification... testing. (1) Each official establishment that slaughters livestock must test for Escherichia coli Biotype... poultry, shall test the type of livestock or poultry slaughtered in the greatest number. The establishment...

  16. 9 CFR 310.25 - Contamination with microorganisms; process control verification criteria and testing; pathogen...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... CERTIFICATION POST-MORTEM INSPECTION § 310.25 Contamination with microorganisms; process control verification... testing. (1) Each official establishment that slaughters livestock must test for Escherichia coli Biotype... poultry, shall test the type of livestock or poultry slaughtered in the greatest number. The establishment...

  17. Fast processing of microscopic images using object-based extended depth of field.

    PubMed

    Intarapanich, Apichart; Kaewkamnerd, Saowaluck; Pannarut, Montri; Shaw, Philip J; Tongsima, Sissades

    2016-12-22

    Microscopic analysis requires that foreground objects of interest, e.g. cells, are in focus. In a typical microscopic specimen, the foreground objects may lie on different depths of field necessitating capture of multiple images taken at different focal planes. The extended depth of field (EDoF) technique is a computational method for merging images from different depths of field into a composite image with all foreground objects in focus. Composite images generated by EDoF can be applied in automated image processing and pattern recognition systems. However, current algorithms for EDoF are computationally intensive and impractical, especially for applications such as medical diagnosis where rapid sample turnaround is important. Since foreground objects typically constitute a minor part of an image, the EDoF technique could be made to work much faster if only foreground regions are processed to make the composite image. We propose a novel algorithm called object-based extended depths of field (OEDoF) to address this issue. The OEDoF algorithm consists of four major modules: 1) color conversion, 2) object region identification, 3) good contrast pixel identification and 4) detail merging. First, the algorithm employs color conversion to enhance contrast followed by identification of foreground pixels. A composite image is constructed using only these foreground pixels, which dramatically reduces the computational time. We used 250 images obtained from 45 specimens of confirmed malaria infections to test our proposed algorithm. The resulting composite images with all in-focus objects were produced using the proposed OEDoF algorithm. We measured the performance of OEDoF in terms of image clarity (quality) and processing time. The features of interest selected by the OEDoF algorithm are comparable in quality with equivalent regions in images processed by the state-of-the-art complex wavelet EDoF algorithm; however, OEDoF required four times less processing time. This

  18. Insight into the prevalence and distribution of microbial contamination to evaluate water management in the fresh produce processing industry.

    PubMed

    Holvoet, Kevin; Jacxsens, Liesbeth; Sampers, Imca; Uyttendaele, Mieke

    2012-04-01

    This study provided insight into the degree of microbial contamination in the processing chain of prepacked (bagged) lettuce in two Belgian fresh-cut produce processing companies. The pathogens Salmonella and Listeria monocytogenes were not detected. Total psychrotrophic aerobic bacterial counts (TPACs) in water samples, fresh produce, and environmental samples suggested that the TPAC is not a good indicator of overall quality and best manufacturing practices during production and processing. Because of the high TPACs in the harvested lettuce crops, the process water becomes quickly contaminated, and subsequent TPACs do not change much throughout the production process of a batch. The hygiene indicator Escherichia coli was used to assess the water management practices in these two companies in relation to food safety. Practices such as insufficient cleaning and disinfection of washing baths, irregular refilling of the produce wash baths with water of good microbial quality, and the use of high product/water ratios resulted in a rapid increase in E. coli in the processing water, with potential transfer to the end product (fresh-cut lettuce). The washing step in the production of fresh-cut lettuce was identified as a potential pathway for dispersion of microorganisms and introduction of E. coli to the end product via cross-contamination. An intervention step to reduce microbial contamination is needed, particularly when no sanitizers are used as is the case in some European Union countries. Thus, from a food safety point of view proper water management (and its validation) is a critical point in the fresh-cut produce processing industry.

  19. Extraction of contaminants from a gas

    DOEpatents

    Babko-Malyi, Sergei

    2000-01-01

    A method of treating industrial gases to remove contaminants is disclosed. Ions are generated in stream of injectable gas. These ions are propelled through the contaminated gas as it flows through a collection unit. An electric field is applied to the contaminated gas. The field causes the ions to move through the contaminated gases, producing electrical charges on the contaminants. The electrically charged contaminants are then collected at one side of the electric field. The injectable gas is selected to produce ions which will produce reactions with particular contaminants. The process is thus capable of removing particular contaminants. The process does not depend on diffusion as a transport mechanism and is therefore suitable for removing contaminants which exist in very low concentrations.

  20. Tracking sources of Clostridium botulinum type E contamination in seal meat.

    PubMed

    Leclair, Daniel; Farber, Jeffrey M; Pagotto, Franco; Suppa, Sandy; Doidge, Bill; Austin, John W

    2017-01-01

    Botulism in Nunavik, Quebec is associated with the consumption of aged marine mammal meat and fat. The objective was to identify meat handling practices presenting a risk of contamination of seal meat with C. botulinum. Potential sources of contamination were assessed through interviews with igunaq producers from five communities of Nunavik. These sources were verified by detection and isolation of C. botulinum from igunaq prepared in the field from seal carcasses. Interviews indicated practices presenting a risk for contamination included: placing meat or fat on coastal rocks, using seawater for rinsing, and ageing meat in inverted seal skin pouches. Although the presence of C. botulinum type E spores was detected in only two of 32 (6.3%) meat or fat samples collected during the butchering process, two of four igunaq preparations from these samples contained type E botulinum toxin. Analysis of C. botulinum type E isolates recovered from these preparations indicated that shoreline soil may be a source of contamination. Seal meat and fat may be contaminated with C. botulinum type E during the butchering process. Measures can be adopted to reduce the risks of contamination in the field and possibly decrease the incidence of type E botulism in Nunavik.

  1. Suppression of Stimulus Artifact Contaminating Electrically Evoked Electromyography

    PubMed Central

    Liu, Jie; Li, Sheng; Li, Xiaoyan; Klein, Cliff; Rymer, William Z.; Zhou, Ping

    2013-01-01

    Background Electrical stimulation of muscle or nerve is a very useful technique for understanding of muscle activity and its pathological changes for both diagnostic and therapeutic purposes. During electrical stimulation of a muscle, the recorded M wave is often contaminated by a stimulus artifact. The stimulus artifact must be removed for appropriate analysis and interpretation of M waves. Objectives The objective of this study was to develop a novel software based method to remove stimulus artifacts contaminating or superimposing with electrically evoked surface electromyography (EMG) or M wave signals. Methods The multiple stage method uses a series of signal processing techniques, including highlighting and detection of stimulus artifacts using the Savitzky-Golay filtering, estimation of the artifact contaminated region with the Otsu thresholding, and reconstruction of such region using signal interpolation and smoothing. The developed method was tested using M wave signals recorded from biceps brachii muscles by a linear surface electrode array. To evaluate the performance, a series of semi-synthetic signals were constructed from clean M wave and stimulus artifact recordings with different degrees of overlap between them. Results The effectiveness of the developed method was quantified by a significant increase in correlation coefficient and a significant decrease in root mean square error between the clean M wave and the reconstructed M wave, compared with those between the clean M wave and the originally contaminated signal. The validity of the developed method was also demonstrated when tested on each channel’s M wave recording using the linear electrode array. Conclusions The developed method can suppress stimulus artifacts contaminating M wave recordings. PMID:24419021

  2. Biochar for composting improvement and contaminants reduction. A review.

    PubMed

    Godlewska, Paulina; Schmidt, Hans Peter; Ok, Yong Sik; Oleszczuk, Patryk

    2017-12-01

    Biochar is characterised by a large specific surface area, porosity, and a large amount of functional groups. All of those features cause that biochar can be a potentially good material in the optimisation of the process of composting and final compost quality. The objective of this study was to compile the current knowledge on the possibility of biochar application in the process of composting and on the effect of biochar on compost properties and on the content of contaminants in compost. The paper presents the effect of biochar on compost maturity indices, composting temperature and moisture, and also on the content and bioavailability of nutrients and of organic and inorganic contaminants. In the paper note is also taken of the effect of biochar added to composted material on plants, microorganisms and soil invertebrates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A hierarchical approach to ecological assessment of contaminated soils at Aberdeen Proving Ground, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuperman, R.G.

    1995-12-31

    Despite the expansion of environmental toxicology studies over the past decade, soil ecosystems have largely been ignored in ecotoxicological studies in the United States. The objective of this project was to develop and test the efficacy of a comprehensive methodology for assessing ecological impacts of soil contamination. A hierarchical approach that integrates biotic parameters and ecosystem processes was used to give insight into the mechanisms that lead to alterations in the structure and function of soil ecosystems in contaminated areas. This approach involved (1) a thorough survey of the soil biota to determine community structure, (2) laboratory and field testsmore » on critical ecosystem processes, (3) toxicity trials, and (4) the use of spatial analyses to provide input to the decision-making, process. This methodology appears to, offer an efficient and potentially cost-saving tool for remedial investigations of contaminated sites.« less

  4. Sensory Processing Relates to Attachment to Childhood Comfort Objects of College Students

    ERIC Educational Resources Information Center

    Kalpidou, Maria

    2012-01-01

    The author tested the hypothesis that attachment to comfort objects is based on the sensory processing characteristics of the individual. Fifty-two undergraduate students with and without a childhood comfort object reported sensory responses and performed a tactile threshold task. Those with a comfort object described their object and rated their…

  5. EPA Treatability Database Digs Deep for Data on Drinking Water Contaminants and Treatment Processes

    EPA Science Inventory

    The TDB is an interactive database that was initially developed in 2006-2007. The TDB currently contains more than 60 regulated and unregulated contaminants and 28 treatment processes that are known to be effective and are commonly employed at drinking water utilities. TDB lite...

  6. Application of bacteriophages to reduce Salmonella contamination on workers' boots in rendering-processing environment.

    PubMed

    Gong, C; Jiang, X; Wang, J

    2017-10-01

    Workers' boots are considered one of the re-contamination routes of Salmonella for rendered meals in the rendering-processing environment. This study was conducted to evaluate the efficacy of a bacteriophage cocktail for reducing Salmonella on workers' boots and ultimately for preventing Salmonella re-contamination of rendered meals. Under laboratory conditions, biofilms of Salmonella Typhimurium avirulent strain 8243 formed on rubber templates or boots were treated with a bacteriophage cocktail of 6 strains (ca. 9 log PFU/mL) for 6 h at room temperature. Bacteriophage treatments combined with sodium hypochlorite (400 ppm) or 30-second brush scrubbing also were investigated for a synergistic effect on reducing Salmonella biofilms. Sodium magnesium (SM) buffer and sodium hypochlorite (400 ppm) were used as controls. To reduce indigenous Salmonella on workers' boots, a field study was conducted to apply a bacteriophage cocktail and other combined treatments 3 times within one wk in a rendering-processing environment. Prior to and after bacteriophage treatments, Salmonella populations on the soles of rubber boots were swabbed and enumerated on XLT-4, Miller-Mallinson or CHROMagar™ plates. Under laboratory conditions, Salmonella biofilms formed on rubber templates and boots were reduced by 95.1 to 99.999% and 91.5 to 99.2%, respectively. In a rendering-processing environment (ave. temperature: 19.3°C; ave. relative humidity: 48%), indigenous Salmonella populations on workers' boots were reduced by 84.2, 92.9, and 93.2% after being treated with bacteriophages alone, bacteriophages + sodium hypochlorite, and bacteriophages + scrubbing for one wk, respectively. Our results demonstrated the effectiveness of bacteriophage treatments in reducing Salmonella contamination on the boots in both laboratory and the rendering-processing environment. © 2017 Poultry Science Association Inc.

  7. Validation of Contamination Control in Rapid Transfer Port Chambers for Pharmaceutical Manufacturing Processes.

    PubMed

    Hu, Shih-Cheng; Shiue, Angus; Liu, Han-Yang; Chiu, Rong-Ben

    2016-11-12

    There is worldwide concern with regard to the adverse effects of drug usage. However, contaminants can gain entry into a drug manufacturing process stream from several sources such as personnel, poor facility design, incoming ventilation air, machinery and other equipment for production, etc. In this validation study, we aimed to determine the impact and evaluate the contamination control in the preparation areas of the rapid transfer port (RTP) chamber during the pharmaceutical manufacturing processes. The RTP chamber is normally tested for airflow velocity, particle counts, pressure decay of leakage, and sterility. The air flow balance of the RTP chamber is affected by the airflow quantity and the height above the platform. It is relatively easy to evaluate the RTP chamber's leakage by the pressure decay, where the system is charged with the air, closed, and the decay of pressure is measured by the time period. We conducted the determination of a vaporized H₂O₂ of a sufficient concentration to complete decontamination. The performance of the RTP chamber will improve safety and can be completely tested at an ISO Class 5 environment.

  8. A Case for Inhibition: Visual Attention Suppresses the Processing of Irrelevant Objects

    ERIC Educational Resources Information Center

    Wuhr, Peter; Frings, Christian

    2008-01-01

    The present study investigated the ability to inhibit the processing of an irrelevant visual object while processing a relevant one. Participants were presented with 2 overlapping shapes (e.g., circle and square) in different colors. The task was to name the color of the relevant object designated by shape. Congruent or incongruent color words…

  9. Framework for Optimizing the Evaluation of Data From Contaminated Soil in Sweden

    EPA Science Inventory

    The Swedish guidelines for the evaluation of data for the purpose of a risk assessment at contaminated sites are of a qualitative character, as opposed to the USEPA’s Data Quality Objective Process. In Sweden, this can sometimes be a problem because the demands on data quality ar...

  10. SYSTEMATIC PROCEDURE FOR DESIGNING PROCESSES WITH MULTIPLE ENVIRONMENTAL OBJECTIVES

    EPA Science Inventory

    Evaluation of multiple objectives is very important in designing environmentally benign processes. It requires a systematic procedure for solving multiobjective decision-making problems, due to the complex nature of the problems, the need for complex assessments, and complicated ...

  11. Object shape and orientation do not routinely influence performance during language processing.

    PubMed

    Rommers, Joost; Meyer, Antje S; Huettig, Falk

    2013-11-01

    The role of visual representations during language processing remains unclear: They could be activated as a necessary part of the comprehension process, or they could be less crucial and influence performance in a task-dependent manner. In the present experiments, participants read sentences about an object. The sentences implied that the object had a specific shape or orientation. They then either named a picture of that object (Experiments 1 and 3) or decided whether the object had been mentioned in the sentence (Experiment 2). Orientation information did not reliably influence performance in any of the experiments. Shape representations influenced performance most strongly when participants were asked to compare a sentence with a picture or when they were explicitly asked to use mental imagery while reading the sentences. Thus, in contrast to previous claims, implied visual information often does not contribute substantially to the comprehension process during normal reading.

  12. New wash aid T-128 improves efficacy of chlorine against cross contamination by bacterial pathogens in fresh-cut lettuce processing

    USDA-ARS?s Scientific Manuscript database

    Chlorinated water is widely used as the primary anti-microbial intervention during fresh-cut produce processing. Free chlorine in chlorinated water can provide effective reduction of potential contaminations by microbial pathogens, and, more importantly, effectively prevent cross contamination of p...

  13. Natural attenuation of chlorinated-hydrocarbon contamination at Fort Wainwright, Alaska; a hydrogeochemical and microbiological investigation workplan

    USGS Publications Warehouse

    McCarthy, Kathleen A.; Lilly, Michael R.; Braddock, Joan F.; Hinzman, Larry D.

    1998-01-01

    Natural attenuation processes include biological degradation, by which microorganisms break down contaminants into simpler product compounds; adsorption of contaminants to soil particles, which decreases the mass of contaminants dissolved in ground water; and dispersion, which decreases dissolved contaminant concentrations through dilution. The primary objectives of this study are to (1) assess the degree to which such natural processes are attenuating chlorinated-hydrocarbon contamination in ground water, and (2) evaluate the effects of ground-water/surface-water interactions on natural-attenuation processes in the area of the former East and West Quartermasters Fueling Systems for Fort Wainwright, Alaska. The study will include investigations of the hydrologic, geochemical, and microbiological processes occurring at this site that influence the transport and fate of chlorinated hydrocarbons in ground water. To accomplish these objectives, a data-collection program has been initiated that includes measurements of water-table elevations and the stage of the Chena River; measurements of vertical temperature profiles within the subsurface; characterization of moisture distribution and movement in the unsaturated zone; collection of ground-water samples for determination of both organic and inorganic chemical constituents; and collection of ground-water samples for enumeration of microorganisms and determination of their potential to mineralize contaminants. We will use results from the data-collection program described above to refine our conceptual model of hydrology and contaminant attenuation at this site. Measurements of water-table elevations and river stage will help us to understand the magnitude and direction of ground-water flow and how changes in the stage of the Chena River affect ground-water flow. Because ambient ground water and surface water typically have different temperature characteristics, temperature monitoring will likely provide further insight

  14. Campylobacter in Broiler Chicken and Broiler Meat in Sri Lanka: Influence of Semi-Automated vs. Wet Market Processing on Campylobacter Contamination of Broiler Neck Skin Samples.

    PubMed

    Kottawatta, Kottawattage S A; Van Bergen, Marcel A P; Abeynayake, Preeni; Wagenaar, Jaap A; Veldman, Kees T; Kalupahana, Ruwani S

    2017-11-29

    Broiler meat can become contaminated with Campylobacter of intestinal origin during processing. The present study aimed to identify the prevalence of Campylobacter in broiler flocks and meat contamination at retail shops, and determine the influence of semi-automated and wet market processing on Campylobacter contamination of neck skin samples. Samples were collected from semi-automated plants ( n = 102) and wet markets ( n = 25). From each batch of broilers, pooled caecal samples and neck skin samples were tested for Campylobacter . Broiler meat purchased from retail outlets ( n = 37) was also tested. The prevalence of Campylobacter colonized broiler flocks was 67%. The contamination of meat at retail was 59%. Both semi-automated and wet market processing resulted to contaminate the broiler neck skins to the levels of 27.4% and 48%, respectively. When Campylobacter -free broiler flocks were processed in semi-automated facilities 15% (5/33) of neck skin samples became contaminated by the end of processing whereas 25% (2/8) became contaminated after wet market processing. Characterization of isolates revealed a higher proportion of C. coli compared to C. jejuni . Higher proportions of isolates were resistant to important antimicrobials. This study shows the importance of Campylobacter in poultry industry in Sri Lanka and the need for controlling antimicrobial resistance.

  15. Campylobacter in Broiler Chicken and Broiler Meat in Sri Lanka: Influence of Semi-Automated vs. Wet Market Processing on Campylobacter Contamination of Broiler Neck Skin Samples

    PubMed Central

    Kottawatta, Kottawattage S. A.; Van Bergen, Marcel A. P.; Abeynayake, Preeni; Wagenaar, Jaap A.; Veldman, Kees T.; Kalupahana, Ruwani S.

    2017-01-01

    Broiler meat can become contaminated with Campylobacter of intestinal origin during processing. The present study aimed to identify the prevalence of Campylobacter in broiler flocks and meat contamination at retail shops, and determine the influence of semi-automated and wet market processing on Campylobacter contamination of neck skin samples. Samples were collected from semi-automated plants (n = 102) and wet markets (n = 25). From each batch of broilers, pooled caecal samples and neck skin samples were tested for Campylobacter. Broiler meat purchased from retail outlets (n = 37) was also tested. The prevalence of Campylobacter colonized broiler flocks was 67%. The contamination of meat at retail was 59%. Both semi-automated and wet market processing resulted to contaminate the broiler neck skins to the levels of 27.4% and 48%, respectively. When Campylobacter-free broiler flocks were processed in semi-automated facilities 15% (5/33) of neck skin samples became contaminated by the end of processing whereas 25% (2/8) became contaminated after wet market processing. Characterization of isolates revealed a higher proportion of C. coli compared to C. jejuni. Higher proportions of isolates were resistant to important antimicrobials. This study shows the importance of Campylobacter in poultry industry in Sri Lanka and the need for controlling antimicrobial resistance. PMID:29186018

  16. Effects of electrolyzed oxidizing water on reducing Listeria monocytogenes contamination on seafood processing surfaces.

    PubMed

    Liu, Chengchu; Duan, Jingyun; Su, Yi-Cheng

    2006-02-15

    The effects of electrolyzed oxidizing (EO) water on reducing Listeria monocytogenes contamination on seafood processing surfaces were studied. Chips (5 x 5 cm(2)) of stainless steel sheet (SS), ceramic tile (CT), and floor tile (FT) with and without crabmeat residue on the surface were inoculated with L. monocytogenes and soaked in tap or EO water for 5 min. Viable cells of L. monocytogenes were detected on all chip surfaces with or without crabmeat residue after being held at room temperature for 1 h. Soaking contaminated chips in tap water resulted in small-degree reductions of the organism (0.40-0.66 log cfu/chip on clean surfaces and 0.78-1.33 log cfu/chip on dirty surfaces). Treatments of EO water significantly (p<0.05) reduced L. monocytogenes on clean surfaces (3.73 log on SS, 4.24 log on CT, and 5.12 log on FT). Presence of crabmeat residue on chip surfaces reduced the effectiveness of EO water on inactivating Listeria cells. However, treatments of EO water also resulted in significant reductions of L. monocytogenes on dirty surfaces (2.33 log on SS and CT and 1.52 log on FT) when compared with tap water treatments. The antimicrobial activity of EO water was positively correlated with its chlorine content. High oxidation-reduction potential (ORP) of EO water also contributed significantly to its antimicrobial activity against L. monocytogenes. EO water was more effective than chlorine water on inactivating L. monocytogenes on surfaces and could be used as a chlorine alternative for sanitation purpose. Application of EO water following a thorough cleaning process could greatly reduce L. monocytogenes contamination in seafood processing environments.

  17. [Study on rapid analysis method of pesticide contamination in processed foods by GC-MS and GC-FPD].

    PubMed

    Kobayashi, Maki; Otsuka, Kenji; Tamura, Yasuhiro; Tomizawa, Sanae; Kamijo, Kyoko; Iwakoshi, Keiko; Sato, Chizuko; Nagayama, Toshihiro; Takano, Ichiro

    2011-01-01

    A simple and rapid method using GC-MS and GC-FPD for the determination of pesticide contamination in processed food has been developed. Pesticides were extracted from a sample with ethyl acetate in the presence of anhydrous sodium sulfate, then cleaned up with a combination of mini-columns, such as macroporous diatomaceous earth, C18, GCB (graphite carbon black) and PSA. Recovery tests of 57 pesticides (known to be toxic or harmful) from ten kinds of processed foods (butter, cheese, corned beef, dried shrimp, frozen Chinese dumplings, grilled eels, instant noodles, kimchi, retort-packed curry and wine) were performed, and the recovery rates were mostly between 70% and 120%. This method can be used to judge whether or not processed foods are contaminated with pesticides at potentially harmful levels.

  18. Investigation of the effect of contaminations and cleaning processes on the surface properties of brazing surfaces

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.; Wiesner, S.

    2017-03-01

    The quality of brazed joints is determined by different factors such as the atmosphere and the parameters during brazing as well as the condition of the brazing surfaces. Residues of lubricants used during machining of the components and the subsequent cleaning processes can contaminate the faying surfaces and can hence influence the flow ability of the molten filler metals. Besides their influence on the filler metal flow, the residues can result in the formation of carbonic phases in the joint leading to a possible reduction of the corrosion resistance and the mechanical properties. The first step of the current study with the aim of avoiding these defects is to identify the influence of critical contaminations and cleaning methods on the quality of the brazed joints. In a first step, contaminations on AISI304 and Inconel alloy 625 due to different cooling lubricants and the effect of several cleaning methods, in particular plasma cleaning, have been investigated. Information about the surface energy of contaminated and cleaned surfaces was gained by measuring contact angle of testing fluids. Additionally, the lubricants and the resulting contamination products have been analyzed considering the influence of a heat treatment.

  19. Exposure assessment and process sensitivity analysis of the contamination of Campylobacter in poultry products.

    PubMed

    Osiriphun, S; Iamtaweejaloen, P; Kooprasertying, P; Koetsinchai, W; Tuitemwong, K; Erickson, L E; Tuitemwong, P

    2011-07-01

    Studies were conducted in a Thai poultry plant to identify the factors that affected numbers of Campylobacter jejuni in chicken carcasses. The concentrations of Campylobacter were determined using the SimPlate most probable number and modified charcoal cefoperazone deoxycholate plating methods. Results indicated that the mean concentrations of C. jejuni in carcasses after scalding, plucking, and chilling were 2.93 ± 0.31, 2.98 ± 0.38, 2.88 ± 0.31, and 0.85 ± 0.95 log cfu, whereas the concentrations of C. jejuni in the scalding tank water, plucked feathers, and chicken breast portion were 1.39 ± 0.70, 3.28 ± 0.52, and 0.50 ± 1.22 log cfu, respectively. Sensitivity analysis using tornado order correlation analysis showed that risk parameters affecting the contamination of C. jejuni in the chicken slaughter and processing plant could be ranked as chilling water pH, number of pathogens in the scald tank water, scalding water temperature, number of C. jejuni on plucked feathers, and residual chlorine in the chill water, respectively. The exposure assessment and analysis of process parameters indicated that some of the current critical control points were not effective. The suggested interventions included preventing fecal contamination during transportation; increasing the scalding temperature, giving the scalding water a higher countercurrent flow rate; reducing contamination of feathers in the scalding tank to decrease C. jejuni in the scalding water; spraying water to reduce contamination at the plucking step; monitoring and maintaining the chill water pH at 6.0 to 6.5; and increasing the residual chlorine in the chill water. These interventions were recommended for inclusion in the hazard analysis and critical control point plan of the plant.

  20. Ecologically and economically conscious design of the injected pultrusion process via multi-objective optimization

    NASA Astrophysics Data System (ADS)

    Srinivasagupta, Deepak; Kardos, John L.

    2004-05-01

    Injected pultrusion (IP) is an environmentally benign continuous process for low-cost manufacture of prismatic polymer composites. IP has been of recent regulatory interest as an option to achieve significant vapour emissions reduction. This work describes the design of the IP process with multiple design objectives. In our previous work (Srinivasagupta D et al 2003 J. Compos. Mater. at press), an algorithm for economic design using a validated three-dimensional physical model of the IP process was developed, subject to controllability considerations. In this work, this algorithm was used in a multi-objective optimization approach to simultaneously meet economic, quality related, and environmental objectives. The retrofit design of a bench-scale set-up was considered, and the concept of exergy loss in the process, as well as in vapour emission, was introduced. The multi-objective approach was able to determine the optimal values of the processing parameters such as heating zone temperatures and resin injection pressure, as well as the equipment specifications (die dimensions, heater, puller and pump ratings) that satisfy the various objectives in a weighted sense, and result in enhanced throughput rates. The economic objective did not coincide with the environmental objective, and a compromise became necessary. It was seen that most of the exergy loss is in the conversion of electric power into process heating. Vapour exergy loss was observed to be negligible for the most part.

  1. An Assessment of the International Space Station's Trace Contaminant Control Subassembly Process Economics

    NASA Technical Reports Server (NTRS)

    Perry J. L.; Cole, H. E.; El-Lessy, H. N.

    2005-01-01

    The International Space Station (ISS) Environmental Control and Life Support System includes equipment speci.cally designed to actively remove trace chemical contamination from the cabin atmosphere. In the U.S. on-orbit segment, this function is provided by the trace contaminant control subassembly (TCCS) located in the atmosphere revitalization subsystem rack housed in the laboratory module, Destiny. The TCCS employs expendable adsorbent beds to accomplish its function leading to a potentially signi.cant life cycle cost over the life of the ISS. Because maintaining the TCCSs proper can be logistically intensive, its performance in .ight has been studied in detail to determine where savings may be achieved. Details of these studies and recommendations for improving the TCCS s process economics without compromising its performance or crew health and safety are presented and discussed.

  2. Tracker: Image-Processing and Object-Tracking System Developed

    NASA Technical Reports Server (NTRS)

    Klimek, Robert B.; Wright, Theodore W.

    1999-01-01

    Tracker is an object-tracking and image-processing program designed and developed at the NASA Lewis Research Center to help with the analysis of images generated by microgravity combustion and fluid physics experiments. Experiments are often recorded on film or videotape for analysis later. Tracker automates the process of examining each frame of the recorded experiment, performing image-processing operations to bring out the desired detail, and recording the positions of the objects of interest. It can load sequences of images from disk files or acquire images (via a frame grabber) from film transports, videotape, laser disks, or a live camera. Tracker controls the image source to automatically advance to the next frame. It can employ a large array of image-processing operations to enhance the detail of the acquired images and can analyze an arbitrarily large number of objects simultaneously. Several different tracking algorithms are available, including conventional threshold and correlation-based techniques, and more esoteric procedures such as "snake" tracking and automated recognition of character data in the image. The Tracker software was written to be operated by researchers, thus every attempt was made to make the software as user friendly and self-explanatory as possible. Tracker is used by most of the microgravity combustion and fluid physics experiments performed by Lewis, and by visiting researchers. This includes experiments performed on the space shuttles, Mir, sounding rockets, zero-g research airplanes, drop towers, and ground-based laboratories. This software automates the analysis of the flame or liquid s physical parameters such as position, velocity, acceleration, size, shape, intensity characteristics, color, and centroid, as well as a number of other measurements. It can perform these operations on multiple objects simultaneously. Another key feature of Tracker is that it performs optical character recognition (OCR). This feature is useful in

  3. Abnormalities of Object Visual Processing in Body Dysmorphic Disorder

    PubMed Central

    Feusner, Jamie D.; Hembacher, Emily; Moller, Hayley; Moody, Teena D.

    2013-01-01

    Background Individuals with body dysmorphic disorder may have perceptual distortions for their appearance. Previous studies suggest imbalances in detailed relative to configural/holistic visual processing when viewing faces. No study has investigated the neural correlates of processing non-symptom-related stimuli. The objective of this study was to determine whether individuals with body dysmorphic disorder have abnormal patterns of brain activation when viewing non-face/non-body object stimuli. Methods Fourteen medication-free participants with DSM-IV body dysmorphic disorder and 14 healthy controls participated. We performed functional magnetic resonance imaging while participants matched photographs of houses that were unaltered, contained only high spatial frequency (high detail) information, or only low spatial frequency (low detail) information. The primary outcome was group differences in blood oxygen level-dependent signal changes. Results The body dysmorphic disorder group showed lesser activity in the parahippocampal gyrus, lingual gyrus, and precuneus for low spatial frequency images. There were greater activations in medial prefrontal regions for high spatial frequency images, although no significant differences when compared to a low-level baseline. Greater symptom severity was associated with lesser activity in dorsal occipital cortex and ventrolateral prefrontal cortex for normal and high spatial frequency images. Conclusions Individuals with body dysmorphic disorder have abnormal brain activation patterns when viewing objects. Hypoactivity in visual association areas for configural and holistic (low detail) elements and abnormal allocation of prefrontal systems for details is consistent with a model of imbalances in global vs. local processing. This may occur not only for appearance but also for general stimuli unrelated to their symptoms. PMID:21557897

  4. Good Manufacturing Practices and Microbial Contamination Sources in Orange Fleshed Sweet Potato Puree Processing Plant in Kenya

    PubMed Central

    Abong', George Ooko

    2018-01-01

    Limited information exists on the status of hygiene and probable sources of microbial contamination in Orange Fleshed Sweet Potato (OFSP) puree processing. The current study is aimed at determining the level of compliance to Good Manufacturing Practices (GMPs), hygiene, and microbial quality in OFSP puree processing plant in Kenya. Intensive observation and interviews using a structured GMPs checklist, environmental sampling, and microbial analysis by standard microbiological methods were used in data collection. The results indicated low level of compliance to GMPs with an overall compliance score of 58%. Microbial counts on food equipment surfaces, installations, and personnel hands and in packaged OFSP puree were above the recommended microbial safety and quality legal limits. Steaming significantly (P < 0.05) reduced microbial load in OFSP cooked roots but the counts significantly (P < 0.05) increased in the puree due to postprocessing contamination. Total counts, yeasts and molds, Enterobacteriaceae, total coliforms, and E. coli and S. aureus counts in OFSP puree were 8.0, 4.0, 6.6, 5.8, 4.8, and 5.9 log10 cfu/g, respectively. In conclusion, equipment surfaces, personnel hands, and processing water were major sources of contamination in OFSP puree processing and handling. Plant hygiene inspection, environmental monitoring, and food safety trainings are recommended to improve hygiene, microbial quality, and safety of OFSP puree. PMID:29808161

  5. Good Manufacturing Practices and Microbial Contamination Sources in Orange Fleshed Sweet Potato Puree Processing Plant in Kenya.

    PubMed

    Malavi, Derick Nyabera; Muzhingi, Tawanda; Abong', George Ooko

    2018-01-01

    Limited information exists on the status of hygiene and probable sources of microbial contamination in Orange Fleshed Sweet Potato (OFSP) puree processing. The current study is aimed at determining the level of compliance to Good Manufacturing Practices (GMPs), hygiene, and microbial quality in OFSP puree processing plant in Kenya. Intensive observation and interviews using a structured GMPs checklist, environmental sampling, and microbial analysis by standard microbiological methods were used in data collection. The results indicated low level of compliance to GMPs with an overall compliance score of 58%. Microbial counts on food equipment surfaces, installations, and personnel hands and in packaged OFSP puree were above the recommended microbial safety and quality legal limits. Steaming significantly ( P < 0.05) reduced microbial load in OFSP cooked roots but the counts significantly ( P < 0.05) increased in the puree due to postprocessing contamination. Total counts, yeasts and molds, Enterobacteriaceae, total coliforms, and E. coli and S. aureus counts in OFSP puree were 8.0, 4.0, 6.6, 5.8, 4.8, and 5.9 log 10 cfu/g, respectively. In conclusion, equipment surfaces, personnel hands, and processing water were major sources of contamination in OFSP puree processing and handling. Plant hygiene inspection, environmental monitoring, and food safety trainings are recommended to improve hygiene, microbial quality, and safety of OFSP puree.

  6. Bioventing remediation and ecotoxicity evaluation of phenanthrene-contaminated soil.

    PubMed

    García Frutos, F Javier; Escolano, Olga; García, Susana; Babín, Mar; Fernández, M Dolores

    2010-11-15

    The objectives of soil remediation processes are usually based on threshold levels of soil contaminants. However, during remediation processes, changes in bioavailability and metabolite production can occur, making it necessary to incorporate an ecotoxicity assessment to estimate the risk to ecological receptors. The evolution of contaminants and soil ecotoxicity of artificially phenanthrene-contaminated soil (1000 mg/kg soil) during soil treatment through bioventing was studied in this work. Bioventing was performed in glass columns containing 5.5 kg of phenanthrene-contaminated soil and uncontaminated natural soil over a period of 7 months. Optimum conditions of mineralisation (humidity=60% WHC; C/N/P=100:20:1) were determined in a previous work. The evolution of oxygen consumption, carbon dioxide production, phenanthrene concentration and soil toxicity were studied on sacrificed columns at periods of 0, 3 and 7 months. Toxicity to soil and aquatic organisms was determined using a multispecies system in the soil columns (MS-3). In the optimal bioventing treatability test, we obtained a reduction rate in phenanthrene concentration higher that 93% after 7 months of treatment. The residual toxicity obtained at the end of the treatment was not attributed to the low phenanthrene concentration, but to the ammonia used to restore the optimal C/N ratio. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Model and on-orbit study of the International space station contamination processes by jets of its orientation thrusters

    NASA Astrophysics Data System (ADS)

    Yarygin, V. N.; Gerasimov, Yu I.; Krylov, A. N.; Prikhodko, V. G.; Skorovarov, A. Yu; Yarygin, I. V.

    2017-11-01

    The main objective of this paper is to describe the current state of research for the problem of the International Space Station contamination by plumes of its orientation thrusters. Results of experiments carried out at the Institute of Thermophysics SB RAS modeling space vehicles orientation thruster’s plumes are presented and experimental setup is discussed. A novel approach to reduction of contamination by thrusters with the help of special gas-dynamic protective devices mounted at the exit part of the nozzle is suggested. The description and results of on-orbit experiment at the International Space Station are given. Results show good agreement for model and on-orbit experiments validating our approach.

  8. Beyond Faces and Expertise: Facelike Holistic Processing of Nonface Objects in the Absence of Expertise.

    PubMed

    Zhao, Mintao; Bülthoff, Heinrich H; Bülthoff, Isabelle

    2016-02-01

    Holistic processing-the tendency to perceive objects as indecomposable wholes-has long been viewed as a process specific to faces or objects of expertise. Although current theories differ in what causes holistic processing, they share a fundamental constraint for its generalization: Nonface objects cannot elicit facelike holistic processing in the absence of expertise. Contrary to this prevailing view, here we show that line patterns with salient Gestalt information (i.e., connectedness, closure, and continuity between parts) can be processed as holistically as faces without any training. Moreover, weakening the saliency of Gestalt information in these patterns reduced holistic processing of them, which indicates that Gestalt information plays a crucial role in holistic processing. Therefore, holistic processing can be achieved not only via a top-down route based on expertise, but also via a bottom-up route relying merely on object-based information. The finding that facelike holistic processing can extend beyond the domains of faces and objects of expertise poses a challenge to current dominant theories. © The Author(s) 2015.

  9. Validation of Contamination Control in Rapid Transfer Port Chambers for Pharmaceutical Manufacturing Processes

    PubMed Central

    Hu, Shih-Cheng; Shiue, Angus; Liu, Han-Yang; Chiu, Rong-Ben

    2016-01-01

    There is worldwide concern with regard to the adverse effects of drug usage. However, contaminants can gain entry into a drug manufacturing process stream from several sources such as personnel, poor facility design, incoming ventilation air, machinery and other equipment for production, etc. In this validation study, we aimed to determine the impact and evaluate the contamination control in the preparation areas of the rapid transfer port (RTP) chamber during the pharmaceutical manufacturing processes. The RTP chamber is normally tested for airflow velocity, particle counts, pressure decay of leakage, and sterility. The air flow balance of the RTP chamber is affected by the airflow quantity and the height above the platform. It is relatively easy to evaluate the RTP chamber′s leakage by the pressure decay, where the system is charged with the air, closed, and the decay of pressure is measured by the time period. We conducted the determination of a vaporized H2O2 of a sufficient concentration to complete decontamination. The performance of the RTP chamber will improve safety and can be completely tested at an ISO Class 5 environment. PMID:27845748

  10. A combined process coupling phytoremediation and in situ flushing for removal of arsenic in contaminated soil.

    PubMed

    Yan, Xiulan; Liu, Qiuxin; Wang, Jianyi; Liao, Xiaoyong

    2017-07-01

    Phytoremediation and soil washing are both potentially useful for remediating arsenic (As)-contaminated soils. We evaluated the effectiveness of a combined process coupling phytoremediation and in situ soil flushing for removal of As in contaminated soil through a pilot study. The results showed that growing Pteris vittata L. (P.v.) accompanied by soil flushing of phosphate (P.v./Flushing treatment) could significantly decrease the total As concentration of soil over a 37day flushing period compared with the single flushing (Flushing treatment). The P.v./Flushing treatment removed 54.04% of soil As from contaminated soil compared to 47.16% in Flushing treatment, suggesting that the growth of P. vittata was beneficial for promoting the removal efficiency. We analyzed the As fractionation in soil and As concentration in soil solution to reveal the mechanism behind this combined process. Results showed that comparing with the control treatment, the percent of labile arsenate fraction significantly increased by 17% under P.v./Flushing treatment. As concentration in soil solution remained a high lever during the middle and later periods (51.26-56.22mg/L), which was significantly higher than the Flushing treatment. Although soil flushing of phosphate for more than a month, P. vittata still had good accumulation and transfer capacity of As of the soil. The results of the research revealed that combination of phytoremediation and in situ soil flushing is available to remediate As-contaminated soils. Copyright © 2016. Published by Elsevier B.V.

  11. Mirror-Image Confusions: Implications for Representation and Processing of Object Orientation

    ERIC Educational Resources Information Center

    Gregory, Emma; McCloskey, Michael

    2010-01-01

    Perceiving the orientation of objects is important for interacting with the world, yet little is known about the mental representation or processing of object orientation information. The tendency of humans and other species to confuse mirror images provides a potential clue. However, the appropriate characterization of this phenomenon is not…

  12. The Effects of Directional Processing on Objective and Subjective Listening Effort

    ERIC Educational Resources Information Center

    Picou, Erin M.; Moore, Travis M.; Ricketts, Todd A.

    2017-01-01

    Purpose: The purposes of this investigation were (a) to evaluate the effects of hearing aid directional processing on subjective and objective listening effort and (b) to investigate the potential relationships between subjective and objective measures of effort. Method: Sixteen adults with mild to severe hearing loss were tested with study…

  13. Electromagnetic mixed waste processing system for asbestos decontamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasevich, R.S.; Vaux, W.; Ulerich, N.

    The overall objective of this three-phase program is to develop an integrated process for treating asbestos-containing material that is contaminated with radioactive and hazardous constituents. The integrated process will attempt to minimize processing and disposal costs. The objectives of Phase 1 were to establish the technical feasibility of asbestos decomposition, inorganic radionuclide nd heavy metal removal, and organic volatilization. Phase 1 resulted in the successful bench-scale demonstration of the elements required to develop a mixed waste treatment process for asbestos-containing material (ACM) contaminated with radioactive metals, heavy metals, and organics. Using the Phase 1 data, a conceptual process was developed.more » The Phase 2 program, currently in progress, is developing an integrated system design for ACM waste processing. The Phase 3 program will target demonstration of the mixed waste processing system at a DOE facility. The electromagnetic mixed waste processing system employs patented technologies to convert DOE asbestos to a non-hazardous, radionuclide-free, stable waste. The dry, contaminated asbestos is initially heated with radiofrequency energy to remove organic volatiles. Second,the radionuclides are removed by solvent extraction coupled with ion exchange solution treatment. Third, the ABCOV method converts the asbestos to an amorphous silica suspension at low temperature (100{degrees}C). Finally the amorphous silica is solidified for disposal.« less

  14. CONTAMINANTS IN FISH

    EPA Science Inventory

    The objective of this study was to determine inorganic and organic contaminant concentrations in edible tissue of fish collected from eight coastal areas receiving wastewater discharges and from two reference locations. Trace metal residues were statistically similar regardless ...

  15. Recharge processes drive sulfate reduction in an alluvial aquifer contaminated with landfill leachate

    USGS Publications Warehouse

    Scholl, M.A.; Cozzarelli, I.M.; Christenson, S.C.

    2006-01-01

    present in the root zone, and SO42- reduction may be coupled to methane oxidation. The results show that sulfur (and possibly nitrogen) redox processes within the top 2??m of the aquifer are directly related to recharge timing and seasonal water level changes in the aquifer. The results suggest that SO42- reduction associated with the infiltration of recharge may be a significant factor affecting natural attenuation of contaminants in alluvial aquifers. ?? 2006 Elsevier B.V. All rights reserved.

  16. Impact of Scale-Dependent Coupled Processes on Solute Fate and Transport in the Critical Zone: Case Studies Involving Inorganic and Radioactive Contaminants

    NASA Astrophysics Data System (ADS)

    Jardine, P. M.; Gentry, R. W.

    2011-12-01

    Soil, the thin veneer of matter covering the Earths surface that supports a web of living diversity, is often abused through anthropogenic inputs of toxic waste. This subsurface regime, coupled with life sustaining surface water and groundwater is known as the "Critical Zone". The disposal of radioactive and toxic organic and inorganic waste generated by industry and various government agencies has historically involved shallow land burial or the use of surface impoundments in unsaturated soils and sediments. Presently, contaminated sites have been closing rapidly and many remediation strategies have chosen to leave contaminants in-place. As such, contaminants will continue to interact with the geosphere and investigations on long term changes and interactive processes is imperative to verify risks. In this presentation we provide a snap-shot of subsurface science research from the past 25 y that seeks to provide an improved understanding and predictive capability of multi-scale contaminant fate and transport processes in heterogeneous unsaturated and saturated environments. Investigations focus on coupled hydrological, geochemical, and microbial processes that control reactive contaminant transport and that involve multi-scale fundamental research ranging from the molecular scale (e.g. synchrotrons, electron sources, arrays) to in situ plume interrogation strategies at the macroscopic scale (e.g. geophysics, field biostimulation, coupled processes monitoring). We show how this fundamental research is used to provide multi-process, multi-scale predictive monitoring and modeling tools that can be used at contaminated sites to (1) inform and improve the technical basis for decision making, and (2) assess which sites are amenable to natural attenuation and which would benefit from source zone remedial intervention.

  17. Comparison of Eh and H2 measurements for delineating redox processes in a contaminated aquifer

    USGS Publications Warehouse

    Chapelle, Francis H.; Haack, Sheridan K.; Adriaens, Peter; Henry, Mark A.; Bradley, Paul M.

    1996-01-01

    Measurements of oxidation-reduction potential (Eh) and concentrations of dissolved hydrogen (H2) were made in a shallow groundwater system contaminated with solvents and jet fuel to delineate the zonation of redox processes. Eh measurements ranged from +69 to -158 mV in a cross section of the contaminated plume and accurately delineated oxic from anoxic groundwater. Plotting measured Eh and pH values on an equilibrium stability diagram indicated that Fe(III) reduction was the predominant redox process in the anoxic zone and did not indicate the presence of methanogenesis and sulfate reduction. In contrast, measurements of H2concentrations indicated that methanogenesis predominated in heavily contaminated sediments near the water table surface (H2 ∼ 7.0 nM) and that the methanogenic zone was surrounded by distinct sulfate-reducing (H2 ∼ 1-4 nM) and Fe(III)-reducing (H2 ∼ 0.1-0.8 nM) zones. The presence of methanogenesis, sulfate reduction, and Fe(III) reduction was confirmed by the distribution of dissolved oxygen, sulfate, Fe(II), and methane in groundwater. These results show that H2 concentrations were more useful for identifying anoxic redox processes than Ehmeasurements in this groundwater system. However, H2-based redox zone delineations are more reliable when H2 concentrations are interpreted in the context of electron-acceptor (oxygen, nitrate, sulfate) availability and the presence of final products [Fe(II), sulfide, methane] of microbial metabolism.

  18. More than a feeling: The bidirectional convergence of semantic visual object and somatosensory processing.

    PubMed

    Ekstrand, Chelsea; Neudorf, Josh; Lorentz, Eric; Gould, Layla; Mickleborough, Marla; Borowsky, Ron

    2017-11-01

    Prevalent theories of semantic processing assert that the sensorimotor system plays a functional role in the semantic processing of manipulable objects. While motor execution has been shown to impact object processing, involvement of the somatosensory system has remained relatively unexplored. Therefore, we developed two novel priming paradigms. In Experiment 1, participants received a vibratory hand prime (on half the trials) prior to viewing a picture of either an object interacted primarily with the hand (e.g., a cup) or the foot (e.g., a soccer ball) and reported how they would interact with it. In Experiment 2, the same objects became the prime and participants were required to identify whether the vibratory stimulation occurred to their hand or foot. In both experiments, somatosensory priming effects arose for the hand objects, while foot objects showed no priming benefits. These results suggest that object semantic knowledge bidirectionally converges with the somatosensory system. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. An assembly process model based on object-oriented hierarchical time Petri Nets

    NASA Astrophysics Data System (ADS)

    Wang, Jiapeng; Liu, Shaoli; Liu, Jianhua; Du, Zenghui

    2017-04-01

    In order to improve the versatility, accuracy and integrity of the assembly process model of complex products, an assembly process model based on object-oriented hierarchical time Petri Nets is presented. A complete assembly process information model including assembly resources, assembly inspection, time, structure and flexible parts is established, and this model describes the static and dynamic data involved in the assembly process. Through the analysis of three-dimensional assembly process information, the assembly information is hierarchically divided from the whole, the local to the details and the subnet model of different levels of object-oriented Petri Nets is established. The communication problem between Petri subnets is solved by using message database, and it reduces the complexity of system modeling effectively. Finally, the modeling process is presented, and a five layer Petri Nets model is established based on the hoisting process of the engine compartment of a wheeled armored vehicle.

  20. SEMICONDUCTOR TECHNOLOGY A new cleaning process for the metallic contaminants on a post-CMP wafer's surface

    NASA Astrophysics Data System (ADS)

    Baohong, Gao; Yuling, Liu; Chenwei, Wang; Yadong, Zhu; Shengli, Wang; Qiang, Zhou; Baimei, Tan

    2010-10-01

    This paper presents a new cleaning process using boron-doped diamond (BDD) film anode electrochemical oxidation for metallic contaminants on polished silicon wafer surfaces. The BDD film anode electrochemical oxidation can efficiently prepare pyrophosphate peroxide, pyrophosphate peroxide can oxidize organic contaminants, and pyrophosphate peroxide is deoxidized into pyrophosphate. Pyrophosphate, a good complexing agent, can form a metal complex, which is a structure consisting of a copper ion, bonded to a surrounding array of two pyrophosphate anions. Three polished wafers were immersed in the 0.01 mol/L CuSO4 solution for 2 h in order to make comparative experiments. The first one was cleaned by pyrophosphate peroxide, the second by RCA (Radio Corporation of America) cleaning, and the third by deionized (DI) water. The XPS measurement result shows that the metallic contaminants on wafers cleaned by the RCA method and by pyrophosphate peroxide is less than the XPS detection limits of 1 ppm. And the wafer's surface cleaned by pyrophosphate peroxide is more efficient in removing organic carbon residues than RCA cleaning. Therefore, BDD film anode electrochemical oxidation can be used for microelectronics cleaning, and it can effectively remove organic contaminants and metallic contaminants in one step. It also achieves energy saving and environmental protection.

  1. PRIORITIZATION OF GROUND WATER CONTAMINANTS AND SOURCES

    EPA Science Inventory

    The objective of this research was to identify chemical, physical, bacteriological, and viral contaminants, and their sources, which present the greatest health threat in public ground water supplies in the USA; and to classify (prioritize) such contaminants and relative to their...

  2. U.S. Geological Survey toxic Waste-Groundwater Contamination Program, fiscal year 1985

    USGS Publications Warehouse

    Ragone, S.E.

    1986-01-01

    In fiscal year 1982, the U S Geological Survey began an interdisciplinary research thrust entitled Toxic Waste-Groundwater Contamination Program The objective of the thrust was to provide earth sciences information necessary to evaluate and mitigate existing groundwater contamination problems resulting from the planned or inadvertant disposal of wastes and from certain land-use practices, and to improve future waste disposal and land-use practices The program supports process-oriented and interdisciplinary field research, and regional groundwater quality studies This article provides an overview of the current (Fiscal Year 1985) activities of the Toxic Waste Program ?? 1986 Springer-Verlag New York Inc.

  3. U.S. Geological Survey toxic Waste-Groundwater Contamination Program, fiscal year 1985

    NASA Astrophysics Data System (ADS)

    Ragone, Stephen E.

    1986-09-01

    In fiscal year 1982, the U S Geological Survey began an interdisciplinary research thrust entitled Toxic Waste-Groundwater Contamination Program The objective of the thrust was to provide earth sciences information necessary to evaluate and mitigate existing groundwater contamination problems resulting from the planned or inadvertant disposal of wastes and from certain land-use practices, and to improve future waste disposal and land-use practices The program supports process-oriented and interdisciplinary field research, and regional groundwater quality studies This article provides an overview of the current (Fiscal Year 1985) activities of the Toxic Waste Program

  4. External Contamination Environment at ISS Included: Selected Results from Payloads Contamination Mapping Delivery 3 Package

    NASA Technical Reports Server (NTRS)

    Olsen, Randy; Huang, Alvin; Steagall, Courtney; Kohl, Nathaniel; Koontz, Steve; Worthy, Erica

    2017-01-01

    The International Space Station is the largest and most complex on-orbit platform for space science utilization in low Earth orbit. Multiple sites for external payloads, with exposure to the associated natural and induced environments, are available to support a variety of space science utilization objectives. Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle. The ISS has been designed, built and integrated with strict contamination requirements to provide low levels of induced contamination on external payload assets.

  5. Objectives and models of the planetary quarantine program

    NASA Technical Reports Server (NTRS)

    Werber, M.

    1975-01-01

    The objectives of the planetary quarantine program are presented and the history of early contamination prevention efforts is outlined. Contamination models which were previously established are given and include: determination of parameters; symbol nomenclature; and calculations of contamination and hazard probabilities. Planetary quarantine is discussed as an issue of national and international concern. Information on international treaty and meetings on spacecraft sterilization, quarantine standards, and policies is provided. The specific contamination probabilities of the U.S.S.R. Venus 3 flyby are included.

  6. [Biological treatments for contaminated soils: hydrocarbon contamination. Fungal applications in bioremediation treatment].

    PubMed

    Martín Moreno, Carmen; González Becerra, Aldo; Blanco Santos, María José

    2004-09-01

    Bioremediation is a spontaneous or controlled process in which biological, mainly microbiological, methods are used to degrade or transform contaminants to non or less toxic products, reducing the environmental pollution. The most important parameters to define a contaminated site are: biodegradability, contaminant distribution, lixiviation grade, chemical reactivity of the contaminants, soil type and properties, oxygen availability and occurrence of inhibitory substances. Biological treatments of organic contaminations are based on the degradative abilities of the microorganisms. Therefore the knowledge on the physiology and ecology of the biological species or consortia involved as well as the characteristics of the polluted sites are decisive factors to select an adequate biorremediation protocol. Basidiomycetes which cause white rot decay of wood are able to degrade lignin and a variety of environmentally persistent pollutants. Thus, white rot fungi and their enzymes are thought to be useful not only in some industrial process like biopulping and biobleaching but also in bioremediation. This paper provides a review of different aspects of bioremediation technologies and recent advances on ligninolytic metabolism research.

  7. Contamination sources, serogroups, biofilm-forming ability and biocide resistance of Listeria monocytogenes persistent in tilapia-processing facilities.

    PubMed

    Vázquez-Sánchez, Daniel; Galvão, Juliana Antunes; Oetterer, Marília

    2017-11-01

    The major contamination sources, serogroups, biofilm-forming ability and biocide resistance of Listeria monocytogenes persistent in tilapia-processing facilities were assessed. Twenty-five processing-control points were examined twice in two factories, including whole tilapias, frozen fillets, water and food-contact surfaces. L. monocytogenes were detected in 4 and 20% of points of Factory A and B respectively, but at low concentrations. Contamination was due to inadequate handling of tilapias in the slaughter room of Factory A and to the application of ineffective sanitizing procedures in Factory B. Seven strains were characterized by RAPD-PCR using primers HLWL85, OPM-01 and DAF4. Genotypic similarity allowed tracing the contamination source of tilapia fillets in Factory B and detecting a prevalent strain in Brazilian tilapia-processing facilities. The serogroup II (including the serotype 1/2c) was the most frequently found, followed by serogroup I (1/2a) and III (1/2b), whereas the serotype 4b was not detected. All strains showed high biofilm-forming ability on stainless steel and polystyrene, but biofilm formation was positively correlated with the type of origin surface. Biofilms were highly resistant to peracetic acid and sodium hypochlorite, being required doses higher than those recommended by manufacturers to be eradicated. Peracetic acid was more effective than sodium hypochlorite, but the use of disinfectants with similar mechanisms of action increases the risk of cross-resistance. Case-by-case approaches are thus recommended to determine the sources and degree of contamination present in each factory, which would allow applying precise responses to control the persistence of bacterial pathogens such as L. monocytogenes .

  8. Movement and fate of solutes in a plume of sewage-contaminated ground water, Cape Cod, Massachusetts

    USGS Publications Warehouse

    LeBlanc, D. R.

    1984-01-01

    The U.S. Geological Survey (USGS) has begun a nationwide program to study the fate of toxic wastes in groundwater. Several sites where groundwater is known to be contaminated are being studied by interdisciplinary teams of geohydrologists, chemists, and microbiologists. The objective of these studies is to obtain a thorough quantitative understanding of the physical, chemical, and biological processes of contaminant generation, migration, and attenuation in aquifers. One of the sites being studied by the USGS under this program is a plume of sewage contaminated groundwater on Cape Cod, Massachusetts. The plume was formed by land disposal of treated sewage to a glacial outwash aquifer since 1936. This report summarizes results obtained during the first year of research at the Cape Cod s under the USGS Toxic-Waste Ground-Water Contamination Program. The seven papers included in this volume were presented at the Toxic Waste Technical Meeting, Tucson, Arizona, in March 1984. They provide an integrated view of the subsurface distribution of contaminants based on the first year of research and discuss hypotheses concerning the transport processes that affect the movement of contaminants in the plume. (See W89-09053 thru W89-09059) (Lantz-PTT)

  9. Process for minimizing solids contamination of liquids from coal pyrolysis

    DOEpatents

    Wickstrom, Gary H.; Knell, Everett W.; Shaw, Benjamin W.; Wang, Yue G.

    1981-04-21

    In a continuous process for recovery of liquid hydrocarbons from a solid carbonaceous material by pyrolysis of the carbonaceous material in the presence of a particulate source of heat, particulate contamination of the liquid hydrocarbons is minimized. This is accomplished by removing fines from the solid carbonaceous material feed stream before pyrolysis, removing fines from the particulate source of heat before combining it with the carbonaceous material to effect pyrolysis of the carbonaceous material, and providing a coarse fraction of reduced fines content of the carbon containing solid residue resulting from the pyrolysis of the carbonaceous material before oxidizing carbon in the carbon containing solid residue to form the particulate source of heat.

  10. Distinct Visual Processing of Real Objects and Pictures of Those Objects in 7- to 9-month-old Infants

    PubMed Central

    Gerhard, Theresa M.; Culham, Jody C.; Schwarzer, Gudrun

    2016-01-01

    The present study examined 7- and 9-month-old infants’ visual habituation to real objects and pictures of the same objects and their preferences between real and pictorial versions of the same objects following habituation. Different hypotheses would predict that infants may habituate faster to pictures than real objects (based on proposed theoretical links between behavioral habituation in infants and neuroimaging adaptation in adults) or to real objects vs. pictures (based on past infant electrophysiology data). Sixty-one 7-month-old infants and fifty-nine 9-month-old infants were habituated to either a real object or a picture of the same object and afterward preference tested with the habituation object paired with either the novel real object or its picture counterpart. Infants of both age groups showed basic information-processing advantages for real objects. Specifically, during the initial presentations, 9-month-old infants looked longer at stimuli in both formats than the 7-month olds but more importantly both age groups looked longer at real objects than pictures, though with repeated presentations, they habituated faster for real objects such that at the end of habituation, they looked equally at both types of stimuli. Surprisingly, even after habituation, infants preferred to look at the real objects, regardless of whether they had habituated to photos or real objects. Our findings suggest that from as early as 7-months of age, infants show strong preferences for real objects, perhaps because real objects are visually richer and/or enable the potential for genuine interactions. PMID:27378962

  11. Landfill mining from a deposit of the chlorine/organochlorine industry as source of dioxin contamination of animal feed and assessment of the responsible processes.

    PubMed

    Torres, João Paulo Machado; Leite, Claudio; Krauss, Thomas; Weber, Roland

    2013-04-01

    In 1997, the Polychlorinated dibenzo-para-dioxin (PCDD)/Polychlorinated dibenzofuran (PCDF) concentrations in dairy products in Germany and other European countries increased. The PCDD/PCDF source was contaminated lime used in Brazilian citrus pulp pellets. The contaminated lime was mined from an industrial dump site. However, the detailed origin of the PCDD/PCDFs in the lime was not revealed. This paper investigates the contamination origin and describes the link between lime milk from the dumpsite of a chlorine/organochlorine industry and the contaminated lime. The contaminated lime stem from mining at the corporate landfill of Solvay Indupa in Sao Paulo. The landfill was used for 40 years for deposition of production residues and closed in 1996. The factory operated/operates at least two processes with potentially high PCDD/PCDFs releases namely the oxychlorination process for production of ethylene dichloride (EDC) and the chlor-alkali process. The main landfilled waste was lime milk (1.4 million tons) from the vinyl chloride monomer production (via the acetylene process) along with residues from other processes. The PCDD/PCDF fingerprint revealed that most samples from the chemical landfill showed an EDC PCDD/PCDF pattern with a characteristic octachlorodibenzofuran dominance. The PCDD/PCDF pattern of a Rio Grande sediment samples downstream the facility showed a chlor-alkali pattern with a minor impact of the EDC pattern. The case highlights that PCDD/PCDF- and persistent organic pollutants-contaminated sites need to be identified in a comprehensive manner as required by the Stockholm Convention (article 6) and controlled for their impact on the environment and human health. Landfill mining and reuse of materials from contaminated deposits should be prohibited.

  12. Contamination analysis unit

    DOEpatents

    Gregg, Hugh R.; Meltzer, Michael P.

    1996-01-01

    The portable Contamination Analysis Unit (CAU) measures trace quantifies of surface contamination in real time. The detector head of the portable contamination analysis unit has an opening with an O-ring seal, one or more vacuum valves and a small mass spectrometer. With the valve closed, the mass spectrometer is evacuated with one or more pumps. The O-ring seal is placed against a surface to be tested and the vacuum valve is opened. Data is collected from the mass spectrometer and a portable computer provides contamination analysis. The CAU can be used to decontaminate and decommission hazardous and radioactive surface by measuring residual hazardous surface contamination, such as tritium and trace organics It provides surface contamination data for research and development applications as well as real-time process control feedback for industrial cleaning operations and can be used to determine the readiness of a surface to accept bonding or coatings.

  13. Stuck on semantics: Processing of irrelevant object-scene inconsistencies modulates ongoing gaze behavior.

    PubMed

    Cornelissen, Tim H W; Võ, Melissa L-H

    2017-01-01

    People have an amazing ability to identify objects and scenes with only a glimpse. How automatic is this scene and object identification? Are scene and object semantics-let alone their semantic congruity-processed to a degree that modulates ongoing gaze behavior even if they are irrelevant to the task at hand? Objects that do not fit the semantics of the scene (e.g., a toothbrush in an office) are typically fixated longer and more often than objects that are congruent with the scene context. In this study, we overlaid a letter T onto photographs of indoor scenes and instructed participants to search for it. Some of these background images contained scene-incongruent objects. Despite their lack of relevance to the search, we found that participants spent more time in total looking at semantically incongruent compared to congruent objects in the same position of the scene. Subsequent tests of explicit and implicit memory showed that participants did not remember many of the inconsistent objects and no more of the consistent objects. We argue that when we view natural environments, scene and object relationships are processed obligatorily, such that irrelevant semantic mismatches between scene and object identity can modulate ongoing eye-movement behavior.

  14. Understanding Contamination; Twenty Years of Simulating Radiological Contamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emily Snyder; John Drake; Ryan James

    A wide variety of simulated contamination methods have been developed by researchers to reproducibly test radiological decontamination methods. Some twenty years ago a method of non-radioactive contamination simulation was proposed at the Idaho National Laboratory (INL) that mimicked the character of radioactive cesium and zirconium contamination on stainless steel. It involved baking the contamination into the surface of the stainless steel in order to 'fix' it into a tenacious, tightly bound oxide layer. This type of contamination was particularly applicable to nuclear processing facilities (and nuclear reactors) where oxide growth and exchange of radioactive materials within the oxide layer becamemore » the predominant model for material/contaminant interaction. Additional simulation methods and their empirically derived basis (from a nuclear fuel reprocessing facility) are discussed. In the last ten years the INL, working with the Defense Advanced Research Projects Agency (DARPA) and the National Homeland Security Research Center (NHSRC), has continued to develop contamination simulation methodologies. The most notable of these newer methodologies was developed to compare the efficacy of different decontamination technologies against radiological dispersal device (RDD, 'dirty bomb') type of contamination. There are many different scenarios for how RDD contamination may be spread, but the most commonly used one at the INL involves the dispersal of an aqueous solution containing radioactive Cs-137. This method was chosen during the DARPA projects and has continued through the NHSRC series of decontamination trials and also gives a tenacious 'fixed' contamination. Much has been learned about the interaction of cesium contamination with building materials, particularly concrete, throughout these tests. The effects of porosity, cation-exchange capacity of the material and the amount of dirt and debris on the surface are very important factors. The interaction of

  15. Cross-contamination during the preparation of frozen chickens in the kitchen.

    PubMed Central

    de Wit, J. C.; Broekhuizen, G.; Kampelmacher, E. H.

    1979-01-01

    A study was made of the extent to which frozen broilers, contaminated with indicator organisms, can cause cross-contamination in the kitchen. In 60 kitchens a number of relevant objects were sampled during the preparation of contaminated frozen broilers. The results show that cross-contamination occurred in a high proportion of the kitchens examined. In many instances the indicator organism was still present on various objects even after rinsing, 'clearing' or washing up. In view of the possible risk of a cross-contamination with Salmonella spp. the importance of instructing food preparers is emphasized. No salmonellas could be found in the sinks of the 60 kitchens examined. PMID:379210

  16. The Effects of Visual Degradation on Attended Objects and the Ability to Process Unattended Objects within the Visual Array

    DTIC Science & Technology

    2010-09-01

    field at once (e.g., Biederman , Blickle, Teitelbaum, & Klatsky, 1988), and objects of interest typically receive the attention required to recognize them...field ( Biederman & Cooper, 1991) and image size changes ( Biederman & Cooper, 1992). Yet, only attended objects are recognized when mirror images...left-right reversals) occur ( Biederman & Cooper, 1991). Due to these results, Hummel (2001) proposed that attended images are processed by both

  17. A decision tree approach to screen drinking water contaminants for multiroute exposure potential in developing guideline values.

    PubMed

    Krishnan, Kannan; Carrier, Richard

    2017-07-03

    The consideration of inhalation and dermal routes of exposures in developing guideline values for drinking water contaminants is important. However, there is no guidance for determining the eligibility of a drinking water contaminant for its multiroute exposure potential. The objective of the present study was to develop a 4-step framework to screen chemicals for their dermal and inhalation exposure potential in the process of developing guideline values. The proposed framework emphasizes the importance of considering basic physicochemical properties prior to detailed assessment of dermal and inhalation routes of exposure to drinking water contaminants in setting guideline values.

  18. Processing graspable object images and their nouns is impaired in Parkinson's disease patients.

    PubMed

    Buccino, Giovanni; Dalla Volta, Riccardo; Arabia, Gennarina; Morelli, Maurizio; Chiriaco, Carmelina; Lupo, Angela; Silipo, Franco; Quattrone, Aldo

    2018-03-01

    According to embodiment, the recruitment of the motor system is necessary to process language material expressing a motor content. Coherently, an impairment of the motor system should affect the capacity to process language items with a motor content. The aim of the present study was to assess the capacity to process graspable objects and their nouns in Parkinson's disease (PD) patients and healthy controls. Participants saw photos and nouns depicting graspable and non-graspable objects. Scrambled images and pseudo-words served as control stimuli. At 150 msec after stimulus presentation, they had to respond when the stimulus referred to a real object, and refrain from responding when it was meaningless (go-no go paradigm). In the control group, participants gave slower motor responses for stimuli (both photos and nouns) related to graspable objects as compared to non-graspable ones. This in keeping with data obtained in a previous study with young healthy participants. In the PD group, motor responses were similar for both graspable and non-graspable items. Moreover, error number was significantly greater than in controls. These findings support the notion that when the motor circuits are lesioned, like in PD, patients do not show the typical modulation of motor responses and have troubles in processing graspable objects and their nouns. Copyright © 2017. Published by Elsevier Ltd.

  19. Contamination analysis unit

    DOEpatents

    Gregg, H.R.; Meltzer, M.P.

    1996-05-28

    The portable Contamination Analysis Unit (CAU) measures trace quantities of surface contamination in real time. The detector head of the portable contamination analysis unit has an opening with an O-ring seal, one or more vacuum valves and a small mass spectrometer. With the valve closed, the mass spectrometer is evacuated with one or more pumps. The O-ring seal is placed against a surface to be tested and the vacuum valve is opened. Data is collected from the mass spectrometer and a portable computer provides contamination analysis. The CAU can be used to decontaminate and decommission hazardous and radioactive surfaces by measuring residual hazardous surface contamination, such as tritium and trace organics. It provides surface contamination data for research and development applications as well as real-time process control feedback for industrial cleaning operations and can be used to determine the readiness of a surface to accept bonding or coatings. 1 fig.

  20. When a Dog Has a Pen for a Tail: The Time Course of Creative Object Processing

    ERIC Educational Resources Information Center

    Wang, Botao; Duan, Haijun; Qi, Senqing; Hu, Weiping; Zhang, Huan

    2017-01-01

    Creative objects differ from ordinary objects in that they are created by human beings to contain novel, creative information. Previous research has demonstrated that ordinary object processing involves both a perceptual process for analyzing different features of the visual input and a higher-order process for evaluating the relevance of this…

  1. EMERGING TECHNOLOGY BULLETIN: PROCESS FOR THE TREATMENT OF VOLATILE ORGANIC CARBON AND HEAVY-METAL- CONTAMINATED SOIL - INTERNATIONAL TECHNOLOGY CORPORATION

    EPA Science Inventory

    The batch steam distillation and metal extraction treatment process is a two-stage system that treats soils contaminated with organics and inorganics. This system uses conventional, readily available process equipment, and does not produce hazardous combustion products. Hazar...

  2. Occurrence, distribution and contamination levels of heat-resistant moulds throughout the processing of pasteurized high-acid fruit products.

    PubMed

    Santos, Juliana Lane Paixão Dos; Samapundo, Simbarashe; Biyikli, Ayse; Van Impe, Jan; Akkermans, Simen; Höfte, Monica; Abatih, Emmanuel Nji; Sant'Ana, Anderson S; Devlieghere, Frank

    2018-05-19

    Heat-resistant moulds (HRMs) are well known for their ability to survive pasteurization and spoil high-acid food products, which is of great concern for processors of fruit-based products worldwide. Whilst the majority of the studies on HRMs over the last decades have addressed their inactivation, few data are currently available regarding their contamination levels in fruit and fruit-based products. Thus, this study aimed to quantify and identify heat-resistant fungal ascospores from samples collected throughout the processing of pasteurized high-acid fruit products. In addition, an assessment on the effect of processing on the contamination levels of HRMs in these products was carried out. A total of 332 samples from 111 batches were analyzed from three processing plants (=three processing lines): strawberry puree (n = 88, Belgium), concentrated orange juice (n = 90, Brazil) and apple puree (n = 154, the Netherlands). HRMs were detected in 96.4% (107/111) of the batches and 59.3% (197/332) of the analyzed samples. HRMs were present in 90.9% of the samples from the strawberry puree processing line (1-215 ascospores/100 g), 46.7% of the samples from the orange juice processing line (1-200 ascospores/100 g) and 48.7% of samples from the apple puree processing line (1-84 ascospores/100 g). Despite the high occurrence, the majority (76.8%, 255/332) of the samples were either not contaminated or presented low levels of HRMs (<10 ascospores/100 g). For both strawberry puree and concentrated orange juice, processing had no statistically significant effect on the levels of HRMs (p > 0.05). On the contrary, a significant reduction (p < 0.05) in HRMs levels was observed during the processing of apple puree. Twelve species were identified belonging to four genera - Byssochlamys, Aspergillus with Neosartorya-type ascospores, Talaromyces and Rasamsonia. N. fumigata (23.6%), N. fischeri (19.1%) and B. nivea (5.5%) were the predominant species in

  3. Apparatus for extraction of contaminants from a gas

    DOEpatents

    Babko-Malyi, Sergei

    2001-01-01

    A method of treating industrial gases to remove contaminants is disclosed. Ions are generated in stream of injectable gas. These ions are propelled through the contaminated gas as it flows through a collection unit. An electric field is applied to the contaminated gas. The field causes the ions to move through the contaminated gases, producing electrical charges on the contaminants. The electrically charged contaminants are then collected at one side of the electric field. The injectable gas is selected to produce ions which will produce reactions with particular contaminants. The process is thus capable of removing particular contaminants. The process does not depend on diffusion as a transport mechanism and is therefore suitable for removing contaminants which exist in very low concentrations.

  4. Close interpersonal proximity modulates visuomotor processing of object affordances in shared, social space.

    PubMed

    Saccone, Elizabeth J; Szpak, Ancret; Churches, Owen; Nicholls, Michael E R

    2018-01-01

    Research suggests that the human brain codes manipulable objects as possibilities for action, or affordances, particularly objects close to the body. Near-body space is not only a zone for body-environment interaction but also is socially relevant, as we are driven to preserve our near-body, personal space from others. The current, novel study investigated how close proximity of a stranger modulates visuomotor processing of object affordances in shared, social space. Participants performed a behavioural object recognition task both alone and with a human confederate. All object images were in participants' reachable space but appeared relatively closer to the participant or the confederate. Results revealed when participants were alone, objects in both locations produced an affordance congruency effect but when the confederate was present, only objects nearer the participant elicited the effect. Findings suggest space is divided between strangers to preserve independent near-body space boundaries, and in turn this process influences motor coding for stimuli within that social space. To demonstrate that this visuomotor modulation represents a social phenomenon, rather than a general, attentional effect, two subsequent experiments employed nonhuman joint conditions. Neither a small, Japanese, waving cat statue (Experiment 2) nor a metronome (Experiment 3) modulated the affordance effect as in Experiment 1. These findings suggest a truly social explanation of the key interaction from Experiment 1. This study represents an important step toward understanding object affordance processing in real-world, social contexts and has implications broadly across fields of social action and cognition, and body space representation.

  5. Post-consumer contamination in high-density polyethylene (HDPE) milk bottles and the design of a bottle-to-bottle recycling process.

    PubMed

    Welle, F

    2005-10-01

    Six hundred conventional recycled HDPE flake samples, which were recollected and sorted in the UK, were screened for post-consumer contamination levels. Each analysed sample consisted of 40-50 individual flakes so that the amount of analysed individual containers was in the range 24,000-30,000 post-consumer milk bottles. Predominant contaminants in hot-washed flake samples were unsaturated oligomers, which can be also be found in virgin high-density polyethylene (HDPE) pellet samples used for milk bottle production. In addition, the flavour compound limonene, the degradation product of antioxidant additives di-tert-butylphenol and low amounts of saturated oligomers were found in higher concentrations in the post-consumer samples in comparison with virgin HDPE. However, the overall concentrations in post-consumer recycled samples were similar to or lower than concentration ranges in comparison with virgin HDPE. Contamination with other HDPE untypical compounds was rare and was in most cases related to non-milk bottles, which are <2.1% of the input material of the recycling process. The maximum concentration found in one sample of 1 g was estimated as 130 mg kg(-1), which corresponds to a contamination of 5200-6500 mg kg(-1) in the individual bottle. The recycling process investigated was based on an efficient sorting process, a hot-washing of the ground bottles, and a further deep-cleaning of the flakes with high temperatures and vacuum. Based on the fact that the contamination levels of post-consumer flake samples are similar to virgin HDPE and on the high cleaning efficiency of the super-clean recycling process especially for highly volatile compounds, the recycling process investigated is suitable for recycled post-consumer HDPE bottles for direct food-contact applications. However, hand-picking after automatically sorting is recommended to decrease the amount of non-milk bottles. The conclusions for suitability are valid, provided that the migration testing of

  6. Process Architecture for Managing Digital Object Identifiers

    NASA Astrophysics Data System (ADS)

    Wanchoo, L.; James, N.; Stolte, E.

    2014-12-01

    In 2010, NASA's Earth Science Data and Information System (ESDIS) Project implemented a process for registering Digital Object Identifiers (DOIs) for data products distributed by Earth Observing System Data and Information System (EOSDIS). For the first 3 years, ESDIS evolved the process involving the data provider community in the development of processes for creating and assigning DOIs, and guidelines for the landing page. To accomplish this, ESDIS established two DOI User Working Groups: one for reviewing the DOI process whose recommendations were submitted to ESDIS in February 2014; and the other recently tasked to review and further develop DOI landing page guidelines for ESDIS approval by end of 2014. ESDIS has recently upgraded the DOI system from a manually-driven system to one that largely automates the DOI process. The new automated feature include: a) reviewing the DOI metadata, b) assigning of opaque DOI name if data provider chooses, and c) reserving, registering, and updating the DOIs. The flexibility of reserving the DOI allows data providers to embed and test the DOI in the data product metadata before formally registering with EZID. The DOI update process allows the changing of any DOI metadata except the DOI name unless the name has not been registered. Currently, ESDIS has processed a total of 557 DOIs of which 379 DOIs are registered with EZID and 178 are reserved with ESDIS. The DOI incorporates several metadata elements that effectively identify the data product and the source of availability. Of these elements, the Uniform Resource Locator (URL) attribute has the very important function of identifying the landing page which describes the data product. ESDIS in consultation with data providers in the Earth Science community is currently developing landing page guidelines that specify the key data product descriptive elements to be included on each data product's landing page. This poster will describe in detail the unique automated process and

  7. Composition and process for organic and metal contaminant fixation in soil

    DOEpatents

    Schwitzgebel, Klaus

    1994-02-08

    A method and compositions using a first ferrous iron containing solution with the iron concentration in excess of theoretical requirements to treat a contaminated site to reduce hexavalent chromium to trivalent chromium and coprecipitate trivalent chromium with other heavy metals and using a second solution of silicate containing a destabilizing salt to form a relatively impermeable gel in the contaminated site thereby fixing metals and organics to the extent that there should be no detectable ground water contamination.

  8. Ultraviolet absorption of common spacecraft contaminants. [to control effects of contaminants on optical systems

    NASA Technical Reports Server (NTRS)

    Colony, J. A.

    1979-01-01

    Organic contamination of ultraviolet optical systems is discussed. Degradation of signal by reflection, scattering, interference, and absorption is shown. The first three processes depend on the physical state of the contaminant while absorption depends on its chemical structure. The latter phenomenon is isolated from the others by dissolving contaminants in cyclohexane and determining absorption spectra from 2100A to 3600A. A variety of materials representing the types of contaminants responsible for most spaceflight hardware problems is scanned and the spectra is presented. The effect of thickness is demonstrated for the most common contaminant, di(2 ethyl hexyl)phthalate, by scanning successive dilutions.

  9. Temporal variations in parameters reflecting terminal-electron-accepting processes in an aquifer contaminated with waste fuel and chlorinated solvents

    USGS Publications Warehouse

    McGuire, Jennifer T.; Smith, Erik W.; Long, David T.; Hyndman, David W.; Haack, Sheridan K.; Klug, Michael J.; Velbel, Michael A.

    2000-01-01

    A fundamental issue in aquifer biogeochemistry is the means by which solute transport, geochemical processes, and microbiological activity combine to produce spatial and temporal variations in redox zonation. In this paper, we describe the temporal variability of TEAP conditions in shallow groundwater contaminated with both waste fuel and chlorinated solvents. TEAP parameters (including methane, dissolved iron, and dissolved hydrogen) were measured to characterize the contaminant plume over a 3-year period. We observed that concentrations of TEAP parameters changed on different time scales and appear to be related, in part, to recharge events. Changes in all TEAP parameters were observed on short time scales (months), and over a longer 3-year period. The results indicate that (1) interpretations of TEAP conditions in aquifers contaminated with a variety of organic chemicals, such as those with petroleum hydrocarbons and chlorinated solvents, must consider additional hydrogen-consuming reactions (e.g., dehalogenation); (2) interpretations must consider the roles of both in situ (at the sampling point) biogeochemical and solute transport processes; and (3) determinations of microbial communities are often necessary to confirm the interpretations made from geochemical and hydrogeological measurements on these processes.

  10. Trace Contaminant Control During the International Space Station's On-Orbit Assembly and Outfitting

    NASA Technical Reports Server (NTRS)

    Perry, J. L.

    2017-01-01

    Achieving acceptable cabin air quality must balance competing elements during spacecraft design, assembly, ground processing, and flight operations. Among the elements that contribute to the trace chemical contaminant load and, therefore, the cabin air quality aboard crewed spacecraft are the vehicle configuration, crew size and activities, mission duration and objectives, materials selection, and vehicle manufacturing and preflight ground processing methods. Trace chemical contaminants produced from pervasive sources such as equipment offgassing, human metabolism, and cleaning fluids during preflight ground processing present challenges to maintaining acceptable cabin air quality. To address these challenges, both passive and active contamination control techniques are used during a spacecraft's design, manufacturing, preflight preparation, and operational phases. Passive contamination control methods seek to minimize the equipment offgassing load by selecting materials, manufacturing processes, preflight preparation processes, and in-flight operations that have low chemical offgassing characteristics. Passive methods can be employed across the spacecraft's entire life cycle from conceptual design through flight operations. However, because the passive contamination control techniques cannot fully eliminate the contaminant load, active contamination control equipment must be deployed aboard the spacecraft to purify and revitalize the cabin atmosphere during in-flight operations. Verifying that the passive contamination control techniques have successfully maintained the total trace contaminant load within the active contamination control equipment's capabilities occurs late in the preflight preparation stages. This verification consists of subjecting the spacecraft to an offgassing test to determine the trace contaminant load. This load is then assessed versus the active contamination control equipment's capabilities via trace contaminant control (TCC) engineering

  11. Functional Dissociations within the Ventral Object Processing Pathway: Cognitive Modules or a Hierarchical Continuum?

    ERIC Educational Resources Information Center

    Cowell, Rosemary A.; Bussey, Timothy J.; Saksida, Lisa M.

    2010-01-01

    We examined the organization and function of the ventral object processing pathway. The prevailing theoretical approach in this field holds that the ventral object processing stream has a modular organization, in which visual perception is carried out in posterior regions and visual memory is carried out, independently, in the anterior temporal…

  12. Use of Zn isotopes as a probe of anthropogenic contamination and biogeochemical processes in the Seine River, France

    NASA Astrophysics Data System (ADS)

    Chen, J.; Gaillardet, J.; Louvat, P.; Birck, J.

    2009-05-01

    Metal contamination is a major issue of human impact on the aqueous environment. River water is particularly susceptible to contamination for both dissolved and particulate loads, displaying a major challenge in understanding the dominant sources and pathways of metals in polluted drainage basins. Recent improvements in mass spectrometry allow isotopic measurements of "non-traditional" metals (Zn, Cu, Fe, etc.), making their isotopes a new potential device to investigate contamination of metals under dissolved and particulate forms in rivers. We focus here on Zn isotope geochemistry in the largely anthropized Seine River (France). A new protocol of two-column separation of Zn from dilute aqueous solution has been developed and proven to be reproducible and satisfactory for accurate measurement of Zn isotopic ratios in water samples by MC-ICP-MS (2σ = 0.04‰). Preliminary results show a total variation of 0.65‰ for δ66Zn in dissolved phases of the Seine basin, and a light isotope enrichment in anthropogenic sources compared to other water samples. The determined conservative behavior of Zn in river water makes its isotopes an effective probe of anthropogenic contamination. The natural and anthropogenic inputs were clearly identified and calculated based on Zn isotope compositions for dissolved loads. Suspended particular matters (SPM) display different Zn isotope compositions compared to dissolved loads, with a total δ66Zn variation of 0.22‰. Zn concentrations and its isotope compositions in SPM reveal inverse relationships as function of the distance from the headwater and the SPM content for geographical and temporal samples, respectively. The δ66Zn data in SPM are interpreted as reflecting the mixture of natural and anthropogenic particles. The correlation between dissolved and particulate δ66Zn shows that adsorption processes are not the dominant process making Zn enrichment in SPM. We report here for the first time systematic δ66Zn data in waters of

  13. Assessment of sediment mutagenicity in areas under the influence of a contaminated site undergoing a remediation process.

    PubMed

    Gameiro, Paula Hauber; Pereira, Naiara Costa; Rocha, Jocelita Aparecida Vaz; Leal, Karen Alam; Vargas, Vera Maria Ferrão

    2018-04-10

    Soil contamination enters aquatic ecosystems affecting sediment quality. The region studied is the Taquari River, Brazil, close to a site contaminated by wood preservatives, with a runoff route into the river. The first stage of the remediation process (In this article, the terms intervention and remediation have been used with slightly different meanings. We consider intervention to be the first phase of the remediation process, which aims to remove active sources) was an intervention to remove the main active sources. The Salmonella/microsome assay and polycyclic aromatic hydrocarbons (PAHs) were used to assess sediment quality in organic extracts during different intervention phases. The strains used were TA98, TA97a, and TA100 with and without S9mix (±S9). The results indicated the presence of pro-mutagens at site Ta010 (closest to the contaminated site) in all samplings, and the highest result occurred before intervention for TA100 + S9 (1,672 ± 215.9 rev/g). These values decreased during (83 ± 23.6 rev/g) and after this process (403 ± 105.9 rev/g), although the PAHs concentrations increased. Samples from this site presented PAHs with a carcinogenic potential during the assessed periods. After intervention, Ta006 (4 km downstream from Ta010) showed the most significant mutagenesis for TA100 + S9 (764 ± 230.2 rev/g) and, although the total PAHs values were lower, the species considered carcinogenic had higher concentrations. Mutagenesis predicted values of PAHs confirmed that carcinogenic species were predominantly detected by TA100, and the other PAHs by TA97a strains. Marked contaminant release to the river was observed, mainly in Ta010 at different periods. Mutagenicity and PAHs values in an internal stream, upstream from Ta010, showed a dispersion route of these agents. Thus, contamination in Ta010 and possible contribution to Ta006, after intervention, provides a warning regarding environmental quality in the region. Environ

  14. Scrubbing of contaminants from contaminated air streams with aerogel materials with optional photocatalytic destruction

    DOEpatents

    Attia, Yosry A.

    2000-01-01

    Disclosed is a method for separating a vaporous or gaseous contaminant from an air stream contaminated therewith. This method includes the steps of: (a) passing said contaminated air into a contact zone in which is disposed an aerogel material capable of selecting adsorbing said contaminant from air and therein contacting said contaminated air with an aerogel material; and (b) withdrawing from said zone, air depleted of said contaminant. For present purposes, "contaminant" means a material not naturally occurring in ambient air and/or a material naturally occurring in air but present at a concentration above that found in ambient air. Thus, the present invention scrubs (or treats) air for the purpose of returning it to its ambient composition. Also disclosed herein is a process for the photocatalytic destruction of contaminants from an air stream wherein the contaminated air stream is passed into a control cell or contact zone in which is disposed a photocatalytic aerogel and exposing said aerogel to ultraviolet (UV) radiation for photocatalytically destroying the adsorbed contaminant, and withdrawing from said cell an exhaust air stream depleted in said contaminant.

  15. Contamination Knowledge Strategy for the Mars 2020 Sample-Collecting Rover

    NASA Technical Reports Server (NTRS)

    Farley, K. A.; Williford, K.; Beaty, D W.; McSween, H. Y.; Czaja, A. D.; Goreva, Y. S.; Hausrath, E.; Herd, C. D. K.; Humayun, M.; McCubbin, F. M.; hide

    2017-01-01

    The Mars 2020 rover will collect carefully selected samples of rock and regolith as it explores a potentially habitable ancient environment on Mars. Using the drill, rock cores and regolith will be collected directly into ultraclean sample tubes that are hermetically sealed and, later, deposited on the surface of Mars for potential return to Earth by a subsequent mission. Thorough characterization of any contamination of the samples at the time of their analysis will be essential for achieving the objectives of Mars returned sample science (RSS). We refer to this characterization as contamination knowledge (CK), which is distinct from contamination control (CC). CC is the set of activities that limits the input of contaminating species into a sample, and is specified by requirement thresholds. CK consists of identifying and characterizing both potential and realized contamination to better inform scientific investigations of the returned samples. Based on lessons learned by other sample return missions with contamination-sensitive scientific objectives, CC needs to be "owned" by engineering, but CK needs to be "owned" by science. Contamination present at the time of sample analysis will reflect the sum of contributions from all contamination vectors up to that point in time. For this reason, understanding the integrated history of contamination may be crucial for deciphering potentially confusing contaminant-sensitive observations. Thus, CK collected during the Mars sample return (MSR) campaign must cover the time period from the initiation of hardware construction through analysis of returned samples in labs on Earth. Because of the disciplinary breadth of the scientific objectives of MSR, CK must include a broad spectrum of contaminants covering inorganic (i.e., major, minor, and trace elements), organic, and biological molecules and materials.

  16. Remediation of Pb/Cr co-contaminated soil using electrokinetic process and approaching electrode technique.

    PubMed

    Ng, Yee-Sern; Sen Gupta, Bhaskar; Hashim, Mohd Ali

    2016-01-01

    Electrokinetic process has emerged as an important tool for remediating heavy metal-contaminated soil. The process can concentrate heavy metals into smaller soil volume even in the absence of hydraulic flow. This makes it an attractive soil pre-treatment method before other remediation techniques are applied such that the chemical consumption in the latter stage can be reduced. The present study evaluates the feasibility of electrokinetic process in concentrating lead (Pb) and chromium (Cr) in a co-contaminated soil using different types of wetting agents, namely 0.01 M NaNO3, 0.1 M citric acid and 0.1 M EDTA. The data obtained showed that NaNO3 and citric acid resulted in poor Pb electromigration in this study. As for Cr migration, these agents were also found to give lower electromigration rate especially at low pH region as a result of Cr(VI) adsorption and possible reduction into Cr(III). In contrast, EDTA emerged as the best wetting agent in this study as it formed water-soluble anionic complexes with both Pb and Cr. This provided effective one-way electromigration towards the anode for both ions, and they were accumulated into smaller soil volume with an enrichment ratio of 1.55-1.82. A further study on the application of approaching cathode in EDTA test showed that soil alkalisation was achieved, but this did not provide significant enhancement on electromigration for Pb and Cr. Nevertheless, the power consumption for electrokinetic process was decreased by 22.5%.

  17. Development, evaluation, and application of sediment quality targets for assessing and managing contaminated sediments in Tampa Bay, Florida

    USGS Publications Warehouse

    MacDonald, D.D.; Carr, R.S.; Eckenrod, D.; Greening, H.; Grabe, S.; Ingersoll, C.G.; Janicki, S.; Janicki, T.; Lindskoog, R.A.; Long, E.R.; Pribble, R.; Sloane, G.; Smorong, D.E.

    2004-01-01

    Tampa Bay is a large, urban estuary that is located in west central Florida. Although water quality conditions represent an important concern in this estuary, information from numerous sources indicates that sediment contamination also has the potential to adversely affect aquatic organisms, aquatic-dependent wildlife, and human health. As such, protecting relatively uncontaminated areas of the bay from contamination and reducing the amount of toxic chemicals in contaminated sediments have been identified as high-priority sediment management objectives for Tampa Bay. To address concerns related to sediment contamination in the bay, an ecosystem-based framework for assessing and managing sediment quality conditions was developed that included identification of sediment quality issues and concerns, development of ecosystem goals and objectives, selection of ecosystem health indicators, establishment of metrics and targets for key indicators, and incorporation of key indicators, metrics, and targets into watershed management plans and decision-making processes. This paper describes the process that was used to select and evaluate numerical sediment quality targets (SQTs) for assessing and managing contaminated sediments. These SQTs included measures of sediment chemistry, whole-sediment and pore-water toxicity, and benthic invertebrate community structure. In addition, the paper describes how the SQTs were used to develop site-specific concentration-response models that describe how the frequency of adverse biological effects changes with increasing concentrations of chemicals of potential concern. Finally, a key application of the SQTs for defining sediment management areas is discussed.

  18. The redox processes in Hg-contaminated soils from Descoberto (Minas Gerais, Brazil): implications for the mercury cycle.

    PubMed

    Windmöller, Cláudia C; Durão Júnior, Walter A; de Oliveira, Aline; do Valle, Cláudia M

    2015-02-01

    Investigations of the redox process and chemical speciation of Hg(II) lead to a better understanding of biogeochemical processes controlling the transformation of Hg(II) into toxic and bioaccumulative monomethyl mercury, mainly in areas contaminated with Hg(0). This study investigates the speciation and redox processes of Hg in soil samples from a small area contaminated with Hg(0) as a result of gold mining activities in the rural municipality of Descoberto (Minas Gerais, Brazil). Soil samples were prepared by adding Hg(0) and HgCl2 separately to dry soil, and the Hg redox process was monitored using thermodesorption coupled to atomic absorption spectrometry. A portion of the Hg(0) added was volatilized (up to 37.4±2.0%) or oxidized (from 36±7% to 88±16%). A correlation with Mn suggests that this oxidation is favored, but many other factors must be evaluated, such as the presence of microorganisms and the types of organic matter present. The interaction of Hg with the matrix is suggested to involve Hg(II)-complexes formed with inorganic and organic sulfur ligands and/or nonspecific adsorption onto oxides of Fe, Al and/or Mn. The kinetics of the oxidation reaction was approximated for two first-order reactions; the faster reaction was attributed to the oxidation of Hg(0)/Hg(I), and the slower reaction corresponded to Hg(I)/Hg(II). The second stage was 43-139 times slower than the first. The samples spiked with Hg(II) showed low volatilization and a shifting of the signal of Hg(II) to lower temperatures. These results show that the extent, rate and type of redox process can be adverse in soils. Descoberto can serve as an example for areas contaminated with Hg(0). Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Chance-constrained multi-objective optimization of groundwater remediation design at DNAPLs-contaminated sites using a multi-algorithm genetically adaptive method

    NASA Astrophysics Data System (ADS)

    Ouyang, Qi; Lu, Wenxi; Hou, Zeyu; Zhang, Yu; Li, Shuai; Luo, Jiannan

    2017-05-01

    In this paper, a multi-algorithm genetically adaptive multi-objective (AMALGAM) method is proposed as a multi-objective optimization solver. It was implemented in the multi-objective optimization of a groundwater remediation design at sites contaminated by dense non-aqueous phase liquids. In this study, there were two objectives: minimization of the total remediation cost, and minimization of the remediation time. A non-dominated sorting genetic algorithm II (NSGA-II) was adopted to compare with the proposed method. For efficiency, the time-consuming surfactant-enhanced aquifer remediation simulation model was replaced by a surrogate model constructed by a multi-gene genetic programming (MGGP) technique. Similarly, two other surrogate modeling methods-support vector regression (SVR) and Kriging (KRG)-were employed to make comparisons with MGGP. In addition, the surrogate-modeling uncertainty was incorporated in the optimization model by chance-constrained programming (CCP). The results showed that, for the problem considered in this study, (1) the solutions obtained by AMALGAM incurred less remediation cost and required less time than those of NSGA-II, indicating that AMALGAM outperformed NSGA-II. It was additionally shown that (2) the MGGP surrogate model was more accurate than SVR and KRG; and (3) the remediation cost and time increased with the confidence level, which can enable decision makers to make a suitable choice by considering the given budget, remediation time, and reliability.

  20. First evaluation of alkylpyrazine application as a novel method to decrease microbial contaminations in processed meat products.

    PubMed

    Schöck, Matthias; Liebminger, Stefan; Berg, Gabriele; Cernava, Tomislav

    2018-04-03

    Every year about 20% of the globally produced meat gets lost due to microbial spoilage. Nevertheless, the demand for processed meat is constantly rising and producers are searching for novel strategies to reduce microbial contaminations in their products. In the present study, we evaluated the applicability of alkylpyrazines as antimicrobial agents. These fragrant molecules naturally occur in different vegetables, fruits, roasted nut and meat. Several pyrazine derivatives are readily added to processed products for flavoring purposes in the food industry. To evaluate their potential for application, two derivatives were tested for their antimicrobial activity against meat-associated bacterial contaminants and chicken meat as a whole. Isolates assigned to Carnobacteriaceae, Enterobacteriaceae, Listeriaceae, and Moraxellaceae were substantially inhibited in the pilot tests. Moreover, treatments of pyrazine-susceptible isolates resulted in 4-log reductions in bacterial cell counts. The effect was more pronounced when the model contaminants were exposed to higher concentrations of 5-isobutyl-2,3-dimethylpyrazine. In a first small-scale application with processed chicken meat, it was demonstrated that the antimicrobial effects of 2-isobutyl-3-methylpyrazine can be improved by additionally lowering the water activity on the meat surface when maltodextrin is used as a carrier substance. At low pyrazine dosages, the number of viable bacteria was decreased up to 95% in comparison to the corresponding controls. A complementary imaging method that was developed to assess the efficacy on the product, reinforced the applicability of this two-component system.

  1. On numerical model of time-dependent processes in three-dimensional porous heat-releasing objects

    NASA Astrophysics Data System (ADS)

    Lutsenko, Nickolay A.

    2016-10-01

    The gas flows in the gravity field through porous objects with heat-releasing sources are investigated when the self-regulation of the flow rate of the gas passing through the porous object takes place. Such objects can appear after various natural or man-made disasters (like the exploded unit of the Chernobyl NPP). The mathematical model and the original numerical method, based on a combination of explicit and implicit finite difference schemes, are developed for investigating the time-dependent processes in 3D porous energy-releasing objects. The advantage of the numerical model is its ability to describe unsteady processes under both natural convection and forced filtration. The gas cooling of 3D porous objects with different distribution of heat sources is studied using computational experiment.

  2. Effects of coal contamination on early life history processes of a reef-building coral, Acropora tenuis.

    PubMed

    Berry, Kathryn L E; Hoogenboom, Mia O; Brinkman, Diane L; Burns, Kathryn A; Negri, Andrew P

    2017-01-15

    Successful reproduction and larval dispersal are important for the persistence of marine invertebrate populations, and these early life history processes can be sensitive to marine pollution. Coal is emerging as a contaminant of interest due to the proximity of ports and shipping lanes to coral reefs. To assess the potential hazard of this contaminant, gametes, newly developed embryos, larvae and juveniles of the coral Acropora tenuis were exposed to a range of coal leachate, suspended coal, and coal smothering treatments. Fertilisation was the most sensitive reproductive process tested. Embryo survivorship decreased with increasing suspended coal concentrations and exposure duration, effects on larval settlement varied between treatments, while effects on juvenile survivorship were minimal. Leachate exposures had negligible effects on fertilisation and larval settlement. These results indicate that coral recruitment could be affected by spills that produce plumes of suspended coal particles which interact with gametes and embryos soon after spawning. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. A Subjective and Objective Process for Athletic Training Student Selection

    ERIC Educational Resources Information Center

    Hawkins, Jeremy R.; McLoda, Todd A.; Stanek, Justin M.

    2015-01-01

    Context: Admission decisions are made annually concerning whom to accept into athletic training programs. Objective: To present an approach used to make admissions decisions at an undergraduate athletic training program and to corroborate this information by comparing each aspect to nursing program admission processes. Background: Annually,…

  4. Toxicological benchmarks for potential contaminants of concern for effects on soil and litter invertebrates and heterotrophic process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Will, M.E.; Suter, G.W. II

    1995-09-01

    An important step in ecological risk assessments is screening the chemicals occur-ring on a site for contaminants of potential concern. Screening may be accomplished by comparing reported ambient concentrations to a set of toxicological benchmarks. Multiple endpoints for assessing risks posed by soil-borne contaminants to organisms directly impacted by them have been established. This report presents benchmarks for soil invertebrates and microbial processes and addresses only chemicals found at United States Department of Energy (DOE) sites. No benchmarks for pesticides are presented. After discussing methods, this report presents the results of the literature review and benchmark derivation for toxicity tomore » earthworms (Sect. 3), heterotrophic microbes and their processes (Sect. 4), and other invertebrates (Sect. 5). The final sections compare the benchmarks to other criteria and background and draw conclusions concerning the utility of the benchmarks.« less

  5. A single-rate context-dependent learning process underlies rapid adaptation to familiar object dynamics.

    PubMed

    Ingram, James N; Howard, Ian S; Flanagan, J Randall; Wolpert, Daniel M

    2011-09-01

    Motor learning has been extensively studied using dynamic (force-field) perturbations. These induce movement errors that result in adaptive changes to the motor commands. Several state-space models have been developed to explain how trial-by-trial errors drive the progressive adaptation observed in such studies. These models have been applied to adaptation involving novel dynamics, which typically occurs over tens to hundreds of trials, and which appears to be mediated by a dual-rate adaptation process. In contrast, when manipulating objects with familiar dynamics, subjects adapt rapidly within a few trials. Here, we apply state-space models to familiar dynamics, asking whether adaptation is mediated by a single-rate or dual-rate process. Previously, we reported a task in which subjects rotate an object with known dynamics. By presenting the object at different visual orientations, adaptation was shown to be context-specific, with limited generalization to novel orientations. Here we show that a multiple-context state-space model, with a generalization function tuned to visual object orientation, can reproduce the time-course of adaptation and de-adaptation as well as the observed context-dependent behavior. In contrast to the dual-rate process associated with novel dynamics, we show that a single-rate process mediates adaptation to familiar object dynamics. The model predicts that during exposure to the object across multiple orientations, there will be a degree of independence for adaptation and de-adaptation within each context, and that the states associated with all contexts will slowly de-adapt during exposure in one particular context. We confirm these predictions in two new experiments. Results of the current study thus highlight similarities and differences in the processes engaged during exposure to novel versus familiar dynamics. In both cases, adaptation is mediated by multiple context-specific representations. In the case of familiar object dynamics

  6. Ecotoxicity of arsenic contaminated sludge after mixing with soils and addition into composting and vermicomposting processes.

    PubMed

    Vašíčková, Jana; Maňáková, Blanka; Šudoma, Marek; Hofman, Jakub

    2016-11-05

    Sludge coming from remediation of groundwater contaminated by industry is usually managed as hazardous waste despite it might be considered for further processing as a source of nutrients. The ecotoxicity of phosphorus rich sludge contaminated with arsenic was evaluated after mixing with soil and cultivation with Sinapis alba, and supplementation into composting and vermicomposting processes. The Enchytraeus crypticus and Folsomia candida reproduction tests and the Lactuca sativa root growth test were used. Invertebrate bioassays reacted sensitively to arsenic presence in soil-sludge mixtures. The root elongation of L. sativa was not sensitive and showed variable results. In general, the relationship between invertebrate tests results and arsenic mobile concentration was indicated in majority endpoints. Nevertheless, significant portion of the results still cannot be satisfactorily explained by As chemistry data. Composted and vermicomposted sludge mixtures showed surprisingly high toxicity on all three tested organisms despite the decrease in arsenic mobility, probably due to toxic metabolites of bacteria and earthworms produced during these processes. The results from the study indicated the inability of chemical methods to predict the effects of complex mixtures on living organisms with respect to ecotoxicity bioassays. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Soil Contamination from PCB-Containing Buildings

    PubMed Central

    Herrick, Robert F.; Lefkowitz, Daniel J.; Weymouth, George A.

    2007-01-01

    Background Polychlorinated biphenyls (PCBs) in construction materials, such as caulking used around windows and expansion joints, may constitute a source of PCB contamination in the building interiors and in surrounding soil. Several studies of soil contamination have been conducted around buildings where the caulking has been removed by grinding or scraping. The PCBs in soil may have been generated in the process of removing the caulking, but natural weathering and deterioration of the caulking may have also been a source. Objectives The objectives of this study were to measure PCB levels in soil surrounding buildings where PCB-containing caulk was still in place, and to evaluate the mobility of the PCBs from caulking using the Toxicity Characteristic Leaching Procedure (U.S. Environmental Protection Agency Method 1311). Discussion We found soil PCB contamination ranging from 3.3 to 34 mg/kg around buildings with undisturbed caulking that contained 10,000–36,200 mg/kg PCBs. The results of the Toxicity Characteristic Leaching Procedure (leachate concentrations of 76–288 mg PCB/L) suggest that PCBs in caulking can be mobilized, apparently as complexes with dissolved organic matter that also leach off the caulking material. Conclusions and Recommendations Although these new findings are based on a small sample size, they demonstrate the need for a national survey of PCBs in building materials and in soil surrounding these buildings. Because the buildings constructed during the time the PCB caulking was in use (1960s and 1970s) include schools, hospitals, and apartment buildings, the potential for exposure of children is a particular concern. It is necessary to reconsider the practice of disposing of old PCB caulking removed during building renovations in conventional landfills, given the apparent mobility of PCBs from the caulking material. Disposal of some caulking material in nonhazardous landfills might lead to high PCB levels in landfill leachate. PMID

  8. Bond Testing for Effects of Silicone Contamination

    NASA Technical Reports Server (NTRS)

    Plaia, James; Evans, Kurt

    2005-01-01

    In 2003 ATK Thiokol discovered that the smocks and coveralls worn by its operations personnel for safety and contamination control were themselves contaminated with a silicone defoamer and a silicone oil. As a growing list of items have been identified as having this form of contamination, it was desirable to devise a test method to determine if the contamination level detected could cause subsequent processing concerns. The smocks and coveralls could potentially contact bonding surfaces during processing so the test method focused on dry transfer of the silicone from the clothing to the bonding surface.

  9. Reducing Blood Culture Contamination in the Emergency Department: An Interrupted Time Series Quality Improvement Study

    PubMed Central

    Self, Wesley H.; Speroff, Theodore; Grijalva, Carlos G.; McNaughton, Candace D.; Ashburn, Jacki; Liu, Dandan; Arbogast, Patrick G.; Russ, Stephan; Storrow, Alan B.; Talbot, Thomas R.

    2012-01-01

    Objectives Blood culture contamination is a common problem in the emergency department (ED) that leads to unnecessary patient morbidity and health care costs. The study objective was to develop and evaluate the effectiveness of a quality improvement (QI) intervention for reducing blood culture contamination in an ED. Methods The authors developed a QI intervention to reduce blood culture contamination in the ED and then evaluated its effectiveness in a prospective interrupted times series study. The QI intervention involved changing the technique of blood culture specimen collection from the traditional clean procedure, to a new sterile procedure, with standardized use of sterile gloves and a new materials kit containing a 2% chlorhexidine skin antisepsis device, a sterile fenestrated drape, a sterile needle, and a procedural checklist. The intervention was implemented in a university-affiliated ED and its effect on blood culture contamination evaluated by comparing the biweekly percentages of blood cultures contaminated during a 48-week baseline period (clean technique), and 48-week intervention period (sterile technique), using segmented regression analysis with adjustment for secular trends and first-order autocorrelation. The goal was to achieve and maintain a contamination rate below 3%. Results During the baseline period, 321 out of 7,389 (4.3%) cultures were contaminated, compared to 111 of 6,590 (1.7%) during the intervention period (p < 0.001). In the segmented regression model, the intervention was associated with an immediate 2.9% (95% CI = 2.2% to 3.2%) absolute reduction in contamination. The contamination rate was maintained below 3% during each biweekly interval throughout the intervention period. Conclusions A QI assessment of ED blood culture contamination led to development of a targeted intervention to convert the process of blood culture collection from a clean to a fully sterile procedure. Implementation of this intervention led to an immediate

  10. Extraction behavior of metallic contaminants and soil constituents from contaminated soils.

    PubMed

    Tokunaga, S; Park, S W; Ulmanu, M

    2005-06-01

    With an aim of developing an effective remediation technology for soils contaminated by heavy metals and metalloids, the extraction behavior of metallic contaminants as well as those of soil constituents was studied on a laboratory scale. Three contaminated soils collected from a former metal recycling plant were examined. These three soils were found to be contaminated by As, Cu, Pb, Sb, Se and Zn as compared to the non-contaminated soil. The pH-dependent extraction behavior of various elements from the soils was measured in a wide pH range and categorized into three groups. Hydrochloric acid (HCl), H2SO4, H3PO4, HNO3, sodium citrate, sodium tartrate, disodium dihydrogen ethylenediaminetetraacetate and diethylenetriaminepentaacetic acid were evaluated as extractants for removing contaminants from the soils. Extraction behavior of the soil constituents was also studied. The efficiency of the extraction was evaluated by the Japanese content and leaching tests. The stabilization of Pb remaining in the soil after the extraction process was conducted by the addition of iron(III) and calcium chloride.

  11. Impact of food processing and detoxification treatments on mycotoxin contamination.

    PubMed

    Karlovsky, Petr; Suman, Michele; Berthiller, Franz; De Meester, Johan; Eisenbrand, Gerhard; Perrin, Irène; Oswald, Isabelle P; Speijers, Gerrit; Chiodini, Alessandro; Recker, Tobias; Dussort, Pierre

    2016-11-01

    Mycotoxins are fungal metabolites commonly occurring in food, which pose a health risk to the consumer. Maximum levels for major mycotoxins allowed in food have been established worldwide. Good agricultural practices, plant disease management, and adequate storage conditions limit mycotoxin levels in the food chain yet do not eliminate mycotoxins completely. Food processing can further reduce mycotoxin levels by physical removal and decontamination by chemical or enzymatic transformation of mycotoxins into less toxic products. Physical removal of mycotoxins is very efficient: manual sorting of grains, nuts, and fruits by farmers as well as automatic sorting by the industry significantly lowers the mean mycotoxin content. Further processing such as milling, steeping, and extrusion can also reduce mycotoxin content. Mycotoxins can be detoxified chemically by reacting with food components and technical aids; these reactions are facilitated by high temperature and alkaline or acidic conditions. Detoxification of mycotoxins can also be achieved enzymatically. Some enzymes able to transform mycotoxins naturally occur in food commodities or are produced during fermentation but more efficient detoxification can be achieved by deliberate introduction of purified enzymes. We recommend integrating evaluation of processing technologies for their impact on mycotoxins into risk management. Processing steps proven to mitigate mycotoxin contamination should be used whenever necessary. Development of detoxification technologies for high-risk commodities should be a priority for research. While physical techniques currently offer the most efficient post-harvest reduction of mycotoxin content in food, biotechnology possesses the largest potential for future developments.

  12. 3D Geospatial Models for Visualization and Analysis of Groundwater Contamination at a Nuclear Materials Processing Facility

    NASA Astrophysics Data System (ADS)

    Stirewalt, G. L.; Shepherd, J. C.

    2003-12-01

    Analysis of hydrostratigraphy and uranium and nitrate contamination in groundwater at a former nuclear materials processing facility in Oklahoma were undertaken employing 3-dimensional (3D) geospatial modeling software. Models constructed played an important role in the regulatory decision process of the U.S. Nuclear Regulatory Commission (NRC) because they enabled visualization of temporal variations in contaminant concentrations and plume geometry. Three aquifer systems occur at the site, comprised of water-bearing fractured shales separated by indurated sandstone aquitards. The uppermost terrace groundwater system (TGWS) aquifer is composed of terrace and alluvial deposits and a basal shale. The shallow groundwater system (SGWS) aquifer is made up of three shale units and two sandstones. It is separated from the overlying TGWS and underlying deep groundwater system (DGWS) aquifer by sandstone aquitards. Spills of nitric acid solutions containing uranium and radioactive decay products around the main processing building (MPB), leakage from storage ponds west of the MPB, and leaching of radioactive materials from discarded equipment and waste containers contaminated both the TGWS and SGWS aquifers during facility operation between 1970 and 1993. Constructing 3D geospatial property models for analysis of groundwater contamination at the site involved use of EarthVision (EV), a 3D geospatial modeling software developed by Dynamic Graphics, Inc. of Alameda, CA. A viable 3D geohydrologic framework model was initially constructed so property data could be spatially located relative to subsurface geohydrologic units. The framework model contained three hydrostratigraphic zones equivalent to the TGWS, SGWS, and DGWS aquifers in which groundwater samples were collected, separated by two sandstone aquitards. Groundwater data collected in the three aquifer systems since 1991 indicated high concentrations of uranium (>10,000 micrograms/liter) and nitrate (> 500 milligrams

  13. A comparison between broiler chicken carcasses with and without visible faecal contamination during the slaughtering process on hazard identification of Salmonella spp.

    PubMed

    Jiménez, S M; Salsi, M S; Tiburzi, M C; Pirovani, M E

    2002-01-01

    A comparison of the prevalence of Salmonella in chicken carcasses with and without visible faecal contamination during commercial slaughter practice was made. The relationship between Enterobacteriaceae, coliform and Escherichia coli counts and Salmonella status was also evaluated to establish the likelihood of using these groups as 'index' organisms to predict the presence of pathogen. Samples were removed immediately after evisceration, after the inside-outside shower and after chilling from the processing line for microbiological analysis. Of the carcasses visibly uncontaminated with faeces after the evisceration step 20% harboured salmonellas and 20.8% of the visibly contaminated carcasses were positive for the pathogen. When E. coli, coliforms and Enterobacteriaceae were used as predictor variables the error rates ranged from 33.3 to 60% for both sample types. There was no indication that any of the groups of organisms analysed could predict the incidence of salmonellas on the samples studied. Positive results for the pathogen were obtained at every tested step of the slaughtering process regardless of whether or not faecal contamination was present. The present study demonstrated that carcasses not visibly contaminated with faeces carried Salmonella as well as the visibly contaminated carcasses.

  14. Control of microbial contamination.

    NASA Technical Reports Server (NTRS)

    Mcdade, J. J.

    1971-01-01

    Two specific applications are discussed of microbial contamination control in planetary quarantine. Under the first concept, using the clean room to control environmental microorganisms, the objective is to reduce the microbial species and keep the numbers of microorganisms within an enclosure at a low level. The clean room concept is aimed at obtaining a product that has a controlled and reduced level of microbial contamination. Under the second concept, using the microbiological barrier to control microbial contamination of a specific product, the barrier techniques are designed to prevent the entry of any microorganisms into a sterile work area. Thus the assembly of space flight hardware within the confines of a microbiological barrier is aimed at obtaining a sterile product. In theory and practice, both approaches are shown to be applicable to the planetary quarantine program.

  15. The transfer of natural Rhodamine B contamination from raw paprika fruit to capsicum oleoresin during the extraction process.

    PubMed

    Wu, Naiying; Gao, Wei; Lian, Yunhe; Du, Jingjing; Tie, Xiaowei

    2017-12-15

    Occurrence of Rhodamine B (RhB) contamination in paprika caused by agricultural materials during the vegetation process has been reported. It may transfer during the process of active compounds extraction, and eventually exist in final products. Herein, the re-distribution of RhB during the extraction process was assessed in terms of RhB contents, as well as mass, color value and capsaicinoids yield of each process. Results revealed that natural RhB contamination at 0.55-1.11µg/kg originated from raw paprika fruit then transferred with the extraction proceeded. About 95.5% of RhB was found in red oleoresin. After separation of red oleoresin, 91.6% of RhB was remained in capsicum oleoresin, only 3.7% in paprika red. These results were consistent with total capsaicinoids recovery of each product. The RhB levels in edible capsicum oleoresin in our present study at 0.01-0.34µg/kg did not exceed the legal limits established by the European Union. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Biological Remediation of Petroleum Contaminants

    NASA Astrophysics Data System (ADS)

    Kuhad, Ramesh Chander; Gupta, Rishi

    Large volumes of hazardous wastes are generated in the form of oily sludges and contaminated soils during crude oil transportation and processing. Although many physical, chemical and biological treatment technologies are available for petroleum contaminants petroleum contaminants in soil, biological methods have been considered the most cost-effective. Practical biological remediation methods typically involve direct use of the microbes naturally occurring in the contaminated environment and/or cultured indigenous or modified microorganisms. Environmental and nutritional factors, including the properties of the soil, the chemical structure of the hydrocarbon(s), oxygen, water, nutrient availability, pH, temperature, and contaminant bioavailability, can significantly affect the rate and the extent of hydrocarbon biodegradation hydrocarbon biodegradation by microorganisms in contaminated soils. This chapter concisely discusses the major aspects of bioremediation of petroleum contaminants.

  17. The sequential use of washing and an electrochemical reduction process for the remediation of lead-contaminated soils.

    PubMed

    Demir, Aydeniz; Köleli, Nurcan

    2013-01-01

    A two-step method for the remediation of three different types of lead (Pb)-contaminated soil was evaluated. The first step included soil washing with ethylenediaminetetraacetic acid (EDTA) to remove Pb from soils. The washing experiments were performed with 0.05 M Na2EDTA at 1:10 soil to liquid ratio. Following the washing, Pb removal efficiency from soils ranged within 50-70%. After the soil washing process, Pb2+ ions in the washing solution were reduced electrochemically in a fixed-bed reactor. Lead removal efficiency with the electrochemical reduction at -2.0 V potential ranged within 57-76%. The overall results indicate that this two-step method is an environmentally-friendly and effective technology to remediate Pb-contaminated soils, as well as Pb-contaminated wastewater treatment due to the transformation of toxic Pb2+ ions into a non-hazardous metallic form (Pb(0)).

  18. Dynamic variation of bioactive compounds and aflatoxins in contaminated Radix Astragali during extraction process.

    PubMed

    Hu, Yichen; Kong, Weijun; Luo, Hongli; Zhao, Lianhua; Yang, Meihua

    2016-03-30

    Although increasing attention has been paid to the health threat caused by mycotoxins in commodities such as food or medicines, mycotoxin transfer processes from crude material to products have raised little concern so far. Radix Astragali is a commonly used edible and medicinal herbal plant that is susceptible to contamination with aflatoxins from Aspergillus flavus. There have been no studies on mycotoxin transfer into pharmaceutical preparations or derivative products. To facilitate the aflatoxin reduction and bioactivity retention, the dynamic variations of aflatoxins as well as herbal compounds, namely calycosin-7-glucoside, astragaloside and formononetin, in Radix Astragali contaminated by A. flavus during water decoction and ethanol refluxing treatments were evaluated simultaneously by an ultra-fast liquid chromatography-triple quadrupole linear ion trap mass spectrometry method. After the extraction processes, although the amount of alfatoxins was reduced remarkably, aflatoxin residuals in preparation still exceed recommended limits, manifesting the great need to establish a limit for aflatoxins in herbal extractions or derivative products. Meanwhile, due to the hydrolysis of glucoside, water decoction period should be no longer than 4 h. This investigation would benefit from the determination of the dynamic variation of aflatoxins in infected herbs in preparation treatments, in order to further develop aflatoxin limits in herbal preparations. © 2015 Society of Chemical Industry.

  19. Alternative Processes for Water Reclamation and Solid Waste Processing in a Physical/chemical Bioregenerative Life Support System

    NASA Technical Reports Server (NTRS)

    Rogers, Tom D.

    1990-01-01

    Viewgraphs on alternative processes for water reclamation and solid waste processing in a physical/chemical-bioregenerative life support system are presented. The main objective is to focus attention on emerging influences of secondary factors (i.e., waste composition, type and level of chemical contaminants, and effects of microorganisms, primarily bacteria) and to constructively address these issues by discussing approaches which attack them in a direct manner.

  20. Processes affecting geochemistry and contaminant movement in the middle Claiborne aquifer of the Mississippi embayment aquifer system

    USGS Publications Warehouse

    Katz, Brian G.; Kingsbury, James A.; Welch, Heather L.; Tollett, Roland W.

    2012-01-01

    Groundwater chemistry and tracer-based age data were used to assess contaminant movement and geochemical processes in the middle Claiborne aquifer (MCA) of the Mississippi embayment aquifer system. Water samples were collected from 30 drinking-water wells (mostly domestic and public supply) and analyzed for nutrients, major ions, pesticides, volatile organic compounds (VOCs), and transient age tracers (chlorofluorocarbons, tritium and helium-3, and sulfur hexafluoride). Redox conditions are highly variable throughout the MCA. However, mostly oxic groundwater with low dissolved solids is more vulnerable to nitrate contamination in the outcrop areas east of the Mississippi River in Mississippi and west Tennessee than in mostly anoxic groundwater in downgradient areas in western parts of the study area. Groundwater in the outcrop area was relatively young (apparent age of less than 40 years) with significantly (p 50 m depth) indicated contaminant movement from shallow parts of the aquifer into deeper oxic zones. Given the persistence of nitrate in young oxic groundwater that was recharged several decades ago, and the lack of a confining unit, the downward movement of young contaminated water may result in higher nitrate concentrations over time in deeper parts of the aquifer containing older oxic water.

  1. Assessment of molecular contamination in mask pod

    NASA Astrophysics Data System (ADS)

    Foray, Jean Marie; Dejaune, Patrice; Sergent, Pierre; Gough, Stuart; Cheung, D.; Davenet, Magali; Favre, Arnaud; Rude, C.; Trautmann, T.; Tissier, Michel; Fontaine, H.; Veillerot, M.; Avary, K.; Hollein, I.; Lerit, R.

    2008-04-01

    Context/ study Motivation: Contamination and especially Airbone Molecular Contamination (AMC) is a critical issue for mask material flow with a severe and fairly unpredictable risk of induced contamination and damages especially for 193 nm lithography. It is therefore essential to measure, to understand and then try to reduce AMC in mask environment. Mask material flow was studied in a global approach by a pool of European partners, especially within the frame of European MEDEA+ project, so called "MUSCLE". This paper deals with results and assessment of mask pod environment in term of molecular contamination in a first step, then in a second step preliminary studies to reduce mask pod influence and contamination due to material out gassing. Approach and techniques: A specific assessment of environmental / molecular contamination along the supply chain was performed by all partners. After previous work presented at EMLC 07, further studies were performed on real time contamination measurement pod at different sites locations (including Mask manufacturing site, blank manufacturing sites, IC fab). Studies were linked to the main critical issues: cleaning, storage, handling, materials and processes. Contamination measurement campaigns were carried out along the mask supply chain using specific Adixen analyzer in order to monitor in real time organic contaminants (ppb level) in mask pods. Key results would be presented: VOC, AMC and humidity level on different kinds of mask carriers, impact of basic cleaning on pod outgassing measurement (VOC, NH3), and process influence on pod contamination... In a second step, preliminary specific pod conditioning studies for better pod environment were performed based on Adixen vacuum process. Process influence had been experimentally measured in term of molecular outgassing from mask pods. Different AMC experimental characterization methods had been carried out leading to results on a wide range of organic and inorganic

  2. Identifying fecal matter contamination in produce fields using multispectral reflectance imaging under ambient solar illumination

    NASA Astrophysics Data System (ADS)

    Everard, Colm D.; Kim, Moon S.; Lee, Hoonsoo; O'Donnell, Colm P.

    2016-05-01

    An imaging device to detect fecal contamination in fresh produce fields could allow the producer avoid harvesting fecal contaminated produce. E.coli O157:H7 outbreaks have been associated with fecal contaminated leafy greens. In this study, in-field spectral profiles of bovine fecal matter, soil, and spinach leaves are compared. A common aperture imager designed with two identical monochromatic cameras, a beam splitter, and optical filters was used to simultaneously capture two-spectral images of leaves contaminated with both fecal matter and soil. The optical filters where 10 nm full width half maximum bandpass filters, one at 690 nm and the second at 710 nm. These were mounted in front of the object lenses. New images were created using the ratio of these two spectral images on a pixel by pixel basis. Image analysis results showed that the fecal matter contamination could be distinguished from soil and leaf on the ratio images. The use of this technology has potential to allow detection of fecal contamination in produce fields which can be a source of foodbourne illnesses. It has the added benefit of mitigating cross-contamination during harvesting and processing.

  3. Chance-constrained multi-objective optimization of groundwater remediation design at DNAPLs-contaminated sites using a multi-algorithm genetically adaptive method.

    PubMed

    Ouyang, Qi; Lu, Wenxi; Hou, Zeyu; Zhang, Yu; Li, Shuai; Luo, Jiannan

    2017-05-01

    In this paper, a multi-algorithm genetically adaptive multi-objective (AMALGAM) method is proposed as a multi-objective optimization solver. It was implemented in the multi-objective optimization of a groundwater remediation design at sites contaminated by dense non-aqueous phase liquids. In this study, there were two objectives: minimization of the total remediation cost, and minimization of the remediation time. A non-dominated sorting genetic algorithm II (NSGA-II) was adopted to compare with the proposed method. For efficiency, the time-consuming surfactant-enhanced aquifer remediation simulation model was replaced by a surrogate model constructed by a multi-gene genetic programming (MGGP) technique. Similarly, two other surrogate modeling methods-support vector regression (SVR) and Kriging (KRG)-were employed to make comparisons with MGGP. In addition, the surrogate-modeling uncertainty was incorporated in the optimization model by chance-constrained programming (CCP). The results showed that, for the problem considered in this study, (1) the solutions obtained by AMALGAM incurred less remediation cost and required less time than those of NSGA-II, indicating that AMALGAM outperformed NSGA-II. It was additionally shown that (2) the MGGP surrogate model was more accurate than SVR and KRG; and (3) the remediation cost and time increased with the confidence level, which can enable decision makers to make a suitable choice by considering the given budget, remediation time, and reliability. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Suppression of stimulus artifact contaminating electrically evoked electromyography.

    PubMed

    Liu, Jie; Li, Sheng; Li, Xiaoyan; Klein, Cliff; Rymer, William Z; Zhou, Ping

    2014-01-01

    Electrical stimulation of muscle or nerve is a very useful technique for understanding of muscle activity and its pathological changes for both diagnostic and therapeutic purposes. During electrical stimulation of a muscle, the recorded M wave is often contaminated by a stimulus artifact. The stimulus artifact must be removed for appropriate analysis and interpretation of M waves. The objective of this study was to develop a novel software based method to remove stimulus artifacts contaminating or superimposing with electrically evoked surface electromyography (EMG) or M wave signals. The multiple stage method uses a series of signal processing techniques, including highlighting and detection of stimulus artifacts using Savitzky-Golay filtering, estimation of the artifact contaminated region with Otsu thresholding, and reconstruction of such region using signal interpolation and smoothing. The developed method was tested using M wave signals recorded from biceps brachii muscles by a linear surface electrode array. To evaluate the performance, a series of semi-synthetic signals were constructed from clean M wave and stimulus artifact recordings with different degrees of overlap between them. The effectiveness of the developed method was quantified by a significant increase in correlation coefficient and a significant decrease in root mean square error between the clean M wave and the reconstructed M wave, compared with those between the clean M wave and the originally contaminated signal. The validity of the developed method was also demonstrated when tested on each channel's M wave recording using a linear electrode array. The developed method can suppress stimulus artifacts contaminating M wave recordings.

  5. Organic contaminant separator

    DOEpatents

    Del Mar, P.

    1993-12-28

    A process is presented of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube comprised of a blend of a polyolefin and a polyester, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube. The solvent is capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus is presented for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium. The apparatus includes a composite tube comprised of a blend of a polyolefin and a polyester. The composite tube has an internal diameter of from about 0.1 to about 2.0 millimeters and has sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube. 2 figures.

  6. Image processing strategies based on saliency segmentation for object recognition under simulated prosthetic vision.

    PubMed

    Li, Heng; Su, Xiaofan; Wang, Jing; Kan, Han; Han, Tingting; Zeng, Yajie; Chai, Xinyu

    2018-01-01

    Current retinal prostheses can only generate low-resolution visual percepts constituted of limited phosphenes which are elicited by an electrode array and with uncontrollable color and restricted grayscale. Under this visual perception, prosthetic recipients can just complete some simple visual tasks, but more complex tasks like face identification/object recognition are extremely difficult. Therefore, it is necessary to investigate and apply image processing strategies for optimizing the visual perception of the recipients. This study focuses on recognition of the object of interest employing simulated prosthetic vision. We used a saliency segmentation method based on a biologically plausible graph-based visual saliency model and a grabCut-based self-adaptive-iterative optimization framework to automatically extract foreground objects. Based on this, two image processing strategies, Addition of Separate Pixelization and Background Pixel Shrink, were further utilized to enhance the extracted foreground objects. i) The results showed by verification of psychophysical experiments that under simulated prosthetic vision, both strategies had marked advantages over Direct Pixelization in terms of recognition accuracy and efficiency. ii) We also found that recognition performance under two strategies was tied to the segmentation results and was affected positively by the paired-interrelated objects in the scene. The use of the saliency segmentation method and image processing strategies can automatically extract and enhance foreground objects, and significantly improve object recognition performance towards recipients implanted a high-density implant. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. [Global immunization policies and recommendations: objectives and process].

    PubMed

    Duclos, Philippe; Okwo-Bele, Jean-Marie

    2007-04-01

    The World Health Organization (WHO) has a dual mandate of providing global policies, standards and norms as well as support for member countries in applying such policies and standards to national programmes with the aim to improve health. The vaccine world is changing and with it the demands and expectations of the global and national policy makers, donors, and other interested parties. Changes pertain to : new vaccines and technologies developments, vaccine safety issues, regulation and approval of vaccines, and increased funding flowing through new financing mechanisms. This places a special responsibility on WHO to respond effectively. WHO has recently reviewed and optimized its policy making structure for vaccines and immunization and adjusted it to the new Global Immunization Vision and Strategy, which broadens the scope of immunization efforts to all age groups and vaccines with emphasis on integration of immunization delivery with other health interventions. This includes an extended consultation process to promptly generate evidence base recommendations, ensuring transparency of the decision making process and added communication efforts. This article presents the objectives and impact of the process set to develop global immunization policies, norms, standards and recommendations. The key advisory committees landscape contributing to this process is described. This includes the Strategic Advisory Group of Experts, the Global Advisory Committee on Vaccine Safety and the Expert Committee on Biological Standardization. The elaboration of WHO vaccine position papers is also described.

  8. Prevention of Salmonella cross-contamination in an oilmeal manufacturing plant.

    PubMed

    Morita, T; Kitazawa, H; Iida, T; Kamata, S

    2006-08-01

    The mechanisms of Salmonella contamination in an oilmeal plant were investigated and the basic data were collected in order to achieve control of Salmonella in oilmeal. Salmonella was detected in all contamination vectors and environmental factors investigated, namely: operators, processing floor, dust in the air and rodents. In particular, high concentrations of Salmonella were detected on the processing floor of the manufacturing area, which has high oil content. Steam was the most effective disinfection method used for the processing floor, as the effects of heat sterilization and disinfection may work in tandem. In addition, restricting the movement of operators of the production chain remarkably reduced Salmonella contamination, even in areas of otherwise high contamination. Within the oilmeal plant, high Salmonella contamination rates for the processing floor represent the greatest risk of contamination of oilmeal via operators, dust in the air and rodents. Therefore, control of the processing floor is the most important means for reducing the oilmeal contamination rate. Specific Salmonella control methods for oilmeal plants have been established.

  9. Isotopic constraints on contamination processes in the Tonian Goiás Stratiform Complex

    NASA Astrophysics Data System (ADS)

    Giovanardi, Tommaso; Mazzucchelli, Maurizio; Lugli, Federico; Girardi, Vicente A. V.; Correia, Ciro T.; Tassinari, Colombo C. G.; Cipriani, Anna

    2018-06-01

    The Tonian Goiás Stratiform Complex (TGSC, Goiás, central Brazil), is one of the largest mafic-ultramafic layered complexes in the world, emplaced during the geotectonic events that led to the Gondwana accretion. In this study, we present trace elements and in-situ U/Pb-Lu-Hf analyses of zircons and 87Sr/86Sr ratios of plagioclases from anorthosites and gabbros of the TGSC. Although formed by three isolated bodies (Cana Brava, Niquelândia and Barro Alto), and characterized by a Lower and Upper Sequence (LS and US), our new U/Pb zircon data confirm recent geochemical, geochronological, and structural evidences that the TGSC has originated from a single intrusive body in the Neoproterozoic. New Hf and Sr isotope ratios construe a complex contamination history for the TGSC, with different geochemical signatures in the two sequences. The low Hf and high Sr isotope ratios of the Lower Sequence (εHf(t) from -4.2 down to -27.5; 87Sr/86Sr = 0.706605-0.729226), suggest the presence of a crustal component and are consistent with contamination from meta-pelitic and calc-silicate rocks found as xenoliths within the Sequence. The more radiogenic Hf isotope ratios and low Sr isotope composition of the Upper Sequence (εHf(t) from 11.3 down to -8.4; 87Sr/86Sr = 0.702368-0.702452), suggest a contamination from mantle-derived metabasalts in agreement with the occurrences of amphibolite xenoliths in the US stratigraphy. The differential contamination of the two sequences is explained by the intrusion of the TGSC in a stratified crust dominated by metasedimentary rocks in its deeper part and metavolcanics at shallower levels. Moreover, the differential thermal gradient in the two crystallizing sequences might have contributed to the preservation and recrystallization of inherited zircon grains in the US and total dissolution or magmatic overgrowth of the LS zircons via melt/rock reaction processes.

  10. Imaging-based optical caliper for objects in hot manufacturing processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Howard

    OG Technologies, Inc. (OGT), in conjunction with its industrial and academic partners, proposes to develop an Imaging-Based Optical Caliper (hereafter referred to as OC) for Objects in Hot Manufacturing Processes. The goal is to develop and demonstrate the OC with the synergy of OGT's current technological pool and other innovations to provide a light weight, robust, safe and accurate portable dimensional measurement device for hot objects with integrated wireless communication capacity to enable real time process control. The technical areas of interest in this project are the combination of advanced imaging, Sensor Fusion, and process control. OGT believes that themore » synergistic interactions between its current set of technologies and other innovations could deliver products that are viable and have high impact in the hot manufacture processes, such as steel making, steel rolling, open die forging, and glass industries, resulting in a new energy efficient control paradigm in the operations through improved yield, prolonged tool life and improved quality. In-line dimension measurement and control is of interest to the steel makers, yet current industry focus is on the final product dimension only instead of whole process due to the limit of man power, system cost and operator safety concerns. As sensor technologies advances, the industry started to see the need to enforce better dimensional control throughout the process, but lack the proper tools to do so. OGT along with its industrial partners represent the indigenous effort of technological development to serve the US steel industry. The immediate market that can use and get benefited from the proposed OC is the Steel Industry. The deployment of the OC has the potential to provide benefits in reduction of energy waste, CO2 emission, waste water amount, toxic waste, and so forth. The potential market after further expended function includes Hot Forging and Freight Industries. The OC prototypes were

  11. Contaminant Accumulation in Many New England Lead Pipe Scales

    EPA Science Inventory

    Previous work has shown that contaminants such as Al, As and Ra can accumulate in drinking water distribution system solids. The release of accumulated contaminants back into the water supply could conceivably result in elevated levels at consumers' taps. The objective of this s...

  12. Evaluation of the Effect of Silicone Contamination on Various Bond Systems and the Feasibility of Removing the Contamination

    NASA Technical Reports Server (NTRS)

    Stanley, Stephanie D.

    2008-01-01

    Silicone is a contaminant that can cause catastrophic failure of a bond system depending on the materials and processes used to fabricate the bond system, Unfortunately, more and more materials are fabricated using silicone. The purpose of this testing was to evaluate which bond systems are sensitive to silicone contamination and whether or not a cleaning process could be utilized to remove the silicone to bring the bond system performance back to baseline. Due to the extensive nature of the testing attempts will be made to generalize the understanding within classes of substrates, bond systems, and surface preparation and cleaning methods. This study was done by contaminating various meta! (steel, inconel, and aluminum), phenolic (carbon cloth phenolic and glass cloth phenolic), and rubber (natural rubber, asbestos-silicone dioxide filled natural butyldiene rubber, silica-filled ethylene propylenediene monomer, and carbon-filled ethylene propylenediene monomer) substrates which were then bonded using various adhesives and coatings (epoxy-based adhesives, paints, ablative compounds, and Chemlok adhesives) to determine the effect silicone contamination has on a given bond system's performance. The test configurations depended on the bond system being evaluated. The study also evaluated the feasibility of removing the silicone contamination by cleaning the contaminated substrate prior to bonding. The cleaning processes also varied depending on bond system.

  13. EPA SITE DEMONSTRATION OF THE BIOTROL SOIL WASHING PROCESS

    EPA Science Inventory

    A pilot-scale soil washing process, patented by BioTrol, Inc., was demonstrate on soil contaminated by wood treating waste, primarily pentachlorophenol (PCP) and creosote-derived polynuclear aromatic hydrocarbons (PAHs). Although soil washing was the main object of this demonstra...

  14. Adenosine Triphosphate Quantification Correlates Poorly with Microbial Contamination of Duodenoscopes.

    PubMed

    Olafsdottir, Lovisa B; Wright, Sharon B; Smithey, Anne; Heroux, Riley; Hirsch, Elizabeth B; Chen, Alice; Lane, Benjamin; Sawhney, Mandeep S; Snyder, Graham M

    2017-06-01

    OBJECTIVE The aim of this study was to quantify the correlation between adenosine triphosphate (ATP) measurements and bacterial cultures from duodenoscopes for evaluation of contamination following high-level disinfection. DESIGN Duodenoscopes used for any intended endoscopic retrograde cholangiopancreatography (ERCP) procedure were included. Microbiologic and ATP data were collected concomitantly and in the same manner from ERCP duodenoscopes. SETTING A high-volume endoscopy unit at a tertiary referral acute-care facility. METHODS Duodenoscopes were sampled for ATP and bacterial contamination in a contemporaneous and highly standardized fashion using a "flush-brush-flush" method for the working channel (WC) and a dry flocked swab for the elevator mechanism (EM). Specimens were processed for any aerobic bacterial growth (colony-forming units, CFU). Growth of CFU>0 and ATP relative light unit (RLU)>0 was considered a contaminated result. Frequency of discord between among WC and EM measurements were calculated using 2×2 contingency tables. The Spearman correlation coefficient was used to calculate the relatedness of bacterial contamination and ATP as continuous measurements. RESULTS The Spearman correlation coefficient did not demonstrate significant relatedness between ATP and CFU for either a WC or EM site. Among 390 duodenoscope sampling events, ATP and CFU assessments of contamination were discordant in 82 of 390 WC measurements (21%) and 331 of 390 of EM measurements (84.9%). The EM was frequently and markedly positive by ATP measurement. CONCLUSION ATP measurements correlate poorly with a microbiologic standard assessing duodenoscope contamination, particularly for EM sampling. ATP may reflect biological material other than nonviable aerobic bacteria and may not serve as an adequate marker of bacterial contamination. Infect Control Hosp Epidemiol 2017;38:678-684.

  15. Changes in iron, zinc and chelating agents during traditional African processing of maize: Effect of iron contamination on bioaccessibility.

    PubMed

    Greffeuille, Valérie; Polycarpe Kayodé, A P; Icard-Vernière, Christèle; Gnimadi, Muriel; Rochette, Isabelle; Mouquet-Rivier, Claire

    2011-06-15

    The effect of the different unit operations of processing traditionally used to produce four maize foods commonly consumed in Africa on the nutritional composition of the products was investigated, using Benin as a study context. The impact of the processes on lipid, fibre, phytate, iron and zinc contents varied with the process. The lowest IP6/Fe and IP6/Zn molar ratios, the indices used to assess Fe and Zn bioavailability were obtained in mawè, a fermented dough. Analysis of maize products highlighted a significant increase in iron content after milling, as a result of contamination by the equipment used. Evaluation of iron bioaccessibility by in vitro enzymatic digestion followed by dialysis revealed that the iron contamination, followed by lactic acid fermentation, led to a considerable increase in bioaccessible iron content. Extrinsic iron supplied to food products by the milling equipment could play a role in iron intake in developing countries. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Passive sampling methods for contaminated sediments: Risk assessment and management

    PubMed Central

    Greenberg, Marc S; Chapman, Peter M; Allan, Ian J; Anderson, Kim A; Apitz, Sabine E; Beegan, Chris; Bridges, Todd S; Brown, Steve S; Cargill, John G; McCulloch, Megan C; Menzie, Charles A; Shine, James P; Parkerton, Thomas F

    2014-01-01

    This paper details how activity-based passive sampling methods (PSMs), which provide information on bioavailability in terms of freely dissolved contaminant concentrations (Cfree), can be used to better inform risk management decision making at multiple points in the process of assessing and managing contaminated sediment sites. PSMs can increase certainty in site investigation and management, because Cfree is a better predictor of bioavailability than total bulk sediment concentration (Ctotal) for 4 key endpoints included in conceptual site models (benthic organism toxicity, bioaccumulation, sediment flux, and water column exposures). The use of passive sampling devices (PSDs) presents challenges with respect to representative sampling for estimating average concentrations and other metrics relevant for exposure and risk assessment. These challenges can be addressed by designing studies that account for sources of variation associated with PSMs and considering appropriate spatial scales to meet study objectives. Possible applications of PSMs include: quantifying spatial and temporal trends in bioavailable contaminants, identifying and evaluating contaminant source contributions, calibrating site-specific models, and, improving weight-of-evidence based decision frameworks. PSM data can be used to assist in delineating sediment management zones based on likelihood of exposure effects, monitor remedy effectiveness, and, evaluate risk reduction after sediment treatment, disposal, or beneficial reuse after management actions. Examples are provided illustrating why PSMs and freely dissolved contaminant concentrations (Cfree) should be incorporated into contaminated sediment investigations and study designs to better focus on and understand contaminant bioavailability, more accurately estimate exposure to sediment-associated contaminants, and better inform risk management decisions. Research and communication needs for encouraging broader use are discussed. Integr

  17. Processing-Dependent and Clonal Contamination Patterns of Listeria monocytogenes in the Cured Ham Food Chain Revealed by Genetic Analysis.

    PubMed

    Morganti, Marina; Scaltriti, Erika; Cozzolino, Paolo; Bolzoni, Luca; Casadei, Gabriele; Pierantoni, Marco; Foni, Emanuela; Pongolini, Stefano

    2016-02-01

    The quantitative and qualitative patterns of environmental contamination by Listeria monocytogenes were investigated in the production chain of dry-cured Parma ham. Standard arrays of surfaces were sampled in processing facilities during a single visit per plant in the three compartments of the food chain, i.e., ham production (19 plants) and postproduction, which was divided into deboning (43 plants) and slicing (25 plants) steps. The numbers of sampled surfaces were 384 in ham production, with 25 positive for L. monocytogenes, and 1,084 in postproduction, with 83 positives. Statistical analysis of the prevalence of contaminated surfaces showed that in ham production, contamination was higher at the beginning of processing and declined significantly toward the end, while in postproduction, prevalence rose toward the end of processing. Prevalence was higher in the deboning facilities than in slicing facilities and was dependent on the type of surface (floor/drainage > clothing > equipment). The qualitative pattern of contamination was investigated through an analysis of the survey isolates and a set of isolates derived from routine monitoring, including longitudinal isolations. Pulsed-field gel electrophoresis (PFGE) and whole-genome single-nucleotide polymorphism (SNP) analysis revealed a remarkable clonality of L. monocytogenes within plants, with the detection of 16 plant-specific clones out of 17 establishments with multiple isolates. Repeated detections of clonal isolates >6 months apart were also observed. Six was the maximum number of between-isolate differences in core SNPs observed within these clones. Based on the same six-SNP threshold, three clusters of clonal isolates, shared by six establishments, were also identified. The spread of L. monocytogenes within and between plants, as indicated by its clonal behavior, is a matter of concern for the hygienic management of establishments. Copyright © 2016, American Society for Microbiology. All Rights

  18. Processing-Dependent and Clonal Contamination Patterns of Listeria monocytogenes in the Cured Ham Food Chain Revealed by Genetic Analysis

    PubMed Central

    Morganti, Marina; Scaltriti, Erika; Cozzolino, Paolo; Bolzoni, Luca; Casadei, Gabriele; Pierantoni, Marco; Foni, Emanuela

    2015-01-01

    The quantitative and qualitative patterns of environmental contamination by Listeria monocytogenes were investigated in the production chain of dry-cured Parma ham. Standard arrays of surfaces were sampled in processing facilities during a single visit per plant in the three compartments of the food chain, i.e., ham production (19 plants) and postproduction, which was divided into deboning (43 plants) and slicing (25 plants) steps. The numbers of sampled surfaces were 384 in ham production, with 25 positive for L. monocytogenes, and 1,084 in postproduction, with 83 positives. Statistical analysis of the prevalence of contaminated surfaces showed that in ham production, contamination was higher at the beginning of processing and declined significantly toward the end, while in postproduction, prevalence rose toward the end of processing. Prevalence was higher in the deboning facilities than in slicing facilities and was dependent on the type of surface (floor/drainage > clothing > equipment). The qualitative pattern of contamination was investigated through an analysis of the survey isolates and a set of isolates derived from routine monitoring, including longitudinal isolations. Pulsed-field gel electrophoresis (PFGE) and whole-genome single-nucleotide polymorphism (SNP) analysis revealed a remarkable clonality of L. monocytogenes within plants, with the detection of 16 plant-specific clones out of 17 establishments with multiple isolates. Repeated detections of clonal isolates >6 months apart were also observed. Six was the maximum number of between-isolate differences in core SNPs observed within these clones. Based on the same six-SNP threshold, three clusters of clonal isolates, shared by six establishments, were also identified. The spread of L. monocytogenes within and between plants, as indicated by its clonal behavior, is a matter of concern for the hygienic management of establishments. PMID:26590278

  19. An OSEE Based Portable Surface Contamination Monitor

    NASA Technical Reports Server (NTRS)

    Perey, Daniel F.

    1997-01-01

    Many industrial and aerospace processes involving the joining of materials, require sufficient surface cleanliness to insure proper bonding. Processes as diverse as painting, welding, or the soldering of electronic circuits will be compromised if prior inspection and removal of surface contaminants is inadequate. As process requirements become more stringent and the number of different materials and identified contaminants increases, various instruments and techniques have been developed for improved inspection. One such technique based on the principle of Optically Stimulated Electron Emission (OSEE) has been explored for a number of years as a tool for surface contamination monitoring. Some of the benefits of OSEE are: it's non-contacting; requires little operator training; and has very high contamination sensitivity. This paper describes the development of a portable OSEE based surface contamination monitor. The instrument is suitable for both hand-held and robotic inspections with either manual or automated control of instrument operation. In addition, instrument output data is visually displayed to the operator and may be output to an external computer for archiving or analysis.

  20. Comparison of the accident process, radioactivity release and ground contamination between Chernobyl and Fukushima-1

    PubMed Central

    Imanaka, Tetsuji; Hayashi, Gohei; Endo, Satoru

    2015-01-01

    In this report, we have reviewed the basic features of the accident processes and radioactivity releases that occurred in the Chernobyl accident (1986) and in the Fukushima-1 accident (2011). The Chernobyl accident was a power-surge accident that was caused by a failure of control of a fission chain reaction, which instantaneously destroyed the reactor and building, whereas the Fukushima-1 accident was a loss-of-coolant accident in which the reactor cores of three units were melted by decay heat after losing the electricity supply. Although the quantity of radioactive noble gases released from Fukushima-1 exceeded the amount released from Chernobyl, the size of land area severely contaminated by 137Cesium (137Cs) was 10 times smaller around Fukushima-1 compared with around Chernobyl. The differences in the accident process are reflected in the composition of the discharged radioactivity as well as in the composition of the ground contamination. Volatile radionuclides (such as 132Te-132I, 131I, 134Cs and 137Cs) contributed to the gamma-ray exposure from the ground contamination around Fukishima-1, whereas a greater variety of radionuclides contributed significantly around Chernobyl. When radioactivity deposition occurred, the radiation exposure rate near Chernobyl is estimated to have been 770 μGy h−1 per initial 137Cs deposition of 1000 kBq m−2, whereas it was 100 μGy h−1 around Fukushima-1. Estimates of the cumulative exposure for 30 years are 970 and 570 mGy per initial deposition of 1000 kBq m−2 for Chernobyl and Fukusima-1, respectively. Of these exposures, 49 and 98% were contributed by radiocesiums (134Cs + 137Cs) around Chernobyl and Fukushima-1, respectively. PMID:26568603

  1. Comparison of the accident process, radioactivity release and ground contamination between Chernobyl and Fukushima-1.

    PubMed

    Imanaka, Tetsuji; Hayashi, Gohei; Endo, Satoru

    2015-12-01

    In this report, we have reviewed the basic features of the accident processes and radioactivity releases that occurred in the Chernobyl accident (1986) and in the Fukushima-1 accident (2011). The Chernobyl accident was a power-surge accident that was caused by a failure of control of a fission chain reaction, which instantaneously destroyed the reactor and building, whereas the Fukushima-1 accident was a loss-of-coolant accident in which the reactor cores of three units were melted by decay heat after losing the electricity supply. Although the quantity of radioactive noble gases released from Fukushima-1 exceeded the amount released from Chernobyl, the size of land area severely contaminated by (137)Cesium ((137)Cs) was 10 times smaller around Fukushima-1 compared with around Chernobyl. The differences in the accident process are reflected in the composition of the discharged radioactivity as well as in the composition of the ground contamination. Volatile radionuclides (such as (132)Te-(132)I, (131)I, (134)Cs and (137)Cs) contributed to the gamma-ray exposure from the ground contamination around Fukishima-1, whereas a greater variety of radionuclides contributed significantly around Chernobyl. When radioactivity deposition occurred, the radiation exposure rate near Chernobyl is estimated to have been 770 μGy h(-1) per initial (137)Cs deposition of 1000 kBq m(-2), whereas it was 100 μGy h(-1) around Fukushima-1. Estimates of the cumulative exposure for 30 years are 970 and 570 mGy per initial deposition of 1000 kBq m(-2) for Chernobyl and Fukusima-1, respectively. Of these exposures, 49 and 98% were contributed by radiocesiums ((134)Cs + (137)Cs) around Chernobyl and Fukushima-1, respectively. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  2. Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering

    DOEpatents

    Vijayan, S.; Wong, C.F.; Buckley, L.P.

    1994-11-22

    In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved. 1 fig.

  3. Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering

    DOEpatents

    Vijayan, Sivaraman; Wong, Chi F.; Buckley, Leo P.

    1994-01-01

    In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved.

  4. Unaware Processing of Tools in the Neural System for Object-Directed Action Representation.

    PubMed

    Tettamanti, Marco; Conca, Francesca; Falini, Andrea; Perani, Daniela

    2017-11-01

    The hypothesis that the brain constitutively encodes observed manipulable objects for the actions they afford is still debated. Yet, crucial evidence demonstrating that, even in the absence of perceptual awareness, the mere visual appearance of a manipulable object triggers a visuomotor coding in the action representation system including the premotor cortex, has hitherto not been provided. In this fMRI study, we instantiated reliable unaware visual perception conditions by means of continuous flash suppression, and we tested in 24 healthy human participants (13 females) whether the visuomotor object-directed action representation system that includes left-hemispheric premotor, parietal, and posterior temporal cortices is activated even under subliminal perceptual conditions. We found consistent activation in the target visuomotor cortices, both with and without perceptual awareness, specifically for pictures of manipulable versus non-manipulable objects. By means of a multivariate searchlight analysis, we also found that the brain activation patterns in this visuomotor network enabled the decoding of manipulable versus non-manipulable object picture processing, both with and without awareness. These findings demonstrate the intimate neural coupling between visual perception and motor representation that underlies manipulable object processing: manipulable object stimuli specifically engage the visuomotor object-directed action representation system, in a constitutive manner that is independent from perceptual awareness. This perceptuo-motor coupling endows the brain with an efficient mechanism for monitoring and planning reactions to external stimuli in the absence of awareness. SIGNIFICANCE STATEMENT Our brain constantly encodes the visual information that hits the retina, leading to a stimulus-specific activation of sensory and semantic representations, even for objects that we do not consciously perceive. Do these unconscious representations encompass the motor

  5. Contaminated environments in the subsurface and bioremediation: organic contaminants.

    PubMed

    Holliger, C; Gaspard, S; Glod, G; Heijman, C; Schumacher, W; Schwarzenbach, R P; Vazquez, F

    1997-07-01

    Due to leakages, spills, improper disposal and accidents during transport, organic compounds have become subsurface contaminants that threaten important drinking water resources. One strategy to remediate such polluted subsurface environments is to make use of the degradative capacity of bacteria. It is often sufficient to supply the subsurface with nutrients such as nitrogen and phosphorus, and aerobic treatments are still dominating. However, anaerobic processes have advantages such as low biomass production and good electron acceptor availability, and they are sometimes the only possible solution. This review will focus on three important groups of environmental organic contaminants: hydrocarbons, chlorinated and nitroaromatic compounds. Whereas hydrocarbons are oxidized and completely mineralized under anaerobic conditions in the presence of electron acceptors such as nitrate, iron, sulfate and carbon dioxide, chlorinated and nitroaromatic compounds are reductively transformed. For the aerobic often persistent polychlorinated compounds, reductive dechlorination leads to harmless products or to compounds that are aerobically degradable. The nitroaromatic compounds are first reductively transformed to the corresponding amines and can subsequently be bound to the humic fraction in an aerobic process. Such new findings and developments give hope that in the near future contaminated aquifers can efficiently be remediated, a prerequisite for a sustainable use of the precious-subsurface drinking water resources.

  6. Contamination assessment for OSSA space station IOC payloads

    NASA Technical Reports Server (NTRS)

    Chinn, S.; Gordon, T.; Rantanen, R.

    1987-01-01

    The results are presented from a study for the Space Station Planners Group of the Office of Space Sciences and Applications. The objectives of the study are: (1) the development of contamination protection requirements for protection of Space Station attached payloads, serviced payloads and platforms; and (2) the determination of unknowns or major impacts requiring further assessment. The nature, sources, and quantitative properties of the external contaminants to be encountered on the Station are summarized. The OSSA payload contamination protection requirements provided by the payload program managers are reviewed and the level of contamination awareness among them is discussed. Preparation of revisions to the contamination protection requirements are detailed. The comparative impact of flying the Station at constant atmospheric density rather than constant altitude is assessed. The impact of the transverse boom configuration of the Station on contamination is also assessed. The contamination protection guidelines which OSSA should enforce during their development of payloads are summarized.

  7. Study on contaminants on flight and other critical surfaces

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Hughes, Charles; Arendale, William F.

    1994-01-01

    The control of surface contamination in the manufacture of space hardware can become a critical step in the production process. Bonded surfaces have been shown to be affected markedly by contamination. It is important to insure surface cleanliness by preventing contamination prior to bonding. In this vein techniques are needed in which the contamination which may affect bonding are easily found and removed. Likewise, if materials which are detrimental to bonding are not easily removed, then they should not be used in the manufacturing process. This study will address the development of techniques to locate and quantify contamination levels of particular contaminants. With other data becoming available from MSFC and its contractors, this study will also quantify how certain contaminants affect bondlines and how easily they are removed in manufacturing.

  8. Terrestrial contamination in Apollo lunar samples.

    NASA Technical Reports Server (NTRS)

    Flory, D. A.; Simoneit, B. R.

    1972-01-01

    The contamination prevention procedures adopted for controlling the collection, processing, and analysis of the Apollo lunar samples in order to keep them free of significant levels of terrestrial organic matter are described. The organic contaminants actually found in the samples by the various investigators are summarized. It is shown that the program succeeded in providing investigators with samples containing less than 0.1 ppm total contamination.

  9. Some Case Studies on Metal-Microbe Interactions to Remediate Heavy Metals- Contaminated Soils in Korea

    NASA Astrophysics Data System (ADS)

    Chon, Hyo-Taek

    2015-04-01

    Conventional physicochemical technologies to remediate heavy metals-contaminated soil have many problems such as low efficiency, high cost and occurrence of byproducts. Recently bioremediation technology is getting more and more attention. Bioremediation is defined as the use of biological methods to remediate and/or restore the contaminated land. The objectives of bioremediation are to degrade hazardous organic contaminants and to convert hazardous inorganic contaminants to less toxic compounds of safe levels. The use of bioremediation in the treatment of heavy metals in soils is a relatively new concept. Bioremediation using microbes has been developed to remove toxic heavy metals from contaminated soils in laboratory scale to the contaminated field sites. Recently the application of cost-effective and environment-friendly bioremediation technology to the heavy metals-contaminated sites has been gradually realized in Korea. The merits of bioremediation include low cost, natural process, minimal exposure to the contaminants, and minimum amount of equipment. The limitations of bioremediation are length of remediation, long monitoring time, and, sometimes, toxicity of byproducts for especially organic contaminants. From now on, it is necessary to prove applicability of the technologies to contaminated sites and to establish highly effective, low-cost and easy bioremediation technology. Four categories of metal-microbe interactions are generally biosorption, bioreduction, biomineralization and bioleaching. In this paper, some case studies of the above metal-microbe interactions in author's lab which were published recently in domestic and international journals will be introduced and summarized.

  10. Science and technology objective (STO) to develop tests for detecting microbial and chemical contaminants in food and water

    NASA Astrophysics Data System (ADS)

    Knechtges, Paul L.; Gargan, Thomas P., II; Burrows, William D.

    2002-02-01

    The assurance of safe food and water is paramount to the health and performance of the warfighter. Any technology to assess the chemical and microbial purity of food and water under field conditions must meet rigorous criteria: it must be readily portable, provide timely results (no more than 4 hours), have adequate sensitivity (1 cfu/100 mL for potable water), be compatible with military power sources, and be of complexity appropriate for operation by a Preventive Medicine Specialist. The nomination of an Army Science and Technology Objective (STO) leads to assessment of existing technologies and commercial products; identification of users, regulators and developers; definition of essential capabilities; and consideration of potential obstructions. The U.S. Army Center for Environmental Health Research has identified a number of technologies for detecting microbial contaminants in food and water and has pursued development of the more promising examples. This paper examines developmental risks in the context of the STO and offers some insight and strategies to manage them.

  11. Disgust and Obsessive Beliefs in Contamination-related OCD

    PubMed Central

    Cisler, Josh M.; Brady, Robert E.; Olatunji, Bunmi O.; Lohr, Jeffrey M.

    2010-01-01

    A large body of evidence suggests that disgust is an important affective process underlying contamination fear. An independent line of research demonstrates that obsessive beliefs, particularly overestimations of threat, are also an important cognitive process underlying contamination fear. The present study attempts to integrate these two lines of research by testing whether obsessive beliefs potentiate the influence of disgust propensity on contamination fear. The interaction between disgust propensity and obsessive beliefs was tested in two large non-clinical samples (N = 252 in Study 1; N = 308 in Study 2) using two different self-report measures of contamination fear. Regression analyses supported the hypotheses in both samples. The interaction remained significant when controlling for negative affect. The results are hypothesized to suggest that contamination fear results, at least partly, from obsessive beliefs about the contamination-based appraisals that accompany heightened disgust responding. These results complement previous affective-driven explanations of the role of disgust in contamination fear by suggesting cognitive factors that similarly potentiate disgust’s role in contamination fear. PMID:20877585

  12. Perforation and Bacterial Contamination of Microscope Covers in Lumbar Spinal Decompressive Surgery

    PubMed Central

    Osterhoff, Georg; Spirig, José; Klasen, Jürgen; Kuster, Stefan P.; Zinkernagel, Annelies S.; Sax, Hugo; Min, Kan

    2014-01-01

    Objective To determine the integrity of microscope covers and bacterial contamination at the end of lumbar spinal decompressive surgery. Materials and Methods A prospective study of 25 consecutive lumbar spinal decompressions with the use of a surgical microscope was performed. For detection of perforations, the microscope covers were filled with water at the end of surgery and the presence of water leakage in 3 zones (objective, ocular and control panel) was examined. For detection of bacterial contamination, swabs were taken from the covers at the same locations before and after surgery. Results Among the 25 covers, 1 (4%) perforation was observed and no association between perforation and bacterial contamination was seen; 3 (4%) of 75 smears from the 25 covers showed post-operative bacterial contamination, i.e. 2 in the ocular zone and 1 in the optical zone, without a cover perforation. Conclusions The incidence of microscope cover perforation was very low and was not shown to be associated with bacterial contamination. External sources of bacterial contamination seem to outweigh the problem of contamination due to failure of cover integrity. PMID:24903448

  13. Development of Tool Representations in the Dorsal and Ventral Visual Object Processing Pathways

    PubMed Central

    Kersey, Alyssa J.; Clark, Tyia S.; Lussier, Courtney A.; Mahon, Bradford Z.; Cantlon, Jessica F.

    2016-01-01

    Tools represent a special class of objects, because they are processed across both the dorsal and ventral visual object processing pathways. Three core regions are known to be involved in tool processing: the left posterior middle temporal gyrus, the medial fusiform gyrus (bilaterally), and the left inferior parietal lobule. A critical and relatively unexplored issue concerns whether, in development, tool preferences emerge at the same time and to a similar degree across all regions of the tool-processing network. To test this issue, we used functional magnetic resonance imaging to measure the neural amplitude, peak location, and the dispersion of tool-related neural responses in the youngest sample of children tested to date in this domain (ages 4–8 years). We show that children recruit overlapping regions of the adult tool-processing network and also exhibit similar patterns of co-activation across the network to adults. The amplitude and co-activation data show that the core components of the tool-processing network are established by age 4. Our findings on the distributions of peak location and dispersion of activation indicate that the tool network undergoes refinement between ages 4 and 8 years. PMID:26108614

  14. Object and technologies in the working process of an itinerant team in mental health.

    PubMed

    Eslabão, Adriane Domingues; Pinho, Leandro Barbosa de; Coimbra, Valéria Cristina Christello; Lima, Maria Alice Dias da Silva; Camatta, Marcio Wagner; Santos, Elitiele Ortiz Dos

    2017-01-01

    Objective To analyze the work object and the technologies in the working process of a Mental Health Itinerant Team in the attention to drug users. Methods Qualitative case study, carried out in a municipality in the South of Brazil. The theoretical framework was the Healthcare Labor Process. The data was collected through participant observation and semi-structured interviews with the professionals of an itinerant team in the year of 2015. For data analysis we used the Thematic Content Analysis. Results In the first empirical category - work object - the user is considered as a focus, bringing new challenges in the team's relationship with the network. In the second category - technologies of the work process - potentialities and contradictions of the team work tools are highlighted. Conclusions As an innovation in the mental health context, the itinerant team brings real possibilities to reinvent the care for the drug user as well as new institutional challenges.

  15. Evaluation of the Effect of Silicone Contamination on Various Bond Systems and the Feasibility of Removing the Contamination

    NASA Technical Reports Server (NTRS)

    Stanley, Stephanie D.

    2008-01-01

    Silicone is a contaminant that can cause catastrophic failure of a bond system depending on the materials and processes used to fabricate the bond system. Unfortunately, more and more materials are fabricated using silicone. The purpose of this testing was to evaluate which bond systems are sensitive to silicone contamination and whether or not a cleaning process could be utilized to remove the silicone to bring the bond system performance back to baseline. Due to the extensive nature of the testing, attempts will be made to generalize the understanding within classes of substrates, bond systems, and surface preparation and cleaning methods. This study was done by contaminating various metal (steel, Inconel, and aluminum), phenolic (carbon-cloth phenolic [CCP] and glass-cloth phenolic [GCP]), and rubber (natural rubber, asbestos-silicone dioxide filled natural butyldiene rubber [ASNBR]; silica-filled ethylene propylenediene monomer [SFEPDM], and carbon-filled ethylene propylenediene monomer [CFEPDM]) substrates which were then bonded using various adhesives and coatings (epoxy-based adhesives, paints, ablative compounds, and Chemlok adhesives) to determine the effect silicone contamination has on a given bond system's performance. The test configurations depended on the bond system being evaluated. The study also evaluated the feasibility of removing the silicone contamination by cleaning the contaminated substrate prior to bonding. The cleaning processes also varied depending on bond system.

  16. Electrophysiological evidence for separation between human face and non-face object processing only in the right hemisphere.

    PubMed

    Niina, Megumi; Okamura, Jun-ya; Wang, Gang

    2015-10-01

    Scalp event-related potential (ERP) studies have demonstrated larger N170 amplitudes when subjects view faces compared to items from object categories. Extensive attempts have been made to clarify face selectivity and hemispheric dominance for face processing. The purpose of this study was to investigate hemispheric differences in N170s activated by human faces and non-face objects, as well as the extent of overlap of their sources. ERP was recorded from 20 subjects while they viewed human face and non-face images. N170s obtained during the presentation of human faces appeared earlier and with larger amplitude than for other category images. Further source analysis with a two-dipole model revealed that the locations of face and object processing largely overlapped in the left hemisphere. Conversely, the source for face processing in the right hemisphere located more anterior than the source for object processing. The results suggest that the neuronal circuits for face and object processing are largely shared in the left hemisphere, with more distinct circuits in the right hemisphere. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Dissociable intrinsic functional networks support noun-object and verb-action processing.

    PubMed

    Yang, Huichao; Lin, Qixiang; Han, Zaizhu; Li, Hongyu; Song, Luping; Chen, Lingjuan; He, Yong; Bi, Yanchao

    2017-12-01

    The processing mechanism of verbs-actions and nouns-objects is a central topic of language research, with robust evidence for behavioral dissociation. The neural basis for these two major word and/or conceptual classes, however, remains controversial. Two experiments were conducted to study this question from the network perspective. Experiment 1 found that nodes of the same class, obtained through task-evoked brain imaging meta-analyses, were more strongly connected with each other than nodes of different classes during resting-state, forming segregated network modules. Experiment 2 examined the behavioral relevance of these intrinsic networks using data from 88 brain-damaged patients, finding that across patients the relative strength of functional connectivity of the two networks significantly correlated with the noun-object vs. verb-action relative behavioral performances. In summary, we found that verbs-actions and nouns-objects are supported by separable intrinsic functional networks and that the integrity of such networks accounts for the relative noun-object- and verb-action-selective deficits. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Performance bounds for matched field processing in subsurface object detection applications

    NASA Astrophysics Data System (ADS)

    Sahin, Adnan; Miller, Eric L.

    1998-09-01

    In recent years there has been considerable interest in the use of ground penetrating radar (GPR) for the non-invasive detection and localization of buried objects. In a previous work, we have considered the use of high resolution array processing methods for solving these problems for measurement geometries in which an array of electromagnetic receivers observes the fields scattered by the subsurface targets in response to a plane wave illumination. Our approach uses the MUSIC algorithm in a matched field processing (MFP) scheme to determine both the range and the bearing of the objects. In this paper we derive the Cramer-Rao bounds (CRB) for this MUSIC-based approach analytically. Analysis of the theoretical CRB has shown that there exists an optimum inter-element spacing of array elements for which the CRB is minimum. Furthermore, the optimum inter-element spacing minimizing CRB is smaller than the conventional half wavelength criterion. The theoretical bounds are then verified for two estimators using Monte-Carlo simulations. The first estimator is the MUSIC-based MFP and the second one is the maximum likelihood based MFP. The two approaches differ in the cost functions they optimize. We observe that Monte-Carlo simulated error variances always lie above the values established by CRB. Finally, we evaluate the performance of our MUSIC-based algorithm in the presence of model mismatches. Since the detection algorithm strongly depends on the model used, we have tested the performance of the algorithm when the object radius used in the model is different from the true radius. This analysis reveals that the algorithm is still capable of localizing the objects with a bias depending on the degree of mismatch.

  19. Automatic Avoidance Tendencies in Individuals with Contamination-Related Obsessive-Compulsive Symptoms

    PubMed Central

    Najmi, Sadia; Kuckertz, Jennie M.; Amir, Nader

    2010-01-01

    We used an Approach-Avoidance Task (AAT) to examine response to threatening stimuli in 20 individuals high in contamination-related obsessive-compulsive symptoms (HCs) and 21 individuals low in contamination-related obsessive-compulsive symptoms (LCs). Participants were instructed to respond to contamination-related and neutral pictures by pulling a joystick towards themselves or by pushing it away from themselves. Moving the joystick changed the size of the image to simulate approaching or distancing oneself from the object. Consistent with our hypothesis, the HC group was significantly slower in pulling contamination-related pictures than in pulling neutral pictures, whereas in the LC group there was no difference between speed of pulling contamination-related pictures and neutral pictures. Contrary to our hypothesis, we did not find support for faster pushing away of contamination-related pictures than neutral pictures by the HC group. Moreover, the degree of avoidance of contamination-related stimuli when pulling – but not when pushing – was significantly correlated with self-reported contamination-related obsessive-compulsive symptoms. These results suggest a biased behavioral response for threatening objects in individuals high in contamination fears only when inhibiting the prepotent response to avoid threatening stimuli and not when performing a practiced avoidance response. Thus, our results validate the use of the AAT as a measure of inhibited and uninhibited automatic avoidance reactions to emotional information in individuals with contamination-related obsessive-compulsive symptoms. PMID:20650448

  20. Processing ser and estar to locate objects and events

    PubMed Central

    Dussias, Paola E.; Contemori, Carla; Román, Patricia

    2016-01-01

    In Spanish locative constructions, a different form of the copula is selected in relation to the semantic properties of the grammatical subject: sentences that locate objects require estar while those that locate events require ser (both translated in English as ‘to be’). In an ERP study, we examined whether second language (L2) speakers of Spanish are sensitive to the selectional restrictions that the different types of subjects impose on the choice of the two copulas. Twenty-four native speakers of Spanish and two groups of L2 Spanish speakers (24 beginners and 18 advanced speakers) were recruited to investigate the processing of ‘object/event + estar/ser’ permutations. Participants provided grammaticality judgments on correct (object + estar; event + ser) and incorrect (object + ser; event + estar) sentences while their brain activity was recorded. In line with previous studies (Leone-Fernández, Molinaro, Carreiras, & Barber, 2012; Sera, Gathje, & Pintado, 1999), the results of the grammaticality judgment for the native speakers showed that participants correctly accepted object + estar and event + ser constructions. In addition, while ‘object + ser’ constructions were considered grossly ungrammatical, ‘event + estar’ combinations were perceived as unacceptable to a lesser degree. For these same participants, ERP recording time-locked to the onset of the critical word ‘en’ showed a larger P600 for the ser predicates when the subject was an object than when it was an event (*La silla es en la cocina vs. La fiesta es en la cocina). This P600 effect is consistent with syntactic repair of the defining predicate when it does not fit with the adequate semantic properties of the subject. For estar predicates (La silla está en la cocina vs. *La fiesta está en la cocina), the findings showed a central-frontal negativity between 500–700 ms. Grammaticality judgment data for the L2 speakers of Spanish showed that beginners were significantly less

  1. Contamination avoidance devices for poppet type shutoff valves

    NASA Technical Reports Server (NTRS)

    Endicott, D. L.

    1972-01-01

    The technology required to provide acceptable contamination damage avoidance characteristics for poppet type shutoff valves is discussed. Evaluation of the contamination avoidance characteristics of the basic 1T32095 propellant shutoff valve, the cycle life performance of these valves in an uncontaminated environment, and the effectiveness of various auxiliary contamination avoidance devices when used in conjunction with these poppet type valves are included. In addition, a secondary objective is to evaluate two methods of monitoring the performance of the test valves during actual operations using acoustical monitoring instrumentation.

  2. ISS External Contamination Environment for Space Science Utilization

    NASA Technical Reports Server (NTRS)

    Soares, Carlos; Mikatarian, Ron; Steagall, Courtney; Huang, Alvin; Koontz, Steven; Worthy, Erica

    2014-01-01

    (1) The International Space Station is the largest and most complex on-orbit platform for space science utilization in low Earth orbit, (2) Multiple sites for external payloads, with exposure to the associated natural and induced environments, are available to support a variety of space science utilization objectives, (3) Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle, and (4)The ISS has been designed, built and integrated with strict contamination requirements to provide low levels of induced contamination on external payload assets.

  3. Development of the CROW{trademark} process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, L.A. Jr.

    1994-05-01

    The Contained Recovery of Oily Waste (CROW{trademark}) technology has been successfully tested in the laboratory and presently is being implemented at field sites contaminated with wood treating wastes and byproducts of town gas production. These field demonstrations will utilize only hot-water displacement without any chemical additives because the use of chemicals to enhance the hot-water flushing process has only been tested on a preliminary basis. Preliminary testing has shown that low concentrations of chemicals could reduce the contaminant content by an additional 10 to 20 wt %. Western Research Institute (WRI) research, plus research at Carnegie Mellon University, on surfactantmore » enhancement of solubility of polynuclear aromatic hydrocarbons in water and water-soil systems indicate the potential of chemical enhancement of the CROW process. Chemicals that have been tested and that were used in these tests are totally biodegradable. The objective of this task was to obtain sufficient baseline data to show the effectiveness and environmentally safe use of chemicals, primarily surfactants, to enhance the CROW process. To meet this objective, 14 one-dimensional displacement tests were conducted. Eleven tests were conducted on a material from a former manufactured gas plant (MGP) site and four tests were conducted with a contaminated soil from a former wood treatment facility. The tests investigated the effect of three chemical concentrations (0, 0.5, and 1.0 vol %) at three temperatures (ambient, the projected optimum temperature, and one 40{degree}F [22{degree}C] below the optimum temperature).« less

  4. Discriminative Random Field Models for Subsurface Contamination Uncertainty Quantification

    NASA Astrophysics Data System (ADS)

    Arshadi, M.; Abriola, L. M.; Miller, E. L.; De Paolis Kaluza, C.

    2017-12-01

    Application of flow and transport simulators for prediction of the release, entrapment, and persistence of dense non-aqueous phase liquids (DNAPLs) and associated contaminant plumes is a computationally intensive process that requires specification of a large number of material properties and hydrologic/chemical parameters. Given its computational burden, this direct simulation approach is particularly ill-suited for quantifying both the expected performance and uncertainty associated with candidate remediation strategies under real field conditions. Prediction uncertainties primarily arise from limited information about contaminant mass distributions, as well as the spatial distribution of subsurface hydrologic properties. Application of direct simulation to quantify uncertainty would, thus, typically require simulating multiphase flow and transport for a large number of permeability and release scenarios to collect statistics associated with remedial effectiveness, a computationally prohibitive process. The primary objective of this work is to develop and demonstrate a methodology that employs measured field data to produce equi-probable stochastic representations of a subsurface source zone that capture the spatial distribution and uncertainty associated with key features that control remediation performance (i.e., permeability and contamination mass). Here we employ probabilistic models known as discriminative random fields (DRFs) to synthesize stochastic realizations of initial mass distributions consistent with known, and typically limited, site characterization data. Using a limited number of full scale simulations as training data, a statistical model is developed for predicting the distribution of contaminant mass (e.g., DNAPL saturation and aqueous concentration) across a heterogeneous domain. Monte-Carlo sampling methods are then employed, in conjunction with the trained statistical model, to generate realizations conditioned on measured borehole data

  5. Organic contaminant separator

    DOEpatents

    Mar, Peter D.

    1994-01-01

    A process of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube including a polymeric base material selected from the group of polyolefins and polyfluorocarbons and particles of a carbon allotrope material adfixed to the inner wall of the polymeric base material, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube, said solvent capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium, said apparatus including a composite tube including a polymeric base material selected from the group of polyolefins and polyfluorocarbons and particles of a carbon allotrope material adfixed to the inner wall of the polymeric base material, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube is disclosed.

  6. Level 1 remedial investigation work plan, 300 Area Process Ponds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report discusses the objectives of the site characterization for the 300 Area Process Ponds which are to identify and quantify contamination at the ponds and to estimate their potential impact on human health and the environment. The results of the site characterization will be used to identify any future actions related to contamination at the site and to identify any additional data requirements needed to support selection of a remedial action. 9 refs., 12 figs., 8 tabs.

  7. Application of surrogates, indicators, and high-resolution mass spectrometry to evaluate the efficacy of UV processes for attenuation of emerging contaminants in water.

    PubMed

    Merel, Sylvain; Anumol, Tarun; Park, Minkyu; Snyder, Shane A

    2015-01-23

    In response to water scarcity, strategies relying on multiple processes to turn wastewater effluent into potable water are being increasingly considered by many cities. In such context, the occurrence of contaminants as well as their fate during treatment processes is a major concern. Three analytical approaches where used to characterize the efficacy of UV and UV/H2O2 processes on a secondary wastewater effluent. The first analytical approach assessed bulk organic parameters or surrogates before and after treatment, while the second analytical approach measured the removal of specific indicator compounds. Sixteen trace organic contaminants were selected due to their relative high concentration and detection frequency over eight monitoring campaigns. While their removal rate ranges from approximately 10 to >90%, some of these compounds can be used to gauge process efficacy (or failure). The third analytical approach assessed the fate of unknown contaminants through high-resolution time-of-flight (TOF) mass spectrometry with advanced data processing and demonstrated the occurrence of several thousand organic compounds in the water. A heat map clearly evidenced compounds as recalcitrant or transformed by the UV processes applied. In addition, those chemicals with similar fate were grouped together into clusters to identify new indicator compounds. In this manuscript, each approach is evaluated with advantages and disadvantages compared. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Application of surrogates, indicators, and high-resolution mass spectrometry to evaluate the efficacy of UV processes for attenuation of emerging contaminants in water

    PubMed Central

    Merel, Sylvain; Anumol, Tarun; Park, Minkyu; Snyder, Shane A.

    2016-01-01

    In response to water scarcity, strategies relying on multiple processes to turn wastewater effluent into potable water are being increasingly considered by many cities. In such context, the occurrence of contaminants as well as their fate during treatment processes is a major concern. Three analytical approaches where used to characterize the efficacy of UV and UV/H2O2 processes on a secondary wastewater effluent. The first analytical approach assessed bulk organic parameters or surrogates before and after treatment, while the second analytical approach measured the removal of specific indicator compounds. Sixteen trace organic contaminants were selected due to their relative high concentration and detection frequency over eight monitoring campaigns. While their removal rate ranges from approximately 10 to >90%, some of these compounds can be used to gauge process efficacy (or failure). The third analytical approach assessed the fate of unknown contaminants through high-resolution time-of-flight (TOF) mass spectrometry with advanced data processing and demonstrated the occurrence of several thousand organic compounds in the water. A heat map clearly evidenced compounds as recalcitrant or transformed by the UV processes applied. In addition, those chemicals with similar fate were able to be grouped together into clusters to identify new indicator compounds. In this manuscript, each approach is evaluated with advantages and disadvantages compared. PMID:25262385

  9. ADVANCED OXIDATION PROCESSES IN THE TREATMENT OF CONTAMINANT CANDIDATE LIST (CCL) COMPOUNDS

    EPA Science Inventory

    The current (2nd) Contaminant Candidate List was completed in 2005 by the United States EPA as an update to the Safe Drinking Water Act. The list of 42 chemical contaminants spans a wide array of classes, from pesticides to pharmaceuticals to elements, all of which are anticipate...

  10. Study of the possibility of thermal utilization of contaminated water in low-power boilers

    NASA Astrophysics Data System (ADS)

    Roslyakov, P. V.; Proskurin, Y. V.; Zaichenko, M. N.

    2017-09-01

    The utilization of water contaminated with oil products is a topical problem for thermal power plants and boiler houses. It is reasonable to use special water treatment equipment only for large power engineering and industry facilities. Thermal utilization of contaminated water in boiler furnaces is proposed as an alternative version of its utilization. Since there are hot-water fire-tube boilers at many enterprises, it is necessary to study the possibility of thermal utilization of water contaminated with oil products in their furnaces. The object of this study is a KV-GM-2.0 boiler with a heating power of 2 MW. The pressurized burner developed at the Moscow Power Engineering Institute, National Research University, was used as a burner device for supplying liquid fuel. The computational investigations were performed on the basis of the computer simulation of processes of liquid fuel atomization, mixing, ignition, and burnout; in addition, the formation of nitrogen oxides was simulated on the basis of ANSYS Fluent computational dynamics software packages, taking into account radiative and convective heat transfer. Analysis of the results of numerical experiments on the combined supply of crude oil and water contaminated with oil products has shown that the thermal utilization of contaminated water in fire-tube boilers cannot be recommended. The main causes here are the impingement of oil droplets on the walls of the flame tube, as well as the delay in combustion and increased emissions of nitrogen oxides. The thermal utilization of contaminated water combined with diesel fuel can be arranged provided that the water consumption is not more than 3%; however, this increases the emission of nitrogen oxides. The further increase in contaminated water consumption will lead to the reduction of the reliability of the combustion process.

  11. Bio-objects and the media: the role of communication in bio-objectification processes.

    PubMed

    Maeseele, Pieter; Allgaier, Joachim; Martinelli, Lucia

    2013-06-01

    The representation of biological innovations in and through communication and media practices is vital for understanding the nature of "bio-objects" and the process we call "bio-objectification." This paper discusses two ideal-typical analytical approaches based on different underlying communication models, ie, the traditional (science- and media-centered) and media sociological (a multi-layered process involving various social actors in defining the meanings of scientific and technological developments) approach. In this analysis, the latter is not only found to be the most promising approach for understanding the circulation, (re)production, and (re)configuration of meanings of bio-objects, but also to interpret the relationship between media and science. On the basis of a few selected examples, this paper highlights how media function as a primary arena for the (re)production and (re)configuration of scientific and biomedical information with regards to bio-objects in the public sphere in general, and toward decision-makers, interest groups, and the public in specific.

  12. KENNEDY SPACE CENTER, FLA. - A KSC employee secures a foot and leg cover of his "bunny suit," part of standard clean room apparel, before entering a clean room. The apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

    NASA Image and Video Library

    2003-08-29

    KENNEDY SPACE CENTER, FLA. - A KSC employee secures a foot and leg cover of his "bunny suit," part of standard clean room apparel, before entering a clean room. The apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

  13. KENNEDY SPACE CENTER, FLA. - A KSC employee dons the head and face cover of a "bunny suit," part of standard clean room apparel, before entering a clean room. This apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

    NASA Image and Video Library

    2003-08-29

    KENNEDY SPACE CENTER, FLA. - A KSC employee dons the head and face cover of a "bunny suit," part of standard clean room apparel, before entering a clean room. This apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

  14. KENNEDY SPACE CENTER, FLA. - A KSC employee dons the coverall of a "bunny suit," part of standard clean room apparel, before entering a clean room. The apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

    NASA Image and Video Library

    2003-08-29

    KENNEDY SPACE CENTER, FLA. - A KSC employee dons the coverall of a "bunny suit," part of standard clean room apparel, before entering a clean room. The apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

  15. KENNEDY SPACE CENTER, FLA. - A KSC employee dons the foot and leg covers of a "bunny suit," part of standard clean room apparel, before entering a clean room. The apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

    NASA Image and Video Library

    2003-08-29

    KENNEDY SPACE CENTER, FLA. - A KSC employee dons the foot and leg covers of a "bunny suit," part of standard clean room apparel, before entering a clean room. The apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

  16. Extracting Spatiotemporal Objects from Raster Data to Represent Physical Features and Analyze Related Processes

    NASA Astrophysics Data System (ADS)

    Zollweg, J. A.

    2017-10-01

    Numerous ground-based, airborne, and orbiting platforms provide remotely-sensed data of remarkable spatial resolution at short time intervals. However, this spatiotemporal data is most valuable if it can be processed into information, thereby creating meaning. We live in a world of objects: cars, buildings, farms, etc. On a stormy day, we don't see millions of cubes of atmosphere; we see a thunderstorm `object'. Temporally, we don't see the properties of those individual cubes changing, we see the thunderstorm as a whole evolving and moving. There is a need to represent the bulky, raw spatiotemporal data from remote sensors as a small number of relevant spatiotemporal objects, thereby matching the human brain's perception of the world. This presentation reveals an efficient algorithm and system to extract the objects/features from raster-formatted remotely-sensed data. The system makes use of the Python object-oriented programming language, SciPy/NumPy for matrix manipulation and scientific computation, and export/import to the GeoJSON standard geographic object data format. The example presented will show how thunderstorms can be identified and characterized in a spatiotemporal continuum using a Python program to process raster data from NOAA's High-Resolution Rapid Refresh v2 (HRRRv2) data stream.

  17. REVIEW OF SEPARATION TECHNOLOGIES FOR TREATING PESTICIDE-CONTAMINATED SOIL

    EPA Science Inventory

    Pesticide contamination results from manufacturing, improper storage, handling, or disposal of pesticides, and from agricultural processes. Since most pesticides are mixtures of different compounds, selecting a remedy for pesticide-contaminated soils can be a complicated process....

  18. The Benefits of Sensorimotor Knowledge: Body-Object Interaction Facilitates Semantic Processing

    ERIC Educational Resources Information Center

    Siakaluk, Paul D.; Pexman, Penny M.; Sears, Christopher R.; Wilson, Kim; Locheed, Keri; Owen, William J.

    2008-01-01

    This article examined the effects of body-object interaction (BOI) on semantic processing. BOI measures perceptions of the ease with which a human body can physically interact with a word's referent. In Experiment 1, BOI effects were examined in 2 semantic categorization tasks (SCT) in which participants decided if words are easily imageable.…

  19. Assessing the bioavailability and risk from metal-contaminated ...

    EPA Pesticide Factsheets

    Exposure to contaminated soil and dust is an important pathway in human health risk assessment. Physical and chemical characteristics, as well as biological factors, determine the bioaccessibility/bioavailability of soil and dust contaminants. Within a single sample, contamination may arise from multiple sources of toxic elements that may exist as different forms (species) which impact bioavailability. In turn, the bioaccessibility/bioavailability of soil and dust contaminants has a direct impact on human health risk assessment and risk management practices. Novel research efforts focusing on development and application of in vitro and in vivo methods to measure the bioaccessibility/bioavailability of metal contaminated soils have advanced in the past few years. The objective of this workshop was to focus on recent developments in assessing the bioaccessibility/bioavailability of arsenic contaminated soils, metal contamination in urban residences in Canada and potential children’s exposures to toxic elements in house dust, a community-based study known as the West Oakland Residential Lead Assessment , studies of the bioavailability of soil cadmium, chromium, nickel and mercury and human exposures to contaminated Brownfield soils. These presentations covered issues related to human health and bioavailability along with the most recent studies on community participation in assessing metal contamination, studies of exposures to residential contamination, and

  20. Cryptosporidium-contaminated water disinfection by a novel Fenton process.

    PubMed

    Matavos-Aramyan, Sina; Moussavi, Mohsen; Matavos-Aramyan, Hedieh; Roozkhosh, Sara

    2017-05-01

    Three novel modified advanced oxidation process systems including ascorbic acid-, pro-oxidants- and ascorbic acid-pro-oxidants-modified Fenton system were utilized to study the disinfection efficiency on Cryptosporidium-contaminated drinking water samples. Different concentrations of divalent and trivalent iron ions, hydrogen peroxide, ascorbic acid and pro-oxidants at different exposure times were investigated. These novel systems were also compared to the classic Fenton system and to the control system which comprised of only hydrogen peroxide. The complete in vitro mechanism of the mentioned modified Fenton systems are also provided. The results pointed out that by considering the optimal parameter limitations, the ascorbic acid-modified Fenton system decreased the Cryptosporidium oocytes viability to 3.91%, while the pro-oxidant-modified and ascorbic acid-pro-oxidant-modified Fenton system achieved an oocytes viability equal to 1.66% and 0%, respectively. The efficiency of the classic Fenton at optimal condition was observed to be 20.12% of oocytes viability. The control system achieved 86.14% of oocytes viability. The optimum values of the operational parameters during this study are found to be 80mgL -1 for the divalent iron, 30mgL -1 for ascorbic acid, 30mmol for hydrogen peroxide, 25mgL -1 for pro-oxidants and an exposure time equal to 5min. The ascorbic acid-pro-oxidants-modified Fenton system achieved a promising complete water disinfection (0% viability) at the optimal conditions, leaving this method a feasible process for water disinfection or decontamination, even at industrial scales. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Development of Tool Representations in the Dorsal and Ventral Visual Object Processing Pathways.

    PubMed

    Kersey, Alyssa J; Clark, Tyia S; Lussier, Courtney A; Mahon, Bradford Z; Cantlon, Jessica F

    2016-07-01

    Tools represent a special class of objects, because they are processed across both the dorsal and ventral visual object processing pathways. Three core regions are known to be involved in tool processing: the left posterior middle temporal gyrus, the medial fusiform gyrus (bilaterally), and the left inferior parietal lobule. A critical and relatively unexplored issue concerns whether, in development, tool preferences emerge at the same time and to a similar degree across all regions of the tool-processing network. To test this issue, we used functional magnetic resonance imaging to measure the neural amplitude, peak location, and the dispersion of tool-related neural responses in the youngest sample of children tested to date in this domain (ages 4-8 years). We show that children recruit overlapping regions of the adult tool-processing network and also exhibit similar patterns of co-activation across the network to adults. The amplitude and co-activation data show that the core components of the tool-processing network are established by age 4. Our findings on the distributions of peak location and dispersion of activation indicate that the tool network undergoes refinement between ages 4 and 8 years. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Lead contamination of subarctic lakes and its response to reduced atmospheric fallout: can the recovery process be counteracted by the ongoing climate change?

    PubMed

    Klaminder, Jonatan; Hammarlund, Dan; Kokfelt, Ulla; Vonk, Jorien E; Bigler, Christian

    2010-04-01

    Can a climate-triggered export of old contaminants from the soil alter the lead (Pb) contaminant burden of subarctic lakes? To address this question, we reconstructed the pollution history of three high latitude lakes situated in a region where a recent climatic shift has occurred. Dated sediment records were used as archives of past Pb inputs to the lakes, where the difference in the (206)Pb/(207)Pb ratio between atmospheric contaminants ((206)Pb/(207)Pb ratio <1.16) and geogenic Pb in the catchment soil ((206)Pb/(207)Pb ratio >1.22) were used to trace fluxes of Pb contaminants. Lead contaminants were found in sediments deposited since Roman times. A significant export of Pb from the soil contaminant pool is indicated in two of the lakes surrounded by near-shore permafrost soils. Here, levels of Pb contaminants and (206)Pb/(207)Pb ratios of sediments deposited after the 1970s appear not to have been strongly affected by the >or=90% reduction in atmospheric deposition rates and increasing (206)Pb/(207)Pb ratios of atmospheric Pb since the 1990s. We concluded that soil processes stimulated by the ongoing climate change at high latitudes might work counteractive to efforts to reduce contaminant levels in subarctic lakes.

  3. Phytoremediation of a nitrogen-contaminated desert soil by native shrubs and microbial processes

    DOE PAGES

    Glenn, Edward P.; Jordan, Fiona; Waugh, W. Joseph

    2016-02-24

    Here, we combined phytoremediation and soil microbial nitrification and denitrification cycles to reduce nitrate and ammonium levels at a former uranium mill site near Monument Valley, Arizona. Ammonia used in uranium extraction was present throughout the soil profile. Sulfate,applied as sulfuric acid to solubilize uranium, was also present in the soil. These contaminants were leaching from a denuded area where a tailings pile had been removed and were migrating away from the site in groundwater. We planted the source area with two deep-rooted native shrubs, Atriplex cansescens and Sarcobatus vermiculatus, and irrigated transplants for 11 years at 20% the ratemore » of potential evapotranspiration to stimulate growth, then discontinued irrigation for 4 years. Over 15 years, total nitrogen levels dropped 82%, from 347 to 64 mg kg –1. Analysis of δ 15N supported our hypothesis that coupled microbial nitrification and denitrification processes were responsible for the loss of N. Soil sulfate levels changed little; however, evapotranspiration reduced sulfate leaching into the aquifer. For arid sites where traditional pump-and-treat methods are problematic, the Monument Valley data suggest that alternatives that incorporate native plants and rely on vadose zone biogeochemistry and hydrology could be a sustainable remediation for nitrogen contaminated soil.« less

  4. Phytoremediation of a nitrogen-contaminated desert soil by native shrubs and microbial processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glenn, Edward P.; Jordan, Fiona; Waugh, W. Joseph

    Here, we combined phytoremediation and soil microbial nitrification and denitrification cycles to reduce nitrate and ammonium levels at a former uranium mill site near Monument Valley, Arizona. Ammonia used in uranium extraction was present throughout the soil profile. Sulfate,applied as sulfuric acid to solubilize uranium, was also present in the soil. These contaminants were leaching from a denuded area where a tailings pile had been removed and were migrating away from the site in groundwater. We planted the source area with two deep-rooted native shrubs, Atriplex cansescens and Sarcobatus vermiculatus, and irrigated transplants for 11 years at 20% the ratemore » of potential evapotranspiration to stimulate growth, then discontinued irrigation for 4 years. Over 15 years, total nitrogen levels dropped 82%, from 347 to 64 mg kg –1. Analysis of δ 15N supported our hypothesis that coupled microbial nitrification and denitrification processes were responsible for the loss of N. Soil sulfate levels changed little; however, evapotranspiration reduced sulfate leaching into the aquifer. For arid sites where traditional pump-and-treat methods are problematic, the Monument Valley data suggest that alternatives that incorporate native plants and rely on vadose zone biogeochemistry and hydrology could be a sustainable remediation for nitrogen contaminated soil.« less

  5. Response of microbial activities and diversity to PAHs contamination at coal tar contaminated land

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaohui; Sun, Yujiao; Ding, Aizhong; Zhang, Dan; Zhang, Dayi

    2015-04-01

    Coal tar is one of the most hazardous and concerned organic pollutants and the main hazards are polycyclic aromatic hydrocarbons (PAHs). The indigenous microorganisms in soils are capable to degrade PAHs, with essential roles in biochemical process for PAHs natural attenuation. This study investigated 48 soil samples (from 8 depths of 6 boreholes) in Beijing coking and chemistry plant (China) and revealed the correlation between PAHs contamination, soil enzyme activities and microbial community structure, by 16S rRNA denaturing gradient gel electrophoresis (DGGE). At the site, the key contaminants were identified as naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene and anthracene, and the total PAHs concentration ranged from 0.1 to 923.9 mg/kg dry soil. The total PAHs contamination level was positively correlated (p<0.05) with the bacteria count (0.9×107-14.2×107 CFU/mL), catalase activities (0.554-6.230 mL 0.02 M KMnO4/g•h) and dehydrogenase activities (1.9-30.4 TF μg/g•h soil), showing the significant response of microbial population and degrading functions to the organic contamination in soils. The PAHs contamination stimulated the PAHs degrading microbes and promoted their biochemical roles in situ. The positive relationship between bacteria count and dehydrogenase activities (p<0.05) suggested the dominancy of PAHs degrading bacteria in the microbial community. More interestingly, the microbial community deterioration was uncovered via the decline of microbial biodiversity (richness from 16S rRNA DGGE) against total PAHs concentration (p<0.05). Our research described the spatial profiles of PAHs contamination and soil microbial functions at the PAHs heavily contaminated sites, offering deeper understanding on the roles of indigenous microbial community in natural attenuation process.

  6. Trace contaminant studies of HSC adsorbent. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Yieh, D. T. N.

    1978-01-01

    The adsorption and desorption of fifteen trace contaminants on HSC (polyethylenimine coated acrylic ester) adsorbent were experimentally investigated with the following two objectives: to test the removal potential and the adsorption reversibility of the selected trace contaminants, and to test the effect a preadsorbed trace contaminant has on the CO2 adsorption capacity. The experimental method for acquiring the adsorption equilibrium data used is based on the volumetric (or displacement) concept of vacuum adsorption. From the experimental results, it was found that the HSC adsorbent has good adsorption potential for contaminants of alcohol compounds, esters, and benzene compounds; whereas, adsorption of ketone compounds, oxidizing and reducing agents are detrimental to the adsorbent. In addition, all liquid contaminants reduce the CO2 capacity of HSC adsorbent.

  7. The effect of unresolved contaminant stars on the cross-matching of photometric catalogues

    NASA Astrophysics Data System (ADS)

    Wilson, Tom J.; Naylor, Tim

    2017-07-01

    A fundamental process in astrophysics is the matching of two photometric catalogues. It is crucial that the correct objects be paired, and that their photometry does not suffer from any spurious additional flux. We compare the positions of sources in Wide-field Infrared Survey Explorer (WISE), INT Photometric H α Survey, Two Micron All Sky Survey and AAVSO Photometric All Sky Survey with Gaia Data Release 1 astrometric positions. We find that the separations are described by a combination of a Gaussian distribution, wider than naively assumed based on their quoted uncertainties, and a large wing, which some authors ascribe to proper motions. We show that this is caused by flux contamination from blended stars not treated separately. We provide linear fits between the quoted Gaussian uncertainty and the core fit to the separation distributions. We show that at least one in three of the stars in the faint half of a given catalogue will suffer from flux contamination above the 1 per cent level when the density of catalogue objects per point spread function area is above approximately 0.005. This has important implications for the creation of composite catalogues. It is important for any closest neighbour matches as there will be a given fraction of matches that are flux contaminated, while some matches will be missed due to significant astrometric perturbation by faint contaminants. In the case of probability-based matching, this contamination affects the probability density function of matches as a function of distance. This effect results in up to 50 per cent fewer counterparts being returned as matches, assuming Gaussian astrometric uncertainties for WISE-Gaia matching in crowded Galactic plane regions, compared with a closest neighbour match.

  8. Removal of petroleum hydrocarbons from contaminated groundwater by the combined technique of adsorption onto perlite followed by the O3/H2O2 process.

    PubMed

    Moussavi, Gholamreza; Bagheri, Amir

    2012-09-01

    Groundwater contaminated with petroleum hydrocarbons was treated using a combined system of adsorption onto powdered expanded perlite (PEP) followed by the O3/H2O2 process. The pretreatment investigations indicated a high capacity for PEP to remove petroleum hydrocarbons from the contaminated water. An experimental total petroleum hydrocarbon (TPH) adsorption capacity of 275 mg/g PEP was obtained at the natural pH of water. The experimental data fit best with the Freundlich isotherm model and pseudo-second-order adsorption model. The second phase of the experiment evaluated the performance of the O3/H2O2 process in the removal of residual TPH from pretreated water and compared the results with that of raw water. The O3/H202 process attained a maximum TPH removal rate for the pretreated water after 70 min, when 93% of the residual TPH in the effluent of the adsorption system was removed. Overall, the combination of adsorption onto PEP for 100 min and the subsequent treatment with the O3/H2O2 process for 70min eliminated over 99% of the TPH of highly petroleum-contaminated groundwater, with initial values of 162 mg/L. Therefore, we can conclude that the developed treatment system is an appropriate method of remediation for petroleum-contaminated waters.

  9. Object width modulates object-based attentional selection.

    PubMed

    Nah, Joseph C; Neppi-Modona, Marco; Strother, Lars; Behrmann, Marlene; Shomstein, Sarah

    2018-04-24

    Visual input typically includes a myriad of objects, some of which are selected for further processing. While these objects vary in shape and size, most evidence supporting object-based guidance of attention is drawn from paradigms employing two identical objects. Importantly, object size is a readily perceived stimulus dimension, and whether it modulates the distribution of attention remains an open question. Across four experiments, the size of the objects in the display was manipulated in a modified version of the two-rectangle paradigm. In Experiment 1, two identical parallel rectangles of two sizes (thin or thick) were presented. Experiments 2-4 employed identical trapezoids (each having a thin and thick end), inverted in orientation. In the experiments, one end of an object was cued and participants performed either a T/L discrimination or a simple target-detection task. Combined results show that, in addition to the standard object-based attentional advantage, there was a further attentional benefit for processing information contained in the thick versus thin end of objects. Additionally, eye-tracking measures demonstrated increased saccade precision towards thick object ends, suggesting that Fitts's Law may play a role in object-based attentional shifts. Taken together, these results suggest that object-based attentional selection is modulated by object width.

  10. Laboratory Investigation of Rheology and Infiltration Process of Non-Newtonian Fluids through Porous Media in a Non-Isothermal Flow Regime for Effective Remediation of Contaminants

    NASA Astrophysics Data System (ADS)

    Naseer, F.

    2017-12-01

    Contamination of soil and groundwater by adsorbent (persistent) contaminants have been a major concern. Mine tailings, Acid mine drainage, waste disposal areas, active or abandoned surface and underground mines are some major causes of soil and water contamination. It is need of the hour to develop cost effective and efficient remediation techniques for clean-up of soil and aquifers. The objective of this research is to study a methodology of using non-Newtonian fluids for effective remediation of adsorbent contaminants in porous media under non-isothermal flow regimes. The research comprises of three components. Since, non-Newtonian fluid rheology has not been well studied in cold temperatures, the first component of the objective is to expose a non-Newtonian fluid (Guar gum solution) to different temperatures ranging from 30 °C through -5 °C to understand the change in viscosity, shear strength and contact angle of the fluid. Study of the flow characteristic of non-Newtonian fluids in complex porous media has been limited. Hence, the second component of this study will focus on a comparison of flow characteristics of a Newtonian fluid, non-Newtonian fluid and a combination of both fluids in a glass-tube-bundle setup that will act as a synthetic porous media. The study of flow characteristics will also be done for different thermal regimes ranging from -5 °C to 30 °C. The third component of the research will be to compare the effectiveness Guar gum to remediate a surrogate adsorbed contaminant at a certain temperature from the synthetic porous media. Guar gum is biodegradable and hence it is benign to the environment. Through these experiments, the mobility and behavior of Guar gum under varying temperature ranges will be characterized and its effectiveness in removing contaminants from soils will be understood. The impact of temperature change on the fluid and flow stability in the porous medium will be examined in this research. Guar gum is good suspension

  11. A cultural side effect: learning to read interferes with identity processing of familiar objects

    PubMed Central

    Kolinsky, Régine; Fernandes, Tânia

    2014-01-01

    Based on the neuronal recycling hypothesis (Dehaene and Cohen, 2007), we examined whether reading acquisition has a cost for the recognition of non-linguistic visual materials. More specifically, we checked whether the ability to discriminate between mirror images, which develops through literacy acquisition, interferes with object identity judgments, and whether interference strength varies as a function of the nature of the non-linguistic material. To these aims we presented illiterate, late literate (who learned to read at adult age), and early literate adults with an orientation-independent, identity-based same-different comparison task in which they had to respond “same” to both physically identical and mirrored or plane-rotated images of pictures of familiar objects (Experiment 1) or of geometric shapes (Experiment 2). Interference from irrelevant orientation variations was stronger with plane rotations than with mirror images, and stronger with geometric shapes than with objects. Illiterates were the only participants almost immune to mirror variations, but only for familiar objects. Thus, the process of unlearning mirror-image generalization, necessary to acquire literacy in the Latin alphabet, has a cost for a basic function of the visual ventral object recognition stream, i.e., identification of familiar objects. This demonstrates that neural recycling is not just an adaptation to multi-use but a process of at least partial exaptation. PMID:25400605

  12. Application of the base catalyzed decomposition process to treatment of PCB-contaminated insulation and other materials associated with US Navy vessels. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, A.J.; Zacher, A.H.; Gano, S.R.

    1996-09-01

    The BCD process was applied to dechlorination of two types of PCB-contaminated materials generated from Navy vessel decommissioning activities at Puget Sound Naval Shipyard: insulation of wool felt impregnated with PCB, and PCB-containing paint chips/debris from removal of paint from metal surfaces. The BCD process is a two-stage, low-temperature chemical dehalogenation process. In Stage 1, the materials are mixed with sodium bicarbonate and heated to 350 C. The volatilized halogenated contaminants (eg, PCBs, dioxins, furans), which are collected in a small volume of particulates and granular activated carbon, are decomposed by the liquid-phase reaction (Stage 2) in a stirred-tank reactor,more » using a high-boiling-point hydrocarbon oil as the reaction medium, with addition of a hydrogen donor, a base (NaOH), and a catalyst. The tests showed that treating wool felt insulation and paint chip wastes with Stage 2 on a large scale is feasible, but compared with current disposal costs for PCB-contaminated materials, using Stage 2 would not be economical at this time. For paint chips generated from shot/sand blasting, the solid-phase BCD process (Stage 1) should be considered, if paint removal activities are accelerated in the future.« less

  13. Numerical simulation of seasonal heat storage in a contaminated shallow aquifer - Temperature influence on flow, transport and reaction processes

    NASA Astrophysics Data System (ADS)

    Popp, Steffi; Beyer, Christof; Dahmke, Andreas; Bauer, Sebastian

    2015-04-01

    The energy market in Germany currently faces a rapid transition from nuclear power and fossil fuels towards an increased production of energy from renewable resources like wind or solar power. In this context, seasonal heat storage in the shallow subsurface is becoming more and more important, particularly in urban regions with high population densities and thus high energy and heat demand. Besides the effects of increased or decreased groundwater and sediment temperatures on local and large-scale groundwater flow, transport, geochemistry and microbiology, an influence on subsurface contaminations, which may be present in the urban surbsurface, can be expected. Currently, concerns about negative impacts of temperature changes on groundwater quality are the main barrier for the approval of heat storage at or close to contaminated sites. The possible impacts of heat storage on subsurface contamination, however, have not been investigated in detail yet. Therefore, this work investigates the effects of a shallow seasonal heat storage on subsurface groundwater flow, transport and reaction processes in the presence of an organic contamination using numerical scenario simulations. A shallow groundwater aquifer is assumed, which consists of Pleistoscene sandy sediments typical for Northern Germany. The seasonal heat storage in these scenarios is performed through arrays of borehole heat exchangers (BHE), where different setups with 6 and 72 BHE, and temperatures during storage between 2°C and 70°C are analyzed. The developing heat plume in the aquifer interacts with a residual phase of a trichloroethene (TCE) contamination. The plume of dissolved TCE emitted from this source zone is degraded by reductive dechlorination through microbes present in the aquifer, which degrade TCE under anaerobic redox conditions to the degradation products dichloroethene, vinyl chloride and ethene. The temperature dependence of the microbial degradation activity of each degradation step is

  14. CHEMICAL CONTAMINATION AND TOXICITY ASSOCIATED WITH A COASTAL GOLF COURSE COMPLEX

    EPA Science Inventory

    The increasing density of golf courses represents a potential source of contamination to nearby coastal areas, the chemical and biological magnitude of which is almost unknown. The objective of this study was to compare the concentrations of contaminants and toxicities of sedime...

  15. Process for gamma ray induced degradation of polychlorinated biphenyls

    DOEpatents

    Meikrantz, David H.; Mincher, Bruce J.; Arbon, Rodney E.

    1998-01-01

    The invention is a process for the in-situ destruction of polychlorinated biphenyl (PCB) compounds in transformer oils and transformers. These compounds are broken down selectively by irradiation of the object or mixture using spent nuclear fuel or any isotopic source of high energy gamma radiation. For example, the level of applied dose required to decompose 400 ppm of polychlorinated biphenyl in transformer oil to less than 50 ppm is 500 kilogray. Destruction of polychlorinated biphenyls to levels of less than 50 ppm renders the transformer oil or transformer non-PCB contaminated under current regulations. Therefore, this process can be used to treat PCB contaminated oil and equipment to minimize or eliminate the generation of PCB hazardous waste.

  16. Treatment Processes for Removal of Wastewater Contaminants (WERF Report INFR8SG09)

    EPA Science Inventory

    This study investigated the nature of colloids associated with wastewater effluents. It also evaluated the association of emerging contaminants with these wastewater colloids. Two distinct emerging contaminants were investigated to gain general insight into the potential importan...

  17. Groundwater contaminants in the deep benthic zone of urban streams in Canada (Invited)

    NASA Astrophysics Data System (ADS)

    Roy, J. W.; Bickerton, G.

    2010-12-01

    There is little information available on the potential threat that groundwater containing land-based contaminants poses to aquatic ecosystems in urban environments. In this study, a rapid screening approach was applied at the stream reach-scale for eight urban streams (reaches from 100 to < 1000 m). The objective was to determine what types of groundwater contaminants could be detected in the deeper benthic zone of these streams, if any, to start to address questions of whether such contaminants are a concern and which types are the most problematic. The benthic community may be especially at risk since it may experience higher contaminant concentrations than the stream itself due to fewer losses from sorption, degradation and volatilization processes. For each stream, groundwater samples from below the stream bed (typically 25-75 cm) were collected using a drive-point mini-profiler at intervals of 10-15 m along the stream and were subsequently analysed for general chemistry and a wide range of common and emerging urban contaminants. For a few test streams with known contamination, the area of contamination was identified with this technique. In addition, previously unknown contaminants or areas of contamination were identified at all nine streams. Identified contaminants included benzene and other petroleum hydrocarbons, fuel oxygenates (e.g. MTBE), perchlorate, pesticides, artificial sweeteners, and various chlorinated solvent compounds. In addition, elevated levels of nitrate, phosphate, some heavy metals, including cadmium and arsenic, and elevated chloride (likely indicating road salt) were detected. Most streams had many different types of contaminants, often overlapping over small stretches, and together often covering substantial portions of the monitored reach. The findings provide support for this screening approach for delineating areas of potential ecological concern and identifying possible sources of groundwater contamination, for urban settings. They

  18. Object Processing in Visual Perception and Action in Children and Adults

    ERIC Educational Resources Information Center

    Schum, Nina; Franz, Volker H.; Jovanovic, Bianca; Schwarzer, Gudrun

    2012-01-01

    We investigated whether 6- and 7-year-olds and 9- and 10-year-olds, as well as adults, process object dimensions independent of or in interaction with one another in a perception and action task by adapting Ganel and Goodale's method for testing adults ("Nature", 2003, Vol. 426, pp. 664-667). In addition, we aimed to confirm Ganel and Goodale's…

  19. Object Management Group object transaction service based on an X/Open and International Organization for Standardization open systems interconnection transaction processing kernel

    NASA Astrophysics Data System (ADS)

    Liang, J.; Sédillot, S.; Traverson, B.

    1997-09-01

    This paper addresses federation of a transactional object standard - Object Management Group (OMG) object transaction service (OTS) - with the X/Open distributed transaction processing (DTP) model and International Organization for Standardization (ISO) open systems interconnection (OSI) transaction processing (TP) communication protocol. The two-phase commit propagation rules within a distributed transaction tree are similar in the X/Open, ISO and OMG models. Building an OTS on an OSI TP protocol machine is possible because the two specifications are somewhat complementary. OTS defines a set of external interfaces without specific internal protocol machine, while OSI TP specifies an internal protocol machine without any application programming interface. Given these observations, and having already implemented an X/Open two-phase commit transaction toolkit based on an OSI TP protocol machine, we analyse the feasibility of using this implementation as a transaction service provider for OMG interfaces. Based on the favourable result of this feasibility study, we are implementing an OTS compliant system, which, by initiating the extensibility and openness strengths of OSI TP, is able to provide interoperability between X/Open DTP and OMG OTS models.

  20. Simultaneous application of chemical oxidation and extraction processes is effective at remediating soil Co-contaminated with petroleum and heavy metals.

    PubMed

    Yoo, Jong-Chan; Lee, Chadol; Lee, Jeung-Sun; Baek, Kitae

    2017-01-15

    Chemical extraction and oxidation processes to clean up heavy metals and hydrocarbon from soil have a higher remediation efficiency and take less time than other remediation processes. In batch extraction/oxidation process, 3% hydrogen peroxide (H 2 O 2 ) and 0.1 M ethylenediaminetetraacetic acid (EDTA) could remove approximately 70% of the petroleum and 60% of the Cu and Pb in the soil, respectively. In particular, petroleum was effectively oxidized by H 2 O 2 without addition of any catalysts through dissolution of Fe oxides in natural soils. Furthermore, heavy metals bound to Fe-Mn oxyhydroxides could be extracted by metal-EDTA as well as Fe-EDTA complexation due to the high affinity of EDTA for metals. However, the strong binding of Fe-EDTA inhibited the oxidation of petroleum in the extraction-oxidation sequential process because Fe was removed during the extraction process with EDTA. The oxidation-extraction sequential process did not significantly enhance the extraction of heavy metals from soil, because a small portion of heavy metals remained bound to organic matter. Overall, simultaneous application of oxidation and extraction processes resulted in highly efficient removal of both contaminants; this approach can be used to remove co-contaminants from soil in a short amount of time at a reasonable cost. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Contributions of Low and High Spatial Frequency Processing to Impaired Object Recognition Circuitry in Schizophrenia

    PubMed Central

    Calderone, Daniel J.; Hoptman, Matthew J.; Martínez, Antígona; Nair-Collins, Sangeeta; Mauro, Cristina J.; Bar, Moshe; Javitt, Daniel C.; Butler, Pamela D.

    2013-01-01

    Patients with schizophrenia exhibit cognitive and sensory impairment, and object recognition deficits have been linked to sensory deficits. The “frame and fill” model of object recognition posits that low spatial frequency (LSF) information rapidly reaches the prefrontal cortex (PFC) and creates a general shape of an object that feeds back to the ventral temporal cortex to assist object recognition. Visual dysfunction findings in schizophrenia suggest a preferential loss of LSF information. This study used functional magnetic resonance imaging (fMRI) and resting state functional connectivity (RSFC) to investigate the contribution of visual deficits to impaired object “framing” circuitry in schizophrenia. Participants were shown object stimuli that were intact or contained only LSF or high spatial frequency (HSF) information. For controls, fMRI revealed preferential activation to LSF information in precuneus, superior temporal, and medial and dorsolateral PFC areas, whereas patients showed a preference for HSF information or no preference. RSFC revealed a lack of connectivity between early visual areas and PFC for patients. These results demonstrate impaired processing of LSF information during object recognition in schizophrenia, with patients instead displaying increased processing of HSF information. This is consistent with findings of a preference for local over global visual information in schizophrenia. PMID:22735157

  2. REMOVAL OF ORGANIC CCL CONTAMINANTS FROM DRINKING WATERS BY MEMBRANE AND GAC PROCESSES

    EPA Science Inventory

    Bench-scale treatment data for membrane and granular activated carbon technologies are presented for the organic contaminants on the U.S. Environmental Protection Agency's Contaminant Candidate List (CCL). For granular activated carbon (GAC), isotherm results are presented and q...

  3. Three-dimensional data interpolation for environmental purpose: lead in contaminated soils in southern Brazil.

    PubMed

    Piedade, Tales Campos; Melo, Vander Freitas; Souza, Luiz Cláudio Paula; Dieckow, Jeferson

    2014-09-01

    Monitoring of heavy metal contamination plume in soils can be helpful in establishing strategies to minimize its hazardous impacts to the environment. The objective of this study was to apply a new approach of visualization, based on tridimensional (3D) images, of pseudo-total (extracted with concentrated acids) and exchangeable (extracted with 0.5 mol L(-1) Ca(NO3)2) lead (Pb) concentrations in soils of a mining and metallurgy area to determine the spatial distribution of this pollutant and to estimate the most contaminated soil volumes. Tridimensional images were obtained after interpolation of Pb concentrations of 171 soil samples (57 points × 3 depths) with regularized spline with tension in a 3D function version. The tridimensional visualization showed great potential of use in environmental studies and allowed to determine the spatial 3D distribution of Pb contamination plume in the area and to establish relationships with soil characteristics, landscape, and pollution sources. The most contaminated soil volumes (10,001 to 52,000 mg Pb kg(-1)) occurred near the metallurgy factory. The main contamination sources were attributed to atmospheric emissions of particulate Pb through chimneys. The large soil volume estimated to be removed to industrial landfills or co-processing evidenced the difficulties related to this practice as a remediation strategy.

  4. Uncertainty-Based Multi-Objective Optimization of Groundwater Remediation Design

    NASA Astrophysics Data System (ADS)

    Singh, A.; Minsker, B.

    2003-12-01

    Management of groundwater contamination is a cost-intensive undertaking filled with conflicting objectives and substantial uncertainty. A critical source of this uncertainty in groundwater remediation design problems comes from the hydraulic conductivity values for the aquifer, upon which the prediction of flow and transport of contaminants are dependent. For a remediation solution to be reliable in practice it is important that it is robust over the potential error in the model predictions. This work focuses on incorporating such uncertainty within a multi-objective optimization framework, to get reliable as well as Pareto optimal solutions. Previous research has shown that small amounts of sampling within a single-objective genetic algorithm can produce highly reliable solutions. However with multiple objectives the noise can interfere with the basic operations of a multi-objective solver, such as determining non-domination of individuals, diversity preservation, and elitism. This work proposes several approaches to improve the performance of noisy multi-objective solvers. These include a simple averaging approach, taking samples across the population (which we call extended averaging), and a stochastic optimization approach. All the approaches are tested on standard multi-objective benchmark problems and a hypothetical groundwater remediation case-study; the best-performing approach is then tested on a field-scale case at Umatilla Army Depot.

  5. High hydrostatic pressure processing of murine norovirus 1-contaminated oysters inhibits oral infection in STAT-1 -/- deficient female mice

    USDA-ARS?s Scientific Manuscript database

    We have previously demonstrated that high pressure processing (HPP) is effective in preventing in vitro replication of murine norovirus strain 1 (MNV-1), a human norovirus surrogate, in a monocyte cell line following extraction from MNV-1-contaminated oysters. In the present study, the efficacy of ...

  6. Performance of food safety management systems in poultry meat preparation processing plants in relation to Campylobacter spp. contamination.

    PubMed

    Sampers, Imca; Jacxsens, Liesbeth; Luning, Pieternel A; Marcelis, Willem J; Dumoulin, Ann; Uyttendaele, Mieke

    2010-08-01

    A diagnostic instrument comprising a combined assessment of core control and assurance activities and a microbial assessment instrument were used to measure the performance of current food safety management systems (FSMSs) of two poultry meat preparation companies. The high risk status of the company's contextual factors, i.e., starting from raw materials (poultry carcasses) with possible high numbers and prevalence of pathogens such as Campylobacter spp., requires advanced core control and assurance activities in the FSMS to guarantee food safety. The level of the core FSMS activities differed between the companies, and this difference was reflected in overall microbial quality (mesophilic aerobic count), presence of hygiene indicators (Enterobacteriaceae, Staphylococcus aureus, and Escherichia coli), and contamination with pathogens such as Salmonella, Listeria monocytogenes, and Campylobacter spp. The food safety output expressed as a microbial safety profile was related to the variability in the prevalence and contamination levels of Campylobacter spp. in poultry meat preparations found in a Belgian nationwide study. Although a poultry meat processing company could have an advanced FSMS in place and a good microbial profile (i.e., lower prevalence of pathogens, lower microbial numbers, and less variability in microbial contamination), these positive factors might not guarantee pathogen-free products. Contamination could be attributed to the inability to apply effective interventions to reduce or eliminate pathogens in the production chain of (raw) poultry meat preparations.

  7. Optimization of multi-objective integrated process planning and scheduling problem using a priority based optimization algorithm

    NASA Astrophysics Data System (ADS)

    Ausaf, Muhammad Farhan; Gao, Liang; Li, Xinyu

    2015-12-01

    For increasing the overall performance of modern manufacturing systems, effective integration of process planning and scheduling functions has been an important area of consideration among researchers. Owing to the complexity of handling process planning and scheduling simultaneously, most of the research work has been limited to solving the integrated process planning and scheduling (IPPS) problem for a single objective function. As there are many conflicting objectives when dealing with process planning and scheduling, real world problems cannot be fully captured considering only a single objective for optimization. Therefore considering multi-objective IPPS (MOIPPS) problem is inevitable. Unfortunately, only a handful of research papers are available on solving MOIPPS problem. In this paper, an optimization algorithm for solving MOIPPS problem is presented. The proposed algorithm uses a set of dispatching rules coupled with priority assignment to optimize the IPPS problem for various objectives like makespan, total machine load, total tardiness, etc. A fixed sized external archive coupled with a crowding distance mechanism is used to store and maintain the non-dominated solutions. To compare the results with other algorithms, a C-matric based method has been used. Instances from four recent papers have been solved to demonstrate the effectiveness of the proposed algorithm. The experimental results show that the proposed method is an efficient approach for solving the MOIPPS problem.

  8. Surfactant/Supercritical Fluid Cleaning of Contaminated Substrates

    NASA Technical Reports Server (NTRS)

    White, Gary L.

    1997-01-01

    CFC's and halogenated hydrocarbon solvents have been the solvents of choice to degrease and otherwise clean precision metal parts to allow proper function. Recent regulations have, however, rendered most of these solvents unacceptable for these purposes. New processes which are being used or which have been proposed to replace these solvents usually either fail to remove water soluble contaminants or produce significant aqueous wastes which must then be disposed of. In this work, a new method for cleaning surfaces will be investigated. Solubility of typical contaminants such as lubricating greases and phosphatizing bath residues will be studied in several surfactant/supercritical fluid solutions. The effect of temperature, pressure, and the composition of the cleaning mixture on the solubility of oily, polar, and ionic contaminants will be investigated. A reverse micellar solution in a supercritical light hydrocarbon solvent will be used to clean samples of industrial wastes. A reverse micellar solution is one where water is dissolved into a non-polar solvent with the aid of a surfactant. The solution will be capable of dissolving both water-soluble contaminants and oil soluble contaminants. Once the contaminants have been dissolved into the solution they will be separated from the light hydrocarbon and precipitated by a relatively small pressure drop and the supercritical solvent will be available for recycle for reuse. The process will be compared to the efficacy of supercritical CO2 cleaning by attempting to clean the same types of substrates and machining wastes with the same contaminants using supercritical CO2. It is anticipated that the supercritical CO2 process will not be capable of removing ionic residues.

  9. Food Safety Legislation Regarding Of Aflatoxins Contamination

    NASA Astrophysics Data System (ADS)

    Ketney, Otto

    2015-09-01

    The main objective of the European Union (EU) is to reduce certain contaminants in foodstuffs to acceptable levels. The occurrence of aflatoxin B1 in food was considered to be one of the most important issues of global food security to protect the health of humans and animals, over 100 nations have established maximum tolerable levels for aflatoxin in food. Although EU legislation covers many aspects of food safety was not legally establish an integrated framework that could effectively combat and cover all sectors of the food chain. Monitoring and reporting levels of aflatoxins after controls are essential actions that assist to identify potential risks to human health. The review process for aflatoxin regulations is a complex activity involving many factors and stakeholders.

  10. Risk-Based Contaminated Land Investigation and Assessment

    NASA Astrophysics Data System (ADS)

    Davis, Donald R.

    With increasing frequency, problems of environmental contamination are being analyzed from a risk perspective. Risk-Based Contaminated Land Investigation and Assessment is written for those who wish to present the results of their examination of contaminated land in terms of risk.The opening chapters introduce the concepts of risk analysis for contaminated land. Risk management and the risk assessment process are based on a source-pathway-target framework. Readers are warned against an “over-reliance on the identification of contaminants rather than the potential pathways by which targets may be exposed to these hazards.” In the risk management framework presented in this book, risk evaluation and resultant decision making are seen as part of both the risk assessment and risk reduction process. The sharp separation of risk assessment from risk management as seen in the National Academy of Sciences' (NAS) risk assessment paradigm is not advocatedsemi; perhaps this is because the NAS' concern was regulatory decision while the book's concern is the assessment of a specific site.

  11. Contamination monitoring approaches for EUV space optics

    NASA Technical Reports Server (NTRS)

    Ray, David C.; Malina, Roger F.; Welsh, Barry J.; Battel, Steven J.

    1989-01-01

    Data from contaminant-induced UV optics degradation studies and particulate models are used here to develop end-of-service-life instrument contamination requirements which are very stringent but achievable. The budget is divided into allocations for each phase of hardware processing. Optical and nonoptical hardware are monitored for particulate and molecular contamination during initial cleaning and baking, assembly, test, and calibration phases. The measured contamination levels are compared to the requirements developed for each phase to provide confidence that the required end-of-life levels will be met.

  12. Catalyst Substrates Remove Contaminants, Produce Fuel

    NASA Technical Reports Server (NTRS)

    2012-01-01

    A spacecraft is the ultimate tight building. We don t want any leaks, and there is very little fresh air coming in, says Jay Perry, an aerospace engineer at Marshall Space Flight Center. As a result, there is a huge potential for a buildup of contaminants from a host of sources. Inside a spacecraft, contaminants can be introduced from the materials that make spacecraft components, electronics boxes, or activities by the crew such as food preparation or cleaning. Humans also generate contaminants by breathing and through the body s natural metabolic processes. As part of the sophisticated Environmental Control and Life Support System on the International Space Station (ISS), a trace contaminant control system removes carbon dioxide and other impurities from the cabin atmosphere. To maintain healthy levels, the system uses adsorbent media to filter chemical contaminant molecules and a high-temperature catalytic oxidizer to change the chemical structure of the contaminants to something more benign, usually carbon dioxide and water. In the 1990s, while researching air quality control technology for extended spaceflight travel, Perry and others at Marshall were looking for a regenerable process for the continuous removal of carbon dioxide and trace chemical contaminants on long-duration manned space flights. At the time, the existing technology used on U.S. spacecraft could only be used once, which meant that a spacecraft had to carry additional spare parts for use in case the first one was depleted, or the spacecraft would have to return to Earth to exchange the components.

  13. Bacteriological evaluation of a new air turbine handpiece for preventing cross-contamination in dental procedures.

    PubMed

    Masuda, K; Ohta, M; Ohsuka, S; Matsuyama, M; Ashoori, M; Usami, T; Ito, M; Ueda, M; Kaneda, T

    1994-03-01

    An autoclavable air turbine handpiece, Air Flushing Clean System (AFCS) (Osada Electric Co., Ltd., Tokyo, Japan) was developed for use in dentistry with the objective of reducing cross-contamination. Its potential for bacterial contamination was investigated in vitro using two bacterial strains (Streptococcus mutants ATCC 25175 and Staphylococcus aureus FDA 209 P). In theory, this device should prevent cross-contamination of the internal water and air lines of the handpiece, by maintaining an internal positive pressure even after the turbine is stopped. In the present study, this AFCS device was found to reduce the bacterial contamination within the air turbine handpiece more effectively than the conventional handpiece used according to accepted protocol. The reduction of such contamination by the AFCS is in keeping with the recent objective of the American Dental Association to reduce cross-contamination during dental procedures.

  14. Geophysical monitoring of organic contaminants in sediments

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Jennings, J.

    2016-12-01

    Soil and groundwater contamination pose threats to the health of human and the environment. Successful contaminant remediation requires effective in situ monitoring of physical, chemical, and biological processes in the subsurface. Minimally invasive geophysical methods have shown promise in characterizing organic contaminants in soil and groundwater and have been applied to monitor remediation processes. This study examines the sensitivity of low field proton nuclear magnetic resonance (NMR) and complex conductivity to the presence of organic contaminants in sediments. We aim to improve understanding of relationships between NMR and complex conductivity observables and hydrological properties of the sediments, as well as the amount and state of contaminants in porous media. We used toluene as a representative organic contaminant, and pure silica sands and montmorillonite clay as synthetic sediments. Sand-clay mixtures with various sand/clay ratios were prepared and saturated with different concentration of toluene. Relationships between the compositions of porous media, hydrocarbon concentration, and hydrological properties of sediments and geophysical response were investigated. The results from NMR relaxation time (T2) measurements reveal the dominant control of clay content on T2 relaxation, establish minimum toluene detectability, and demonstrate the effect of contaminant concentration on NMR signals. The diffusion-relaxation (D-T2) correlation measurement show toluene can be resolved from toluene-water mixture in sand-clay mixture. The results from ongoing complex conductivity measurements will also be presented and discussed.

  15. Contamination Effects on EUV Optics

    NASA Technical Reports Server (NTRS)

    Tveekrem, J.

    1999-01-01

    During ground-based assembly and upon exposure to the space environment, optical surfaces accumulate both particles and molecular condensibles, inevitably resulting in degradation of optical instrument performance. Currently, this performance degradation (and the resulting end-of-life instrument performance) cannot be predicted with sufficient accuracy using existing software tools. Optical design codes exist to calculate instrument performance, but these codes generally assume uncontaminated optical surfaces. Contamination models exist which predict approximate end-of-life contamination levels, but the optical effects of these contamination levels can not be quantified without detailed information about the optical constants and scattering properties of the contaminant. The problem is particularly pronounced in the extreme ultraviolet (EUV, 300-1,200 A) and far (FUV, 1,200-2,000 A) regimes due to a lack of data and a lack of knowledge of the detailed physical and chemical processes involved. Yet it is in precisely these wavelength regimes that accurate predictions are most important, because EUV/FUV instruments are extremely sensitive to contamination.

  16. Risk Mitigation in Preventing Adventitious Agent Contamination of Mammalian Cell Cultures.

    PubMed

    Shiratori, Masaru; Kiss, Robert

    2017-11-14

    Industrial-scale mammalian cell culture processes have been contaminated by viruses during the culturing phase. Although the historical frequency of such events has been quite low, the impact of contamination can be significant for the manufacturing company and for the supply of the product to patients. This chapter discusses sources of adventitious agent contamination risk in a cell culture process, provides a semiquantitative assessment of such risks, and describes potential process barriers that can be used to reduce contamination risk. High-temperature, short-time (HTST) heat treatment is recommended as the process barrier of choice, when compatible with the process. A case study assessing the compatibility of HTST heat treatment with a cell culture medium is presented, and lessons learned are shared from our experiences over many years of developing and implementing virus barriers in mammalian cell culture processes. Graphical Abstract.

  17. Operation room tool handling and miscommunication scenarios: an object-process methodology conceptual model.

    PubMed

    Wachs, Juan P; Frenkel, Boaz; Dori, Dov

    2014-11-01

    Errors in the delivery of medical care are the principal cause of inpatient mortality and morbidity, accounting for around 98,000 deaths in the United States of America (USA) annually. Ineffective team communication, especially in the operation room (OR), is a major root of these errors. This miscommunication can be reduced by analyzing and constructing a conceptual model of communication and miscommunication in the OR. We introduce the principles underlying Object-Process Methodology (OPM)-based modeling of the intricate interactions between the surgeon and the surgical technician while handling surgical instruments in the OR. This model is a software- and hardware-independent description of the agents engaged in communication events, their physical activities, and their interactions. The model enables assessing whether the task-related objectives of the surgical procedure were achieved and completed successfully and what errors can occur during the communication. The facts used to construct the model were gathered from observations of various types of operations miscommunications in the operating room and its outcomes. The model takes advantage of the compact ontology of OPM, which is comprised of stateful objects - things that exist physically or informatically, and processes - things that transform objects by creating them, consuming them or changing their state. The modeled communication modalities are verbal and non-verbal, and errors are modeled as processes that deviate from the "sunny day" scenario. Using OPM refinement mechanism of in-zooming, key processes are drilled into and elaborated, along with the objects that are required as agents or instruments, or objects that these processes transform. The model was developed through an iterative process of observation, modeling, group discussions, and simplification. The model faithfully represents the processes related to tool handling that take place in an OR during an operation. The specification is at

  18. Activation of response force by self-splitting objects: where are the limits of feedforward Gestalt processing?

    PubMed

    Schmidt, Filipp; Weber, Andreas; Schmidt, Thomas

    2014-08-21

    Most objects can be recognized easily even when they are partly occluded. This also holds when several overlapping objects share the same surface features (self-splitting objects) which is an illustration of the grouping principle of Good Gestalt. We employed outline and filled contour stimuli in a primed flanker task to test whether the processing of self-splitting objects is in accordance with a simple feedforward model. We obtained priming effects in response time and response force for both types of stimuli, even when increasing the number of occluders up to three. The results for outline contours were in full accordance with a feedforward account. This was not the case for the results for filled contours (i.e., for self-splitting objects), especially under conditions of strong occlusion. We conclude that the implementation of the Good Gestalt principle is fast but still based on recurrent processing. © 2014 ARVO.

  19. Sensors for process control Focus Team report

    NASA Astrophysics Data System (ADS)

    At the Semiconductor Technology Workshop, held in November 1992, the Semiconductor Industry Association (SIA) convened 179 semiconductor technology experts to assess the 15-year outlook for the semiconductor manufacturing industry. The output of the Workshop, a document entitled 'Semiconductor Technology: Workshop Working Group Reports,' contained an overall roadmap for the technology characteristics envisioned in integrated circuits (IC's) for the period 1992-2007. In addition, the document contained individual roadmaps for numerous key areas in IC manufacturing, such as film deposition, thermal processing, manufacturing systems, exposure technology, etc. The SIA Report did not contain a separate roadmap for contamination free manufacturing (CFM). A key component of CFM for the next 15 years is the use of sensors for (1) defect reduction, (2) improved product quality, (3) improved yield, (4) improved tool utilization through contamination reduction, and (5) real time process control in semiconductor fabrication. The objective of this Focus Team is to generate a Sensors for Process Control Roadmap. Implicit in this objective is the identification of gaps in current sensor technology so that research and development activity in the sensor industry can be stimulated to develop sensor systems capable of meeting the projected roadmap needs. Sensor performance features of interest include detection limit, specificity, sensitivity, ease of installation and maintenance, range, response time, accuracy, precision, ease and frequency of calibration, degree of automation, and adaptability to in-line process control applications.

  20. SEDIMENT CHEMICAL CONTAMINATION AND TOXICITY ASSOCIATED WITH A COASTAL GOLF COURSE COMPLEX.

    EPA Science Inventory

    The increasing density of golf courses represents a potential source of sediment contamination to nearby coastal areas, the chemical and biological magnitude of which is almost unknown. The objective of this study was to determine the concentrations of contaminants and toxicities...

  1. In-Situ Anaerobic Biosurfactant Production Process For Remediation Of DNAPL Contamination In Subsurface Aquifers

    NASA Astrophysics Data System (ADS)

    Albino, J. D.; Nambi, I. M.

    2009-12-01

    Microbial Enhanced Oil Recovery (MEOR) and remediation of aquifers contaminated with hydrophobic contaminants require insitu production of biosurfactants for mobilization of entrapped hydrophobic liquids. Most of the biosurfactant producing microorganisms produce them under aerobic condition and hence surfactant production is limited in subsurface condition due to lack of oxygen. Currently bioremediation involves expensive air sparging or excavation followed by exsitu biodegradation. Use of microorganisms which can produce biosurfactants under anaerobic conditions can cost effectively expedite the process of insitu bioremediation or mobilization. In this work, the feasibility of anaerobic biosurfactant production in three mixed anaerobic cultures prepared from groundwater and soil contaminated with chlorinated compounds and municipal sewage sludge was investigated. The cultures were previously enriched under complete anaerobic conditions in the presence of Tetrachloroethylene (PCE) for more than a year before they were studied for biosurfactant production. Biosurfactant production under anaerobic conditions was simulated using two methods: i) induction of starvation in the microbial cultures and ii) addition of complex fermentable substrates. Positive result for biosurfactant production was not observed when the cultures were induced with starvation by adding PCE as blobs which served as the only terminal electron acceptor. However, slight reduction in interfacial tension was noticed which was caused by the adherence of microbes to water-PCE interface. Biosurfactant production was observed in all the three cultures when they were fed with complex fermentable substrates and surface tension of the liquid medium was lowered below 35 mN/m. Among the fermentable substrates tested, vegetable oil yielded highest amount of biosurfactant in all the cultures. Complete biodegradation of PCE to ethylene at a faster rate was also observed when vegetable oil was amended to the

  2. Bacterial Contamination of Hands Increases Risk of Cross-Contamination among Low-Income Puerto Rican Meal Preparers

    ERIC Educational Resources Information Center

    Dharod, Jigna Morarji; Paciello, Stefania; Bermudez-Millan, Angela; Venkitanarayanan, Kumar; Damio, Grace; Perez-Escamilla, Rafael

    2009-01-01

    Objective: To examine the association of microbial contamination of the meal preparer's hands with microbial status of food and kitchen/utensil surfaces during home preparation of a "Chicken and Salad" meal. Design and Setting: Observational home food safety assessment. Before starting meal preparation, participants' hands were tested to…

  3. Bioremediation of petroleum-contaminated soil: A Review

    NASA Astrophysics Data System (ADS)

    Yuniati, M. D.

    2018-02-01

    Petroleum is the major source of energy for various industries and daily life. Releasing petroleum into the environment whether accidentally or due to human activities is a main cause of soil pollution. Soil contaminated with petroleum has a serious hazard to human health and causes environmental problems as well. Petroleum pollutants, mainly hydrocarbon, are classified as priority pollutants. The application of microorganisms or microbial processes to remove or degrade contaminants from soil is called bioremediation. This microbiological decontamination is claimed to be an efficient, economic and versatile alternative to physicochemical treatment. This article presents an overview about bioremediation of petroleum-contaminated soil. It also includes an explanation about the types of bioremediation technologies as well as the processes.

  4. Surface interactions relevant to space station contamination problems

    NASA Technical Reports Server (NTRS)

    Dickinson, J. T.

    1988-01-01

    The physical and chemical processes at solid surfaces which can contribute to Space Station contamination problems are reviewed. Suggested areas for experimental studies to provide data to improve contamination modeling efforts are presented.

  5. Contamination of meat with Campylobacter jejuni in Saitama, Japan.

    PubMed

    Ono, K; Yamamoto, K

    1999-03-15

    To determine the source of food contamination with Campylobacter jejuni, we investigated retail meat, a chicken processing plant and a broiler farm. C. jejuni was found in domestic retailed poultry (45.8%) and imported poultry (3.7%), but not in beef or pork. In the poultry processing plant, there is significant contamination with C. jejuni in chicken carcasses, equipment and workers' hands. This contamination increases during the defeathering and evisceration processes. RAPD analysis shows that contamination with C. jejuni is of intestinal origin. In a broiler farm, C. jejuni was first isolated from a faecal sample of broiler chicken after the 20th day of age. Two weeks later, all birds in this farm became C. jejuni positive. RAPD analysis indicated that C. jejuni spread rapidly from one broiler flock to the other flocks on the farm.

  6. The distribution of environmental contaminants and pharmaceuticals among skim milk, milk fat, curd, whey, and milk protein fractions through milk processing

    USDA-ARS?s Scientific Manuscript database

    Twenty-seven environmental contaminants and pharmaceuticals encompassing a wide range of physicochemical properties were utilized to determine the effects of milk processing on xenobiotic distribution among milk fractions. Target compounds included radiolabeled antibiotics [ciprofloxacin (CIPR), cl...

  7. Laser removal of loose uranium compound contamination from metal surfaces

    NASA Astrophysics Data System (ADS)

    Roberts, D. E.; Modise, T. S.

    2007-04-01

    Pulsed laser removal of surface contamination of uranyl nitrate and uranium dioxide from stainless steel has been studied. Most of the loosely bound contamination has been removed at fluence levels below 0.5 J cm -2, leaving about 5% fixed contamination for uranyl nitrate and 15% for uranium dioxide. Both alpha and beta activities are then sufficiently low that contaminated objects can be taken out of a restricted radiation area for re-use. The ratio of beta to alpha activity is found to be a function of particle size and changes during laser removal. In a separate experiment using technetium-99m, the collection of removed radioactivity in the filter was studied and an inventory made of removed and collected contamination.

  8. Woodchip-sulfur based heterotrophic and autotrophic denitrification (WSHAD) process for nitrate contaminated water remediation.

    PubMed

    Li, Rui; Feng, Chuanping; Hu, Weiwu; Xi, Beidou; Chen, Nan; Zhao, Baowei; Liu, Ying; Hao, Chunbo; Pu, Jiaoyang

    2016-02-01

    Nitrate contaminated water can be effectively treated by simultaneous heterotrophic and autotrophic denitrification (HAD). In the present study, woodchips and elemental sulfur were used as co-electron donors for HAD. It was found that ammonium salts could enhance the denitrifying activity of the Thiobacillus bacteria, which utilize the ammonium that is produced by the dissimilatory nitrate reduction to ammonium (DNRA) in the woodchip-sulfur based heterotrophic and autotrophic denitrification (WSHAD) process. The denitrification performance of the WSHAD process (reaction constants range from 0.05485 h(-1) to 0.06637 h(-1)) is better than that of sulfur-based autotrophic denitrification (reaction constants range from 0.01029 h(-1) to 0.01379 h(-1)), and the optimized ratio of woodchips to sulfur is 1:1 (w/w). No sulfate accumulation is observed in the WSHAD process and the alkalinity generated in the heterotrophic denitrification can compensate for alkalinity consumption by the sulfur-based autotrophic denitrification. The symbiotic relationship between the autotrophic and the heterotrophic denitrification processes play a vital role in the mixotrophic environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Contamination control engineering design guidelines for the aerospace community

    NASA Technical Reports Server (NTRS)

    Tribble, A. C. (Principal Investigator); Boyadjian, B.; Davis, J.; Haffner, J.; McCullough, E.

    1996-01-01

    Thermal control surfaces, solar arrays, and optical devices may be adversely affected by a small quantity of molecular and/or particulate contamination. What is rarely discussed is how one: (1) quantifies the level of contamination that must be maintained in order for the system to function properly, and (2) enforces contamination control to ensure compliance with requirements. This document is designed to address these specific issues and is intended to serve as a handbook on contamination control for the reader, illustrating process and methodology while providing direction to more detailed references when needed. The effects of molecular contamination on reflecting and transmitting surfaces are examined and quantified in accordance with MIL STD 1246C. The generation, transportation, and deposition of molecular contamination is reviewed and specific examples are worked to illustrate the process a design engineer can use to estimate end of life cleanliness levels required by solar arrays, thermal control surfaces, and optical surfaces. A similar process is used to describe the effect of particulate contamination as related to percent area coverage (PAC) and bi-directional reflectance distribution function (BRDF). Relationships between PAC and surface cleanliness, which include the effects of submicron sized particles, are developed and BRDF is related to specific sensor design parameters such as Point Source Transmittance (PST). The pros and cons of various methods of preventing, monitoring, and cleaning surfaces are examined and discussed.

  10. Reentrant processing mediates object substitution masking: comment on Põder (2013).

    PubMed

    Di Lollo, Vincent

    2014-01-01

    Object-substitution masking (OSM) occurs when a target stimulus and a surrounding mask are displayed briefly together, and the display then continues with the mask alone. Target identification is accurate when the stimuli co-terminate but is progressively impaired as the duration of the trailing mask is increased. In reentrant accounts, OSM is said to arise from iterative exchanges between brain regions connected by two-way pathways. In an alternative account, OSM is explained on the basis of exclusively feed-forward processes, without recourse to reentry. Here I show that the feed-forward account runs afoul of the extant phenomenological, behavioral, brain-imaging, and electrophysiological evidence. Further, the feed-forward assumption that masking occurs when attention finds a degraded target is shown to be entirely ad hoc. In contrast, the evidence is uniformly consistent with a reentrant-processing account of OSM.

  11. [Effects of soil properties on the stabilization process of cadmium in Cd alone and Cd-Pb contaminated soils].

    PubMed

    Wu, Man; Xu, Ming-Gang; Zhang, Wen-Ju; Wu, Hai-Wen

    2012-07-01

    In order to clarify the effects of soil properties on the stabilization process of the cadmium (Cd) added, 11 different soils were collected and incubated under a moisture content of 65%-70% at 25 degrees C. The changes of available Cd contents with incubation time (in 360 days) in Cd and Cd-Pb contaminated treatments were determined. The stabilization process was simulated using dynamic equations. The results showed that after 1.0 mg x kg(-1) Cd or 500 mg x kg(-1) Pb + 1.0 mg x kg(-1) Cd were added into the soil, the available Cd content decreased rapidly during the first 15 days, and then the decreasing rate slowed down, with an equilibrium content reached after 60 days' incubation. In Cd-Pb contaminated soils, the presence of Pb increased the content of available Cd. The stabilization process of Cd could be well described by the second-order equation and the first order exponential decay; meanwhile, dynamic parameters including equilibrium content and stabilization velocity were used to characterize the stabilization process of Cd. These two key dynamic parameters were significantly affected by soil properties. Correlation analysis and stepwise regression suggested that high pH and high cation exchange capacity (CEC) significantly retarded the availability of Cd. High pH had the paramount effect on the equilibrium content. The stabilization velocity of Cd was influenced by the soil texture. It took shorter time for Cd to get stabilized in sandy soil than in the clay.

  12. External Contamination Control of Attached Payloads on the International Space Station

    NASA Technical Reports Server (NTRS)

    Soares, Carlos E.; Mikatarian, Ronald R.; Olsen, Randy L.; Huang, Alvin Y.; Steagall, Courtney A.; Schmidl, William D.; Wright, Bruce D.; Koontz, Steven

    2012-01-01

    The International Space Station (ISS) is an on-orbit platform for science utilization in low Earth orbit with multiple sites for external payloads with exposure to the natural and induced environments. Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle. This paper describes the external contamination control requirements and integration process for externally mounted payloads on the ISS. The external contamination control requirements are summarized and a description of the integration and verification process is detailed to guide payload developers in the certification process of attached payloads on the vehicle. A description of the required data certification deliverables covers the characterization of contamination sources. Such characterization includes identification, usage and operational data for each class of contamination source. Classes of external contamination sources covered are vacuum exposed materials, sources of leakage, vacuum venting and thrusters. ISS system level analyses are conducted by the ISS Space Environments Team to certify compliance with external contamination control requirements. This paper also addresses the ISS induced contamination environment at attached payload sites, both at the requirements level as well as measurements made on ISS.

  13. DEVELOPMENT OF A SCALABLE, LOW-COST, ULTRANANOCRYSTALLINE DIAMOND ELECTROCHEMICAL PROCESS FOR THE DESTRUCTION OF CONTAMINANTS OF EMERGING CONCERN (CECS) - PHASE I

    EPA Science Inventory

    This Small Business Innovative Research (SBIR) project will develop and ready for commercialization a scalable, low-cost process for purification of water containing Contaminants of Emerging Concern (CECs) using anodic oxidation with boron-doped ultrananocrystalline diam...

  14. Occipital Alpha Activity during Stimulus Processing Gates the Information Flow to Object-Selective Cortex

    PubMed Central

    Zumer, Johanna M.; Scheeringa, René; Schoffelen, Jan-Mathijs; Norris, David G.; Jensen, Ole

    2014-01-01

    Given the limited processing capabilities of the sensory system, it is essential that attended information is gated to downstream areas, whereas unattended information is blocked. While it has been proposed that alpha band (8–13 Hz) activity serves to route information to downstream regions by inhibiting neuronal processing in task-irrelevant regions, this hypothesis remains untested. Here we investigate how neuronal oscillations detected by electroencephalography in visual areas during working memory encoding serve to gate information reflected in the simultaneously recorded blood-oxygenation-level-dependent (BOLD) signals recorded by functional magnetic resonance imaging in downstream ventral regions. We used a paradigm in which 16 participants were presented with faces and landscapes in the right and left hemifields; one hemifield was attended and the other unattended. We observed that decreased alpha power contralateral to the attended object predicted the BOLD signal representing the attended object in ventral object-selective regions. Furthermore, increased alpha power ipsilateral to the attended object predicted a decrease in the BOLD signal representing the unattended object. We also found that the BOLD signal in the dorsal attention network inversely correlated with visual alpha power. This is the first demonstration, to our knowledge, that oscillations in the alpha band are implicated in the gating of information from the visual cortex to the ventral stream, as reflected in the representationally specific BOLD signal. This link of sensory alpha to downstream activity provides a neurophysiological substrate for the mechanism of selective attention during stimulus processing, which not only boosts the attended information but also suppresses distraction. Although previous studies have shown a relation between the BOLD signal from the dorsal attention network and the alpha band at rest, we demonstrate such a relation during a visuospatial task, indicating

  15. Rethinking infant knowledge: toward an adaptive process account of successes and failures in object permanence tasks.

    PubMed

    Munakata, Y; McClelland, J L; Johnson, M H; Siegler, R S

    1997-10-01

    Infants seem sensitive to hidden objects in habituation tasks at 3.5 months but fail to retrieve hidden objects until 8 months. The authors first consider principle-based accounts of these successes and failures, in which early successes imply knowledge of principles and failures are attributed to ancillary deficits. One account is that infants younger than 8 months have the object permanence principle but lack means-ends abilities. To test this, 7-month-olds were trained on means-ends behaviors and were tested on retrieval of visible and occluded toys. Means-ends demands were the same, yet infants made more toy-guided retrievals in the visible case. The authors offer an adaptive process account in which knowledge is graded and embedded in specific behavioral processes. Simulation models that learn gradually to represent occluded objects show how this approach can account for success and failure in object permanence tasks without assuming principles and ancillary deficits.

  16. An early approach for the evaluation of repair processes in fish after exposure to sediment contaminated by an oil spill.

    PubMed

    Salamanca, Maria J; Jimenez-Tenorio, Natalia; Reguera, Diana F; Morales-Caselles, Carmen; Delvalls, T Angel

    2008-12-01

    A chronic bioassay was carried out under laboratory conditions using juvenile Solea senegalensis to determine the toxicity of contaminants from an oil spill(Prestige). Also, the repair processes in fish affected by contaminants due to oil exposure were evaluated. Over 30 days individuals were exposed to clean sediment (control) and to sediment contaminated by a mixture of polyaromatic hydrocarbons (PAHs) and other substances. The physicochemical parameters of the tanks (salinity, temperature, pH and dissolved oxygen) were controlled during the exposure period. Clean sediment from the Bay of Cadiz (Spain) was used as negative control and was mixed with fuel oil to prepare the dilution (0.5% w:w dry-weight). After the exposure period, fish were labeled and transferred to "clean tanks" (tanks without sediment) in order to study the recovery and the repair processes in the exposed organisms. A biomarker of exposure (ethoxyresorufin-O-deethylase activity - EROD activity) and a biomarker of effect (histopathology) were analyzed during the exposure and recovery period. After 10, 20 and 30 days of exposure, individuals showed significant induction (P < 0.05) of the EROD activity and also presented diverse histopathological damages. The analysis of both the biomarkers of exposure and effect, after the 5th and 10th day of recovery in the "clean tank", enabled a first evaluation of the repair process of the induced damages due to the fuel oil exposure. After the recovery phase, control individuals showed a more significant decrease (P < 0.05) of the alteration of the measured biomarkers than in the oil-exposed fish. While in the oil-exposed fish the EROD activity showed some recovery, the histopathological damages did hardly improve. According to our results, tissue repair processes probably need longer recovery periods to observe significant improvement of the affected organs. This will be further investigated in the future.

  17. The effect of commercial processing on the paralytic shellfish poison (PSP) content of naturally-contaminated Acanthocardia tuberculatum L.

    PubMed

    Berenguer, J A; Gonzalez, L; Jimenez, I; Legarda, T M; Olmedo, J B; Burdaspal, P A

    1993-01-01

    A study was undertaken to determine if any reduction in contamination of Acanthocardia tuberculatum L. (Mediterranean cockle) by paralytic shellfish poisons (PSP) could be enhanced by operations carried out during the industrial canning process, allowing contaminated raw material to be commercially marketed in safe conditions for edible purposes. A general decrease in PSP levels was consistently observed when comparing raw materials and their corresponding final products, these dropping to acceptable levels. PSP levels were determined by mouse bioassay and a fluorometric method, and saxitoxin was determined by HPLC. The detoxifying effects averaged over 71.7% and 81.8% (mouse bioassay), 70.6% and 90.9% (fluorometric method), 77.9% and 83.5% (HPLC), for boiling and sterilizing operations respectively. The highest level detected in raw material was 800 micrograms/100 g by mouse bioassay.

  18. Process for gamma ray induced degradation of polychlorinated biphenyls

    DOEpatents

    Meikrantz, D.H.; Mincher, B.J.; Arbon, R.E.

    1998-08-25

    The invention is a process for the in-situ destruction of polychlorinated biphenyl (PCB) compounds in transformer oils and transformers. These compounds are broken down selectively by irradiation of the object or mixture using spent nuclear fuel or any isotopic source of high energy gamma radiation. For example, the level of applied dose required to decompose 400 ppm of polychlorinated biphenyl in transformer oil to less than 50 ppm is 500 kilograms. Destruction of polychlorinated biphenyls to levels of less than 50 ppm renders the transformer oil or transformer non-PCB contaminated under current regulations. Therefore, this process can be used to treat PCB contaminated oil and equipment to minimize or eliminate the generation of PCB hazardous waste. 5 figs.

  19. Contamination of turkey carcasses by thermotolerant species of Campylobacter during postslaughter processing.

    PubMed

    Wysok, B; Uradziński, J

    2009-01-01

    Ample literature data indicate explicitly that the major source of alimentary infections induced by Campylobacter spp. is poultry meat and its products. The undertaken research was aimed at determining the level of contamination of turkey carcasses during selected stages of postslaughter processing. Analyses were conducted on 200 turkey carcasses that were examined in 10 experimental series. In each series, 5 carcasses were analyzed at the selected stages of processing, i.e.: after defeathering, evisceration, washing and chilling. Swabs were collected from each carcass from 20 cm2 skin surface at the area of neck, steak and wall of the body cavity. Out of 550 samples of swabs from the skin surface and wall of the body cavity, 385 isolates were classified as Campylobacter--positive, which constituted 70% of the samples. Out of 100 analyzed swabs collected from the carcasses after defeathering, 73 (73%) were found to contain Campylobacter species. In turn, the presence of this pathogen was confirmed in 122 (81.33%) out of 150 swabs collected from carcasses after evisceration, in 106 (70.66%) swabs collected after washing and in 84 (56%) swabs collected after chilling.

  20. Molecular methods to assess Listeria monocytogenes route of contamination in a dairy processing plant.

    PubMed

    Alessandria, Valentina; Rantsiou, Kalliopi; Dolci, Paola; Cocolin, Luca

    2010-07-31

    In this study we investigated the occurrence of Listeria monocytogenes in a dairy processing plant during two sampling campaigns in 2007 and 2008. Samples represented by semifinished and finished cheeses, swabs from the equipment and brines from the salting step, were subjected to analysis by using traditional and molecular methods, represented mainly by quantitative PCR. Comparing the results obtained by the application of the two approaches used, it became evident how traditional microbiological analysis underestimated the presence of L. monocytogenes in the dairy plant. Especially samples of the brines and the equipment swabs were positive only with qPCR. For some equipment swabs it was possible to detect a load of 10(4)-10(5) cfu/cm(2), while the modified ISO method employed gave negative results both before and after the enrichment step. The evidences collected during the first sampling year, highlighting a heavy contamination of the brines and of the equipment, lead to the implementation of specific actions that decreased the contamination in these samples during the 2008 campaign. However, no reduction in the number of L. monocytogenes positive final products was observed, suggesting that a more strict control is necessary to avoid the presence of the pathogen. All the isolates of L. monocytogenes were able to attach to abiotic surfaces, and, interestingly, considering the results obtained from their molecular characterization it became evident how strains present in the brines, were genetically connected with isolates from the equipment and from the final product, suggesting a clear route of contamination of the pathogen in the dairy plant. This study underlines the necessity to use appropriate analytical tools, such as molecular methods, to fully understand the spread and persistence of L. monocytogenes in food producing companies. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Carbon contamination topography analysis of EUV masks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Y.-J.; Yankulin, L.; Thomas, P.

    2010-03-12

    The impact of carbon contamination on extreme ultraviolet (EUV) masks is significant due to throughput loss and potential effects on imaging performance. Current carbon contamination research primarily focuses on the lifetime of the multilayer surfaces, determined by reflectivity loss and reduced throughput in EUV exposure tools. However, contamination on patterned EUV masks can cause additional effects on absorbing features and the printed images, as well as impacting the efficiency of cleaning process. In this work, several different techniques were used to determine possible contamination topography. Lithographic simulations were also performed and the results compared with the experimental data.

  2. Bacterial diversity of floor drain biofilms and drain waters in a Listeria monocytogenes contaminated food processing environment.

    PubMed

    Dzieciol, Monika; Schornsteiner, Elisa; Muhterem-Uyar, Meryem; Stessl, Beatrix; Wagner, Martin; Schmitz-Esser, Stephan

    2016-04-16

    Sanitation protocols are applied on a daily basis in food processing facilities to prevent the risk of cross-contamination with spoilage organisms. Floor drain water serves along with product-associated samples (slicer dust, brine or cheese smear) as an important hygiene indicator in monitoring Listeria monocytogenes in food processing facilities. Microbial communities of floor drains are representative for each processing area and are influenced to a large degree by food residues, liquid effluents and washing water. The microbial communities of drain water are steadily changing, whereas drain biofilms provide more stable niches. Bacterial communities of four floor drains were characterized using 16S rRNA gene pyrosequencing to better understand the composition and exchange of drain water and drain biofilm communities. Furthermore, the L. monocytogenes contamination status of each floor drain was determined by applying cultivation-independent real-time PCR quantification and cultivation-dependent detection according to ISO11290-1. Pyrosequencing of 16S rRNA genes of drain water and drain biofilm bacterial communities yielded 50,611 reads, which were clustered into 641 operational taxonomic units (OTUs), affiliated to 16 phyla dominated by Proteobacteria, Firmicutes and Bacteroidetes. The most abundant OTUs represented either product- (Lactococcus lactis) or fermentation- and food spoilage-associated phylotypes (Pseudomonas mucidolens, Pseudomonas fragi, Leuconostoc citreum, and Acetobacter tropicalis). The microbial communities in DW and DB samples were distinct in each sample type and throughout the whole processing plant, indicating the presence of indigenous specific microbial communities in each processing compartment. The microbiota of drain biofilms was largely different from the microbiota of the drain water. A sampling approach based on drain water alone may thus only provide reliable information on planktonic bacterial cells but might not allow conclusions

  3. Persistence of a Groundwater Contaminant Plume after Hydraulic Source Containment at a Chlorinated-Solvent Contaminated Site

    PubMed Central

    Matthieu, D.E.; Brusseau, M.L.; Guo, Z.; Plaschke, M.; Carroll, K.C.; Brinker, F.

    2015-01-01

    The objective of this study was to characterize the behavior of a groundwater contaminant (trichloroethene) plume after implementation of a source-containment operation at a site in Arizona. The plume resides in a quasi three-layer system comprising a sand/gravel unit bounded on the top and bottom by relatively thick silty clayey layers. The system was monitored for 60 months beginning at start-up in 2007 to measure the change in contaminant concentrations within the plume, the change in plume area, the mass of contaminant removed, and the integrated contaminant mass discharge. Concentrations of trichloroethene in groundwater pumped from the plume extraction wells have declined significantly over the course of operation, as have concentrations for groundwater sampled from 40 monitoring wells located within the plume. The total contaminant mass discharge associated with operation of the plume extraction wells peaked at 0.23 kg/d, decreased significantly within one year, and thereafter began an asymptotic decline to a current value of approximately 0.03 kg/d. Despite an 87% reduction in contaminant mass and a comparable 87% reduction in contaminant mass discharge for the plume, the spatial area encompassed by the plume has decreased by only approximately 50%. This is much less than would be anticipated based on ideal flushing and mass-removal behavior. Simulations produced with a simplified 3-D numerical model matched reasonably well to the measured data. The results of the study suggest that permeability heterogeneity, back diffusion, hydraulic factors associated with the specific well field system, and residual discharge from the source zone are all contributing to the observed persistence of the plume, as well as the asymptotic behavior currently observed for mass removal and for the reduction in contaminant mass discharge. PMID:26069436

  4. Uranium interaction with soil minerals in the presence of co-contaminants: Case Study- subsurface sediments at or below the water table

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gartman, Brandy N.; Qafoku, Nikolla

    2016-03-09

    Uranium (U) contaminated subsurface systems are common on a global scale mainly because of its essential role in the production of plutonium for nuclear weapons and other nuclear energy and research activities. Studying the behavior and fate of U in these systems is challenging because of heterogeneities of different types (i.e., physical, chemical and mineralogical) and a complex network of often time-dependent hydrological, biological and chemical reactions and processes that occur sequentially or simultaneously, affecting and/or controlling U mobility. A U contaminated site, i.e., the Integrated Field Research Challenge site in Rifle, CO, USA (a former U mill site) ismore » the focus of this discussion. The overall objectives of this chapter are to 1) provide an overview of the contamination levels (U and other co-contaminants) at this field site; 2) review and discuss different aspects of mineral-U contaminant interactions in reduced and oxidized environments, and in the presence of co-contaminants; 3) present results from a systematic macroscopic, microscopic, and spectroscopic study as an example of the current research efforts and the state-of-knowledge in this important research area; and 4) offer insightful conclusive remarks and future research needs about reactions and processes that control U and other contaminants’ fate and behavior under hydraulically saturated conditions. The implications and applications presented in this chapter are valid for U contaminated sites across the world.« less

  5. Optimal design of active spreading systems to remediate sorbing groundwater contaminants in situ

    NASA Astrophysics Data System (ADS)

    Piscopo, Amy N.; Neupauer, Roseanna M.; Kasprzyk, Joseph R.

    2016-07-01

    The effectiveness of in situ remediation to treat contaminated aquifers is limited by the degree of contact between the injected treatment chemical and the groundwater contaminant. In this study, candidate designs that actively spread the treatment chemical into the contaminant are generated using a multi-objective evolutionary algorithm. Design parameters pertaining to the amount of treatment chemical and the duration and rate of its injection are optimized according to objectives established for the remediation - maximizing contaminant degradation while minimizing energy and material requirements. Because groundwater contaminants have different reaction and sorption properties that influence their ability to be degraded with in situ remediation, optimization was conducted for six different combinations of reaction rate coefficients and sorption rates constants to represent remediation of the common groundwater contaminants, trichloroethene, tetrachloroethene, and toluene, using the treatment chemical, permanganate. Results indicate that active spreading for contaminants with low reaction rate coefficients should be conducted by using greater amounts of treatment chemical mass and longer injection durations relative to contaminants with high reaction rate coefficients. For contaminants with slow sorption or contaminants in heterogeneous aquifers, two different design strategies are acceptable - one that injects high concentrations of treatment chemical mass over a short duration or one that injects lower concentrations of treatment chemical mass over a long duration. Thus, decision-makers can select a strategy according to their preference for material or energy use. Finally, for scenarios with high ambient groundwater velocities, the injection rate used for active spreading should be high enough for the groundwater divide to encompass the entire contaminant plume.

  6. Top-down modulation of visual processing and knowledge after 250 ms supports object constancy of category decisions

    PubMed Central

    Schendan, Haline E.; Ganis, Giorgio

    2015-01-01

    People categorize objects more slowly when visual input is highly impoverished instead of optimal. While bottom-up models may explain a decision with optimal input, perceptual hypothesis testing (PHT) theories implicate top-down processes with impoverished input. Brain mechanisms and the time course of PHT are largely unknown. This event-related potential study used a neuroimaging paradigm that implicated prefrontal cortex in top-down modulation of occipitotemporal cortex. Subjects categorized more impoverished and less impoverished real and pseudo objects. PHT theories predict larger impoverishment effects for real than pseudo objects because top-down processes modulate knowledge only for real objects, but different PHT variants predict different timing. Consistent with parietal-prefrontal PHT variants, around 250 ms, the earliest impoverished real object interaction started on an N3 complex, which reflects interactive cortical activity for object cognition. N3 impoverishment effects localized to both prefrontal and occipitotemporal cortex for real objects only. The N3 also showed knowledge effects by 230 ms that localized to occipitotemporal cortex. Later effects reflected (a) word meaning in temporal cortex during the N400, (b) internal evaluation of prior decision and memory processes and secondary higher-order memory involving anterotemporal parts of a default mode network during posterior positivity (P600), and (c) response related activity in posterior cingulate during an anterior slow wave (SW) after 700 ms. Finally, response activity in supplementary motor area during a posterior SW after 900 ms showed impoverishment effects that correlated with RTs. Convergent evidence from studies of vision, memory, and mental imagery which reflects purely top-down inputs, indicates that the N3 reflects the critical top-down processes of PHT. A hybrid multiple-state interactive, PHT and decision theory best explains the visual constancy of object cognition. PMID:26441701

  7. Integrated system for gathering, processing, and reporting data relating to site contamination

    DOEpatents

    Long, D.D.; Goldberg, M.S.; Baker, L.A.

    1997-11-11

    An integrated screening system comprises an intrusive sampling subsystem, a field mobile laboratory subsystem, a computer assisted design/geographical information subsystem, and a telecommunication linkup subsystem, all integrated to provide synergistically improved data relating to the extent of site soil/groundwater contamination. According to the present invention, data samples related to the soil, groundwater or other contamination of the subsurface material are gathered and analyzed to measure contaminants. Based on the location of origin of the samples in three-dimensional space, the analyzed data are transmitted to a location display. The data from analyzing samples and the data from the locating the origin are managed to project the next probable sample location. The next probable sample location is then forwarded for use as a guide in the placement of ensuing sample location, whereby the number of samples needed to accurately characterize the site is minimized. 10 figs.

  8. Integrated system for gathering, processing, and reporting data relating to site contamination

    DOEpatents

    Long, Delmar D.; Goldberg, Mitchell S.; Baker, Lorie A.

    1997-01-01

    An integrated screening system comprises an intrusive sampling subsystem, a field mobile laboratory subsystem, a computer assisted design/geographical information subsystem, and a telecommunication linkup subsystem, all integrated to provide synergistically improved data relating to the extent of site soil/groundwater contamination. According to the present invention, data samples related to the soil, groundwater or other contamination of the subsurface material are gathered and analyzed to measure contaminants. Based on the location of origin of the samples in three-dimensional space, the analyzed data are transmitted to a location display. The data from analyzing samples and the data from the locating the origin are managed to project the next probable sample location. The next probable sample location is then forwarded for use as a guide in the placement of ensuing sample location, whereby the number of samples needed to accurately characterize the site is minimized.

  9. Transformation of Contaminant Candidate List (CCL3) compounds during ozonation and advanced oxidation processes in drinking water: Assessment of biological effects.

    PubMed

    Mestankova, Hana; Parker, Austa M; Bramaz, Nadine; Canonica, Silvio; Schirmer, Kristin; von Gunten, Urs; Linden, Karl G

    2016-04-15

    The removal of emerging contaminants during water treatment is a current issue and various technologies are being explored. These include UV- and ozone-based advanced oxidation processes (AOPs). In this study, AOPs were explored for their degradation capabilities of 25 chemical contaminants on the US Environmental Protection Agency's Contaminant Candidate List 3 (CCL3) in drinking water. Twenty-three of these were found to be amenable to hydroxyl radical-based treatment, with second-order rate constants for their reactions with hydroxyl radicals (OH) in the range of 3-8 × 10(9) M(-1) s(-1). The development of biological activity of the contaminants, focusing on mutagenicity and estrogenicity, was followed in parallel with their degradation using the Ames and YES bioassays to detect potential changes in biological effects during oxidative treatment. The majority of treatment cases resulted in a loss of biological activity upon oxidation of the parent compounds without generation of any form of estrogenicity or mutagenicity. However, an increase in mutagenic activity was detected by oxidative transformation of the following CCL3 parent compounds: nitrobenzene (OH, UV photolysis), quinoline (OH, ozone), methamidophos (OH), N-nitrosopyrolidine (OH), N-nitrosodi-n-propylamine (OH), aniline (UV photolysis), and N-nitrosodiphenylamine (UV photolysis). Only one case of formation of estrogenic activity was observed, namely, for the oxidation of quinoline by OH. Overall, this study provides fundamental and practical information on AOP-based treatment of specific compounds of concern and represents a framework for evaluating the performance of transformation-based treatment processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Capabilities of the Materials Contamination Team at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Burns, Howard; Albyn, Keith; Edwards, David; Boothe, Richard; Finchum, Charles; Finckenor, Miria

    2003-01-01

    The Materials Contamination Team at the Marshall Space Flight Center (MSFC) has been recognized for its contributions supporting the National Aeronautics and Space Administration (NASA) spacecraft development programs. These programs include the Reusable Solid Rocket Motor (RSRM), Chandra X-Ray Observatory, and the International Space Station (ISS). The Environmental Effects Group, with the Materials Contamination Team and the Space Environmental Effects Team has been an integral part of NASA's success by the testing, evaluation, and qualification of materials, hardware, and processes. This paper focuses on the capabilities of the Materials Contamination Team. The Materials Contamination Team's realm of responsibility includes establishing contamination control during all phases of hardware development, including design, manufacturing, assembly, test, transportation, launch site processing, on-orbit exposure, return, and refurbishment. The team continues its mission of reducing the risk of equipment failure due to molecular or particulate contamination. Contamination is a concern in the Space Shuttle with sensitive bond-lines and reactive fluid (liquid oxygen) compatibility as well as for spacecraft with sensitive optics, such as Hubble Space Telescope and Chandra X-ray Observatory. The Materials Contamination Team has a variety of facilities and instrumentation capable of contaminant detection, identification, and monitoring. The team addresses material applications dealing with environments, including production facilities, clean rooms, and on-orbit exposure. The optically stimulated electron emission (OSEE) system, the Ultraviolet (UV) fluorescence (UVF) surface contamination detection, and the Surface Optics Corporation 400 (SOC 400) portable hand-held Fourier Transform Infrared (FTIR) spectrometer are state-of-the-art tools for in-process molecular contamination detection. The team of engineers and technicians also develop contamination calibration standards

  11. Method to remove uranium/vanadium contamination from groundwater

    DOEpatents

    Metzler, Donald R.; Morrison, Stanley

    2004-07-27

    A process for removing uranium/vanadium-based contaminants from groundwater using a primary in-ground treatment media and a pretreatment media that chemically adjusts the groundwater contaminant to provide for optimum treatment by the primary treatment media.

  12. Development and application of a green fluorescent protein (GFP) expressing E. coli O103 surrogate for tracking contamination through grinding and identifying persistent points of contamination

    USDA-ARS?s Scientific Manuscript database

    Objective: To 1.) develop and validate an easily trackable E. coli O157:H7/non-O157 STEC surrogate that can be detected to the same level of sensitivity as E. coli O157:H7; and 2.) apply the trackable surrogate to model contamination passage through grinding and identify points where contamination ...

  13. International Space Station External Contamination Environment for Space Science Utilization

    NASA Technical Reports Server (NTRS)

    Soares, Carlos E.; Mikatarian, Ronald R.; Steagall, Courtney A.; Huang, Alvin Y.; Koontz, Steven; Worthy, Erica

    2014-01-01

    The International Space Station (ISS) is the largest and most complex on-orbit platform for space science utilization in low Earth orbit. Multiple sites for external payloads, with exposure to the associated natural and induced environments, are available to support a variety of space science utilization objectives. Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle. The ISS has been designed, built and integrated with strict contamination requirements to provide low levels of induced contamination on external payload assets. This paper addresses the ISS induced contamination environment at attached payload sites, both at the requirements level as well as measurements made on returned hardware, and contamination forecasting maps being generated to support external payload topology studies and science utilization.

  14. Community College Management by Objectives: Process, Progress, Problems.

    ERIC Educational Resources Information Center

    Deegan, William L.; And Others

    The objectives of this book are: (1) to present a theoretical framework for management by objectives in community colleges, (2) to present information about alternative methods for conducting needs assessment and implementing management by objectives, (3) to present a framework for integrating academic and fiscal planning through management by…

  15. Mitigation of radiation induced surface contamination

    DOEpatents

    Klebanoff, Leonard E.; Stulen, Richard H.

    2003-01-01

    A process for mitigating or eliminating contamination and/or degradation of surfaces having common, adventitious atmospheric contaminants adsorbed thereon and exposed to radiation. A gas or a mixture of gases is introduced into the environment of a surface(s) to be protected. The choice of the gaseous species to be introduced (typically a hydrocarbon gas, water vapor, or oxygen or mixtures thereof) is dependent upon the contaminant as well as the ability of the gaseous species to bind to the surface to be protected. When the surface and associated bound species are exposed to radiation reactive species are formed that react with surface contaminants such as carbon or oxide films to form volatile products (e.g., CO, CO.sub.2) which desorb from the surface.

  16. Estimated association between dwelling soil contamination and internal radiation contamination levels after the 2011 Fukushima Daiichi nuclear accident in Japan

    PubMed Central

    Tsubokura, Masaharu; Nomura, Shuhei; Sakaihara, Kikugoro; Kato, Shigeaki; Leppold, Claire; Furutani, Tomoyuki; Morita, Tomohiro; Oikawa, Tomoyoshi; Kanazawa, Yukio

    2016-01-01

    Objectives Measurement of soil contamination levels has been considered a feasible method for dose estimation of internal radiation exposure following the Chernobyl disaster by means of aggregate transfer factors; however, it is still unclear whether the estimation of internal contamination based on soil contamination levels is universally valid or incident specific. Methods To address this issue, we evaluated relationships between in vivo and soil cesium-137 (Cs-137) contamination using data on internal contamination levels among Minamisoma (10–40 km north from the Fukushima Daiichi nuclear power plant), Fukushima residents 2–3 years following the disaster, and constructed three models for statistical analysis based on continuous and categorical (equal intervals and quantiles) soil contamination levels. Results A total of 7987 people with a mean age of 55.4 years underwent screening of in vivo Cs-137 whole-body counting. A statistically significant association was noted between internal and continuous Cs-137 soil contamination levels (model 1, p value <0.001), although the association was slight (relative risk (RR): 1.03 per 10 kBq/m2 increase in soil contamination). Analysis of categorical soil contamination levels showed statistical (but not clinical) significance only in relatively higher soil contamination levels (model 2: Cs-137 levels above 100 kBq/m2 compared to those <25 kBq/m2, RR=1.75, p value <0.01; model 3: levels above 63 kBq/m2 compared to those <11 kBq/m2, RR=1.45, p value <0.05). Conclusions Low levels of internal and soil contamination were not associated, and only loose/small associations were observed in areas with slightly higher levels of soil contamination in Fukushima, representing a clear difference from the strong associations found in post-disaster Chernobyl. These results indicate that soil contamination levels generally do not contribute to the internal contamination of residents in Fukushima; thus, individual

  17. Crustal contamination processes traced by helium isotopes: Examples from the Sunda arc, Indonesia

    NASA Astrophysics Data System (ADS)

    Gasparon, M.; Hilton, D. R.; Varne, R.

    1994-08-01

    Helium isotope data have been obtained on well-characterised olivine and clinopyroxene phenocrysts and xenocrysts from thirteen volcanic centres located between central Sumatra and Sumbawa in the Sunda arc of Indonesia. Olivine crystals in mantle xenoliths (Iherzolite) from Bukit Telor basalts are primitive (Mg# = 90), and their He-3/He-4 value (R/R(sub A) = 8.8) indicates that the Sumatran mantle wedge is MORB-like in helium isotope composition. All other samples have lower He-3/He-4 ratios ranging from 8.5R(sub A) to 4.5R(sub A), with most (thirteen out of eighteen) following a trend of more radiogenic He-3/He-4 values with decreasing Mg#. The only exceptions to this trend are phenocrysts from Batur, Agung and Kerinci, which have MORB-like He-3/He-4 values but relatively low Mg# (Mg# = 70-71), and two highly inclusion-rich clinopyroxenes which have He-3/He-4 values lower than other samples of similar Mg#. The results indicate that crustal contamination unrelated to subduction in the Sunda arc is clearly recorded in the He-3/He-4 characteristics of mafic phenocrysts of subaerial volcanics, and that addition of radiogenic helium is related to low-pressure differentiation processes affecting the melts prior to eruption. These conclusions may have widespread applicability and indicate that helium isotope variations can act as an extremely sensitive tracer of upper crustal contamination.

  18. Effect of type of defeathering system on Salmonella cross-contamination during commercial processing.

    PubMed

    Clouser, C S; Knabel, S J; Mast, M G; Doores, S

    1995-04-01

    The cross-contamination effects of three commercial defeathering systems were compared using turkeys from a single Salmonella-positive flock (< or = 15% cloacal-positive). Single or "common" flocks were used to control flock-to-flock variability. Thirty birds were mechanically defeathered in each system as the first flock of the day and compared with 30 hand-defeathered (control) birds. Three trials, each using a different common flock, were completed. In Trial 1, the incidence of Salmonella-positive birds decreased following mechanical defeathering at all three processors. The incidence of Salmonella-positive carcasses in test flocks increased following steam-spray (approximately 100%) and kosher (approximately 50%) defeathering in Trials 2 and 3, whereas no increase in Salmonella-positive carcasses resulted from conventional defeathering. The decrease in the number of Salmonella-positive birds as a result of defeathering observed in Trial 1, as compared to increases observed in Trials 2 and 3, may be related to the selection of feather-contaminated (Trial 1) vs intestinal-colonized (Trials 2 and 3) turkeys. Surface temperature of the carcasses and length of time required to defeather were monitored within each system. It is hypothesized that the increases in the number of Salmonella-positive birds following steam-spray and kosher defeathering in Trials 2 and 3 were a result of skin surface changes occurring during the defeathering process, which allowed increased adherence or entrapment of Salmonella spp. on or within remaining skin layers.

  19. Food contamination as a pathway for lead exposure in children during the 2010-2013 lead poisoning epidemic in Zamfara, Nigeria.

    PubMed

    Tirima, Simba; Bartrem, Casey; von Lindern, Ian; von Braun, Margrit; Lind, Douglas; Anka, Shehu Mohamed; Abdullahi, Aishat

    2018-05-01

    In 2010, an estimated 400 to 500 children died of acute lead poisoning associated with artisanal gold mining in Zamfara, Nigeria. Processing of gold ores containing up to 10% lead within residential compounds put residents, especially children, at the highest risk. Principal routes of exposure were incidental ingestion and inhalation of contaminated soil and dusts. Several Nigerian and international health organizations collaborated to reduce lead exposures through environmental remediation and medical treatment. The contribution of contaminated food to total lead exposure was assessed during the environmental health response. Objectives of this investigation were to assess the influence of cultural/dietary habits on lead exposure pathways and estimate the contribution of contaminated food to children's blood lead levels (BLLs). A survey of village dietary practices and staple food lead content was conducted to determine dietary composition, caloric intakes, and lead intake. Potential blood lead increments were estimated using bio-kinetic modeling techniques. Most dietary lead exposure was associated with contamination of staple cereal grains and legumes during post-harvest processing and preparation in contaminated homes. Average post-harvest and processed cereal grain lead levels were 0.32mg/kg and 0.85mg/kg dry weight, respectively. Age-specific food lead intake ranged from 7 to 78μg/day. Lead ingestion and absorption were likely aggravated by the dusty environment, fasting between meals, and nutritional deficiencies. Contamination of staple cereal grains by highly bioavailable pulverized ores could account for as much as 11%-34% of children's BLLs during the epidemic, and were a continuing source after residential soil remediation until stored grain inventories were exhausted. Copyright © 2017. Published by Elsevier B.V.

  20. Modeling the surface contamination of dental titanium investment castings.

    PubMed

    Atwood, R C; Lee, P D; Curtis, R V

    2005-02-01

    The objective of this study was to develop a computational tool for assisting the design of titanium dental castings with minimal defects and to compare computational simulations with casting experiments. Modeling. An in-house cellular-automata solidification and finite-difference diffusion program was coupled with a commercial casting program and applied to (a) simple geometric wedge models and (b) a 3D-laser scan of a molar crown casting. Experimental. Wedges and molar crowns were hand-waxed and investment cast in commercial purity grade 1 (CP-1) titanium by a commercial dental laboratory. The castings were sectioned and analyzed using light and scanning electron microscopy, X-ray microanalysis, and microhardness testing. In the wedge sample, contamination with impurities (Al, Si), including intermetallic precipitates, was found to extend to a depth ranging from 30 to 120 microm depending on the section thickness and hence the local cooling rate. Microstructural and mechanical (hardness) effects were found to a depth ranging from 80 to 250 microm. The coupled micro/macro model predictions showed reasonable agreement for the pattern of contamination. Dental and medical applications demand close dimensional tolerance and freedom from surface impurities and structural flaws in castings having unique shapes. The ability to predict the structural, mechanical, and chemical changes resulting from the casting process will help to design the casting and post-casting processes to minimize these problems.

  1. Biodegradation of Phenolic Contaminants: Current Status and Perspectives

    NASA Astrophysics Data System (ADS)

    Zhao, Lin; Wu, Qi; Ma, Aijin

    2018-01-01

    Phenolic compounds, a class of toxic pollutants in water, come mainly from a variety of industrial processes. The industrial application for biodegradation has become an important topic in recent years. In this review, we discuss the present situation, properties, and pollution characteristics of phenolic contaminants, factors affecting the degradation of phenols, microbial species and biodegradation methods. The challenges and opportunities in developing biodegradation processes of phenolic contaminants are also discussed.

  2. ModBack - simplified contaminant source zone delineation using backtracking

    NASA Astrophysics Data System (ADS)

    Thielsch, K.; Herold, M.; Ptak, T.

    2012-12-01

    Contaminated groundwater poses a serious threat to drinking water resources all over the world. Even though contaminated water might be detected in observation wells, a proper clean up is often only successful if the source of the contamination is detected and subsequently removed, contained or remediated. The high costs of groundwater remediation could be possibly significantly reduced if, from the outset, a focus is placed on source zone detection. ModBack combines several existing modelling tools in one easy to use GIS-based interface helping to delineate potential contaminant source zones in the subsurface. The software is written in Visual Basic 3.5 and uses the ArcObjects library to implement all required GIS applications. It can run without modification on any Microsoft Windows based PC with sufficient RAM and at least Microsoft .NET Framework 3.5. Using ModBack requires additional installation of the following software: Processing Modflow Pro 7.0, ModPath, CSTREAM (Bayer-Raich et al., 2003), Golden Software Surfer and Microsoft Excel. The graphical user interface of ModBack is separated into four blocks of procedures dealing with: data input, groundwater modelling, backtracking and analyses. Geographical data input includes all georeferenced information pertaining to the study site. Information on subsurface contamination is gathered either by conventional sampling of monitoring wells or by conducting integral pumping tests at control planes with a specific sampling scheme. Hydraulic data from these pumping tests together with all other available information are then used to set up a groundwater flow model of the study site, which provides the flow field for transport simulations within the subsequent contamination backtracking procedures, starting from the defined control planes. The backtracking results are then analysed within ModBack. The potential areas of contamination source presence or absence are determined based on the procedure used by Jarsjö et

  3. Contamination issues in continuous fermentation for ethanol production

    USDA-ARS?s Scientific Manuscript database

    Continuous fermentation processes are employed by corn wet milling plants all over world to convert starch to ethanol. Contaminations by bacterial microorganisms like Lactobacillus and wild yeasts like Brettanomyces are common and result in lower ethanol yields. Contaminants compete with inoculate...

  4. Evaluation of remediation process with plant-derived biosurfactant for recovery of heavy metals from contaminated soils.

    PubMed

    Hong, Kyung-Jin; Tokunaga, Shuzo; Kajiuchi, Toshio

    2002-10-01

    A washing process was studied to evaluate the efficiency of saponin on remediating heavy metal contaminated soils. Three different types of soils (Andosol: soil A, Cambisol: soil B, Regosol: soil C) were washed with saponin in batch experiments. Utilization of saponin was effective for removal of heavy metals from soils, attaining 90-100% of Cd and 85-98% of Zn extractions. The fractionations of heavy metals removed by saponin were identified using the sequential extraction. Saponin was effective in removing the exchangeable and carbonated fractions of heavy metals from soils. In recovery procedures, the pH of soil leachates was increased to about 10.7, leading to separate heavy metals as hydroxide precipitates and saponin solute. In addition recycle of used saponin is considered to be effective for the subsequent utilization. The limits of Japanese leaching test were met for all of the soil residues after saponin treatment. As a whole, this study shows that saponin can be used as a cleaning agent for remediation of heavy metal contaminated soils.

  5. Analysis of pesticide residues on museum objects repatriated to the Hupa tribe of California.

    PubMed

    Palmer, Peter T; Martin, Matthew; Wentworth, Gregory; Caldararo, Niccolo; Davis, Lee; Kane, Shawn; Hostler, David

    2003-03-15

    In the past, it was common practice for museum professionals and private collectors to apply a variety of pesticide agents to objects in their collections to preserve them from depredations by microorganisms, fungi, and other pests. The Native American Graves Repatriation and Protection Act allows federally recognized tribes to request that museums return objects taken from their ancestors. Given that poor records were kept on the treatment of individual objects, it is unknown whether specific objects are contaminated with these pesticide agents. Although chemical analysis represents the only reliable means to determine the types and levels of pesticides on these objects, surprisingly few publications document the extent of this contamination in museum collections. This paper reports on the determination of arsenic, mercury, and several organic pesticides on 17 objects that were recently repatriated to the Hupa tribe in northern California. Four samples were taken from each object: two for arsenic and mercury analysis via flame atomic absorption spectrophotometry and two for organic pesticide analysis via gas chromatography/mass spectrometry. Percent levels (wt/wt) of mercury were detected on many samples, and 0.001 to 0.183% (wt/wt) levels of p-dichlorobenzene, naphthalene, thymol, lindane, and/or DDT were detected on many of the samples. These results indicate that Hupa tribal members should not wear these objects in religious ceremonies, proper precautions should be followed when dealing with potentially contaminated objects, and that more serious consideration should be given to this issue at a national level.

  6. Differential Processing of Isolated Object and Multi-item Pop-Out Displays in LIP and PFC.

    PubMed

    Meyers, Ethan M; Liang, Andy; Katsuki, Fumi; Constantinidis, Christos

    2017-10-11

    Objects that are highly distinct from their surroundings appear to visually "pop-out." This effect is present for displays in which: (1) a single cue object is shown on a blank background, and (2) a single cue object is highly distinct from surrounding objects; it is generally assumed that these 2 display types are processed in the same way. To directly examine this, we applied a decoding analysis to neural activity recorded from the lateral intraparietal (LIP) area and the dorsolateral prefrontal cortex (dlPFC). Our analyses showed that for the single-object displays, cue location information appeared earlier in LIP than in dlPFC. However, for the display with distractors, location information was substantially delayed in both brain regions, and information first appeared in dlPFC. Additionally, we see that pattern of neural activity is similar for both types of displays and across different color transformations of the stimuli, indicating that location information is being coded in the same way regardless of display type. These results lead us to hypothesize that 2 different pathways are involved processing these 2 types of pop-out displays. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. ADAPTIVE WATER SENSOR SIGNAL PROCESSING: EXPERIMENTAL RESULTS AND IMPLICATIONS FOR ONLINE CONTAMINANT WARNING SYSTEMS

    EPA Science Inventory

    A contaminant detection technique and its optimization algorithms have two principal functions. One is the adaptive signal treatment that suppresses background noise and enhances contaminant signals, leading to a promising detection of water quality changes at a false rate as low...

  8. The benefits of sensorimotor knowledge: body-object interaction facilitates semantic processing.

    PubMed

    Siakaluk, Paul D; Pexman, Penny M; Sears, Christopher R; Wilson, Kim; Locheed, Keri; Owen, William J

    2008-04-05

    This article examined the effects of body-object interaction (BOI) on semantic processing. BOI measures perceptions of the ease with which a human body can physically interact with a word's referent. In Experiment 1, BOI effects were examined in 2 semantic categorization tasks (SCT) in which participants decided if words are easily imageable. Responses were faster and more accurate for high BOI words (e.g., mask) than for low BOI words (e.g., ship). In Experiment 2, BOI effects were examined in a semantic lexical decision task (SLDT), which taps both semantic feedback and semantic processing. The BOI effect was larger in the SLDT than in the SCT, suggesting that BOI facilitates both semantic feedback and semantic processing. The findings are consistent with the embodied cognition perspective (e.g., Barsalou's, 1999, Perceptual Symbols Theory), which proposes that sensorimotor interactions with the environment are incorporated in semantic knowledge. 2008 Cognitive Science Society, Inc.

  9. Risk factors for microbial contamination in fruits and vegetables at the preharvest level: a systematic review.

    PubMed

    Park, Sangshin; Szonyi, Barbara; Gautam, Raju; Nightingale, Kendra; Anciso, Juan; Ivanek, Renata

    2012-11-01

    The objective of this study was to perform a systematic review of risk factors for contamination of fruits and vegetables with Listeria monocytogenes, Salmonella, and Escherichia coli O157:H7 at the preharvest level. Relevant studies were identified by searching six electronic databases: MEDLINE, EMBASE, CAB Abstracts, AGRIS, AGRICOLA, and FSTA, using the following thesaurus terms: L. monocytogenes, Salmonella, E. coli O157 AND fruit, vegetable. All search terms were exploded to find all related subheadings. To be eligible, studies had to be prospective controlled trials or observational studies at the preharvest level and had to show clear and sufficient information on the process in which the produce was contaminated. Of the 3,463 citations identified, 68 studies fulfilled the eligibility criteria. Most of these studies were on leafy greens and tomatoes. Six studies assessed produce contamination with respect to animal host-related risk factors, and 20 studies assessed contamination with respect to pathogen characteristics. Sixty-two studies assessed the association between produce contamination and factors related to produce, water, and soil, as well as local ecological conditions of the production location. While evaluations of many risk factors for preharvest-level produce contamination have been reported, the quality assessment of the reviewed studies confirmed the existence of solid evidence for only some of them, including growing produce on clay-type soil, the application of contaminated or non-pH-stabilized manure, and the use of spray irrigation with contaminated water, with a particular risk of contamination on the lower leaf surface. In conclusion, synthesis of the reviewed studies suggests that reducing microbial contamination of irrigation water and soil are the most effective targets for the prevention and control of produce contamination. Furthermore, this review provides an inventory of the evaluated risk factors, including those requiring more

  10. Residual contamination and corrosion on electrochemically marked uranium

    NASA Astrophysics Data System (ADS)

    Seals, R. D.; Bullock, J. S.; Cristy, S. S.; Bennett, R. K.

    Residual contamination and potential corrosion problems on uranium parts electrochemically marked with PHB-1 and PHB-1E electroetchants have been investigated using ion microprobe mass analysis (IMMA), scanning electron microscopy (SEM), and light microscopy (LM). The effectiveness of various solvent-cleaning sequences and the influence of the use of an abrasive cleaner were evaluated. The corrosion depths and chlorine distributions resulting from the electroetching process were determined. To meet the objective, the surfaces of uranium coupons, which had been processed according to production procedures for parts, i.e., machining, cleaning, marking, inspecting and coating with Shell Vitrea-29® oil, were studied. The greater surface wetting capability of the PHB-1E electroetchant solution relative to PHB-1 resulted in less localized corrosion at the point of attack which provided a more legible mark. Components of the electroetchants (aluminum, potassium and chromium) were found in the marked areas of both types of electroetched samples. Chromium, resulting from the corrosion inhibitor in the electroetchants, was found in the etched areas as well as on the coupon away from the electroetched areas. Depth profile data indicated that the major etching action (marking thickness) of the electroetchants penetrated to a depth of approximately 200 nm. Trace amounts of chlorine were present primarily within the first 65 nm of the marked surface. Comparison of the solvent rinsing sequences revealed that the most effective cleaning process included a degreaser, such as perchloroethylene, followed by a polar solvent, such as alcohol. Evaluation of the use of an abrasive cleaner on the electroetched areas indicates that this process removed residual contaminants, increased mark legibility and did not introduce significant residuals from the abrading material or cause significant surface damage.

  11. Optimal design of active spreading systems to remediate sorbing groundwater contaminants in situ.

    PubMed

    Piscopo, Amy N; Neupauer, Roseanna M; Kasprzyk, Joseph R

    2016-07-01

    The effectiveness of in situ remediation to treat contaminated aquifers is limited by the degree of contact between the injected treatment chemical and the groundwater contaminant. In this study, candidate designs that actively spread the treatment chemical into the contaminant are generated using a multi-objective evolutionary algorithm. Design parameters pertaining to the amount of treatment chemical and the duration and rate of its injection are optimized according to objectives established for the remediation - maximizing contaminant degradation while minimizing energy and material requirements. Because groundwater contaminants have different reaction and sorption properties that influence their ability to be degraded with in situ remediation, optimization was conducted for six different combinations of reaction rate coefficients and sorption rates constants to represent remediation of the common groundwater contaminants, trichloroethene, tetrachloroethene, and toluene, using the treatment chemical, permanganate. Results indicate that active spreading for contaminants with low reaction rate coefficients should be conducted by using greater amounts of treatment chemical mass and longer injection durations relative to contaminants with high reaction rate coefficients. For contaminants with slow sorption or contaminants in heterogeneous aquifers, two different design strategies are acceptable - one that injects high concentrations of treatment chemical mass over a short duration or one that injects lower concentrations of treatment chemical mass over a long duration. Thus, decision-makers can select a strategy according to their preference for material or energy use. Finally, for scenarios with high ambient groundwater velocities, the injection rate used for active spreading should be high enough for the groundwater divide to encompass the entire contaminant plume. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Development and application of contamination technology for MSFC managed space systems

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The second annual report on the development and application of contamination technology for MSFC managed space systems covering the period from 10 Dec. 1992 to 10 Dec. 1993 is presented. During this time period, studies were concluded which proved that in-process corrosion protection is not required during Redesigned Solid Rocket Motor (RSRM) case processing. Also completed were a series of tests evaluating the effects of environmental exposure and contamination on 2219-T87 aluminum (Space Shuttle External Tank) OSEE response and bonding properties. Correlations were developed between OSEE response, contamination type/level, and primer adhesion. The results showed that the wet tape and water break free tests currently employed during ET processing may not detect bond affecting levels of some potential contaminants; however, the contaminants were detected with OSEE analysis. Finally, exposure/contamination studies were initiated with HP9-4-30 steel. HP9-4-30 was selected for evaluation because it represents a class of metals commom to MSFC managed space flight systems which are less prone to oxidation than D6AC steel or aluminum.

  13. Development and application of contamination technology for MSFC managed space systems

    NASA Astrophysics Data System (ADS)

    The second annual report on the development and application of contamination technology for MSFC managed space systems covering the period from 10 Dec. 1992 to 10 Dec. 1993 is presented. During this time period, studies were concluded which proved that in-process corrosion protection is not required during Redesigned Solid Rocket Motor (RSRM) case processing. Also completed were a series of tests evaluating the effects of environmental exposure and contamination on 2219-T87 aluminum (Space Shuttle External Tank) OSEE response and bonding properties. Correlations were developed between OSEE response, contamination type/level, and primer adhesion. The results showed that the wet tape and water break free tests currently employed during ET processing may not detect bond affecting levels of some potential contaminants; however, the contaminants were detected with OSEE analysis. Finally, exposure/contamination studies were initiated with HP9-4-30 steel. HP9-4-30 was selected for evaluation because it represents a class of metals commom to MSFC managed space flight systems which are less prone to oxidation than D6AC steel or aluminum.

  14. Influencing factors on particle-bound contaminant transport in the Elbe estuary

    NASA Astrophysics Data System (ADS)

    Kleisinger, Carmen; Haase, Holger; Schubert, Birgit

    2016-04-01

    Particulate matter, i.e. suspended particulate matter and sediments in rivers and estuaries, often are contaminated with trace metals and selected organic contaminants and are mainly associated with fine-grained fractions. Transport processes and fate of particles in estuaries are influenced by several factors, e.g. freshwater discharge, tide, flow velocity and dredging activities (Kappenberg et al., 2007). Understanding the transport processes in estuaries may help to achieve the objectives of the Water Framework Directive and the Marine Strategy Framework Directive. The German Federal Institute of Hydrology (BfG) operates for more than 20 years five monitoring sites in the Elbe estuary in order to monitor the development of particle-bound contaminant concentrations over time and to understand their transport mechanisms. Results of the monitoring revealed freshwater discharge as an important influencing factor on the transport of contaminated particulate matter (Ackermann et al., 2007). The bidirectional transport of marine and fluvial water and particulate matter in estuaries results in a turbidity zone where large amounts of particulate matter are temporarily retained and thus in a delayed transport of particulate matter towards the sea. The extent and the location of the turbidity zone as well as the ratio of highly contaminated fluvial and less contaminated marine sediments at a given location are mainly influenced by the freshwater discharge (Kowalewska et al., 2011). Furthermore, at high freshwater discharge conditions the highly contaminated particulate matter from fluvial origin are transported downstream the estuary, whereas at low freshwater discharges, upstream transport of less contaminated marine sediments prevails. Hence, residence times of particulate matter in the estuary are difficult to estimate. Furthermore, sedimentation areas with flow reduced conditions, e.g. wadden areas or branches of the Elbe estuary, may act as sinks for particle bound

  15. Bio-objects and the media: the role of communication in bio-objectification processes

    PubMed Central

    Maeseele, Pieter; Allgaier, Joachim; Martinelli, Lucia

    2013-01-01

    The representation of biological innovations in and through communication and media practices is vital for understanding the nature of “bio-objects” and the process we call “bio-objectification.” This paper discusses two ideal-typical analytical approaches based on different underlying communication models, ie, the traditional (science- and media-centered) and media sociological (a multi-layered process involving various social actors in defining the meanings of scientific and technological developments) approach. In this analysis, the latter is not only found to be the most promising approach for understanding the circulation, (re)production, and (re)configuration of meanings of bio-objects, but also to interpret the relationship between media and science. On the basis of a few selected examples, this paper highlights how media function as a primary arena for the (re)production and (re)configuration of scientific and biomedical information with regards to bio-objects in the public sphere in general, and toward decision-makers, interest groups, and the public in specific. PMID:23771763

  16. TRACKING FECAL CONTAMINATION WITH BACTEROIDALES MOLECULAR MARKERS: AN ANALYSIS OF THE DYNAMICS OF FECAL CONTAMINATION IN THE TILLAMOOK BASIN, OREGON

    EPA Science Inventory

    Although amplification of source-specific molecular markers from Bacteroidales fecal bacteria can identify several different kinds of fecal contamination in water, it remains unclear how this technique relates to fecal indicator measurements in natural waters. The objectives of t...

  17. Objects of attention, objects of perception.

    PubMed

    Avrahami, J

    1999-11-01

    Four experiments were conducted, to explore the notion of objects in perception. Taking as a starting point the effects of display content on rapid attention transfer and manipulating curvature, closure, and processing time, a link between objects of attention and objects of perception is proposed. In Experiment 1, a number of parallel, equally spaced, straight lines facilitated attention transfer along the lines, relative to transfer across the lines. In Experiment 2, with curved, closed-contour shapes, no "same-object" facilitation was observed. However, when a longer time interval was provided, in Experiment 3, a same-object advantage started to emerge. In Experiment 4, using the same curved shapes but in a non-speeded distance estimation task, a strong effect of objects was observed. It is argued that attention transfer is facilitated by line tracing but that line tracing is encouraged by objects.

  18. Bi-Objective Flexible Job-Shop Scheduling Problem Considering Energy Consumption under Stochastic Processing Times.

    PubMed

    Yang, Xin; Zeng, Zhenxiang; Wang, Ruidong; Sun, Xueshan

    2016-01-01

    This paper presents a novel method on the optimization of bi-objective Flexible Job-shop Scheduling Problem (FJSP) under stochastic processing times. The robust counterpart model and the Non-dominated Sorting Genetic Algorithm II (NSGA-II) are used to solve the bi-objective FJSP with consideration of the completion time and the total energy consumption under stochastic processing times. The case study on GM Corporation verifies that the NSGA-II used in this paper is effective and has advantages to solve the proposed model comparing with HPSO and PSO+SA. The idea and method of the paper can be generalized widely in the manufacturing industry, because it can reduce the energy consumption of the energy-intensive manufacturing enterprise with less investment when the new approach is applied in existing systems.

  19. Bi-Objective Flexible Job-Shop Scheduling Problem Considering Energy Consumption under Stochastic Processing Times

    PubMed Central

    Zeng, Zhenxiang; Wang, Ruidong; Sun, Xueshan

    2016-01-01

    This paper presents a novel method on the optimization of bi-objective Flexible Job-shop Scheduling Problem (FJSP) under stochastic processing times. The robust counterpart model and the Non-dominated Sorting Genetic Algorithm II (NSGA-II) are used to solve the bi-objective FJSP with consideration of the completion time and the total energy consumption under stochastic processing times. The case study on GM Corporation verifies that the NSGA-II used in this paper is effective and has advantages to solve the proposed model comparing with HPSO and PSO+SA. The idea and method of the paper can be generalized widely in the manufacturing industry, because it can reduce the energy consumption of the energy-intensive manufacturing enterprise with less investment when the new approach is applied in existing systems. PMID:27907163

  20. Contamination-Free Manufacturing: Tool Component Qualification, Verification and Correlation with Wafers

    NASA Astrophysics Data System (ADS)

    Tan, Samantha H.; Chen, Ning; Liu, Shi; Wang, Kefei

    2003-09-01

    As part of the semiconductor industry "contamination-free manufacturing" effort, significant emphasis has been placed on reducing potential sources of contamination from process equipment and process equipment components. Process tools contain process chambers and components that are exposed to the process environment or process chemistry and in some cases are in direct contact with production wafers. Any contamination from these sources must be controlled or eliminated in order to maintain high process yields, device performance, and device reliability. This paper discusses new nondestructive analytical methods for quantitative measurement of the cleanliness of metal, quartz, polysilicon and ceramic components that are used in process equipment tools. The goal of these new procedures is to measure the effectiveness of cleaning procedures and to verify whether a tool component part is sufficiently clean for installation and subsequent routine use in the manufacturing line. These procedures provide a reliable "qualification method" for tool component certification and also provide a routine quality control method for reliable operation of cleaning facilities. Cost advantages to wafer manufacturing include higher yields due to improved process cleanliness and elimination of yield loss and downtime resulting from the installation of "bad" components in process tools. We also discuss a representative example of wafer contamination having been linked to a specific process tool component.

  1. A lexicographic weighted Tchebycheff approach for multi-constrained multi-objective optimization of the surface grinding process

    NASA Astrophysics Data System (ADS)

    Khalilpourazari, Soheyl; Khalilpourazary, Saman

    2017-05-01

    In this article a multi-objective mathematical model is developed to minimize total time and cost while maximizing the production rate and surface finish quality in the grinding process. The model aims to determine optimal values of the decision variables considering process constraints. A lexicographic weighted Tchebycheff approach is developed to obtain efficient Pareto-optimal solutions of the problem in both rough and finished conditions. Utilizing a polyhedral branch-and-cut algorithm, the lexicographic weighted Tchebycheff model of the proposed multi-objective model is solved using GAMS software. The Pareto-optimal solutions provide a proper trade-off between conflicting objective functions which helps the decision maker to select the best values for the decision variables. Sensitivity analyses are performed to determine the effect of change in the grain size, grinding ratio, feed rate, labour cost per hour, length of workpiece, wheel diameter and downfeed of grinding parameters on each value of the objective function.

  2. Radioactive contamination of scintillators

    NASA Astrophysics Data System (ADS)

    Danevich, F. A.; Tretyak, V. I.

    2018-03-01

    Low counting experiments (search for double β decay and dark matter particles, measurements of neutrino fluxes from different sources, search for hypothetical nuclear and subnuclear processes, low background α, β, γ spectrometry) require extremely low background of a detector. Scintillators are widely used to search for rare events both as conventional scintillation detectors and as cryogenic scintillating bolometers. Radioactive contamination of a scintillation material plays a key role to reach low level of background. Origin and nature of radioactive contamination of scintillators, experimental methods and results are reviewed. A programme to develop radiopure crystal scintillators for low counting experiments is discussed briefly.

  3. Spatial assessment of soil contamination by heavy metals from informal electronic waste recycling in Agbogbloshie, Ghana

    PubMed Central

    Greve, Klaus; Atiemo, Sampson M.

    2016-01-01

    Objectives This study examined the spatial distribution and the extent of soil contamination by heavy metals resulting from primitive, unconventional informal electronic waste recycling in the Agbogbloshie e-waste processing site (AEPS) in Ghana. Methods A total of 132 samples were collected at 100 m intervals, with a handheld global position system used in taking the location data of the soil sample points. Observing all procedural and quality assurance measures, the samples were analyzed for barium (Ba), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn), using X-ray fluorescence. Using environmental risk indices of contamination factor and degree of contamination (Cdeg), we analyzed the individual contribution of each heavy metal contamination and the overall Cdeg. We further used geostatistical techniques of spatial autocorrelation and variability to examine spatial distribution and extent of heavy metal contamination. Results Results from soil analysis showed that heavy metal concentrations were significantly higher than the Canadian Environmental Protection Agency and Dutch environmental standards. In an increasing order, Pb>Cd>Hg>Cu>Zn>Cr>Co>Ba>Ni contributed significantly to the overall Cdeg. Contamination was highest in the main working areas of burning and dismantling sites, indicating the influence of recycling activities. Geostatistical analysis also revealed that heavy metal contamination spreads beyond the main working areas to residential, recreational, farming, and commercial areas. Conclusions Our results show that the studied heavy metals are ubiquitous within AEPS and the significantly high concentration of these metals reflect the contamination factor and Cdeg, indicating soil contamination in AEPS with the nine heavy metals studied. PMID:26987962

  4. Prohibited Contaminants in Dietary Supplements.

    PubMed

    Mathews, Neilson M

    With the increasing use of unregulated dietary supplements, athletes are at continued risk from adverse medical events and inadvertent doping. A review of Clinical Key, MEDLINE, and PubMed databases from 2012 to 2017 was performed using search terms, including dietary supplement, contamination, doping in athletes, inadvertent doping, and prohibited substances. The references of pertinent articles were reviewed for other relevant sources. Clinical review. Level 3. Poor manufacturing processes and intentional contamination with many banned substances continue to occur in dietary supplements sold in the United States. Certain sectors, such as weight loss and muscle-building supplements, pose a greater threat because they are more likely to be contaminated. Athletes will continue to be at risk for adverse events and failed doping tests due to contaminated dietary supplements until legislation changes how they are regulated. In the interim, there are several steps that can be taken to mitigate this risk, including improved education of medical staff and athletes and use of third party-certified products.

  5. GROUND WATER SAMPLING FOR VERTICAL PROFILING OF CONTAMINANTS

    EPA Science Inventory

    Accurate delineation of plume boundaries and vertical contaminant distribution are necessary in order to adequately characterize waste sites and determine remedial strategies to be employed. However, it is important to consider the sampling objectives, sampling methods, and sampl...

  6. Stochastic, compartmental, and dynamic modeling of cross-contamination during mechanical smearing of cheeses.

    PubMed

    Aziza, Fanny; Mettler, Eric; Daudin, Jean-Jacques; Sanaa, Moez

    2006-06-01

    Cheese smearing is a complex process and the potential for cross-contamination with pathogenic or undesirable microorganisms is critical. During ripening, cheeses are salted and washed with brine to develop flavor and remove molds that could develop on the surfaces. Considering the potential for cross-contamination of this process in quantitative risk assessments could contribute to a better understanding of this phenomenon and, eventually, improve its control. The purpose of this article is to model the cross-contamination of smear-ripened cheeses due to the smearing operation under industrial conditions. A compartmental, dynamic, and stochastic model is proposed for mechanical brush smearing. This model has been developed to describe the exchange of microorganisms between compartments. Based on the analytical solution of the model equations and on experimental data collected with an industrial smearing machine, we assessed the values of the transfer parameters of the model. Monte Carlo simulations, using the distributions of transfer parameters, provide the final number of contaminated products in a batch and their final level of contamination for a given scenario taking into account the initial number of contaminated cheeses of the batch and their contaminant load. Based on analytical results, the model provides indicators for smearing efficiency and propensity of the process for cross-contamination. Unlike traditional approaches in mechanistic models, our approach captures the variability and uncertainty inherent in the process and the experimental data. More generally, this model could represent a generic base to use in modeling similar processes prone to cross-contamination.

  7. Feed gas contaminant removal in ion transport membrane systems

    DOEpatents

    Underwood, Richard Paul [Allentown, PA; Makitka, III, Alexander; Carolan, Michael Francis [Allentown, PA

    2012-04-03

    An oxygen ion transport membrane process wherein a heated oxygen-containing gas having one or more contaminants is contacted with a reactive solid material to remove the one or more contaminants. The reactive solid material is provided as a deposit on a support. The one or more contaminant compounds in the heated oxygen-containing gas react with the reactive solid material. The contaminant-depleted oxygen-containing gas is contacted with a membrane, and oxygen is transported through the membrane to provide transported oxygen.

  8. Optical derotator alignment using image-processing algorithm for tracking laser vibrometer measurements of rotating objects.

    PubMed

    Khalil, Hossam; Kim, Dongkyu; Jo, Youngjoon; Park, Kyihwan

    2017-06-01

    An optical component called a Dove prism is used to rotate the laser beam of a laser-scanning vibrometer (LSV). This is called a derotator and is used for measuring the vibration of rotating objects. The main advantage of a derotator is that it works independently from an LSV. However, this device requires very specific alignment, in which the axis of the Dove prism must coincide with the rotational axis of the object. If the derotator is misaligned with the rotating object, the results of the vibration measurement are imprecise, owing to the alteration of the laser beam on the surface of the rotating object. In this study, a method is proposed for aligning a derotator with a rotating object through an image-processing algorithm that obtains the trajectory of a landmark attached to the object. After the trajectory of the landmark is mathematically modeled, the amount of derotator misalignment with respect to the object is calculated. The accuracy of the proposed method for aligning the derotator with the rotating object is experimentally tested.

  9. Process Development for Spray Drying a Value-Added Extract from Aflatoxin Contaminated Peanut Meal

    USDA-ARS?s Scientific Manuscript database

    Peanut meal, the primary byproduct of commercial oil crushing operations, is an excellent source of protein though aflatoxin contamination often limits applications for this material. Naturally aflatoxin contaminated (59 ppb) peanut meal dispersions were adjusted to pH 2.1 or pH 9.1, with or without...

  10. In situ retreival of contaminants or other substances using a barrier system and leaching solutions and components, processes and methods relating thereto

    DOEpatents

    Nickelson, Reva A.; Walsh, Stephanie; Richardson, John G.; Dick, John R.; Sloan, Paul A.

    2005-06-28

    Processes and methods relating to treating contaminants and collecting desired substances from a zone of interest using subterranean collection and containment barriers. Tubular casings having interlock structures are used to create subterranean barriers for containing and treating buried waste and its effluents. The subterranean barrier includes an effluent collection system. Treatment solutions provided to the zone of interest pass therethrough and are collected by the barrier and treated or recovered, allowing on-site remediation. Barrier components may be used to in the treatment by collecting or removing contaminants or other materials from the zone of interest.

  11. Copper removal from contaminated soils by soil washing process using camellian-derived saponin

    NASA Astrophysics Data System (ADS)

    Reyes, Arturo; Fernanda Campos, Maria; Videla, Álvaro; Letelier, María Victoria; Fuentes, Bárbara

    2015-04-01

    Antofagasta Region in North of Chile has been the main copper producer district in the world. As a consequence of a lack of mining closure regulation, a large number of abandon small-to-medium size metal-contaminated sites have been identified in the last survey performed by the Chilean Government. Therefore, more research development on sustainable reclamation technologies must be made in this extreme arid-dry zone. The objective of this study is to test the effectiveness of soil remediation by washing contaminated soil using camellian-derived saponin for the mobilization of copper. Soil samples were taken from an abandoned copper mine site located at 30 km North Antofagasta city. They were dried and sieved at 75 µm for physico-chemical characterization. A commercial saponin extracted from camellias seed was used as biosurfactant. The soil used contains 67.4 % sand, 26.3 % silt and 6.3 % clay. The soil is highly saline (electric conductivity, 61 mScm-1), with low organic matter content (0.41%), with pH 7.30, and a high copper concentration (2200 mg Kg-1 soil). According to the sequential extraction procedure of the whole soil, copper species are mainly as exchangeable fraction (608.2 mg Kg-1 soil) and reducible fraction (787.3 mg Kg-1 soil), whereas the oxidizable and residual fractions are around 205.7 and 598.8 mg Kg-1 soil, respectively. Soil particles under 75 µm contain higher copper concentrations (1242 mg Kg-1 soil) than the particle fraction over 75 µm (912 mg Kg-1 soil). All washing assays were conducted in triplicate using a standard batch technique with and without pH adjustment. The testing protocols includes evaluation of four solid to liquid ratio (0.5:50; 1.0:50; 2.0:50, and 5.0:50) and three saponin concentrations (0, 1, and 4 mg L-1). After shaking (24 h, 20±1 °C) and subsequently filtration (0.45 µm), the supernatants were analyzed for copper and pH. The removal efficiencies of copper by saponin solutions were calculated in according to the

  12. Contamination removal using various solvents and methodologies

    NASA Technical Reports Server (NTRS)

    Jeppsen, J. C.

    1989-01-01

    Critical and non-critical bonding surfaces must be kept free of contamination that may cause potential unbonds. For example, an aft-dome section of a redesigned solid rocket motor that had been contaminated with hydraulic oil did not appear to be sufficiently cleaned when inspected by the optically stimulated electron emission process (Con Scan) after it had been cleaned using a hand double wipe cleaning method. As a result, current and new cleaning methodologies as well as solvent capability in removing various contaminant materials were reviewed and testing was performed. Bonding studies were also done to verify that the cleaning methods used in removing contaminants provide an acceptable bonding surface. The removal of contaminants from a metal surface and the strength of subsequent bonds were tested using the Martin Marietta and double-wipe cleaning methods. Results are reported.

  13. Prediction processes during multiple object tracking (MOT): involvement of dorsal and ventral premotor cortices

    PubMed Central

    Atmaca, Silke; Stadler, Waltraud; Keitel, Anne; Ott, Derek V M; Lepsien, Jöran; Prinz, Wolfgang

    2013-01-01

    Background The multiple object tracking (MOT) paradigm is a cognitive task that requires parallel tracking of several identical, moving objects following nongoal-directed, arbitrary motion trajectories. Aims The current study aimed to investigate the employment of prediction processes during MOT. As an indicator for the involvement of prediction processes, we targeted the human premotor cortex (PM). The PM has been repeatedly implicated to serve the internal modeling of future actions and action effects, as well as purely perceptual events, by means of predictive feedforward functions. Materials and methods Using functional magnetic resonance imaging (fMRI), BOLD activations recorded during MOT were contrasted with those recorded during the execution of a cognitive control task that used an identical stimulus display and demanded similar attentional load. A particular effort was made to identify and exclude previously found activation in the PM-adjacent frontal eye fields (FEF). Results We replicated prior results, revealing occipitotemporal, parietal, and frontal areas to be engaged in MOT. Discussion The activation in frontal areas is interpreted to originate from dorsal and ventral premotor cortices. The results are discussed in light of our assumption that MOT engages prediction processes. Conclusion We propose that our results provide first clues that MOT does not only involve visuospatial perception and attention processes, but prediction processes as well. PMID:24363971

  14. Gas Chromatography-Mass Spectrometry for Metabolite Profiling of Japanese Black Cattle Naturally Contaminated with Zearalenone and Sterigmatocystin.

    PubMed

    Toda, Katsuki; Kokushi, Emiko; Uno, Seiichi; Shiiba, Ayaka; Hasunuma, Hiroshi; Fushimi, Yasuo; Wijayagunawardane, Missaka P B; Zhang, Chunhua; Yamato, Osamu; Taniguchi, Masayasu; Fink-Gremmels, Johanna; Takagi, Mitsuhiro

    2017-09-21

    The objective of this study was to evaluate the metabolic profile of cattle fed with or without zearalenone (ZEN) and sterigmatocystin (STC)-contaminated diets using a gas chromatography-mass spectrometry metabolomics approach. Urinary samples were collected from individual animals ( n = 6 per herd) from fattening female Japanese Black (JB) cattle herds (23 months old, 550-600 kg). Herd 1 had persistently high urinary ZEN and STC concentrations due to the presence of contaminated rice straw. Herd 2, the second female JB fattening herd (23 months old, 550-600 kg), received the same dietary feed as Herd 1, with non-contaminated rice straw. Urine samples were collected from Herd 1, two weeks after the contaminated rice straw was replaced with uncontaminated rice straw (Herd 1N). Identified metabolites were subjected to principal component analysis (PCA) and ANOVA. The PCA revealed that the effects on cattle metabolites depended on ZEN and STC concentrations. The contamination of cattle feed with multiple mycotoxins may alter systemic metabolic processes, including metabolites associated with ATP generation, amino acids, glycine-conjugates, organic acids, and purine bases. The results obtained from Herd 1N indicate that a two-week remedy period was not sufficient to improve the levels of urinary metabolites, suggesting that chronic contamination with mycotoxins may have long-term harmful effects on the systemic metabolism of cattle.

  15. Gas Chromatography-Mass Spectrometry for Metabolite Profiling of Japanese Black Cattle Naturally Contaminated with Zearalenone and Sterigmatocystin

    PubMed Central

    Toda, Katsuki; Kokushi, Emiko; Uno, Seiichi; Shiiba, Ayaka; Hasunuma, Hiroshi; Fushimi, Yasuo; Wijayagunawardane, Missaka P. B.; Zhang, Chunhua; Yamato, Osamu; Taniguchi, Masayasu; Fink-Gremmels, Johanna; Takagi, Mitsuhiro

    2017-01-01

    The objective of this study was to evaluate the metabolic profile of cattle fed with or without zearalenone (ZEN) and sterigmatocystin (STC)-contaminated diets using a gas chromatography-mass spectrometry metabolomics approach. Urinary samples were collected from individual animals (n = 6 per herd) from fattening female Japanese Black (JB) cattle herds (23 months old, 550–600 kg). Herd 1 had persistently high urinary ZEN and STC concentrations due to the presence of contaminated rice straw. Herd 2, the second female JB fattening herd (23 months old, 550–600 kg), received the same dietary feed as Herd 1, with non-contaminated rice straw. Urine samples were collected from Herd 1, two weeks after the contaminated rice straw was replaced with uncontaminated rice straw (Herd 1N). Identified metabolites were subjected to principal component analysis (PCA) and ANOVA. The PCA revealed that the effects on cattle metabolites depended on ZEN and STC concentrations. The contamination of cattle feed with multiple mycotoxins may alter systemic metabolic processes, including metabolites associated with ATP generation, amino acids, glycine-conjugates, organic acids, and purine bases. The results obtained from Herd 1N indicate that a two-week remedy period was not sufficient to improve the levels of urinary metabolites, suggesting that chronic contamination with mycotoxins may have long-term harmful effects on the systemic metabolism of cattle. PMID:28934162

  16. Multi-objective Optimization of Pulsed Gas Metal Arc Welding Process Using Neuro NSGA-II

    NASA Astrophysics Data System (ADS)

    Pal, Kamal; Pal, Surjya K.

    2018-05-01

    Weld quality is a critical issue in fabrication industries where products are custom-designed. Multi-objective optimization results number of solutions in the pareto-optimal front. Mathematical regression model based optimization methods are often found to be inadequate for highly non-linear arc welding processes. Thus, various global evolutionary approaches like artificial neural network, genetic algorithm (GA) have been developed. The present work attempts with elitist non-dominated sorting GA (NSGA-II) for optimization of pulsed gas metal arc welding process using back propagation neural network (BPNN) based weld quality feature models. The primary objective to maintain butt joint weld quality is the maximization of tensile strength with minimum plate distortion. BPNN has been used to compute the fitness of each solution after adequate training, whereas NSGA-II algorithm generates the optimum solutions for two conflicting objectives. Welding experiments have been conducted on low carbon steel using response surface methodology. The pareto-optimal front with three ranked solutions after 20th generations was considered as the best without further improvement. The joint strength as well as transverse shrinkage was found to be drastically improved over the design of experimental results as per validated pareto-optimal solutions obtained.

  17. Does long-term object priming depend on the explicit detection of object identity at encoding?

    PubMed Central

    Gomes, Carlos A.; Mayes, Andrew

    2015-01-01

    It is currently unclear whether objects have to be explicitly identified at encoding for reliable behavioral long-term object priming to occur. We conducted two experiments that investigated long-term object and non-object priming using a selective-attention encoding manipulation that reduces explicit object identification. In Experiment 1, participants either counted dots flashed within an object picture (shallow encoding) or engaged in an animacy task (deep encoding) at study, whereas, at test, they performed an object-decision task. Priming, as measured by reaction times (RTs), was observed for both types of encoding, and was of equivalent magnitude. In Experiment 2, non-object priming (faster RTs for studied relative to unstudied non-objects) was also obtained under the same selective-attention encoding manipulation as in Experiment 1, and the magnitude of the priming effect was equivalent between experiments. In contrast, we observed a linear decrement in recognition memory accuracy across conditions (deep encoding of Experiment 1 > shallow encoding Experiment 1 > shallow encoding of Experiment 2), suggesting that priming was not contaminated by explicit memory strategies. We argue that our results are more consistent with the identification/production framework than the perceptual/conceptual distinction, and we conclude that priming of pictures largely ignored at encoding can be subserved by the automatic retrieval of two types of instances: one at the motor level and another at an object-decision level. PMID:25852594

  18. Pilot-scale ISCO treatment of a MtBE contaminated site using a Fenton-like process.

    PubMed

    Innocenti, Ivan; Verginelli, Iason; Massetti, Felicia; Piscitelli, Daniela; Gavasci, Renato; Baciocchi, Renato

    2014-07-01

    This paper reports about a pilot-scale feasibility study of In-Situ Chemical Oxidation (ISCO) application based on the use of stabilized hydrogen peroxide catalyzed by naturally occurring iron minerals (Fenton-like process) to a site formerly used for fuel storage and contaminated by MtBE. The stratigraphy of the site consists of a 2-3 meter backfill layer followed by a 3-4 meter low permeability layer, that confines the main aquifer, affected by a widespread MtBE groundwater contamination with concentrations up to 4000 μg/L, also with the presence of petroleum hydrocarbons. The design of the pilot-scale treatment was based on the integration of the results obtained from experimental and numerical modeling accounting for the technological and regulatory constraints existing in the site to be remediated. In particular, lab-scale batch tests allowed the selection of the most suitable operating conditions. Then, this information was implemented in a numerical software that allowed to define the injection and monitoring layout and to predict the propagation of hydrogen peroxide in groundwater. The pilot-scale field results confirmed the effective propagation of hydrogen peroxide in nearly all the target area (around 75 m(2) using 3 injection wells). As far as the MtBE removal is concerned, the ISCO application allowed us to meet the clean-up goals in an area of 60 m(2). Besides, the concentration of TBA, i.e. a potential by-product of MtBE oxidation, was actually reduced after the ISCO treatment. The results of the pilot-scale test suggest that ISCO may be a suitable option for the remediation of the groundwater plume contaminated by MtBE, providing the background data for the design and cost-estimate of the full-scale treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. In Situ Treatment Train for Remediation of Perfluoroalkyl Contaminated Groundwater: In Situ Chemical Oxidation of Sorbed Contaminants (ISCO SC)

    DTIC Science & Technology

    2017-07-18

    FINAL REPORT In Situ Treatment Train for Remediation of Perfluoroalkyl Contaminated Groundwater: In Situ Chemical Oxidation of Sorbed... Contaminants (ISCO-SC) SERDP Project ER-2423 OCTOBER 2017 M. Crimi, T. Holsen, C. Bellona Clarkson University C. Divine Arcadis E...Defense. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer , or otherwise, does not

  20. Effects of pollution and bioleaching process on the mineral composition and texture of contaminated sediments of the Reconquista River, Argentina.

    PubMed

    Tufo, Ana E; Porzionato, Natalia F; Curutchet, Gustavo

    2017-10-31

    In this work, we report on the structural and textural changes in fluvial sediments from Reconquista River´s basin, Argentina, due to processes of contamination with organic matter and remediation by bioleaching. The original uncontaminated matrix showed quartz and phyllosilicates as the main primary mineral constituents and phases of interstratified illite-montmorillonite as secondary minerals. It was found that in contaminated sediments, the presence of organic matter in high concentration causes changes in the specific surface area, particle size distribution, size and distribution of micro and meso, and the morphology of the particles with respect to the uncontaminated sediment. After the bioleaching process, there were even greater changes in these parameters at the level of secondary mineral formation and the appearance of nanoparticles, which were confirmed by SEM. Especially, we found the formation of cementing substances such as gypsum, promoting the formation of macroporous aggregates and the weathering of clay components. Our results indicate that the bioleaching not only decreases the content of metals but also favors the formation of a material with improved characteristics for potential future applications.

  1. Subsurface Contamination Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y. Yuan

    There are two objectives of this report, ''Subsurface Contamination Control''. The first is to provide a technical basis for recommending limiting radioactive contamination levels (LRCL) on the external surfaces of waste packages (WP) for acceptance into the subsurface repository. The second is to provide an evaluation of the magnitude of potential releases from a defective WP and the detectability of the released contents. The technical basis for deriving LRCL has been established in ''Retrieval Equipment and Strategy for Wp on Pallet'' (CRWMS M and O 2000g, 6.3.1). This report updates the derivation by incorporating the latest design information of themore » subsurface repository for site recommendation. The derived LRCL on the external surface of WPs, therefore, supercede that described in CRWMS M and O 2000g. The derived LRCL represent the average concentrations of contamination on the external surfaces of each WP that must not be exceeded before the WP is to be transported to the subsurface facility for emplacement. The evaluation of potential releases is necessary to control the potential contamination of the subsurface repository and to detect prematurely failed WPs. The detection of failed WPs is required in order to provide reasonable assurance that the integrity of each WP is intact prior to MGR closure. An emplaced WP may become breached due to manufacturing defects or improper weld combined with failure to detect the defect, by corrosion, or by mechanical penetration due to accidents or rockfall conditions. The breached WP may release its gaseous and volatile radionuclide content to the subsurface environment and result in contaminating the subsurface facility. The scope of this analysis is limited to radioactive contaminants resulting from breached WPs during the preclosure period of the subsurface repository. This report: (1) documents a method for deriving LRCL on the external surfaces of WP for acceptance into the subsurface repository; (2

  2. Analysis of microbiological contamination in mixed pressed ham and cooked sausage in Korea.

    PubMed

    Park, Myoung-Su; Wang, Jun; Park, Joong-Hyun; Forghani, Fereidoun; Moon, Jin-San; Oh, Deog-Hwan

    2014-03-01

    The objective of this study was to investigate the microbial contamination levels (aerobic bacteria plate count [APC], coliforms, Escherichia coli, Staphylococcus aureus, and Listeria monocytogenes) in mixed pressed ham and cooked sausage. A total of 180 samples were collected from factories with and without hazard analysis critical control point (HACCP) systems at four steps: after chopping (AC), after mixing (AM), cooling after the first heating process, and cooling after the second heating process. For ham, APCs and coliform and E. coli counts increased when ingredients were added to the meat at the AC step. Final product APC was 1.63 to 1.85 log CFU/g, and coliforms and E. coli were not detected. S. aureus and L. monocytogenes were found in nine (15.0%) and six (10.0%) samples, respectively, but only at the AC and AM steps and not in the final product. Sausage results were similar to those for ham. The final product APC was 1.52 to 3.85 log CFU/g, and coliforms and E. coli were not detected. S. aureus and L. monocytogenes were found in 29 (24.2%) and 25 (20.8%) samples at the AC and AM steps, respectively, but not in the final product. These results indicate that the temperature and time of the first and second heating are of extreme importance to ensure the microbiological safety of the final product regardless of whether a HACCP system is in place. Microorganism contamination must be monitored regularly and regulations regarding sanitization during processing should be improved. Education regarding employee personal hygiene, environmental hygiene, prevention of cross-contamination, ingredient control, and step-by-step process control is needed to reduce the risk of food poisoning.

  3. The Processing of Subject-Object Ambiguities in Native and Near-Native Mexican Spanish

    ERIC Educational Resources Information Center

    Jegerski, Jill

    2012-01-01

    This self-paced reading study first tested the prediction that the garden path effect previously observed during the processing of subject-object ambiguities in native English would not obtain in a null subject language like Spanish. The investigation then further explored whether the effect would be evident among near-native readers of Spanish…

  4. Ion Exchange and Adsorption of Inorganic Contaminants

    EPA Science Inventory

    In the first part of the chapter, the fundamentals of ion exchange and adsorption processes are explained, with the goal of demonstrating how these principles influence process design for inorganic contaminant removal. In the second part, ion exchange and adsorption processes th...

  5. Phytoremediation of soils contaminated by cadmium

    NASA Astrophysics Data System (ADS)

    Watai, H.; Miyazaki, T.; Fujikawa, T.; Mizoguchi, M.

    2004-12-01

    Phytoremediation is a technique to clean up soils contaminated with heavy metals. Advantages of this method are that (1) This technique is suitable to cleanup soils slightly contaminated with heavy metals in relatively wide area. (2) The expense for clean up is lower than civil engineering techniques. (3) This method can remove heavy metals fundamentally from contaminated. (4) The heavy metals are able to recycle by ashing of plants. Many researches have been done on the phytoremediation up to now, but almost all these researches were devoted to clarify the phytoremediation from the view point of plants themselves. However, few efforts have been devoted to analyze the migrations of heavy metals in soils during the phytoremediation process. The objective of this study is to clarify the features of Cd migration when plant roots are absorbing Cd from the ambient soils. Especially, we focused on finding the Cd migration pattern by changing the soil condition such as plant growing periods, planting densities, and the initial Cd concentration in soils. We planted sunflowers in columns filled with Cd contaminated soils because sunflower is a well-known hyperaccumulator of Cd from soils. By cutting the shoots of plants at the soil surface, and by keeping the plant roots in the soils without disturbance, the Cd concentrations, moisture contents, pH distributions, EC distributions, and dry weight of residual roots in the soils were carefully analyzed. The experimental results showed that (1)The growth of the planted sunflowers were suffered by applying of Cd. (2)The decrease of suction was affected by water uptake by roots at the depth from 0 to 5 cm. Water contents with plants in soils decrease more than without plants. (3)Cd adsorption by roots was predominant within 5cm from soil surface. In addition, it was also shown that there was an optimal Cd concentration where Cd is most effectively adsorbed by the plant. In this experiment we found that 40 to 60 mg kg-1 was the

  6. 3-D Interpolation in Object Perception: Evidence from an Objective Performance Paradigm

    ERIC Educational Resources Information Center

    Kellman, Philip J.; Garrigan, Patrick; Shipley, Thomas F.; Yin, Carol; Machado, Liana

    2005-01-01

    Object perception requires interpolation processes that connect visible regions despite spatial gaps. Some research has suggested that interpolation may be a 3-D process, but objective performance data and evidence about the conditions leading to interpolation are needed. The authors developed an objective performance paradigm for testing 3-D…

  7. Pilot-scale UV/H2O2 study for emerging organic contaminants decomposition.

    PubMed

    Chu, Xiaona; Xiao, Yan; Hu, Jiangyong; Quek, Elaine; Xie, Rongjin; Pang, Thomas; Xing, Yongjie

    2016-03-01

    Human behaviors including consumption of drugs and use of personal care products, climate change, increased international travel, and the advent of water reclamation for direct potable use have led to the introduction of significant amounts of emerging organic contaminants into the aqueous environment. In addition, the lower detection limits associated with improved scientific methods of chemical analysis have resulted in a recent increase in documented incidences of these contaminants which previously were not routinely monitored in water. Such contaminants may cause known or suspected adverse ecological and/or human health effects at very low concentrations. Conventional drinking water treatment processes may not effectively remove these organic contaminants. Advanced oxidation process (AOP) is a promising treatment process for the removal of most of these emerging organic contaminants, and has been accepted worldwide as a suitable treatment process. In this study, different groups of emerging contaminants were studied for decomposition efficiency using pilot-scale UV/H2O2 oxidation setup, including EDCs, PPCPs, taste and odor (T&O), and perfluorinated compounds. Results found that MP UV/H2O2 AOP was efficient in removing all the selected contaminants except perfluorinated compounds. Study of the kinetics of the process showed that both light absorption and quantum yield of each compound affected the decomposition performance. Analysis of water quality parameters of the treated water indicated that the outcome of both UV photolysis and UV/H2O2 processes can be affected by changes in the feed water quality.

  8. Contaminated Sediments/Remedy Effectiveness 3.6.1.3

    EPA Science Inventory

    The main objective of this research effort is to provide stakeholders with biological, chemical, and physical tools, indicators and approaches to more effectively assess and manage contaminated sites, under the Great Lakes Legacy Act (GLLA), Great Lakes Restoration Initiative (GL...

  9. Assessing groundwater vulnerability to agrichemical contamination in the Midwest US

    USGS Publications Warehouse

    Burkart, M.R.; Kolpin, D.W.; James, D.E.

    1999-01-01

    Agrichemicals (herbicides and nitrate) are significant sources of diffuse pollution to groundwater. Indirect methods are needed to assess the potential for groundwater contamination by diffuse sources because groundwater monitoring is too costly to adequately define the geographic extent of contamination at a regional or national scale. This paper presents examples of the application of statistical, overlay and index, and process-based modeling methods for groundwater vulnerability assessments to a variety of data from the Midwest U.S. The principles for vulnerability assessment include both intrinsic (pedologic, climatologic, and hydrogeologic factors) and specific (contaminant and other anthropogenic factors) vulnerability of a location. Statistical methods use the frequency of contaminant occurrence, contaminant concentration, or contamination probability as a response variable. Statistical assessments are useful for defining the relations among explanatory and response variables whether they define intrinsic or specific vulnerability. Multivariate statistical analyses are useful for ranking variables critical to estimating water quality responses of interest. Overlay and index methods involve intersecting maps of intrinsic and specific vulnerability properties and indexing the variables by applying appropriate weights. Deterministic models use process-based equations to simulate contaminant transport and are distinguished from the other methods in their potential to predict contaminant transport in both space and time. An example of a one-dimensional leaching model linked to a geographic information system (GIS) to define a regional metamodel for contamination in the Midwest is included.

  10. Influences of climate on aflatoxin producing fungi and aflatoxin contamination.

    PubMed

    Cotty, Peter J; Jaime-Garcia, Ramon

    2007-10-20

    Aflatoxins are potent mycotoxins that cause developmental and immune system suppression, cancer, and death. As a result of regulations intended to reduce human exposure, crop contamination with aflatoxins causes significant economic loss for producers, marketers, and processors of diverse susceptible crops. Aflatoxin contamination occurs when specific fungi in the genus Aspergillus infect crops. Many industries frequently affected by aflatoxin contamination know from experience and anecdote that fluctuations in climate impact the extent of contamination. Climate influences contamination, in part, by direct effects on the causative fungi. As climate shifts, so do the complex communities of aflatoxin-producing fungi. This includes changes in the quantity of aflatoxin-producers in the environment and alterations to fungal community structure. Fluctuations in climate also influence predisposition of hosts to contamination by altering crop development and by affecting insects that create wounds on which aflatoxin-producers proliferate. Aflatoxin contamination is prevalent both in warm humid climates and in irrigated hot deserts. In temperate regions, contamination may be severe during drought. The contamination process is frequently broken down into two phases with the first phase occurring on the developing crop and the second phase affecting the crop after maturation. Rain and temperature influence the phases differently with dry, hot conditions favoring the first and warm, wet conditions favoring the second. Contamination varies with climate both temporally and spatially. Geostatistics and multiple regression analyses have shed light on influences of weather on contamination. Geostatistical analyses have been used to identify recurrent contamination patterns and to match these with environmental variables. In the process environmental conditions with the greatest impact on contamination are identified. Likewise, multiple regression analyses allow ranking of

  11. Color image analysis of contaminants and bacteria transport in porous media

    NASA Astrophysics Data System (ADS)

    Rashidi, Mehdi; Dehmeshki, Jamshid; Daemi, Mohammad F.; Cole, Larry; Dickenson, Eric

    1997-10-01

    Transport of contaminants and bacteria in aqueous heterogeneous saturated porous systems have been studied experimentally using a novel fluorescent microscopic imaging technique. The approach involves color visualization and quantification of bacterium and contaminant distributions within a transparent porous column. By introducing stained bacteria and an organic dye as a contaminant into the column and illuminating the porous regions with a planar sheet of laser beam, contaminant and bacterial transport processes through the porous medium can be observed and measured microscopically. A computer controlled color CCD camera is used to record the fluorescent images as a function of time. These images are recorded by a frame accurate high resolution VCR and are then analyzed using a color image analysis code written in our laboratories. The color images are digitized this way and simultaneous concentration and velocity distributions of both contaminant and bacterium are evaluated as a function of time and pore characteristics. The approach provides a unique dynamic probe to observe these transport processes microscopically. These results are extremely valuable in in-situ bioremediation problems since microscopic particle-contaminant- bacterium interactions are the key to understanding and optimization of these processes.

  12. System and method for the identification of radiation in contaminated rooms

    DOEpatents

    Coleman, Jody Rustyn; Farfan, Eduardo B.

    2015-09-29

    Devices and methods for the characterization of areas of radiation in contaminated rooms are provided. One such device is a collimator with a collimator shield for reducing noise when measuring radiation. A position determination system is provided that may be used for obtaining position and orientation information of the detector in the contaminated room. A radiation analysis method is included that is capable of determining the amount of radiation intensity present at known locations within the contaminated room. Also, a visual illustration system is provided that may project images onto the physical objects, which may be walls, of the contaminated room in order to identify the location of radioactive materials for decontamination.

  13. An overview of the on-orbit contamination of the Long Duration Exposure Facility (LDEF)

    NASA Technical Reports Server (NTRS)

    Stuckey, W. K.

    1993-01-01

    Contamination that leads to degradation of critical surfaces becomes a vital design issue for many spacecraft programs. One of the processes that must be considered is the on-orbit accumulation of contaminants. The Long Duration Exposure Facility (LDEF) has presented an opportunity to examine the deposits on surfaces returned from orbit in order to help in understanding the deposition processes and the current models used to predict spacecraft contamination levels. The results from various investigators on the contamination of LDEF have implications for material selection, contamination models, and contamination control plans for the design of future spacecraft.

  14. Multi-objective optimization of a continuous bio-dissimilation process of glycerol to 1, 3-propanediol.

    PubMed

    Xu, Gongxian; Liu, Ying; Gao, Qunwang

    2016-02-10

    This paper deals with multi-objective optimization of continuous bio-dissimilation process of glycerol to 1, 3-propanediol. In order to maximize the production rate of 1, 3-propanediol, maximize the conversion rate of glycerol to 1, 3-propanediol, maximize the conversion rate of glycerol, and minimize the concentration of by-product ethanol, we first propose six new multi-objective optimization models that can simultaneously optimize any two of the four objectives above. Then these multi-objective optimization problems are solved by using the weighted-sum and normal-boundary intersection methods respectively. Both the Pareto filter algorithm and removal criteria are used to remove those non-Pareto optimal points obtained by the normal-boundary intersection method. The results show that the normal-boundary intersection method can successfully obtain the approximate Pareto optimal sets of all the proposed multi-objective optimization problems, while the weighted-sum approach cannot achieve the overall Pareto optimal solutions of some multi-objective problems. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Remediation technologies for heavy metal contaminated groundwater.

    PubMed

    Hashim, M A; Mukhopadhyay, Soumyadeep; Sahu, Jaya Narayan; Sengupta, Bhaskar

    2011-10-01

    The contamination of groundwater by heavy metal, originating either from natural soil sources or from anthropogenic sources is a matter of utmost concern to the public health. Remediation of contaminated groundwater is of highest priority since billions of people all over the world use it for drinking purpose. In this paper, thirty five approaches for groundwater treatment have been reviewed and classified under three large categories viz chemical, biochemical/biological/biosorption and physico-chemical treatment processes. Comparison tables have been provided at the end of each process for a better understanding of each category. Selection of a suitable technology for contamination remediation at a particular site is one of the most challenging job due to extremely complex soil chemistry and aquifer characteristics and no thumb-rule can be suggested regarding this issue. In the past decade, iron based technologies, microbial remediation, biological sulphate reduction and various adsorbents played versatile and efficient remediation roles. Keeping the sustainability issues and environmental ethics in mind, the technologies encompassing natural chemistry, bioremediation and biosorption are recommended to be adopted in appropriate cases. In many places, two or more techniques can work synergistically for better results. Processes such as chelate extraction and chemical soil washings are advisable only for recovery of valuable metals in highly contaminated industrial sites depending on economical feasibility. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Materials surface contamination analysis

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Arendale, William F.

    1992-01-01

    The original research objective was to demonstrate the ability of optical fiber spectrometry to determine contamination levels on solid rocket motor cases in order to identify surface conditions which may result in poor bonds during production. The capability of using the spectral features to identify contaminants with other sensors which might only indicate a potential contamination level provides a real enhancement to current inspection systems such as Optical Stimulated Electron Emission (OSEE). The optical fiber probe can easily fit into the same scanning fixtures as the OSEE. The initial data obtained using the Guided Wave Model 260 spectrophotometer was primarily focused on determining spectra of potential contaminants such as HD2 grease, silicones, etc. However, once we began taking data and applying multivariate analysis techniques, using a program that can handle very large data sets, i.e., Unscrambler 2, it became apparent that the techniques also might provide a nice scientific tool for determining oxidation and chemisorption rates under controlled conditions. As the ultimate power of the technique became recognized, considering that the chemical system which was most frequently studied in this work is water + D6AC steel, we became very interested in trying the spectroscopic techniques to solve a broad range of problems. The complexity of the observed spectra for the D6AC + water system is due to overlaps between the water peaks, the resulting chemisorbed species, and products of reaction which also contain OH stretching bands. Unscrambling these spectral features, without knowledge of the specific species involved, has proven to be a formidable task.

  17. Distinct and overlapping fMRI activation networks for processing of novel identities and locations of objects.

    PubMed

    Pihlajamäki, Maija; Tanila, Heikki; Könönen, Mervi; Hänninen, Tuomo; Aronen, Hannu J; Soininen, Hilkka

    2005-10-01

    The ventral visual stream processes information about the identity of objects ('what'), whereas the dorsal stream processes the spatial locations of objects ('where'). There is a corresponding, although disputed, distinction for the ventrolateral and dorsolateral prefrontal areas. Furthermore, there seems to be a distinction between the anterior and posterior medial temporal lobe (MTL) structures in the processing of novel items and new spatial arrangements, respectively. Functional differentiation of the intermediary mid-line cortical and temporal neocortical structures that communicate with the occipitotemporal, occipitoparietal, prefrontal, and MTL structures, however, is unclear. Therefore, in the present functional magnetic resonance imaging (fMRI) study, we examined whether the distinction among the MTL structures extends to these closely connected cortical areas. The most striking difference in the fMRI responses during visual presentation of changes in either items or their locations was the bilateral activation of the temporal lobe and ventrolateral prefrontal cortical areas for novel object identification in contrast to wide parietal and dorsolateral prefrontal activation for the novel locations of objects. An anterior-posterior distinction of fMRI responses similar to the MTL was observed in the cingulate/retrosplenial, and superior and middle temporal cortices. In addition to the distinct areas of activation, certain frontal, parietal, and temporo-occipital areas responded to both object and spatial novelty, suggesting a common attentional network for both types of changes in the visual environment. These findings offer new insights to the functional roles and intrinsic specialization of the cingulate/retrosplenial, and lateral temporal cortical areas in visuospatial cognition.

  18. MONITORED NATURAL ATTENUATION FOR INORGANIC CONTAMINANT REMEDIATION IN GROUNDWATER

    EPA Science Inventory

    Monitored natural attenuation (MNA) has been applied as a knowledge-based remediation technology for organic contaminants in ground water. Development of a site-specific assessment of biotic and abiotic processes that lead to organic contaminant degradation provides the technica...

  19. Biochar- and phosphate-induced immobilization of heavy metals in contaminated soil and water: implication on simultaneous remediation of contaminated soil and groundwater.

    PubMed

    Liang, Yuan; Cao, Xinde; Zhao, Ling; Arellano, Eduardo

    2014-03-01

    Long-term wastewater irrigation or solid waste disposal has resulted in the heavy metal contamination in both soil and groundwater. It is often separately implemented for remediation of contaminated soil or groundwater at a specific site. The main objective of this study was to demonstrate the hypothesis of simultaneous remediation of both heavy metal contaminated soil and groundwater by integrating the chemical immobilization and pump-and-treat methods. To accomplish the objective, three experiments were conducted, i.e., an incubation experiment was first conducted to determine how dairy-manure-derived biochar and phosphate rock tailing induced immobilization of Cd in the Cd-contaminated soils; second, a batch sorption experiment was carried out to determine whether the pre-amended contaminated soil still had the ability to retain Pb, Zn and Cd from aqueous solution. BCR sequential extraction as well as XRD and SEM analysis were conducted to explore the possible retention mechanism; and last, a laboratory-scale model test was undertaken by leaching the Pb, Zn, and Cd contaminated groundwater through the pre-amended contaminated soils to demonstrate how the heavy metals in both contaminated soil and groundwater were simultaneously retained and immobilized. The incubation experiment showed that the phosphate biochar were effective in immobilizing soil Cd with Cd concentration in TCLP (toxicity characteristics leaching procedure) extract reduced by 19.6 % and 13.7 %, respectively. The batch sorption experiment revealed that the pre-amended soil still had ability to retain Pb, Zn, and Cd from aqueous solution. The phosphate-induced metal retention was mainly due to the metal-phosphate precipitation, while both sorption and precipitation were responsible for the metal stabilization in the biochar amendment. The laboratory-scale test demonstrated that the soil amended with phosphate removed groundwater Pb, Zn, and Cd by 96.4 %, 44.6 %, and 49.2 %, respectively, and the

  20. From conceptual model to remediation: bioavailability, a key to clean up heavy metal contaminated soils.

    NASA Astrophysics Data System (ADS)

    Petruzzelli, Gianniantonio; Pedron, Francesca; Pezzarossa, Beatrice

    2013-04-01

    Processes of metal bioavailability in the soil To know the bioavailability processes at site specific levels is essential to understand in detail the risks associated with pollution, and to support the decision-making process, i.e. description of the conceptual model and choice of clean up technologies. It is particularly important to assess how chemical, physical and biological processes in the soil affect the reactions leading to adsorption, precipitation or release of contaminants. The measurement of bioavailability One of the main difficulties in the practical application of the bioavailability concept in soil remediation is the lack of consensus on the method to be used to measure bioavailability. The best strategy is to apply a series of tests to assess bioavailability, since no applicable method is universally valid under all conditions. As an example, bioavailability tests for phytotechnology application should consider two distinct aspects: a physico-chemical driven solubilization process and a physiologically driven uptake process. Soil and plant characteristics strongly influence bioavailability. Bioavailability as a tool in remediation strategies Bioavailability can be used at all stages in remediation strategies: development of the conceptual model, evaluation of risk assessment, and selection of the best technology, considering different scenarios and including different environmental objectives. Two different strategies can be followed: the reduction and the increase of bioavailability. Procedures that reduce bioavailability aim to prevent the movement of pollutants from the soil to the living organisms, essentially by: i) removal of the labile phase of the contaminant, i.e. the fraction which is intrinsic to the processes of bioavailability (phytostabilization); ii) conversion of the labile fraction into a stable fraction (precipitation or adsorption); iii) increase of the resistance to mass transfer of the contaminants (inertization). Procedures

  1. Contamination of the asteroid belt by primordial trans-Neptunian objects.

    PubMed

    Levison, Harold F; Bottke, William F; Gounelle, Matthieu; Morbidelli, Alessandro; Nesvorný, David; Tsiganis, Kleomenis

    2009-07-16

    The main asteroid belt, which inhabits a relatively narrow annulus approximately 2.1-3.3 au from the Sun, contains a surprising diversity of objects ranging from primitive ice-rock mixtures to igneous rocks. The standard model used to explain this assumes that most asteroids formed in situ from a primordial disk that experienced radical chemical changes within this zone. Here we show that the violent dynamical evolution of the giant-planet orbits required by the so-called Nice model leads to the insertion of primitive trans-Neptunian objects into the outer belt. This result implies that the observed diversity of the asteroid belt is not a direct reflection of the intrinsic compositional variation of the proto-planetary disk. The dark captured bodies, composed of organic-rich materials, would have been more susceptible to collisional evolution than typical main-belt asteroids. Their weak nature makes them a prodigious source of micrometeorites-sufficient to explain why most are primitive in composition and are isotopically different from most macroscopic meteorites.

  2. Data Quality Objectives Process for Designation of K Basins Debris

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WESTCOTT, J.L.

    2000-05-22

    The U.S. Department of Energy has developed a schedule and approach for the removal of spent fuels, sludge, and debris from the K East (KE) and K West (KW) Basins, located in the 100 Area at the Hanford Site. The project that is the subject of this data quality objective (DQO) process is focused on the removal of debris from the K Basins and onsite disposal of the debris at the Environmental Restoration Disposal Facility (ERDF). This material previously has been dispositioned at the Hanford Low-Level Burial Grounds (LLBGs) or Central Waste Complex (CWC). The goal of this DQO processmore » and the resulting Sampling and Analysis Plan (SAP) is to provide the strategy for characterizing and designating the K-Basin debris to determine if it meets the Environmental Restoration Disposal Facility Waste Acceptance Criteria (WAC), Revision 3 (BHI 1998). A critical part of the DQO process is to agree on regulatory and WAC interpretation, to support preparation of the DQO workbook and SAP.« less

  3. Processes, dynamics and modelling of radiocaesium cycling in a chronosequence of Chernobyl-contaminated Scots pine (Pinus sylvestris L.) plantations.

    PubMed

    Goor, François; Thiry, Yves

    2004-06-05

    of 137Cs level in the wood. The 137Cs contamination of tree components is the result of different influential processes like root uptake, internal translocation and immobilisation. For more accurate predictions, the calibration of existing models would be benefited by comparing with the 137Cs annual fluxes instead of the simple transfer factor coefficients. In the perspective of other applications, there is a need of such data for other radionuclides as well as for heavy metals. Copryright 2003 Elsevier B.V.

  4. ANAEROBIC BIOTRANSFORMATION OF CONTAMINANTS IN THE SUBSURFACE

    EPA Science Inventory

    Anaerobic conditions predominate in contaminated aquifers and are not uncommon in noncontaminated areas. Comparatively little is known about degradative processes and nutrient cycling under anaerobic conditions. However, it is apparent these processes are fundamentally differen...

  5. Contaminant Attenuation and Transport Characterization of 200-UP-1 Operable Unit Sediment Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Brady D.; Szecsody, James E.; Qafoku, Nikolla

    Contaminants disposed of at the land surface migrate through the vadose zone, forming plumes in groundwater. Processes that occur in the groundwater can attenuate contaminant concentrations during transport through the aquifer. For this reason, quantifying contaminant attenuation and contaminant transport processes in the aquifer, in support of the conceptual site model (CSM) and fate and transport modeling, are important for assessing the need for, and type of, remediation in the groundwater, including monitored natural attenuation (MNA). The framework to characterize attenuation and transport processes provided in U.S. Environmental Protection Agency (EPA) guidance documents was used to guide the laboratory effortmore » reported herein.« less

  6. Road-safety education: spatial decentering and subjective or objective picture processing.

    PubMed

    Guercin, F

    2007-10-01

    The current study examined children's ability to analyse pictures of a risky situation, both in relation to the characteristics of the pictures and in relation to the centering/decentering process of cognitive development. Sixty children aged 6, 9 or 11 years were given an objective or subjective version of a story about a risky situation involving road crossing and were asked to reconstruct it by putting six pictures in chronological order. The type of picture series, objective or subjective, had a different effect on the children's understanding and performance, according to the age. The older children were better at ordering the pictures, but on the subjective version only. The picture-version effect on planning time decreased with age; only the younger children took more time to start touching the pictures. On one hand, it is concluded that for the youngest children, objective representations are essential to analysing pictures showing a risk, whereas the oldest children will profit more from a subjective view. On the other hand, subjective representations, which give a more realistic view, provide an excellent tool for testing children's abilities. Subjective representations can be used to detect potentially risky behaviour in virtual situations (static pictures, or multimedia tools), since it permits one to predict at-risk behaviour in the street and to assess the effectiveness of remedial measures.

  7. Contamination assessment for OSSA space station IOC payloads

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1987-01-01

    An assessment is made of NASA/OSSA space station IOC payloads. The report has two main objectives, i.e., to provide realistic contamination requirements for space station attached payloads, serviced payloads and platforms, and to determine unknowns or major impacts requiring further assessment.

  8. Emerging contaminants: Presentations at the 2009 Toxicology and Risk Assessment Conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murnyak, George, E-mail: George.murnyak@us.army.mil; Vandenberg, John, E-mail: Vandenberg.John@epamail.epa.gov; Yaroschak, Paul J., E-mail: Paul.Yaroschak@osd.mil

    2011-07-15

    A session entitled 'Emerging Contaminants' was held in April 2009 in Cincinnati, OH at the 2009 Toxicology and Risk Assessment Conference. The purpose of the session was to share information on both programmatic and technical aspects associated with emerging contaminants. Emerging contaminants are chemicals or materials that are characterized by a perceived or real threat to human health or environment, a lack of published health standards or an evolving standard. A contaminant may also be 'emerging' because of the discovery of a new source, a new pathway to humans, or a new detection method or technology. The session included fivemore » speakers representing the Department of Defense (DoD), the Environmental Protection Agency (EPA), and each of the military services. The DoD created the Emerging Contaminant Directorate to proactively address environmental, health, and safety concerns associated with emerging contaminants. This session described the scan-watch-action list process, impact assessment methodology, and integrated risk management concept that DoD has implemented to manage emerging contaminants. EPA presented emerging trends in health risk assessment. Researchers made technical presentations on the status of some emerging contaminates in the assessment process (i.e. manganese, RDX, and naphthalene).« less

  9. Bacterial contamination of amniotic membrane in a tissue bank from Iran.

    PubMed

    Aghayan, Hamid Reza; Goodarzi, Parisa; Baradaran-Rafii, Alireza; Larijani, Bagher; Moradabadi, Leila; Rahim, Fakher; Arjmand, Babak

    2013-09-01

    Human Amniotic Membrane (AM) transplantation can promote tissue healing and reduce inflammation, tissue scarring and neovascularization. Homa Peyvand Tamin (HPT) tissue bank has focused on manufacturing human cell and tissue based products including AM. The purpose of this study is to evaluate and identify bacterial contamination of AMs that is produced by HPT for several ophthalmic applications. From July 2006 to April 2011, 122 placentas from cesarean sections were retrieved by HPT after obtaining informed consent from the donors. Besides testing donor's blood sample for viral markers, microbiological evaluation was performed pre and post processing. During tissue processing, decontamination was performed by an antibiotic cocktail including; Gentamicin, Ceftriaxone and Cloxacillin. Of 271 cesarean section AM donors who were screened as potential donors, 122 were accepted for processing and assessed for microbiological contamination. Donors' age were between 21 and 41 years (Mean = 27.61 ± 0.24). More than 92% of mothers were in their first or second gravidity with full term pregnancies. The most prevalent organisms were Staphylococci species (72.53%). After processing, contamination rates markedly decreased by 84.62% (p value = 0.013). According to our results, most of bacterial contaminations were related to donation process and the contamination pattern suggests procurement team as a source. Therefore we recommend that regular training programs should be implemented by tissue banks for procurement staff. These programs should focus on improved donor screening and proper aseptic technique for tissue retrieval. We also suggest that tissue banks should periodically check the rate and types of tissue contaminations. These data help them to find system faults and to update processing methods.

  10. Modeling, Monitoring and Fault Diagnosis of Spacecraft Air Contaminants

    NASA Technical Reports Server (NTRS)

    Ramirez, W. Fred; Skliar, Mikhail; Narayan, Anand; Morgenthaler, George W.; Smith, Gerald J.

    1996-01-01

    Progress and results in the development of an integrated air quality modeling, monitoring, fault detection, and isolation system are presented. The focus was on development of distributed models of the air contaminants transport, the study of air quality monitoring techniques based on the model of transport process and on-line contaminant concentration measurements, and sensor placement. Different approaches to the modeling of spacecraft air contamination are discussed, and a three-dimensional distributed parameter air contaminant dispersion model applicable to both laminar and turbulent transport is proposed. A two-dimensional approximation of a full scale transport model is also proposed based on the spatial averaging of the three dimensional model over the least important space coordinate. A computer implementation of the transport model is considered and a detailed development of two- and three-dimensional models illustrated by contaminant transport simulation results is presented. The use of a well established Kalman filtering approach is suggested as a method for generating on-line contaminant concentration estimates based on both real time measurements and the model of contaminant transport process. It is shown that high computational requirements of the traditional Kalman filter can render difficult its real-time implementation for high-dimensional transport model and a novel implicit Kalman filtering algorithm is proposed which is shown to lead to an order of magnitude faster computer implementation in the case of air quality monitoring.

  11. Distinct brain activity in processing negative pictures of animals and objects --- the role of human contexts

    PubMed Central

    Cao, Zhijun; Zhao, Yanbing; Tan, Tengteng; Chen, Gang; Ning, Xueling; Zhan, Lexia; Yang, Jiongjiong

    2013-01-01

    Previous studies have shown that the amygdala is important in processing not only animate entities but also social information. It remains to be determined to what extent the factors of category and social context interact to modulate the activities of the amygdala and cortical regions. In this study, pictures depicting animals and inanimate objects in negative and neutral levels were presented. The contexts of the pictures differed in whether they included human/human parts. The factors of valence, arousal, familiarity and complexity of pictures were controlled across categories. The results showed that the amygdala activity was modulated by category and contextual information. Under the nonhuman context condition, the amygdala responded more to animals than objects for both negative and neutral pictures. In contrast, under the human context condition, the amygdala showed stronger activity for negative objects than animals. In addition to cortical regions related to object action, functional and effective connectivity analyses showed that the anterior prefrontal cortex interacted with the amygdala more for negative objects (vs. animals) in the human context condition, by a top-down modulation of the anterior prefrontal cortex to the amygdala. These results highlighted the effects of category and human contexts on modulating brain activity in emotional processing. PMID:24099847

  12. Contaminant treatment method

    DOEpatents

    Shapiro, Andrew Philip; Thornton, Roy Fred; Salvo, Joseph James

    2003-01-01

    The present invention provides a method for treating contaminated media. The method comprises introducing remediating ions consisting essentially of ferrous ions, and being peroxide-free, in the contaminated media; applying a potential difference across the contaminated media to cause the remediating ions to migrate into contact with contaminants in the contaminated media; chemically degrading contaminants in the contaminated media by contact with the remediating ions; monitoring the contaminated media for degradation products of the contaminants; and controlling the step of applying the potential difference across the contaminated media in response to the step of monitoring.

  13. Possible Overlapping Time Frames of Acquisition and Consolidation Phases in Object Memory Processes: A Pharmacological Approach

    ERIC Educational Resources Information Center

    Akkerman, Sven; Blokland, Arjan; Prickaerts, Jos

    2016-01-01

    In previous studies, we have shown that acetylcholinesterase inhibitors and phosphodiesterase inhibitors (PDE-Is) are able to improve object memory by enhancing acquisition processes. On the other hand, only PDE-Is improve consolidation processes. Here we show that the cholinesterase inhibitor donepezil also improves memory performance when…

  14. Utilization of Expert Knowledge in a Multi-Objective Hydrologic Model Automatic Calibration Process

    NASA Astrophysics Data System (ADS)

    Quebbeman, J.; Park, G. H.; Carney, S.; Day, G. N.; Micheletty, P. D.

    2016-12-01

    Spatially distributed continuous simulation hydrologic models have a large number of parameters for potential adjustment during the calibration process. Traditional manual calibration approaches of such a modeling system is extremely laborious, which has historically motivated the use of automatic calibration procedures. With a large selection of model parameters, achieving high degrees of objective space fitness - measured with typical metrics such as Nash-Sutcliffe, Kling-Gupta, RMSE, etc. - can easily be achieved using a range of evolutionary algorithms. A concern with this approach is the high degree of compensatory calibration, with many similarly performing solutions, and yet grossly varying parameter set solutions. To help alleviate this concern, and mimic manual calibration processes, expert knowledge is proposed for inclusion within the multi-objective functions, which evaluates the parameter decision space. As a result, Pareto solutions are identified with high degrees of fitness, but also create parameter sets that maintain and utilize available expert knowledge resulting in more realistic and consistent solutions. This process was tested using the joint SNOW-17 and Sacramento Soil Moisture Accounting method (SAC-SMA) within the Animas River basin in Colorado. Three different elevation zones, each with a range of parameters, resulted in over 35 model parameters simultaneously calibrated. As a result, high degrees of fitness were achieved, in addition to the development of more realistic and consistent parameter sets such as those typically achieved during manual calibration procedures.

  15. Auditory object salience: human cortical processing of non-biological action sounds and their acoustic signal attributes

    PubMed Central

    Lewis, James W.; Talkington, William J.; Tallaksen, Katherine C.; Frum, Chris A.

    2012-01-01

    Whether viewed or heard, an object in action can be segmented as a distinct salient event based on a number of different sensory cues. In the visual system, several low-level attributes of an image are processed along parallel hierarchies, involving intermediate stages wherein gross-level object form and/or motion features are extracted prior to stages that show greater specificity for different object categories (e.g., people, buildings, or tools). In the auditory system, though relying on a rather different set of low-level signal attributes, meaningful real-world acoustic events and “auditory objects” can also be readily distinguished from background scenes. However, the nature of the acoustic signal attributes or gross-level perceptual features that may be explicitly processed along intermediate cortical processing stages remain poorly understood. Examining mechanical and environmental action sounds, representing two distinct non-biological categories of action sources, we had participants assess the degree to which each sound was perceived as object-like versus scene-like. We re-analyzed data from two of our earlier functional magnetic resonance imaging (fMRI) task paradigms (Engel et al., 2009) and found that scene-like action sounds preferentially led to activation along several midline cortical structures, but with strong dependence on listening task demands. In contrast, bilateral foci along the superior temporal gyri (STG) showed parametrically increasing activation to action sounds rated as more “object-like,” independent of sound category or task demands. Moreover, these STG regions also showed parametric sensitivity to spectral structure variations (SSVs) of the action sounds—a quantitative measure of change in entropy of the acoustic signals over time—and the right STG additionally showed parametric sensitivity to measures of mean entropy and harmonic content of the environmental sounds. Analogous to the visual system, intermediate stages

  16. Processes affecting the transport of nitrogen in groundwater and factors related to slope position

    USDA-ARS?s Scientific Manuscript database

    Nitrate (NO3-) pollution of water resources has been a major problem for years, causing contaminated water supplies, harmful effects on human health, and widespread eutrophication of fresh water resources. The main objectives of this study were to: 1) understand the processes affecting NO3- transpor...

  17. Parametric identification of the process of preparing ceramic mixture as an object of control

    NASA Astrophysics Data System (ADS)

    Galitskov, Stanislav; Nazarov, Maxim; Galitskov, Konstantin

    2017-10-01

    Manufacture of ceramic materials and products largely depends on the preparation of clay raw materials. The main process here is the process of mixing, which in industrial production is mostly done in cross-compound clay mixers of continuous operation with steam humidification. The authors identified features of dynamics of this technological stage, which in itself is a non-linear control object with distributed parameters. When solving practical tasks for automation of a certain class of ceramic materials production it is important to make parametric identification of moving clay. In this paper the task is solved with the use of computational models, approximated to a particular section of a clay mixer along its length. The research introduces a methodology of computational experiments as applied to the designed computational model. Parametric identification of dynamic links was carried out according to transient characteristics. The experiments showed that the control object in question is to a great extent a non-stationary one. The obtained results are problematically oriented on synthesizing a multidimensional automatic control system for preparation of ceramic mixture with specified values of humidity and temperature exposed to the technological process of major disturbances.

  18. CONTAMINANT ADSORPTION AND OXIDATION VIA FENTON REACTION

    EPA Science Inventory

    A ground water treatment process is proposed involving two cgemical processes: adsorption and oxidation. Adsorption of an organic compound onto granulated activated carbon (GAC) containing iron conveniently results in immobilizing and concentrating contaminants from the ground w...

  19. KENNEDY SPACE CENTER, FLA. - A KSC employee dressed in a "bunny suit," standard clean room apparel, disposes of some waste material into a container designated for the purpose. The apparel is designed to cover the hair, clothing and shoes of employees entering a clean room to prevent particulate matter from contaminating the space flight hardware being stored or processed in the room. The suit and container are both part of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

    NASA Image and Video Library

    2003-08-29

    KENNEDY SPACE CENTER, FLA. - A KSC employee dressed in a "bunny suit," standard clean room apparel, disposes of some waste material into a container designated for the purpose. The apparel is designed to cover the hair, clothing and shoes of employees entering a clean room to prevent particulate matter from contaminating the space flight hardware being stored or processed in the room. The suit and container are both part of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

  20. [Quantitative risk model for verocytotoxigenic Escherichia coli cross-contamination during homemade hamburger preparation].

    PubMed

    Signorini, M L; Frizzo, L S

    2009-01-01

    The objective of this study was to develop a quantitative risk model for verocytotoxigenic Escherichia coil (VTEC) cross-contamination during hamburger preparation at home. Published scientific information about the disease was considered for the elaboration of the model, which included a number of routines performed during food preparation in kitchens. The associated probabilities of bacterial transference between food items and kitchen utensils which best described each stage of the process were incorporated into the model by using @Risk software. Handling raw meat before preparing ready-to-eat foods (Odds ratio, OR, 6.57), as well as hand (OR = 12.02) and cutting board (OR = 5.02) washing habits were the major risk factors of VTEC cross-contamination from meat to vegetables. The information provided by this model should be considered when designing public information campaigns on hemolytic uremic syndrome risk directed to food handlers, in order to stress the importance of the above mentioned factors in disease transmission.