Optimization of microphysics in the Unified Model, using the Micro-genetic algorithm.
NASA Astrophysics Data System (ADS)
Jang, J.; Lee, Y.; Lee, H.; Lee, J.; Joo, S.
2016-12-01
This study focuses on parameter optimization of microphysics in the Unified Model (UM) using the Micro-genetic algorithm (Micro-GA). We need the optimization of microphysics in UM. Because, Microphysics in the Numerical Weather Prediction (NWP) model is important to Quantitative Precipitation Forecasting (QPF). The Micro-GA searches for optimal parameters on the basis of fitness function. The five parameters are chosen. The target parameters include x1, x2 related to raindrop size distribution, Cloud-rain correlation coefficient, Surface droplet number and Droplet taper height. The fitness function is based on the skill score that is BIAS and Critical Successive Index (CSI). An interface between UM and Micro-GA is developed and applied to three precipitation cases in Korea. The cases are (ⅰ) heavy rainfall in the Southern area because of typhoon NAKRI, (ⅱ) heavy rainfall in the Youngdong area, and (ⅲ) heavy rainfall in the Seoul metropolitan area. When the optimized result is compared to the control result (using the UM default value, CNTL), the optimized result leads to improvements in precipitation forecast, especially for heavy rainfall of the late forecast time. Also, we analyze the skill score of precipitation forecasts in terms of various thresholds of CNTL, Optimized result, and experiments on each optimized parameter for five parameters. Generally, the improvement is maximized when the five optimized parameters are used simultaneously. Therefore, this study demonstrates the ability to improve Korean precipitation forecasts by optimizing microphysics in UM.
NASA Astrophysics Data System (ADS)
Wu, Hao; Yu, Jun; Cao, Rui; Yang, Yinghua; Tang, Zhenan
2018-05-01
A high-performance low-power micro hotplate (MHP) hydrogen sensor was fabricated through electrohydrodynamic (EHD) inkjet printing technique. Electrospun Pd loaded SnO2 nanofibers with lengths of 250-850 nm were precisely printed on the suspended central part of an MHP with an area of 100 um × 100 um. The printhead in the printing system was a low-cost metallic needle with an inner diameter of 110 um, which was large enough to prevent clogging by the nanofibers. The printing process was observed by a high-speed camera. Small droplets with diameters of 50-80 um were produced at each ejection by providing a high voltage to the metallic needle. It was found that the bridge-type MHPs used in our experiment can promote the positioning precision due to its bound effect to the droplet. In the gas sensing measurement, the Pd loaded SnO2 MHP gas sensor showed a remarkable response to H2 with a low power of only 9.1 mW. The experiment results demonstrate the excellent adequacy of EHD inkjet printing technique to realize effective mass fabrication of MHP gas sensors or sensor arrays.
Micro-joule pico-second range Yb3+-doped fibre laser for medical applications in acupuncture
NASA Astrophysics Data System (ADS)
Alvarez-Chavez, J. A.; Rivera-Manrique, S. I.; Jacques, S. L.
2011-08-01
The work described here is based on the optical design, simulation and on-going implementation of a pulsed (Q-switch) Yb3+-doped, 1-um diffraction-limited fibre laser with pico-second, 10 micro-Joule-range energy pulses for producing the right energy pulses which could be of benefit for patients who suffer chronic headache, photophobia, and even nausea which could is sometimes triggered by a series of factors. The specific therapeutic effect known as acupunctural analgesia is the main objective of this medium-term project. It is a simple design on which commercially available software was employed for laser cavity design. Monte Carlo technique for skin light-transport, thermal diffusion and the possible thermal de-naturalization optical study and prediction will also be included in the presentation. Full optical characterization will be included and a complete set of recent results on the laser-skin interaction and the so called moxi-bustion from the laser design will be extensively described.
Development of a Biosensor Nanofluidic Platform for Integration with Terahertz Spectroscopic System
2014-06-27
space. The instrumentation for fabrication of micro/nano-fluidic chips including a Laser-Cutting System, a Sputtering system, a Spin Coating ...polyester (PET) substrate, as PET is more chemically and thermally resistant, and can be readily obtained in a variety of thicknesses down to 12.5 um...to create the array pattern on the silver coated PET substrate. Copper was then electrodeposited to a thickness of 5 um around the photoresist
Rapid fabrication of a micro-ball lens array by extrusion for optical fiber applications.
Shen, S C; Huang, J C
2009-07-20
Batch-fabrication of a micro-ball lens array (MBA) could not only reduce micro assembly costs but also replace conventional ball lenses or costly GRINs (Gradient Refractive Index) without compromising performance. Compared with conventional half-spherical micro-lenses, the MBA is a spherical micro-lens that can focus light in all directions, thus providing the flexibility required for optical applications. Current MBAs are made of SU-8 photoresist by an extrusion process rather than the traditional thermal reflow process. The aim of this study was to develop a new process for MBA batch-fabrication, performed at ambient temperature, by spin-coating SU-8 onto a silicon-wafer surface, which serves as an extrusion plate, and extruding it through a nozzle to form an MBA. The nozzle consists of a nozzle orifice and nozzle cavity, the former being defined and made from SU-8 photoresist using ultra-violet (UV) lithography, which results in good mechanical properties. In this paper, the fabrication of 4 x 4 MBAs with diameters ranging from 60 to 550 um is described. Optical measurements indicated a diameter variance within 3% and a maximum coupling efficiency of approximately 62% when the single mode fiber (SMF) was placed at a distance of 10 um from the MBA. The results of this study proved that MBA fabrication by the extrusion process can enhance the coupling efficiency.
NASA Astrophysics Data System (ADS)
Gel, M.; Kandasamy, S.; Cartledge, K.; Be, C. L.; Haylock, D.
2013-12-01
In recent years there has been growing interest in micro engineered in-vitro models of tissues and organs. These models are designed to mimic the in-vivo like physiological conditions with a goal to study human physiology in an organ-specific context or to develop in-vitro disease models. One of the challenges in the development of these models is the formation of barrier tissues in which the permeability is controlled locally by the tissues cultured at the interface. In-vitro models of barrier tissues are typically created by generating a monolayer of cells grown on thin porous membranes. This paper reports a robust preparation method for free standing porous cyclic olefin copolymer (COC) membranes. We also demonstrate that gelatin coated membranes facilitate formation of highly confluent monolayer of HUVECs. Membranes with thickness in the range of 2-3 um incorporating micro pores with diameter approximately 20 um were fabricated and integrated with microfluidic channels. The performance of the device was demonstrated with a model system mimicking the endothelial barrier in bone marrow sinusoids.
Ga Lithography in Sputtered Niobium for Superconductive Micro and Nanowires.
Henry, Michael David; Lewis, Rupert M.; Wolfley, Steven L.; ...
2014-08-18
This work demonstrates the use of FIB implanted Ga as a lithographic mask for plasma etching of Nb films. Using a highly collimated Ga beam of a FIB, Nb is implanted 12 nm deep with a 14 nm thick Ga layer providing etch selectivity better than 15:1 with fluorine based etch chemistry. Implanted square test patterns, both 10 um by and 10 um and 100 um by 100 um, demonstrate that doses above than 7.5 x 1015 cm-2 at 30 kV provide adequate mask protection for a 205 nm thick, sputtered Nb film. The resolution of this dry lithographic techniquemore » is demonstrated by fabrication of nanowires 75 nm wide by 10 um long connected to 50 um wide contact pads. The residual resistance ratio of patterned Nb films was 3. The superconducting transition temperature, Tc =7.7 K, was measured using MPMS. This nanoscale, dry lithographic technique was extended to sputtered TiN and Ta here and could be used on other fluorine etched superconductors such as NbN, NbSi, and NbTi.« less
Attenuation of midinfrared free electron laser energy with eyewear
NASA Astrophysics Data System (ADS)
Joos, Karen M.; Gabella, William
2005-04-01
Purpose: To determine the attenuation of free electron laser (FEL) energy at several wavelengths through microscope objective and eyeglass lenses. Materials and Methods: The FEL at wavelengths of 2.3 um, 2.5 um, 3.0 um, 3.5 um, 4.0 um, 4.5 um, 5.0 um, 6.45 um, 7.0 um, 7.5 um, and 8.0 um was telescoped using a 500 mm nominal focal length lens and a 200 mm focal length lens. The beam had a final spot of about 3 mm and was passed through a 3 mm aperture and onto the 8 mm active area of a J9LP Molectron detector. The eyeglass sample was placed 3 cm in front of the detector. Energy readings were averaged over multiple pulses. Results: Attenuation varied greatly with wavelength and sample from a low attenuation of 0.46 dB, 90% transmission, for short wavelengths through common glass to greater than 60 dB attenuation (transmission at the detector noise level) for IR safe glass by Aura, Inc. Conclusion: Only the designated laser safety goggles effectively attenuate free electron laser energy at 2.3 um and 2.5 um. A microscope objective lens, polycarbonate, and silica glass eyewear is capable of effectively attenuating FEL energy at wavelengths greater than 4.5 um, but the polycarbonate lenses demonstrated material damage.
Representing metabolic pathway information: an object-oriented approach.
Ellis, L B; Speedie, S M; McLeish, R
1998-01-01
The University of Minnesota Biocatalysis/Biodegradation Database (UM-BBD) is a website providing information and dynamic links for microbial metabolic pathways, enzyme reactions, and their substrates and products. The Compound, Organism, Reaction and Enzyme (CORE) object-oriented database management system was developed to contain and serve this information. CORE was developed using Java, an object-oriented programming language, and PSE persistent object classes from Object Design, Inc. CORE dynamically generates descriptive web pages for reactions, compounds and enzymes, and reconstructs ad hoc pathway maps starting from any UM-BBD reaction. CORE code is available from the authors upon request. CORE is accessible through the UM-BBD at: http://www. labmed.umn.edu/umbbd/index.html.
NASA Astrophysics Data System (ADS)
Zhou, Ming; Liu, Li-Peng; Dai, Qi-Xun; Pan, Chuan-Peng
2005-01-01
Two-photon absorption (TPA) is confined at the focus under tight-focusing conditions, which provides a novel concept for micro-fabrication using two-photon photo-polymerization in resin. The development of three-dimensional micro-fabrication by femtosecond laser was introduced at first, then the merits of femtosecond two-photon photo-polymerization was expatiated. Femtosecond laser direct scanning three-dimensional (3D) micro-fabrication system was set up and corresponding controlling software was developed. We demonstrated a fabrication of three-dimensional microstructures using photo-polymerization of resin by two-photon absorption. The precision of micro-machining and the spatial resolution reached 1um because of TPA. The dependence of fabricated line width to the micro-fabrication speed was investigated. Benzene ring, CHINA and layer-by-layer of log structures were fabricated in this 3D- micro-fabrication system as examples.
VizieR Online Data Catalog: Reflectance spectra of 12 Trojans and Hildas (Marsset+, 2014)
NASA Astrophysics Data System (ADS)
Marsset, M.; Vernazza, P.; Gourgeot, F.; Dumas, C.; Birlan, M.; Lamy, P.; Binzel, R. P.
2014-07-01
We present 17 reflectance spectra of 12 high albedo (pv>0.14) Trojans (8 objects) and Hildas (4 objects) obtained with the ESO/VLT Echelle spectrograph X-SHOOTER in the 0.3-2.2um spectral range (14 spectra) and with the NASA/IRTF spectrograph SpeX in the 0.8-2.5um spectral range (3 spectra). X-SHOOTER spectra were normalized to unity at 0.55um and SpeX spectra were normalized to unity at 2.2um . The spectra presented in this work were collected between April and December 2013. (18 data files).
NASA Astrophysics Data System (ADS)
Debaes, C.; Van Erps, J.; Karppinen, M.; Hiltunen, J.; Suyal, H.; Last, A.; Lee, M. G.; Karioja, P.; Taghizadeh, M.; Mohr, J.; Thienpont, H.; Glebov, A. L.
2008-04-01
An important challenge that remains to date in board level optical interconnects is the coupling between the optical waveguides on printed wiring boards and the packaged optoelectronics chips, which are preferably surface mountable on the boards. One possible solution is the use of Ball Grid Array (BGA) packages. This approach offers a reliable attachment despite the large CTE mismatch between the organic FR4 board and the semiconductor materials. Collimation via micro-lenses is here typically deployed to couple the light vertically from the waveguide substrate to the optoelectronics while allowing for a small misalignment between board and package. In this work, we explore the fabrication issues of an alternative approach in which the vertical photonic connection between board and package is governed by a micro-optical pillar which is attached both to the board substrate and to the optoelectronic chips. Such an approach allows for high density connections and small, high-speed detector footprints while maintaining an acceptable tolerance between board and package. The pillar should exhibit some flexibility and thus a high-aspect ratio is preferred. This work presents and compares different fabrication methods and applies different materials for such high-aspect ratio pillars. The different fabrication methods are: photolithography, direct laser writing and deep proton writing. The selection of optical materials that was investigated is: SU8, Ormocers, PU and a multifunctional acrylate polymer. The resulting optical pillars have diameters ranging from 20um up to 80um, with total heights ranging between 30um and 100um (symbol for micron). The aspect-ratio of the fabricated structures ranges from 1.5 to 5.
Micro hot embossing for high-aspect-ratio structure with materials flow enhancement by polymer sheet
NASA Astrophysics Data System (ADS)
Murakoshi, Yoichi; Shan, Xue-Chuan; Sano, Toshio; Takahashi, Masaharu; Maeda, Ryutaro
2004-04-01
Nano imprinting or Nano embossing process have been introduced to fabricate semiconductor, optical device and Micro Electro Mechanical Systems (MEMS) and the Nano Electro Mechanical Systems (NEMS) to reduce the fabrication cost. In our previous paper, micro hot embossing of Polycarbonate (PC) and Polyetheretherketone (PEEK) for optical switch with 8x8 mirrors was reported. The PC and PEEK sheets were embossed at elevated temperature with an embossing machine designed for the MEMS. In the application, the mirrors on the optical switch had some defects, such as slump, sticking and step at side of the mirror, due to embossing process and process conditions. These defects are attributed to the poor materials flow of plastics into the e Ni mold cavity of complicate shape with different aspect ratio. Therefore, the micro hot embossing is optimized in this paper with PTFE sheet to enhance the materials flow. In this paper, the PC and the PEEK sheets, thickness of 300um, are embossed at elevated temperature with the hot embossing machine with a Nickel mold. To control material flow of the PC or the PEEK sheets, Polytetrafluoroethylene (PTFE) sheet, the thickness of 100um, is placed on the PC or the PEEK sheets at elevated temperature. Mirror shape was transferred with better fidelity on the PC and PEEK sheet, and the thickness of cantilever became thinner than previous embossed structure without the PTFE. Especially, the mirror height and the thickness of cantilever on the PC have been improved at lower embossing temperature.
Colors and Compositional Characteristics of Kuiper Belt Objects and Centaurs
NASA Astrophysics Data System (ADS)
Lederer, S. M.; Vilas, F.; Jarvis, K. S.; French, L.
2001-11-01
We present a study designed by Painter et al. (DPS 2000) to search for evidence of aqueous alteration in the surface material of solar system objects. Using VRI broadband photometry, we will search for the presence of the 0.7 um absorption feature (indicative of Fe-bearing hydrated silicates) in KBOs and Centaurs. Vilas (Icarus 111, 1994) found a strong correlation between the presence of the 0.7-um feature in low-albedo asteroids with solar-like colors and the 3-um water of hydration feature, indicative of phyllosilicates. Recent work by Howell et al. (LPSC, 2001) confirms that the presence of the 0.7 um feature in low-albedo asteroids definitely indicates the presence of the 3.0-um water of hydration absorption feature, suggesting the action of aqueous alteration in asteroids. In addition, Feierberg et al. (Icarus 63, 1985) showed that when the U - B color difference is > 0.12 in ECAS photometry, the 3.0-um absorption feature is often present in low albedo asteroids. Therefore, if the U-B color difference is > 0.12 and the 0.7-um feature is present in UBVRI reflectance photometry, water of hydration is implied in KBOs and Centaurs. We pursue these studies based on the mixed flat or steeply reddened photometry of these objects: Water ice has been identified in near-IR dark, flat spectra of some Centaurs, providing a source for the action of aqueous alteration. The complex collisional history proposed for these objects suggests a potential source of heating that would melt water ice, providing a mechanism for aqueous alteration to occur. Finally, we will use BVR photometry to determine the B-V and V-R colors, as has been done by Tegler and Romanishin (Nature, 407). We will compare our results with colors of KBOs and Centaurs published in the literature. This research was supported by the National Research Council and the NASA Planetary Astronomy Program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izaguirre, E; Pokhrel, S; Knewtson, T
2016-06-15
Purpose: Current precision of small animal and cell micro-irradiators has continuously increased during the past years. Currently, preclinical irradiators can deliver sub-millimeter fields with micrometric precision but there are no water equivalent dosimeters to determine small field profiles and dose in the orthovoltage range of energies with micrometric resolution and precision. We have developed a fiber based micro-dosimeter with the resolution and dosimetric accuracy required for radiobiological research. Methods: We constructed two prototypes of micro-dosimeters based on different compositions of fiber scintillators to study the spatial resolution and dosimetric precision of small animal and cell micro-irradiators. The first has greenmore » output and the second has blue output. The blue output dosimeter has the highest sensitivity because it matches the spectral sensitivity of silicon photomultipliers. A blue detector with 500um cross section was built and tested respect to a CC01 ion chamber, film, and the 1500um green output detector. Orthovoltage fields from 1×1mm2 to 5×5mm2 were used for detector characteristics comparison. Results: The blue fiber dosimeter shows great agreement with films and matches dose measurements with the gold-standard ion chamber for 5×5mm2 fields. The detector has the appropriate sensitivity to measure fields from 1×1mm2 to larger sizes with a 1% dosimetric accuracy. The spatial resolution is in the sub-millimeter range and the spectral matching with the photomultiplier allows reducing the sensor cross section even further than the presented prototype. These results suggest that scintillating fibers combined with silicon photomultipliers is the appropriate technology to pursue micro-dosimetry for small animals and disperse cell samples. Conclusion: The constructed detectors establish a new landmark for the resolution and sensitivity of fiber based microdetectors. The validation of the detector in our small animal and cell irradiator shows that they are appropriate for preclinical and micro single cell irradiation quality assurance and dosimetry.« less
Landgraeber, Stefan; Samelko, Lauryn; McAllister, Kyron; Putz, Sebastian; Jacobs, Joshua.J.; Hallab, Nadim James
2018-01-01
Background: The rate of revision for some designs of total hip replacements due to idiopathic aseptic loosening has been reported as higher for women. However, whether this is environmental or inherently sex-related is not clear. Objective: Can particle induced osteolysis be sex dependent? And if so, is this dependent on the type of implant debris (e.g. metal vs polymer)? The objective of this study was to test for material dependent inflammatory osteolysis that may be linked to sex using CoCrMo and implant grade conventional polyethylene (UHMWPE), using an in vivo murine calvaria model. Methods: Healthy 12 week old female and male C57BL/6J mice were treated with UHMWPE (1.0um ECD) or CoCrMo particles (0.9um ECD) or received sham surgery. Bone resorption was assessed by micro-computed tomography, histology and histomorphometry on day 12 post challenge. Results: Female mice that received CoCrMo particles showed significantly more inflammatory osteolysis and bone destruction compared to the females who received UHMWPE implant debris. Moreover, females challenged with CoCrMo particles exhibited 120% more inflammatory bone loss compared to males (p<0.01) challenged with CoCrMo implant debris (but this was not the case for UHMWPE particles). Conclusion: We demonstrated sex-specific differences in the amount of osteolysis resulting from CoCrMo particle challenge. This suggests osteo-immune responses to metal debris are preferentially higher in female compared to male mice, and supports the contention that there may be inherent sex related susceptibility to some types of implant debris. PMID:29785221
Combined two-photon microscopy and optical coherence tomography using individually optimized sources
NASA Astrophysics Data System (ADS)
Jeong, Bosu; Lee, Byunghak; Jang, Min Seong; Nam, Hyoseok; Kim, Hae Koo; Yoon, Sang June; Doh, Junsang; Lee, Sang-Joon; Yang, Bo-Gie; Jang, Myoung Ho; Kim, Ki Hean
2011-03-01
Two-photon microscopy (TPM) and optical coherence tomography (OCT) are 3D tissue imaging techniques based on different contrast mechanisms. We developed a combined system of TPM and OCT to provide information of both imaging modalities for in-vivo tissue study. TPM and OCT were implemented by using separate light sources, a Ti-Sapphire laser and a wavelength-swept source centered at 1300 nm respectively, and scanners. Light from the two sources was combined for the simultaneous imaging of tissue samples. TPM provided molecular, cellular information of tissues in the region of a few hundred microns on one side at a sub-cellular resolution, and ran at approximately 40 frames per second. OCT provided structural information in the tissue region larger than TPM images at a sub-tenth micron resolution by using 0.1 numerical aperture. OCT had the field of view of 800 um × 800 um based on a 20x objective, the sensitivity of 97dB, and the imaging speed of 0.8 volumes per second. This combined system was tested with simple microsphere specimens, and then was applied to image the explanted intestine of a mouse model and the plant leaves. Morphology and micro-structures of the intestine villi and immune cells within the villi were shown in the intestine image, and chloroplasts and various microstructures of the maize leaves were visualized in 3D by the combined system.
Proteome modification in tomato plants upon long-term aluminum treatment
USDA-ARS?s Scientific Manuscript database
This study aimed to identify the aluminum (Al)-induced proteomes in tomato (Solanum lycopersicum, “Micro-Tom”) after long-term exposure to the stress factor. Plants were treated in Magnavaca’s solution (pH 4.5) supplemented with 7.5 uM Al3+ ion activity over a 4 month period beginning at the emergen...
Optimization of multi-objective micro-grid based on improved particle swarm optimization algorithm
NASA Astrophysics Data System (ADS)
Zhang, Jian; Gan, Yang
2018-04-01
The paper presents a multi-objective optimal configuration model for independent micro-grid with the aim of economy and environmental protection. The Pareto solution set can be obtained by solving the multi-objective optimization configuration model of micro-grid with the improved particle swarm algorithm. The feasibility of the improved particle swarm optimization algorithm for multi-objective model is verified, which provides an important reference for multi-objective optimization of independent micro-grid.
NASA Astrophysics Data System (ADS)
Zhang, Jie; Tao, Sha; Wang, Brian; Zhao, Jay
2016-03-01
In this paper, laser ablation of widely used metal (Al, Cu. stainless-steel), semiconductor (Si), transparent material (glass, sapphire), ceramic (Al2O3, AlN) and polymer (PI, PMMA) in industry were systematically studied with pulse width from nanosecond (5-100ns), picosecond (6-10ps) to sub-picosecond (0.8-0.95ps). A critical damage zone (CDZ) of up to 100um with ns laser, <=50um with ps laser, and <=20um with sub-ps laser, respectively was observed as a criteria of selecting the laser pulse width. The effects of laser processing parameters on speed and efficiency were also investigated. This is to explore how to provide industry users the best laser solution for device micro-fabrication with best price. Our studies of cutting and drilling with ns, ps, and sub-ps lasers indicate that it is feasible to achieve user accepted quality and speed with cost-effective and reliable laser by optimizing processing conditions.
Pitch variable liquid lens array using electrowetting
NASA Astrophysics Data System (ADS)
Kim, YooKwang; Lee, Jin Su; Kim, Junoh; Won, Yong Hyub
2017-02-01
These days micro lens array is used in various fields such as fiber coupling, laser collimation, imaging and sensor system and beam homogenizer, etc. One of important thing in using micro lens array is, choice of its pitch. Especially imaging systems like integral imaging or light-field camera, pitch of micro lens array defines the system property and thus it could limit the variability of the system. There are already researches about lens array using liquid, and droplet control by electrowetting. This paper reports the result of combining them, the liquid lens array that could vary its pitch by electrowetting. Since lens array is a repeated system, realization of a small part of lens array is enough to show its property. The lens array is composed of nine (3 by 3) liquid droplets on flat surface. On substrate, 11 line electrodes are patterned along vertical and horizontal direction respectively. The width of line electrodes is 300um and interval is 200um. Each droplet is positioned to contain three electrode lines for both of vertical and horizontal direction. So there is one remaining electrode line in each of outermost side for both direction. In original state the voltage is applied to inner electrodes. When voltage of outermost electrodes are turned on, eight outermost droplets move to outer side, thereby increasing pitch of lens array. The original pitch was 1.5mm and it increased to 2.5mm after electrodes of voltage applied is changed.
Active depth-guiding handheld micro-forceps for membranectomy based on CP-SSOCT
NASA Astrophysics Data System (ADS)
Cheon, Gyeong Woo; Lee, Phillip; Gonenc, Berk; Gehlbach, Peter L.; Kang, Jin U.
2016-03-01
In this study, we demonstrate a handheld motion-compensated micro-forceps system using common-path swept source optical coherence tomography with highly accurate depth-targeting and depth-locking for Epiretinal Membrane Peeling. Two motors and a touch sensor were used to separate the two independent motions: motion compensation and tool-tip manipulation. A smart motion monitoring and guiding algorithm was devised for precise and intuitive freehand control. Ex-vivo bovine eye experiments were performed to evaluate accuracy in a bovine retina retinal membrane peeling model. The evaluation demonstrates system capabilities of 40 um accuracy when peeling the epithelial layer of bovine retina.
USDA-ARS?s Scientific Manuscript database
The effectiveness of microfiltration (MF) and ultrafiltration (UF) for nutrient recovery from a thin stillage stream was determined. When a stainless steel MF membrane (0.1 um pore size) was used, the content of solids increased from 7.0% to 22.8% with a mean permeate flux rate of 45 L/m**2/h (LMH)...
Emergent behavior of cells on microfabricated soft polymeric substrates
NASA Astrophysics Data System (ADS)
Anand, Sandeep Venkit
In recent years, cell based bio-actuators like cardiomyocytes and skeletal muscle cells have emerged as popular choices for powering biological machines consisting of soft polymeric scaffolds at the micro and macro scales. This is owing to their unique ability to generate spontaneous, synchronous contractions either autonomously or under externally applied fields. Most of the biological machine designs reported in literature use single cells or cell clusters conjugated with biocompatible soft polymers like polydimethylsiloxane (PDMS) and hydrogels to produce some form of locomotion by converting chemical energy of the cells to mechanical energy. The mode of locomotion may vary, but the fundamental mechanism that these biological machines exploit to achieve locomotion stems from cell substrate interactions leading to large deformations of the substrates (relative to the cell size). However, the effect of such large scale, dynamic deformation of the substrates on the cellular and cluster level organization of the cells remains elusive. This dissertation tries to explore the emergent behavior of cells on different types of micro-scale deformable, soft polymeric substrates. In the first part of the dissertation, contractile dynamics of primary cardiomyocyte clusters is studied by culturing them on deformable thin polymeric films. The cell clusters beat and generate sufficient forces to deform the substrates out of plane. Over time, the clusters reorient their force dipoles along the direction of maximum compliance. This suggests that the cells are capable of sensing substrate deformations through a mechanosensitive feedback mechanism and dynamically reorganizing themselves. Results are further validated through finite element analysis. The development, characterization and quantification of a novel 1D/2D like polymeric platform for cell culture is presented in the second part. The platform consists of a 2D surface anchoring a long (few millimeters) narrow filament (1D) with a single cell scale (micro scale) cross section. We plate C2C12 cells on the platform and characterize their migration, proliferation, and differentiation patterns in contrast to 2D culture. We find that the cells land on the 2D surface, and then migrate to the filament only when the 2D surface has become nearly confluent. Individual and isolated cells randomly approaching the filament always retract away towards the 2D surface. Once on the filament, their differentiation to myotubes is expedited compared to that on 2D substrate. The myotubes generate periodic twitching forces that deform the filament producing more than 17 um displacement at the tip. Such flagellar motion can be used to develop autonomous micro scale bio-bots. Finally, the design and fabrication of a polymeric micro-pillar based force sensor capable of measuring cellular focal-adhesion forces under externally applied stretch is discussed. The force sensor consists of arrays of uniformly spaced PDMS micro-pillars of 1-2 um diameter and 2-3 um spacing on a macroscale PDMS substrate. The tips of the micro-pillars are selectively patterned with fluorescently labeled ECM proteins using micro-contact printing to promote cell adhesion while simultaneously acting as markers for strain measurements. Cells adhere and spread on top of the pillars causing them to deform. When stretched, the cells reorganize their internal structure and modulate their traction forces in response to the applied stretch. The dynamically varying cellular forces in response to the stretch are computed by measuring the cell induced displacements estimated by isolating the displacements caused by the applied stretch from the net displacements of the tips.
NASA Astrophysics Data System (ADS)
Mainzer, Amy K.; NEOCam Science Team
2017-10-01
The Near-Earth Object Camera (NEOCam) is a NASA mission in formulation designed to find, track, and provide basic physical characterization of asteroids and comets that make close approaches to Earth. Its goal is to reduce the risk of impacts from undetected near-Earth objects (NEOs) capable of causing global and regional disasters. NEOCam consists of a 50 cm telescope operating at two channels dominated by NEO thermal emission, 4.2-5.0um and 6-10um, in order to better constrain the objects' temperatures and diameters. Orbiting the Sun-Earth L1 Lagrange point, the mission would find hundreds of thousands of NEOs and would make significant progress toward the Congressional objective of discovering more than 90% of NEOs larger than 140 m during its five-year lifetime. The mission uses novel 2048x2048 HgCdTe detectors that extend the wavelength cutoff beyond 10um at an operating temperature of 40K (Dorn et al. 2016). Both the optical system and the detectors are cooled passively using radiators and thermal shields to enable long mission life and to avoid the complexity of cryocoolers or cryogens. NEOCam is currently in an extended Phase A.
NASA Astrophysics Data System (ADS)
Tulej, Marek; Wiesendanger, Reto; Neuland, Maike; Meyer, Stefan; Wurz, Peter; Neubeck, Anna; Ivarsson, Magnus; Riedo, Valentine; Moreno-Garcia, Pavel; Riedo, Andreas; Knopp, Gregor
2017-04-01
Investigation of elemental and isotope compositions of planetary solids with high spatial resolution are of considerable interest to current space research. Planetary materials are typically highly heterogenous and such studies can deliver detailed chemical information of individual sample components with the sizes down to a few micrometres. The results of such investigations can yield mineralogical surface context including mineralogy of individual grains or the elemental composition of of other objects embedded in the sample surface such as micro-sized fossils. The identification of bio-relevant material can follow by the detection of bio-relevant elements and their isotope fractionation effects [1, 2]. For chemical analysis of heterogenous solid surfaces we have combined a miniature laser ablation mass spectrometer (LMS) (mass resolution (m/Dm) 400-600; dynamic range 105-108) with in situ microscope-camera system (spatial resolution ˜2um, depth 10 um). The microscope helps to find the micrometre-sized solids across the surface sample for the direct mass spectrometric analysis by the LMS instrument. The LMS instrument combines an fs-laser ion source and a miniature reflectron-type time-of-flight mass spectrometer. The mass spectrometric analysis of the selected on the sample surface objects followed after ablation, atomisation and ionisation of the sample by a focussed laser radiation (775 nm, 180 fs, 1 kHz; the spot size of ˜20 um) [4, 5, 6]. Mass spectra of almost all elements (isotopes) present in the investigated location are measured instantaneously. A number of heterogenous rock samples containing micrometre-sized fossils and mineralogical grains were investigated with high selectivity and sensitivity. Chemical analyses of filamentous structures observed in carbonate veins (in harzburgite) and amygdales in pillow basalt lava can be well characterised chemically yielding elemental and isotope composition of these objects [7, 8]. The investigation can be prepared with high selectivity since the host composition is typically readily different comparing to that of the analysed objects. In depth chemical analysis (chemical profiling) is found in particularly helpful allowing relatively easy isolation of the chemical composition of the host from the investigated objects [6]. Hence, both he chemical analysis of the environment and microstructures can be derived. Analysis of the isotope compositions can be measured with high level of confidence, nevertheless, presence of cluster of similar masses can make sometimes this analysis difficult. Based on this work, we are confident that similar studies can be conducted in situ planetary surfaces delivering important chemical context and evidences on bio-relevant processes. [1] Summons et al., Astrobiology, 11, 157, 2011. [2] Wurz et al., Sol. Sys. Res. 46, 408, 2012. [3] Riedo et al., J. Anal. Atom. Spectrom. 28, 1256, 2013. [4] Riedo et al., J. Mass Spectrom.48, 1, 2013. [5] Tulej et al., Geostand. Geoanal. Res., 38, 423, 2014. [6] Grimaudo et al., Anal. Chem. 87, 2041, 2015 [7] Tulej et al., Astrobiology, 15, 1, 2015. [8] Neubeck et al., Int. J. Astrobiology, 15, 133, 2016.
Effects of Process Parameters on Ultrasonic Micro-Hole Drilling in Glass and Ruby
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schorderet, Alain; Deghilage, Emmanuel; Agbeviade, Kossi
2011-05-04
Brittle materials such as ceramics, glasses and oxide single crystals find increasing applications in advanced micro-engineering products. Machining small features in such materials represents a manufacturing challenge. Ultrasonic drilling constitutes a promising technique for realizing simple micro-holes of high diameter-to-depth ratio. The process involves impacting abrasive particles in suspension in a liquid slurry between tool and work piece. Among the process performance criteria, the drilling time (productivity) is one of the most important quantities to evaluate the suitability of the process for industrial applications.This paper summarizes recent results pertaining to the ultrasonic micro-drilling process obtained with a semi-industrial 3-axis machine.more » The workpiece is vibrated at 40 kHz frequency with an amplitude of several micrometers. A voice-coil actuator and a control loop based on the drilling force impose the tool feed. In addition, the tool is rotated at a prescribed speed to improve the drilling speed as well as the hole geometry. Typically, a WC wire serves as tool to bore 200 {mu}m diameter micro-holes of 300 to 1,000 {mu}m depth in glass and ruby. The abrasive slurry contains B4C particles of 1 {mu}m to 5 {mu}m diameter in various concentrations.This paper discusses, on the basis of the experimental results, the influence of several parameters on the drilling time. First, the results show that the control strategy based on the drilling force allows to reach higher feed rates (avoiding tool breakage). Typically, a 8 um/s feed rate is achieved with glass and 0.9 {mu}m/s with ruby. Tool rotation, even for values as low as 50 rpm, increases productivity and improves holes geometry. Drilling with 1 {mu}m and 5 {mu}m B4C particles yields similar productivity results. Our future research will focus on using the presented results to develop a model that can serve to optimize the process for different applications.« less
The main objective of this study is to evaluate the performance of sampling methods for potential use as a Federal Reference Method (FRM) capable of providing an estimate of coarse particle (PMc: particulate matter with an aerodynamic diameter between 2.5 um and 10 um) mass con...
Design and fabrication of an elliptical micro-lens array with grating for laser safety
NASA Astrophysics Data System (ADS)
Li, L. H.; Wu, B. Q.; Chan, C. Y.; Lee, W. B.; Dong, L. H.
2015-10-01
With the enormous expansion of laser usage in medicine, industry and research, all facilities must formulate and adhere to specific safety methods that appropriately address user protection. The protective ellipticalal microstructure with grating is a novel technology which can provide the principal means of ensuring against ocular injury, and must be worn at all times during laser operation. On the basis of Fresnel's law and the diffractive law, Solidworks and Lighttools software are applied to design the elliptical micro-lens array and correspondent grating. The height of the microstructure is 100um and its period is 3mm. The period of grating is 5um. It is shown that the amount of emergent light of a specific wavelength (1064nm) can reflect more than 40° from the incident light through simulation, while the incident light is perpendicular to the microstructure. The fabrication adopts the ultra-precision single point diamond method and injection molding method. However, it is found in the test that the surface roughness has a serious effect on the angle between the emergent and incident light. As a result, the element can reflect the vertical incidence beam into a tilted emergent beam with a certain angular degree , as well as protecting users from laser damage injures.
NASA Astrophysics Data System (ADS)
Qiu, J. P.; Niu, D. X.
Micro-grid is one of the key technologies of the future energy supplies. Take economic planning. reliability, and environmental protection of micro grid as a basis for the analysis of multi-strategy objective programming problems for micro grid which contains wind power, solar power, and battery and micro gas turbine. Establish the mathematical model of each power generation characteristics and energy dissipation. and change micro grid planning multi-objective function under different operating strategies to a single objective model based on AHP method. Example analysis shows that in combination with dynamic ant mixed genetic algorithm can get the optimal power output of this model.
First Asteroid Spectrometric Observations with BTA: 3045 Alois
NASA Astrophysics Data System (ADS)
Busarev, V. V.; Burenkov, A. N.; Pramskij, A. G.
2001-11-01
BTA, Russian 6-m telescope, was mainly used for faint stars and extragalactic objects observations. We have firstly performed with the telescope spectrometric observations of a main belt asteroid, 3045 Alois, and are planning to use it for Centaurs and Kuiper Belt objects spectrometry. We have obtained some results of the observations. Spectra of Alois were recorded on two nights of March 2001 (29/30 and 30/31) with a long slit spectrograph (UAGS + CCD) in the .38-.80 um spectral range. HD105633 (G5) [1] considered as a solar analog was also observed, and the data were used for calculation the asteroid reflectance spectra. It was found that reflectance spectra of Alois obtained on different nights have various continuum slopes and absorption features. The reflectance spectrum on 29/30 March had a flat continuum in the range .44-.65 um and absorption bands at .5 um (ab. 7 % with respect to the continuum) similar to that found on the E-type asteroid 2035 Stearns [2], and at .80 um (ab. 25 %). Another one on 30/31 March had a red continuum in the range .40-.67 um and absorption bands at .43 um (ab. 6 %) resembling absorption features found on some C-, M- and S-type asteroids [3, 4], and at .80 um (ab. 17 %). From the data and taking into account the mean heliocentric distance of 3045 Alois (3.13 AU) we suppose that the asteroid having irregular spectral characteristics may be of M- or E-type and possibly hydrated. Unfortunately, its albedo and rotational period remain still unknown. [1] Mermilliod J.-C. (1994) Bull. Inf. CDS 45, 3. [2] Fornasier S. and Lazzarine M. (2001) Icarus 152, 127-133. [3] Vilas F. et al. (1993) Icarus 102, 225-231. [4] Busarev V. V. (2001) LPSC XXXII, abs. 1927.
Local x-ray structure analysis of optically manipulated biological micro-objects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cojoc, Dan; Ferrari, Enrico; Santucci, Silvia C.
2010-12-13
X-ray diffraction using micro- and nanofocused beams is well suited for nanostructure analysis at different sites of a biological micro-object. To conduct in vitro studies without mechanical contact, we developed object manipulation by optical tweezers in a microfluidic cell. Here we report x-ray microdiffraction analysis of a micro-object optically trapped in three dimensions. We revealed the nanostructure of a single starch granule at different points and investigated local radiation damage induced by repeated x-ray exposures at the same position, demonstrating high stability and full control of the granule orientation by multiple optical traps.
The main objective of this study is to evaluate the performance of candidate sampling methods for potential use as a Federal Reference Method (FRM) capable of providing an estimate of coarse particle (PMc: particulate matter with an aerodynamic diameter between 2.5 um and 10 um...
Injection-depth-locking axial motion guided handheld micro-injector using CP-SSOCT.
Cheon, Gyeong Woo; Huang, Yong; Kwag, Hye Rin; Kim, Ki-Young; Taylor, Russell H; Gehlbach, Peter L; Kang, Jin U
2014-01-01
This paper presents a handheld micro-injector system using common-path swept source optical coherence tomography (CP-SSOCT) as a distal sensor with highly accurate injection-depth-locking. To achieve real-time, highly precise, and intuitive freehand control, the system used graphics processing unit (GPU) to process the oversampled OCT signal with high throughput and a smart customized motion monitoring control algorithm. A performance evaluation was conducted with 60-insertions and fluorescein dye injection tests to show how accurately the system can guide the needle and lock to the target depth. The evaluation tests show our system can guide the injection needle into the desired depth with 4.12 um average deviation error while injecting 50 nl of fluorescein dye.
Miniaturized CARS microendoscope probe design for label-free intraoperative imaging
NASA Astrophysics Data System (ADS)
Chen, Xu; Wang, Xi; Xu, Xiaoyun; Cheng, Jie; Liu, Zhengfan; Weng, Sheng; Thrall, Michael J.; Goh, Alvin C.; McCormick, Daniel T.; Wong, Kelvin; Wong, Stephen T. C.
2014-03-01
A Coherent Anti-Stokes Raman Scattering (CARS) microendoscope probe for early stage label-free prostate cancer diagnosis at single cell resolution is presented. The handheld CARS microendoscope probe includes a customized micro-electromechanical systems (MEMS) scanning mirror as well as miniature optical and mechanical components. In our design, the excitation laser (pump and stokes beams) from the fiber is collimated, reflected by the reflecting mirror, and transmitted via a 2D MEMS scanning mirror and a micro-objective system onto the sample; emission in the epi-direction is returned through the micro-objective lens, MEMS and reflecting mirror, and collimation system, and finally the emission signal is collected by a photomultiplier tube (PMT). The exit pupil diameter of the collimator system is designed to match the diameter of the MEMS mirror and the entrance pupil diameter of the micro-objective system. The back aperture diameter of the micro-objective system is designed according to the largest MEMS scanning angle and the distance between the MEMS mirror and the back aperture. To increase the numerical aperture (NA) of the micro-objective system in order to enhance the signal collection efficiency, the back aperture diameter of the micro-objective system is enlarged with an upfront achromatic wide angle Keplerian telescope beam expander. The integration of a miniaturized micro-optics probe with optical fiber CARS microscopy opens up the possibility of in vivo molecular imaging for cancer diagnosis and surgical intervention.
VizieR Online Data Catalog: Infrared morphology of HII regions (Topchieva+, 2017)
NASA Astrophysics Data System (ADS)
Topchieva, A. P.; Wiebe, D. S.; Kirsanova, M. S.; Krushinskii, V. V.
2018-03-01
The 20-cm New GPS survey (http://third.ucllnl.org/gps), created using the MAGPIS database of radio images of regions with Galactic coordinates |bGal|<0.8° and 5°
"Um, I Can Tell You're Lying": Linguistic Markers of Deception versus Truth-Telling in Speech
ERIC Educational Resources Information Center
Arciuli, Joanne; Mallard, David; Villar, Gina
2010-01-01
Lying is a deliberate attempt to transmit messages that mislead others. Analysis of language behaviors holds great promise as an objective method of detecting deception. The current study reports on the frequency of use and acoustic nature of "um" and "like" during laboratory-elicited lying versus truth-telling. Results obtained using a…
Power generation by flagella-propelled Serratia Marcescens
NASA Astrophysics Data System (ADS)
Tran, Trung-Hieu; Kim, Min Jun; Byun, Doyoung
2010-11-01
In this study, we present electrical power generation by using swimming Serratia marcescens which is a rod shaped bacterium species and has about 10 um long and about 20 nm thin helical filaments. Flow in micro channel is driven by bacteria attached on the wall, which is around 25 to 50 μm/sec. The driven electrolyte solution flow (buffer solution containing high concentration of S. marcescens) may be considered as movement of conductor. If we place permanent magnets on the top and bottom of the micro channel and electrodes on side walls in the micro channel, electrical current could be generated by the principle of Lorentz force acting on the moving charges. The potential between the two electrodes was measured to be up to 10mV and the electrical current was about 10pA with external load 50 Ohm. Even if the energy generated by bacteria swimming is small, it demonstrated the possible generation of power, which requires in-depth further research.
Process for the detection of micro-cracks
Lapinski, Norman; Sather, Allen
1979-01-01
A process for the nondestructive testing of ceramic objects to detect the presence of defects and micro-cracks in the surface in which a solution of silver nitrate is applied to the surface of the object which penetrates into the surface defects, drying the object so that the silver nitrate remains in the defects, and preparing an X-ray radiograph whereby any defects and micro-cracks will appear in the radiograph.
Stress-strain relationship of PDMS micropillar for force measurement application
NASA Astrophysics Data System (ADS)
Johari, Shazlina; Shyan, L. Y.
2017-11-01
There is an increasing interest to use polydimethylsiloxane (PDMS) based materials as bio-transducers for force measurements in the order of micro to nano Newton. The accuracy of these devices relies on appropriate material characterization of PDMS and modelling to convert the micropillar deformations into the corresponding forces. Previously, we have reported on fabricated PDMS micropillar that acts as a cylindrical cantilever and was experimentally used to measure the force of the nematode C. elegans. In this research, similar PDMS micropillars are designed and simulated using ANSYS software. The simulation involves investigating two main factors that is expected to affect the force measurement performance; pillar height and diameter. Results show that the deformation increases when pillar height is increased and the deformation is inversely proportional to the pillar diameter. The maximum deformation obtained is 713 um with pillar diameter of 20 um and pillar height of 100 um. Results of stress and strain show similar pattern, where their values decreases as pillar diameter and height is increased. The simulated results are also compared with the calculated displacement. The trend for both calculated and simulated values are similar with 13% average difference.
Third-generation imaging sensor system concepts
NASA Astrophysics Data System (ADS)
Reago, Donald A.; Horn, Stuart B.; Campbell, James, Jr.; Vollmerhausen, Richard H.
1999-07-01
Second generation forward looking infrared sensors, based on either parallel scanning, long wave (8 - 12 um) time delay and integration HgCdTe detectors or mid wave (3 - 5 um), medium format staring (640 X 480 pixels) InSb detectors, are being fielded. The science and technology community is now turning its attention toward the definition of a future third generation of FLIR sensors, based on emerging research and development efforts. Modeled third generation sensor performance demonstrates a significant improvement in performance over second generation, resulting in enhanced lethality and survivability on the future battlefield. In this paper we present the current thinking on what third generation sensors systems will be and the resulting requirements for third generation focal plane array detectors. Three classes of sensors have been identified. The high performance sensor will contain a megapixel or larger array with at least two colors. Higher operating temperatures will also be the goal here so that power and weight can be reduced. A high performance uncooled sensor is also envisioned that will perform somewhere between first and second generation cooled detectors, but at significantly lower cost, weight, and power. The final third generation sensor is a very low cost micro sensor. This sensor can open up a whole new IR market because of its small size, weight, and cost. Future unattended throwaway sensors, micro UAVs, and helmet mounted IR cameras will be the result of this new class.
BME Estimation of Residential Exposure to Ambient PM10 and Ozone at Multiple Time Scales
Yu, Hwa-Lung; Chen, Jiu-Chiuan; Christakos, George; Jerrett, Michael
2009-01-01
Background Long-term human exposure to ambient pollutants can be an important contributing or etiologic factor of many chronic diseases. Spatiotemporal estimation (mapping) of long-term exposure at residential areas based on field observations recorded in the U.S. Environmental Protection Agency’s Air Quality System often suffer from missing data issues due to the scarce monitoring network across space and the inconsistent recording periods at different monitors. Objective We developed and compared two upscaling methods: UM1 (data aggregation followed by exposure estimation) and UM2 (exposure estimation followed by data aggregation) for the long-term PM10 (particulate matter with aerodynamic diameter ≤ 10 μm) and ozone exposure estimations and applied them in multiple time scales to estimate PM and ozone exposures for the residential areas of the Health Effects of Air Pollution on Lupus (HEAPL) study. Method We used Bayesian maximum entropy (BME) analysis for the two upscaling methods. We performed spatiotemporal cross-validations at multiple time scales by UM1 and UM2 to assess the estimation accuracy across space and time. Results Compared with the kriging method, the integration of soft information by the BME method can effectively increase the estimation accuracy for both pollutants. The spatiotemporal distributions of estimation errors from UM1 and UM2 were similar. The cross-validation results indicated that UM2 is generally better than UM1 in exposure estimations at multiple time scales in terms of predictive accuracy and lack of bias. For yearly PM10 estimations, both approaches have comparable performance, but the implementation of UM1 is associated with much lower computation burden. Conclusion BME-based upscaling methods UM1 and UM2 can assimilate core and site-specific knowledge bases of different formats for long-term exposure estimation. This study shows that UM1 can perform reasonably well when the aggregation process does not alter the spatiotemporal structure of the original data set; otherwise, UM2 is preferable. PMID:19440491
Correction of large amplitude wavefront aberrations
NASA Astrophysics Data System (ADS)
Cornelissen, S. A.; Bierden, P. A.; Bifano, T. G.; Webb, R. H.; Burns, S.; Pappas, S.
2005-12-01
Recently, a number of research groups around the world have developed ophthalmic instruments capable of in vivo diffraction limited imaging of the human retina. Adaptive optics was used in these systems to compensate for the optical aberrations of the eye and provide high contrast, high resolution images. Such compensation uses a wavefront sensor and a wavefront corrector (usually a deformable mirror) coordinated in a closed- loop control system that continuously works to counteract aberrations. While those experiments produced promising results, the deformable mirrors have had insufficient range of motion to permit full correction of the large amplitude aberrations of the eye expected in a normal population of human subjects. Other retinal imaging systems developed to date with MEMS (micro-electromechanical systems) DMs suffer similar limitations. This paper describes the design, manufacture and testing of a 6um stroke polysilicon surface micromachined deformable mirror that, coupled with an new optical method to double the effective stroke of the MEMS-DM, will permit diffraction-limited retinal imaging through dilated pupils in at least 90% of the human population. A novel optical design using spherical mirrors provides a double pass of the wavefront over the deformable mirror such that a 6um mirror displacement results in 12um of wavefront compensation which could correct for 24um of wavefront error. Details of this design are discussed. Testing of the effective wavefront modification was performed using a commercial wavefront sensor. Results are presented demonstrating improvement in the amplitude of wavefront control using an existing high degree of freedom MEMS deformable mirror.
Flexible micro flow sensor for micro aerial vehicles
NASA Astrophysics Data System (ADS)
Zhu, Rong; Que, Ruiyi; Liu, Peng
2017-12-01
This article summarizes our studies on micro flow sensors fabricated on a flexible polyimide circuit board by a low-cost hybrid process of thin-film deposition and circuit printing. The micro flow sensor has merits of flexibility, structural simplicity, easy integrability with circuits, and good sensing performance. The sensor, which adheres to an object surface, can detect the surface flow around the object. In our study, we install the fabricated micro flow sensors on micro aerial vehicles (MAVs) to detect the surface flow variation around the aircraft wing and deduce the aerodynamic parameters of the MAVs in flight. Wind tunnel experiments using the sensors integrated with the MAVs are also conducted.
MicroRNA-320c inhibits tumorous behaviors of bladder cancer by targeting Cyclin-dependent kinase 6
2014-01-01
Background Increasing evidence has suggested that dysregulation of microRNAs (miRNAs) could contribute to human disease including cancer. Previous miRNA microarray analysis illustrated that miR-320c is down-regulated in various cancers. However, the roles of miR-320c in human bladder cancer have not been well elucidated. Therefore, this study was performed to investigate the biological functions and molecular mechanisms of miR-320c in human bladder cancer cell lines, discussing whether it could be a therapeutic biomarker of bladder cancer in the future. Methods Two human bladder cancer cell lines and samples from thirteen patients with bladder cancer were analyzed for the expression of miR-320c by quantitative RT-PCR. Over-expression of miR-320c was established by transfecting mimics into T24 and UM-UC-3. Cell proliferation and cell cycle were assessed by cell viability assay, flow cytometry and colony formation assay. Cell motility ability was evaluated by transwell assay. The target gene of miR-320c was determined by luciferase assay, quantitative RT-PCR and western blot. The regulation of cell cycle and mobility by miR-320c was analyzed by western blot. Results We observed that miR-320c was down-regulated in human bladder cancer tissues and bladder cancer cell lines T24 and UM-UC-3. Over-expression of miR-320c could induce G1 phase arrest in UM-UC-3 and T24 cells, and subsequently inhibited cell growth. We also indentified miR-320c could impair UM-UC-3 and T24 cell motility. In addition, we identified CDK6, a cell cycle regulator, as a novel target of miR-320c. Moreover, we demonstrated miR-320c could induce bladder cancer cell cycle arrest and mobility via regulating CDK6. We also observed that inhibition of miR-320c or restoration of CDK6 in miR-320c-over-expressed bladder cancer cells partly reversed the suppressive effects of miR-320c. Conclusions miR-320c could inhibit the proliferation, migration and invasion of bladder cancer cells via regulating CDK6. Our study revealed that miR-320c could be a therapeutic biomarker of bladder cancer in the future. PMID:25178497
Confirming Planetary Mass Candidate Companions in Ophiuchus
NASA Astrophysics Data System (ADS)
Fontanive, Clemence
2016-10-01
We propose for follow-up observations to confirm common proper motion for two candidate planetary mass companions, identified as part of our GO 12944 (PI Allers) search for companions to the youngest ( 0.5 Myr) brown dwarfs in the nearby Ophiuchus star-forming region. If confirmed to be co-moving, these would be among the lowest mass planetary mass companions imaged to date, with estimated masses <5 Jupiter Masses and would be vital benchmark objects for evolutionary models at these young ages. With our multi-band optical and IR photometric approach based on the SpT-Q relation seen for Ophiuchus brown dwarfs (Allers in prep.), we have already estimated the spectral type of our candidate companions. This approach distinguishes substellar objects from background interlopers based on the strength of the 1.4 um water feature robustly observed in MLTY objects but not in reddened background stars - both our candidates show clear evidence of absorption at 1.4 um. If confirmed, these candidate companions would significantly increase the census of young planetary mass companions around extremely young brown dwarfs. These candidate companions are too faint to be observed with ground-based laser guide star adaptive optics (LGS AO) nor is the 1.4 um water feature observable from the ground for such faint objects due to telluric absorption, thus HST is the only telescope in the world suitable for these observations.
A Large-Telescope Natural Guide Star AO System
NASA Technical Reports Server (NTRS)
Redding, David; Milman, Mark; Needels, Laura
1994-01-01
None given. From overview and conclusion:Keck Telescope case study. Objectives-low cost, good sky coverage. Approach--natural guide star at 0.8um, correcting at 2.2um.Concl- Good performance is possible for Keck with natural guide star AO system (SR>0.2 to mag 17+).AO-optimized CCD should b every effective. Optimizing td is very effective.Spatial Coadding is not effective except perhaps at extreme low light levels.
NASA Astrophysics Data System (ADS)
Ahmed, Naveed; Alahmari, Abdulrahman M.; Darwish, Saied; Naveed, Madiha
2016-12-01
Micro-channels are considered as the integral part of several engineering devices such as micro-channel heat exchangers, micro-coolers, micro-pulsating heat pipes and micro-channels used in gas turbine blades for aerospace applications. In such applications, a fluid flow is required to pass through certain micro-passages such as micro-grooves and micro-channels. The fluid flow characteristics (flow rate, turbulence, pressure drop and fluid dynamics) are mainly established based on the size and accuracy of micro-passages. Variations (oversizing and undersizing) in micro-passage's geometry directly affect the fluid flow characteristics. In this study, the micro-channels of several sizes are fabricated in well-known aerospace nickel alloy (Inconel 718) through laser beam micro-milling. The variations in geometrical characteristics of different-sized micro-channels are studied under the influences of different parameters of Nd:YAG laser. In order to have a minimum variation in the machined geometries of each size of micro-channel, the multi-objective optimization of laser parameters has been carried out utilizing the response surface methodology approach. The objective was set to achieve the targeted top widths and depths of micro-channels with minimum degree of taperness associated with the micro-channel's sidewalls. The optimized sets of laser parameters proposed for each size of micro-channel can be used to fabricate the micro-channels in Inconel 718 with minimum amount of geometrical variations.
The optional selection of micro-motion feature based on Support Vector Machine
NASA Astrophysics Data System (ADS)
Li, Bo; Ren, Hongmei; Xiao, Zhi-he; Sheng, Jing
2017-11-01
Micro-motion form of target is multiple, different micro-motion forms are apt to be modulated, which makes it difficult for feature extraction and recognition. Aiming at feature extraction of cone-shaped objects with different micro-motion forms, this paper proposes the best selection method of micro-motion feature based on support vector machine. After the time-frequency distribution of radar echoes, comparing the time-frequency spectrum of objects with different micro-motion forms, features are extracted based on the differences between the instantaneous frequency variations of different micro-motions. According to the methods based on SVM (Support Vector Machine) features are extracted, then the best features are acquired. Finally, the result shows the method proposed in this paper is feasible under the test condition of certain signal-to-noise ratio(SNR).
A micro-CL system and its applications
NASA Astrophysics Data System (ADS)
Wei, Zenghui; Yuan, Lulu; Liu, Baodong; Wei, Cunfeng; Sun, Cuili; Yin, Pengfei; Wei, Long
2017-11-01
The computed laminography (CL) method is preferable to computed tomography for the non-destructive testing of plate-like objects. A micro-CL system is developed for three-dimensional imaging of plate-like objects. The details of the micro-CL system are described, including the system architecture, scanning modes, and reconstruction algorithm. The experiment results of plate-like fossils, insulated gate bipolar translator module, ball grid array packaging, and printed circuit board are also presented to demonstrate micro-CL's ability for 3D imaging of flat specimens and universal applicability in various fields.
A micro-CL system and its applications.
Wei, Zenghui; Yuan, Lulu; Liu, Baodong; Wei, Cunfeng; Sun, Cuili; Yin, Pengfei; Wei, Long
2017-11-01
The computed laminography (CL) method is preferable to computed tomography for the non-destructive testing of plate-like objects. A micro-CL system is developed for three-dimensional imaging of plate-like objects. The details of the micro-CL system are described, including the system architecture, scanning modes, and reconstruction algorithm. The experiment results of plate-like fossils, insulated gate bipolar translator module, ball grid array packaging, and printed circuit board are also presented to demonstrate micro-CL's ability for 3D imaging of flat specimens and universal applicability in various fields.
Karch, Jakub; Bartl, Benjamin; Dudak, Jan; Zemlicka, Jan; Krejci, Frantisek
2016-12-01
Historical beeswax seals are unique cultural heritage objects. Unfortunately, a number of historical sealing waxes show a porous structure with a strong tendency to stratification and embrittlement, which makes these objects extremely prone to mechanical damage. The understanding of beeswax degradation processes therefore plays an important role in the preservation and consequent treatment of these objects. Conventional methods applied for the investigation of beeswax materials (e.g. gas chromatography) are of a destructive nature or bring only limited information about the sample surface (microscopic techniques). Considering practical limitations of conventional methods and ethical difficulties connected with the sampling of the historical material, radiation imaging methods such as X-ray micro-tomography presents a promising non-destructive tool for the onward scientific research in this field. In this contribution, we present the application of high-contrast X-ray micro-radiography and micro-tomography for the investigation of beeswax seal fragments. The method is based on the application of the large area photon-counting detector recently developed at our institute. The detector combines the advantages of single-photon counting technology with a large field of view. The method, consequently, enables imaging of relatively large objects with high geometrical magnification. In the reconstructed micro-tomographies of investigated historical beeswax seals, we are able to reveal morphological structures such as stratification, micro-cavities and micro-fractures with spatial resolution down to 5μm non-destructively and with high imaging quality. The presented work therefore demonstrates that a combination of state-of-the-art hybrid pixel semiconductor detectors and currently available micro-focus x-ray sources makes it possible to apply X-ray micro-radiography and micro-tomography as a valuable non-destructive tool for volumetric beeswax seal morphological studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Telescópio de patrulhamento solar em 12 GHz
NASA Astrophysics Data System (ADS)
Utsumi, F.; Costa, J. E. R.
2003-08-01
O telescópio de patrulhamento solar é um instrumento dedicado à observação de explosões solares com início de suas operações em janeiro de 2002, trabalhando próximo ao pico de emissão do espectro girossincrotrônico (12 GHz). Trata-se de um arranjo de três antenas concebido para a detecção de explosões e determinação em tempo real da localização da região emissora. Porém, desde sua implementação em uma montagem equatorial movimentada por um sistema de rotação constante (15 graus/hora) o rastreio apresentou pequenas variações de velocidade e folgas nas caixas de engrenagens. Assim, tornou-se necessária a construção de um sistema de correção automática do apontamento que era de fundamental importância para os objetivos do projeto. No segundo semestre de 2002 empreendemos uma série de tarefas com o objetivo de automatizar completamente o rastreio, a calibração, a aquisição de dados, controle de ganhos, offsets e transferência dos dados pela internet através de um projeto custeado pela FAPESP. O rastreio automático é realizado através de um inversor que controla a freqüência da rede de alimentação do motor de rastreio podendo fazer micro-correções na direção leste-oeste conforme os radiômetros desta direção detectem uma variação relativa do sinal. Foi adicionado também um motor na direção da declinação para correção automática da variação da direção norte-sul. Após a implementação deste sistema a precisão do rastreio melhorou para um desvio máximo de 30 segundos de arco, o que está muito bom para este projeto. O Telescópio se encontra em funcionamento automático desde março de 2003 e já conta com várias explosões observadas após a conclusão desta fase de automação. Estamos apresentando as explosões mais intensas do período e com as suas respectivas posições no disco solar.
Media processors using a new microsystem architecture designed for the Internet era
NASA Astrophysics Data System (ADS)
Wyland, David C.
1999-12-01
The demands of digital image processing, communications and multimedia applications are growing more rapidly than traditional design methods can fulfill them. Previously, only custom hardware designs could provide the performance required to meet the demands of these applications. However, hardware design has reached a crisis point. Hardware design can no longer deliver a product with the required performance and cost in a reasonable time for a reasonable risk. Software based designs running on conventional processors can deliver working designs in a reasonable time and with low risk but cannot meet the performance requirements. What is needed is a media processing approach that combines very high performance, a simple programming model, complete programmability, short time to market and scalability. The Universal Micro System (UMS) is a solution to these problems. The UMS is a completely programmable (including I/O) system on a chip that combines hardware performance with the fast time to market, low cost and low risk of software designs.
A vacuum microgripping tool with integrated vibration releasing capability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rong, Weibin; Fan, Zenghua, E-mail: zenghua-fan@163.com; Wang, Lefeng
2014-08-01
Pick-and-place of micro-objects is a basic task in various micromanipulation demands. Reliable releasing of micro-objects is usually disturbed due to strong scale effects. This paper focuses on a vacuum micro-gripper with vibration releasing functionality, which was designed and assembled for reliable micromanipulation tasks. Accordingly, a vibration releasing strategy of implementing a piezoelectric actuator on the vacuum microgripping tool is presented to address the releasing problem. The releasing mechanism was illustrated using a dynamic micro contact model. This model was developed via theoretical analysis, simulations and pull-off force measurement using atomic force microscopy. Micromanipulation experiments were conducted to verify the performancemore » of the vacuum micro-gripper. The results show that, with the assistance of the vibration releasing, the vacuum microgripping tool can achieve reliable release of micro-objects. A releasing location accuracy of 4.5±0.5 μm and a successful releasing rate of around 100% (which is based on 110 trials) were achieved for manipulating polystyrene microspheres with radius of 35–100 μm.« less
Preparation and application of silver nanopaste as thermal interface materials
NASA Astrophysics Data System (ADS)
Zou, Lianfeng
The power densities in electronic devices have increased dramatically; heat dissipation has become a major challenge in high performance electronics applications. We have investigated a new type of resin-free hybrid silver nanopastes, which contain silver micro-flakes with particle sizes of 1 - 10 um and silver nanoparticles with diameters of 3 - 8 nm. The assemble temperature can be as low as 150oC due to the low sintering temperature of silver nanoparticles. The fused silver micro-and nanoparticles in TIM form continuous metallic networks, resulting in good thermal, electrical and mechanical bonding. The steady-state thermal gradient measurement show the bulk thermal conductivity between 20W/ (m*K) and 100 W/ (m*K), which is higher than commercial product in the market. The application specific performance of the nanopaste has been using LED lamp on heat sinks as model test vehicle.
VizieR Online Data Catalog: The hot Jupiter Kepler-13Ab planet's occultation (Shporer+, 2014)
NASA Astrophysics Data System (ADS)
Shporer, A.; O'Rourke, J. G.; Knutson, H. A.; Szabo, G. M.; Zhao, M.; Burrows, A.; Fortney, J.; Agol, E.; Cowan, N. B.; Desert, J.-M.; Howard, A. W.; Isaacson, H.; Lewis, N. K.; Showman, A. P.; Todorov, K. O.
2017-07-01
Here we carry out an atmospheric characterization of Kepler-13Ab by measuring its occultation in four different wavelength bands, from the infrared (IR; Spitzer/Infrared array camera (IRAC) 4.5 um and 3.6 um), through the near-IR (NIR; Ks band), to the optical (Kepler). We also analyze the Kepler phase curve and obtain Keck/high-resolution echelle spectrometer (HIRES) spectra that result in revised parameters for the objects in the system. (4 data files).
Spitzer/IRS spectroscopy of the 12um Seyferts
NASA Astrophysics Data System (ADS)
Wu, Yanling; Charmandaris, V.; Huang, J.; Houck, J.
2009-01-01
The extended 12um galaxy sample is a flux-limited sample of 893 galaxies selected from the IRAS Faint Source Catalog 2. A total of 118 objects from this sample have been classified optically as Seyfert galaxies, providing one of the largest infrared selected unbiased sample of active galactic nuclei (AGN). We present our prelimary results from our analysis of mid-infrared Spitzer/IRS spectra of 102 12um Seyferts (that is 86 % of the 12um Seyfert sample) which have been observed by various Spitzer programs and are available in the Spitzer archive. A number of mid-infared diagnostics have been developed to study the nature of nuclear dust enshrouded emission from AGNs, in order to disentangle the starburst-AGN connection. Since PAH emission is a tracer of star formation activity we have measured the 11.3um PAH feature for our Seyfert sample. We find that as the strength of the radiation field in AGNs increases the PAH molecules are destroyed, while the PAH EWs increase with the IRAS f60/f25 ratios of the host galaxies. We further probe this warm/cold color diagnostic, by contrasting our findings with those of we starbust galaxies, ULIRGs, as well as blue compact dwarf galaxies.
Design of the SAC-D/NIRST camera module
NASA Astrophysics Data System (ADS)
Gauvin, Jonny; Châteauneuf, François; Marchese, Linda; Coté, Patrice; Leclerc, Mélanie; Chevalier, Claude; Marraco, Hugo; Phong, Linh N.
2007-09-01
Aquarius/SAC-D is a cooperative international mission conducted jointly by the National Aeronautics and Space Administration (NASA) of the United States of America (USA) and the Comisión Nacional de Actividades Espaciales (CONAE) of Argentina. The overall mission targets the understanding of the total Earth system and the consequences of the natural and man-made changes in the environment of the planet. Jointly developed by CONAE and the Canadian Space Agency (CSA), the New IR Sensor Technology (NIRST) instrument will monitor high temperature events on the ground related to fires and volcanic events, and will measure their physical parameters. Furthermore, NIRST will take measurements of sea surface temperatures mainly off the coast of South America as well as other targeted opportunities. NIRST has one band in the mid-wave infrared centered at 3.8 um with a bandwidth of 0.8 um, and two bands in the thermal infrared, centered respectively at 10.85 and 11.85 um with a bandwidth of 0.9 um. The temperature range is from 300 to 600 K with an NEDT < 0.5 K for the mid-infrared band and from 200 to 400 K with an NEDT < 0.4 K for the thermal bands. The baseline design of the NIRST is based on micro-bolometer technology developed jointly by INO and the CSA. Two arrays of 512x3 uncooled bolometric sensors will be used to measure brightness temperatures. The instantaneous field-of-view is 534 microradians corresponding to a ground sampling distance of 350 m at the subsatellite point. A pointing mirror allows a total swath of +/- 500 km. This paper describes the detailed design of the NIRST camera module. Key performance parameters are also presented.
Fang, Liang; Gould, Oliver E C; Lysyakova, Liudmila; Jiang, Yi; Sauter, Tilman; Frank, Oliver; Becker, Tino; Schossig, Michael; Kratz, Karl; Lendlein, Andreas
2018-04-23
The implementation of shape-memory effects (SME) in polymeric micro- or nano-objects currently relies on the application of indirect macroscopic manipulation techniques, for example, stretchable molds or phantoms, to ensembles of small objects. Here, we introduce a method capable of the controlled manipulation and SME quantification of individual micro- and nano-objects in analogy to macroscopic thermomechanical test procedures. An atomic force microscope was utilized to address individual electro-spun poly(ether urethane) (PEU) micro- or nanowires freely suspended between two micropillars on a micro-structured silicon substrate. In this way, programming strains of 10±1% or 21±1% were realized, which could be successfully fixed. An almost complete restoration of the original free-suspended shape during heating confirmed the excellent shape-memory performance of the PEU wires. Apparent recovery stresses of σ max,app =1.2±0.1 and 33.3±0.1 MPa were obtained for a single microwire and nanowire, respectively. The universal AFM test platform described here enables the implementation and quantification of a thermomechanically induced function for individual polymeric micro- and nanosystems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nonlinear dynamic phase contrast microscopy for microfluidic and microbiological applications
NASA Astrophysics Data System (ADS)
Denz, C.; Holtmann, F.; Woerdemann, M.; Oevermann, M.
2008-08-01
In live sciences, the observation and analysis of moving living cells, molecular motors or motion of micro- and nano-objects is a current field of research. At the same time, microfluidic innovations are needed for biological and medical applications on a micro- and nano-scale. Conventional microscopy techniques are reaching considerable limits with respect to these issues. A promising approach for this challenge is nonlinear dynamic phase contrast microscopy. It is an alternative full field approach that allows to detect motion as well as phase changes of living unstained micro-objects in real-time, thereby being marker free, without contact and non destructive, i.e. fully biocompatible. The generality of this system allows it to be combined with several other microscope techniques such as conventional bright field or fluorescence microscopy. In this article we will present the dynamic phase contrast technique and its applications in analysis of micro organismic dynamics, micro flow velocimetry and micro-mixing analysis.
ERIC Educational Resources Information Center
Shaw, Denise
2017-01-01
Objectives of this articles are to present the findings of video recorded communication between teacher candidates and peers during simulated micro-teaching. The micro-teaching activity in its entirety combines conventional face-to-face interaction, video micro-teaching, peer and instructor feedback, alongside self-reflection to undergird the…
Optimal allocation of industrial PV-storage micro-grid considering important load
NASA Astrophysics Data System (ADS)
He, Shaohua; Ju, Rong; Yang, Yang; Xu, Shuai; Liang, Lei
2018-03-01
At present, the industrial PV-storage micro-grid has been widely used. This paper presents an optimal allocation model of PV-storage micro-grid capacity considering the important load of industrial users. A multi-objective optimization model is established to promote the local extinction of PV power generation and the maximum investment income of the enterprise as the objective function. Particle swarm optimization (PSO) is used to solve the case of a city in Jiangsu Province, the results are analyzed economically.
Weather and Rotation on Young Brown Dwarfs
NASA Astrophysics Data System (ADS)
Vos, Johanna; Biller, Beth; Allers, Katelyn; Manjavacas, Elena; Liu, Michael; Best, William; Metchev, Stanimir; Buenzli, Esther; Bonavita, Mariangela; Eriksson, Simon; Dupuy, Trent; Kopytova, Taisiya; Brandner, Wolfgang; Henning, Thomas; Bonnefoy, Mickael; Crossfield, Ian; Schlieder, Joshua; Homeier, Derek; Janson, Markus; Radigan, Jacqueline
2018-05-01
As part of a large, ground-based survey for weather patterns on exoplanet analogues, we have detected J-band variability in 5 young exoplanet analogues. We have already carried out followup Spitzer monitoring of two objects and here we propose Spitzer 3.6um and 4.5um monitoring of three early-mid-L detections in our survey. The proposed observations will enable us to assess the role of gravity in the variability properties of these young objects by providing a full measure of mid-IR amplitude across the full L spectral sequence for low-gravity objects. The proposed observations will also allow us to measure the rotational periods of our three targets. This will provide vital information on the angular momentum of young brown dwarfs, while enabling us to correct for geometric effects when considering the variability properties of our targets. This study will act as a necessary pathfinder for future variability studies of free-floating and companion exoplanets with JWST.
Meleo, Deborah; Baggi, Luigi; Di Girolamo, Michele; Di Carlo, Fabio; Pecci, Raffaella; Bedini, Rossella
2012-01-01
X-ray micro-tomography (micro-CT) is a miniaturized form of conventional computed axial tomography (CAT) able to investigate small radio-opaque objects at a-few-microns high resolution, in a non-destructive, non-invasive, and tri-dimensional way. Compared to traditional optical and electron microscopy techniques, which provide two-dimensional images, this innovative investigation technology enables a sample tri-dimensional analysis without cutting, coating or exposing the object to any particular chemical treatment. X-ray micro-tomography matches ideal 3D microscopy features: the possibility of investigating an object in natural conditions and without any preparation or alteration; non-invasive, non-destructive, and sufficiently magnified 3D reconstruction; reliable measurement of numeric data of the internal structure (morphology, structure and ultra-structure). Hence, this technique has multi-fold applications in a wide range of fields, not only in medical and odontostomatologic areas, but also in biomedical engineering, materials science, biology, electronics, geology, archaeology, oil industry, and semi-conductors industry. This study shows possible applications of micro-CT in dental implantology to analyze 3D micro-features of dental implant to abutment interface. Indeed, implant-abutment misfit is known to increase mechanical stress on connection structures and surrounding bone tissue. This condition may cause not only screw preload loss or screw fracture, but also biological issues in peri-implant tissues.
Refractive multiple optical tweezers for parallel biochemical analysis in micro-fluidics
NASA Astrophysics Data System (ADS)
Merenda, Fabrice; Rohner, Johann; Pascoal, Pedro; Fournier, Jean-Marc; Vogel, Horst; Salathé, René-Paul
2007-02-01
We present a multiple laser tweezers system based on refractive optics. The system produces an array of 100 optical traps thanks to a refractive microlens array, whose focal plane is imaged into the focal plane of a high-NA microscope objective. This refractive multi-tweezers system is combined to micro-fluidics, aiming at performing simultaneous biochemical reactions on ensembles of free floating objects. Micro-fluidics allows both transporting the particles to the trapping area, and conveying biochemical reagents to the trapped particles. Parallel trapping in micro-fluidics is achieved with polystyrene beads as well as with native vesicles produced from mammalian cells. The traps can hold objects against fluid flows exceeding 100 micrometers per second. Parallel fluorescence excitation and detection on the ensemble of trapped particles is also demonstrated. Additionally, the system is capable of selectively and individually releasing particles from the tweezers array using a complementary steerable laser beam. Strategies for high-yield particle capture and individual particle release in a micro-fluidic environment are discussed. A comparison with diffractive optical tweezers enhances the pros and cons of refractive systems.
Analysis and design of fiber-coupled high-power laser diode array
NASA Astrophysics Data System (ADS)
Zhou, Chongxi; Liu, Yinhui; Xie, Weimin; Du, Chunlei
2003-11-01
A conclusion that a single conventional optical system could not realize fiber coupled high-power laser diode array is drawn based on the BPP of laser beam. According to the parameters of coupled fiber, a method to couple LDA beams into a single multi-mode fiber including beams collimating, shaping, focusing and coupling is present. The divergence angles after collimating are calculated and analyzed; the shape equation of the collimating micro-lenses array is deprived. The focusing lens is designed. A fiber coupled LDA result with the core diameter of 800 um and numeric aperture of 0.37 is gotten.
NASA Astrophysics Data System (ADS)
Cheng, Lin; Ding, Xunliang; Liu, Zhiguo; Pan, Qiuli; Chu, Xuelian
2007-08-01
A new micro-X-ray fluorescence (micro-XRF) system based on rotating anode X-ray generator and polycapillary X-ray optics has been set up in XOL Lab, BNU, China, in order to be used for analysis of archaeological objects. The polycapillary X-ray optics used here can focus the primary X-ray beam down to tens of micrometers in diameter that allows for non-destructive and local analysis of sub-mm samples with minor/trace level sensitivity. The analytical characteristics and potential of this micro-XRF system in archaeological research are discussed. Some described uses of this instrument include studying Chinese ancient porcelain.
Jiřík, Miroslav; Bartoš, Martin; Tomášek, Petr; Malečková, Anna; Kural, Tomáš; Horáková, Jana; Lukáš, David; Suchý, Tomáš; Kochová, Petra; Hubálek Kalbáčová, Marie; Králíčková, Milena; Tonar, Zbyněk
2018-06-01
Quantification of the structure and composition of biomaterials using micro-CT requires image segmentation due to the low contrast and overlapping radioopacity of biological materials. The amount of bias introduced by segmentation procedures is generally unknown. We aim to develop software that generates three-dimensional models of fibrous and porous structures with known volumes, surfaces, lengths, and object counts in fibrous materials and to provide a software tool that calibrates quantitative micro-CT assessments. Virtual image stacks were generated using the newly developed software TeIGen, enabling the simulation of micro-CT scans of unconnected tubes, connected tubes, and porosities. A realistic noise generator was incorporated. Forty image stacks were evaluated using micro-CT, and the error between the true known and estimated data was quantified. Starting with geometric primitives, the error of the numerical estimation of surfaces and volumes was eliminated, thereby enabling the quantification of volumes and surfaces of colliding objects. Analysis of the sensitivity of the thresholding upon parameters of generated testing image sets revealed the effects of decreasing resolution and increasing noise on the accuracy of the micro-CT quantification. The size of the error increased with decreasing resolution when the voxel size exceeded 1/10 of the typical object size, which simulated the effect of the smallest details that could still be reliably quantified. Open-source software for calibrating quantitative micro-CT assessments by producing and saving virtually generated image data sets with known morphometric data was made freely available to researchers involved in morphometry of three-dimensional fibrillar and porous structures in micro-CT scans. © 2018 Wiley Periodicals, Inc.
Perchellet, Elisabeth M; Wang, Yang; Lou, Kaiyan; Zhao, Huiping; Battina, Srinivas K; Hua, Duy H; Perchellet, Jean-Pierre H
2007-01-01
Substituted triptycenes (TT code number), which block nucleoside transport, macromolecule syntheses and DNA topoisomerase activities, induce cytochrome c release and apoptotic DNA fragmentation, inhibit the proliferation of drug-sensitive and -resistant tumor cells in the nM range in vitro and rapidly trigger the collapse of mitochondrial transmembrane potential in cell and cell-free systems. Because mitochondrial permeability transition (MPT) requires more than depolarization, antitumor TTs were tested for their ability to directly trigger specific markers of MPT in isolated mitochondria. Large amplitude swelling and Ca2+ release were assayed in isolated mitochondria to demonstrate TT-induced MPT. Antitumor TTs interact with isolated mitochondria in a concentration- and time-dependent manner to rapidly cause large amplitude swelling and Ca2+ release in relation with their antiproliferative activities in L1210, HL-60 and LL/2 tumor cells in vitro. The ability of 4-10 uM TT15, TT16 and TT24 to maximally induce mitochondrial swelling and Ca2+ release within 20 min is similar to that of classic MPT inducers, such as 5 microg/ml alamethicin, 200 microM atractyloside, 5 microM phenylarsine oxide, 100 microM arsenic trioxide and a 100 microM Ca2+ overload. TT15 requires a priming concentration of 20 microM Ca2+ to trigger mitochondrial swelling and Ca2+ release and these 0.1 microM ruthenium red-sensitive MPT events are abolished by 1 microM cyclosporin A, 2 mM ADP and 20 microM bongkrekic acid, which block components of the permeability transition pore (PTP), and by 50-100 microM of various ubiquinones, which interact with the quinone binding site of the PTP and raise the Ca2+ load required for PTP opening. Antitumor TTs that trigger MPT in isolated mitochondria might interact with components of the PTP to boost its Ca2+-sensitive transition from the closed to the open state and might be valuable to develop mitochondriotoxic drugs that directly activate early components of apoptosis.
Rotationally resolved colors of the targets of NASA's Lucy mission
NASA Astrophysics Data System (ADS)
Emery, Joshua; Mottola, Stefano; Brown, Mike; Noll, Keith; Binzel, Richard
2018-05-01
We propose rotationally resolved photometry at 3.6 and 4.5 um of 5 Trojan asteroids and one Main Belt asteroid - the targets of NASA's Lucy mission. The proposed Spitzer observations are designed to meet a combination of science goals and mission support objectives. Science goals 1) Search for signatures of volatiles and/or organics on the surfaces. a. This goal includes resolving a discrepancy between previous WISE and Spitzer measurements of Trojans 2) Provide new constraints on the cause of rotational spectral heterogeneity detected on 3548 Eurybates at shorter wavelengths a. Determine whether the heterogeneity (Fig 1) extends to the 3-5 um region 3) Assess the possibility for spectral heterogeneity on the other targets a. This goal will help test the hypothesis of Wong and Brown (2015) that the near-surface interiors of Trojans differ from their surfaces 4) Thermal data at 4.5 um for the Main Belt target Donaldjohanson will refine estimates of size, albedo, and provide the first estimate of thermal inertia Mission support objectives 1) Assess scientifically optimal encounter times (viewing geometries) for the fly-bys a. Characterizing rotational spectral units now will enable the team to choose the most scientifically valuable part of the asteroid to view 2) Gather data to optimize observing parameters for Lucy instruments a. Measuring brightness in the 3 - 5 um region and resolving the discrepancy between WISE and Spitzer will enable better planning of the Lucy spectral observations in this wavelength range 3) The size, albedo, and thermal inertia of Donaldjohanson are fundamental data for planning the encounter with that Main Belt asteroid
Teunissen, Erik; Sherally, Jamilah; van den Muijsenbergh, Maria; Dowrick, Chris; van Weel-Baumgarten, Evelyn; van Weel, Chris
2014-01-01
Objective To explore health-seeking behaviour and experiences of undocumented migrants (UMs) in general practice in relation to mental health problems. Design Qualitative study using semistructured interviews and thematic analysis. Participants 15 UMs in the Netherlands, varying in age, gender, country of origin and education; inclusion until theoretical saturation was reached. Setting 4 cities in the Netherlands. Results UMs consider mental health problems to be directly related to their precarious living conditions. For support, they refer to friends and religion first, the general practitioner (GP) is their last resort. Barriers for seeking help include taboo on mental health problems, lack of knowledge of and trust in GPs competencies regarding mental health and general barriers in accessing healthcare as an UM (lack of knowledge of the right to access healthcare, fear of prosecution, financial constraints and practical difficulties). Once access has been gained, satisfaction with care is high. This is primarily due to the attitude of the GPs and the effectiveness of the treatment. Reasons for dissatisfaction with GP care are an experienced lack of time, lack of personal attention and absence of physical examination. Expectations of the GP vary, medication for mental health problems is not necessarily seen as a good practice. Conclusions UMs often see their precarious living conditions as an important determinant of their mental health; they do not easily seek help for mental health problems and various barriers hamper access to healthcare for them. Rather than for medication, UMs are looking for encouragement and support from their GP. We recommend that barriers experienced in seeking professional care are tackled at an institutional level as well as at the level of GP. PMID:25416057
Origins Space Telescope: The Far Infrared Imager and Polarimeter FIP
NASA Astrophysics Data System (ADS)
Staguhn, Johannes G.; Chuss, David; Howard, Joseph; Meixner, Margaret; Vieira, Joaquin; Amatucci, Edward; Bradley, Damon; Carter, Ruth; Cooray, Asantha; Flores, Anel; Leisawitz, David; Moseley, Samuel Harvey; Wollack, Edward; Origins Space Telescope Study Team
2018-01-01
The Origins Space Telescope (OST)* is the mission concept for the Far-Infrared Surveyor, one of the four science and technology definition studies of NASA Headquarters for the 2020 Astronomy and Astrophysics Decadal survey. The current "concept 1", which envisions a cold (4K) 9m space telescope, includes 5 instruments, providing a wavelength coverage ranging from 6um and 667um. The achievable sensitivity of the observatory will provide three to four orders of magnitude of improvement in sensitivity over current observational capabilities, allowing to address a wide range of new and so far inaccessible scientific questions, ranging from bio-signatures on exo-planets to mapping primordial H_2 from the "dark ages" before the universe went through the phase of re-ionization.Here we present the Far Infrared Imager and Polarimeter (FIP) for OST. The cameral will cover four bands, 40um, 80um, 120um, and 240um. It will allow for differential polarimetry in those bands with the ability to observe two colors in polarimtery mode simultaneously, while all four bands can be observed simultaneously in total power mode. While the confusion limit will be reached in only 32ms at 240um, at 40um the source density on the sky is so low, that at the angular resolution of 1" of OST at this wavelength there will be no source confusion, even for the longest integration times. Science topics that can be addressed by FIP include but are not limited to galactic and extragalactic magnetic field studies, Deep Galaxy Surveys, and Outer Solar System objects..*Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. We welcome you to contact the Science and Technology Definition Team (STDT) with your science needs and ideas by emailing us at ost_info@lists.ipac.caltech.edu
Wiens, J; Ho, R; Brassinga, A K; Deck, C A; Walsh, P J; Ben, R N; Mcclymont, K; Charlton, T; Evans, A N; Anderson, W G
2017-07-01
The present study explores the ability of intracellular bacteria within the renal-inter-renal tissue of the winter skate Leucoraja ocellata to metabolize steroids and contribute to the synthesis of the novel elasmobranch corticosteroid, 1α-hydroxycorticosterone (1α-OH-B). Despite the rarity of C1 hydroxylation noted in the original identification of 1α-OH-B, literature provides evidence for steroid C1 hydroxylation by micro-organisms. Eight ureolytic bacterial isolates were identified in the renal-inter-renal tissue of L. ocellata, the latter being the site of 1α-OH-B synthesis. From incubations of bacterial isolates with known amounts of potential 1α-OH-B precursors, one isolate UM008 of the genus Rhodococcus was seen to metabolize corticosteroids and produce novel products via HPLC analysis. Cations Zn 2+ and Fe 3+ altered metabolism of certain steroid precursors, suggesting inhibition of Rhodococcus steroid catabolism. Genome sequencing of UM008 identified strong sequence and structural homology to that of Rhodococcus erythropolis PR4. A complete enzymatic pathway for steroid-ring oxidation as documented within other Actinobacteria was identified within the UM008 genome. This study highlights the potential role of Rhodococcus bacteria in steroid metabolism and proposes a novel alternative pathway for 1α-OH-B synthesis, suggesting a unique form of mutualism between intracellular bacteria and their elasmobranch host. © 2017 The Fisheries Society of the British Isles.
NASA Astrophysics Data System (ADS)
Latief, F. D. E.; Mohammad, I. H.; Rarasati, A. D.
2017-11-01
Digital imaging of a concrete sample using high resolution tomographic imaging by means of X-Ray Micro Computed Tomography (μ-CT) has been conducted to assess the characteristic of the sample’s structure. A standard procedure of image acquisition, reconstruction, image processing of the method using a particular scanning device i.e., the Bruker SkyScan 1173 High Energy Micro-CT are elaborated. A qualitative and a quantitative analysis were briefly performed on the sample to deliver some basic ideas of the capability of the system and the bundled software package. Calculation of total VOI volume, object volume, percent of object volume, total VOI surface, object surface, object surface/volume ratio, object surface density, structure thickness, structure separation, total porosity were conducted and analysed. This paper should serve as a brief description of how the device can produce the preferred image quality as well as the ability of the bundled software packages to help in performing qualitative and quantitative analysis.
None
2018-05-16
MicroSight is an innovative gunsight technology that allows a marksman's eye to focus on both the front gunsight and the intended target. The MicroSight improves both firearm safety and performance by imaging two objects at different focal distances. The MicroSight was developed at Idaho National Laboratory, and has been licensed by Apollo Optical Systems. You can learn more about INL's research programs at http://www.facebook.com/idahonationallaboratory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-01-01
MicroSight is an innovative gunsight technology that allows a marksman's eye to focus on both the front gunsight and the intended target. The MicroSight improves both firearm safety and performance by imaging two objects at different focal distances. The MicroSight was developed at Idaho National Laboratory, and has been licensed by Apollo Optical Systems. You can learn more about INL's research programs at http://www.facebook.com/idahonationallaboratory.
Micro-Valences: Perceiving Affective Valence in Everyday Objects
Lebrecht, Sophie; Bar, Moshe; Barrett, Lisa Feldman; Tarr, Michael J.
2012-01-01
Perceiving the affective valence of objects influences how we think about and react to the world around us. Conversely, the speed and quality with which we visually recognize objects in a visual scene can vary dramatically depending on that scene’s affective content. Although typical visual scenes contain mostly “everyday” objects, the affect perception in visual objects has been studied using somewhat atypical stimuli with strong affective valences (e.g., guns or roses). Here we explore whether affective valence must be strong or overt to exert an effect on our visual perception. We conclude that everyday objects carry subtle affective valences – “micro-valences” – which are intrinsic to their perceptual representation. PMID:22529828
Quantification of micro stickies
Mahendra Doshi; Jeffrey Dyer; Salman Aziz; Kristine Jackson; Said M. Abubakr
1997-01-01
The objective of this project was to compare the different methods for the quantification of micro stickies. The hydrophobic materials investigated in this project for the collection of micro stickies were Microfoam* (polypropylene packing material), low density polyethylene film (LDPE), high density polyethylene (HDPE; a flat piece from a square plastic bottle), paper...
Technology Challenges in Solid Energetic Materials for Micro Propulsion Applications
2009-11-01
thruster is a relatively new class of micro propulsion system for micro spacecraft , though there are many other potential uses in power generation...micro spacecraft , micro satellites (10 to 100 kg), nano satellites (1 to 10 kg), and pico satellites (0.1 to 1 kg). These small-scale satellites will...rocket thruster, assuming that it is used for the attitude control of a 10 kg spacecraft with 1 m/s velocity increment to maneuver around an object in
High aperture off-axis parabolic mirror applied in digital holographic microscopy
NASA Astrophysics Data System (ADS)
Kalenkov, Georgy S.; Kalenkov, Sergey G.; Shtanko, Alexander E.
2018-04-01
An optical scheme of recording digital holograms of micro-objects based on high numerical aperture off-axis parabolic mirror forming a high aperture reference wave is suggested. Registration of digital holograms based on the proposed optical scheme is confirmed experimentally. Application of the proposed approach for hyperspectral holograms registration of micro-objects in incoherent light is discussed.
Application of micro-PIV to the study of staphylococci bacteria biofilm dynamics
NASA Astrophysics Data System (ADS)
Sherman, Erica; Moormeier, Derek; Bayles, Kenneth; Wei, Timothy
2014-11-01
Staphylococci bacteria are recognized as the most frequent cause of biofilm-associated infections. A localized staph infection has the potential to enter the bloodstream and lead to serious infections such as endocarditis, pneumonia, or toxic shock syndrome. Changes in flow conditions, such as shear stress, can lead to stable biofilm growth or the dispersion of portions of the biofilm downstream. Exploration of biofilm physiology indicates a link between production of a specific enzyme called nuclease and biofilm architecture -; however the physical impact of this enzyme in directing the location and behavior of biofilm growth remains unclear. This talk investigates the link between sites of nuclease production and the development of biofilm tower structures using the application of micro-PIV and fluorescently labeled bacterial cells producing nuclease. Staphylococcus aureus bacteria were cultured in a BioFlux1000 square microchannel of a 65 by 65 um cross section, and subjected to a steady shear rate of 0.6 dynes. Micro-PIV and nuclease production measurements were taken to quantify the flow over a biofilm tower structure prior and during development. Data were recorded around the structure at a series of two dimensional planes, which when stacked vertically show a two dimensional flow field as a function of tower height.
VizieR Online Data Catalog: Deep Herschel PACS point spread functions (Bocchio+, 2016)
NASA Astrophysics Data System (ADS)
Bocchio, M.; Bianchi, A.; Abergel, S.
2016-06-01
Herschel PACS dedicated PSF observations are scanmaps centred on various objects taken at 70 (blue channel), 100 (green channel) and 160 (red channel) um. The core of the PSF is best characterised observing faint objects (e.g. the asteroid Vesta), while the wings of the PSF can only be seen in observations of bright objects (e.g. Mars). Using a combination of images of bright and faint objects it is therefore possible to have a good characterisation of the PACS PSFs. (2 data files).
Circulating microRNAs in serum from cattle challenged with Bovine Viral Diarrhea Virus
USDA-ARS?s Scientific Manuscript database
Bovine viral diarrhea virus (BVDV) is an RNA virus that is often associated with respiratory disease in cattle. MicroRNAs have been proposed as indicators of exposure to respiratory pathogens. The objective of this study was to identify microRNAs in cattle that had been challenged with a non-cytopat...
VizieR Online Data Catalog: Multiwavelenght photometry of Sh 2-138 YSOs (Baug+, 2015)
NASA Astrophysics Data System (ADS)
Baug, T.; Ojha, D. K.; Dewangan, L. K.; Ninan, J. P.; Bhatt, B. C.; Ghosh, S. K.; Mallick, K. K.
2016-07-01
Optical BVRI imaging observations of the Sh2-138 region were carried out on 2005 September 8 using the Himalaya Faint Object Spectrograph and Camera (HFOSC) mounted on the 2 m Himalayan Chandra Telescope (HCT). In order to identify strong Hα emission sources in the Sh2-138 region, slitless Hα spectra were obtained using the HFOSC on 2007 November 16. Optical spectroscopic observations of the central brightest source were performed using the HFOSC on 2014 November 18. The newly installed TIFR Near Infrared Spectrometer and Imager Camera (TIRSPEC) on the HCT was used for NIR observations on 2014 November 18 under photometric conditions with an average seeing of 1.4 arcsec. We obtained NIR spectra of the central brightest source on 2014 May 29, using the TIRSPEC, in NIR Y (1.02-1.20um), J (1.21-1.48um), H (1.49-1.78um), and K (2.04-2.35um) bands. We conducted optical narrow-band imaging observations of the region in Hα filter (λ~6563Å, Δλ~100Å) with exposure times of 600s, 250s, and 50s on 2005 September 8 using the HFOSC. (1 data file).
Smart-Phone Based Magnetic Levitation for Measuring Densities
Knowlton, Stephanie; Yu, Chu Hsiang; Jain, Nupur
2015-01-01
Magnetic levitation, which uses a magnetic field to suspend objects in a fluid, is a powerful and versatile technology. We develop a compact magnetic levitation platform compatible with a smart-phone to separate micro-objects and estimate the density of the sample based on its levitation height. A 3D printed attachment is mechanically installed over the existing camera unit of a smart-phone. Micro-objects, which may be either spherical or irregular in shape, are suspended in a paramagnetic medium and loaded in a microcapillary tube which is then inserted between two permanent magnets. The micro-objects are levitated and confined in the microcapillary at an equilibrium height dependent on their volumetric mass densities (causing a buoyancy force toward the edge of the microcapillary) and magnetic susceptibilities (causing a magnetic force toward the center of the microcapillary) relative to the suspending medium. The smart-phone camera captures magnified images of the levitating micro-objects through an additional lens positioned between the sample and the camera lens cover. A custom-developed Android application then analyzes these images to determine the levitation height and estimate the density. Using this platform, we were able to separate microspheres with varying densities and calibrate their levitation heights to known densities to develop a technique for precise and accurate density estimation. We have also characterized the magnetic field, the optical imaging capabilities, and the thermal state over time of this platform. PMID:26308615
Smart-Phone Based Magnetic Levitation for Measuring Densities.
Knowlton, Stephanie; Yu, Chu Hsiang; Jain, Nupur; Ghiran, Ionita Calin; Tasoglu, Savas
2015-01-01
Magnetic levitation, which uses a magnetic field to suspend objects in a fluid, is a powerful and versatile technology. We develop a compact magnetic levitation platform compatible with a smart-phone to separate micro-objects and estimate the density of the sample based on its levitation height. A 3D printed attachment is mechanically installed over the existing camera unit of a smart-phone. Micro-objects, which may be either spherical or irregular in shape, are suspended in a paramagnetic medium and loaded in a microcapillary tube which is then inserted between two permanent magnets. The micro-objects are levitated and confined in the microcapillary at an equilibrium height dependent on their volumetric mass densities (causing a buoyancy force toward the edge of the microcapillary) and magnetic susceptibilities (causing a magnetic force toward the center of the microcapillary) relative to the suspending medium. The smart-phone camera captures magnified images of the levitating micro-objects through an additional lens positioned between the sample and the camera lens cover. A custom-developed Android application then analyzes these images to determine the levitation height and estimate the density. Using this platform, we were able to separate microspheres with varying densities and calibrate their levitation heights to known densities to develop a technique for precise and accurate density estimation. We have also characterized the magnetic field, the optical imaging capabilities, and the thermal state over time of this platform.
NASA Astrophysics Data System (ADS)
Mozgai, Viktória; Szabó, Máté; Bajnóczi, Bernadett; Weiszburg, Tamás G.; Fórizs, István; Mráv, Zsolt; Tóth, Mária
2017-04-01
During material analysis of archaeological metal objects, especially their inlays or corrosion products, not only microstructure and chemical composition, but mineralogical composition is necessary to be determined. X-ray powder diffraction (XRD) is a widely-used method to specify the mineralogical composition. However, when sampling is not or limitedly allowed due to e.g. the high value of the object, the conventional XRD analysis can hardly be used. Laboratory micro-XRD instruments provide good alternatives, like the RIGAKU Dmax Rapid II micro-X-ray diffractometer, which is a unique combination of a MicroMax-003 third generation microfocus, sealed tube X-ray generator and a curved 'image plate' detector. With this instrument it is possible to measure as small as 10 µm area in diameter on the object. Here we present case studies for the application of the micro-XRD technique in the study of archaeological metal objects. In the first case niello inlay of a Late Roman silver augur staff was analysed. Due to the high value of the object, since it is the only piece known from the Roman Empire, only non-destructive analyses were allowed. To reconstruct the preparation of the niello, SEM-EDX analysis was performed on the niello inlays to characterise their chemical composition and microstructure. Two types of niello are present: a homogeneous, silver sulphide niello (acanthite) and an inhomogeneous silver-copper sulphide niello (exsolution of acanthite and jalpaite or jalpaite and stromeyerite). The micro-X-ray diffractometer was used to verify the mineralogical composition of the niello, supposed on the base of SEM results. In the second case corrosion products of a Late Roman copper cauldron with uncertain provenance were examined, since they may hold clues about the burial conditions (pH, Eh, etc.) of the object. A layer by layer analysis was performed in cross sections of small metal samples by using electron microprobe and micro-X-ray diffractometer. The results show two corrosion zones: 1) the original (internal) surface zone of the metallic copper object was replaced by copper(I) oxide (cuprite), while 2) basic copper(II) carbonate (malachite) was deposited (externally) on the original surface. In our view these two minerals were formed during long-time burial, and protected the cauldron from further corrosion. Rarely copper(I) chloride (nantokite), basic copper(II) trihydroxychloride (atacamite/paratacamite) and basic copper(II) sulphate (brochantite) were also identified in the two corrosion zones. Their uneven distribution on the cauldron and their known formation conditions indicate, that these latter mineral phases may be the results of active corrosion, started possibly after excavation.
PECASE: Soaring Mechanisms for Flapping-Wing Micro Air Vehicles
2015-03-31
2015 2. REPORT TYPE Final 4. TITLE AND SUBTITLE PECASE: Soaring mechanisms for flapping - wing micro air vehicles 6. AUTHOR(S) Robert J. Wood 3...N00014-10-1-0684 Award Title: "PECASE: Soaring mechanisms for flapping - wing micro air vehicles" [previous award: N00014-08-1-0919, "Hovering Control for...Insect-Inspired Flapping - Wing Micro Air Vehicles"] Final report a. Scientific and Technical Objectives The Harvard Microrobotics Lab has
NASA Astrophysics Data System (ADS)
Kwon, Seong-Cheol; Jeon, Young-Hyeon; Oh, Hyun-Ung
2017-10-01
In this study, the primary design objective is to develop a passive isolator that can guarantee structural safety of the cooler assembly in a launch vibration environment without a launch locking mechanism, while effectively isolating the cooler-induced micro-jitter during the on-orbit operation of the cooler. To achieve the design objective, we focused on the utilization of characteristics of the hyperelastic shape memory effects. The major advantage of the isolator is that the micro-jitter isolation performance is much less sensitive to the aligned position of the isolator in comparison with the conventional isolator. Moreover, implementation of an additional 0g compensation device during a satellite level on-ground test, such as a jitter measurement test, is not required. In this study, the basic characteristics of the isolator were measured using the torque test and free vibration test. The micro-jitter attenuation capability and position sensitivity of the proposed isolator design were validated by the micro-jitter measurement test.
Wu, Yabei; Lu, Huanzhang; Zhao, Fei; Zhang, Zhiyong
2016-01-01
Shape serves as an important additional feature for space target classification, which is complementary to those made available. Since different shapes lead to different projection functions, the projection property can be regarded as one kind of shape feature. In this work, the problem of estimating the projection function from the infrared signature of the object is addressed. We show that the projection function of any rotationally symmetric object can be approximately represented as a linear combination of some base functions. Based on this fact, the signal model of the emissivity-area product sequence is constructed, which is a particular mathematical function of the linear coefficients and micro-motion parameters. Then, the least square estimator is proposed to estimate the projection function and micro-motion parameters jointly. Experiments validate the effectiveness of the proposed method. PMID:27763500
Holographic optical tweezers for object manipulations at an air-liquid surface.
Jesacher, Alexander; Fürhapter, Severin; Maurer, Christian; Bernet, Stefan; Ritsch-Marte, Monika
2006-06-26
We investigate holographic optical tweezers manipulating micro-beads at a suspended air-liquid interface. Axial confinement of the particles in the two-dimensional interface is maintained by the interplay between surface tension and gravity. Therefore, optical trapping of the micro-beads is possible even with a long distance air objective. Efficient micro-circulation of the liquid can be induced by fast rotating beads, driven by the orbital angular momentum transfer of incident Laguerre-Gaussian (doughnut) laser modes. Our setup allows various ways of creating a tailored dynamic flow of particles and liquid within the surface. We demonstrate examples of surface manipulations like efficient vortex pumps and mixers, interactive particle flow steering by arrays of vortex pumps, the feasibility of achieving a "clocked" traffic of micro beads, and size-selective guiding of beads along optical "conveyor belts".
An indirect continuous running multistage field test: the Université de Montréal track test.
Léger, L; Boucher, R
1980-06-01
The object of this study was to report on the validity and reliability of the Université de Montréal Track Test (UM-TT). The UM-TT is a continuous maximal indirect multistage running field test based on the energy cost of running. The first stage is set at a walking speed that requires 5 Mets; thereafter the speed is increased by 1 Met every two minutes. In order to assess the validity of the UM-TT, 25 subjects, 24.4 +/- 2.8 years old (X +/- SD) had their VO2max predicted with the UM-TT and measured directly with a running multistage treadmill test. Averages (+/- SD) were not significantly different (61.5 +/- 10.6 and 61.4 +/- 10.9 ml O2 . kg-1 . min-1, respectively), other statistics being r = 0.96, delta = 0.09 +/- 2.90 ml O2 . kg-1 . min-1 and Syx = 2.81 ml O2 . kg-1 . min-1. Seven males, 20.6 +/- 1.0 years old, had also their VO2max measured directly during the UM-TT. Comparison of predicted and directly measured VO2max yielded similar results: 70.0 +/- 4.5 and 70.7 +/- 6.0 ml O2 . kg-1 . min-1, respectively with r = 0.66, delta = 0.67 +/- 4.53 and Syx = 3.71. Reliability of the UM-TT was assessed by repeating the test twice on 60 subjects (49 males and 11 females; 39 subjects below 30 years old and 21, above; and 30 subjects below and above 15 Mets). Results were as follows: X +/- SD = 54.1 +/- 8.2 and 54.2 +/- 8.5, r = 0.97, delta 0.11 +/- 1.92, and Syx = 1.92. Similar reliability trends were observed for each one of the subgroups of subjects. It is concluded that the UM-TT is valid and reliable to estimate the VO2max of trained and untrained young and middle-age males and females.
Liu, Bendong; Tian, Baohua; Yang, Xu; Li, Mohan; Yang, Jiahui; Li, Desheng; Oh, Kwang W
2018-05-01
This paper presents a novel manipulation method for micro-objects using acoustically oscillating bubbles with a controllable position based on the gas permeability of polydimethylsiloxane. The oscillating bubble trapped within the side channel attracts the neighboring micro-objects, and the position of the air-liquid interface is controlled by generating temporary pressure difference between the side channel and the air channel. To demonstrate the feasibility of the method in technological applications, polystyrene microparticles of 10 μ m in diameter were successfully captured, transported, and released. The influence of pressure difference on the movement speed of the air-liquid interface was demonstrated in our experiments, and the manipulation performance was also characterized by varying the frequency of the acoustic excitation and the pressure difference. Since the bubble generation and the air-liquid interface movement in our manipulation method do not need any electrochemical reaction and any high temperature, this on-chip manipulation method provides a controllable, efficient, and noninvasive tool for handling micro-objects such as particles, cells, and other entities. The whole manipulation process, including capturing, transporting, and releasing of particles, spent less than 1 min. It can be used to select the cells and particles in the microfluidic device or change the cell culture medium.
Lynch, Caitlin; Pan, Yongmei; Li, Linhao; Heyward, Scott; Moeller, Timothy; Swaan, Peter W.; Wang, Hongbing
2014-01-01
Objective Accumulating evidence suggests that activation of mouse constitutive androstane receptor (mCAR) alleviates type 2 diabetes and obesity by inhibiting hepatic gluconeogenesis, lipogenesis, and fatty acid synthesis. However, the role of human (h) CAR in energy metabolism is largely unknown. The present study aims to investigate the effects of selective hCAR activators on hepatic energy metabolism in human primary hepatocytes (HPH). Methods Ligand-based structure-activity models were used for virtual screening of the Specs database (www.specs.net) followed by biological validation in cell-based luciferase assays. The effects of two novel hCAR activators (UM104 and UM145) on hepatic energy metabolism were evaluated in HPH. Results Real-time PCR and Western blotting analyses reveal that activation of hCAR by UM104 and UM145 significantly repressed the expression of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase, two pivotal gluconeogenic enzymes, while exerting negligible effects on the expression of genes associated with lipogenesis and fatty acid synthesis. Functional experiments show that UM104 and UM145 markedly inhibit hepatic synthesis of glucose but not triglycerides in HPH. In contrast, activation of mCAR by 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene, a selective mCAR activator, repressed the expression of genes associated with gluconeogenesis, lipogenesis, and fatty acid synthesis in mouse primary hepatocytes, which were consistent with previous observations in mouse model in vivo. Conclusion Our findings uncover an important species difference between hCAR and mCAR in hepatic energy metabolism, where hCAR selectively inhibits gluconeogenesis without suppressing fatty acid synthesis. Implications Such species selectivity should be considered when exploring CAR as a potential therapeutic target for metabolic disorders. PMID:24878338
Nor, Nor Azlida M; Yusof, Zamros Y M; Shahidan, Mohd Noor F M
2011-12-01
The Ministry of Higher Education in Malaysia has called for the implementation of a soft skills module in all public universities in Malaysia. In response to this and as part of curriculum development efforts for a new integrated program for 2011, a study was undertaken to improve the University of Malaya (UM) Faculty of Dentistry's communication skills course. One of the study objectives was to investigate dental students' attitudes towards communication skills learning and the association between their attitudes and demographic and education-related characteristics. A cross-sectional survey--using a self-administered twenty-four-item adapted Communication Skills Attitude Scale (CSAS) that contained both positive (PAS) and negative (NAS) attitude subscales--was carried out targeting all final-year dental students at the UM and the Universiti Kebangsaan Malaysia (UKM). A total of 148 students completed the survey, yielding a response rate of 88.1 percent. Overall, UKM students had significantly more positive attitudes towards communication skills learning (PAS score: mean=48.69, SD=4.48, p<0.001) than UM students (mean=46.03, SD=4.22). There was no statistically significant difference in negative attitudes between the two groups. UKM students with more positive attitudes tended to be female (p<0.05). UM students with more negative attitudes perceived themselves as poor communicators (p<0.05), and UKM students with more negative attitudes tended to have poor English proficiency (p<0.05). This study found that both UM and UKM final-year dental students have positive and negative attitudes towards learning communication skills. These attitudes were significantly associated with certain background and education-related attributes. Outcomes of this study served as a valuable guide in strengthening the communication skills course for the UM's new, integrated dental curriculum.
NASA Astrophysics Data System (ADS)
Realdon, Giulia; Candussio, Giuliana; Manià, Marinella; Palamin, Serenella
2017-04-01
Marine micro-plastics are a relatively recent issue in research (Thompson et al. 2004), in the media and in education and, due to novelty and relevance, they are a suitable topic for addressing Ocean Literacy within science teaching to different age groups. In fact marine micro-plastics can be used to introduce Ocean Literacy and environmental science, but also traditional science subjects like biology, chemistry and Earth science, with a system approach focused on "understanding the Ocean's influence on humans and human influence on the Ocean". Inspired by the growing public interest for marine micro-plastics and by the lack of specific teaching activities in our country (Italy), we developed a vertically articulated curriculum on micro-plastics for students aged 5-15 years. Our proposal is based on a number of practical activities realized with different language and communication styles to be suitable for different age groups. For younger students (age 5-7) we use drama to address micro-plastics bioaccumulation in marine food chains: children act as fish of different trophic levels who pretend to "eat" micro-plastics models (built from plastic bottles) until the biggest fish is captured and ends up as a "meal" shared by other pupils. Teachers guide the performance and stimulate observations and remarks about the origin of micro-plastics and the correct management of plastic objects. The performance has been documented in a video and presented in a national teacher workshop (3 Giorni per la Scuola, Napoli 2015). For students aged 8-13 we propose observation and manipulation of common household plastic objects, followed by physical/chemical testing of different polymers to understand plastics characteristics that make these materials valuable but troublesome at the same time. Students then observe sand samples, taken from a local beach, containing natural components and man-made fragments (including micro-plastics), so they can directly experience the fate of dumped plastic, discussing more sustainable management of plastic objects. For older (14-16) students we introduce primary micro-plastics by means of personal care products containing micro-beads: students learn to recognize the presence of micro-beads by reading the product's composition, then measure micro-beads content of one of these products and calculate a possible annual dispersion of micro-beads from their town to the sea. Also this activity is followed by classroom discussion about possible solutions to micro-beads water pollution. Micro-plastics activities have been presented to 39 students' groups since November 2014 and have been evaluated though questionnaires given to class teachers. Lesson plans containing these activities have been published - and are freely accessible - in European and in Italian science teacher's journals (EIROforum Science in School, Pearson Italia Science Magazine).
Lagrangian 3D tracking of fluorescent microscopic objects in motion
NASA Astrophysics Data System (ADS)
Darnige, T.; Figueroa-Morales, N.; Bohec, P.; Lindner, A.; Clément, E.
2017-05-01
We describe the development of a tracking device, mounted on an epi-fluorescent inverted microscope, suited to obtain time resolved 3D Lagrangian tracks of fluorescent passive or active micro-objects in microfluidic devices. The system is based on real-time image processing, determining the displacement of a x, y mechanical stage to keep the chosen object at a fixed position in the observation frame. The z displacement is based on the refocusing of the fluorescent object determining the displacement of a piezo mover keeping the moving object in focus. Track coordinates of the object with respect to the microfluidic device as well as images of the object are obtained at a frequency of several tenths of Hertz. This device is particularly well adapted to obtain trajectories of motile micro-organisms in microfluidic devices with or without flow.
Lagrangian 3D tracking of fluorescent microscopic objects in motion.
Darnige, T; Figueroa-Morales, N; Bohec, P; Lindner, A; Clément, E
2017-05-01
We describe the development of a tracking device, mounted on an epi-fluorescent inverted microscope, suited to obtain time resolved 3D Lagrangian tracks of fluorescent passive or active micro-objects in microfluidic devices. The system is based on real-time image processing, determining the displacement of a x, y mechanical stage to keep the chosen object at a fixed position in the observation frame. The z displacement is based on the refocusing of the fluorescent object determining the displacement of a piezo mover keeping the moving object in focus. Track coordinates of the object with respect to the microfluidic device as well as images of the object are obtained at a frequency of several tenths of Hertz. This device is particularly well adapted to obtain trajectories of motile micro-organisms in microfluidic devices with or without flow.
NASA Astrophysics Data System (ADS)
Percoco, Gianluca; Sánchez Salmerón, Antonio J.
2015-09-01
The measurement of millimetre and micro-scale features is performed by high-cost systems based on technologies with narrow working ranges to accurately control the position of the sensors. Photogrammetry would lower the costs of 3D inspection of micro-features and would be applicable to the inspection of non-removable micro parts of large objects too. Unfortunately, the behaviour of photogrammetry is not known when photogrammetry is applied to micro-features. In this paper, the authors address these issues towards the application of digital close-range photogrammetry (DCRP) to the micro-scale, taking into account that in literature there are research papers stating that an angle of view (AOV) around 10° is the lower limit to the application of the traditional pinhole close-range calibration model (CRCM), which is the basis of DCRP. At first a general calibration procedure is introduced, with the aid of an open-source software library, to calibrate narrow AOV cameras with the CRCM. Subsequently the procedure is validated using a reflex camera with a 60 mm macro lens, equipped with extension tubes (20 and 32 mm) achieving magnification of up to 2 times approximately, to verify literature findings with experimental photogrammetric 3D measurements of millimetre-sized objects with micro-features. The limitation experienced by the laser printing technology, used to produce the bi-dimensional pattern on common paper, has been overcome using an accurate pattern manufactured with a photolithographic process. The results of the experimental activity prove that the CRCM is valid for AOVs down to 3.4° and that DCRP results are comparable with the results of existing and more expensive commercial techniques.
High-speed image processing system and its micro-optics application
NASA Astrophysics Data System (ADS)
Ohba, Kohtaro; Ortega, Jesus C. P.; Tanikawa, Tamio; Tanie, Kazuo; Tajima, Kenji; Nagai, Hiroshi; Tsuji, Masataka; Yamada, Shigeru
2003-07-01
In this paper, a new application system with high speed photography, i.e. an observational system for the tele-micro-operation, has been proposed with a dynamic focusing system and a high-speed image processing system using the "Depth From Focus (DFF)" criteria. In micro operation, such as for the microsurgery, DNA operation and etc., the small depth of a focus on the microscope makes bad observation. For example, if the focus is on the object, the actuator cannot be seen with the microscope. On the other hand, if the focus is on the actuator, the object cannot be observed. In this sense, the "all-in-focus image," which holds the in-focused texture all over the image, is useful to observe the microenvironments on the microscope. It is also important to obtain the "depth map" which could show the 3D micro virtual environments in real-time to actuate the micro objects, intuitively. To realize the real-time micro operation with DFF criteria, which has to integrate several images to obtain "all-in-focus image" and "depth map," at least, the 240 frames par second based image capture and processing system should be required. At first, this paper briefly reviews the criteria of "depth from focus" to achieve the all-in-focus image and the 3D microenvironments' reconstruction, simultaneously. After discussing the problem in our past system, a new frame-rate system is constructed with the high-speed video camera and FPGA hardware with 240 frames par second. To apply this system in the real microscope, a new criterion "ghost filtering" technique to reconstruct the all-in-focus image is proposed. Finally, the micro observation shows the validity of this system.
USDA-ARS?s Scientific Manuscript database
Micro-nutrients deficiency in soil result in crop yield loss and poor seed quality. Correcting this deficiency is normally conducted by foliar or soil application. The objective of this research was to determine the effects of soil applications of five micro-nutrients (Mn, Cu, Zn, Mo, and B) with a ...
Fort, Alexandra; Delpuech, Claude; Pernier, Jacques; Giard, Marie-Hélène
2002-10-01
Very recently, a number of neuroimaging studies in humans have begun to investigate the question of how the brain integrates information from different sensory modalities to form unified percepts. Already, intermodal neural processing appears to depend on the modalities of inputs or the nature (speech/non-speech) of information to be combined. Yet, the variety of paradigms, stimuli and technics used make it difficult to understand the relationships between the factors operating at the perceptual level and the underlying physiological processes. In a previous experiment, we used event-related potentials to describe the spatio-temporal organization of audio-visual interactions during a bimodal object recognition task. Here we examined the network of cross-modal interactions involved in simple detection of the same objects. The objects were defined either by unimodal auditory or visual features alone, or by the combination of the two features. As expected, subjects detected bimodal stimuli more rapidly than either unimodal stimuli. Combined analysis of potentials, scalp current densities and dipole modeling revealed several interaction patterns within the first 200 micro s post-stimulus: in occipito-parietal visual areas (45-85 micro s), in deep brain structures, possibly the superior colliculus (105-140 micro s), and in right temporo-frontal regions (170-185 micro s). These interactions differed from those found during object identification in sensory-specific areas and possibly in the superior colliculus, indicating that the neural operations governing multisensory integration depend crucially on the nature of the perceptual processes involved.
CNN universal machine as classificaton platform: an art-like clustering algorithm.
Bálya, David
2003-12-01
Fast and robust classification of feature vectors is a crucial task in a number of real-time systems. A cellular neural/nonlinear network universal machine (CNN-UM) can be very efficient as a feature detector. The next step is to post-process the results for object recognition. This paper shows how a robust classification scheme based on adaptive resonance theory (ART) can be mapped to the CNN-UM. Moreover, this mapping is general enough to include different types of feed-forward neural networks. The designed analogic CNN algorithm is capable of classifying the extracted feature vectors keeping the advantages of the ART networks, such as robust, plastic and fault-tolerant behaviors. An analogic algorithm is presented for unsupervised classification with tunable sensitivity and automatic new class creation. The algorithm is extended for supervised classification. The presented binary feature vector classification is implemented on the existing standard CNN-UM chips for fast classification. The experimental evaluation shows promising performance after 100% accuracy on the training set.
VizieR Online Data Catalog: The Auriga-California molecular cloud (Broekhoven-Fiene+, 2014)
NASA Astrophysics Data System (ADS)
Broekhoven-Fiene, H.; Matthews, B. C.; Harvey, P. M.; Gutermuth, R. A.; Huard, T. L.; Tothill, N. F. H.; Nutter, D.; Bourke, T. L.; Difrancesco, J.; Jorgensen, J. K.; Allen, L. E.; Chapman, N. L.; Cieza, L. A.; Dunham, M. M.; Merin, B.; Miller, J. F.; Terebey, S.; Peterson, D. E.; Stapelfeldt, K. R.
2017-06-01
We have mapped a significant fraction of the AMC with the Infrared Array Camera (IRAC; Fazio et al. 2004ApJS..154...10F) and the Mid-Infrared Photometer for Spitzer (MIPS; Rieke et al. 2004ApJS..154...25R) on board the Spitzer Space Telescope (Werner et al. 2004ApJS..154....1W), with a total overlapping coverage of 2.5 deg2 in the four IRAC bands (3.6, 4.5, 5.8 and 8.0 um) and 10.47 deg2 in the three MIPS bands (24, 70, and 160 um). The mapped areas are not all contiguous and were chosen to include the areas with AV>3, as given by the Dobashi et al. (2005PASJ...57....1S) extinction maps. The goal of these observations is to identify and characterize the young stellar object (YSO) and substellar object populations. The data presented here are the first mid-IR census of the YSO population in this region. (4 data files).
Large Area MEMS Based Ultrasound Device for Cancer Detection.
Wodnicki, Robert; Thomenius, Kai; Hooi, Fong Ming; Sinha, Sumedha P; Carson, Paul L; Lin, Der-Song; Zhuang, Xuefeng; Khuri-Yakub, Pierre; Woychik, Charles
2011-08-21
We present image results obtained using a prototype ultrasound array which demonstrates the fundamental architecture for a large area MEMS based ultrasound device for detection of breast cancer. The prototype array consists of a tiling of capacitive Micro-Machined Ultrasound Transducers (cMUTs) which have been flip-chip attached to a rigid organic substrate. The pitch on the cMUT elements is 185 um and the operating frequency is nominally 9 MHz. The spatial resolution of the new probe is comparable to production PZT probes, however the sensitivity is reduced by conditions that should be correctable. Simulated opposed-view image registration and Speed of Sound volume reconstruction results for ultrasound in the mammographic geometry are also presented.
Initial performance results for high-aspect ratio gold MEMS deformable mirrors
NASA Astrophysics Data System (ADS)
Fernández, Bautista; Kubby, Joel
2009-02-01
The fabrication and initial performance results of high-aspect ratio 3-dimensional Micro-Electro-Mechanical System (MEMS) Deformable Mirrors (DM) for Adaptive Optics (AO) will be discussed. The DM systems were fabricated out of gold, and consist of actuators bonded to a continuous face sheet, with different boundary conditions. DM mirror displacements vs. voltage have been measured with a white light interferometer and the corresponding results compared to Finite Element Analysis (FEA) simulations. Interferometer scans of a DM have shown that ~9.4um of stroke can be achieved with low voltage, thus showing that this fabrication process holds promise in the manufacturing of future MEMS DM's for the next generation of extremely large telescopes.
Macro-channel cooled high power fiber coupled diode lasers exceeding 1.2kW of output power
NASA Astrophysics Data System (ADS)
Koenning, Tobias; Alegria, Kim; Wang, Zuolan; Segref, Armin; Stapleton, Dean; Faßbender, Wilhelm; Flament, Marco; Rotter, Karsten; Noeske, Axel; Biesenbach, Jens
2011-03-01
We report on a new series of fiber coupled diode laser modules exceeding 1.2kW of single wavelength optical power from a 400um / 0.2NA fiber. The units are constructed from passively cooled laser bars as opposed to other comparably powered, commercially available modules that use micro-channel heat-sinks. Micro-channel heat sinks require cooling water to meet demanding specifications and are therefore prone to failures due to contamination and increase the overall cost to operate and maintain the laser. Dilas' new series of high power fiber coupled diode lasers are designed to eliminate micro channel coolers and their associated failure mechanisms. Low-smile soldering processes were developed to maximize the brightness available from each diode laser bar. The diode laser brightness is optimally conserved using Dilas' recently developed propriety laser bar stacking geometry and optics. A total of 24 bars are coupled into a single fiber core using a polarization multiplexing scheme. The modular design permits further power scaling through wavelength multiplexing. Other customer critical features such as industrial grade fibers, pilot beams, fiber interlocks and power monitoring are standard features on these modules. The optical design and the beam parameter calculations will be presented to explain the inherit design trade offs. Results for single and dual wavelengths modules will be presented.
Early adolescent Body Mass Index and the constructed environment.
Jones, Randall M; Vaterlaus, J Mitchell
2014-07-01
Previous research has shown that macro-level environmental features such as access to walking trails and recreational facilities are correlated with adolescent weight. Additionally, a handful of studies have documented relationships between micro-level environmental features, such as the presence (or absence) of a television in the bedroom, and adolescent weight. In this exploratory study we focus exclusively on features of the micro-level environment by examining objects that are found within adolescent personal bedrooms in relation to the adolescent occupant's Body Mass Index score (BMI). Participants were 234 early adolescents (eighth graders and ninth graders) who lived with both biological parents and who had their own private bedroom. Discriminant analyses were used to identify the bedrooms belonging to adolescents with below and above average BMI using objects contained within the micro-level environment as discriminating variables. Bedrooms belonging to adolescents with above average BMI were more likely to contain objects associated with sedentary behavior (e.g., magazines, electronic games, dolls), whereas the bedrooms belonging to the average and below average BMI adolescents were more likely to contain objects that reflect past physical activity (e.g., trophies, souvenirs, pictures of places that they had visited). If causal connections between micro-environmental variables and adolescent BMI can be established in future longitudinal research, environmental manipulations may affect adolescent BMI. Copyright © 2014 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
Photonic jet with ultralong working distance by hemispheric shell.
Hengyu, Zhu; Zaichun, Chen; Chong, Chong Tow; Minghui, Hong
2015-03-09
Micro-particle assisted nano-imaging has proven its success in the past few years since it can magnify the nano-objects, especially the metallic objects, into an image then collected by a conventional microscope. Micro-shell, which is a novel design of micro-particle in the configuration of a hemisphere with a hollow core region, is proposed and optimized in this paper in order to obtain a long photonic jet far away from its flat surface, thus increasing its working distance. Its dependence on the configuration and refractive index is investigated numerically. A micro-shell with the outer and inner radii of 5 and 2.5 µm and the refractive index of 1.5 can focus the incident light of 400 nm wavelength 2.7 µm away from the micro-shell flat surface, although the photonic jet intensity decreases to 25.8% compared to the solid hemisphere. Meanwhile, the photonic jet length of the micro-shell under the incident light of 400 nm and 1000 nm wavelengths are 1.7 µm and 4.3 µm, respectively, because its hollow core region tends to reduce the angle variation of the Poynting vectors in the photonic jet. With the long working distance and long photonic jet, the micro-shell could be used to scan over a sample to obtain a large area image when coupled with a conventional microscope, which is especially useful for the samples with the rough surfaces.
An Uncertainty Structure Matrix for Models and Simulations
NASA Technical Reports Server (NTRS)
Green, Lawrence L.; Blattnig, Steve R.; Hemsch, Michael J.; Luckring, James M.; Tripathi, Ram K.
2008-01-01
Software that is used for aerospace flight control and to display information to pilots and crew is expected to be correct and credible at all times. This type of software is typically developed under strict management processes, which are intended to reduce defects in the software product. However, modeling and simulation (M&S) software may exhibit varying degrees of correctness and credibility, depending on a large and complex set of factors. These factors include its intended use, the known physics and numerical approximations within the M&S, and the referent data set against which the M&S correctness is compared. The correctness and credibility of an M&S effort is closely correlated to the uncertainty management (UM) practices that are applied to the M&S effort. This paper describes an uncertainty structure matrix for M&S, which provides a set of objective descriptions for the possible states of UM practices within a given M&S effort. The columns in the uncertainty structure matrix contain UM elements or practices that are common across most M&S efforts, and the rows describe the potential levels of achievement in each of the elements. A practitioner can quickly look at the matrix to determine where an M&S effort falls based on a common set of UM practices that are described in absolute terms that can be applied to virtually any M&S effort. The matrix can also be used to plan those steps and resources that would be needed to improve the UM practices for a given M&S effort.
Metallic Bead Detection by Using Eddy-Current Probe with SV-GMR Sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, S.; Chomsuwan, K.; Hagino, T.
2005-04-09
The progress of the ECT probe with micro magnetic sensor becomes possible to apply to various applications. The detection of micro metallic bead used for electric packaging has been reported in this paper. We proposed micro ECT probes with meander coil as exciter and spin-valve giant magneto-resistance (SV-GMR) as receiver. Micro metallic bead(solder ball) with the diameter of 0.25 to 0.76 mm is used as a measuring object. We discuss the detection and alignment of metallic bead by using ECT technique.
MEMS temperature scanner: principles, advances, and applications
NASA Astrophysics Data System (ADS)
Otto, Thomas; Saupe, Ray; Stock, Volker; Gessner, Thomas
2010-02-01
Contactless measurement of temperatures has gained enormous significance in many application fields, ranging from climate protection over quality control to object recognition in public places or military objects. Thereby measurement of linear or spatially temperature distribution is often necessary. For this purposes mostly thermographic cameras or motor driven temperature scanners are used today. Both are relatively expensive and the motor drive devices are limited regarding to the scanning rate additionally. An economic alternative are temperature scanner devices based on micro mirrors. The micro mirror, attached in a simple optical setup, reflects the emitted radiation from the observed heat onto an adapted detector. A line scan of the target object is obtained by periodic deflection of the micro scanner. Planar temperature distribution will be achieved by perpendicularly moving the target object or the scanner device. Using Planck radiation law the temperature of the object is calculated. The device can be adapted to different temperature ranges and resolution by using different detectors - cooled or uncooled - and parameterized scanner parameters. With the basic configuration 40 spatially distributed measuring points can be determined with temperatures in a range from 350°C - 1000°C. The achieved miniaturization of such scanners permits the employment in complex plants with high building density or in direct proximity to the measuring point. The price advantage enables a lot of applications, especially new application in the low-price market segment This paper shows principle, setup and application of a temperature measurement system based on micro scanners working in the near infrared range. Packaging issues and measurement results will be discussed as well.
USDA-ARS?s Scientific Manuscript database
MicroRNAs and tRNA-derived RNA fragments (tRFs) are the two most abundant groups of small non-coding RNAs. The potential for microRNAs and tRFs to be used as pathogen exposure indicators is yet to be fully explored. Our objective was to identify microRNAs and tRFs in cattle challenged with a non-cy...
Life-cycle optimization model for distributed generation in buildings
NASA Astrophysics Data System (ADS)
Safaei, Amir
O setor da construcao e responsavel por uma grande parte do consumo de energia e emissoes na Uniao Europeia. A Geracao Distribuida (GD) de energia, nomeadamente atraves de sistemas de cogeracao e tecnologias solares, representa um papel importante no futuro energetico deste setor. A otimizacao do funcionamento dos sistemas de cogeracao e uma tarefa complexa, devido as diversas variaveis em jogo, designadamente: os diferentes tipos de necessidades energeticas (eletricidade, aquecimento e arrefecimento), os precos dinamicos dos combustiveis (gas natural) e da eletricidade, e os custos fixos e variaveis dos diferentes sistemas de GD. Tal torna-se mais complexo considerando a natureza flutuante das tecnologias solares termicas e fotovoltaicas. Ao mesmo tempo, a liberalizacao do mercado da eletricidade permite exportar para a rede, a electricidade gerada localmente. Adicionalmente, a operacao estrategica de um sistema de GD deve atender aos quadros politicos nacionais, se tiver como objetivo beneficiar de tais regimes. Alem disso, considerando os elevados impactes ambientais do setor da construcao, qualquer avaliacao energetica de edificios rigorosa deve tambem integrar aspetos ambientais, utilizando uma abordagem de Ciclo de Vida (CV). Uma avaliacao de Ciclo de Vida (ACV) completa de um sistema de GD deve incluir as fases relativas a operacao e construcao do sistema, bem como os impactes associados a producao dos combustiveis. Foram analisadas as emissoes da producao de GN, as quais variam de acordo com a origem, tipo (convencional ou nao-convencional), e estado (na forma de GN Liquefeito (GNL) ou gas). Do mesmo modo, o impacte dos sistemas solares e afetado pela meteorologia e radiacao solar, de acordo com a sua localizacao geografica. Sendo assim, uma avaliacao adequada dos sistemas de GD exige um modelo de ACV adequado a localizacao geografica (Portugal), integrando tambem a producao de combustivel (GN), tendo em conta as suas diferentes fontes de abastecimento. O principal objetivo desta tese de doutoramento foi desenvolver um modelo para otimizar o desenho e operacao de sistemas de GD para o setor da construcao de edificios comerciais em Portugal, considerando os respetivos Impactes de Ciclo de Vida (IAVC) e Custos de Ciclo de Vida (CCV), de modo a satisfazer as necessidades energeticas do edificio. Tres tipos de tecnologias de cogeracao (Micro-Turbinas, Motores de combustao interna, e Celulas combustiveis de Oxido solido), e dois tipos de tecnologias de energia solar, solar termica e fotovoltaica, constituem os sistemas de GD que sao acoplados aos sistemas convencionais. Foi desenvolvido um modelo de CV, tendo em conta todos os impactes relacionados com a construcao e operacao dos sistemas de energia, bem como os processos a montante relacionados com a producao do GN. Em particular, o mix de GN consumido em Portugal em 2011 foi identificado (60% da Nigeria, 40% da Argelia) e os impactes relativos a cada uma das vias de abastecimento foram avaliados separadamente para quatro categorias de impacte ambiental: Consumo de Energia Primaria (CEP), Gases com Efeito de Estufa (GEE), acidificacao, e eutrofizacao. Devido a importancia das emissoes de GEE na formulacao de politicas, foi tambem realizada uma analise de incerteza as emissoes de GEE do GN fornecido a Portugal. Foi desenvolvido um modelo matematico, em linguagem de Programacao General Algebraic Modeling System (GAMS), que utiliza os resultados da ACV dos sistemas de energia e as suas implicacoes economicas para minimizar o CCV e IACV ao longo de um horizonte de planeamento definido pelo decisor. Foram derivadas fronteiras otimas de Pareto, representando as relacoes entre o tipo de IACV (CEP, GEE, acidificacao, eutrofizacao) e CCV decorrentes da satisfacao das necessidades energeticas do edificio. Para aumentar a robustez do modelo, dada a incerteza dos precos dos combustiveis (GN e eletricidade), foi desenvolvido um modelo de custos robusto para os sistemas de GD, que e menos afetado por perturbacoes relativas aos custos de combustivel. A aplicacao do modelo proposto foi testada num caso de estudo real, um edificio comercial localizado na cidade de Coimbra, em Portugal.
Vafaee, Fatemeh; Diakos, Connie; Kirschner, Michaela B; Reid, Glen; Michael, Michael Z; Horvath, Lisa G; Alinejad-Rokny, Hamid; Cheng, Zhangkai Jason; Kuncic, Zdenka; Clarke, Stephen
2018-01-01
Recent advances in high-throughput technologies have provided an unprecedented opportunity to identify molecular markers of disease processes. This plethora of complex-omics data has simultaneously complicated the problem of extracting meaningful molecular signatures and opened up new opportunities for more sophisticated integrative and holistic approaches. In this era, effective integration of data-driven and knowledge-based approaches for biomarker identification has been recognised as key to improving the identification of high-performance biomarkers, and necessary for translational applications. Here, we have evaluated the role of circulating microRNA as a means of predicting the prognosis of patients with colorectal cancer, which is the second leading cause of cancer-related death worldwide. We have developed a multi-objective optimisation method that effectively integrates a data-driven approach with the knowledge obtained from the microRNA-mediated regulatory network to identify robust plasma microRNA signatures which are reliable in terms of predictive power as well as functional relevance. The proposed multi-objective framework has the capacity to adjust for conflicting biomarker objectives and to incorporate heterogeneous information facilitating systems approaches to biomarker discovery. We have found a prognostic signature of colorectal cancer comprising 11 circulating microRNAs. The identified signature predicts the patients' survival outcome and targets pathways underlying colorectal cancer progression. The altered expression of the identified microRNAs was confirmed in an independent public data set of plasma samples of patients in early stage vs advanced colorectal cancer. Furthermore, the generality of the proposed method was demonstrated across three publicly available miRNA data sets associated with biomarker studies in other diseases.
A micromachined piezoelectric microgripper for manipulation of micro/nanomaterials
NASA Astrophysics Data System (ADS)
Shi, Huaduo; Shi, Weiliang; Zhang, Ran; Zhai, Junyi; Chu, Jinkui; Dong, Shuxiang
2017-06-01
Micro/nanomaterials and devices have attracted great interest in recent years because of their extensive application prospects in almost all kinds of fields. However, the manipulations of the material at the micro/nanoscale, such as the separation or transfer of a micro/nano-object in the process of assembling micro/nanodevices, are quite difficult. In this paper, we present a micromachined micro-gripper made of photoresist material (SU-8) and driven by piezoelectric Pb(Mg,Nb)O3-PbTiO3 single crystal pieces. In order to keep two grasping jaws of the micro-gripper operating in the same plane at the micro/nanometer scale, a fine circular flexure hinge was fabricated for elastically connecting them together. After introducing the interface effect, the relationship between the opening stroke of two jaws and the applied voltage was developed and then confirmed by finite element simulation. The micro-gripper was finally installed on a six degree of freedom stage for performing a pick-up, release, and transfer manipulation of a 2 μm ZnO micro-fiber. The presented piezoelectric micro-gripper shows a great potential for the precise manipulation of a single piece of micro/nanomaterial for micro/nanodevices' assembling.
2017-01-01
Integrated single-photon sources with high photon-extraction efficiency are key building blocks for applications in the field of quantum communications. We report on a bright single-photon source realized by on-chip integration of a deterministic quantum dot microlens with a 3D-printed multilens micro-objective. The device concept benefits from a sophisticated combination of in situ 3D electron-beam lithography to realize the quantum dot microlens and 3D femtosecond direct laser writing for creation of the micro-objective. In this way, we obtain a high-quality quantum device with broadband photon-extraction efficiency of (40 ± 4)% and high suppression of multiphoton emission events with g(2)(τ = 0) < 0.02. Our results highlight the opportunities that arise from tailoring the optical properties of quantum emitters using integrated optics with high potential for the further development of plug-and-play fiber-coupled single-photon sources. PMID:28670600
Optical scanning holography based on compressive sensing using a digital micro-mirror device
NASA Astrophysics Data System (ADS)
A-qian, Sun; Ding-fu, Zhou; Sheng, Yuan; You-jun, Hu; Peng, Zhang; Jian-ming, Yue; xin, Zhou
2017-02-01
Optical scanning holography (OSH) is a distinct digital holography technique, which uses a single two-dimensional (2D) scanning process to record the hologram of a three-dimensional (3D) object. Usually, these 2D scanning processes are in the form of mechanical scanning, and the quality of recorded hologram may be affected due to the limitation of mechanical scanning accuracy and unavoidable vibration of stepper motor's start-stop. In this paper, we propose a new framework, which replaces the 2D mechanical scanning mirrors with a Digital Micro-mirror Device (DMD) to modulate the scanning light field, and we call it OSH based on Compressive Sensing (CS) using a digital micro-mirror device (CS-OSH). CS-OSH can reconstruct the hologram of an object through the use of compressive sensing theory, and then restore the image of object itself. Numerical simulation results confirm this new type OSH can get a reconstructed image with favorable visual quality even under the condition of a low sample rate.
Hedefalk, Finn; Svensson, Patrick; Harrie, Lars
2017-01-01
This paper presents datasets that enable historical longitudinal studies of micro-level geographic factors in a rural setting. These types of datasets are new, as historical demography studies have generally failed to properly include the micro-level geographic factors. Our datasets describe the geography over five Swedish rural parishes, and by linking them to a longitudinal demographic database, we obtain a geocoded population (at the property unit level) for this area for the period 1813–1914. The population is a subset of the Scanian Economic Demographic Database (SEDD). The geographic information includes the following feature types: property units, wetlands, buildings, roads and railroads. The property units and wetlands are stored in object-lifeline time representations (information about creation, changes and ends of objects are recorded in time), whereas the other feature types are stored as snapshots in time. Thus, the datasets present one of the first opportunities to study historical spatio-temporal patterns at the micro-level. PMID:28398288
Impact of Tile Drainage on the Distribution of Concentration and Age of Inorganic Soil Nitrogen.
NASA Astrophysics Data System (ADS)
Woo, D.; Kumar, P.
2017-12-01
Extensive network of tile drainage network across the Midwestern United States, northern Europe and other regions of the world have enhanced agricultural productivity. Because of its impact on sub-surface flow patterns and moisture and temperature dynamics, it controls the nitrogen cycle in agricultural systems, and its influence on nitrogen dynamics plays a key role in determining the short- and long-term evolution of soil inorganic nitrogen concentration and age. The spatial mapping of nitrogen concentration and age under tile-drained fields has, therefore, the potential to open up novel solution to the vexing challenge of reducing environmental impacts while at the same time maintaining agricultural productivity. The objective of this study is to explore the impacts of tile drains on the age dynamics of nitrate, immobile ammonium, mobile ammonia/um, and non-reactive tracer (such as chloride) by implementing two mobile interacting pore domains to capture matrix and preferential flow paths in a coupled ecohydrology and biogeochemistry model, Dhara. We applied this model to an agricultural farm supporting a corn-soybean rotation in the Midwestern United States. It should be expected that the installation of tile drains decrease the age of soil nutrient due to nutrient losses through tile drainage. However, an increase in the age of mobile ammonia/um is observed in contrast to the cases for nitrate, immobile ammonium, and non-reactive tracer. These results arise because the depletion of mobile ammonia/um due to tile drainage causes a high mobility flux from immobile ammonium to mobile ammonia/um, which also carries a considerable amount of relatively old age of immobile ammonium to mobile ammonia/um. In addition, the ages of nitrate and mobile ammonia/um in tile drainage range from 1 to 3 years, and less than a year, respectively, implying that not considering age transformations between nitrogen species would result in substantial underestimation of nitrogen ages, possibly leading to an erroneous conclusion.
Module Embedded Micro-inverter Smart Grid Ready Residential Solar Electric System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agamy, Mohammed
The “Module Embedded Micro-inverter Smart Grid Ready Residential Solar Electric System” program is focused on developing innovative concepts for residential photovoltaic (PV) systems with the following objectives: to create an Innovative micro-inverter topology that reduces the cost from the best in class micro-inverter and provides high efficiency (>96% CEC - California Energy Commission), and 25+ year warranty, as well as reactive power support; integrate micro-inverter and PV module to reduce system price by at least $0.25/W through a) accentuating dual use of the module metal frame as a large area heat spreader reducing operating temperature, and b) eliminating redundant wiringmore » and connectors; and create micro-inverter controller handles smart grid and safety functions to simplify implementation and reduce cost.« less
VizieR Online Data Catalog: Radial velocities in A1914 (Barrena+, 2013)
NASA Astrophysics Data System (ADS)
Barrena, R.; Girardi, M.; Boschin, W.
2014-04-01
We performed observations of A1914 using Device Optimized for the Low Resolution (DOLORES) multi-object spectrograph at the TNG telescope in 2010 March. We used the LR-B grism, which provides a dispersion of 187Å/mm. DOLORES works with a 2048x2048 pixels E2V CCD. The pixel size is 13.5um. We retrieved a total of four multi-object spectroscopy (MOS) masks containing 146 slits. We exposed 3600s for each mask. (1 data file).
VizieR Online Data Catalog: NGC 1893 optical and NIR photometry (Prisinzano+, 2011)
NASA Astrophysics Data System (ADS)
Prisinzano, L.; Sanz-Forcada, J.; Micela, G.; Caramazza, M.; Guarcello, M. G.; Sciortino, S.; Testi, L.
2010-10-01
We present new optical and NIR photometric data in the VRIJHK and H-α bands for the cluster NGC 1893. The optical photometry was obtained by using images acquired in service mode using two different telescopes: the Device Optimized for the LOw RESolution (DOLORES) mounted on the Telescopio Nazionale Galileo (TNG), used in service mode during three nights in 2007, and the Calar Alto Faint Object Spectrograph (CAFOS), mounted on the 2.2m telescope in Calar Alto German-Spanish Observatory (Spain), during three nights in 2007 and 2008. NIR observations were acquired in service mode at the TNG, using the large field Near Infrared Camera Spectrometer (NICS) with the Js(1.25um), H(1.63um) and K'(2.12um) filters during eight nights in 2007 and 2008. We observed a field around NGC 1893 with a raster of 4x4 pointings, at each pointing we obtained a series of NINT dithered exposures. Each exposure is a repetition of a DIT (Detector Integration Time) times NDIT (number of DIT), to avoid saturation of the background. (4 data files).
NASA Astrophysics Data System (ADS)
Giltrap, Samuel; Stuart, Nick; Robinson, Tim; Armstrong, Chris; Hicks, George; Eardley, Sam; Gumbrell, Ed; Smith, Roland
2016-10-01
Here we report on the development of an optical levitation based x-ray and proton source, motivated by the requirement for a debris free, high spatial resolution, and low EMP source for x-ray radiography and proton production. Research at Imperial College has led to the development of a feedback controlled optical levitation trap which is capable of holding both solid (Glass beads) and liquid (silicon based oil) micro-targets ( 3-10um). The optical levitation trap has been successfully fielded in a high-intensity laser interaction experiment at Imperial College London and at the Vulcan Petawatt Laser system at the Rutherford Appleton Laboratory (RAL). Here we report on the results from that RAL run including; an x-ray source size of 10-15um with very good spherical symmetry when compared to wire targets, secondly very low EMP signal from isolated levitated targets (9 times less RF signal than a comparable wire target). At Imperial College we were also able to record an x-ray energy spectrum which produced an electron temperature of 0.48KeV, and performed interferometry of a shock evolving into a blast wave off an optically levitated droplet which allowed us to infer the electron density within the shock front.
Thin-film fractal nanostructures formed by electrical breakdown
NASA Astrophysics Data System (ADS)
Tadtaev, P. O.; Bobkov, A. A.; Borodzyulya, V. F.; Lamkin, I. A.; Mihailov, I. I.; Moshnikov, V. A.; Permyakov, N. V.; Solomonov, A. V.; Sudar, N. T.; Tarasov, S. A.
2017-11-01
This is a study of the fractal micro- and nanostructures formation caused by the electrical breakdown of the indium-tin oxide (ITO) covered with various organic coatings. The samples were created by covering a glass substrate with a 1 to 10um-thick layer of indium-tin oxide. Some of the samples were then coated with organic layers of polycarbonate, poly(methyl methacrylate) and others. In order to create high local electrical field densities a special setup based on a eutectic GaIn liquid needle was created: it allowed for the contact area of 60um in diameter and application of the step voltage swept from 20 to 300 volts. The setup also contained a spectrometer for measuring the spectra of the breakdown optical effects. The results showed that the destruction of ITO led to the formation of the spiral fractal nanostructures, parameters of which depended on the thickness of the layer and the presence of the organic cover. In case of the latter, polymer coating was shown to visualize and zoom the topography of the nanostructures which might be used as a method of “polymer photography” for such fractal formations. The analysis of the spectra showed their dependence on the parameters of the structures which proves the possibility of conducting optical diagnostics of the created structures.
Cryo Cooler Induced Micro-Vibration Disturbances to the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Jedrich, Nick; Zimbelman, Darrell; Turczyn, Mark; Sills, Joel; Voorhees, Carl; Clapp, Brian; Brumfield, Mark (Technical Monitor)
2002-01-01
This paper presents an overview of the Hubble Space Telescope (HST) Near Infrared Camera and Multi-Object Spectrometer (NICMOS) Cryo Cooler (MCC) system, a description of the micro-vibration characterization testing performed, and a discussion of the simulated performance. The NCC is a reverse Brayton cycle system that employs micro turbo-machinery to provide cooling to the NICMOS instrument. Extensive testing was conducted to quantify the expected on-orbit disturbances caused by the micro turbo-machinery and provide input to a flexible-body dynamic simulation to demonstrate compliance with the HST 7 milli-arcsecond root mean square jitter requirement.
CFRP composite mirrors for space telescopes and their micro-dimensional stability
NASA Astrophysics Data System (ADS)
Utsunomiya, Shin; Kamiya, Tomohiro; Shimizu, Ryuzo
2010-07-01
Ultra-lightweight and high-accuracy CFRP (carbon fiber reinforced plastics) mirrors for space telescopes were fabricated to demonstrate their feasibility for light wavelength applications. The CTE (coefficient of thermal expansion) of the all- CFRP sandwich panels was tailored to be smaller than 1×10-7/K. The surface accuracy of mirrors of 150 mm in diameter was 1.8 um RMS as fabricated and the surface smoothness was improved to 20 nm RMS by using a replica technique. Moisture expansion was considered the largest in un-predictable surface preciseness errors. The moisture expansion affected not only homologous shape change but also out-of-plane distortion especially in unsymmetrical compositions. Dimensional stability due to the moisture expansion was compared with a structural mathematical model.
NASA Astrophysics Data System (ADS)
Rack, T.; Zabler, S.; Rack, A.; Stiller, M.; Riesemeier, H.; Cecilia, A.; Nelson, K.
2011-09-01
Biocompatible materials such as titanium are regularly applied in oral surgery. Titanium-based implants for the replacement of missing teeth demand a high mechanical precision in order to minimize micro-bacterial leakage, especially when two-piece concepts are used. Synchrotron-based hard x-ray radiography, unlike conventional laboratory radiography, allows high spatial resolution in combination with high contrast even when micro-sized features in such highly attenuating objects are visualized. Therefore, micro-gap formation at interfaces in two-piece dental implants with the sample under different mechanical loads can be studied. We show the existence of micro-gaps in implants with conical connections and study the mechanical behavior of the mating zone of conical implants during loading. The micro-gap is a potential source of implant failure, i.e., bacterial leakage, which can be a stimulus for an inflammatory process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rack, T.; Stiller, M.; Nelson, K.
Biocompatible materials such as titanium are regularly applied in oral surgery. Titanium-based implants for the replacement of missing teeth demand a high mechanical precision in order to minimize micro-bacterial leakage, especially when two-piece concepts are used. Synchrotron-based hard x-ray radiography, unlike conventional laboratory radiography, allows high spatial resolution in combination with high contrast even when micro-sized features in such highly attenuating objects are visualized. Therefore, micro-gap formation at interfaces in two-piece dental implants with the sample under different mechanical loads can be studied. We show the existence of micro-gaps in implants with conical connections and study the mechanical behavior ofmore » the mating zone of conical implants during loading. The micro-gap is a potential source of implant failure, i.e., bacterial leakage, which can be a stimulus for an inflammatory process.« less
Rack, A; Rack, T; Stiller, M; Riesemeier, H; Zabler, S; Nelson, K
2010-03-01
Micro-gap formation at the implant-abutment interface of two-piece dental implants was investigated in vitro using high-resolution radiography in combination with hard X-ray synchrotron radiation. Images were taken with the specimen under different mechanical loads of up to 100 N. The aim of this investigation was to prove the existence of micro-gaps for implants with conical connections as well as to study the mechanical behavior of the mating zone of conical implants during loading. Synchrotron-based radiography in comparison with classical laboratory radiography yields high spatial resolution in combination with high contrast even when exploiting micro-sized features in highly attenuating objects. The first illustration of a micro-gap which was previously indistinguishable by laboratory methods underlines that the complex micro-mechanical behavior of implants requires further in vitro investigations where synchrotron-based micro-imaging is one of the prerequisites.
Noncontact manipulation using a transversely magnetized rolling robot
NASA Astrophysics Data System (ADS)
Tung, Hsi-Wen; Peyer, Kathrin E.; Sargent, David F.; Nelson, Bradley J.
2013-09-01
A type of magnetic, wireless microrobot has been designed for non-contact manipulation of micro-objects in liquids. The agent, named the RodBot, has typical dimensions of 300 μm × 60 μm × 50 μm. The RodBot is transversely magnetized and rolls around its long axis on a surface in a rotating external magnetic field. In liquid environments, the RodBot generates a rising flow in front of it and a vortex above its body. The flow and vortex are efficient for picking-up and trapping micro-objects of sizes ranging from microns to one millimeter. In viscous solutions, a RodBot can transport objects many times its own size and weight.
DOT National Transportation Integrated Search
2008-02-01
The project consists of essentially doing what is outlined in the objective above. In addition, MoDOT will be responsible for choosing the 30 soils and 5 base materials to be tested, for doing initial property tests on them, and delivering them to UM...
VLBI observations of Infrared-Faint Radio Sources
NASA Astrophysics Data System (ADS)
Middelberg, Enno; Phillips, Chris; Norris, Ray; Tingay, Steven
2006-10-01
We propose to observe a small sample of radio sources from the ATLAS project (ATLAS = Australia Telescope Large Area Survey) with the LBA, to determine their compactness and map their structures. The sample consists of three radio sources with no counterpart in the co-located SWIRE survey (3.6 um to 160 um), carried out with the Spitzer Space Telescope. This rare class of sources, dubbed Infrared-Faint Radio Sources, or IFRS, is inconsistent with current galaxy evolution models. VLBI observations are an essential way to obtain further clues on what these objects are and why they are hidden from infrared observations: we will map their structure to test whether they resemble core-jet or double-lobed morphologies, and we will measure the flux densities on long baselines, to determine their compactness. Previous snapshot-style LBA observations of two other IFRS yielded no detections, hence we propose to use disk-based recording with 512 Mbps where possible, for highest sensitivity. With the observations proposed here, we will increase the number of VLBI-observed IFRS from two to five, soon allowing us to draw general conclusions about this intriguing new class of objects.
A search for AGN activity in Infrared-Faint Radio Sources (IFRS)
NASA Astrophysics Data System (ADS)
Lenc, Emil; Middelberg, Enno; Norris, Ray; Mao, Minnie
2009-04-01
We propose to observe a large sample of radio sources from the ATLAS (Australia Telescope Large Area Survey) source catalogue with the LBA, to determine their compactness. The sample consists of 36 sources with no counterpart in the co-located SWIRE survey (3.6 um to 160 um), carried out with the Spitzer Space Telescope. This rare class of sources, dubber Infrared-Faint Radio Sources (IFRS), is inconsistent with current galaxy evolution models. VLBI observations are an essential way to obtain further clues on what these objects are and why they are hidden from infrared observations. We will measure the flux densities on long baselines to determine their compactness. Only five IFRS have been previously targeted with VLBI observations (resulting in two detections). We propose using single baseline (Parkes-ATCA) eVLBI observations with the LBA at 1 Gbps to maximise sensitivity. With the observations proposed here we will increase the number of VLBI-observed IFRS from 5 to 36, allowing us to draw statistical conclusions about this intriguing new class of objects.
A search for AGN activity in Infrared-Faint Radio Sources (IFRS)
NASA Astrophysics Data System (ADS)
Lenc, Emil; Middelberg, Enno; Norris, Ray; Mao, Minnie
2010-04-01
We propose to observe a large sample of radio sources from the ATLAS (Australia Telescope Large Area Survey) source catalogue with the LBA, to determine their compactness. The sample consists of 36 sources with no counterpart in the co-located SWIRE survey (3.6 um to 160 um), carried out with the Spitzer Space Telescope. This rare class of sources, dubber Infrared-Faint Radio Sources (IFRS), is inconsistent with current galaxy evolution models. VLBI observations are an essential way to obtain further clues on what these objects are and why they are hidden from infrared observations. We will measure the flux densities on long baselines to determine their compactness. Only five IFRS have been previously targeted with VLBI observations (resulting in two detections). We propose using single baseline (Parkes-ATCA) eVLBI observations with the LBA at 1 Gbps to maximise sensitivity. With the observations proposed here we will increase the number of VLBI-observed IFRS from 5 to 36, allowing us to draw statistical conclusions about this intriguing new class of objects.
Kim, Sunduk; Yang, Ji-Yeon; Kim, Ho-Hyun; Yeo, In-Young; Shin, Dong-Chun
2012-01-01
Objectives The purpose of this study was to assess the risk of ingestion exposure of lead by particle sizes of crumb rubber in artificial turf filling material with consideration of bioavailability. Methods This study estimated the ingestion exposure by particle sizes (more than 250 um or less than 250 um) focusing on recyclable ethylene propylene diene monomer crumb rubber being used as artificial turf filling. Analysis on crumb rubber was conducted using body ingestion exposure estimate method in which total content test method, acid extraction method and digestion extraction method are reflected. Bioavailability which is a calibrating factor was reflected in ingestion exposure estimate method and applied in exposure assessment and risk assessment. Two methods using acid extraction and digestion extraction concentration were compared and evaluated. Results As a result of the ingestion exposure of crumb rubber material, the average lead exposure amount to the digestion extraction result among crumb rubber was calculated to be 1.56×10-4 mg/kg-day for low grade elementary school students and 4.87×10-5 mg/kg-day for middle and high school students in 250 um or less particle size, and that to the acid extraction result was higher than the digestion extraction result. Results of digestion extraction and acid extraction showed that the hazard quotient was estimated by about over 2 times more in particle size of lower than 250 um than in higher than 250 um. There was a case of an elementary school student in which the hazard quotient exceeded 0.1. Conclusions Results of this study confirm that the exposure of lead ingestion and risk level increases as the particle size of crumb rubber gets smaller. PMID:22355803
NASA Technical Reports Server (NTRS)
Bromage, Timothy G.; Doty, Stephen B.; Smolyar, Igor; Holton, Emily
1996-01-01
Our stated primary objective is to quantify the growth rate variability of rat lamellar bone exposed to micro and macrogravity (2G). The primary significance of the proposed work is that an elegant method will be established that unequivocally characterizes the morphological consequences of gravitational factors on developing bone. The integrity of this objective depends upon our successful preparation of thin sections suitable for imaging individual bone lamellae, and our imaging and quantitation of growth rate variability in populations of lamellae from individual bone samples.
Printing of metallic 3D micro-objects by laser induced forward transfer.
Zenou, Michael; Kotler, Zvi
2016-01-25
Digital printing of 3D metal micro-structures by laser induced forward transfer under ambient conditions is reviewed. Recent progress has allowed drop on demand transfer of molten, femto-liter, metal droplets with a high jetting directionality. Such small volume droplets solidify instantly, on a nanosecond time scale, as they touch the substrate. This fast solidification limits their lateral spreading and allows the fabrication of high aspect ratio and complex 3D metal structures. Several examples of micron-scale resolution metal objects printed using this method are presented and discussed.
DOT National Transportation Integrated Search
2007-01-01
"Aggregates used in the construction of roads must be durable, abrasion resistant, and freeze-thaw resistant in : order to perform well in pavement or as base course. The objective of this study was to investigate whether the : Micro-Deval test will ...
Nguyen, Hieu T.; Johnston, Steve; Paduthol, Appu; ...
2017-09-01
A micro-photoluminescence-based technique is presented, to quantify and map sheet resistances of boron-diffused layers in silicon solar cell precursors with micron-scale spatial resolution at room temperature. The technique utilizes bandgap narrowing effects in the heavily-doped layers, yielding a broader photoluminescence spectrum at the long-wavelength side compared to the spectrum emitted from lightly doped silicon. By choosing an appropriate spectral range as a metric to assess the doping density, the impacts of photon reabsorption on the analysis can be avoided; thus, an accurate characterization of the sheet resistance can be made. This metric is demonstrated to be better representative of themore » sheet resistance than the surface doping density or the total dopant concentration of the diffused layer. The technique is applied to quantify sheet resistances of 12-um-wide diffused fingers in interdigitated back-contact solar cell precursors and large diffused areas. The results are confirmed by both 4-point probe and time-of-flight secondary-ion mass spectrometry measurements. Lastly, the practical limitations associated with extending the proposed technique into an imaging mode are presented and explained.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Hieu T.; Johnston, Steve; Paduthol, Appu
A micro-photoluminescence-based technique is presented, to quantify and map sheet resistances of boron-diffused layers in silicon solar cell precursors with micron-scale spatial resolution at room temperature. The technique utilizes bandgap narrowing effects in the heavily-doped layers, yielding a broader photoluminescence spectrum at the long-wavelength side compared to the spectrum emitted from lightly doped silicon. By choosing an appropriate spectral range as a metric to assess the doping density, the impacts of photon reabsorption on the analysis can be avoided; thus, an accurate characterization of the sheet resistance can be made. This metric is demonstrated to be better representative of themore » sheet resistance than the surface doping density or the total dopant concentration of the diffused layer. The technique is applied to quantify sheet resistances of 12-um-wide diffused fingers in interdigitated back-contact solar cell precursors and large diffused areas. The results are confirmed by both 4-point probe and time-of-flight secondary-ion mass spectrometry measurements. Lastly, the practical limitations associated with extending the proposed technique into an imaging mode are presented and explained.« less
Broadening Pathways to Geosciences with an Integrated Program at The University of Michigan
NASA Astrophysics Data System (ADS)
Dick, G.; Munson, J.
2017-12-01
Low participation of under-represented minorities (URM) in the geosciences is an acute issue at the University of Michigan (U-M), where the number of undergraduate URM students majoring in the Department of Earth and Environmental Sciences (EES) is typically 5% of total majors. The goal of our project is to substantially increase the number and success rate of underrepresented minorities majoring in EES at U-M. We are pursuing this goal with five primary objectives: (i) inspire and recruit high schools seniors to pursue geoscience at U-M, especially through hands-on experiences including field trips; (ii) establish infrastructure to support students interested in geosciences through the critical juncture between high school and college; (iii) increase the number of URM students transferring from community college; (iv) develop student interest in geosciences through research and field experiences; (v) expose students to career opportunities in the geosciences. To accomplish these objectives we are leveraging existing programs, including Earth Camp, Foundations for Undergraduate Teaching: Uniting Research and Education (FUTURE), M-Sci, and college academic advisors. Throughout our interactions with students from high-school through college, we expose them to career opportunities in the geosciences, including private industry, academia, and government agencies. Evaluation of the program revealed three main conclusions: (i) the program increased student interest in pursuing an earth science degree; (ii) participating students showed a marked increase in awareness about the various opportunities that are available with an earth science degree including pathways to graduate school and earth science careers; (iii) field trips were the most effective route for achieving outcomes (i) and (ii).
Research of test fault diagnosis method for micro-satellite PSS
NASA Astrophysics Data System (ADS)
Wu, Haichao; Wang, Jinqi; Yang, Zhi; Yan, Meizhi
2017-11-01
Along with the increase in the number of micro-satellite and the shortening of the product's lifecycle, negative effects of satellite ground test failure become more and more serious. Real-time and efficient fault diagnosis becomes more and more necessary. PSS plays an important role in the satellite ground test's safety and reliability as one of the most important subsystems that guarantees the safety of micro-satellite energy. Take test fault diagnosis method of micro-satellite PSS as research object. On the basis of system features of PSS and classic fault diagnosis methods, propose a kind of fault diagnosis method based on the layered and loose coupling way. This article can provide certain reference for fault diagnosis methods research of other subsystems of micro-satellite.
NASA Astrophysics Data System (ADS)
Oku, H.; Ogawa, N.; Ishikawa, M.; Hashimoto, K.
2005-03-01
In this article, a micro-organism tracking system using a high-speed vision system is reported. This system two dimensionally tracks a freely swimming micro-organism within the field of an optical microscope by moving a chamber of target micro-organisms based on high-speed visual feedback. The system we developed could track a paramecium using various imaging techniques, including bright-field illumination, dark-field illumination, and differential interference contrast, at magnifications of 5 times and 20 times. A maximum tracking duration of 300s was demonstrated. Also, the system could track an object with a velocity of up to 35 000μm/s (175diameters/s), which is significantly faster than swimming micro-organisms.
Ground control station software design for micro aerial vehicles
NASA Astrophysics Data System (ADS)
Walendziuk, Wojciech; Oldziej, Daniel; Binczyk, Dawid Przemyslaw; Slowik, Maciej
2017-08-01
This article describes the process of designing the equipment part and the software of a ground control station used for configuring and operating micro unmanned aerial vehicles (UAV). All the works were conducted on a quadrocopter model being a commonly accessible commercial construction. This article contains a characteristics of the research object, the basics of operating the micro aerial vehicles (MAV) and presents components of the ground control station model. It also describes the communication standards for the purpose of building a model of the station. Further part of the work concerns the software of the product - the GIMSO application (Generally Interactive Station for Mobile Objects), which enables the user to manage the actions and communication and control processes from the UAV. The process of creating the software and the field tests of a station model are also presented in the article.
Structural Analysis of a Magnetically Actuated Silicon Nitride Micro-Shutter for Space Applications
NASA Technical Reports Server (NTRS)
Loughlin, James P.; Fettig, Rainer K.; Moseley, S. Harvey; Kutyrev, Alexander S.; Mott, D. Brent; Obenschain, Arthur F. (Technical Monitor)
2002-01-01
Finite element models have been created to simulate the electrostatic and electromagnetic actuation of a 0.5 micrometers silicon nitride micro-shutter for use in a spacebased Multi-object Spectrometer (MOS). The microshutter uses a torsion hinge to go from the closed, 0 degree, position, to the open, 90 degree position. Stresses in the torsion hinge are determined with a large deformation nonlinear finite element model. The simulation results are compared to experimental measurements of fabricated micro-shutter devices.
Linguistic camouflage in girls with autism spectrum disorder.
Parish-Morris, Julia; Liberman, Mark Y; Cieri, Christopher; Herrington, John D; Yerys, Benjamin E; Bateman, Leila; Donaher, Joseph; Ferguson, Emily; Pandey, Juhi; Schultz, Robert T
2017-01-01
Autism spectrum disorder (ASD) is diagnosed more frequently in boys than girls, even when girls are equally symptomatic. Cutting-edge behavioral imaging has detected "camouflaging" in girls with ASD, wherein social behaviors appear superficially typical, complicating diagnosis. The present study explores a new kind of camouflage based on language differences. Pauses during conversation can be filled with words like UM or UH, but research suggests that these two words are pragmatically distinct (e.g., UM is used to signal longer pauses, and may correlate with greater social communicative sophistication than UH). Large-scale research suggests that women and younger people produce higher rates of UM during conversational pauses than do men and older people, who produce relatively more UH. Although it has been argued that children and adolescents with ASD use UM less often than typical peers, prior research has not included sufficient numbers of girls to examine whether sex explains this effect. Here, we explore UM vs. UH in school-aged boys and girls with ASD, and ask whether filled pauses relate to dimensional measures of autism symptom severity. Sixty-five verbal school-aged participants with ASD (49 boys, 16 girls, IQ estimates in the average range) participated, along with a small comparison group of typically developing children (8 boys, 9 girls). Speech samples from the Autism Diagnostic Observation Schedule were orthographically transcribed and time-aligned, with filled pauses marked. Parents completed the Social Communication Questionnaire and the Vineland Adaptive Behavior Scales. Girls used UH less often than boys across both diagnostic groups. UH suppression resulted in higher UM ratios for girls than boys, and overall filled pause rates were higher for typical children than for children with ASD. Higher UM ratios correlated with better socialization in boys with ASD, but this effect was driven by increased use of UH by boys with greater symptoms. Pragmatic language markers distinguish girls and boys with ASD, mirroring sex differences in the general population. One implication of this finding is that typical-sounding disfluency patterns (i.e., reduced relative UH production leading to higher UM ratios) may normalize the way girls with ASD sound relative to other children, serving as "linguistic camouflage" for a naïve listener and distinguishing them from boys with ASD. This first-of-its-kind study highlights the importance of continued commitment to understanding how sex and gender change the way that ASD manifests, and illustrates the potential of natural language to contribute to objective "behavioral imaging" diagnostics for ASD.
NASA Astrophysics Data System (ADS)
Magg, Manfred; Grillenbeck, Anton, , Dr.
2004-08-01
Several samples of thermal control blankets were subjected to transient thermal loads in a thermal vacuum chamber in order to study their ability to excite micro- vibrations on a carrier structure and to cause tiny centre- of-gravity shifts. The reason for this investigation was driven by the GOCE project in order to minimize micro- vibrations on-board of the spacecraft while on-orbit. The objectives of this investigation were to better understand the mechanism which may produce micro- vibrations induced by the thermal control blankets, and to identify thermal control blanket lay-ups with minimum micro-vibration activity.
NASA Astrophysics Data System (ADS)
Zhang, Hanqing; Stangner, Tim; Wiklund, Krister; Rodriguez, Alvaro; Andersson, Magnus
2017-10-01
We present a versatile and fast MATLAB program (UmUTracker) that automatically detects and tracks particles by analyzing video sequences acquired by either light microscopy or digital in-line holographic microscopy. Our program detects the 2D lateral positions of particles with an algorithm based on the isosceles triangle transform, and reconstructs their 3D axial positions by a fast implementation of the Rayleigh-Sommerfeld model using a radial intensity profile. To validate the accuracy and performance of our program, we first track the 2D position of polystyrene particles using bright field and digital holographic microscopy. Second, we determine the 3D particle position by analyzing synthetic and experimentally acquired holograms. Finally, to highlight the full program features, we profile the microfluidic flow in a 100 μm high flow chamber. This result agrees with computational fluid dynamic simulations. On a regular desktop computer UmUTracker can detect, analyze, and track multiple particles at 5 frames per second for a template size of 201 ×201 in a 1024 × 1024 image. To enhance usability and to make it easy to implement new functions we used object-oriented programming. UmUTracker is suitable for studies related to: particle dynamics, cell localization, colloids and microfluidic flow measurement. Program Files doi : http://dx.doi.org/10.17632/fkprs4s6xp.1 Licensing provisions : Creative Commons by 4.0 (CC by 4.0) Programming language : MATLAB Nature of problem: 3D multi-particle tracking is a common technique in physics, chemistry and biology. However, in terms of accuracy, reliable particle tracking is a challenging task since results depend on sample illumination, particle overlap, motion blur and noise from recording sensors. Additionally, the computational performance is also an issue if, for example, a computationally expensive process is executed, such as axial particle position reconstruction from digital holographic microscopy data. Versatile robust tracking programs handling these concerns and providing a powerful post-processing option are significantly limited. Solution method: UmUTracker is a multi-functional tool to extract particle positions from long video sequences acquired with either light microscopy or digital holographic microscopy. The program provides an easy-to-use graphical user interface (GUI) for both tracking and post-processing that does not require any programming skills to analyze data from particle tracking experiments. UmUTracker first conduct automatic 2D particle detection even under noisy conditions using a novel circle detector based on the isosceles triangle sampling technique with a multi-scale strategy. To reduce the computational load for 3D tracking, it uses an efficient implementation of the Rayleigh-Sommerfeld light propagation model. To analyze and visualize the data, an efficient data analysis step, which can for example show 4D flow visualization using 3D trajectories, is included. Additionally, UmUTracker is easy to modify with user-customized modules due to the object-oriented programming style Additional comments: Program obtainable from https://sourceforge.net/projects/umutracker/
NASA Astrophysics Data System (ADS)
Zhou, Lingfei; Chapuis, Yves-Andre; Blonde, Jean-Philippe; Bervillier, Herve; Fukuta, Yamato; Fujita, Hiroyuki
2004-07-01
In this paper, the authors proposed to study a model and a control strategy of a two-dimensional conveyance system based on the principles of the Autonomous Decentralized Microsystems (ADM). The microconveyance system is based on distributed cooperative MEMS actuators which can produce a force field onto the surface of the device to grip and move a micro-object. The modeling approach proposed here is based on a simple model of a microconveyance system which is represented by a 5 x 5 matrix of cells. Each cell is consisted of a microactuator, a microsensor, and a microprocessor to provide actuation, autonomy and decentralized intelligence to the cell. Thus, each cell is able to identify a micro-object crossing on it and to decide by oneself the appropriate control strategy to convey the micro-object to its destination target. The control strategy could be established through five simple decision rules that the cell itself has to respect at each calculate cycle time. Simulation and FPGA implementation results are given in the end of the paper in order to validate model and control approach of the microconveyance system.
Optimization of Micro Metal Injection Molding By Using Grey Relational Grade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, M. H. I.; Precision Process Research Group, Dept. of Mechanical and Materials Engineering, Faculty of Engineering, Universiti Kebangsaan Malaysia; Muhamad, N.
2011-01-17
Micro metal injection molding ({mu}MIM) which is a variant of MIM process is a promising method towards near net-shape of metallic micro components of complex geometry. In this paper, {mu}MIM is applied to produce 316L stainless steel micro components. Due to highly stringent characteristic of {mu}MIM properties, the study has been emphasized on optimization of process parameter where Taguchi method associated with Grey Relational Analysis (GRA) will be implemented as it represents novel approach towards investigation of multiple performance characteristics. Basic idea of GRA is to find a grey relational grade (GRG) which can be used for the optimization conversionmore » from multi objectives case which are density and strength to a single objective case. After considering the form 'the larger the better', results show that the injection time(D) is the most significant followed by injection pressure(A), holding time(E), mold temperature(C) and injection temperature(B). Analysis of variance (ANOVA) is also employed to strengthen the significant of each parameter involved in this study.« less
Classification of biological micro-objects using optical coherence tomography: in silico study
Ossowski, Paweł; Wojtkowski, Maciej; Munro, Peter RT
2017-01-01
We report on the development of a technique for differentiating between biological micro-objects using a rigorous, full-wave model of OCT image formation. We model an existing experimental prototype which uses OCT to interrogate a microfluidic chip containing the blood cells. A full-wave model is required since the technique uses light back-scattered by a scattering substrate, rather than by the cells directly. The light back-scattered by the substrate is perturbed upon propagation through the cells, which flow between the substrate and imaging system’s objective lens. We present the key elements of the 3D, Maxwell equation-based computational model, the key findings of the computational study and a comparison with experimental results. PMID:28856039
Classification of biological micro-objects using optical coherence tomography: in silico study.
Ossowski, Paweł; Wojtkowski, Maciej; Munro, Peter Rt
2017-08-01
We report on the development of a technique for differentiating between biological micro-objects using a rigorous, full-wave model of OCT image formation. We model an existing experimental prototype which uses OCT to interrogate a microfluidic chip containing the blood cells. A full-wave model is required since the technique uses light back-scattered by a scattering substrate, rather than by the cells directly. The light back-scattered by the substrate is perturbed upon propagation through the cells, which flow between the substrate and imaging system's objective lens. We present the key elements of the 3D, Maxwell equation-based computational model, the key findings of the computational study and a comparison with experimental results.
NASA Astrophysics Data System (ADS)
Kitazawa, Yukihito; Matsumoto, Haruhisa; Okudaira, Osamu; Kimoto, Yugo; Hanada, Toshiya; Akahoshi, Yasuhiro; Pauline, Faure; Sakurai, Akira; Funakoshi, Kunihiro; Yasaka, Testuo
2015-04-01
The history of Japanese R&D into in-situ sensors for micro-meteoroid and orbital debris (MMOD) measurements is neither particularly long nor short. Research into active sensors started for the meteoroid observation experiment on the HITEN (MUSES-A) satellite of ISAS/JAXA launched in 1990, which had MDC (Munich Dust Counter) on-board sensors for micro meteoroid measurement. This was a collaboration between Technische Universität München and ISAS/JAXA. The main purpose behind the start of passive sensor research was SOCCOR, a late 80's Japan-US mission that planned to capture cometary dust and return to the Earth. Although this mission was canceled, the research outcomes were employed in a JAXA micro debris sample return mission using calibrated aerogel involving the Space Shuttle and the International Space Station. There have been many other important activities apart from the above, and the knowledge generated from them has contributed to JAXA's development of a new type of active dust sensor. JAXA and its partners have been developing a simple in-situ active dust sensor of a new type to detect dust particles ranging from a hundred micrometers to several millimeters. The distribution and flux of the debris in the size range are not well understood and is difficult to measure using ground observations. However, it is important that the risk caused by such debris is assessed. In-situ measurement of debris in this size range is useful for 1) verifying meteoroid and debris environment models, 2) verifying meteoroid and debris environment evolution models, and 3) the real time detection of explosions, collisions and other unexpected orbital events. Multitudes of thin, conductive copper strips are formed at a fine pitch of 100 um on a film 12.5 um thick of nonconductive polyimide. An MMOD particle impact is detected when one or more strips are severed by being perforated by such an impact. This sensor is simple to produce and use and requires almost no calibration as it is essentially a digital system. Based on this sensor technology, the Kyushu Institute of Technology (Kyutech) has designed and developed an educational version of the sensor, which is currently on board the nano-satellite Horyu-II, which was built at Kyutech and launched on May 18, 2012 by JAXA. Although the sensor has a very small sensing area, sensor data were nonetheless successfully received. Moreover, a laboratory version of the sensor fitted on QSAT-EOS ("Tsukushi"), a small satellite, was be launched in November 2014. This version was developed and manufactured by Japan's QPS Institute to evaluate the sensor's capability regarding hypervelocity impact experiments at JAXA. JAXA's flight version, to be employed on satellites and/or the ISS, will be ready soon and a flight demonstration will be conducted on KOUNOTORI (HTV) in 2015. This paper reports on the R&D into in-situ measurement MMOD sensors at JAXA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Y; Fullerton, G; Goins, B
Purpose: In our previous study a preclinical multi-modality quality assurance (QA) phantom that contains five tumor-simulating test objects with 2, 4, 7, 10 and 14 mm diameters was developed for accurate tumor size measurement by researchers during cancer drug development and testing. This study analyzed the errors during tumor volume measurement from preclinical magnetic resonance (MR), micro-computed tomography (micro- CT) and ultrasound (US) images acquired in a rodent tumor model using the preclinical multi-modality QA phantom. Methods: Using preclinical 7-Tesla MR, US and micro-CT scanners, images were acquired of subcutaneous SCC4 tumor xenografts in nude rats (3–4 rats per group;more » 5 groups) along with the QA phantom using the same imaging protocols. After tumors were excised, in-air micro-CT imaging was performed to determine reference tumor volume. Volumes measured for the rat tumors and phantom test objects were calculated using formula V = (π/6)*a*b*c where a, b and c are the maximum diameters in three perpendicular dimensions determined by the three imaging modalities. Then linear regression analysis was performed to compare image-based tumor volumes with the reference tumor volume and known test object volume for the rats and the phantom respectively. Results: The slopes of regression lines for in-vivo tumor volumes measured by three imaging modalities were 1.021, 1.101 and 0.862 for MRI, micro-CT and US respectively. For phantom, the slopes were 0.9485, 0.9971 and 0.9734 for MRI, micro-CT and US respectively. Conclusion: For both animal and phantom studies, random and systematic errors were observed. Random errors were observer-dependent and systematic errors were mainly due to selected imaging protocols and/or measurement method. In the animal study, there were additional systematic errors attributed to ellipsoidal assumption for tumor shape. The systematic errors measured using the QA phantom need to be taken into account to reduce measurement errors during the animal study.« less
Tribosystems based on multilayered micro/nanocrystalline CVD diamond coatings =
NASA Astrophysics Data System (ADS)
Shabani, Mohammadmehdi
A combinacao das caracteristicas do diamante microcristalino (MCD) e nanocristalino (NCD), tais como elevada adesao do MCD e a baixa rugosidade superficial e baixo coeficiente de atrito do NCD, e ideal para aplicacoes tribologicas exigentes. Deste modo, o presente trabalho centrou-se no desenvolvimento de revestimentos em multicamada MCD/NCD. Filmes com dez camadas foram depositados em amostras de cerâmicos de Si3N4 pela tecnica de deposicao quimica em fase vapor assistida por filamento quente (HFCVD). A microestrutura, qualidade do diamante e adesao foram investigadas usando tecnicas como SEM, AFM, espectroscopia Raman, DRX, indentacao Brale e perfilometria otica 3D. Diversas geometrias para aplicacoes distintas foram revestidas: discos e esferas para testes tribologicos a escala laboratorial, e para testes em servico, aneis de empanques mecânicos e pastilhas de corte para torneamento. Nos ensaios tribologicos esfera-sobre-plano em movimento reciproco, sob 10-90% de humidade relativa (RH), os valores medios dos coeficientes de atrito maximo e em estado estacionario sao de 0,32 e 0,09, respetivamente. Em relacao aos coeficientes de desgaste, observou-se um valor minimo de cerca de 5,2x10-8 mm3N-1m-1 para valores intermedios de 20-25% de RH. A humidade relativa tem um forte efeito sobre o valor da carga critica que triplica a partir de 40 N a 10% RH para 120 N a 90% de RH. No intervalo de temperaturas 50-100 °C, as cargas criticas sao semelhantes as obtidas em condicoes de baixa RH ( 10-25%). A vida util das ferramentas com revestimento de dez camadas alternadas MCD/NCD e 24 mum de espessura total no torneamento de um composito de matriz metalica Al- 15 vol% Al2O3 (Al-MMC) e melhor do que a maioria das ferramentas de diamante CVD encontradas na literatura, e semelhante a maioria das ferramentas de diamante policristalino (PCD). A formacao de cratera ocorre por desgaste sucessivo das varias camadas, atrasando a delaminacao total do revestimento de diamante do substrato, ao contrario do que acontece com os revestimentos monocamada. Os aneis de empanque testados com biodiesel apresentaram coeficientes de desgaste (4,1x10-10 mm3N-1m-1) duas ordens de grandeza menores do que em ensaios esfera-sobre-plano em movimento reciproco (k = 5,0x10-8 mm3N-1m-1), mas nao foi possivel obter vedacao completa devido a sobreaquecimento do fluido. Esta condicao foi obtida com agua sob pressao, para condicoes P.V na gama 0,72-5,3 MPa.ms-1. Um coeficiente de atrito em estado estacionario de 0,04 e um valor de coeficiente de desgaste de 6,0x10-10 mm3N-1m-1, caracteristico de um regime desgaste ultra-suave, revelam o alto desempenho deste tribossistema.
MOEMs devices designed and tested for future astronomical instrumentation in space
NASA Astrophysics Data System (ADS)
Zamkotsian, Frédéric; Lanzoni, Patrick; Waldis, Severin; Noell, Wilfried; Conedera, Veronique; Fabre, Norbert; Viard, Thierry; Buisset, Christophe
2017-11-01
Next generation of astronomical instrumentation for space telescopes requires Micro-Opto-Electro- Mechanical Systems (MOEMS) with remote control capability and cryogenic operation. MOEMS devices have the capability to tailor the incoming light in terms of intensity and object selection with programmable slit masks, in terms of phase and wavefront control with micro-deformable mirrors, and finally in terms of spectrum with programmable diffraction gratings. Applications are multi-object spectroscopy (MOS), wavefront correction and programmable spectrographs. We are engaged since several years in the design, realization and characterization of MOEMS devices suited for astronomical instrumentation.
Three-dimensional imaging of micro-specimen by optical scanning holography
NASA Astrophysics Data System (ADS)
Liu, Jung-Ping; Tsou, Cheng-Hao
2017-04-01
Optical scanning holography (OSH) is a scanning-type digital holographic technique. In OSH, a heterodyne interference pattern is generated to raster scan the object. OSH can be operated in the incoherent mode and thus is able to record a fluorescence hologram. In addition, resolution of the OSH is proportional to the density of the interference pattern. Here we use a high-NA microscope objective to generate a dynamic Fresnel zone plate to record a hologram of micro-specimen. The achieved transverse resolution and longitudinal resolution are 0.78μm and 3.1μm, respectively.
Micro-Costing Quantity Data Collection Methods
Frick, Kevin D.
2009-01-01
Background Micro-costing studies collect detailed data on resources utilized and the value of those resources. Such studies are useful for estimating the cost of new technologies or new community-based interventions, for producing estimates in studies that include non-market goods, and for studying within-procedure cost variation. Objectives This objectives of this paper were to (1) describe basic micro-costing methods focusing on quantity data collection; and (2) suggest a research agenda to improve methods in and the interpretation of micro-costing Research Design Examples in the published literature were used to illustrate steps in the methods of gathering data (primarily quantity data) for a micro-costing study. Results Quantity data collection methods that were illustrated in the literature include the use of (1) administrative databases at single facilities, (2) insurer administrative data, (3) forms applied across multiple settings, (4) an expert panel, (5) surveys or interviews of one or more types of providers; (6) review of patient charts, (7) direct observation, (8) personal digital assistants, (9) program operation logs, and (10) diary data. Conclusions Future micro-costing studies are likely to improve if research is done to compare the validity and cost of different data collection methods; if a critical review is conducted of studies done to date; and if the combination of the results of the first two steps described are used to develop guidelines that address common limitations, critical judgment points, and decisions that can reduce limitations and improve the quality of studies. PMID:19536026
Active Fail-Safe Micro-Array Flow Control for Advanced Embedded Propulsion Systems
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.; Mace, James L.; Mani, Mori
2009-01-01
The primary objective of this research effort was to develop and analytically demonstrate enhanced first generation active "fail-safe" hybrid flow-control techniques to simultaneously manage the boundary layer on the vehicle fore-body and to control the secondary flow generated within modern serpentine or embedded inlet S-duct configurations. The enhanced first-generation technique focused on both micro-vanes and micro-ramps highly-integrated with micro -jets to provide nonlinear augmentation for the "strength' or effectiveness of highly-integrated flow control systems. The study focused on the micro -jet mass flow ratio (Wjet/Waip) range from 0.10 to 0.30 percent and jet total pressure ratios (Pjet/Po) from 1.0 to 3.0. The engine bleed airflow range under study represents about a 10 fold decrease in micro -jet airflow than previously required. Therefore, by pre-conditioning, or injecting a very small amount of high-pressure jet flow into the vortex generated by the micro-vane and/or micro-ramp, active flow control is achieved and substantial augmentation of the controlling flow is realized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Podgorsak, A; Bednarek, D; Rudin, S
2016-06-15
Purpose: To successfully implement and operate a photon counting scheme on an electron multiplying charged-coupled device (EMCCD) based micro-CT system. Methods: We built an EMCCD based micro-CT system and implemented a photon counting scheme. EMCCD detectors use avalanche transfer registries to multiply the input signal far above the readout noise floor. Due to intrinsic differences in the pixel array, using a global threshold for photon counting is not optimal. To address this shortcoming, we generated a threshold array based on sixty dark fields (no x-ray exposure). We calculated an average matrix and a variance matrix of the dark field sequence.more » The average matrix was used for the offset correction while the variance matrix was used to set individual pixel thresholds for the photon counting scheme. Three hundred photon counting frames were added for each projection and 360 projections were acquired for each object. The system was used to scan various objects followed by reconstruction using an FDK algorithm. Results: Examination of the projection images and reconstructed slices of the objects indicated clear interior detail free of beam hardening artifacts. This suggests successful implementation of the photon counting scheme on our EMCCD based micro-CT system. Conclusion: This work indicates that it is possible to implement and operate a photon counting scheme on an EMCCD based micro-CT system, suggesting that these devices might be able to operate at very low x-ray exposures in a photon counting mode. Such devices could have future implications in clinical CT protocols. NIH Grant R01EB002873; Toshiba Medical Systems Corp.« less
Toward milli-Newton electro- and magneto-static microactuators
NASA Technical Reports Server (NTRS)
Fan, Long-Sheng
1993-01-01
Microtechnologies can potentially push integrated electro- and magnetostatic actuators toward the regime where constant forces in the order of milli-Newton (or torques in the order of micro-Newton meter) can be generated with constant inputs within a volume of 1.0 x 1.0 x 0.02 mm with 'conventional' technology. 'Micro' actuators are, by definition, actuators with dimensions confined within a millimeter cube. Integrated microactuators based on electrostatics typically have force/torque in the order of sub-micro-Newton (sub-nano-Newton meter). These devices are capable of moving small objects at MHz frequencies. On the other hand, suppose we want to move a one cubic millimeter object around with 100 G acceleration; a few milli-Newton force will be required. Thus, milli-Newton microactuators are very desirable for some immediate applications, and it challenges micromechanical researchers to develop new process technologies, designs, and materials toward this goal.
Cheng, H W; Jeng, B M; Chen, C Y; Huang, H Y; Chiou, J C; Luo, C H
2013-01-01
This paper proposed a wireless power harvesting system with micro-electro-mechanical-systems (MEMS) fabrication for noninvasive intraocular pressure (IOP) measurement on soft contact lens substructure. The power harvesting IC consists of a loop antenna, an impedance matching network and a rectifier. The proposed IC has been designed and fabricated by CMOS 0.18 um process that operates at the ISM band of 5.8 GHz. The antenna and the power harvesting IC would be bonded together by using flip chip bonding technologies without extra wire interference. The circuit utilized an impedance transformation circuit to boost the input RF signal that improves the circuit performance. The proposed design achieves an RF-to-DC conversion efficiency of 35% at 5.8 GHz.
Development of a 3D printer using scanning projection stereolithography
Lee, Michael P.; Cooper, Geoffrey J. T.; Hinkley, Trevor; Gibson, Graham M.; Padgett, Miles J.; Cronin, Leroy
2015-01-01
We have developed a system for the rapid fabrication of low cost 3D devices and systems in the laboratory with micro-scale features yet cm-scale objects. Our system is inspired by maskless lithography, where a digital micromirror device (DMD) is used to project patterns with resolution up to 10 µm onto a layer of photoresist. Large area objects can be fabricated by stitching projected images over a 5cm2 area. The addition of a z-stage allows multiple layers to be stacked to create 3D objects, removing the need for any developing or etching steps but at the same time leading to true 3D devices which are robust, configurable and scalable. We demonstrate the applications of the system by printing a range of micro-scale objects as well as a fully functioning microfluidic droplet device and test its integrity by pumping dye through the channels. PMID:25906401
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lynch, Caitlin; Pan, Yongmei; Li, Linhao
Objective: Accumulating evidence suggests that activation of mouse constitutive androstane receptor (mCAR) alleviates type 2 diabetes and obesity by inhibiting hepatic gluconeogenesis, lipogenesis, and fatty acid synthesis. However, the role of human (h) CAR in energy metabolism is largely unknown. The present study aims to investigate the effects of selective hCAR activators on hepatic energy metabolism in human primary hepatocytes (HPH). Methods: Ligand-based structure–activity models were used for virtual screening of the Specs database ( (www.specs.net)) followed by biological validation in cell-based luciferase assays. The effects of two novel hCAR activators (UM104 and UM145) on hepatic energy metabolism were evaluatedmore » in HPH. Results: Real-time PCR and Western blotting analyses reveal that activation of hCAR by UM104 and UM145 significantly repressed the expression of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase, two pivotal gluconeogenic enzymes, while exerting negligible effects on the expression of genes associated with lipogenesis and fatty acid synthesis. Functional experiments show that UM104 and UM145 markedly inhibit hepatic synthesis of glucose but not triglycerides in HPH. In contrast, activation of mCAR by 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene, a selective mCAR activator, repressed the expression of genes associated with gluconeogenesis, lipogenesis, and fatty acid synthesis in mouse primary hepatocytes, which were consistent with previous observations in mouse model in vivo. Conclusion: Our findings uncover an important species difference between hCAR and mCAR in hepatic energy metabolism, where hCAR selectively inhibits gluconeogenesis without suppressing fatty acid synthesis. Implications: Such species selectivity should be considered when exploring CAR as a potential therapeutic target for metabolic disorders. - Highlights: • Novel hCAR activators were identified by computational and biological approaches. • The role of hCAR in hepatic energy metabolism was examined. • hCAR activators repress gluconeogenesis but not lipogenesis and fatty acid synthesis. • Human and mouse CAR exhibit differential effects on energy metabolism.« less
Analysis of micro computed tomography images; a look inside historic enamelled metal objects
NASA Astrophysics Data System (ADS)
van der Linden, Veerle; van de Casteele, Elke; Thomas, Mienke Simon; de Vos, Annemie; Janssen, Elsje; Janssens, Koen
2010-02-01
In this study the usefulness of micro-Computed Tomography (µ-CT) for the in-depth analysis of enamelled metal objects was tested. Usually investigations of enamelled metal artefacts are restricted to non-destructive surface analysis or analysis of cross sections after destructive sampling. Radiography, a commonly used technique in the field of cultural heritage studies, is limited to providing two-dimensional information about a three-dimensional object (Lang and Middleton, Radiography of Cultural Material, pp. 60-61, Elsevier-Butterworth-Heinemann, Amsterdam-Stoneham-London, 2005). Obtaining virtual slices and information about the internal structure of these objects was made possible by CT analysis. With this technique the underlying metal work was studied without removing the decorative enamel layer. Moreover visible defects such as cracks were measured in both width and depth and as of yet invisible defects and weaker areas are visualised. All these features are of great interest to restorers and conservators as they allow a view inside these objects without so much as touching them.
Association of microRNAs with antibody response to mycoplasma bovis in beef cattle
USDA-ARS?s Scientific Manuscript database
The objective of this study was to identify microRNAs associated with a serum antibody response to Mycoplasma bovis in beef cattle. Serum from sixteen beef calves was collected at three points: in summer after calves were born, in fall at weaning, and in the following spring. All sera collected in t...
USDA-ARS?s Scientific Manuscript database
High production costs remain the single greatest factor limiting wider use of cellulose micro/nanofibers in the industry. The objective of the present study was to investigate the potential of using a low-cost bacteria-rich digestate (liquid anaerobic digestate – AD supernatant) on milled eucalyptus...
Interdisciplinary Study on Artificial Intelligence.
1983-07-01
systems, uiophysics of information processing, cognitive science, and traditional artificial intelligence. The objective behi d this objective was to...information processing, cognitive science, and traditional * artificial intelligence. The objective behind this objective was to provide a vehicle for reviewing...Another departure from ’classical’ neurodynamics must be sought in the strong coupling between the micro and macroscopic scales. No other physical mechanism
Optical sectioning microscopes with no moving parts using a micro-stripe array light emitting diode.
Poher, V; Zhang, H X; Kennedy, G T; Griffin, C; Oddos, S; Gu, E; Elson, D S; Girkin, M; French, P M W; Dawson, M D; Neil, M A
2007-09-03
We describe an optical sectioning microscopy system with no moving parts based on a micro-structured stripe-array light emitting diode (LED). By projecting arbitrary line or grid patterns onto the object, we are able to implement a variety of optical sectioning microscopy techniques such as grid-projection structured illumination and line scanning confocal microscopy, switching from one imaging technique to another without modifying the microscope setup. The micro-structured LED and driver are detailed and depth discrimination capabilities are measured and calculated.
MOEMs devices for future astronomical instrumentation in space
NASA Astrophysics Data System (ADS)
Zamkotsian, Frédéric; Liotard, Arnaud; Lanzoni, Patrick; ElHadi, Kacem; Waldis, Severin; Noell, Wilfried; de Rooij, Nico; Conedera, Veronique; Fabre, Norbert; Muratet, Sylvaine; Camon, Henri
2017-11-01
Based on the micro-electronics fabrication process, Micro-Opto-Electro-Mechanical Systems (MOEMS) are under study in order to be integrated in next-generation astronomical instruments for ground-based and space telescopes. Their main advantages are their compactness, scalability, specific task customization using elementary building blocks, and remote control. At Laboratoire d'Astrophysique de Marseille, we are engaged since several years in the design, realization and characterization of programmable slit masks for multi-object spectroscopy and micro-deformable mirrors for wavefront correction. First prototypes have been developed and show results matching with the requirements.
MOEMs, key optical components for future astronomical instrumentation in space
NASA Astrophysics Data System (ADS)
Zamkotsian, Frédéric; Dohlen, Kjetil; Burgarella, Denis; Ferrari, Marc; Buat, Veronique
2017-11-01
Based on the micro-electronics fabrication process, MicroOpto-Electro-Mechanical Systems (MOEMS) are under study, in order to be integrated in next-generation astronomical instruments and telescopes, especially for space missions. The main advantages of micro-optical components are their compactness, scalability, specific task customization using elementary building blocks, and they allows remote control. As these systems are easily replicable, the price of the components is decreasing dramatically when their number is increasing. The two major applications of MOEMS are Multi-Object Spectroscopy masks and Deformable Mirror systems.
Wampers, Martien; De Lepeleire, Jan; Correll, Christophe U.
2015-01-01
Introduction When psychiatric patients express a wish for euthanasia, this should first and foremost be interpreted as a cry for help. Due to their close day-to-day relationship, psychiatric nurses may play an important and central role in responding to such requests. However, little is known about nurses’ attitudes towards euthanasia motivated by unbearable mental suffering. Objectives The aim of this study was to provide insight into the attitudes and actions taken by psychiatric nurses when confronted with a patient’s euthanasia request based on unbearable mental suffering (UMS). Method A questionnaire was sent to 11 psychiatric hospitals in the Flemish part of Belgium. Results The overall response rate was 70% (N = 627). Psychiatric nurses were frequently confronted with a request for euthanasia, either directly (N = 329, 53%) or through a colleague (N = 427, 69%). A majority (N = 536, 84%) did not object to euthanasia in a psychiatrically ill population with UMS. Confounding factors were the psychiatric diagnosis and the type of ward where the nurses were working. Most participants acknowledged a lack of knowledge and skills to adequately address the euthanasia request (N = 434, 71%). Nearly unanimously (N = 618, 99%), study participants indicated that dealing with euthanasia requests and other end-of-life issues should be part of the formal training of nurses. Conclusion The results highlight the need for ethically sound and comprehensive provision of care. Psychiatric nurses play an important role in dealing with the complex issue of requests for euthanasia. There is also a need for education, training and clear guidelines on the level of health care organizations. PMID:26700007
BACKGROUND: Particulate matter ≤ 2.5 um in aerodynamic diameter (PM2.5) has been variably associated with preterm birth (PTB). • OBJECTIVE: We classified PTB into four categories (20-27, 28-31, 32-34, and 35-36 weeks completed gestation) and estimated risk differences (RDs) f...
VizieR Online Data Catalog: MIR-selected quasar parameters (Dai+, 2014)
NASA Astrophysics Data System (ADS)
Dai, Y. S.; Elvis, M.; Bergeron, J.; Fazio, G. G.; Huang, J.-S.; Wilkes, B. J.; Willmer, C. N. A.; Omont, A.; Papovich, C.
2017-03-01
The combined MIR 24 um and optical selection for this survey was designed to detect objects with luminous torus/nucleus and not biased against dusty hosts. The MIR selection allows for the detection of hot dust (a few hundred Kelvin) at the redshifts z ~ 1.5; while optical follow-up spectroscopically identified the BEL objects, confirming their unobscured (type 1) quasar nature. This MIR selection also allows for a far-infrared (FIR) cross-match to look for cool dust for SMBH-host studies, as demonstrated in Dai et al. (2012ApJ...753...33D). We select Spitzer MIPS (Rieke et al. 2004ApJS..154...25R) 24 um sources from the SWIRE survey in the ~22 deg2 LHS field centered at RA=10:46:48, DE=57:54:00 (Lonsdale et al. 2003PASP..115..897L). The SDSS imaging also covers the LHS region to r = 22.2 at 95% detection repeatability, but can go as deep as r = 23. All magnitudes are taken from the SDSS photoObj catalog in DR7, which are already corrected for Galactic extinction according to Schlegel et al. (1998ApJ...500..525S). (6 data files).
High speed micro scanner for 3D in-volume laser micro processing
NASA Astrophysics Data System (ADS)
Schaefer, D.; Gottmann, J.; Hermans, M.; Ortmann, J.; Kelbassa, I.
2013-03-01
Using an in-house developed micro scanner three-dimensional micro components and micro fluidic devices in fused silica are realized using the ISLE process (in-volume selective laser-induced etching). With the micro scanner system the potential of high average power femtosecond lasers (P > 100 W) is exploited by the fabrication of components with micrometer precision at scan speeds of several meters per second. A commercially available galvanometer scanner is combined with an acousto-optical and/or electro-optical beam deflector and translation stages. For focusing laser radiation high numerical aperture microscope objectives (NA > 0.3) are used generating a focal volume of a few cubic micrometers. After laser exposure the materials are chemically wet etched in aqueous solution. The laser-exposed material is etched whereas the unexposed material remains nearly unchanged. Using the described technique called ISLE the fabrication of three-dimensional micro components, micro holes, cuts and channels is possible with high average power femtosecond lasers resulting in a reduced processing time for exposure. By developing the high speed micro scanner up-scaling of the ISLE process is demonstrated. The fabricated components made out of glass can be applied in various markets like biological and medical diagnostics as well as in micro mechanics.
Alevizos, Ilias; Alexander, Stefanie; Turner, R. James; Illei, Gabor G.
2013-01-01
Objective MicroRNA reflect physiologic and pathologic processes and may be used as biomarkers of concurrent pathophysiologic events in complex settings such as autoimmune diseases. We generated microRNA microarray profiles from the minor salivary glands of control subjects without Sjögren's syndrome (SS) and patients with SS who had low-grade or high-grade inflammation and impaired or normal saliva production, to identify microRNA patterns specific to salivary gland inflammation or dysfunction. Methods MicroRNA expression profiles were generated by Agilent microRNA arrays. We developed a novel method for data normalization by identifying housekeeping microRNA. MicroRNA profiles were compared by unsupervised mathematical methods to test how well they distinguish between control subjects and various subsets of patients with SS. Several bioinformatics methods were used to predict the messenger RNA targets of the differentially expressed microRNA. Results MicroRNA expression patterns accurately distinguished salivary glands from control subjects and patients with SS who had low-degree or high-degree inflammation. Using real-time quantitative polymerase chain reaction, we validated 2 microRNA as markers of inflammation in an independent cohort. Comparing microRNA from patients with preserved or low salivary flow identified a set of differentially expressed microRNA, most of which were up-regulated in the group with decreased salivary gland function, suggesting that the targets of microRNA may have a protective effect on epithelial cells. The predicted biologic targets of microRNA associated with inflammation or salivary gland dysfunction identified both overlapping and distinct biologic pathways and processes. Conclusion Distinct microRNA expression patterns are associated with salivary gland inflammation and dysfunction in patients with SS, and microRNA represent a novel group of potential biomarkers. PMID:21280008
NASA Astrophysics Data System (ADS)
Asadollahi, Arash; Esmaeeli, Asghar
2018-05-01
In this paper, two-dimensional condensation, liquid behavior on the micro-object with moving walls, and breaking up have been investigated by the Shan and Chen multiphase Lattice Boltzmann Method (LBM), which has the ability to incorporate interactions such as fluid-fluid, and also fluid-solid. Four test cases with low, medium, high, and very high Weber numbers are investigated considering the velocity control of walls in detail. Vertical spread fraction n / h (where n is the minimum liquid thickness after deformation and h is the maximum length of liquid deformation in each time) decreases quickly indicating the liquid tendency to breakup in all cases. Except for the case of a very high Weber number, the separation will not happen and finally after fluctuation the fixed bulk of condensed liquid will be placed on the side of the micro-object. The maximum value of reaction parameter h / d becomes larger as the Weber number increases. It is shown that an increase in the Weber number leads to liquid breakup and this mechanism provides an effective way for removing the condensed liquid from micro-devices surfaces. The results by LBM reveal the liquid evolutionary behavior and breaking up over time and show that it is a controllable situation by manipulating the walls velocity. Moreover, it can be used in order to centralize and aggregate all the liquid to a specific direction.
NASA Astrophysics Data System (ADS)
Kremens, R.; Dickinson, M. B.; Hardy, C.; Skowronski, N.; Ellicott, E. A.; Schroeder, W.
2016-12-01
We have developed a wide dynamic range (24-bit) data acquisition system for collection of radiant flux density (FRFD) data from wildland fires. The data collection subsystem was designed as an Arduino `shield' and incorporates a 24-bit analog-to-digital converter, precision voltage reference, real time clock, microSD card interface, audible annuciator and interface for various digital communication interfaces (RS232, I2C, SPI, etc.). The complete radiometer system consists of our custom-designed `shield', a commercially available Arduino MEGA computer circuit board and a thermopile sensor -amplifier daughter board. Software design and development is greatly assisted by the availability of a library of public-domain, user-implemented software. The daughter board houses a 5-band radiometer using thermopiles designed for this experiment (Dexter Research Corp., Dexter, MI) to allow determination of the total FRFD from the fire (using a wide band thermopile with a KRS-5 window, 0.1 - 30 um), the FRFD as would be received by an orbital asset like MODIS (3.95 um center wavelength (CWL) and 10.95 CWL, corresponding to MODIS bands 21/22 and 31, respectively) and wider bandpass (0.1-5.5 um and 8-14 um) corresponding to the FRFD recorded by `MWIR' and `LWIR' imaging systems. We required a very wide dynamic range system in order to be able to record the flux density from `cold' ground before the fire, through the `hot' flaming combustion stage, to the `cool' phase after passage of the fire front. The recording dynamic range required (with reasonable resolution at the lowest temperatures) is on the order of 106, which is not currently available in commercial instrumentation at a price point, size or feature set that is suitable for wildland fire investigations. The entire unit, along with rechargeable battery power supply is housed in a fireproof aluminum chassis box, which is then mounted on a mast at a height of 5 - 7 m above the fireground floor. We will report initial results on observation of wildland fires using this system for prescribed fires in the pitch-pine scrub oak forest type and the use of the system to determine the differences between actual and remotely sensed measures of FRFD, which is of importance in quantifying the release of CO2 and other fire products from wildland fire combustion.
Three-dimensional rotational micro-angiography
NASA Astrophysics Data System (ADS)
Patel, Vikas
Computed tomography (CT) is state-of-the-art for 3D imaging in which images are acquired about the patient and are used to reconstruct the data. But the commercial CT systems suffer from low spatial resolution (0.5-2 lp/mm). Micro-CT (microCT) systems have high resolution 3D reconstruction (>10 lp/mm), but are currently limited to small objects, e.g., small animals. To achieve artifact free reconstructions, geometric calibration of the rotating-object cone-beam microCT (CBmicroCT) system is performed using new techniques that use only the projection images of the object, i.e., no calibration objects are required. Translations (up to 0.2 mm) occurring during the acquisition in the horizontal direction are detected, quantified, and corrected based on sinogram analysis. The parameters describing the physical axis of rotation determined using our image-based method (aligning anti-posed images) agree well (within 0.1 mm and 0.3 degrees) with those determined using other techniques that use calibration objects. Geometric calibrations of the rotational angiography (RA) systems (clinical cone-beam CT systems with fluoroscopic capabilities provided by flat-panel detectors (FPD)) are performed using a simple single projection technique (SPT), which aligns a known 3D model of a calibration phantom with the projection data. The calibration parameters obtained by the SPT are found to be reproducible (angles within 0.2° and x- and y-translations less than 2 mm) for over 7 months. The spatial resolution of the RA systems is found to be virtually unaffected by such small geometric variations. Finally, using our understanding of the geometric calibrations, we have developed methods to combine relatively low-resolution RA acquisitions (2-3 lp/mm) with high resolution microCT acquisitions (using a high-resolution micro-angiographic fluoroscope (MAF) attached to the RA gantry) to produce the first-ever 3D rotational micro-angiography (3D-RmicroA) system on a clinical gantry. Images of a rabbit with a coronary stent placed in an artery were obtained and reconstructed. To eliminate artifacts due to image truncation, lower-dose (compared to the MAF acquisition) full-FOV (FFOV) FPD RA sequences are also obtained. To ensure high-quality high-resolution reconstruction, the high-resolution images from the MAF are aligned spatially with the lower-dose FPD images (average correlation coefficient before and after alignment: 0.65 and 0.97 respectively), and the pixel values in the FPD image data are scaled (using linear regression) to match those of the MAF. Greater details without any visible truncation artifacts are seen in 3D RmicroA (MAF-FPD) images than in those of the FPD alone. The FWHM of line profiles of stent struts (100 micron diameter) are approximately 192 +/- 21 and 313 +/- 38 microns for the 3D RmicroA and FPD data, respectively. Thus, with the RmicroA system, we have essentially developed a high resolution CBmicroCT system for clinical use.
Self-Cleaning Synthetic Adhesive Surfaces Mimicking Tokay Geckos.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branson, Eric D.; Singh, Seema; Burckel, David Bruce
2006-11-01
A gecko's extraordinary ability to suspend itself from walls and ceilings of varied surface roughness has interested humans for hundreds of years. Many theories and possible explanations describing this phenomenon have been proposed including sticky secretions, microsuckers, and electrostatic forces; however, today it is widely accepted that van der Waals forces play the most important role in this type of dry adhesion. Inarguably, the vital feature that allows a gecko's suspension is the presence of billions 3 of tiny hairs on the pad of its foot called spatula. These features are small enough to reach within van der Waals distancesmore » of any surface (spatula radius %7E100 nm); thus, the combined effect of billions of van der Waals interactions is more than sufficient to hold a gecko's weight to surfaces such as smooth ceilings or wet glass. Two lithographic approaches were used to make hierarchal structures with dimensions similar to the gecko foot dimensions noted above. One approach combined photo-lithography with soft lithography (micro-molding). In this fabrication scheme the fiber feature size, defined by the alumina micromold was 0.2 um in diameter and 60 um in height. The second approach followed more conventional photolithography-based patterning. Patterned features with dimensions %7E0.3 mm in diameter by 0.5 mm tall were produced. We used interfacial force microscopy employing a parabolic diamond tip with a diameter of 200 nm to measure the surface adhesion of these structures. The measured adhesive forces ranged from 0.3 uN - 0.6 uN, yielding an average bonding stress between 50 N/cm2 to 100 N/cm2. By comparison the reported literature value for the average stress of a Tokay gecko foot is 10 N/cm2. Acknowledgements This work was funded by Sandia National Laboratory's Laboratory Directed Research & Development program (LDRD). All coating processes were conducted in the cleanroom facility located at the University of New Mexico's Center for High Technology Materials (CHTM). SEM images were performed at UNM's Center for Micro-Engineering on equipment funded by a NSF New Mexico EPSCoR grant. 4« less
2013-12-01
M TIME PPC1 Volume of Spheroid Ctrl (respective media) .2% DMSO 10 uM Free Curcumin 20 uM Free Curcumin 10 uM Tagged Curcumin 20 uM Tagged... Curcumin FIGURE 6 Ctrl media 10uM FC 20uM FC 20uM TC 10uM TC 2% DMSO PC3 t0 Div 8 FIGURE 7 Phospho-p65 NFκB subunit expression decreased In
NASA Technical Reports Server (NTRS)
Bromage, Timothy G.; Doty, Stephen B.; Smolyar, Igor; Holton, Emily
1997-01-01
Our stated primary objective is to quantify the growth rate variability of rat lamellar bone exposed to micro- (near zero G: e.g., Cosmos 1887 & 2044; SLS-1 & SLS-2) and macrogravity (2G). The primary significance of the proposed work is that an elegant method will be established that unequivocally characterizes the morphological consequences of gravitational factors on developing bone. The integrity of this objective depends upon our successful preparation of thin sections suitable for imaging individual bone lamellae, and our imaging and quantitation of growth rate variability in populations of lamellae from individual bone samples.
USDA-ARS?s Scientific Manuscript database
This paper offers a micro-scale exploration of the role of park design on intensity of physical activity among youth. The actual, unstructured use of a park - specifically, Delaware Park, an Olmsted-designed park in Buffalo, New York - by 94 children was objectively observed and analyzed using Geog...
ERIC Educational Resources Information Center
American Institutes for Research in the Behavioral Sciences, Palo Alto, CA.
The booklet describes the Micro-Social Preschool Learning System for children from poor migrant families in Vineland, New Jersey. Of the population of 50,000, approximately 20% is Puerto Rican, 10% Appalachian white, and 7% black. Language objectives of the program are to develop the ability to speak and understand 2,000 basic words in English…
ERIC Educational Resources Information Center
Lee, Jeongwoo
2017-01-01
The objectives of this dissertation include describing and analyzing the patterns of inequality in ALE participation at both the micro and macro levels. Special attention is paid to social origins of individual adults and their association with two groups of macro-level factors, social inequality (income, education, and skill inequality) and…
Detection of bio-signature by microscopy and mass spectrometry
NASA Astrophysics Data System (ADS)
Tulej, M.; Wiesendanger, R.; Neuland, M., B.; Meyer, S.; Wurz, P.; Neubeck, A.; Ivarsson, M.; Riedo, V.; Moreno-Garcia, P.; Riedo, A.; Knopp, G.
2017-09-01
We demonstrate detection of micro-sized fossilized bacteria by means of microscopy and mass spectrometry. The characteristic structures of lifelike forms are visualized with a micrometre spatial resolution and mass spectrometric analyses deliver elemental and isotope composition of host and fossilized materials. Our studies show that high selectivity in isolation of fossilized material from host phase can be achieved while applying a microscope visualization (location), a laser ablation ion source with sufficiently small laser spot size and applying depth profiling method. Our investigations shows that fossilized features can be well isolated from host phase. The mass spectrometric measurements can be conducted with sufficiently high accuracy and precision yielding quantitative elemental and isotope composition of micro-sized objects. The current performance of the instrument allows the measurement of the isotope fractionation in per mill level and yield exclusively definition of the origin of the investigated species by combining optical visualization of investigated samples (morphology and texture), chemical characterization of host and embedded in the host micro-sized structure. Our isotope analyses involved bio-relevant B, C, S, and Ni isotopes which could be measured with sufficiently accuracy to conclude about the nature of the micro-sized objects.
Design for an aberration corrected scanning electron microscope using miniature electron mirrors.
Dohi, Hideto; Kruit, Pieter
2018-06-01
Resolution of scanning electron microscopes (SEMs) is determined by aberrations of the objective lens. It is well known that both spherical and chromatic aberrations can be compensated by placing a 90-degree bending magnet and an electron mirror in the beam path before the objective lens. Nevertheless, this approach has not led to wide use of these aberration correctors, partly because aberrations of the bending magnet can be a serious problem. A mirror corrector with two mirrors placed perpendicularly to the optic axis of an SEM and facing each other is proposed. As a result, only small-angle magnetic deflection is necessary to guide the electron beam around the top mirror to the bottom mirror and around the bottom mirror to the objective lens. The deflection angle, in the order of 50 mrad, is sufficiently small to avoid deflection aberrations. In addition, lateral dispersion at the sample plane can be avoided by making the deflection fields symmetric. Such a corrector system is only possible if the incoming beam can pass the top mirror at a distance in the order of millimeters, without being disturbed by the electric fields of electrodes of the mirror. It is proposed that condition can be satisfied with micro-scale electron optical elements fabricated by using MEMS technology. In the proposed corrector system, the micro-mirrors have to provide the exact negative spherical and chromatic aberrations for correcting the aberration of the objective lens. This exact tuning is accomplished by variable magnification between the micro-mirrors and the objective lens using an additional transfer lens. Extensive optical calculations are reported. Aberrations of the micro-mirrors were analyzed by numerical calculation. Dispersion and aberrations of the deflectors were calculated by using an analytical field model. Combination aberrations caused by the off-axis position of dispersive rays in the mirrors and objective lens were also analyzed. It is concluded that the proposed corrector system will be a promising candidate for simple and low-cost aberration correction in low-voltage SEMs. Copyright © 2018 Elsevier B.V. All rights reserved.
SU-E-I-85: Absorbed Dose Estimation for a Commercially Available MicroCT Scanner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, A; Ahmad, S; Chen, Y
2015-06-15
Purpose: To quantify the simulated absorbed dose delivered for a typical scan from a commercially available microCT scanner in order to aid in the dose estimation. Methods: The simulations were conducted using the Geant4 Monte Carlo Toolkit (version 10) with the standard electromagnetic classes. The Quantum FX microCT scanner (PerkinElmer, Waltham, MA) was modeled incorporating the energy fluence and angular distributions of generated photons, spatial dimensions of nominal source-to-object and source-to-detector distances. The energy distribution was measured using a spectrometer (X-123CdTe, Amptek Inc., Bedford, USA) with a 300 angular spread from the source for the 90 kVp X-ray beams withmore » no additional filtration. The nominal distances from the source to object consisted of three setups: 154.0 mm, 104.0 mm, and 51.96 mm. Our simulations recorded the dose absorbed in a cylindrical phantom of PMMA with a fixed length of 2 cm and varying radii (10, 20, 30 and 40 mm) using 100 million incident photons. The averaged absorbed dose in the object was then quantified for all setups. An exposure measurement of 417 mR was taken using a Radcal 9095 system utilizing 10×9–180 ion chamber with the given technique of 90 kVp, 63 μA, and 12 s. The exposure rate was also simulated with same setup to calculate the conversion factor of the beam current and the number of incident photons. Results: For a typical cone-beam scan with non-filtered 90kVp, the dose coefficients (the absorbed dose per mAs) were 2.614, 2.549 and 2.467 μGy/mAs under source to object distance of 104 mm for the object diameters of 10 mm, 20 mm and 30 mm, respectively. Conclusion: A look-up table was developed where an investigator can estimate the delivered dose using this particular microCT given the scanning protocol (kVp and mAs) as well as the size of the scanned object.« less
NASA Astrophysics Data System (ADS)
Latief, F. D. E.; Sari, D. S.; Fitri, L. A.
2017-08-01
High-resolution tomographic imaging by means of x-ray micro-computed tomography (μCT) has been widely utilized for morphological evaluations in dentistry and medicine. The use of μCT follows a standard procedure: image acquisition, reconstruction, processing, evaluation using image analysis, and reporting of results. This paper discusses methods of μCT using a specific scanning device, the Bruker SkyScan 1173 High Energy Micro-CT. We present a description of the general workflow, information on terminology for the measured parameters and corresponding units, and further analyses that can potentially be conducted with this technology. Brief qualitative and quantitative analyses, including basic image processing (VOI selection and thresholding) and measurement of several morphometrical variables (total VOI volume, object volume, percentage of total volume, total VOI surface, object surface, object surface/volume ratio, object surface density, structure thickness, structure separation, total porosity) were conducted on two samples, the mandible of a wistar rat and a urinary tract stone, to illustrate the abilities of this device and its accompanying software package. The results of these analyses for both samples are reported, along with a discussion of the types of analyses that are possible using digital images obtained with a μCT scanning device, paying particular attention to non-diagnostic ex vivo research applications.
Goff, Loyal A.; Boucher, Shayne; Ricupero, Christopher L.; Fenstermacher, Sara; Swerdel, Mavis; Chase, Lucas; Adams, Christopher; Chesnut, Jonathan; Lakshmipathy, Uma; Hart, Ronald P.
2009-01-01
Objective Human multipotent mesenchymal stromal cells (MSC) have the potential to differentiate into multiple cell types, although little is known about factors that control their fate. Differentiation-specific microRNAs may play a key role in stem cell self renewal and differentiation. We propose that specific intracellular signalling pathways modulate gene expression during differentiation by regulating microRNA expression. Methods Illumina mRNA and NCode microRNA expression analyses were performed on MSC and their differentiated progeny. A combination of bioinformatic prediction and pathway inhibition was used to identify microRNAs associated with PDGF signalling. Results The pattern of microRNA expression in MSC is distinct from that in pluripotent stem cells such as human embryonic stem cells. Specific populations of microRNAs are regulated in MSC during differentiation targeted towards specific cell types. Complementary mRNA expression analysis increases the pool of markers characteristic of MSC or differentiated progeny. To identify microRNA expression patterns affected by signalling pathways, we examined the PDGF pathway found to be regulated during osteogenesis by microarray studies. A set of microRNAs bioinformatically predicted to respond to PDGF signalling was experimentally confirmed by direct PDGF inhibition. Conclusion Our results demonstrate that a subset of microRNAs regulated during osteogenic differentiation of MSCs is responsive to perturbation of the PDGF pathway. This approach not only identifies characteristic classes of differentiation-specific mRNAs and microRNAs, but begins to link regulated molecules with specific cellular pathways. PMID:18657893
NASA Astrophysics Data System (ADS)
Chen, Dongju; Huo, Chen; Cui, Xianxian; Pan, Ri; Fan, Jinwei; An, Chenhui
2018-05-01
The objective of this work is to study the influence of error induced by gas film in micro-scale on the static and dynamic behavior of a shaft supported by the aerostatic bearings. The static and dynamic balance models of the aerostatic bearing are presented by the calculated stiffness and damping in micro scale. The static simulation shows that the deformation of aerostatic spindle system in micro scale is decreased. For the dynamic behavior, both the stiffness and damping in axial and radial directions are increased in micro scale. The experiments of the stiffness and rotation error of the spindle show that the deflection of the shaft resulting from the calculating parameters in the micro scale is very close to the deviation of the spindle system. The frequency information in transient analysis is similar to the actual test, and they are also higher than the results from the traditional case without considering micro factor. Therefore, it can be concluded that the value considering micro factor is closer to the actual work case of the aerostatic spindle system. These can provide theoretical basis for the design and machining process of machine tools.
Johnson, Julia V; Grubb, Gary S; Constantine, Ginger D
2007-01-01
The objective of this study was to evaluate the effect of a continuous daily regimen of levonorgestrel (LNG) 90 micro g/ethinyl estradiol (EE) 20 micro g on endometrial histology. This was a substudy of a large phase 3 trial conducted in six sites in North America. Healthy and sexually active women aged between 18 and 49 years took LNG 90 micro g/EE 20 micro g daily for 1 year. Results from endometrial biopsies performed at pretreatment baseline and those after at least 6 months of treatment were compared. Of the 146 participants, 93 had a baseline biopsy and completed at least six pill packs. Before treatment, 56 subjects (60%) had an endometrial biopsy with findings classified as "weakly proliferative or proliferative." During the last on-therapy visit, 48 subjects (52%) had an endometrium categorized as "other," which included primarily an inactive or benign endometrium (n=42). No hyperplasia or malignancy was observed during the study. The results of a 1-year continuous regimen of LNG 90 micro g/EE 20 micro g were shown to have a good endometrial safety profile.
Optimal scheduling of micro grids based on single objective programming
NASA Astrophysics Data System (ADS)
Chen, Yue
2018-04-01
Faced with the growing demand for electricity and the shortage of fossil fuels, how to optimally optimize the micro-grid has become an important research topic to maximize the economic, technological and environmental benefits of the micro-grid. This paper considers the role of the battery and the micro-grid and power grid to allow the exchange of power not exceeding 150kW preconditions, the main study of the economy to load for the goal is to minimize the electricity cost (abandonment of wind), to establish an optimization model, and to solve the problem by genetic algorithm. The optimal scheduling scheme is obtained and the utilization of renewable energy and the impact of the battery involved in regulation are analyzed.
Preliminary design of mesoscale turbocompressor and rotordynamics tests of rotor bearing system
NASA Astrophysics Data System (ADS)
Hossain, Md Saddam
2011-12-01
A mesoscale turbocompressor spinning above 500,000 RPM is evolutionary technology for micro turbochargers, turbo blowers, turbo compressors, micro-gas turbines, auxiliary power units, etc for automotive, aerospace, and fuel cell industries. Objectives of this work are: (1) to evaluate different air foil bearings designed for the intended applications, and (2) to design & perform CFD analysis of a micro-compressor. CFD analysis of shrouded 3-D micro compressor was conducted using Ansys Bladegen as blade generation tool, ICEM CFD as mesh generation tool, and CFX as main solver for different design and off design cases and also for different number of blades. Comprehensive experimental facilities for testing the turbocompressor system have been also designed and proposed for future work.
Characteristics of soft x-ray spectra from ultra-fast micro-capillary discharge plasmas
NASA Astrophysics Data System (ADS)
Li, Jing; Avaria, Gonzalo; Shlyaptsev, Vyacheslav; Tomasel, Fernando; Grisham, Michael; Dawson, Quincy; Rocca, Jorge; NSF CenterExtreme Ultraviolet Science; Technology Collaboration
2013-10-01
The efficient generation of high aspect ratio (e.g. 300:1) plasma columns ionized to very high degrees of ionization (e.g. Ni-like Xenon) by an ultrafast current pulses of moderate amplitude in micro-capillary channels is of interest for fundamental plasma studies and for applications such as the generation of discharge-pumped soft x-ray lasers. Spectra and simulations for plasmas generated in 500 um alumina capillary discharges driven by 35-40 kA current pulses with 4 ns rise time were obtained in Xenon and Neon discharges. The first shows the presence of lines corresponding to ionization stages up to Fe-like Xe. The latter show that Al impurities from the walls and Si (from injected SiH4) are ionized to the H-like and He-like stages. He-like spectra containing the resonance line significantly broaden by opacity, the intercombination line, and Li-like satellites are analyzed and modeled. For Xenon discharges, the spectral lines from the Ni-like transitions the 3d94d(3/2, 3/2)J=0 to the 3d94p(5/2, 3/2)J=1 and to 3d94p(3/2, 1/2)J=1 are observed at gas pressures up to 2.0 Torr. Work supported by NSF Award PHY-1004295.
[Design and experiment of micro biochemical detector based on micro spectrometer].
Yu, Qing-hua; Wen, Zhi-yu; Chen, Gang; Dai, Wei-wei; Liu, Nian-ci; Wu, Xin
2012-03-01
According to the requirements of rapid detection of important life parameters for the sick and wounded, a new micro bio-chemical detection configuration was proposed utilizing continuous spectroscopy analysis, which was founded on MOEMS and embedded technology. The configuration was developed as so much research work was carried out on the detecting objects and methods. Important parameters such as stray light, absorbance linearity, absorbance ratability, stability and temperature accuracy of the instrument were tested, which are all in good agreement with the design requirements. Clinic tests show that it can detect multiple life parameters quickly (Na+, GLU, Hb eg.).
The Effect of Experimental Variables on Industrial X-Ray Micro-Computed Sensitivity
NASA Technical Reports Server (NTRS)
Roth, Don J.; Rauser, Richard W.
2014-01-01
A study was performed on the effect of experimental variables on radiographic sensitivity (image quality) in x-ray micro-computed tomography images for a high density thin wall metallic cylinder containing micro-EDM holes. Image quality was evaluated in terms of signal-to-noise ratio, flaw detectability, and feature sharpness. The variables included: day-to-day reproducibility, current, integration time, voltage, filtering, number of frame averages, number of projection views, beam width, effective object radius, binning, orientation of sample, acquisition angle range (180deg to 360deg), and directional versus transmission tube.
ERIC Educational Resources Information Center
Mayombe, Celestin
2017-01-01
Purpose: The purpose of this paper is to investigate the way the adult non-formal education and training (NFET) centres motivated and empowered graduates to start their own micro-enterprises as individuals or as a group. The specific objectives are as follows: to find out the transforming factors fostering the utilisation of acquired skills into…
Bubble-driven light-absorbing hydrogel microrobot for the assembly of bio-objects.
Hu, Wenqi; Fan, Qihui; Tonaki, Wade; Ohta, Aaron T
2013-01-01
Microrobots made of light-absorbing hydrogel material were actuated by optically induced thermocapillary flow and move at up to 700 µm/s. The micro-assembly capabilities of the microrobots were demonstrated by assembling polystyrene beads and yeast cells into various patterns on standard glass microscope slides. Two microrobots operating independently in parallel were also used to assemble micro-hydrogel structures.
Tracking moving targets behind a scattering medium via speckle correlation.
Guo, Chengfei; Liu, Jietao; Wu, Tengfei; Zhu, Lei; Shao, Xiaopeng
2018-02-01
Tracking moving targets behind a scattering medium is a challenge, and it has many important applications in various fields. Owing to the multiple scattering, instead of the object image, only a random speckle pattern can be received on the camera when light is passing through highly scattering layers. Significantly, an important feature of a speckle pattern has been found, and it showed the target information can be derived from the speckle correlation. In this work, inspired by the notions used in computer vision and deformation detection, by specific simulations and experiments, we demonstrate a simple object tracking method, in which by using the speckle correlation, the movement of a hidden object can be tracked in the lateral direction and axial direction. In addition, the rotation state of the moving target can also be recognized by utilizing the autocorrelation of a speckle. This work will be beneficial for biomedical applications in the fields of quantitative analysis of the working mechanisms of a micro-object and the acquisition of dynamical information of the micro-object motion.
VizieR Online Data Catalog: MYStIX candidate protostars (Romine+, 2016)
NASA Astrophysics Data System (ADS)
Romine, G.; Feigelson, E. D.; Getman, K. V.; Kuhn, M. A.; Povich, M. S.
2017-04-01
The present study seeks protostars from the Massive Young Star-forming complex in Infrared and X-ray (MYStIX) survey catalogs. We combine objects with protostellar infrared SEDs and 4.5um excesses with X-ray sources exhibiting ultrahard spectra denoting very heavy obscuration. These criteria filter away nearly all of the older Class II-III stars and contaminant populations, but give very incomplete samples. The result is a list of 1109 protostellar candidates in 14 star-forming regions. See sections 1 and 2 for further explanations. The reliability of the catalog is strengthened because a large majority (86%) are found to be associated with dense cores seen in Herschel 500um maps that trace cold dust emission. However, the candidate list requires more detailed study for confirmation and cannot be viewed as an unbiased view of star formation in the clouds. (3 data files).
Self-assessment of postoperative scars in living liver donors.
Imamura, Hajime; Soyama, Akihiko; Takatsuki, Mitsuhisa; Muraoka, Izumi; Hara, Takanobu; Yamaguchi, Izumi; Tanaka, Takayuki; Kinoshita, Ayaka; Kuroki, Tamotsu; Eguchi, Susumu
2013-01-01
The application of less invasive techniques for liver surgery in patients undergoing living donor hepatectomy (LDH) has been reported. The objective of this study was to evaluate physical status according to type of incision in donors. One hundred and forty-seven living liver donors underwent hepatectomy using three types of incisions: (i) Mercedes-Benz incision (M.B.), (ii) right subcostal incision with midline up to xiphoid incision (S.C.), and (iii) short upper midline incision (U.M.). A total of 100 donors answered the questionnaires, and 87 had sufficient data for the analyses. An original questionnaire designed to evaluate the physical status concerning postoperative scars. The questionnaire consisted of three major categories: appearance, sensation, and daily activities. The univariate analysis was performed using the chi-square test. Numbness of the abdominal wall was reported more frequently by the donor with M.B.s and right subcostal incisions up to xiphoid incisions. In terms of appearance, sensation, and daily activities, LDH with a U.M. was found to have a good self-assessment compared with that performed using other types of incisions. LDH with a U.M. is a preferable procedure in terms of physical status and safety. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Medical microscopic image matching based on relativity
NASA Astrophysics Data System (ADS)
Xie, Fengying; Zhu, Liangen; Jiang, Zhiguo
2003-12-01
In this paper, an effective medical micro-optical image matching algorithm based on relativity is described. The algorithm includes the following steps: Firstly, selecting a sub-area that has obvious character in one of the two images as standard image; Secondly, finding the right matching position in the other image; Thirdly, applying coordinate transformation to merge the two images together. As a kind of application of image matching in medical micro-optical image, this method overcomes the shortcoming of microscope whose visual field is little and makes it possible to watch a big object or many objects in one view. Simultaneously it implements adaptive selection of standard image, and has a satisfied matching speed and result.
Jung, SeungWoo; Bohan, Amy
2018-02-01
OBJECTIVE To characterize expression profiles of circulating microRNAs via genome-wide sequencing for dogs with congestive heart failure (CHF) secondary to myxomatous mitral valve degeneration (MMVD). ANIMALS 9 healthy client-owned dogs and 8 age-matched client-owned dogs with CHF secondary to MMVD. PROCEDURES Blood samples were collected before administering cardiac medications for the management of CHF. Isolated microRNAs from plasma were classified into microRNA libraries and subjected to next-generation sequencing (NGS) for genome-wide sequencing analysis and quantification of circulating microRNAs. Quantitative reverse transcription PCR (qRT-PCR) assays were used to validate expression profiles of differentially expressed circulating microRNAs identified from NGS analysis of dogs with CHF. RESULTS 326 microRNAs were identified with NGS analysis. Hierarchical analysis revealed distinct expression patterns of circulating microRNAs between healthy dogs and dogs with CHF. Results of qRT-PCR assays confirmed upregulation of 4 microRNAs (miR-133, miR-1, miR-let-7e, and miR-125) and downregulation of 4 selected microRNAs (miR-30c, miR-128, miR-142, and miR-423). Results of qRT-PCR assays were highly correlated with NGS data and supported the specificity of circulating microRNA expression profiles in dogs with CHF secondary to MMVD. CONCLUSIONS AND CLINICAL RELEVANCE These results suggested that circulating microRNA expression patterns were unique and could serve as molecular biomarkers of CHF in dogs with MMVD.
NASA Astrophysics Data System (ADS)
Papadopoulou, D. N.; Zachariadis, G. A.; Anthemidis, A. N.; Tsirliganis, N. C.; Stratis, J. A.
2004-12-01
Two multielement instrumental methods of analysis, micro X-ray fluorescence spectrometry (micro-XRF) and inductively coupled plasma atomic emission spectrometry (ICP-AES) were applied for the analysis of 7th and 5th century B.C. ancient ceramic sherds in order to evaluate the above two methods and to assess the potential to use the current compact and portable micro-XRF instrument for the in situ analysis of ancient ceramics. The distinguishing factor of interest is that micro-XRF spectrometry offers the possibility of a nondestructive analysis, an aspect of primary importance in the compositional analysis of cultural objects. Micro-XRF measurements were performed firstly directly on the ceramic sherds with no special pretreatment apart from surface cleaning (micro-XRF on sherds) and secondly on pressed pellet disks which were prepared for each ceramic sherd (micro-XRF on pellet). For the ICP-AES determination of elements, test solutions were prepared by the application of a microwave-assisted decomposition procedure in closed high-pressure PFA vessels. Also, the standard reference material SARM 69 was used for the efficiency calibration of the micro-XRF instrument and was analysed by both methods. In order to verify the calibration, the standard reference materials NCS DC 73332 and SRM620 as well as the reference materials AWI-1 and PRI-1 were analysed by micro-XRF. Elemental concentrations determined by the three analytical procedures (ICP-AES, micro-XRF on sherds and micro-XRF on pellets) were statistically treated by correlation analysis and Student's t-test (at the 95% confidence level).
NASA Astrophysics Data System (ADS)
Zang, Gongzheng; Fu, Zhihong; Zhang, Lei; Wan, Yue
2018-01-01
Extrusion roller embossing process has demonstrated the ability to produce polymer film with micro-structure. However the influence of various parameters on the forming quality has not been understood clearly. In this paper, a light diffusion plate with semi cylindrical micro-structure array as the research object, the influence of the main processing parameters such as roller speed, pressuring distance and polymer film temperature to the rolling quality was investigated in detail by simulation and experimental methods. The results show that the thickness of the light diffusion plate and the micro-structure fitting diameter increases with the increasing of the roll speed and the polymer film temperature, and decreases with the increasing of the pressing distance. Besides, the simulation results conformed well to the experimental results.
Responsive and Adaptive Micro Wrinkles on Organic-inorganic Hybrid Materials.
Takahashi, Masahide
2018-04-24
A buckling induced wrinkling is a general phenomenon in daily life, which is induced by mechanical instability at the interface of multi-layered systems. Variety of applications have been proposed for wrinkles in nano to micrometer periodicity on the surface of soft materials. In recent decades, researchers are trying to use wrinkles for variety of sophisticated applications such as micro pattern fabrication, control of wettability, templating/directing substrate for elongated nano materials or virus, size-selective adsorption/desorption of functional objects, cells or microorganisms, delamination induced material fabrication such as micro-rolls, substrates for stretchable electronics, valves for microfluidic devices and soft actuators. Herein, recent advances on the fabrication and application of micro-wrinkles are reviewed. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Interior micro-CT with an offset detector
Sharma, Kriti Sen; Gong, Hao; Ghasemalizadeh, Omid; Yu, Hengyong; Wang, Ge; Cao, Guohua
2014-01-01
Purpose: The size of field-of-view (FOV) of a microcomputed tomography (CT) system can be increased by offsetting the detector. The increased FOV is beneficial in many applications. All prior investigations, however, have been focused to the case in which the increased FOV after offset-detector acquisition can cover the transaxial extent of an object fully. Here, the authors studied a new problem where the FOV of a micro-CT system, although increased after offset-detector acquisition, still covers an interior region-of-interest (ROI) within the object. Methods: An interior-ROI-oriented micro-CT scan with an offset detector poses a difficult reconstruction problem, which is caused by both detector offset and projection truncation. Using the projection completion techniques, the authors first extended three previous reconstruction methods from offset-detector micro-CT to offset-detector interior micro-CT. The authors then proposed a novel method which combines two of the extended methods using a frequency split technique. The authors tested the four methods with phantom simulations at 9.4%, 18.8%, 28.2%, and 37.6% detector offset. The authors also applied these methods to physical phantom datasets acquired at the same amounts of detector offset from a customized micro-CT system. Results: When the detector offset was small, all reconstruction methods showed good image quality. At large detector offset, the three extended methods gave either visible shading artifacts or high deviation of pixel value, while the authors’ proposed method demonstrated no visible artifacts and minimal deviation of pixel value in both the numerical simulations and physical experiments. Conclusions: For an interior micro-CT with an offset detector, the three extended reconstruction methods can perform well at a small detector offset but show strong artifacts at a large detector offset. When the detector offset is large, the authors’ proposed reconstruction method can outperform the three extended reconstruction methods by suppressing artifacts and maintaining pixel values. PMID:24877826
Micro-XRF for characterization of Moroccan glazed ceramics and Portuguese tiles
NASA Astrophysics Data System (ADS)
Guilherme, A.; Manso, M.; Pessanha, S.; Zegzouti, A.; Elaatmani, M.; Bendaoud, R.; Coroado, J.; dos Santos, J. M. F.; Carvalho, M. L.
2013-02-01
A set of enamelled terracotta samples (Zellij) collected from five different monuments in Morocco were object of study. With the aim of characterizing these typically Moroccan artistic objects, X-ray spectroscopic techniques were used as analytical tool to provide elemental and compound information. A lack of information about these types of artistic ceramics is found by the research through international scientific journals, so this investigation is an opportunity to fulfill this gap. For this purpose, micro-Energy Dispersive X-ray Fluorescence (μ-EDXRF), and wavelength dispersive X-ray Fluorescence (WDXRF) and X-ray Diffraction (XRD) were the chosen methods. As complementary information, a comparison with other sort of artistic pottery objects is given, more precisely with Portuguese glazed wall tiles (Azulejos), based in the Islamic pottery traditions. Differences between these two types of decorative pottery were found and presented in this manuscript.
Concrete with onyx waste aggregate as aesthetically valued structural concrete
NASA Astrophysics Data System (ADS)
Setyowati E., W.; Soehardjono, A.; Wisnumurti
2017-09-01
The utillization of Tulungagung onyx stone waste as an aggregate of concrete mixture will improve the economic value of the concrete due to the brighter color and high aesthetic level of the products. We conducted the research of 75 samples as a test objects to measure the compression stress, splits tensile stress, flexural tensile stress, elasticity modulus, porosity modulus and also studied 15 test objects to identify the concrete micro structures using XRD test, EDAX test and SEM test. The test objects were made from mix designed concrete, having ratio cement : fine aggregate : coarse aggregate ratio = 1 : 1.5 : 2.1, and W/C ratio = 0.4. The 28 days examination results showed that the micro structure of Tulungagung onyx waste concrete is similar with normal concrete. Moreover, the mechanical test results proved that Tulungagung onyx waste concretes also have a qualified level of strength to be used as a structural concrete with higher aesthetic level.
Stability and Behaviors of Methane/Propane and Hydrogen Micro Flames
NASA Astrophysics Data System (ADS)
Yoshimoto, Takamitsu; Kinoshita, Koichiro; Kitamura, Hideki; Tanigawa, Ryoichi
The flame stability limits essentially define the fundamental operation of the combustion system. Recently the micro diffusion flame has been remarked. The critical conditions of the flame stability limit are highly dependent on nozzle diameter, species of fuel and so on. The micro diffusion flame of Methane/Propane and Hydrogen is formed by using the micro-scale nozzle of which inner diameter is less than 1mm. The configurations and behaviors of the flame are observed directly and visualized by the high speed video camera The criteria of stability limits are proposed for the micro diffusion flame. The objectives of the present study are to get further understanding of lifting/blow-off for the micro diffusion flame. The results obtained are as follows. (1) The behaviors of the flames are classified into some regions for each diffusion flame. (2) The micro diffusion flame of Methane/Propane cannot be sustained, when the nozzle diameter is less than 0.14 mm. (3) The diffusion flame cannot be sustained below the critical fuel flow rate. (4) The minimum flow which is formed does not depends on the average jet velocity, but on the fuel flow rate. (5) the micro flame is laminar. The flame length is decided by fuel flow rate.
Observations of broad-band micro-seisms during reservoir stimulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sleefe, G.E.; Warpinski, N.R.; Engler, B.P.
During hydrocarbon reservoir stimulation such as hydraulic fracturing, the cracking and slippage of the formation results in the emission of seismic energy. The objective of this study was to determine the properties of these induced micro-seisms. A hydraulic fracture experiment was performed in the Piceance Basin of Western Colorado to induce and record micro-seismic events. The formation was subjected to four processes; breakdown/ballout, step-rate test, KCL mini-fracture, and linear-gel mini-fracture. Micro-seisms were acquired with an advanced three-component wall-locked seismic accelerometer package, placed in an observation well 211 ft offset from the well. During the two hours of formation treatment, moremore » than 1200 micro-seisms with signal-to-noise ratios in excess of 20 dB were observed. The observed micro-seisms had a nominally flat frequency from 100 Hz to 1500 Hz and lack the spurious tool-resonance effects evident in previous attempts to measure micro-seisms. Both p-wave and s-wave arrivals are clearly evident in the data set, and hodogram analysis yielded coherent estimates of the event locations. This paper describes the characteristics of the observed micro-seismic events (event occurrence, signal-to-noise ratios, and bandwidth) and illustrates that the new acquisition approach results in enhanced detectability and event location resolution.« less
Study of the microdoppler signature of a bicyclist for different directions of approach
NASA Astrophysics Data System (ADS)
Rodriguez-Hervas, Berta; Maile, Michael; Flores, Benjamin C.
2015-05-01
The successful implementation of autonomous driving in an urban setting depends on the ability of the environment perception system to correctly classify vulnerable road users such as pedestrians and bicyclists in dense, complex scenarios. Self-driving vehicles include sensor systems such as cameras, lidars, and radars to enable decision making. Among these systems, radars are particularly relevant due to their operational robustness under adverse weather and night light conditions. Classification of pedestrian and car in urban settings using automotive radar has been widely investigated, suggesting that micro-Doppler signatures are useful for target discrimination. Our objective is to analyze and study the micro-Doppler signature of bicyclists approaching a vehicle from different directions in order to establish the basis of a classification criterion to distinguish bicycles from other targets including clutter. The micro-Doppler signature is obtained by grouping individual reflecting points using a clustering algorithm and observing the evolution of all the points belonging to an object in the Doppler domain over time. A comparison is then made with simulated data that uses a kinematic model of bicyclists' movement. The suitability of the micro-Doppler bicyclist signature as a classification feature is determined by comparing it to those belonging to cars and pedestrians approaching the automotive radar system.
LC-lens array with light field algorithm for 3D biomedical applications
NASA Astrophysics Data System (ADS)
Huang, Yi-Pai; Hsieh, Po-Yuan; Hassanfiroozi, Amir; Martinez, Manuel; Javidi, Bahram; Chu, Chao-Yu; Hsuan, Yun; Chu, Wen-Chun
2016-03-01
In this paper, liquid crystal lens (LC-lens) array was utilized in 3D bio-medical applications including 3D endoscope and light field microscope. Comparing with conventional plastic lens array, which was usually placed in 3D endoscope or light field microscope system to record image disparity, our LC-lens array has higher flexibility of electrically changing its focal length. By using LC-lens array, the working distance and image quality of 3D endoscope and microscope could be enhanced. Furthermore, the 2D/3D switching ability could be achieved if we turn off/on the electrical power on LClens array. In 3D endoscope case, a hexagonal micro LC-lens array with 350um diameter was placed at the front end of a 1mm diameter endoscope. With applying electric field on LC-lens array, the 3D specimen would be recorded as from seven micro-cameras with different disparity. We could calculate 3D construction of specimen with those micro images. In the other hand, if we turn off the electric field on LC-lens array, the conventional high resolution 2D endoscope image would be recorded. In light field microscope case, the LC-lens array was placed in front of the CMOS sensor. The main purpose of LC-lens array is to extend the refocusing distance of light field microscope, which is usually very narrow in focused light field microscope system, by montaging many light field images sequentially focusing on different depth. With adjusting focal length of LC-lens array from 2.4mm to 2.9mm, the refocusing distance was extended from 1mm to 11.3mm. Moreover, we could use a LC wedge to electrically shift the optics axis and increase the resolution of light field.
Distinct agonist responsibilities of the first and second branches of mouse mesenteric artery.
Nobe, Koji; Hagiwara, Chiharu; Nezu, Yumiko; Honda, Kazuo
2006-03-01
The mesenteric artery (MA) is suitable for consideration as a typical micro-resistant artery for examination of arteriosclerosis. The MA is comprised of the first (MA1), second (MA2), and additional fine structural branches; however, differences in terms of responsibilities of these branches have not been assessed. The objective of this study was to differentiate contractile responses in the MAs of mice. MA2 rings (100 microm diameter, 1 mm length) displayed maximal force development (846.8 +/- 55.6 microN; n = 5) upon stimulation with 50 mM KCl under 400 microN resting tension. However, both MA1 and aorta required resting tension exceeding 600 microN. Treatment of MA2 with phenylephrine (PE; 10 microM), norepinephrine (NE; 10 microM), thromboxane A(2) (analog U46619; 100 nM), or prostaglandin F(2a) (PG; 10 microM) induced sustained contractions. Responses were 1507.8 +/- 88.8, 1543 + 5 +/- 149.6, 2088.6 +/- 151.6, and 1441.9 +/- 103.6 microN (n = 7), respectively. These values were markedly larger than those of the KCl-induced response. In MA1 and aorta, PE-induced and NE-induced responses were indistinct from the KCl response. This investigation revealed that MA1 exhibits responsibilities similar to those of the aorta, whereas MA2 possesses distinct responsibilities. MA2 might serve as a micro-resistant artery model.
Akça, Kivanç; Chang, Ting-Ling; Tekdemir, Ibrahim; Fanuscu, Mete I
2006-08-01
The objective of this biomechanical study was to explore the effect of bone micro-morphology on initial intraosseous stability of implants with different designs. Straumann and Astra Tech dental implants were placed into anterior and posterior regions of completely edentulous maxilla and mandible of a human cadaver. Experiments were undertaken to quantify initial implant stability and bone micro-morphology. Installation torque values (ITVs) and implant stability quotients (ISQs) were measured to determine initial intraosseous implant stability. For quantification of relative bone volume and micro-architecture, sectioned implant-bone and bone core specimens of each implant placement site were consecutively scanned and trabecular bone was analyzed in a micro-computed tomography (micro-CT) unit. Experimental outcomes were evaluated for correlations among implant designs, initial intraosseous implant stability and bone micro-structural parameters. ITVs correlated higher with bone volume fraction (BV/TV) than ISQs, at 88.1% and 68.9% levels, respectively. Correlations between ITVs and micro-morphometric parameters were significant at the 95% confidence level (P<0.05) while ISQs were not. Differences in ITVs, ISQs and BV/TV data in regards to implant designs used were not significant at the 95% confidence level (P>0.05). Bone micro-morphology has a prevailing effect over implant design on intraosseus initial implant stability, and ITV is more sensitive in terms of revealing biomechanical properties at the bone-implant interface in comparison with ISQ.
Bagnato, Gianluca; Roberts, William Neal; Roman, Jesse; Gangemi, Sebastiano
2017-06-30
Lung fibrosis can be observed in systemic sclerosis and in idiopathic pulmonary fibrosis, two disorders where lung involvement carries a poor prognosis. Although much has been learned about the pathogenesis of these conditions, interventions capable of reversing or, at the very least, halting disease progression are not available. Recent studies point to the potential role of micro messenger RNAs (microRNAs) in cancer and tissue fibrogenesis. MicroRNAs are short non-coding RNA sequences (20-23 nucleotides) that are endogenous, evolutionarily conserved and encoded in the genome. By acting on several genes, microRNAs control protein expression. Considering the above, we engaged in a systematic review of the literature in search of overlapping observations implicating microRNAs in the pathogenesis of both idiopathic pulmonary fibrosis (IPF) and systemic sclerosis (SSc). Our objective was to uncover top microRNA candidates for further investigation based on their mechanisms of action and their potential for serving as targets for intervention against lung fibrosis. Our review points to microRNAs of the -29 family, -21-5p and -92a-3p, -26a-5p and let-7d-5p as having distinct and counter-balancing actions related to lung fibrosis. Based on this, we speculate that readjusting the disrupted balance between these microRNAs in lung fibrosis related to SSc and IPF may have therapeutic potential. Copyright ©ERS 2017.
The application of digital image plane holography technology to identify Chinese herbal medicine
NASA Astrophysics Data System (ADS)
Wang, Huaying; Guo, Zhongjia; Liao, Wei; Zhang, Zhihui
2012-03-01
In this paper, the imaging technology of digital image plane holography to identify the Chinese herbal medicine is studied. The optical experiment system of digital image plane holography which is the special case of pre-magnification digital holography was built. In the record system, one is an object light by using plane waves which illuminates the object, and the other one is recording hologram by using spherical light wave as reference light. There is a Micro objective lens behind the object. The second phase factor which caus ed by the Micro objective lens can be eliminated by choosing the proper position of the reference point source when digital image plane holography is recorded by spherical light. In this experiment, we use the Lygodium cells and Onion cells as the object. The experiment results with Lygodium cells and Onion cells show that digital image plane holography avoid the process of finding recording distance by using auto-focusing approach, and the phase information of the object can be reconstructed more accurately. The digital image plane holography is applied to the microscopic imaging of cells more effectively, and it is suit to apply for the identify of Chinese Herbal Medicine. And it promotes the application of digital holographic in practice.
NASA Astrophysics Data System (ADS)
Lee, Taehwa; Luo, Wei; Li, Qiaochu; Guo, L. Jay
2017-03-01
Laser-generated focused ultrasound has shown great promise in precisely treating cells and tissues by producing controlled micro-cavitation within the acoustic focal volume (<100 um). However, the previous demonstration used cells and tissues cultured on glass substrates. The glass substrates were found to be critical to cavitation, because ultrasound amplitude doubles due to the reflection from the substrate, thus allowing for reaching pressure amplitude to cavitation threshold. In other words, without the sound reflecting substrate, pressure amplitude may not be strong enough to create cavitation, thus limiting its application to only cultured biomaterials on the rigid substrates. By using laser-generated focused ultrasound without relying on sound-reflecting substrates, we demonstrate free-field cavitation in water and its application to high-precision cutting of tissue-mimicking gels. In the absence of a rigid boundary, strong pressure for cavitation was enabled by recently optimized photoacoustic lens with increased focal gain (>30 MPa, negative pressure amplitude). By moving cavitation spots along pre-defined paths through a motorized stage, tissue-mimicking gels of different elastic moduli were cut into different shapes (rectangle, triangle, and circle), leaving behind the same shape of holes, whose sizes are less than 1 mm. The cut line width is estimated to be less than 50 um (corresponding to localized cavitation region), allowing for accurate cutting. This novel approach could open new possibility for in-vivo treatment of diseased tissues in a high-precision manner (i.e., high-precision invisible sonic scalpel).
Delange, François; de Benoist, Bruno; Burgi, Hans
2002-01-01
OBJECTIVE: Urinary iodine concentration is the prime indicator of nutritional iodine status and is used to evaluate population-based iodine supplementation. In 1994, WHO, UNICEF and ICCIDD recommended median urinary iodine concentrations for populations of 100- 200 micro g/l, assuming the 100 micro g/l threshold would limit concentrations <50 micro g/l to =20% of people. Some scientists felt this proportion was unacceptably high and wanted to increase the threshold above 100 micro g/l. The study was carried out to determine the frequency distribution of urinary iodine in iodine-replete populations (schoolchildren and adults) and the proportion of concentrations <50 micro g/l. METHOD: A questionnaire on frequency distribution of urinary iodine in iodine-replete populations was circulated to 29 scientific groups. FINDINGS: Nineteen groups reported data from 48 populations with median urinary iodine concentrations >100 micro g/l. The total population was 55 892, including 35 661 (64%) schoolchildren. Median urinary iodine concentrations were 111-540 (median 201) micro g/l for all populations, 100-199 micro g/l in 23 (48%) populations and >/=200 micro g/l in 25 (52%). The frequencies of values <50 micro g/l were 0-20.8 (mean 4.8%) overall and 7.2% and 2.5% in populations with medians of 100-199 micro g/l and >200 micro g/l, respectively. The frequency reached 20% only in two places where iodine had been supplemented for <2 years. CONCLUSION: The frequency of urinary iodine concentrations <50 micro g/l in populations with median urinary iodine concentrations >/=100 micro g/l has been overestimated. The threshold of 100 micro g/l does not need to be increased. In populations, median urinary iodine concentrations of 100-200 micro g/l indicate adequate iodine intake and optimal iodine nutrition. PMID:12219154
VizieR Online Data Catalog: Follow-up study of gal. & AGNs in z>1 clusters (Alberts+, 2016)
NASA Astrophysics Data System (ADS)
Alberts, S.; Pope, A.; Brodwin, M.; Chung, S. M.; Cybulski, R.; Dey, A.; Eisenhardt, P. R. M.; Galametz, A.; Gonzalez, A. H.; Jannuzi, B. T.; Stanford, S. A.; Snyder, G. F.; Stern, D.; Zeimann, G. R.
2016-08-01
In this work, we concentrate our analysis on 11 spectroscopically confirmed clusters from the IRAC Shallow/Distant Cluster Survey (ISCS/IDCS) that we observed with Herschel/PACS at 100 and 160um, obtained during Open Time 2 observing (PID: OT2apope3) (summary of imaging in table 6 spanning from June 2012 to January 2013). Given the resolution of PACS (FWHM~6.7" at 100um and 11" at 160um), we expect the majority of sources and all cluster galaxies in our maps to be point sources. See sections 2.1 and 2.3 for further details. The IRAC Shallow Survey (ISS) was followed up with three more observations as part of SDWFS (Ashby et al. 2009, see J/ApJ/716/530), providing a factor of 2 deeper IRAC catalog with an aperture-corrected 5σ limit of 5.2uJy at 4.5um ([4.5]=18.83mag). Spitzer/MIPS observations are available from the MIPS AGM and Galaxy Evolution Survey (MAGES; Jannuzi et al. 2010AAS...21547001J). See section 2.4 for further details. Targeted follow up campaigns by our group have obtained spectroscopic redshifts for galaxies and AGNs in z>1 clusters using multi-object Keck optical spectroscopy and Wide Field Camera 3 (WFC3) slitless NIR grism spectroscopy from the Hubble Space Telescope (HST). The reader is directed to Brodwin et al. (2013ApJ...779..138B), Zeimann et al. (2013, J/ApJ/779/137), and references therein for a detailed description of the targeted spectroscopy. Some spectroscopic redshifts are additionally provided by the AGN and Galaxy Evolution Survey (AGES; Kochanek et al. 2012, J/ApJS/200/8). See section 2.2. (3 data files).
MICRODISSECTION TESTICULAR SPERM EXTRACTION IN MEN WITH SERTOLI CELL ONLY TESTICULAR HISTOLOGY
Berookhim, Boback M.; Palermo, Gianpiero D.; Zaninovic, Nikica; Rosenwaks, Zev; Schlegel, Peter N.
2015-01-01
Objective To study the outcomes of microdissection testicular sperm extraction (microTESE) among men with pure Sertoli cell only histology on diagnostic testicular biopsy. Design Retrospective cohort study. Setting Tertiary referral center. Patients 640 patients with pure Sertoli cell only histology on testicular biopsy who underwent microTESE by a single surgeon. Intervention MicroTESE. Main Outcome Measure Sperm retrieval rates. Results Overall, 44.5% of patients with Sertoli cell-only had sperm retrieved with microTESE. No difference was noted in sperm retrieval rates based on testis volume (≥ 15cc versus <15cc, 35.3% versus 46.1%, respectively). Patients with ≥ 15cc testicular volume and FSH 10-15 mU/mL had the worst prognosis, with a sperm retrieval rate of 6.7%. Conclusions Patients with previous testicular biopsy demonstrating Sertoli cell only histology can be counseled that they have a reasonable likelihood of sperm retrieval with the contemporary delivery of microTESE. Given this finding, the utility of testicular biopsy prior to microTESE is further questioned. PMID:25441063
Micro-Randomized Trials: An Experimental Design for Developing Just-in-Time Adaptive Interventions
Klasnja, Predrag; Hekler, Eric B.; Shiffman, Saul; Boruvka, Audrey; Almirall, Daniel; Tewari, Ambuj; Murphy, Susan A.
2015-01-01
Objective This paper presents an experimental design, the micro-randomized trial, developed to support optimization of just-in-time adaptive interventions (JITAIs). JITAIs are mHealth technologies that aim to deliver the right intervention components at the right times and locations to optimally support individuals’ health behaviors. Micro-randomized trials offer a way to optimize such interventions by enabling modeling of causal effects and time-varying effect moderation for individual intervention components within a JITAI. Methods The paper describes the micro-randomized trial design, enumerates research questions that this experimental design can help answer, and provides an overview of the data analyses that can be used to assess the causal effects of studied intervention components and investigate time-varying moderation of those effects. Results Micro-randomized trials enable causal modeling of proximal effects of the randomized intervention components and assessment of time-varying moderation of those effects. Conclusions Micro-randomized trials can help researchers understand whether their interventions are having intended effects, when and for whom they are effective, and what factors moderate the interventions’ effects, enabling creation of more effective JITAIs. PMID:26651463
NASA Astrophysics Data System (ADS)
Lee, El-Hang; Lee, Hyun S.; Lee, S. G.; O, B. H.; Park, S. G.; Kim, K. H.
2007-05-01
We report on the design of micro-ring resonator optical sensors for integration on what we call optical printed circuit boards (O-PCBs). The objective is to realize application-specific O-PCBs, either on hard board or on flexible board, by integrating micro/nano-scale optical sensors for compact, light-weight, low-energy, high-speed, intelligent, and environmentally friendly processing of information. The O-PCBs consist of two-dimensional planar arrays of micro/nano-scale optical wires, circuits and devices that are interconnected and integrated to perform the functions of sensing and then storing, transporting, processing, switching, routing and distributing optical signals that have been collected by means of sensors. For fabrication, the polymer and organic optical wires and waveguides are first fabricated on a board and are used to interconnect and integrate sensors and other micro/ nano-scale photonic devices. Here, in our study, we focus on the sensors based on the micro-ring structures. We designed bio-sensors using silicon based micro-ring resonator. We investigate the characteristics such as sensitivity and selectivity (or quality factor) of micro-ring resonator for their use in bio-sensing application. We performed simulation studies on the quality factor of micro-ring resonators by varying the radius of the ring resonators and the separation between adjacent waveguides. We introduce the effective coupling coefficient as a realistic value to describe the strength of the coupling in micro-ring resonators.
Development of a dry actuation conducting polymer actuator for micro-optical zoom lenses
NASA Astrophysics Data System (ADS)
Kim, Baek-Chul; Kim, Hyunseok; Nguyen, H. C.; Cho, M. S.; Lee, Y.; Nam, Jae-Do; Choi, Hyouk Ryeol; Koo, J. C.; Jeong, H.-S.
2008-03-01
The objective of the present work is to demonstrate the efficiency and feasibility of NBR (Nitrile Butadiene Rubber) based conducting polymer actuator that is fabricated into a micro zoon lens driver. Unlike the traditional conducting polymer that normally operates in a liquid, the proposed actuator successfully provides fairly effective driving performance for the zoom lens system in a dry environment. And this paper is including the experiment results for an efficiency improvement. The result suggested by an experiment was efficient in micro optical zoom lens system. In addition, the developed design method of actuator was given consideration to design the system.
On-chip photonic tweezers for photonics, microfluidics, and biology
NASA Astrophysics Data System (ADS)
Pin, Christophe; Renaut, Claude; Tardif, Manon; Jager, Jean-Baptiste; Delamadeleine, Eric; Picard, Emmanuel; Peyrade, David; Hadji, Emmanuel; de Fornel, Frédérique; Cluzel, Benoît
2017-04-01
Near-field optical forces arise from evanescent electromagnetic fields and can be advantageously used for on-chip optical trapping. In this work, we investigate how evanescent fields at the surface of photonic cavities can efficiently trap micro-objects such as polystyrene particles and bacteria. We study first the influence of trapped particle's size on the trapping potential and introduce an original optofluidic near-field optical microscopy technique. Then we analyze the rotational motion of trapped clusters of microparticles and investigate their possible use as microfluidic micro-tools such as integrated micro-flow vane. Eventually, we demonstrate efficient on-chip optical trapping of various kinds of bacteria.
2013-03-01
comparison between two objectives at a time. The decision maker develops a micro - version of the value equation using only the two objectives that...variety of different functional areas. Table 10. New Alternatives Identified Alternative Source Base Recycling Services AFCEC Airfield Pavement Repair
NASA Astrophysics Data System (ADS)
Robati, Masoud
This Doctorate program focuses on the evaluation and improving the rutting resistance of micro-surfacing mixtures. There are many research problems related to the rutting resistance of micro-surfacing mixtures that still require further research to be solved. The main objective of this Ph.D. program is to experimentally and analytically study and improve rutting resistance of micro-surfacing mixtures. During this Ph.D. program major aspects related to the rutting resistance of micro-surfacing mixtures are investigated and presented as follow: 1) evaluation of a modification of current micro-surfacing mix design procedures: On the basis of this effort, a new mix design procedure is proposed for type III micro-surfacing mixtures as rut-fill materials on the road surface. Unlike the current mix design guidelines and specification, the new mix design is capable of selecting the optimum mix proportions for micro-surfacing mixtures; 2) evaluation of test methods and selection of aggregate grading for type III application of micro-surfacing: Within the term of this study, a new specification for selection of aggregate grading for type III application of micro-surfacing is proposed; 3) evaluation of repeatability and reproducibility of micro-surfacing mixture design tests: In this study, limits for repeatability and reproducibility of micro-surfacing mix design tests are presented; 4) a new conceptual model for filler stiffening effect on asphalt mastic of micro-surfacing: A new model is proposed, which is able to establish limits for minimum and maximum filler concentrations in the micro-surfacing mixture base on only the filler important physical and chemical properties; 5) incorporation of reclaimed asphalt pavement and post-fabrication asphalt shingles in micro-surfacing mixture: The effectiveness of newly developed mix design procedure for micro-surfacing mixtures is further validated using recycled materials. The results present the limits for the use of RAP and RAS amount in micro-surfacing mixtures; 6) new colored micro-surfacing formulations with improved durability and performance: The significant improvement of around 45% in rutting resistance of colored and conventional micro-surfacing mixtures is achieved through employing low penetration grade bitumen polymer modified asphalt emulsion stabilized using nanoparticles.
Zhang, Dan; Gao, Peng; Li, Qin; Li, Jinda; Li, Xiaojuan; Liu, Xiaoning; Kang, Yunqing; Ren, Liling
2017-06-05
There is a critical need for the management of large bone defects. The purpose of this study was to engineer a biomimetic periosteum and to combine this with a macroporous β-tricalcium phosphate (β-TCP) scaffold for bone tissue regeneration. Rat bone marrow-derived mesenchymal stem cells (rBMSCs) were harvested and cultured in different culture media to form undifferentiated rBMSC sheets (undifferentiated medium (UM)) and osteogenic cell sheets (osteogenic medium (OM)). Simultaneously, rBMSCs were differentiated to induced endothelial-like cells (iECs), and the iECs were further cultured on a UM to form a vascularized cell sheet. At the same time, flow cytometry was used to detect the conversion rates of rBMSCs to iECs. The pre-vascularized cell sheet (iECs/UM) and the osteogenic cell sheet (OM) were stacked together to form a biomimetic periosteum with two distinct layers, which mimicked the fibrous layer and cambium layer of native periosteum. The biomimetic periostea were wrapped onto porous β-TCP scaffolds (BP/β-TCP) and implanted in the calvarial bone defects of rats. As controls, autologous periostea with β-TCP (AP/β-TCP) and β-TCP alone were implanted in the calvarial defects of rats, with a no implantation group as another control. At 2, 4, and 8 weeks post-surgery, implants were retrieved and X-ray, microcomputed tomography (micro-CT), histology, and immunohistochemistry staining analyses were performed. Flow cytometry results showed that rBMSCs were partially differentiated into iECs with a 35.1% conversion rate in terms of CD31. There were still 20.97% rBMSCs expressing CD90. Scanning electron microscopy (SEM) results indicated that cells from the wrapped cell sheet on the β-TCP scaffold apparently migrated into the pores of the β-TCP scaffold. The histology and immunohistochemistry staining results from in vivo implantation indicated that the BP/β-TCP and AP/β-TCP groups promoted the formation of blood vessels and new bone tissues in the bone defects more than the other two control groups. In addition, micro-CT showed that more new bone tissue formed in the BP/β-TCP and AP/β-TCP groups than the other groups. Inducing rBMSCs to iECs could be a good strategy to obtain an endothelial cell source for prevascularization. Our findings indicate that the biomimetic periosteum with porous β-TCP scaffold has a similar ability to promote osteogenesis and angiogenesis in vivo compared to the autologous periosteum. This function could result from the double layers of biomimetic periosteum. The prevascularized cell sheet served a mimetic fibrous layer and the osteogenic cell sheet served a cambium layer of native periosteum. The biomimetic periosteum with a porous ceramic scaffold provides a new promising method for bone healing.
NASA Astrophysics Data System (ADS)
Hwang, Byeong Jun; Lee, Sung Ho
2017-12-01
Biofilm formed on the surface of the object by the microorganism resulting in fouling organisms. This has led to many problems in daily life, medicine, health and industrial community. In this study, we tried to prevent biofilm formation on the stainless steel (SS304) sheet surface with micro fabricated structure. After then forming the microscale colloid patterns on the surface of stainless steel by using an electrochemical etching forming a pattern by using a FeCl3 etching was further increase the surface roughness. Culturing the Pseudomonas aeruginosa on the stainless steel fabricated with a micro structure on the surface was observed a relationship between the surface roughness and the biological fouling of the micro structure. As a result, the stainless steel surface with a micro structure was confirmed to be the biological fouling occurs less. We expect to be able to solve the problems caused by biological fouling in various fields such as medicine, engineering, using this research.
Heat convection in a micro impinging jet system
NASA Astrophysics Data System (ADS)
Mai, John Dzung Hoang
2000-10-01
This thesis covers the development of an efficient micro impinging jet heat exchanger, using MEMS technology, to provide localized cooling for present and next generation microelectronic computer chips. Before designing an efficient localized heat exchanger, it is necessary to investigate fluid dynamics and heat transfer in the micro scale. MEMS technology has been used in this project because it is the only tool currently available that can provide a large array of batch-fabricated, micro-scale nozzles for localized cooling. Our investigation of potential MEMS heat exchanger designs begins with experiments that measure the pressure drops and temperature changes in a micro scale tubing system that will be necessary to carry fluid to the impingement point. Our basic MEMS model is a freestanding micro channel with integrated temperature microsensors. The temperature distribution along the channel in a vacuum is measured. The measured flow rates are compared with an analytical model developed for capillary flow that accounts for 2-D, slip and compressibility effects. The work is focused on obtaining correlations in the form of the Nussult number, the Reynolds number and a H/d geometric factor. A set of single MEMS nozzles have been designed to test heat transfer effectiveness as a function of nozzle diameter, ranging from 1.0 mm to 250 um. In addition, nozzle and slot array MEMS devices have been fabricated. In order to obtain quantitative measurements from these micron scale devices, a series of target temperature sensor chips were custom made and characterized for these experiments. The heat transfer characteristics of various MEMS nozzle configurations operating at various steady inlet pressures, at different heights above the heated substrate, have been characterized. These steady results showed that the average heat transfer coefficient, averaged over a 1 cm2 test area, was usually less than 0.035 W/cm 2K for any situation. However, the local heat transfer coefficient, as measured by a single 4mum x 4mum temperature sensor, was as high as 0.5 W/cm2K. Using a mechanical valve and piezo actuator to perturb the flow at frequencies from 10 Hz to 1 kHz, we identify that enhanced heat transfer can occur in an unsteady forced jet. The functional dependence of the enhanced heat transfer on the mean jet speed, perturbation level and perturbing frequency has been established. The expected trend that increased heat transfer at higher values of St number was noticed. In addition the effect of a confined and free jet geometry on an unsteady flow was observed.
PSAW/MicroSWIS [Microminiature Surface Acoustic Wave (SAW) based Wirelesss Instrumentation System
NASA Technical Reports Server (NTRS)
Heermann, Doug; Krug, Eric
2004-01-01
This Final Report for the PSAW/MicroSWIS Program is provided in compliance with contract number NAS3-01118. This report documents the overall progress of the program and presents project objectives, work carried out, and results obtained. Program Conceptual Design Package stated the following objectives: To develop a sensor/transceiver network that can support networking operations within spacecraft with sufficient bandwidth so that (1) flight control data, (2) avionics data, (3) payload/experiment data, and (4) prognostic health monitoring sensory information can flow to appropriate locations at frequencies that contain the maximum amount of information content but require minimum interconnect and power: a very high speed, low power, programmable modulation, spread-spectrum radio sensor/transceiver.
NASA Astrophysics Data System (ADS)
Staier, Florian; Eipel, Heinz; Matula, Petr; Evsikov, Alexei V.; Kozubek, Michal; Cremer, Christoph; Hausmann, Michael
2011-09-01
With the development of novel fluorescence techniques, high resolution light microscopy has become a challenging technique for investigations of the three-dimensional (3D) micro-cosmos in cells and sub-cellular components. So far, all fluorescence microscopes applied for 3D imaging in biosciences show a spatially anisotropic point spread function resulting in an anisotropic optical resolution or point localization precision. To overcome this shortcoming, micro axial tomography was suggested which allows object tilting on the microscopic stage and leads to an improvement in localization precision and spatial resolution. Here, we present a miniaturized device which can be implemented in a motor driven microscope stage. The footprint of this device corresponds to a standard microscope slide. A special glass fiber can manually be adjusted in the object space of the microscope lens. A stepwise fiber rotation can be controlled by a miniaturized stepping motor incorporated into the device. By means of a special mounting device, test particles were fixed onto glass fibers, optically localized with high precision, and automatically rotated to obtain views from different perspective angles under which distances of corresponding pairs of objects were determined. From these angle dependent distance values, the real 3D distance was calculated with a precision in the ten nanometer range (corresponding here to an optical resolution of 10-30 nm) using standard microscopic equipment. As a proof of concept, the spindle apparatus of a mature mouse oocyte was imaged during metaphase II meiotic arrest under different perspectives. Only very few images registered under different rotation angles are sufficient for full 3D reconstruction. The results indicate the principal advantage of the micro axial tomography approach for many microscopic setups therein and also those of improved resolutions as obtained by high precision localization determination.
Limbert, Georges; van Lierde, Carl; Muraru, O Luiza; Walboomers, X Frank; Frank, Milan; Hansson, Stig; Middleton, John; Jaecques, Siegfried
2010-05-07
The first objective of this computational study was to assess the strain magnitude and distribution within the three-dimensional (3D) trabecular bone structure around an osseointegrated dental implant loaded axially. The second objective was to investigate the relative micromotions between the implant and the surrounding bone. The work hypothesis adopted was that these virtual measurements would be a useful indicator of bone adaptation (resorption, homeostasis, formation). In order to reach these objectives, a microCT-based finite element model of an oral implant implanted into a Berkshire pig mandible was developed along with a robust software methodology. The finite element mesh of the 3D trabecular bone architecture was generated from the segmentation of microCT scans. The implant was meshed independently from its CAD file obtained from the manufacturer. The meshes of the implant and the bone sample were registered together in an integrated software environment. A series of non-linear contact finite element (FE) analyses considering an axial load applied to the top of the implant in combination with three sets of mechanical properties for the trabecular bone tissue was devised. Complex strain distribution patterns are reported and discussed. It was found that considering the Young's modulus of the trabecular bone tissue to be 5, 10 and 15GPa resulted in maximum peri-implant bone microstrains of about 3000, 2100 and 1400. These results indicate that, for the three sets of mechanical properties considered, the magnitude of maximum strain lies within an homeostatic range known to be sufficient to maintain/form bone. The corresponding micro-motions of the implant with respect to the bone microstructure were shown to be sufficiently low to prevent fibrous tissue formation and to favour long-term osseointegration. Copyright 2010 Elsevier Ltd. All rights reserved.
Application of an optical interferometer for measuring the surface contour of micro-components
NASA Astrophysics Data System (ADS)
Wang, S. H.; Tay, C. J.
2006-04-01
The application of an optical interferometric system using a Mireau objective to measure the surface profile of micro-components is described. The proposed system produces a uniform monochromatic illumination over the test area and introduces an interference fringe pattern localized near the test surface. Both the interference fringes and the 2D image of the test surface can be focused by an infinity microscope system consisting of a Mireau objective and a tube lens. A piezoelectric transducer (PZT) attached to the Mireau objective can move precisely along the optical axis of the objective. This enables the implementation of phase-shifting interferometry without changing the focus of a CCD sensor as the combination of the Mireau objective and the tube lens provides a depth of focus which is deep in comparison to the phase-shifting step. Experimental results from surface profilometry of the protrusion/undercut of a polished fibre within an optical connector and of the curved surface of a micromirror demonstrate that features in the order of nanometres are measurable. Measurements on standard blocks also show that the accuracy of the proposed system is comparable to an existing commercial white-light interferometer and a stylus profilometer.
Magnet Coil Test Facility for Researching Magnetic Activity of Pico/Nano/Micro Satellites (PNMSats)
2017-05-16
research involving the College of Agriculture was initiated as a major activity of this research. Specific Objectives: The specific objectives...from the College of Agriculture and another form College of Arts and Science - may be benefitted by it. It is an asset to showcase to visitors and
Multidirectional Image Sensing for Microscopy Based on a Rotatable Robot.
Shen, Yajing; Wan, Wenfeng; Zhang, Lijun; Yong, Li; Lu, Haojian; Ding, Weili
2015-12-15
Image sensing at a small scale is essentially important in many fields, including microsample observation, defect inspection, material characterization and so on. However, nowadays, multi-directional micro object imaging is still very challenging due to the limited field of view (FOV) of microscopes. This paper reports a novel approach for multi-directional image sensing in microscopes by developing a rotatable robot. First, a robot with endless rotation ability is designed and integrated with the microscope. Then, the micro object is aligned to the rotation axis of the robot automatically based on the proposed forward-backward alignment strategy. After that, multi-directional images of the sample can be obtained by rotating the robot within one revolution under the microscope. To demonstrate the versatility of this approach, we view various types of micro samples from multiple directions in both optical microscopy and scanning electron microscopy, and panoramic images of the samples are processed as well. The proposed method paves a new way for the microscopy image sensing, and we believe it could have significant impact in many fields, especially for sample detection, manipulation and characterization at a small scale.
NASA Astrophysics Data System (ADS)
Roberts, John
2005-11-01
The rapid advancements in micro/nano biotechnology demand quantitative tools for characterizing microfluidic flows in lab-on-a-chip applications, validation of computational results for fully 3D flows in complex micro-devices, and efficient observation of cellular dynamics in 3D. We present a novel 3D micron-scale DPTV (defocused particle tracking velocimetry) that is capable of mapping out 3D Lagrangian, as well as 3D Eulerian velocity flow fields at sub-micron resolution and with one camera. The main part of the imaging system is an epi-fluorescent microscope (Olympus IX 51), and the seeding particles are fluorescent particles with diameter range 300nm - 10um. A software package has been developed for identifying (x,y,z,t) coordinates of the particles using the defocused images. Using the imaging system, we successfully mapped the pressure driven flow fields in microfluidic channels. In particular, we measured the Laglangian flow fields in a microfluidic channel with a herring bone pattern at the bottom, the later is used to enhance fluid mixing in lateral directions. The 3D particle tracks revealed the flow structure that has only been seen in numerical computation. This work is supported by the National Science Foundation (CTS - 0514443), the Nanobiotechnology Center at Cornell, and The New York State Center for Life Science Enterprise.
NASA Astrophysics Data System (ADS)
Plaksin, Igor; Rodrigues, L.
2013-06-01
Question which mechanism is driving radiation-induced reactions, thermal or athermal becomes a subject of conflicting discussions. Major challenge of this work is to identify at micro- (sub-granular), meso- (grain level) and macro-scale roles of these two mechanisms in triggering initiation chemistry in HMX-based HEs. Four acceptor-patterns were tested at 20 GPa input pressure: single HMX crystal-in-water, HMX/water-slurry, PBX(HMX/HTPB) & inert PBX-simulant (HMX-particles replaced by crystalline sucrose). Scenario of reaction onset-localizations-dissipation was spatially resolved using Multi-Channel Optical Analyzer MCOA-UC (96 channels, 100um-spatial accuracy, 0.2ns-timeresolution, 450-850 nm-spectral range) through real-time panoramic recording emitted reaction light and shock field in standard optic monitor. Experiments reveal a dual nature of initiation chemistry: athermal and thermal. Single-crystal tests disclose origination of photo-induced reactions downstream of emitting reaction spot due to intensified radiation absorption in surface micro-defects. Polycrystalline samples reveal cyclic reproducibility of radiation-induced thermal precursors in which radiation absorption causes thermal expansion/phase-changes of HMX-grains resulting in oscillating detonation. Work was supported by the Office of Naval Research under the ONR and ONR Global Grants N00014-12-1-0477 and N62909-12-1-7131 with Drs. Cliff Bedford and Shawn Thorne Program Managers.
Gregg, Chelsea L.; Butcher, Jonathan T.
2016-01-01
Background Gestationally survivable congenital malformations arise during mid-late stages of development that are inaccessible in vivo with traditional optical imaging for assessing long term abnormal patterning. MicroCT is an attractive technology to rapidly and inexpensively generate quantitative 3D datasets but requires exogenous contrast media. Here we establish dose dependent toxicity, persistence, and biodistribution of three different metallic nanoparticles in day 4 chick embryos. Results We determined that 110nm alkaline earth metal particles were non-toxic and persisted in the chick embryo for up to 24 hours post injection with contrast enhancement levels at high as 1600HU. 15nm gold nanoparticles persisted with x-ray attenuation higher than that of the surrounding yolk and albumen for up to 8 hours post injection, while 1.9nm particles resulted in lethality by 8 hours. We identified spatial and temporally heterogeneous contrast enhancement ranging from 250-1600HU. With the most optimal 110nm alkaline earth metal particles, we quantified an exponential increase in the tissue perfusion versus distance from the dorsal aorta into the flank over 8 hours with a peak perfusion rate of 0.7um2/s measured at a distance of 0.3mm. Conclusion These results demonstrate the safety, efficacy, and opportunity of nanoparticle based contrast media in live embryos for quantitative analysis of embryogenesis. PMID:27447729
Effect of healing time on bone-implant contact of orthodontic micro-implants: a histologic study.
Ramazanzadeh, Barat Ali; Fatemi, Kazem; Dehghani, Mahboobe; Mohtasham, Nooshin; Jahanbin, Arezoo; Sadeghian, Hamed
2014-01-01
Objectives. This study aimed to evaluate the effect of immediate and delayed loading of orthodontic micro-implants on bone-implant contact. Materials and Methods. Sixty four micro-implants were implanted in dog's jaw bone. The micro-implants were divided into loaded and unloaded (control) groups. The control group had two subgroups: four and eight weeks being implanted. The loaded group had two subgroups of immediate loading and delayed (after four weeks healing) loading. Loaded samples were subjected to 200g load for four weeks. After sacrificing the animals micro-implants and surrounding tissues were observed histologically. Bone-implant contact ratios (BIC) were calculated and different groups' results were compared by three-way ANOVA. Results. Mean survival rate was 96.7% in general. Survival rates were 96.7%, 94.4% and 100% for control, immediate and delayed loaded groups, respectively. BIC values were not significantly different in loaded and control groups, immediate and delayed loading groups, and pressure and tension sides. Mandibular micro-implants had significantly higher BIC than maxillary ones in immediate loading, 4-weeks control, and 8-weeks control groups (P = 0.021, P = 0.009, P = 0.003, resp.). Conclusion Immediate or delayed loading of micro-implants in dog did not cause significant difference in Bone-implant contact which could be concluded that healing time had not significant effect on micro-implant stability.
Penumatsa, Narendra Varma; Kaminedi, Raja Rajeswari; Baroudi, Kusai; Barakath, Ola
2015-01-01
Objective: The aim of this study was to evaluate the potential of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) in remineralizing the bleached enamel surface using micro-hardness. Materials and Methods: Thirty human enamel slabs were randomly divided into three groups (n = 10). Groups A and B were exposed to 20% carbamide peroxide and 35% carbamide peroxide gel, respectively. After the exposure to the bleaching agent, the slabs were kept in artificial saliva for 1-week. Group C (control group) were kept in artificial saliva for 1-week. Vickers micro-hardness test was performed by Leica VMHT-Mot micro-hardness tester. CPP-ACP (Gc Tooth Mousse, Melbourne, Australia) was then applied to specimens of Groups A and B for 3 min for 2 weeks. Micro-hardness values of postbleach Group A (Ar) and Group B (Br) were recorded and statistically analyzed by paired t-test and one-way analysis of variance at the significance level of α =0.05. Results: There was a significant decrease in micro-hardness of enamel in carbamide peroxide bleached groups. However, there was a significant increase in micro-hardness after the remineralization by CPP-ACP and the extent of remineralization is more for the Group B. Conclusions: That bleaching agents reduced enamel micro-hardness and the use of CPP-ACP after bleaching can significantly enhance the micro-hardness of bleached enamel. PMID:26538923
Autonomous, agile micro-satellites and supporting technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breitfeller, E; Dittman, M D; Gaughan, R J
1999-07-19
This paper updates the on-going effort at Lawrence Livermore National Laboratory to develop autonomous, agile micro-satellites (MicroSats). The objective of this development effort is to develop MicroSats weighing only a few tens of kilograms, that are able to autonomously perform precision maneuvers and can be used telerobotically in a variety of mission modes. The required capabilities include satellite rendezvous, inspection, proximity-operations, docking, and servicing. The MicroSat carries an integrated proximity-operations sensor-suite incorporating advanced avionics. A new self-pressurizing propulsion system utilizing a miniaturized pump and non-toxic mono-propellant hydrogen peroxide was successfully tested. This system can provide a nominal 25 kg MicroSatmore » with 200-300 m/s delta-v including a warm-gas attitude control system. The avionics is based on the latest PowerPC processor using a CompactPCI bus architecture, which is modular, high-performance and processor-independent. This leverages commercial-off-the-shelf (COTS) technologies and minimizes the effects of future changes in processors. The MicroSat software development environment uses the Vx-Works real-time operating system (RTOS) that provides a rapid development environment for integration of new software modules, allowing early integration and test. We will summarize results of recent integrated ground flight testing of our latest non-toxic pumped propulsion MicroSat testbed vehicle operated on our unique dynamic air-rail.« less
Effect of Healing Time on Bone-Implant Contact of Orthodontic Micro-Implants: A Histologic Study
Ramazanzadeh, Barat Ali; Fatemi, Kazem; Dehghani, Mahboobe; Mohtasham, Nooshin; Jahanbin, Arezoo; Sadeghian, Hamed
2014-01-01
Objectives. This study aimed to evaluate the effect of immediate and delayed loading of orthodontic micro-implants on bone-implant contact. Materials and Methods. Sixty four micro-implants were implanted in dog's jaw bone. The micro-implants were divided into loaded and unloaded (control) groups. The control group had two subgroups: four and eight weeks being implanted. The loaded group had two subgroups of immediate loading and delayed (after four weeks healing) loading. Loaded samples were subjected to 200g load for four weeks. After sacrificing the animals micro-implants and surrounding tissues were observed histologically. Bone-implant contact ratios (BIC) were calculated and different groups' results were compared by three-way ANOVA. Results. Mean survival rate was 96.7% in general. Survival rates were 96.7%, 94.4% and 100% for control, immediate and delayed loaded groups, respectively. BIC values were not significantly different in loaded and control groups, immediate and delayed loading groups, and pressure and tension sides. Mandibular micro-implants had significantly higher BIC than maxillary ones in immediate loading, 4-weeks control, and 8-weeks control groups (P = 0.021, P = 0.009, P = 0.003, resp.). Conclusion Immediate or delayed loading of micro-implants in dog did not cause significant difference in Bone-implant contact which could be concluded that healing time had not significant effect on micro-implant stability. PMID:25006463
NASA Astrophysics Data System (ADS)
Peterson, Gary; Abeytunge, Sanjeewa; Eastman, Zachary; Rajadhyaksha, Milind
2012-02-01
Reflectance confocal microscopy with a line scanning approach potentially offers a smaller, simpler and less expensive approach than traditional methods of point scanning for imaging in living tissues. With one moving mechanical element (galvanometric scanner), a linear array detector and off-the-shelf optics, we designed a compact (102x102x76mm) line scanning confocal reflectance microscope (LSCRM) for imaging human tissues in vivo in a clinical setting. Custom-designed electronics, based on field programmable gate array (FPGA) logic has been developed. With 405 nm illumination and a custom objective lens of numerical aperture 0.5, lateral resolution was measured to be 0.8 um (calculated 0.64 um). The calculated optical sectioning is 3.2 um. Preliminary imaging shows nuclear and cellular detail in human skin and oral epithelium in vivo. Blood flow is also visualized in the deeper connective tissue (lamina propria) in oral mucosa. Since a line is confocal only in one dimension (parallel) but not in the other, the detection is more sensitive to multiply scattered out of focus background noise than in the traditional point scanning configuration. Based on the results of our translational studies thus far, a simpler, smaller and lower-cost approach based on a LSCRM appears to be promising for clinical imaging.
Brito, S V; Corso, G; Almeida, A M; Ferreira, F S; Almeida, W O; Anjos, L A; Mesquita, D O; Vasconcellos, A
2014-11-01
Trophic networks can have architectonic configurations influenced by historical and ecological factors. The objective of this study was to analyze the architecture of networks between lizards, their endoparasites, diet, and micro-habitat, aiming to understand which factors exert an influence on the composition of the species of parasites. All networks showed a compartmentalized pattern. There was a positive relation between diet and the diversity of endoparasites. Our analyses also demonstrated that phylogeny and the use of micro-habitat influenced the composition of species of endoparasites and diet pattern of lizards. The principal factor that explained the modularity of the network was the foraging strategy, with segregation between the "active foragers" and "sit-and-wait" lizards. Our analyses also demonstrated that historical (phylogeny) and ecological factors (use of micro-habitat by the lizards) influenced the composition of parasite communities. These results corroborate other studies with ectoparasites, which indicate phylogeny and micro-habitat as determinants in the composition of parasitic fauna. The influence of phylogeny can be the result of coevolution between parasites and lizards in the Caatinga, and the influence of micro-habitat should be a result of adaptations of species of parasites to occupy the same categories of micro-habitats as hosts, thus favoring contagion.
Optogenetic micro-electrocorticography for modulating and localizing cerebral cortex activity
Richner, Thomas J.; Thongpang, Sanitta; Brodnick, Sarah K.; Schendel, Amelia A.; Falk, Ryan W.; Krugner-Higby, Lisa A.; Pashaie, Ramin; Williams, Justin C.
2014-01-01
Objective Spatial localization of neural activity from within the brain with electrocorticography (ECoG) and electroencephalography (EEG) remains a challenge in clinical and research settings, and while microfabricated ECoG (micro-ECoG) array technology continues to improve, complimentary methods to simultaneously modulate cortical activity while recording are needed. Approach We developed a neural interface utilizing optogenetics, cranial windowing, and micro-ECoG arrays fabricated on a transparent polymer. This approach enabled us to directly modulate neural activity at known locations around micro-ECoG arrays in mice expressing Channelrhodopsin-2 (ChR2). We applied photostimuli varying in time, space and frequency to the cortical surface, and we targeted multiple depths within the cortex using an optical fiber while recording micro-ECoG signals. Main Results Negative potentials of up to 1.5 mV were evoked by photostimuli applied to the entire cortical window, while focally applied photostimuli evoked spatially localized micro-ECoG potentials. Two simultaneously applied focal stimuli could be separated, depending on the distance between them. Photostimuli applied within the cortex with an optical fiber evoked more complex micro-ECoG potentials with multiple positive and negative peaks whose relative amplitudes depended on the depth of the fiber. Significance Optogenetic ECoG has potential applications in the study of epilepsy, cortical dynamics, and neuroprostheses. PMID:24445482
Implementation of material decomposition using an EMCCD and CMOS-based micro-CT system.
Podgorsak, Alexander R; Nagesh, Sv Setlur; Bednarek, Daniel R; Rudin, Stephen; Ionita, Ciprian N
2017-02-11
This project assessed the effectiveness of using two different detectors to obtain dual-energy (DE) micro-CT data for the carrying out of material decomposition. A micro-CT coupled to either a complementary metal-oxide semiconductor (CMOS) or an electron multiplying CCD (EMCCD) detector was used to acquire image data of a 3D-printed phantom with channels filled with different materials. At any instance, materials such as iohexol contrast agent, water, and platinum were selected to make up the scanned object. DE micro-CT data was acquired, and slices of the scanned object were differentiated by material makeup. The success of the decomposition was assessed quantitatively through the computation of percentage normalized root-mean-square error (%NRMSE). Our results indicate a successful decomposition of iohexol for both detectors (%NRMSE values of 1.8 for EMCCD, 2.4 for CMOS), as well as platinum (%NRMSE value of 4.7). The CMOS detector performed material decomposition on air and water on average with 7 times more %NRMSE, possibly due to the decreased sensitivity of the CMOS system. Material decomposition showed the potential to differentiate between materials such as the iohexol and platinum, perhaps opening the door for its use in the neurovascular anatomical region. Work supported by Toshiba America Medical Systems, and partially supported by NIH grant 2R01EB002873.
Implementation of material decomposition using an EMCCD and CMOS-based micro-CT system
NASA Astrophysics Data System (ADS)
Podgorsak, Alexander R.; Nagesh, S. V. Setlur; Bednarek, Daniel R.; Rudin, Stephen; Ionita, Ciprian N.
2017-03-01
This project assessed the effectiveness of using two different detectors to obtain dual-energy (DE) micro-CT data for the carrying out of material decomposition. A micro-CT coupled to either a complementary metal-oxide semiconductor (CMOS) or an electron multiplying CCD (EMCCD) detector was used to acquire image data of a 3D-printed phantom with channels filled with different materials. At any instance, materials such as iohexol contrast agent, water, and platinum were selected to make up the scanned object. DE micro-CT data was acquired, and slices of the scanned object were differentiated by material makeup. The success of the decomposition was assessed quantitatively through the computation of percentage normalized root-mean-square error (%NRMSE). Our results indicate a successful decomposition of iohexol for both detectors (%NRMSE values of 1.8 for EMCCD, 2.4 for CMOS), as well as platinum (%NRMSE value of 4.7). The CMOS detector performed material decomposition on air and water on average with 7 times more %NRMSE, possibly due to the decreased sensitivity of the CMOS system. Material decomposition showed the potential to differentiate between materials such as the iohexol and platinum, perhaps opening the door for its use in the neurovascular anatomical region. Work supported by Toshiba America Medical Systems, and partially supported by NIH grant 2R01EB002873.
Nogami, Hirofumi; Higurashi, Eiji; Sawada, Renshi
2018-01-01
The purpose of this paper is to show the feasibility of grasping force control by feeding back signals of the developed micro-laser Doppler velocimeter (μ-LDV) and by discriminating whether a grasped object is slipping or not. LDV is well known as a high response surface velocity sensor which can measure various surfaces—such as metal, paper, film, and so on—thus suggesting the potential application of LDV as a slip sensor for grasping various objects. However, the use of LDV as a slip sensor has not yet been reported because the size of LDVs is too large to be installed on a robotic fingertip. We have solved the size problem and enabled the performance of a feasibility test with a few-millimeter-scale LDV referred to as micro-LDV (μ-LDV) by modifying the design which was adopted from MEMS (microelectromechanical systems) fabrication process. In this paper, by applying our developed μ-LDV as a slip sensor, we have successfully demonstrated grasping force control with three target objects—aluminum block, wood block, and white acrylic block—considering that various objects made of these materials can be found in homes and factories, without grasping force feedback. We provide proofs that LDV is a new promising candidate slip sensor for grasping force control to execute target grasping. PMID:29360799
Giga-pixel fluorescent imaging over an ultra-large field-of-view using a flatbed scanner.
Göröcs, Zoltán; Ling, Yuye; Yu, Meng Dai; Karahalios, Dimitri; Mogharabi, Kian; Lu, Kenny; Wei, Qingshan; Ozcan, Aydogan
2013-11-21
We demonstrate a new fluorescent imaging technique that can screen for fluorescent micro-objects over an ultra-wide field-of-view (FOV) of ~532 cm(2), i.e., 19 cm × 28 cm, reaching a space-bandwidth product of more than 2 billion. For achieving such a large FOV, we modified the hardware and software of a commercially available flatbed scanner, and added a custom-designed absorbing fluorescent filter, a two-dimensional array of external light sources for computer-controlled and high-angle fluorescent excitation. We also re-programmed the driver of the scanner to take full control of the scanner hardware and achieve the highest possible exposure time, gain and sensitivity for detection of fluorescent micro-objects through the gradient index self-focusing lens array that is positioned in front of the scanner sensor chip. For example, this large FOV of our imaging platform allows us to screen more than 2.2 mL of undiluted whole blood for detection of fluorescent micro-objects within <5 minutes. This high-throughput fluorescent imaging platform could be useful for rare cell research and cytometry applications by enabling rapid screening of large volumes of optically dense media. Our results constitute the first time that a flatbed scanner has been converted to a fluorescent imaging system, achieving a record large FOV.
Histological Evaluation of Nano-Micro Titanium Implant Surface Treatment in Beagle Humerus.
Yun, Kwidug; Kang, Seongsoo; Oh, Gyejeong; Lim, Hyunpil; Lee, Kwangmin; Yang, Hongso; Vang, Mongsook; Park, Sangwon
2016-02-01
The objective of this study was to investigate the effects of nano-micro titanium implant surface using histology in beagle dogs. A total of 48 screw-shaped implants (Megagen, Daegu, Korea) which dimensions were 4 mm in diameter and 8.5 mm in length, were used. The implants were classified into 4 groups (n = 12): machined surface (M group), RBM (Resorbable Blasting Media) surface (R group), nano surface which is nanotube formation on the machined surface (MA group) and nano-micro surface which is nanotube formation on the RBM surface (RA group). Anodic oxidation was performed at a constant voltage of 20 V for 10 min using a DC power supply (Fine Power F-3005; SG EMD, Anyang, Korea). The bone blocks were investigated using histology. There was no inflammation around implants, and new bone formation was shown along with the nano-micro titanium implant surfaces. The amount of bone formation was increased depending on time comparing 4 weeks and 12 weeks. At 12 weeks, lamellar bone was more formed along with the nano-micro titanium implant surfaces than 4 weeks. It indicated that nano-micro surface showed good result in terms of osseointegration.
NASA Astrophysics Data System (ADS)
Zhang, Rumin; Liu, Peng; Liu, Dijun; Su, Guobin
2015-12-01
In this paper, we establish a forward simulation model of plenoptic camera which is implemented by inserting a micro-lens array in a conventional camera. The simulation model is used to emulate how the space objects at different depths are imaged by the main lens then remapped by the micro-lens and finally captured on the 2D sensor. We can easily modify the parameters of the simulation model such as the focal lengths and diameters of the main lens and micro-lens and the number of micro-lens. Employing the spatial integration, the refocused images and all-in-focus images are rendered based on the plenoptic images produced by the model. The forward simulation model can be used to determine the trade-offs between different configurations and to test any new researches related to plenoptic camera without the need of prototype.
Reading from Scratch - A Vision-System for Reading Data on Micro-structured Surfaces
NASA Astrophysics Data System (ADS)
Dragon, Ralf; Becker, Christian; Rosenhahn, Bodo; Ostermann, Jörn
Labeling and marking industrial manufactured objects gets increasingly important nowadays because of novel material properties and plagiarism. As part of the Collaborative Research Center 653 which investigates micro-structured metallic surfaces for inherent mechanical data storage, we research into a stable and reliable optical readout of the written data. Since this comprises a qualitative surface reconstruction, we use directed illumination to make the micro structures visible. Then we apply a spectral analysis to obtain image partitioning and perform signal tracking enhanced by a customized Hidden Markov Model. In this paper, we derive the algorithms used and demonstrate reading data from a surface with 1.6kbit/cm2 from a micro-structured groove which varies by only 3μ m in depth (thus a “scratch”). We demonstrate the system’s robustness with experiments with real and artificially-rendered surfaces.
NASA Technical Reports Server (NTRS)
Lyke, J. C.; Michalicek, M. A.; Singaraju, B. K.
1995-01-01
Micro-electro-mechanical systems (MEMS) provide an emerging technology that has the potential for revolutionizing the way space systems are designed, assembled, and tested. The high launch costs of current space systems are a major determining factor in the amount of functionality that can be integrated in a typical space system. MEMS devices have the ability to increase the functionality of selected satellite subsystems while simultaneously decreasing spacecraft weight. The Air Force Phillips Laboratory (PL) is supporting the development of a variety of MEMS related technologies as one of several methods to reduce the weight of space systems and increase their performance. MEMS research is a natural extension of PL research objectives in micro-electronics and advanced packaging. Examples of applications that are under research include on-chip micro-coolers, micro-gyroscopes, vibration sensors, and three-dimensional packaging technologies to integrate electronics with MEMS devices. The first on-orbit space flight demonstration of these and other technologies is scheduled for next year.
NASA Astrophysics Data System (ADS)
Hall, Donald
Under a current award, NASA NNX 13AC13G "EXTENDING THE ASTRONOMICAL APPLICATION OF PHOTON COUNTING HgCdTe LINEAR AVALANCHE PHOTODIODE ARRAYS TO LOW BACKGROUND SPACE OBSERVATIONS" UH has used Selex SAPHIRA 320 x 256 MOVPE L-APD HgCdTe arrays developed for Adaptive Optics (AO) wavefront (WF) sensing to investigate the potential of this technology for low background space astronomy applications. After suppressing readout integrated circuit (ROIC) glow, we have placed upper limits on gain normalized dark current of 0.01 e-/sec at up to 8 volts avalanche bias, corresponding to avalanche gain of 5, and have operated with avalanche gains of up to several hundred at higher bias. We have also demonstrated detection of individual photon events. The proposed investigation would scale the format to 1536 x 1536 at 12um (the largest achievable in a standard reticule without requiring stitching) while incorporating reference pixels required at these low dark current levels. The primary objective is to develop, produce and characterize a 1.5k x 1.5k at 12um pitch MOVPE HgCdTe L-APD array, with nearly 30 times the pixel count of the 320 x 256 SAPHIRA, optimized for low background space astronomy. This will involve: 1) Selex design of a 1.5k x 1.5k at 12um pitch ROIC optimized for low background operation, silicon wafer fabrication at the German XFab foundry in 0.35 um 3V3 process and dicing/test at Selex, 2) provision by GL Scientific of a 3-side close-buttable carrier building from the heritage of the HAWAII xRG family, 3) Selex development and fabrication of 1.5k x 1.5k at 12 um pitch MOVPE HgCdTe L-APD detector arrays optimized for low background applications, 4) hybridization, packaging into a sensor chip assembly (SCA) with initial characterization by Selex and, 5) comprehensive characterization of low background performance, both in the laboratory and at ground based telescopes, by UH. The ultimate goal is to produce and eventually market a large format array, the L-APD equivalent of the Teledyne H1RG and H2RG, able to achieve sub-electron read noise and count 1 - 5 um photons with high quantum efficiency and low dark count rate while preserving their Poisson statistics and noise.
Micro-crack detection in CFRP laminates using coda wave NDE
NASA Astrophysics Data System (ADS)
Dayal, Vinay; Barnard, Dan; Livings, Richard
2018-04-01
Coda Waves or diffuse field has been touted to be an NDE method that does not require the damage to be in the path of the ultrasound. The object is insonified with ultrasound and instead of catching the first or second arrival, the waves are allowed to bounce multiple times. This aspect is very important in structural health monitoring (SHM) where the potential damage development location is unknown. Researchers have used Coda waves in the interrogation of seismic damage and metallic materials. In this work we have applied the technique to composite material, and present the results herein. The coda wave and acoustic emission signals are recorded simultaneously and corroborated. Development of small incipient damage in the form of micro-crack and their detection is the objective of this work.
Applications of dewetting in micro and nanotechnology.
Gentili, Denis; Foschi, Giulia; Valle, Francesco; Cavallini, Massimiliano; Biscarini, Fabio
2012-06-21
Dewetting is a spontaneous phenomenon where a thin film on a surface ruptures into an ensemble of separated objects, like droplets, stripes, and pillars. Spatial correlations with characteristic distance and object size emerge spontaneously across the whole dewetted area, leading to regular motifs with long-range order. Characteristic length scales depend on film thickness, which is a convenient and robust technological parameter. Dewetting is therefore an attractive paradigm for organizing a material into structures of well-defined micro- or nanometre-size, precisely positioned on a surface, thus avoiding lithographical processes. This tutorial review introduces the reader to the physical-chemical basis of dewetting, shows how the dewetting process can be applied to different functional materials with relevance in technological applications, and highlights the possible strategies to control the length scales of the dewetting process.
Thin wetting film lensless imaging
NASA Astrophysics Data System (ADS)
Allier, C. P.; Poher, V.; Coutard, J. G.; Hiernard, G.; Dinten, J. M.
2011-03-01
Lensless imaging has recently attracted a lot of attention as a compact, easy-to-use method to image or detect biological objects like cells, but failed at detecting micron size objects like bacteria that often do not scatter enough light. In order to detect single bacterium, we have developed a method based on a thin wetting film that produces a micro-lens effect. Compared with previously reported results, a large improvement in signal to noise ratio is obtained due to the presence of a micro-lens on top of each bacterium. In these conditions, standard CMOS sensors are able to detect single bacterium, e.g. E.coli, Bacillus subtilis and Bacillus thuringiensis, with a large signal to noise ratio. This paper presents our sensor optimization to enhance the SNR; improve the detection of sub-micron objects; and increase the imaging FOV, from 4.3 mm2 to 12 mm2 to 24 mm2, which allows the detection of bacteria contained in 0.5μl to 4μl to 10μl, respectively.
Lensfree microscopy on a cellphone
Tseng, Derek; Mudanyali, Onur; Oztoprak, Cetin; Isikman, Serhan O.; Sencan, Ikbal; Yaglidere, Oguzhan; Ozcan, Aydogan
2010-01-01
We demonstrate lensfree digital microscopy on a cellphone. This compact and light-weight holographic microscope installed on a cellphone does not utilize any lenses, lasers or other bulky optical components and it may offer a cost-effective tool for telemedicine applications to address various global health challenges. Weighing ~38 grams (<1.4 ounces), this lensfree imaging platform can be mechanically attached to the camera unit of a cellphone where the samples are loaded from the side, and are vertically illuminated by a simple light-emitting diode (LED). This incoherent LED light is then scattered from each micro-object to coherently interfere with the background light, creating the lensfree hologram of each object on the detector array of the cellphone. These holographic signatures captured by the cellphone permit reconstruction of microscopic images of the objects through rapid digital processing. We report the performance of this lensfree cellphone microscope by imaging various sized micro-particles, as well as red blood cells, white blood cells, platelets and a waterborne parasite (Giardia lamblia). PMID:20445943
Raman tweezers in microfluidic systems for analysis and sorting of living cells
NASA Astrophysics Data System (ADS)
Pilát, Zdeněk.; Ježek, Jan; Kaňka, Jan; Zemánek, Pavel
2014-12-01
We have devised an analytical and sorting system combining optical trapping with Raman spectroscopy in microfluidic environment, dedicated to identification and sorting of biological objects, such as living cells of various unicellular organisms. Our main goal was to create a robust and universal platform for non-destructive and non-contact sorting of micro-objects based on their Raman spectral properties. This approach allowed us to collect spectra containing information about the chemical composition of the objects, such as the presence and composition of pigments, lipids, proteins, or nucleic acids, avoiding artificial chemical probes such as fluorescent markers. The non-destructive nature of this optical analysis and manipulation allowed us to separate individual living cells of our interest in a sterile environment and provided the possibility to cultivate the selected cells for further experiments. We used a mixture of polystyrene micro-particles and algal cells to test and demonstrate the function of our analytical and sorting system. The devised system could find its use in many medical, biotechnological, and biological applications.
Evidence for microbial activity in the formation of carbonate-hosted Zn-Pb deposits
NASA Astrophysics Data System (ADS)
Kucha, H.; Raith, J.
2009-04-01
*Kucha H **Raith J *University of Mining and Metallurgy, Faculty of Geology, Geophysics and Environmental Protection, Mickiewicza 30, PL-30-059 Krakow, Poland. ** University of Leoben, Department of Applied Geosciences and Geophysics, A-8700 Leoben, Peter Tunner Str. 5, Austria Evidence for microbial activity in the formation of carbonate-hosted Zn-Pb deposits To date evaluation of bacterial processes in the formation of carbonate-hosted Zn-Pb deposits is largely based on sulphur isotope evidence. However, during a past few years, textural criteria, have been established, which support the bacterial origin of many of these deposits. This has received a strong support from micro-, and nano-textures of naturally growing bacterial films in a flooded tunnel within carbonates that host the Piquette Zn-Pb deposit (Druschel et al., 2002). Bacterial textures, micro- and nano textures found in carbonate-hosted Zn-Pb deposits are: i)wavy bacterial films up to a few mm thick to up to a few cm long composed of peloids, ii)semimassive agglomeration of peloids in the carbonate matrix, and iii)solitary peloids dispersed in the carbonate matrix. Peloids are usually composed of a distinct 50-90um core most often made up of Zn-bearing calcite surrounded by 30-60um thick dentate rim composed of ZnS. Etching of Zn-carbonate cores reveals 1 - 2um ZnS filaments, and numerous 15 to 90nm large ZnS nano-spheres (Kucha et al., 2005). In massive ore composite Zn-calcite - sphalerite peloids are entirely replaced by zinc sulphide, and form peloids ghosts within banded sulphide layers. Bacterially derived micro- and nano-textures have been observed in the following carbonate-hosted Zn-Pb deposits: 1)Irish-type Zn-Pb deposits. In the Navan deposit the basic sulphur is isotopically light bacteriogenic S (Fallick at al., 2001). This is corroborated by semimassive agglomerations of composite peloids (Zn-calcite-ZnS corona or ZnS core-melnikovite corona). Etching of Zn-calcite core reveals globular 0.5 to 1um large fossilised bacteria with some nano-size spheres as well (Kucha et al., 1990). In the Silvermines and Ballinalack ores wavy bacterial film-like textures composed of peloids made up of Zn-calcite or Zn-siderite cores and ZnS rims are known (Kucha et al., 1990). 2) Alpine Zn-Pb deposits. Bleiberg sulphides, Austria, Zn-Pb ores display the δ34S‰ values from -32 to -2 (n=284), with mean close to 20‰ (Schroll & Rantitsch, 2005). Cardita and Crest ores contain wavy bacterial films (-28.84 to -27.91‰). Semimassive globular sphalerite with globules varying in size from 90 to 180um is a basic ZnS type in the Bleiberg ores with light sulphur from (-30.49 to -26.4‰). Based on sulphur isotope data, um-sized bacterial filaments, and spherical nano-textures seen in etched ZnS globules, sulphate reducing bacteria (SRB) involvement is suggested (Kucha et al. 2005). ZnS globules were formed by replacement of original peloids (i.e. bacterial colonies) and/or by agglomeration of original 10-15nm ZnS spheres secreted by SRB. The growth of peloids was promoted by unbalanced electric charges on the surfaces of these ZnS nano-spheres. 3) Upper Silesian MVT Zn-Pb deposits. Sulphur isotopes vary between 2 and 12‰, (mean 5‰) for early stage sulphides, main stage sulphides are characterised by S signature -2 to -15‰. Redeposition of ZnS from the horst to graben structures produced "pulvery" sphalerite with -19‰ (Haranczyk, 1993). Sulphide stalactites containing oxysulphides have δS‰ vales of -23.7. Bacterial microtextures occur mainly within oxysulphides and at the contact between Fe-smithsonite replaced by banded sphalerite (Kucha et al., 1990). 4) La Calamine and Engis, Belgium, contain bacterial micro- and nano-textures in ores related to karst cavities, and paleoweathering crusts (Kucha et al., 1990). The biogenic textures are represented by clumps of peloids, and bacterial mats occurring in banded sphalerite composed of replaced peloids. Peloids are composed of Zn-calcite cores and ZnS rims, oxysulphides, thiosulphates, vaesite and chalcedonic silica. Bacterial microtextures in all of the above mentioned deposits are as a rule associated with oxysulphides i.e. compounds with mixed and intermediate sulphur valences (Kucha et al., 1989). The origin of oxysulphides is probably related either directly to incomplete bacterial reduction of the sulphatic sulphur, or reaction of bacterial H2S with sulphatic S present in the fluids. Some of peloids are composed of oxysulphides (Kucha & Stumpfl, 1992; Kucha, 2003). Therefore, an interpretation of the S isotopic signature of bacterial textures should consider not only microbial community structure, but also the oxidative part of the sulphur cycle proceeding through compounds with mixed sulphur valences. References Druschel GK, Labrenz M, Thomsen-Ebert T, Fowler DA, Banfield JF (2002) Geochemical modelling of ZnS in biofilms: An example of ore depositional processes. Economic Geology, v 97, 1319-1329. Fallick, AE, Ashton JH, Boyce AJ, Ellam RM, Russell MJ (2001) Bacteria were responsible fort he magnitude of the world-class hydrothermal base metal sulphide orebody at Navan, Ireland. Economic Geology, v 96, 885 - 890. Haranczyk Cz (1993) Sulphur isotope models of genesis of the Silesian-Cracov Zn-Pb ore deposits. Geological Quarterly, v 37, 307 - 322. Kucha H (1988) Biogenic and non-biogenic concentration of sulfur and metals in the carbonate-hosted Ballinalack Zn-Pb deposit, Ireland. Min. Pet., 38, 171-187. Kucha H, Wouters R, Arkens O (1989) Determination of sulfur and iron valence by microprobe. Scanning Microscopy, 3, no 1, 89-97. Kucha H, Van der Biest J, Viaene W (1990) Peloids in strata bound Zn-Pb deposits and their genetic importance. Min. Deposita, 25, 132-139. Kucha H, Stumpfl EF (1992) Thiosulphates as precursors of banded sphalerite and pyrite at Bleiberg, Austria. Min. Mag., 56, 165-172. Kucha H (2003) Mississippi Valley Type Zn-Pb deposits of Upper Silesia, Poland, 253-272. In: Kelly, J., G., Andrew, C., J., Ashton, J., H., Boland, M., B., Earls, E., Fusciardi, L., Stanley, G. (eds) Europe's Major Base Metal Deposits, Irish Association for Economic Geology, Printed by Colour Books Ltd, Dublin 2003, 551 pp. Kucha H, Schroll E, Stumpfl EF (2005) Fossil sulphate-reducing bacteria in the Bleiberg lead-zinc deposit, Austria. Mineralium Deposita, v 40, 123-126. Schroll E, Rantitsch G (2005) Sulfur isotope patterns in the Bleiberg deposit (Eastern Alps) and their implications for genetically affiliated. Mineralogy and Petrology 148: 1-18.
Spacecraft Line-of-Sight Stabilization Using LWIR Earth Signature
NASA Technical Reports Server (NTRS)
Quadrelli, Marco B.; Piazzolla, Sabino
2012-01-01
The objective of this study is to investigate the potential of using the bright and near-uniform Earth infrared (or wavelength infrared, LWIR) signature as a stable reference for accurate (micro-rad or less) inertial pointing and tracking on-board an space vehicle, including the determination of the fundamental limits of applicability of the proposed method for space missions. We demonstrate sub-micro radian level pointing accuracy under a representative set of disturbances experienced by the spacecraft in orbit.
Advancing radiation balanced lasers (RBLs) in rare-earth (RE)-doped solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hehlen, Markus Peter
2016-11-21
These slides cover the following topics: Mid-IR lasers in crystals using two-tone RBL (Single-dopant two-tone RBLs: Tm 3+, Er 3+, and Co-doped two-tone RBLs: (Yb 3+, Nd 3+) and (Ho 3+, Tm 3+); Advanced approaches to RBL crystals (Precursor purification, Micro-pulling-down crystal growth, and Bridgman crystal growth); Advanced approaches to RBL fibers (Materials for RBL glass fibers, Micro-structured fibers for RBL, and Fiber preform synthesis); and finally objectives.
Inside marginal adaptation of crowns by X-ray micro-computed tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dos Santos, T. M.; Lima, I.; Lopes, R. T.
The objective of this work was to access dental arcade by using X-ray micro-computed tomography. For this purpose high resolution system was used and three groups were studied: Zirkonzahn CAD-CAM system, IPS e.max Press, and metal ceramic. The three systems assessed in this study showed results of marginal and discrepancy gaps clinically accepted. The great result of 2D and 3D evaluations showed that the used technique is a powerful method to investigate quantitative characteristics of dental arcade. (authors)
GaAs-based micro/nanomechanical resonators
NASA Astrophysics Data System (ADS)
Yamaguchi, Hiroshi
2017-10-01
Micro/nanomechanical resonators have been extensively studied both for device applications, such as high-performance sensors and high-frequency devices, and for fundamental science, such as quantum physics in macroscopic objects. The advantages of GaAs-based semiconductor heterostructures include improved mechanical properties through strain engineering, highly controllable piezoelectric transduction, carrier-mediated optomechanical coupling, and hybridization with quantum low-dimensional structures. This article reviews our recent activities, as well as those of other groups, on the physics and applications of mechanical resonators fabricated using GaAs-based heterostructures.
NASA Astrophysics Data System (ADS)
Martowicz, Adam; Uhl, Tadeusz
2012-10-01
The paper discusses the applicability of a reliability- and performance-based multi-criteria robust design optimization technique for micro-electromechanical systems, considering their technological uncertainties. Nowadays, micro-devices are commonly applied systems, especially in the automotive industry, taking advantage of utilizing both the mechanical structure and electronic control circuit on one board. Their frequent use motivates the elaboration of virtual prototyping tools that can be applied in design optimization with the introduction of technological uncertainties and reliability. The authors present a procedure for the optimization of micro-devices, which is based on the theory of reliability-based robust design optimization. This takes into consideration the performance of a micro-device and its reliability assessed by means of uncertainty analysis. The procedure assumes that, for each checked design configuration, the assessment of uncertainty propagation is performed with the meta-modeling technique. The described procedure is illustrated with an example of the optimization carried out for a finite element model of a micro-mirror. The multi-physics approach allowed the introduction of several physical phenomena to correctly model the electrostatic actuation and the squeezing effect present between electrodes. The optimization was preceded by sensitivity analysis to establish the design and uncertain domains. The genetic algorithms fulfilled the defined optimization task effectively. The best discovered individuals are characterized by a minimized value of the multi-criteria objective function, simultaneously satisfying the constraint on material strength. The restriction of the maximum equivalent stresses was introduced with the conditionally formulated objective function with a penalty component. The yielded results were successfully verified with a global uniform search through the input design domain.
Rieger, R; Auregan, J C; Hoc, T
2018-03-01
The objective of the present study is to assess the mechanical behavior of trabecular bone based on microCT imaging and micro-finite-element analysis. In this way two methods are detailed: (i) direct determination of macroscopic elastic property of trabecular bone; (ii) inverse approach to assess mechanical properties of trabecular bone tissue. Thirty-five females and seven males (forty-two subjects) mean aged (±SD) 80±11.7 years from hospitals of Assistance publique-Hôpitaux de Paris (AP-HP) diagnosed with osteoporosis following a femoral neck fracture due to a fall from standing were included in this study. Fractured heads were collected during hip replacement surgery. Standardized bone cores were removed from the femoral head's equator by a trephine in a water bath. MicroCT images acquisition and analysis were performed with CTan ® software and bone volume fraction was then determined. Micro-finite-element simulations were per-formed using Abaqus 6.9-2 ® software in order to determine the macroscopic mechanical behaviour of the trabecular bone. After microCT acquisition, a longitudinal compression test was performed and the experimental macroscopic Young's Modulus was extracted. An inverse approach based on the whole trabecular bone's mechanical response and micro-finite-element analysis was performed to determine microscopic mechanical properties of trabecular bone. In the present study, elasticity of the tissue was shown to be similar to that of healthy tissue but with a lower yield stress. Classical histomorphometric analysis form microCT imaging associated with an inverse micro-finite-element method allowed to assess microscopic mechanical trabecular bone parameters. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Svarcová, Silvie; Kocí, Eva; Bezdicka, Petr; Hradil, David; Hradilová, Janka
2010-09-01
The uniqueness and limited amounts of forensic samples and samples from objects of cultural heritage together with the complexity of their composition requires the application of a wide range of micro-analytical methods, which are non-destructive to the samples, because these must be preserved for potential late revision. Laboratory powder X-ray micro-diffraction (micro-XRD) is a very effective non-destructive technique for direct phase analysis of samples smaller than 1 mm containing crystal constituents. It compliments optical and electron microscopy with elemental micro-analysis, especially in cases of complicated mixtures containing phases with similar chemical composition. However, modification of X-ray diffraction to the micro-scale together with its application for very heterogeneous real samples leads to deviations from the standard procedure. Knowledge of both the limits and the phenomena which can arise during the analysis is crucial for the meaningful and proper application of the method. We evaluated basic limits of micro-XRD equipped with a mono-capillary with an exit diameter of 0.1 mm, for example the size of irradiated area, appropriate grain size, and detection limits allowing identification of given phases. We tested the reliability and accuracy of quantitative phase analysis based on micro-XRD data in comparison with conventional XRD (reflection and transmission), carrying out experiments with two-phase model mixtures simulating historic colour layers. Furthermore, we demonstrate the wide use of micro-XRD for investigation of various types of micro-samples (contact traces, powder traps, colour layers) and we show how to enhance data quality by proper choice of experiment geometry and conditions.
Measurement of light transmission and fluence rate in mouse brain in vivo(Conference Presentation)
NASA Astrophysics Data System (ADS)
Macklin, John J.; Graves, Austin R.; Stujenske, Joseph M.; Hantman, Adam W.; Bittner, Katie C.
2017-02-01
Optogenetic experiments require light delivery, typically using fiber optics, to light-gated ion channels genetically targeted to specific brain regions. Understanding where light is—and isn't—in an illuminated brain can be a confounding factor in designing experiments and interpreting results. While the transmission of light, i.e. survival of forward-directed and forward-scattered light, has been extensively measured in vitro, light scattering can be significantly different in vivo due to blood flow and other factors. To measure irradiance in vivo, we constructed a pipette photodetector tipped with fluorescent quantum dots that function as a light transducer. The quantum dot fluorescence is collected by a waveguide and sent to a fiber-coupled spectrometer. The device has a small photo-responsive area ( 10 um x 15 um), enabling collection of micron-resolution irradiance profiles, and can be calibrated to determine irradiance with detection limits of 0.001 mW/mm2. The photodetector has the footprint of a micro-injection pipette, so can be inserted into almost any brain region with minimal invasiveness. With this detector, we determined transverse and axial irradiance profiles in mice across multiple brain regions at 5 source wavelengths spanning the visible spectrum. This profile data is compared to in vitro measurements obtained on tissue slices, and provides a means to derive scattering coefficients for specific brain regions in vivo. The detector is straightforward to fabricate and calibrate, is stable in air storage > 9 months, and can be easily installed in an electrophysiology setup, thereby enabling direct measurement of light spread under conditions used in optogenetics experiments.
Compact cold stage for micro-computerized tomography imaging of chilled or frozen samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hullar, Ted; Anastasio, Cort, E-mail: canastasio@ucdavis.edu; Paige, David F.
2014-04-15
High resolution X-ray microCT (computerized tomography) can be used to image a variety of objects, including temperature-sensitive materials. In cases where the sample must be chilled or frozen to maintain sample integrity, either the microCT machine itself must be placed in a refrigerated chamber, or a relatively expensive commercial cold stage must be purchased. We describe here the design and construction of a low-cost custom cold stage suitable for use in a microCT imaging system. Our device uses a boron nitride sample holder, two-stage Peltier cooler, fan-cooled heat sink, and electronic controller to maintain sample temperatures as low as −25 °Cmore » ± 0.2 °C for the duration of a tomography acquisition. The design does not require modification to the microCT machine, and is easily installed and removed. Our custom cold stage represents a cost-effective solution for refrigerating CT samples for imaging, and is especially useful for shared equipment or machines unsuitable for cold room use.« less
Efficient digitalization method for dental restorations using micro-CT data
NASA Astrophysics Data System (ADS)
Kim, Changhwan; Baek, Seung Hoon; Lee, Taewon; Go, Jonggun; Kim, Sun Young; Cho, Seungryong
2017-03-01
The objective of this study was to demonstrate the feasibility of using micro-CT scan of dental impressions for fabricating dental restorations and to compare the dimensional accuracy of dental models generated from various methods. The key idea of the proposed protocol is that dental impression of patients can be accurately digitized by micro-CT scan and that one can make digital cast model from micro-CT data directly. As air regions of the micro-CT scan data of dental impression are equivalent to the real teeth and surrounding structures, one can segment the air regions and fabricate digital cast model in the STL format out of them. The proposed method was validated by a phantom study using a typodont with prepared teeth. Actual measurement and deviation map analysis were performed after acquiring digital cast models for each restoration methods. Comparisons of the milled restorations were also performed by placing them on the prepared teeth of typodont. The results demonstrated that an efficient fabrication of precise dental restoration is achievable by use of the proposed method.
Geometry-constraint-scan imaging for in-line phase contrast micro-CT.
Fu, Jian; Yu, Guangyuan; Fan, Dekai
2014-01-01
X-ray phase contrast computed tomography (CT) uses the phase shift that x-rays undergo when passing through matter, rather than their attenuation, as the imaging signal and may provide better image quality in soft-tissue and biomedical materials with low atomic number. Here a geometry-constraint-scan imaging technique for in-line phase contrast micro-CT is reported. It consists of two circular-trajectory scans with x-ray detector at different positions, the phase projection extraction method with the Fresnel free-propagation theory and the filter back-projection reconstruction algorithm. This method removes the contact-detector scan and the pure phase object assumption in classical in-line phase contrast Micro-CT. Consequently it relaxes the experimental conditions and improves the image contrast. This work comprises a numerical study of this technique and its experimental verification using a biomedical composite dataset measured at an x-ray tube source Micro-CT setup. The numerical and experimental results demonstrate the validity of the presented method. It will be of interest for a wide range of in-line phase contrast Micro-CT applications in biology and medicine.
Experimental evaluation of tool run-out in micro milling
NASA Astrophysics Data System (ADS)
Attanasio, Aldo; Ceretti, Elisabetta
2018-05-01
This paper deals with micro milling cutting process focusing the attention on tool run-out measurement. In fact, among the effects of the scale reduction from macro to micro (i.e., size effects) tool run-out plays an important role. This research is aimed at developing an easy and reliable method to measure tool run-out in micro milling based on experimental tests and an analytical model. From an Industry 4.0 perspective this measuring strategy can be integrated into an adaptive system for controlling cutting forces, with the objective of improving the production quality, the process stability, reducing at the same time the tool wear and the machining costs. The proposed procedure estimates the tool run-out parameters from the tool diameter, the channel width, and the phase angle between the cutting edges. The cutting edge phase measurement is based on the force signal analysis. The developed procedure has been tested on data coming from micro milling experimental tests performed on a Ti6Al4V sample. The results showed that the developed procedure can be successfully used for tool run-out estimation.
Misra, A; Burke, JF; Ramayya, A; Jacobs, J; Sperling, MR; Moxon, KA; Kahana, MJ; Evans, JJ; Sharan, AD
2014-01-01
Objective The authors report methods developed for the implantation of micro-wire bundles into mesial temporal lobe structures and subsequent single neuron recording in epileptic patients undergoing in-patient diagnostic monitoring. This is done with the intention of lowering the perceived barriers to routine single neuron recording from deep brain structures in the clinical setting. Approach Over a 15 month period, 11 patients were implanted with platinum micro-wire bundles into mesial temporal structures. Protocols were developed for A) monitoring electrode integrity through impedance testing, B) ensuring continuous 24-7 recording, C) localizing micro-wire position and “splay” pattern and D) monitoring grounding and referencing to maintain the quality of recordings. Main Result Five common modes of failure were identified: 1) broken micro-wires from acute tensile force, 2) broken micro-wires from cyclic fatigue at stress points, 3) poor in-vivo micro-electrode separation, 4) motion artifact and 5) deteriorating ground connection and subsequent drop in common mode noise rejection. Single neurons have been observed up to 14 days post implantation and on 40% of micro-wires. Significance Long-term success requires detailed review of each implant by both the clinical and research teams to identify failure modes, and appropriate refinement of techniques while moving forward. This approach leads to reliable unit recordings without prolonging operative times, which will help increase the availability and clinical viability of human single neuron data. PMID:24608589
NASA Astrophysics Data System (ADS)
Masyeni, S.; Hadi, U.; Kuntaman; Yohan, B.; Margyaningsih, N. I.; Sasmono, R. T.
2018-03-01
Pathogenesis of dengue infection is still obscure. Recently, the role of microRNA has been associated with the cytokine storm which leads to plasma leakage in endothelial cells. The objective of our study was to determine whether particular microRNA is overexpressed in PBMCs infected with DENV and to assess its correlation to the expression of suppressor of cytokine signaling 3 (SOCS3) proteins to increase the production of pro-inflammatory cytokines. We report the result of a preliminary study on the expression of microRNA hsa-let-7e. The peripheral blood mononuclear cells (PBMCs) from the healthy volunteer were infected with the clinical isolate of DENV-2. RNA was extracted with miRCURYLNATMExiqon. Quantitative Real-Time PCR was used to measure the relative expression of hsa-let-7e micro RNA and the mRNA of SOCS3 proteins. MicroRNA hsa-let-7e expression was increased in PBMCs upon DENV-2 infection. The relative expression of hsa-let-7e is detected at 1.46 folds relative to uninfected PBMCs in 4 hours post-infection and decreased in 19 hours post infection. In contrast, the expression of mRNA of SOCS3 was inversely expressed with hsa-let-7 expression. MicroRNA was overexpressed in PBMCs upon infection with DENV-2. This microRNA may bind the SOCS3 and contribute to the pathogenesis of dengue infection.
Sun, Jirun; Eidelman, Naomi; Lin-Gibson, Sheng
2009-03-01
The objectives of this study were to (1) demonstrate X-ray micro-computed tomography (microCT) as a viable method for determining the polymerization shrinkage and microleakage on the same sample accurately and non-destructively, and (2) investigate the effect of sample geometry (e.g., C-factor and volume) on polymerization shrinkage and microleakage. Composites placed in a series of model cavities of controlled C-factors and volumes were imaged using microCT to determine their precise location and volume before and after photopolymerization. Shrinkage was calculated by comparing the volume of composites before and after polymerization and leakage was predicted based on gap formation between composites and cavity walls as a function of position. Dye penetration experiments were used to validate microCT results. The degree of conversion (DC) of composites measured using FTIR microspectroscopy in reflectance mode was nearly identical for composites filled in all model cavity geometries. The shrinkage of composites calculated based on microCT results was statistically identical regardless of sample geometry. Microleakage, on the other hand, was highly dependent on the C-factor as well as the composite volume, with higher C-factors and larger volumes leading to a greater probability of microleakage. Spatial distribution of microleakage determined by microCT agreed well with results determined by dye penetration. microCT has proven to be a powerful technique in quantifying polymerization shrinkage and corresponding microleakage for clinically relevant cavity geometries.
Micro-Pressure Sensors for Future Mars Missions
NASA Technical Reports Server (NTRS)
Catling, David C.
1996-01-01
The joint research interchange effort was directed at the following principal areas: u further development of NASA-Ames' Mars Micro-meteorology mission concept as a viable NASA space mission especially with regard to the science and instrument specifications u interaction with the flight team from NASA's New Millennium 'Deep-Space 2' (DS-2) mission with regard to selection and design of micro-pressure sensors for Mars u further development of micro-pressure sensors suitable for Mars The research work undertaken in the course of the Joint Research Interchange should be placed in the context of an ongoing planetary exploration objective to characterize the climate system on Mars. In particular, a network of small probes globally-distributed on the surface of the planet has often been cited as the only way to address this particular science goal. A team from NASA Ames has proposed such a mission called the Micrometeorology mission, or 'Micro-met' for short. Surface pressure data are all that are required, in principle, to calculate the Martian atmospheric circulation, provided that simultaneous orbital measurements of the atmosphere are also obtained. Consequently, in the proposed Micro-met mission a large number of landers would measure barometric pressure at various locations around Mars, each equipped with a micro-pressure sensor. Much of the time on the JRI was therefore spent working with the engineers and scientists concerned with Micro-met to develop this particular mission concept into a more realistic proposition.
A Mars Micro-Meteorological Station Mission
NASA Technical Reports Server (NTRS)
Merrihew, Steven C.; Haberle, Robert; Lemke, Lawrence G.
1995-01-01
The Mars Micro-Meteorological Station (Micro-Met) Mission is designed to provide the global surface pressure measurements required to help characterize the martian general circulation and climate system. Measurements of surface pressure distributed both spatially and temporally, coupled with simultaneous measurements from orbit, will enable the determination of the general circulation, structure and driving factors of the martian atmosphere as well as the seasonal CO2 cycle. The influence of these atmospheric factors will in turn provide insight into the overall martian climate system. With the science objective defined as the long term (at least one Mars year) globally distributed measurement of surface atmospheric pressure, a straightforward, near term and low cost network mission has been designed. The Micro-Met mission utilizes a unique silicon micro-machined pressure sensor coupled with a robust and lightweight surface station to deliver to Mars 16 Micro-Met stations via a Med-Lite launch vehicle. The battery powered Micro-Met surface stations are designed to autonomously measure, record and transmit the science data via a UHF relay satellite. Entry, descent and landing is provided by an aeroshell with a new lightweight ceramic thermal protection system, a parachute and an impact absorbing structure. The robust lander is capable of surviving the landing loads imposed by the high altitude landing sites required in a global network. By trading the ability to make many measurements at a single site for the ability to make a single measurement at several sites, the Micro-Met mission design satisfies the requirement for truly global meteorological science.
Evaluation of laser ablation crater relief by white light micro interferometer
NASA Astrophysics Data System (ADS)
Gurov, Igor; Volkov, Mikhail; Zhukova, Ekaterina; Ivanov, Nikita; Margaryants, Nikita; Potemkin, Andrey; Samokhvalov, Andrey; Shelygina, Svetlana
2017-06-01
A multi-view scanning method is suggested to assess a complicated surface relief by white light interferometer. Peculiarities of the method are demonstrated on a special object in the form of quadrangular pyramid cavity, which is formed at measurement of micro-hardness of materials using a hardness gauge. An algorithm of the joint processing of multi-view scanning results is developed that allows recovering correct relief values. Laser ablation craters were studied experimentally, and their relief was recovered using the developed method. It is shown that the multi-view scanning reduces ambiguity when determining the local depth of the laser ablation craters micro relief. Results of experimental studies of the multi-view scanning method and data processing algorithm are presented.
Cytotoxic effects of treosulfan on prostate cancer cell lines.
Feyerabend, Susan; Feil, Gerhard; Krug, Jutta; Kassen, Annette; Stenzl, Arnulf
2007-01-01
Despite various therapeutical options in metastatic prostate cancer, the lack of a curative approach motivates further investigations. Treosulfan is an alkylating agent that has proven its indication in the treatment of e.g. ovarian carcinoma. This study focused on the objective of evaluating the effect of in vitro intoxication of human prostate carcinoma cell lines with treosulfan. Human prostate cancer cell lines LNCaP, DU145 and PC3 were treated with treosulfan concentrations from 0.5-500 microM for up to six days. Analysis of cell viability was performed using colorimetric WST-1 assay. Control data were obtained from identical cell lines cultivated without treosulfan. Incubation with treosulfan inhibited cell viability and led to cell death in all cell lines in a dose- and time-dependent manner. After one day, viability of LNCaP, DU145 and PC3 cells was constantly reduced with a dose rate of at least 10 microM (p < 0.001), 10 microM (p < 0.0001) and 100 microM (p < 0.0001) treosulfan, respectively. Minimum dose rates leading to death of nearly all LNCaP, DU145 and PC3 cells were 250 microM, 100 microM and 200 microM treosulfan, respectively. The results demonstrate a sensitivity of prostate carcinoma cells to the cytotoxic activity of treosulfan. Therefore, treosulfan might be a promising compound for novel treatment protocols for prostate cancer.
NEMO educational kit on micro-optics at the secondary school
NASA Astrophysics Data System (ADS)
Flores-Arias, M. T.; Bao-Varela, Carmen
2014-07-01
NEMO was the "Network of Excellence in Micro-Optics" granted in the "Sixth Framework Program" of the European Union. It aimed at providing Europe with a complete Micro-Optics food-chain, by setting up centers for optical modeling and design; measurement and instrumentation; mastering, prototyping and replication; integration and packaging and reliability and standardization. More than 300 researchers from 30 groups in 12 countries participated in the project. One of the objectives of NEMO was to spread excellence and disseminate knowledge on micro-optics and micro-photonics. To convince pupils, already from secondary school level on, about the crucial role of light and micro-optics and the opportunities this combination holds, several partners of NEMO had collaborate to create this Educational Kit. In Spain the partner involved in this aim was the "Microoptics and GRIN Optics Group" at the University of Santiago of Compostela (USC). The educational kits provided to the Secondary School were composed by two plastic cards with the following microoptical element: different kinds of diffractive optical elements or DOES and refractive optical elements or ROEs namely arrays of micro-lenses. The kit also included a DVD with a handbook for performing the experiments as well as a laser pointer source. This kit was distributed free of charge in the countries with partners in NEMO. In particular in Spain was offered to around 200 Secondary School Centers and only 80 answered accepting evaluate the kit.
Gravells, P; Hoh, L; Canovas, D; Rennie, I G; Sisley, K; Bryant, H E
2011-01-01
Background: Uveal melanoma (UM) is the most common primary intraocular tumour of adults, frequently metastasising to the liver. Hepatic metastases are difficult to treat and are mainly unresponsive to chemotherapy. To investigate why UM are so chemo-resistant we explored the effect of interstrand cross-linking agents mitomycin C (MMC) and cisplatin in comparison with hydroxyurea (HU). Methods: Sensitivity to MMC, cisplatin and HU was tested in established UM cell lines using clonogenic assays. The response of UM to MMC was confirmed in MTT assays using short-term cultures of primary UM. The expression of cytochrome P450 reductase (CYP450R) was analysed by western blotting, and DNA cross-linking was assessed using COMET analysis supported by γ-H2AX foci formation. Results: Both established cell lines and primary cultures of UM were resistant to the cross-linking agent MMC (in each case P<0.001 in Student's t-test compared with controls). In two established UM cell lines, DNA cross-link damage was not induced by MMC (in both cases P<0.05 in Students's t-test compared with damage induced in controls). In all, 6 out of 6 UMs tested displayed reduced expression of the metabolising enzyme CYP450R and transient expression of CYP450R increased MMC sensitivity of UM. Conclusion: We suggest that reduced expression of CYP450R is responsible for MMC resistance of UM, through a lack of bioactivation, which can be reversed by complementing UM cell lines with CYP450R. PMID:21386838
NASA Astrophysics Data System (ADS)
Fontanive, Clemence
2017-08-01
We propose to obtain WFC3/IR imaging of the very coolest brown dwarfs (T < 800 K) to search for substellar and planetary-mass companions to these objects. Companions discovered by this program would likely be analogues of the 250 K brown dwarf WISE 0855 and would provide vital benchmark objects for theoretical models, closing the gap in mass and temperature between brown dwarfs and planets. Finding such an object as a member of a binary system would be even more valuable as it would allow for the measurement of dynamical masses. We recently placed the first constraints to date on the binary frequency for brown dwarfs with spectral types >T8. This program will triple our current sample size, a requirement in order to confirm our current results and compare substellar binary properties for various spectral type and age populations. The WFC3/IR plate will allow us to probe near equal-mass binaries down to separations of 0.2 (2-3 AU for the typical distances of our targets). True cool companions should show strong absorption around 1.4 um as a result of the deep water absorption band observed at that wavelength in substellar spectra. We therefore propose observations in the WFC3 F127M and F139M filters which will allow us to robustly identify bona fide candidates and distinguish them from background stars based on this spectral feature. Most of our targets lack suitable NGS AO guide stars or LGS AO tip-tilt stars to be observed with ground-based telescopes, and the 1.4 um water band is often unobservable from the ground due to telluric water absorption. WFC3 on HST is thus the only instrument suitable for these observations.
VizieR Online Data Catalog: Redshift survey of ALMA-identified SMGs in ECDFS (Danielson+, 2017)
NASA Astrophysics Data System (ADS)
Danielson, A. L. R.; Swinbank, A. M.; Smail, I.; Simpson, J. M.; Casey, C. M.; Chapman, S. C.; da Cunha, E.; Hodge, J. A.; Walter, F.; Wardlow, J. L.; Alexander, D. M.; Brandt, W. N.; De Breuck, C.; Coppin, K. E. K.; Dannerbauer, H.; Dickinson, M.; Edge, A. C.; Gawiser, E.; Ivison, R. J.; Karim, A.; Kovacs, A.; Lutz, D.; Menten, K.; Schinnerer, E.; Weiss, A.; van der Werf, P.
2017-11-01
The 870um LESS survey (Weiss+ 2009, J/ApJ/707/1201) was undertaken using the LABOCA camera on APEX, covering an area of 0.5°x0.5° centered on the ECDFS. Follow-up observations of the LESS sources were carried out with ALMA (Hodge+ 2013, J/ApJ/768/91). In summary, observations for each source were taken between 2011 October and November in the Cycle 0 Project #2011.1.00294.S. To search for spectroscopic redshifts, we initiated an observing campaign using the the FOcal Reducer and low dispersion Spectrograph (FORS2) and VIsible MultiObject Spectrograph (VIMOS) on VLT (program 183.A-0666), but to supplement these observations, we also obtained observations with XSHOOTER on VLT (program 090.A-0927(A) from 2012 December 7-10), the Gemini Near-Infrared Spectrograph (GNIRS; program GN-2012B-Q-90) and the Multi-Object Spectrometer for Infra-Red Exploration (MOSFIRE) on the Keck I telescope (2012B_H251M, 2013BU039M, and 2013BN114M), all of which cover the near-infrared. As part of a spectroscopic campaign targeting Herschel-selected galaxies in the ECDFS, ALESS submillimeter galaxies (SMGs) were included on DEep Imaging Multi-Object Spectrograph (DEIMOS) slit masks on Keck II (program 2012B_H251). In total, we observed 109 out of the 131 ALESS SMGs in the combined main and supp samples. Spectroscopic redshifts for two of our SMGs, ALESS61.1 and ALESS65.1, were determined from serendipitous detections of the [CII]λ158um line in the ALMA band. See section 2.7. (2 data files).
Virtual learning object and environment: a concept analysis.
Salvador, Pétala Tuani Candido de Oliveira; Bezerril, Manacés Dos Santos; Mariz, Camila Maria Santos; Fernandes, Maria Isabel Domingues; Martins, José Carlos Amado; Santos, Viviane Euzébia Pereira
2017-01-01
To analyze the concept of virtual learning object and environment according to Rodgers' evolutionary perspective. Descriptive study with a mixed approach, based on the stages proposed by Rodgers in his concept analysis method. Data collection occurred in August 2015 with the search of dissertations and theses in the Bank of Theses of the Coordination for the Improvement of Higher Education Personnel. Quantitative data were analyzed based on simple descriptive statistics and the concepts through lexicographic analysis with support of the IRAMUTEQ software. The sample was made up of 161 studies. The concept of "virtual learning environment" was presented in 99 (61.5%) studies, whereas the concept of "virtual learning object" was presented in only 15 (9.3%) studies. A virtual learning environment includes several and different types of virtual learning objects in a common pedagogical context. Analisar o conceito de objeto e de ambiente virtual de aprendizagem na perspectiva evolucionária de Rodgers. Estudo descritivo, de abordagem mista, realizado a partir das etapas propostas por Rodgers em seu modelo de análise conceitual. A coleta de dados ocorreu em agosto de 2015 com a busca de dissertações e teses no Banco de Teses e Dissertações da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior. Os dados quantitativos foram analisados a partir de estatística descritiva simples e os conceitos pela análise lexicográfica com suporte do IRAMUTEQ. A amostra é constituída de 161 estudos. O conceito de "ambiente virtual de aprendizagem" foi apresentado em 99 (61,5%) estudos, enquanto o de "objeto virtual de aprendizagem" em apenas 15 (9,3%). Concluiu-se que um ambiente virtual de aprendizagem reúne vários e diferentes tipos de objetos virtuais de aprendizagem em um contexto pedagógico comum.
Simulation of Micron-Sized Debris Populations in Low Earth Orbit
NASA Technical Reports Server (NTRS)
Xu, Y.-L.; Hyde, J. L.; Prior, T.; Matney, Mark
2010-01-01
The update of ORDEM2000, the NASA Orbital Debris Engineering Model, to its new version ORDEM2010, is nearly complete. As a part of the ORDEM upgrade, this paper addresses the simulation of micro-debris (greater than 10 m and smaller than 1 mm in size) populations in low Earth orbit. The principal data used in the modeling of the micron-sized debris populations are in-situ hypervelocity impact records, accumulated in post-flight damage surveys on the space-exposed surfaces of returned spacecrafts. The development of the micro-debris model populations follows the general approach to deriving other ORDEM2010-required input populations for various components and types of debris. This paper describes the key elements and major steps in the statistical inference of the ORDEM2010 micro-debris populations. A crucial step is the construction of a degradation/ejecta source model to provide prior information on the micron-sized objects (such as orbital and object-size distributions). Another critical step is to link model populations with data, which is rather involved. It demands detailed information on area-time/directionality for all the space-exposed elements of a shuttle orbiter and damage laws, which relate impact damage with the physical properties of a projectile and impact conditions such as impact angle and velocity. Also needed are model-predicted debris fluxes as a function of object size and impact velocity from all possible directions. In spite of the very limited quantity of the available shuttle impact data, the population-derivation process is satisfactorily stable. Final modeling results obtained from shuttle window and radiator impact data are reasonably convergent and consistent, especially for the debris populations with object-size thresholds at 10 and 100 m.
Simulation of Micron-Sized Debris Populations in Low Earth Orbit
NASA Technical Reports Server (NTRS)
Xu, Y.-L.; Matney, M.; Liou, J.-C.; Hyde, J. L.; Prior, T. G.
2010-01-01
The update of ORDEM2000, the NASA Orbital Debris Engineering Model, to its new version . ORDEM2010, is nearly complete. As a part of the ORDEM upgrade, this paper addresses the simulation of micro-debris (greater than 10 micron and smaller than 1 mm in size) populations in low Earth orbit. The principal data used in the modeling of the micron-sized debris populations are in-situ hypervelocity impact records, accumulated in post-flight damage surveys on the space-exposed surfaces of returned spacecrafts. The development of the micro-debris model populations follows the general approach to deriving other ORDEM2010-required input populations for various components and types of debris. This paper describes the key elements and major steps in the statistical inference of the ORDEM2010 micro-debris populations. A crucial step is the construction of a degradation/ejecta source model to provide prior information on the micron-sized objects (such as orbital and object-size distributions). Another critical step is to link model populations with data, which is rather involved. It demands detailed information on area-time/directionality for all the space-exposed elements of a shuttle orbiter and damage laws, which relate impact damage with the physical properties of a projectile and impact conditions such as impact angle and velocity. Also needed are model-predicted debris fluxes as a function of object size and impact velocity from all possible directions. In spite of the very limited quantity of the available shuttle impact data, the population-derivation process is satisfactorily stable. Final modeling results obtained from shuttle window and radiator impact data are reasonably convergent and consistent, especially for the debris populations with object-size thresholds at 10 and 100 micron.
Albéric, Marie; Müller, Katharina; Pichon, Laurent; Lemasson, Quentin; Moignard, Brice; Pacheco, Claire; Fontan, Elisabeth; Reiche, Ina
2015-05-01
Antique objects are known to have been brightly colored. However, the appearance of these objects has changed over time and paint traces are rarely preserved. The surface of ivory objects (8th century B.C., Syria) from the Louvre museum collection (Paris) have been non-invasively studied by simultaneous particle-induced X-ray emission (PIXE) and Rutherford and elastic backscattering spectrometry (RBS/EBS) micro-imaging at the AGLAE facility (C2RMF, Paris). Qualitative 2D chemical images of elements ranging from Na to Pb on the surface of the ancient ivory carvings provide evidence of lost polychromy and gilding. Quantitative PIXE data of specific areas allow discrimination between traces of sediments and former polychromy. Different shades of blue can be differentiated from particular Pb/Cu ratios. The characterization of gilding based on RBS data demonstrates the exceptional technological skills of the Phoenician craftsmen supposed to have carved the Arslan Tash ivories. More precise reconstructions of the original polychromy compared to previous studies and a criterion for the authentication of ancient gilded ivory object are proposed. Copyright © 2015 Elsevier B.V. All rights reserved.
Micromechanical slit positioning system as a transmissive spatial light modulator
NASA Astrophysics Data System (ADS)
Riesenberg, Rainer
2001-11-01
Micro-slits have been prepared with a slit-width and a slit- length of 2 ... 1000 micrometers . Linear and two-dimensional arrays up to 10 x 110 slits have been developed and completed with a piezo-actuator for shifting. This system is a so-called mechanical slit positioning system. The light is switched by simple one- or two-dimensional displacement of coded slit masks in a one- or two-layer architecture. The slit positioning system belongs to the transmissive class of MEMS-based spatial light modulators (SLM). It has fundamental advantages for optical contrast and also can be used in the full spectral region. Therefore transmissive versions of SLM should be a future solution. Instrument architectures based on the slit positioning system can increase the resolution by subpixel generation, the throughput by HADAMARD transform mode, or select objects for multi-object-spectroscopy. The linear slit positioning system was space qualified within an advanced micro- spectrometer. A NIR multi-object-spectrometer for the Next Generation Space Telescope (NGST) is based on a field selector for selecting objects. The field selector is a SLM, which could be implemented by a slit positioning system.
Escaping the maze: micro-swimmers using acoustic forces to navigate
NASA Astrophysics Data System (ADS)
Louf, Jean-Francois; Dollet, Benjamin; Stephan, Olivier; Marmottant, Philippe
2017-11-01
The goal of this study is to make 3D micro-swimmers containing a bubble that can be stimulated with acoustic waves emitted by a transducer, and whose direction is accurately controlled. By using 3D micro-fabrication techniques, we designed 40x40 μm swimmers with a trapped air bubble. We then applied acoustic vibration to the bubble, which generates a strong steady flow (1-100 mm/s) behind it, an effect referred as acoustic streaming. However, independently from the orientation of the bubble and thus from the flow, the motion of the swimmer is found to be towards the transducer. This suggests that primary Bjerknes forces, i.e. acoustic radiation forces, are involved. Subsequently, using different transducers located at different points, we could be able to navigate the swimmer in a chosen direction. The next step of our study is to use a stationary wave and Bjerknes forces to bring encapsulated objects in a pressure node. Without bubbles, the effect of acoustic streaming on big objects of more than a micrometer is not sufficient to generate motion. However, with the presence of bubbles, our swimmers should be able to move. ERC BUBBLEBOOST.
Knudsen torque on heated micro beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Qi; Liang, Tengfei; Ye, Wenjing
Thermally induced mechanical loading has been shown to have significant effects on micro/nano objects immersed in a gas with a non-uniform temperature field. While the majority of existing studies and related applications focus on forces, we investigate the torque, and thus the rotational motion, produced by such a mechanism. Using the asymptotic analysis in the near continuum regime, the Knudsen torque acting on an asymmetrically located uniformly heated microbeam in a cold enclosure is investigated. The existence of a non-zero net torque is demonstrated. In addition, it has been found that by manipulating the system configuration, the rotational direction ofmore » the torque can be changed. Two types of rotational motion of the microbeam have been identified: the pendulum motion of a rectangular beam, and the unidirectional rotation of a cylindrical beam. A rotational frequency of 4 rpm can be achieved for the cylindrical beam with a diameter of 3μm at Kn = 0.005. Illustrated by the simulations using the direct simulation of Monte Carlo, the Knudsen torque can be much increased in the transition regime, demonstrating the potential of Knudsen torque serving as a rotation engine for micro/nano objects.« less
Labrecque, M; Dostaler, L P; Dumont, H; Huard, G; Laflamme, L
1993-01-01
OBJECTIVE: To determine the interobserver reliability of tympanograms obtained with the MicroTymp, a portable tympanometer. SETTING: Family medicine teaching unit in a tertiary care hospital. PATIENTS: Thirty-three patients who presented to the ear, nose and throat clinic in August 1990 for an ear problem. INTERVENTION: Three residents in family medicine independently attempted to record with the MicroTymp one tympanogram for the 66 ears. We excluded the results for seven ears for which tympanograms could not be obtained. MAIN OUTCOME MEASURE: Using objective criteria, two family physicians and two residents in family medicine independently classified the 177 tympanograms into five categories (normal, possible effusion, possible perforation, possible tympano-ossicular dysfunction and unclassifiable). Reliability was estimated by means of the kappa (kappa) coefficient on 161 tympanograms from 59 ears for which the interpretation of the three tympanograms agreed. MAIN RESULTS: The interpretation of the three tympanograms agreed for 34 of the 59 ears (0.58) (kappa = 0.52, 95% confidence limits 0.45 and 0.59). There was no significant difference in interobserver reliability between pairs of observers or between symptomatic and asymptomatic ears. CONCLUSIONS: The interobserver reliability of the MicroTymp is moderate. The tympanograms obtained with the instrument should be interpreted in the context of the clinical findings. PMID:8431817
Optimisation of a propagation-based x-ray phase-contrast micro-CT system
NASA Astrophysics Data System (ADS)
Nesterets, Yakov I.; Gureyev, Timur E.; Dimmock, Matthew R.
2018-03-01
Micro-CT scanners find applications in many areas ranging from biomedical research to material sciences. In order to provide spatial resolution on a micron scale, these scanners are usually equipped with micro-focus, low-power x-ray sources and hence require long scanning times to produce high resolution 3D images of the object with acceptable contrast-to-noise. Propagation-based phase-contrast tomography (PB-PCT) has the potential to significantly improve the contrast-to-noise ratio (CNR) or, alternatively, reduce the image acquisition time while preserving the CNR and the spatial resolution. We propose a general approach for the optimisation of the PB-PCT imaging system. When applied to an imaging system with fixed parameters of the source and detector this approach requires optimisation of only two independent geometrical parameters of the imaging system, i.e. the source-to-object distance R 1 and geometrical magnification M, in order to produce the best spatial resolution and CNR. If, in addition to R 1 and M, the system parameter space also includes the source size and the anode potential this approach allows one to find a unique configuration of the imaging system that produces the required spatial resolution and the best CNR.
3D visualization of two-phase flow in the micro-tube by a simple but effective method
NASA Astrophysics Data System (ADS)
Fu, X.; Zhang, P.; Hu, H.; Huang, C. J.; Huang, Y.; Wang, R. Z.
2009-08-01
The present study provides a simple but effective method for 3D visualization of the two-phase flow in the micro-tube. An isosceles right-angle prism combined with a mirror located 45° bevel to the prism is employed to synchronously obtain the front and side views of the flow patterns with a single camera, where the locations of the prism and the micro-tube for clear imaging should satisfy a fixed relationship which is specified in the present study. The optical design is proven successfully by the tough visualization work at the cryogenic temperature range. The image deformation due to the refraction and geometrical configuration of the test section is quantitatively investigated. It is calculated that the image is enlarged by about 20% in inner diameter compared to the real object, which is validated by the experimental results. Meanwhile, the image deformation by adding a rectangular optical correction box outside the circular tube is comparatively investigated. It is calculated that the image is reduced by about 20% in inner diameter with a rectangular optical correction box compared to the real object. The 3D re-construction process based on the two views is conducted through three steps, which shows that the 3D visualization method can easily be applied for two-phase flow research in micro-scale channels and improves the measurement accuracy of some important parameters of the two-phase flow such as void fraction, spatial distribution of bubbles, etc.
Asymmetric micro-Doppler frequency comb generation via magnetoelectric coupling
NASA Astrophysics Data System (ADS)
Filonov, Dmitry; Steinberg, Ben Z.; Ginzburg, Pavel
2017-06-01
Electromagnetic scattering from moving bodies, being an inherently time-dependent phenomenon, gives rise to a generation of new frequencies, which can be used to characterize the motion. Whereas an ordinary motion along a linear path produces a constant Doppler shift, an accelerated scatterer can generate a micro-Doppler frequency comb. The spectra produced by rotating objects were studied and observed in a bistatic lock-in detection scheme. The internal geometry of a scatterer was shown to determine the spectrum, and the degree of structural asymmetry was suggested to be identified via signatures in the micro-Doppler comb. In particular, hybrid magnetoelectric particles, showing an ultimate degree of asymmetry in forward and backward scattering directions, were investigated. It was shown that the comb in the backward direction has signatures at the fundamental rotation frequency and its odd harmonics, whereas the comb of the forward scattered field has a prevailing peak at the doubled frequency and its multiples. Additional features of the comb were shown to be affected by the dimensions of the particle and by the strength of the magnetoelectric coupling. Experimental verification was performed with a printed circuit board antenna based on a wire and a split ring, while the structure was illuminated at a 2 GHz carrier frequency. Detailed analysis of micro-Doppler combs enables remote detection of asymmetric features of distant objects and could find use in a span of applications, including stellar radiometry and radio identification.
Caldwell, Sarah E M; Mays, Nicholas
2012-10-15
The publication of Best research for best health in 2006 and the "ring-fencing" of health research funding in England marked the start of a period of change for health research governance and the structure of research funding in England. One response to bridging the 'second translational gap' between research knowledge and clinical practice was the establishment of nine Collaborations for Leadership in Applied Health Research and Care (CLAHRCs). The goal of this paper is to assess how national-level understanding of the aims and objectives of the CLAHRCs translated into local implementation and practice in North West London. This study uses a variation of Goffman's frame analysis to trace the development of the initial national CLAHRC policy to its implementation at three levels. Data collection and analysis were qualitative through interviews, document analysis and embedded research. Analysis at the macro (national policy), meso (national programme) and micro (North West London) levels shows a significant common understanding of the aims and objectives of the policy and programme. Local level implementation in North West London was also consistent with these. The macro-meso-micro frame analysis is a useful way of studying the transition of a policy from high-level idea to programme in action. It could be used to identify differences at a local (micro) level in the implementation of multi-site programmes that would help understand differences in programme effectiveness.
VizieR Online Data Catalog: Velocity catalog of A545 galaxies (Barrena+, 2011)
NASA Astrophysics Data System (ADS)
Barrena, R.; Girardi, M.; Boschin, W.; de Grandi, S.; Eckert, D.; Rossetti, M.
2011-08-01
Multi-object spectroscopic observations of A545 were carried out at the TNG telescope in October 2009. We used DOLORES/MOS with the LR-B Grism 1, yielding a dispersion of 187Å/mm. We used the new 2048x2048pixels E2V CCD, with a pixel size of 13.5um. In total, we observed 4 MOS masks for a total of 142 slits. We acquired three exposures of 1200s for each mask. (1 data file).
Detecting metal-poor gas accretion in the star-forming dwarf galaxies UM 461 and Mrk 600
NASA Astrophysics Data System (ADS)
Lagos, P.; Scott, T. C.; Nigoche-Netro, A.; Demarco, R.; Humphrey, A.; Papaderos, P.
2018-06-01
Using VIsible MultiObject Spectrograph (VIMOS)-integral field unit (IFU) observations, we study the interstellar medium (ISM) of two star-forming dwarf galaxies, UM 461 and Mrk 600. Our aim was to search for the existence of metallicity inhomogeneities that might arise from infall of nearly pristine gas feeding ongoing localized star formation. The IFU data allowed us to study the impact of external gas accretion on the chemical evolution as well as the ionized gas kinematics and morphologies of these galaxies. Both systems show signs of morphological distortions, including cometary-like morphologies. We analysed the spatial variation of 12 + log(O/H) abundances within both galaxies using the direct method (Te), the widely applied HII-CHI-mistry code, as well as by employing different standard calibrations. For UM 461, our results show that the ISM is fairly well mixed, at large scales; however, we find an off-centre and low-metallicity region with 12 + log(O/H) < 7.6 in the SW part of the brightest H II region, using the direct method. This result is consistent with the recent infall of a metal-poor H I cloud into the region now exhibiting the lowest metallicity, which also displays localized perturbed neutral and ionized gas kinematics. Mrk 600 in contrast, appears to be chemically homogeneous on both large and small scales. The intrinsic differences in the spatially resolved properties of the ISM in our analysed galaxies are consistent with these systems being at different evolutionary stages.
NASA Astrophysics Data System (ADS)
Noh, Young-Chan; Sohn, Byung-Ju; Kim, Yoonjae; Joo, Sangwon; Bell, William; Saunders, Roger
2017-11-01
A new set of Infrared Atmospheric Sounding Interferometer (IASI) channels was re-selected from 314 EUMETSAT channels. In selecting channels, we calculated the impact of the individually added channel on the improvement in the analysis outputs from a one-dimensional variational analysis (1D-Var) for the Unified Model (UM) data assimilation system at the Met Office, using the channel score index (CSI) as a figure of merit. Then, 200 channels were selected in order by counting each individual channel's CSI contribution. Compared with the operationally used 183 channels for the UM at the Met Office, the new set shares 149 channels, while the other 51 channels are new. Also examined is the selection from the entropy reduction method with the same 1D-Var approach. Results suggest that channel selection can be made in a more objective fashion using the proposed CSI method. This is because the most important channels can be selected across the whole IASI observation spectrum. In the experimental trial runs using the UM global assimilation system, the new channels had an overall neutral impact in terms of improvement in forecasts, as compared with results from the operational channels. However, upper-tropospheric moist biases shown in the control run with operational channels were significantly reduced in the experimental trial with the newly selected channels. The reduction of moist biases was mainly due to the additional water vapor channels, which are sensitive to the upper-tropospheric water vapor.
Poropatich, Kate; Yang, Jason C; Goyal, Rajen; Parini, Vamsi; Yang, Ximing J
2016-06-30
Pathological diagnosis of urothelial carcinoma (UC) is primarily based on cytological atypia. It has previously been shown that high-grade (HG) UC, particularly UC in situ cells (CIS), can be over five times the size of a lymphocyte. However, this has not been demonstrated in comparison to reactive urothelium. The objective of this study was to empirically compare the difference in nuclear size of UC cells with reactive urothelial cells. Using CellSens imaging software, we measured urothelial nuclear length (l) and width (w) on digital images of H&E sections. The area (a) of a nucleus was calculated based on the oval shape of most urothelial cells. Lymphocytes were measured to calculate normalized urothelial linear and area ratios. A total of 1085 urothelial cell nuclei from 60 cases were measured from reactive urothelium, low grade (LG) UC, HG UC and CIS. CIS nuclei were found to have an a 2.75 times larger than reactive nuclei (p < 0.001). A nuclear size cut-off of 11 um for l and 7 um for w was found to be sensitive [98.09 % (95 % CI: 95.60-99.38 %) and 89.31 % (95 % CI: 83.6-91.82 %) for l and w, respectively] and specific [92.60 % (95 % CI: 87.13-95.82 %) and 85.71 % (95 % CI: 79.49-90.63 %) for l and w, respectively] for distinguishing CIS from reactive atypia. Nuclear morphometry can be used to differentiate CIS from reactive atypia. A l over 11 um and a w over 7 um and is highly sensitive and specific for CIS compared to reactive urothelium. This difference in nuclear size may be used as a tool for differentiating the flat urothelial lesions from reactive urothelium in daily practice.
Benchmarking Brown Dwarf Models With a Non-irradiated Transiting Brown Dwarf in Praesepe
NASA Astrophysics Data System (ADS)
Beatty, Thomas; Marley, Mark; Line, Michael; Gizis, John
2018-05-01
We wish to use 9.4 hours of Spitzer time to observe two eclipses, one each at 3.6um and 4.5um, of the transiting brown dwarf AD 3116b. AD 3116b is a 54.2+/-4.3 MJ, 1.08+/-0.07 RJ object on a 1.98 day orbit about a 3200K M-dwarf. Uniquely, AD 3116 and its host star are both members of Praesepe, a 690+/-60 Myr old open cluster. AD 3116b is thus one of two transiting brown dwarfs for which we have a robust isochronal age that is not dependent upon brown dwarf evolutionary models, and the youngest brown dwarf for which this is the case. Importantly, the flux AD 3116b receives from its host star is only 0.7% of its predicted internal luminosity (Saumon & Marley 2008). This makes AD 3116b the first known transiting brown dwarf that simultaneously has a well-defined age, and that receives a negligible amount of external irradiation, and a unique laboratory to test radius and luminosity predictions from brown dwarf evolutionary models. Our goal is to measure the emission from the brown dwarf. AD 3116b should have large, 25 mmag, eclipse depths in the Spitzer bandpasses, and we expect to measure them with a precision of +/-0.50 mmag at 3.6um and +/-0.54 mmag at 4.5um. This will allow us to make measure AD 3116b?s internal effective temperature to +/-40K. We will also use the upcoming Gaia DR2 parallaxes to measure AD 3116b's absolute IRAC magnitudes and color, and hence determine the cloud properties of the atmosphere. As the only known brown dwarf with an independently measured mass, radius, and age, Spitzer measurements of AD 3116b's luminosity and clouds will provide a critical benchmark for brown dwarf observation and theory.
Lensfree super-resolution holographic microscopy using wetting films on a chip
NASA Astrophysics Data System (ADS)
Mudanyali, Onur; Bishara, Waheb; Ozcan, Aydogan
2011-08-01
We investigate the use of wetting films to significantly improve the imaging performance of lensfree pixel super-resolution on-chip microscopy, achieving < 1 μm spatial resolution over a large imaging area of ~24 mm2. Formation of an ultra-thin wetting film over the specimen effectively creates a micro-lens effect over each object, which significantly improves the signal-to-noise-ratio and therefore the resolution of our lensfree images. We validate the performance of this approach through lensfree on-chip imaging of various objects having fine morphological features (with dimensions of e.g., ≤0.5 μm) such as Escherichia coli (E. coli), human sperm, Giardia lamblia trophozoites, polystyrene micro beads as well as red blood cells. These results are especially important for the development of highly sensitive field-portable microscopic analysis tools for resource limited settings.
Skin Friction Reduction by Micro-Blowing Technique
NASA Technical Reports Server (NTRS)
Hwang, Danny P. (Inventor)
1998-01-01
A system and method for reducing skin friction of an object in relative motion to a fluid. A skin forming a boundary between the object and the fluid, the skin having holes through which micro-blowing of air is blown and a transmitting mechanism for transmitting air through the skin. The skin has an inner layer and an outer layer. the inner layer being a low permeable porous sheet, the outer layer being a plate having high aspect ratio high porosity. and small holes. The system may further include a suction apparatus for suctioning air from the outer layer. The method includes the steps of transmitting air through the inner layer and passing the air transmitted through the inner layer to the outer layer. The method may further include the step of bleeding air off the outer layer using the suction apparatus.
The unusual helium variable AM Canum Venaticorum
NASA Technical Reports Server (NTRS)
Provencal, J. L.; Winget, D. E.; Nather, R. E.; Robinson, E. L.; Solheim, J.-E.; Clemens, J. C.; Bradley, J. L.; Kleinman, S. J.; Kanaan, A.; Claver, C. F.
1995-01-01
The unusual variable star AM CVn has puzzled astronomers for over 40 years. This object, both a photometric and spectroscopic variable, is believed to contain a pair of hydrogen-deficient white dwarfs of extreme mass ratio, transferring material via an accretion disk. We examine the photometric properties of AM CVn, analyzing 289 hours of high-speed photometric data spanning 1976 to 1992. The power spectrum displays significant peaks at 988.7, 1248.8, 1902.5, 2853.8, 3805.2, 4756.5, and 5707.8 microHz (1011.4, 800.8, 525.6, 350.4, 262.8, 210.2, and 175.2 s). We find no detectable power at 951.3 microHz (1051 s), the previously reported main frequency. The 1902.5, 2853.9, and 3805.2 microHz peaks are multiplets, with frequency splitting in each case of 20.77 +/- 0.05 microHz. The 1902.5 microHz seasonal pulse shapes are identical, within measurement noise, and maintain the same amplitude and phase as a function of color. We have determined the dominant frequency to be 1902.50902 +/- 0.00001 microHz with dot P = +1.71 (+/- 0.04) x 10(exp -11) s/s. We discuss the implications of these findings on a model for AM CVn.
Issues regarding the usage of MPPT techniques in micro grid systems
NASA Astrophysics Data System (ADS)
Szeidert, I.; Filip, I.; Dragan, F.; Gal, A.
2018-01-01
The main objective of the control strategies applied at hybrid micro grid systems (wind/hydro/solar), that function based on maximum power point tracking (MPPT) techniques is to improve the conversion system’s efficiency and to preserve the quality of the generated electrical energy (voltage and power factor). One of the main goals of maximum power point tracking strategy is to achieve the harvesting of the maximal possible energy within a certain time period. In order to implement the control strategies for micro grid, there are typically required specific transducers (sensor for wind speed, optical rotational transducers, etc.). In the technical literature, several variants of the MPPT techniques are presented and particularized at some applications (wind energy conversion systems, solar systems, hydro plants, micro grid hybrid systems). The maximum power point tracking implementations are mainly based on two-level architecture. The lower level controls the main variable and the superior level represents the MPPT control structure. The paper presents micro grid structures developed at Politehnica University Timisoara (PUT) within the frame of a research grant. The paper is focused on the application of MPPT strategies on hybrid micro grid systems. There are presented several structures and control strategies and are highlighted their advantages and disadvantages, together with practical implementation guidelines.
Luscan, A; Just, P A; Briand, A; Burin des Roziers, C; Goussard, P; Nitschké, P; Vidaud, M; Avril, M F; Terris, B; Pasmant, E
2015-04-01
Uveal melanoma (UM) is the most common malignant tumour of the eye. Diagnosis often occurs late in the course of disease, and prognosis is generally poor. Recently, recurrent somatic mutations were described, unravelling additional specific altered pathways in UM. Targeted next-generation sequencing (NGS) can now be applied to an accurate and fast identification of somatic mutations in cancer. The aim of the present study was to characterise the mutation pattern of five UM hepatic metastases with well-defined clinical and pathological features. We analysed the UM mutation spectrum using targeted NGS on 409 cancer genes. Four previous reported genes were found to be recurrently mutated. All tumours presented mutually exclusive GNA11 or GNAQ missense mutations. BAP1 loss-of-function mutations were found in three UMs. SF3B1 missense mutations were found in the two UMs with no BAP1 mutations. We then searched for additional mutation targets. We identified the Arg505Cys mutation in the tumour suppressor FBXW7. The same mutation was previously described in different cancer types, and FBXW7 was recently reported to be mutated in UM exomes. Further studies are required to confirm FBXW7 implication in UM tumorigenesis. Elucidating the molecular mechanisms underlying UM tumorigenesis holds the promise for novel and effective targeted UM therapies. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Zheng, Yun; Fu, Xinliang; Wang, Lifang; Zhang, Wenyan; Zhou, Pei; Zhang, Xin; Zeng, Weijie; Chen, Jidang; Cao, Zongxi; Jia, Kun; Li, Shoujun
2018-05-14
MicroRNAs, a class of noncoding RNAs 18 to 23 nucleotides (nt) in length, play critical roles in a wide variety of biological processes. The objective of this study was to examine differences in microRNA expression profiles derived from the lungs of beagle dogs infected with the avian-origin H3N2 canine influenza virus (CIV) or the highly pathogenic avian influenza (HPAI) H5N1 virus (canine-origin isolation strain). After dogs were infected with H3N2 or H5N1, microRNA expression in the lungs was assessed using a deep-sequencing approach. To identify the roles of microRNAs in viral pathogenicity and the host immune response, microRNA target genes were predicted, and their functions were analyzed using bioinformatics software. A total of 229 microRNAs were upregulated in the H5N1 infection group compared with those in the H3N2 infection group, and 166 microRNAs were downregulated. MicroRNA target genes in the H5N1 group were more significantly involved in metabolic pathways, such as glycerolipid metabolism and glycerophospholipid metabolism, than those in the H3N2 group. The inhibition of metabolic pathways may lead to appetite loss, weight loss and weakened immunity. Moreover, miR-485, miR-144, miR-133b, miR-4859-5p, miR-6902-3p, miR-7638, miR-1307-3p and miR-1346 were significantly altered microRNAs that potentially led to the inhibition of innate immune pathways and the heightened pathogenicity of H5N1 compared with that of H3N2 in dogs. This study deepens our understanding of the complex relationships among microRNAs, the influenza virus-mediated immune response and immune injury in dogs. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Harris, J. P.; Struzyna, L. A.; Murphy, P. L.; Adewole, D. O.; Kuo, E.; Cullen, D. K.
2016-02-01
Objective. Connectome disruption is a hallmark of many neurological diseases and trauma with no current strategies to restore lost long-distance axonal pathways in the brain. We are creating transplantable micro-tissue engineered neural networks (micro-TENNs), which are preformed constructs consisting of embedded neurons and long axonal tracts to integrate with the nervous system to physically reconstitute lost axonal pathways. Approach. We advanced micro-tissue engineering techniques to generate micro-TENNs consisting of discrete populations of mature primary cerebral cortical neurons spanned by long axonal fascicles encased in miniature hydrogel micro-columns. Further, we improved the biomaterial encasement scheme by adding a thin layer of low viscosity carboxymethylcellulose (CMC) to enable needle-less insertion and rapid softening for mechanical similarity with brain tissue. Main results. The engineered architecture of cortical micro-TENNs facilitated robust neuronal viability and axonal cytoarchitecture to at least 22 days in vitro. Micro-TENNs displayed discrete neuronal populations spanned by long axonal fasciculation throughout the core, thus mimicking the general systems-level anatomy of gray matter—white matter in the brain. Additionally, micro-columns with thin CMC-coating upon mild dehydration were able to withstand a force of 893 ± 457 mN before buckling, whereas a solid agarose cylinder of similar dimensions was predicted to withstand less than 150 μN of force. This thin CMC coating increased the stiffness by three orders of magnitude, enabling needle-less insertion into brain while significantly reducing the footprint of previous needle-based delivery methods to minimize insertion trauma. Significance. Our novel micro-TENNs are the first strategy designed for minimally invasive implantation to facilitate nervous system repair by simultaneously providing neuronal replacement and physical reconstruction of long-distance axon pathways in the brain. The micro-TENN approach may offer the ability to treat several disorders that disrupt the connectome, including Parkinson’s disease, traumatic brain injury, stroke, and brain tumor excision.
Harris, J P; Struzyna, L A; Murphy, P L; Adewole, D O; Kuo, E; Cullen, D K
2017-01-01
Objective Connectome disruption is a hallmark of many neurological diseases and trauma with no current strategies to restore lost long-distance axonal pathways in the brain. We are creating transplantable micro-tissue engineered neural networks (micro-TENNs), which are preformed constructs consisting of embedded neurons and long axonal tracts to integrate with the nervous system to physically reconstitute lost axonal pathways. Approach We advanced micro-tissue engineering techniques to generate micro-TENNs consisting of discrete populations of mature primary cerebral cortical neurons spanned by long axonal fascicles encased in miniature hydrogel micro-columns. Further, we improved the biomaterial encasement scheme by adding a thin layer of low viscosity carboxymethylcellulose (CMC) to enable needle-less insertion and rapid softening for mechanical similarity with brain tissue. Main results The engineered architecture of cortical micro-TENNs facilitated robust neuronal viability and axonal cytoarchitecture to at least 22 days in vitro. Micro-TENNs displayed discrete neuronal populations spanned by long axonal fasciculation throughout the core, thus mimicking the general systems-level anatomy of gray matter—white matter in the brain. Additionally, micro columns with thin CMC-coating upon mild dehydration were able to withstand a force of 893 ± 457 mN before buckling, whereas a solid agarose cylinder of similar dimensions was predicted to withstand less than 150 μN of force. This thin CMC coating increased the stiffness by three orders of magnitude, enabling needle-less insertion into brain while significantly reducing the footprint of previous needle-based delivery methods to minimize insertion trauma. Significance Our novel micro-TENNs are the first strategy designed for minimally invasive implantation to facilitate nervous system repair by simultaneously providing neuronal replacement and physical reconstruction of long-distance axon pathways in the brain. The micro-TENN approach may offer the ability to treat several disorders that disrupt the connectome, including Parkinson’s disease, traumatic brain injury, stroke, and brain tumor excision PMID:26760138
McKeen, E S; Feniuk, W; Humphrey, P P
1994-01-01
1. The motor effects of somatostatin-14 (SRIF), and several SRIF peptide analogues were investigated on the rat isolated distal colon. The objective of these studies was to characterize the receptor mediating the contractile action of SRIF by comparing the relative agonist potencies of a range of SRIF analogues. 2. SRIF (1 nM-1 microM) produced concentration-dependent contractions with an EC50 value of approximately 10 nM. Contractile responses induced by SRIF were insensitive to atropine (1 microM) or naloxone (1 microM) but abolished by tetrodotoxin (1 microM). Somatostatin-28 (SRIF28), also induced concentration-dependent contractions and was equipotent with SRIF. Phosphoramidon (1 microM) and amastatin (10 microM) did not increase the potency of either SRIF or SRIF28. 3. The SRIF peptide analogues, octreotide, SRIF25, seglitide, angiopeptin and CGP23996 (1 nM-1 microM) produced contractile responses in the rat distal colon, each having similar potency and maximal activity relative to SRIF. The SSTR2 receptor-selective hexapeptide, BIM23027 (0.1 nM-1 microM), and the SRIF stereoisomer, D-Trp8-SRIF (0.1 nM-1 microM), were the most potent agonists examined being approximately 12 and 7 times more potent than SRIF, respectively. In contrast, the SSTR5 receptor-selective analogue, L362,855, was approximately 120 times weaker than SRIF, whilst the SSTR3 receptor-selective analogue, BIM23056, was inactive at concentrations up to 3 microM. 4. The putative SRIF receptor antagonist, (cyclo(7-aminoheptanoyl Phe-D-Trp-Lys-Thr[Bzl]))(CPP) (1 microM), had no agonist activity and had no effect on contractions induced by SRIF. 5. The contractile actions of BIM23027 and seglitide were subject to pronounced desensitization.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7834217
Costa, Priscila Ribas de Farias; Assis, Ana Marlúcia Oliveira; Cunha, Carla de Magalhães; Pereira, Emile Miranda; Jesus, Gabriela Dos Santos de; Silva, Lais Eloy Machado da; Alves, Wilanne Pinheiro de Oliveira
2017-07-01
The hypertriglyceridemic waist (HTW) phenotype is defined as the simultaneous presence of increased waist circumference (WC) and serum triglycerides (TG) levels and it has been associated with cardiometabolic risk in children and adolescents. The objective was to evaluate the influence of HTW phenotype in the fasting glycemia and blood pressure in children and adolescents over one-year follow-up period. It is a cohort study involving 492 children and adolescents from 7 to 15 years old, both genders, who were submitted to anthropometric, biochemical and clinical evaluation at the baseline, and also after 6 and 12 months of follow-up. Generalized Estimating Equation (GEE) models were calculated to evaluate the longitudinal influence of the HTW phenotype in the glycemia and blood pressure over one-year. It was observed a prevalence of 10.6% (n = 52) of HTW phenotype in the students. The GEE models identified that students with HTW phenotype had an increase of 3.87 mg/dl in the fasting glycemia mean (CI: 1.68-6.05) and of 3.67mmHg in the systolic blood pressure (SBP) mean (CI: 1.55-6.08) over one-year follow-up, after adjusting for confounding variables. The results of this study suggest that HTW phenotype is a risk factor for longitudinal changes in glycemia and SBP in children and adolescents over one-year follow-up period. O fenótipo de cintura hipertrigliceridêmica (CHT) é definido como a presença simultânea de circunferência de cintura (CC) e níveis séricos de triglicérides (TG) aumentados e tem sido associado com risco cardiometabólico em crianças e adolescentes. Avaliar a influência do fenótipo CHT na glicemia de jejum e na pressão arterial em crianças e adolescentes em um período de acompanhamento de um ano. Trata-se de um estudo de coorte envolvendo 492 crianças e adolescentes de 7 a 15 anos de ambos os sexos, que foram submetidos à avaliação antropométrica, bioquímica e clínica no início e também após 6 e 12 meses de seguimento. Os modelos de Equação de Estimulação Generalizada (GEE) foram calculados para avaliar a influência longitudinal do fenótipo CHT na glicemia e na pressão arterial ao longo de um ano. Foi observada uma prevalência de 10,6% (n = 52) do fenótipo CHT nos estudantes. Os modelos GEE identificaram que os estudantes com fenótipo CHT apresentaram aumento de 3,87 mg/dl na média de glicemia em jejum (IC: 1,68-6,05) e de 3,67 mmHg na pressão arterial sistólica media (PAS) (IC: 1,55-6,08) depois de um ano de acompanhamento, após ajuste para variáveis de confusão. Os resultados deste estudo sugerem que o fenótipo CHT é um fator de risco para alterações longitudinais da glicemia e da PAS em crianças e adolescentes em um período de um ano de seguimento.
Talsma, Elise F; Moretti, Diego; Ly, Sou Chheng; Dekkers, Renske; van den Heuvel, Ellen Ghm; Fitri, Aditia; Boelsma, Esther; Stomph, Tjeerd Jan; Zeder, Christophe; Melse-Boonstra, Alida
2017-06-01
Background: Milk has been suggested to increase zinc absorption. The effect of processing and the ability of milk to enhance zinc absorption from other foods has not been measured directly in humans. Objective: We aimed to assess zinc absorption from 1 ) milk undergoing various processing and preparatory steps and 2 ) from intrinsically labeled high-phytate rice consumed with milk or water. Methods: Two randomized crossover studies were conducted in healthy young women [age:18-25 y; body mass index (in kg/m 2 ): 20-25]: 1 ) a milk study ( n = 19) comparing the consumption of 800 mL full-fat ultra-high temperature (UHT) milk [heat-treated milk (HTM)], full-fat UHT milk diluted 1:1 with water [heat-treated milk and water (MW)], water, or unprocessed (raw) milk (UM), each extrinsically labeled with 67 Zn, and 2 ) a rice study ( n = 18) comparing the consumption of 90 g intrinsically 67 Zn-labeled rice with 600 mL of water [rice and water (RW)] or full-fat UHT milk [rice and milk (RM)]. The fractional absorption of zinc (FAZ) was measured with the double-isotope tracer ratio method. In vitro, we assessed zinc extraction from rice blended into water, UM, or HTM with or without phytate. Results: FAZ from HTM was 25.5% (95% CI: 21.6%, 29.4%) and was not different from UM (27.8%; 95% CI: 24.2%, 31.4%). FAZ from water was higher (72.3%; 95% CI: 68.7%, 75.9%), whereas FAZ from MW was lower (19.7%; 95% CI: 17.5%, 21.9%) than HTM and UM (both P < 0.01). FAZ from RM (20.7%; 95% CI: 18.8%, 22.7%) was significantly higher than from RW (12.8%; 95% CI: 10.8%, 14.6%; P < 0.01). In vitro, HTM and UM showed several orders of magnitude higher extraction of zinc from rice with HTM than from rice with water at various phytate concentrations. Conclusions: Milk enhanced human FAZ from high-phytate rice by 62% compared with water. Diluting milk with water decreases its absorption-enhancing proprieties, whereas UHT processing does not. This trial was registered at the Dutch trial registry as NTR4267 (http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=4267). © 2017 American Society for Nutrition.
NASA Astrophysics Data System (ADS)
Wang, Xicheng; Gao, Jiaobo; Wu, Jianghui; Li, Jianjun; Cheng, Hongliang
2017-02-01
Recently, hyperspectral image projectors (HIP) have been developed in the field of remote sensing. For the advanced performance of system-level validation, target detection and hyperspectral image calibration, HIP has great possibility of development in military, medicine, commercial and so on. HIP is based on the digital micro-mirror device (DMD) and projection technology, which is capable to project arbitrary programmable spectra (controlled by PC) into the each pixel of the IUT1 (instrument under test), such that the projected image could simulate realistic scenes that hyperspectral image could be measured during its use and enable system-level performance testing and validation. In this paper, we built a visible hyperspectral image projector also called the visible target simulator with double DMDs, which the first DMD is used to product the selected monochromatic light from the wavelength of 410 to 720 um, and the light come to the other one. Then we use computer to load image of realistic scenes to the second DMD, so that the target condition and background could be project by the second DMD with the selected monochromatic light. The target condition can be simulated and the experiment could be controlled and repeated in the lab, making the detector instrument could be tested in the lab. For the moment, we make the focus on the spectral engine design include the optical system, research of DMD programmable spectrum and the spectral resolution of the selected spectrum. The detail is shown.
MicroRNAs expression profile in solid and unicystic ameloblastomas
Setién-Olarra, A.; Bediaga, N. G.; Aguirre-Echebarria, P.; Aguirre-Urizar, J. M.; Mosqueda-Taylor, A.
2017-01-01
Objectives Odontogenic tumors (OT) represent a specific pathological category that includes some lesions with unpredictable biological behavior. Although most of these lesions are benign, some, such as the ameloblastoma, exhibit local aggressiveness and high recurrence rates. The most common types of ameloblastoma are the solid/multicystic (SA) and the unicystic ameloblastoma (UA); the latter considered a much less aggressive entity as compared to the SA. The microRNA system regulates the expression of many human genes while its deregulation has been associated with neoplastic development. The aim of the current study was to determine the expression profiles of microRNAs present in the two most common types of ameloblastomas. Material & methods MicroRNA expression profiles were assessed using TaqMan® Low Density Arrays (TLDAs) in 24 samples (8 SA, 8 UA and 8 control samples). The findings were validated using quantitative RTqPCR in an independent cohort of 19 SA, 8 UA and 19 dentigerous cysts as controls. Results We identified 40 microRNAs differentially regulated in ameloblastomas, which are related to neoplastic development and differentiation, and with the osteogenic process. Further validation of the top ranked microRNAs revealed significant differences in the expression of 6 of them in relation to UA, 7 in relation to SA and 1 (miR-489) that was related to both types. Conclusion We identified a new microRNA signature for the ameloblastoma and for its main types, which may be useful to better understand the etiopathogenesis of this neoplasm. In addition, we identified a microRNA (miR-489) that is suggestive of differentiating among solid from unicystic ameloblastoma. PMID:29053755
Electrophoretic separation of cells and particles from rat pituitary and rat spleen
NASA Technical Reports Server (NTRS)
Hymer, Wesley C.
1993-01-01
There are 3 parts to the IML-2 TX-101 experiment. Part 1 is a pituitary cell culture experiment. Part 2 is a pituitary cell separation experiment using the Japanese free flow electrophoresis unit (FFEU). Part 3 is a pituitary secretory granule separation experiment using the FFEU. The objectives of this three part experiment are: (1) to determine the kinetics of production of biologically active growth hormone (GH) and prolactin (PRL) in rat pituitary GH and PRL cells in microgravity (micro-g); (2) to investigate three mechanisms by which a micro-g-induced lesion in hormone production may occur; and (3) to determine the quality of separations of pituitary cells and organelles by continuous flow electrophoresis (CFE) in micro-g under conditions where buoyancy-induced convection is eliminated.
Optimization of joint energy micro-grid with cold storage
NASA Astrophysics Data System (ADS)
Xu, Bin; Luo, Simin; Tian, Yan; Chen, Xianda; Xiong, Botao; Zhou, Bowen
2018-02-01
To accommodate distributed photovoltaic (PV) curtailment, to make full use of the joint energy micro-grid with cold storage, and to reduce the high operating costs, the economic dispatch of joint energy micro-grid load is particularly important. Considering the different prices during the peak and valley durations, an optimization model is established, which takes the minimum production costs and PV curtailment fluctuations as the objectives. Linear weighted sum method and genetic-taboo Particle Swarm Optimization (PSO) algorithm are used to solve the optimization model, to obtain optimal power supply output. Taking the garlic market in Henan as an example, the simulation results show that considering distributed PV and different prices in different time durations, the optimization strategies are able to reduce the operating costs and accommodate PV power efficiently.
The use of microtomography in bone tissue and biomaterial three-dimensional analysis.
Bedini, Rossella; Meleo, Deborah; Pecci, Raffaella; Pacifici, Luciano
2009-01-01
X-ray computed microtomography (micro-CT, microComputerised Tomography) is a miniaturized form of conventional computerized axial tomography (CAT ). This sophisticated technology enables 3D riconstruction of the internal structure of small X-ray opaque objects without sample destruction or preparation. The aim of this study is to show the possible applications of micro-CT in the analysis of bone graft materials of different origins (i.e. homologous, heterologous, alloplastic) in order to define their morphometric properties by means of SkyScan 1072 3D microtomography system. Since there is a close relationship between the properties of the materials and their microstructure, it is necessary to examine them using the highest levels of resolution before being able to improve existing materials or create new products.
Applications of penetrating radiation for small animal imaging
NASA Astrophysics Data System (ADS)
Hasegawa, Bruce H.; Wu, Max C.; Iwata, Koji; Hwang, Andrew B.; Wong, Kenneth H.; Barber, William C.; Dae, Michael W.; Sakdinawat, Anne E.
2002-11-01
Researchers long have relied on research involving small animals to unravel scientific mysteries in the biological sciences, and to develop new diagnostic and therapeutic techniques in the medical and health sciences. Within the past 2 decades, new techniques have been developed to manipulate the genome of the mouse, allowing the development of transgenic and knockout models of mammalian and human disease, development, and physiology. Traditionally, much biological research involving small animals has relied on the use of invasive methods such as organ harvesting, tissue sampling, and autoradiography during which the animal was sacrificed to perform a single measurement. More recently, imaging techniques have been developed that assess anatomy and physiology in the intact animal, in a way that allows the investigator to follow the progression of disease, or to monitor the response to therapeutic interventions. Imaging techniques that use penetrating radiation at millimeter or submillimeter levels to image small animals include x-ray computed tomography (microCT), single-photon emission computed tomography (microSPECT), and imaging positron emission computed tomography (microPET). MicroCT generates cross-sectional slices which reveal the structure of the object with spatial resolution in the range of 50 to 100 microns. MicroSPECT and microPET are radionuclide imaging techniques in which a radiopharmaceutical is injected into the animal that is accumulated to metabolism, blood flow, bone remodeling, tumor growth, or other biological processes. Both microSPECT and microPET offer spatial resolutions in the range of 1-2 millimeters. However, microPET records annihilation photons produced by a positron-emitting radiopharmaceutical using electronic coincidence, and has a sensitivity approximately two orders of magnitude better than microSPECT, while microSPECT is compatible with gamma-ray emitting radiopharmaceuticals that are less expensive and more readily available than those used with microPET. High-resolution dual-modality imaging systems now are being developed that combine microPET or microSPECT with microCT in a way that facilitates more direct correlation of anatomy and physiology in the same animal. Small animal imaging allows researchers to perform experiments that are not possible with conventional invasive techniques, and thereby are becoming increasingly important tools for discovery of fundamental biological information, and development of new diagnostic and therapeutic techniques in the biomedical sciences.
Image-based tracking: a new emerging standard
NASA Astrophysics Data System (ADS)
Antonisse, Jim; Randall, Scott
2012-06-01
Automated moving object detection and tracking are increasingly viewed as solutions to the enormous data volumes resulting from emerging wide-area persistent surveillance systems. In a previous paper we described a Motion Imagery Standards Board (MISB) initiative to help address this problem: the specification of a micro-architecture for the automatic extraction of motion indicators and tracks. This paper reports on the development of an extended specification of the plug-and-play tracking micro-architecture, on its status as an emerging standard across DoD, the Intelligence Community, and NATO.
2010-01-01
property variations. The system described here is a simple 4-electrode microfluidic device made of polydimethylsiloxane PDMS [50-53] which is reversibly...through the fluid and heat it.) A more detailed description and analysis of the physics of electroosmotic actuation can be found in [46, 83] In...a control algorithm on a standard personal computer. The micro-fluidic device is made out of a soft polymer ( polydimethylsiloxane (PDMS)) and is
Reduction of solar vector magnetograph data using a microMSP array processor
NASA Technical Reports Server (NTRS)
Kineke, Jack
1990-01-01
The processing of raw data obtained by the solar vector magnetograph at NASA-Marshall requires extensive arithmetic operations on large arrays of real numbers. The objectives of this summer faculty fellowship study are to: (1) learn the programming language of the MicroMSP Array Processor and adapt some existing data reduction routines to exploit its capabilities; and (2) identify other applications and/or existing programs which lend themselves to array processor utilization which can be developed by undergraduate student programmers under the provisions of project JOVE.
Kim, Jin Young; Carlson, Bradley A.; Xu, Xue-Ming; Zeng, Yu; Chen, Shawn; Gladyshev, Vadim N.; Lee, Byeong Jae; Hatfield, Dolph L.
2011-01-01
There are two isoforms of selenocysteine (Sec) tRNA[Ser]Sec that differ by a single methyl group, Um34. The non-Um34 isoform supports the synthesis of a subclass of selenoproteins, designated housekeeping, while the Um34 isoform supports the expression of another subclass, designated stress-related selenoproteins. Herein, we investigated the relationship between tRNA[Ser]Sec aminoacylation and Um34 synthesis which is the last step in the maturation of this tRNA. Mutation of the discriminator base at position 73 in tRNA[Ser]Sec dramatically reduced aminoacylation with serine, as did an inhibitor of seryl-tRNA synthetase, SB-217452. Although both the mutation and the inhibitor prevented Um34 synthesis, neither precluded the synthesis of any other of the known base modifications on tRNA[Ser]Sec following microinjection and incubation of the mutant tRNA[Ser]Sec transcript, or the wild type transcript along with inhibitor, in Xenopus oocytes. The data demonstrate that Sec tRNA[Ser]Sec must be aminoacylated for Um34 addition. The fact that selenium is required for Um34 methylation suggests that Sec must be attached to its tRNA for Um34 methylation. This would explain why selenium is essential for the function of Um34 methylase and provides further insights into the hierarchy of selenoprotein expression. PMID:21624347
Micro-vibration detection with heterodyne holography based on time-averaged method
NASA Astrophysics Data System (ADS)
Qin, XiaoDong; Pan, Feng; Chen, ZongHui; Hou, XueQin; Xiao, Wen
2017-02-01
We propose a micro-vibration detection method by introducing heterodyne interferometry to time-averaged holography. This method compensates for the deficiency of time-average holography in quantitative measurements and widens its range of application effectively. Acousto-optic modulators are used to modulate the frequencies of the reference beam and the object beam. Accurate detection of the maximum amplitude of each point in the vibration plane is performed by altering the frequency difference of both beams. The range of amplitude detection of plane vibration is extended. In the stable vibration mode, the distribution of the maximum amplitude of each point is measured and the fitted curves are plotted. Hence the plane vibration mode of the object is demonstrated intuitively and detected quantitatively. We analyzed the method in theory and built an experimental system with a sine signal as the excitation source and a typical piezoelectric ceramic plate as the target. The experimental results indicate that, within a certain error range, the detected vibration mode agrees with the intrinsic vibration characteristics of the object, thus proving the validity of this method.
Mississippi State University Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mago, Pedro; Newell, LeLe
2014-01-31
Between 2008 and 2014, the U.S. Department of Energy funded the MSU Micro-CHP and Bio-Fuel Center located at Mississippi State University. The overall objective of this project was to enable micro-CHP (micro-combined heat and power) utilization, to facilitate and promote the use of CHP systems and to educate architects, engineers, and agricultural producers and scientists on the benefits of CHP systems. Therefore, the work of the Center focused on the three areas: CHP system modeling and optimization, outreach, and research. In general, the results obtained from this project demonstrated that CHP systems are attractive because they can provide energy, environmental,more » and economic benefits. Some of these benefits include the potential to reduce operational cost, carbon dioxide emissions, primary energy consumption, and power reliability during electric grid disruptions. The knowledge disseminated in numerous journal and conference papers from the outcomes of this project is beneficial to engineers, architects, agricultural producers, scientists and the public in general who are interested in CHP technology and applications. In addition, more than 48 graduate students and 23 undergraduate students, benefited from the training and research performed in the MSU Micro-CHP and Bio-Fuel Center.« less
Aneurysm-Specific miR-221 and miR-146a Participates in Human Thoracic and Abdominal Aortic Aneurysms
Venkatesh, Premakumari; Phillippi, Julie; Chukkapalli, Sasanka; Rivera-Kweh, Mercedes; Velsko, Irina; Gleason, Thomas; VanRyzin, Paul; Aalaei-Andabili, Seyed Hossein; Ghanta, Ravi Kiran; Beaver, Thomas; Chan, Edward Kar Leung; Kesavalu, Lakshmyya
2017-01-01
Altered microRNA expression is implicated in cardiovascular diseases. Our objective was to determine microRNA signatures in thoracic aortic aneurysms (TAAs) and abdominal aortic aneurysms (AAAs) compared with control non-aneurysmal aortic specimens. We evaluated the expression of fifteen selected microRNA in human TAA and AAA operative specimens compared to controls. We observed significant upregulation of miR-221 and downregulation of miR-1 and -133 in TAA specimens. In contrast, upregulation of miR-146a and downregulation of miR-145 and -331-3p were found only for AAA specimens. Upregulation of miR-126 and -486-5p and downregulation of miR-30c-2*, -155, and -204 were observed in specimens of TAAs and AAAs. The data reveal microRNA expression signatures unique to aneurysm location and common to both thoracic and abdominal pathologies. Thus, changes in miR-1, -29a, -133a, and -221 are involved in TAAs and miR-145, -146, and -331-3p impact AAAs. This work validates prior studies on microRNA expression in aneurysmal diseases. PMID:28425970
Venkatesh, Premakumari; Phillippi, Julie; Chukkapalli, Sasanka; Rivera-Kweh, Mercedes; Velsko, Irina; Gleason, Thomas; VanRyzin, Paul; Aalaei-Andabili, Seyed Hossein; Ghanta, Ravi Kiran; Beaver, Thomas; Chan, Edward Kar Leung; Kesavalu, Lakshmyya
2017-04-20
Altered microRNA expression is implicated in cardiovascular diseases. Our objective was to determine microRNA signatures in thoracic aortic aneurysms (TAAs) and abdominal aortic aneurysms (AAAs) compared with control non-aneurysmal aortic specimens. We evaluated the expression of fifteen selected microRNA in human TAA and AAA operative specimens compared to controls. We observed significant upregulation of miR-221 and downregulation of miR-1 and -133 in TAA specimens. In contrast, upregulation of miR-146a and downregulation of miR-145 and -331-3p were found only for AAA specimens. Upregulation of miR-126 and -486-5p and downregulation of miR-30c-2*, -155, and -204 were observed in specimens of TAAs and AAAs. The data reveal microRNA expression signatures unique to aneurysm location and common to both thoracic and abdominal pathologies. Thus, changes in miR-1, -29a, -133a, and -221 are involved in TAAs and miR-145, -146, and -331-3p impact AAAs. This work validates prior studies on microRNA expression in aneurysmal diseases.
Ogawa, Motohiko; Satoh, Masaaki; Saijo, Masayuki; Ando, Shuji
2017-01-05
Scrub typhus is a mite-borne rickettsiosis caused by infection of Orientia tsutsugamushi, which is endemic to several Asia-Pacific Rim countries, including Japan. Although micro-indirect immunofluorescent assay (micro-IFA) is the standard method for the serological diagnosis of scrub typhus, enzyme-linked immunosorbent assay (ELISA) is considered to be more objective, by providing digitized results as opposed to being subject to the judgment of the evaluator as in micro-IFA. Therefore, the aim of this study was to develop a broad-ranging ELISA using the five major prevalent serotypes of O. tsutsugamushi in Japan as the antigens. Furthermore, in contrast to previous studies that used purified microorganisms via ultracentrifugation, we directly used the infected cells, and evaluated the diagnostic accuracy of this simplified method to that of micro-IFA. Evaluation of paired patient sera against the five serotypes showed that the accuracy of ELISA relative to micro-IFA was 87.4 and 79.5% for immunoglobulin (Ig)M and IgG assays, respectively, at the optimized cut-off value. Further evaluation of patient sera against the expected serotype of the infecting strain showed that the accuracy of ELISA compared to micro-IFA increased to 100 and 97.4% in the IgM and IgG assays, respectively. This suggests that use of the five prevalent serotypes contributed to the increase of the accuracy of ELISA. When applying the criteria of serological diagnosis for paired sera samples to ELISA, all 19 patients were diagnosed as positive; a ≥4-fold elevation of the antibody titer was observed in 15 of 19 patients that were positive, and very high antibody titers were observed in both paired sera samples of the remaining four patients. In addition, all samples of healthy subjects and patients with other types of rickettsiosis were diagnosed as negative using these criteria. Our results suggest the excellent performance of the new broad-ranging and convenient ELISA, which appears to be applicable for the diagnosis of scrub typhus patients infected with the wide variety of prevalent strains in Japan. Furthermore, the ELISA is more objective than the micro-IFA, and can therefore provide more accurate diagnoses in Japan.
Thermodynamics of Anharmonic Systems: Uncoupled Mode Approximations for Molecules
Li, Yi-Pei; Bell, Alexis T.; Head-Gordon, Martin
2016-05-26
The partition functions, heat capacities, entropies, and enthalpies of selected molecules were calculated using uncoupled mode (UM) approximations, where the full-dimensional potential energy surface for internal motions was modeled as a sum of independent one-dimensional potentials for each mode. The computational cost of such approaches scales the same with molecular size as standard harmonic oscillator vibrational analysis using harmonic frequencies (HO hf). To compute thermodynamic properties, a computational protocol for obtaining the energy levels of each mode was established. The accuracy of the UM approximation depends strongly on how the one-dimensional potentials of each modes are defined. If the potentialsmore » are determined by the energy as a function of displacement along each normal mode (UM-N), the accuracies of the calculated thermodynamic properties are not significantly improved versus the HO hf model. Significant improvements can be achieved by constructing potentials for internal rotations and vibrations using the energy surfaces along the torsional coordinates and the remaining vibrational normal modes, respectively (UM-VT). For hydrogen peroxide and its isotopologs at 300 K, UM-VT captures more than 70% of the partition functions on average. By con trast, the HO hf model and UM-N can capture no more than 50%. For a selected test set of C2 to C8 linear and branched alkanes and species with different moieties, the enthalpies calculated using the HO hf model, UM-N, and UM-VT are all quite accurate comparing with reference values though the RMS errors of the HO model and UM-N are slightly higher than UM-VT. However, the accuracies in entropy calculations differ significantly between these three models. For the same test set, the RMS error of the standard entropies calculated by UM-VT is 2.18 cal mol -1 K -1 at 1000 K. By contrast, the RMS error obtained using the HO model and UM-N are 6.42 and 5.73 cal mol -1 K -1, respectively. For a test set composed of nine alkanes ranging from C5 to C8, the heat capacities calculated with the UM-VT model agree with the experimental values to within a RMS error of 0.78 cal mol -1 K -1 , which is less than one-third of the RMS error of the HO hf (2.69 cal mol -1 K -1) and UM-N (2.41 cal mol -1 K -1) models.« less
NASA Astrophysics Data System (ADS)
Mansoor, B.; Decker, R. F.; Kulkarni, S.; LeBeau, S. E.; Khraisheh, M. K.
Friction Stir Processing (FSP) to partial sheet thickness can be utilized to engineer unique microstructures in metallic alloys. These composite microstructures consist of three distinct layers associated with stirred, transition and core micro structural regions. The stirred region is of particular interest where severe plastic deformation imparted by the rotating and translating FSP tool under frictional heat leads to grain refinement down to 1 urn grain size. In this work, partial depth penetration into thixomolded AZ91 Mg plate from the top and bottom surfaces by friction stir processing is explored. Furthermore, low temperature aging treatments are applied to the processed material. The present results with AZ91 Mg show that FSP processed material exhibits higher strength (> 300 MPa), and improvement in ductility (> 7 % tensile elongation). It is found that in addition to Hall-Petch strengthening produced by 1 um grain size in the stirred region, the enhanced strength levels and ductility are strongly influenced by dispersoids of the intermetallic precipitates found in this alloy.
NASA Astrophysics Data System (ADS)
Sierra-Calderon, A.; Rodriguez-Novelo, J. C.; Gamez-Aviles, E.; May-Alarcon, M.; Toral-Cruz, H.; Alvarez-Chavez, J. A.
2016-09-01
The spectral noise characteristic and relative intensity noise of an all fibre Sagnac interferometer system consisting of a 980nm pump source at 130mW maximum output power, a 980/1550nm wavelength division multiplexer, a 10m-piece of Erbium-doped fibre, a fibre Bragg grating (FBG) centered at 1.548um, an optical circulator at 1550nm and a 50/50 fibre coupler, were measured with an optical spectrum analyzer (OSA) for fine tuning for a range of temperature between 5 and 180 degrees Celsius in step of 1 degree Celsius. At the probing end, a high-bi piece of fibre and a Peltier were employed for temperature variation of the system. Spectral and temperature response of the noise reduction due to temperature variation was performed remotely using and Arduino micro-controller and a DS18B20 digital sensor, into a local area network. Full optical and thermal characterization of the system will be included in the presentation.
Aqueous Ethanol Ignition and Engine Studies, Phase I
DOT National Transportation Integrated Search
2010-09-01
Our objectives were to design a micro-dilution tunnel for monitoring engine emissions, measure ignition temperature and heat release from ethanol-water-air mixtures on platinum, and initiate a computational fluid dynamics model of a catalytic igniter...
Quantified outdoor micro-activity data for children aged 7-12-years old.
Beamer, Paloma I; Luik, Catherine E; Canales, Robert A; Leckie, James O
2012-01-01
Estimation of aggregate exposure and risk requires detailed information regarding dermal contact and mouthing activity. We analyzed micro-level activity time series (MLATS) of children aged 7-12 years to quantify these contact behaviors and evaluate differences by age and gender. In all, 18 children, aged 7-12 years, were videotaped while playing outdoors. Video footage was transcribed via Virtual Timing Device (VTD) software. We calculated the hand and mouth contact frequency, hourly duration and median duration of contact with 16 object categories. Median mouthing frequencies were 12.6 events/h and 2.6 events/h for hands and non-dietary objects, respectively. Median hourly mouthing duration was 0.4 min/h and 0.1 min/h with hands and objects. Median mouthing contact duration was 1 s and 1.5 s with hands and objects, respectively. The median object contact frequency for both the hands combined was 537.3 events/h with an hourly contact duration of 81.8 min/h and a median contact duration of 3 s. There were no significant differences in the mouthing activity between genders or age groups. Female children had longer and more frequent hand contacts with several surface types. Age was negatively correlated with hand contacts of floor and wood surfaces. Contact frequencies in this study are higher than current regulatory recommendations for this age group.
Coordinated control of micro-grid based on distributed moving horizon control.
Ma, Miaomiao; Shao, Liyang; Liu, Xiangjie
2018-05-01
This paper proposed the distributed moving horizon coordinated control scheme for the power balance and economic dispatch problems of micro-grid based on distributed generation. We design the power coordinated controller for each subsystem via moving horizon control by minimizing a suitable objective function. The objective function of distributed moving horizon coordinated controller is chosen based on the principle that wind power subsystem has the priority to generate electricity while photovoltaic power generation coordinates with wind power subsystem and the battery is only activated to meet the load demand when necessary. The simulation results illustrate that the proposed distributed moving horizon coordinated controller can allocate the output power of two generation subsystems reasonably under varying environment conditions, which not only can satisfy the load demand but also limit excessive fluctuations of output power to protect the power generation equipment. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Engineers Conduct Low Light Test on New Technology for NASA Webb Telescope
2014-09-02
NASA engineers inspect a new piece of technology developed for the James Webb Space Telescope, the micro shutter array, with a low light test at NASA's Goddard Space Flight Center in Greenbelt, Maryland. Developed at Goddard to allow Webb's Near Infrared Spectrograph to obtain spectra of more than 100 objects in the universe simultaneously, the micro shutter array uses thousands of tiny shutters to capture spectra from selected objects of interest in space and block out light from all other sources. Credit: NASA/Goddard/Chris Gunn NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
STS-40 Exp. No. 192 urine monitoring system (UMS) on OV-102's middeck
NASA Technical Reports Server (NTRS)
1991-01-01
STS-40 Experiment No. 192, Fluid-Electrolyte Regulation During Space Flight, urine monitoring system (UMS) is set up on the middeck of Columbia, Orbiter Vehicle (OV) 102, at the side hatch. The UMS is attached to OV-102's waste collection system (WCS). The urine specimen tray with sample tubes appears to the right of the UMS equipment.
Dysregulation of serum microRNA-574-3p and its clinical significance in hepatocellular carcinoma.
Shen, Xianjuan; Xue, Yajing; Cong, Hui; Wang, Xudong; Ju, Shaoqing
2018-07-01
Objectives To explore microRNA-574-3p expression in serum of patients with hepatocellular carcinoma and investigate correlations between serum microRNA-574-3p expression and the development and prognosis of hepatocellular carcinoma. Design and methods Serum samples were collected from 70 patients with primary hepatocellular carcinoma, 40 patients with cirrhosis and 45 healthy controls. Serum microRNA-574-3p expression levels were detected by real-time quantitative polymerase chain reaction. The linearity, specificity and reproducibility were evaluated. In addition, the diagnostic value of microRNA-574-3p and its correlations with clinicopathologic features were assessed. Results The relative expression of microRNA-574-3p in hepatocellular carcinoma patients, cirrhosis patients and healthy controls was 2.306 (1.801-3.130), 1.362 (0.994-1.665) and 1.263 (0.765-1.723), respectively, indicating that it was significantly higher in hepatocellular carcinoma patients than that in the other two groups ( U = 439.5, 514.5, both P < 0.0001) and was significantly correlated with hepatitis B virus DNA copies ( U = 383.0, P = 0.018). In hepatitis B virus-positive hepatocellular carcinoma patients, the relative expression of microRNA-574-3p was significantly correlated with hepatitis B virus DNA concentration ( r = 0.348, P = 0.022). Compared with healthy control group, AUC ROC of serum microRNA-574-3p in hepatocellular carcinoma group was 0.837 with 95% CI: 0.763-0.910. Combining microRNA-574-3p, AFU and alpha-fetoprotein together, the sensitivity was highest compared with other markers alone or combined. Conclusions The relative expression of serum microRNA-574-3p in hepatocellular carcinoma patients was significantly higher than that in cirrhosis patients and healthy controls, and it may be an important biomarker in the auxiliary diagnosis of hepatocellular carcinoma.
Reid, Paul; Wilson, Puthenparampil; Li, Yanrui; Marcu, Loredana G; Staudacher, Alexander H; Brown, Michael P; Bezak, Eva
2017-01-01
Some head and neck squamous cell carcinomas (HNSCC) have a distinct aetiology, which depends on the presence of oncogenic human papilloma virus (HPV). Also, HNSCC contains cancer stem cells (CSCs) that have greater radioresistance and capacity to change replication dynamics in response to irradiation compared to non-clonogenic cells. Since there is limited data on CSCs in HNSCC as a function of HPV status, better understanding of their radiobiology may enable improved treatment outcome. Baseline and post-irradiation changes in CSC proportions were investigated by flow cytometry in a HPV-negative (UM-SCC-1) and a HPV-positive (UM-SCC-47) HNSCC cell line, using fluorescent staining with CD44/ALDH markers. CSC proportions in both irradiated and unirradiated cultures were compared for the two cell lines at various times post-irradiation. To assess repopulation of CSCs, untreated cultures were depleted of CD44+/ALDH+ cells and re-cultured for 3 weeks before flow cytometry analysis. CSC proportions in untreated cell lines were 0.57% (UM-SCC-1) and 2.87% (UM-SCC-47). Untreated cell lines depleted of CD44+/ALDH+ repopulated this phenotype to a mean of 0.15% (UM-SCC-1) and 6.76% (UM-SCC-47). All UM-SCC-47 generations showed elevated CSC proportions after irradiation, with the most significant increase at 2 days post-irradiation. The highest elevation in UM-SCC-1 CSCs was observed at 1 day post-irradiation in the 2nd generation and at 3 days after irradiation in the 3rd generation. When measured after 10 days, only the 3rd generation of UM-SCC-1 showed elevated CSCs. CSC proportions in both cell lines were elevated after exposure and varied with time post irradiation. UM-SCC-47 displayed significant plasticity in repopulating the CSC phenotype in depleted cultures, which was not seen in UM-SCC-1.
2012-01-01
Background The publication of Best research for best health in 2006 and the “ring-fencing” of health research funding in England marked the start of a period of change for health research governance and the structure of research funding in England. One response to bridging the ‘second translational gap’ between research knowledge and clinical practice was the establishment of nine Collaborations for Leadership in Applied Health Research and Care (CLAHRCs). The goal of this paper is to assess how national-level understanding of the aims and objectives of the CLAHRCs translated into local implementation and practice in North West London. Methods This study uses a variation of Goffman’s frame analysis to trace the development of the initial national CLAHRC policy to its implementation at three levels. Data collection and analysis were qualitative through interviews, document analysis and embedded research. Results Analysis at the macro (national policy), meso (national programme) and micro (North West London) levels shows a significant common understanding of the aims and objectives of the policy and programme. Local level implementation in North West London was also consistent with these. Conclusions The macro-meso-micro frame analysis is a useful way of studying the transition of a policy from high-level idea to programme in action. It could be used to identify differences at a local (micro) level in the implementation of multi-site programmes that would help understand differences in programme effectiveness. PMID:23067208
The NEUF-DIX space project - Non-EquilibriUm Fluctuations during DIffusion in compleX liquids.
Baaske, Philipp; Bataller, Henri; Braibanti, Marco; Carpineti, Marina; Cerbino, Roberto; Croccolo, Fabrizio; Donev, Aleksandar; Köhler, Werner; Ortiz de Zárate, José M; Vailati, Alberto
2016-12-01
Diffusion and thermal diffusion processes in a liquid mixture are accompanied by long-range non-equilibrium fluctuations, whose amplitude is orders of magnitude larger than that of equilibrium fluctuations. The mean-square amplitude of the non-equilibrium fluctuations presents a scale-free power law behavior q -4 as a function of the wave vector q, but the divergence of the amplitude of the fluctuations at small wave vectors is prevented by the presence of gravity. In microgravity conditions the non-equilibrium fluctuations are fully developed and span all the available length scales up to the macroscopic size of the systems in the direction parallel to the applied gradient. Available theoretical models are based on linearized hydrodynamics and provide an adequate description of the statics and dynamics of the fluctuations in the presence of small temperature/concentration gradients and under stationary or quasi-stationary conditions. We describe a project aimed at the investigation of Non-EquilibriUm Fluctuations during DIffusion in compleX liquids (NEUF-DIX). The focus of the project is on the investigation in micro-gravity conditions of the non-equilibrium fluctuations in complex liquids, trying to tackle several challenging problems that emerged during the latest years, such as the theoretical predictions of Casimir-like forces induced by non-equilibrium fluctuations; the understanding of the non-equilibrium fluctuations in multi-component mixtures including a polymer, both in relation to the transport coefficients and to their behavior close to a glass transition; the understanding of the non-equilibrium fluctuations in concentrated colloidal suspensions, a problem closely related with the detection of Casimir forces; and the investigation of the development of fluctuations during transient diffusion. We envision to parallel these experiments with state-of-the-art multi-scale simulations.
NASA Astrophysics Data System (ADS)
Sahmani, S.; Aghdam, M. M.
2017-12-01
Morphology and pore size plays an essential role in the mechanical properties as well as the associated biological capability of a porous structure made of biomaterials. The objective of the current study is to predict the Young's modulus and Poisson's ratio of nanoporous biomaterials including refined truncated cube cells based on a hyperbolic shear deformable beam model. Analytical relationships for the mechanical properties of nanoporous biomaterials are given as a function of the refined cell's dimensions. After that, the size dependency in the nonlinear bending behavior of micro/nano-beams made of such nanoporous biomaterials is analyzed using the nonlocal strain gradient elasticity theory. It is assumed that the micro/nano-beam has one movable end under axial compression in conjunction with a uniform distributed lateral load. The Galerkin method together with an improved perturbation technique is employed to propose explicit analytical expression for nonlocal strain gradient load-deflection curves of the micro/nano-beams made of nanoporous biomaterials subjected to uniform transverse distributed load. It is found that through increment of the pore size, the micro/nano-beam will undergo much more deflection corresponding to a specific distributed load due to the reduction in the stiffness of nanoporous biomaterial. This pattern is more prominent for lower value of applied axial compressive load at the free end of micro/nano-beam.
Kim, Beob G; Adams, Julye M; Jackson, Brian A; Lindemann, Merlin D
2010-02-01
Dietary chromium(III) picolinate (CrPic) effects on circulating steroid hormones have been reported in various experimental animals. However, direct effects of CrPic on adrenocortical steroidogenesis are uncertain. Therefore, the objective was to determine the effects of CrPic on cortisol and dehydroepiandrosterone sulfate (DHEAs) secretion from H295R cells. In experiment 1, a 24-h exposure to CrPic (0 to 200 microM) had both linear (p < 0.001) and quadratic (p < 0.001) effects on cortisol secretion from forskolin-stimulated cells with the highest cortisol secretion at 0.1 microM of CrPic and the lowest at 200 microM of CrPic. In experiment 2, a 48-h exposure to CrPic (200 microM) decreased cortisol (p < 0.07) release from forskolin-stimulated cells during a 24-h collection period. In experiment 3, a 48-h exposure to CrPic (100 microM) decreased cortisol (p < 0.05) and DHEAs (p < 0.01) from forskolin-stimulated cells during a 24-h sampling period. In experiment 4, a 24-h exposure to forskolin followed by a 24-h exposure to both forskolin and CrPic (100 and 200 microM) decreased both cortisol and DHEAs secretion (p < 0.01). This study suggests that at high concentrations, CrPic inhibits aspects of steroidogenesis in agonist-stimulated adrenocortical cells.
Synthesis and in vitro evaluation of potential sustained release prodrugs via targeting ASBT.
Zheng, Xiaowan; Polli, James E
2010-08-30
The objective was to synthesize prodrugs of niacin and ketoprofen that target the human apical sodium-dependent bile acid transporter (ASBT) and potentially allow for prolonged drug release. Each drug was conjugated to the naturally occurring bile acid chenodeoxycholic acid (CDCA) using lysine as a linker. Their inhibitory binding and transport properties were evaluated in stably transfected ASBT-MDCK monolayers, and the kinetic parameters K(i), K(t), normJ(max), and P(p) were characterized. Enzymatic stability of the conjugates was evaluated in Caco-2 and liver homogenate. Both conjugates were potent inhibitors of ASBT. For the niacin prodrug, substrate kinetic parameter K(t) was 8.22microM and normJ(max) was 0.0917. In 4h, 69.4% and 26.9% of niacin was released from 1microM and 5microM of the conjugate in Caco-2 homogenate, respectively. For the ketoprofen prodrug, K(t) was 50.8microM and normJ(max) was 1.58. In 4h, 5.94% and 3.73% of ketoprofen was released from 1microM and 5microM of the conjugate in Caco-2 homogenate, and 24.5% and 12.2% of ketoprofen was released in liver homogenate, respectively. In vitro results showed that these bile acid conjugates are potential prolonged release prodrugs with binding affinity for ASBT. Copyright 2010 Elsevier B.V. All rights reserved.
Study of factors affecting growth and cold acclimation of Vitis callus cultures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, L.
1987-01-01
In vitro grape tissue culture initiation, growth, and cold acclimation were studied. Factors involved were genotypes, media, plant growth regulators, age, light, temperature, antioxidant, clearing and adsorbing agents, sucrose level, osmotic potential, ABA, chilling and freezing treatments. Murashige and Skoog (MS) medium containing 1 ..mu..M 2,4-d + 0.1 uM Ba, MS containing 1 uM 2,4-D, and woody plant medium containing 1 uM 2,4-D + 0.1 uM BA produced abundant callus tissue for most grape genotypes; either WPM or MS containing 1 uM BA stimulated shoot growth in all the 12 genotypes tested. Adding 1 uM abscisic acid (ABA) to themore » B5 medium with 1 uM 2,4-D and 0.5 uM BA enhanced growth and quality of Chancellor callus. /sup 3/H-ABA was taken up actively by callus tissue at 12 days after subculture, but by 20 d this effect disappeared. When /sup 14/C-sucrose was added to the medium. /sup 14/C level of cells reached a plateau after 48 h; this plateau was higher if ABA was also present in the medium. Cells on media containing ABA were larger in size, lighter in color, and more loosely connected.« less
The Development of Advanced Passive Acoustic Monitoring Systems Using microMARS Technology
2015-09-30
localization that will be available in a number of configurations for deep and shallow water environments alike. OBJECTIVES The project has two...through two test series, first targeting the GPS synchronized shallow water and then the self-synchronized deep water configurations. The project will...main objectives: 1. Development of all the components of a compact passive acoustic monitoring system suitable both for shallow water moored
NASA Astrophysics Data System (ADS)
Balciunas, Evaldas; Jonusauskas, Linas; Valuckas, Vytautas; Baltriukiene, Daiva; Bukelskiene, Virginija; Gadonas, Roaldas; Malinauskas, Mangirdas
2012-06-01
In this work, a combination of Direct Laser Writing (DLW), PoliDiMethylSiloxane (PDMS) soft lithography and UV lithography was used to create cm- scale microstructured polymer scaolds for cell culture experiments out of dierent biocompatible materials: novel hybrid organic-inorganic SZ2080, PDMS elastomer, biodegradable PEG- DA-258 and SU-8. Rabbit muscle-derived stem cells were seeded on the fabricated dierent periodicity scaolds to evaluate if the relief surface had any eect on cell proliferation. An array of microlenses was fabricated using DLW out of SZ2080 and replicated in PDMS and PEG-DA-258, showing good potential applicability of the used techniques in many other elds like micro- and nano- uidics, photonics, and MicroElectroMechanical Systems (MEMS). The synergetic employment of three dierent fabrication techniques allowed to produce desired objects with low cost, high throughput and precision as well as use materials that are dicult to process by other means (PDMS and PEG-DA-258). DLW is a relatively slow fabrication method, since the object has to be written point-by-point. By applying PDMS soft lithography, we were enabled to replicate laser-fabricated scaolds for stem cell growth and micro-optical elements for lab-on-a-chip applications with high speed, low cost and good reproducible quality.
NASA Astrophysics Data System (ADS)
Wei, Chen-Wei; Xia, Jinjun; Pelivanov, Ivan; Hu, Xiaoge; Gao, Xiaohu; O'Donnell, Matthew
2012-10-01
Results on magnetically trapping and manipulating micro-scale beads circulating in a flow field mimicking metastatic cancer cells in human peripheral vessels are presented. Composite contrast agents combining magneto-sensitive nanospheres and highly optical absorptive gold nanorods were conjugated to micro-scale polystyrene beads. To efficiently trap the targeted objects in a fast stream, a dual magnet system consisting of two flat magnets to magnetize (polarize) the contrast agent and an array of cone magnets producing a sharp gradient field to trap the magnetized contrast agent was designed and constructed. A water-ink solution with an optical absorption coefficient of 10 cm-1 was used to mimic the optical absorption of blood. Magnetomotive photoacoustic imaging helped visualize bead trapping, dynamic manipulation of trapped beads in a flow field, and the subtraction of stationary background signals insensitive to the magnetic field. The results show that trafficking micro-scale objects can be effectively trapped in a stream with a flow rate up to 12 ml/min and the background can be significantly (greater than 15 dB) suppressed. It makes the proposed method very promising for sensitive detection of rare circulating tumor cells within high flow vessels with a highly absorptive optical background.
NASA Astrophysics Data System (ADS)
Rodriguez-Hervas, Berta; Maile, Michael; Flores, Benjamin C.
2014-05-01
In recent years, the automotive industry has experienced an evolution toward more powerful driver assistance systems that provide enhanced vehicle safety. These systems typically operate in the optical and microwave regions of the electromagnetic spectrum and have demonstrated high efficiency in collision and risk avoidance. Microwave radar systems are particularly relevant due to their operational robustness under adverse weather or illumination conditions. Our objective is to study different signal processing techniques suitable for extraction of accurate micro-Doppler signatures of slow moving objects in dense urban environments. Selection of the appropriate signal processing technique is crucial for the extraction of accurate micro-Doppler signatures that will lead to better results in a radar classifier system. For this purpose, we perform simulations of typical radar detection responses in common driving situations and conduct the analysis with several signal processing algorithms, including short time Fourier Transform, continuous wavelet or Kernel based analysis methods. We take into account factors such as the relative movement between the host vehicle and the target, and the non-stationary nature of the target's movement. A comparison of results reveals that short time Fourier Transform would be the best approach for detection and tracking purposes, while the continuous wavelet would be the best suited for classification purposes.
Wecker, L
1991-10-01
The objective of these experiments was to determine whether preincubating hippocampal slices with choline provides precursor that can be used during a subsequent incubation to support or enhance the synthesis of acetylcholine (ACh). Slices were preincubated for 60 min with 0, 10, 25, or 50 microM choline, washed, resuspended, and then incubated for 10 min in choline-free buffer containing 4.74 (Krebs-Ringer bicarbonate, KRB) or 25 mM KCl. The tissue contents of ACh and choline were determined prior to and after the preincubation, as well as after the incubation; the amounts of ACh and choline released were measured, and ACh synthesis was calculated. Preincubation in the absence of choline increased the tissue content of ACh to 242% of original levels; preincubation with 10 microM choline did not lead to a further increase, but preincubation with 25 or 50 microM choline increased the ACh content to 272% of original levels, significantly greater than that of slices preincubated with either 0 or 10 microM choline. When tissues were subsequently incubated for 10 min with either KRB or 25 mM KCl, ACh release from slices preincubated with 50 microM choline was greater than from slices preincubated with 0, 10, or 25 microM choline. Incubation of slices with KRB did not alter the tissue content of ACh, but when tissues were incubated with 25 mM KCl, the ACh content of slices preincubated with 0 or 10 microM choline decreased significantly, whereas that of slices preincubated with 25 or 50 microM choline did not.(ABSTRACT TRUNCATED AT 250 WORDS)
NASA Astrophysics Data System (ADS)
Basu, Ishita; Kudela, Pawel; Korzeniewska, Anna; Franaszczuk, Piotr J.; Anderson, William S.
2015-08-01
Objective. The use of micro-electrode arrays to measure electrical activity from the surface of the brain is increasingly being investigated as a means to improve seizure onset zone (SOZ) localization. In this work, we used a multivariate autoregressive model to determine the evolution of seizure dynamics in the 70-110 Hz high frequency band across micro-domains sampled by such micro-electrode arrays. We showed that a directed transfer function (DTF) can be used to estimate the flow of seizure activity in a set of simulated micro-electrode data with known propagation pattern. Approach. We used seven complex partial seizures recorded from four patients undergoing intracranial monitoring for surgical evaluation to reconstruct the seizure propagation pattern over sliding windows using a DTF measure. Main results. We showed that a DTF can be used to estimate the flow of seizure activity in a set of simulated micro-electrode data with a known propagation pattern. In general, depending on the location of the micro-electrode grid with respect to the clinical SOZ and the time from seizure onset, ictal propagation changed in directional characteristics over a 2-10 s time scale, with gross directionality limited to spatial dimensions of approximately 9 m{{m}2}. It was also seen that the strongest seizure patterns in the high frequency band and their sources over such micro-domains are more stable over time and across seizures bordering the clinically determined SOZ than inside. Significance. This type of propagation analysis might in future provide an additional tool to epileptologists for characterizing epileptogenic tissue. This will potentially help narrowing down resection zones without compromising essential brain functions as well as provide important information about targeting anti-epileptic stimulation devices.
Development of surface friction guidelines for LADOTD.
DOT National Transportation Integrated Search
2012-04-01
The main objective of this study was to develop a Louisiana pavement surface friction guideline that considers polished stone value (PSV) and mixture : type alike in terms of both micro- and macro- surface textures. The polishing and texture properti...
Equipment Decisions: Micros, Terminals, or Typewriters.
ERIC Educational Resources Information Center
Swanson, Jean C.
1986-01-01
Discusses factors to be considered when deciding whether to buy typewriters, terminals, or microcomputers for the school typing room. Factors include (1) objectives of the typewriting program, (2) market needs, (3) student learning methods, (4) costs, and (5) instructional materials. (CH)
MicroCameras and Photometers (MCP) on board the TARANIS satellite
NASA Astrophysics Data System (ADS)
Farges, T.; Hébert, P.; Le Mer-Dachard, F.; Ravel, K.; Gaillac, S.
2017-12-01
TARANIS (Tool for the Analysis of Radiations from lightNing and Sprites) is a CNES micro satellite. Its main objective is to study impulsive transfers of energy between the Earth atmosphere and the space environment. It will be sun-synchronous at an altitude of 700 km. It will be launched in 2019 for at least 2 years. Its payload is composed of several electromagnetic instruments in different wavelengths (from gamma-rays to radio waves including optical). TARANIS instruments are currently in calibration and qualification phase. The purpose is to present the MicroCameras and Photometers (MCP) design, to show its performances after its recent characterization and at last to discuss the scientific objectives and how we want to answer it with the MCP observations. The MicroCameras, developed by Sodern, are dedicated to the spatial description of TLEs and their parent lightning. They are able to differentiate sprite and lightning thanks to two narrow bands ([757-767 nm] and [772-782 nm]) that provide simultaneous pairs of images of an Event. Simulation results of the differentiation method will be shown. After calibration and tests, the MicroCameras are now delivered to the CNES for integration on the payload. The Photometers, developed by Bertin Technologies, will provide temporal measurements and spectral characteristics of TLEs and lightning. There are key instrument because of their capability to detect on-board TLEs and then switch all the instruments of the scientific payload in their high resolution acquisition mode. Photometers use four spectral bands in the [170-260 nm], [332-342 nm], [757-767 nm] and [600-900 nm] and have the same field of view as cameras. The on-board TLE detection algorithm remote-controlled parameters have been tuned before launch using the electronic board and simulated or real events waveforms. After calibration, the Photometers are now going through the environmental tests. They will be delivered to the CNES for integration on the payload in September 2017.
NASA Astrophysics Data System (ADS)
Birkbeck, Aaron L.
A new technology is developed that functionally integrates arrays of lasers and micro-optics into microfluidic systems for the purpose of imaging, analyzing, and manipulating objects and biological cells. In general, the devices and technologies emerging from this area either lack functionality through the reliance on mechanical systems or provide a serial-based, time consuming approach. As compared to the current state of art, our all-optical design methodology has several distinguishing features, such as parallelism, high efficiency, low power, auto-alignment, and high yield fabrication methods, which all contribute to minimizing the cost of the integration process. The potential use of vertical cavity surface emitting lasers (VCSELs) for the creation of two-dimensional arrays of laser optical tweezers that perform independently controlled, parallel capture, and transport of large numbers of individual objects and biological cells is investigated. One of the primary biological applications for which VCSEL array sourced laser optical tweezers are considered is the formation of engineered tissues through the manipulation and spatial arrangement of different types of cells in a co-culture. Creating devices that combine laser optical tweezers with select micro-optical components permits optical imaging and analysis functions to take place inside the microfluidic channel. One such device is a micro-optical spatial filter whose motion and alignment is controlled using a laser optical tweezer. Unlike conventional spatial filter systems, our device utilizes a refractive optical element that is directly incorporated onto the lithographically patterned spatial filter. This allows the micro-optical spatial filter to automatically align itself in three-dimensions to the focal point of the microscope objective, where it then filters out the higher frequency additive noise components present in the laser beam. As a means of performing high resolution imaging in the microfluidic channel, we developed a novel technique that integrates the capacity of a laser tweezer to optically trap and manipulate objects in three-dimensions with the resolution-enhanced imaging capabilities of a solid immersion lens (SIL). In our design, the SIL is a free-floating device whose imaging beam, motion control and alignment is provided by a laser optical tweezer, which allows the microfluidic SIL to image in areas that are inaccessible to traditional solid immersion microscopes.
Investigation of Micro- and Macro-Scale Transport Processes for Improved Fuel Cell Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Wenbin
2014-08-29
This report documents the work performed by General Motors (GM) under the Cooperative agreement No. DE-EE0000470, “Investigation of Micro- and Macro-Scale Transport Processes for Improved Fuel Cell Performance,” in collaboration with the Penn State University (PSU), University of Tennessee Knoxville (UTK), Rochester Institute of Technology (RIT), and University of Rochester (UR) via subcontracts. The overall objectives of the project are to investigate and synthesize fundamental understanding of transport phenomena at both the macro- and micro-scales for the development of a down-the-channel model that accounts for all transport domains in a broad operating space. GM as a prime contractor focused onmore » cell level experiments and modeling, and the Universities as subcontractors worked toward fundamental understanding of each component and associated interface.« less
Autonomous microexplosives subsurface tracing system final report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engler, Bruce Phillip; Nogan, John; Melof, Brian Matthew
The objective of the autonomous micro-explosive subsurface tracing system is to image the location and geometry of hydraulically induced fractures in subsurface petroleum reservoirs. This system is based on the insertion of a swarm of autonomous micro-explosive packages during the fracturing process, with subsequent triggering of the energetic material to create an array of micro-seismic sources that can be detected and analyzed using existing seismic receiver arrays and analysis software. The project included investigations of energetic mixtures, triggering systems, package size and shape, and seismic output. Given the current absence of any technology capable of such high resolution mapping ofmore » subsurface structures, this technology has the potential for major impact on petroleum industry, which spends approximately $1 billion dollar per year on hydraulic fracturing operations in the United States alone.« less
Extraction process of palm kernel cake as a source of mannan for feed additive on poultry diet
NASA Astrophysics Data System (ADS)
Tafsin, M.; Hanafi, N. D.; Yusraini, E.
2017-05-01
Palm Kernel Cake (PKC) is a by-product of palm kernel oil extraction and found in large quantity in Indonesia. The inclusion of PKC on poultry diet are limited due to some nutritional problems such as anti-nutritional properties (mannan). On the other hand, mannan containing polysaccharides play in various biological functions particularly in enhancing the immune response and to control pathogen in poultry. The research objective to find out the extraction process of PKC and conducted at animal nutrition and Feed Science Laboratory, Agricultural Faculty, University of Sumatera Utara. Various extraction methode were used in this experiment, including fraction analysis used 7 number sieves, and followed by water and acetic acid extraction. The result indicated that PKC had different particle size according to sieve size and dominated by particle size 850 um. The analysis of sugar content indicated that each particle size had different characteristic on treatment by hot water extraction. The particle size 180—850 um had higher sugar content than coarse PKC (2000—3000 um). The total sugar content were recovered vary between 0.9—3,2% from PKC were extracted. Treatment grinding method followed by hot water extraction (100—120 °C, 1 h) increased total sugar content than previous treatments and reach 8% from PKC were extracted. Utilisation acetic acid decreased the total amount of total sugar from PKC were extracted. It is concluded that treatment by hot temperature (110—120 °C) for 1 h show highest yield to extract sugar from PKC.
De Hert, Marc; Van Bos, Liesbet; Sweers, Kim; Wampers, Martien; De Lepeleire, Jan; Correll, Christophe U
2015-01-01
When psychiatric patients express a wish for euthanasia, this should first and foremost be interpreted as a cry for help. Due to their close day-to-day relationship, psychiatric nurses may play an important and central role in responding to such requests. However, little is known about nurses' attitudes towards euthanasia motivated by unbearable mental suffering. The aim of this study was to provide insight into the attitudes and actions taken by psychiatric nurses when confronted with a patient's euthanasia request based on unbearable mental suffering (UMS). A questionnaire was sent to 11 psychiatric hospitals in the Flemish part of Belgium. The overall response rate was 70% (N = 627). Psychiatric nurses were frequently confronted with a request for euthanasia, either directly (N = 329, 53%) or through a colleague (N = 427, 69%). A majority (N = 536, 84%) did not object to euthanasia in a psychiatrically ill population with UMS. Confounding factors were the psychiatric diagnosis and the type of ward where the nurses were working. Most participants acknowledged a lack of knowledge and skills to adequately address the euthanasia request (N = 434, 71%). Nearly unanimously (N = 618, 99%), study participants indicated that dealing with euthanasia requests and other end-of-life issues should be part of the formal training of nurses. The results highlight the need for ethically sound and comprehensive provision of care. Psychiatric nurses play an important role in dealing with the complex issue of requests for euthanasia. There is also a need for education, training and clear guidelines on the level of health care organizations.
Three-frequency Nd:YAG laser for dental treatment
NASA Astrophysics Data System (ADS)
Kadlecová, Martina; Dostálová, Tat'jana; Jelínková, Helena; Němec, Michal; Å ulc, Jan; Fibrich, Martin; Bradna, Pavel; Nejezchleb, Karel; Kapitch, Nickalai; Å koda, Václav
2018-02-01
In the last decade, lasers found a number of indications in dentistry. However, there is still one problem: the narrow spectrum of usefulness for individual radiation wavelengths. The aim of our study is to demonstrate the use of a compact three-frequency pulsed Nd-YAG laser for more than one treatment, namely disinfection, coagulation, selective ablation, and soft tissue removal. The laser wavelengths and the maximal energies achieved were the following: 1.06 um, 1.32 um, 1.44 um and 830 mJ, 425 mJ, and 200 mJ, respectively. It has been found that all of the investigated wavelengths exhibit disinfection properties. Moreover, radiation of 1.06 um wavelength removes soft tissue and exhibits also coagulation properties. Radiation of 1.44 um is most useful for selective ablation of initial caries and disinfection, and 1.32 um radiation can be used for precise ablation when higher energy is applied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fong, Theodore E.
2013-05-06
The technical paper summarizes the project work conducted in the development of Kerf-Free silicon wafering equipment for silicon solar wafering. This new PolyMax technology uses a two step process of implantation and cleaving to exfoliate 50um to 120um wafers with thicknesses ranging from 50um to 120um from a 125mm or 156mm pseudo-squared silicon ingot. No kerf is generated using this method of wafering. This method of wafering contrasts with the current method of making silicon solar wafers using the industry standard wire saw equipment. The report summarizes the activity conducted by Silicon Genesis Corporation in working to develop this technologymore » further and to define the roadmap specifications for the first commercial proto-type equipment for high volume solar wafer manufacturing using the PolyMax technology.« less
Real-Time Implementation of Nonlinear Optical Processing Functions.
1986-09-30
information capacity) with the nonlinear error correction properties of associative neural nets such as the Hopfield model. Analogies between holography...symnolic ma.Ip’:ation Th.e error correcting -apart" :ty of non" ;n-ar associative merTtnies is necessary for s’uch structu-res Experimerta. results... geometrica snapes in contact ’A,.n a c-:’:ser ’Figure 51a’ ., and a spher:cal 4:verg.ng reference -eam Upion :"um’latlon of t -" c-’gram by the object beam
VizieR Online Data Catalog: Galaxies and QSOs FIR size and surface brightness (Lutz+, 2016)
NASA Astrophysics Data System (ADS)
Lutz, D.; Berta, S.; Contursi, A.; Forster Schreiber, N. M.; Genzel, R.; Gracia-Carpio, J.; Herrera-Camus, R.; Netzer, H.; Sturm, E.; Tacconi, L. J.; Tadaki, K.; Veilleux, S.
2016-08-01
We use 70, 100, and 160um images from scan maps obtained with PACS on board Herschel, collecting archival data from various projects. In order to cover a wide range of galaxy properties, we first obtain an IR-selected local sample ranging from normal galaxies up to (ultra)luminous infrared galaxies. For that purpose, we searched the Herschel archive for all cz>=2000km/s objects from the IRAS Revised Bright Galaxy Sample (RBGS, Sanders et al., 2003, Cat. J/AJ/126/1607). (1 data file).
VizieR Online Data Catalog: New redshifts for Abell 1758N galaxies (Boschin+, 2012)
NASA Astrophysics Data System (ADS)
Boschin, W.; Girardi, M.; Barrena, R.; Nonino, M.
2012-06-01
Multi-object spectroscopic observations of A1758N were carried out at the TNG, a 4m-class telescope, in May 2008 and May 2009. We used DOLORES/MOS with the LR-B Grism 1, yielding a dispersion of 187Å/mm. The detector is a 2048x2048 pixels E2V CCD, with a pixel size of 13.5um. In total, we observed four MOS masks (one in 2008 and three in 2009) for a total of 146 slits. (1 data file).
Li, Xin; Kroin, Jeffrey S; Kc, Ranjan; Gibson, Gary; Chen, Di; Corbett, Grant T; Pahan, Kalipada; Fayyaz, Sana; Kim, Jae-Sung; van Wijnen, Andre J; Suh, Joon; Kim, Su-Gwan; Im, Hee-Jeong
2013-12-01
The objective of this study was to examine whether altered expression of microRNAs in central nervous system components is pathologically linked to chronic knee joint pain in osteoarthritis. A surgical animal model for knee joint OA was generated by medial meniscus transection in rats followed by behavioral pain tests. Relationships between pathological changes in knee joint and development of chronic joint pain were examined by histology and imaging analyses. Alterations in microRNAs associated with OA-evoked pain sensation were determined in bilateral lumbar dorsal root ganglia (DRG) and the spinal dorsal horn by microRNA array followed by individual microRNA analyses. Gain- and loss-of-function studies of selected microRNAs (miR-146a and miR-183 cluster) were conducted to identify target pain mediators regulated by these selective microRNAs in glial cells. The ipsilateral hind leg displayed significantly increased hyperalgesia after 4 weeks of surgery, and sensitivity was sustained for the remainder of the 8-week experimental period (F = 341, p < 0.001). The development of OA-induced chronic pain was correlated with pathological changes in the knee joints as assessed by histological and imaging analyses. MicroRNA analyses showed that miR-146a and the miR-183 cluster were markedly reduced in the sensory neurons in DRG (L4/L5) and spinal cord from animals experiencing knee joint OA pain. The downregulation of miR-146a and/or the miR-183 cluster in the central compartments (DRG and spinal cord) are closely associated with the upregulation of inflammatory pain mediators. The corroboration between decreases in these signature microRNAs and their specific target pain mediators were further confirmed by gain- and loss-of-function analyses in glia, the major cellular component of the central nervous system (CNS). MicroRNA therapy using miR-146a and the miR-183 cluster could be powerful therapeutic intervention for OA in alleviating joint pain and concomitantly regenerating peripheral knee joint cartilage. © 2013 American Society for Bone and Mineral Research.
Association of MicroRNAs with Antibody Response to Mycoplasma bovis in Beef Cattle
Cai, Guohong; Kuehn, Larry A.; Register, Karen B.; McDaneld, Tara G.; Neill, John D.
2016-01-01
The objective of this study was to identify microRNAs associated with a serum antibody response to Mycoplasma bovis in beef cattle. Serum from sixteen beef calves was collected at three points: in summer after calves were born, in fall at weaning, and in the following spring. All sera collected in the summer were ELISA-negative for anti-M. bovis. By the fall, eight animals were seropositive for IgG (positive group), while eight remained negative (negative group). By spring, all animals in both groups were seropositive. MicroRNAs were extracted from sera and sequenced on the Illumina HiSeq next-generation sequencer. A total of 1,374,697 sequences mapped to microRNAs in the bovine genome. Of these, 82% of the sequences corresponded to 27 microRNAs, each represented by a minimum of 10,000 sequences. There was a statistically significant interaction between ELISA response and season for bta-miR-24-3p (P = 0.0268). All sera collected at the initial summer had a similar number of copies of this microRNA (P = 0.773). In the fall, the positive group had an increased number of copies when compared to the negative group (P = 0.021), and this grew more significant by the following spring (P = 0.0001). There were 21 microRNAs associated (P< 0.05) with season. These microRNAs could be evaluated further as candidates to potentially improve productivity in cattle. The microRNAs bta-let-7b, bta-miR- 24-3p, bta-miR- 92a, and bta-miR-423-5p, were significatly associated with ELISA status (P< 0.05). These microRNAs have been recognized as playing a role in the host defense against bacteria in humans, mice, and dairy cattle. Further studies are needed to establish if these microRNAs could be used as diagnostic marker or indicator of exposure, or whether intervention strategies could be developed as an alternative to antibiotics for controlling disease due to M. bovis. PMID:27537842
Towards reducing the impacts of unwanted movements on identification of motion intentions.
Li, Xiangxin; Chen, Shixiong; Zhang, Haoshi; Samuel, Oluwarotimi Williams; Wang, Hui; Fang, Peng; Zhang, Xiufeng; Li, Guanglin
2016-06-01
Surface electromyogram (sEMG) has been extensively used as a control signal in prosthesis devices. However, it is still a great challenge to make multifunctional myoelectric prostheses clinically available due to a number of critical issues associated with existing EMG based control strategy. One such issue would be the effect of unwanted movements (UMs) that are inadvertently done by users on the performance of movement classification in EMG pattern recognition based algorithms. Since UMs are not considered in training a classifier, they would decay the performance of a trained classifier in identifying the target movements (TMs), which would cause some undesired actions in control of multifunctional prostheses. In this study, the impact of UMs was systemically investigated in both able-bodied subjects and transradial amputees. Our results showed that the UMs would be unevenly classified into all classes of the TMs. To reduce the impact of the UMs on the performance of a classifier, a new training strategy that would categorize all possible UMs into a new movement class was proposed and a metric called Reject Ratio that is a measure of how many UMs is rejected by a trained classifier was adopted. The results showed that the average Reject Ratio across all the participants was greater than 91%, meanwhile the average classification accuracy of TMs was above 99% when UMs occurred. This suggests that the proposed training strategy could greatly reduce the impact of UMs on the performance of the trained classifier in identifying the TMs and may enhance the robustness of myoelectric control in clinical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
TLD assessment of mouse dosimetry during microCT imaging
Figueroa, Said Daibes; Winkelmann, Christopher T.; Miller, William H.; Volkert, Wynn A.; Hoffman, Timothy J.
2008-01-01
Advances in laboratory animal imaging have provided new resources for noninvasive biomedical research. Among these technologies is microcomputed tomography (microCT) which is widely used to obtain high resolution anatomic images of small animals. Because microCT utilizes ionizing radiation for image formation, radiation exposure during imaging is a concern. The objective of this study was to quantify the radiation dose delivered during a standard microCT scan. Radiation dose was measured using thermoluminescent dosimeters (TLDs), which were irradiated employing an 80 kVp x-ray source, with 0.5 mm Al filtration and a total of 54 mA s for a full 360 deg rotation of the unit. The TLD data were validated using a 3.2 cm3 CT ion chamber probe. TLD results showed a single microCT scan air kerma of 78.0±5.0 mGy when using a poly(methylmethacrylate) (PMMA) anesthesia support module and an air kerma of 92.0±6.0 mGy without the use of the anesthesia module. The validation CT ion chamber study provided a measured radiation air kerma of 81.0±4.0 mGy and 97.0±5.0 mGy with and without the PMMA anesthesia module, respectively. Internal TLD analysis demonstrated an average mouse organ radiation absorbed dose of 76.0±5.0 mGy. The author’s results have defined x-ray exposure for a routine microCT study which must be taken into consideration when performing serial molecular imaging studies involving the microCT imaging modality. PMID:18841837
Mattotti, M; Micholt, L; Braeken, D; Kovačić, D
2015-04-01
One of the strategies to improve cochlear implant technology is to increase the number of electrodes in the neuro-electronic interface. The objective was to characterize in vitro cultures of spiral ganglion neurons (SGN) cultured on surfaces of novel silicon micro-pillar substrates (MPS). SGN from P5 rat pups were cultured on MPS with different micro-pillar widths (1-5.6 μm) and spacings (0.6-15 μm) and were compared with control SGN cultures on glass coverslips by immunocytochemistry and scanning electron microscopy (SEM). Overall, MPS support SGN growth equally well as the control glass surfaces. Micro-pillars of a particular size-range (1.2-2.4 μm) were optimal in promoting SGN presence, neurite growth and alignment. On this specific micro-pillar size, more SGN were present, and neurites were longer and more aligned. SEM pictures highlight how cells on micro-pillars with smaller spacings grow directly on top of pillars, while at wider spacings (from 3.2 to 15 μm) they grow on the bottom of the surface, losing contact guidance. Further, we found that MPS encourage more monopolar and bipolar SGN morphologies compared to the control condition. Finally, MPS induce longest neurite growth with minimal interaction of S100+ glial cells. These results indicate that silicon micro-pillar substrates create a permissive environment for the growth of primary auditory neurons promoting neurite sprouting and are a promising technology for future high-density three-dimensional CMOS-based auditory neuro-electronic interfaces.
Effects of sildenafil on cardiac repolarization.
Chiang, Chern-En; Luk, Hsiang-Ning; Wang, Tsui-Min; Ding, Philip Yu-An
2002-08-01
Sudden death has occasionally been reported in patients taking sildenafil. The objective of this study was to investigate the effect of sildenafil on cardiac repolarization. We used conventional microelectrode recording technique in isolated guinea pig papillary muscles and canine Purkinje fibers, whole-cell patch clamp techniques in guinea pig ventricular myocytes, and in vivo ECG measurements in guinea pigs. Action potential duration at 90% repolarization (APD(90)) was not affected by sildenafil in the therapeutic ranges (< or =1 microM), but shortened by higher concentration (> or =10 microM) in both guinea pig papillary muscles and canine Purkinje fibers. D-Sotalol prolonged APD(90) in the same preparations with concentrations > or =1 microM in a reverse frequency-dependent manner. Co-administration of sildenafil (10 and 30 microM) abolished the APD-prolonging effects of D-sotalol (30 microM) and amiodarone (100 microM). Sildenafil, with concentrations up to 30 microM, had no significant effect on both the rapid (I(Kr)) and the slow (I(Ks)) components of the delayed rectifier potassium currents in guinea pig ventricular myocytes. Sildenafil dose-dependently blocked L-type Ca(2+) current (I(Ca,L)), but had no effect on persistent Na(+) current in guinea pig ventricular myocytes. ECG recordings in intact guinea pigs revealed significant shortening of QTc interval by sildenafil (10 and 30 mg/kg orally). The QT-prolonging effects by D,L-sotalol (50 mg/kg) and amiodarone (100 mg/kg) were abolished by sildenafil (30 mg/kg). Sildenafil does not prolong cardiac repolarization. Instead, in supra-therapeutic concentrations, it accelerates cardiac repolarization, presumably through its blocking effect on I(Ca,L).
Chung, Sang-Bong; Ryu, Jiwook; Chung, Yeongu; Lee, Sung Ho; Choi, Seok Keun
2017-09-01
To provide detailed information about how to realize a self-training laboratory with cost-effective microsurgical instruments, especially pertinent for the novice trainee. Our training model is designed to allow the practice of the microsurgery skills in an efficient and cost-effective manner. A used stereoscopic microscope is prepared for microsurgical training. A sufficient working distance for microsurgical practice is obtained by attaching an auxiliary objective lens. The minimum instrument list includes 2 jeweler's forceps, iris scissors, and alligator clips. The iris scissors and alligator clip provide good alternatives to micro-scissors and microvascular clamp. The short time needed to set up the microscope and suture the gauze with micro-forceps makes the training model suitable for daily practice. It takes about 15 minutes to suture 10 neighboring fibers of the gauze with 10-0 nylon; thus, training can be completed more quickly. We have developed an inexpensive and efficient micro-anastomosis training system using a stereoscopic microscope and minimal micro-instruments. Especially useful for novice trainees, this system provides high accessibility for microsurgical training. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Nguyen, Danh-Tuyen; Hoang, Tien-Dat; Lee, An-Chen
2017-10-01
A micro drill structure was optimized to give minimum lateral displacement at its drill tip, which plays an extremely important role on the quality of drilled holes. A drilling system includes a spindle, chuck and micro drill bit, which are modeled as rotating Timoshenko beam elements considering axial drilling force, torque, gyroscopic moments, eccentricity and bearing reaction force. Based on our previous work, the lateral vibration at the drill tip is evaluated. It is treated as an objective function in the optimization problem. Design variables are diameter and lengths of cylindrical and conical parts of the micro drill, along with nonlinear constraints on its mass and mass center location. Results showed that the lateral vibration was reduced by 15.83 % at a cutting speed of 70000 rpm as compared to that for a commercial UNION drill. Among the design variables, we found that the length of the conical part connecting to the drill shank plays the most important factor on the lateral vibration during cutting process.
FPGA Control System for the Automated Test of MicroShutters
NASA Technical Reports Server (NTRS)
Lyness, Eric; Rapchun, David A.; Moseley, S. Harvey
2008-01-01
The James Webb Space Telescope, scheduled to replace the Hubble in 2013, must simultaneously observe hundreds of faint galaxies. This requirement has led to the development of a programmable transmission mask which can be adapted to admit light from an arbitrary pattern of galaxies into its spectrograph. This programmable mask will contain a large array of micro-electromechanical (MEMs) devices called MicroShutters. These microscopic shutters physically open and close like the shutter on a camera, except each shutter is microscopic in size and an array 365 by 171 is used to select the objects under spectroscopic observation at a given time, and to block the unwanted background light from other areas. NASA developed and is currently refining the exceptionally difficult process of manufacturing these shutters. This paper describes how the authors used LabVIEW FPGA and a reconfigurable I/O board to control the shutters in a test chamber and how the flexibility of the system allows us to continue to modify the control algorithms as NASA optimizes the performance of the MicroShutter arrays.
Preliminary assessment of Malaysian micro-algae strains for the production of bio jet fuel
NASA Astrophysics Data System (ADS)
Chen, J. T.; Mustafa, E. M.; Vello, V.; Lim, P.; Nik Sulaiman, N. M.; Majid, N. Abdul; Phang, S.; Tahir, P. Md.; Liew, K.
2016-10-01
Malaysia is the main hub in South-East Asia and has one of the highest air traffic movements in the region. Being rich in biodiversity, Malaysia has long been touted as country rich in biodiversity and therefore, attracts great interests as a place to setup bio-refineries and produce bio-fuels such as biodiesel, bio-petrol, green diesel, and bio-jet fuel Kerosene Jet A-1. Micro-algae is poised to alleviate certain disadvantages seen in first generation and second generation feedstock. In this study, the objective is to seek out potential micro-algae species in Malaysia to determine which are suitable to be used as the feedstock to enable bio-jet fuel production in Malaysia. From 79 samples collected over 30 sites throughout Malaysia, six species were isolated and compared for their biomass productivity and lipid content. Their lipid contents were then used to derived the require amount of micro-algae biomass to yield 1 kg of certifiable jet fuel via the HEFA process, and to meet a scenario where Malaysia implements a 2% alternative (bio-) jet fuel requirement.
Leaf micro-morphology of Lepisanthes Blume (Sapindaceae) in Peninsular Malaysia
NASA Astrophysics Data System (ADS)
Ghazalli, Mohd Norfaizal; Talib, Noraini; Mohammad, Abdul Latiff
2018-04-01
A detail comparative study on leaf micro-morphology was conducted on the genus Lepisanthes from Peninsular Malaysia, five chosen species namely as L. amoena (Hassk.) Leenh., L. fruticosa (Roxb.) Leenh., L. rubiginosa (Roxb.) Leenh., L. senegalensis (Juss. ex Poir.) Leenh. and L. tetraphylla (Vahl.) Radlk. The objective of this study is to identify the leaf micro-morphological characteristics that can give significance impact for species identification and classification. Lepisanthes is an important tropical rare fruit genus in Malaysia and it is important to characterize and documenting additional taxonomic evidences that can be useful in Sapindaceae taxonomy information which is still lacked. The methods involved dehydration process, critical point drying, gold coated and observation under scanning electron microscope. Leaf micro-morphology showed significance taxonomic value in the genus Lepisanthes and can be used as additional data for species identification. Diagnostic character was found in L. fruticosa via the presence of four different types of trichomes on the abaxial and adaxial epidermal surfaces. As a conclusion, variation in cuticular striation, stomata structure, type of waxes and trichome morphology can be used in Lepisanthes species identification.
Recent micro-CT scanner developments at UGCT
NASA Astrophysics Data System (ADS)
Dierick, Manuel; Van Loo, Denis; Masschaele, Bert; Van den Bulcke, Jan; Van Acker, Joris; Cnudde, Veerle; Van Hoorebeke, Luc
2014-04-01
This paper describes two X-ray micro-CT scanners which were recently developed to extend the experimental possibilities of microtomography research at the Centre for X-ray Tomography (www.ugct.ugent.be) of the Ghent University (Belgium). The first scanner, called Nanowood, is a wide-range CT scanner with two X-ray sources (160 kVmax) and two detectors, resolving features down to 0.4 μm in small samples, but allowing samples up to 35 cm to be scanned. This is a sample size range of 3 orders of magnitude, making this scanner well suited for imaging multi-scale materials such as wood, stone, etc. Besides the traditional cone-beam acquisition, Nanowood supports helical acquisition, and it can generate images with significant phase-contrast contributions. The second scanner, known as the Environmental micro-CT scanner (EMCT), is a gantry based micro-CT scanner with variable magnification for scanning objects which are not easy to rotate in a standard micro-CT scanner, for example because they are physically connected to external experimental hardware such as sensor wiring, tubing or others. This scanner resolves 5 μm features, covers a field-of-view of about 12 cm wide with an 80 cm vertical travel range. Both scanners will be extensively described and characterized, and their potential will be demonstrated with some key application results.
A Micro-delivery Approach for Studying Microvascular Responses to Localized Oxygen Delivery
Ghonaim, Nour W.; Lau, Leo W. M.; Goldman, Daniel; Ellis, Christopher G.; Yang, Jun
2011-01-01
In vivo video microscopy has been used to study blood flow regulation as a function of varying oxygen concentration in microcirculatory networks. However, previous studies have measured the collective response of stimulating large areas of the microvascular network at the tissue surface. Objective We aim to limit the area being stimulated by controlling oxygen availability to highly localized regions of the microvascular bed within intact muscle. Design and Method Gas of varying O2 levels was delivered to specific locations on the surface of the Extensor Digitorum Longus muscle of rat through a set of micro-outlets (100 μm diameter) patterned in ultrathin glass using state-of-the-art microfabrication techniques. O2 levels were oscillated and digitized video sequences were processed for changes in capillary hemodynamics and erythrocyte O2 saturation. Results and Conclusions Oxygen saturations in capillaries positioned directly above the micro-outlets were closely associated with the controlled local O2 oscillations. Radial diffusion from the micro-outlet is limited to ~75 μm from the center as predicted by computational modelling and as measured in vivo. These results delineate a key step in the design of a novel micro-delivery device for controlled oxygen delivery to the microvasculature to understand fundamental mechanisms of microvascular regulation of O2 supply. PMID:21914035
Histone deacetylase inhibitors induce growth arrest and differentiation in uveal melanoma
Landreville, Solange; Agapova, Olga A.; Matatall, Katie A.; Kneass, Zachary T.; Onken, Michael D.; Lee, Ryan S.; Bowcock, Anne M.; Harbour, J. William
2011-01-01
Purpose Metastasis is responsible for the death of most cancer patients, yet few therapeutic agents are available which specifically target the molecular events that lead to metastasis. We recently showed that inactivating mutations in the tumor suppressor gene BAP1 are closely associated with loss of melanocytic differentiation in uveal melanoma and metastasis (UM). The purpose of this study was to identify therapeutic agents that reverse the phenotypic effects of BAP1 loss in UM. Experimental Design In silico screens were performed to identify therapeutic compounds predicted to differentiate UM cells using Gene Set Enrichment Analysis and Connectivity Map databases. Valproic acid, trichostatin A, LBH-589 and suberoylanilide hydroxamic acid were evaluated for their effects on UM cells using morphologic evaluation, MTS viability assays, BrdU incorporation, flow cytometry, clonogenic assays, gene expression profiling, histone acetylation and ubiquitination assays, and a murine xenograft tumorigenicity model. Results HDAC inhibitors induced morphologic differentiation, cell cycle exit, and a shift to a differentiated, melanocytic gene expression profile in cultured UM cells. Valproic acid inhibited the growth of UM tumors in vivo. Conclusions These findings suggest that HDAC inhibitors may have therapeutic potential for inducing differentiation and prolonged dormancy of micrometastatic disease in UM. PMID:22038994
NASA Astrophysics Data System (ADS)
Kaenders, Rainer; Kvasz, Ladislav
Wenn jemand sagt, dass ein Bus um 9 Uhr abfährt - weiß man es dann? Angenommen, man ist darüber unterrichtet, dass die Busse unter der Woche immer zur vollen Stunde abfahren - von 7 Uhr morgens bis 7 Uhr abends, weiß man es dann mit dem Wissen um diese allgemeine Regel besser, dass der Bus um 9 Uhr abfährt? Macht es einen Unterschied, ob man den Fahrplan erstellt, den Bus lenkt oder nur mitfährt, um sich dieser Tatsache bewusst zu sein?
VizieR Online Data Catalog: YSOs in California Molecular Cloud (Lada+, 2017)
NASA Astrophysics Data System (ADS)
Lada, C. J.; Lewis, J. A.; Lombardi, M.; Alves, J.
2018-01-01
The CMC was observed by the all-sky Planck observatory and by the Herschel Space Observatory as part of the "Auriga-California" program (Harvey et al. 2013, Cat J/ApJ/764/133). The Herschel data we used consisted of observations obtained in parallel mode simultaneously using the PACS and SPIRE instruments. For the purposes of this study we use Herschel observations made in the PACS 160um band, and the SPIRE 250um, 350um and 500um bands. (1 data file).
An ethical leadership program for nursing unit managers.
Jeon, Sang Hee; Park, Mihyun; Choi, Kyungok; Kim, Mi Kyoung
2018-03-01
The aims of this study were to evaluate the effect of an ethical leadership program (ELP) on ethical leadership, organizational citizenship behavior (OCB), and job outcomes of nursing unit managers (UMs) and to examine changes in staff nurses' perception about UMs' EL, OCB, job outcomes, and ethical work environments (EWEs) post-ELP. A quasi-experimental (pre- and post-test design) study conducted six-month intervention (ELP) using self-reported UM survey (n=44), and staff nurses (n=158) were randomly extracted by two steps. The Korean version of Ethical Leadership at Work for UMs' self-ethical leadership, the Ethical Leadership Scale for staff nurses' perceived ethical leadership, a 19-item OCB scale, and six dimensions of the medium-sized Copenhagen Psychosocial Questionnaire II for job outcomes and EWEs were administered at baseline and post-intervention. UMs' ethical leadership scores differed significantly over time in people orientation (p=0.041) and concern for ethical leadership sustainability (p=0.002) adjusting for UM experience duration and nursing unit type. Total mean and level of power-sharing of ethical leadership among UMs with <5years of UM experience improved significantly over time. Of staff nurses' perception changes about UMs' ethical leadership, OCB, job outcomes, and EWEs, significant improvement over time appeared only in EWEs' work influence level (p=0.007). This study provides useful information for clinical ELP development and examining the program's effect on leadership skills and followers' outcomes. Program facilitation relies on practical training methods, participant motivation, and assessment outcome designs by controlling clinical confounding factors. Findings have implications as an attempt for intervention to promote competencies related to ethical leadership of nursing unit managers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Multi-Stage Hybrid Rocket Conceptual Design for Micro-Satellites Launch using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Kitagawa, Yosuke; Kitagawa, Koki; Nakamiya, Masaki; Kanazaki, Masahiro; Shimada, Toru
The multi-objective genetic algorithm (MOGA) is applied to the multi-disciplinary conceptual design problem for a three-stage launch vehicle (LV) with a hybrid rocket engine (HRE). MOGA is an optimization tool used for multi-objective problems. The parallel coordinate plot (PCP), which is a data mining method, is employed in the post-process in MOGA for design knowledge discovery. A rocket that can deliver observing micro-satellites to the sun-synchronous orbit (SSO) is designed. It consists of an oxidizer tank containing liquid oxidizer, a combustion chamber containing solid fuel, a pressurizing tank and a nozzle. The objective functions considered in this study are to minimize the total mass of the rocket and to maximize the ratio of the payload mass to the total mass. To calculate the thrust and the engine size, the regression rate is estimated based on an empirical model for a paraffin (FT-0070) propellant. Several non-dominated solutions are obtained using MOGA, and design knowledge is discovered for the present hybrid rocket design problem using a PCP analysis. As a result, substantial knowledge on the design of an LV with an HRE is obtained for use in space transportation.
NASA Astrophysics Data System (ADS)
Tesařová, M.; Zikmund, T.; Kaucká, M.; Adameyko, I.; Jaroš, J.; Paloušek, D.; Škaroupka, D.; Kaiser, J.
2016-03-01
Imaging of increasingly complex cartilage in vertebrate embryos is one of the key tasks of developmental biology. This is especially important to study shape-organizing processes during initial skeletal formation and growth. Advanced imaging techniques that are reflecting biological needs give a powerful impulse to push the boundaries of biological visualization. Recently, techniques for contrasting tissues and organs have improved considerably, extending traditional 2D imaging approaches to 3D . X-ray micro computed tomography (μCT), which allows 3D imaging of biological objects including their internal structures with a resolution in the micrometer range, in combination with contrasting techniques seems to be the most suitable approach for non-destructive imaging of embryonic developing cartilage. Despite there are many software-based ways for visualization of 3D data sets, having a real solid model of the studied object might give novel opportunities to fully understand the shape-organizing processes in the developing body. In this feasibility study we demonstrated the full procedure of creating a real 3D object of mouse embryo nasal capsule, i.e. the staining, the μCT scanning combined by the advanced data processing and the 3D printing.
Web Instruction with the LBO Model.
ERIC Educational Resources Information Center
Agarwal, Rajshree; Day, A. Edward
2000-01-01
Presents a Web site that utilizes the Learning-by-Objective (LBO) model that integrates Internet tools for knowledge transmission, communication, and assessment of learning. Explains that the LBO model has been used in creating micro and macroeconomic course Web sites with WebCT software. (CMK)
NASA Astrophysics Data System (ADS)
Kulchyzkyy, A.; Serebryannyy, Y.; Tretyak, K.; Trevogo, I.; Zadoroznnyy, V.
2009-04-01
Terebliya-Riksk diversion power station is located on two levels ( with difference of 180m ) of south mountainside of Ukrainian Carpathians and separate parts of this power station lie inside rock. Therefore influential parameters of it's stability are geological, tectonic and hydrogeological conditions in complex. Monitoring of intensity and nature of displacements of flow ( pressure) pipe and other objects of power station with geoditic methods indicates that fluctuations of water-level in reservoir caused bouth by natural and artificial efects are of great influence on objects mentioned. Based on geodetical high-precision observations made by LeicaTPS 1201 robotic total station short-periodic components of fundamental vibrations which result in their destructive deformation were determined. Mathematical apparatus ( which uses function of Fourie series and theory of cinematic coefficients ) for displacements determinations of pressure pipe was disigned. Complex of engineering-geological surveys gave an opportunity to define the origin of macro- and micro- geodynamics movements of Terebliya-Riksk diversion power station region. Engineering-geological conditions which influence on power station structure most of all were determined as following : small foldings and cleavage areas appearances, also fluctuations of level of underground water (refered to hydrogeological conditions). Periodic micro-displacemets appearances ( which operate on reducing-stretching scheme) fixed on power station structure are turned to be in direct relation on to what exend reservoir is filled up. Permanent macro- displacements appearances ( which operates in north-west direction ) fixed on pressure pipe are the result sum of residual micro-displacements caused by return periodic movements and are determined by structure-geological, engineering-geological and tectonic conditions.
Haughton-Mars Project Expedition 2005
NASA Technical Reports Server (NTRS)
deWeck, Olivier; Simchi-Levi, David
2006-01-01
The 2005 expedition to the Haughton-Mars Project (HMP) research station on Devon Island was part of a NASA-funded project on Space Logistics. A team of nine r&searchers from MIT went to the Canadian Arctic to participate in the annual I-IMP field campaign from July 8 to August 12, 2005. We investigated the applicability of the HMP research station as an analogue for planetary macro- and micro-logistics to the Moon and Mars, and began collecting data for modeling purposes. We also tested new technologies and procedures to enhance the ability of humans and robots to jointly explore remote environments. The expedition had four main objectives. We briefly summarize our key findings in each of these areas. 1. Classes of Supply: First, we wanted to understand what supply items existed at the HMP research station in support of planetary science and exploration research at and around the Haughton Crater. We also wanted to quantify the total amount of imported mass at HMP and compare this with predictions from existing parametric lunar base demand models. 2. Macro-Logistics Transportation Network: Our second objective was to understand the nodes, transportation routes, vehicles, capacities and crew and cargo mass flow rates required to support the HMP logistics network. 3. Agent and Asset Tracking: Since the current inventory management system on ISS relies heavily on barcodes and manual tracking, we wanted to test new automated technologies and procedures such as radio frequency identification RFID) to support exploration logistics. 4. Micro-Logistics (EVA): Finally, we wanted to understand the micro-logistical requirements of conducting both short (<1 day) and long traverses in the Mars-analog terrain on Devon Island. Micro-logistics involves the movement of surface vehicles, people and supplies from base to various exploration sites over short distances (<100 km).
Berrozpe, Pablo; Lamattina, Daniela; Santini, María Soledad; Araujo, Analía Vanesa; Utgés, María Eugenia; Salomón, Oscar Daniel
2017-01-01
BACKGROUND Visceral leishmaniasis (VL) is an endemic disease in northeastern Argentina including the Corrientes province, where the presence of the vector and canine cases of VL were recently confirmed in December 2008. OBJECTIVES The objective of this study was to assess the modelling of micro- and macro-habitat variables to evaluate the urban environmental suitability for the spatial distribution of Lutzomyia longipalpis presence and abundance in an urban scenario. METHODS Sampling of 45 sites distributed throughout Corrientes city (Argentina) was carried out using REDILA-BL minilight traps in December 2013. The sampled specimens were identified according to methods described by Galati (2003). The analysis of variables derived from the processing of satellite images (macro-habitat variables) and from the entomological sampling and surveys (micro-habitat variables) was performed using the statistical software R. Three generalised linear models were constructed composed of micro- and macro-habitat variables to explain the spatial distribution of the abundance of Lu. longipalpis and one composed of micro-habitat variables to explain the occurrence of the vector. FINDINGS A total of 609 phlebotominae belonging to five species were collected, of which 56% were Lu. longipalpis. In addition, the presence of Nyssomyia neivai and Migonemya migonei, which are vectors of tegumentary leishmaniasis, were also documented and represented 34.81% and 6.74% of the collections, respectively. The explanatory variable normalised difference vegetation index (NDVI) described the abundance distribution, whereas the presence of farmyard animals was important for explaining both the abundance and the occurrence of the vector. MAIN CONCLUSIONS The results contribute to the identification of variables that can be used to establish priority areas for entomological surveillance and provide an efficient transfer tool for the control and prevention of vector-borne diseases. PMID:28953995
Laser speckle micro-rheology for biomechanical evaluation of breast tumors (Conference Presentation)
NASA Astrophysics Data System (ADS)
Hajjarian Kashany, Zeinab; Nadkarni, Seemantini K.
2016-03-01
The stiffness of the extra cellular matrix (ECM) is recognized as a key regulator of cancer cell proliferation, migration and invasion. Therefore technologies that quantify ECM stiffness with micro-scale scale resolution will likely provide important insights into neoplastic progression. Laser Speckle Micro-Rheology (LSM) is a novel optical tool for measuring tissue viscoelastic properties with micro-scale resolution. In LSM, speckle images are collected through an objective lens by a high-speed camera. Spatio-temporal correlation analysis of speckle frames yields the intensity autocorrelation function, g2(t), for each pixel, and subsequently a 2D map of viscoelastic modulus, G*(ω) is reconstructed. Here, we investigate the utility of LSM for micro-mechanical evaluation of the ECM in human breast lesions. Specimens collected 18 women undergoing lumpectomy or mastectomy were evaluated with LSM. Because collagen is the key protein associated with ECM stiffness, G*(ω) maps obtained from LSM were compared with collagen content measured by second harmonic generation (SHG) microscopy. Regions of low G*(ω), identified by LSM, corresponded to low-intensity SHG signal and adipose tissue. Likewise, regions with high G*(ω) in LSM images matched high intensity SHG signal caused by desmoplastic collagen accumulation. Quantitative regression analysis demonstrated a strong, statistically significant correlation between G*(ω) and SHG signal intensity (R=0.66 p< 0.01). These findings highlight the capability of LSM for quantifying the ECM micro-mechanics, potentially providing important insights into the biomechanical regulators of breast cancer progression.
Development of portable defocusing micro-scale spatially offset Raman spectroscopy.
Realini, Marco; Botteon, Alessandra; Conti, Claudia; Colombo, Chiara; Matousek, Pavel
2016-05-10
We present, for the first time, portable defocusing micro-Spatially Offset Raman Spectroscopy (micro-SORS). Micro-SORS is a concept permitting the analysis of thin, highly turbid stratified layers beyond the reach of conventional Raman microscopy. The technique is applicable to the analysis of painted layers in cultural heritage (panels, canvases and mural paintings, painted statues and decorated objects in general) as well as in many other areas including polymer, biological and biomedical applications, catalytic and forensics sciences where highly turbid stratified layers are present and where invasive analysis is undesirable or impossible. So far the technique has been demonstrated only on benchtop Raman microscopes precluding the non-invasive analysis of larger samples and samples in situ. The new set-up is characterised conceptually on a range of artificially assembled two-layer systems demonstrating its benefits and performance across several application areas. These included stratified polymer sample, pharmaceutical tablet and layered paint samples. The same samples were also analysed by a high performance (non-portable) benchtop Raman microscope to provide benchmarking against our earlier research. The realisation of the vision of delivering portability to micro-SORS has a transformative potential spanning across multiple disciplines as it fully unlocks, for the first time, the non-invasive and non-destructive aspects of micro-SORS enabling it to be applied also to large and non-portable samples in situ without recourse to removing samples, or their fragments, for laboratory analysis on benchtop Raman microscopes.
Study on micro-bend light transmission performance of novel liquid-core optical fiber
NASA Astrophysics Data System (ADS)
Ma, Junyan; Zhao, Zhimin; Wang, Kaisheng; Guo, Linfeng
2007-01-01
With the increasing development of material technology and electronic integration technology, optical fiber and its using in smart structure have become hot in the field of material research. And liquid-core optical fiber is a special kind of optical fiber, which is made using liquid material as core and polymer material as optical layer and protective covering, and it has the characteristics of large core diameter, high numerical aperture, large-scope and efficient spectrum transmission and long life for using. So the liquid-core optical fiber is very suitable for spectrum cure, ultraviolet solidification, fluorescence detection, criminal investigation and evidence obtainment, etc, and especially as light transfer element in some new structures for the measurement of some signals, such as concentration, voltage, temperature, light intensity and so on. In this paper, the novel liquid-core optical fiber is self-made, and then through the test of its light transmission performance in free state, the relation between axial micro-bend and light-intensity loss are presented. When the liquid-core optical fiber is micro-bent axially, along with the axial displacement's increase, output power of light is reducing increasingly, and approximately has linear relation to micro-displacement in a range. According to the results liquid-core fiber-optic micro-bend sensor can be designed to measure micro-displacement of the tested objects. Experimental data and analysis provide experimental basis for further application of liquid-core optical fiber.
Combined micro and macro geodynamic modelling of mantle flow: methods, potentialities and limits.
NASA Astrophysics Data System (ADS)
Faccenda, M.
2015-12-01
Over the last few years, geodynamic simulations aiming at reconstructing the Earth's internal dynamics have increasingly attempted to link processes occurring at the micro (i.e., strain-induced lattice preferred orientation (LPO) of crystal aggregates) and macro scale (2D/3D mantle convection). As a major outcome, such a combined approach results in the prediction of the modelled region's elastic properties that, in turn, can be used to perform seismological synthetic experiments. By comparison with observables, the geodynamic simulations can then be considered as a good numerical analogue of specific tectonic settings, constraining their deep structure and recent tectonic evolution. In this contribution, I will discuss the recent methodologies, potentialities and current limits of combined micro- and macro-flow simulations, with particular attention to convergent margins whose dynamics and deep structure is still the object of extensive studies.
Micro- and nanofluidic systems in devices for biological, medical and environmental research
NASA Astrophysics Data System (ADS)
Evstrapov, A. A.
2017-11-01
The use of micro- and nanofluidic systems in modern analytical instruments allow you to implement a number of unique opportunities and achieve ultra-high measurement sensitivity. The possibility of manipulation of the individual biological objects (cells, bacteria, viruses, proteins, nucleic acids) in a liquid medium caused the development of devices on microchip platform for methods: chromatographic and electrophoretic analyzes; polymerase chain reaction; sequencing of nucleic acids; immunoassay; cytometric studies. Development of micro and nano fabrication technologies, materials science, surface chemistry, analytical chemistry, cell engineering have led to the creation of a unique systems such as “lab-on-a-chip”, “human-on-a-chip” and other. This article discusses common in microfluidics materials and methods of making functional structures. Examples of integration of nanoscale structures in microfluidic devices for the implementation of new features and improve the technical characteristics of devices and systems are shown.
Report of the ultraviolet and visible sensors panel
NASA Technical Reports Server (NTRS)
Timothy, J. Gethyn; Blouke, M.; Bredthauer, R.; Kimble, R.; Lee, T.-H.; Lesser, M.; Siegmund, O.; Weckler, G.
1991-01-01
In order to meet the science objectives of the Astrotech 21 mission set the Ultraviolet (UV) and Visible Sensors Panel made a number of recommendations. In the UV wavelength range of 0.01 to 0.3 micro-m the focus is on the need for large format high quantum efficiency, radiation hard 'solar-blind' detectors. Options recommended for support include Si and non-Si charge coupled devices (CCDs) as well as photocathodes with improved microchannel plate readouts. For the 0.3 to 0.9 micro-m range, it was felt that Si CCDs offer the best option for high quantum efficiencies at these wavelengths. In the 0.9 to 2.5 micro-m the panel recommended support for the investigation of monolithic arrays. Finally, the panel noted that the implementation of very large arrays will require new data transmission, data recording, and data handling technologies.
Numerical modelling of chirality-induced bi-directional swimming of artificial flagella
Namdeo, S.; Khaderi, S. N.; Onck, P. R.
2014-01-01
Biomimetic micro-swimmers can be used for various medical applications, such as targeted drug delivery and micro-object (e.g. biological cells) manipulation, in lab-on-a-chip devices. Bacteria swim using a bundle of flagella (flexible hair-like structures) that form a rotating cork-screw of chiral shape. To mimic bacterial swimming, we employ a computational approach to design a bacterial (chirality-induced) swimmer whose chiral shape and rotational velocity can be controlled by an external magnetic field. In our model, we numerically solve the coupled governing equations that describe the system dynamics (i.e. solid mechanics, fluid dynamics and magnetostatics). We explore the swimming response as a function of the characteristic dimensionless parameters and put special emphasis on controlling the swimming direction. Our results provide fundamental physical insight on the chirality-induced propulsion, and it provides guidelines for the design of magnetic bi-directional micro-swimmers. PMID:24511253
Radiation dose reduction in the evaluation of scoliosis: an application of digital radiography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kushner, D.C.; Cleveland, R.H.; Herman, T.E.
1986-10-01
This report documents the clinical testing of scanning beam digital radiography as an imaging method in patients with scoliosis. This type of digital imaging requires a skin exposure of only 2.4 mR (0.619 microC/kg) per image, compared with the lowest possible posteroanterior screen-film exposure of 10 mR (2.58 microC/kg) at the chest and 60 mR (15.48 microC/kg) at the lumbar spine. Digital radiographic and screen-film images were obtained on multiple test objects and 273 patients. Scoliosis measurements using screen-film radiographs and digital radiographs were comparable to within a mean difference of 1 degrees at many different degrees of severity. Themore » low-dose digital images were found to be useful and accurate for the detection and measurement of scoliosis after the first screen-film radiographs have excluded tumors and structural abnormalities.« less
Practice, awareness and opinion of pharmacists toward disposal of unwanted medications in Kuwait
Abahussain, Eman; Waheedi, Mohammad; Koshy, Samuel
2012-01-01
Background The disposal of unwanted medications has been a concern in many countries, as pharmaceutical waste enters the ecosystem, ultimately having an effect on human health and environment. Earlier studies in Kuwait found that the method of disposal by the public was by disposing in the garbage or by flushing down the drain. In accordance with patient preference and environment safety, it would be appropriate to use local government pharmacies as collection points for proper disposal. Objective To determine the practice of pharmacists, working in government healthcare sectors, with regard to disposal of returned unwanted medications by the public. This study also aims to assess pharmacists’ awareness toward the impact of improper disposal on the environment and to investigate whether pharmacists agree to have their pharmacies as collection points for future take-back programs. Method A random sample of 144 pharmacists from the six main governmental hospitals and 12 specialized polyclinics in Kuwait, completed a self-administered questionnaire about their practice of disposal, awareness and opinion on using pharmacies as collection points for proper disposal of UMs. Data were analyzed using descriptive statistics. Results A total of 144 pharmacists completed the survey. Throwing UMs in the trash was the main method of disposal by majority of the respondents (73%). Only 23 pharmacists disposed UMs according to the guidelines of Ministry of Health, Kuwait (MOH). However, about 82% are aware that improper disposal causes damage to the environment and 97% agree that it is their responsibility to protect the environment. About 86–88% of the pharmacists agree to have government hospital pharmacies and polyclinics as collection points for future take-back programs. Conclusion Even though the current practice of disposal by majority of pharmacists is inappropriate, they are aware of the damage and acknowledge their responsibilities toward environment protection. Concerned authorities should monitor and implement proper disposal guidelines in all pharmacies. Majority of pharmacists support the idea of having the government pharmacies as collection points for safe disposal of UMs in Kuwait. PMID:23960793
NASA Astrophysics Data System (ADS)
Huh, Keon; Oh, Darong; Son, Seok Young; Yoo, Hyung Jung; Song, Byeonghwa; Cho, Dong-il Dan; Seo, Jong-Mo; Kim, Sung Jae
2016-12-01
The concepts of microrobots has been drawn significant attentions recently since its unprecedented applicability in nanotechnology and biomedical field. Bacteria attached microparticles presented in this work are one of pioneering microrobot technology for self-propulsion or producing kinetic energy from ambient for their motions. Microfluidic device, especially utilizing laminar flow characteristics, were employed for anisotropic attachment of Salmonella typhimurium flagellated chemotactic bacteria to 30 um × 30 um and 50 um × 50 um microparticles that made of biodegradable polymer. Any toxic chemicals or harmful treatments were excluded during the attachment process and it finished within 100 s for the anisotropic attachment. The attachments were directly confirmed by fluorescent intensity changes and SEM visualization. Chemotaxis motions were tracked using aspartate and the maximum velocity of the bacteria-attached microrobot was measured to be 5 um/s which is comparable to prior state of art technologies. This reusable and scalable method could play a key role in chemotaxis delivery of functional microparticles such as drug delivery system.
Unique Spectroscopy and Imaging of Terrestrial Planets with JWST
NASA Astrophysics Data System (ADS)
Villanueva, Geronimo Luis; JWST Mars Team
2017-06-01
In this talk, I will present the main capabilities of the James Webb Space Telescope (JWST) for performing observations of terrestrial planets, using Mars as a test case. The distinctive vantage point of JWST at the Sun-Earth Lagrange point (L2) will allow sampling the full observable disk, permitting the study of short-term phenomena, diurnal processes (across the East-West axis) and latitudinal processes between the hemispheres (including seasonal effects) with excellent spatial resolutions (0.07 arcsec at 2 um). Spectroscopic observations will be achievable in the 0.7-5 um spectral region with NIRSpec at a maximum resolving power of 2700, and with 8000 in the 1-1.25 um range. Imaging will be attainable with NIRCam at 4.3 um and with two narrow filters near 2 um, while the nightside will be accessible with several filters in the 0.5 to 2 um. Such a powerful suite of instruments will be a major asset for the exploration and characterization of Mars, and terrestrial planets in general. Some science cases include the mapping of the water D/H ratio, investigations of the Martian mesosphere via the characterization of the non-LTE CO2 emission at 4.3 um, studies of chemical transport via observations of the O2 nightglow at 1.27 um, high cadence mapping of the variability dust and water ice clouds, and sensitive searches for trace species and hydrated features on the planetary surface.
Development and External Validation of a Prognostic Nomogram for Metastatic Uveal Melanoma
Valpione, Sara; Moser, Justin C.; Parrozzani, Raffaele; Bazzi, Marco; Mansfield, Aaron S.; Mocellin, Simone; Pigozzo, Jacopo; Midena, Edoardo; Markovic, Svetomir N.; Aliberti, Camillo; Campana, Luca G.; Chiarion-Sileni, Vanna
2015-01-01
Background Approximately 50% of patients with uveal melanoma (UM) will develop metastatic disease, usually involving the liver. The outcome of metastatic UM (mUM) is generally poor and no standard therapy has been established. Additionally, clinicians lack a validated prognostic tool to evaluate these patients. The aim of this work was to develop a reliable prognostic nomogram for clinicians. Patients and Methods Two cohorts of mUM patients, from Veneto Oncology Institute (IOV) (N=152) and Mayo Clinic (MC) (N=102), were analyzed to develop and externally validate, a prognostic nomogram. Results The median survival of mUM was 17.2 months in the IOV cohort and 19.7 in the MC cohort. Percentage of liver involvement (HR 1.6), elevated levels of serum LDH (HR 1.6), and a WHO performance status=1 (HR 1.5) or 2–3 (HR 4.6) were associated with worse prognosis. Longer disease-free interval from diagnosis of UM to that of mUM conferred a survival advantage (HR 0.9). The nomogram had a concordance probability of 0.75 (SE .006) in the development dataset (IOV), and 0.80 (SE .009) in the external validation (MC). Nomogram predictions were well calibrated. Conclusions The nomogram, which includes percentage of liver involvement, LDH levels, WHO performance status and disease free-interval accurately predicts the prognosis of mUM and could be useful for decision-making and risk stratification for clinical trials. PMID:25780931
VizieR Online Data Catalog: A dust model for bet Pic from 0.58 to 870um (Ballering+, 2016)
NASA Astrophysics Data System (ADS)
Ballering, N. P.; Su, K. Y. L.; Rieke, G. H.; Gaspar, A.
2016-08-01
β Pic was imaged with the HST/STIS CCD in coronagraphic (50CORON) mode under program GO-12551 (PI: Apai), and the results of these observations were published in Apai et al. (2015ApJ...800..136A). The instrument bandpass is set by the response of the CCD and centered at 0.58um. We searched the HST archive and found previously unpublished observations of β Pic with the WFC3 instrument in the IR channel (filter F110W at ~1.16um) from program GO-11150 (PI: Graham). The Spitzer/MIPS observations of β Pic were taken under the Spitzer Guaranteed Time Observing Program 90 (PI: M. Werner). The data at all three bands (24, 70, and 160um) are published here for the first time. Two sets of 24um observations were obtained. The first set was obtained on 2004 March 20, the second set of data was obtained on 2004 April 11. Two sets of 70um observations were obtained. The first set was obtained on 2004 April 12. The second set was obtained on 2005 April 4. Herschel/PACS 70um scan map observations of β Pic (PI G. Olofsson, observation IDs 1342186612 and 1342186613) were published by Vandenbussche et al. (2010A&A...518L.133V). We used the ALMA 870um continuum image previously published by Dent et al. (2014Sci...343.1490D). (1 data file).
Monkman, H.; Petersen, C.; Weber, J.; Borycki, E. M.; Adams, S.; Collins, S.
2014-01-01
Summary Objectives While big data offers enormous potential for improving healthcare delivery, many of the existing claims concerning big data in healthcare are based on anecdotal reports and theoretical vision papers, rather than scientific evidence based on empirical research. Historically, the implementation of health information technology has resulted in unintended consequences at the individual, organizational and social levels, but these unintended consequences of collecting data have remained unaddressed in the literature on big data. The objective of this paper is to provide insights into big data from the perspective of people, social and organizational considerations. Method We draw upon the concept of persona to define the digital persona as the intersection of data, tasks and context for different user groups. We then describe how the digital persona can serve as a framework to understanding sociotechnical considerations of big data implementation. We then discuss the digital persona in the context of micro, meso and macro user groups across the 3 Vs of big data. Results We provide insights into the potential benefits and challenges of applying big data approaches to healthcare as well as how to position these approaches to achieve health system objectives such as patient safety or patient-engaged care delivery. We also provide a framework for defining the digital persona at a micro, meso and macro level to help understand the user contexts of big data solutions. Conclusion While big data provides great potential for improving healthcare delivery, it is essential that we consider the individual, social and organizational contexts of data use when implementing big data solutions. PMID:25123726
Automated Micro-Object Detection for Mobile Diagnostics Using Lens-Free Imaging Technology
Roy, Mohendra; Seo, Dongmin; Oh, Sangwoo; Chae, Yeonghun; Nam, Myung-Hyun; Seo, Sungkyu
2016-01-01
Lens-free imaging technology has been extensively used recently for microparticle and biological cell analysis because of its high throughput, low cost, and simple and compact arrangement. However, this technology still lacks a dedicated and automated detection system. In this paper, we describe a custom-developed automated micro-object detection method for a lens-free imaging system. In our previous work (Roy et al.), we developed a lens-free imaging system using low-cost components. This system was used to generate and capture the diffraction patterns of micro-objects and a global threshold was used to locate the diffraction patterns. In this work we used the same setup to develop an improved automated detection and analysis algorithm based on adaptive threshold and clustering of signals. For this purpose images from the lens-free system were then used to understand the features and characteristics of the diffraction patterns of several types of samples. On the basis of this information, we custom-developed an automated algorithm for the lens-free imaging system. Next, all the lens-free images were processed using this custom-developed automated algorithm. The performance of this approach was evaluated by comparing the counting results with standard optical microscope results. We evaluated the counting results for polystyrene microbeads, red blood cells, HepG2, HeLa, and MCF7 cells lines. The comparison shows good agreement between the systems, with a correlation coefficient of 0.91 and linearity slope of 0.877. We also evaluated the automated size profiles of the microparticle samples. This Wi-Fi-enabled lens-free imaging system, along with the dedicated software, possesses great potential for telemedicine applications in resource-limited settings. PMID:27164146
Abudurexiti, Abulajiang; Kameda, Masashi; Sato, Eiichi; Abderyim, Purkhet; Enomoto, Toshiyuki; Watanabe, Manabu; Hitomi, Keitaro; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Takahashi, Kiyomi; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun
2010-07-01
An energy-discrimination K-edge X-ray computed tomography (CT) system is useful for increasing the contrast resolution of a target region by utilizing contrast media. The CT system has a cadmium telluride (CdTe) detector, and a projection curve is obtained by linear scanning with use of the CdTe detector in conjunction with an X-stage. An object is rotated by a rotation step angle with use of a turntable between the linear scans. Thus, CT is carried out by repetition of the linear scanning and the rotation of an object. Penetrating X-ray photons from the object are detected by the CdTe detector, and event signals of X-ray photons are produced with use of charge-sensitive and shaping amplifiers. Both the photon energy and the energy width are selected by use of a multi-channel analyzer, and the number of photons is counted by a counter card. For performing energy discrimination, a low-dose-rate X-ray generator for photon counting was developed; the maximum tube voltage and the minimum tube current were 110 kV and 1.0 microA, respectively. In energy-discrimination CT, the tube voltage and the current were 60 kV and 20.0 microA, respectively, and the X-ray intensity was 0.735 microGy/s at 1.0 m from the source and with a tube voltage of 60 kV. Demonstration of enhanced iodine K-edge X-ray CT was carried out by selection of photons with energies just beyond the iodine K-edge energy of 33.2 keV.
NASA Astrophysics Data System (ADS)
Green, Joel D.; DIGIT OTKP Team
2010-01-01
The DIGIT (Dust, Ice, and Gas In Time) Open Time Key Project utilizes the PACS spectrometer (57-210 um) onboard the Herschel Space Observatory to study the colder regions of young stellar objects and protostellar cores, complementary to recent observations from Spitzer and ground-based observatories. DIGIT focuses on 30 embedded sources and 64 disk sources, and includes supporting photometry from PACS and SPIRE, as well as spectroscopy from HIFI, selected from nearby molecular clouds. For the embedded sources, PACS spectroscopy will allow us to address the origin of [CI] and high-J CO lines observed with ISO-LWS. Our observations are sensitive to the presence of cold crystalline water ice, diopside, and carbonates. Additionally, PACS scans are 5x5 maps of the embedded sources and their outflows. Observations of more evolved disk sources will sample low and intermediate mass objects as well as a variety of spectral types from A to M. Many of these sources are extremely rich in mid-IR crystalline dust features, enabling us to test whether similar features can be detected at larger radii, via colder dust emission at longer wavelengths. If processed grains are present only in the inner disk (in the case of full disks) or from the emitting wall surface which marks the outer edge of the gap (in the case of transitional disks), there must be short timescales for dust processing; if processed grains are detected in the outer disk, radial transport must be rapid and efficient. Weak bands of forsterite and clino- and ortho-enstatite in the 60-75 um range provide information about the conditions under which these materials were formed. For the Science Demonstration Phase we are observing an embedded protostar (DK Cha) and a Herbig Ae/Be star (HD 100546), exemplars of the kind of science that DIGIT will achieve over the full program.
Selma, María V; González-Sarrías, Antonio; Salas-Salvadó, Jordi; Andrés-Lacueva, Cristina; Alasalvar, Cesarettin; Örem, Asım; Tomás-Barberán, Francisco A; Espín, Juan C
2018-06-01
Urolithins are microbial metabolites produced after consumption of ellagitannin-containing foods such as pomegranates and walnuts. Parallel to isoflavone-metabolizing phenotypes, ellagitannin-metabolizing phenotypes (urolithin metabotypes A, B and 0; UM-A, UM-B and UM-0, respectively) can vary among individuals depending on their body mass index (BMI), but correlations between urolithin metabotypes (UMs) and cardiometabolic risk (CMR) factors are unexplored. We investigated the association between UMs and CMR factors in individuals with different BMI and health status. UM was identified using UPLC-ESI-qToF-MS in individuals consuming pomegranate or nuts. The associations between basal CMR factors and the urine urolithin metabolomic signature were explored in 20 healthy normoweight individuals consuming walnuts (30 g/d), 49 healthy overweight-obese individuals ingesting pomegranate extract (450 mg/d) and 25 metabolic syndrome (MetS) patients consuming nuts (15 g-walnuts, 7.5 g-hazelnuts and 7.5 g-almonds/d). Correlations between CMR factors and urolithins were found in overweight-obese individuals. Urolithin-A (mostly present in UM-A) was positively correlated with apolipoprotein A-I (P ≤ 0.05) and intermediate-HDL-cholesterol (P ≤ 0.05) while urolithin-B and isourolithin-A (characteristic from UM-B) were positively correlated with total-cholesterol, LDL-cholesterol (P ≤ 0.001), apolipoprotein B (P ≤ 0.01), VLDL-cholesterol, IDL-cholesterol, oxidized-LDL and apolipoprotein B:apolipoprotein A-I ratio (P ≤ 0.05). In MetS patients, urolithin-A only correlated inversely with glucose (P ≤ 0.05). Statin-treated MetS patients with UM-A showed a lipid profile similar to that of healthy normoweight individuals while a poor response to lipid-lowering therapy was observed in MB patients. UMs are potential CMR biomarkers. Overweight-obese individuals with UM-B are at increased risk of cardiometabolic disease, whereas urolithin-A production could protect against CMR factors. Further research is warranted to explore these associations in larger cohorts and whether the effect of lipid-lowering drugs or ellagitannin-consumption on CMR biomarkers depends on individuals' UM. NCT01916239 (https://clinicaltrials.gov/ct2/show/NCT01916239) and ISRCTN36468613 (http://www.isrctn.com/ISRCTN36468613). Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Effect of Micro Porous Shape on Mechanical Properties in Polypropylene Syntactic Foams
NASA Astrophysics Data System (ADS)
Mae, Hiroyuki; Omiya, Masaki; Kishimoto, Kikuo
The objective is to characterize the effect of the microstructure of the micro pores inside the matrix on the mechanical properties of the thermoplastic syntactic polypropylene (PP) foams at the intermediate and high strain rates. Tensile tests are conducted at the nominal strain rates from 3 x 10-1 to 102 s-1. In addition, the dart impact tests are conducted at the impact velocities of 0.1, 1 and 10 m/s. Then, the constitutive law with craze evolution is modified by introducing the relative density, the stress concentration coefficient and the volume fraction of cell edge, and then applied to the dart impact test mode for simulating the macroscopic load displacement history of the dart impact process. Moreover, the microstructural finite element analysis is conducted to characterize the local stress states in the microstructure. In the tensile loading, the elastic modulus is not influenced by the shape of the micro pores in the PP matrix while the yield stress and the strain energy up to failure are relatively influenced by the shape of micro pores. The microstructural finite element analysis shows that the magnitudes of the localized stresses at the edges and the ligaments of the elliptical-shape micro pores are larger than those at the spherical micro pores, leading to the early yielding and the small material ductility. In the case of the dart impact loading, the microstructure of pores has strong effect on the absorbed energy. This is because the elliptical-shape micro pores are very sensitive to the shear deformation, which is revealed by the microstructural finite element analysis. The modified constitutive law with the stress concentration coefficient and the volume fraction of the cell edges successfully predicts the load-displacement curve of the dart impact loading in the spherical micro-porous PP foam. It is concluded that the micro porous shape has strong effect on the material ductility especially in the dart impact test, leading to the possibility to control the material ductility by the shape of the micro pores in the polymeric foams.
Investigating the Effects of Magnetic Variations on Inertial/Magnetic Orientation Sensors
2007-09-01
caused by test objects, a track was constructed using nonferrous materials and set so that the orientation of an inertial/magnetic sensor module...states ◆ metal filing cabinet ◆ mobile robot, unpowered, powered, and motor engaged. The MicroStrain 3DM-G sensor module is factory calibrated and...triad of the sensor module approached a large metal filing cabinet. The deviations for this test object are the largest of any observed in the
Dimensional nanometrology at the National Physical Laboratory
NASA Astrophysics Data System (ADS)
Yacoot, Andrew; Leach, Richard; Hughes, Ben; Giusca, Claudiu; Jones, Christopher; Wilson, Alan
2008-10-01
The growth in nanotechnology has led to an increased requirement for traceable dimensional measurements of nanometre-sized objects and micrometre-sized objects with nanometre tolerances. To meet this challenge NPL has developed both purpose built instrumentation and added metrology to commercially available equipment. This paper describes the development and use of a selection of these instruments that include: atomic force microscopy, x-ray interferometry, a low force balance, a micro coordinate measuring machine and an areal surface texture measuring instrument.
Terahertz holography for imaging amplitude and phase objects.
Hack, Erwin; Zolliker, Peter
2014-06-30
A non-monochromatic THz Quantum Cascade Laser and an uncooled micro-bolometer array detector with VGA resolution are used in a beam-splitter free holographic set-up to measure amplitude and phase objects in transmission. Phase maps of the diffraction pattern are retrieved using the Fourier transform carrier fringe method; while a Fresnel-Kirchhoff back propagation algorithm is used to reconstruct the complex object image. A lateral resolution of 280 µm and a relative phase sensitivity of about 0.5 rad are estimated from reconstructed images of a metallic Siemens star and a polypropylene test structure, respectively. Simulations corroborate the experimental results.
Simulation analysis of photometric data for attitude estimation of unresolved space objects
NASA Astrophysics Data System (ADS)
Du, Xiaoping; Gou, Ruixin; Liu, Hao; Hu, Heng; Wang, Yang
2017-10-01
The attitude information acquisition of unresolved space objects, such as micro-nano satellites and GEO objects under the way of ground-based optical observations, is a challenge to space surveillance. In this paper, a useful method is proposed to estimate the SO attitude state according to the simulation analysis of photometric data in different attitude states. The object shape model was established and the parameters of the BRDF model were determined, then the space object photometric model was established. Furthermore, the photometric data of space objects in different states are analyzed by simulation and the regular characteristics of the photometric curves are summarized. The simulation results show that the photometric characteristics are useful for attitude inversion in a unique way. Thus, a new idea is provided for space object identification in this paper.
Basu, Ishita; Kudela, Pawel; Korzeniewska, Anna; Franaszczuk, Piotr J.; Anderson, William S.
2015-01-01
Objective The use of micro-electrode arrays to measure electrical activity from the surface of the brain is increasingly being investigated as a means to improve seizure onset zone localization. In this work, we used a multivariate autoregressive model to determine the evolution of seizure dynamics in the 70 – 110 Hz high frequency band across micro-domains sampled by such micro-electrode arrays. Approach We used 7 complex partial seizures recorded from 4 patients undergoing intracranial monitoring for surgical evaluation to reconstruct the seizure propagation pattern over sliding windows using a directed transfer function measure. Main results We showed that a directed transfer function can be used to estimate the flow of seizure activity in a set of simulated micro-electrode data with known propagation pattern. In general, depending on the location of the micro-electrode grid with respect to the clinical seizure onset zone and the time from seizure onset, ictal propagation changed in directional characteristics over a 2 to 10 seconds time scale, with gross directionality limited to spatial dimensions of approximately 9mm2. It was also seen that the strongest seizure patterns in the high frequency band and their sources over such micro-domains are more stable over time and across seizures bordering the clinically determined seizure onset zone than inside. Significance This type of propagation analysis might in future provide an additional tool to epileptologists for characterizing epileptogenic tissue. This will potentially help narrowing down resection zones without compromising essential brain functions as well as provide important information about targeting anti-epileptic stimulation devices. PMID:26061006
Effect of simulated microgravity on oxidation-sensitive gene expression in PC12 cells
NASA Astrophysics Data System (ADS)
Kwon, Ohwon; Sartor, Maureen; Tomlinson, Craig R.; Millard, Ronald W.; Olah, Mark E.; Sankovic, John M.; Banerjee, Rupak K.
2006-01-01
Oxygen utilization by and oxygen dependence of cellular processes may be different in biological systems that are exposed to microgravity (micro-g). A baseline in which cellular changes in oxygen sensitive molecular processes occur during micro-g conditions would be important to pursue this question. The objective of this research is to analyze oxidation-sensitive gene expression in a model cell line [rat pheochromocytoma (PC12)] under simulated micro-g conditions. The PC12 cell line is well characterized in its response to oxygen, and is widely recognized as a sensitive model for studying the responses of oxygen-sensitive molecular and cellular processes. This study uses the rotating wall vessel bioreactor (RWV) designed at NASA to simulate micro-g. Gene expression in PC12 cells in response to micro-g was analyzed by DNA microarray technology. The microarray analysis of PC12 cells cultured for 4 days under simulated micro-g under standardized oxygen environment conditions revealed more than 100 genes whose expression levels were changed at least twofold (up-regulation of 65 genes and down-regulation of 39 genes) compared with those from cells in the unit gravity (unit-g) control. This study observed that genes involved in the oxidoreductase activity category were most significantly differentially expressed under micro-g conditions. Also, known oxidation-sensitive transcription factors such as hypoxia-inducible factor-2α, c-myc, and the peroxisome proliferator-activated receptor-γ were changed significantly. Our initial results from the gene expression microarray studies may provide a context in which to evaluate the effect of varying oxygen environments on the background of differential gene regulation of biological processes under variable gravity conditions.
Effect of simulated microgravity on oxidation-sensitive gene expression in PC12 cells
Kwon, Ohwon; Sartor, Maureen; Tomlinson, Craig R.; Millard, Ronald W.; Olah, Mark E.; Sankovic, John M.; Banerjee, Rupak K.
2008-01-01
Oxygen utilization by and oxygen dependence of cellular processes may be different in biological systems that are exposed to microgravity (micro-g). A baseline in which cellular changes in oxygen sensitive molecular processes occur during micro-g conditions would be important to pursue this question. The objective of this research is to analyze oxidation-sensitive gene expression in a model cell line [rat pheochromocytoma (PC12)] under simulated micro-g conditions. The PC12 cell line is well characterized in its response to oxygen, and is widely recognized as a sensitive model for studying the responses of oxygen-sensitive molecular and cellular processes. This study uses the rotating wall vessel bioreactor (RWV) designed at NASA to simulate micro-g. Gene expression in PC12 cells in response to micro-g was analyzed by DNA microarray technology. The microarray analysis of PC12 cells cultured for 4 days under simulated micro-g under standardized oxygen environment conditions revealed more than 100 genes whose expression levels were changed at least twofold (up-regulation of 65 genes and down-regulation of 39 genes) compared with those from cells in the unit gravity (unit-g) control. This study observed that genes involved in the oxidoreductase activity category were most significantly differentially expressed under micro-g conditions. Also, known oxidation-sensitive transcription factors such as hypoxia-inducible factor-2α, c-myc, and the peroxisome proliferator-activated receptor-γ were changed significantly. Our initial results from the gene expression microarray studies may provide a context in which to evaluate the effect of varying oxygen environments on the background of differential gene regulation of biological processes under variable gravity conditions. PMID:19081771
On the Mechanism of Serotonin-Induced Dipsogenesis in the Rat
NASA Technical Reports Server (NTRS)
Kikta, Dianne C.; Barney, Christopher C.; Threatte, Rose M.; Fregly, Melvin J.; Rowland, Neil E.; Greenleaf, John E.
1983-01-01
Subcutaneous administration of 1-5-hydroxytryptophan (5-HTP), the precursor of serotonin, to female rats induces copious drinking accompanied by activation of the renin-angiotensin system. Neither a reduction in blood pressure nor body temperature accompanied administration of 5-HTP. The objective of the present study was to determine whether serotonin-induced dipsogenesis, like that of 5-HTP, is mediated via the renin-angiotensin system. Serotonin (2 mg/kg, SC)-induced drinking was inhibited by the dopaminergic antagonist, haloperidol (150 /micro g/kg, IP), which also inhibits angiotensin II-induced drinking, Both captopril (35 mg/kg, IP), an angiotensin converting enzyme inhibitor, and propranolol (6 micro g/kg, IP), a beta-adrenergic antagonist, blocked serotonin-induced dipsogenesis. The alpha(sub a),-adrenergic agonist, clonidine (6.25 micro g/kg, SC), which suppresses renin release from the kidney, attenuated serotonin-induced water intake. The dipsogenic responses to submaximal concentrations of both serotonin (1 mg/kg, SC) and isoproterenol (8 micro g/kg, SC) were additive rather than interactive suggesting that similar pathways mediate both responses. The serotonergic receptor antagonist, methysergide (3 mg/kg, IP), inhibited serotonin-induced drinking but had no effect on isoproterenol (25micro g/kg, SC)-induced dipsogenesis. However, neither serotonin (2 mg/kg, SC) nor isoproterenol (25 micro g/kg, SC)-induced drinking was inhibited by cinansefin (25 micro g/kg, IP). These data indicate that serotonin induces drinking in rats via the renin-angiotensin system. However, the results of the studies using methysergide suggest that scrotonin appears to act at a point prior to activation of beta-adrenoceptors in the pathway leading to release of renin from the kidneys.
Costs and Effectiveness of Treatment Alternatives for Proximal Caries Lesions
Schwendicke, Falk; Meyer-Lueckel, Hendrik; Stolpe, Michael; Dörfer, Christof Edmund; Paris, Sebastian
2014-01-01
Objectives Invasive therapy of proximal caries lesions initiates a cascade of re-treatment cycles with increasing loss of dental hard tissue. Non- and micro-invasive treatment aim at delaying this cascade and may thus reduce both the health and economic burden of such lesions. This study compared the costs and effectiveness of alternative treatments of proximal caries lesions. Methods A Markov-process model was used to simulate the events following the treatment of a proximal posterior lesion (E2/D1) in a 20-year-old patient in Germany. We compared three interventions (non-invasive; micro-invasive using resin infiltration; invasive using composite restoration). We calculated the risk of complications of initial and possible follow-up treatments and modelled time-dependent non-linear transition probabilities. Costs were calculated based on item-fee catalogues in Germany. Monte-Carlo-microsimulations were performed to compare cost-effectiveness of non- versus micro-invasive treatment and to analyse lifetime costs of all three treatments. Results Micro-invasive treatment was both more costly and more effective than non-invasive therapy, with ceiling-value-thresholds for willingness-to-pay between 16.73 € for E2 and 1.57 € for D1 lesions. Invasive treatment was the most costly strategy. Calculated costs and effectiveness were sensitive to lesion stage, patient’s age, discounting rate and assumed initial treatment costs. Conclusions Non- and micro-invasive treatments have lower long-term costs than invasive therapy of proximal lesions. Micro-invasive therapy had the highest cost-effectiveness for treating D1 lesions in young patients. Decision makers with a willingness-to-pay over 16.73 € and 1.57 € for E2 and D1 lesions, respectively, will find micro-invasive treatment more cost-effective than non-invasive therapy. PMID:24475208
Unit 5, STA. 50+00+RB, Orner Building, First U.M. Church Rectory, ...
Unit 5, STA. 50+00+RB, Orner Building, First U.M. Church Rectory, & First U.M. Church-context - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA
VizieR Online Data Catalog: 24um excesses in clusters & membership of NGC2244 (Meng+, 2017)
NASA Astrophysics Data System (ADS)
Meng, H. Y. A.; Rieke, G. H.; Su, K. Y. L.; Gaspar, A.
2017-09-01
We re-measured the Spitzer/MIPS 24um photometry for all the clusters except for a few noted in Appendix A. We obtained the 24um data from the Spitzer Heritage Archive between 2004 Jan 28 and 2008 Oct 23. (3 data files).
VizieR Online Data Catalog: X-ray AGNs with Subaru/FMOS NIR observations (Suh+, 2015)
NASA Astrophysics Data System (ADS)
Suh, H.; Hasinger, G.; Steinhardt, C.; Silverman, J. D.; Schramm, M.
2016-03-01
We performed NIR spectroscopic observations for the AGN sources with the FMOS high-resolution spectrographs on the Subaru telescope; in J-short (0.92-1.12um), J-long (1.11-1.35um), H-short (1.40-1.60um), and H-long (1.60-1.80um) coverage with a spectral resolution of R~2200. The data span the 2012 Mar 25-2013 Oct 24 period. In addition to NIR spectra, we use existing optical spectroscopy (see section 3.2). (2 data files).
VizieR Online Data Catalog: MILO. I. HD 7449 radial velocities (Rodigas+, 2016)
NASA Astrophysics Data System (ADS)
Rodigas, T. J.; Arriagada, P.; Faherty, J.; Anglada-Escude, G.; Kaib, N.; Butler, R. P.; Shectman, S.; Weinberger, A.; Males, J. R.; Morzinski, K. M.; Close, L. M.; Hinz, P. M.; Crane, J. D.; Thompson, I.; Teske, J.; Diaz, M.; Minniti, D.; Lopez-Morales, M.; Adams, F. C.; Boss, A. P.
2016-04-01
We observed HD 7449 using the Magellan Clay Telescope at the Las Campanas Observatory in Chile on the nights of UT 2014 November 5 and 22. We observed the star with VisAO at Ys (0.99um) and with Clio-2 at H (1.65um) and Ks (2.15um) on the first night and with VisAO at r' (0.63um), i' (0.77um), z' (0.91um), and with Clio-2 at J (1.1um) on the second night. RV data on HD 7449 were first acquired as part of the Magellan Planet Search Program, which originally made use of the MIKE echelle spectrometer (R~70000 in the blue and ~50000 in the red; wavelength coverage ranges from 3900 to 6200Å) on the Magellan Clay telescope until 2009 September. HD 7449 was subsequently observed using the Carnegie Magellan/PFS (3880-6680Å with R~80000 in the iodine region). We also included in our analysis RVs measured with HARPS and CORALIE. These RVs were originally reported in Dumusque et al. (2011, J/A+A/535/A55). HARPS data on HD 7449 has been supplemented by the ESO archive. See section 2.2 for further explanations. (1 data file).
NASA Astrophysics Data System (ADS)
Renaud, Olivier; Heintzmann, Rainer; Sáez-Cirión, Asier; Schnelle, Thomas; Mueller, Torsten; Shorte, Spencer
2007-02-01
Three dimensional imaging provides high-content information from living intact biology, and can serve as a visual screening cue. In the case of single cell imaging the current state of the art uses so-called "axial through-stacking". However, three-dimensional axial through-stacking requires that the object (i.e. a living cell) be adherently stabilized on an optically transparent surface, usually glass; evidently precluding use of cells in suspension. Aiming to overcome this limitation we present here the utility of dielectric field trapping of single cells in three-dimensional electrode cages. Our approach allows gentle and precise spatial orientation and vectored rotation of living, non-adherent cells in fluid suspension. Using various modes of widefield, and confocal microscope imaging we show how so-called "microrotation" can provide a unique and powerful method for multiple point-of-view (three-dimensional) interrogation of intact living biological micro-objects (e.g. single-cells, cell aggregates, and embryos). Further, we show how visual screening by micro-rotation imaging can be combined with micro-fluidic sorting, allowing selection of rare phenotype targets from small populations of cells in suspension, and subsequent one-step single cell cloning (with high-viability). Our methodology combining high-content 3D visual screening with one-step single cell cloning, will impact diverse paradigms, for example cytological and cytogenetic analysis on haematopoietic stem cells, blood cells including lymphocytes, and cancer cells.
Multi-angle lensless digital holography for depth resolved imaging on a chip.
Su, Ting-Wei; Isikman, Serhan O; Bishara, Waheb; Tseng, Derek; Erlinger, Anthony; Ozcan, Aydogan
2010-04-26
A multi-angle lensfree holographic imaging platform that can accurately characterize both the axial and lateral positions of cells located within multi-layered micro-channels is introduced. In this platform, lensfree digital holograms of the micro-objects on the chip are recorded at different illumination angles using partially coherent illumination. These digital holograms start to shift laterally on the sensor plane as the illumination angle of the source is tilted. Since the exact amount of this lateral shift of each object hologram can be calculated with an accuracy that beats the diffraction limit of light, the height of each cell from the substrate can be determined over a large field of view without the use of any lenses. We demonstrate the proof of concept of this multi-angle lensless imaging platform by using light emitting diodes to characterize various sized microparticles located on a chip with sub-micron axial and lateral localization over approximately 60 mm(2) field of view. Furthermore, we successfully apply this lensless imaging approach to simultaneously characterize blood samples located at multi-layered micro-channels in terms of the counts, individual thicknesses and the volumes of the cells at each layer. Because this platform does not require any lenses, lasers or other bulky optical/mechanical components, it provides a compact and high-throughput alternative to conventional approaches for cytometry and diagnostics applications involving lab on a chip systems.
Development of a Tele-Micro-Robot for Telemanipulation of a Microscopic Environment
NASA Technical Reports Server (NTRS)
Goldfarb, Michael
1998-01-01
The objective of the proposed work was to design and develop the mechanical equivalent of a stereomicroscope in order to eliminate the mismatch that currently exists between one's ability to observe a microscopic environment and one's ability to manipulate it.
Development of Recording Materials for Holographic Non-Destructive Testing
1979-08-01
fuse together and appear as one. The reconstructed image may therefore be substituted for the actual object in an interferometric application, for...re- flective gold layer, the overall path change becomes A. When examined micros- copically with a Nomarski polarization interferometer, however, the
TP89 - SIRZ Decomposition Spectral Estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seetho, Isacc M.; Azevedo, Steve; Smith, Jerel
2016-12-08
The primary objective of this test plan is to provide X-ray CT measurements of known materials for the purposes of generating and testing MicroCT and EDS spectral estimates. These estimates are to be used in subsequent Ze/RhoE decomposition analyses of acquired data.
Characterization and optimization of flexible dual mode sensor based on Carbon Micro Coils
NASA Astrophysics Data System (ADS)
Dat Nguyen, Tien; Kim, Taeseung; Han, Hyoseung; Shin, Hyun Yeong; Nguyen, Canh Toan; Phung, Hoa; Ryeol Choi, Hyouk
2018-01-01
Carbon Microcoils (CMCs) is a 3D helical micro structure grown via a chemical vapor deposition process. It is noted that composites in which CMCs are embedded in polymer matrixes, called CMC sheets, experience a drastic change of electrical impedance depending on the proximity and contact of external objects. In this paper, a dual functional sensor, that is, tactile and proximity sensor fabricated with CMC/silicone composite is presented to demonstrate the advanced characteristics of CMCs sheets. Characteristics of sensor responses depending on CMC compositions are investigated and optimal conditions are determined. The candidates of polymer matrices are also investigated. As the results, the CMC sheet consisting of Ecoflex 30, CMC 30 {{wt}} % , and multiwall carbon nanotubes 1 {{wt}} % shows the most appropriate tactile sensing characteristics with more than 1 mm of thickness. The proximity sensing capability is the maximum when the 1.5 {{wt}} % CMC content is mixed with Dragon skin 30 silicone substrate. Finally, multiple target objects are recognized with the results and their feasibilities are experimentally validated.
Forensic practice in the field of protection of cultural heritage
NASA Astrophysics Data System (ADS)
Kotrlý, Marek; Turková, Ivana
2012-06-01
Microscopic methods play a key role in issues covering analyses of objects of art that are used on the one hand as screening ones, on the other hand they can lead to obtaining data relevant for completion of expertise. Analyses of artworks, gemmological objects and other highly valuable commodities usually do not rank among routine ones, but every analysis is specific, be it e.g. material investigation of artworks, historical textile materials and other antiques (coins, etc.), identification of fragments (from transporters, storage places, etc.), period statues, sculptures compared to originals, analyses of gems and jewellery, etc. A number of analytical techniques may be employed: optical microscopy in transmitted and reflected light, polarization and fluorescence in visible, UV and IR radiation; image analysis, quantitative microspectrophotometry; SEM/EDS/WDS; FTIR and Raman spectroscopy; XRF and microXRF, including mobile one; XRD and microXRD; x-ray backlight or LA-ICP-MS, SIMS, PIXE; further methods of organic analysis are also utilised - GS-MS, MALDI-TOF, etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Mathew; Marshall, Matthew J.; Miller, Erin A.
2014-08-26
Understanding the interactions of structured communities known as “biofilms” and other complex matrixes is possible through the X-ray micro tomography imaging of the biofilms. Feature detection and image processing for this type of data focuses on efficiently identifying and segmenting biofilms and bacteria in the datasets. The datasets are very large and often require manual interventions due to low contrast between objects and high noise levels. Thus new software is required for the effectual interpretation and analysis of the data. This work specifies the evolution and application of the ability to analyze and visualize high resolution X-ray micro tomography datasets.
Cellulose Electro-Active Paper: From Discovery to Technology Applications
NASA Astrophysics Data System (ADS)
Abas, Zafar; Kim, Heung Soo; Kim, Jaehwan; Kim, Joo-Hyung
2014-09-01
Cellulose electro-active paper (EAPap) is an attractive material of electro-active polymers (EAPs) family due to its smart characteristics. EAPap is thin cellulose film coated with metal electrodes on both sides. Its large displacement output, low actuation voltage and low power consumption can be used for biomimetic sensors/actuators and electromechanical system. Because cellulose EAPap is ultra-lightweight, easy to manufacture, inexpensive, biocompatible, and biodegradable, it has been employed for many applications such as bending actuator, vibration sensor, artificial muscle, flexible speaker, and can be advantageous in areas such as micro-insect robots, micro-flying objects, microelectromechanical systems, biosensors, and flexible displays.
Stock, Christoph; Heureux, Nicolas; Browne, Wesley R; Feringa, Ben L
2008-01-01
A general approach for the easy functionalization of bare silica and glass surfaces with a synthetic manganese catalyst is reported. Decomposition of H(2)O(2) by this dinuclear metallic center into H(2)O and O(2) induced autonomous movement of silica microparticles and glass micro-sized fibers. Although several mechanisms have been proposed to rationalise movement of particles driven by H(2)O(2) decomposition to O(2) and water (recoil from O(2) bubbles, ([36,45]) interfacial tension gradient([37-42]), it is apparent in the present system that ballistic movement is due to the growth of O(2) bubbles.
NASA Astrophysics Data System (ADS)
Yamakawa, Takeshi; Maruyama, Akihiro; Uedan, Hirohisa; Iino, Takanori; Hosokawa, Yoichiroh
2015-03-01
A new methodology to estimate the dynamics of femtosecond laser-induced impulsive force generated into water under microscope was developed. In this method, the position shift of the bead in water before and after the femtosecond laser irradiation was investigated experimentally and compared with motion equation assuming stress wave propagation with expansion and collapse the cavitation bubble. In the process of the comparison, parameters of force and time of the stress wave were determined. From these results, dynamics of propagations of shock and stress waves, cavitation bubble generation, and these actions to micro-objects were speculated.
Jakobsen, Marianne; Meyer DeMott, Melinda Ashley; Wentzel-Larsen, Tore; Heir, Trond
2017-01-01
Objectives To examine the mental health of unaccompanied refugee minors prospectively during the asylum-seeking process, with a focus on specific stages in the asylum process, such as age assessment, placement in a supportive or non-supportive facility and final decision on the asylum applications. Design This was a2½ year follow-up study of unaccompanied minors (UM) seeking asylum in Norway. Data were collected within three weeks (n=138) and at 4 months (n=101), 15 months (n=84) and 26 months (n=69) after arrival. Setting Initially in an observation and orientation centre for unaccompanied asylum-seeking adolescents, and subsequently wherever the UM were located in other refugee facilities in Norway. Participants Male UM from Afghanistan, Somalia, Algeria and Iran. Main outcome measures Mental health symptoms assessed by Hopkins Symptom Checklist-25 and Harvard Trauma Questionnaire. Results At the group level, the young asylum seekers reported high levels of psychological distress on arrival and symptom levels that stayed relatively unchanged over time. According to age-assessment procedures, 56% of the population were not recognised as minors. Subsequent placement in a low-support facility was associated with higher levels of psychological distress in the follow-up period. Those who were placed in a reception centre for adults had higher levels of psychological distress symptoms both after 15 months and 26 months compared with the remaining participants who were placed in reception centres for youth. Refusal of asylum was highly associated with higher levels of psychological distress. Conclusion Mental health trajectory of young asylum seekers appears to be negatively affected by low support and refusal of asylum. PMID:28637731
BH3-mimetic small molecule inhibits the growth and recurrence of adenoid cystic carcinoma
Acasigua, Gerson A.; Warner, Kristy A.; Nör, Felipe; Helman, Joseph; Pearson, Alexander T.; Fossati, Anna C.; Wang, Shaomeng; Nör, Jacques E.
2015-01-01
Objectives To evaluate the anti-tumor effect of BM-1197, a new potent and highly specific small molecule inhibitor of Bcl-2/Bcl-xL, in preclinical models of human adenoid cystic carcinoma (ACC). Methods Low passage primary human adenoid cystic carcinoma cells (UM-HACC-2A,-2B,-5,-6) and patient-derived xenograft (PDX) models (UM-PDX-HACC) were developed from surgical specimens obtained from 4 patients. The effect of BM-1197 on cell viability and cell cycle were evaluated in vitro using this panel of low passage ACC cells. The effect of BM-1197 on tumor growth, recurrence and tumor cell apoptosis in vivo was evaluated with the PDX model of ACC (UM-PDX-HACC-5). Results Exposure of low passage primary human ACC cells to BM-1197 mediated an IC50 of 0.92-2.82 μM. This correlated with an increase in the fraction of apoptotic cells (p<0.0001) and an increase in caspase-3 activity (p<0.0001), but no noticeable differences in cell cycle (p>0.05). In vivo, BM-1197 inhibited tumor growth (p=0.0256) and induced tumor cell apoptosis (p=0.0165) without causing significant systemic toxicities, as determined by mouse weight over time. Surprisingly, weekly BM-1197 decreased the incidence of tumor recurrence (p=0.0297), as determined by Kaplan-Meier analysis. Conclusion These data demonstrated that single agent BM-1197 induces apoptosis and inhibits tumor growth in preclinical models of adenoid cystic carcinoma. Notably, single agent BM-1197 inhibited tumor recurrence, which is considered a major clinical challenge in the clinical management of adenoid cystic carcinoma. Collectively, these results suggest that patients with adenoid cystic carcinoma might benefit from therapy with a BH3-mimetic small molecule. PMID:26121939
SPHEREx: Instrument and Science Implementation
NASA Astrophysics Data System (ADS)
Korngut, Phillip; SPHEREx Science Team
2018-01-01
SPHEREx, a mission in NASA's Medium Explorer (MIDEX) program that was selected for Phase A in August 2017, is an all-sky survey satellite designed to address all three science goals in NASA's astrophysics division. SPHEREx has a simple, high heritage design with large optical throughput to maximize spectral mapping speed, ideal for an all-sky spectral survey. The aluminum telescope is based on a wide-field off-axis reflective triplet design imaged by two mosaics of H2RG focal plane arrays. SPHEREx produces spectra without the use of any dispersive elements. Instead, it uses linear variable filters (LVFs) placed above the detectors to probe the wavelength range between 0.75 and 4.2 um at R=41.4 and 4.2 to 5 um at R=135. Spectra are constructed by stepping the telescope boresight across the sky, modulating the location of an object within the FOV and varying the observation wavelength in each image. The telescope is cooled by a series of three V-groove radiators to < 80K, with the two long-wavelength focal planes to < 55K. The design has ample technical margins on detector, optical, thermal, and pointing performance, and carries additional large margin on point source sensitivity.
VizieR Online Data Catalog: Tori in AGNs through Spitzer/IRS spectra (Gonzalez-Martin+, 2017)
NASA Astrophysics Data System (ADS)
Gonzalez-Martin, O.; Masegosa, J.; Hernan-Caballero, A.; Marquez, I.; Almeida, C. R.; Alonso-Herrero, A.; Aretxaga, I.; Rodriguez-Espinosa, J. M.; Acosta-Pulido, J. A.; Hernandez-Garcia, L.; Esparza-Arredondo, D.; Martinez-Paredes, M.; Bonfini, P.; Pasetto, A.; Dultzin, D.
2018-01-01
The sample was originally presented by Gonzalez-Martin+ (2015, J/A+A/578/A74). The LINER sample is selected as those objects with reported X-ray luminosities from Gonzalez-Martin+ (2009A&A...506.1107G) with full coverage of the 5-30um range with the InfraRed Spectrograph (Spitzer/IRS) spectra. This guarantees that all of the LINERs have LX(2-10keV) measurements. Among the 48 LINERs with Spitzer/IRS spectra, 40 mid-infrared spectra were taken from the CASSIS atlas (Lebouteiller+ 2011ApJS..196....8L) and 8 from the SINGS database (Kennicutt+ 2003PASP..115..928K). We have included in our analysis mid-infrared spatially resolved images taken with CanariCam/GTC using the filter "Si6" centered at 11.5um. These observations are part of proprietary data of a sample of faint and Compton-thick LINERs observed with CanariCam/GTC (proposal ID GTC10-14A, P.I. Gonzalez-Martin). The summary of the observations used in this paper is reported in Table 4. See section 3.2 for further explanations. (5 data files).
Bhavsar, Preetish; Rathod, Kirtikumar Jagdish; Rathod, Darshana; Chamania, C S
2013-02-01
Rhabdomyolysis due to trauma and burns is an important cause of acute renal failure (ARF) secondary to myoglobinuria. To prevent morbidity and mortality from ARF due to rhabdomyolysis, early detection of ARF by monitoring the biochemical parameters such as serum creatinine, serum creatine kinase (CK), and urinary myoglobin (UM) can be helpful. The aims of the study were (1) to detect ARF due to rhabdomyolysis using serum creatinine, serum CK, and UM in trauma and electrical burn patients (2) to compare utility of these parameters in early prediction of ARF in patients of rhabdomyolysis. A total of 50 patients with trauma and electrical burns were included in the study. Serum creatinine, serum CK, and UM measurements were done at the time of admission and after 48 h. Diagnosis of ARF was made in the patients by Rifle's criteria. The presence of significant elevation of creatinine, serum CK, and UM at the time of admission and after 48 h was compared in patients developing ARF by Fisher's exact test. Fifteen of the 50 patients developed ARF as per the defined criteria. Of these, 9 patients (60 %) had raised level of serum creatinine above 1.4 mg% at admission and 14 patients (93.33 %) had CK level >1250 U/L at admission, whereas UM was positive in 6 (40 %) patients. Serum creatinine was significantly raised in all of the 15 ARF patients (100 %) after 48 h of admission and serum CK was raised in 14 of the 15 ARF patients (93.33 %). UM was negative in all the patients after 48 h of admission. Statistical analysis showed that rise in serum CK on admission was significantly increased in patients developing ARF as compared with serum creatinine and UM (P < 0.0001). On admission, CK is a better predictor of ARF due to rhabdomyolysis than creatinine and UM. Initial creatinine is a better predictor of ARF due to rhabdomyolysis than UM. UM assay is not a good investigation for early prediction of ARF in rhabdomyolysis.
H, Farhadpour; F, Sharafeddin; Sc, Akbarian; B, Azarian
2016-01-01
Statement of Problem: Hemostatic agents may affect the micro-leakage of different adhesive systems. Also, chlorhexidine has shown positive effects on micro-leakage. However, their interaction effect has not been reported yet. Objectives: To evaluate the effect of contamination with a hemostatic agent on micro-leakage of total- and self-etching adhesive systems and the effect of chlorhexidine application after the removal of the hemostatic agent. Materials and Methods: Standardized Class V cavity was prepared on each of the sixty caries free premolars at the cemento-enamel junction, with the occlusal margin located in enamel and the gingival margin in dentin. Then, the specimens were randomly divided into 6 groups (n = 10) according to hemostatic agent (H) contamination, chlorhexidine (CHX) application, and the type of adhesive systems (Adper Single Bond and Clearfil SE Bond) used. After filling the cavities with resin composite, the root apices were sealed with utility wax. Furthermore, all the surfaces, except for the restorations and 1mm from the margins, were covered with two layers of nail varnish. The teeth were immersed in a 0.5% basic fuschin dye for 24 hours, rinsed, blot-dried and sectioned longitudinally through the center of the restorations bucco- lingualy. The sections were examined using a stereomicroscope and the extension of dye penetration was analyzed according to a non-parametric scale from 0 to 3. Statistical analysis was performed using Kruskal-Wallis test and Mann-Whitney U-test. Results: While ASB group showed no micro-leakage in enamel, none of the groups showed complete elimination of micro-leakage from the dentin. Regarding micro-leakage at enamel, and dentin margins, there was no significant difference between groups 1 and 2, 1 and 3, and 2 and 3 (p > 0.05). A significantly lower micro-leakage at the enamel and dentin margins was observed in group 3, compared to group 6. No significant difference was observed between groups 4 and 5 in enamel (p = 0.35) and dentin (p = 0.34). Group 6 showed significantly higher micro-leakage, compared to group 4 and 5 (p < 0.05). Conclusions: Hemostatic agent contamination had no significant effect on micro-leakage of total- and self-etching adhesive systems. Application of chlorhexidine after the removal of hemostatic agent increased micro-leakage in self-etching adhesives but did not affect when total-etching was used. PMID:28959756
PREFACE: 1st European Conference on Gas Micro Flows (GasMems 2012)
NASA Astrophysics Data System (ADS)
Frijns, Arjan; Valougeorgis, Dimitris; Colin, Stéphane; Baldas, Lucien
2012-05-01
The aim of the 1st European Conference on Gas Micro Flows is to advance research in Europe and worldwide in the field of gas micro flows as well as to improve global fundamental knowledge and to enable technological applications. Gas flows in microsystems are of great importance and touch almost every industrial field (e.g. fluidic microactuators for active control of aerodynamic flows, vacuum generators for extracting biological samples, mass flow and temperature micro-sensors, pressure gauges, micro heat-exchangers for the cooling of electronic components or for chemical applications, and micro gas analyzers or separators). The main characteristic of gas microflows is their rarefaction, which for device design often requires modelling and simulation both by continuous and molecular approaches. In such flows various non-equilibrium transport phenomena appear, while the role played by the interaction between the gas and the solid device surfaces becomes essential. The proposed models of boundary conditions often need an empirical adjustment strongly dependent on the micro manufacturing technique. The 1st European Conference on Gas Micro Flows is organized under the umbrella of the recently established GASMEMS network (www.gasmems.eu/) consisting of 13 participants and six associate members. The main objectives of the network are to structure research and train researchers in the fields of micro gas dynamics, measurement techniques for gaseous flows in micro experimental setups, microstructure design and micro manufacturing with applications in lab and industry. The conference takes place on June 6-8 2012, at the Skiathos Palace Hotel, on the beautiful island of Skiathos, Greece. The conference has received funding from the European Community's Seventh Framework Programme FP7/2007-2013 under grant agreement ITN GASMEMS no. 215504. It owes its success to many people. We would like to acknowledge the support of all members of the Scientific Committee and of all referees for their thorough reviews and evaluation of the full papers. Above all, we would like to sincerely thank all authors for their valuable contributions to these proceedings as well as all the participants for creating a stimulating atmosphere through their presentations and discussions and making this conference a great success. Dr Arjan Frijns Editor and Event Coordinator Prof. Dimitris Valougeorgis Local Organizer Prof. Stéphane Colin Network Coordinator Dr Lucien Baldas Assistant Network Coordinator The PDF also contains details of the Conference Organizers.
Stringheta, Carolina Pessoa; Pelegrine, Rina Andréa; Kato, Augusto Shoji; Freire, Laila Gonzales; Iglecias, Elaine Faga; Gavini, Giulio; Bueno, Carlos Eduardo da Silveira
2017-12-01
The objective of this study was to compare the methods of micro-computed tomography (micro-CT) and cross-sectioning followed by stereomicroscopy in assessing dentinal defects after instrumentation with different mechanized systems. Forty mesial roots of mandibular molars were scanned and divided into 4 groups (n = 10): Group R, Reciproc; Group PTN, ProTaper Next; Group WOG, WaveOne Gold; Group PDL, ProDesign Logic. After instrumentation, the roots were once again submitted to a micro-CT scan, and then sectioned at 3, 6, and 9 mm from the apex, and assessed for the presence of complete and incomplete dentinal defects under a stereomicroscope. The nonparametric Kruskal-Wallis, Friedman, and Wilcoxon tests were used in the statistical analysis. The study used a significance level of 5%. The total number of defects observed by cross-sectioning followed by stereomicroscopy was significantly higher than that observed by micro-CT, in all of the experimental groups (P ≤ .05). All of the defects identified in the postoperative period were already present in the corresponding preoperative period. There was no significant difference among the instrumentation systems as to the median numbers of defects, for either cross-sectioning followed by stereomicroscopy or micro-CT, at all the root levels (P > .05). In the micro-CT analysis, no significant difference was found between the median numbers of pre- and postinstrumentation defects, regardless of the instrumentation system (P > .05). None of the evaluated instrumentation systems led to the formation of new dentin defects. All of the defects identified in the stereomicroscopic analysis were already present before instrumentation, or were absent at both time points in the micro-CT analysis, indicating that the formation of new defects resulted from the sectioning procedure performed before stereomicroscopy and not from instrumentation. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Synchrotron radiation microimaging in rabbit models of cancer for preclinical testing
NASA Astrophysics Data System (ADS)
Umetani, Keiji; Uesugi, Kentaro; Kobatake, Makito; Yamamoto, Akira; Yamashita, Takenori; Imai, Shigeki
2009-10-01
Preclinical laboratory animal imaging modalities such as microangiography and micro-computed tomography (micro-CT) have been developed at the SPring-8 BL20B2 bending magnet beamline. The objective of this paper is to demonstrate the usefulness of microangiography systems for physiological examinations of live animals and micro-CT systems for postmortem morphological examinations. Synchrotron radiation microangiography and micro-CT with contrast agents present the main advantageous capability of depicting the anatomy of small blood vessels with tens of micrometers' diameter. This paper reports two imaging instrument types and their respective applications to preclinical imaging of tumor angiogenic blood vessels in tumor-bearing rabbits, where tumor angiogenesis is characterized morphologically by an increased number of blood vessels. A microangiography system with spatial resolution around 10 μm has been used for therapeutically evaluating angiogenic vessels in a rabbit model of cancer for evaluating embolization materials in transcatheter arterial embolization and for radiation therapy. After an iodine contrast agent was injected into an artery, in vivo imaging was carried out using a high-resolution real-time detector incorporating an X-ray direct-conversion-type SATICON pickup tube. On the other hand, a micro-CT system capably performed three-dimensional visualization of tumor angiogenic blood vessels using tumor-transplanted rabbit specimens with a barium sulfate contrast agent injected into the blood vessels. For specimen imaging, a large-field high-resolution micro-CT system based on a 10-megapixel CCD camera was developed to study tumor-associated alterations in angioarchitecture. Evidence of increased vascularity by tumor angiogenesis and decreased vascularity by tumor treatments was achieved by physiological evaluation of angiogenic small blood vessels in microangiographic imaging and by morphological assessment in micro-CT imaging. These results demonstrate the accuracy and usefulness of microangiography and micro-CT systems for quantitative examination of animals' angioarchitecture, respectively, during live and postmortem examinations.
Sato, Fumiaki; Hatano, Etsuro; Kitamura, Koji; Myomoto, Akira; Fujiwara, Takeshi; Takizawa, Satoko; Tsuchiya, Soken; Tsujimoto, Gozoh; Uemoto, Shinji; Shimizu, Kazuharu
2011-01-01
Objective Hepatocellular carcinoma (HCC) is difficult to manage due to the high frequency of post-surgical recurrence. Early detection of the HCC recurrence after liver resection is important in making further therapeutic options, such as salvage liver transplantation. In this study, we utilized microRNA expression profiling to assess the risk of HCC recurrence after liver resection. Methods We examined microRNA expression profiling in paired tumor and non-tumor liver tissues from 73 HCC patients who satisfied the Milan Criteria. We constructed prediction models of recurrence-free survival using the Cox proportional hazard model and principal component analysis. The prediction efficiency was assessed by the leave-one-out cross-validation method, and the time-averaged area under the ROC curve (ta-AUROC). Results The univariate Cox analysis identified 13 and 56 recurrence-related microRNAs in the tumor and non-tumor tissues, such as miR-96. The number of recurrence-related microRNAs was significantly larger in the non-tumor-derived microRNAs (N-miRs) than in the tumor-derived microRNAs (T-miRs, P<0.0001). The best ta-AUROC using the whole dataset, T-miRs, N-miRs, and clinicopathological dataset were 0.8281, 0.7530, 0.7152, and 0.6835, respectively. The recurrence-free survival curve of the low-risk group stratified by the best model was significantly better than that of the high-risk group (Log-rank: P = 0.00029). The T-miRs tend to predict early recurrence better than late recurrence, whereas N-miRs tend to predict late recurrence better (P<0.0001). This finding supports the concept of early recurrence by the dissemination of primary tumor cells and multicentric late recurrence by the ‘field effect’. Conclusion microRNA profiling can predict HCC recurrence in Milan criteria cases. PMID:21298008
VizieR Online Data Catalog: Velocities in the A2345 cluster (Boschin+, 2010)
NASA Astrophysics Data System (ADS)
Boschin, W.; Barrena, R.; Girardi, M.
2011-08-01
Multi-object spectroscopic observations of A2345 were carried out at the TNG telescope in August 2008. We used DOLORES/MOS with the LR-B Grism 1, yielding a dispersion of 187Å/mm. We used the new E2V CCD, a matrix of 2048x2048 pixels with a pixel size of 13.5um. In total we observed four MOS masks for a total of 147 slits. Total exposure times were of 1h for three masks and 1.5h for the remaining mask. (1 data file).
VizieR Online Data Catalog: NGC 7129 pre-main sequence stars (Stelzer+, 2009)
NASA Astrophysics Data System (ADS)
Stelzer, B.; Scholz, A.
2010-09-01
We make use of X-ray and IR imaging observations to identify the pre-main sequence stars in NGC 7129. We define a sample of young stellar objects based on color-color diagrams composed from IR photometry between 1.6 and 8um, from 2MASS and Spitzer, and based on X-ray detected sources from a Chandra observation. A 22ks long Chandra observation targeting the Herbig star SVS 12 was carried out on Mar 11, 2006 (start of observation UT 14h29m18s). (5 data files).
Improving Attachments of Non-Invasive (Type III) Electronic Data Loggers to Cetaceans
2011-09-30
Micro texturing of the suction cup to reduced leakage: Objective: Use microtexturing to create a superhydrophobic barrier between the lip and the...surface area of a solid, thereby amplifying the natural hydrophobicity of a surface. Superhydrophobicity is created by interfacial tension forces that
Advancing the Art of Inquiry in School Desegregation Research.
ERIC Educational Resources Information Center
System Development Corp., Santa Monica, CA.
This volume represents the results of an effort to reconsider school desegregation research from a "situational" perspective--one that recognizes macro and micro processes, objective and subjective forces, and proximal and distal influences. Part I is an introduction, "The Desegregation Situation," written by Jeffrey Prager,…
USDA-ARS?s Scientific Manuscript database
In recent years, the preparation of cellulosic composites and nanocomposites has become an important approach because of the wide abundance of cellulose, its biodegradability, renewability, and the ability to effectively reinforce a polymer matrix in an environmentally benign nature. The main object...
Signal transfer within a cultured asymmetric cortical neuron circuit
NASA Astrophysics Data System (ADS)
Isomura, Takuya; Shimba, Kenta; Takayama, Yuzo; Takeuchi, Akimasa; Kotani, Kiyoshi; Jimbo, Yasuhiko
2015-12-01
Objective. Simplified neuronal circuits are required for investigating information representation in nervous systems and for validating theoretical neural network models. Here, we developed patterned neuronal circuits using micro fabricated devices, comprising a micro-well array bonded to a microelectrode-array substrate. Approach. The micro-well array consisted of micrometre-scale wells connected by tunnels, all contained within a silicone slab called a micro-chamber. The design of the micro-chamber confined somata to the wells and allowed axons to grow through the tunnels bidirectionally but with a designed, unidirectional bias. We guided axons into the point of the arrow structure where one of the two tunnel entrances is located, making that the preferred direction. Main results. When rat cortical neurons were cultured in the wells, their axons grew through the tunnels and connected to neurons in adjoining wells. Unidirectional burst transfers and other asymmetric signal-propagation phenomena were observed via the substrate-embedded electrodes. Seventy-nine percent of burst transfers were in the forward direction. We also observed rapid propagation of activity from sites of local electrical stimulation, and significant effects of inhibitory synapse blockade on bursting activity. Significance. These results suggest that this simple, substrate-controlled neuronal circuit can be applied to develop in vitro models of the function of cortical microcircuits or deep neural networks, better to elucidate the laws governing the dynamics of neuronal networks.
Rabbi, S M F; Daniel, H; Lockwood, P V; Macdonald, C; Pereg, L; Tighe, M; Wilson, B R; Young, I M
2016-09-12
Aggregates play a key role in protecting soil organic carbon (SOC) from microbial decomposition. The objectives of this study were to investigate the influence of pore geometry on the organic carbon decomposition rate and bacterial diversity in both macro- (250-2000 μm) and micro-aggregates (53-250 μm) using field samples. Four sites of contrasting land use on Alfisols (i.e. native pasture, crop/pasture rotation, woodland) were investigated. 3D Pore geometry of the micro-aggregates and macro-aggregates were examined by X-ray computed tomography (μCT). The occluded particulate organic carbon (oPOC) of aggregates was measured by size and density fractionation methods. Micro-aggregates had 54% less μCT observed porosity but 64% more oPOC compared with macro-aggregates. In addition, the pore connectivity in micro-aggregates was lower than macro-aggregates. Despite both lower μCT observed porosity and pore connectivity in micro-aggregates, the organic carbon decomposition rate constant (Ksoc) was similar in both aggregate size ranges. Structural equation modelling showed a strong positive relationship of the concentration of oPOC with bacterial diversity in aggregates. We use these findings to propose a conceptual model that illustrates the dynamic links between substrate, bacterial diversity, and pore geometry that suggests a structural explanation for differences in bacterial diversity across aggregate sizes.
Rabbi, S. M. F.; Daniel, H.; Lockwood, P. V.; Macdonald, C.; Pereg, L.; Tighe, M.; Wilson, B. R.; Young, I. M.
2016-01-01
Aggregates play a key role in protecting soil organic carbon (SOC) from microbial decomposition. The objectives of this study were to investigate the influence of pore geometry on the organic carbon decomposition rate and bacterial diversity in both macro- (250–2000 μm) and micro-aggregates (53–250 μm) using field samples. Four sites of contrasting land use on Alfisols (i.e. native pasture, crop/pasture rotation, woodland) were investigated. 3D Pore geometry of the micro-aggregates and macro-aggregates were examined by X-ray computed tomography (μCT). The occluded particulate organic carbon (oPOC) of aggregates was measured by size and density fractionation methods. Micro-aggregates had 54% less μCT observed porosity but 64% more oPOC compared with macro-aggregates. In addition, the pore connectivity in micro-aggregates was lower than macro-aggregates. Despite both lower μCT observed porosity and pore connectivity in micro-aggregates, the organic carbon decomposition rate constant (Ksoc) was similar in both aggregate size ranges. Structural equation modelling showed a strong positive relationship of the concentration of oPOC with bacterial diversity in aggregates. We use these findings to propose a conceptual model that illustrates the dynamic links between substrate, bacterial diversity, and pore geometry that suggests a structural explanation for differences in bacterial diversity across aggregate sizes. PMID:27615807
Optical Detection and Sizing of Single Nano-Particles Using Continuous Wetting Films
Hennequin, Yves; McLeod, Euan; Mudanyali, Onur; Migliozzi, Daniel; Ozcan, Aydogan; Dinten, Jean-Marc
2013-01-01
The physical interaction between nano-scale objects and liquid interfaces can create unique optical properties, enhancing the signatures of the objects with sub-wavelength features. Here we show that the evaporation on a wetting substrate of a polymer solution containing sub-micrometer or nano-scale particles creates liquid micro-lenses that arise from the local deformations of the continuous wetting film. These micro-lenses have properties similar to axicon lenses that are known to create beams with a long depth of focus. This enhanced depth of focus allows detection of single nanoparticles using a low magnification microscope objective lens, achieving a relatively wide field-of-view, while also lifting the constraints on precise focusing onto the object plane. Hence, by creating these liquid axicon lenses through spatial deformations of a continuous thin wetting film, we transfer the challenge of imaging individual nano-particles to detecting the light focused by these lenses. As a proof of concept, we demonstrate the detection and sizing of single nano-particles (100 and 200 nm), CpGV granuloviruses as well as Staphylococcus epidermidis bacteria over a wide field of view of e.g., 5.10×3.75 mm2 using a ×5 objective lens with a numerical aperture of 0.15. In addition to conventional lens-based microscopy, this continuous wetting film based approach is also applicable to lensfree computational on-chip imaging, which can be used to detect single nano-particles over a large field-of-view of e.g., >20-30 mm2. These results could be especially useful for high-throughput field-analysis of nano-scale objects using compact and cost-effective microscope designs. PMID:23889001
2007-12-31
Wisconsin-Madison) for 2? ol !> o "S \\ % M 31 Statement of Objectives The original objectives of the proposal were as follows: 1. Obtain high-quality...performed multiple PEEM experiments on wear tracks on carbon-based films and polysilicon micro-electro mechanical systems (MEMS) devices, a comprehensive... polysilicon MEMS device known as the "nanotractor", and studies of the structure and composition of UNCD, ta-C, and nanocrystalline diamond (NCD) films. They
Testing Microshutter Arrays Using Commercial FPGA Hardware
NASA Technical Reports Server (NTRS)
Rapchun, David
2008-01-01
NASA is developing micro-shutter arrays for the Near Infrared Spectrometer (NIRSpec) instrument on the James Webb Space Telescope (JWST). These micro-shutter arrays allow NIRspec to do Multi Object Spectroscopy, a key part of the mission. Each array consists of 62414 individual 100 x 200 micron shutters. These shutters are magnetically opened and held electrostatically. Individual shutters are then programmatically closed using a simple row/column addressing technique. A common approach to provide these data/clock patterns is to use a Field Programmable Gate Array (FPGA). Such devices require complex VHSIC Hardware Description Language (VHDL) programming and custom electronic hardware. Due to JWST's rapid schedule on the development of the micro-shutters, rapid changes were required to the FPGA code to facilitate new approaches being discovered to optimize the array performance. Such rapid changes simply could not be made using conventional VHDL programming. Subsequently, National Instruments introduced an FPGA product that could be programmed through a Labview interface. Because Labview programming is considerably easier than VHDL programming, this method was adopted and brought success. The software/hardware allowed the rapid change the FPGA code and timely results of new micro-shutter array performance data. As a result, numerous labor hours and money to the project were conserved.
Amanov, Auezhan; Watabe, Tsukasa; Sasaki, Shinya
2013-12-01
The tribological characteristics of micro-scale dimpled Cu-based alloy specimen generated using a laser surface texturing (LST) were assessed and compared with that of the untextured specimen. The objective of this study is to improve the tribological characteristics of internal combustion engine (ICE) bearings and bushings made of Cu-based alloy by generating micro-scale dimples using an LST. Fretting wear tests were performed by sliding a hardened SAE52100 steel ball against the untextured and LSTed specimens at a normal load of 5 N under oil-lubricated conditions. The friction force and relative movement between the specimens were measured simultaneously during the fretting tests. The test results showed that the LSTed specimens showed a reduction in friction coefficient and an enhancement in fretting wear resistance compared to that of the untextured specimen. The friction coefficient and fretting wear volume increased with increasing frequency for both untextured and LSTed specimens. The improved tribological properties of the LSTed specimen may be attributed to the micro-scale dimples, refined grain size and high lattice strain. In addition, a model for the nanocrystallization mechanism of the LSTed specimen was proposed.
Barreto, Mirela Sangoi; da Rosa, Ricardo Abreu; Santini, Manuela Favarin; Cavenago, Bruno Cavalini; Duarte, Marco Antônio Húngaro; Bier, Carlos Alexandre Souza; Só, Marcos Vinícius Reis
2016-01-01
ABSTRACT Objectives The aim of this study was to evaluate the volume of remaining filling material after passive ultrasonic irrigation (PUI) of sodium hypochlorite (NaOCl) and orange oil in mesial canals of mandibular molars, with and without isthmus. Material and Methods Thirty mesial roots of mandibular molars were divided according to the presence or absence of isthmus. Canals were prepared and filled (Micro-CT #1). Filling was removed using rotary instruments, and specimens were sub-divided into three groups according to the irrigation procedures: Conventional – conventional irrigation with NaOCl, PUI/NaOCl – PUI of NaOCl (three activations, 20 seconds each), and PUI/orange oil – PUI of orange oil (Micro-CT#2). Specimens were enlarged using the X2 and X3 ProTaper Next instruments and submitted to the same irrigation protocols (Micro-CT #3). Results No differences were found between the experimental groups in each stage of assessment (P>0.05). The volume of residual filling material was similar to those in Micro-CT #2 and Micro-CT #3, but lower than those observed in Micro-CT #1 (P<0.05). When groups were pooled according to the presence or absence of an isthmus, volume of residual filling material was higher in specimens presenting isthmus (P<0.05). Conclusions PUI of NaOCl or orange oil did not improve filling removal. Isthmus consists in an anatomical obstacle that impairs the removal of filling material. PMID:26200525
Distributed micro-radar system for detection and tracking of low-profile, low-altitude targets
NASA Astrophysics Data System (ADS)
Gorwara, Ashok; Molchanov, Pavlo
2016-05-01
Proposed airborne surveillance radar system can detect, locate, track, and classify low-profile, low-altitude targets: from traditional fixed and rotary wing aircraft to non-traditional targets like unmanned aircraft systems (drones) and even small projectiles. Distributed micro-radar system is the next step in the development of passive monopulse direction finder proposed by Stephen E. Lipsky in the 80s. To extend high frequency limit and provide high sensitivity over the broadband of frequencies, multiple angularly spaced directional antennas are coupled with front end circuits and separately connected to a direction finder processor by a digital interface. Integration of antennas with front end circuits allows to exclude waveguide lines which limits system bandwidth and creates frequency dependent phase errors. Digitizing of received signals proximate to antennas allows loose distribution of antennas and dramatically decrease phase errors connected with waveguides. Accuracy of direction finding in proposed micro-radar in this case will be determined by time accuracy of digital processor and sampling frequency. Multi-band, multi-functional antennas can be distributed around the perimeter of a Unmanned Aircraft System (UAS) and connected to the processor by digital interface or can be distributed between swarm/formation of mini/micro UAS and connected wirelessly. Expendable micro-radars can be distributed by perimeter of defense object and create multi-static radar network. Low-profile, lowaltitude, high speed targets, like small projectiles, create a Doppler shift in a narrow frequency band. This signal can be effectively filtrated and detected with high probability. Proposed micro-radar can work in passive, monostatic or bistatic regime.
Micro-Optical Distributed Sensors for Aero Propulsion Applications
NASA Astrophysics Data System (ADS)
Arnold, S.; Otugen, V.
2003-01-01
The objective of this research is to develop micro-opto-mechanical system (MOMS)-based sensors for time- and space-resolved measurements of flow properties in aerodynamics applications. The measurement technique we propose uses optical resonances in dielectric micro-spheres that can be excited by radiation tunneling from optical fibers. It exploits the tunneling-induced and morphology-dependent shifts in the resonant frequencies. The shift in the resonant frequency is dependent on the size, shape, and index of refraction of the micro-sphere. A physical change in the environment surrounding a micro-bead can change one or more of these properties of the sphere thereby causing a shift in frequency of resonance. The change of the resonance frequency can be detected with high resolution by scanning a frequency-tunable laser that is coupled into the fiber and observing the transmission spectrum at the output of the fiber. It is expected that, in the future, the measurement concept will lead to a system of distributed micro-sensors providing spatial data resolved in time and space. The present project focuses on the development and demonstration of temperature sensors using the morphology-dependent optical resonances although in the latter part of the work, we will also develop a pressure sensor. During the period covered in this report, the optical and electronic equipment necessary for the experimental work was assembled and the experimental setup was designed for the single sensor temperature measurements. Software was developed for real-time tracking of the optical resonance shifts. Some preliminary experiments were also carried out to detect temperature using a single bead in a water bath.
Micro-optical Distributed Sensors for Aero Propulsion Applications
NASA Technical Reports Server (NTRS)
Arnold, S.; Otugen, V.; Seasholtz, Richard G. (Technical Monitor)
2003-01-01
The objective of this research is to develop micro-opto-mechanical system (MOMS)-based sensors for time- and space-resolved measurements of flow properties in aerodynamics applications. The measurement technique we propose uses optical resonances in dielectric micro-spheres that can be excited by radiation tunneling from optical fibers. It exploits the tunneling-induced and morphology-dependent shifts in the resonant frequencies. The shift in the resonant frequency is dependent on the size, shape, and index of refraction of the micro-sphere. A physical change in the environment surrounding a micro-bead can change one or more of these properties of the sphere thereby causing a shift in frequency of resonance. The change of the resonance frequency can be detected with high resolution by scanning a frequency-tunable laser that is coupled into the fiber and observing the transmission spectrum at the output of the fiber. It is expected that, in the future, the measurement concept will lead to a system of distributed micro-sensors providing spatial data resolved in time and space. The present project focuses on the development and demonstration of temperature sensors using the morphology-dependent optical resonances although in the latter part of the work, we will also develop a pressure sensor. During the period covered in this report, the optical and electronic equipment necessary for the experimental work was assembled and the experimental setup was designed for the single sensor temperature measurements. Software was developed for real-time tracking of the optical resonance shifts. Some preliminary experiments were also carried out to detect temperature using a single bead in a water bath.
Zacour, Brian M; Pandey, Preetanshu; Subramanian, Ganeshkumar; Gao, Julia Z; Nikfar, Faranak
2014-06-01
The objective of this study was to determine the impact that the micro-environment, as measured by PyroButton data loggers, experienced by tablets during the pan coating unit operation had on the layer adhesion of bilayer tablets in open storage conditions. A full factorial design of experiments (DOE) with three center points was conducted to study the impact of final tablet hardness, film coating spray rate and film coating exhaust temperature on the delamination tendencies of bilayer tablets. PyroButton data loggers were placed (fixed) at various locations in a pan coater and were also allowed to freely move with the tablet bed to measure the micro-environmental temperature and humidity conditions of the tablet bed. The variance in the measured micro-environment via PyroButton data loggers accounted for 75% of the variance in the delamination tendencies of bilayer tablets on storage (R(2 )= 0.75). A survival analysis suggested that tablet hardness and coating spray rate significantly impacted the delamination tendencies of the bilayer tablets under open storage conditions. The coating exhaust temperature did not show good correlation with the tablets' propensity to crack indicating that it was not representative of the coating micro-environment. Models created using data obtained from the PyroButton data loggers outperformed models created using primary DOE factors in the prediction of bilayer tablet strength, especially upon equipment or scale transfers. The coating micro-environment experienced by tablets during the pan coating unit operation significantly impacts the strength of the bilayer interface of tablets on storage.
LeBrun, Alexander; Joglekar, Tejashree; Bieberich, Charles; Ma, Ronghui; Zhu, Liang
2016-01-01
The objective of this study was to identify an injection strategy leading to repeatable nanoparticle deposition patterns in tumours and to quantify volumetric heat generation rate distribution based on micro-CT Hounsfield unit (HU) in magnetic nanoparticle hyperthermia. In vivo animal experiments were performed on graft prostatic cancer (PC3) tumours in immunodeficient mice to investigate whether lowering ferrofluid infusion rate improves control of the distribution of magnetic nanoparticles in tumour tissue. Nanoparticle distribution volume obtained from micro-CT scan was used to evaluate spreading of the nanoparticles from the injection site in tumours. Heating experiments were performed to quantify relationships among micro-CT HU values, local nanoparticle concentrations in the tumours, and the ferrofluid-induced volumetric heat generation rate (q(MNH)) when nanoparticles were subject to an alternating magnetic field. An infusion rate of 3 µL/min was identified to result in the most repeatable nanoparticle distribution in PC3 tumours. Linear relationships have been obtained to first convert micro-CT greyscale values to HU values, then to local nanoparticle concentrations, and finally to nanoparticle-induced q(MNH) values. The total energy deposition rate in tumours was calculated and the observed similarity in total energy deposition rates in all three infusion rate groups suggests improvement in minimising nanoparticle leakage from the tumours. The results of this study demonstrate that micro-CT generated q(MNH) distribution and tumour physical models improve predicting capability of heat transfer simulation for designing reliable treatment protocols using magnetic nanoparticle hyperthermia.
Guarini, Anna; Chiaretti, Sabina; Tavolaro, Simona; Maggio, Roberta; Peragine, Nadia; Citarella, Franca; Ricciardi, Maria Rosaria; Santangelo, Simona; Marinelli, Marilisa; De Propris, Maria Stefania; Messina, Monica; Mauro, Francesca Romana; Del Giudice, Ilaria; Foà, Robert
2008-08-01
Chronic lymphocytic leukemia (CLL) patients exhibit a variable clinical course. To investigate the association between clinicobiologic features and responsiveness of CLL cells to anti-IgM stimulation, we evaluated gene expression changes and modifications in cell-cycle distribution, proliferation, and apoptosis of IgV(H) mutated (M) and unmutated (UM) samples upon BCR cross-linking. Unsupervised analysis highlighted a different response profile to BCR stimulation between UM and M samples. Supervised analysis identified several genes modulated exclusively in the UM cases upon BCR cross-linking. Functional gene groups, including signal transduction, transcription, cell-cycle regulation, and cytoskeleton organization, were up-regulated upon stimulation in UM cases. Cell-cycle and proliferation analyses confirmed that IgM cross-linking induced a significant progression into the G(1) phase and a moderate increase of proliferative activity exclusively in UM patients. Moreover, we observed only a small reduction in the percentage of subG(0/1) cells, without changes in apoptosis, in UM cases; contrariwise, a significant increase of apoptotic levels was observed in stimulated cells from M cases. These results document that a differential genotypic and functional response to BCR ligation between IgV(H) M and UM cases is operational in CLL, indicating that response to antigenic stimulation plays a pivotal role in disease progression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pursimo, Tapio; Ojha, Roopesh; Jauncey, David L.
2013-04-10
Intraday variability (IDV) of the radio emission from active galactic nuclei is now known to be predominantly due to interstellar scintillation (ISS). The MASIV (The Micro-Arcsecond Scintillation-Induced Variability) survey of 443 flat spectrum sources revealed that the IDV is related to the radio flux density and redshift. A study of the physical properties of these sources has been severely handicapped by the absence of reliable redshift measurements for many of these objects. This paper presents 79 new redshifts and a critical evaluation of 233 redshifts obtained from the literature. We classify spectroscopic identifications based on emission line properties, finding thatmore » 78% of the sources have broad emission lines and are mainly FSRQs. About 16% are weak lined objects, chiefly BL Lacs, and the remaining 6% are narrow line objects. The gross properties (redshift, spectroscopic class) of the MASIV sample are similar to those of other blazar surveys. However, the extreme compactness implied by ISS favors FSRQs and BL Lacs in the MASIV sample as these are the most compact object classes. We confirm that the level of IDV depends on the 5 GHz flux density for all optical spectral types. We find that BL Lac objects tend to be more variable than broad line quasars. The level of ISS decreases substantially above a redshift of about two. The decrease is found to be generally consistent with ISS expected for beamed emission from a jet that is limited to a fixed maximum brightness temperature in the source rest frame.« less
"Uh" and "Um" Revisited: Are They Interjections for Signaling Delay?
ERIC Educational Resources Information Center
O'Connell, Daniel C.; Kowal, Sabine
2005-01-01
Clark and Fox Tree (2002) have presented empirical evidence, based primarily on the London-Lund corpus (LL; Svartvik & Quirk, 1980), that the fillers "uh" and "um" are conventional English words that signal a speaker's intention to initiate a minor and a major delay, respectively. We present here empirical analyses of "uh" and "um" and of silent…
NASA Astrophysics Data System (ADS)
Takamura, Yuzuru; Ueno, Kunimitsu; Nagasaka, Wako; Tomizawa, Yuichi; Tamiya, Eiichi
2007-03-01
We have discovered a phenomenon of accumulation of DNA near the constricted position of a microfluidic chip with taper shaped channel when both hydro pressure and electric field are applied in opposite directions. However, RNA has not been able to trap so far, unlike huge and uniformly double stranded DNA molecules, RNAs are smaller in size and single stranded with complicated conformation like blocks in lysed cell solution. In this paper, we will report not only large but also small RNA (100˜10b) are successfully trapped in relatively large microfluidic taper shape channel (width >10um). RNA are trapped in circular motion near the constricted position of taper shape channel, and the position and shape of the trapped RNA are controlled and make mode transition by changing the hydraulic and the electric force. Using this technique, smaller size molecule can be trapped in larger micro fluidic structure compared to the trap using dielectrophoresis. This technique is expected to establish easy and practical device as a direct total RNA extraction tool from living cells or tissues.
Graphene/Si CMOS Hybrid Hall Integrated Circuits
Huang, Le; Xu, Huilong; Zhang, Zhiyong; Chen, Chengying; Jiang, Jianhua; Ma, Xiaomeng; Chen, Bingyan; Li, Zishen; Zhong, Hua; Peng, Lian-Mao
2014-01-01
Graphene/silicon CMOS hybrid integrated circuits (ICs) should provide powerful functions which combines the ultra-high carrier mobility of graphene and the sophisticated functions of silicon CMOS ICs. But it is difficult to integrate these two kinds of heterogeneous devices on a single chip. In this work a low temperature process is developed for integrating graphene devices onto silicon CMOS ICs for the first time, and a high performance graphene/CMOS hybrid Hall IC is demonstrated. Signal amplifying/process ICs are manufactured via commercial 0.18 um silicon CMOS technology, and graphene Hall elements (GHEs) are fabricated on top of the passivation layer of the CMOS chip via a low-temperature micro-fabrication process. The sensitivity of the GHE on CMOS chip is further improved by integrating the GHE with the CMOS amplifier on the Si chip. This work not only paves the way to fabricate graphene/Si CMOS Hall ICs with much higher performance than that of conventional Hall ICs, but also provides a general method for scalable integration of graphene devices with silicon CMOS ICs via a low-temperature process. PMID:24998222
Hammoud, Abbas; Chamseddine, Ahmad; Nguyen, Dang K; Sawan, Mohamad
2016-08-01
The need of continuous real-time monitoring device for in-vivo drug level detection has been widely articulated lately. Such monitoring could guide drug posology and timing of intake, detect low or high drug levels, in order to take adequate measures, and give clinicians a valuable window into patients' health and their response to therapeutics. This paper presents a novel implantable bio-sensor based on impedance measurement capable of continuously monitoring various antiepileptic drug levels. This portable point-of-care microsystem replaces large and stationary conventional macrosystems, and is a one of a kind system designed with an array of electrodes to monitor various anti-epileptic drugs rather than one drug. The micro-system consists of (i) the front-end circuit including an inductive coil to receive energy from an external base station, and to exchange data with the latter; (ii) the power management block; (iii) the readout and control block; and (iv) the biosensor array. The electrical circuitry was designed using the 0.18-um CMOS process technology intended to be miniature and consume ultra-low power.
Graphene/Si CMOS hybrid hall integrated circuits.
Huang, Le; Xu, Huilong; Zhang, Zhiyong; Chen, Chengying; Jiang, Jianhua; Ma, Xiaomeng; Chen, Bingyan; Li, Zishen; Zhong, Hua; Peng, Lian-Mao
2014-07-07
Graphene/silicon CMOS hybrid integrated circuits (ICs) should provide powerful functions which combines the ultra-high carrier mobility of graphene and the sophisticated functions of silicon CMOS ICs. But it is difficult to integrate these two kinds of heterogeneous devices on a single chip. In this work a low temperature process is developed for integrating graphene devices onto silicon CMOS ICs for the first time, and a high performance graphene/CMOS hybrid Hall IC is demonstrated. Signal amplifying/process ICs are manufactured via commercial 0.18 um silicon CMOS technology, and graphene Hall elements (GHEs) are fabricated on top of the passivation layer of the CMOS chip via a low-temperature micro-fabrication process. The sensitivity of the GHE on CMOS chip is further improved by integrating the GHE with the CMOS amplifier on the Si chip. This work not only paves the way to fabricate graphene/Si CMOS Hall ICs with much higher performance than that of conventional Hall ICs, but also provides a general method for scalable integration of graphene devices with silicon CMOS ICs via a low-temperature process.
Demedts, Dennis; Roelands, Marc; Libbrecht, Julien; Bilsen, Johan
2018-05-26
Euthanasia because of unbearable mental suffering (UMS euthanasia) has been legal in Belgium since 2002, under certain circumstances that govern careful practice. Despite the legal framework, there are specific difficulties and concerns regarding UMS euthanasia. Mental health nurses are often involved in the process, but little is known about their attitudes towards UMS euthanasia, their role and their knowledge. To determine the attitudes, role and knowledge of mental health nurses regarding UMS euthanasia. A cross-sectional survey was performed at a convenience sample of four psychiatric hospitals in Belgium (n=133) as a pilot study. Self-administered questionnaires were provided to mental health nurses. Half the nurses in our sample had been involved at least once in the process of UMS euthanasia. A large majority of mental health nurses were supportive of UMS euthanasia. Nurses show differences in attitudes related to the different psychiatric pathologies of the patients, and in whether or not minors are involved. In some cases, they believed that the mental suffering of psychiatric patients can be unbearable and irreversible and that psychiatric patients can be competent to voluntarily request UMS euthanasia. Nurses stated that they have an important role in the UMS euthanasia process, but also demanded more knowledge and clear guidelines to implement the procedure. Nurses have a key role regarding UMS euthanasia but face several challenges: the recent process, resistance to a multidisciplinary approach by psychiatrists and an unclear role defined by the legal framework. Nurses do not appear to have a common voice on the topic and the development of clear guidelines appears to be essential. Social recovery can offer a way out of an UMS euthanasia request, but it will not always offer a solution. Sufficient attention must be paid to how mental health nurses can be involved in the process of UMS euthanasia at various levels: bedside practice, healthcare management, education and policy. A form of systematic cooperation between nurses, physicians and patients can contribute to the utmost careful decision-making process needed in these cases. There is a need for proper training in: knowledge of psychiatric pathologies and remaining treatment options; communication skills; the legal framework and all its difficulties; transdisciplinary and multicultural approaches; ethical reflection and how nurses handle their own emotions. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Brundiek, Henrike; Saß, Stefan; Evitt, Andrew; Kourist, Robert; Bornscheuer, Uwe T
2012-04-01
The Ustilago maydis lipase UM03410 belongs to the mostly unexplored Candida antarctica lipase (CAL-A) subfamily. The two lipases with [corrected] the highest identity are a lipase from Sporisorium reilianum and the prototypic CAL-A. In contrast to the other CAL-A-type lipases, this hypothetical U. maydis lipase is annotated to possess a prolonged N-terminus of unknown function. Here, we show for the first time the recombinant expression of two versions of lipase UM03410: the full-length form (lipUMf) and an Nterminally truncated form (lipUMs). For comparison to the prototype, the expression of recombinant CAL-A in E. coli was investigated. Although both forms of lipase UM03410 could be expressed functionally in E. coli, the N-terminally truncated form (lipUMs) demonstrated significantly higher activities towards p-nitrophenyl esters. The functional expression of the N-terminally truncated lipase was further optimized by the appropriate choice of the E. coli strain, lowering the cultivation temperature to 20 °C and enrichment of the cultivation medium with glucose. Primary characteristics of the recombinant lipase are its pH optimum in the range of 6.5-7.0 and its temperature optimum at 55 °C. As is typical for lipases, lipUM03410 shows preference for long chain fatty acid esters with myristic acid ester (C14:0 ester) being the most preferred one.More importantly, lipUMs exhibits an inherent preference for C18:1Δ9 trans and C18:1Δ11 trans-fatty acid esters similar to CAL-A. Therefore, the short form of this U. maydis lipase is the only other currently known lipase with a distinct trans-fatty acid selectivity.
Uh and um revisited: are they interjections for signaling delay?
O'Connell, Daniel C; Kowal, Sabine
2005-11-01
Clark and Fox Tree (2002) have presented empirical evidence, based primarily on the London-Lund corpus (LL; Svartvik & Quirk, 1980), that the fillers uh and um are conventional English words that signal a speaker's intention to initiate a minor and a major delay, respectively. We present here empirical analyses of uh and um and of silent pauses (delays) immediately following them in six media interviews of Hillary Clinton. Our evidence indicates that uh and um cannot serve as signals of upcoming delay, let alone signal it differentially: In most cases, both uh and um were not followed by a silent pause, that is, there was no delay at all; the silent pauses that did occur after um were too short to be counted as major delays; finally, the distributions of durations of silent pauses after uh and um were almost entirely overlapping and could therefore not have served as reliable predictors for a listener. The discrepancies between Clark and Fox Tree's findings and ours are largely a consequence of the fact that their LL analyses reflect the perceptions of professional coders, whereas our data were analyzed by means of acoustic measurements with the PRAAT software (www.praat.org). A comparison of our findings with those of O'Connell, Kowal, and Ageneau (2005) did not corroborate the hypothesis of Clark and Fox Tree that uh and um are interjections: Fillers occurred typically in initial, interjections in medial positions; fillers did not constitute an integral turn by themselves, whereas interjections did; fillers never initiated cited speech, whereas interjections did; and fillers did not signal emotion, whereas interjections did. Clark and Fox Tree's analyses were embedded within a theory of ideal delivery that we find inappropriate for the explication of these phenomena.
González-Sarrías, Antonio; García-Villalba, Rocío; Romo-Vaquero, María; Alasalvar, Cesarettin; Örem, Asim; Zafrilla, Pilar; Tomás-Barberán, Francisco A; Selma, María V; Espín, Juan Carlos
2017-05-01
The pomegranate lipid-lowering properties remain controversial, probably due to the interindividual variability in polyphenol (ellagitannins) metabolism. We aimed at investigating whether the microbially derived ellagitannin-metabolizing phenotypes, i.e. urolithin metabotypes A, (UM-A), B (UM-B), and 0 (UM-0), influence the effects of pomegranate extract (PE) consumption on 18 cardiovascular risk biomarkers in healthy overweight-obese individuals. A double-blind, crossover, dose-response, randomized, placebo-controlled trial was conducted. The study (POMEcardio) consisted of two test phases (dose-1 and dose-2, lasting 3 weeks each) and a 3-week washout period between each phase. Forty-nine participants (BMI > 27 kg/m 2 ) daily consumed one (dose-1, 160 mg phenolics/day) or four (dose-2, 640 mg phenolics/day) PE or placebo capsules. Notably, UM-B individuals showed the highest baseline cardiovascular risk. After dose-2, total cholesterol (-15.5 ± 3.7%), LDL-cholesterol (-14.9 ± 2.1%), small LDL-cholesterol (-47 ± 7%), non-HDL-cholesterol (-11.3 ± 2.5%), apolipoprotein-B (-12 ± 2.2%), and oxidized LDL-cholesterol -24 ± 2.5%) dose dependently decreased (P < 0.05) but only in UM-B subjects. These effects were partially correlated with urolithin production and the increase in Gordonibacter levels. Three (50%) nonproducers (UM-0) became producers following PE consumption. UM clustering suggests a personalized effect of ellagitannin-containing foods and could explain the controversial pomegranate benefits. Research on the specific role of urolithins and the microbiota associated with each UM is warranted. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mor, Zohar; Raveh, Yuval; Lurie, Ido; Leventhal, Alex; Gamzu, Roni; Davidovitch, Nadav; Benari, Orel; Grotto, Itamar
2017-07-14
Approximately 150,000 undocumented migrants (UM) who are medically uninsured reside in Israel, including ~50,000 originating from the horn of Africa (MHA). Free medical-care is provided by two walk-in clinics in Tel-Aviv. This study aims to compare the medical complaints of UM from different origins, define their community health needs and assess gaps between medical needs and available services. This cross-sectional study included a random sample of 610 UM aged 18-64 years, who were treated in these community clinics between 2008 and 2011. The study compared UM who had complex medical conditions which necessitated referral to more equipped medical settings with UM having mild/simple medical conditions, who were treated at the clinics. MHA were younger, unemployed and more commonly males compared with UM originating from other countries. MHA also had longer referral-delays and visited the clinics less frequently. UM with complex medical conditions were more commonly females, had chronic diseases and demonstrated longer referral-delays than those who had mild/simple medical conditions. The latter more commonly presented with complained of respiratory, muscular and skeletal discomfort. In multivariate analysis, the variables which predicted complex medical conditions included female gender, chronic illnes and self-referral to the clinics. The ambulatory clinics were capable of responding to mild/simple medical conditions. Yet, the health needs of women and migrants suffering from complex medical conditions and chronic diseases necessitated referrals to secondary/tertiary medical settings, while jeopardizing the continuity of care. The health gaps can be addressed by a more holistic social approach, which includes integration of UM in universal health insurance.
Thermal Infrared Imager on Hayabusa2: Science and Development
NASA Astrophysics Data System (ADS)
Okada, Tatsuaki
2015-04-01
Thermal Infrared Imager TIR was developed and calibrated for Haya-busa2 asteroid explorer, aiming at the investigation of thermo-physical properties of C-class near-Earth sub-km sized asteroid (162173) 1999JU3. TIR is based on the 2D micro-bolometer array with germani-um lens to image the surface of asteroid in 8 to 12 μm wavelength (1), measuring the thermal emission off the asteroid surface. Its field of view is 16° x 12° with 328 x 248 pixels. At least 40 (up to 100) images will be taken during asteroid rotation once a week, mainly from the Home Position which is about 20km sunward from asteroid surface. Therefore TIR will image the whole asteroid with spatial resolution of < 20m per pixel, and the temperature profile of each site on the asteroid will be traced from dawn to dusk regions by asteroid rotation. The scien-tific objectives of TIR include the mapping of asteroid surface condi-tions (regional distribution of thermal inertia), since the surface physical conditions are strongly correlated with thermal inertia. It is so informa-tive on understanding the re-accretion or surface sedimentation process-es of the asteroid to be the current form. TIR data will be used for searching for those sites having the typical particle size of 1mm for best sample collection, and within the proper thermal condition for space-craft safe operation. After launch of Hayabusa2, TIR has been tested successfully, covering from -100 to 150 °C using a single parameter settings (2). This implies that TIR is actually able to map the surface other than the sunlit areas. Performance of TIR was found basically the same as those in the pre-launch test, when the temperature of TIR is well controlled. References: (1) Fukuhara T. et al., (2011) Earth Planet. Space 63, 1009-1018; (2) Okada T. et al., (2015) Lunar Planet. Sci. Conf. 46, #1331.
NASA Astrophysics Data System (ADS)
Sinclair, Kenneth; Florjańczyk, Mirosław; Solheim, Brian; Scott, Alan; Quine, Ben; Cheben, Pavel
Concept, theory and design of a new type of waveguide device, a multiaperture Fourier-transform planar waveguide spectrometer[1], implemented as a prototype instrument is pre-sented. The spectrometer's objective is to demonstrate the ability of the new slab waveguide technology for application in remote sensing instruments[2]. The spectrometer will use a limb viewing configuration to detect the 1.36um waveband allowing concentrations of water vapor in earth's atmosphere to be measured[3]. The most challenging aspects of the design, assembly and calibration are presented. Focus will be given to the effects of packaging the spectrometer and interfacing to the detector array. Stress-induced birefringence will affect the performance of the waveguides, therefore the design of a stress-free mounting over a range of temperatures is important. Spectral retrieval algo-rithms will have to correct for expected fabrication errors in the waveguides. Data processing algorithms will also be developed to correct for non-uniformities of input brightness through the array, making use of MMI output couplers to capture both the in-phase and anti-phase interferometer outputs. A performance assessment of an existing breadboard spectrometer will demonstrate the capability of the instrument. REFERENCES 1. M. Florjáczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.-X. Xu, "Multiaper-n ture planar waveguide spectrometer formed by arrayed Mach-Zehnder interferometers," Opt. Expr. 15(26), 18176-18189 (2007). 2. M. Florjáczyk, P. Cheben, S. Janz, B. Lamontagne, J. n Lapointe, A. Scott, B. Solheim, and D.-X. Xu, "Slab waveguiode spatial heterodyne spectrom-eters for remote sensing from space," Optical sensors 2009. Proceedings of the SPIE, Volume 7356 (2009)., pp. 73560V-73560V-7 (2009). 3. A. Scott, M. Florjáczyk, P. Cheben, S. Janz, n B. Solheim, and D.-X. Xu, "Micro-interferometer with high throughput for remote sensing." MOEMS and Miniaturized Systems VIII. Proceedings of the SPIE, Volume 7208 (2009)., pp. 72080G-72080G-7 (2009).
University under Structural Reform: A Micro-Level Perspective
ERIC Educational Resources Information Center
Ylijoki, Oili-Helena
2014-01-01
National governments in several countries have promoted and carried out different forms of mergers, consolidations and alliances within their higher education systems in order to increase efficiency, effectiveness and governmental control to ensure that the universities more directly serve the national and regional economic and social objectives.…
The Economics of Time in Learning.
ERIC Educational Resources Information Center
Christoffersson, Nils-Olaf
The use of a mathematical model supported by empirical findings had developed a method of cost effectiveness that can be used in evaluations between educational objectives and goals. Educational time allocation can be studied and developed into a micro-level economic theory of decision. Learning has been defined as increments which can be…
Everyday Pedagogical Practices in Mathematical Play Situations in German "Kindergarten"
ERIC Educational Resources Information Center
Brandt, Birgit
2013-01-01
This study describes situations in German daycare facilities (Kindergarten) in which the development of mathematical thinking in children is specifically encouraged through examination of common play objects. Using micro-sociological methods of analysis, the mathematical potential of such interactions between teacher and child is elaborated within…
High-speed, large-area, p-i-n InGaAs photodiode linear array at 2-micron wavelength
NASA Astrophysics Data System (ADS)
Joshi, Abhay; Datta, Shubhashish
2012-06-01
We present 16-element and 32-element lattice-mismatched InGaAs photodiode arrays having a cut-off wavelength of ~2.2 um. Each 100 um × 200 um large pixel of the 32-element array has a capacitance of 2.5 pF at 5 V reverse bias, thereby allowing a RC-limited bandwidth of ~1.3 GHz. At room temperature, each pixel demonstrates a dark current of 25 uA at 5 V reverse bias. Corresponding results for the 16-element array having 200 um × 200 um pixels are also reported. Cooling the photodiode array to 150K is expected to reduce its dark current to < 50 nA per pixel at 5 V reverse bias. Additionally, measurement results of 2-micron single photodiodes having 16 GHz bandwidth and corresponding PIN-TIA photoreceiver having 6 GHz bandwidth are also reported.
NASA Astrophysics Data System (ADS)
Durst, Phillip J.; Gray, Wendell; Trentini, Michael
2013-05-01
A simple, quantitative measure for encapsulating the autonomous capabilities of unmanned systems (UMS) has yet to be established. Current models for measuring a UMS's autonomy level require extensive, operational level testing, and provide a means for assessing the autonomy level for a specific mission/task and operational environment. A more elegant technique for quantifying autonomy using component level testing of the robot platform alone, outside of mission and environment contexts, is desirable. Using a high level framework for UMS architectures, such a model for determining a level of autonomy has been developed. The model uses a combination of developmental and component level testing for each aspect of the UMS architecture to define a non-contextual autonomous potential (NCAP). The NCAP provides an autonomy level, ranging from fully non- autonomous to fully autonomous, in the form of a single numeric parameter describing the UMS's performance capabilities when operating at that level of autonomy.
Micro-orbits in a many-brane model and deviations from Newton's 1/r^2 law
NASA Astrophysics Data System (ADS)
Donini, A.; Marimón, S. G.
2016-12-01
We consider a five-dimensional model with geometry M = M_4 × S_1, with compactification radius R. The Standard Model particles are localized on a brane located at y=0, with identical branes localized at different points in the extra dimension. Objects located on our brane can orbit around objects located on a brane at a distance d=y/R, with an orbit and a period significantly different from the standard Newtonian ones. We study the kinematical properties of the orbits, finding that it is possible to distinguish one motion from the other in a large region of the initial conditions parameter space. This is a warm-up to study if a SM-like mass distribution on one (or more) distant brane(s) may represent a possible dark matter candidate. After using the same technique to the study of orbits of objects lying on the same brane (d=0), we apply this method to the detection of generic deviations from the inverse-square Newton law. We propose a possible experimental setup to look for departures from Newtonian motion in the micro-world, finding that an order of magnitude improvement on present bounds can be attained at the 95% CL under reasonable assumptions.
NASA Astrophysics Data System (ADS)
Sanaye, Sepehr; Katebi, Arash
2014-02-01
Energy, exergy, economic and environmental (4E) analysis and optimization of a hybrid solid oxide fuel cell and micro gas turbine (SOFC-MGT) system for use as combined generation of heat and power (CHP) is investigated in this paper. The hybrid system is modeled and performance related results are validated using available data in literature. Then a multi-objective optimization approach based on genetic algorithm is incorporated. Eight system design parameters are selected for the optimization procedure. System exergy efficiency and total cost rate (including capital or investment cost, operational cost and penalty cost of environmental emissions) are the two objectives. The effects of fuel unit cost, capital investment and system power output on optimum design parameters are also investigated. It is observed that the most sensitive and important design parameter in the hybrid system is fuel cell current density which has a significant effect on the balance between system cost and efficiency. The selected design point from the Pareto distribution of optimization results indicates a total system exergy efficiency of 60.7%, with estimated electrical energy cost 0.057 kW-1 h-1, and payback period of about 6.3 years for the investment.
The reductive dehalogenation of hexachloroethane (C2CI6), carbon tetrachloride (CC14), and bromoform (CHBr3) was examined at 50 degrees C in aqueous solutions containing either (1) 500 uM of 2,6-anthrahydroquinone disulfonate (AHQDS), (2) 250 uM Fe2+, or (3) 250 uM HS. The pH ran...
Assessment of Teams and Teamwork in the University of Maryland Libraries
ERIC Educational Resources Information Center
Baughman, M. Sue
2008-01-01
Teams play an important role in the University of Maryland (UM) Libraries. Since 1998, teams and collaborative teamwork have become the way librarians address the myriad of issues affecting the needs of UM's faculty, students, and staff. There has been much change in the UM Libraries over the past nine years, and the development is ongoing.…
Somatic embryogenesis in immature cotyledons of Manchurian ash (Fraxinus mandshurica Rupr.)
USDA-ARS?s Scientific Manuscript database
Somatic embryogenesis was obtained from immature cotyledon explants that were cultured on half-strength Murashige and Skoog (MS) salts and vitamins with 5.4 uM naphthaleneacetic acid (NAA) and 0.2 uM thidiazuron (TDZ) plus a 4x4 factorial combination of 0,9.8, 34.6, or 49.2 uM indole-3-butyric acid ...
VizieR Online Data Catalog: Young clumps embedded in IRDC (Traficante+, 2015)
NASA Astrophysics Data System (ADS)
Traficante, A.; Fuller, G. A.; Peretto, N.; Pineda, J. E.; Molinari, S.
2015-06-01
Photometric parameters for 667 starless clumps (sources identified at 160um with a counterpart at 250 and 350um) and 1056 protostellar clumps (sources identified at 160um with a counterpart at 70, 250 and 350um). Photometric parameters obtained with Hyper photometry code (2015A&A...574A.119T). The photometry is corrected for aperture and colour corrections. The parameter list is the standard Hyper output (see description below). SED fit parameters for 650 starless clumps and 1034 protostellar clumps (all clumps with good SED fitting: Chi2<10, Temperature<40K. See the paper for details) (4 data files).
VizieR Online Data Catalog: Draco nebula Herschel 250um map (Miville-Deschenes+, 2017)
NASA Astrophysics Data System (ADS)
Miville-Deschenes, M.-A.; Salome, Q.; Martin, P. G.; Joncas, G.; Blagrave, K.; Dassas, K.; Abergel, A.; Beelen, A.; Boulanger, F.; Lagache, G.; Lockman, F. J.; Marshall, D. J.
2017-03-01
Draco was observed with Herschel PACS (110 and 170um) and SPIRE (250, 350 and 500um) as part of the open-time program "First steps toward star formation: unveiling the atomic to molecular transition in the diffuse interstellar medium" (P.I. M-A Miville-Deschenes). A field of 3.85x3.85 was observed in parallel mode. Unfortunately, an error occurred during the acquisition of the PACS data making them unusable. Therefore, the results presented here are solely based on SPIRE data, especially the 250um map that has the highest angular resolution. (2 data files).
NASA Astrophysics Data System (ADS)
Soos, J. I.; Rosemeier, R. G.
1989-02-01
The edge of a transmission window for a GaAs Bragg cell starts about lum, which allows this material to be used for infrared fiber-optic applications, especially at 1.3um and 1.5um. The single crystal of GaAs is acoustically anisotropic and has the highest figure of merit, M2, along <111> direction for a longitudinal mode sound wave. Recently, Brimrose has designed and fabricated an acousto-optic modulator from GaAs operating at a carrier frequency of 2.3 GHz with a diffraction efficiency of 4%/RF watt.
VizieR Online Data Catalog: LRLL54361 protostar Herschel/PACS fluxes (Balog+, 2014)
NASA Astrophysics Data System (ADS)
Balog, Z.; Muzerolle, J.; Flaherty, K.; Detre, O. H.; Bouwmann, J.; Furlan, E.; Gutermuth, R.; Juhasz, A.; Bally, J.; Nielbock, M.; Klaas, U.; Krause, O.; Henning, T.; Marton, G.
2017-03-01
We observed a 14'x14' area in IC348 with the Photodetector Array Camera and Spectrometer (PACS; Poglitsch et al. 2010A&A...518L...2P) Herschel Space Observatory (Pilbratt et al. 2010A&A...518L...1P) simultaneously at 70 and 160um 24 times in scan map mode. An additional five epoch were observed during a later pulse phase of LRLL54361 in all three PACS photometer bands. The PACS spectrograph consists of a 5x5 array of 9.4" x 9.4" spatial pixels (hereafter referred to as spaxels) covering the spectral range from 52-210 um with λ/δλ ~1000-3000. Spectra were obtained in two spectral orders simultaneously, with the second order ranging from 51 to 105um and the first order from 102 to 210um. The spatial resolution of PACS-S ranges from ~9'' at 50um to ~18'' at 210um. Our target was observed in the standard range-scan spectroscopy mode with a grating step size corresponding to Nyquist sampling (see further Poglitsch et al. 2010A&A...518L...2P). (1 data file).
[Estimation of uncertainty of measurement in clinical biochemistry].
Enea, Maria; Hristodorescu, Cristina; Schiriac, Corina; Morariu, Dana; Mutiu, Tr; Dumitriu, Irina; Gurzu, B
2009-01-01
The uncertainty of measurement (UM) or measurement uncertainty is known as the parameter associated with the result of a measurement. Repeated measurements usually reveal slightly different results for the same analyte, sometimes a little higher, sometimes a little lower, because the results of a measurement are depending not only by the analyte itself, but also, by a number of error factors that could give doubts about the estimate. The uncertainty of the measurement represent the quantitative, mathematically expression of this doubt. UM is a range of measured values which is probably to enclose the true value of the measured. Calculation of UM for all types of laboratories is regularized by the ISO Guide to the Expression of Uncertainty in Measurement (abbreviated GUM) and the SR ENV 13005 : 2003 (both recognized by European Accreditation). Even if the GUM rules about UM estimation are very strictly, the offering of the result together with UM will increase the confidence of customers (patients or physicians). In this study the authors are presenting the possibilities of UM assessing in labs from our country by using the data obtained in the procedures of methods validation, during the internal and external quality control.
VizieR Online Data Catalog: Spectrophotometric distances of HII regions (Moises+, 2011)
NASA Astrophysics Data System (ADS)
Moises, A. P.; Damineli, A.; Figueredo, E.; Blum, R. D.; Conti, P. S.; Barbosa, C. L.
2011-11-01
The J-band (λ1.28um, δλ=0.3um), H-band (λ1.63um, δλ=0.3um) and Ks-band (λ2.19um, δλ=0.4um) images were obtained on the nights of 1999 May 1, 4 and 20, 2000 May 19 and 21 and 2001 July 10 and 12, at the Cerro Tololo Inter-American Observatory (CTIO) 4-m Blanco telescope, using the facility's infrared imager OSIRIS, which has a field of view (FOV) of 93x93arcsec2 and a pixel scale of 0.161arcsec/pixel. On the nights of 2005 Jult 3-6 and 11 and 2006 June 3-7, we obtained images using the facility's infrared imager ISPI (with a FOV of 10.25x10.25arcmin2 and a pixel scale of 0.3arcsec/pix), also at the 4-m Blanco telescope. Also, on the nights of 1998 August 28 and 29, we obtained images on the CTIO 4-m telescope using the facility's infrared imager CIRIM (with a FOV of 102x102arcsec2 and a pixel scale of 0.40arcsec/pix). (3 data files).
Unconsummated marriage: can it still be considered a consequence of vaginismus?
Michetti, P M; Silvaggi, M; Fabrizi, A; Tartaglia, N; Rossi, R; Simonelli, C
2014-01-01
Unconsummated marriage (UM) is the failure to perform successful sexual intercourse at the beginning of the marriage. Vaginismus has been traditionally reported as the leading cause. ED is also a leading cause for UM. This appears to be a significant problem in the conservative middle-Eastern societies and in the developing countries, where couples are strongly prevented by religious rules and cultural taboos from sexual experiences before wedding. One could think that according to major sexual freedom and information, in Western countries UM is now disappearing, but the number of observed cases by the authors in 2008-2012 was relevant. The aim of this study is to compare the literature data from non-Western countries with the features of UM in Western ones, focusing on cases observed by the authors, and to verify whether the etiology of UM proposed in the '70s is still relevant, outlining any changes that occur in current reality. In our series, traditional appearance of UM is no more effective, while the role of man is undervalued, because of his frailty, lack of self-confidence and ignorance, expressing a social and cultural change of man's role in the couple.
Yan, Fengxia; Liao, Rifang; Farhan, Mohd; Wang, Tinghuai; Chen, Jiashu; Wang, Zhong; Little, Peter J; Zheng, Wenhua
2016-12-01
Uveal melanoma (UM) is the most common primary intraocular malignant tumor of adults. It has high mortality rate due to liver metastasis. However, the epidemiology and pathogenesis of liver metastasis in UM are not elucidated and there is no effective therapy available for preventing the development of this disease. IGF-1 is a growth factor involved in cell proliferation, malignant transformation and inhibition of apoptosis. In previous report, IGF-1 receptor was found to be highly expressed in UM and this was related to tumor prognosis. FoxO3a is a Forkhead box O (FOXO) transcription factor and a downstream target of the IGF-1R/PI3K/Akt pathway involved in a number of physiological and pathological processes including cancer. However, the role of FoxO3a in UM is unknown. In the present study, we investigated fundamental mechanisms in the growth, migration and invasion of UM and the involvement of FoxO3a. IGF-1 increased the cell viability, invasion, migration and S-G2/M cell cycle phase accumulation of UM cells. Western blot analysis showed that IGF-1 led to activation of Akt and concomitant phosphorylation of FoxO3a. FoxO3a phosphorylation was associated with its translocation into the cytoplasm from the nucleus and its functional inhibition led to the inhibition of expression of Bim and p27, but an increase in the expression of Cyclin D1. The effects of IGF-1 on UM cells were reversed by LY294002 (a PI3K inhibitor) or Akt siRNA, and the overexpression of FoxO3a also attenuated basal invasion and migration of UM. Taken all together, these results suggest that inhibition of FoxO3a by IGF-1 via the PI3K/Akt pathway has an important role in IGF-1 induced proliferation and invasion of UM cells. These findings also support FoxO3a and IGF signaling may represent a valid target for investigating the development of new strategies for the treatment and prevention of the pathology of UM. Copyright © 2016. Published by Elsevier Masson SAS.
Design of an auto change mechanism and intelligent gripper for the space station
NASA Technical Reports Server (NTRS)
Dehoff, Paul H.; Naik, Dipak P.
1989-01-01
Robot gripping of objects in space is inherently demanding and dangerous and nowhere is this more clearly reflected than in the design of the robot gripper. An object which escapes the gripper in a micro g environment is launched not dropped. To prevent this, the gripper must have sensors and signal processing to determine that the object is properly grasped, e.g., grip points and gripping forces and, if not, to provide information to the robot to enable closed loop corrections to be made. The sensors and sensor strategies employed in the NASA/GSFC Split-Rail Parallel Gripper are described. Objectives and requirements are given followed by the design of the sensor suite, sensor fusion techniques and supporting algorithms.
University Satellite Consortium and Space Education in Japan Centered on Micro-Nano Satellites
NASA Astrophysics Data System (ADS)
Nakasuka, S.; Kawashima, R.
2002-01-01
in Japan especially centered on micro or nano class satellites. Hands-on training using micro-nano satellites provide unique opportunity of space education to university level students, by giving them a chance to experience the whole space project cycle from mission creation, satellite design, fabrication, test, launch, operation through analysis of the results. Project management and team working are other important skills that can be trained in these projects. include 1) low cost, which allows one laboratory in university to carry out a project, 2) short development period such as one or two year, which enables students to obtain the results of their projects before they graduate, and 3) small size and weight, which enables fabrication and test within usually very narrow university laboratory areas. In Japan, several projects such as CanSat, CubeSat or Whale Observation Satellite have been carried out, proving that micro-nano satellites provide very unique and valuable educational opportunity. with the objective to make a university student and staff community of these micro-nano satellite related activities in Japan. This consortium aims for many activities including facilitating information and skills exchange and collaborations between member universities, helping students to use ground test facilities of national laboratories, consulting them on political or law related matters, coordinating joint development of equipments or projects, and bridging between these university activities and the needs or interests of the people in general. This kind of outreach activity is essential because how to create missions of micro-nano satellites should be pursued in order for this field to grow larger than a merely educational enterprise. The final objectives of the consortium is to make a huge community of the users, mission creators, investors and manufactures(i.e., university students) of micro-nano satellites, and provide a unique contribution to the activation of the space development. activities, including how to acquire frequency permission, how to obtain launch opportunity and financial support, how to operate the launched satellites using cheap ground stations, etc. Especially, the frequency problem should be solved as soon as possible because so many universities in the world are planning similar projects and the frequency in the amateur band are already very congested. One idea is that universities should make a world wide "university satellite community" and collaboratively ask for a kind of "Educational frequency" to ITU, and share the obtained frequency within the community under the community's own management. This kind of community will also be useful for collaborative satellite operation, because the universities which have a ground station spread over the world. I hope the IAC meeting will provide a good opportunity for discussing these problems and facilitating the construction of world wide university community to tackle with these problems.
Kim, Min-Gab; Kim, Jin-Yong
2018-05-01
In this paper, we introduce a method to overcome the limitation of thickness measurement of a micro-patterned thin film. A spectroscopic imaging reflectometer system that consists of an acousto-optic tunable filter, a charge-coupled-device camera, and a high-magnitude objective lens was proposed, and a stack of multispectral images was generated. To secure improved accuracy and lateral resolution in the reconstruction of a two-dimensional thin film thickness, prior to the analysis of spectral reflectance profiles from each pixel of multispectral images, the image restoration based on an iterative deconvolution algorithm was applied to compensate for image degradation caused by blurring.
Debois, A; Nochez, Y; Bezo, C; Bellicaud, D; Pisella, P-J
2012-10-01
To study efficacy and predictability of toric IOL implantation for correction of preoperative corneal astigmatism by analysing spherocylindrical refractive precision and objective quality of vision. Prospective study of 13 eyes undergoing micro-incisional cataract surgery through a 1.8mm corneal incision with toric IOL implantation (Lentis L313T(®), Oculentis) to treat over one D of preoperative corneal astigmatism. Preoperative evaluation included keratometry, subjective refraction, and total and corneal aberrometry (KR-1(®), Topcon). Six months postoperatively, measurements included slit lamp photography, documenting IOL rotation, tilt or decentration, uncorrected visual acuity, best-corrected visual acuity and objective quality of vision measurement (OQAS(®) Visiometrics, Spain). Postoperatively, mean uncorrected distance visual acuity was 8.33/10 ± 1.91 (0.09 ± 0.11 LogMar). Mean postoperative refractive sphere was 0.13 ± 0.73 diopters. Mean refractive astigmatism was -0.66 ± 0.56 diopters with corneal astigmatism of 2.17 ± 0.68 diopters. Mean IOL rotation was 4.4° ± 3.6° (range 0° to 10°). Mean rotation of this IOL at 6 months was less than 5°, demonstrating stability of the optic within the capsular bag. Objective quality of vision measurements were consistent with subjective uncorrected visual acuity. Implantation of the L313T(®) IOL is safe and effective for correction of corneal astigmatism in 1.8mm micro-incisional cataract surgery. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Undermethylated DNA as a source of microsatellites from a conifer genome.
Zhou, Y; Bui, T; Auckland, L D; Williams, C G
2002-02-01
Developing microsatellites from the large, highly duplicated conifer genome requires special tools. To improve the efficiency of developing Pinus taeda L. microsatellites, undermethylated (UM) DNA fragments were used to construct a microsatellite-enriched copy library. A methylation-sensitive restriction enzyme, McrBC, was used to enrich for UM DNA before library construction. Digested DNA fragments larger than 9 kb were then excised and digested with RsaI and used to construct nine dinucleotide and trinucleotide libraries. A total of 1016 microsatellite-positive clones were detected among 11 904 clones and 620 of these were unique. Of 245 primer sets that produced a PCR product, 113 could be developed as UM microsatellite markers and 70 were polymorphic. Inheritance and marker informativeness were tested for a random sample of 36 polymorphic markers using a three-generation outbred pedigree. Thirty-one microsatellites (86%) had single-locus inheritance despite the highly duplicated nature of the P. taeda genome. Nineteen UM microsatellites had highly informative intercross mating type configurations. Allele number and frequency were estimated for eleven UM microsatellites using a population survey. Allele numbers for these UM microsatellites ranged from 3 to 12 with an average of 5.7 alleles/locus. Frequencies for the 63 alleles were mostly in the low-common range; only 14 of the 63 were in the rare allele (q < 0.05) class. Enriching for UM DNA was an efficient method for developing polymorphic microsatellites from a large plant genome.
Characterization of the Micro-Abrasive Wear in Coatings of TaC-HfC/Au for Biomedical Implants
Guzmán, Pablo; Yate, Luis; Sandoval, Mercy; Caballero, Jose
2017-01-01
The object of this work was the deposition of a Ta-Hf-C thin film with a gold interlayer on stainless steel, via the physical vapor deposition (PVD) technique, in order to evaluate the properties of different systems subjected to micro-abrasive wear phenomena generated by alumina particles in Ringer's solution. The surface characterization was performed using a scanning electron microscope (SEM) and atomic force microscope (AFM). The crystallographic phases exhibited for each coating were obtained by X-ray diffraction (XRD). As a consequence of modifying the composition of Ta-Hf there was evidence of an improvement in the micro-abrasive wear resistance and, for each system, the wear constants that confirm the enhancement of the surface were calculated. Likewise, these surfaces can be bioactive, generating an alternative to improve the biological fixation of the implants, therefore, the coatings of TaC-HfC/Au contribute in the development of the new generation of orthopedic implants. PMID:28773207
Neumann, M; Breton, E; Cuvillon, L; Pan, L; Lorenz, C H; de Mathelin, M
2012-01-01
In this paper, an original workflow is presented for MR image plane alignment based on tracking in real-time MR images. A test device consisting of two resonant micro-coils and a passive marker is proposed for detection using image-based algorithms. Micro-coils allow for automated initialization of the object detection in dedicated low flip angle projection images; then the passive marker is tracked in clinical real-time MR images, with alternation between two oblique orthogonal image planes along the test device axis; in case the passive marker is lost in real-time images, the workflow is reinitialized. The proposed workflow was designed to minimize dedicated acquisition time to a single dedicated acquisition in the ideal case (no reinitialization required). First experiments have shown promising results for test-device tracking precision, with a mean position error of 0.79 mm and a mean orientation error of 0.24°.
TORRES, Fernanda Ferrari Esteves; BOSSO-MARTELO, Roberta; ESPIR, Camila Galletti; CIRELLI, Joni Augusto; GUERREIRO-TANOMARU, Juliane Maria; TANOMARU-FILHO, Mario
2017-01-01
Abstract Objective To evaluate solubility, dimensional stability, filling ability and volumetric change of root-end filling materials using conventional tests and new Micro-CT-based methods. Material and Methods 7 Results The results suggested correlated or complementary data between the proposed tests. At 7 days, BIO showed higher solubility and at 30 days, showed higher volumetric change in comparison with MTA (p<0.05). With regard to volumetric change, the tested materials were similar (p>0.05) at 7 days. At 30 days, they presented similar solubility. BIO and MTA showed higher dimensional stability than ZOE (p<0.05). ZOE and BIO showed higher filling ability (p<0.05). Conclusions ZOE presented a higher dimensional change, and BIO had greater solubility after 7 days. BIO presented filling ability and dimensional stability, but greater volumetric change than MTA after 30 days. Micro-CT can provide important data on the physicochemical properties of materials complementing conventional tests. PMID:28877275
Micro structure processing on plastics by accelerated hydrogen molecular ions
NASA Astrophysics Data System (ADS)
Hayashi, H.; Hayakawa, S.; Nishikawa, H.
2017-08-01
A proton has 1836 times the mass of an electron and is the lightest nucleus to be used for accelerator in material modification. We can setup accelerator with the lowest acceleration voltage. It is preferable characteristics of Proton Beam Writer (PBW) for industrial applications. On the contrary ;proton; has the lowest charge among all nuclei and the potential impact to material is lowest. The object of this research is to improve productivity of the PBW for industry application focusing on hydrogen molecular ions. These ions are generated in the same ion source by ionizing hydrogen molecule. There is no specific ion source requested and it is suitable for industrial use. We demonstrated three dimensional (3D) multilevel micro structures on polyester base FPC (Flexible Printed Circuits) using proton, H2+ and H3+. The reactivity of hydrogen molecular ions is much higher than that of proton and coincident with the level of expectation. We can apply this result to make micro devices of 3D multilevel structures on FPC.