Sample records for objects obscured star

  1. NuSTAR Observations of Heavily Obscured Quasars Selected by WISE

    NASA Astrophysics Data System (ADS)

    Yan, Wei

    2017-08-01

    A key goal of the Nuclear Spectroscopic Telescope Array (NuSTAR) program is to find and characterize heavily obscured quasars, luminous accreting supermassive black holes hidden by gas and dust. Based on mid-infrared (IR) photometry from Wide-Field Infrared Survey Explorer (WISE) and optical photometry from the Sloan Digital Sky Surveys, we have selected a large population of obscured quasars; here we report the NuSTAR observations of four WISE-selected heavily obscured quasars for which we have optical spectroscopy from the Southern African Large Telescope and KECK Telescope. Three of four objects are undetected with NuSTAR, while the fourth has only a marginal detection. We confirm our objects have observed hard X-ray (10-40 keV) luminosities at or below ~1043 erg s-1. We compare IR and X-ray luminosities to obtain estimates of hydrogen column NH based on the suppression of the hard X-ray emission. We estimate NH to be at or greater than 1025 cm-2, confirming that WISE and optical selection can identify very heavily obscured quasars that may be missed in X-ray surveys.

  2. Dust-obscured star-forming galaxies in the early universe

    NASA Astrophysics Data System (ADS)

    Wilkins, Stephen M.; Feng, Yu; Di Matteo, Tiziana; Croft, Rupert; Lovell, Christopher C.; Thomas, Peter

    2018-02-01

    Motivated by recent observational constraints on dust reprocessed emission in star-forming galaxies at z ∼ 6 and above, we use the very large cosmological hydrodynamical simulation BLUETIDES to explore predictions for the amount of dust-obscured star formation in the early Universe (z > 8). BLUETIDES matches current observational constraints on both the UV luminosity function and galaxy stellar mass function and predicts that approximately 90 per cent of the star formation in high-mass (M* > 1010 M⊙) galaxies at z = 8 is already obscured by dust. The relationship between dust attenuation and stellar mass predicted by BLUETIDES is consistent with that observed at lower redshift. However, observations of several individual objects at z > 6 are discrepant with the predictions, though it is possible that their uncertainties may have been underestimated. We find that the predicted surface density of z ≥ 8 submm sources is below that accessible to current Herschel, SCUBA-2 and Atacama Large Millimetre Array (ALMA) submm surveys. However, as ALMA continues to accrue an additional surface area the population of z > 8 dust-obscured galaxies may become accessible in the near future.

  3. The Constant Average Relationship Between Dust-obscured Star Formation and Stellar Mass from z=0 to z=2.5

    NASA Astrophysics Data System (ADS)

    Whitaker, Katherine E.; Pope, Alexandra; Cybulski, Ryan; Casey, Caitlin M.; Popping, Gergo; Yun, Min; 3D-HST Collaboration

    2018-01-01

    The total star formation budget of galaxies consists of the sum of the unobscured star formation, as observed in the rest-frame ultraviolet (UV), together with the obscured component that is absorbed and re-radiated by dust grains in the infrared. We explore how the fraction of obscured star formation depends (SFR) and stellar mass for mass-complete samples of galaxies at 0 < z < 2.5. We combine GALEX and WISE photometry for SDSS-selected galaxies with the 3D-HST treasury program and Spitzer/MIPS 24μm photometry in the well-studied 5 extragalactic CANDELS fields. We find a strong dependence of the fraction of obscured star formation (f_obscured=SFR_IR/SFR_UV+IR) on stellar mass, with remarkably little evolution in this fraction with redshift out to z=2.5. 50% of star formation is obscured for galaxies with log(M/M⊙)=9.4 although unobscured star formation dominates the budget at lower masses, there exists a tail of low mass extremely obscured star-forming galaxies at z > 1. For log(M/M⊙)>10.5, >90% of star formation is obscured at all redshifts. We also show that at fixed total SFR, f_obscured is lower at higher redshift. At fixed mass, high-redshift galaxies are observed to have more compact sizes and much higher star formation rates, gas fractions and hence surface densities (implying higher dust obscuration), yet we observe no redshift evolution in f_obscured with stellar mass. This poses a challenge to theoretical models to reproduce, where the observed compact sizes at high redshift seem in tension with lower dust obscuration.

  4. The Constant Average Relationship between Dust-obscured Star Formation and Stellar Mass from z = 0 to z = 2.5

    NASA Astrophysics Data System (ADS)

    Whitaker, Katherine E.; Pope, Alexandra; Cybulski, Ryan; Casey, Caitlin M.; Popping, Gergö; Yun, Min S.

    2017-12-01

    The total star formation budget of galaxies consists of the sum of the unobscured star formation, as observed in the rest-frame ultraviolet (UV), together with the obscured component that is absorbed and re-radiated by dust grains in the infrared. We explore how the fraction of obscured star formation depends on stellar mass for mass-complete samples of galaxies at 0< z< 2.5. We combine GALEX and WISE photometry for SDSS-selected galaxies with the 3D-HST treasury program and Spitzer/MIPS 24 μm photometry in the well-studied five extragalactic Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) fields. We find a strong dependence of the fraction of obscured star formation (f obscured = SFRIR/SFRUV+IR) on stellar mass, with remarkably little evolution in this fraction with redshift out to z = 2.5. 50% of star formation is obscured for galaxies with log(M/M ⊙) = 9.4 although unobscured star formation dominates the budget at lower masses, there exists a tail of low-mass, extremely obscured star-forming galaxies at z> 1. For log(M/M ⊙) > 10.5, >90% of star formation is obscured at all redshifts. We also show that at fixed total SFR, {f}{obscured} is lower at higher redshift. At fixed mass, high-redshift galaxies are observed to have more compact sizes and much higher star formation rates, gas fractions, and hence surface densities (implying higher dust obscuration), yet we observe no redshift evolution in {f}{obscured} with stellar mass. This poses a challenge to theoretical models, where the observed compact sizes at high redshift seem in tension with lower dust obscuration.

  5. Compton thick AGN in the NuSTAR era

    NASA Astrophysics Data System (ADS)

    Marchesi, Stefano; Ajello, Marco; Marcotulli, Lea; Comastri, Andrea

    2017-08-01

    The recent launch of the Nuclear Spectroscopic Telescope Array (NuSTAR), the first telescope with focusing optics at >10 keV, represented a major breakthrough in the study of obscured active galactic nuclei (AGN). In this talk, I present the results of the 0.3-100 keV spectral analysis of the 30 Compton thick (CT-; i.e., those sources having column density NH>1E24 cm-2) AGN detected within z~0.1 in the BAT 100-month survey with available NuSTAR data. Particularly, I will focus on how adding NuSTAR data to the 0.3-10 keV information helps to characterize the CT-AGN population, significantly improving the measurements of important X-ray spectral parameters such as the photon index, the intrinsic absorption, the intensity of the Iron K alpha line at 6.4 keV and the obscuring torus opening angle. Finally, I will discuss the role of these objects in the context of obscured AGN accretion physics, and their contribution to the cosmic X-ray background.

  6. Additional red and reddened stars in Cyg OB2 association

    NASA Technical Reports Server (NTRS)

    Parthasarathy, M.; Jain, S. K.

    1989-01-01

    Several new red and reddened stars are detected in the most heavily reddened associations Cyg OB2. About 47 IRAS sources are detected in Cyg OB2. Their flux distributions, and colors, suggest that they are young stellar objects embedded in dust envelopes or disks (some of them may be proto stars) and are most likely members of the Cyg OB2 association. The large values of the flux ratio L sub IR/L sub VIS suggests that the central objects are obscured because of very large extinction.

  7. The possible nature of socket stars in H II regions

    NASA Technical Reports Server (NTRS)

    Castelaz, Michael W.

    1990-01-01

    Close inspection of faint stars (V of about 14 mag) in H II regions show that they appear to be surrounded by circumstellar envelopes of about 10 arcsecs in diameter (as reported by Feibelman in 1989). The present premise is that the sockets are envelopes of obscuring dust which should emit a measurable amount of infrared radiation based on a simple thermal equilibrium model. A search of literature shows that, of 36 socket stars listed by Feibelman, 17 have been measured in the infrared. Of the 17, 14 show excess IR emission. This is very strong evidence that the socket stars are really stars with circumstellar envelopes. Socket stars may be a new type of astronomical object or well-known astronomical objects in environments or evolutionary states not previously seen.

  8. Galaxy IC 3639 with Obscured Active Galactic Nucleus

    NASA Image and Video Library

    2017-01-07

    IC 3639, a galaxy with an active galactic nucleus, is seen in this image combining data from the Hubble Space Telescope and the European Southern Observatory. This galaxy contains an example of a supermassive black hole hidden by gas and dust. Researchers analyzed NuSTAR data from this object and compared them with previous observations from NASA's Chandra X-Ray Observatory and the Japanese-led Suzaku satellite. The findings from NuSTAR, which is more sensitive to higher energy X-rays than these observatories, confirm the nature of IC 3639 as an active galactic nucleus that is heavily obscured, and intrinsically much brighter than observed. http://photojournal.jpl.nasa.gov/catalog/PIA21087

  9. Image digitising and analysis of outflows from young stars

    NASA Astrophysics Data System (ADS)

    Zealey, W. J.; Mader, S. L.

    1997-08-01

    We present IIIaJ, IIIaF and IVN band images of Herbig-Haro objects digitised from the ESO/SERC Southern Sky Survey plates. These form part of a digital image database of southern HH objects, which allows the identification of emission and reflection nebulosity and the location of the obscured sources of outflows.

  10. The possible nature of socket stars in H II regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castelaz, M.W.

    1990-01-01

    Close inspection of faint stars (V of about 14 mag) in H II regions show that they appear to be surrounded by circumstellar envelopes of about 10 arcsecs in diameter (as reported by Feibelman in 1989). The present premise is that the sockets are envelopes of obscuring dust which should emit a measurable amount of infrared radiation based on a simple thermal equilibrium model. A search of literature shows that, of 36 socket stars listed by Feibelman, 17 have been measured in the infrared. Of the 17, 14 show excess IR emission. This is very strong evidence that the socketmore » stars are really stars with circumstellar envelopes. Socket stars may be a new type of astronomical object or well-known astronomical objects in environments or evolutionary states not previously seen. 22 refs.« less

  11. Galaxy gas as obscurer - I. GRBs x-ray galaxies and find an NH3∝ M_{star} relation

    NASA Astrophysics Data System (ADS)

    Buchner, Johannes; Schulze, Steve; Bauer, Franz E.

    2017-02-01

    An important constraint for galaxy evolution models is how much gas resides in galaxies, in particular, at the peak of star formation z = 1-3. We attempt a novel approach by letting long-duration gamma ray bursts (LGRBs) x-ray their host galaxies and deliver column densities to us. This requires a good understanding of the obscurer and biases introduced by incomplete follow-up observations. We analyse the X-ray afterglow of all 844 Swift LGRBs to date for their column density NH. To derive the population properties, we propagate all uncertainties in a consistent Bayesian methodology. The NH distribution covers the 1020-23 cm-2 range and shows no evolutionary effect. Higher obscurations, e.g. Compton-thick columns, could have been detected but are not observed. The NH distribution is consistent with sources randomly populating a ellipsoidal gas cloud of major axis {N^{major}H }=10^{23}cm^{-2} with 0.22 dex intrinsic scatter between objects. The unbiased SHOALS survey of afterglows and hosts allows us to constrain the relation between Spitzer-derived stellar masses and X-ray derived column densities NH. We find a well-constrained power-law relation of NH = 1021.7 cm-2 × (M⋆/109.5 M⊙)1/3, with 0.5 dex intrinsic scatter between objects. The Milky Way and the Magellanic clouds also follow this relation. From the geometry of the obscurer, its stellar mass dependence and comparison with local galaxies, we conclude that LGRBs are primarily obscured by galaxy-scale gas. Ray tracing of simulated Illustris galaxies reveals a relation of the same normalization, but a steeper stellar-mass dependence and mild redshift evolution. Our new approach provides valuable insight into the gas residing in high-redshift galaxies.

  12. Simultaneous Chandra and NuSTAR Observations of the Highly Obscured AGN Candidate in NGC660.

    NASA Astrophysics Data System (ADS)

    Annuar, Ady

    2014-09-01

    We are using NuSTAR to undertake a detailed investigation of the obscured AGN population at D<15Mpc. Our latest target is NGC660 where the presence of an AGN has been ambiguous. However, recently it was observed to undergo a radio outburst which reveals a bright continuum source (Argo et al. 2015), coincident with Chandra 2-8 keV emission from one of the three point sources near the nucleus (<5"). This confirms and pinpoints the X-ray position of the AGN. Comparisons of the Chandra flux with the radio emission and other multiwavelength luminosity indicators indicate that the X-ray flux is suppressed, suggesting that it is absorbed by a high column of gas. A NuSTAR observation for this object has been scheduled as part of our program. The requested Chandra observation is essential to unambiguously constrain the AGN and isolate it from other sources at <8 keV. When combined with NuSTAR, we will then be able to accurately characterise the 0.5-30 keV spectrum of the AGN for the first time.

  13. Emission Lines in the Near-infrared Spectra of the Infrared Quintuplet Stars in the Galactic Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Najarro, F.; Geballe, T. R.; Figer, D. F.

    We report the detection of a number of emission lines in the 1.0–2.4 μ m spectra of four of the five bright-infrared dust-embedded stars at the center of the Galactic center’s (GC) Quintuplet Cluster. Spectroscopy of the central stars of these objects is hampered not only by the large interstellar extinction that obscures all of the objects in the GC, but also by the large amounts of warm circumstellar dust surrounding each of the five stars. The pinwheel morphologies of the dust observed previously around two of them are indicative of Wolf–Rayet colliding wind binaries; however, infrared spectra of eachmore » of the five have until now revealed only dust continua steeply rising to long wavelengths and absorption lines and bands from interstellar gas and dust. The emission lines detected, from ionized carbon and from helium, are broad and confirm that the objects are dusty late-type carbon Wolf–Rayet stars.« less

  14. HUBBLE SPACE TELESCOPE MORPHOLOGIES OF z {approx} 2 DUST-OBSCURED GALAXIES. II. BUMP SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bussmann, R. S.; Dey, Arjun; Lotz, J.

    We present Hubble Space Telescope imaging of 22 ultra-luminous infrared galaxies (ULIRGs) at z {approx} 2 with extremely red R - [24] colors (called dust-obscured galaxies, or DOGs) which have a local maximum in their spectral energy distribution (SED) at rest-frame 1.6 {mu}m associated with stellar emission. These sources, which we call 'bump DOGs', have star formation rates (SFRs) of 400-4000 M{sub sun} yr{sup -1} and have redshifts derived from mid-IR spectra which show strong polycyclic aromatic hydrocarbon emission-a sign of vigorous ongoing star formation. Using a uniform morphological analysis, we look for quantifiable differences between bump DOGs, power-law DOGsmore » (Spitzer-selected ULIRGs with mid-IR SEDs dominated by a power law and spectral features that are more typical of obscured active galactic nuclei than starbursts), submillimeter-selected galaxies, and other less-reddened ULIRGs from the Spitzer Extragalactic First Look Survey. Bump DOGs are larger than power-law DOGs (median Petrosian radius of 8.4 {+-} 2.7 kpc versus 5.5 {+-} 2.3 kpc) and exhibit more diffuse and irregular morphologies (median M{sub 20} of -1.08 {+-} 0.05 versus -1.48 {+-} 0.05). These trends are qualitatively consistent with expectations from simulations of major mergers in which merging systems during the peak SFR period evolve from M{sub 20} = -1.0 to M{sub 20} = -1.7. Less-obscured ULIRGs (i.e., non-DOGs) tend to have more regular, centrally peaked, single-object morphologies rather than diffuse and irregular morphologies. This distinction in morphologies may imply that less-obscured ULIRGs sample the merger near the end of the peak SFR period. Alternatively, it may indicate that the intense star formation in these less-obscured ULIRGs is not the result of a recent major merger.« less

  15. Chandra and NuSTAR Follow-up Observations of Swift-BAT-selected AGNs

    NASA Astrophysics Data System (ADS)

    Marchesi, S.; Tremblay, L.; Ajello, M.; Marcotulli, L.; Paggi, A.; Cusumano, G.; La Parola, V.; Segreto, A.

    2017-10-01

    Based on current models of the cosmic X-ray background (CXB), heavily obscured active galactic nuclei (AGNs) are expected to make up ˜10% of the peak emission of the CXB and ˜20% of the total population of AGNs, yet few of these sources have been recorded and characterized in current surveys. Here we present the Chandra follow-up observation of 14 AGNs detected by Swift-BAT. For five sources in the sample, NuSTAR observations in the 3-80 keV band are also available. The X-ray spectral fitting over the 0.3-150 keV energy range allows us to determine the main X-ray spectral parameters, such as the photon index and the intrinsic absorption, of these objects and to make hypotheses on the physical structures responsible for the observed spectra. We find that 13 of the 14 objects are absorbed AGNs, and one is a candidate Compton-thick AGN, having intrinsic absorption {N}{{H}}> {10}24 cm-2. Finally, we verified that the use of NuSTAR observations is strategic to strongly constrain the properties of obscured AGNs, since the best-fit values we obtained for parameters such as the power-law photon index Γ and the intrinsic absorption {N}{{H}} changed sometimes significantly fitting the spectra with and without the use of NuSTAR data.

  16. ASAS 095221-4329.8 und ASAS 123034-7703.9 - zwei R-CrB-Stern-Kandidaten aus der ASAS-Datenbank

    NASA Astrophysics Data System (ADS)

    Huemmerich, Stefan

    2011-04-01

    During an examination of ASAS Misc-type objects, the stars ASAS 095221-4329.8 GSC 07706-00560, 09:52:21.38 -43:29:40.5) and ASAS 123034-7703.9 (GSC 09416-00380, 12:30:34.22 -77:03:52.7) - both of which show semi-regular variability - were found to exhibit significant obscuration events in their V-band lightcurves. Both stars are likely to be red giants undergoing fading events, possibly of DY Per-type. However, spectroscopy of both stars is needed for a conclusive classification. The corresponding entries in the International Variable Star Index (VSX) have been revised accordingly; variability type was set to "RCB:".

  17. Cold CO Gas in the Envelopes of FU Orionis-type Young Eruptive Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kóspál, Á.; Ábrahám, P.; Moór, A.

    FU Orionis-type objects (FUors) are young stellar objects experiencing large optical outbursts due to highly enhanced accretion from the circumstellar disk onto the star. FUors are often surrounded by massive envelopes, which play a significant role in the outburst mechanism. Conversely, the subsequent eruptions might gradually clear up the obscuring envelope material and drive the protostar on its way to become a disk-only T Tauri star. Here we present an APEX {sup 12}CO and {sup 13}CO survey of eight southern and equatorial FUors. We measure the mass of the gaseous material surrounding our targets, locate the source of the COmore » emission, and derive physical parameters for the envelopes and outflows, where detected. Our results support the evolutionary scenario where FUors represent a transition phase from envelope-surrounded protostars to classical T Tauri stars.« less

  18. The Nature of Faint Spitzer-selected Dust-obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Pope, Alexandra; Bussmann, R. Shane; Dey, Arjun; Meger, Nicole; Alexander, David M.; Brodwin, Mark; Chary, Ranga-Ram; Dickinson, Mark E.; Frayer, David T.; Greve, Thomas R.; Huynh, Minh; Lin, Lihwai; Morrison, Glenn; Scott, Douglas; Yan, Chi-Hung

    2008-12-01

    We use deep far-IR, submillimeter, radio, and X-ray imaging and mid-IR spectroscopy to explore the nature of a sample of Spitzer-selected dust-obscured galaxies (DOGs) in GOODS-N. A sample of 79 galaxies satisfy the criteria R - [ 24] > 14 (Vega) down to S24 > 100 μJy (median flux density S24 = 180 μJy). Twelve of these galaxies have IRS spectra available, which we use to measure redshifts and classify these objects as being dominated by star formation or active galactic nucleus (AGN) activity in the mid-IR. The IRS spectra and Spitzer photometric redshifts confirm that the DOGs lie in a tight redshift distribution around z ~ 2. Based on mid-IR colors, 80% of DOGs are likely dominated by star formation; the stacked X-ray emission from this subsample of DOGs is also consistent with star formation. Since only a small number of DOGs are individually detected at far-IR and submillimeter wavelengths, we use a stacking analysis to determine the average flux from these objects and plot a composite IR (8-1000 μm) spectral energy distribution (SED). The average luminosity of these star-forming DOGs is LIR ~ 1 × 1012 L⊙. We compare the average star-forming DOG to the average bright (S850 > 5 mJy) submillimeter galaxy (SMG); the S24 > 100 μJy DOGs are 3 times more numerous but 8 times less luminous in the IR. The far-IR SED shape of DOGs is similar to that of SMGs (average dust temperature of around 30 K), but DOGs have a higher mid-IR-to-far-IR flux ratio. The average star formation-dominated DOG has a star formation rate of 200 M⊙ yr -1, which, given their space density, amounts to a contribution of 0.01 M⊙ yr-1 Mpc-3 (or 5%-10%) to the star formation rate density at z ~ 2.

  19. A young star takes centre stage

    NASA Image and Video Library

    2015-03-02

    With its helical appearance resembling a snail’s shell, this reflection nebula seems to spiral out from a luminous central star in this new NASA/ESA Hubble Space Telescope image. The star in the centre, known as V1331 Cyg and located in the dark cloud LDN 981 — or, more commonly, Lynds 981 — had previously been defined as a T Tauri star. A T Tauri is a young star — or Young Stellar Object — that is starting to contract to become a main sequence star similar to the Sun. What makes V1331Cyg special is the fact that we look almost exactly at one of its poles. Usually, the view of a young star is obscured by the dust from the circumstellar disc and the envelope that surround it. However, with V1331Cyg we are actually looking in the exact direction of a jet driven by the star that is clearing the dust and giving us this magnificent view. This view provides an almost undisturbed view of the star and its immediate surroundings allowing astronomers to study it in greater detail and look for features that might suggest the formation of a verylow-mass object in the outer circumstellar disc.

  20. Galaxy Zoo: star formation versus spiral arm number

    NASA Astrophysics Data System (ADS)

    Hart, Ross E.; Bamford, Steven P.; Casteels, Kevin R. V.; Kruk, Sandor J.; Lintott, Chris J.; Masters, Karen L.

    2017-06-01

    Spiral arms are common features in low-redshift disc galaxies, and are prominent sites of star formation and dust obscuration. However, spiral structure can take many forms: from galaxies displaying two strong 'grand design' arms to those with many 'flocculent' arms. We investigate how these different arm types are related to a galaxy's star formation and gas properties by making use of visual spiral arm number measurements from Galaxy Zoo 2. We combine ultraviolet and mid-infrared (MIR) photometry from GALEX and WISE to measure the rates and relative fractions of obscured and unobscured star formation in a sample of low-redshift SDSS spirals. Total star formation rate has little dependence on spiral arm multiplicity, but two-armed spirals convert their gas to stars more efficiently. We find significant differences in the fraction of obscured star formation: an additional ˜10 per cent of star formation in two-armed galaxies is identified via MIR dust emission, compared to that in many-armed galaxies. The latter are also significantly offset below the IRX-β relation for low-redshift star-forming galaxies. We present several explanations for these differences versus arm number: variations in the spatial distribution, sizes or clearing time-scales of star-forming regions (I.e. molecular clouds), or contrasting recent star formation histories.

  1. The Circumstellar Environment of VY CMa

    NASA Astrophysics Data System (ADS)

    Smith, N.; Humphreys, R. M.; Krautter, J.; Gehrz, R. D.; Davidson, K.; Jones, T. J.; Hubrig, S.

    1999-05-01

    VY Canis Majoris is one of the most luminous known M supergiants. It is near the upper liminosity limit for cool stars on the HR Diagram. The optical star is partially obscured by its own circumstellar material. We present preliminary results of recent HST/WFPC2 optical imaging, and ground-based near-IR and mid-IR imaging of VY CMa and its circumstellar environment. We compare these results with previously obtained images of the related, but more evolved object IRC+10420 and discuss implications for their possible evolutionary and mass loss histories.

  2. Gravitational lensing reveals extreme dust-obscured star formation in quasar host galaxies

    NASA Astrophysics Data System (ADS)

    Stacey, H. R.; McKean, J. P.; Robertson, N. C.; Ivison, R. J.; Isaak, K. G.; Schleicher, D. R. G.; van der Werf, P. P.; Baan, W. A.; Berciano Alba, A.; Garrett, M. A.; Loenen, A. F.

    2018-06-01

    We have observed 104 gravitationally lensed quasars at z ˜ 1-4 with Herschel/SPIRE, the largest such sample ever studied. By targeting gravitational lenses, we probe intrinsic far-infrared (FIR) luminosities and star formation rates (SFRs) more typical of the population than the extremely luminous sources that are otherwise accessible. We detect 72 objects with Herschel/SPIRE and find 66 per cent (69 sources) of the sample have spectral energy distributions (SEDs) characteristic of dust emission. For 53 objects with sufficiently constrained SEDs, we find a median effective dust temperature of 38^{+12}_{-5} K. By applying the radio-infrared correlation, we find no evidence for an FIR excess that is consistent with star-formation-heated dust. We derive a median magnification-corrected FIR luminosity of 3.6^{+4.8}_{-2.4} × 10^{11} L_{⊙} and median SFR of 120^{+160}_{-80} M_{⊙} yr^{-1}} for 94 quasars with redshifts. We find ˜10 per cent of our sample have FIR properties similar to typical dusty star-forming galaxies at z ˜ 2-3 and a range of SFRs <20-10 000 M⊙ yr-1 for our sample as a whole. These results are in line with current models of quasar evolution and suggests a coexistence of dust-obscured star formation and AGN activity is typical of most quasars. We do not find a statistically significant difference in the FIR luminosities of quasars in our sample with a radio excess relative to the radio-infrared correlation. Synchrotron emission is found to dominate at FIR wavelengths for <15 per cent of those sources classified as powerful radio galaxies.

  3. How Dead are Dead Galaxies? Mid-Infrared Fluxes of Quiescent Galaxies at Redshift 0.3< Z< 2.5: Implications for Star Formation Rates and Dust Heating

    NASA Technical Reports Server (NTRS)

    Fumagalli, Mattia; Labbe, Ivo; Patel, Shannon G.; Franx, Marijn; vanDokkum, Pieter; Brammer, Gabriel; DaCunha, Elisabete; FoersterSchreiber, Natascha M.; Kriek, Mariska; Quadri, Ryan; hide

    2013-01-01

    We investigate star formation rates of quiescent galaxies at high redshift (0.3 < z < 2.5) using 3D-HST WFC3 grism spectroscopy and Spitzer mid-infrared data. We select quiescent galaxies on the basis of the widely used UVJ color-color criteria. Spectral energy distribution fitting (rest frame optical and near-IR) indicates very low star formation rates for quiescent galaxies (sSFR approx. 10(exp -12)/yr. However, SED fitting can miss star formation if it is hidden behind high dust obscuration and ionizing radiation is re-emitted in the mid-infrared. It is therefore fundamental to measure the dust-obscured SFRs with a mid-IR indicator. We stack the MIPS-24 micron images of quiescent objects in five redshift bins centered on z = 0.5, 0.9, 1.2, 1.7, 2.2 and perform aperture photometry. Including direct 24 micron detections, we find sSFR approx. 10(exp -11.9) × (1 + z)(sup 4)/yr. These values are higher than those indicated by SED fitting, but at each redshift they are 20-40 times lower than those of typical star forming galaxies. The true SFRs of quiescent galaxies might be even lower, as we show that the mid-IR fluxes can be due to processes unrelated to ongoing star formation, such as cirrus dust heated by old stellar populations and circumstellar dust. Our measurements show that star formation quenching is very efficient at every redshift. The measured SFR values are at z > 1.5 marginally consistent with the ones expected from gas recycling (assuming that mass loss from evolved stars refuels star formation) and well above that at lower redshifts.

  4. An Explanation of the Missing Flux from Boyajian's Mysterious Star

    NASA Astrophysics Data System (ADS)

    Foukal, Peter

    2017-06-01

    A previously unremarkable star in the constellation Cygnus has, in the past year, become known as the most mysterious object in our Galaxy. Boyajian’s star exhibits puzzling episodes of sporadic, deep dimming discovered in photometry with the Kepler Mission. Proposed explanations have focused on its obscuration by colliding exoplanets, exocomets, and even intervention of alien intelligence. These hypotheses have considered only phenomena external to the star because the radiative flux missing in the dimmings was believed to exceed the star’s storage capacity. We point out that modeling of variations in solar luminosity indicates that convective stars can store the required fluxes. It also suggests explanations for (a) a reported time-profile asymmetry of the short, deep dimmings and (b) a slower, decadal scale dimming reported from archival and Kepler photometry. Our findings suggest a broader range of explanations of Boyajian’s star that may produce new insights into stellar magneto-convection.

  5. Finding η Car Analogs in Nearby Galaxies Using Spitzer. II. Identification of An Emerging Class of Extragalactic Self-Obscured Stars

    NASA Astrophysics Data System (ADS)

    Khan, Rubab; Kochanek, C. S.; Stanek, K. Z.; Gerke, Jill

    2015-02-01

    Understanding the late-stage evolution of the most massive stars such as η Carinae is challenging because no true analogs of η Car have been clearly identified in the Milky Way or other galaxies. In Khan et al., we utilized Spitzer IRAC images of 7 nearby (lsim 4 Mpc) galaxies to search for such analogs, and found 34 candidates with flat or red mid-IR spectral energy distributions. Here, in Paper II, we present our characterization of these candidates using multi-wavelength data from the optical through the far-IR. Our search detected no true analogs of η Car, which implies an eruption rate that is a fraction 0.01 <~ F <~ 0.19 of the core-collapse supernova (ccSN) rate. This is roughly consistent with each M ZAMS >~ 70 M ⊙ star undergoing one or two outbursts in its lifetime. However, we do identify a significant population of 18 lower luminosity (log (L/L ⊙) ~= 5.5-6.0) dusty stars. Stars enter this phase at a rate that is a fraction 0.09 <~ F <~ 0.55 of the ccSN rate, and this is consistent with all 25 < M ZAMS < 60 M ⊙ stars undergoing an obscured phase at most lasting a few thousand years once or twice. These phases constitute a negligible fraction of post-main-sequence lifetimes of massive stars, which implies that these events are likely to be associated with special periods in the evolution of the stars. The mass of the obscuring material is of order ~M ⊙, and we simply do not find enough heavily obscured stars for theses phases to represent more than a modest fraction (~10% not ~50%) of the total mass lost by these stars. In the long term, the sources that we identified will be prime candidates for detailed physical analysis with the James Webb Space Telescope.

  6. Peering Through the Dust: NuSTAR Observations of Two First-2Mass Red Quasars

    NASA Technical Reports Server (NTRS)

    Lamassa, Stephanie M.; Ricarte, Angelo; Glikman, Eilat; Urry, C. Megan; Stern, Daniel; Yaqoob, Tahir; Lansbury, George B.; Civano, Francesca; Boggs, Steve E.; Zhang, Will

    2016-01-01

    Some reddened quasars appear to be transitional objects in the paradigm of merger-induced black hole growth/ galaxy evolution, where a heavily obscured nucleus starts to be unveiled by powerful quasar winds evacuating the surrounding cocoon NuSTAR and XMM-Newton/Chandra observations of FIRST-2MASS-selected red quasars F2M 0830+3759 and F2M 1227+3214. We find that though F2M 0830 +3759 is moderately obscured N(sub H) = (2.1 +/- 0.2) x 10 (exp 22) per square centimeter) and F2M 1227+3214 is mildly absorbed (N(sub H),Z =3.4(+0.8/-0.7) X 10(exp -2) along the line of sight, heavier global obscuration may be present in both sources, with N(sub H) = 3.7 (+4.1/-2.6) X 10 (exp 23) per square centimeter) and less than 5.5 X 10(exp 23) per square centimeter) for F2M 0830+3759 and F2M 1227+ 3214, respectively. F2M 0830+3759 also has an excess of soft X-ray emission below 1 of dust and gas. Hard X-ray observations are able to peer through this gas and dust, revealing the properties of circumnuclear obscuration. Here, we present keV, which is well accommodated by a model where 7% of the intrinsic X-ray emission from the active galactic nucleus (AGN) is scattered into the line of sight. While F2M 1227+3214 has a dust-to-gas ratio (E(B - V)/NH) consistent with the Galactic value, the value of E(B - V)/NH for F2M 0830+3759 is lower than the Galactic standard, consistent with the paradigm that the dust resides on galactic scales while the X-ray reprocessing gas originates within the dust sublimation zone of the broad-line region. The X-ray and 6.1 µm luminosities of these red quasars are consistent with the empirical relations derived for high-luminosity, unobscured quasars, extending the parameter space of obscured AGNs previously observed by NuSTAR to higher luminosities.

  7. An unbiased view of X-ray obscuration amongst active galactic nuclei with NuLANDS

    NASA Astrophysics Data System (ADS)

    Boorman, Peter Gregory; Gandhi, Poshak; Stern, Daniel; Harrison, Fiona; NuSTAR Obscured AGN Team

    2018-01-01

    Nearly all active galactic nuclei (AGN) are obscured in X-rays behind column densities of NH ≥ 1022 cm-2. Hard X-ray studies have proven very effective to quanitfy the levels of obscuration amongst AGN, up to and just above the Compton-thick limit (NH ˜ 1.5 × 1024 cm-2). However, Compton-thick sources with NH values beyond this limit are typically missed in hard X-ray all-sky surveys such as Swift/BAT, requiring many studies to apply considerable bias corrections to account for the loss. Incorrectly quanitfying the heavily obscured AGN population can have a dramatic effect on synthesis models designed to fit the Cosmic X-ray Background spectrum, due to their significant contribution to the peak flux of the background at ~30 keV. This is what motivated the NuSTAR Local AGN NH Distribution Survey (NuLANDS) - a NuSTAR 1 Ms legacy survey of an obscuration-independent, infrared selected sample of AGN, undetected by BAT and unobserved by NuSTAR before - a considerable number of which are predicted to be heavily obscured. NuSTAR is the first true X-ray focusing instrument capable of spectral analysis > 10 keV, and as such can and will place robust constraints on the NH values of these elusive AGN. In this poster, I will present the first results from NuLANDS, including multiple newly identified Compton-thick AGN, previously undetected in the Swift/BAT 70-month catalog. I will further highlight the exciting prospects for the complete NuLANDS sample, with the ultimate goal of constructing a representative NH distribution of AGN in the local Universe, requiring minimal bias corrections.

  8. The NuSTAR Serendipitous Survey: Hunting for the Most Extreme Obscured AGN at >10 keV

    NASA Astrophysics Data System (ADS)

    Lansbury, G. B.; Alexander, D. M.; Aird, J.; Gandhi, P.; Stern, D.; Koss, M.; Lamperti, I.; Ajello, M.; Annuar, A.; Assef, R. J.; Ballantyne, D. R.; Baloković, M.; Bauer, F. E.; Brandt, W. N.; Brightman, M.; Chen, C.-T. J.; Civano, F.; Comastri, A.; Del Moro, A.; Fuentes, C.; Harrison, F. A.; Marchesi, S.; Masini, A.; Mullaney, J. R.; Ricci, C.; Saez, C.; Tomsick, J. A.; Treister, E.; Walton, D. J.; Zappacosta, L.

    2017-09-01

    We identify sources with extremely hard X-ray spectra (I.e., with photon indices of {{Γ }}≲ 0.6) in the 13 deg2 NuSTAR serendipitous survey, to search for the most highly obscured active galactic nuclei (AGNs) detected at > 10 {keV}. Eight extreme NuSTAR sources are identified, and we use the NuSTAR data in combination with lower-energy X-ray observations (from Chandra, Swift XRT, and XMM-Newton) to characterize the broadband (0.5-24 keV) X-ray spectra. We find that all of the extreme sources are highly obscured AGNs, including three robust Compton-thick (CT; {N}{{H}}> 1.5× {10}24 cm-2) AGNs at low redshift (z< 0.1) and a likely CT AGN at higher redshift (z = 0.16). Most of the extreme sources would not have been identified as highly obscured based on the low-energy (< 10 keV) X-ray coverage alone. The multiwavelength properties (e.g., optical spectra and X-ray-mid-IR luminosity ratios) provide further support for the eight sources being significantly obscured. Correcting for absorption, the intrinsic rest-frame 10-40 keV luminosities of the extreme sources cover a broad range, from ≈ 5× {10}42 to 1045 erg s-1. The estimated number counts of CT AGNs in the NuSTAR serendipitous survey are in broad agreement with model expectations based on previous X-ray surveys, except for the lowest redshifts (z< 0.07), where we measure a high CT fraction of {f}{CT}{obs}={30}-12+16 % . For the small sample of CT AGNs, we find a high fraction of galaxy major mergers (50% ± 33%) compared to control samples of “normal” AGNs.

  9. Coeval Starburst and AGN Activity in the CDFS

    NASA Astrophysics Data System (ADS)

    Brusa, M.; Fiore, F.

    2009-10-01

    Here we present a study on the host galaxies properties of obscured Active Galactic Nuclei (AGN) detected in the CDFS 1Ms observation and for which deep K-band observations obtained with ISAAC@VLT are available. The aim of this study is to characterize the host galaxies properties of obscured AGN in terms of their stellar masses, star formation rates, and specific star formation rates. To this purpose we refined the X-ray/optical association of 179 1 Ms sources in the MUSIC area, using a three-bands (optical, K, and IRAC) catalog for the counterparts search and we derived the rest frame properties from SED fitting. We found that the host of obscured AGN at z>1 are associated with luminous, massive, red galaxies with significant star formation rates episodes still ongoing in about 50% of the sample.

  10. ESA's Integral discovers hidden black holes

    NASA Astrophysics Data System (ADS)

    2003-10-01

    An artist's impression of the mechanisms in an interacting binar hi-res Size hi-res: 28 kb An artist's impression of the mechanisms in an interacting binary system An artist's impression of the mechanisms in an interacting binary system. The supermassive companion star (on the right-hand side) ejects a lot of gas in the form of 'stellar wind'. The compact black hole orbits the star and, due to its strong gravitational attraction, collects a lot of the gas. Some of it is funnelled and accelerated into a hot disc. This releases a large amount of energy in all spectral bands, from gamma rays through to visible and infrared. However, the remaining gas surrounding the black hole forms a thick cloud which blocks most of the radiation. Only the very energetic gamma rays can escape and be detected by Integral. XMM-Newton spacecraft hi-res Size hi-res: 254 kb Credits: ESA. Illustration by Ducros XMM-Newton spacecraft Detecting the Universe's hot spots. These are binary systems, probably including a black hole or a neutron star, embedded in a thick cocoon of cold gas. They have remained invisible so far to all other telescopes. Integral was launched one year ago to study the most energetic phenomena in the universe. Integral detected the first of these objects, called IGRJ16318-4848, on 29 January 2003. Although astronomers did not know its distance, they were sure it was in our Galaxy. Also, after some analysis, researchers concluded that the new object could be a binary system comprising a compact object, such as a neutron star or a black hole, and a very massive companion star. When gas from the companion star is accelerated and swallowed by the more compact object, energy is released at all wavelengths, from the gamma rays through to visible and infrared light. About 300 binary systems like those are known to exist in our galactic neighbourhood and IGRJ16318-4848 could simply have been one more. But something did not fit: why this particular object had not been discovered so far? Astronomers, who have been observing the object regularly, guess that it had remained invisible because there must be a very thick shell of obscuring material surrounding it. If that was the case, only the most energetic radiation from the object could get through the shell; less-energetic radiation would be blocked. That could explain why space telescopes that are sensitive only to low-energy radiation had overlooked the object, while Integral, specialised in detecting very energetic emissions, did see it. To test their theory, astronomers turned to ESA's XMM-Newton space observatory, which observes the sky in the X-ray wavelengths. As well as being sensitive to high-energy radiation, XMM-Newton is also able to check for the presence of obscuring material. Indeed, XMM-Newton detected this object last February, as well as the existence of a dense 'cocoon' of cold gas with a diameter of similar size to that of the Earth's orbit around the Sun. This obscuring material forming the cocoon is probably 'stellar wind', namely gas ejected by the supermassive companion star. Astronomers think that this gas may be accreted by the compact black hole, forming a dense shell around it. This obscuring cloud traps most of the energy produced inside it. The main author of these results, Roland Walter of the Integral Science Data Centre, Switzerland, explained: "Only photons with the highest energies [above 10 keV] could escape from that cocoon. IGR J16318-4848 has therefore not been detected by surveys performed at lower energies, nor by previous gamma-ray missions that were much less sensitive than Integral." The question now is to find out how many of these objects lurk in the Galaxy. XMM-Newton and Integral together are the perfect tools to do the job. They have already discovered two more new sources embedded in obscuring material. Future observations are planned. Christoph Winkler, ESA Project Scientist for Integral, said: "These early examples of using two complementary ESA high-energy missions, Integral and XMM-Newton, shows the potential for future discoveries in high-energy astrophysics." Notes to Editors: The paper explaining these results will be published in November in a special issue of Astronomy and Astrophysics dedicated to Integral, on the occasion of its first anniversary. Integral The International Gamma Ray Astrophysics Laboratory (Integral) is the first space observatory that can simultaneously observe celestial objects in gamma rays, X-rays and visible light. Integral was launched on a Russian Proton rocket on 17 October 2002 into a highly elliptical orbit around Earth. Its principal targets include regions of the galaxy where chemical elements are being produced and compact objects, such as black holes. XMM-Newton XMM-Newton can detect more X-ray sources than any previous satellite and is helping to solve many cosmic mysteries of the violent Universe, from black holes to the formation of galaxies. It was launched on 10 December 1999, using an Ariane-5 rocket from French Guiana. It is expected to return data for a decade. XMM-Newton's high-tech design uses over 170 wafer-thin cylindrical mirrors spread over three telescopes. Its orbit takes it almost a third of the way to the Moon, so that astronomers can enjoy long, uninterrupted views of celestial objects.

  11. A parsec-scale optical jet from a massive young star in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    McLeod, Anna F.; Reiter, Megan; Kuiper, Rolf; Klaassen, Pamela D.; Evans, Christopher J.

    2018-02-01

    Highly collimated parsec-scale jets, which are generally linked to the presence of an accretion disk, are commonly observed in low-mass young stellar objects. In the past two decades, a few of these jets have been directly (or indirectly) observed from higher-mass (larger than eight solar masses) young stellar objects, adding to the growing evidence that disk-mediated accretion also occurs in high-mass stars, the formation mechanism of which is still poorly understood. Of the observed jets from massive young stars, none is in the optical regime (massive young stars are typically highly obscured by their natal material), and none is found outside of the Milky Way. Here we report observations of HH 1177, an optical ionized jet that originates from a massive young stellar object located in the Large Magellanic Cloud. The jet is highly collimated over its entire measured length of at least ten parsecs and has a bipolar geometry. The presence of a jet indicates ongoing, disk-mediated accretion and, together with the high degree of collimation, implies that this system is probably formed through a scaled-up version of the formation mechanism of low-mass stars. We conclude that the physics that govern jet launching and collimation is independent of stellar mass.

  12. A parsec-scale optical jet from a massive young star in the Large Magellanic Cloud.

    PubMed

    McLeod, Anna F; Reiter, Megan; Kuiper, Rolf; Klaassen, Pamela D; Evans, Christopher J

    2018-02-15

    Highly collimated parsec-scale jets, which are generally linked to the presence of an accretion disk, are commonly observed in low-mass young stellar objects. In the past two decades, a few of these jets have been directly (or indirectly) observed from higher-mass (larger than eight solar masses) young stellar objects, adding to the growing evidence that disk-mediated accretion also occurs in high-mass stars, the formation mechanism of which is still poorly understood. Of the observed jets from massive young stars, none is in the optical regime (massive young stars are typically highly obscured by their natal material), and none is found outside of the Milky Way. Here we report observations of HH 1177, an optical ionized jet that originates from a massive young stellar object located in the Large Magellanic Cloud. The jet is highly collimated over its entire measured length of at least ten parsecs and has a bipolar geometry. The presence of a jet indicates ongoing, disk-mediated accretion and, together with the high degree of collimation, implies that this system is probably formed through a scaled-up version of the formation mechanism of low-mass stars. We conclude that the physics that govern jet launching and collimation is independent of stellar mass.

  13. Evolution of cosmic star formation in the SCUBA-2 Cosmology Legacy Survey

    NASA Astrophysics Data System (ADS)

    Bourne, N.; Dunlop, J. S.; Merlin, E.; Parsa, S.; Schreiber, C.; Castellano, M.; Conselice, C. J.; Coppin, K. E. K.; Farrah, D.; Fontana, A.; Geach, J. E.; Halpern, M.; Knudsen, K. K.; Michałowski, M. J.; Mortlock, A.; Santini, P.; Scott, D.; Shu, X. W.; Simpson, C.; Simpson, J. M.; Smith, D. J. B.; van der Werf, P. P.

    2017-05-01

    We present a new exploration of the cosmic star formation history and dust obscuration in massive galaxies at redshifts 0.5 < z < 6. We utilize the deepest 450- and 850-μm imaging from SCUBA-2 CLS, covering 230 arcmin2 in the AEGIS, COSMOS and UDS fields, together with 100-250 μm imaging from Herschel. We demonstrate the capability of the t-phot deconfusion code to reach below the confusion limit, using multiwavelength prior catalogues from CANDELS/3D-HST. By combining IR and UV data, we measure the relationship between total star formation rate (SFR) and stellar mass up to z ˜ 5, indicating that UV-derived dust corrections underestimate the SFR in massive galaxies. We investigate the relationship between obscuration and the UV slope (the IRX-β relation) in our sample, which is similar to that of low-redshift starburst galaxies, although it deviates at high stellar masses. Our data provide new measurements of the total SFR density (SFRD) in M_{\\ast }>10^{10} M_{⊙} galaxies at 0.5 < z < 6. This is dominated by obscured star formation by a factor of >10. One third of this is accounted for by 450-μm-detected sources, while one-fifth is attributed to UV-luminous sources (brighter than L_UV^\\ast), although even these are largely obscured. By extrapolating our results to include all stellar masses, we estimate a total SFRD that is in good agreement with previous results from IR and UV data at z ≲ 3, and from UV-only data at z ˜ 5. The cosmic star formation history undergoes a transition at z ˜ 3-4, as predominantly unobscured growth in the early Universe is overtaken by obscured star formation, driven by the build-up of the most massive galaxies during the peak of cosmic assembly.

  14. An Explanation of the Missing Flux from Boyajian's Mysterious Star

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foukal, Peter

    A previously unremarkable star in the constellation Cygnus has, in the past year, become known as the most mysterious object in our Galaxy. Boyajian’s star exhibits puzzling episodes of sporadic, deep dimming discovered in photometry with the Kepler Mission. Proposed explanations have focused on its obscuration by colliding exoplanets, exocomets, and even intervention of alien intelligence. These hypotheses have considered only phenomena external to the star because the radiative flux missing in the dimmings was believed to exceed the star’s storage capacity. We point out that modeling of variations in solar luminosity indicates that convective stars can store the requiredmore » fluxes. It also suggests explanations for (a) a reported time-profile asymmetry of the short, deep dimmings and (b) a slower, decadal scale dimming reported from archival and Kepler photometry. Our findings suggest a broader range of explanations of Boyajian’s star that may produce new insights into stellar magneto-convection.« less

  15. Galaxy and mass assembly (GAMA): dust obscuration in galaxies and their recent star formation histories

    NASA Astrophysics Data System (ADS)

    Wijesinghe, D. B.; Hopkins, A. M.; Sharp, R.; Gunawardhana, M.; Brough, S.; Sadler, E. M.; Driver, S.; Baldry, I.; Bamford, S.; Liske, J.; Loveday, J.; Norberg, P.; Peacock, J.; Popescu, C. C.; Tuffs, R. J.; Bland-Hawthorn, J.; Cameron, E.; Croom, S.; Frenk, C.; Hill, D.; Jones, D. H.; van Kampen, E.; Kelvin, L.; Kuijken, K.; Madore, B.; Nichol, B.; Parkinson, H.; Pimbblet, K. A.; Prescott, M.; Robotham, A. S. G.; Seibert, M.; Simmat, E.; Sutherland, W.; Taylor, E.; Thomas, D.

    2011-02-01

    We present self-consistent star formation rates derived through pan-spectral analysis of galaxies drawn from the Galaxy and Mass Assembly (GAMA) survey. We determine the most appropriate form of dust obscuration correction via application of a range of extinction laws drawn from the literature as applied to Hα, [O II] and UV luminosities. These corrections are applied to a sample of 31 508 galaxies from the GAMA survey at z < 0.35. We consider several different obscuration curves, including those of Milky Way, Calzetti and Fischera & Dopita curves and their effects on the observed luminosities. At the core of this technique is the observed Balmer decrement, and we provide a prescription to apply optimal obscuration corrections using the Balmer decrement. We carry out an analysis of the star formation history (SFH) using stellar population synthesis tools to investigate the evolutionary history of our sample of galaxies as well as to understand the effects of variation in the initial mass function (IMF) and the effects this has on the evolutionary history of galaxies. We find that the Fischera & Dopita obscuration curve with an Rv value of 4.5 gives the best agreement between the different SFR indicators. The 2200 Å feature needed to be removed from this curve to obtain complete consistency between all SFR indicators suggesting that this feature may not be common in the average integrated attenuation of galaxy emission. We also find that the UV dust obscuration is strongly dependent on the SFR.

  16. IC 3639—a New Bona Fide Compton-Thick AGN Unveiled by NuSTAR

    NASA Astrophysics Data System (ADS)

    Boorman, Peter G.; Gandhi, P.; Alexander, D. M.; Annuar, A.; Ballantyne, D. R.; Bauer, F.; Boggs, S. E.; Brandt, W. N.; Brightman, M.; Christensen, F. E.; Craig, W. W.; Farrah, D.; Hailey, C. J.; Harrison, F. A.; Hönig, S. F.; Koss, M.; LaMassa, S. M.; Masini, A.; Ricci, C.; Risaliti, G.; Stern, D.; Zhang, W. W.

    2016-12-01

    We analyze high-quality NuSTAR observations of the local (z = 0.011) Seyfert 2 active galactic nucleus (AGN) IC 3639, in conjunction with archival Suzaku and Chandra data. This provides the first broadband X-ray spectral analysis of the source, spanning nearly two decades in energy (0.5-30 keV). Previous X-ray observations of the source below 10 keV indicated strong reflection/obscuration on the basis of a pronounced iron fluorescence line at 6.4 keV. The hard X-ray energy coverage of NuSTAR, together with self-consistent toroidal reprocessing models, enables direct broadband constraints on the obscuring column density of the source. We find the source to be heavily Compton-thick (CTK) with an obscuring column in excess of 3.6× {10}24 cm-2, unconstrained at the upper end. We further find an intrinsic 2-10 keV luminosity of {{log}}10({L}2{--10{keV}} [{erg} {{{s}}}-1])={43.4}-1.1+0.6 to 90% confidence, almost 400 times the observed flux, and consistent with various multiwavelength diagnostics. Such a high ratio of intrinsic to observed flux, in addition to an Fe-Kα fluorescence line equivalent width exceeding 2 keV, is extreme among known bona fide CTK AGNs, which we suggest are both due to the high level of obscuration present around IC 3639. Our study demonstrates that broadband spectroscopic modeling with NuSTAR enables large corrections for obscuration to be carried out robustly and emphasizes the need for improved modeling of AGN tori showing intense iron fluorescence.

  17. VizieR Online Data Catalog: MYStIX candidate protostars (Romine+, 2016)

    NASA Astrophysics Data System (ADS)

    Romine, G.; Feigelson, E. D.; Getman, K. V.; Kuhn, M. A.; Povich, M. S.

    2017-04-01

    The present study seeks protostars from the Massive Young Star-forming complex in Infrared and X-ray (MYStIX) survey catalogs. We combine objects with protostellar infrared SEDs and 4.5um excesses with X-ray sources exhibiting ultrahard spectra denoting very heavy obscuration. These criteria filter away nearly all of the older Class II-III stars and contaminant populations, but give very incomplete samples. The result is a list of 1109 protostellar candidates in 14 star-forming regions. See sections 1 and 2 for further explanations. The reliability of the catalog is strengthened because a large majority (86%) are found to be associated with dense cores seen in Herschel 500um maps that trace cold dust emission. However, the candidate list requires more detailed study for confirmation and cannot be viewed as an unbiased view of star formation in the clouds. (3 data files).

  18. FINDING η CAR ANALOGS IN NEARBY GALAXIES USING Spitzer. II. IDENTIFICATION OF AN EMERGING CLASS OF EXTRAGALACTIC SELF-OBSCURED STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Rubab; Kochanek, C. S.; Stanek, K. Z.

    Understanding the late-stage evolution of the most massive stars such as η Carinae is challenging because no true analogs of η Car have been clearly identified in the Milky Way or other galaxies. In Khan et al., we utilized Spitzer IRAC images of 7 nearby (≲ 4 Mpc) galaxies to search for such analogs, and found 34 candidates with flat or red mid-IR spectral energy distributions. Here, in Paper II, we present our characterization of these candidates using multi-wavelength data from the optical through the far-IR. Our search detected no true analogs of η Car, which implies an eruption rate that is a fraction 0.01more » ≲ F ≲ 0.19 of the core-collapse supernova (ccSN) rate. This is roughly consistent with each M {sub ZAMS} ≳ 70 M {sub ☉} star undergoing one or two outbursts in its lifetime. However, we do identify a significant population of 18 lower luminosity (log (L/L {sub ☉}) ≅ 5.5-6.0) dusty stars. Stars enter this phase at a rate that is a fraction 0.09 ≲ F ≲ 0.55 of the ccSN rate, and this is consistent with all 25 < M {sub ZAMS} < 60 M {sub ☉} stars undergoing an obscured phase at most lasting a few thousand years once or twice. These phases constitute a negligible fraction of post-main-sequence lifetimes of massive stars, which implies that these events are likely to be associated with special periods in the evolution of the stars. The mass of the obscuring material is of order ∼M {sub ☉}, and we simply do not find enough heavily obscured stars for theses phases to represent more than a modest fraction (∼10% not ∼50%) of the total mass lost by these stars. In the long term, the sources that we identified will be prime candidates for detailed physical analysis with the James Webb Space Telescope.« less

  19. The heating of dust in starburst galaxies: The contribution of the nonionizing radiation

    NASA Technical Reports Server (NTRS)

    Calzetti, D.; Bohlin, R. C.; Kinney, Anne L.; Storchi-Bergmann, T.; Heckman, Timothy M.

    1995-01-01

    The IUE UV and optical spectra and the far-infrared (FIR) IRAS flux densities of a sample of starburst and blue compact galaxies are used to investigate the relationship between dust obscuration and dust emission. The amount of dust obscuration at UV wavelengths correlates with the FIR-to-blue ratio; and an analysis of the correlation indicates that not only the ionizing but also the nonionizing radiation contribute to the FIR emission. The amount of UV and optical energy lost to dust obscuration accounts for most of the cool dust FIUR emission and for about 70% of the warm dust FIR emission. The remaining 30% of the warm dust FIR flux is probably due to dust emission from regions of star formation which are embedded in opaque giant molecular clouds and do not contribute to the integrated UV and optical spectrum. The use of the FIR emission as an indicator of high-mass star formation rate in star-forming galaxies can be problematic, since the contribution to the FIR flux from cool dust emission heated by relatively old stars is nonnegligible.

  20. Molecular Gas in Obscured and Extremely Red Quasars at z ˜ 2.5

    NASA Astrophysics Data System (ADS)

    Alexandroff, Rachael; Zakamska, Nadia; Hamann, Fred; Greene, Jenny; Rahman, Mubdi

    2018-01-01

    Quasar feedback is a key element of modern galaxy evolution theory. During powerful episodes of feedback, quasar-driven winds are suspected of removing large amounts of molecular gas from the host galaxy, thus limiting supplies for star formation and ultimately curtailing the maximum mass of galaxies. Here we present Karl A. Jansky Very Large Array (VLA) observations of the CO(1-0) transition in 11 powerful obscured and extremely red quasars (ERQs) at z~2.5. Previous observations have shown that several of these targets display signatures of powerful quasar-driven winds in their ionized gas. Molecular emission is not detected in a single object, whether kinematically disturbed due to a quasar wind or in equilibrium with the host galaxy and neither is molecular gas detected in a combined stack of all objects (equivalent to an exposure time of over 10 hours with the VLA). This observation is in contrast with the previous suggestions that such objects should occupy gas-rich, extremely star-forming galaxies. Possible explanations include a paucity of molecular gas or an excess of high- excitation molecular gas, both of which could be the results of quasar feedback. In the radio continuum, we detect an average point-like (< 5 kpc) emission with luminosity νLν[33 GHz]=2.2 x 1042 erg s-1, consistent with optically-thin (α ≈ -1.0) synchrotron with some possible contribution from thermal free-free emission. The continuum radio emission of these radio-intermediate objects may be a bi-product of radiatively driven winds or may be due to weak jets confined to the host galaxy.

  1. How dead are dead galaxies? Mid-infrared fluxes of quiescent galaxies at redshift 0.3 < z < 2.5: implications for star formation rates and dust heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fumagalli, Mattia; Labbé, Ivo; Patel, Shannon G.

    We investigate star formation rates (SFRs) of quiescent galaxies at high redshift (0.3 < z < 2.5) using 3D-HST WFC3 grism spectroscopy and Spitzer mid-infrared data. We select quiescent galaxies on the basis of the widely used UVJ color-color criteria. Spectral energy distribution (SED) fitting (rest-frame optical and near-IR) indicates very low SFRs for quiescent galaxies (sSFR ∼ 10{sup –12} yr{sup –1}). However, SED fitting can miss star formation if it is hidden behind high dust obscuration and ionizing radiation is re-emitted in the mid-infrared. It is therefore fundamental to measure the dust-obscured SFRs with a mid-IR indicator. We stackmore » the MIPS 24 μm images of quiescent objects in five redshift bins centered on z = 0.5, 0.9, 1.2, 1.7, 2.2 and perform aperture photometry. Including direct 24 μm detections, we find sSFR ∼ 10{sup –11.9} × (1 + z){sup 4} yr{sup –1}. These values are higher than those indicated by SED fitting, but at each redshift they are 20-40 times lower than those of typical star-forming galaxies. The true SFRs of quiescent galaxies might be even lower, as we show that the mid-IR fluxes can be due to processes unrelated to ongoing star formation, such as cirrus dust heated by old stellar populations and circumstellar dust. Our measurements show that star formation quenching is very efficient at every redshift. The measured SFR values are at z > 1.5 marginally consistent with the ones expected from gas recycling (assuming that mass loss from evolved stars refuels star formation) and well below that at lower redshifts.« less

  2. INFRARED SPECTROSCOPY OF SYMBIOTIC STARS. IX. D-TYPE SYMBIOTIC NOVAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinkle, Kenneth H.; Joyce, Richard R.; Fekel, Francis C.

    2013-06-10

    Time-series spectra of the near-infrared 1.6 {mu}m region have been obtained for five of the six known D-type symbiotic novae. The spectra map the pulsation kinematics of the Mira component in the Mira-white dwarf binary system and provide the center-of-mass velocity for the Mira. No orbital motion is detected in agreement with previous estimates of orbital periods {approx}>100 yr and semimajor axes {approx}50 AU. The 1-5 {mu}m spectra of the Miras show line weakening during dust obscuration events. This results from scattering and continuum emission by 1000 K dust. In the heavily obscured HM Sge system the 4.6 {mu}m COmore » spectrum formed in 1000 K gas is seen in emission against an optically thick dust continuum. Spectral features that are typically produced in either the cool molecular region or the expanding circumstellar region of late-type stars cannot be detected in the D-symbiotic novae. This is in accord with the colliding wind model for interaction between the white dwarf and Mira. Arguments are presented that the 1000 K gas and dust are not Mira circumstellar material but are in the wind interaction region of the colliding winds. CO is the first molecule detected in this region. We suggest that dust condensing in the intershock region is the origin of the dust obscuration. This model explains variations in the obscuration. Toward the highly obscured Mira in HM Sge the dust zone is estimated to be {approx}0.1 AU thick. The intershock wind interaction zone appears thinnest in the most active systems. Drawing on multiple arguments masses are estimated for the system components. The Miras in most D-symbiotic novae have descended from intermediate mass progenitors. The large amount of mass lost from the Mira combined with the massive white dwarf companion suggests that these systems are supernova candidates. However, timescales and the number of objects make these rare events.« less

  3. IC 3639 - A New Bona Fide Compton-Thick AGN Unveiled By NuSTAR

    NASA Technical Reports Server (NTRS)

    Boorman, Peter G.; Gandhi, P.; Alexander, D. M.; Annuar, A.; Ballantyne, D. R.; Bauer, F.; Boggs, S. E.; Brandt, W. N.; Brightman, M.; Christensen, F. E.; hide

    2016-01-01

    We analyze high-quality NuSTAR observations of the local (z = 0.011) Seyfert 2 active galactic nucleus (AGN) IC 3639, in conjunction with archival Suzaku and Chandra data. This provides the first broadband X-ray spectral analysis of the source, spanning nearly two decades in energy (0.5-30 keV). Previous X-ray observations of the source below 10 keV indicated strong reflection/obscuration on the basis of a pronounced iron fluorescence line at 6.4 keV. The hard X-ray energy coverage of NuSTAR, together with self-consistent toroidal reprocessing models, enables direct broadband constraints on the obscuring column density of the source. We find the source to be heavily Compton-thick (CTK) with an obscuring column in excess of 3.6 x 10(exp 24) cm(exp -2), unconstrained at the upper end. We further find an intrinsic 2-10 keV luminosity of log(sub 10) (L(sub 2-10 keV) [erg s(exp -1)])= 43.4(+0.6/-1.1) to 90% confidence, almost 400 times the observed flux, and consistent with various multiwavelength diagnostics. Such a high ratio of intrinsic to observed flux, in addition to an Fe-K(alpha) fluorescence line equivalent width exceeding 2 keV, is extreme among known bona fide CTK AGNs, which we suggest are both due to the high level of obscuration present around IC 3639. Our study demonstrates that broadband spectroscopic modeling with NuSTAR enables large corrections for obscuration to be carried out robustly and emphasizes the need for improved modeling of AGN tori showing intense iron fluorescence.

  4. Study of the Outflow and Disk surrounding a Post-Outburst FU-Orionis Star

    NASA Astrophysics Data System (ADS)

    Mellon, Samuel N.; Perez, L. M.

    2014-01-01

    PP 13 is a fan-shaped cometary nebula located in the constellation of Perseus and embedded in the L1473 dark cloud. At optical wavelengths this region is obscured by the surrounding dark cloud, while at infrared and longer wavelengths two northern objects (PP13Na & PP13Nb) and one southern object (PP13S) are revealed. In the past, the young stellar object inside PP13S, called PP13S*, experienced an FU-Orionis type outburst due to a massive accretion episode and is currently returning to its quiescent state. Studying the FU-Orionis phase is crucial to our understanding of how low mass stars form; it is theorized that all low-mass stars go through this outburst phase while they are forming. I used CARMA 3mm interferometric observations of the PP13 region to study the continuum and molecular line emissions from PP13. With these observations, I determined the source of the previously detected outflow and learned new information about the double star system PP13Na and PP13Nb. Although I was not able to detect the accretion disk in the gas emissions, I plan to use computer modeling to help provide constraints on the properties of PP13S* and its outflow.

  5. Mysterious eclipses in the light curve of KIC8462852: a possible explanation

    NASA Astrophysics Data System (ADS)

    Neslušan, L.; Budaj, J.

    2017-04-01

    Context. Apart from thousands of "regular" exoplanet candidates, Kepler satellite has discovered a small number of stars exhibiting peculiar eclipse-like events. They are most probably caused by disintegrating bodies transiting in front of the star. However, the nature of the bodies and obscuration events, such as those observed in KIC 8462852, remain mysterious. A swarm of comets or artificial alien mega-structures have been proposed as an explanation for the latter object. Aims: We explore the possibility that such eclipses are caused by the dust clouds associated with massive parent bodies orbiting the host star. Methods: We assumed a massive object and a simple model of the dust cloud surrounding the object. Then, we used the numerical integration to simulate the evolution of the cloud, its parent body, and resulting light-curves as they orbit and transit the star. Results: We found that it is possible to reproduce the basic features in the light-curve of KIC 8462852 with only four objects enshrouded in dust clouds. The fact that they are all on similar orbits and that such models require only a handful of free parameters provides additional support for this hypothesis. Conclusions: This model provides an alternative to the comet scenario. With such physical models at hand, at present, there is no need to invoke alien mega-structures for an explanation of these light-curves.

  6. Bridging the gap: New ALMA observations of lensed dusty galaxies in the Frontier Fields

    NASA Astrophysics Data System (ADS)

    Kearney, Zoe; Pope, Alexandra; Aretxaga, Itziar; Hughes, David; Marchesini, Danilo; Montana, Alfredo; Murphy, Eric Joseph; Wilson, Grant; Yun, Min

    2018-01-01

    During much of cosmic time, most star formation activity in galaxies is obscured by dust. In order to complete the census of star formation, we must bridge the gap between optical and infrared galaxy populations. With AzTEC on the Large Millimeter Telescope (LMT), we surveyed two of the HST Frontier Fields in order to exploit the gravitational lensing from foreground clusters to study dust-obscured in galaxies below the nominal confusion limit. We detect millimeter galaxies with magnifications ranging from 1.1-8, allowing us to detect dust-obscured star formation rates in galaxies as low as ~10 Msun/year. We present new observations with ALMA in order to localize the millimeter emission of the AzTEC/LMT sources and make unambiguous associations with the optical galaxies in the deep HST images. We investigate the issue of multiplicity within our sample. We discuss the multi-wavelength counterparts of our faint millimeter sources and how they relate to brighter dusty galaxies from previous surveys.

  7. The Search for AGN in Dusty Star Forming Hosts with JWST

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Allison; Alberts, Stacey; Pope, Alexandra; Rieke, George; Sajina, Anna

    2018-01-01

    The bulk of the stellar growth over cosmic time is dominated by IR luminous galaxies at cosmic noon (z=1-2), many of which harbor a hidden active galactic nucleus (AGN). I use state of the art infrared color diagnostics, combining Spitzer and Herschel observations, to separate dust-obscured AGN from dusty star forming galaxies (SFGs) in the CANDELS and COSMOS surveys. I calculate 24 micron counts of SFGs, AGN/star forming "Composites", and AGN. AGN and Composites dominate the counts above 0.8 mJy at 24 micron, and Composites form at least 25% of an IR sample even to faint detection limits. I develop methods to use the Mid-Infrared Instrument (MIRI) on JWST to identify dust-obscured AGN and Composite galaxies from z~1-2. I demonstrate that MIRI color techniques can select AGN with lower Eddington ratios and higher specific SFRs than X-ray techniques alone. JWST/MIRI will enable critical steps forward in identifying and understanding dust-obscured AGN and the link to their host galaxies.

  8. The evolving far-IR galaxy luminosity function and dust-obscured star formation rate density out to z≃5.

    NASA Astrophysics Data System (ADS)

    Koprowski, M. P.; Dunlop, J. S.; Michałowski, M. J.; Coppin, K. E. K.; Geach, J. E.; McLure, R. J.; Scott, D.; van der Werf, P. P.

    2017-11-01

    We present a new measurement of the evolving galaxy far-IR luminosity function (LF) extending out to redshifts z ≃ 5, with resulting implications for the level of dust-obscured star formation density in the young Universe. To achieve this, we have exploited recent advances in sub-mm/mm imaging with SCUBA-2 on the James Clerk Maxwell Telescope and the Atacama Large Millimeter/Submillimeter Array, which together provide unconfused imaging with sufficient dynamic range to provide meaningful coverage of the luminosity-redshift plane out to z > 4. Our results support previous indications that the faint-end slope of the far-IR LF is sufficiently flat that comoving luminosity density is dominated by bright objects (≃L*). However, we find that the number density/luminosity of such sources at high redshifts has been severely overestimated by studies that have attempted to push the highly confused Herschel SPIRE surveys beyond z ≃ 2. Consequently, we confirm recent reports that cosmic star formation density is dominated by UV-visible star formation at z > 4. Using both direct (1/Vmax) and maximum likelihood determinations of the LF, we find that its high-redshift evolution is well characterized by continued positive luminosity evolution coupled with negative density evolution (with increasing redshift). This explains why bright sub-mm sources continue to be found at z > 5, even though their integrated contribution to cosmic star formation density at such early times is very small. The evolution of the far-IR galaxy LF thus appears similar in form to that already established for active galactic nuclei, possibly reflecting a similar dependence on the growth of galaxy mass.

  9. Exoplanets with JWST: degeneracy, systematics and how to avoid them

    NASA Astrophysics Data System (ADS)

    Barstow, Joanna K.; Irwin, Patrick G. J.; Kendrew, Sarah; Aigrain, Suzanne

    2016-07-01

    The high sensitivity and broad wavelength coverage of the James Webb Space Telescope will transform the field of exoplanet transit spectroscopy. Transit spectra are inferred from minute, wavelength-dependent variations in the depth of a transit or eclipse as the planet passes in front of or is obscured by its star, and the spectra contain information about the composition, structure and cloudiness of exoplanet atmospheres. Atmospheric retrieval is the preferred technique for extracting information from these spectra, but the process can be confused by astrophysical and instrumental systematic noise. We present results of retrieval tests based on synthetic, noisy JWST spectra, for clear and cloudy planets and active and inactive stars. We find that the ability to correct for stellar activity is likely to be a limiting factor for cloudy planets, as the effects of unocculted star spots may mimic the presence of a scattering slope due to clouds. We discuss the pros and cons of the available JWST instrument combinations for transit spectroscopy, and consider the effect of clouds and aerosols on the spectra. Aerosol high in a planet's atmosphere obscures molecular absorption features in transmission, reducing the information content of spectra in wavelength regions where the cloud is optically thick. We discuss the usefulness of particular wavelength regions for identifying the presence of cloud, and suggest strategies for solving the highly-degenerate retrieval problem for these objects.

  10. An Imperfectly Passive Nature: Bright Submillimeter Emission from Dust-obscured Star Formation in the z = 3.717 “Passive” System, ZF 20115

    NASA Astrophysics Data System (ADS)

    Simpson, J. M.; Smail, Ian; Wang, Wei-Hao; Riechers, D.; Dunlop, J. S.; Ao, Y.; Bourne, N.; Bunker, A.; Chapman, S. C.; Chen, Chian-Chou; Dannerbauer, H.; Geach, J. E.; Goto, T.; Harrison, C. M.; Hwang, H. S.; Ivison, R. J.; Kodama, Tadayuki; Lee, C.-H.; Lee, H.-M.; Lee, M.; Lim, C.-F.; Michałowski, M. J.; Rosario, D. J.; Shim, H.; Shu, X. W.; Swinbank, A. M.; Tee, W.-L.; Toba, Y.; Valiante, E.; Wang, Junxian; Zheng, X. Z.

    2017-07-01

    The identification of high-redshift, massive galaxies with old stellar populations may pose challenges to some models of galaxy formation. However, to securely classify a galaxy as quiescent, it is necessary to exclude significant ongoing star formation, something that can be challenging to achieve at high redshifts. In this Letter, we analyze deep ALMA/870 μm and SCUBA-2/450 μm imaging of the claimed “post-starburst” galaxy ZF 20115 at z = 3.717 that exhibits a strong Balmer break and absorption lines. The rest-frame far-infrared imaging identifies a luminous starburst 0.″4 ± 0.″1 (˜3 kpc in projection) from the position of the ultraviolet/optical emission and is consistent with lying at the redshift of ZF 20115. The star-forming component, with an obscured star formation rate of {100}-70+15 {M}⊙ {{yr}}-1, is undetected in the rest-frame ultraviolet but contributes significantly to the lower angular resolution photometry at rest-frame wavelengths ≳3500 Å. This contribution from the obscured starburst, especially in the Spitzer/IRAC wavebands, significantly complicates the determination of a reliable stellar mass for the ZF 20015 system, and we conclude that this source does not pose a challenge to current models of galaxy formation. The multi-wavelength observations of ZF 20115 unveil a complex system with an intricate and spatially varying star formation history. ZF 20115 demonstrates that understanding high-redshift obscured starbursts will only be possible with multi-wavelength studies that include high-resolution observations, available with the James Webb Space Telescope, at mid-infrared wavelengths.

  11. EVIDENCE FOR A WIDE RANGE OF ULTRAVIOLET OBSCURATION IN z {approx} 2 DUSTY GALAXIES FROM THE GOODS-HERSCHEL SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penner, Kyle; Dickinson, Mark; Dey, Arjun

    Dusty galaxies at z {approx} 2 span a wide range of relative brightness between rest-frame mid-infrared (8 {mu}m) and ultraviolet wavelengths. We attempt to determine the physical mechanism responsible for this diversity. Dust-obscured galaxies (DOGs), which have rest-frame mid-IR to UV flux density ratios {approx}> 1000, might be abnormally bright in the mid-IR, perhaps due to prominent emission from active galactic nuclei and/or polycyclic aromatic hydrocarbons, or abnormally faint in the UV. We use far-infrared data from the GOODS-Herschel survey to show that most DOGs with 10{sup 12} L {sub Sun} {approx}< L {sub IR} {approx}< 10{sup 13} L {submore » Sun} are not abnormally bright in the mid-IR when compared to other dusty galaxies with similar IR (8-1000 {mu}m) luminosities. We observe a relation between the median IR to UV luminosity ratios and the median UV continuum power-law indices for these galaxies, and we find that only 24% have specific star formation rates that indicate the dominance of compact star-forming regions. This circumstantial evidence supports the idea that the UV- and IR-emitting regions in these galaxies are spatially coincident, which implies a connection between the abnormal UV faintness of DOGs and dust obscuration. We conclude that the range in rest-frame mid-IR to UV flux density ratios spanned by dusty galaxies at z {approx} 2 is due to differing amounts of UV obscuration. Of galaxies with these IR luminosities, DOGs are the most obscured. We attribute differences in UV obscuration to either (1) differences in the degree of alignment between the spatial distributions of dust and massive stars or (2) differences in the total dust content.« less

  12. Astronomers Find Elusive Planets in Decade-Old Hubble Data

    NASA Image and Video Library

    2017-12-08

    NASA image release Oct. 6, 2011 This is an image of the star HR 8799 taken by Hubble's Near Infrared Camera and Multi-Object Spectrometer (NICMOS) in 1998. A mask within the camera (coronagraph) blocks most of the light from the star. In addition, software has been used to digitally subtract more starlight. Nevertheless, scattered light from HR 8799 dominates the image, obscuring the faint planets. Object Name: HR 8799 Image Type: Astronomical Credit: NASA, ESA, and R. Soummer (STScI) To read more go to: www.nasa.gov/mission_pages/hubble/science/elusive-planets... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. AGN contamination in total infrared determined star formation rates in dusty galaxies at z~2-3

    NASA Astrophysics Data System (ADS)

    Mazzei, Renato; Sharon, Chelsea E.; Riechers, Dominik

    2017-01-01

    Along with theoretical work that suggests feedback from active galactic nuclei (AGN) may quench star formation in massive galaxies, the temporal coincidence between the peak of cosmic star formation rates and black hole accretion rates suggests that AGN are common in star forming galaxies at z~2-3. Since star forming galaxies at these epochs are also very dusty, it is important that we correct galaxies’ long-wavelength properties for the presence of dust-obscured AGN in order to accurately capture their star formation rates and gas characteristics. We present a spectral energy distribution (SED) analysis of several un-lensed z~2-3 dusty star-forming galaxies from Pope et al. (2008) and Coppin et al. (2010), which we compare to several other high-z starbursts with well sampled SEDs. We constructed dust SEDs from existing Spitzer, Herschel, and SCUBA-2 photometry catalogues with data between 3.6 and 850 μm. For the SED fits, we used the Code Investigating GALaxy Emission (CIGALE), since it self-consistently determines the dust attenuation of stars and dust emission in the infrared in addition to determining the dust emission from obscured AGN (Noll et al. 2009; Serra et al. 2011). Our best-fit SEDs have typical reduced χ2 values between 0.2 and ~3. We use the output from CIGALE to determine the fraction of the total infrared luminosity (LTIR 8-1000 um) from star formation and from any potential obscured AGN. In order to examine the effects of buried AGN on the integrated Schmidt-Kennicutt relation (log(LTIR) vs. log(L'CO)), we compare our new LTIR to recently obtained CO(1-0) line luminosities from the Karl G. Jansky Very Large Array. Unaccounted for dust emission from AGN can artificially inflate the star formation rate inferred from LTIR, and may therefore offset starburst galaxies from the local Schmidt-Kennicutt relation and increase the slope of the relation, which can affect the inferred drivers of star formation.

  14. Major galaxy mergers and the growth of supermassive black holes in quasars.

    PubMed

    Treister, Ezequiel; Natarajan, Priyamvada; Sanders, David B; Urry, C Megan; Schawinski, Kevin; Kartaltepe, Jeyhan

    2010-04-30

    Despite observed strong correlations between central supermassive black holes (SMBHs) and star formation in galactic nuclei, uncertainties exist in our understanding of their coupling. We present observations of the ratio of heavily obscured to unobscured quasars as a function of cosmic epoch up to z congruent with 3 and show that a simple physical model describing mergers of massive, gas-rich galaxies matches these observations. In the context of this model, every obscured and unobscured quasar represents two distinct phases that result from a massive galaxy merger event. Much of the mass growth of the SMBH occurs during the heavily obscured phase. These observations provide additional evidence for a causal link between gas-rich galaxy mergers, accretion onto the nuclear SMBH, and coeval star formation.

  15. MONITORING H{alpha} EMISSION AND CONTINUUM OF UXORs: RR Tauri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bedell, Megan; Villaume, Alexa; Weiss, Lauren

    2011-11-15

    The Maria Mitchell Observatory, in collaboration with the Astrokolkhoz Observatory, started a program of photometric monitoring of UX Ori-type stars (UXORs) with narrowband interference filters (IFs; augmented with the traditional broadband filters) aimed at separating the H{alpha} emission variations from those of the continuum. We present the method of separation and the first results for RR Tau obtained in two seasons, each roughly 100 days long (2010 Winter-Spring and 2010 Fall-2011 Spring). We confirm the conclusion from previous studies that the H{alpha} emission in this star is less variable than the continuum. Although some correlation between the two is notmore » excluded, the amplitude of H{alpha} variations is much smaller (factors of 3-5) than that of the continuum. These results are compatible with Grinin's model of UXORs, which postulates the presence of small obscuring circumstellar clouds as the cause of the continuum fading, as well as the presence of a circumstellar reflection/emission nebula, larger than the star and the obscuring clouds, which is responsible for H{alpha} emission and the effect of the 'color reversal' in deep minima. However, the results of both our broadband and narrowband photometry indicate that the obscuration model may be insufficient to explain all of the observations. Disk accretion, the presence of stellar or (proto) planetary companion(s), as well as the intrinsic variations of the star, may contribute to the observed light variations. We argue, in particular, that the H{alpha} emission may be more closely correlated with the intrinsic variations of the star than with the much stronger observed variations caused by the cloud obscuration. If this hypothesis is correct, the close monitoring of H{alpha} emission with IFs, accessible to small-size telescopes, may become an important tool in studying the physical nature of the UXORs' central stars.« less

  16. MASGOMAS PROJECT, New automatic-tool for cluster search on IR photometric surveys

    NASA Astrophysics Data System (ADS)

    Rübke, K.; Herrero, A.; Borissova, J.; Ramirez-Alegria, S.; García, M.; Marin-Franch, A.

    2015-05-01

    The Milky Way is expected to contain a large number of young massive (few x 1000 solar masses) stellar clusters, borne in dense cores of gas and dust. Yet, their known number remains small. We have started a programme to search for such clusters, MASGOMAS (MAssive Stars in Galactic Obscured MAssive clusterS). Initially, we selected promising candidates by means of visual inspection of infrared images. In a second phase of the project we have presented a semi-automatic method to search for obscured massive clusters that resulted in the identification of new massive clusters, like MASGOMAS-1 (with more than 10,000 solar masses) and MASGOMAS-4 (a double-cored association of about 3,000 solar masses). We have now developped a new automatic tool for MASGOMAS that allows the identification of a large number of massive cluster candidates from the 2MASS and VVV catalogues. Cluster candidates fulfilling criteria appropriated for massive OB stars are thus selected in an efficient and objective way. We present the results from this tool and the observations of the first selected cluster, and discuss the implications for the Milky Way structure.

  17. Hubble Sees a Young Star Take Center Stage

    NASA Image and Video Library

    2015-03-06

    With its helical appearance resembling a snail’s shell, this reflection nebula seems to spiral out from a luminous central star in this NASA/ESA Hubble Space Telescope image. The star in the center, known as V1331 Cyg and located in the dark cloud LDN 981 — or, more commonly, Lynds 981 — had previously been defined as a T Tauri star. A T Tauri is a young star — or Young Stellar Object — that is starting to contract to become a main sequence star similar to the sun. What makes V1331Cyg special is the fact that we look almost exactly at one of its poles. Usually, the view of a young star is obscured by the dust from the circumstellar disc and the envelope that surround it. However, with V1331Cyg we are actually looking in the exact direction of a jet driven by the star that is clearing the dust and giving us this magnificent view. This view provides an almost undisturbed view of the star and its immediate surroundings allowing astronomers to study it in greater detail and look for features that might suggest the formation of a very low-mass object in the outer circumstellar disk. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. Observing Star and Planet Formation in the Submillimeter and Far Infrared

    NASA Technical Reports Server (NTRS)

    Yorke, Harold W.

    2004-01-01

    Stars from in the densest parts of cold interstellar clouds which-due to presence of obscuring dust-cannot be observed with optical telescopes. Recent rapid progress in understanding how stars and planets are formed has gone hand in hand with our ability to observe extremely young systems in the infrared and (submillimeter) spectral regimes. The detections and silhouetted imaging of disks around young objects in the visible and NIR have demonstrated the common occurrence of circumstellar disks and their associated jets and outflows in star forming regions. However, in order to obtain quantitative information pertaining to even earlier evolutionary phases, studies at longer wavelengths are necessary. From spectro-photometric imaging at all wavelengths we learn about the temperature and density structure of the young stellar environment. From narrow band imaging in the far infrared and submillimeter spectral regimes we can learn much about the velocity structure and the chemical makeup (pre-biotic material) of the planet-forming regions.

  19. An ultraviolet study of B[e] stars: evidence for pulsations, luminous blue variable type variations and processes in envelopes

    NASA Astrophysics Data System (ADS)

    Krtičková, I.; Krtička, J.

    2018-06-01

    Stars that exhibit a B[e] phenomenon comprise a very diverse group of objects in a different evolutionary status. These objects show common spectral characteristics, including the presence of Balmer lines in emission, forbidden lines and strong infrared excess due to dust. Observations of emission lines indicate illumination by an ultraviolet ionizing source, which is key to understanding the elusive nature of these objects. We study the ultraviolet variability of many B[e] stars to specify the geometry of the circumstellar environment and its variability. We analyse massive hot B[e] stars from our Galaxy and from the Magellanic Clouds. We study the ultraviolet broad-band variability derived from the flux-calibrated data. We determine variations of individual lines and the correlation with the total flux variability. We detected variability of the spectral energy distribution and of the line profiles. The variability has several sources of origin, including light absorption by the disc, pulsations, luminous blue variable type variations, and eclipses in the case of binaries. The stellar radiation of most of B[e] stars is heavily obscured by circumstellar material. This suggests that the circumstellar material is present not only in the disc but also above its plane. The flux and line variability is consistent with a two-component model of a circumstellar environment composed of a dense disc and an ionized envelope. Observations of B[e] supergiants show that many of these stars have nearly the same luminosity, about 1.9 × 105 L⊙, and similar effective temperatures.

  20. Swift and NuSTAR observations of GW170817: Detection of a blue kilonova

    DOE PAGES

    Evans, P. A.; Cenko, S. B.; Kennea, J. A.; ...

    2017-10-16

    With the first direct detection of merging black holes in 2015, the era of gravitational wave (GW) astrophysics began. However, a complete picture of compact object mergers requires the detection of an electromagnetic (EM) counterpart. Here, we report ultraviolet (UV) and x-ray observations by Swift and the Nuclear Spectroscopic Telescope ARray (NuSTAR) of the EM counterpart of the binary neutron star merger GW 170817. The bright, rapidly fading ultraviolet emission indicates a high mass (≈ 0.03 solar masses) wind-driven outflow with moderate electron fraction (Ye ≈ 0.27). Combined with the x-ray limits, we favor an observer viewing angle of ≈30°more » away from the orbital rotation axis, which avoids both obscuration from the heaviest elements in the orbital plane and a direct view of any ultra-relativistic, highly collimated ejecta (a γ-ray burst afterglow).« less

  1. Swift and NuSTAR observations of GW170817: Detection of a blue kilonova

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, P. A.; Cenko, S. B.; Kennea, J. A.

    With the first direct detection of merging black holes in 2015, the era of gravitational wave (GW) astrophysics began. However, a complete picture of compact object mergers requires the detection of an electromagnetic (EM) counterpart. Here, we report ultraviolet (UV) and x-ray observations by Swift and the Nuclear Spectroscopic Telescope ARray (NuSTAR) of the EM counterpart of the binary neutron star merger GW 170817. The bright, rapidly fading ultraviolet emission indicates a high mass (≈ 0.03 solar masses) wind-driven outflow with moderate electron fraction (Ye ≈ 0.27). Combined with the x-ray limits, we favor an observer viewing angle of ≈30°more » away from the orbital rotation axis, which avoids both obscuration from the heaviest elements in the orbital plane and a direct view of any ultra-relativistic, highly collimated ejecta (a γ-ray burst afterglow).« less

  2. AN ULTRA-LOW-MASS AND SMALL-RADIUS COMPACT OBJECT IN 4U 1746-37?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhaosheng; Qu, Zhijie; Guo, Yanjun

    Photospheric radius expansion (PRE) bursts have already been used to constrain the masses and radii of neutron stars. RXTE observed three PRE bursts in 4U 1746-37, all with low touchdown fluxes. We discuss here the possibility of a low-mass neutron star in 4U 1746-37 because the Eddington luminosity depends on stellar mass. With typical values of hydrogen mass fraction and color correction factor, a Monte Carlo simulation was applied to constrain the mass and radius of a neutron star in 4U 1746-37. 4U 1746-37 has a high inclination angle. Two geometric effects, the reflection of the far-side accretion disk andmore » the obscuration of the near-side accretion disk, have also been included in the mass and radius constraints of 4U 1746-37. If the reflection of the far-side accretion disk is accounted for, a low-mass compact object (mass of 0.41 ± 0.14 M {sub ☉} and radius of 8.73 ± 1.54 km at 68% confidence) exists in 4U 1746-37. If another effect operated, 4U 1746-37 may contain an ultra-low-mass and small-radius object (M = 0.21 ± 0.06 M {sub ☉}, R = 6.26 ± 0.99 km at 68% confidence). Combining all possibilities, the mass of 4U 1746-37 is 0.41{sub −0.30}{sup +0.70} M{sub ⊙} at 99.7% confidence. For such low-mass neutron stars, it could be reproduced by a self-bound compact star, i.e., a quark star or quark-cluster star.« less

  3. Stellar Clusters in the NGC 6334 Star-Forming Complex

    NASA Astrophysics Data System (ADS)

    Feigelson, Eric D.; Martin, Amanda L.; McNeill, Collin J.; Broos, Patrick S.; Garmire, Gordon P.

    2009-07-01

    The full stellar population of NGC 6334, one of the most spectacular regions of massive star formation in the nearby Galaxy, has not been well sampled in past studies. We analyze here a mosaic of two Chandra X-ray Observatory images of the region using sensitive data analysis methods, giving a list of 1607 faint X-ray sources with arcsecond positions and approximate line-of-sight absorption. About 95% of these are expected to be cluster members, most lower mass pre-main-sequence stars. Extrapolating to low X-ray levels, the total stellar population is estimated to be 20,000-30,000 pre-main-sequence stars. The X-ray sources show a complicated spatial pattern with ~10 distinct star clusters. The heavily obscured clusters are mostly associated with previously known far-infrared sources and radio H II regions. The lightly obscured clusters are mostly newly identified in the X-ray images. Dozens of likely OB stars are found, both in clusters and dispersed throughout the region, suggesting that star formation in the complex has proceeded over millions of years. A number of extraordinarily heavily absorbed X-ray sources are associated with the active regions of star formation.

  4. Spectropolarimetry of Post-AGB Stars

    NASA Astrophysics Data System (ADS)

    Trammell, S. R.; Goodrich, R. W.; Dinerstein, H. L.

    1992-12-01

    We have used the technique of optical spectropolarimetry to investigate post-AGB stars, objects that represent the first stages of the transition from the AGB to a planetary nebula. Several of the observed objects display unpolarized emission lines superimposed on a highly polarized continuum. The continuum polarization provides evidence for the presence of an aspherical dust envelope early in the transition process. The observed objects were chosen from several samples: high latitude supergiants with IR excesses that are thought to be post-AGB stars (e.g. Bond et. al. 1984, PASP, 96, 176), their lower latitude counterparts (e.g. Hrivnak et. al. 1989, ApJ, 346, 265), post-AGB stars shown by Johnson & Jones (1991, AJ, 101, 1735) to have high broad band polarizations, and three highly polarized extreme carbon stars investigated by Cohen & Schmidt (1982, ApJ, 259, 693). GL 1403, an extreme carbon star, shows an abrupt position angle rotation at 6000 Angstroms, implying that at blue wavelengths we see a scattered stellar continuum, while the star itself is hidden from direct view. Longward of the position angle rotation, we begin to see the star directly. Menzies & Whitelock (1988, MNRAS, 233, 697) proposed that IRAS 20056+1834, an unreddened GO supergiant with very strong Na I emission lines and a large infrared excess, is a mass-losing star obscured from direct view, in which the photospheric light is seen in reflection. Our data support this interpretation; the Na I emission is unpolarized, indicating that it is produced in the shell, while the continuum is scattered and polarized (5-7%) by the aspherical shell of material. IRAS 20000+3239 also shows unpolarized Na I D emission and is probably similar to IRAS 20056+1834. IRC +10420 exhibits unpolarized Hα emission and GL 2699, an extreme carbon star, displays both polarized and unpolarized Hα as well as unpolarized low excitation forbidden [S II] and [O I] emission lines.

  5. The most crowded place in the Milky Way

    NASA Image and Video Library

    2015-01-08

    This new NASA/ESA Hubble Space Telescope image presents the Arches Cluster, the densest known star cluster in the Milky Way. It is located about 25 000 light-years from Earth in the constellation of Sagittarius (The Archer), close to the heart of our galaxy, the Milky Way. It is, like its neighbour the Quintuplet Cluster, a fairly young astronomical object at between two and four million years old. The Arches cluster is so dense that in a region with a radius equal to the distance between the Sun and its nearest star there would be over 100 000 stars! At least 150 stars within the cluster are among the brightest ever discovered in the the Milky Way. These stars are so bright and massive, that they will burn their fuel within a short time, on a cosmological scale, just a few million years, and die in spectacular supernova explosions. Due to the short lifetime of the stars in the cluster, the gas between the stars contains an unusually high amount of heavier elements, which were produced by earlier generations of stars. Despite its brightness the Arches Cluster cannot be seen with the naked eye. The visible light from the cluster is completely obscured by gigantic clouds of dust in this region. To make the cluster visible astronomers have to use detectors which can collect light from the X-ray, infrared, and radio bands, as these wavelengths can pass through the dust clouds. This observation shows the Arches Cluster in the infrared and demonstrates the leap in Hubble’s performance since its 1999 image of same object.

  6. Star formation history from the cosmic infrared background anisotropies

    NASA Astrophysics Data System (ADS)

    Maniyar, A. S.; Béthermin, M.; Lagache, G.

    2018-06-01

    We present a linear clustering model of cosmic infrared background (CIB) anisotropies at large scales that is used to measure the cosmic star formation rate density up to redshift 6, the effective bias of the CIB, and the mass of dark matter halos hosting dusty star-forming galaxies. This is achieved using the Planck CIB auto- and cross-power spectra (between different frequencies) and CIB × CMB (cosmic microwave background) lensing cross-spectra measurements, as well as external constraints (e.g. on the CIB mean brightness). We recovered an obscured star formation history which agrees well with the values derived from infrared deep surveys and we confirm that the obscured star formation dominates the unobscured formation up to at least z = 4. The obscured and unobscured star formation rate densities are compatible at 1σ at z = 5. We also determined the evolution of the effective bias of the galaxies emitting the CIB and found a rapid increase from 0.8 at z = 0 to 8 at z = 4. At 2 < z < 4, this effective bias is similar to that of galaxies at the knee of the mass functions and submillimetre galaxies. This effective bias is the weighted average of the true bias with the corresponding emissivity of the galaxies. The halo mass corresponding to this bias is thus not exactly the mass contributing the most to the star formation density. Correcting for this, we obtained a value of log(Mh/M⊙) = 12.77-0.125+0.128 for the mass of the typical dark matter halo contributing to the CIB at z = 2. Finally, using a Fisher matrix analysis we also computed how the uncertainties on the cosmological parameters affect the recovered CIB model parameters, and find that the effect is negligible.

  7. Resolving the inner disk of UX Orionis

    NASA Astrophysics Data System (ADS)

    Kreplin, A.; Madlener, D.; Chen, L.; Weigelt, G.; Kraus, S.; Grinin, V.; Tambovtseva, L.; Kishimoto, M.

    2016-05-01

    Aims: The cause of the UX Ori variability in some Herbig Ae/Be stars is still a matter of debate. Detailed studies of the circumstellar environment of UX Ori objects (UXORs) are required to test the hypothesis that the observed drop in photometry might be related to obscuration events. Methods: Using near- and mid-infrared interferometric AMBER and MIDI observations, we resolved the inner circumstellar disk region around UX Ori. Results: We fitted the K-, H-, and N-band visibilities and the spectral energy distribution (SED) of UX Ori with geometric and parametric disk models. The best-fit K-band geometric model consists of an inclined ring and a halo component. We obtained a ring-fit radius of 0.45 ± 0.07 AU (at a distance of 460 pc), an inclination of 55.6 ± 2.4°, a position angle of the system axis of 127.5 ± 24.5°, and a flux contribution of the over-resolved halo component to the total near-infrared excess of 16.8 ± 4.1%. The best-fit N-band model consists of an elongated Gaussian with a HWHM ~ 5 AU of the semi-major axis and an axis ration of a/b ~ 3.4 (corresponding to an inclination of ~72°). With a parametric disk model, we fitted all near- and mid-infrared visibilities and the SED simultaneously. The model disk starts at an inner radius of 0.46 ± 0.06 AU with an inner rim temperature of 1498 ± 70 K. The disk is seen under an nearly edge-on inclination of 70 ± 5°. This supports any theories that require high-inclination angles to explain obscuration events in the line of sight to the observer, for example, in UX Ori objects where orbiting dust clouds in the disk or disk atmosphere can obscure the central star. Based on observations made with ESO telescopes at Paranal Observatory under program IDs: 090.C-0769, 074.C-0552.

  8. Hubble Sees the Force Awakening in a Newborn Star

    NASA Image and Video Library

    2015-12-17

    In the center of this image from the Hubble Space Telescope, partially obscured by a dark cloud of dust, a newborn star shoots twin jets out into space as a sort of birth announcement to the universe.

  9. The Orion Bullets: New GEMS MCAO images

    NASA Astrophysics Data System (ADS)

    Ginsburg, Adam; Bally, John; Youngblood, Allison

    2013-07-01

    The Orion A molecular cloud (OMC1) is the nearest site of massive star formation at a distance of 414 pc. The BN/KL region within it contains signs of a massive explosion triggered 500 years ago by decay of a non- hierarchical multiple system of massive stars. We present observations of the OMC1 core at high spatial resolution (<0.1") in narrow-band [Fe II] 1.64um and H2 S(1) 1-0 2.12um filters. The new data reveal compact (0.1" to 0.5") knots with unique excitation and chemical properties, unveiling new details about the three-dimensional structure of the explosion. Bright H2 emission from these compact, high proper-motion knots and compact [Fe II] features are consistent with scenario proposed by Bally et al. (2011) in which they are interpreted to be high density (n > 10^8 cm^{-3}) disk fragments launched from within a few AU of a massive star by a > three-body dynamical interaction that led to the ejection of the BN objects and the formation of a compact (separation < few AU) binary, most likely radio source I. The proper motions are as high as 400 km/s, hinting at the enormous energy unleashed in the explosion. The data also unveiled a population of obscured close binary systems. This new population will allow a comparison of embedded young binary systems with the older, un-obscured, visual binary population to test models of the evolution of multiplicity statistics in the Orion Nebula Cluster.

  10. Unveiling the High Energy Obscured Universe: Hunting Collapsed Objects Physics

    NASA Technical Reports Server (NTRS)

    Ubertini, P.; Bazzano, A.; Cocchi, M.; Natalucci, L.; Bassani, L.; Caroli, E.; Stephen, J. B.; Caraveo, P.; Mereghetti, S.; Villa, G.

    2005-01-01

    A large part of energy from space is coming from collapsing stars (SN, Hypernovae) and collapsed stars (black holes, neutron stars and white dwarfs). The peak of their energy release is in the hard-X and gamma-ray wavelengths where photons are insensitive to absorption and can travel from the edge the Universe or the central core of the Galaxy without loosing the primordial information of energy, time signature and polarization. The most efficient process to produce energetic photons is gravitational accretion of matter from a "normal" star onto a collapsed companion (LGxMcollxdMacc/dtx( 1Rdisc)-dMacc/dt x c2), exceeding by far the nuclear reaction capability to generate high energy quanta. Thus our natural laboratory for "in situ" investigations are collapsed objects in which matter and radiation co-exist in extreme conditions of temperature and density due to gravitationally bent geometry and magnetic fields. This is a unique opportunity to study the physics of accretion flows in stellar mass and super-massive Black Holes (SMBHs), plasmoids generated in relativistic jets in galactic microQSOs and AGNs, ionised plasma interacting at the touching point of weakly magnetized NS surface, GRB/Supernovae connection, and the mysterious origins of "dark" GRB and X-ray flash.

  11. On the Newtonian and Spin-induced Perturbations Felt by the Stars Orbiting around the Massive Black Hole in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Zhang, Fupeng; Iorio, Lorenzo

    2017-01-01

    The S-stars discovered in the Galactic center are expected to provide unique dynamical tests of the Kerr metric of the massive black hole (MBH) that they orbit. In order to obtain unbiased measurements of its spin and the related relativistic effects, a comprehensive understanding of the gravitational perturbations of the stars and stellar remnants around the MBH is quite essential. Here, we study the perturbations on the observables of a typical target star, I.e., the apparent orbital motion and the redshift, due to both the spin-induced relativistic effects and the Newtonian attractions of a single object or a cluster of disturbing objects. We find that, in most cases, the Newtonian perturbations on the observables are mainly attributed to the perturbed orbital period of the target star rather than the Newtonian orbital precessions. Looking at the currently detected star S2/S0-2, we find that its spin-induced effects are very likely obscured by the gravitational perturbations from the star S0-102 alone. We also investigate and discuss the Newtonian perturbations on a hypothetical S-star located inside the orbits of those currently detected. By considering a number of possible stellar distributions near the central MBH, we find that the spin-induced effects on the apparent position and redshift dominate over the stellar perturbations for target stars with orbital semimajor axis smaller than 100-400 au if the MBH is maximally spinning. Our results suggest that, in principle, the stellar perturbations can be removed because they have morphologies distinct from those of the relativistic Kerr-type signatures.

  12. ON THE NEWTONIAN AND SPIN-INDUCED PERTURBATIONS FELT BY THE STARS ORBITING AROUND THE MASSIVE BLACK HOLE IN THE GALACTIC CENTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fupeng; Iorio, Lorenzo, E-mail: zhangfp7@mail.sysu.edu.cn, E-mail: lorenzo.iorio@libero.it

    2017-01-10

    The S-stars discovered in the Galactic center are expected to provide unique dynamical tests of the Kerr metric of the massive black hole (MBH) that they orbit. In order to obtain unbiased measurements of its spin and the related relativistic effects, a comprehensive understanding of the gravitational perturbations of the stars and stellar remnants around the MBH is quite essential. Here, we study the perturbations on the observables of a typical target star, i.e., the apparent orbital motion and the redshift, due to both the spin-induced relativistic effects and the Newtonian attractions of a single object or a cluster ofmore » disturbing objects. We find that, in most cases, the Newtonian perturbations on the observables are mainly attributed to the perturbed orbital period of the target star rather than the Newtonian orbital precessions. Looking at the currently detected star S2/S0-2, we find that its spin-induced effects are very likely obscured by the gravitational perturbations from the star S0-102 alone. We also investigate and discuss the Newtonian perturbations on a hypothetical S-star located inside the orbits of those currently detected. By considering a number of possible stellar distributions near the central MBH, we find that the spin-induced effects on the apparent position and redshift dominate over the stellar perturbations for target stars with orbital semimajor axis smaller than 100–400 au if the MBH is maximally spinning. Our results suggest that, in principle, the stellar perturbations can be removed because they have morphologies distinct from those of the relativistic Kerr-type signatures.« less

  13. Sensitive radio survey of obscured quasar candidates

    NASA Astrophysics Data System (ADS)

    Alexandroff, Rachael M.; Zakamska, Nadia L.; van Velzen, Sjoert; Greene, Jenny E.; Strauss, Michael A.

    2016-12-01

    We study the radio properties of moderately obscured quasars in samples at both low (z ˜ 0.5) and high (z ˜ 2.5) redshift to understand the role of radio activity in accretion, using the Karl G. Jansky Very Large Array (VLA) at 6.0 GHz and 1.4 GHz. Our z ˜ 2.5 sample consists of optically selected obscured quasar candidates, all of which are radio-quiet, with typical radio luminosities of νLν[1.4 GHz] ≲ 1040 erg s-1. Only a single source is individually detected in our deep (rms˜10 μJy) exposures. This population would not be identified by radio-based selection methods used for distinguishing dusty star-forming galaxies and obscured active nuclei. In our pilot A-array study of z ˜ 0.5 radio-quiet quasars, we spatially resolve four of five objects on scales ˜5 kpc and find they have steep spectral indices with an average value of α = -0.75. Therefore, radio emission in these sources could be due to jet-driven or radiatively driven bubbles interacting with interstellar material on the scale of the host galaxy. Finally, we also study the additional population of ˜200 faint ( ˜ 40 μJy-40 mJy) field radio sources observed over ˜120 arcmin2 of our data. 60 per cent of these detections (excluding our original targets) are matched in the Sloan Digital Sky Survey (SDSS) and/or Wide-Field Infrared Survey Explorer (WISE) and are, in roughly equal shares, active galactic nuclei (AGN) at a broad range of redshifts, passive galaxies with no other signs of nuclear activity and infrared-bright but optically faint sources. Spectroscopically or photometrically confirmed star-forming galaxies constitute only a small minority of the matches. Such sensitive radio surveys allow us to address important questions of AGN evolution and evaluate the AGN contribution to the radio-quiet sky.

  14. Chandra Reveals Heavy Obscuration and Circumnuclear Star Formation in Seyfert 2 Galaxy NGC 4968

    NASA Astrophysics Data System (ADS)

    LaMassa, Stephanie M.; Yaqoob, Tahir; Levenson, N. A.; Boorman, Peter; Heckman, Timothy M.; Gandhi, Poshak; Rigby, Jane R.; Urry, C. Megan; Ptak, Andrew F.

    2017-01-01

    We present the Chandra imaging and spectral analysis of NGC 4968, a nearby (z = 0.00986) Seyfert 2 galaxy. We discover extended (˜1 kpc) X-ray emission in the soft band (0.5-2 keV) that is neither coincident with the narrow line region nor the extended radio emission. Based on spectral modeling, it is linked to on-going star formation (˜2.6-4 M⊙ yr-1). The soft emission at circumnuclear scales (inner ˜400 pc) originates from hot gas, with kT ˜ 0.7 keV, while the most extended thermal emission is cooler (kT ˜ 0.3 keV). We refine previous measurements of the extreme Fe Kα equivalent width in this source ({EW}={2.5}-1.0+2.6 {keV}), which suggests the central engine is completely embedded within Compton-thick levels of obscuration. Using physically motivated models fit to the Chandra spectrum, we derive a Compton-thick column density (NH > 1.25 × 1024 cm-2) and an intrinsic hard (2-10 keV) X-ray luminosity of ˜3-8 × 1042 erg s-1 (depending on the presumed geometry of the obscurer), which is over two orders of magnitude larger than that observed. The large Fe Kα EW suggests a spherical covering geometry, which could be confirmed with X-ray measurements above 10 keV. NGC 4968 is similar to other active galaxies that exhibit extreme Fe Kα EWs (I.e., >2 keV) in that they also contain on-going star formation. This work supports the idea that gas associated with nuclear star formation may increase the covering factor of the enshrouding gas and play a role in obscuring active galactic nuclei.

  15. NuSTAR Search for Hard X-ray Emission from the Star Formation Regions in Sh2-104

    NASA Astrophysics Data System (ADS)

    Gotthelf, Eric V.

    2016-04-01

    We present NuSTAR hard X-ray observations of Sh2-104, a compact Hii region containing several young massive stellar clusters (YMSCs). We have detected distinct hard X-ray sources coincident with localized VERITAS TeV emission recently resolved from the giant gamma-ray complex MGRO J2019+37 in the Cygnus region. Faint, diffuse X-ray emission coincident with the eastern YMSC in Sh2-104 is likely the result of colliding winds of component stars. Just outside the radio shell of Sh2-104 lies 3XMM J201744.7+365045 and nearby nebula NuSTAR J201744.3+364812, whose properties are most consistent with extragalactic objects. The combined XMM-Newton and NuSTAR spectrum of 3XMM J201744.7+365045 is well-fit to an absorbed power-law model with NH = (3.1+/-1.0)E22 1/cm^2 and photon index Gamma = 2.1+/-0.1. Based on possible long-term flux variation and lack of detected pulsations (<43% modulation), this object is likely a background AGN rather than a Galactic pulsar. The spectrum of the NuSTAR nebula shows evidence of an emission line at E = 5.6 keV suggesting an optically obscured galaxy cluster at z = 0.19+/-0.02 (d = 800 Mpc) and Lx = 1.2E44 erg/s. Follow-up Chandra observations of Sh2-104 will help identify the nature of the X-ray sources and their relation to MGRO J2019+37.

  16. Mid-infrared luminous quasars in the GOODS-Herschel fields: a large population of heavily obscured, Compton-thick quasars at z ≈ 2

    NASA Astrophysics Data System (ADS)

    Del Moro, A.; Alexander, D. M.; Bauer, F. E.; Daddi, E.; Kocevski, D. D.; McIntosh, D. H.; Stanley, F.; Brandt, W. N.; Elbaz, D.; Harrison, C. M.; Luo, B.; Mullaney, J. R.; Xue, Y. Q.

    2016-02-01

    We present the infrared (IR) and X-ray properties of a sample of 33 mid-IR luminous quasars (νL6 μm ≥ 6 × 1044 erg s-1) at redshift z ≈ 1-3, identified through detailed spectral energy distribution analyses of distant star-forming galaxies, using the deepest IR data from Spitzer and Herschel in the GOODS-Herschel fields. The aim is to constrain the fraction of obscured, and Compton-thick (CT, NH > 1.5 × 1024 cm-2) quasars at the peak era of nuclear and star formation activities. Despite being very bright in the mid-IR band, ≈30 per cent of these quasars are not detected in the extremely deep 2 and 4 Ms Chandra X-ray data available in these fields. X-ray spectral analysis of the detected sources reveals that the majority (≈67 per cent) are obscured by column densities NH > 1022 cm-2; this fraction reaches ≈80 per cent when including the X-ray-undetected sources (9 out of 33), which are likely to be the most heavily obscured, CT quasars. We constrain the fraction of CT quasars in our sample to be ≈24-48 per cent, and their space density to be Φ = (6.7 ± 2.2) × 10-6 Mpc-3. From the investigation of the quasar host galaxies in terms of star formation rates (SFRs) and morphological distortions, as a sign of galaxy mergers/interactions, we do not find any direct relation between SFRs and quasar luminosity or X-ray obscuration. On the other hand, there is tentative evidence that the most heavily obscured quasars have, on average, more disturbed morphologies than the unobscured/moderately obscured quasar hosts, which preferentially live in undisturbed systems. However, the fraction of quasars with disturbed morphology amongst the whole sample is ≈40 per cent, suggesting that galaxy mergers are not the main fuelling mechanism of quasars at z ≈ 2.

  17. Sakurai's Object Continues to Brighten and Expand

    NASA Astrophysics Data System (ADS)

    Hinkle, Kenneth H.; Joyce, Richard R.; Matheson, Thomas

    2017-01-01

    Sakurai's Object (V4334 Sgr), the prototype final flash object discovered in the mid-1990s, was observed to undergo rapid cooling becoming as faint as 25th magnitude at K during the first decade of the 21st century. A review of imaging data suggests the minimum K magnitude occurred about 2006. Sakuarai's Object was re-acquired at K in 2010. Between 2010 Sep and 2013 Apr Sakurai's object brightened more than 2 magnitudes to K=14.2. Here we report on a Gemini-NIRI K band AO image obtained in 2016 July. The Ks magnitude was 13.35. The AO image also records the continuing expansion of the debris cloud. The central star remains obscured. Spectro-spatial NIFS images of the spectral region around He I 1.0830 micron and a GMOS optical spectrum, both observed in 2015, will also be displayed.

  18. Tracking the Obscured Star Formation Along the Complete Evolutionary Merger Sequence of LIRGs

    NASA Astrophysics Data System (ADS)

    Diaz-Santos, Tanio

    2014-10-01

    We propose to obtain WFC3 narrow-band Pa-beta imaging of a sample of 24 nearby luminous infrared (IR) galaxies (LIRGs) from the Great Observatories All-sky LIRG survey (GOALS) selected to be in advanced stages of interaction. LIRGs account for half of the obscured star formation of the Universe at z ~ 1-2, and they represent a key population in galaxy formation and evolution. We will use the Pa-beta images to trace the ionized gas in LIRGs and study its spatial distribution from scales of ~ 100 pc to up to several kpc, probing the youngest, massive stars formed in the most buried environments of LIRGs due to the interaction process. This will allow us to measure how the gas in the center of mergers is converted into stars, which eventually leads to the build-up of a nuclear stellar cusp and the "inside-out" growth of bulges. We will also create spatially-resolved Pa-beta equivalent width maps to search for age gradients across the galaxies and correlate the distribution of Pa-beta emission with that of un-obscured star clusters detected in the UV and optical with HST on the same spatial scales. Finally, we will combine our data with previous studies mainly focused on isolated and early-stage interacting LIRG systems to analyze the size and compactness of the starburst along the complete merger sequence of LIRGs. The requested data represent a critical missing piece of information that will allow us to understand both the physics of merger-induced star formation and the applicability of local LIRGs as templates for high-z interacting starburst galaxies.

  19. NuSTAR Resolves the First Dual AGN above 10 keV in SWIFT J2028.5+2543

    NASA Astrophysics Data System (ADS)

    Koss, Michael J.; Glidden, Ana; Baloković, Mislav; Stern, Daniel; Lamperti, Isabella; Assef, Roberto; Bauer, Franz; Ballantyne, David; Boggs, Steven E.; Craig, William W.; Farrah, Duncan; Fürst, Felix; Gandhi, Poshak; Gehrels, Neil; Hailey, Charles J.; Harrison, Fiona A.; Markwardt, Craig; Masini, Alberto; Ricci, Claudio; Treister, Ezequiel; Walton, Dominic J.; Zhang, William W.

    2016-06-01

    We have discovered heavy obscuration in the dual active galactic nucleus (AGN) in the Swift/Burst Alert Telescope (BAT) source SWIFT J2028.5+2543 using Nuclear Spectroscopic Telescope Array (NuSTAR). While an early XMM-Newton study suggested the emission was mainly from NGC 6921, the superior spatial resolution of NuSTAR above 10 keV resolves the Swift/BAT emission into two sources associated with the nearby galaxies MCG +04-48-002 and NGC 6921 (z = 0.014) with a projected separation of 25.3 kpc (91″). NuSTAR's sensitivity above 10 keV finds both are heavily obscured to Compton-thick levels (N H ≈ (1-2) × 1024 cm-2) and contribute equally to the BAT detection ({L}10-50 {keV}{{int}} ≈ 6 × 1042 erg s-1). The observed luminosity of both sources is severely diminished in the 2-10 keV band ({L} 2-10 {keV}{{obs}}\\lt 0.1× {L} 2-10 {keV}{{int}}), illustrating the importance of >10 keV surveys like those with NuSTAR and Swift/BAT. Compared to archival X-ray data, MCG +04-48-002 shows significant variability (>3) between observations. Despite being bright X-ray AGNs, they are difficult to detect using optical emission-line diagnostics because MCG +04-48-002 is identified as a starburst/composite because of the high rates of star formation from a luminous infrared galaxy while NGC 6921 is only classified as a LINER using line detection limits. SWIFT J2028.5+2543 is the first dual AGN resolved above 10 keV and is the second most heavily obscured dual AGN discovered to date in the X-rays other than NGC 6240.

  20. The AGN-Star Formation Connection: Future Prospects with JWST

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Allison; Alberts, Stacey; Pope, Alexandra; Barro, Guillermo; Bonato, Matteo; Kocevski, Dale D.; Pérez-González, Pablo; Rieke, George H.; Rodríguez-Muñoz, Lucia; Sajina, Anna; Grogin, Norman A.; Mantha, Kameswara Bharadwaj; Pandya, Viraj; Pforr, Janine; Salvato, Mara; Santini, Paola

    2017-11-01

    The bulk of the stellar growth over cosmic time is dominated by IR-luminous galaxies at cosmic noon (z=1{--}2), many of which harbor a hidden active galactic nucleus (AGN). We use state-of-the-art infrared color diagnostics, combining Spitzer and Herschel observations, to separate dust-obscured AGNs from dusty star-forming galaxies (SFGs) in the CANDELS and COSMOS surveys. We calculate 24 μm counts of SFGs, AGN/star-forming “Composites,” and AGNs. AGNs and Composites dominate the counts above 0.8 mJy at 24 μm, and Composites form at least 25% of an IR sample even to faint detection limits. We develop methods to use the Mid-Infrared Instrument (MIRI) on JWST to identify dust-obscured AGNs and Composite galaxies from z˜ 1{--}2. With the sensitivity and spacing of MIRI filters, we will detect >4 times as many AGN hosts as with Spitzer/IRAC criteria. Any star formation rates based on the 7.7 μm PAH feature (likely to be applied to MIRI photometry) must be corrected for the contribution of the AGN, or the star formation rate will be overestimated by ˜35% for cases where the AGN provides half the IR luminosity and ˜50% when the AGN accounts for 90% of the luminosity. Finally, we demonstrate that our MIRI color technique can select AGNs with an Eddington ratio of {λ }{Edd}˜ 0.01 and will identify AGN hosts with a higher specific star formation rate than X-ray techniques alone. JWST/MIRI will enable critical steps forward in identifying and understanding dust-obscured AGNs and the link to their host galaxies.

  1. NGC1448 and IC 3639: Two Concealed Black Holes Lurking in our Cosmic Backyard Unveiled by NuSTAR

    NASA Astrophysics Data System (ADS)

    Stern, Daniel; Boorman, Peter; Annuar, Ady; Gandhi, Poshak; Alexander, D. M.; Lansbury, George B.; Asmus, Daniel; Ballantyne, David R.; Bauer, Franz E.; Boggs, Steven E.; Brandt, W. Niel; Brightman, Murray; Christensen, Finn; Craig, William W.; Farrah, Duncan; Goulding, Andy D.; Hailey, Charles James; Harrison, Fiona; Hoenig, Sebastian; Koss, Michael; LaMassa, Stephanie M.; Masini, Alberto; Murray, Stephen S.; Ricci, Claudio; Risaliti, Guido; Rosario, David J.; Stanley, Flora; Zhang, William

    2017-01-01

    We present NuSTAR observations of two nearby Active Galactic Nuclei (AGN), NGC 1448 and IC 3639, located at distances of 12 Mpc and 54 Mpc, respectively. NuSTAR high-energy X-ray (> 10 keV) observations, combined with archival lower energy X-ray observations from Chandra and Suzaku, reveal both sources to contain heavily obscured, accreting super-massive black holes. NGC 1448 is one of the nearest luminous galaxies to the Milky Way, yet the AGN at its centre was only discovered in 2009. Using state-of-the-art models, we constrain the obscuring column density (NH) of gas concealing both AGN, finding them to be extreme, with NH values well into the Compton-thick (CT) regime with N(H) > 3e24 /cm2. NGC 1448 has an intrinsic X-ray luminosity of L(24 keV) ˜ 5e40 erg/s, making it one of the lowest luminosity CT AGN known. IC 3639, on the other hand, has one of the strongest iron fluorescence emission lines known. We also discuss multi-wavelength diagnostics at optical and mid-infrared energies as indirect indicators to penetrate through the obscuring veils and probe the intrinsic properties of the AGN. Through detailed studies such as we present here, NuSTAR is showing that there are still plenty of interesting discoveries awaiting to be made, even in the nearby Universe.

  2. Obscured Active Galactic Nuclei in Luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Shier, L. M.; Rieke, M. J.; Rieke, G. H.

    1996-10-01

    We examine the nature of the central power source in very luminous infrared galaxies. The infrared properties of the galaxies, including their far-infrared and 2.2 micron fluxes, CO indices, and Brackett line fluxes are compared to models of starburst stellar populations. Among seven galaxies we found two dominated by emission from young stars, two dominated by emission from an AGN, and three transition cases. Our results are consistent with evidence for active nuclei in the same galaxies at other wavelengths. Nuclear mass measurements obtained for the galaxies indicate an initial mass function biased toward high-mass stars in two galaxies. After demonstrating our methods in well-studied galaxies, we define complete samples of high luminosity and ultraluminous galaxies. We find that the space density of embedded and unembedded quasars in the local universe is similar for objects of similar luminosity. If quasars evolve from embedded sources to optically prominent objects, it appears that the lifetime of a quasar is no more than about 108 yr.

  3. Hot Dust Obscured Galaxies with Excess Blue Light: Dual AGN or Single AGN Under Extreme Conditions?

    NASA Astrophysics Data System (ADS)

    Assef, R. J.; Walton, D. J.; Brightman, M.; Stern, D.; Alexander, D.; Bauer, F.; Blain, A. W.; Diaz-Santos, T.; Eisenhardt, P. R. M.; Finkelstein, S. L.; Hickox, R. C.; Tsai, C.-W.; Wu, J. W.

    2016-03-01

    Hot dust-obscured galaxies (Hot DOGs) are a population of hyper-luminous infrared galaxies identified by the Wide-field Infrared Survey Explorer (WISE) mission from their very red mid-IR colors, and characterized by hot dust temperatures (T > 60 K). Several studies have shown clear evidence that the IR emission in these objects is powered by a highly dust-obscured active galactic nucleus (AGN) that shows close to Compton-thick absorption at X-ray wavelengths. Thanks to the high AGN obscuration, the host galaxy is easily observable, and has UV/optical colors usually consistent with those of a normal galaxy. Here we discuss a sub-population of eight Hot DOGs that show enhanced rest-frame UV/optical emission. We discuss three scenarios that might explain the excess UV emission: (I) unobscured light leaked from the AGN by reflection over the dust or by partial coverage of the accretion disk; (II) a second unobscured AGN in the system; or (III) a luminous young starburst. X-ray observations can help discriminate between these scenarios. We study in detail the blue excess Hot DOG WISE J020446.13-050640.8, which was serendipitously observed by Chandra/ACIS-I for 174.5 ks. The X-ray spectrum is consistent with a single, hyper-luminous, highly absorbed AGN, and is strongly inconsistent with the presence of a secondary unobscured AGN. Based on this, we argue that the excess blue emission in this object is most likely either due to reflection or a co-eval starburst. We favor the reflection scenario as the unobscured star formation rate needed to power the UV/optical emission would be ≳1000 M⊙ yr-1. Deep polarimetry observations could confirm the reflection hypothesis.

  4. HOT DUST OBSCURED GALAXIES WITH EXCESS BLUE LIGHT: DUAL AGN OR SINGLE AGN UNDER EXTREME CONDITIONS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assef, R. J.; Diaz-Santos, T.; Walton, D. J.

    Hot dust-obscured galaxies (Hot DOGs) are a population of hyper-luminous infrared galaxies identified by the Wide-field Infrared Survey Explorer (WISE) mission from their very red mid-IR colors, and characterized by hot dust temperatures (T > 60 K). Several studies have shown clear evidence that the IR emission in these objects is powered by a highly dust-obscured active galactic nucleus (AGN) that shows close to Compton-thick absorption at X-ray wavelengths. Thanks to the high AGN obscuration, the host galaxy is easily observable, and has UV/optical colors usually consistent with those of a normal galaxy. Here we discuss a sub-population of eight Hot DOGsmore » that show enhanced rest-frame UV/optical emission. We discuss three scenarios that might explain the excess UV emission: (i) unobscured light leaked from the AGN by reflection over the dust or by partial coverage of the accretion disk; (ii) a second unobscured AGN in the system; or (iii) a luminous young starburst. X-ray observations can help discriminate between these scenarios. We study in detail the blue excess Hot DOG WISE J020446.13–050640.8, which was serendipitously observed by Chandra/ACIS-I for 174.5 ks. The X-ray spectrum is consistent with a single, hyper-luminous, highly absorbed AGN, and is strongly inconsistent with the presence of a secondary unobscured AGN. Based on this, we argue that the excess blue emission in this object is most likely either due to reflection or a co-eval starburst. We favor the reflection scenario as the unobscured star formation rate needed to power the UV/optical emission would be ≳1000 M{sub ⊙} yr{sup −1}. Deep polarimetry observations could confirm the reflection hypothesis.« less

  5. The Infrared Telescope Facility (IRTF) Spectral Library: Cool Stars

    NASA Astrophysics Data System (ADS)

    Rayner, John T.; Cushing, Michael C.; Vacca, William D.

    2009-12-01

    We present a 0.8-5 μm spectral library of 210 cool stars observed at a resolving power of R ≡ λ/Δλ ~ 2000 with the medium-resolution infrared spectrograph, SpeX, at the 3.0 m NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. The stars have well-established MK spectral classifications and are mostly restricted to near-solar metallicities. The sample not only contains the F, G, K, and M spectral types with luminosity classes between I and V, but also includes some AGB, carbon, and S stars. In contrast to some other spectral libraries, the continuum shape of the spectra is measured and preserved in the data reduction process. The spectra are absolutely flux calibrated using the Two Micron All Sky Survey photometry. Potential uses of the library include studying the physics of cool stars, classifying and studying embedded young clusters and optically obscured regions of the Galaxy, evolutionary population synthesis to study unresolved stellar populations in optically obscured regions of galaxies and synthetic photometry. The library is available in digital form from the IRTF Web site.

  6. Uncovering Heavily Obscured AGN with WISE and NuSTAR

    NASA Astrophysics Data System (ADS)

    Hickox, Ryan C.; Carroll, Christopher M.; Yan, Wei; DiPompeo, Michael A.; Hainline, Kevin N.; NuSTAR Obscured AGN Team

    2018-01-01

    Supermassive black holes gain their mass through accretion as active galactic nuclei (AGN), but it is now clear that a large fraction of this growth is "hidden" behind large columns of gas and dust. Of particular interest are Compton-thick (CT) AGN, with columns NH > 1024 cm-2, that have been difficult to identify using optical or soft X-ray surveys. We will present two studies of heavily obscured AGN that aim to uncover more of the full population of "hidden" growing black holes: (1) Analysis of the spectral energy distributions of millions of galaxies with photometry from WISE (mid-IR), UKIDSS (near-IR), and SDSS (optical), that uncovers large populations of weak or heavily buried AGN, and (2) NuSTAR observations of a sample of candidate highly obscured AGN, selected from WISE and SDSS photometry,and confirmed using SALT and Keck spectroscopy. The NuSTAR data reveal the existence of powerful CT quasars with extremely large columns NH > 1025 cm-2, which may represent a significant fraction of previously hidden black hole growth. This work is supported by NASA grant numbers NNX16AN48G and NNX15AP24G, and the NSF through grant numbers 1515364 and 1554584.

  7. A COLLISION IN THE HEART OF A GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Hubble Space Telescope's Near Infrared Camera and Multi-Object Spectrometer (NICMOS) has uncovered a collision between two spiral galaxies in the heart of the peculiar galaxy called Arp 220. The collision has provided the spark for a burst of star formation. The NICMOS image captures bright knots of stars forming in the heart of Arp 220. The bright, crescent moon-shaped object is a remnant core of one of the colliding galaxies. The core is a cluster of 1 billion stars. The core's half-moon shape suggests that its bottom half is obscured by a disk of dust about 300 light-years across. This disk is embedded in the core and may be swirling around a black hole. The core of the other colliding galaxy is the bright round object to the left of the crescent moon-shaped object. Both cores are about 1,200 light-years apart and are orbiting each other. Arp 220, located 250 million light-years away in the constellation Serpens, is the 220th object in Halton Arp's Atlas of Peculiar Galaxies. The image was taken with three filters. The colors have been adjusted so that, in this infrared image, blue corresponds to shorter wavelengths, red to longer wavelengths. The image was taken April 5, 1997. Credits: Rodger Thompson, Marcia Rieke, Glenn Schneider (University of Arizona) and Nick Scoville (California Institute of Technology), and NASA Image files in GIF and JPEG format and captions may be accessed on the Internet via anonymous ftp from ftp.stsci.edu in /pubinfo.

  8. Two protostar candidates in the bright-rimmed dark cloud LDN 1206

    NASA Technical Reports Server (NTRS)

    Ressler, Michael E.; Shure, Mark

    1991-01-01

    The discovery of several near IR objects associated with two IRAS point sources in the LDN 1206 region is reported. IRAS 22272 + 6358A is probably a 'protostar' which is seen only in scattered light at near-IR wavelengths because of heavy obscuration by an almost edge-on circumstellar disk. In contrast, IRAS 22272 + 6358B is directly visible at these wavelengths and is perhaps an object which lies between protostars and T-Tauri stars in its evolution. Both direct and polarimetric K-band images of the region are presented, as well as spectral energy distributions constructed from J, H, K, L, L-prime, and M data and published far-IR and mm data.

  9. SUBARU/HDS STUDY OF HE 1015-2050: SPECTRAL EVIDENCE OF R CORONAE BOREALIS LIGHT DECLINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goswami, Aruna; Aoki, Wako, E-mail: aruna@iiap.res.in

    2013-02-01

    Hydrogen deficiency and a sudden optical light decline of about 6-8 mag are two principal characteristics of R Coronae Borealis (RCB) stars. The high latitude carbon star HE 1015-2050 was identified as a hydrogen-deficient carbon star from low-resolution spectroscopy. Photometric data of the Catalina Real-Time Transient Survey gathered between 2006 February and 2012 May indicate that the object exhibits no variability. However, a high-resolution (R {approx} 50, 000) optical spectrum of this object obtained with the 8.2 m Subaru telescope using High Dispersion Spectrograph on the 2012 January 13 offers sufficient spectral evidence that the object is a cool HdCmore » star of RCB type undergoing light decline. In contrast to the Na I D broad absorption features seen in the low-resolution spectra on several occasions, the high-resolution spectrum exhibits Na I D{sub 2} and D{sub 1} features in emission. A few emission lines due to Mg I, Sc II, Ti I, Ti II, Fe II, and Ba I are also observed in the spectrum of this object for the first time. Such emission features combined with neutral and singly ionized lines of Ca, Ti, Fe, etc., in absorption are reportedly seen in RCBs spectra in the early stage of decline or during the recovery to maximum. Further, the light decline of RCBs is ascribed to the formation of a cloud of soot that obscures the visible photosphere. The presence of such circumstellar material is evident from the polarimetric observations with an estimated V-band percentage polarization of {approx}1.7% for this object.« less

  10. The Compton-thick AGN fraction from the deepest X-ray spectroscopy in the CDF-S

    NASA Astrophysics Data System (ADS)

    Corral, A.; Georgantopoulos, I.; Akylas, A.; Ranalli, P.

    2017-10-01

    Highly obscured AGN, especially Compton-thick (CT) AGN, likely play a key role in the galaxy-AGN co-evolution scenario. They would comprise the early stages of AGN activity, preceding the AGN-feedback/star-formation quenching phase, during which most of both the SMBH and galaxy growth take place. However, the actual CT fraction among the AGN population is still largely unconstrained. The most reliable way of confirming the obscured nature of an AGN by X-ray spectroscopy, but very deep observations are needed to extend local analyses to larger distances. We will present the X-ray spectral analysis of the deepest X-ray data obtained to date, the almost 7Ms observation of the Chandra Deep Field South. The unprecedented depth of this survey allow us to carry out reliable spectral analyses down to a flux limit of 10^{-16} erg cm^{-2} s^{-1} in the hard 2-8 keV band. Besides the new deeper X-ray data, our approach also includes the implementation of Bayesian inference in the determination of the CT fraction. Our results favor X-ray background synthesis models which postulate a moderate fraction (25%) of CT objects among the obscured AGN population.

  11. Charting the Winds that Change the Universe, II The Single Aperture Far Infrared Observatory (SAFIR)

    NASA Technical Reports Server (NTRS)

    Leisawitz, David

    2003-01-01

    The Single Aperture Far Infrared Observatory (SAFIR) will study the birth and evolution of stars and planetary systems so young that they are invisible to optical and near-infrared telescopes such as NGST. Not only does the far-infrared radiation penetrate the obscuring dust clouds that surround these systems, but the protoplanetary disks also emit much of their radiation in the far infrared. Furthermore, the dust reprocesses much of the optical emission from the newly forming stars into this wavelength band. Similarly, the obscured central regions of galaxies, which harbor massive black holes and huge bursts of star formation, can be seen and analyzed in the far infrared. SAFIR will have the sensitivity to see the first dusty galaxies in the universe. For studies of both star-forming regions in our galaxy and dusty galaxies at high redshifts, SAFIR will be essential in tying together information that NGST will obtain on these systems at shorter wavelengths and that ALMA will obtain at longer wavelengths.

  12. Charting the Winds that Change the Universe, II: The Single Aperture Far Infrared Observatory (SAFIR)

    NASA Technical Reports Server (NTRS)

    Rieke, G. H.; Benford, D. J.; Harvey, P. M.; Lawrence, C. R.; Leisawitz, D. T.; Lester, D. F.; Mather, J. C.; Stacey, G. J.; Werner, M. W.; Yorke, H. W.

    2004-01-01

    SAFIR will study the birth and evolution of stars and planetary systems so young that they are invisible to optical and near-infrared telescopes such as NGST. Not only does the far-infrared radiation penetrate the obscuring dust clouds that surround these systems, but the protoplanetary disks also emit much of their radiation in the far infrared. Furthermore, the dust reprocesses much of the optical emission from the newly forming stars into this wavelength band. Similarly, the obscured central regions of galaxies, which harbor massive black holes and huge bursts of star formation, can be seen and analyzed in the far infrared. SAFIR will have the sensitivity to see the first dusty galaxies in the universe. For studies of both star-forming regions in our galaxy and dusty galaxies at high redshifts, SAFIR will be essential in tying together information that NGST will obtain on these systems at shorter wavelengths and that ALMA will obtain at longer wavelengths.

  13. Serendipitous discovery of an irregular and a semi-regular type variable in the field of BY Draconis

    NASA Astrophysics Data System (ADS)

    Messina, S.; Marino, G.; Rodonò, M.; Cutispoto, G.

    2000-12-01

    We present new evidence of the optical variability of two red giant stars: HD 172468 and HK Dra, based on photometric and spectroscopic observations. These stars had been included as check stars in our photometric monitoring program of BY Dra and turned out to be variable. HD 172468, whereas almost constant for most of the time, suddenly started to drop in brightness to such a low level to become undetectable. We suspect that such an abrupt event may be an ``obscurational'' minimum, that is typical of eruptive RCB stars, or may be due to the variable extinction by circumstellar dust in a young Orion type object. HK Dra, already known as an irregular variable, is characterised by periodic flux modulation with season-to-season changes of the photometric period, as inferred from a periodogram analysis. It also shows changes of the light curve peak-to-peak amplitude and shape. Such a behaviour in giant stars is commonly found among semi-regular giants (SR) at the Asymptotic Giant Branch (AGB). Our radial velocity measurements rule out that HK Dra may be a close binary system.

  14. A Hubble Space Telescope imaging study of four FeLoBAL quasar host galaxies

    NASA Astrophysics Data System (ADS)

    Lawther, D.; Vestergaard, M.; Fan, X.

    2018-04-01

    We study the host galaxies of four Iron Low-Ionization Broad Absorption-line Quasars (FeLoBALs), using Hubble Space Telescope imaging data, investigating the possibility that they represent a transition between an obscured active galactic nucleus (AGN) and an ordinary optical quasar. In this scenario, the FeLoBALs represent the early stage of merger-triggered accretion, in which case their host galaxies are expected to show signs of an ongoing or recent merger. Using PSF subtraction techniques, we decompose the images into host galaxy and AGN components at rest-frame ultraviolet and optical wavelengths. The ultraviolet is sensitive to young stars, while the optical probes stellar mass. In the ultraviolet we image at the BAL absorption trough wavelengths so as to decrease the contrast between the quasar and host galaxy emission. We securely detect an extended source for two of the four FeLoBALs in the rest-frame optical; a third host galaxy is marginally detected. In the rest-frame UV we detect no host emission; this constrains the level of unobscured star formation. Thus, the host galaxies have observed properties that are consistent with those of non-BAL quasars with the same nuclear luminosity, i.e. quiescent or moderately star-forming elliptical galaxies. However, we cannot exclude starbursting hosts that have the stellar UV emission obscured by modest amounts of dust reddening. Thus, our findings also allow the merger-induced young quasar scenario. For three objects, we identify possible close companion galaxies that may be gravitationally interacting with the quasar hosts.

  15. The NuSTAR Extragalactic Surveys: The Number Counts of Active Galactic Nuclei and The Resolved Fraction of The Cosmic X-Ray Background

    DOE PAGES

    Harrison, F. A.; Aird, J.; Civano, F.; ...

    2016-11-07

    Here, we present the 3–8 keV and 8–24 keV number counts of active galactic nuclei (AGNs) identified in the Nuclear Spectroscopic Telescope Array (NuSTAR) extragalactic surveys. NuSTAR has now resolved 33%–39% of the X-ray background in the 8–24 keV band, directly identifying AGNs with obscuring columns up tomore » $$\\sim {10}^{25}\\,{\\mathrm{cm}}^{-2}$$. In the softer 3–8 keV band the number counts are in general agreement with those measured by XMM-Newton and Chandra over the flux range $$5\\times {10}^{-15}\\,\\lesssim $$ S(3–8 keV)/$$\\mathrm{erg}\\,{{\\rm{s}}}^{-1}\\,{\\mathrm{cm}}^{-2}\\,\\lesssim \\,{10}^{-12}$$ probed by NuSTAR. In the hard 8–24 keV band NuSTAR probes fluxes over the range $$2\\times {10}^{-14}\\,\\lesssim $$ S(8–24 keV)/$$\\mathrm{erg}\\,{{\\rm{s}}}^{-1}\\,{\\mathrm{cm}}^{-2}\\,\\lesssim \\,{10}^{-12}$$, a factor ~100 fainter than previous measurements. The 8–24 keV number counts match predictions from AGN population synthesis models, directly confirming the existence of a population of obscured and/or hard X-ray sources inferred from the shape of the integrated cosmic X-ray background. The measured NuSTAR counts lie significantly above simple extrapolation with a Euclidian slope to low flux of the Swift/BAT 15–55 keV number counts measured at higher fluxes (S(15–55 keV) gsim 10-11 $$\\mathrm{erg}\\,{{\\rm{s}}}^{-1}\\,{\\mathrm{cm}}^{-2}$$), reflecting the evolution of the AGN population between the Swift/BAT local ($$z\\lt 0.1$$) sample and NuSTAR's $$z\\sim 1$$ sample. CXB synthesis models, which account for AGN evolution, lie above the Swift/BAT measurements, suggesting that they do not fully capture the evolution of obscured AGNs at low redshifts.« less

  16. A Submillimeter Survey of Dust Continuum Emission in Local Dust-Obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Lee, Jong Chul; Hwang, Ho Seong; Lee, Gwang-Ho

    2015-08-01

    Dusty star-forming galaxies are responsible for the bulk of cosmic star formation at 1

  17. Multi-Wavelength Views of Protostars in IC 1396

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site] Click on individual images below for larger view

    [figure removed for brevity, see original site]

    [figure removed for brevity, see original site]

    [figure removed for brevity, see original site]

    NASA's Spitzer Space Telescope has captured a glowing stellar nursery within a dark globule that is opaque at visible light. These new images pierce through the obscuration to reveal the birth of new protostars, or embryonic stars, and young stars never before seen.

    The Elephant's Trunk Nebula is an elongated dark globule within the emission nebula IC 1396 in the constellation of Cepheus. Located at a distance of 2,450 light-years, the globule is a condensation of dense gas that is barely surviving the strong ionizing radiation from a nearby massive star. The globule is being compressed by the surrounding ionized gas.

    The large composite image above is a product of combining data from the observatory's multiband imaging photometer and the infrared array camera. The thermal emission at 24 microns measured by the photometer (red) is combined with near-infrared emission from the camera at 3.6/4.5 microns (blue) and from 5.8/8.0 microns (green). The colors of the diffuse emission and filaments vary, and are a combination of molecular hydrogen (which tends to be green) and polycyclic aromatic hydrocarbon (brown) emissions.

    Within the globule, a half dozen newly discovered protostars, or embryonic stars, are easily discernible as the bright red-tinted objects, mostly along the southern rim of the globule. These were previously undetected at visible wavelengths due to obscuration by the thick cloud ('globule body') and by dust surrounding the newly forming stars. The newborn stars form in the dense gas because of compression by the wind and radiation from a nearby massive star (located outside the field of view to the left). The winds from this unseen star are also responsible for producing the spectacular filamentary appearance of the globule itself.

    The Spitzer Space Telescope also sees many newly discovered young stars, often enshrouded in dust, which may be starting the nuclear fusion that defines a star. These young stars are too cool to be seen at visible wavelengths. Both the protostars and young stars are bright in the mid-infrared because of their surrounding discs of solid material. A few of the visible-light stars in this image were found to have excess infrared emission, suggesting they are more mature stars surrounded by primordial remnants from their formation, or from crumbling asteroids and comets in their planetary systems.

  18. NuSTAR Observations of Water Megamaser AGN

    NASA Technical Reports Server (NTRS)

    Masini, A.; Comastri, A.; Balokvic, M.; Zaw, I.; Puccetti, S.; Ballantyne, D. R.; Bauer, F. E.; Boggs, S. E.; Brandt, W. N.; Zhang, William W.

    2016-01-01

    Aims. We study the connection between the masing disk and obscuring torus in Seyfert 2 galaxies. Methods. We present a uniform X-ray spectral analysis of the high energy properties of 14 nearby megamaser active galactic nuclei observed by NuSTAR. We use a simple analytical model to localize the maser disk and understand its connection with the torus by combining NuSTAR spectral parameters with the available physical quantities from VLBI mapping.Results. Most of the sources that we analyzed are heavily obscured, showing a column density in excess of approx.10(exp 23) cm(exp -2); in particular, 79% are Compton-thick [NH is greater than 1.5 x 10(exp 24) cm(exp -2)]. When using column densities measured by NuSTAR with the assumption that the torus is the extension of the maser disk, and further assuming a reasonable density profile, we can predict the torus dimensions. They are found to be consistent with mid-IR interferometry parsec-scale observations of Circinus and NGC 1068. In this picture, the maser disk is intimately connected to the inner part of the torus. It is probably made of a large number of molecular clouds that connect the torus and the outer part of the accretion disk, giving rise to a thin disk rotating in most cases in Keplerian or sub-Keplerian motion. This toy model explains the established close connection between water megamaser emission and nuclear obscuration as a geometric effect.

  19. He2-90'S APPEARANCE DECEIVES ASTRONOMERS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronomers using NASA's Hubble Space Telescope have stumbled upon a mysterious object that is grudgingly yielding clues to its identity. A quick glance at the Hubble picture at top shows that this celestial body, called He2-90, looks like a young, dust-enshrouded star with narrow jets of material streaming from each side. But it's not. The object is classified as a planetary nebula, the glowing remains of a dying, lightweight star. But the Hubble observations suggest that it may not fit that classification, either. The Hubble astronomers now suspect that this enigmatic object may actually be a pair of aging stars masquerading as a single youngster. One member of the duo is a bloated red giant star shedding matter from its outer layers. This matter is then gravitationally captured in a rotating, pancake-shaped accretion disk around a compact partner, which is most likely a young white dwarf (the collapsed remnant of a sun-like star). The stars cannot be seen in the Hubble images because a lane of dust obscures them. The Hubble picture at top shows a centrally bright object with jets, appearing like strings of beads, emanating from both sides of center. (The other streaks of light running diagonally from He2-90 are artificial effects of the telescope's optical system.) Each jet possesses at least six bright clumps of gas, which are speeding along at rates estimated to be at least 375,000 miles an hour (600,000 kilometers an hour). These gaseous salvos are being ejected into space about every 100 years, and may be caused by periodic instabilities in He2-90's accretion disk. The jets from very young stars behave in a similar way. Deep images taken from terrestrial observatories show each jet extending at least 100,000 astronomical units (one astronomical unit equals the Earth-Sun distance, 93 million miles). The jets' relatively modest speed implies that one member of the duo is a white dwarf. Observations by the Compton Gamma-Ray Observatory, however, discovered a gamma-ray source in the vicinity of He2-90, suggesting that the companion may be a neutron star or a black hole (the compact corpses of dying, massive stars). But the jets from accretion disks around neutron stars or black holes travel at a few tenths the speed of light, much faster than the plodding pace of He2-90's jets. The Hubble astronomers are planning more observations to pinpoint the gamma-ray source to determine whether it is associated with He2-90. An accretion disk needs gravity to form. For gravity to create He2-90's disk, the pair of stars must reside at a cozy distance from each other: within about 10 astronomical units. Although the astronomers are uncertain about the details, they believe that magnetic fields associated with the accretion disk produce and constrict the pencil-thin jets seen in the Hubble image. The close-up Hubble photo at bottom shows a dark, flaring, disk-like structure [off-center] bisecting the bright light from the object. The disk is seen edge-on. Although too large to be an accretion disk, this dark, flaring disk may provide indirect proof of the other's existence. Most theories for producing jets require the presence of an accretion disk. The jets are seen streaming from both sides of the central object. The round, white objects at the lower left and upper right corners are two bright clumps of gas in the jets. The astronomers traced the jets to within 1,000 astronomical units of the central obscured star. The star ejected this jet material about 30 years ago. Scientists discovered this puzzling object while taking a census of planetary nebulae. They knew it had been classified as a dying, sun-like star. He2-90 is enshrouded in very hot (17,500 degrees Fahrenheit or 10,000 degrees Kelvin), glowing gas, a typical feature of planetary nebulae. And yet the disk and jets indicated the presence of an embryonic star. The mystified astronomers needed more information. Since embryonic stars are usually associated with cool, dense clouds of gas and dust, they used a ground-based radio telescope in Chile to look for evidence of such a cloud around He2-90. No such cloud was found, and He2-90's neighborhood showed no traces of developing stars. He2-90 lies about 8,000 light-years from Earth in the constellation Centaurus in the southern sky. The images were taken Sept 28, 1999 with the Wide Field and Planetary Camera 2. The images and results appear in the Aug. 1 issue of the Astrophysical Journal Letters. Credits: NASA, Raghvendra Sahai (NASA Jet Propulsion Laboratory), Lars-Ake Nyman (European Southern Observatory, Chile and Onsala Space Observatory, Sweden)

  20. MASGOMAS project: building a bona-fide catalog of massive star cluster candidates

    NASA Astrophysics Data System (ADS)

    Herrero, Artemio; Rübke, Klaus; Ramírez Alegría, Sebastián; Garcia, Miriam; Marín-Franch, Antonio

    2017-11-01

    MASGOMAS (MAssive Stars in Galactic Obscured MAssive clusterS) is a project aiming at discovering OB stars in Galactic, dust enshrouded, star-forming massive clusters (Marín-Franch et al. 2009, A&A 502, 559). The project has gone through different phases of increasing automatization, that have allowed us to discover massive clusters like MASGOMAS-1 (Ramírez Alegría et al. 2012, A&A 541, A75) (with M~20,000 M⊙).

  1. Gravitational Wave Astrophysics: Opening the New Frontier

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2011-01-01

    The gravitational wave window onto the universe is expected to open in approximately 5 years, when ground-based detectors make the first detections in the high-frequency regime. Gravitational waves are ripples in spacetime produced by the motions of massive objects such as black holes and neutron stars. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources - such as masses, spins, luminosity distances, and orbital parameters through dense, obscured regions across cosmic time. This talk will explore gravitational waves as cosmic messengers, highlighting key sources, detection methods, and the astrophysical payoffs across the gravitational wave spectrum.

  2. Gravitational Wave Astrophysics: Opening the New Frontier

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2011-01-01

    The gravitational wave window onto the universe is expected to open in approx. 5 years, when ground-based detectors make the first detections in the high-frequency regime. Gravitational waves are ripples in spacetime produced by the motions of massive objects such as black holes and neutron stars. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources - such as masses, spins, luminosity distances, and orbital parameters, through dense, obscured regions across cosmic time. This article explores gravitational waves as cosmic messengers, highlighting key sources, detection methods, and the astrophysical payoffs across the gravitational wave spectrum.

  3. How Simbol-X Will Reveal the Most Obscured High Energy Sources of our Galaxy

    NASA Astrophysics Data System (ADS)

    Chaty, S.

    2009-05-01

    The INTEGRAL satellite has revealed a major population of supergiant High Mass X-ray Binaries in our Galaxy, revolutionizing our understanding of binary systems and their evolution. This population, constituted of a compact object orbiting around a supergiant star, have unusual properties, either being extremely absorbed, or exhibiting very short flares. I will first describe the characteristics of these sources, that only intensive multi-wavelength observations have led us to disentangle, before showing that Simbol-X, thanks to its energy range and sensitivity, will allow us to go further in the understanding of these supergiant HMXBs.

  4. Identifying Luminous AGN in Deep Surveys: Revised IRAC Selection Criteria

    NASA Astrophysics Data System (ADS)

    Donley, Jennifer; Koekemoer, A. M.; Brusa, M.; Capak, P.; Cardamone, C. N.; Civano, F.; Ilbert, O.; Impey, C. D.; Kartaltepe, J.; Miyaji, T.; Salvato, M.; Sanders, D. B.; Trump, J. R.; Zamorani, G.

    2012-01-01

    Spitzer IRAC selection is a powerful tool for identifying luminous AGN. The AGN selection wedges currently in use, however, are heavily contaminated by star-forming galaxies, especially at high redshift. Using the large samples of luminous AGN and high-redshift star-forming galaxies in COSMOS, we redefine the AGN selection criteria for use in deep IRAC surveys. The new IRAC criteria are designed to be both highly complete and reliable, and incorporate the best aspects of the current AGN selection wedges and of infrared power-law selection while excluding high redshift star-forming galaxies selected via the BzK, DRG, LBG, and SMG criteria. At QSO-luminosities of log L(2-10 keV)>44, the new IRAC criteria recover 75% of the hard X-ray and IRAC-detected XMM-COSMOS sample, yet only 37% of the IRAC AGN candidates have X-ray counterparts, a fraction that rises to 51% in regions with Chandra exposures of 50-160 ks. X-ray stacking of the individually X-ray non-detected AGN candidates leads to a hard X-ray signal indicative of heavily obscured to mildly Compton-thick obscuration (log NH >= 23.7). While IRAC selection recovers a substantial fraction of luminous unobscured and obscured AGN, it is incomplete to low-luminosity and host-dominated AGN.

  5. DUSTY EXPLOSIONS FROM DUSTY PROGENITORS: THE PHYSICS OF SN 2008S AND THE 2008 NGC 300-OT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kochanek, C. S.

    2011-11-01

    SN 2008S and the 2008 NGC 300-OT were explosive transients of stars self-obscured by very dense, dusty stellar winds. An explosive transient with an unobserved shock breakout luminosity of order 10{sup 10} L{sub sun} is required to render the transients little obscured and visible in the optical at their peaks. Such a large breakout luminosity then implies that the progenitor stars were cool, red supergiants, most probably {approx}9 M{sub sun} extreme asymptotic giant branch stars. As the shocks generated by the explosions propagate outward through the dense wind, they produce a shock luminosity in soft X-rays that powers the long-livedmore » luminosity of the transients. Unlike typical cases of transients exploding into a surrounding circumstellar medium, the progenitor winds in these systems are optically thick to soft X-rays, easily absorb radio emission, and rapidly reform dust destroyed by the peak luminosity of the transients. As a result, X-rays are absorbed by the gas and the energy is ultimately radiated by the reformed dust. Three years post-peak, both systems are still significantly more luminous than their progenitor stars, but they are again fully shrouded by the reformed dust and only visible in the mid-IR. The high luminosity and heavy obscuration may make it difficult to determine the survival of the progenitor stars for {approx}10 years. However, our model indicates that SN 2008S, but not the NGC 300-OT, should now be a detectable X-ray source. SN 2008S has a higher estimated shock velocity and a lower density wind, so the X-rays begin to escape at a much earlier phase.« less

  6. Amplitude variations of modulated RV Tauri stars support the dust obscuration model of the RVb phenomenon

    NASA Astrophysics Data System (ADS)

    Kiss, L. L.; Bódi, A.

    2017-12-01

    Context. RV Tauri-type variables are pulsating post-asymptotic giant branch (AGB) stars that evolve rapidly through the instability strip after leaving the AGB. Their light variability is dominated by radial pulsations. Members of the RVb subclass show an additional variability in the form of a long-term modulation of the mean brightness, for which the most popular theories all assume binarity and some kind of circumstellar dust. Here we assess whether or not the amplitude modulations are consistent with the dust obscuration model. Aims: We measure and interpret the overall changes of the mean amplitude of the pulsations along the RVb variability. Methods: We compiled long-term photometric data for RVb-type stars, including visual observations of the American Association of Variable Star Observers, ground-based CCD photometry from the OGLE and ASAS projects, and ultra-precise space photometry of one star, DF Cygni, from theKepler space telescope. After converting all the observations to flux units, we measure the cycle-to-cycle variations of the pulsation amplitude and correlate them to the actual mean fluxes. Results: We find a surprisingly uniform correlation between the pulsation amplitude and the mean flux; they scale linearly with each other for a wide range of fluxes and amplitudes. This means that the pulsation amplitude actually remains constant when measured relative to the system flux level. The apparent amplitude decrease in the faint states has long been noted in the literature but it was always claimed to be difficult to explain with the actual models of the RVb phenomenon. Here we show that when fluxes are used instead of magnitudes, the amplitude attenuation is naturally explained by periodic obscuration from a large opaque screen, one most likely corresponding to a circumbinary dusty disk that surrounds the whole system.

  7. Do All O Stars Form in Star Clusters?

    NASA Astrophysics Data System (ADS)

    Weidner, C.; Gvaramadze, V. V.; Kroupa, P.; Pflamm-Altenburg, J.

    The question whether or not massive stars can form in isolation or only in star clusters is of great importance for the theory of (massive) star formation as well as for the stellar initial mass function of whole galaxies (IGIMF-theory). While a seemingly easy question it is rather difficult to answer. Several physical processes (e.g. star-loss due to stellar dynamics or gas expulsion) and observational limitations (e.g. dust obscuration of young clusters, resolution) pose severe challenges to answer this question. In this contribution we will present the current arguments in favour and against the idea that all O stars form in clusters.

  8. Chandra Reveals Heavy Obscuration and Circumnuclear Star Formation in Seyfert 2 Galaxy NGC 4968

    NASA Technical Reports Server (NTRS)

    LaMassa, Stephanie M.; Yaqoob, Tahir; Levenson, N. A.; Boorman, Peter; Heckman, Timothy M.; Gandhi, Poshak; Rigby, Jane R.; Urry, C. Megan; Ptak, Andrew F.

    2017-01-01

    We present the Chandra imaging and spectral analysis of NGC 4968, a nearby (z = 0.00986) Seyfert 2 galaxy. We discover extended (approx. 1 kpc) X-ray emission in the soft band (0.5-2 keV) that is neither coincident with the narrow line region nor the extended radio emission. Based on spectral modeling, it is linked to on-going star formation [approx. 2.6-4 Mass compared to Earth yr(exp.- 1)]. The soft emission at circumnuclear scales (inner approx. 400 pc) originates from hot gas, with kT approx. 0.7 keV, while the most extended thermal emission is cooler (kT approx. 0.3 keV). We refine previous measurements of the extreme Fe K alpha equivalent width in this source (EW 2.5 + 2.6/-1.0 keV), which suggests the central engine is completely embedded within Compton-thick levels of obscuration. Using physically motivated models fit to the Chandra spectrum, we derive a Compton-thick column density [N(sub H) is greater than 1.25× 10(exp 24) cm(exp.- 2)] and an intrinsic hard (2-10 keV) X-ray luminosity of approx. 3-8× 10(exp. 42) erg s(exp. - 1) (depending on the presumed geometry of the obscurer), which is over two orders of magnitude larger than that observed. The large Fe K Alpha EW suggests a spherical covering geometry, which could be confirmed with X-ray measurements above 10 keV. NGC 4968 is similar to other active galaxies that exhibit extreme Fe K Alpha EWs (i.e., greater than 2 keV) in that they also contain on-going star formation. This work supports the idea that gas associated with nuclear star formation may increase the covering factor of the enshrouding gas and play a role in obscuring active galactic nuclei.

  9. Youngest Stellar Explosion in Our Galaxy Discovered

    NASA Astrophysics Data System (ADS)

    2008-05-01

    Astronomers have found the remains of the youngest supernova, or exploded star, in our Galaxy. The supernova remnant, hidden behind a thick veil of gas and dust, was revealed by the National Science Foundation's Very Large Array (VLA) and NASA's Chandra X-Ray Observatory, which could see through the murk. The object is the first example of a "missing population" of young supernova remnants. 1985 and 2008 VLA Images Move cursor over image to blink. VLA Images of G1.9+0.3 in 1985 and 2008: Circle for size comparison. CREDIT: Green, et al., NRAO/AUI/NSF From observing supernovae in other galaxies, astronomers have estimated that about three such stellar explosions should occur in our Milky Way every century. However, the most recent one known until now occurred around 1680, creating the remnant called Cassiopeia A. The newly-discovered object is the remnant of an explosion only about 140 years ago. "If the supernova rate estimates are correct, there should be the remnants of about 10 supernova explosions in the Milky Way that are younger than Cassiopeia A," said David Green of the University of Cambridge in the UK, who led the VLA study. "It's great to finally track one of them down." Supernova explosions, which mark the violent death of a star, release tremendous amounts of energy and spew heavy elements such as calcium and iron into interstellar space. They thus seed the clouds of gas and dust from which new stars and planets are formed and, through their blast shocks, can even trigger such formation. The lack of evidence for young supernova remnants in the Milky Way had caused astronomers to wonder if our Galaxy, which appears otherwise normal, differed in some unknown way from others. Alternatively, scientists thought that the "missing" Milky Way supernovae perhaps indicated that their understanding of the relationship between supernovae and other galactic processes was in error. The astronomers made their discovery by measuring the expansion of the debris from the star's explosion. They did this by comparing images of the object, called G1.9+0.3, made more than two decades apart. In 1985, astronomers led by Green observed G1.9+0.3 with the VLA and identified it as a supernova remnant. At that time, they estimated its age as between 400 and 1,000 years. It is near the center of our Galaxy, roughly 25,000 light-years from Earth. In 2007, another team of astronomers, led by Stephen Reynolds of North Carolina State University, observed the object with the Chandra X-Ray Observatory. To their surprise, their image showed the object to be about 16 percent larger than in the 1985 VLA image. "This is a huge difference. It means the explosion debris is expanding very quickly, which in turn means the object is much younger than we originally thought," Reynolds explained. However, this expansion measurement came from comparing a radio image to an X-ray image. To make an "apples to apples" comparison, the scientists sought and were quickly granted observing time on the VLA. "I've never seen a large astronomical institution move so fast," said Reynolds. Their new VLA observations confirmed the supernova remnant's rapid expansion. The discovery provides scientists with a valuable source of new information about exploding stars. "Our previous situation was as if someone studying humans could look at babies and at adults, but could not study teenagers. Now, we're filling in that gap," said Reynolds. The object already has provided surprises. The velocities of its explosion debris and extreme energies of its particles are unprecedented. "No other object in the Galaxy has properties like this," said Reynolds. "Finding G1.9+0.3 is extremely important for learning more about how some stars explode and what happens in the aftermath," he added. The discovery was possible because radio and X-ray telescopes, unlike visible-light telescopes, can penetrate the thick clouds of gas and dust in our Galaxy. "Looking out of the Milky Way, we can see some supernova explosions with optical telescopes across half of the Universe, but when they're in this murk, we can miss them in our own cosmic back yard," Reynolds said. "Fortunately, the expanding gas cloud from the explosion shines brightly in radio waves and X-rays for thousands of years. X-ray and radio telescopes can see through all that obscuration and show us what we've been missing," he added. Because of the obscuration, no one could have seen the original explosion 140 years ago. The astronomers are reporting their results in papers published in the Astrophysical Journal Letters and Monthly Notices of the Royal Astronomical Society. Background Information: Supernova Explosions Supernova explosions are the violent death throes of stars. These explosions release in one event as much energy as is being released by all the rest of the stars in a galaxy -- typically 100 billion or so. Supernovae seen in other galaxies can outshine the rest of their galaxy for days. The supernovae that have occurred in our own Galaxy and were not obscured by the gas and dust that obscured G1.9+0.3 have often provided a spectacular sight. Historical records indicate that ancient astronomers noted supernova explosions at least as early as A.D. 393, and probably earlier. The pre-telescopic astronomers Tycho Brahe and Johannes Kepler made extensive observations of supernovae in 1572 and 1604. Chinese astronomers noted that a supernova in 1054 was bright enough to be seen in the daytime. A supernova in 1006 remained visible for two years. Supernovae that result from the deaths of stars much more massive than the Sun enrich the galaxy with chemical elements that are produced in the cores of those stars before they explode. The heavy elements, such as carbon, oxygen, iron, siicon and calcium, that make up planets and their inhabitants were made available by supernova explosions. In addition to enriching the material between stars with heavy elements, supernovae stir up that material through the shock energy of the explosion. This is thought to help trigger the process of star formation in interstellar clouds of gas and dust. Many astronomers believe that our own Solar System is the result of such a supernova shock. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  10. The Bright and Dark Sides of High-redshift Starburst Galaxies from Herschel and Subaru Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puglisi, A.; Rodighiero, G.; Rodríguez-Muñoz, L.

    2017-04-01

    We present rest-frame optical spectra from the FMOS-COSMOS survey of 12 z ∼ 1.6 Herschel starburst galaxies, with star formation rate (SFR) elevated by ×8, on average, above the star-forming main sequence (MS). Comparing the H α to IR luminosity ratio and the Balmer decrement, we find that the optically thin regions of the sources contain on average only ∼10% of the total SFR, whereas ∼90% come from an extremely obscured component that is revealed only by far-IR observations and is optically thick even in H α . We measure the [N ii]{sub 6583}/H α ratio, suggesting that the lessmore » obscured regions have a metal content similar to that of the MS population at the same stellar masses and redshifts. However, our objects appear to be metal-rich outliers from the metallicity–SFR anticorrelation observed at fixed stellar mass for the MS population. The [S ii]{sub 6732}/[S ii]{sub 6717} ratio from the average spectrum indicates an electron density n {sub e} ∼ 1100 cm{sup −3} , larger than what was estimated for MS galaxies but only at the 1.5 σ level. Our results provide supporting evidence that high- z MS outliers are analogous of local ULIRGs and are consistent with a major-merger origin for the starburst event.« less

  11. THE KILOPARSEC-SCALE STAR FORMATION LAW AT REDSHIFT 4: WIDESPREAD, HIGHLY EFFICIENT STAR FORMATION IN THE DUST-OBSCURED STARBURST GALAXY GN20

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, J. A.; Riechers, D.; Decarli, R.

    2015-01-01

    We present high-resolution observations of the 880 μm (rest-frame FIR) continuum emission in the z = 4.05 submillimeter galaxy GN20 from the IRAM Plateau de Bure Interferometer (PdBI). These data resolve the obscured star formation (SF) in this unlensed galaxy on scales of 0.''3 × 0.''2 (∼2.1 × 1.3 kpc). The observations reveal a bright (16 ± 1 mJy) dusty starburst centered on the cold molecular gas reservoir and showing a bar-like extension along the major axis. The striking anti-correlation with the Hubble Space Telescope/Wide Field Camera 3 imaging suggests that the copious dust surrounding the starburst heavily obscures the rest-frame UV/optical emission. A comparison with 1.2 mm PdBI continuummore » data reveals no evidence for variations in the dust properties across the source within the uncertainties, consistent with extended SF, and the peak star formation rate surface density (119 ± 8 M {sub ☉} yr{sup –1} kpc{sup –2}) implies that the SF in GN20 remains sub-Eddington on scales down to 3 kpc{sup 2}. We find that the SF efficiency (SFE) is highest in the central regions of GN20, leading to a resolved SF law with a power-law slope of Σ{sub SFR} ∼ Σ{sub H{sub 2}{sup 2.1±1.0}}, and that GN20 lies above the sequence of normal star-forming disks, implying that the dispersion in the SF law is not due solely to morphology or choice of conversion factor. These data extend previous evidence for a fixed SFE per free-fall time to include the star-forming medium on ∼kiloparsec scales in a galaxy 12 Gyr ago.« less

  12. Tracers of Star Formation in the Near Infrared

    NASA Astrophysics Data System (ADS)

    Martins, L.; Ardila, A.; Gruenwald, R.; de Souza, R.

    2010-04-01

    Starburst features in the optical are nowadays well known, but the use of this knowledge is not always possible (e.g. objects heavily obscured). In this case the near-IR is of unprecedented value. Recent models show that TP-AGB stars should dominate the NIR spectra of populations 0.3 to 2 Gyr old. While the optical spectra is insensitive to the presence of these stars, the near-IR changes dramatically. Not only does the absolute flux in the near-IR is affected, but also peculiar absorption features appear. These features can be used as indicators of 1 Gyr stellar population. In this work we used the IRTF Spex to create the first empirical database of NIR spectra of carefully selected starbursts, to test for the first time and in a consistent way the new stellar population models that account for the TP-AGB. The methodology used is to do stellar population synthesis in the optical and in the NIR, and compare the predictions of both spectral regions. We also compare the strength of important features of the TP-AGB stars, like the CN (1.1 microns) and CO (2.3 microns) bands with optical diagnostics.

  13. A massive galaxy in its core formation phase three billion years after the Big Bang

    NASA Astrophysics Data System (ADS)

    Nelson, Erica; van Dokkum, Pieter; Franx, Marijn; Brammer, Gabriel; Momcheva, Ivelina; Schreiber, Natascha Förster; da Cunha, Elisabete; Tacconi, Linda; Bezanson, Rachel; Kirkpatrick, Allison; Leja, Joel; Rix, Hans-Walter; Skelton, Rosalind; van der Wel, Arjen; Whitaker, Katherine; Wuyts, Stijn

    2014-09-01

    Most massive galaxies are thought to have formed their dense stellar cores in early cosmic epochs. Previous studies have found galaxies with high gas velocity dispersions or small apparent sizes, but so far no objects have been identified with both the stellar structure and the gas dynamics of a forming core. Here we report a candidate core in the process of formation 11 billion years ago, at redshift z = 2.3. This galaxy, GOODS-N-774, has a stellar mass of 100 billion solar masses, a half-light radius of 1.0 kiloparsecs and a star formation rate of solar masses per year. The star-forming gas has a velocity dispersion of 317 +/- 30 kilometres per second. This is similar to the stellar velocity dispersions of the putative descendants of GOODS-N-774, which are compact quiescent galaxies at z ~ 2 (refs 8, 9, 10, 11) and giant elliptical galaxies in the nearby Universe. Galaxies such as GOODS-N-774 seem to be rare; however, from the star formation rate and size of this galaxy we infer that many star-forming cores may be heavily obscured, and could be missed in optical and near-infrared surveys.

  14. A massive galaxy in its core formation phase three billion years after the Big Bang.

    PubMed

    Nelson, Erica; van Dokkum, Pieter; Franx, Marijn; Brammer, Gabriel; Momcheva, Ivelina; Schreiber, Natascha Förster; da Cunha, Elisabete; Tacconi, Linda; Bezanson, Rachel; Kirkpatrick, Allison; Leja, Joel; Rix, Hans-Walter; Skelton, Rosalind; van der Wel, Arjen; Whitaker, Katherine; Wuyts, Stijn

    2014-09-18

    Most massive galaxies are thought to have formed their dense stellar cores in early cosmic epochs. Previous studies have found galaxies with high gas velocity dispersions or small apparent sizes, but so far no objects have been identified with both the stellar structure and the gas dynamics of a forming core. Here we report a candidate core in the process of formation 11 billion years ago, at redshift z = 2.3. This galaxy, GOODS-N-774, has a stellar mass of 100 billion solar masses, a half-light radius of 1.0 kiloparsecs and a star formation rate of solar masses per year. The star-forming gas has a velocity dispersion of 317 ± 30 kilometres per second. This is similar to the stellar velocity dispersions of the putative descendants of GOODS-N-774, which are compact quiescent galaxies at z ≈ 2 (refs 8-11) and giant elliptical galaxies in the nearby Universe. Galaxies such as GOODS-N-774 seem to be rare; however, from the star formation rate and size of this galaxy we infer that many star-forming cores may be heavily obscured, and could be missed in optical and near-infrared surveys.

  15. The hidden quasar nucleus of a WISE-selected, hyperluminous, dust-obscured galaxy at z ~ 2.3

    NASA Astrophysics Data System (ADS)

    Piconcelli, E.; Vignali, C.; Bianchi, S.; Zappacosta, L.; Fritz, J.; Lanzuisi, G.; Miniutti, G.; Bongiorno, A.; Feruglio, C.; Fiore, F.; Maiolino, R.

    2015-02-01

    We present the first X-ray spectrum of a hot dust-obscured galaxy (DOG), namely W1835+4355 at z ~ 2.3. Hot DOGs represent a very rare population of hyperluminous (≥1047 erg s-1), dust-enshrouded objects at z ≥ 2 recently discovered in the WISE All Sky Survey. The 40 ks XMM-Newton spectrum reveals a continuum as flat (Γ ~ 0.8) as typically seen in heavily obscured AGN. This, along with the presence of strong Fe Kα emission, clearly suggests a reflection-dominated spectrum due to Compton-thick absorption. In this scenario, the observed luminosity of L2-10~ 2 × 1044 erg s-1 is a fraction (<10%) of the intrinsic one, which is estimated to be ≳ 5 × 1045 erg s-1 by using several proxies. The Herschel data allow us to constrain the SED up to the sub-mm band, providing a reliable estimate of the quasar contribution (~75%) to the IR luminosity as well as the amount of star formation (~2100 M⊙ yr-1). Our results thus provide additional pieces of evidence that associate Hot DOGs with an exceptionally dusty phase during which luminous quasars and massive galaxies co-evolve and a very efficient and powerful AGN-driven feedback mechanism is predicted by models.

  16. Hard X-Ray Emission from Sh 2-104: A NuSTAR Search for Gamma-Ray Counterparts

    NASA Astrophysics Data System (ADS)

    Gotthelf, E. V.; Mori, K.; Aliu, E.; Paredes, J. M.; Tomsick, J. A.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Hailey, C. J.; Harrison, F. A.; Hong, J. S.; Rahoui, F.; Stern, D.; Zhang, W. W.

    2016-07-01

    We present NuSTAR hard X-ray observations of Sh 2-104, a compact H II region containing several young massive stellar clusters (YMSCs). We have detected distinct hard X-ray sources coincident with localized VERITAS TeV emission recently resolved from the giant gamma-ray complex MGRO J2019+37 in the Cygnus region. Fainter, diffuse X-rays coincident with the eastern YMSC in Sh2-104 likely result from the colliding winds of a component star. Just outside the radio shell of Sh 2-104 lies 3XMM J201744.7+365045 and a nearby nebula, NuSTAR J201744.3+364812, whose properties are most consistent with extragalactic objects. The combined XMM-Newton and NuSTAR spectrum of 3XMM J201744.7+365045 is well-fit to an absorbed power-law model with {N}{{H}}=(3.1+/- 1.0)× {10}22 cm-2 and a photon index {{Γ }}=2.1+/- 0.1. Based on possible long-term flux variation and the lack of detected pulsations (≤43% modulation), this object is likely a background active galactic nucleus rather than a Galactic pulsar. The spectrum of the NuSTAR nebula shows evidence of an emission line at E = 5.6 keV, suggesting an optically obscured galaxy cluster at z = 0.19 ± 0.02 (d = 800 Mpc) and L X = 1.2 × 1044 erg s-1. Follow-up Chandra observations of Sh 2-104 will help identify the nature of the X-ray sources and their relation to MGRO J2019+37. We also show that the putative VERITAS excess south of Sh 2-104, is most likely associated with the newly discovered Fermi pulsar PSR J2017+3625 and not the H II region.

  17. Swift and NuSTAR observations of GW170817: Detection of a blue kilonova.

    PubMed

    Evans, P A; Cenko, S B; Kennea, J A; Emery, S W K; Kuin, N P M; Korobkin, O; Wollaeger, R T; Fryer, C L; Madsen, K K; Harrison, F A; Xu, Y; Nakar, E; Hotokezaka, K; Lien, A; Campana, S; Oates, S R; Troja, E; Breeveld, A A; Marshall, F E; Barthelmy, S D; Beardmore, A P; Burrows, D N; Cusumano, G; D'Aì, A; D'Avanzo, P; D'Elia, V; de Pasquale, M; Even, W P; Fontes, C J; Forster, K; Garcia, J; Giommi, P; Grefenstette, B; Gronwall, C; Hartmann, D H; Heida, M; Hungerford, A L; Kasliwal, M M; Krimm, H A; Levan, A J; Malesani, D; Melandri, A; Miyasaka, H; Nousek, J A; O'Brien, P T; Osborne, J P; Pagani, C; Page, K L; Palmer, D M; Perri, M; Pike, S; Racusin, J L; Rosswog, S; Siegel, M H; Sakamoto, T; Sbarufatti, B; Tagliaferri, G; Tanvir, N R; Tohuvavohu, A

    2017-12-22

    With the first direct detection of merging black holes in 2015, the era of gravitational wave (GW) astrophysics began. A complete picture of compact object mergers, however, requires the detection of an electromagnetic (EM) counterpart. We report ultraviolet (UV) and x-ray observations by Swift and the Nuclear Spectroscopic Telescope Array of the EM counterpart of the binary neutron star merger GW170817. The bright, rapidly fading UV emission indicates a high mass (≈0.03 solar masses) wind-driven outflow with moderate electron fraction ( Y e ≈ 0.27). Combined with the x-ray limits, we favor an observer viewing angle of ≈30° away from the orbital rotation axis, which avoids both obscuration from the heaviest elements in the orbital plane and a direct view of any ultrarelativistic, highly collimated ejecta (a γ-ray burst afterglow). Copyright © 2017, American Association for the Advancement of Science.

  18. The First Hyper-Luminous Infrared Galaxy Discovered by WISE

    NASA Technical Reports Server (NTRS)

    Eisenhardt, Peter R.; Wu, Jingwen; Tsai, Chao-Wei; Assef, Roberto; Benford, Dominic; Blain, Andrew; Bridge, Carrie; Condon, J. J.; Cushing, Michael C.; Cutri, Roc; hide

    2012-01-01

    We report the discovery by the Wide-field Infrared Survey Explorer of the z = 2.452 source WISEJ181417.29+341224.9, the first hyperluminous source found in the WISE survey. WISE 1814+3412 is also the prototype for an all-sky sample of approximately 1000 extremely luminous "W1W2-dropouts" (sources faint or undetected by WISE at 3.4 and 4.6 micrometers and well detected at 12 or 22 micrometers). The WISE data and a 350 micrometers detection give a minimum bolometric luminosity of 3.7 x 10(exp 13) solar luminosity, with approximately 10(exp 14) solar luminosity plausible. Followup images reveal four nearby sources: a QSO and two Lyman Break Galaxies (LBGs) at z = 2.45, and an M dwarf star. The brighter LBG dominates the bolometric emission. Gravitational lensing is unlikely given the source locations and their different spectra and colors. The dominant LBG spectrum indicates a star formation rate approximately 300 solar mass yr(exp -1), accounting for less than or equal to 10 percent of the bolometric luminosity. Strong 22 micrometer emission relative to 350 micrometer implies that warm dust contributes significantly to the luminosity, while cooler dust normally associated with starbursts is constrained by an upper limit at 1.1 mm. Radio emission is approximately 10? above the far-infrared/radio correlation, indicating an active galactic nucleus is present. An obscured AGN combined with starburst and evolved stellar components can account for the observations. If the black hole mass follows the local MBH-bulge mass relation, the implied Eddington ratio is approximately greater than 4. WISE 1814+3412 may be a heavily obscured object where the peak AGN activity occurred prior to the peak era of star formation.

  19. Multi-epoch monitoring of the AA Tauri-like star V 354 Mon. Indications for a low gas-to-dust ratio in the inner disk warp

    NASA Astrophysics Data System (ADS)

    Schneider, P. C.; Manara, C. F.; Facchini, S.; Günther, H. M.; Herczeg, G. J.; Fedele, D.; Teixeira, P. S.

    2018-06-01

    Disk warps around classical T Tauri stars (CTTSs) can periodically obscure the central star for some viewing geometries. For these so- called AA Tau-like variables, the obscuring material is located in the inner disk and absorption spectroscopy allows one to characterize its dust and gas content. Since the observed emission from CTTSs consists of several components (photospheric, accretion, jet, and disk emission), which can all vary with time, it is generally challenging to disentangling disk features from emission variability. Multi- epoch, flux-calibrated, broadband spectra provide us with the necessary information to cleanly separate absorption from emission variability. We applied this method to three epochs of VLT/X-shooter spectra of the CTTS V 354 Mon (CSI Mon-660) located in NGC 2264 and find that: (a) the accretion emission remains virtually unchanged between the three epochs; (b) the broadband flux evolution is best described by disk material obscuring part of the star, and (c) the Na and K gas absorption lines show only a minor increase in equivalent width during phases of high dust extinction. The limits on the absorbing gas column densities indicate a low gas-to-dust ratio in the inner disk, less than a tenth of the ISM value. We speculate that the evolutionary state of V 354 Mon, rather old with a low accretion rate, is responsible for the dust excess through an evolution toward a dust dominated disk or through the fragmentation of larger bodies that drifted inward from larger radii in a still gas dominated disk.

  20. HUBBLE SPIES BROWN DWARFS IN NEARBY STELLAR NURSERY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Probing deep within a neighborhood stellar nursery, NASA's Hubble Space Telescope uncovered a swarm of newborn brown dwarfs. The orbiting observatory's near-infrared camera revealed about 50 of these objects throughout the Orion Nebula's Trapezium cluster [image at right], about 1,500 light-years from Earth. Appearing like glistening precious stones surrounding a setting of sparkling diamonds, more than 300 fledgling stars and brown dwarfs surround the brightest, most massive stars [center of picture] in Hubble's view of the Trapezium cluster's central region. All of the celestial objects in the Trapezium were born together in this hotbed of star formation. The cluster is named for the trapezoidal alignment of those central massive stars. Brown dwarfs are gaseous objects with masses so low that their cores never become hot enough to fuse hydrogen, the thermonuclear fuel stars like the Sun need to shine steadily. Instead, these gaseous objects fade and cool as they grow older. Brown dwarfs around the age of the Sun (5 billion years old) are very cool and dim, and therefore are difficult for telescopes to find. The brown dwarfs discovered in the Trapezium, however, are youngsters (1 million years old). So they're still hot and bright, and easier to see. This finding, along with observations from ground-based telescopes, is further evidence that brown dwarfs, once considered exotic objects, are nearly as abundant as stars. The image and results appear in the Sept. 20 issue of the Astrophysical Journal. The brown dwarfs are too dim to be seen in a visible-light image taken by the Hubble telescope's Wide Field and Planetary Camera 2 [picture at left]. This view also doesn't show the assemblage of infant stars seen in the near-infrared image. That's because the young stars are embedded in dense clouds of dust and gas. The Hubble telescope's near-infrared camera, the Near Infrared Camera and Multi-Object Spectrometer, penetrated those clouds to capture a view of those objects. The brown dwarfs are the faintest objects in the image. Surveying the cluster's central region, the Hubble telescope spied brown dwarfs with masses equaling 10 to 80 Jupiters. Researchers think there may be less massive brown dwarfs that are beyond the limits of Hubble's vision. The near-infrared image was taken Jan. 17, 1998. Two near-infrared filters were used to obtain information on the colors of the stars at two wavelengths (1.1 and 1.6 microns). The Trapezium picture is 1 light-year across. This composite image was made from a 'mosaic' of nine separate, but adjoining images. In this false-color image, blue corresponds to warmer, more massive stars, and red to cooler, less massive stars and brown dwarfs, and stars that are heavily obscured by dust. The visible-light data were taken in 1994 and 1995. Credits for near-infrared image: NASA; K.L. Luhman (Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass.); and G. Schneider, E. Young, G. Rieke, A. Cotera, H. Chen, M. Rieke, R. Thompson (Steward Observatory, University of Arizona, Tucson, Ariz.) Credits for visible-light picture: NASA, C.R. O'Dell and S.K. Wong (Rice University)

  1. Four hot DOGs in the microwave

    NASA Astrophysics Data System (ADS)

    Frey, Sándor; Paragi, Zsolt; Gabányi, Krisztina Éva; An, Tao

    2016-01-01

    Hot dust-obscured galaxies (hot DOGs) are a rare class of hyperluminous infrared galaxies identified with the Wide-field Infrared Survey Explorer (WISE) satellite. The majority of them are at high redshifts (z ˜ 2-3), at the peak epoch of star formation in the Universe. Infrared, optical, radio, and X-ray data suggest that hot DOGs contain heavily obscured, extremely luminous active galactic nuclei (AGN). This class may represent a short phase in the life of the galaxies, signifying the transition from starburst- to AGN-dominated phases. Hot DOGs are typically radio-quiet, but some of them show mJy-level emission in the radio (microwave) band. We observed four hot DOGs using the technique of very long baseline interferometry (VLBI). The 1.7 GHz observations with the European VLBI Network (EVN) revealed weak radio features in all sources. The radio is free from dust obscuration and, at such high redshifts, VLBI is sensitive only to compact structures that are characteristic of AGN activity. In two cases (WISE J0757+5113, WISE J1603+2745), the flux density of the VLBI-detected components is much smaller than the total flux density, suggesting that ˜70-90 per cent of the radio emission, while still dominated by AGN, originates from angular scales larger than that probed by the EVN. The source WISE J1146+4129 appears a candidate compact symmetric object, and WISE J1814+3412 shows a 5.1 kpc double structure, reminiscent of hotspots in a medium-sized symmetric object. Our observations support that AGN residing in hot DOGs may be genuine young radio sources where starburst and AGN activities coexist.

  2. Hubble Peers into the Most Crowded Place in the Milky Way

    NASA Image and Video Library

    2015-05-29

    This NASA/ESA Hubble Space Telescope image presents the Arches Cluster, the densest known star cluster in the Milky Way. It is located about 25,000 light-years from Earth in the constellation of Sagittarius (The Archer), close to the heart of our galaxy, the Milky Way. It is, like its neighbor the Quintuplet Cluster, a fairly young astronomical object at between two and four million years old. The Arches cluster is so dense that in a region with a radius equal to the distance between the sun and its nearest star there would be over 100,000 stars! At least 150 stars within the cluster are among the brightest ever discovered in the Milky Way. These stars are so bright and massive that they will burn their fuel within a short time (on a cosmological scale that means just a few million years). Then they will die in spectacular supernova explosions. Due to the short lifetime of the stars in the cluster the gas between the stars contains an unusually high amount of heavier elements, which were produced by earlier generations of stars. Despite its brightness the Arches Cluster cannot be seen with the naked eye. The visible light from the cluster is completely obscured by gigantic clouds of dust in this region. To make the cluster visible astronomers have to use detectors which can collect light from the X-ray, infrared, and radio bands, as these wavelengths can pass through the dust clouds. This observation shows the Arches Cluster in the infrared and demonstrates the leap in Hubble’s performance since its 1999 image of same object. Credit: NASA/ESA NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. The NuSTAR Extragalactic Surveys: The Number Counts Of Active Galactic Nuclei And The Resolved Fraction Of The Cosmic X-ray Background

    NASA Technical Reports Server (NTRS)

    Harrison, F. A.; Aird, J.; Civano, F.; Lansbury, G.; Mullaney, J. R.; Ballentyne, D. R.; Alexander, D. M.; Stern, D.; Ajello, M.; Barret, D.; hide

    2016-01-01

    We present the 3-8 kiloelectronvolts and 8-24 kiloelectronvolts number counts of active galactic nuclei (AGNs) identified in the Nuclear Spectroscopic Telescope Array (NuSTAR) extragalactic surveys. NuSTAR has now resolved 33 percent -39 percent of the X-ray background in the 8-24 kiloelectronvolts band, directly identifying AGNs with obscuring columns up to approximately 10 (exp 25) per square centimeter. In the softer 3-8 kiloelectronvolts band the number counts are in general agreement with those measured by XMM-Newton and Chandra over the flux range 5 times 10 (exp -15) less than or approximately equal to S (3-8 kiloelectronvolts) divided by ergs per second per square centimeter less than or approximately equal to 10 (exp -12) probed by NuSTAR. In the hard 8-24 kiloelectronvolts band NuSTAR probes fluxes over the range 2 times 10 (exp -14) less than or approximately equal to S (8-24 kiloelectronvolts) divided by ergs per second per square centimeter less than or approximately equal to 10 (exp -12), a factor approximately 100 times fainter than previous measurements. The 8-24 kiloelectronvolts number counts match predictions from AGN population synthesis models, directly confirming the existence of a population of obscured and/or hard X-ray sources inferred from the shape of the integrated cosmic X-ray background. The measured NuSTAR counts lie significantly above simple extrapolation with a Euclidian slope to low flux of the Swift/BAT15-55 kiloelectronvolts number counts measured at higher fluxes (S (15-55 kiloelectronvolts) less than or approximately equal to 10 (exp -11) ergs per second per square centimeter), reflecting the evolution of the AGN population between the Swift/BAT local (redshift is less than 0.1) sample and NuSTAR's redshift approximately equal to 1 sample. CXB (Cosmic X-ray Background) synthesis models, which account for AGN evolution, lie above the Swift/BAT measurements, suggesting that they do not fully capture the evolution of obscured AGNs at low redshifts

  4. The Far-Infrared Luminosity Function and Star Formation Rate Density for Dust Obscured Galaxies in the Bootes Field

    NASA Astrophysics Data System (ADS)

    Calanog, Jae Alyson; Wardlow, J. L.; Fu, H.; Cooray, A. R.; HerMES

    2013-01-01

    We present the far-Infrared (FIR) luminosity function (LF) and the star-formation rate density (SFRD) for dust-obscured galaxies (DOGs) in the Bootes field at redshift 2. These galaxies are selected by having a large rest frame mid-IR to UV flux density ratio ( > 1000) and are expected to be some of the most luminous and heavily obscured galaxies in the Universe at this epoch. Photometric redshifts for DOGs are estimated from optical and mid-IR data using empirically derived low resolution spectral templates for AGN and galaxies. We use HerMES Herschel-SPIRE data to fit a modified blackbody to calculate the FIR luminosity (LFIR) and dust temperature (Td) for all DOGs individually detected in SPIRE maps. A stacking analyses was implemented to measure a median sub-mm flux of undetected DOGs. We find that DOGs have LIR and Td that are similar with the sub-millimeter galaxy (SMG) population, suggesting these two populations are related. The DOG LF and SFRD at 2 are calculated and compared to SMGs.

  5. Galaxy gas as obscurer - II. Separating the galaxy-scale and nuclear obscurers of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Buchner, Johannes; Bauer, Franz E.

    2017-03-01

    The 'torus' obscurer of active galactic nuclei (AGN) is poorly understood in terms of its density, sub-structure and physical mechanisms. Large X-ray surveys provide model boundary constraints, for both Compton-thin and Compton-thick levels of obscuration, as obscured fractions are mean covering factors fcov. However, a major remaining uncertainty is host-galaxy obscuration. In Paper I, we discovered a relation of {NH} ∝ M_{star }^{1/3} for the obscuration of galaxy-scale gas. Here, we apply this observational relation to the AGN population, and find that galaxy-scale gas is responsible for a luminosity-independent fraction of Compton-thin AGN, but does not produce Compton-thick columns. With the host-galaxy obscuration understood, we present a model of the remaining nuclear obscurer, which is consistent with a range of observations. Our radiation-lifted torus model consists of a Compton-thick component (fcov ∼ 35 per cent) and a Compton-thin component (fcov ∼ 40 per cent), which depends on both black hole mass and luminosity. This provides a useful summary of observational constraints for torus modellers who attempt to reproduce this behaviour. It can also be employed as a sub-grid recipe in cosmological simulations that do not resolve the torus. We also investigate host-galaxy X-ray obscuration inside cosmological, hydrodynamic simulations (Evolution and Assembly of Galaxies and their Environment; Illustris). The obscuration from ray-traced galaxy gas can agree with observations, but is highly sensitive to the chosen feedback assumptions.

  6. Starlight morphology of the interacting galaxy NGC 5195

    NASA Astrophysics Data System (ADS)

    Smith, J.; Gehrz, R. D.; Grasdalen, G. L.; Hackwell, John A.; Dietz, R. D.; Friedman, Scott D.

    1990-10-01

    We present near-infrared, red, and optical observations of NGC 5195, the interacting companion of NGC 5194 (M51). Three intrinsic components are suggested by the near-infrared data: a bright nuclear maximum, a low-contrast bar centered symmetrically on the nucleus, and a nearly face-on exponential disk. This organized near-infrared morphology contrasts strongly with the irregular appearance of optical images. Neither dust nor hot stars contribute much to the near-infrared emission, leaving cool stars probably of an evolved population as the main near-infrared sources. Optical (V) and red (R, I) images confirm the near-infrared morphology and imply that obscuration by an irregular distribution of dust causes the great difference between optical and near-infrared morphologies. Dust within a foreground spiral arm of M51 is an important source of obscuration. Dust internal to NGC 5195 gives an observed quantity of reradiation and perhaps contributes significant obscuration within 10" of the galactic nucleus. The nucleus itself lies at or near a local minimum in color produced by small obscuration or possibly hot emission from the galaxy's nuclear emission-line region or X-ray medium. When corrected for all spatial components of extinction, the body of NGC 5195 becomes much bluer and has a mean B - H color common to normal disk galaxies. Observations lead consistently to SB, but no further, as the best description of the NGC 5195 morphology. Images reveal no evidence of spiral arms which alone would imply a lenticular subtype. Yet the bulge-to-disk ratio of NGC 5195, evaluated from near-infrared observations, is far smaller than values inferred for noninteracting lenticular galaxies. Motivated by these difficulties in conventional classification, we proceed to discuss the possibility that certain attributes of NGC 5195, including its bar, are transient manifestations of the interaction with M51. Presented measurements support the galaxy mass ratio and type of NGC 5195 morphology assumed in a successful model of the gravitational interaction between stars of M51 and NGC 5195. Encouraged by this agreement between theory and experiment, we explore the consequences of an expanded version of the model, still premised on interaction via gravity but now including dynamics of both stars and interstellar clouds. Working within this theoretical context, we identify an interaction-induced component of star formation, an incipient starburst, within the disk of M51.

  7. Heavily Obscured AGN: An Ideal Laboratory To Study The Early Co-Evolution of Galaxies And Black Holes

    NASA Astrophysics Data System (ADS)

    Circosta, Chiara; Vignali, C.; Gilli, R.; Feltre, A.; Vito, F.

    2016-10-01

    Obscured AGN are a crucial ingredient to understand the full growth history of super massive black holes and the coevolution with their host galaxies, since they constitute the bulk of the BH accretion. In the distant Universe, many of them are hosted by submillimeter galaxies (SMGs), characterized by a high production of stars and a very fast consumption of gas. Therefore, the analysis of this class of objects is fundamental to investigate the role of the ISM in the early coevolution of galaxies and black holesWe collected a sample of six obscured X-ray selected AGN at z>2.5 in the CDF-S, detected in the far-IR/submm bands. We performed a multiwavelength analysis in order to characterize their physical properties, as well as those of their host galaxies (e.g. column density, accretion luminosity, stellar mass, SFR, dust and gas mass). I will present the results of the X-ray spectral analysis of these sources based on the 7Ms Chandra data - the deepest X-ray observation ever carried out on any field - along with their broad-band spectral energy distributions (SEDs), built up using the public UV to far-IR photometry from the CANDELS and Herschel catalogs. By comparing the column density associated with the ISM (estimated measuring the size of the system) with that obtained from the X-ray data, it is possible to understand whether the ISM in the host galaxy may be able to produce a substantial part of the observed nuclear obscuration.

  8. Young stars of low mass in the Gum nebula

    NASA Technical Reports Server (NTRS)

    Graham, J. A.; Heyer, Mark H.

    1989-01-01

    Observations are presented for four recently formed stars in the vicinity of the Gum nebula which are heavily obscured by surrounding dust and are associated with small reflection nebulae. HH46 is the only currently active star of the sample, and it is found to have a spectral type in the range of late G-early K, with superimposed emission lines of H-alpha, Ca II, Fe I, Fe II, and weak He I at near zero velocities. It is suggested that the observed scenario of low-mass stars in an older massive star environment may be analogous to the circumstances surrounding the birth of the sun.

  9. Early Science with the Large Millimeter Telescope: Detection of Dust Emission in Multiple Images of a Normal Galaxy at z > 4 Lensed by a Frontier Fields Cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, Alexandra; Battisti, Andrew; Wilson, Grant W.

    We directly detect dust emission in an optically detected, multiply imaged galaxy lensed by the Frontier Fields cluster MACSJ0717.5+3745. We detect two images of the same galaxy at 1.1 mm with the AzTEC camera on the Large Millimeter Telescope leaving no ambiguity in the counterpart identification. This galaxy, MACS0717-Az9, is at z > 4 and the strong lensing model ( μ = 7.5) allows us to calculate an intrinsic IR luminosity of 9.7 × 10{sup 10} L {sub ⊙} and an obscured star formation rate of 14.6 ± 4.5 M {sub ⊙} yr{sup −1}. The unobscured star formation rate frommore » the UV is only 4.1 ± 0.3 M {sub ⊙} yr{sup −1}, which means the total star formation rate (18.7 ± 4.5 M {sub ⊙} yr{sup −1}) is dominated (75%–80%) by the obscured component. With an intrinsic stellar mass of only 6.9 × 10{sup 9} M {sub ⊙}, MACS0717-Az9 is one of only a handful of z > 4 galaxies at these lower masses that is detected in dust emission. This galaxy lies close to the estimated star formation sequence at this epoch. However, it does not lie on the dust obscuration relation (IRX- β ) for local starburst galaxies and is instead consistent with the Small Magellanic Cloud attenuation law. This remarkable lower mass galaxy, showing signs of both low metallicity and high dust content, may challenge our picture of dust production in the early universe.« less

  10. NuSTAR Observations of the Compton-thick Active Galactic Nucleus and Ultraluminous X-Ray Source Candidate in NGC 5643

    NASA Astrophysics Data System (ADS)

    Annuar, A.; Gandhi, P.; Alexander, D. M.; Lansbury, G. B.; Arévalo, P.; Ballantyne, D. R.; Baloković, M.; Bauer, F. E.; Boggs, S. E.; Brandt, W. N.; Brightman, M.; Christensen, F. E.; Craig, W. W.; Del Moro, A.; Hailey, C. J.; Harrison, F. A.; Hickox, R. C.; Matt, G.; Puccetti, S.; Ricci, C.; Rigby, J. R.; Stern, D.; Walton, D. J.; Zappacosta, L.; Zhang, W.

    2015-12-01

    We present two Nuclear Spectroscopic Telescope Array (NuSTAR) observations of the local Seyfert 2 active galactic nucleus (AGN) and an ultraluminous X-ray source (ULX) candidate in NGC 5643. Together with archival data from Chandra, XMM-Newton, and Swift-BAT, we perform a high-quality broadband spectral analysis of the AGN over two decades in energy (˜0.5-100 keV). Previous X-ray observations suggested that the AGN is obscured by a Compton-thick (CT) column of obscuring gas along our line of sight. However, the lack of high-quality ≳10 keV observations, together with the presence of a nearby X-ray luminous source, NGC 5643 X-1, have left significant uncertainties in the characterization of the nuclear spectrum. NuSTAR now enables the AGN and NGC 5643 X-1 to be separately resolved above 10 keV for the first time and allows a direct measurement of the absorbing column density toward the nucleus. The new data show that the nucleus is indeed obscured by a CT column of NH ≳ 5 × 1024 cm-2. The range of 2-10 keV absorption-corrected luminosity inferred from the best-fitting models is L2-10,int = (0.8-1.7) × 1042 erg s-1, consistent with that predicted from multiwavelength intrinsic luminosity indicators. In addition, we also study the NuSTAR data for NGC 5643 X-1 and show that it exhibits evidence of a spectral cutoff at energy E ˜ 10 keV, similar to that seen in other ULXs observed by NuSTAR. Along with the evidence for significant X-ray luminosity variations in the 3-8 keV band from 2003 to 2014, our results further strengthen the ULX classification of NGC 5643 X-1.

  11. NuSTAR OBSERVATIONS OF THE COMPTON-THICK ACTIVE GALACTIC NUCLEUS AND ULTRALUMINOUS X-RAY SOURCE CANDIDATE IN NGC 5643

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annuar, A.; Gandhi, P.; Alexander, D. M.

    2015-12-10

    We present two Nuclear Spectroscopic Telescope Array (NuSTAR) observations of the local Seyfert 2 active galactic nucleus (AGN) and an ultraluminous X-ray source (ULX) candidate in NGC 5643. Together with archival data from Chandra, XMM-Newton, and Swift-BAT, we perform a high-quality broadband spectral analysis of the AGN over two decades in energy (∼0.5–100 keV). Previous X-ray observations suggested that the AGN is obscured by a Compton-thick (CT) column of obscuring gas along our line of sight. However, the lack of high-quality ≳10 keV observations, together with the presence of a nearby X-ray luminous source, NGC 5643 X–1, have left significantmore » uncertainties in the characterization of the nuclear spectrum. NuSTAR now enables the AGN and NGC 5643 X–1 to be separately resolved above 10 keV for the first time and allows a direct measurement of the absorbing column density toward the nucleus. The new data show that the nucleus is indeed obscured by a CT column of N{sub H} ≳ 5 × 10{sup 24} cm{sup −2}. The range of 2–10 keV absorption-corrected luminosity inferred from the best-fitting models is L{sub 2–10,int} = (0.8–1.7) × 10{sup 42} erg s{sup −1}, consistent with that predicted from multiwavelength intrinsic luminosity indicators. In addition, we also study the NuSTAR data for NGC 5643 X–1 and show that it exhibits evidence of a spectral cutoff at energy E ∼ 10 keV, similar to that seen in other ULXs observed by NuSTAR. Along with the evidence for significant X-ray luminosity variations in the 3–8 keV band from 2003 to 2014, our results further strengthen the ULX classification of NGC 5643 X–1.« less

  12. ALMA observations of the host galaxy of GRB 090423 at z = 8.23: deep limits on obscured star formation 630 million years after the big bang

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, E.; Zauderer, B. A.; Chary, R.-R.

    2014-12-01

    We present rest-frame far-infrared (FIR) and optical observations of the host galaxy of GRB 090423 at z = 8.23 from the Atacama Large Millimeter Array (ALMA) and the Spitzer Space Telescope, respectively. The host remains undetected to 3σ limits of F {sub ν}(222 GHz) ≲ 33 μJy and F {sub ν}(3.6 μm) ≲ 81 nJy. The FIR limit is about 20 times fainter than the luminosity of the local ULIRG Arp 220 and comparable to the local starburst M 82. Comparing this with model spectral energy distributions, we place a limit on the infrared (IR) luminosity of L {sub IR}(8-1000more » μm) ≲ 3 × 10{sup 10} L {sub ☉}, corresponding to a limit on the obscured star formation rate of SFR{sub IR}≲5 M {sub ☉} yr{sup –1}. For comparison, the limit on the unobscured star formation rate from Hubble Space Telescope rest-frame ultraviolet (UV) observations is SFR{sub UV} ≲ 1 M {sub ☉} yr{sup –1}. We also place a limit on the host galaxy stellar mass of M {sub *} ≲ 5 × 10{sup 7} M {sub ☉} (for a stellar population age of 100 Myr and constant star formation rate). Finally, we compare our millimeter observations to those of field galaxies at z ≳ 4 (Lyman break galaxies, Lyα emitters, and submillimeter galaxies) and find that our limit on the FIR luminosity is the most constraining to date, although the field galaxies have much larger rest-frame UV/optical luminosities than the host of GRB 090423 by virtue of their selection techniques. We conclude that GRB host galaxies at z ≳ 4, especially those with measured interstellar medium metallicities from afterglow spectroscopy, are an attractive sample for future ALMA studies of high redshift obscured star formation.« less

  13. NuSTARUnveils a Compton-Thick Type 2 Quasar in MrK 34

    DOE PAGES

    Gandhi, P.; Lansbury, G. B.; Alexander, D. M.; ...

    2014-08-22

    We present Nuclear Spectroscopic Telescope Array ( NuSTAR) 3-40 keV observations of the optically selected Type 2 quasar (QSO2) SDSS J1034+6001 or Mrk 34. The high-quality hard X-ray spectrum and archival XMM- Newton data can be fitted self-consistently with a reflection-dominated continuum and a strong Fe Kα fluorescence line with equivalent width >1 keV. Prior X-ray spectral fitting below 10 keV showed the source to be consistent with being obscured by Compton-thin column densities of gas along the line of sight, despite evidence for much higher columns from multiwavelength data. NuSTAR now enables a direct measurement of this column andmore » shows that N H lies in the Compton-thick (CT) regime. The new data also show a high intrinsic 2-10 keV luminosity of L 2-10 ~ 10 44 erg s –1, in contrast to previous low-energy X-ray measurements where L 2-10 ≲ 10 43 erg s –1 (i.e., X-ray selection below 10 keV does not pick up this source as an intrinsically luminous obscured quasar). Both the obscuring column and the intrinsic power are about an order of magnitude (or more) larger than inferred from pre- NuSTAR X-ray spectral fitting. Mrk 34 is thus a "gold standard" CT QSO2 and is the nearest non-merging system in this class, in contrast to the other local CT quasar NGC 6240, which is currently undergoing a major merger coupled with strong star formation. For typical X-ray bolometric correction factors, the accretion luminosity of Mrk 34 is high enough to potentially power the total infrared luminosity. In conclusion, X-ray spectral fitting also shows that thermal emission related to star formation is unlikely to drive the observed bright soft component below ~3 keV, favoring photoionization instead.« less

  14. A Massive Galaxy in Its Core Formation Phase Three Billion Years After the Big Bang

    NASA Technical Reports Server (NTRS)

    Nelson, Erica; van Dokkum, Pieter; Franx, Marijn; Brammer, Gabriel; Momcheva, Ivelina; Schreiber, Natascha M. Forster; da Cunha, Elisabete; Tacconi, Linda; Bezanson, Rachel; Kirkpatrick, Allison; hide

    2014-01-01

    Most massive galaxies are thought to have formed their dense stellar cores at early cosmic epochs. However, cores in their formation phase have not yet been observed. Previous studies have found galaxies with high gas velocity dispersions or small apparent sizes but so far no objects have been identified with both the stellar structure and the gas dynamics of a forming core. Here we present a candidate core in formation 11 billion years ago, at z = 2.3. GOODS-N-774 has a stellar mass of 1.0 × 10 (exp 11) solar mass, a half-light radius of 1.0 kpc, and a star formation rate of 90 (sup +45 / sub -20) solar mass/yr. The star forming gas has a velocity dispersion 317 plus or minus 30 km/s, amongst the highest ever measured. It is similar to the stellar velocity dispersions of the putative descendants of GOODS-N-774, compact quiescent galaxies at z is approximately equal to 2 (exp 8-11) and giant elliptical galaxies in the nearby Universe. Galaxies such as GOODS-N-774 appear to be rare; however, from the star formation rate and size of the galaxy we infer that many star forming cores may be heavily obscured, and could be missed in optical and near-infrared surveys.

  15. The Hyperluminous Infrared Quasar 3C 318 and Its Implications for Interpreting Sub-MM Detections of High-Redshift Radio Galaxies

    NASA Technical Reports Server (NTRS)

    Willott, Chris J.; Rawlings, Steve; Jarvis, Matt J.

    1999-01-01

    We present near-infrared spectroscopy and imaging of the compact steep-spectrum radio source 3C 318 which shows it to be a quasar at redshift z = 1.574 (the z = 0.752 value previously reported is incorrect). 3C 318 is an IRAS, ISO and SCUBA source so its new redshift makes it the most intrinsically luminous far-infrared (FIR) source in the 3C catalogue (there is no evidence of strong gravitational lensing effects). Its bolometric luminosity greatly exceeds the 10(exp 13) solar luminosity level above which an object is said to be hyperluminous. Its spectral energy distribution (SED) requires that the quasar heats the dust responsible for the FIR flux, as is believed to be the case in other hyperluminous galaxies, and contributes (at the greater than 10% level) to the heating of the CIA dust responsible for the sub-mm emission. We cannot determine whether a starburst makes an important contribution to the heating of the coolest dust, so evidence for a high star-formation rate is circumstantial being based on the high dust, and hence gas, C-1 mass required by its sub-mm detection. We show that the current sub-mm and FIR data available for the highest-redshift radio galaxies are consistent with SEDs similar to that of 3C 318. This indicates that at least some of this population may be detected in the sub-mm because of dust heated by the quasar nucleus, and that interpreting sub-mm detection as evidence for very high (approx. less than 1000 solar mass/yr) star-formation rates may not always be valid. We show that the 3C318 quasar is slightly reddened (A(sub v) approx. = 0.5), the most likely cause of which is SMC-type dust in the host galaxy. If very distant radio galaxies are reddened in a similar way then we show that only slightly greater amounts of dust could obscure the quasars in these sources. We speculate that the low fraction of quasars amongst the very high redshift (z approx. greater than 3) objects in low-frequency radio-selected samples is the result of such obscuration. The highest-z objects might be preferentially obscured because like 3C318 they are inevitably observed very shortly after the jet-triggering event, or because their host galaxies are richer in dust and gas at earlier cosmic epochs, or because of some combination of these two effects.

  16. HUBBLE SNAPS 'FAMILY PORTRAIT'

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Hubble Space Telescope's Near Infrared Camera and Multi-Object Spectrometer (NICMOS) has peered into the Cone Nebula, revealing a stunning image of six baby sun-like stars surrounding their mother, a bright, massive star. Known as NGC 2264 IRS, the massive star triggered the creation of these baby stars by releasing high-speed particles of dust and gas during its formative years. The image on the left, taken in visible light by a ground-based telescope, shows the Cone Nebula, located 2,500 light-years away in the constellation Monoceros. The white box pinpoints the location of the star nursery. The nursery cannot be seen in this image because dust and gas obscure it. The large cone of cold molecular hydrogen and dust rising from the lefthand edge of the image was created by the outflow from NGC 2264 IRS. The NICMOS image on the right shows this massive star - the brightest source in the region - and the stars formed by its outflow. The baby stars are only .04 to .08 light-years away from their brilliant mother. The rings surrounding the massive star and the spikes emanating from it are not part of the image. This pattern demonstrates the near-perfect optical performance of NICMOS. A near-perfect optical system should bend light from point-like sources, such as NGC 2264 IRS, forming these diffraction patterns of rings and spikes. This false color image was taken with 1.1-, 1.6-, and 2.2-micron filters. The image was taken on April 28, 1997. Credits: Rodger Thompson, Marcia Rieke and Glenn Schneider (University of Arizona), and NASA Image files in GIF and JPEG format and captions may be accessed on the Internet via anonymous ftp from ftp.stsci.edu in /pubinfo.

  17. Hyper Suprime-Camera Survey of the Akari NEP Wide Field

    NASA Astrophysics Data System (ADS)

    Goto, Tomotsugu; Toba, Yoshiki; Utsumi, Yousuke; Oi, Nagisa; Takagi, Toshinobu; Malkan, Matt; Ohayma, Youichi; Murata, Kazumi; Price, Paul; Karouzos, Marios; Matsuhara, Hideo; Nakagawa, Takao; Wada, Takehiko; Serjeant, Steve; Burgarella, Denis; Buat, Veronique; Takada, Masahiro; Miyazaki, Satoshi; Oguri, Masamune; Miyaji, Takamitsu; Oyabu, Shinki; White, Glenn; Takeuchi, Tsutomu; Inami, Hanae; Perason, Chris; Malek, Katarzyna; Marchetti, Lucia; Lee, Hyung Mok; Im, Myung; Kim, Seong Jin; Koptelova, Ekaterina; Chao, Dani; Wu, Yi-Han; AKARI NEP Survey Team; AKARI All Sky Survey Team

    2017-03-01

    The extragalactic background suggests half the energy generated by stars was reprocessed into the infrared (IR) by dust. At z ∼1.3, 90% of star formation is obscured by dust. To fully understand the cosmic star formation history, it is critical to investigate infrared emission. AKARI has made deep mid-IR observation using its continuous 9-band filters in the NEP field (5.4 deg^2), using ∼10% of the entire pointed observations available throughout its lifetime. However, there remain 11,000 AKARI infrared sources undetected with the previous CFHT/Megacam imaging (r ∼25.9ABmag). Redshift and IR luminosity of these sources are unknown. These sources may contribute significantly to the cosmic star-formation rate density (CSFRD). For example, if they all lie at 1 < z < 2, the CSFRD will be twice as high at the epoch. We are carrying out deep imaging of the NEP field in 5 broad bands (g,r,i,z, and y) using Hyper Suprime-Camera (HSC), which has 1.5 deg field of view in diameter on Subaru 8m telescope. This will provide photometric redshift information, and thereby IR luminosity for the previously-undetected 11,000 faint AKARI IR sources. Combined with AKARI's mid-IR AGN/SF diagnosis, and accurate mid-IR luminosity measurement, this will allow a complete census of cosmic star-formation/AGN accretion history obscured by dust.

  18. A SWIRE Picture is Worth Billions of Years

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1: SWIRE View of Distant Galaxies [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 2Figure 3 Figure 4

    These spectacular images, taken by the Spitzer Wide-area Infrared Extragalactic (SWIRE) Legacy project, encapsulate one of the primary objectives of the Spitzer mission: to connect the evolution of galaxies from the distant, or early, universe to the nearby, or present day, universe.

    The Tadpole galaxy (main image) is the result of a recent galactic interaction in the local universe. Although these galactic mergers are rare in the universe's recent history, astronomers believe that they were much more common in the early universe. Thus, SWIRE team members will use this detailed image of the Tadpole galaxy to help understand the nature of the 'faint red-orange specks' of the early universe.

    The larger picture (figure 2) depicts one-sixteenth of the SWIRE survey field called ELAIS-N1. In this image, the bright blue sources are hot stars in our own Milky Way, which range anywhere from 3 to 60 times the mass of our Sun. The fainter green spots are cooler stars and galaxies beyond the Milky Way whose light is dominated by older stellar populations. The red dots are dusty galaxies that are undergoing intense star formation. The faintest specks of red-orange are galaxies billions of light-years away in the distant universe.

    Figure 3 features an unusual ring-like galaxy called CGCG 275-022. The red spiral arms indicate that this galaxy is very dusty and perhaps undergoing intense star formation. The star-forming activity could have been initiated by a near head-on collision with another galaxy.

    The most distant galaxies that SWIRE is able to detect are revealed in a zoom of deep space (figure 4). The colors in this feature represent the same objects as those in the larger field image of ELAIS-N1.

    The observed SWIRE fields were chosen on the basis of being 'empty' or as free as possible from the obscuring dust, gas, and stars of our own Milky Way. Because Earth is located within the Milky Way galaxy, there is always a screen of Milky Way objects blocking our view of the rest of the universe. In some places, our view of the larger universe is less obscured than others and for the most part is considered 'empty.' These are prime observing spots for astronomers interested in studying objects beyond the Milky Way. ELAIS-N1 is only one of six SWIRE survey fields. The full survey covers 49 square degrees of the sky, equivalent to the area covered by about 250 full moons.

    The SWIRE images are 3-channel false-color composites, where blue represents visible green light (light that would appear to be blue/green to the human eye), green captures infrared light of 3.6 microns, and red represents infrared emissions of 8 microns. The infrared data are from Spitzer's infrared array camera and the visible-light data are from the Isaac Newton Telescope, Spain.

  19. Young stars of low mass in the Gum nebula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, J.A.; Heyer, M.H.

    1989-06-01

    Observations are presented for four recently formed stars in the vicinity of the Gum nebula which are heavily obscured by surrounding dust and are associated with small reflection nebulae. HH46 is the only currently active star of the sample, and it is found to have a spectral type in the range of late G-early K, with superimposed emission lines of H-alpha, Ca II, Fe I, Fe II, and weak He I at near zero velocities. It is suggested that the observed scenario of low-mass stars in an older massive star environment may be analogous to the circumstances surrounding the birthmore » of the sun. 53 refs.« less

  20. Massive Stars in the SDSS-IV/APOGEE SURVEY. I. OB Stars

    NASA Astrophysics Data System (ADS)

    Roman-Lopes, A.; Román-Zúñiga, C.; Tapia, Mauricio; Chojnowski, Drew; Gómez Maqueo Chew, Y.; García-Hernández, D. A.; Borissova, Jura; Minniti, Dante; Covey, Kevin R.; Longa-Peña, Penélope; Fernandez-Trincado, J. G.; Zamora, Olga; Nitschelm, Christian

    2018-03-01

    In this work, we make use of DR14 APOGEE spectroscopic data to study a sample of 92 known OB stars. We developed a near-infrared semi-empirical spectral classification method that was successfully used in case of four new exemplars, previously classified as later B-type stars. Our results agree well with those determined independently from ECHELLE optical spectra, being in line with the spectral types derived from the “canonical” MK blue optical system. This confirms that the APOGEE spectrograph can also be used as a powerful tool in surveys aiming to unveil and study a large number of moderately and highly obscured OB stars still hidden in the Galaxy.

  1. Radio Jet Feedback and Star Formation in Heavily Obscured, Hyperluminous Quasars at Redshifts ˜ 0.5-3. I. ALMA Observations

    NASA Astrophysics Data System (ADS)

    Lonsdale, Carol J.; Lacy, M.; Kimball, A. E.; Blain, A.; Whittle, M.; Wilkes, B.; Stern, D.; Condon, J.; Kim, M.; Assef, R. J.; Tsai, C.-W.; Efstathiou, A.; Jones, S.; Eisenhardt, P.; Bridge, C.; Wu, J.; Lonsdale, Colin J.; Jones, K.; Jarrett, T.; Smith, R.

    2015-11-01

    We present Atacama Large Millimeter/submillimeter Array (ALMA) 870 μm (345 GHz) data for 49 high-redshift (0.47 < z < 2.85), luminous (11.7\\lt {log}({L}{{bol}}/{L}⊙ )\\lt 14.2) radio-powerful active galactic nuclei (AGNs), obtained to constrain cool dust emission from starbursts concurrent with highly obscured radiative-mode black hole (BH) accretion in massive galaxies that possess a small radio jet. The sample was selected from the Wide-field Infrared Survey Explorer with extremely steep (red) mid-infrared colors and with compact radio emission from NVSS/FIRST. Twenty-six sources are detected at 870 μm, and we find that the sample has large mid- to far-infrared luminosity ratios, consistent with a dominant and highly obscured quasar. The rest-frame 3 GHz radio powers are 24.7\\lt {log}({P}\\text{3.0 GHz}/{{{W}} {Hz}}-1)\\lt 27.3, and all sources are radio-intermediate or radio-loud. BH mass estimates are 7.7 < log(MBH/M⊙) < 10.2. The rest-frame 1-5 μm spectral energy distributions are very similar to the “Hot DOGs” (hot dust-obscured galaxies), and steeper (redder) than almost any other known extragalactic sources. ISM masses estimated for the ALMA-detected sources are 9.9 < log (MISM/M⊙) < 11.75 assuming a dust temperature of 30 K. The cool dust emission is consistent with star formation rates reaching several thousand M⊙ yr-1, depending on the assumed dust temperature, but we cannot rule out the alternative that the AGN powers all the emission in some cases. Our best constrained source has radiative transfer solutions with approximately equal contributions from an obscured AGN and a young (10-15 Myr) compact starburst.

  2. Disentangling Dominance: Obscured AGN Activity versus Star Formation in BPT-Composites

    NASA Astrophysics Data System (ADS)

    Trouille, Laura

    2011-11-01

    Approximately 20% of SDSS emission-line galaxies (ELG) lie in the BPT-comp regime, between the Kauffmann et al. (2003) empirically determined SF-dominated regime and the Kewley et al. (2001) theoretically predicted AGN-dominated regime. BPT-AGN, on the other hand, make up only 11% of the ELG population. Whether to include the significant number of BPT-comp in samples of AGN or samples of star-forming galaxies is an open question and has important implications for galaxy evolution studies, metallicity studies, etc. Using a large pectroscopic sample of GOODS-N and LH galaxies with deep Chandra imaging, we perform an X-ray stacking analysis of BPT-comp. We find the stacked signal to be X-ray hard. This X-ray hardness can be indicative of obscured AGN activity or the presence of HMXBs associated with ongoing star formation. In order to distinguish between these scenarios, we perform an IR stacking analysis using Spitzer 24 micron data. The stacked BPT-comp lies well above the expected value for L_x/L_IR for pure star-forming galaxies; similarly for the X-ray detected BPT-comp. We also find that the BPT-comp lie in the AGN-dominated regime of our new TBT diagnostic, which uses [NeIII]/[OII] versus rest-frame g-z colour to identify AGN and star forming galaxies out to z=1.4. [NeIII], which has a higher ionisation potential than other commonly used forbidden emission lines, appears to foster a more reliable selection of AGN-dominated galaxies. These findings suggest that both the X-ray and optical signal in BPT-comp are dominated by obscured or low accretion rate AGN activity rather than star formation. This is in contrast to claims by previous optical emission-line studies that the signal in BPT-comp is dominated by star-formation activity. Therefore, we recommend that groups carefully consider the impact of excluding or including BPT-comp on the interpretation of their results. For example, for studies involving determining the bolometric contribution from AGN activity or the role of AGN activity in galaxy evolution, we advise maximal inclusiveness. Since BPT-comp comprise a significant percentage of the overall emission-line galaxy population, inclusion of the BPT-comp would provide a more comprehensive picture of the true impact of AGN activity in these studies.

  3. Gravitational Wave Astrophysics: Opening the New Frontier

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2011-01-01

    The gravitational wave window onto the universe is expected to open in 5 years, when ground-based detectors make the first detections in the high-frequency regime. Gravitational waves are ripples in spacetime produced by the motions of massive objects such as black holes and neutron stars. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources such as masses, spins, luminosity distances, and orbital parameters through dense, obscured regions across cosmic time. This article explores gravitational waves as cosmic messengers, highlighting key sources, detection methods, and the astrophysical payoffs across the gravitational wave spectrum. Keywords: Gravitational wave astrophysics; gravitational radiation; gravitational wave detectors; black holes.

  4. Star formation in Bok globules.

    NASA Astrophysics Data System (ADS)

    Reipurth, B.

    1981-12-01

    Among the many dark clouds seen projected against the luminous band of the Milky Way are a number of small, isolated compact clouds, which often exhibit a large degree of regularity. These objects are today known as Bok globules, after the Dutch-American astronomer Bart Bok, who more than 30 years aga singled out the globules as a group of special interest among the dark clouds. Bok globules usually have angular sizes of from a few arcminutes to about 20 arcminutes, with real sizes of typically 0.15 to 0.8 parsecs. It is generally not so easy to estimate the distance, and thus the dimensions, of a given globule. Most known globules are closer than 500 pc, since they normally are found by their obscuring effects, and more distant globules become less conspicuous because of foreground stars. A nearby, compact Bok globule is indeed a spectacular sight; when William Herschel for the first time saw a globule in his telescape, he exclaimed: ' Mein Gott, da ist ein Loch im Himmel.'

  5. Multiband Lightcurve of Tabby’s Star: Observations and Modeling

    NASA Astrophysics Data System (ADS)

    Yin, Yao; Wilcox, Alejandro; Boyajian, Tabetha S.

    2018-06-01

    Since March 2017, The Thacher Observatory in California has been monitoring changes in brightness of KIC 8462852 (Tabby's Star), an F-type main sequence star whose irregular dimming behavior was first discovered by Tabetha Boyajian by examining Kepler data. We obtained over 20k observations over 135 nights in 2017 in 4 photometric bands, and detected 4 dip events greater than 1%. The relative magnitude of each dip compared across our 4 different photometric bands provides critical information regarding the nature of the obscuring material, and we present a preliminary analysis of these events. The Thacher Observatory is continuing its monitoring of Tabby’s Star in 2018.

  6. Obscured Activity and Stellar Mass in z~0.7 Post-starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Rieke, George; Diamond-Stanic, Aleks; Moustakas, John; Tremonti, Christy

    2008-03-01

    We are proposing 3.6-24 micron imaging of a sample of z~0.7 post-starburst galaxies. These galaxies are presumed to be late-stage mergers that have evolved past their ULIRG/quasar phase and are in transition to becoming early-type galaxies. We have detected outflowing winds with velocities ranging from 500-2200 km/s for 2/3 of the sample, so it is tempting to conclude that these spectacular outflows are the result of feedback from an AGN that has expelled cold gas quenched star formation. However, it is not clear that the existing near-UV and optical data are telling the full story. With Spitzer, we can verify whether or not these 'post-starburst' galaxies are truly quiescent by measuring the amount obscured star formation and black hole activity. We will also be able to determine how significant the recent starburst event was by accurately measuring stellar mass using the red end of the stellar SED. If these galaxies do have non-negligible dust emission, we will be able to use broad-band colors as blunt tools to measure spectral features and compare to known star-forming galaxies, AGNs, and LIRGs. If not, we will have strong evidence that the feedback event has been able to halt galaxy-wide star formation.

  7. Half of the Most Luminous Quasars May Be Obscured: Investigating the Nature of WISE-Selected Hot Dust-Obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Assef, R. J.; Eisenhardt, P. R. M.; Stern, D.; Tsai, C.-W.; Wu, J.; Wylezalek, D.; Blain, A. W.; Bridge, C. R.; Donoso, E.; Gonzales, A.; Griffith, R. L.; Jarrett, T. H.

    2015-05-01

    The Wide-field Infrared Survey Explorer mission has unveiled a rare population of high-redshift (z = 1-4.6), dusty, hyper-luminous galaxies, with infrared luminosities {{L}IR}\\gt {{10}13} {{L}⊙ }, and sometimes exceeding {{10}14} {{L}⊙ }. Previous work has shown that their dust temperatures and overall far-infrared spectral energy distributions (SEDs) are significantly hotter than expected to be powered by star formation. We present here an analysis of the rest-frame optical through mid-infrared SEDs for a large sample of these so-called “hot, dust-obscured galaxies” (Hot DOGs). We find that the SEDs of Hot DOGs are generally well modeled by the combination of a luminous, yet obscured active galactic nuclei (AGNs) that dominates the rest-frame emission at λ \\gt 1 μ m and the bolometric luminosity output, and a less luminous host galaxy that is responsible for the bulk of the rest optical/UV emission. Even though the stellar mass of the host galaxies may be as large as 1011-1012 M⊙, the AGN emission, with a range of luminosities comparable to those of the most luminous QSOs known, require that either Hot DOGs have black hole masses significantly in excess of the local relations, or that they radiate significantly above the Eddington limit, at a level at least 10 times more efficiently than z ˜ 2 QSOs. We show that, while rare, the number density of Hot DOGs is comparable to that of equally luminous but unobscured (i.e., Type 1) QSOs. This may be at odds with the trend suggested at lower luminosities for the fraction of obscured AGNs to decrease with increasing luminosity. That trend may, instead, reverse at higher luminosities. Alternatively, Hot DOGs may not be the torus-obscured counterparts of the known optically selected, largely unobscured, hyper-luminous QSOs, and may represent a new component of the galaxy evolution paradigm. Finally, we discuss the environments of Hot DOGs and statistically show that these objects are in regions as dense as those of known high-redshift proto-clusters.

  8. Hubble Space Telescope Imaging of the Mass-losing Supergiant VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Kastner, Joel H.; Weintraub, David A.

    1998-04-01

    The highly luminous M supergiant VY CMa is a massive star that appears to be in its final death throes, losing mass at high rate en route to exploding as a supernova. Subarcsecond-resolution optical images of VY CMa, obtained with the Faint Object Camera (FOC) aboard the Hubble Space Telescope, vividly demonstrate that mass loss from VY CMa is highly anisotropic. In the FOC images, the optical ``star'' VY CMa constitutes the bright, well-resolved core of an elongated reflection nebula. The imaged nebula is ~3" (~4500 AU) in extent and is clumpy and highly asymmetric. The images indicate that the bright core, which lies near one edge of the nebula, is pure scattered starlight. We conclude that at optical wavelengths VY CMa is obscured from view along our line of sight by its own dusty envelope. The presence of the extended reflection nebula then suggests that this envelope is highly flattened and/or that the star is surrounded by a massive circumstellar disk. Such axisymmetric circumstellar density structure should have profound effects on post-red supergiant mass loss from VY CMa and, ultimately, on the shaping of the remnant of the supernova that will terminate its post-main-sequence evolution.

  9. The Nuclear Spectroscopic Telescope Array (NuSTAR) High-Energy X-ray Mission

    NASA Technical Reports Server (NTRS)

    Harrison, Fiona A.; Craig, Willliam W.; Christensen, Finn E.; Hailey, Charles J.; Zhang, William W.; Boggs, Steven E.; Stern, Daniel; Cook, W. Rick; Forster, Karl; Giommi, Paolo; hide

    2013-01-01

    High-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 to 79 keV, extending the sensitivity of focusing far beyond the 10 keV high-energy cutoff achieved by all previous X-ray satellites. The inherently low background associated with concentrating the X-ray light enables NuSTAR to probe the hard X-ray sky with a more than 100-fold improvement in sensitivity over the collimated or coded mask instruments that have operated in this bandpass. Using its unprecedented combination of sensitivity and spatial and spectral resolution, NuSTAR will pursue five primary scientific objectives: (1) probe obscured active galactic nucleus (AGN) activity out to thepeak epoch of galaxy assembly in the universe (at z 2) by surveying selected regions of the sky; (2) study the population of hard X-ray-emitting compact objects in the Galaxy by mapping the central regions of the Milky Way; (3) study the non-thermal radiation in young supernova remnants, both the hard X-ray continuum and the emission from the radioactive element 44Ti; (4) observe blazars contemporaneously with ground-based radio, optical, and TeV telescopes, as well as with Fermi and Swift, to constrain the structure of AGN jets; and (5) observe line and continuum emission from core-collapse supernovae in the Local Group, and from nearby Type Ia events, to constrain explosion models. During its baseline two-year mission, NuSTAR will also undertake a broad program of targeted observations. The observatory consists of two co-aligned grazing-incidence X-ray telescopes pointed at celestial targets by a three-axis stabilized spacecraft. Deployed into a 600 km, near-circular, 6 inclination orbit, the observatory has now completed commissioning, and is performing consistent with pre-launch expectations. NuSTAR is now executing its primary science mission, and with an expected orbit lifetime of 10 yr, we anticipate proposing a guest investigator program, to begin in late 2014.

  10. Hard X-Ray Emission from SH 2-104: A NuSTAR Search for Gamma-Ray Counterparts

    NASA Technical Reports Server (NTRS)

    Gotthelf, E. V.; Mori, K.; Aliu, E.; Paredes, J. M.; Tomsick, J. A.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Hailey, C. J.; Harrison, F. A.; hide

    2016-01-01

    We present NuSTAR hard X-ray observations of Sh 2-104, a compact H II region containing several young massive stellar clusters (YMSCs). We have detected distinct hard X-ray sources coincident with localized VERITAS TeV emission recently resolved from the giant gamma-ray complex MGRO J2019+37 in the Cygnus region. Fainter, diffuse X-rays coincident with the eastern YMSC in Sh2-104 likely result from the colliding winds of a component star. Just outside the radio shell of Sh 2-104 lies 3XMM J201744.7+365045 and a nearby nebula, NuSTAR J201744.3+364812, whose properties are most consistent with extragalactic objects. The combined XMM-Newton and NuSTAR spectrum of 3XMM J201744.7+365045 is well-fit to an absorbed power-law model with N(sub H) = (3.1 +/- 1.0) x 10(exp 22) cm(exp -2) and a photon index gamma = 2.1 +/- 0.1. Based on possible long-term flux variation and the lack of detected pulsations (less than or equal to 43% modulation), this object is likely a background active galactic nucleus rather than a Galactic pulsar. The spectrum of the NuSTAR nebula shows evidence of an emission line at E = 5.6 keV, suggesting an optically obscured galaxy cluster at z = 0.19 +/- 0.02 (d = 800 Mpc) and L(sub X) = 1.2 x 10(exp 44) erg s(exp -1). Follow-up Chandra observations of Sh 2-104 will help identify the nature of the X-ray sources and their relation to MGRO J2019+37. We also show that the putative VERITAS excess south of Sh 2-104, is most likely associated with the newly discovered Fermi pulsar PSR J2017+3625 and not the H II region.

  11. Fine Guidance Sensing for Coronagraphic Observatories

    NASA Technical Reports Server (NTRS)

    Brugarolas, Paul; Alexander, James W.; Trauger, John T.; Moody, Dwight C.

    2011-01-01

    Three options have been developed for Fine Guidance Sensing (FGS) for coronagraphic observatories using a Fine Guidance Camera within a coronagraphic instrument. Coronagraphic observatories require very fine precision pointing in order to image faint objects at very small distances from a target star. The Fine Guidance Camera measures the direction to the target star. The first option, referred to as Spot, was to collect all of the light reflected from a coronagraph occulter onto a focal plane, producing an Airy-type point spread function (PSF). This would allow almost all of the starlight from the central star to be used for centroiding. The second approach, referred to as Punctured Disk, collects the light that bypasses a central obscuration, producing a PSF with a punctured central disk. The final approach, referred to as Lyot, collects light after passing through the occulter at the Lyot stop. The study includes generation of representative images for each option by the science team, followed by an engineering evaluation of a centroiding or a photometric algorithm for each option. After the alignment of the coronagraph to the fine guidance system, a "nulling" point on the FGS focal point is determined by calibration. This alignment is implemented by a fine alignment mechanism that is part of the fine guidance camera selection mirror. If the star images meet the modeling assumptions, and the star "centroid" can be driven to that nulling point, the contrast for the coronagraph will be maximized.

  12. The donor star of the X-ray pulsar X1908+075

    NASA Astrophysics Data System (ADS)

    Martínez-Núñez, S.; Sander, A.; Gímenez-García, A.; Gónzalez-Galán, A.; Torrejón, J. M.; Gónzalez-Fernández, C.; Hamann, W.-R.

    2015-06-01

    High-mass X-ray binaries consist of a massive donor star and a compact object. While several of those systems have been well studied in X-rays, little is known for most of the donor stars as they are often heavily obscured in the optical and ultraviolet regime. There is an opportunity to observe them at infrared wavelengths, however. The goal of this study is to obtain the stellar and wind parameters of the donor star in the X1908+075 high-mass X-ray binary system with a stellar atmosphere model to check whether previous studies from X-ray observations and spectral morphology lead to a sufficient description of the donor star. We obtained H- and K-band spectra of X1908+075 and analysed them with the Potsdam Wolf-Rayet (PoWR) model atmosphere code. For the first time, we calculated a stellar atmosphere model for the donor star, whose main parameters are: Mspec = 15 ± 6 M⊙, T∗ = 23-3+6 kK, log geff = 3.0 ± 0.2 and log L/L⊙ = 4.81 ± 0.25. The obtained parameters point towards an early B-type (B0-B3) star, probably in a supergiant phase. Moreover we determined a more accurate distance to the system of 4.85 ± 0.50 kpc than the previously reported value. Based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.Appendix A is available in electronic form at http://www.aanda.org

  13. NASA Galaxy Mission Celebrates Sixth Anniversary

    NASA Image and Video Library

    2009-04-28

    NASA Galaxy Evolution Explorer Mission celebrates its sixth anniversary studying galaxies beyond our Milky Way through its sensitive ultraviolet telescope, the only such far-ultraviolet detector in space. Pictured here, the galaxy NGC598 known as M33. The mission studies the shape, brightness, size and distance of distant galaxies across 10 billion years of cosmic history, giving scientists a wealth of data to help us better understand the origins of the universe. One such object is pictured here, the galaxy NGC598, more commonly known as M33. This image is a blend of the Galaxy Evolution Explorer's M33 image and another taken by NASA's Spitzer Space Telescope. M33, one of our closest galactic neighbors, is about 2.9 million light-years away in the constellation Triangulum, part of what's known as our Local Group of galaxies. Together, the Galaxy Evolution Explorer and Spitzer can see a broad spectrum of sky. Spitzer, for example, can detect mid-infrared radiation from dust that has absorbed young stars' ultraviolet light. That's something the Galaxy Evolution Explorer cannot see. This combined image shows in amazing detail the beautiful and complicated interlacing of the heated dust and young stars. In some regions of M33, dust gathers where there is very little far-ultraviolet light, suggesting that the young stars are obscured or that stars farther away are heating the dust. In some of the outer regions of the galaxy, just the opposite is true: There are plenty of young stars and very little dust. Far-ultraviolet light from young stars glimmers blue, near-ultraviolet light from intermediate age stars glows green, and dust rich in organic molecules burns red. This image is a 3-band composite including far infrared as red. http://photojournal.jpl.nasa.gov/catalog/PIA11998

  14. The effects of host obscuration on searches for tidal disruption events

    NASA Astrophysics Data System (ADS)

    Roth, Nathaniel; Mushotzky, Richard; Gezari, Suvi; van Velzen, Sjoert

    2018-01-01

    Tidal disruptions of stars by super-massive black holes (TDEs) offer opportunities to learn about black hole demographics and stellar dynamics. However, matching the observed TDE rate to that predicted by theory has remained a challenge, as most surveys to-date have found fewer flares than expected. Some of this discrepancy may relate to nuclear obscuration in host galaxies. This includes the effects of dust at optical and ultraviolet wavelengths, and the effects of neutral gas at x-ray wavelengths. I will discuss procedures to correct the observed TDE rate within existing and upcoming surveys to the intrinsic per-galaxy rate by accounting for host obscuration. I will also discuss how reddening might affect TDE selection criteria, and I will make predictions for the population of infrared TDE light echoes.

  15. Combining physical galaxy models with radio observations to constrain the SFRs of high-z dusty star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Lo Faro, B.; Silva, L.; Franceschini, A.; Miller, N.; Efstathiou, A.

    2015-03-01

    We complement our previous analysis of a sample of z ˜ 1-2 luminous and ultraluminous infrared galaxies [(U)LIRGs], by adding deep Very Large Array radio observations at 1.4 GHz to a large data set from the far-UV to the submillimetre, including Spitzer and Herschel data. Given the relatively small number of (U)LIRGs in our sample with high signal-to-noise (S/N) radio data, and to extend our study to a different family of galaxies, we also include six well-sampled near-infrared (near-IR)-selected BzK galaxies at z ˜ 1.5. From our analysis based on the radtran spectral synthesis code GRASIL, we find that, while the IR luminosity may be a biased tracer of the star formation rate (SFR) depending on the age of stars dominating the dust heating, the inclusion of the radio flux offers significantly tighter constraints on SFR. Our predicted SFRs are in good agreement with the estimates based on rest-frame radio luminosity and the Bell calibration. The extensive spectrophotometric coverage of our sample allows us to set important constraints on the star formation (SF) history of individual objects. For essentially all galaxies, we find evidence for a rather continuous SFR and a peak epoch of SF preceding that of the observation by a few Gyr. This seems to correspond to a formation redshift of z ˜ 5-6. We finally show that our physical analysis may affect the interpretation of the SFR-M⋆ diagram, by possibly shifting, with respect to previous works, the position of the most dust obscured objects to higher M⋆ and lower SFRs.

  16. CSI 2264: simultaneous optical and infrared light curves of young disk-bearing stars in NGC 2264 with CoRoT and Spitzer—evidence for multiple origins of variability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cody, Ann Marie; Stauffer, John; Rebull, Luisa M.

    2014-04-01

    We present the Coordinated Synoptic Investigation of NGC 2264, a continuous 30 day multi-wavelength photometric monitoring campaign on more than 1000 young cluster members using 16 telescopes. The unprecedented combination of multi-wavelength, high-precision, high-cadence, and long-duration data opens a new window into the time domain behavior of young stellar objects. Here we provide an overview of the observations, focusing on results from Spitzer and CoRoT. The highlight of this work is detailed analysis of 162 classical T Tauri stars for which we can probe optical and mid-infrared flux variations to 1% amplitudes and sub-hour timescales. We present a morphological variabilitymore » census and then use metrics of periodicity, stochasticity, and symmetry to statistically separate the light curves into seven distinct classes, which we suggest represent different physical processes and geometric effects. We provide distributions of the characteristic timescales and amplitudes and assess the fractional representation within each class. The largest category (>20%) are optical 'dippers' with discrete fading events lasting ∼1-5 days. The degree of correlation between the optical and infrared light curves is positive but weak; notably, the independently assigned optical and infrared morphology classes tend to be different for the same object. Assessment of flux variation behavior with respect to (circum)stellar properties reveals correlations of variability parameters with Hα emission and with effective temperature. Overall, our results point to multiple origins of young star variability, including circumstellar obscuration events, hot spots on the star and/or disk, accretion bursts, and rapid structural changes in the inner disk.« less

  17. The Intricate Role of Cold Gas and Dust in Galaxy Evolution at Early Cosmic Epochs

    NASA Astrophysics Data System (ADS)

    Riechers, Dominik A.; Capak, Peter L.; Carilli, Christopher L.

    Cold molecular and atomic gas plays a central role in our understanding of early galaxy formation and evolution. It represents the component of the interstellar medium (ISM) that stars form out of, and its mass, distribution, excitation, and dynamics provide crucial insight into the physical processes that support the ongoing star formation and stellar mass buildup. We here present results that demonstrate the capability of the Atacama Large (sub-)Millimeter Array (ALMA) to detect the cold ISM and dust in ``normal'' galaxies at redshifts z=5-6. We also show detailed studies of the ISM in massive, dust-obscured starburst galaxies out to z>6 with ALMA, the Combined Array for Research in Millimeter-wave Astronomy (CARMA), the Plateau de Bure Interferometer (PdBI), and the Karl G. Jansky Very Large Array (VLA). These observations place some of the most direct constraints on the dust-obscured fraction of the star formation history of the universe at z>5 to date, showing that ``typical'' galaxies at these epochs have low dust content, but also that highly-enriched, dusty starbursts already exist within the first billion years after the Big Bang.

  18. SpS5 - II. Stellar and wind parameters

    NASA Astrophysics Data System (ADS)

    Martins, F.; Bergemann, M.; Bestenlehner, J. M.; Crowther, P. A.; Hamann, W. R.; Najarro, F.; Nieva, M. F.; Przybilla, N.; Freimanis, J.; Hou, W.; Kaper, L.

    2015-03-01

    The development of infrared observational facilities has revealed a number of massive stars in obscured environments throughout the Milky Way and beyond. The determination of their stellar and wind properties from infrared diagnostics is thus required to take full advantage of the wealth of observations available in the near and mid infrared. However, the task is challenging. This session addressed some of the problems encountered and showed the limitations and successes of infrared studies of massive stars.

  19. High-resolution dust emission and the resolved star formation law in the z~4 submillimeter galaxy GN20

    NASA Astrophysics Data System (ADS)

    Hodge, Jacqueline; Riechers, Dominik A.; Decarli, Roberto; Walter, Fabian; Carilli, Chris Luke; Daddi, Emanuele; Dannerbauer, Helmut

    2015-01-01

    We present high-resolution observations of the 880μm (rest-frame far-infrared) continuum emission in the z=4.05 submillimeter galaxy GN20. These data, taken with the IRAM Plateau de Bure Interferometer (PdBI), allow us to resolve the obscured star formation on scales of 0.3'×0.2' (~2.1×1.3 kpc). The observations reveal a bright (16±1 mJy) dusty starburst centered on the cold molecular gas reservoir as traced by previous high-fidelity CO(2-1) imaging and showing a bar-like extension along the galaxy's major axis. The striking anti-correlation with the HST/WFC3 imaging suggests that the copious dust surrounding the starburst heavily obscures the rest-frame UV/optical light in all but one small region several kpc from the nucleus. A comparison with 1.2 mm PdBI data reveals no evidence for variations in the dust continuum slope across the source. A detailed star formation rate surface density map reveals values that peak at 119±8 M⊙ yr-1 kpc-2 in the galaxy's center, showing that the star formation in GN20 remains sub-Eddington on scales down to 3 kpc2. Lastly, we examine the resolved star formation law on the same scales, deriving a power law slope of ΣSFR ~ ΣH_22.1±1.0 and a mean depletion time of 130 Myr. Despite its disk-like morphology and the use of custom-derived CO-to-H2 conversion factors, GN20 lies roughly in-line with the other existing resolved starbursts and above the sequence of star forming disks, implying that the offset is not due solely to choice of conversion factor.

  20. Blowin' in the Wind: Both "Negative" and "Positive" Feedback in an Obscured High-z Quasar

    NASA Astrophysics Data System (ADS)

    Cresci, G.; Mainieri, V.; Brusa, M.; Marconi, A.; Perna, M.; Mannucci, F.; Piconcelli, E.; Maiolino, R.; Feruglio, C.; Fiore, F.; Bongiorno, A.; Lanzuisi, G.; Merloni, A.; Schramm, M.; Silverman, J. D.; Civano, F.

    2015-01-01

    Quasar feedback in the form of powerful outflows is invoked as a key mechanism to quench star formation in galaxies, preventing massive galaxies to overgrow and producing the red colors of ellipticals. On the other hand, some models are also requiring "positive" active galactic nucleus feedback, inducing star formation in the host galaxy through enhanced gas pressure in the interstellar medium. However, finding observational evidence of the effects of both types of feedback is still one of the main challenges of extragalactic astronomy, as few observations of energetic and extended radiatively driven winds are available. Here we present SINFONI near infrared integral field spectroscopy of XID2028, an obscured, radio-quiet z = 1.59 QSO detected in the XMM-COSMOS survey, in which we clearly resolve a fast (1500 km s-1) and extended (up to 13 kpc from the black hole) outflow in the [O III] lines emitting gas, whose large velocity and outflow rate are not sustainable by star formation only. The narrow component of Hα emission and the rest frame U-band flux from Hubble Space Telescope/Advanced Camera for Surveys imaging enable to map the current star formation in the host galaxy: both tracers independently show that the outflow position lies in the center of an empty cavity surrounded by star forming regions on its edge. The outflow is therefore removing the gas from the host galaxy ("negative feedback"), but also triggering star formation by outflow induced pressure at the edges ("positive feedback"). XID2028 represents the first example of a host galaxy showing both types of feedback simultaneously at work.

  1. HUBBLE VIEWS OF THREE STELLAR JETS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These NASA Hubble Space Telescope views of gaseous jets from three newly forming stars show a new level of detail in the star formation process, and are helping to solve decade-old questions about the secrets of star birth. Jets are a common 'exhaust product' of the dynamics of star formation. They are blasted away from a disk of gas and dust falling onto an embryonic star. [upper left] - This view of a protostellar object called HH-30 reveals an edge-on disk of dust encircling a newly forming star. Light from the forming star illuminates the top and bottom surfaces of the disk, making them visible, while the star itself is hidden behind the densest parts of the disk. The reddish jet emanates from the inner region of the disk, and possibly directly from the star itself. Hubble's detailed view shows, for the first time, that the jet expands for several billion miles from the star, but then stays confined to a narrow beam. The protostar is 450 light-years away in the constellation Taurus. Credit: C. Burrows (STScI and ESA), the WFPC 2 Investigation Definition Team, and NASA [upper right] - This view of a different and more distant jet in object HH-34 shows a remarkable beaded structure. Once thought to be a hydrodynamic effect (similar to shock diamonds in a jet aircraft exhaust), this structure is actually produced by a machine-gun-like blast of 'bullets' of dense gas ejected from the star at speeds of one-half million miles per hour. This structure suggests the star goes through episodic 'fits' of construction where chunks of material fall onto the star from a surrounding disk. The protostar is 1,500 light- years away and in the vicinity of the Orion Nebula, a nearby star birth region. Credit: J. Hester (Arizona State University), the WFPC 2 Investigation Definition Team, and NASA [bottom] - This view of a three trillion mile-long jet called HH-47 reveals a very complicated jet pattern that indicates the star (hidden inside a dust cloud near the left edge of the image) might be wobbling, possibly caused by the gravitational pull of a companion star. Hubble's detailed view shows that the jet has burrowed a cavity through the dense gas cloud and now travels at high speed into interstellar space. Shock waves form when the jet collides with interstellar gas, causing the jet to glow. The white filaments on the left reflect light from the obscured newborn star. The HH-47 system is 1,500 light-years away, and lies at the edge of the Gum Nebula, possibly an ancient supernova remnant which can be seen from Earth's southern hemisphere. Credit: J. Morse/STScI, and NASA The scale in the bottom left corner of each picture represents 93 billion miles, or 1,000 times the distance between Earth and the Sun. All images were taken with the Wide Field Planetary Camera 2 in visible light. The HH designation stands for 'Herbig-Haro' object -- the name for bright patches of nebulosity which appear to be moving away from associated protostars.

  2. A monster in the Milky Way

    NASA Image and Video Library

    2017-12-08

    This image shows the star-studded center of the Milky Way towards the constellation of Sagittarius. The crowded center of our galaxy contains numerous complex and mysterious objects that are usually hidden at optical wavelengths by clouds of dust — but many are visible here in these infrared observations from Hubble. However, the most famous cosmic object in this image still remains invisible: the monster at our galaxy’s heart called Sagittarius A*. Astronomers have observed stars spinning around this supermassive black hole (located right in the center of the image), and the black hole consuming clouds of dust as it affects its environment with its enormous gravitational pull. Infrared observations can pierce through thick obscuring material to reveal information that is usually hidden to the optical observer. This is the best infrared image of this region ever taken with Hubble, and uses infrared archive data from Hubble’s Wide Field Camera 3, taken in September 2011. Credit: NASA, ESA, and G. Brammer NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Star Formation and Extinction in Redshift z~2 Galaxies: Inferences from Spitzer MIPS Observations

    NASA Astrophysics Data System (ADS)

    Reddy, Naveen A.; Steidel, Charles C.; Fadda, Dario; Yan, Lin; Pettini, Max; Shapley, Alice E.; Erb, Dawn K.; Adelberger, Kurt L.

    2006-06-01

    We use very deep Spitzer MIPS 24 μm observations to examine the bolometric luminosities (Lbol) and UV extinction properties of more than 200 spectroscopically identified, optically selected (UnGR) z~2 galaxies, supplemented with near-IR-selected (``BzK'' and ``DRG'') and submillimeter galaxies at similar redshifts, in the GOODS-N field. Focusing on redshifts 1.51012 Lsolar, with a mean ~=2×1011 Lsolar. Using 24 μm observations as an independent probe of dust extinction, we find that, as in the local universe, the obscuration LIR/L1600 is strongly dependent on Lbol and ranges in value from <1 to ~1000 within the sample considered. However, the obscuration is generally ~10 times smaller at a given Lbol at z~2 than at z~0. We show that the values of LIR and obscuration inferred from the UV spectral slope β generally agree well with the values inferred from L5-8.5μm for Lbol<1012 Lsolar. Using the specific SFRs of galaxies as a proxy for cold gas fraction, we find a wide range in the evolutionary state of galaxies at z~2, from galaxies that have just begun to form stars to those that have already accumulated most of their stellar mass and are about to become, or already are, passively evolving. Based, in part, on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA and was made possible by the generous financial support of the W. M. Keck Foundation. Also based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.

  4. Chaotic Star Birth

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Click on the image for Poster VersionClick on the image for IRAS 4B Inset

    Located 1,000 light years from Earth in the constellation Perseus, a reflection nebula called NGC 1333 epitomizes the beautiful chaos of a dense group of stars being born. Most of the visible light from the young stars in this region is obscured by the dense, dusty cloud in which they formed. With NASA's Spitzer Space Telescope, scientists can detect the infrared light from these objects. This allows a look through the dust to gain a more detailed understanding of how stars like our sun begin their lives.

    The young stars in NGC 1333 do not form a single cluster, but are split between two sub-groups. One group is to the north near the nebula shown as red in the image. The other group is south, where the features shown in yellow and green abound in the densest part of the natal gas cloud. With the sharp infrared eyes of Spitzer, scientists can detect and characterize the warm and dusty disks of material that surround forming stars. By looking for differences in the disk properties between the two subgroups, they hope to find hints of the star and planet formation history of this region.

    The knotty yellow-green features located in the lower portion of the image are glowing shock fronts where jets of material, spewed from extremely young embryonic stars, are plowing into the cold, dense gas nearby. The sheer number of separate jets that appear in this region is unprecedented. This leads scientists to believe that by stirring up the cold gas, the jets may contribute to the eventual dispersal of the gas cloud, preventing more stars from forming in NGC 1333.

    In contrast, the upper portion of the image is dominated by the infrared light from warm dust, shown as red.

  5. Radiative GRMHD simulations of accretion and outflow in non-magnetized neutron stars and ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Abarca, David; Kluźniak, Wlodek; Sądowski, Aleksander

    2018-06-01

    We run two GRRMHD simulations of super-Eddington accretion disks around a black hole and a non-magnetized, non-rotating neutron star. The neutron star was modeled using a reflective inner boundary condition. We observe the formation of a transition layer in the inner region of the disk in the neutron star simulation which leads to a larger mass outflow rate and a lower radiative luminosity over the black hole case. Sphereization of the flow leads to an observable luminosity at infinity around the Eddington value when viewed from all directions for the neutron star case, contrasting to the black hole case where collimation of the emission leads to observable luminosities about an order of magnitude higher when observed along the disk axis. We find the outflow to be optically thick to scattering, which would lead to the obscuring of any neutron star pulsations observed in corresponding ULXs.

  6. Determining the Covering Factor of Compton-Thick Active Galactic Nuclei with NuSTAR

    NASA Technical Reports Server (NTRS)

    Brightman, M.; Balokovic, M.; Stern, D.; Arevalo, P.; Ballantyne, D. R.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Zhang, W. W.

    2015-01-01

    The covering factor of Compton-thick (CT) obscuring material associated with the torus in active galactic nuclei (AGNs) is at present best understood through the fraction of sources exhibiting CT absorption along the line of sight (N(sub H) greater than 1.5 x 10(exp 24) cm(exp -2)) in the X-ray band, which reveals the average covering factor. Determining this CT fraction is difficult, however, due to the extreme obscuration. With its spectral coverage at hard X-rays (greater than 10 keV), Nuclear Spectroscopic Telescope Array (NuSTAR) is sensitive to the AGNs covering factor since Compton scattering of X-rays off optically thick material dominates at these energies. We present a spectral analysis of 10 AGNs observed with NuSTAR where the obscuring medium is optically thick to Compton scattering, so-called CT AGNs. We use the torus models of Brightman and Nandra that predict the X-ray spectrum from reprocessing in a torus and include the torus opening angle as a free parameter and aim to determine the covering factor of the CT gas in these sources individually. Across the sample we find mild to heavy CT columns, with N(sub H) measured from 10(exp 24) to 10(exp 26) cm(exp -2), and a wide range of covering factors, where individual measurements range from 0.2 to 0.9. We find that the covering factor, f(sub c), is a strongly decreasing function of the intrinsic 2-10 keV luminosity, L(sub X), where f(sub c) = (-0.41 +/- 0.13)log(sub 10)(L(sub X)/erg s(exp -1))+18.31 +/- 5.33, across more than two orders of magnitude in L(sub X) (10(exp 41.5) - 10(exp 44) erg s(exp -1)). The covering factors measured here agree well with the obscured fraction as a function of LX as determined by studies of local AGNs with L(sub X) greater than 10(exp 42.5) erg s(exp -1).

  7. CO-ices in embedded Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Teixeira, Teresa Cláeira V. S.

    1998-09-01

    Stars are born in dense cores within molecular clouds, enshrouded in large cocoons of gas and dust which completely obscure the forming star. The large degree of obscuration towards the young stars is due to the presence of solid dust grains in their circumstellar envelopes, which efficiently absorb the radiation from the star at visual and ultraviolet wavelengths, reradiating that energy at far-infrared and submillimeter wavelengths. The composition and structure of the dust grains is not well known, but current studies point to grains having a refractory core and acquiring ice mantles in the cool, shielded conditions of molecular clouds. Such ice mantles are the subject of this thesis. Infrared spectroscopy is an important tool in the study of the complex ice mantles on interstellar grains. A variety of absorption features at these wavelengths, which have been identified as the vibrational transitions of the molecules in the ices, can provide important information on the composition, structure and evolution of the grains. The work reported in this thesis consists of an observational study of the composition of the ice mantles acquired by the dust grains in molecular clouds (with particular emphasis on the CO-ices in the material surrounding embedded Young Stellar Objects in nearby molecular clouds), what can be learned from that about the physical conditions in the regions where the ice mantles exist, and what may affect their survival and evolution. In this work, spectra of the 4.67 micron solid CO absorption feature are presented, mostly towards embedded objects in Taurus. The thesis starts with a brief overview of technical aspects of spectroscopic observations at thermal infrared wavelengths, where the CO stretch absorption feature is located. The observations and data reduction procedures are then reported and discussed in detail. The likely composition of the CO-bearing ices is analysed by fitting the observations with laboratory data. The statistical significance of the results is discussed. Excellent fits to the nonpolar component of the CO-ices along the observed lines-of-sight are produced with ion irradiated pure CO ices. The possible origin of the ion irradiation is discussed, covering flares on the YSOs, cosmic rays and X-ray and UV processing. Predictions are made for the abundance of CO2 and methanol in the mantles. Furthermore, a comparison is made between the results of observations of CO and H2 O ices towards the Taurus and Ophiuchus dark clouds. The column densities of the ices are compared with the visual extinction, Av, through the clouds, and with the 1.3mm continuum emission from the YSOs. The inclusion of the objects in Taurus observed in this work resulted in the appearance of a discontinuity in the relation between the water-ice column density and Av, at the value of Av for which the optical depth at 3 microns (the wavelength of the water-ice absorption feature) is unity. Finally, all the observations and results discussed throughout the thesis are brought together to address their implications in the current understanding of the conditions in Taurus and Ophiuchus. Thesis and published paper available at http://www.obs.aau.dk/~tct/

  8. A high abundance of massive galaxies 3-6 billion years after the Big Bang.

    PubMed

    Glazebrook, Karl; Abraham, Roberto G; McCarthy, Patrick J; Savaglio, Sandra; Chen, Hsiao-Wen; Crampton, David; Murowinski, Rick; Jørgensen, Inger; Roth, Kathy; Hook, Isobel; Marzke, Ronald O; Carlberg, R G

    2004-07-08

    Hierarchical galaxy formation is the model whereby massive galaxies form from an assembly of smaller units. The most massive objects therefore form last. The model succeeds in describing the clustering of galaxies, but the evolutionary history of massive galaxies, as revealed by their visible stars and gas, is not accurately predicted. Near-infrared observations (which allow us to measure the stellar masses of high-redshift galaxies) and deep multi-colour images indicate that a large fraction of the stars in massive galaxies form in the first 5 Gyr (refs 4-7), but uncertainties remain owing to the lack of spectra to confirm the redshifts (which are estimated from the colours) and the role of obscuration by dust. Here we report the results of a spectroscopic redshift survey that probes the most massive and quiescent galaxies back to an era only 3 Gyr after the Big Bang. We find that at least two-thirds of massive galaxies have appeared since this era, but also that a significant fraction of them are already in place in the early Universe.

  9. Nuclear Rings in the IR: Hidden Super Star Clusters

    NASA Astrophysics Data System (ADS)

    Maoz, Dan

    1997-07-01

    We propose NICMOS broad-band {F160W, F187W} and Paschen Alpha {F187N} imaging of nuclear starburst rings in two nearby galaxies. We already have UV {F220W} FOC data, and are scheduled to obtain WFPC2 images in U, V, I, and Halpha+[NII] of these rings. The rings contain large populations of super star clusters similar to those recently discovered in other types of starburst systems. Nuclear rings contain large numbers of these clusters in relatively unobscured starburst environments. Measurement of the age, size, and stellar contents of the clusters can test the hypothesis that super star clusters are young globular clusters. Together with our UV and optical data, NICMOS images will provide the SED of numerous super star clusters over a decade in wavelength. Our already-approved observations will allow us to estimate, by comparison with evolutionary synthesis models, the masses and ages of the clusters. The proposed IR data will be sensitive to the number of supergiants {1.6 micron} and O-stars {Paschen Alpha} in each of the clusters. The observations will provide an independent determination of the reddening, mass, and age of each cluster. We expect to see in the IR numerous clusters that are obscured in the UV and optical. These clusters may be the younger ones, which are still embedded in their molecular clouds. By measuring the mass, age, and size of a large number of clusters, we can actually obtain an evolutionary picture of these objects at different stages in their lives.

  10. NASA Galaxy Mission Celebrates Sixth Anniversary

    NASA Image and Video Library

    2009-04-28

    NASA Galaxy Evolution Explorer Mission celebrates its sixth anniversary studying galaxies beyond our Milky Way through its sensitive ultraviolet telescope, the only such far-ultraviolet detector in space. The mission studies the shape, brightness, size and distance of distant galaxies across 10 billion years of cosmic history, giving scientists a wealth of data to help us better understand the origins of the universe. One such object is pictured here, the galaxy NGC598, more commonly known as M33. This image is a blend of the Galaxy Evolution Explorer's M33 image and another taken by NASA's Spitzer Space Telescope. M33, one of our closest galactic neighbors, is about 2.9 million light-years away in the constellation Triangulum, part of what's known as our Local Group of galaxies. Together, the Galaxy Evolution Explorer and Spitzer can see a broad spectrum of sky. Spitzer, for example, can detect mid-infrared radiation from dust that has absorbed young stars' ultraviolet light. That's something the Galaxy Evolution Explorer cannot see. This combined image shows in amazing detail the beautiful and complicated interlacing of the heated dust and young stars. In some regions of M33, dust gathers where there is very little far-ultraviolet light, suggesting that the young stars are obscured or that stars further away are heating the dust. In some of the outer regions of the galaxy, just the opposite is true: There are plenty of young stars and very little dust. Far-ultraviolet light from young stars glimmers blue, near-ultraviolet light from intermediate age stars glows green, near-infrared light from old stars burns yellow and orange, and dust rich in organic molecules burns red. The small blue flecks outside the spiral disk of M33 are most likely distant background galaxies. This image is a four-band composite that, in addition to the two ultraviolet bands, includes near infrared as yellow/orange and far infrared as red. http://photojournal.jpl.nasa.gov/catalog/PIA11999

  11. Mining the Obscured OB Star Population in Carina

    NASA Astrophysics Data System (ADS)

    Smith, Michael

    2016-04-01

    Massive OB stars are very influential objects in the ecology of galaxies like our own. Current catalogues of Galactic OB stars are heavily biased towards bright (g < 13) objects, only typically including fainter objects when found in prominent star clusters (Garmany et al., 1982; Reed, 2003; Maíz-Apellaniz et al., 2004). Exploitation of the VST Photometric Hα Survey (VPHAS+) allows us to build a robust catalogue of photometrically-selected OB stars across the entire Southern Galactic plane, both within clusters and in the field, down to ∼20th magnitude in g. For the first time, a complete accounting of the OB star runaway phenomenon becomes possible. Along with making the primary selection using VPHAS+ colours, I have performed Markov-Chain Monte Carlo fitting of the spectral energy distributions of the selected stars by combining VPHAS+ u, g, r, i with published J, H, K photometry. This gives rough constraints on effective temperature and distance, whilst delivering much more precise reddening parameters A0 and RV - allowing us to build a much richer picture of how extinction and extinction laws vary across the Galactic Plane. My thesis begins with a description of the method of photometric selection of OB star candidates and its validation across a 2 square degree field including the well-known young massive star cluster Westerlund 2 (Mohr-Smith et al., 2015). Following on from this I present spectroscopy with AAOmega of 283 candidates identified by our method, which confirms that ∼94% of the sample are the expected O and early B stars. I then develop this method further and apply it to a Galactic Plane strip of 42 square-degrees that runs from the Carina Arm tangent region to the much studied massive cluster in NGC 3603. A new aspect I attend to in this expansion of method is tightening up the uniform photometric calibration of the data, paying particular attention to the always-challenging u band. This leads to a new and reliable catalogue of 5915 OB stars. As well as increasing the numbers of identified massive stars in this large region of the sky by nearly an order of magnitude, a more complete picture of massive star formation in the Carina Arm has emerged. I have found a broad over-density of O stars around the highly luminous cluster NGC 3603 and have uncovered two new candidate OB clusters/associations. I have also paired up the ionization sources of a number of HII regions catalogued by the RMS survey. It is also shown that the OB star scale-height can serve as a roughly standard ruler, leading to the result that the OB star layer shows the onset of warping at RG ∼10kpc. My results confirm that this entire region requires a non-standard (3.5 < RV < 4.0) reddening law for distances greater than ∼2 kpc. The methods developed in this study are ready to roll out across the rest of the VPHAS+ footprint that has been observed to date. This extension will take in a strip ∼ ±2 degrees across the entire Southern Galactic mid-plane (a sky area of over 700 square degrees), within which we expect to find the majority of massive OB stars. This will result in the largest catalogue of Galactic OB stars to date.

  12. ALMA observation of 158 μm [C II] line and dust continuum of a z = 7 normally star-forming galaxy in the epoch of reionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ota, Kazuaki; Walter, Fabian; Da Cunha, Elisabete

    We present ALMA observations of the [C II] line and far-infrared (FIR) continuum of a normally star-forming galaxy in the reionization epoch, the z = 6.96 Lyα emitter (LAE) IOK-1. Probing to sensitivities of σ{sub line} = 240 μJy beam{sup –1} (40 km s{sup –1} channel) and σ{sub cont} = 21 μJy beam{sup –1}, we found the galaxy undetected in both [C II] and continuum. Comparison of ultraviolet (UV)-FIR spectral energy distribution (SED) of IOK-1, including our ALMA limit, with those of several types of local galaxies (including the effects of the cosmic microwave background, CMB, on the FIR continuum)more » suggests that IOK-1 is similar to local dwarf/irregular galaxies in SED shape rather than highly dusty/obscured galaxies. Moreover, our 3σ FIR continuum limit, corrected for CMB effects, implies intrinsic dust mass M {sub dust} < 6.4 × 10{sup 7} M {sub ☉}, FIR luminosity L {sub FIR} < 3.7 × 10{sup 10} L {sub ☉} (42.5-122.5 μm), total IR luminosity L {sub IR} < 5.7 × 10{sup 10} L {sub ☉} (8-1000 μm), and dust-obscured star formation rate (SFR) < 10 M {sub ☉} yr{sup –1}, if we assume that IOK-1 has a dust temperature and emissivity index typical of local dwarf galaxies. This SFR is 2.4 times lower than one estimated from the UV continuum, suggesting that <29% of the star formation is obscured by dust. Meanwhile, our 3σ [C II] flux limit translates into [C II] luminosity, L {sub [C} {sub II]} < 3.4 × 10{sup 7} L {sub ☉}. Locations of IOK-1 and previously observed LAEs on the L {sub [C} {sub II]} versus SFR and L {sub [C} {sub II]}/L {sub FIR} versus L {sub FIR} diagrams imply that LAEs in the reionization epoch have significantly lower gas and dust enrichment than AGN-powered systems and starbursts at similar/lower redshifts, as well as local star-forming galaxies.« less

  13. Star Formation in the DR21 Region A

    NASA Image and Video Library

    2004-04-13

    Hidden behind a shroud of dust in the constellation Cygnus is a stellar nursery called DR21, which is giving birth to some of the most massive stars in our galaxy. Visible light images reveal no trace of this interstellar cauldron because of heavy dust obscuration. In fact, visible light is attenuated in DR21 by a factor of more than 10,000,000,000,000,000,000,000,000,000,000,000,000,000 (ten thousand trillion heptillion). New images from NASA's Spitzer Space Telescope allow us to peek behind the cosmic veil and pinpoint one of the most massive natal stars yet seen in our Milky Way galaxy. The never-before-seen star is 100,000 times as bright as the Sun. Also revealed for the first time is a powerful outflow of hot gas emanating from this star and bursting through a giant molecular cloud. The colorful image (top panel) is a large-scale composite mosaic assembled from data collected at a variety of different wavelengths. Views at visible wavelengths appear blue, near-infrared light is depicted as green, and mid-infrared data from the InfraRed Array Camera (IRAC) aboard NASA's Spitzer Space Telescope is portrayed as red. The result is a contrast between structures seen in visible light (blue) and those observed in the infrared (yellow and red). A quick glance shows that most of the action in this image is revealed to the unique eyes of Spitzer. The image covers an area about two times that of a full moon. Each of the constituent images is shown below the large mosaic. The Digital Sky Survey (DSS) image (lower left) provides a familiar view of deep space, with stars scattered around a dark field. The reddish hue is from gas heated by foreground stars in this region. This fluorescence fades away in the near-infrared Two-Micron All-Sky Survey (2MASS) image (lower center), but other features start to appear through the obscuring clouds of dust, now increasingly transparent. Many more stars are discerned in this image because near-infrared light pierces through some of the obscuration of the interstellar dust. Note that some stars seen as very bright in the visible image are muted in the near-infrared image, whereas other stars become more prominent. Embedded nebulae revealed in the Spitzer image are only hinted at in this picture. The Spitzer image (lower right) provides a vivid contrast to the other component images, revealing star-forming complexes and large-scale structures otherwise hidden from view. The Spitzer image is composed of photographs obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red). The brightest infrared cloud near the top center corresponds to DR21, which presumably contains a cluster of newly forming stars at a distance of nearly 10,000 light-years. The red filaments stretching across the Spitzer image denote the presence of polycyclic aromatic hydrocarbons. These organic molecules, comprised of carbon and hydrogen, are excited by surrounding interstellar radiation and become luminescent at wavelengths near 8 microns. The complex pattern of filaments is caused by an intricate combination of radiation pressure, gravity, and magnetic fields. The result is a tapestry in which winds, outflows, and turbulence move and shape the interstellar medium. http://photojournal.jpl.nasa.gov/catalog/PIA05735

  14. Star Formation in the DR21 Region (A)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Annotated mosaic

    Hidden behind a shroud of dust in the constellation Cygnus is a stellar nursery called DR21, which is giving birth to some of the most massive stars in our galaxy. Visible light images reveal no trace of this interstellar cauldron because of heavy dust obscuration. In fact, visible light is attenuated in DR21 by a factor of more than 10,000,000,000,000,000,000,000,000,000,000,000,000,000 (ten thousand trillion heptillion).

    New images from NASA's Spitzer Space Telescope allow us to peek behind the cosmic veil and pinpoint one of the most massive natal stars yet seen in our Milky Way galaxy. The never-before-seen star is 100,000 times as bright as the Sun. Also revealed for the first time is a powerful outflow of hot gas emanating from this star and bursting through a giant molecular cloud.

    The colorful image (top panel) is a large-scale composite mosaic assembled from data collected at a variety of different wavelengths. Views at visible wavelengths appear blue, near-infrared light is depicted as green, and mid-infrared data from the InfraRed Array Camera (IRAC) aboard NASA's Spitzer Space Telescope is portrayed as red. The result is a contrast between structures seen in visible light (blue) and those observed in the infrared (yellow and red). A quick glance shows that most of the action in this image is revealed to the unique eyes of Spitzer. The image covers an area about two times that of a full moon.

    Each of the constituent images is shown below the large mosaic. The Digital Sky Survey (DSS) image (lower left) provides a familiar view of deep space, with stars scattered around a dark field. The reddish hue is from gas heated by foreground stars in this region. This fluorescence fades away in the near-infrared Two-Micron All-Sky Survey (2MASS) image (lower center), but other features start to appear through the obscuring clouds of dust, now increasingly transparent. Many more stars are discerned in this image because near-infrared light pierces through some of the obscuration of the interstellar dust. Note that some stars seen as very bright in the visible image are muted in the near-infrared image, whereas other stars become more prominent. Embedded nebulae revealed in the Spitzer image are only hinted at in this picture.

    The Spitzer image (lower right) provides a vivid contrast to the other component images, revealing star-forming complexes and large-scale structures otherwise hidden from view. The Spitzer image is composed of photographs obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red). The brightest infrared cloud near the top center corresponds to DR21, which presumably contains a cluster of newly forming stars at a distance of nearly 10,000 light-years.

    The red filaments stretching across the Spitzer image denote the presence of polycyclic aromatic hydrocarbons. These organic molecules, comprised of carbon and hydrogen, are excited by surrounding interstellar radiation and become luminescent at wavelengths near 8 microns. The complex pattern of filaments is caused by an intricate combination of radiation pressure, gravity, and magnetic fields. The result is a tapestry in which winds, outflows, and turbulence move and shape the interstellar medium.

  15. How to form a millisecond magnetar? Magnetic field amplification in protoneutron stars

    NASA Astrophysics Data System (ADS)

    Guilet, Jérôme; Müller, Ewald; Janka, Hans-Thomas; Rembiasz, Tomasz; Obergaulinger, Martin; Cerdá-Durán, Pablo; Aloy, Miguel-Angel

    2017-02-01

    Extremely strong magnetic fields of the order of 1015G are required to explain the properties of magnetars, the most magnetic neutron stars. Such a strong magnetic field is expected to play an important role for the dynamics of core-collapse supernovae, and in the presence of rapid rotation may power superluminous supernovae and hypernovae associated to long gamma-ray bursts. The origin of these strong magnetic fields remains, however, obscure and most likely requires an amplification over many orders of magnitude in the protoneutron star. One of the most promising agents is the magnetorotational instability (MRI), which can in principle amplify exponentially fast a weak initial magnetic field to a dynamically relevant strength. We describe our current understanding of the MRI in protoneutron stars and show recent results on its dependence on physical conditions specific to protoneutron stars such as neutrino radiation, strong buoyancy effects and large magnetic Prandtl number.

  16. A relation between the characteristic stellar ages of galaxies and their intrinsic shapes

    NASA Astrophysics Data System (ADS)

    van de Sande, Jesse; Scott, Nicholas; Bland-Hawthorn, Joss; Brough, Sarah; Bryant, Julia J.; Colless, Matthew; Cortese, Luca; Croom, Scott M.; d'Eugenio, Francesco; Foster, Caroline; Goodwin, Michael; Konstantopoulos, Iraklis S.; Lawrence, Jon S.; McDermid, Richard M.; Medling, Anne M.; Owers, Matt S.; Richards, Samuel N.; Sharp, Rob

    2018-06-01

    Stellar population and stellar kinematic studies provide unique but complementary insights into how galaxies build-up their stellar mass and angular momentum1-3. A galaxy's mean stellar age reveals when stars were formed, but provides little constraint on how the galaxy's mass was assembled. Resolved stellar dynamics4 trace the change in angular momentum due to mergers, but major mergers tend to obscure the effect of earlier interactions5. With the rise of large multi-object integral field spectroscopic surveys, such as SAMI6 and MaNGA7, and single-object integral field spectroscopic surveys (for example, ATLAS3D (ref. 8), CALIFA9, MASSIVE10), it is now feasible to connect a galaxy's star formation and merger history on the same resolved physical scales, over a large range in galaxy mass, morphology and environment4,11,12. Using the SAMI Galaxy Survey, here we present a combined study of spatially resolved stellar kinematics and global stellar populations. We find a strong correlation of stellar population age with location in the (V/σ, ɛe) diagram that links the ratio of ordered rotation to random motions in a galaxy to its observed ellipticity. For the large majority of galaxies that are oblate rotating spheroids, we find that characteristic stellar age follows the intrinsic ellipticity of galaxies remarkably well.

  17. A relation between the characteristic stellar ages of galaxies and their intrinsic shapes

    NASA Astrophysics Data System (ADS)

    van de Sande, Jesse; Scott, Nicholas; Bland-Hawthorn, Joss; Brough, Sarah; Bryant, Julia J.; Colless, Matthew; Cortese, Luca; Croom, Scott M.; d'Eugenio, Francesco; Foster, Caroline; Goodwin, Michael; Konstantopoulos, Iraklis S.; Lawrence, Jon S.; McDermid, Richard M.; Medling, Anne M.; Owers, Matt S.; Richards, Samuel N.; Sharp, Rob

    2018-04-01

    Stellar population and stellar kinematic studies provide unique but complementary insights into how galaxies build-up their stellar mass and angular momentum1-3. A galaxy's mean stellar age reveals when stars were formed, but provides little constraint on how the galaxy's mass was assembled. Resolved stellar dynamics4 trace the change in angular momentum due to mergers, but major mergers tend to obscure the effect of earlier interactions5. With the rise of large multi-object integral field spectroscopic surveys, such as SAMI6 and MaNGA7, and single-object integral field spectroscopic surveys (for example, ATLAS3D (ref. 8), CALIFA9, MASSIVE10), it is now feasible to connect a galaxy's star formation and merger history on the same resolved physical scales, over a large range in galaxy mass, morphology and environment4,11,12. Using the SAMI Galaxy Survey, here we present a combined study of spatially resolved stellar kinematics and global stellar populations. We find a strong correlation of stellar population age with location in the (V/σ, ɛe) diagram that links the ratio of ordered rotation to random motions in a galaxy to its observed ellipticity. For the large majority of galaxies that are oblate rotating spheroids, we find that characteristic stellar age follows the intrinsic ellipticity of galaxies remarkably well.

  18. Luminosities and mass-loss rates of Local Group AGB stars and red supergiants

    NASA Astrophysics Data System (ADS)

    Groenewegen, M. A. T.; Sloan, G. C.

    2018-01-01

    Context. Mass loss is one of the fundamental properties of asymptotic giant branch (AGB) stars, and through the enrichment of the interstellar medium, AGB stars are key players in the life cycle of dust and gas in the universe. However, a quantitative understanding of the mass-loss process is still largely lacking. Aims: We aim to investigate mass loss and luminosity in a large sample of evolved stars in several Local Group galaxies with a variety of metalliticies and star-formation histories: the Small and Large Magellanic Cloud, and the Fornax, Carina, and Sculptor dwarf spheroidal galaxies (dSphs). Methods: Dust radiative transfer models are presented for 225 carbon stars and 171 oxygen-rich evolved stars in several Local Group galaxies for which spectra from the Infrared Spectrograph on Spitzer are available. The spectra are complemented with available optical and infrared photometry to construct spectral energy distributions. A minimization procedure was used to determine luminosity and mass-loss rate (MLR). Pulsation periods were derived for a large fraction of the sample based on a re-analysis of existing data. Results: New deep K-band photometry from the VMC survey and multi-epoch data from IRAC (at 4.5 μm) and AllWISE and NEOWISE have allowed us to derive pulsation periods longer than 1000 days for some of the most heavily obscured and reddened objects. We derive (dust) MLRs and luminosities for the entire sample. The estimated MLRs can differ significantly from estimates for the same objects in the literature due to differences in adopted optical constants (up to factors of several) and details in the radiative transfer modelling. Updated parameters for the super-AGB candidate MSX SMC 055 (IRAS 00483-7347) are presented. Its current mass is estimated to be 8.5 ± 1.6 M⊙, suggesting an initial mass well above 8 M⊙ in agreement with estimates based on its large Rubidium abundance. Using synthetic photometry, we present and discuss colour-colour and colour-magnitude diagrams which can be expected from the James Webb Space Telescope. Tables A.1, A.2, B.1, B.2, and C.1 are available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A114

  19. NuSTAR Reveals Extreme Absorption in z < 0.5 Type 2 Quasars

    NASA Astrophysics Data System (ADS)

    Lansbury, G. B.; Gandhi, P.; Alexander, D. M.; Assef, R. J.; Aird, J.; Annuar, A.; Ballantyne, D. R.; Baloković, M.; Bauer, F. E.; Boggs, S. E.; Brandt, W. N.; Brightman, M.; Christensen, F. E.; Civano, F.; Comastri, A.; Craig, W. W.; Del Moro, A.; Grefenstette, B. W.; Hailey, C. J.; Harrison, F. A.; Hickox, R. C.; Koss, M.; LaMassa, S. M.; Luo, B.; Puccetti, S.; Stern, D.; Treister, E.; Vignali, C.; Zappacosta, L.; Zhang, W. W.

    2015-08-01

    The intrinsic column density (NH) distribution of quasars is poorly known. At the high obscuration end of the quasar population and for redshifts z < 1, the X-ray spectra can only be reliably characterized using broad-band measurements that extend to energies above 10 keV. Using the hard X-ray observatory NuSTAR, along with archival Chandra and XMM-Newton data, we study the broad-band X-ray spectra of nine optically selected (from the SDSS), candidate Compton-thick (NH > 1.5 × 1024 cm-2) type 2 quasars (CTQSO2s); five new NuSTAR observations are reported herein, and four have been previously published. The candidate CTQSO2s lie at z < 0.5, have observed [O iii] luminosities in the range 8.4\\lt {log}({L}[{{O} {{III}}]}/{L}⊙ )\\lt 9.6, and show evidence for extreme, Compton-thick absorption when indirect absorption diagnostics are considered. Among the nine candidate CTQSO2s, five are detected by NuSTAR in the high-energy (8-24 keV) band: two are weakly detected at the ≈3σ confidence level and three are strongly detected with sufficient counts for spectral modeling (≳90 net source counts at 8-24 keV). For these NuSTAR-detected sources direct (i.e., X-ray spectral) constraints on the intrinsic active galactic nucleus properties are feasible, and we measure column densities ≈2.5-1600 times higher and intrinsic (unabsorbed) X-ray luminosities ≈10-70 times higher than pre-NuSTAR constraints from Chandra and XMM-Newton. Assuming the NuSTAR-detected type 2 quasars are representative of other Compton-thick candidates, we make a correction to the NH distribution for optically selected type 2 quasars as measured by Chandra and XMM-Newton for 39 objects. With this approach, we predict a Compton-thick fraction of {f}{CT}={36}-12+14 %, although higher fractions (up to 76%) are possible if indirect absorption diagnostics are assumed to be reliable.

  20. OMC-1 as Revealed by HST NICMOS Polarization Measurements

    NASA Astrophysics Data System (ADS)

    Simpson, J. P.; Burton, M. G.; Colgan, S. W. J.; Erickson, E. F.; Schultz, A. S. B.; Simpson, E.

    2004-12-01

    The Orion Molecular Cloud (OMC-1) harbors the nearest and most studied massive star-forming region. Signs of the formation of multiple stars in this optically obscured region include powerful CO outflows, H2O and SiO maser emission, remarkable H2 "bullets", "fingers", and "streamers", and X-rays from pre-main-sequence stars. Highly polarized clouds indicate that the illuminating sources lie in the directions of the Becklin-Neugebauer object (BN), and stars in the vicinity of IRc2, radio source I, NIR source n, and others. Here we present 2 μ m polarization measurements of positions north and south of BN made with NICMOS Camera 2 on the Hubble Space Telescope. Near-infrared starlight can be polarized by scattering from nearby dust grains and by dichroic absorption by non-spherical dust grains aligned by a magnetic field. Within the 19'' field of view of Camera 2, BN appears to be the illuminating source of most of the nebulosity to its north; however, the material to the south is illuminated either by a star near I (IRc4) or by source n (IRc2B). Source n also illuminates material 1'' - 2'' to its northeast and southwest, at the same position angles as the extended radio source at the same location. We discuss possible interpretations of the strong polarization of IRc7, which is not illuminated by source I. We also display several stars (NICMOS point sources) that are the source of their own polarization, which ranges up to 40% and occurs at distinctly different angles from the polarization of the immediately surrounding diffuse emission. This may be caused by dichroic absorption and scattering in edge-on circumstellar disks. At least two faint stars are variable. Support for proposal 9752 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  1. STAR FORMATION ACTIVITY IN THE GALACTIC H II COMPLEX S255-S257

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ojha, D. K.; Ghosh, S. K.; Samal, M. R.

    We present results on the star formation activity of an optically obscured region containing an embedded cluster (S255-IR) and molecular gas between two evolved H II regions, S255 and S257. We have studied the complex using optical and near-infrared (NIR) imaging, optical spectroscopy, and radio continuum mapping at 15 GHz, along with Spitzer-IRAC results. We found that the main exciting sources of the evolved H II regions S255 and S257 and the compact H II regions associated with S255-IR are of O9.5-B3 V nature, consistent with previous observations. Our NIR observations reveal 109 likely young stellar object (YSO) candidates inmore » an area of {approx}4.'9 x 4.'9 centered on S255-IR, which include 69 new YSO candidates. To see the global star formation, we constructed the V - I/V diagram for 51 optically identified IRAC YSOs in an area of {approx}13' x 13' centered on S255-IR. We suggest that these YSOs have an approximate age between 0.1 and 4 Myr, indicating a non-coeval star formation. Using spectral energy distribution models, we constrained physical properties and evolutionary status of 31 and 16 YSO candidates outside and inside the gas ridge, respectively. The models suggest that the sources associated with the gas ridge are younger (mean age {approx}1.2 Myr) than the sources outside the gas ridge (mean age {approx}2.5 Myr). The positions of the young sources inside the gas ridge at the interface of the H II regions S255 and S257 favor a site of induced star formation.« less

  2. Characterizing the stellar population of a sample of star forming galaxies with high emission of both [OIV]25.9um and [NeII]12.8um

    NASA Astrophysics Data System (ADS)

    Martínez-Paredes, M.; Bruzual, G.; Meléndez, M.; González-Martín, O.

    2017-11-01

    The optical diagnostic diagram te{BPT81, VO87} allow us to discriminate between the different excitation mechanism, like that produce by young stars and that produce by the AGN during the accretion of matter onto the super massive black hole. This kind of tool are important because allow us to study the connection between starburst and AGN. However, despite the great success, the identification of the most heavily dust-obscured systems remains a challenge for optical diagrams. Mid-infrared diagnostic are more suitable to study dust-enshrouded systems, where the effect of dust obscuration can hamper the interpretation of traditional optical diagnostics, since in this spectral range we have access to low-ionization lines (as [Ne II]12.8μm) typical of star forming regions and high ionization lines typical of active galaxies ([OIV]25.9μm), while intermediate ionization-lines ([Ne III]15.3μm) provide a unique scenario where the AGN coexist with active star formation in the host galaxy. In a previous work te{Melendez14} we have carried out extensive and detailed photoionization modeling to successfully separate the different excitation mechanism in the mid-infrared diagnostic diagrams proposed by te{Weaver10}. We successfully modelled the AGN and starburst galaxies ratios lines of [NeIII]/[NeII] Vs [OIV]/[NeIII]. However, we failed in modelling the observed ratio lines in galaxies with a normal star formation activity ([NeIII]/[NeII]<1 and [OIV]/[NeIII]<1). These results suggest the presence of a more complex excitation mechanism in these galaxies. In this project we are using the update stellar population models from te{BC17} that include massive stars, and the update photoionization models from CLOUDY from te{Ferland17}, to characterize the properties of the stellar population that produce the high ionization conditions in these galaxies.

  3. Infrared-faint radio sources remain undetected at far-infrared wavelengths. Deep photometric observations using the Herschel Space Observatory

    NASA Astrophysics Data System (ADS)

    Herzog, A.; Norris, R. P.; Middelberg, E.; Spitler, L. R.; Leipski, C.; Parker, Q. A.

    2015-08-01

    Context. Showing 1.4 GHz flux densities in the range of a few to a few tens of mJy, infrared-faint radio sources (IFRS) are a type of galaxy characterised by faint or absent near-infrared counterparts and consequently extreme radio-to-infrared flux density ratios up to several thousand. Recent studies showed that IFRS are radio-loud active galactic nuclei (AGNs) at redshifts ≳2, potentially linked to high-redshift radio galaxies (HzRGs). Aims: This work explores the far-infrared emission of IFRS, providing crucial information on the star forming and AGN activity of IFRS. Furthermore, the data enable examining the putative relationship between IFRS and HzRGs and testing whether IFRS are more distant or fainter siblings of these massive galaxies. Methods: A sample of six IFRS was observed with the Herschel Space Observatory between 100 μm and 500 μm. Using these results, we constrained the nature of IFRS by modelling their broad-band spectral energy distribution (SED). Furthermore, we set an upper limit on their infrared SED and decomposed their emission into contributions from an AGN and from star forming activity. Results: All six observed IFRS were undetected in all five Herschel far-infrared channels (stacking limits: σ = 0.74 mJy at 100 μm, σ = 3.45 mJy at 500 μm). Based on our SED modelling, we ruled out the following objects to explain the photometric characteristics of IFRS: (a) known radio-loud quasars and compact steep-spectrum sources at any redshift; (b) starburst galaxies with and without an AGN and Seyfert galaxies at any redshift, even if the templates were modified; and (c) known HzRGs at z ≲ 10.5. We find that the IFRS analysed in this work can only be explained by objects that fulfil the selection criteria of HzRGs. More precisely, IFRS could be (a) known HzRGs at very high redshifts (z ≳ 10.5); (b) low-luminosity siblings of HzRGs with additional dust obscuration at lower redshifts; (c) scaled or unscaled versions of Cygnus A at any redshift; and (d) scaled and dust-obscured radio-loud quasars or compact steep spectrum sources. We estimated upper limits on the infrared luminosity, the black hole accretion rate, and the star formation rate of IFRS, which all agreed with corresponding numbers of HzRGs. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  4. Characterizing the origin and impact of the most extreme molecular outflows in the nearby universe

    NASA Astrophysics Data System (ADS)

    Gowardhan, Avani; Riechers, Dominik A.; Spoon, Henrik; Farrah, Duncan

    2018-01-01

    Observations over the last decade have revealed that feedback in the form of molecular gas outflows is ubiquitous in local ultra luminous infrared galaxies (ULIRGs). Such outflows can clear the nuclear environments of gas and dust, quench star formation and active galactic nuclei (AGN) growth, and they are a key step in the evolution of dust-obscured AGN to optically luminous quasars. We here present multi-spectral line observations of feedback in the two most powerful molecular gas outflows in the local universe. We spatially resolve the outflows to determine their kinematics and structure and find that they can drive out the molecular gas and quench star formation within ~ few Myr. Applying mid-IR diagnostics to constrain the relative contributions of AGN and nuclear starburst activity, we find that starburst activity plays a significant role in driving the outflow. We discuss the implications for future studies of feedback in the local universe and obscured AGN at high redshift, which is a key target population for JWST and ALMA over the next decade.

  5. The exo-zodiacal disk mapper

    NASA Technical Reports Server (NTRS)

    Petro, Larry; Bely, P.; Burg, R.; Wade, L.; Beichman, C.; Gay, J.; Baudoz, P.; Rabbia, Y.; Perrin, J. M.

    1998-01-01

    Zodiacal dust around neighboring stars could obscure the signal of terrestrial planets observed with the Terrestrial Planet Finder (TPF) if that dust is similar to that in the Solar System. Unfortunately, little is known about the presence, or frequency of occurrence of zodiacal dust around stars and so the relevance of zodiacal dust to the design of the TPF, or to the TPF mission, is unknown. It is likely that direct observation of zodiacal dust disks will be necessary to confidently determine the characteristics of individual systems. A survey of a large number of stars in the solar neighborhood that could be candidates for observation with TPF should be undertaken. We present a concept for a space mission to undertake a sensitive, large-scale survey capable of characterizing solar-system-like zodiacal dust around 400 stars within 20 pc of the Sun.

  6. The Spectral Energy Distribution of the Hyperluminous, Hot Dust-obscured Galaxy W2246–0526

    NASA Astrophysics Data System (ADS)

    Fan, Lulu; Gao, Ying; Knudsen, Kirsten K.; Shu, Xinwen

    2018-02-01

    Hot dust-obscured galaxies (Hot DOGs) are a luminous, dust-obscured population recently discovered in the WISE All-Sky survey. Multiwavelength follow-up observations suggest that they are mainly powered by accreting supermassive black holes (SMBHs), lying in dense environments, and being in the transition phase between extreme starburst and UV-bright quasars. Therefore, they are good candidates for studying the interplay between SMBHs, star formation, and environment. W2246‑0526 (hereafter, W2246), a Hot DOG at z ∼ 4.6, has been taken as the most luminous galaxy known in the universe. Revealed by the multiwavelength images, the previous Herschel SPIRE photometry of W2246 is contaminated by a foreground galaxy (W2246f), resulting in an overestimation of its total IR luminosity by a factor of about two. We perform the rest-frame UV/optical-to-far-IR spectral energy distribution (SED) analysis with SED3FIT and re-estimate its physical properties. The derived stellar mass {M}\\star =4.3× {10}11 {M}ȯ makes it among the most massive galaxies with spectroscopic redshift z > 4.5. Its structure is extremely compact and requires an effective mechanism to puff-up. Most of (>95%) its IR luminosity is from AGN torus emission, revealing the rapid growth of the central SMBH. We also predict that W2246 may have a significant molecular gas reservoir based on the dust mass estimation.

  7. CSI 2264: Simultaneous Optical and Infrared Light Curves of Young Disk-bearing Stars in NGC 2264 with CoRoT and Spitzer—Evidence for Multiple Origins of Variability

    NASA Astrophysics Data System (ADS)

    Cody, Ann Marie; Stauffer, John; Baglin, Annie; Micela, Giuseppina; Rebull, Luisa M.; Flaccomio, Ettore; Morales-Calderón, María; Aigrain, Suzanne; Bouvier, Jèrôme; Hillenbrand, Lynne A.; Gutermuth, Robert; Song, Inseok; Turner, Neal; Alencar, Silvia H. P.; Zwintz, Konstanze; Plavchan, Peter; Carpenter, John; Findeisen, Krzysztof; Carey, Sean; Terebey, Susan; Hartmann, Lee; Calvet, Nuria; Teixeira, Paula; Vrba, Frederick J.; Wolk, Scott; Covey, Kevin; Poppenhaeger, Katja; Günther, Hans Moritz; Forbrich, Jan; Whitney, Barbara; Affer, Laura; Herbst, William; Hora, Joseph; Barrado, David; Holtzman, Jon; Marchis, Franck; Wood, Kenneth; Medeiros Guimarães, Marcelo; Lillo Box, Jorge; Gillen, Ed; McQuillan, Amy; Espaillat, Catherine; Allen, Lori; D'Alessio, Paola; Favata, Fabio

    2014-04-01

    We present the Coordinated Synoptic Investigation of NGC 2264, a continuous 30 day multi-wavelength photometric monitoring campaign on more than 1000 young cluster members using 16 telescopes. The unprecedented combination of multi-wavelength, high-precision, high-cadence, and long-duration data opens a new window into the time domain behavior of young stellar objects. Here we provide an overview of the observations, focusing on results from Spitzer and CoRoT. The highlight of this work is detailed analysis of 162 classical T Tauri stars for which we can probe optical and mid-infrared flux variations to 1% amplitudes and sub-hour timescales. We present a morphological variability census and then use metrics of periodicity, stochasticity, and symmetry to statistically separate the light curves into seven distinct classes, which we suggest represent different physical processes and geometric effects. We provide distributions of the characteristic timescales and amplitudes and assess the fractional representation within each class. The largest category (>20%) are optical "dippers" with discrete fading events lasting ~1-5 days. The degree of correlation between the optical and infrared light curves is positive but weak; notably, the independently assigned optical and infrared morphology classes tend to be different for the same object. Assessment of flux variation behavior with respect to (circum)stellar properties reveals correlations of variability parameters with Hα emission and with effective temperature. Overall, our results point to multiple origins of young star variability, including circumstellar obscuration events, hot spots on the star and/or disk, accretion bursts, and rapid structural changes in the inner disk. Based on data from the Spitzer and CoRoT missions. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.

  8. A NuSTAR SURVEY OF NEARBY ULTRALUMINOUS INFRARED GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, Stacy H.; Rigby, Jane R.; Ptak, Andrew

    We present a Nuclear Spectroscopic Telescope Array (NuSTAR), Chandra, and XMM-Newton survey of nine of the nearest ultraluminous infrared galaxies (ULIRGs). The unprecedented sensitivity of NuSTAR at energies above 10 keV enables spectral modeling with far better precision than was previously possible. Six of the nine sources observed were detected sufficiently well by NuSTAR to model in detail their broadband X-ray spectra, and recover the levels of obscuration and intrinsic X-ray luminosities. Only one source (IRAS 13120–5453) has a spectrum consistent with a Compton-thick active galactic nucleus (AGN), but we cannot rule out that a second source (Arp 220) harborsmore » an extremely highly obscured AGN as well. Variability in column density (reduction by a factor of a few compared to older observations) is seen in IRAS 05189–2524 and Mrk 273, altering the classification of these borderline sources from Compton-thick to Compton-thin. The ULIRGs in our sample have surprisingly low observed fluxes in high-energy (>10 keV) X-rays, especially compared to their bolometric luminosities. They have lower ratios of unabsorbed 2–10 keV to bolometric luminosity, and unabsorbed 2–10 keV to mid-IR [O iv] line luminosity than do Seyfert 1 galaxies. We identify IRAS 08572+3915 as another candidate intrinsically X-ray weak source, similar to Mrk 231. We speculate that the X-ray weakness of IRAS 08572+3915 is related to its powerful outflow observed at other wavelengths.« less

  9. Cosmic Accretion and Galaxy Co-Evolution: Lessons from the Extended Chandra Deep Field South

    NASA Astrophysics Data System (ADS)

    Urry, C. Megan

    2011-05-01

    The Chandra deep fields reveal that most cosmic accretion onto supermassive black holes is obscured by gas and dust. The GOODS and MUSYC multiwavelength data show that many X-ray-detected AGN are faint and red (or even undetectable) in the optical but bright in the infrared, as is characteristic of obscured sources. (N.B. The ECDFS is most sensitive to the AGN that constitute the X-ray background, namely, moderate luminosity AGN, with log Lx=43-44, at moderate redshifts, 0.5

  10. ALMA deep field in SSA22: Survey design and source catalog of a 20 arcmin2 survey at 1.1 mm

    NASA Astrophysics Data System (ADS)

    Umehata, Hideki; Hatsukade, Bunyo; Smail, Ian; Alexander, David M.; Ivison, Rob J.; Matsuda, Yuichi; Tamura, Yoichi; Kohno, Kotaro; Kato, Yuta; Hayatsu, Natsuki H.; Kubo, Mariko; Ikarashi, Soh

    2018-06-01

    To search for dust-obscured star-formation activity in the early Universe, it is essential to obtain a deep and wide submillimeter/millimeter map. The advent of the Atacama Large Millimeter/submillimeter Array (ALMA) has enabled us to obtain such maps with sufficiently high spatial resolution to be free from source confusion. We present a new 1.1 mm-wave map obtained by ALMA in the SSA22 field. The field contains a remarkable proto-cluster at z = 3.09; therefore, it is an ideal region to investigate the role of a large-scale cosmic web on dust-obscured star formation. The typical 1σ depth of our map is 73 μJy beam-1 with a {0^{^''.}5} resolution. Combining the present survey with earlier, archived observations, we map an area of 20 arcmin2 (71 comoving Mpc2 at z = 3.09). Within the combined survey area we have detected 35 sources at a signal-to-noise ratio (S/N) >5, with flux densities of S1.1mm = 0.43-5.6 mJy, equivalent to star-formation rates of ≳100-1000 M⊙ yr-1 at z = 3.09, for a Chabrier initial mass function: 17 sources out of 35 are new detections. The cumulative number counts show an excess by a factor of three to five compared to blank fields. The excess suggests enhanced, dust-enshrouded star-formation activity in the proto-cluster on a 10 comoving Mpc scale, indicating accelerated galaxy evolution in this overdense region.

  11. Powerful Molecular Outflows in Nearby Active Galaxies

    NASA Astrophysics Data System (ADS)

    Veilleux, Sylvain; Meléndez, Marcio

    2014-07-01

    We report the results from a systematic search for molecular (OH 119 μm) outflows with Herschel-PACS† in a sample of 43 nearby (z < 0.3) galaxy mergers, mostly ultraluminous infrared galaxies (ULIRGs) and QSOs. We find that the character of the OH feature (strength of the absorption relative to the emission) correlates with that of the 9.7-μm silicate feature, a measure of obscuration in ULIRGs. Unambiguous evidence for molecular outflows, based on the detection of OH absorption profiles with median velocities more blueshifted than -50 km s-1, is seen in 26 (70%) of the 37 OH-detected targets, suggesting a wide-angle (~ 145°) outflow geometry. Conversely, unambiguous evidence for molecular inflows, based on the detection of OH absorption profiles with median velocities more redshifted than +50 km s-1, is seen in only 4 objects, suggesting a planar or filamentary geometry for the inflowing gas. Terminal outflow velocities of ~ -1000 km s-1 are measured in several objects, but median outflow velocities are typically ~ -200 km s-1. While the outflow velocities show no statistically significant dependence on the star formation rate, they are distinctly more blueshifted among systems with large AGN fractions and luminosities [log (L AGN/L ⊙) >= 11.8 +/- 0.3]. The quasars in these systems play a dominant role in driving the molecular outflows. In contrast, the most AGN dominated systems, where OH is seen purely in emission, show relatively modest OH line widths, despite their large AGN luminosities, perhaps indicating that molecular outflows subside once the quasar has cleared a path through the obscuring material.

  12. The Chandra COSMOS-Legacy Survey: Source X-Ray Spectral Properties

    NASA Astrophysics Data System (ADS)

    Marchesi, S.; Lanzuisi, G.; Civano, F.; Iwasawa, K.; Suh, H.; Comastri, A.; Zamorani, G.; Allevato, V.; Griffiths, R.; Miyaji, T.; Ranalli, P.; Salvato, M.; Schawinski, K.; Silverman, J.; Treister, E.; Urry, C. M.; Vignali, C.

    2016-10-01

    We present the X-ray spectral analysis of the 1855 extragalactic sources in the Chandra COSMOS-Legacy survey catalog having more than 30 net counts in the 0.5-7 keV band. A total of 38% of the sources are optically classified type 1 active galactic nuclei (AGNs), 60% are type 2 AGNs, and 2% are passive, low-redshift galaxies. We study the distribution of AGN photon index Γ and of the intrinsic absorption {N}{{H},{{z}}} based on the sources’ optical classification: type 1 AGNs have a slightly steeper mean photon index Γ than type 2 AGNs, which, on the other hand, have average {N}{{H},{{z}}} ˜ 3 times higher than type 1 AGNs. We find that ˜15% of type 1 AGNs have {N}{{H},{{z}}}\\gt {10}22 cm-2, I.e., are obscured according to the X-ray spectral fitting; the vast majority of these sources have {L}2{--10{keV}} \\gt 1044 erg s-1. The existence of these objects suggests that optical and X-ray obscuration can be caused by different phenomena, the X-ray obscuration being, for example, caused by dust-free material surrounding the inner part of the nuclei. Approximately 18% of type 2 AGNs have {N}{{H},{{z}}}\\lt {10}22 cm-2, and most of these sources have low X-ray luminosities (L {}2{--10{keV}} \\lt 1043 erg s-1). We expect a part of these sources to be low-accretion, unobscured AGNs lacking broad emission lines. Finally, we also find a direct proportional trend between {N}{{H},{{z}}} and host-galaxy mass and star formation rate, although part of this trend is due to a redshift selection effect.

  13. THE STAR FORMATION HISTORIES OF z {approx} 2 DUST-OBSCURED GALAXIES AND SUBMILLIMETER-SELECTED GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bussmann, R. S.; Dey, Arjun; Jannuzi, B. T.

    The Spitzer Space Telescope has identified a population of ultraluminous infrared galaxies (ULIRGs) at z {approx} 2 that may play an important role in the evolution of massive galaxies. We measure the stellar masses (M{sub *}) of two populations of Spitzer-selected ULIRGs that have extremely red R - [24] colors (dust-obscured galaxies, or DOGs) and compare our results with submillimeter-selected galaxies (SMGs). One set of 39 DOGs has a local maximum in their mid-infrared (mid-IR) spectral energy distribution (SED) at rest frame 1.6 {mu}m associated with stellar emission ({sup b}ump DOGs{sup )}, while the other set of 51 DOGs havemore » power-law mid-IR SEDs that are typical of obscured active galactic nuclei ({sup p}ower-law DOGs{sup )}. We measure M{sub *} by applying Charlot and Bruzual stellar population synthesis models to broadband photometry in the rest-frame ultraviolet, optical, and near-infrared of each of these populations. Assuming a simple stellar population and a Chabrier initial mass function, we find that power-law DOGs and bump DOGs are on average a factor of 2 and 1.5 more massive than SMGs, respectively (median and inter-quartile M{sub *} values for SMGs, bump DOGs, and power-law DOGs are log(M{sub *}/M{sub Sun }) = 10.42{sup +0.42}{sub -0.36}, 10.62{sup +0.36}{sub -0.32}, and 10.71{sup +0.40}{sub -0.34}, respectively). More realistic star formation histories drawn from two competing theories for the nature of ULIRGs at z {approx} 2 (major merger versus smooth accretion) can increase these mass estimates by up to 0.5 dex. A comparison of our stellar masses with the instantaneous star formation rate (SFR) in these z {approx} 2 ULIRGs provides a preliminary indication supporting high SFRs for a given M{sub *}, a situation that arises more naturally in major mergers than in smooth accretion-powered systems.« less

  14. VizieR Online Data Catalog: FIR data of IR-bright dust-obscured galaxies (DOGs) (Toba+, 2017)

    NASA Astrophysics Data System (ADS)

    Toba, Y.; Nagao, T.; Wang, W.-H.; Matsuhara, H.; Akiyama, M.; Goto, T.; Koyama, Y.; Ohyama, Y.; Yamamura, I.

    2017-11-01

    We investigate the star-forming activity of a sample of infrared (IR)-bright dust-obscured galaxies (DOGs) that show an extreme red color in the optical and IR regime, (i-[22])AB>7.0. Combining an IR-bright DOG sample with the flux at 22μm>3.8mJy discovered by Toba & Nagao (2016ApJ...820...46T) with the IRAS faint source catalog version 2 and AKARI far-IR (FIR) all-sky survey bright source catalog version 2, we selected 109 DOGs with FIR data. For a subsample of seven IR-bright DOGs with spectroscopic redshifts (0.07

  15. Far-infrared Properties of Infrared-bright Dust-obscured Galaxies Selected with IRAS and AKARI Far-infrared All-sky Survey

    NASA Astrophysics Data System (ADS)

    Toba, Yoshiki; Nagao, Tohru; Wang, Wei-Hao; Matsuhara, Hideo; Akiyama, Masayuki; Goto, Tomotsugu; Koyama, Yusei; Ohyama, Youich; Yamamura, Issei

    2017-05-01

    We investigate the star-forming activity of a sample of infrared (IR)-bright dust-obscured galaxies (DOGs) that show an extreme red color in the optical and IR regime, {(I-[22])}{AB}> 7.0. Combining an IR-bright DOG sample with the flux at 22 μm > 3.8 mJy discovered by Toba & Nagao with the IRAS faint source catalog version 2 and AKARI far-IR (FIR) all-sky survey bright source catalog version 2, we selected 109 DOGs with FIR data. For a subsample of seven IR-bright DOGs with spectroscopic redshifts (0.07< z< 1.0) that were obtained from the literature, we estimated their IR luminosity, star formation rate (SFR), and stellar mass based on the spectral energy distribution fitting. We found that (1) the WISE 22 μm luminosity at the observed frame is a good indicator of IR luminosity for IR-bright DOGs and (2) the contribution of the active galactic nucleus to IR luminosity increases with IR luminosity. By comparing the stellar mass and SFR relation for our DOG sample and the literature, we found that most of the IR-bright DOGs lie significantly above the main sequence of star-forming galaxies at similar redshift, indicating that the majority of IRAS- or AKARI-detected IR-bright DOGs are starburst galaxies.

  16. Cepheid variables in the flared outer disk of our galaxy.

    PubMed

    Feast, Michael W; Menzies, John W; Matsunaga, Noriyuki; Whitelock, Patricia A

    2014-05-15

    Flaring and warping of the disk of the Milky Way have been inferred from observations of atomic hydrogen but stars associated with flaring have not hitherto been reported. In the area beyond the Galactic centre the stars are largely hidden from view by dust, and the kinematic distances of the gas cannot be estimated. Thirty-two possible Cepheid stars (young pulsating variable stars) in the direction of the Galactic bulge were recently identified. With their well-calibrated period-luminosity relationships, Cepheid stars are useful distance indicators. When observations of these stars are made in two colours, so that their distance and reddening can be determined simultaneously, the problems of dust obscuration are minimized. Here we report that five of the candidates are classical Cepheid stars. These five stars are distributed from approximately one to two kiloparsecs above and below the plane of the Galaxy, at radial distances of about 13 to 22 kiloparsecs from the centre. The presence of these relatively young (less than 130 million years old) stars so far from the Galactic plane is puzzling, unless they are in the flared outer disk. If so, they may be associated with the outer molecular arm.

  17. A Spitzer Space Telescope Survey of Extreme Asymptotic Giant Branch Stars in M32

    NASA Technical Reports Server (NTRS)

    Jones, O.C.; McDonald, I.; Rich, R.M.; Kemper, F.; Boyer, M.L.; Zijlstra, A.A.; Bendo, G.J.

    2014-01-01

    We investigate the population of cool, evolved stars in the Local Group dwarf elliptical galaxy M32, using Infrared Array Camera observations from the Spitzer Space Telescope. We construct deep mid-infrared colour-magnitude diagrams for the resolved stellar populations within 3.5 arcminutes of M32's centre, and identify those stars that exhibit infrared excess. Our data is dominated by a population of luminous, dustproducing stars on the asymptotic giant branch (AGB) and extend to approximately 3 magnitudes below the AGB tip. We detect for the first time a sizeable population of 'extreme' AGB stars, highly enshrouded by circumstellar dust and likely completely obscured at optical wavelengths. The total dust-injection rate from the extreme AGB candidates is measured to be 7.5 x 10 (sup -7) solar masses per year, corresponding to a gas mass-loss rate of 1.5 x 10 (sup -4) solar masses per year. These extreme stars may be indicative of an extended star-formation epoch between 0.2 and 5 billion years ago.

  18. THE MULTI-WAVELENGTH EXTREME STARBURST SAMPLE OF LUMINOUS GALAXIES. I. SAMPLE CHARACTERISTICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laag, Edward; Croft, Steve; Canalizo, Gabriela

    2010-12-15

    This paper introduces the Multi-wavelength Extreme Starburst Sample (MESS), a new catalog of 138 star-forming galaxies (0.1 < z < 0.3) optically selected from the Sloan Digital Sky Survey using emission line strength diagnostics to have a high absolute star formation rate (SFR; minimum 11 M{sub sun} yr{sup -1} with median SFR {approx} 61 M{sub sun} yr{sup -1} based on a Kroupa initial mass function). The MESS was designed to complement samples of nearby star-forming galaxies such as the luminous infrared galaxies (LIRGs) and ultraviolet luminous galaxies (UVLGs). Observations using the Multi-band Imaging Photometer (24, 70, and 160 {mu}m channels)more » on the Spitzer Space Telescope indicate that the MESS galaxies have IR luminosities similar to those of LIRGs, with an estimated median L{sub TIR} {approx} 3 x 10{sup 11} L{sub sun}. The selection criteria for the MESS objects suggest they may be less obscured than typical far-IR-selected galaxies with similar estimated SFRs. Twenty out of 70 of the MESS objects detected in the Galaxy Evolution Explorer FUV band also appear to be UVLGs. We estimate the SFRs based directly on luminosities to determine the agreement for these methods in the MESS. We compare these estimates to the emission line strength technique, since the effective measurement of dust attenuation plays a central role in these methods. We apply an image stacking technique to the Very Large Array FIRST survey radio data to retrieve 1.4 GHz luminosity information for 3/4 of the sample covered by FIRST including sources too faint, and at too high a redshift, to be detected in FIRST. We also discuss the relationship between the MESS objects and samples selected through alternative criteria. Morphologies will be the subject of a forthcoming paper.« less

  19. Observational studies of regions of massive star formation

    NASA Astrophysics Data System (ADS)

    Cooper, Heather Danielle Blythe

    2013-03-01

    Massive stars have a profound influence on their surroundings. However, relatively little is known about their formation. The study of massive star formation is hindered by a lack of observational evidence, primarily due to difficulties observing massive stars at early stages in their development. The Red MSX Source survey (RMS survey) is a valuable tool with which to address these issues. Near-infrared H- and K-band spectra were taken for 247 candidate massive young stellar objects (MYSOs), selected from the RMS survey. 195 (∼80%) of the targets are YSOs, of which 131 are massive YSOs (LBOL>5E3L⊙, M>8 M⊙). This is the largest spectroscopic study of massive YSOs to date. This study covers minimally obscured objects right through to very red, dusty sources. Almost all YSOs show some evidence for emission lines, though there is a wide variety of observed properties, with HI, H2 Fe II, and CO among the most commonly observed lines. Evidence for disks and outflows was frequently seen. Comparisons of Brγ and H2 emission with low mass YSOs suggest that the emission mechanism for these lines is the same for low-, intermediate-, and high-mass YSOs, i.e. high-mass YSOs appear to resemble scaled-up versions of low-mass YSOs. It was found that the YSOs form an evolutionary sequence, based on their spectra, consistent with the existing theoretical models. Type I YSOs have strong H2 emission, no ionized lines, and are redder than the other two subtypes. As such, these are considered to be the youngest sources. The Type III sources are bluest, and therefore considered to be the oldest subtype. They have strong H I lines and fluorescent Fe II 1.6878 μm emission. They may also have weak H2 emission. Type III sources may even be beginning to form a mini-H II region. XSHOOTER data from 10 Herbig Be stars were analysed. The evidence suggests that winds and disks are common among Herbig stars, as they are among their main sequence classical Be star counterparts. Line broadening was seen in many of the sources, though it was not possible to identify whether this was due to Stark broadening or electron scattering. The observations and analysis presented in this thesis are an important step forward for the field of massive star formation. They also have the potential to be a starting block for future work.

  20. Flamingos 2 Spectroscopy of Obscured and Unobscured Quasars

    NASA Astrophysics Data System (ADS)

    Ridgway, Susan; Lacy, Mark; Urrutia, Tanya; Petric, Andreea

    2013-08-01

    We will use Flamingos-2 to obtain spectra of luminous AGN and quasars selected in the mid-infrared. Mid-infrared selection is much less biased with respect to obscuration than optical and X-ray techniques, and hence allows for finding obscured (Type-2) quasars as well as Type-1 quasars. Our survey so far has been very successful and has provided an unique opportunity to construct luminosity functions for both Type-1 and Type-2 quasars selected in the same way and covering similar redshifts and luminosities. We have quantifed the change in the obscured fraction with luminosity and redshift for the first time, and find interesting indications that at high redshift the obscured fraction rises, consistent with models for the joint formation of the galaxy and black hole populations. Our samples are, however, still quite incomplete at low fluxes (and therefore lower luminosities at a given redshift), particularly in the southern hemisphere. Near-infrared spectroscopy, such as that we have previously obtained with NIRI at Gemini N, offers us the best possibility of bringing these southern samples to a reasonable completeness level, and will greatly increase the number of high z quasars in our sample. This will allow us to better judge our tantalizing initial results on the redshift evolution of the obscured fraction. In addition, these southern targets can be followed up with ALMA and GEMS/GSAOI to study the morphologies and star-formation properties of the hosts, allowing further exploration of the relationship between the formation of massive bulges and supermassive blackholes in the early universe.

  1. Unveiling the Composite Nature of Dust-Obscured Galaxies (DOGs) with Herschel

    NASA Astrophysics Data System (ADS)

    Riguccini, Laurie A.; Le Floc'h, Emeric; Mullaney, James

    2015-08-01

    DOGs are bright 24um-selected sources with extreme obscuration at optical wavelengths. Some of them are characterized by a rising power-law continuum of hot dust (T_D ~ 200-1000 K) in the near-IR emission indicating that their mid-IR luminosity is dominated by an AGN. Whereas DOGs with a fainter 24um flux display a stellar bump and their mid-IR luminosity is believed to be mainly powered by dusty star-formation. Another explanation is that the mid-IR emission still comes from AGN activity but the torus emission is so obscured that it becomes negligible with respect to the emission from the host component.In an effort to characterize the nature of the physical processes underlying their IR emission, we focus on DOGs (F24/FR>982) within the COSMOS field with Herschel data and derive their far-IR properties (e.g., total IR luminosities; mid-to-far IR colors; dust temperatures and masses and AGN contribution) based on SED fitting.Of particular interest are the 24um-bright DOGs (F24>1mJy). They present bluer far-IR/mid-IR colors than the rest of the sample, unveiling the potential presence of an AGN. The AGN contribution to the total 8-1000um flux increases as a function of the rest-frame 8um-luminosity irrespective of the redshift, with a stronger contribution at lower redshift. This confirms that faint DOGs (F24<1mJy) are dominated by star-formation while brighter DOGs show a larger contribution from an AGN.Is this FIR-selection technique allowing us to probe a new population of obscured AGN? Or does it corresponds to already known AGN in the X-rays, NIR or radio? The wealth of multi wavelength data in COSMOS will allow us to describe our results here.

  2. The Geometry of the Infrared and X-Ray Obscurer in a Dusty Hyperluminous Quasar

    NASA Astrophysics Data System (ADS)

    Farrah, Duncan; Baloković, Mislav; Stern, Daniel; Harris, Kathryn; Kunimoto, Michelle; Walton, Dominic J.; Alexander, David M.; Arévalo, Patricia; Ballantyne, David R.; Bauer, Franz E.; Boggs, Steven; Brandt, William N.; Brightman, Murray; Christensen, Finn; Clements, David L.; Craig, William; Fabian, Andrew; Hailey, Charles; Harrison, Fiona; Koss, Michael; Lansbury, George B.; Luo, Bin; Paine, Jennie; Petty, Sara; Pitchford, Kate; Ricci, Claudio; Zhang, William

    2016-11-01

    We study the geometry of the active galactic nucleus (AGN) obscurer in IRAS 09104+4109, an IR-luminous, radio-intermediate FR-I source at z = 0.442, using infrared data from Spitzer and Herschel, X-ray data from NuSTAR, Swift, Suzaku, and Chandra, and an optical spectrum from Palomar. The infrared data imply a total rest-frame 1-1000 μm luminosity of 5.5 × 1046 erg s-1 and require both an AGN torus and a starburst model. The AGN torus has an anisotropy-corrected IR luminosity of 4.9 × 1046 erg s-1 and a viewing angle and half-opening angle both of approximately 36° from pole-on. The starburst has a star formation rate of (110 ± 34) M ⊙ yr-1 and an age of <50 Myr. These results are consistent with two epochs of luminous activity in IRAS 09104+4109: one approximately 150 Myr ago, and one ongoing. The X-ray data suggest a photon index of Γ ≃ 1.8 and a line-of-sight column density of N H ≃ 5 × 1023 cm-2. This argues against a reflection-dominated hard X-ray spectrum, which would have implied a much higher N H and luminosity. The X-ray and infrared data are consistent with a bolometric AGN luminosity of L bol ˜ (0.5-2.5) × 1047 erg s-1. The X-ray and infrared data are further consistent with coaligned AGN obscurers in which the line of sight “skims” the torus. This is also consistent with the optical spectra, which show both coronal iron lines and broad lines in polarized but not direct light. Combining constraints from the X-ray, optical, and infrared data suggest that the AGN obscurer is within a vertical height of 20 pc, and a radius of 125 pc, of the nucleus.

  3. The Background-Limited Infrared Submillimeter Spectrograph (BLISS) for SPICA

    NASA Astrophysics Data System (ADS)

    Bradford, Charles; BLISS-SPICA Study Team

    2011-05-01

    The far-IR waveband carries half of the photon energy ever produced in galaxies and quasars, evidence of the major role of dust-obscured star formation and black-hole growth had in bringing about the modern Universe. The bulk of this dust-obscured activity appears to have occurred in the first half of the Universe's history (z>1). We are developing the Background-Limited Infrared-Submillimeter Spectrograph (BLISS) to capitalize on SPICA's cold telescope and provide a breakthrough far-IR spectroscopy capability. BLISS-SPICA is 6 orders of magnitude faster than the spectrometers on Herschel and SOFIA in obtaining full-band spectra, and offer the capability to overcome the spatial confusion limit with spectroscopic capability. BLISS-SPICA will observe dust-obscured galaxies at all epochs back to the first billion years after the Big Bang (redshift 6), thereby probing the complete history of dust-obscured star formation and black-hole growth. It will also be extremely powerful for studying ice-giant planet formation in protoplanetary disks, with its sensitivity to very small amounts of gas. Given its enormous potential, BLISS has been recommended by Astro2010 as an example US contribution to SPICA. BLISS covers the 38-433 micron range in six grating-spectrometer bands, with two simultaneous sky positions. The baseline detector package is 4224 silicon-nitride micro-mesh leg-isolated bolometers with superconducting transition-edge-sensed (TES) thermistors, read out with a cryogenic time-domain multiplexer. All spectrometers and detector arrays are cooled to 50mK for optimal sensitivity. All technical elements of BLISS have heritage in mature scientific instruments, and many have flown. We present the science case for BLISS, as well as our progress in the key technical aspects: 1) detector and readout performance demonstration, 2) opto-mechanical instrument configuration, and 3) sub-K cooling and cryogenic system approach.

  4. The Geometry of the Infrared and X-Ray Obscurer in a Dusty Hyperluminous Quasar

    NASA Technical Reports Server (NTRS)

    Farrah, Duncan; Balokovic, Mislav; Stern, Daniel; Harris, Kathryn; Kunimoto, Michelle; Walton, Dominc J.; Alexander, David M.; Arevalo, Patricia; Ballantyne, David R.; Bauer, Franz E.; hide

    2016-01-01

    We study the geometry of the active galactic nucleus (AGN) obscurer in IRAS 09104+4109, an IR-luminous, radio-intermediate FR-I source at z = 0.442, using infrared data from Spitzer and Herschel, X-ray data from NuSTAR, Swift, Suzaku, and Chandra, and an optical spectrum from Palomar. The infrared data imply a total rest-frame 1-1000 micron luminosity of 5.5 × 10(exp 46) ergs/s and require both an AGN torus and a starburst model. The AGN torus has an anisotropy-corrected IR luminosity of 4.9 × 10(exp 46) ergs/s and a viewing angle and half-opening angle both of approximately 36deg from pole-on. The starburst has a star formation rate of (110 +/- 34) Stellar Mass/yr and an age of <50 Myr. These results are consistent with two epochs of luminous activity in IRAS 09104+4109: one approximately 150 Myr ago, and one ongoing. The X-ray data suggest a photon index of Gamma approx. =l 1.8 and a line-of-sight column density of N(sub H) approx. = 5 × 10(exp 23) sq cm. This argues against a reflection-dominated hard X-ray spectrum, which would have implied a much higher N(sub H) and luminosity. The X-ray and infrared data are consistent with a bolometric AGN luminosity of L(sub bol) approx.(0.5-2.5) ×10(exp 47) ergs/s. The X-ray and infrared data are further consistent with co-aligned AGN obscurers in which the line of sight "skims" the torus. This is also consistent with the optical spectra, which show both coronal iron lines and broad lines in polarized but not direct light. Combining constraints from the X-ray, optical, and infrared data suggest that the AGN obscurer is within a vertical height of 20 pc, and a radius of 125 pc, of the nucleus.

  5. Understanding the build-up of SMBH and Galaxies

    NASA Astrophysics Data System (ADS)

    Carrera, Francisco; Georgakakis, Antonis; Ueda, Yoshihiro; Akylas, Thanassis; Lanzuisi, Giorgio; Castello, N.

    2015-09-01

    One of the main open questions in modern Astrophysics is understanding the coupled growth of supermassive black holes by accretion and their host galaxies via star formation, from their peak at redshifts z~ 1-4 to the present time. The generic scenario proposed involves an early phase of intense black hole growth that takes place behind large obscuring columns of inflowing dust and gas clouds. It is postulated that this is followed by a blow-out stage during which some form of AGN feedback controls the fate of the interstellar medium and hence, the evolution of the galaxy. X-rays are essential for testing this scenario as they uniquely probe AGN at both the early heavily obscured stage and the later blow-out phase. X-ray spectral analysis can identify the smoking gun evidence of heavily obscured black hole growth (e.g. intense iron Kalpha line). It therefore provides the most robust method for compiling clean samples of deeply shrouded AGN with well-defined selection functions and unbiased determinations of their intrinsic properties (accretion luminosity, obscuring column). X-rays are also the best window for studying in detail AGN feedback. This process ultimately originates in the innermost regions close to the supermassive black hole and is dominated, in terms of energy and mass flux, by highly ionised material that remains invisible at other wavelengths. The most important epoch for investigating the relation between AGN and galaxies is the redshift range z~1-4, when most black holes and stars we see in the present-day Universe were put in place. Unfortunately, exhaustive efforts with current high-energy telescopes only scrape the tip of the iceberg of the most obscured AGN population. Moreover, Xray studies of the incidence, nature and energetics of AGN feedback are limited to the local Universe. The Athena observatory will provide the technological leap required for a breakthrough in our understanding of AGN and galaxy evolution at the heyday of the Universe. The excellent survey capabilities of Athena/WFI (effective area, angular resolution, field of view) will allow to measure the incidence of feedback in the shape of warm absorbers and Ultra Fast Outflows among the general population of AGN, as well as to complete the census of black hole growth by detecting and characterising significant samples of the most heavily obscured (including Compton thick) AGN, to redshifts z~3-4. The outstanding spectral throughput and resolution of Athena/X-IFU will permit measuring the energetics of those outflows to assess their influence on their host galaxies. The demographics of the heavily obscured and outflowing populations relative to their hosts are fundamental for understanding how major black hole growth events relate to the build-up of galaxies.

  6. Understanding the build-up of supermassive black holes and galaxies

    NASA Astrophysics Data System (ADS)

    Carrera, Francisco; Ueda, Yoshihiro; Georgakakis, Antonis

    2016-07-01

    One of the main open questions in modern Astrophysics is understanding the coupled growth of supermassive black holes by accretion and their host galaxies via star formation, from their peak at redshifts z~ 1-4 to the present time. The generic scenario proposed involves an early phase of intense black hole growth that takes place behind large obscuring columns of inflowing dust and gas clouds. It is postulated that this is followed by a blow-out stage during which some form of AGN feedback controls the fate of the interstellar medium and hence, the evolution of the galaxy. X-rays are essential for testing this scenario as they uniquely probe AGN at both the early heavily obscured stage and the later blow-out phase. X-ray spectral analysis can identify the smoking gun evidence of heavily obscured black hole growth (e.g. intense iron Kalpha line). It therefore provides the most robust method for compiling clean samples of deeply shrouded AGN with well-defined selection functions and unbiased determinations of their intrinsic properties (accretion luminosity, obscuring column). X-rays are also the best window for studying in detail AGN feedback. This process ultimately originates in the innermost regions close to the supermassive black hole and is dominated, in terms of energy and mass flux, by highly ionisedmaterial that remains invisible at other wavelengths. The most important epoch for investigating the relation between AGN and galaxies is the redshift range z~1-4, when most black holes and stars we see in the present-day Universe were put in place. Unfortunately, exhaustive efforts with current high-energy telescopes only scrape the tip of the iceberg of the most obscured AGN population. Moreover, Xray studies of the incidence, nature and energetics of AGN feedback are limited to the local Universe. The Athena observatory will provide the technological leap required for a breakthrough in our understanding of AGN and galaxy evolution at the heyday of the Universe. The excellent survey capabilities of Athena/WFI (effective area, angular resolution, field of view) will allow to measure the incidence of feedback in the shape of warm absorbers and Ultra Fast Outflows among the general population of AGN, as well as to complete the census of black hole growth by detecting and characterising significant samples of the most heavily obscured (including Compton thick) AGN, to redshifts z~3-4. The outstanding spectral throughput and resolution of Athena/X-IFU will permit measuring the energetics of those outflows to assess their influence on their host galaxies. The demographics of the heavily obscured and outflowing populations relative to their hosts are fundamental for understanding how major black hole growth events relate to the build-up of galaxies.

  7. Dust Attenuation, Bulge Formation, and Inside-out Quenching of Star Formation in Star-forming Main Sequence Galaxies at z ∼ 2

    NASA Astrophysics Data System (ADS)

    Tacchella, S.; Carollo, C. M.; Förster Schreiber, N. M.; Renzini, A.; Dekel, A.; Genzel, R.; Lang, P.; Lilly, S. J.; Mancini, C.; Onodera, M.; Tacconi, L. J.; Wuyts, S.; Zamorani, G.

    2018-05-01

    We derive 2D dust attenuation maps at ∼1 kpc resolution from the UV continuum for 10 galaxies on the z ∼ 2 star-forming main sequence (SFMS). Comparison with IR data shows that 9 out of 10 galaxies do not require further obscuration in addition to the UV-based correction, though our sample does not include the most heavily obscured, massive galaxies. The individual rest-frame V-band dust attenuation (A V) radial profiles scatter around an average profile that gently decreases from ∼1.8 mag in the center down to ∼0.6 mag at ∼3–4 half-mass radii. We use these maps to correct UV- and Hα-based star formation rates (SFRs), which agree with each other. At masses ≲ {10}11 {M}ȯ , the dust-corrected specific SFR (sSFR) profiles are on average radially constant at a mass-doubling timescale of ∼300 Myr, pointing at a synchronous growth of bulge and disk components. At masses ≳ {10}11 {M}ȯ , the sSFR profiles are typically centrally suppressed by a factor of ∼10 relative to the galaxy outskirts. With total central obscuration disfavored, this indicates that at least a fraction of massive z ∼ 2 SFMS galaxies have started their inside-out star formation quenching that will move them to the quenched sequence. In combination with other observations, galaxies above and below the ridge of the SFMS relation have, respectively, centrally enhanced and centrally suppressed sSFRs relative to their outskirts, supporting a picture where bulges are built owing to gas “compaction” that leads to a high central SFR as galaxies move toward the upper envelope of the SFMS. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated under NASA contract NAS 5‑26555 (programs GO9822, GO10092, GO10924, GO11694, GO12578, GO12060, GO12061, GO12062, GO12063, GO12064, GO12440, GO12442, GO12443, GO12444, GO12445, GO13669), and at the Very Large Telescope of the European Southern Observatory, Paranal, Chile (ESO Programme IDs 075.A-0466, 076.A-0527, 079.A-0341, 080.A-0330, 080.A-0339, 080.A-0635, 081.A-0672, 183.A-0781, 087.A-0081, 088.A-0202, 088.A-0209, 091.A-0126).

  8. A Sparkling Spray of Stars

    NASA Astrophysics Data System (ADS)

    2008-12-01

    The festive season has arrived for astronomers at the European Southern Observatory (ESO) in the form of this dramatic new image. It shows the swirling gas around the region known as NGC 2264 -- an area of sky that includes the sparkling blue baubles of the Christmas Tree star cluster. Omega Centauri ESO PR Photo 48/08 NGC 2264 and the Christmas Tree cluster NGC 2264 lies about 2600 light-years from Earth in the obscure constellation of Monoceros, the Unicorn, not far from the more familiar figure of Orion, the Hunter. The image shows a region of space about 30 light-years across. William Herschel discovered this fascinating object during his great sky surveys in the late 18th century. He first noticed the bright cluster in January 1784 and the brightest part of the visually more elusive smudge of the glowing gas clouds at Christmas nearly two years later. The cluster is very bright and can easily be seen with binoculars. With a small telescope (whose lenses will turn the view upside down) the stars resemble the glittering lights on a Christmas tree. The dazzling star at the top is even bright enough to be seen with the unaided eye. It is a massive multiple star system that only emerged from the dust and gas a few million years ago. As well as the cluster there are many interesting and curious structures in the gas and dust. At the bottom of the frame, the dark triangular feature is the evocative Cone Nebula, a region of molecular gas flooded by the harsh light of the brightest cluster members. The region to the right of the brightest star has a curious, fur-like texture that has led to the name Fox Fur Nebula. Much of the image appears red because the huge gas clouds are glowing under the intense ultra-violet light coming from the energetic hot young stars. The stars themselves appear blue as they are hotter, younger and more massive than our own Sun. Some of this blue light is scattered by dust, as can be seen occurring in the upper part of the image. This intriguing region is an ideal laboratory for studying how stars form. The entire area shown here is just a small part of a vast cloud of molecular gas that is in the process of forming the next generation of stars. Besides the feast of objects in this picture there are many interesting objects hidden behind the murk of the nebulosity. In the region between the tip of the Cone Nebula and the brightest star at the top of the picture there are several stellar birthing grounds where young stars are forming. There is even evidence of the intense stellar winds from these youthful embryos blasting out from the hidden stars in the making. This picture of NGC 2264, including the Christmas Tree Cluster, was created from images taken with the Wide Field Imager (WFI), a specialised astronomical camera attached to the 2.2-metre Max-Planck Society/ESO telescope at the La Silla observatory in Chile. Located nearly 2400 m above sea level, in the mountains of the Atacama Desert, ESO's La Silla enjoys some of the clearest and darkest skies on the whole planet, making the site ideally suited for studying the farthest depths of the Universe. To make this image, the WFI stared at the cluster for more than ten hours through a series of specialist filters to build up a full colour image of the billowing clouds of fluorescing hydrogen gas.

  9. Detection of a compact companion of the mild barium star Xi-1 Ceti

    NASA Technical Reports Server (NTRS)

    Bohm-Vitense, E.; Johnson, H. R.

    1985-01-01

    In the present paper, the observation of a white dwarf companion of the mild Ba star Xi-1 Ceti (= 65 Ceti = HR 649 = HD 13611) is reported, taking into account also the properties of the mild Ba star and of its companion. The UV spectrum of Xi-1 Ceti is discussed along with an interpretation of this spectrum. Attention is given to the effective temperature of the companion, the absorption bands in the spectrum, the radius and mass of the Xi-1 Ceti companion, and questions regarding the obscuration of the companion by the atmosphere of the Ba star. It is found that the overall energy distribution of the Xi-1 Ceti companion can best be matched with a 14,000 K DA white dwarf of log g = 8 or less. However, the absolute intensity is too small and would require a radius too small and a mass too large for such a gravity.

  10. Towards A Complete Census of the Compton-thick AGN Population in our Cosmic Backyard

    NASA Astrophysics Data System (ADS)

    Annuar, Ady

    2016-09-01

    We propose for Chandra and NuSTAR observations of two local AGNs to characterise their obscuring properties. We are using Chandra and NuSTAR to form the first complete measurement of the column density (N_H) distribution of AGN at D<15 Mpc. Even at this distance the distribution was only 50% complete. We have recently improved this, and found a Compton-thick (CT) AGN fraction of >35%. We also found that Chandra resolution is key in resolving the AGN from off-nuclear X-ray sources. When combined with NuSTAR, this allow us to accurately characterise the broadband spectrum of the AGN, and identify it as CT. These new observations will provide Chandra data for all D<15Mpc AGNs and boost up the N_H distribution up to 85% complete. This will be fully completed with future NuSTAR observations.

  11. TEMPLATES: Targeting Extremely Magnified Panchromatic Lensed Arcs and Their Extended Star formation

    NASA Astrophysics Data System (ADS)

    Spilker, Justin; Rigby, Jane R.; Vieira, Joaquin D.; TEMPLATES Team

    2018-06-01

    TEMPLATES is a JWST Early Release Science program designed to produce high signal-to-noise imaging and IFU spectroscopic data cubes for four gravitationally lensed galaxies at high redshift. The program will spatially resolve the star formation in galaxies across the peak of cosmic star formation in an extinction-robust manner. Lensing magnification pushes JWST to the highest spatial resolutions possible at these redshifts, to map the key spectral diagnostics of star formation and dust extinction: H-alpha, Pa-alpha, and 3.3um PAH emission within individual distant galaxies. Our targets are among the brightest, best-characterized lensed systems known, and include both UV-bright 'normal' galaxies and heavily dust-obscured submillimeter galaxies, at a range of stellar masses and luminosities. I will describe the scientific motivation for this program, detail the targeted galaxies, and describe the planned data products to be delivered to the community in advance of JWST Cycle 2.

  12. Hubble Looks at Light and Dark in the Universe

    NASA Image and Video Library

    2014-08-29

    This new NASA/ESA Hubble Space Telescope image shows a variety of intriguing cosmic phenomena. Surrounded by bright stars, towards the upper middle of the frame we see a small young stellar object (YSO) known as SSTC2D J033038.2+303212. Located in the constellation of Perseus, this star is in the early stages of its life and is still forming into a fully-grown star. In this view from Hubble’s Advanced Camera for Surveys(ACS) it appears to have a murky chimney of material emanating outwards and downwards, framed by bright bursts of gas flowing from the star itself. This fledgling star is actually surrounded by a bright disk of material swirling around it as it forms — a disc that we see edge-on from our perspective. However, this small bright speck is dwarfed by its cosmic neighbor towards the bottom of the frame, a clump of bright, wispy gas swirling around as it appears to spew dark material out into space. The bright cloud is a reflection nebula known as [B77] 63, a cloud of interstellar gas that is reflecting light from the stars embedded within it. There are actually a number of bright stars within [B77] 63, most notably the emission-line star LkHA 326, and it nearby neighbor LZK 18. These stars are lighting up the surrounding gas and sculpting it into the wispy shape seen in this image. However, the most dramatic part of the image seems to be a dark stream of smoke piling outwards from [B77] 63 and its stars — a dark nebula called Dobashi 4173. Dark nebulae are incredibly dense clouds of pitch-dark material that obscure the patches of sky behind them, seemingly creating great rips and eerily empty chunks of sky. The stars speckled on top of this extreme blackness actually lie between us and Dobashi 4173. Credit: ESA/NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Resolving molecular gas to ~500 pc in a unique star forming disk galaxy at z~2

    NASA Astrophysics Data System (ADS)

    Brisbin, Drew; Aravena, Manuel; Hodge, Jacqueline; Carilli, Chris Luke; Daddi, Emanuele; Dannerbauer, Helmut; Riechers, Dominik; Wagg, Jeff

    2018-06-01

    We have resolved molecular gas in a 'typical' star forming disk galaxy at z>2 down to the scale of ~500 pc. Previous observations of CO and [CI] lines on larger spatial scales have revealed bulk molecular and atomic gas properties indicating that the target is a massive disk galaxy with large gas reserves. Unlike many galaxies studied at high redshift, it is undergoing modest quiescent star formation rather than bursty centrally concentrated star formation. Therefore this galaxy represents an under-studied, but cosmologically important population in the early universe. Our new observations of CO (4-3) highlight the clumpy molecular gas fuelling star formation throughout the disk. Underlying continuum from cold dust provides a key constraint on star formation rate surface densities, allowing us to examine the star formation rate surface density scaling law in a never-before-tested regime of early universe galaxies.These observations enable an unprecedented view of the obscured star formation that is hidden to optical/UV imaging and trace molecular gas on a fine enough scale to resolve morphological traits and provide a view akin to single dish surveys in the local universe.

  14. Obscured Black Hole Growth at High Redshift and High Luminosity

    NASA Astrophysics Data System (ADS)

    Urry, C. Megan

    We propose to complete the census of cosmic black hole growth by measuring luminous and/or distant quasars using Spitzer, Herschel, Chandra and XMM-Newton imaging in Stripe 82 the deepest Sloan Digital Sky Survey field, and now the premier legacy field among 100 deg2 survey areas. These extensive ancillary data offer unsurpassed sensitivity to accreting supermassive black holes in luminous quasars out to z 6, including obscured objects missed by optical/UV surveys. We address six science goals centered on the growth of supermassive black holes: 1) We will constrain the mass accreted in luminous quasars by determining the evolving luminosity function of high-luminosity X-ray-selected AGN, including obscured quasars, especially at high redshift, where previous surveys have limited statistics. 2) We will build a comprehensive multi-wavelength population synthesis model that describes cosmic black hole accretion across most of the history of the Universe, constrained by the wealth of data now available. This will be the first population synthesis model that is constrained at high luminosity and high redshift (courtesy of Stripe 82X). 3) We will characterize the spectral energy distributions (SEDs) of luminous X-ray selected quasars, including obscured ones. We will assess the dust content in the host galaxies and diagnose the relative contributions of black hole fueling and star formation, using Herschel data to probe the cold molecular gas from which stars form and comparing X-rays from accretion onto the central black hole. We will also use high-quality optical imaging to disentangle nuclear from host galaxy emission in a representative sub-sample of quasars. 4) Using Spitzer, Herschel, Chandra, XMM-Newton, and optical data, we will identify candidates for the most heavily obscured black holes, which we will follow up with ground-based IR spectroscopy using Keck and Palomar (to which Yale has guaranteed access). In this way we will recover obscured AGN missed by optical surveys, mitigating optical biases in quasar demography. 5) We will investigate the large-scale environments of quasars, in which black holes appear to acquire at least half of their mass, by studying the clustering of AGN in Stripe 82. Specifically, we will measure the halo occupation distribution, which is the probability of a dark matter halo of a given mass to host central and satellite AGN above a given luminosity. We will assess whether rapid black hole growth depends on halo mass, and how the average halo mass in which AGN occur might depend on AGN or galaxy properties. For this analysis, the hundreds of luminous quasars at z>2 in Stripe 82X and its high redshift completeness (92%) are particularly important. 6) We will investigate early black hole growth at z>6 by analyzing fluctuations in the infrared and X-ray backgrounds (i.e., below source detection levels). Specifically, we will directly correlate the Spitzer-measured cosmic infrared background (CIB) and the cosmic X-ray background (CXB) measured with XMM-Newton, on roughly 20 times larger scales than previous studies. This offers the best probe of early BH growth until high-sensitivity X-ray observatories like Athena and Lynx. These studies will determine how much mass is accreted in the most luminous and/or obscured quasars, and how the energy released into galaxies depends on key variables such as redshift, AGN luminosity, Eddington ratio and wavelength. This accurate, data validated estimate of the radiation deposited into host galaxies is essential for incorporating feedback into models of galaxy evolution. The Stripe 82X survey, as the richest multiwavelength survey covering >30 deg2 of the sky, deep enough in X-rays to see luminous quasars out to z 10, will yield many important discoveries, ideally including unexpected ones found by others in the community.

  15. Galaxies Burn Bright Like High-Wattage Light Bulbs

    NASA Image and Video Library

    2012-08-29

    NASA WISE has identified about 1,000 extremely obscured objects over the sky, as marked by the magenta symbols. These hot dust-obscured galaxies, or hot DOGs, are turning out to be among the most luminous.

  16. Dust-obscured Galaxies in the Local Universe

    NASA Astrophysics Data System (ADS)

    Hwang, Ho Seong; Geller, Margaret J.

    2013-06-01

    We use Wide-field Infrared Survey Explorer (WISE), AKARI, and Galaxy Evolution Explorer (GALEX) data to select local analogs of high-redshift (z ~ 2) dust obscured galaxies (DOGs). We identify 47 local DOGs with S 12 μm/S 0.22 μm >= 892 and S 12 μm > 20 mJy at 0.05 < z < 0.08 in the Sloan Digital Sky Survey data release 7. The infrared (IR) luminosities of these DOGs are in the range 3.4 × 1010 (L ⊙) <~ L IR <~ 7.0 × 1011 (L ⊙) with a median L IR of 2.1 × 1011 (L ⊙). We compare the physical properties of local DOGs with a control sample of galaxies that have lower S 12 μm/S 0.22 μm but have similar redshift, IR luminosity, and stellar mass distributions. Both WISE 12 μm and GALEX near-ultraviolet (NUV) flux densities of DOGs differ from the control sample of galaxies, but the difference is much larger in the NUV. Among the 47 DOGs, 36% ± 7% have small axis ratios in the optical (i.e., b/a < 0.6), larger than the fraction among the control sample (17% ± 3%). There is no obvious sign of interaction for many local DOGs. No local DOGs have companions with comparable optical magnitudes closer than ~50 kpc. The large- and small-scale environments of DOGs are similar to the control sample. Many physical properties of local DOGs are similar to those of high-z DOGs, even though the IR luminosities of local objects are an order of magnitude lower than for the high-z objects: the presence of two classes (active galactic nuclei- and star formation-dominated) of DOGs, abnormal faintness in the UV rather than extreme brightness in the mid-IR, and diverse optical morphology. These results suggest a common underlying physical origin of local and high-z DOGs. Both seem to represent the high-end tail of the dust obscuration distribution resulting from various physical mechanisms rather than a unique phase of galaxy evolution.

  17. A Precessing Jet in a Dying Star: Adaptive Optics Imaging of the ``Water-Fountain" Nebula IRAS16342-3814

    NASA Astrophysics Data System (ADS)

    Sahai, R.; Le Mignant, D.; Sánchez Contreras, C.; Campbell, R. D.; Chaffee, F. H.

    2004-12-01

    Collimated jets are one of the most intriguing, yet poorly understood phenomena in astrophysics. Jets have been found in a wide variety of object classes which include active galactic nuclei, young stellar objects, massive X-ray binaries, black hole X-ray transients, symbiotic stars, supersoft X-ray sources, and finally, planetary and preplanetary nebulae (PNe & PPNe). In the case of PNe and PPNe, it has been proposed that wobbling collimated jets may be the universal mechanism which can explain a wide variety of bipolar and multipolar morphologies seen in these objects (Sahai 2000, ASP Conf.Ser. 199, 209). The ``Water-Fountain Nebula'', IRAS16342-3814 (IRAS1634) belongs to a class of very young PPNe with high-velocity molecular outflows traced in either or both of radio H2O and OH maser line emission, and are believed to result from the interaction of fast jets with ambient circumstellar material shed by the AGB progenitors of these objects. Hubble Space Telescope (HST) imaging of IRAS1634 showed a small bipolar nebula, with the lobes separated by a dark equatorial waist (Sahai et al. 1999, ApJ, 514, L115) -- the morphology was interpreted as bubble-like reflection nebulae illuminated by starlight escaping through polar holes in a dense, dusty waist obscuring the central star, with the bubbles created by a fast jet-like outflow plowing into the AGB mass-loss envelope. Here we report Adaptive Optics (AO) observations with the W. M. Keck Observatory at near-infrared wavelengths (in the H, K', L', Ms bands) which probe much deeper into the lobes and reveal a remarkable corkscrew-shaped structure apparently etched into the lobe walls. The corkscrew structure represents the proverbial ``writing on the wall" signature of an underlying precessing jet, and we compare our results with predictions from published numerical simulations of such jets. The results shown provide a dramatic example of the power of ground-based AO imaging with large telescopes to uncover phenomena which are hidden even to the sharp eyes of HST.

  18. NuSTAR Observations of Heavily Obscured Quasars at z Is Approximately 0.5

    NASA Technical Reports Server (NTRS)

    Lansbury, G. B.; Alexander, D. M.; Del Moro, A.; Gandhi, P.; Assef, R. J.; Stern, D.; Aird, J.; Ballantyne, D. R.; Balokovic, M.; Bauer, F. E.; hide

    2014-01-01

    We present NuSTAR hard X-ray observations of three Type 2 quasars at z approx. = 0.4-0.5, optically selected from the Sloan Digital Sky Survey. Although the quasars show evidence for being heavily obscured, Compton-thick systems on the basis of the 2-10 keV to [O(sub III)] luminosity ratio and multiwavelength diagnostics, their X-ray absorbing column densities (N(sub H)) are poorly known. In this analysis, (1) we study X-ray emission at greater than 10 keV, where X-rays from the central black hole are relatively unabsorbed, in order to better constrain N(sub H). (2) We further characterize the physical properties of the sources through broad-band near-UV to mid-IR spectral energy distribution analyses. One of the quasars is detected with NuSTAR at greater than 8 keV with a no-source probability of less than 0.1%, and its X-ray band ratio suggests near Compton-thick absorption with N(sub H) is approximately greater than 5 × 10(exp 23) cm(exp -2). The other two quasars are undetected, and have low X-ray to mid-IR luminosity ratios in both the low-energy (2-10 keV) and high-energy (10-40 keV) X-ray regimes that are consistent with extreme, Compton-thick absorption (N(sub H) is approximately greater than 10(exp 24) cm(exp -2)). We find that for quasars at z is approximately 0.5, NuSTAR provides a significant improvement compared to lower energy (less than 10 keV) Chandra and XMM-Newton observations alone, as higher column densities can now be directly constrained.

  19. Circumstellar Dust in Symbiotic Novae

    NASA Astrophysics Data System (ADS)

    Jurkic, T.; Kotnik-Karuza, D.

    2015-12-01

    We present a model of inner dust regions around the cool Mira component of the two symbiotic novae, RR Tel and HM Sge, based on the near-IR photometry, ISO spectra and mid-IR interferometry. The dust properties were determined using the DUSTY code. A compact circumstellar silicate dust shell with inner dust shell temperatures between 900 K and 1300 K and of moderate optical depth can explain all the observations. RR Tel shows the presence of an equatorially enhanced dust density during minimum obscuration. Obscuration events are explained by an increase in optical depth caused by the newly condensed dust. The mass loss rates are significantly higher than in intermediate-period single Miras but in agreement with longer-period O-rich AGB stars.

  20. HerMES: The Far-infrared Emission from Dust-obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Calanog, J. A.; Wardlow, J.; Fu, Hai; Cooray, A.; Assef, R. J.; Bock, J.; Casey, C. M.; Conley, A.; Farrah, D.; Ibar, E.; Kartaltepe, J.; Magdis, G.; Marchetti, L.; Oliver, S. J.; Pérez-Fournon, I.; Riechers, D.; Rigopoulou, D.; Roseboom, I. G.; Schulz, B.; Scott, Douglas; Symeonidis, M.; Vaccari, M.; Viero, M.; Zemcov, M.

    2013-09-01

    Dust-obscured galaxies (DOGs) are an ultraviolet-faint, infrared-bright galaxy population that reside at z ~ 2 and are believed to be in a phase of dusty star-forming and active galactic nucleus (AGN) activity. We present far-infrared (far-IR) observations of a complete sample of DOGs in the 2 deg2 of the Cosmic Evolution Survey. The 3077 DOGs have langzrang = 1.9 ± 0.3 and are selected from 24 μm and r + observations using a color cut of r + - [24] >= 7.5 (AB mag) and S 24 >= 100 μJy. Based on the near-IR spectral energy distributions, 47% are bump DOGs (star formation dominated) and 10% are power-law DOGs (AGN-dominated). We use SPIRE far-IR photometry from the Herschel Multi-tiered Extragalactic Survey to calculate the IR luminosity and characteristic dust temperature for the 1572 (51%) DOGs that are detected at 250 μm (>=3σ). For the remaining 1505 (49%) that are undetected, we perform a median stacking analysis to probe fainter luminosities. Herschel-detected and undetected DOGs have average luminosities of (2.8 ± 0.4) × 1012 L ⊙ and (0.77 ± 0.08) × 1012 L ⊙, and dust temperatures of (33 ± 7) K and (37 ± 5) K, respectively. The IR luminosity function for DOGs with S 24 >= 100 μJy is calculated, using far-IR observations and stacking. DOGs contribute 10%-30% to the total star formation rate (SFR) density of the universe at z = 1.5-2.5, dominated by 250 μm detected and bump DOGs. For comparison, DOGs contribute 30% to the SFR density for all z = 1.5-2.5 galaxies with S 24 >= 100 μJy. DOGs have a large scatter about the star formation main sequence and their specific SFRs show that the observed phase of star formation could be responsible for their total observed stellar mass at z ~ 2.

  1. ALMA Reveals a Compact Starburst Around a Hidden QSO at z˜5

    NASA Astrophysics Data System (ADS)

    Gilli, R.; Norman, C. A.; Vignali, C.

    2015-12-01

    We present ALMA 1.3mm observations of XID403, an SMG at z=4.75 in the Chandra Deep Field South hosting a heavily obscured, Compton-thick QSO. The ALMA data show that the dust heated by star formation is distributed within ˜0.9 kpc from the nucleus (effective radius). The SFR and dust temperature obtained from the Herschel+ALMA far-IR SED, reveal a warm and compact starburst with surface density of 200 M⊙ yr-1 kpc-2. Our analysis suggest that, besides the mass, SFR and gas consumption timescale, objects like XID403 have also the right size to be the progenitors of the compact quiescent massive galaxies seen at z˜3. It is finally shown that the density of the gas co-spatial with the dust provides a substantial contribution to the absorbing column density towards the QSO as measured from the X-rays.

  2. Spectroscopic Observations of the Mass Donor Star in SS 433

    NASA Astrophysics Data System (ADS)

    Hillwig, T. C.; Gies, D. R.

    2008-03-01

    The microquasar SS 433 is an interacting massive binary consisting of an evolved mass donor and a compact companion that ejects relativistic jets. The mass donor was previously identified through spectroscopic observations of absorption lines in the blue part of the spectrum that showed Doppler shifts associated with orbital motion and strength variations related to the orbital modulation of the star-to-disk flux ratio and to disk obscuration. However, subsequent observations revealed other absorption features that lacked these properties and that were probably formed in the disk gas outflow. We present follow-up observations of SS 433 at orbital and precession phases identical to those from several previous studies, with the goals of confirming the detection of the mass donor spectrum and providing more reliable masses for the two system components. We show that the absorption features present as well as those previously observed almost certainly belong to the mass donor star, and find revised masses of 12.3 ± 3.3 and 4.3 ± 0.8 M⊙ for the mass donor and compact object, respectively. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (US), the Science and Technology Facilities Council (UK), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil), and SECYT (Argentina).

  3. An Inclination-Dependent IRX-beta Relation for Galaxies at z~1.5

    NASA Astrophysics Data System (ADS)

    Wang, Weichen; Kassin, Susan A.; Pacifici, Camilla; de la Vega, Alexander; Simons, Raymond C.; Barro, Guillermo; Gordon, Karl D.; Snyder, Gregory

    2018-01-01

    Star-forming galaxies near cosmic noon are substantially obscured by dust. Therefore, to measure galaxy star-formation rates (SFRs), it is crucial to accurately account for dust obscuration. This is usually done by measuring the slopes of spectra in the rest-frame ultraviolet (i.e., β). Another independent method is to measure the infrared excess IRX, defined as the ratio between infrared and ultraviolet luminosity. In this work, we present the discovery that the relation between IRX and β varies systematically with galaxy inclination at z~1.5. Edge-on galaxies are on average ~0.5 dex higher in IRX than face-on galaxies at fixed β. Furthermore, we find that the difference between SFR(UV+IR) and β-corrected SFR(UV) is correlated with inclination. Our finding is consistent with the study of local galaxies (Wild et al. 2011), where the dust attenuation curve is found to flatten with increasing inclination. We interpret our results using a picture where dust and young stars are spatially mixed. In this case, β is more sensitive to the optically-thin regions near the surface of galaxy disks. Therefore, compared to the case of face-on galaxies, β measures a smaller fraction of the total dust optical depth for the edge-on galaxies, whereas IRX always probes the total optical depth. We conclude that inclination must be taken into account when evaluating dust attenuation with β at high redshift.

  4. HUBBLE PROBES THE VIOLENT BIRTH OF STARS IN GALAXY NGC 253 [Left

    NASA Technical Reports Server (NTRS)

    2002-01-01

    An image of the spiral galaxy NGC 253, taken with a ground-based telescope. The galaxy is located about 8 million light-years away in the constellation Sculptor. Credit: Jay Gallagher (University of Wisconsin-Madison), Alan Watson (Lowell Observatory, Flagstaff, AZ), and NASA [Right] This NASA Hubble Space Telescope image of the core of the nearest starburst spiral galaxy, NGC 253, reveals violent star formation within a region 1,000 light-years across. A starburst galaxy has an exceptionally high rate of star birth, first identified by its excess of infrared radiation from warm dust. Hubble's high resolution allows astronomers to quantify complex structures in the starburst core of the galaxy for the first time, including luminous star clusters, dust lanes which trace regions of dense gas and filaments of glowing gas. Hubble identifies several regions of intense star formation, which include a bright, super-compact star cluster. These observations confirm that stars are often born in dense clusters within starbursts, and that dense gas coexists with and obscures the starburst core. This image was taken with Hubble's Wide Field Planetary Camera 2 (in PC mode). Credit: Carnegie Institution of Washington

  5. The Black Hole Masses and Star Formation Rates of z>1 Dust Obscured Galaxies: Results from Keck OSIRIS Integral Field Spectroscopy

    NASA Astrophysics Data System (ADS)

    Melbourne, J.; Peng, Chien Y.; Soifer, B. T.; Urrutia, Tanya; Desai, Vandana; Armus, L.; Bussmann, R. S.; Dey, Arjun; Matthews, K.

    2011-04-01

    We have obtained high spatial resolution Keck OSIRIS integral field spectroscopy of four z ~ 1.5 ultra-luminous infrared galaxies that exhibit broad Hα emission lines indicative of strong active galactic nucleus (AGN) activity. The observations were made with the Keck laser guide star adaptive optics system giving a spatial resolution of 0farcs1 or <1 kpc at these redshifts. These high spatial resolution observations help to spatially separate the extended narrow-line regions—possibly powered by star formation—from the nuclear regions, which may be powered by both star formation and AGN activity. There is no evidence for extended, rotating gas disks in these four galaxies. Assuming dust correction factors as high as A(Hα) = 4.8 mag, the observations suggest lower limits on the black hole masses of (1-9) × 108 M sun and star formation rates <100 M sun yr-1. The black hole masses and star formation rates of the sample galaxies appear low in comparison to other high-z galaxies with similar host luminosities. We explore possible explanations for these observations, including host galaxy fading, black hole growth, and the shut down of star formation.

  6. Hubble Uncovering the Secrets of the Quintuplet Cluster

    NASA Image and Video Library

    2017-12-08

    Although this cluster of stars gained its name due to its five brightest stars, it is home to hundreds more. The huge number of massive young stars in the cluster is clearly captured in this NASA/ESA Hubble Space Telescope image. The cluster is located close to the Arches Cluster and is just 100 light-years from the center of our galaxy. The cluster’s proximity to the dust at the center of the galaxy means that much of its visible light is blocked, which helped to keep the cluster unknown until its discovery in 1990, when it was revealed by infrared observations. Infrared images of the cluster, like the one shown here, allow us to see through the obscuring dust to the hot stars in the cluster. The Quintuplet Cluster hosts two extremely rare luminous blue variable stars: the Pistol Star and the lesser known V4650 Sgr. If you were to draw a line horizontally through the center of this image from left to right, you could see the Pistol Star hovering just above the line about one third of the way along it. The Pistol Star is one of the most luminous known stars in the Milky Way and takes its name from the shape of the Pistol Nebula that it illuminates, but which is not visible in this infrared image. The exact age and future of the Pistol Star are uncertain, but it is expected to end in a supernova or even a hypernova in one to three million years. The cluster also contains a number of red supergiants. These stars are among the largest in the galaxy and are burning their fuel at an incredible speed, meaning they will have a very short lifetime. Their presence suggests an average cluster age of nearly four million years. At the moment these stars are on the verge of exploding as supernovae. During their spectacular deaths they will release vast amounts of energy which, in turn, will heat the material — dust and gas — between the other stars. This observation shows the Quintuplet Cluster in the infrared and demonstrates the leap in Hubble’s performance since its 1999 image of same object. Credit: ESA/NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. HUBBLE PROVIDES 'ONE-TWO PUNCH' TO SEE BIRTH OF STARS IN GALACTIC WRECKAGE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Two powerful cameras aboard NASA's Hubble Space Telescope teamed up to capture the final stages in the grand assembly of galaxies. The photograph, taken by the Advanced Camera for Surveys (ACS) and the revived Near Infrared Camera and Multi-Object Spectrometer (NICMOS), shows a tumultuous collision between four galaxies located 1 billion light-years from Earth. The galactic car wreck is creating a torrent of new stars. The tangled up galaxies, called IRAS 19297-0406, are crammed together in the center of the picture. IRAS 19297-0406 is part of a class of galaxies known as ultraluminous infrared galaxies (ULIRGs). ULIRGs are considered the progenitors of massive elliptical galaxies. ULIRGs glow fiercely in infrared light, appearing 100 times brighter than our Milky Way Galaxy. The large amount of dust in these galaxies produces the brilliant infrared glow. The dust is generated by a firestorm of star birth triggered by the collisions. IRAS 19297-0406 is producing about 200 new Sun-like stars every year -- about 100 times more stars than our Milky Way creates. The hotbed of this star formation is the central region [the yellow objects]. This area is swamped in the dust created by the flurry of star formation. The bright blue material surrounding the central region corresponds to the ultraviolet glow of new stars. The ultraviolet light is not obscured by dust. Astronomers believe that this area is creating fewer new stars and therefore not as much dust. The colliding system [yellow and blue regions] has a diameter of about 30,000 light-years, or about half the size of the Milky Way. The tail [faint blue material at left] extends out for another 20,000 light-years. Astronomers used both cameras to witness the flocks of new stars that are forming from the galactic wreckage. NICMOS penetrated the dusty veil that masks the intense star birth in the central region. ACS captured the visible starlight of the colliding system's blue outer region. IRAS 19297-0406 may be similar to the so-called Hickson compact groups -- clusters of at least four galaxies in a tight configuration that are isolated from other galaxies. The galaxies are so close together that they lose energy from the relentless pull of gravity. Eventually, they fall into each other and form one massive galaxy. This color-composite image was made by combining photographs taken in near-infrared light with NICMOS and ultraviolet and visible light with ACS. The pictures were taken with these filters: the H-band and J-band on NICMOS; the V-band on the ACS wide-field camera; and the U-band on the ACS high-resolution camera. The images were taken on May 13 and 14. Credits: NASA, the NICMOS Group (STScI, ESA), and the NICMOS Science Team (University of Arizona)

  8. Fast Molecular Outflows in Luminous Galaxy Mergers: Evidence for Quasar Feedback from Herschel

    NASA Technical Reports Server (NTRS)

    Veilleux, S.; Melendez, M.; Sturm, E.; Garcia-Carpio, J.; Fischer, J.; Gonzalez-Alfonso, E.; Contursi, A.; Lutz, D.; Poglitsch, A.; Davies, R.; hide

    2013-01-01

    We report the results from a systematic search for molecular (OH 119 micron) outflows with Herschel/PACS in a sample of 43 nearby (z < 0.3) galaxy mergers, mostly ultraluminous infrared galaxies (ULIRGs) and QSOs. We find that the character of the OH feature (strength of the absorption relative to the emission) correlates with that of the 9.7 micron silicate feature, a measure of obscuration in ULIRGs. Unambiguous evidence for molecular outflows, based on the detection of OH absorption profiles with median velocities more blueshifted than-50 km/s, is seen in 26 (70%) of the 37 OH-detected targets, suggesting a wide-angle (approx. 145 deg.) outflow geometry. Conversely, unambiguous evidence for molecular inflows, based on the detection of OH absorption profiles with median velocities more redshifted than +50 km/s is seen in only four objects, suggesting a planar or filamentary geometry for the inflowing gas. Terminal outflow velocities of approx. -1000 km/s are measured in several objects, but median outflow velocities are typically approx.-200 km/s-1. While the outflow velocities show no statistically significant dependence on the star formation rate, they are distinctly more blueshifted among systems with large active galactic nucleus (AGN) fractions and luminosities [log (L(sub AGN)/L(sub solar)) => 11.8 +/- 0.3]. The quasars in these systems play a dominant role in driving the molecular outflows. However, the most AGN dominated systems, where OH is seen purely in emission, show relatively modest OH line widths, despite their large AGN luminosities, perhaps indicating that molecular outflows subside once the quasar has cleared a path through the obscuring material.

  9. Fast Molecular Outflows in Luminous Galaxy Mergers: Evidence for Quasar Feedback from Herschel

    NASA Astrophysics Data System (ADS)

    Veilleux, S.; Meléndez, M.; Sturm, E.; Gracia-Carpio, J.; Fischer, J.; González-Alfonso, E.; Contursi, A.; Lutz, D.; Poglitsch, A.; Davies, R.; Genzel, R.; Tacconi, L.; de Jong, J. A.; Sternberg, A.; Netzer, H.; Hailey-Dunsheath, S.; Verma, A.; Rupke, D. S. N.; Maiolino, R.; Teng, S. H.; Polisensky, E.

    2013-10-01

    We report the results from a systematic search for molecular (OH 119 μm) outflows with Herschel/PACS in a sample of 43 nearby (z < 0.3) galaxy mergers, mostly ultraluminous infrared galaxies (ULIRGs) and QSOs. We find that the character of the OH feature (strength of the absorption relative to the emission) correlates with that of the 9.7 μm silicate feature, a measure of obscuration in ULIRGs. Unambiguous evidence for molecular outflows, based on the detection of OH absorption profiles with median velocities more blueshifted than -50 km s-1, is seen in 26 (70%) of the 37 OH-detected targets, suggesting a wide-angle (~145°) outflow geometry. Conversely, unambiguous evidence for molecular inflows, based on the detection of OH absorption profiles with median velocities more redshifted than +50 km s-1, is seen in only four objects, suggesting a planar or filamentary geometry for the inflowing gas. Terminal outflow velocities of ~-1000 km s-1 are measured in several objects, but median outflow velocities are typically ~-200 km s-1. While the outflow velocities show no statistically significant dependence on the star formation rate, they are distinctly more blueshifted among systems with large active galactic nucleus (AGN) fractions and luminosities [log (L AGN/L ⊙) >= 11.8 ± 0.3]. The quasars in these systems play a dominant role in driving the molecular outflows. However, the most AGN dominated systems, where OH is seen purely in emission, show relatively modest OH line widths, despite their large AGN luminosities, perhaps indicating that molecular outflows subside once the quasar has cleared a path through the obscuring material.

  10. Black Hole growth and star formation activity in the CDFS

    NASA Astrophysics Data System (ADS)

    Brusa, Marcella; Fiore, Fabrizio

    2010-07-01

    We present a study of the properties of obscured Active Galactic Nuclei (AGN) detected in the CDFS 1Ms observation and their host galaxies. We limited the analysis to the MUSIC area, for which deep K-band observations obtained with ISAACatVLT are available, ensuring accurate identifications of the counterparts of the X-ray sources as well as reliable determination of photometric redshifts and galaxy parameters, such as stellar masses and star formation rates. Among other findings, we found that the X-ray selected AGN fraction increases with the stellar mass up to a value of 30% at z>1 and M*>3×1011 M.

  11. OT1_kcoppin_1: A Herschel Survey of [OI]63um in 1

    NASA Astrophysics Data System (ADS)

    Coppin, K.

    2010-07-01

    Luminous obscured galaxies likely dominate the total bolometric emission from star-formation at the early epochs of z~2-3, and are most efficiently identified through their (sub)millimetre emission and are so-called submillimetre galaxies (SMGs). The intense starbursts in SMGs are fuelled by their large observed H2 gas reservoirs, as traced by CO interferometric surveys, although the details of how their immense luminosities (L_fir>5x10^12 Lsun) and star-formation rates (~100-1000 Msun/yr) are powered are not well understood: Are SMGs just scaled up ULIRGs with star-formation occurring in a highly-obscured nuclear region (with perhaps some contribution from an AGN)? Or does the star-formation occur in a more extended, cooler component, such as in "normal" star-forming galaxies. One route to tackling this question is to construct a data set of the brightest fine-structure ISM emission lines ([CII] and [OI]) in a well-defined sample of SMGs, which with ancillary CO data, will allow us to study the physics of the ISM and its interplay with the heating source. Similar benchmark data sets are being compiled by several Herschel programs for local LIRGs and ULIRGs, which will act as a link to help interpret the high-redshift SMG observations. Here we propose a timely and systematic study with the PACS spectrometer of [OI]63um in a flux-limited sample of SMGs with secure spectroscopic redshifts between 0.7

  12. HUBBLE CAPTURES THE HEART OF STAR BIRTH

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA Hubble Space Telescope's Wide Field and Planetary Camera 2 (WFPC2) has captured a flurry of star birth near the heart of the barred spiral galaxy NGC 1808. On the left are two images, one superimposed over the other. The black-and-white picture is a ground-based view of the entire galaxy. The color inset image, taken with the Hubble telescope's Wide Field and Planetary Camera 2 (WFPC2), provides a close-up view of the galaxy's center, the hotbed of vigorous star formation. The ground-based image shows that the galaxy has an unusual, warped shape. Most spiral galaxies are flat disks, but this one has curls of dust and gas at its outer spiral arms (upper right-hand corner and lower left-hand corner). This peculiar shape is evidence that NGC 1808 may have had a close interaction with another nearby galaxy, NGC 1792, which is not in the picture Such an interaction could have hurled gas towards the nucleus of NGC 1808, triggering the exceptionally high rate of star birth seen in the WFPC2 inset image. The WFPC2 inset picture is a composite of images using colored filters that isolate red and infrared light as well as light from glowing hydrogen. The red and infrared light (seen as yellow) highlight older stars, while hydrogen (seen as blue) reveals areas of star birth. Colors were assigned to this false-color image to emphasize the vigorous star formation taking place around the galaxy's center. NGC 1808 is called a barred spiral galaxy because of the straight lines of star formation on both sides of the bright nucleus. This star formation may have been triggered by the rotation of the bar, or by matter which is streaming along the bar towards the central region (and feeding the star burst). Filaments of dust are being ejected from the core into a faint halo of stars surrounding the galaxy's disk (towards the upper left corner) by massive stars that have exploded as supernovae in the star burst region. The portion of the galaxy seen in this 'wide-field' image is about 35,000 light-years across. The right-hand image, taken by WFPC2, provides a closer look at the flurry of star birth at the galaxy's core. The star clusters (blue) can be seen (and many more are likely obscured) amid thick lanes of gas and dust. This image shows that stars are often born in compact clusters within star bursts, and that dense gas and dust heavily obscures the star burst region. The brightest knot of star birth seen here is probably a giant cluster of stars, about 100 light-years in diameter, at the very center of the galaxy. The other star clusters are about 10 to 50 light-years in diameter. The entire star burst region shown here is about 3,000 light-years across. This galaxy is about 40 million light-years away in the southern constellation Columba. The observation was taken Aug. 14, 1997, and was the last of 13 Hubble Space Telescope amateur programs. Credits: Jim Flood, an amateur astronomer affiliated with Sperry Observatory at Union College in New Jersey, and Max Mutchler, a member of the Space Telescope Science Institute staff who volunteered to work with Jim.

  13. New Panorama Reveals More Than a Thousand Black Holes

    NASA Astrophysics Data System (ADS)

    2007-03-01

    By casting a wide net, astronomers have captured an image of more than a thousand supermassive black holes. These results give astronomers a snapshot of a crucial period when these monster black holes are growing, and provide insight into the environments in which they occur. The new black hole panorama was made with data from NASA's Chandra X-ray Observatory, the Spitzer Space Telescope and ground-based optical telescopes. The black holes in the image are hundreds of millions to several billion times more massive than the sun and lie in the centers of galaxies. X-ray, IR & Optical Composites of Obscured & Unobscured AGN in Bootes Field X-ray, IR & Optical Composites of Obscured & Unobscured AGN in Bootes Field Material falling into these black holes at high rates generates huge amounts of light that can be detected in different wavelengths. These systems are known as active galactic nuclei, or AGN. "We're trying to get a complete census across the Universe of black holes and their habits," said Ryan Hickox of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass. "We used special tactics to hunt down the very biggest black holes." Instead of staring at one relatively small part of the sky for a long time, as with the Chandra Deep Fields -- two of the longest exposures obtained with the observatory -- and other concentrated surveys, this team scanned a much bigger portion with shorter exposures. Since the biggest black holes power the brightest AGN, they can be spotted at vast distances, even with short exposures. Scale Chandra Images to Full Moon Scale Chandra Images to Full Moon "With this approach, we found well over a thousand of these monsters, and have started using them to test our understanding of these powerful objects," said co-investigator Christine Jones, also of the CfA. The new survey raises doubts about a popular current model in which a supermassive black hole is surrounded by a doughnut-shaped region, or torus, of gas. An observer from Earth would have their view blocked by this torus by different amounts, depending on the orientation of the torus. According to this model, astronomers would expect a large sample of black holes to show a range of absorption of the radiation from the nuclei. This absorption should range from completely exposed to completely obscured, with most in-between. Nuclei that are completely obscured are not detectable, but heavily obscured ones are. "Instead of finding a whole range, we found nearly all of the black holes are either naked or covered by a dense veil of gas," said Hickox. "Very few are in between, which makes us question how well we know the environment around these black holes." This study found more than 600 obscured and 700 unobscured AGN, located between about six to 11 billion light years from Earth. They were found using an early application of a new search method. By looking at the infrared colors of objects with Spitzer, AGN can be separated from stars and galaxies. The Chandra and optical observations then verify these objects are AGN. This multi-wavelength method is especially efficient at finding obscured AGN. "These results are very exciting, using two NASA Great Observatories to find and understand the largest sample of obscured supermassive black holes ever found in the distant universe", said co-investigator Daniel Stern, of NASA's Jet Propulsion Laboratory in Pasadena, Calif. The Chandra image is the largest contiguous field ever obtained by the observatory. At 9.3 square degrees, it is over 40 times larger than the full moon seen on the night sky and over 80 times larger than either of the Chandra Deep Fields. This survey, taken in a region of the Bootes constellation, involved 126 separate pointings of 5,000-second Chandra exposures each. The researchers combined this with data obtained from Spitzer, and Kitt Peak's 4-meter Mayall and the MMT 6.5-meter optical telescopes, both located outside Tuscon, Ariz., from the same patch of sky. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center, Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  14. CO J = 2-1 LINE EMISSION IN CLUSTER GALAXIES AT z {approx} 1: FUELING STAR FORMATION IN DENSE ENVIRONMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagg, Jeff; Pope, Alexandra; Alberts, Stacey

    We present observations of CO J = 2-1 line emission in infrared-luminous cluster galaxies at z {approx} 1 using the IRAM Plateau de Bure Interferometer. Our two primary targets are optically faint, dust-obscured galaxies (DOGs) found to lie within 2 Mpc of the centers of two massive (>10{sup 14} M{sub Sun }) galaxy clusters. CO line emission is not detected in either DOG. We calculate 3{sigma} upper limits to the CO J = 2-1 line luminosities, L'{sub CO} < 6.08 Multiplication-Sign 10{sup 9} and <6.63 Multiplication-Sign 10{sup 9} K km s{sup -1} pc{sup 2}. Assuming a CO-to-H{sub 2} conversion factormore » derived for ultraluminous infrared galaxies in the local universe, this translates to limits on the cold molecular gas mass of M{sub H{sub 2}}< 4.86 Multiplication-Sign 10{sup 9} M{sub Sun} and M{sub H{sub 2}}< 5.30 Multiplication-Sign 10{sup 9} M{sub Sun }. Both DOGs exhibit mid-infrared continuum emission that follows a power law, suggesting that an active galactic nucleus (AGN) contributes to the dust heating. As such, estimates of the star formation efficiencies in these DOGs are uncertain. A third cluster member with an infrared luminosity, L{sub IR} < 7.4 Multiplication-Sign 10{sup 11} L{sub Sun }, is serendipitously detected in CO J = 2-1 line emission in the field of one of the DOGs located roughly two virial radii away from the cluster center. The optical spectrum of this object suggests that it is likely an obscured AGN, and the measured CO line luminosity is L'{sub CO} = (1.94 {+-} 0.35) Multiplication-Sign 10{sup 10} K km s{sup -1} pc{sup 2}, which leads to an estimated cold molecular gas mass M{sub H{sub 2}}= (1.55{+-}0.28) Multiplication-Sign 10{sup 10} M{sub Sun }. A significant reservoir of molecular gas in a z {approx} 1 galaxy located away from the cluster center demonstrates that the fuel can exist to drive an increase in star formation and AGN activity at the outskirts of high-redshift clusters.« less

  15. Anatomy of the AGN in NGC 5548. VII. Swift study of obscuration and broadband continuum variability

    NASA Astrophysics Data System (ADS)

    Mehdipour, M.; Kaastra, J. S.; Kriss, G. A.; Cappi, M.; Petrucci, P.-O.; De Marco, B.; Ponti, G.; Steenbrugge, K. C.; Behar, E.; Bianchi, S.; Branduardi-Raymont, G.; Costantini, E.; Ebrero, J.; Di Gesu, L.; Matt, G.; Paltani, S.; Peterson, B. M.; Ursini, F.; Whewell, M.

    2016-04-01

    We present our investigation into the long-term variability of the X-ray obscuration and optical-UV-X-ray continuum in the Seyfert 1 galaxy NGC 5548. In 2013 and 2014, the Swift observatory monitored NGC 5548 on average every day or two, with archival observations reaching back to 2005, totalling about 670 ks of observing time. Both broadband spectral modelling and temporal rms variability analysis are applied to the Swift data. We disentangle the variability caused by absorption, due to an obscuring weakly-ionised outflow near the disk, from variability of the intrinsic continuum components (the soft X-ray excess and the power law) originating in the disk and its associated coronae. The spectral model that we apply to this extensive Swift data is the global model that we derived for NGC 5548 from analysis of the stacked spectra from our multi-satellite campaign of 2013 (including XMM-Newton, NuSTAR, and HST). The results of our Swift study show that changes in the covering fraction of the obscurer is the primary and dominant cause of variability in the soft X-ray band on timescales of 10 days to ~5 months. The obscuring covering fraction of the X-ray source is found to range between 0.7 and nearly 1.0. The contribution of the soft excess component to the X-ray variability is often much less than that of the obscurer, but it becomes comparable when the optical-UV continuum flares up. We find that the soft excess is consistent with being the high-energy tail of the optical-UV continuum and can be explained by warm Comptonisation: up-scattering of the disk seed photons in a warm, optically thick corona as part of the inner disk. To this date, the Swift monitoring of NGC 5548 shows that the obscurer has been continuously present in our line of sight for at least 4 years (since at least February 2012).

  16. X-Ray Spectral Properties of Seven Heavily Obscured Seyfert 2 Galaxies

    NASA Astrophysics Data System (ADS)

    Marchesi, S.; Ajello, M.; Comastri, A.; Cusumano, G.; La Parola, V.; Segreto, A.

    2017-02-01

    We present the combined Chandra and Swift-BAT spectral analysis of seven Seyfert 2 galaxies selected from the Swift-BAT 100 month catalog. We selected nearby (z ≤ 0.03) sources lacking a ROSAT counterpart that never previously been observed with Chandra in the 0.3-10 keV energy range, and targeted these objects with 10 ks Chandra ACIS-S observations. The X-ray spectral fitting over the 0.3-150 keV energy range allows us to determine that all the objects are significantly obscured, with N H ≥ 1023 cm-2 at a >99% confidence level. Moreover, one to three sources are candidate Compton-thick Active Galactic Nuclei (CT-AGNs; I.e., N H ≥ 1024 cm-2). We also test the recent spectral curvature method developed by Koss et al. to find candidate CT-AGNs, finding a good agreement between our results and their predictions. Because the selection criteria we adopted were effective in detecting highly obscured AGNs, further observations of these and other Seyfert 2 galaxies selected from the Swift-BAT 100 month catalog will allow us to create a statistically significant sample of highly obscured AGNs, therefore providing a better understanding of the physics of the obscuration processes.

  17. The suppression of star formation by powerful active galactic nuclei.

    PubMed

    Page, M J; Symeonidis, M; Vieira, J D; Altieri, B; Amblard, A; Arumugam, V; Aussel, H; Babbedge, T; Blain, A; Bock, J; Boselli, A; Buat, V; Castro-Rodríguez, N; Cava, A; Chanial, P; Clements, D L; Conley, A; Conversi, L; Cooray, A; Dowell, C D; Dubois, E N; Dunlop, J S; Dwek, E; Dye, S; Eales, S; Elbaz, D; Farrah, D; Fox, M; Franceschini, A; Gear, W; Glenn, J; Griffin, M; Halpern, M; Hatziminaoglou, E; Ibar, E; Isaak, K; Ivison, R J; Lagache, G; Levenson, L; Lu, N; Madden, S; Maffei, B; Mainetti, G; Marchetti, L; Nguyen, H T; O'Halloran, B; Oliver, S J; Omont, A; Panuzzo, P; Papageorgiou, A; Pearson, C P; Pérez-Fournon, I; Pohlen, M; Rawlings, J I; Rigopoulou, D; Riguccini, L; Rizzo, D; Rodighiero, G; Roseboom, I G; Rowan-Robinson, M; Sánchez Portal, M; Schulz, B; Scott, D; Seymour, N; Shupe, D L; Smith, A J; Stevens, J A; Trichas, M; Tugwell, K E; Vaccari, M; Valtchanov, I; Viero, M; Vigroux, L; Wang, L; Ward, R; Wright, G; Xu, C K; Zemcov, M

    2012-05-09

    The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight correlation between the mass of the black hole and the mass of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming galaxies are usually dust-obscured and are brightest at infrared and submillimetre wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expelling the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time.

  18. The Suppression of Star Formation by Powerful Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Dwek, E.

    2012-01-01

    The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight corre1ation between the mass of the black hole and the mas. of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming ga1axies are usually dust-obscured and are brightest at infrared and submillimeter wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(exp 44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expe11ing the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time.

  19. Wide-Spectrum Microscope with a Long Working Distance Aspherical Objective Based on Obscuration Constraint

    PubMed Central

    Wang, Weibo; Wang, Chao; Liu, Jian; Tan, Jiubin

    2016-01-01

    We present an approach for an initial configuration design based on obscuration constraint and on-axis Taylor series expansion to realize the design of long working distance microscope (numerical aperture (NA) = 0.13 and working distance (WD) = 525 mm) with a low obscuration aspherical Schwarzschild objective in wide-spectrum imaging (λ = 400–900 nm). Experiments of the testing on the resolution target and inspection on United States Air Force (USAF) resolution chart and a line charge-coupled device (CCD) (pixel size of 14 μm × 56 μm) with different wavelength light sources (λ = 480 nm, 550 nm, 660 nm, 850 nm) were implemented to verify the validity of the proposed method. PMID:27834874

  20. A Glimpse of the Milky Way

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1

    In visible light, the bulk of our Milky Way galaxy's stars are eclipsed behind thick clouds of galactic dust and gas. But to the infrared eyes of NASA's Spitzer Space Telescope, distant stars and dust clouds shine with unparalleled clarity and color.

    In this panoramic image (center row, fig. 1) from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire project, a plethora of stellar activity in the Milky Way's galactic plane, reaching to the far side of our galaxy, is exposed. This image spans 9 degrees of sky (approximately the width of a fist held out at arm's length).

    The red clouds indicate the presence of large organic molecules (mixed with the dust), which have been illuminated by nearby star formation. The patches of black are dense obscuring dust clouds impenetrable by even Spitzer's super-sensitive infrared eyes. Bright arcs of white throughout the image are massive stellar incubators.

    With over 160 megapixels, the full detail in this panorama cannot be appreciated without zooming in to various areas of interest (top and bottom rows, fig. 1). Bubbles, or holes, in the red clouds are formed by the powerful outflows from massive groups of forming stars. Wisps of green indicate the presence of hot hydrogen gas. Star clusters can also be seen as the groupings of blue, yellow, and green specks inside some of the red nebulae, or star-forming clouds.

    In contrast to the plentiful examples of stellar youth in this montage, Spitzer also sees an object called a planetary nebula (top row, middle, fig. 1). Such nebulae are the final gasp of dying stars like our sun, whose outer layers are blown into space, leaving a burnt out core of a star, called a white dwarf, behind.

    Although this panoramic image captures a large range of the galaxy, it represents only 7.5 percent of the primary Glimpse survey, which will image most of the star formation regions in our galaxy.

    The infrared images were captured with the Spitzer's infrared array camera. The pictures are 4-channel false-color composites, showing emission from wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange), and 8.0 microns (red).

    Caution: Images are best resolution available and are very large.

  1. Ground based THz Spectroscopy of Obscured Starbursts in the Early Universe enabled by the 2nd generation Redshift (z) & Early Universe Spectrometer (ZEUS-2)

    NASA Astrophysics Data System (ADS)

    Vishwas, Amit; Stacey, Gordon; Nikola, Thomas; Ferkinhoff, Carl; Parshley, Stephen; Schoenwald, Justin; Lamarche, Cody James; Higdon, James; Higdon, Sarah; Brisbin, Drew; Güesten, Rolf; Weiss, Axel; Menten, Karl; Irwin, Kent; Cho, Hsiao-Mei; Niemack, Michael; Hilton, Gene; Hubmayr, Johannes; Amiri, Mandana; Halpern, Mark; Wiebe, Donald; Hasselfield, Matthew; Ade, Peter; Tucker, Carole

    2018-01-01

    Galaxies were surprisingly dusty in the early Universe, with more than half of the light emitted from stars being absorbed by dust within the system and re-radiated into far infrared (FIR, ~50-150μm) wavelengths. Dusty star forming galaxies (DSFGs) dominate the co-moving star formation rate density of the Universe that peaks around redshift, z~2, making it compelling to study them in rest frame FIR bands. From galaxies at z > 1, the FIR line emission from abundant ions like [O III], [C II] and [N II], are redshifted into the short sub-mm telluric windows. My thesis work is based on building and deploying the 2nd Generation Redshift (z) and Early Universe Spectrometer (ZEUS-2), a long-slit, echelle grating spectrometer optimized to study broad (Δv = 300km/s) spectral lines from galaxies in the 200-650µm telluric windows using TES bolometers. These far-IR lines being extinction free and major coolants of the gas heated by (young) massive stars, are powerful probes of the physical conditions of the gas and the stellar radiation field. I present results from our survey of the [O III] 88µm line in galaxies at redshift, z ~ 2.8 to 4.6, with ZEUS-2 at the Atacama Pathfinder Experiment (APEX) Telescope. To interpret our observations along with ancillary data from optical to radio facilities, we apply photoionization models for HII regions and Photo Dissociation Region (PDR) models and confirm that the galaxies host substantial ongoing obscured star formation. The presence of doubly ionized oxygen suggests hard radiation fields and hence, elevated ionization parameters that can only be accounted for by a large population of massive stars formed during the ongoing starburst, that contribute a large fraction of the infrared luminosity. This study highlights the use of FIR line emission to trace the assembly of current day massive galaxies, conditions of star formation and details of their stellar populations. The construction and operation of ZEUS-2 were funded by NSF ATI and AAG grants including AAG 1109476 and has served as a training ground for students interested in astronomical instrumentation.

  2. Observing the Birth and evolution of Galaxies - the ATCA-AKARI-ASTE/AzTEC deep South Ecliptic Pole Field

    NASA Astrophysics Data System (ADS)

    White, Glenn; Kohno, Kotaro; Matsuhara, Hideo; Matsuura, Shuji; Hanami, Hitoshi; Lee, Hyung Mok; Pearson, Chris; Takagi, Toshi; Serjeant, Stephen; Jeong, Woongseob; Oyabu, Shinki; Shirahata, Mai; Nakanishi, Kouichiro; Figueredo, Elysandra; Etxaluze, Mireya

    2007-04-01

    We propose deep 20 cm observations supporting the AKARI (3-160 micron)/ASTE/AzTEC (1.1 mm) SEP ultra deep ('Oyabu Field') survey of an extremely low cirrus region at the South Ecliptic Pole. Our combined IR/mm/Radio survey addresses the questions: How do protogalaxies and protospheroids form and evolve? How do AGN link with ULIRGs in their birth and evolution? What is the nature of the mm/submm extragalactic source population? We will address these by sampling the star formation history in the early universe to at least z~2. Compared to other Deep Surveys, a) AKARI multi-band IR measurements allow precision photo-z estimates of optically obscured objects, b) our multi-waveband contiguous area will mitigate effects of cosmic variance, c) the low cirrus noise at the SEP (< 0.08 MJy/sr) rivals that of the Lockman Hole "Astronomy's other ultra-deep 'cosmological window'", and d) our coverage of four FIR bands will characterise the far-IR dust emission hump of our starburst galaxies better than SPITZER's two MIPS bands allow. The ATCA data are crucial to galaxy identification, and determining the star formation rates and intrinsic luminosities through this unique Southern cosmological window.

  3. Multi-wavelength Morphological Study Of Star Forming Regions In Nearby Cluster-rich Lirgs

    NASA Astrophysics Data System (ADS)

    Vavilkin, Tatjana; Evans, A.; Mazzarella, J.; Surace, J.; Kim, D.; Howell, J.; Armus, L.; GOALS Team

    2009-05-01

    Luminous Infrared Galaxies (LIRGs) are believed to play an important role in star formation history of the universe. Many LIRGs undergo intense bursts of star formation as a result of interaction/merger process. Given the dusty nature of LIRGs, it is necessary to probe Luminous Infrared Galaxies at multiple wavelengths. The Great Observatories All-sky LIRG Survey (GOALS) combines data from NASA's Spitzer, Hubble, Chandra and GALEX observatories and offers a unique opportunity to gain insights into the physical processes in these highly dust enshrouded systems. We examine a sample of 11 nearby (z < 0.03) cluster-rich (> 200 clusters as seen in HST ACS images) LIRG systems at various interaction stages. The combined HST ACS optical imaging, Spitzer IRAC 8 micron channel and GALEX near-UV imaging allows us to access the properties of visible and obscured star forming regions. We study the spatial distribution of star forming regions at these wavelengths, correlate locations of young stellar clusters with PAH and UV emission regions and trace changes with merger stage.

  4. AH-64E Apache Remanufacture (AH-64E Remanufacture)

    DTIC Science & Technology

    2015-12-01

    Support Operations to Major Combat Operations, when required, in day, night, obscured battlefield and adverse weather conditions. The AH-64E enables the...adverse weather and obscurants , and can effectively engage and destroy advanced threat weapon systems on the air-land battlefield. Tactically, the AH-64E...Objective 30 Survive Band IV MANPADS IR Missile Engagement IAW JROCM 086-10 IAW JROCM 086-10 IAW JROCM 086-10 Met Objective IAW JROCM 086-10 Force Protection

  5. THE FMOS-COSMOS SURVEY OF STAR-FORMING GALAXIES AT z ∼ 1.6. III. SURVEY DESIGN, PERFORMANCE, AND SAMPLE CHARACTERISTICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silverman, J. D.; Sugiyama, N.; Kashino, D.

    We present a spectroscopic survey of galaxies in the COSMOS field using the Fiber Multi-object Spectrograph (FMOS), a near-infrared instrument on the Subaru Telescope. Our survey is specifically designed to detect the Hα emission line that falls within the H-band (1.6–1.8 μm) spectroscopic window from star-forming galaxies with 1.4 < z < 1.7 and M{sub stellar} ≳ 10{sup 10} M{sub ⊙}. With the high multiplex capability of FMOS, it is now feasible to construct samples of over 1000 galaxies having spectroscopic redshifts at epochs that were previously challenging. The high-resolution mode (R ∼ 2600) effectively separates Hα and [N ii]λ6585,more » thus enabling studies of the gas-phase metallicity and photoionization state of the interstellar medium. The primary aim of our program is to establish how star formation depends on stellar mass and environment, both recognized as drivers of galaxy evolution at lower redshifts. In addition to the main galaxy sample, our target selection places priority on those detected in the far-infrared by Herschel/PACS to assess the level of obscured star formation and investigate, in detail, outliers from the star formation rate (SFR)—stellar mass relation. Galaxies with Hα detections are followed up with FMOS observations at shorter wavelengths using the J-long (1.11–1.35 μm) grating to detect Hβ and [O iii]λ5008 which provides an assessment of the extinction required to measure SFRs not hampered by dust, and an indication of embedded active galactic nuclei. With 460 redshifts measured from 1153 spectra, we assess the performance of the instrument with respect to achieving our goals, discuss inherent biases in the sample, and detail the emission-line properties. Our higher-level data products, including catalogs and spectra, are available to the community.« less

  6. The composite nature of Dust-Obscured Galaxies (DOGs) at z ˜ 2-3 in the COSMOS field - I. A far-infrared view

    NASA Astrophysics Data System (ADS)

    Riguccini, L.; Le Floc'h, E.; Mullaney, J. R.; Menéndez-Delmestre, K.; Aussel, H.; Berta, S.; Calanog, J.; Capak, P.; Cooray, A.; Ilbert, O.; Kartaltepe, J.; Koekemoer, A.; Lutz, D.; Magnelli, B.; McCracken, H.; Oliver, S.; Roseboom, I.; Salvato, M.; Sanders, D.; Scoville, N.; Taniguchi, Y.; Treister, E.

    2015-09-01

    Dust-Obscured Galaxies (DOGs) are bright 24 μm-selected sources with extreme obscuration at optical wavelengths. They are typically characterized by a rising power-law continuum of hot dust (TD ˜ 200-1000 K) in the near-IR indicating that their mid-IR luminosity is dominated by an active galactic nucleus (AGN). DOGs with a fainter 24 μm flux display a stellar bump in the near-IR and their mid-IR luminosity appears to be mainly powered by dusty star formation. Alternatively, it may be that the mid-IR emission arising from AGN activity is dominant but the torus is sufficiently opaque to make the near-IR emission from the AGN negligible with respect to the emission from the host component. In an effort to characterize the astrophysical nature of the processes responsible for the IR emission in DOGs, this paper exploits Herschel data (PACS + SPIRE) on a sample of 95 DOGs within the COSMOS field. We derive a wealth of far-IR properties (e.g. total IR luminosities; mid-to-far-IR colours; dust temperatures and masses) based on spectral energy distribution fitting. Of particular interest are the 24 μm-bright DOGs (F24 μm > 1 mJy). They present bluer far-IR/mid-IR colours than the rest of the sample, unveiling the potential presence of an AGN. The AGN contribution to the total 8-1000 μm flux increases as a function of the rest-frame 8 μm-luminosity irrespective of the redshift. This confirms that faint DOGs (L8 μm < 1012 L⊙) are dominated by star formation while brighter DOGs show a larger contribution from an AGN.

  7. Massive stars: Their lives in the interstellar medium; Proceedings of the Symposium, ASP Annual Meeting, 104th, Univ. of Wisconsin, Madison, June 23-25, 1992

    NASA Astrophysics Data System (ADS)

    Cassinelli, Joseph P.; Churchwell, Edward B.

    1993-01-01

    Various papers on massive stars and their relationship to the interstellar medium are presented. Individual topics addressed include: observations of newly formed massive stars, star formation with nonthermal motions, embedded stellar clusters in H II regions, a Milky Way concordance, NH3 and H2O masers, PIGs in the Trapezium, star formation in photoevaporating molecular clouds, massive star evolution, mass loss from cool supergiant stars, massive runaway stars, CNO abundances in three A-supergiants, mass loss from late-type supergiants, OBN stars and blue supergiant supernovae, the most evolved W-R stars, X-ray variability in V444 Cygni, highly polarized stars in Cassiopeia, H I bubbles around O stars, interstellar H I LY-alpha absorption, shocked ionized gas in 30 Doradus, wind mass and energy deposition. Also discussed are: stellar wind bow shocks, O stars giant bubbles in M33, Eridanus soft X-ray enhancement, wind-blown bubbles in ejecta medium, nebulae around W-R stars, highly ionized gas in the LMC, cold ionized gas around hot H II regions, initial mass function in the outer Galaxy, late stages in SNR evolution, possible LBV in NGC 1313, old SN-pulsar association, cold bright matter near SN1987A, starbursts in the nearby universe, giant H II regions, powering the superwind in NGC 253, obscuration effects in starburst Galactic nuclei, starburst propagation in dwarf galaxies, 30 Doradus, W-R content of NGC 595 and NGC 604, Cubic Cosmic X-ray Background Experiment.

  8. ISO observations of obscured Asymptotic Giant Branch stars in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Trams, N. R.; van Loon, J. Th.; Waters, L. B. F. M.; Zijlstra, A. A.; Loup, C.; Whitelock, P. A.; Groenewegen, M. A. T.; Blommaert, J. A. D. L.; Siebenmorgen, R.; Heske, A.; Feast, M. W.

    1999-06-01

    We present ISO photometric and spectroscopic observations of a sample of 57 bright Asymptotic Giant Branch stars and red supergiants in the Large Magellanic Cloud, selected on the basis of IRAS colours indicative of high mass-loss rates. PHOT-P and PHOT-C photometry at 12, 25 and 60 mu m and CAM photometry at 12 mu m are used in combination with quasi-simultaneous ground-based near-IR photometry to construct colour-colour diagrams for all stars in our sample. PHOT-S and CAM-CVF spectra in the 3 to 14 mu m region are presented for 23 stars. From the colour-colour diagrams and the spectra, we establish the chemical types of the dust around 49 stars in this sample. Many stars have carbon-rich dust. The most luminous carbon star in the Magellanic Clouds has also a (minor) oxygen-rich component. OH/IR stars have silicate absorption with emission wings. The unique dataset presented here allows a detailed study of a representative sample of thermal-pulsing AGB stars with well-determined luminosities. This paper is based on observations with the Infrared Space Observatory (ISO). ISO is an ESA project with instruments funded by ESA member states (especially the PI countries: France, Germany, The Netherlands and the United Kingdom) and with the participation of ISAS and NASA.

  9. THE GEOMETRY OF THE INFRARED AND X-RAY OBSCURER IN A DUSTY HYPERLUMINOUS QUASAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrah, Duncan; Harris, Kathryn; Baloković, Mislav

    2016-11-01

    We study the geometry of the active galactic nucleus (AGN) obscurer in IRAS 09104+4109, an IR-luminous, radio-intermediate FR-I source at z = 0.442, using infrared data from Spitzer and Herschel , X-ray data from NuSTAR , Swift , Suzaku , and Chandra , and an optical spectrum from Palomar. The infrared data imply a total rest-frame 1–1000 μ m luminosity of 5.5 × 10{sup 46} erg s{sup −1} and require both an AGN torus and a starburst model. The AGN torus has an anisotropy-corrected IR luminosity of 4.9 × 10{sup 46} erg s{sup −1} and a viewing angle and half-openingmore » angle both of approximately 36° from pole-on. The starburst has a star formation rate of (110 ± 34) M {sub ⊙} yr{sup −1} and an age of <50 Myr. These results are consistent with two epochs of luminous activity in IRAS 09104+4109: one approximately 150 Myr ago, and one ongoing. The X-ray data suggest a photon index of Γ ≃ 1.8 and a line-of-sight column density of N {sub H} ≃ 5 × 10{sup 23} cm{sup −2}. This argues against a reflection-dominated hard X-ray spectrum, which would have implied a much higher N {sub H} and luminosity. The X-ray and infrared data are consistent with a bolometric AGN luminosity of L {sub bol} ∼ (0.5–2.5) × 10{sup 47} erg s{sup −1}. The X-ray and infrared data are further consistent with coaligned AGN obscurers in which the line of sight “skims” the torus. This is also consistent with the optical spectra, which show both coronal iron lines and broad lines in polarized but not direct light. Combining constraints from the X-ray, optical, and infrared data suggest that the AGN obscurer is within a vertical height of 20 pc, and a radius of 125 pc, of the nucleus.« less

  10. DETERMINING THE COVERING FACTOR OF COMPTON-THICK ACTIVE GALACTIC NUCLEI WITH NuSTAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brightman, M.; Baloković, M.; Fuerst, F.

    2015-05-20

    The covering factor of Compton-thick (CT) obscuring material associated with the torus in active galactic nuclei (AGNs) is at present best understood through the fraction of sources exhibiting CT absorption along the line of sight (N{sub H} > 1.5 × 10{sup 24} cm{sup −2}) in the X-ray band, which reveals the average covering factor. Determining this CT fraction is difficult, however, due to the extreme obscuration. With its spectral coverage at hard X-rays (>10 keV), Nuclear Spectroscopic Telescope Array (NuSTAR) is sensitive to the AGNs covering factor since Compton scattering of X-rays off optically thick material dominates at these energies. Wemore » present a spectral analysis of 10 AGNs observed with NuSTAR where the obscuring medium is optically thick to Compton scattering, so-called CT AGNs. We use the torus models of Brightman and Nandra that predict the X-ray spectrum from reprocessing in a torus and include the torus opening angle as a free parameter and aim to determine the covering factor of the CT gas in these sources individually. Across the sample we find mild to heavy CT columns, with N{sub H} measured from 10{sup 24} to 10{sup 26} cm{sup −2}, and a wide range of covering factors, where individual measurements range from 0.2 to 0.9. We find that the covering factor, f{sub c}, is a strongly decreasing function of the intrinsic 2–10 keV luminosity, L{sub X}, where f{sub c} = (−0.41 ± 0.13)log{sub 10}(L{sub X}/erg s{sup −1})+18.31 ± 5.33, across more than two orders of magnitude in L{sub X} (10{sup 41.5}–10{sup 44} erg s{sup −1}). The covering factors measured here agree well with the obscured fraction as a function of L{sub X} as determined by studies of local AGNs with L{sub X} > 10{sup 42.5} erg s{sup −1}.« less

  11. Mapping Extinction and Star Formation Rates of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Ridenour, Anthony; Takamiya, M.

    2010-01-01

    Star Formation Rate (SFR) is a physical characteristic of galaxies vital to our understanding of such problems as the evolution of the Universe. In computing SFRs obscuring dust systematically lowers them at shorter wavelengths compared to longer wavelengths. This issue of dust extinction has been handled well by multi-wavelength studies of nearby galaxies. Star Formation Rate measurements of distant galaxies are currently reliant on the emission of visible spectroscopic lines like Hα and [OII] after correction for extinction. However, if the visible light is completely obscured an incorrect assumption may be drawn; namely that there is neither SFR nor extinction. The work purposed here is to calibrate the SFR ascertained from Hα emission in nearby galaxies and compare it to radio and infrared emission. The Balmer decrement, or the ratio of Hβ to Hα emission, used to determine extinction, will also be studied and compared to infrared images. 30 nearby galaxies will be sampled and 2-D maps and Balmer decrements will be formed to do two things: measure SFRs and determine differences between Hα and infrared emission, and explore in what ways this difference corresponds with such things as the radio SFR, galaxy luminosity and morphological type. The accuracy of Hα as a SFR indicator and its determination as a sound tool in measuring SFRs of distant galaxies can both be quantified by interpreting these maps. Dr. Marianne Takamiya, the principal investigator and my mentor, secured funds through a grant to the University of Hawai'i at Hilo from The Research Corporation for Science Advancement Cottrell College Science Awards for this research.

  12. Dissecting the IRX-β dust attenuation relation: exploring the physical origin of observed variations in galaxies

    NASA Astrophysics Data System (ADS)

    Popping, Gergö; Puglisi, Annagrazia; Norman, Colin A.

    2017-12-01

    The use of ultraviolet (UV) emission as a tracer of galaxy star formation rate (SFR) is hampered by dust obscuration. The empirical relationship between UV-slope, β, and the ratio between far-infrared and UV luminosity, IRX, is commonly employed to account for obscured UV emission. We present a simple model that explores the physical origin of variations in the IRX-β dust attenuation relation. A relative increase in FUV compared to NUV attenuation and an increasing stellar population age cause variations towards red UV-slopes for a fixed IRX. Dust geometry effects (turbulence, dust screen with holes, mixing of stars within the dust screen, two-component dust model) cause variations towards blue UV-slopes. Poor photometric sampling of the UV spectrum causes additional observational variations. We provide an analytic approximation for the IRX-β relation invoking a subset of the explored physical processes (dust type, stellar population age, turbulence). We discuss observed variations in the IRX-β relation for local (sub-galactic scales) and high-redshift (normal and dusty star-forming galaxies, galaxies during the epoch of reionization) galaxies in the context of the physical processes explored in our model. High spatial resolution imaging of the UV and sub-mm emission of galaxies can constrain the IRX-β dust attenuation relation for different galaxy types at different epochs, where different processes causing variations may dominate. These constraints will allow the use of the IRX-β relation to estimate intrinsic SFRs of galaxies, despite the lack of a universal relation.

  13. New Constraints on the Unified Model of Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Maiolino, R.; Ruiz, M.; Rieke, G. H.; Keller, L. D.

    1995-06-01

    We present new 10 microns (N-band) photometry for 70 Seyfert galaxies, 43 of them previously unobserved. These observations, together with those collected from the literature, complete the 10 microns photometry for the CfA Sy galaxies and cover 80% of the Sy found in the RSA and 70% of the Sy in the IRAS 12 microns sample. From this data set, we find that Sy not showing any evidence for broad lines are systematically weaker in 10 microns nuclear emission than Sy nuclei having broad lines. This result may indicate the existence of a group of very low-luminosity Sy2 galaxies that do not have Sy1 counterparts in equal numbers, contrary to the strict unified theory. Alternately, the result can be reconciled with unified theories if a specific type of geometry is assumed for the circumnuclear obscuring material. By comparing the 10 microns ground-based observations with the IRAS 12 microns fluxes, we also study the properties of the extended mid-IR emission, i.e., the star forming activity of the host galaxy of the Sy nucleus. We find Sy2 to lie preferentially in galaxies experiencing enhanced star-forming activity, while Sy1 lie in normal or quiescent galaxies. This result appears to be inconsistent with the strict unified model, since the host galaxy properties should be independent of the orientation of a circumnuclear torus and therefore should be independent of nuclear type. Our finding could be explained by adding to the unified model a link between star-forming activity and the amount of obscuring material collected in the circumnuclear region.

  14. Discovering highly obscured AGN with the Swift-BAT 100-month survey

    NASA Astrophysics Data System (ADS)

    Marchesi, Stefano; Ajello, Marco; Comastri, Andrea; Cusumano, Giancarlo; La Parola, Valentina; Segreto, Alberto

    2017-01-01

    In this talk, I present a new technique to find highly obscured AGN using the 100-month Swift-BAT survey. I will show the results of the combined Chandra and BAT spectral analysis in the 0.3-150 keV band of seven Seyfert 2 galaxies selected from the 100-month BAT catalog. We selected nearby (z<0.03) sources lacking of a ROSAT counterpart and never previously observed in the 0.3-10 keV energy range. All the objects are significantly obscured, having NH>1E23 cm-2 at a >99% confidence level, and one to three sources are candidate Compton thick Active Galactic Nuclei (CT-AGN), i.e., have NH>1E24 cm-2.Since the selection criteria we adopted have been extremely effective in detecting highly obscured AGN, further observations of these and other Seyfert 2 galaxies selected from the BAT 100-month catalog will allow us to create a statistically significant sample of highly obscured AGN, therefore better understanding the physics of the obscuration processes.

  15. Massive infrared clusters in the Milky Way

    NASA Astrophysics Data System (ADS)

    Chené, André-Nicolas; Ramírez Alegría, Sebastian; Borissova, Jordanka; Hervé, Anthony; Martins, Fabrice; Kuhn, Michael; Minniti, Dante; VVV Science Team

    2017-11-01

    Our position in the Milky Way (MW) is both a blessing and a curse. We are nearby to many star clusters, but the dust that is a product of their very existence obscures them. Also, many massive young clusters are expected to be located near, or across the Galactic Center, where the dust extinction is extreme (A V > 15 mag) and can be better penetrated by infrared photons. This paper reviews the discoveries and the study of new MW massive stars and massive clusters made possible by near infrared observations that are part of the VISTA Variables in the Vía Láctea (VVV) survey. It discusses what the studies of their fundamental parameters have taught us.

  16. NuSTAR Observations of WISE J1036+0449, a Galaxy at z~1 Obscured by Hot Dust

    NASA Astrophysics Data System (ADS)

    Ricci, C.; Assef, R. J.; Stern, D.; Nikutta, R.; Alexander, D. M.; Asmus, D.; Ballantyne, D. R.; Bauer, F. E.; Blain, A. W.; Boggs, S.; Boorman, P. G.; Brandt, W. N.; Brightman, M.; Chang, C. S.; Chen, C.-T. J.; Christensen, F. E.; Comastri, A.; Craig, W. W.; Díaz-Santos, T.; Eisenhardt, P. R.; Farrah, D.; Gandhi, P.; Hailey, C. J.; Harrison, F. A.; Jun, H. D.; Koss, M. J.; LaMassa, S.; Lansbury, G. B.; Markwardt, C. B.; Stalevski, M.; Stanley, F.; Treister, E.; Tsai, C.-W.; Walton, D. J.; Wu, J. W.; Zappacosta, L.; Zhang, W. W.

    2017-01-01

    Hot dust-obscured galaxies (hot DOGs), selected from Wide-Field Infrared Survey Explorer’s all-sky infrared survey, host some of the most powerful active galactic nuclei known and may represent an important stage in the evolution of galaxies. Most known hot DOGs are located at z> 1.5, due in part to a strong bias against identifying them at lower redshift related to the selection criteria. We present a new selection method that identifies 153 hot DOG candidates at z˜ 1, where they are significantly brighter and easier to study. We validate this approach by measuring a redshift z = 1.009 and finding a spectral energy distribution similar to that of higher-redshift hot DOGs for one of these objects, WISE J1036+0449 ({L}{Bol}≃ 8× {10}46 {erg} {{{s}}}-1). We find evidence of a broadened component in Mg II, which would imply a black hole mass of {M}{BH}≃ 2× {10}8 {M}⊙ and an Eddington ratio of {λ }{Edd}≃ 2.7. WISE J1036+0449 is the first hot DOG detected by the Nuclear Spectroscopic Telescope Array, and observations show that the source is heavily obscured, with a column density of {N}{{H}}≃ (2{--}15)× {10}23 {{cm}}-2. The source has an intrinsic 2-10 keV luminosity of ˜ 6× {10}44 {erg} {{{s}}}-1, a value significantly lower than that expected from the mid-infrared/X-ray correlation. We also find that other hot DOGs observed by X-ray facilities show a similar deficiency of X-ray flux. We discuss the origin of the X-ray weakness and the absorption properties of hot DOGs. Hot DOGs at z≲ 1 could be excellent laboratories to probe the characteristics of the accretion flow and of the X-ray emitting plasma at extreme values of the Eddington ratio.

  17. NuSTAR Observations of WISE J1036+0449, A Galaxy at Z Approx. 1 Obscured by Hot Dust

    NASA Technical Reports Server (NTRS)

    Ricci, C.; Assef, R. J.; Stern, D.; Nikutta, R.; Alexander, D. M.; Asmus, D.; Ballantyne, D. R.; Bauer, F. E.; Blain, A. W.; Boggs, S.; hide

    2017-01-01

    Hot dust-obscured galaxies (hot DOGs), selected from Wide-Field Infrared Survey Explorer's all-sky infrared survey, host some of the most powerful active galactic nuclei known and may represent an important stage in the evolution of galaxies. Most known hot DOGs are located at z > 1.5, due in part to a strong bias against identifying them at lower redshift related to the selection criteria. We present a new selection method that identifies 153 hot DOG candidates at z approx. 1, where they are significantly brighter and easier to study. We validate this approach by measuring a redshift z = 1.009 and finding a spectral energy distribution similar to that of higher-redshift hot DOGs for one of these objects, WISE J1036+0449 (L(BOL) approx. = 8 x 10(exp 46) erg/s). We find evidence of a broadened component in Mg II, which would imply a black hole mass of M(BH) approx. = 2 x 10(exp 8) Stellar Mass and an Eddington ratio of lambda(Edd) approx. = 2.7. WISE J1036+0449 is the first hot DOG detected by the Nuclear Spectroscopic Telescope Array, and observations show that the source is heavily obscured, with a column density of N(H) approx. = (2-15) x 10(exp 23)/sq cm. The source has an intrinsic 2-10 keV luminosity of approx. 6 x 10(exp 44) erg/s, a value significantly lower than that expected from the mid-infrared X-ray correlation. We also find that other hot DOGs observed by X-ray facilities show a similar deficiency of X-ray flux. We discuss the origin of the X-ray weakness and the absorption properties of hot DOGs. Hot DOGs at z < or approx. 1 could be excellent laboratories to probe the characteristics of the accretion flow and of the X-ray emitting plasma at extreme values of the Eddington ratio.

  18. NuSTAR Observations of WISE J1036+0449, A Galaxy at zeta approx 1 Obscured by Hot Dust

    NASA Technical Reports Server (NTRS)

    Ricci, C.; Assef, R. J.; Stern, Daniel K.; Nikutta, R.; Alexander, D. M.; Asmus, D.; Ballantyne, D. R.; Bauer, F. E.; Blain, A.W.; Zhang, William W.; hide

    2017-01-01

    Hot dust-obscured galaxies (hot DOGs), selected from Wide-Field Infrared Survey Explorer's all-sky infrared survey, host some of the most powerful active galactic nuclei known and may represent an important stage in the evolution of galaxies. Most known hot DOGs are located at z > 1.5, due in part to a strong bias against identifying them at lower redshift related to the selection criteria. We present a new selection method that identifies 153 hot DOG candidates at z approx. 1, where they are significantly brighter and easier to study. We validate this approach by measuring a redshift z = 1.009 and finding a spectral energy distribution similar to that of higher-redshift hot DOGs for one of these objects, WISE J1036+0449 (L(sub BOL) approx. = 8 x 10(exp 46) erg/s). We find evidence of a broadened component in Mg II, which would imply a black hole mass of M(BH) approx. = 2 x 10(exp 8) Stellar Mass and an Eddington ratio of lambda(sub Edd) approx. = 2.7. WISE J1036+0449 is the first hot DOG detected by the Nuclear Spectroscopic Telescope Array, and observations show that the source is heavily obscured, with a column density of N(sub H) approx. = (2-15) x 10(exp 23)/sq cm. The source has an intrinsic 2-10 keV luminosity of approx. 6 x 10(exp 44) erg/s, a value significantly lower than that expected from the mid-infrared X-ray correlation. We also find that other hot DOGs observed by X-ray facilities show a similar deficiency of X-ray flux. We discuss the origin of the X-ray weakness and the absorption properties of hot DOGs. Hot DOGs at z < or approx. 1 could be excellent laboratories to probe the characteristics of the accretion flow and of the X-ray emitting plasma at extreme values of the Eddington ratio.

  19. SPICA and the Chemical Evolution of Galaxies: The Rise of Metals and Dust

    NASA Astrophysics Data System (ADS)

    Fernández-Ontiveros, J. A.; Armus, L.; Baes, M.; Bernard-Salas, J.; Bolatto, A. D.; Braine, J.; Ciesla, L.; De Looze, I.; Egami, E.; Fischer, J.; Giard, M.; González-Alfonso, E.; Granato, G. L.; Gruppioni, C.; Imanishi, M.; Ishihara, D.; Kaneda, H.; Madden, S.; Malkan, M.; Matsuhara, H.; Matsuura, M.; Nagao, T.; Najarro, F.; Nakagawa, T.; Onaka, T.; Oyabu, S.; Pereira-Santaella, M.; Pérez Fournon, I.; Roelfsema, P.; Santini, P.; Silva, L.; Smith, J.-D. T.; Spinoglio, L.; van der Tak, F.; Wada, T.; Wu, R.

    2017-11-01

    The physical processes driving the chemical evolution of galaxies in the last 11Gyr cannot be understood without directly probing the dust-obscured phase of star-forming galaxies and active galactic nuclei. This phase, hidden to optical tracers, represents the bulk of the star formation and black hole accretion activity in galaxies at 1 < z < 3. Spectroscopic observations with a cryogenic infrared observatory like SPICA, will be sensitive enough to peer through the dust-obscured regions of galaxies and access the rest-frame mid- to far-infrared range in galaxies at high-z. This wavelength range contains a unique suite of spectral lines and dust features that serve as proxies for the abundances of heavy elements and the dust composition, providing tracers with a feeble response to both extinction and temperature. In this work, we investigate how SPICA observations could be exploited to understand key aspects in the chemical evolution of galaxies: the assembly of nearby galaxies based on the spatial distribution of heavy element abundances, the global content of metals in galaxies reaching the knee of the luminosity function up to z 3, and the dust composition of galaxies at high-z. Possible synergies with facilities available in the late 2020s are also discussed.

  20. NuSTAR View of Galaxy NGC 1068

    NASA Image and Video Library

    2015-12-17

    Galaxy NGC 1068 is shown in visible light and X-rays in this composite image. High-energy X-rays (magenta) captured by NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, are overlaid on visible-light images from both NASA's Hubble Space Telescope and the Sloan Digital Sky Survey. The X-ray light is coming from an active supermassive black hole, also known as a quasar, in the center of the galaxy. This supermassive black hole has been extensively studied due to its relatively close proximity to our galaxy. NGC 1068 is about 47 million light-years away in the constellation Cetus. The supermassive black hole is also one of the most obscured known, blanketed by thick clouds of gas and dust. NuSTAR's high-energy X-ray view is the first to penetrate the walls of this black hole's hidden lair. http://photojournal.jpl.nasa.gov/catalog/PIA20057

  1. Filler Items and Social Desirability in Rotter's Locus of Control Scale

    ERIC Educational Resources Information Center

    Kestenbaum, Joel M.; Hammersla, Joy

    1976-01-01

    Three experiments were conducted with college psychology students to determine whether the use of filler items in Rotter's I-E scale fulfills its stated objective of obscuring the purpose of the scale. Fillers didn't effect I-E scores, impede subjects from faking good, or obscure knowledge of the scale. (Author/DEP)

  2. The invisible AGN catalogue: a mid-infrared-radio selection method for optically faint active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Truebenbach, Alexandra E.; Darling, Jeremy

    2017-06-01

    A large fraction of active galactic nuclei (AGN) are 'invisible' in extant optical surveys due to either distance or dust-obscuration. The existence of this large population of dust-obscured, infrared (IR)-bright AGN is predicted by models of galaxy-supermassive black hole coevolution and is required to explain the observed X-ray and IR backgrounds. Recently, IR colour cuts with Wide-field Infrared Survey Explorer have identified a portion of this missing population. However, as the host galaxy brightness relative to that of the AGN increases, it becomes increasingly difficult to differentiate between IR emission originating from the AGN and from its host galaxy. As a solution, we have developed a new method to select obscured AGN using their 20-cm continuum emission to identify the objects as AGN. We created the resulting invisible AGN catalogue by selecting objects that are detected in AllWISE (mid-IR) and FIRST (20 cm), but are not detected in SDSS (optical) or 2MASS (near-IR), producing a final catalogue of 46 258 objects. 30 per cent of the objects are selected by existing selection methods, while the remaining 70 per cent represent a potential previously unidentified population of candidate AGN that are missed by mid-IR colour cuts. Additionally, by relying on a radio continuum detection, this technique is efficient at detecting radio-loud AGN at z ≥ 0.29, regardless of their level of dust obscuration or their host galaxy's relative brightness.

  3. Obituary: Gary Lars Grasdalen, 1945-2003

    NASA Astrophysics Data System (ADS)

    Strom, Stephen Eric

    2003-12-01

    With the passing of Gary Grasdalen on 20 April 2003 the astronomical community has lost one its most creative members. Born in Albert Lea, Minnesota on 7 October 1945 to the farming family of Lars G. and Lillie Grasdalen, Gary developed a strong childhood interest in science, and a particular fascination with astronomy. In 1964, he entered Harvard College intending to pursue those interests. During his freshman year, Gary enrolled in an undergraduate research seminar in which he first displayed the combination of keen insight and imagination in applying new techniques that was manifest throughout his professional career. In 1968, he published his first two papers---studies of the C12/C13 ratio in metal deficient stars, and of Fe I and Fe II transition probabilities---which summarized research carried out during his junior and senior years at Harvard. Grasdalen next entered the astronomy graduate program at the University of California, Berkeley. There he developed a strong interest in the early stages of stellar evolution and, in particular, the potential of S-1 image intensifiers and newly available near-infrared detectors to detect and analyze the stellar populations embedded within their parent molecular cloud complexes. Following award of his PhD in 1972, Grasdalen was appointed to the staff at the Kitt Peak National Observatory. Early in his career at KPNO, Gary developed tools that enabled routine near-infrared mapping of nearby molecular cloud complexes, most notably the telescope control programs that enabled precise raster scanning of these regions. Those same programs were some of the many innovations in which Gary had a hand. These innovations enabled a generation of KPNO observers in the 1970s to fully exploit the power of the newly commissioned Mayall telescope as well as the smaller telescopes on Kitt Peak. In 1973, he published the first map of the central region of a molecular cloud, which revealed an extensive embedded, optically obscured population of newly formed stars in the Ophiuchus complex. This discovery led to a series of survey papers cataloging and describing the young stellar population associated with multiple nearby clouds. The results from these early survey papers produced finding lists and nomenclature for embedded young stars that are still referenced by researchers. By developing the tools needed to point telescopes precisely, Grasdalen was able to follow a hunch that he had while a graduate student at Berkeley---that Herbig-Haro objects were excited by optically obscured young stars that were displaced from these emission nebulae. He believed these objects to be reflection nebulae, scattering light earthward from a young star whose powerful wind had carved out a cavity thus creating an indirect pathway for optical photons to reach observers from an otherwise invisible star. Grasdalen compiled a list of candidate H-H objects from the Palomar Observatory Sky Survey and began a near-infrared search for associated young stars, first using inefficient PbS and when they became available, InSb detectors. In 1974, his insight was rewarded with the discovery of the embedded young star associated with H-H 100 in Corona Austrina, and soon thereafter, with multiple candidate infrared sources associated with H-H objects. The 1974 discovery paper notes that the exciting source for H-H 100 is located near the geometric center of a 0.1 pc, roughly spherical cloud, providing early evidence that young stars form within regions that we now call ``molecular cores". Following several years of study, it became clear that the H-H objects themselves are in fact directly excited via stellar wind-molecular cloud interactions, thus invalidating the hypothesis that H-H objects are pure reflection nebulae. Nevertheless, Grasdalen's pioneering discovery of infrared sources associated with these objects, combined with the infrared survey results, led to a veritable explosion of infrared and molecular line studies of star-forming regions. Grasdalen was also a major contributor to early attempts to understand the nature of intermediate mass young stars - the Herbig Ae/Be stars. His work demonstrated both their pre-main sequence nature via surface gravity measurements and that these objects share infrared properties in common with their lower mass counterparts. Results from these studies were summarized in a review published in "Annual Reviews of Astronomy and Astrophysics" in 1975. This was an early attempt to provide a comprehensive overview of star-formation in molecular cloud complexes and to link the emerging results from mm-wave and infrared observations. Perhaps as noteworthy as the overview was his introduction of the term ``Young Stellar Object" or YSO. In part, this term was invented by Grasdalen as a reaction to the term ``QSO", which in those days (and indeed today) seemed to create an aura of mystery, seductive both to the public and the astronomical community; we star-formation types hoped that YSO would do the same for our field! In 1978, Grasdalen left Kitt Peak for the University of Wyoming where, along with Bob Gehrz and John Hackwell, he made the Mt. Jelm 2.1-meter telescope a world-leading facility for infrared studies. His research interests evolved to include, in addition to YSO research, infrared spectroscopic study of novae, a field that he, Gehrz and Hackwell pioneered and which Bob Gehrz has carried forward, creating an impressive and important oeuvre. Grasdalen was a mentor to a generation of graduates from the University of Wyoming including Kathleen deGioia-Eastwood, Matthew Greenhouse, Karl Klett, Gregory Sloan, Jill Price, Michael Castelaz, Craig Gullixson and Thomas Hayward. To a person, they spoke to the high standards he set, his constant expectation of excellence and critical thinking, the amazing range and depth of his knowledge, and his incredibly creative mind. Following important and influential service on the Optical-Infrared panel for the 1990 decadal survey, Gary left the University of Wyoming and, for awhile (and much to our collective loss), astronomy. Gary was a very private and, in many ways, a wary person. His decision may have been linked to a need for a break from a lifetime of pressure. In the early 1980s, Gary acknowledged that he was gay, a fact which for years he carefully hid from his friends and colleagues. While he found much support at the University of Wyoming (and elsewhere), both subtle and rampant homophobia had to have an affect on someone who was both unusually sensitive and filled with self-doubt. With increasing frequency, whatever Gary may have felt deep within led to bouts of self-destructive behavior. At least it seemed that way to his friends and colleagues; to him, it may have been release. A sad consequence was his contracting AIDS. During the 1990s, Gary ran a non-alcoholic bar in Denver, and according to some, was at relative peace. Apparently, his love for astronomy was still deeply felt and he ultimately returned to work during his last years at the Jet Propulsion Laboratory's Table Mountain Observatory. There, he once again brought his expertise in telescope control systems to bear to upgrade the observatory and enable tracking of rapidly moving objects. He continued to work at Table Mountain until a few weeks before passing away from complications associated with AIDS. We will miss his acid, sometimes black humor, his enjoyment of a stimulating argument, his seemingly off-the-wall, but always, in retrospect incredibly insightful comments. He accomplished much and, perhaps had he found peace and acceptance earlier, could have accomplished so much more. His two sisters, Lavon Engen of Naples, Florida and Janet Stallerin of Albert Lean, Minnesota, survive Gary.

  4. HerMES: THE FAR-INFRARED EMISSION FROM DUST-OBSCURED GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calanog, J. A.; Wardlow, J.; Fu, Hai

    Dust-obscured galaxies (DOGs) are an ultraviolet-faint, infrared-bright galaxy population that reside at z ∼ 2 and are believed to be in a phase of dusty star-forming and active galactic nucleus (AGN) activity. We present far-infrared (far-IR) observations of a complete sample of DOGs in the 2 deg{sup 2} of the Cosmic Evolution Survey. The 3077 DOGs have (z) = 1.9 ± 0.3 and are selected from 24 μm and r {sup +} observations using a color cut of r {sup +} – [24] ≥ 7.5 (AB mag) and S{sub 24} ≥ 100 μJy. Based on the near-IR spectral energy distributions,more » 47% are bump DOGs (star formation dominated) and 10% are power-law DOGs (AGN-dominated). We use SPIRE far-IR photometry from the Herschel Multi-tiered Extragalactic Survey to calculate the IR luminosity and characteristic dust temperature for the 1572 (51%) DOGs that are detected at 250 μm (≥3σ). For the remaining 1505 (49%) that are undetected, we perform a median stacking analysis to probe fainter luminosities. Herschel-detected and undetected DOGs have average luminosities of (2.8 ± 0.4) × 10{sup 12} L{sub ☉} and (0.77 ± 0.08) × 10{sup 12} L{sub ☉}, and dust temperatures of (33 ± 7) K and (37 ± 5) K, respectively. The IR luminosity function for DOGs with S{sub 24} ≥ 100 μJy is calculated, using far-IR observations and stacking. DOGs contribute 10%-30% to the total star formation rate (SFR) density of the universe at z = 1.5-2.5, dominated by 250 μm detected and bump DOGs. For comparison, DOGs contribute 30% to the SFR density for all z = 1.5-2.5 galaxies with S{sub 24} ≥ 100 μJy. DOGs have a large scatter about the star formation main sequence and their specific SFRs show that the observed phase of star formation could be responsible for their total observed stellar mass at z ∼ 2.« less

  5. A deep ALMA image of the Hubble Ultra Deep Field

    NASA Astrophysics Data System (ADS)

    Dunlop, J. S.; McLure, R. J.; Biggs, A. D.; Geach, J. E.; Michałowski, M. J.; Ivison, R. J.; Rujopakarn, W.; van Kampen, E.; Kirkpatrick, A.; Pope, A.; Scott, D.; Swinbank, A. M.; Targett, T. A.; Aretxaga, I.; Austermann, J. E.; Best, P. N.; Bruce, V. A.; Chapin, E. L.; Charlot, S.; Cirasuolo, M.; Coppin, K.; Ellis, R. S.; Finkelstein, S. L.; Hayward, C. C.; Hughes, D. H.; Ibar, E.; Jagannathan, P.; Khochfar, S.; Koprowski, M. P.; Narayanan, D.; Nyland, K.; Papovich, C.; Peacock, J. A.; Rieke, G. H.; Robertson, B.; Vernstrom, T.; Werf, P. P. van der; Wilson, G. W.; Yun, M.

    2017-04-01

    We present the results of the first, deep Atacama Large Millimeter Array (ALMA) imaging covering the full ≃4.5 arcmin2 of the Hubble Ultra Deep Field (HUDF) imaged with Wide Field Camera 3/IR on HST. Using a 45-pointing mosaic, we have obtained a homogeneous 1.3-mm image reaching σ1.3 ≃ 35 μJy, at a resolution of ≃0.7 arcsec. From an initial list of ≃50 > 3.5σ peaks, a rigorous analysis confirms 16 sources with S1.3 > 120 μJy. All of these have secure galaxy counterparts with robust redshifts ( = 2.15). Due to the unparalleled supporting data, the physical properties of the ALMA sources are well constrained, including their stellar masses (M*) and UV+FIR star formation rates (SFR). Our results show that stellar mass is the best predictor of SFR in the high-redshift Universe; indeed at z ≥ 2 our ALMA sample contains seven of the nine galaxies in the HUDF with M* ≥ 2 × 1010 M⊙, and we detect only one galaxy at z > 3.5, reflecting the rapid drop-off of high-mass galaxies with increasing redshift. The detections, coupled with stacking, allow us to probe the redshift/mass distribution of the 1.3-mm background down to S1.3 ≃ 10 μJy. We find strong evidence for a steep star-forming 'main sequence' at z ≃ 2, with SFR ∝M* and a mean specific SFR ≃ 2.2 Gyr-1. Moreover, we find that ≃85 per cent of total star formation at z ≃ 2 is enshrouded in dust, with ≃65 per cent of all star formation at this epoch occurring in high-mass galaxies (M* > 2 × 1010 M⊙), for which the average obscured:unobscured SF ratio is ≃200. Finally, we revisit the cosmic evolution of SFR density; we find this peaks at z ≃ 2.5, and that the star-forming Universe transits from primarily unobscured to primarily obscured at z ≃ 4.

  6. Dust-obscured galaxies in the local universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Ho Seong; Geller, Margaret J., E-mail: hhwang@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu

    We use Wide-field Infrared Survey Explorer (WISE), AKARI, and Galaxy Evolution Explorer (GALEX) data to select local analogs of high-redshift (z ∼ 2) dust obscured galaxies (DOGs). We identify 47 local DOGs with S {sub 12μm}/S {sub 0.22μm} ≥ 892 and S {sub 12μm} > 20 mJy at 0.05 < z < 0.08 in the Sloan Digital Sky Survey data release 7. The infrared (IR) luminosities of these DOGs are in the range 3.4 × 10{sup 10} (L {sub ☉}) ≲ L {sub IR} ≲ 7.0 × 10{sup 11} (L {sub ☉}) with a median L {sub IR} of 2.1more » × 10{sup 11} (L {sub ☉}). We compare the physical properties of local DOGs with a control sample of galaxies that have lower S {sub 12μm}/S {sub 0.22μm} but have similar redshift, IR luminosity, and stellar mass distributions. Both WISE 12 μm and GALEX near-ultraviolet (NUV) flux densities of DOGs differ from the control sample of galaxies, but the difference is much larger in the NUV. Among the 47 DOGs, 36% ± 7% have small axis ratios in the optical (i.e., b/a < 0.6), larger than the fraction among the control sample (17% ± 3%). There is no obvious sign of interaction for many local DOGs. No local DOGs have companions with comparable optical magnitudes closer than ∼50 kpc. The large- and small-scale environments of DOGs are similar to the control sample. Many physical properties of local DOGs are similar to those of high-z DOGs, even though the IR luminosities of local objects are an order of magnitude lower than for the high-z objects: the presence of two classes (active galactic nuclei- and star formation-dominated) of DOGs, abnormal faintness in the UV rather than extreme brightness in the mid-IR, and diverse optical morphology. These results suggest a common underlying physical origin of local and high-z DOGs. Both seem to represent the high-end tail of the dust obscuration distribution resulting from various physical mechanisms rather than a unique phase of galaxy evolution.« less

  7. Great Observatories Unique Views of the Milky Way

    NASA Image and Video Library

    2009-11-10

    In celebration of the International Year of Astronomy 2009, NASA's Great Observatories -- the Hubble Space Telescope, the Spitzer Space Telescope, and the Chandra X-ray Observatory -- have produced a matched trio of images of the central region of our Milky Way galaxy. Each image shows the telescope's different wavelength view of the galactic center region, illustrating the unique science each observatory conducts. In this spectacular image, observations using infrared light and X-ray light see through the obscuring dust and reveal the intense activity near the galactic core. Note that the center of the galaxy is located within the bright white region to the right of and just below the middle of the image. The entire image width covers about one-half a degree, about the same angular width as the full moon. Spitzer's infrared-light observations provide a detailed and spectacular view of the galactic center region [Figure 1 (top frame of poster)]. The swirling core of our galaxy harbors hundreds of thousands of stars that cannot be seen in visible light. These stars heat the nearby gas and dust. These dusty clouds glow in infrared light and reveal their often dramatic shapes. Some of these clouds harbor stellar nurseries that are forming new generations of stars. Like the downtown of a large city, the center of our galaxy is a crowded, active, and vibrant place. Although best known for its visible-light images, Hubble also observes over a limited range of infrared light [Figure 2 (middle frame of poster)]. The galactic center is marked by the bright patch in the lower right. Along the left side are large arcs of warm gas that have been heated by clusters of bright massive stars. In addition, Hubble uncovered many more massive stars across the region. Winds and radiation from these stars create the complex structures seen in the gas throughout the image.This sweeping panorama is one of the sharpest infrared pictures ever made of the galactic center region. X-rays detected by Chandra expose a wealth of exotic objects and high-energy features [Figure 3 (bottom frame of poster)]. In this image, pink represents lower energy X-rays and blue indicates higher energy. Hundreds of small dots show emission from material around black holes and other dense stellar objects. A supermassive black hole -- some four million times more massive than the Sun -- resides within the bright region in the lower right. The diffuse X-ray light comes from gas heated to millions of degrees by outflows from the supermassive black hole, winds from giant stars, and stellar explosions. This central region is the most energetic place in our galaxy. http://photojournal.jpl.nasa.gov/catalog/PIA12348

  8. Chandra and ALMA observations of the nuclear activity in two strongly lensed star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Massardi, M.; Enia, A. F. M.; Negrello, M.; Mancuso, C.; Lapi, A.; Vignali, C.; Gilli, R.; Burkutean, S.; Danese, L.; Zotti, G. De

    2018-02-01

    Aim. According to coevolutionary scenarios, nuclear activity and star formation play relevant roles in the early stages of galaxy formation. We aim at identifying them in high-redshift galaxies by exploiting high-resolution and high-sensitivity X-ray and millimeter-wavelength data to confirm the presence or absence of star formation and nuclear activity and describe their relative roles in shaping the spectral energy distributions and in contributing to the energy budgets of the galaxies. Methods: We present the data, model, and analysis in the X-ray and millimeter (mm) bands for two strongly lensed galaxies, SDP.9 (HATLAS J090740.0-004200) and SDP.11 (HATLAS J091043.1-000322), which we selected in the Herschel-ATLAS catalogs for their excess emission in the mid-IR regime at redshift ≳1.5. This emission suggests nuclear activity in the early stages of galaxy formation. We observed both of them with Chandra ACIS-S in the X-ray regime and analyzed the high-resolution mm data that are available in the ALMA Science Archive for SDP.9. By combining the information available in mm, optical, and X-ray bands, we reconstructed the source morphology. Results: Both targets were detected in the X-ray, which strongly indicates highly obscured nuclear activity. ALMA observations for SDP.9 for the continuum and CO(6-5) spectral line with high resolution (0.02 arcsec corresponding to 65 pc at the distance of the galaxy) allowed us to estimate the lensed galaxy redshift to a better accuracy than pre-ALMA estimates (1.5753 ± 0.0003) and to model the emission of the optical, millimetric, and X-ray band for this galaxy. We demonstrate that the X-ray emission is generated in the nuclear environment, which strongly supports that this object has nuclear activity. On the basis of the X-ray data, we attempt an estimate of the black hole properties in these galaxies. Conclusions: By taking advantage of the lensing magnification, we identify weak nuclear activity associated with high-z galaxies with high star formation rates. This is useful to extend the investigation of the relationship between star formation and nuclear activity to two intrinsically less luminous high-z star-forming galaxies than was possible so far. Given our results for only two objects, they alone cannot constrain the evolutionary models, but provide us with interesting hints and set an observational path toward addressing the role of star formation and nuclear activity in forming galaxies. The reduced images and data cubes as FITS files are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A53

  9. MYStIX: Dynamical evolution of young clusters

    NASA Astrophysics Data System (ADS)

    Kuhn, Michael A.

    2014-08-01

    The spatial structure of young stellar clusters in Galactic star-forming regions provides insight into these clusters’ dynamical evolution---a topic with implications for open questions in star-formation and cluster survival. The Massive Young Star-Forming Complex Study in Infrared and X-ray (MYStIX) provides a sample of >30,000 young stars in star-forming regions (d<3.6 kpc) that contain at least one O-type star. We use the finite mixture model analysis to identify subclusters of stars and determine their properties: including subcluster radii, intrinsic numbers of stars, central density, ellipticity, obscuration, and age. In 17 MYStIX regions we find 142 subclusters, with a diverse radii and densities and age spreads of up to ~1 Myr in a region. There is a strong negative correlation between subcluster radius and density, which indicates that embedded subclusters expand but also gain stars as they age. Subcluster expansion is also shown by a positive radius--age correlation, which indicates that subclusters are expanding at <1 km/s. The subcluster ellipticity distribution and number--density relation show signs of a hierarchical merger scenario, whereby young stellar clusters are built up through mergers of smaller clumps, causing evolution from a clumpy spatial distribution of stars (seen in some regions) to a simpler distribution of stars (seen in other regions). Many of the simple young stellar clusters show signs of dynamically relaxation, even though they are not old enough for this to have occurred through two-body interactions. However, this apparent contradiction might be explained if small subcluster, which have shorter dynamical relaxation times, can produce dynamically relaxed clusters through hierarchical mergers.

  10. AGN Unification at z ~ 1: u - R Colors and Gradients in X-Ray AGN Hosts

    NASA Astrophysics Data System (ADS)

    Ammons, S. Mark; Rosario, David J. V.; Koo, David C.; Dutton, Aaron A.; Melbourne, Jason; Max, Claire E.; Mozena, Mark; Kocevski, Dale D.; McGrath, Elizabeth J.; Bouwens, Rychard J.; Magee, Daniel K.

    2011-10-01

    We present uncontaminated rest-frame u - R colors of 78 X-ray-selected active galactic nucleus (AGN) hosts at 0.5 < z < 1.5 in the Chandra Deep Fields measured with Hubble Space Telescope (HST)/Advanced Camera for Surveys/NICMOS and Very Large Telescope/ISAAC imaging. We also present spatially resolved NUV - R color gradients for a subsample of AGN hosts imaged by HST/Wide Field Camera 3 (WFC3). Integrated, uncorrected photometry is not reliable for comparing the mean properties of soft and hard AGN host galaxies at z ~ 1 due to color contamination from point-source AGN emission. We use a cloning simulation to develop a calibration between concentration and this color contamination and use this to correct host galaxy colors. The mean u - R color of the unobscured/soft hosts beyond ~6 kpc is statistically equivalent to that of the obscured/hard hosts (the soft sources are 0.09 ± 0.16 mag bluer). Furthermore, the rest-frame V - J colors of the obscured and unobscured hosts beyond ~6 kpc are statistically equivalent, suggesting that the two populations have similar distributions of dust extinction. For the WFC3/infrared sample, the mean NUV - R color gradients of unobscured and obscured sources differ by less than ~0.5 mag for r > 1.1 kpc. These three observations imply that AGN obscuration is uncorrelated with the star formation rate beyond ~1 kpc. These observations favor a unification scenario for intermediate-luminosity AGNs in which obscuration is determined geometrically. Scenarios in which the majority of intermediate-luminosity AGNs at z ~ 1 are undergoing rapid, galaxy-wide quenching due to AGN-driven feedback processes are disfavored.

  11. AGN UNIFICATION AT z {approx} 1: u - R COLORS AND GRADIENTS IN X-RAY AGN HOSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark Ammons, S.; Rosario, David J. V.; Koo, David C., E-mail: ammons@as.arizona.edu, E-mail: rosario@ucolick.org, E-mail: koo@ucolick.org

    2011-10-10

    We present uncontaminated rest-frame u - R colors of 78 X-ray-selected active galactic nucleus (AGN) hosts at 0.5 < z < 1.5 in the Chandra Deep Fields measured with Hubble Space Telescope (HST)/Advanced Camera for Surveys/NICMOS and Very Large Telescope/ISAAC imaging. We also present spatially resolved NUV - R color gradients for a subsample of AGN hosts imaged by HST/Wide Field Camera 3 (WFC3). Integrated, uncorrected photometry is not reliable for comparing the mean properties of soft and hard AGN host galaxies at z {approx} 1 due to color contamination from point-source AGN emission. We use a cloning simulation tomore » develop a calibration between concentration and this color contamination and use this to correct host galaxy colors. The mean u - R color of the unobscured/soft hosts beyond {approx}6 kpc is statistically equivalent to that of the obscured/hard hosts (the soft sources are 0.09 {+-} 0.16 mag bluer). Furthermore, the rest-frame V - J colors of the obscured and unobscured hosts beyond {approx}6 kpc are statistically equivalent, suggesting that the two populations have similar distributions of dust extinction. For the WFC3/infrared sample, the mean NUV - R color gradients of unobscured and obscured sources differ by less than {approx}0.5 mag for r > 1.1 kpc. These three observations imply that AGN obscuration is uncorrelated with the star formation rate beyond {approx}1 kpc. These observations favor a unification scenario for intermediate-luminosity AGNs in which obscuration is determined geometrically. Scenarios in which the majority of intermediate-luminosity AGNs at z {approx} 1 are undergoing rapid, galaxy-wide quenching due to AGN-driven feedback processes are disfavored.« less

  12. A POSSIBLE DETECTION OF OCCULTATION BY A PROTO-PLANETARY CLUMP IN GM Cephei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, W. P.; Hu, S. C.-L.; Guo, J. K.

    2012-06-01

    GM Cephei (GM Cep), in the young ({approx}4 Myr) open cluster Trumpler 37, has been known to be an abrupt variable and to have a circumstellar disk with a very active accretion. Our monitoring observations in 2009-2011 revealed that the star showed sporadic flare events, each with a brightening of {approx}< 0.5 mag lasting for days. These brightening events, associated with a color change toward blue, should originate from increased accretion activity. Moreover, the star also underwent a brightness drop of {approx}1 mag lasting for about a month, during which time the star became bluer when fainter. Such brightness dropsmore » seem to have a recurrence timescale of a year, as evidenced in our data and the photometric behavior of GM Cep over a century. Between consecutive drops, the star brightened gradually by about 1 mag and became blue at peak luminosity. We propose that the drop is caused by the obscuration of the central star by an orbiting dust concentration. The UX Orionis type of activity in GM Cep therefore exemplifies the disk inhomogeneity process in transition between the grain coagulation and the planetesimal formation in a young circumstellar disk.« less

  13. Cosmic infrared background measurements and star formation history from Planck

    NASA Astrophysics Data System (ADS)

    Serra, Paolo; Serra

    2014-05-01

    We present new measurements of Cosmic Infrared Background (CIB) anisotropies using Planck. Combining HFI data with IRAS, the angular auto- and cross-frequency power spectrum is measured from 143 to 3000 GHz. After careful removal of the contaminants (cosmic microwave background anisotropies, Galactic dust and Sunyaev-Zeldovich emission), and a complete study of systematics, the CIB power spectrum is measured with unprecedented signal to noise ratio from angular multipoles l ~ 150 to 2500. The interpretation based on the halo model is able to associate star-forming galaxies with dark matter halos and their subhalos, using a parametrized relation between the dust-processed infrared luminosity and (sub-)halo mass, and it allows to simultaneously fit all auto- and cross- power spectra very well. We find that the star formation history is well constrained up to redshifts around 2, and agrees with recent estimates of the obscured star-formation density using Spitzer and Herschel. However, at higher redshift, the accuracy of the star formation history measurement is strongly degraded by the uncertainty in the spectral energy distribution of CIB galaxies. We also find that the mean halo mass which is most efficient at hosting star formation is log(M eff/M ⊙) = 12.6 and that CIB galaxies have warmer temperatures as redshift increases.

  14. Obscured AGN at z ~ 1 from the zCOSMOS-Bright Survey. I. Selection and optical properties of a [Ne v]-selected sample

    NASA Astrophysics Data System (ADS)

    Mignoli, M.; Vignali, C.; Gilli, R.; Comastri, A.; Zamorani, G.; Bolzonella, M.; Bongiorno, A.; Lamareille, F.; Nair, P.; Pozzetti, L.; Lilly, S. J.; Carollo, C. M.; Contini, T.; Kneib, J.-P.; Le Fèvre, O.; Mainieri, V.; Renzini, A.; Scodeggio, M.; Bardelli, S.; Caputi, K.; Cucciati, O.; de la Torre, S.; de Ravel, L.; Franzetti, P.; Garilli, B.; Iovino, A.; Kampczyk, P.; Knobel, C.; Kovač, K.; Le Borgne, J.-F.; Le Brun, V.; Maier, C.; Pellò, R.; Peng, Y.; Perez Montero, E.; Presotto, V.; Silverman, J. D.; Tanaka, M.; Tasca, L.; Tresse, L.; Vergani, D.; Zucca, E.; Bordoloi, R.; Cappi, A.; Cimatti, A.; Koekemoer, A. M.; McCracken, H. J.; Moresco, M.; Welikala, N.

    2013-08-01

    Aims: The application of multi-wavelength selection techniques is essential for obtaining a complete and unbiased census of active galactic nuclei (AGN). We present here a method for selecting z ~ 1 obscured AGN from optical spectroscopic surveys. Methods: A sample of 94 narrow-line AGN with 0.65 < z < 1.20 was selected from the 20k-Bright zCOSMOS galaxy sample by detection of the high-ionization [Ne v] λ3426 line. The presence of this emission line in a galaxy spectrum is indicative of nuclear activity, although the selection is biased toward low absorbing column densities on narrow-line region or galactic scales. A similar sample of unobscured (type 1 AGN) was collected applying the same analysis to zCOSMOS broad-line objects. This paper presents and compares the optical spectral properties of the two AGN samples. Taking advantage of the large amount of data available in the COSMOS field, the properties of the [Ne v]-selected type 2 AGN were investigated, focusing on their host galaxies, X-ray emission, and optical line-flux ratios. Finally, a previously developed diagnostic, based on the X-ray-to-[Ne v] luminosity ratio, was exploited to search for the more heavily obscured AGN. Results: We found that [Ne v]-selected narrow-line AGN have Seyfert 2-like optical spectra, although their emission line ratios are diluted by a star-forming component. The ACS morphologies and stellar component in the optical spectra indicate a preference for our type 2 AGN to be hosted in early-type spirals with stellar masses greater than 109.5 - 10 M⊙, on average higher than those of the galaxy parent sample. The fraction of galaxies hosting [Ne v]-selected obscured AGN increases with the stellar mass, reaching a maximum of about 3% at ≈2 × 1011 M⊙. A comparison with other selection techniques at z ~ 1, namely the line-ratio diagnostics and X-ray detections, shows that the detection of the [Ne v] λ3426 line is an effective method for selecting AGN in the optical band, in particular the most heavily obscured ones, but cannot provide a complete census of type 2 AGN by itself. Finally, the high fraction of [Ne v]-selected type 2 AGN not detected in medium-deep (≈100-200 ks) Chandra observations (67%) is suggestive of the inclusion of Compton-thick (i.e., with NH > 1024 cm-2) sources in our sample. The presence of a population of heavily obscured AGN is corroborated by the X-ray-to-[Ne v] ratio; we estimated, by means of an X-ray stacking technique and simulations, that the Compton-thick fraction in our sample of type 2 AGN is 43 ± 4% (statistical errors only), which agrees well with standard assumptions by XRB synthesis models.

  15. X-Ray Spectral Properties of Seven Heavily Obscured Seyfert 2 Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchesi, S.; Ajello, M.; Comastri, A.

    2017-02-10

    We present the combined Chandra and Swift -BAT spectral analysis of seven Seyfert 2 galaxies selected from the Swift -BAT 100 month catalog. We selected nearby ( z ≤ 0.03) sources lacking a ROSAT counterpart that never previously been observed with Chandra in the 0.3–10 keV energy range, and targeted these objects with 10 ks Chandra ACIS-S observations. The X-ray spectral fitting over the 0.3–150 keV energy range allows us to determine that all the objects are significantly obscured, with N{sub H} ≥ 10{sup 23} cm{sup −2} at a >99% confidence level. Moreover, one to three sources are candidate Compton-thickmore » Active Galactic Nuclei (CT-AGNs; i.e., N{sub H}≥10{sup 24} cm{sup −2}). We also test the recent spectral curvature method developed by Koss et al. to find candidate CT-AGNs, finding a good agreement between our results and their predictions. Because the selection criteria we adopted were effective in detecting highly obscured AGNs, further observations of these and other Seyfert 2 galaxies selected from the Swift -BAT 100 month catalog will allow us to create a statistically significant sample of highly obscured AGNs, therefore providing a better understanding of the physics of the obscuration processes.« less

  16. Hubble Sees the Force Awakening in a Newborn Star

    NASA Image and Video Library

    2017-12-08

    Just in time for the release of the movie “Star Wars Episode VII: The Force Awakens,” NASA’s Hubble Space Telescope has photographed what looks like a cosmic, double-bladed lightsaber. In the center of the image, partially obscured by a dark, Jedi-like cloak of dust, a newborn star shoots twin jets out into space as a sort of birth announcement to the universe. “Science fiction has been an inspiration to generations of scientists and engineers, and the film series Star Wars is no exception,” said John Grunsfeld, astronaut and associate administrator for the NASA Science Mission directorate. “There is no stronger case for the motivational power of real science than the discoveries that come from the Hubble Space Telescope as it unravels the mysteries of the universe." This celestial lightsaber does not lie in a galaxy far, far away, but rather inside our home galaxy, the Milky Way. It’s inside a turbulent birthing ground for new stars known as the Orion B molecular cloud complex, located 1,350 light-years away. When stars form within giant clouds of cool molecular hydrogen, some of the surrounding material collapses under gravity to form a rotating, flattened disk encircling the newborn star. Though planets will later congeal in the disk, at this early stage the protostar is feeding on the disk with a Jabba-like appetite. Gas from the disk rains down onto the protostar and engorges it. Superheated material spills away and is shot outward from the star in opposite directions along an uncluttered escape route — the star’s rotation axis. Shock fronts develop along the jets and heat the surrounding gas to thousands of degrees Fahrenheit. The jets collide with the surrounding gas and dust and clear vast spaces, like a stream of water plowing into a hill of sand. The shock fronts form tangled, knotted clumps of nebulosity and are collectively known as Herbig-Haro (HH) objects. The prominent HH object shown in this image is HH 24. Just to the right of the cloaked star, a couple of bright points are young stars peeking through and showing off their own faint lightsabers — including one that has bored a tunnel through the cloud towards the upper-right side of the picture. Overall, just a handful of HH jets have been spotted in this region in visible light, and about the same number in the infrared. Hubble’s observations for this image were performed in infrared light, which enabled the telescope to peer through the gas and dust cocooning the newly forming stars and capture a clear view of the HH objects. These young stellar jets are ideal targets for NASA’s upcoming James Webb Space Telescope, which will have even greater infrared wavelength vision to see deeper into the dust surrounding newly forming stars. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, in Washington, D.C. Credits: NASA/ESA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. VISTA Captures Celestial Cat's Hidden Secrets

    NASA Astrophysics Data System (ADS)

    2010-04-01

    The Cat's Paw Nebula, NGC 6334, is a huge stellar nursery, the birthplace of hundreds of massive stars. In a magnificent new ESO image taken with the Visible and Infrared Survey Telescope for Astronomy (VISTA) at the Paranal Observatory in Chile, the glowing gas and dust clouds obscuring the view are penetrated by infrared light and some of the Cat's hidden young stars are revealed. Towards the heart of the Milky Way, 5500 light-years from Earth in the constellation of Scorpius (the Scorpion), the Cat's Paw Nebula stretches across 50 light-years. In visible light, gas and dust are illuminated by hot young stars, creating strange reddish shapes that give the object its nickname. A recent image by ESO's Wide Field Imager (WFI) at the La Silla Observatory (eso1003) captured this visible light view in great detail. NGC 6334 is one of the most active nurseries of massive stars in our galaxy. VISTA, the latest addition to ESO's Paranal Observatory in the Chilean Atacama Desert, is the world's largest survey telescope (eso0949). It works at infrared wavelengths, seeing right through much of the dust that is such a beautiful but distracting aspect of the nebula, and revealing objects hidden from the sight of visible light telescopes. Visible light tends to be scattered and absorbed by interstellar dust, but the dust is nearly transparent to infrared light. VISTA has a main mirror that is 4.1 metres across and it is equipped with the largest infrared camera on any telescope. It shares the spectacular viewing conditions with ESO's Very Large Telescope (VLT), which is located on the nearby summit. With this powerful instrument at their command, astronomers were keen to see the birth pains of the big young stars in the Cat's Paw Nebula, some nearly ten times the mass of the Sun. The view in the infrared is strikingly different from that in visible light. With the dust obscuring the view far less, they can learn much more about how these stars form and develop in their first few million years of life. VISTA's very wide field of view allows the whole star-forming region to be imaged in one shot with much greater clarity than ever before. The VISTA image is filled with countless stars of our Milky Way galaxy overlaid with spectacular tendrils of dark dust that are seen here fully for the first time. The dust is sufficiently thick in places to block even the near-infrared radiation to which VISTA's camera is sensitive. In many of the dusty areas, such as those close to the centre of the picture, features that appear orange are apparent - evidence of otherwise hidden active young stars and their accompanying jets. Further out though, slightly older stars are laid bare to VISTA's vision, revealing the processes taking them from their first nuclear fusion along the unsteady path of the first few million years of their lives. The VISTA telescope is now embarking on several big surveys of the southern sky that will take years to complete. The telescope's large mirror, high quality images, sensitive camera and huge field of view make it by far the most powerful infrared survey telescope on Earth. As this striking image shows, VISTA will keep astronomers busy analysing data they could not have otherwise acquired. This cat is out of the bag. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  18. Jekyll & Hyde: quiescence and extreme obscuration in a pair of massive galaxies 1.5 Gyr after the Big Bang

    NASA Astrophysics Data System (ADS)

    Schreiber, C.; Labbé, I.; Glazebrook, K.; Bekiaris, G.; Papovich, C.; Costa, T.; Elbaz, D.; Kacprzak, G. G.; Nanayakkara, T.; Oesch, P.; Pannella, M.; Spitler, L.; Straatman, C.; Tran, K.-V.; Wang, T.

    2018-03-01

    We obtained ALMA spectroscopy and deep imaging to investigate the origin of the unexpected sub-millimeter emission toward the most distant quiescent galaxy known to date, ZF-COSMOS-20115 at z = 3.717. We show here that this sub-millimeter emission is produced by another massive (M* 1011 M⊙), compact (r1/2 = 0.67 ± 0.14 kpc) and extremely obscured galaxy (AV 3.5), located only 0.43'' (3.1 kpc) away from the quiescent galaxy. We dub the quiescent and dusty galaxies Jekyll and Hyde, respectively. No dust emission is detected at the location of the quiescent galaxy, implying SFR < 13 M⊙ yr-1 which is the most stringent upper limit ever obtained for a quiescent galaxy at these redshifts. The two sources are spectroscopically confirmed to lie at the same redshift thanks to the detection of [C II]158 in Hyde (z = 3.709), which provides one the few robust redshifts for a highly-obscured "H-dropout" galaxy (H - [4.5] = 5.1 ± 0.8). The [C II] line shows a clear rotating-disk velocity profile which is blueshifted compared to the Balmer lines of Jekyll by 549 ± 60 km s-1, demonstrating that it is produced by another galaxy. Careful de-blending of the Spitzer imaging confirms the existence of this new massive galaxy, and its non-detection in the Hubble images requires extremely red colors and strong attenuation by dust. Full modeling of the UV-to-far-IR emission of both galaxies shows that Jekyll has fully quenched at least 200Myr prior to observation and still presents a challenge for models, while Hyde only harbors moderate star-formation with SFR ≲ 120 M⊙ yr-1, and is located at least a factor 1.4 below the z 4 main sequence. Hyde could also have stopped forming stars less than 200 Myr before being observed; this interpretation is also suggested by its compactness comparable to that of z 4 quiescent galaxies and its low [C II]/FIR ratio, but significant on-going star-formation cannot be ruled out. Lastly, we find that despite its moderate SFR, Hyde hosts a dense reservoir of gas comparable to that of the most extreme starbursts. This suggests that whatever mechanism has stopped or reduced its star-formation must have done so without expelling the gas outside of the galaxy. Because of their surprisingly similar mass, compactness, environment and star-formation history, we argue that Jekyll and Hyde can be seen as two stages of the same quenching process, and provide a unique laboratory to study this poorly understood phenomenon. The reduced ALMA image, spectrum, and data cube are available in electronic form at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A22

  19. THE VVV SURVEY REVEALS CLASSICAL CEPHEIDS TRACING A YOUNG AND THIN STELLAR DISK ACROSS THE GALAXY’S BULGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dékány, I.; Minniti, D.; Majaess, D.

    2015-10-20

    Solid insight into the physics of the inner Milky Way is key to understanding our Galaxy’s evolution, but extreme dust obscuration has historically hindered efforts to map the area along the Galactic mid-plane. New comprehensive near-infrared time-series photometry from the VVV Survey has revealed 35 classical Cepheids, tracing a previously unobserved component of the inner Galaxy, namely a ubiquitous inner thin disk of young stars along the Galactic mid-plane, traversing across the bulge. The discovered period (age) spread of these classical Cepheids implies a continuous supply of newly formed stars in the central region of the Galaxy over the lastmore » 100 million years.« less

  20. Far-infrared Line Spectra of Active Galaxies from the Herschel/PACS Spectrometer: The Complete Database

    NASA Astrophysics Data System (ADS)

    Fernández-Ontiveros, Juan Antonio; Spinoglio, Luigi; Pereira-Santaella, Miguel; Malkan, Matthew A.; Andreani, Paola; Dasyra, Kalliopi M.

    2016-10-01

    We present a coherent database of spectroscopic observations of far-IR fine-structure lines from the Herschel/Photoconductor Array Camera and Spectrometer archive for a sample of 170 local active galactic nuclei (AGNs), plus a comparison sample of 20 starburst galaxies and 43 dwarf galaxies. Published Spitzer/IRS and Herschel/SPIRE line fluxes are included to extend our database to the full 10-600 μm spectral range. The observations are compared to a set of Cloudy photoionization models to estimate the above physical quantities through different diagnostic diagrams. We confirm the presence of a stratification of gas density in the emission regions of the galaxies, which increases with the ionization potential of the emission lines. The new [O IV]{}25.9μ {{m}}/[O III]{}88μ {{m}} versus [Ne III]{}15.6μ {{m}}/[Ne II]{}12.8μ {{m}} diagram is proposed as the best diagnostic to separate (1) AGN activity from any kind of star formation and (2) low-metallicity dwarf galaxies from starburst galaxies. Current stellar atmosphere models fail to reproduce the observed [O IV]{}25.9μ {{m}}/[O III]{}88μ {{m}} ratios, which are much higher when compared to the predicted values. Finally, the ([Ne III]{}15.6μ {{m}} + [Ne II]{}12.8μ {{m}})/([S IV]{}10.5μ {{m}} +[S III]{}18.7μ {{m}}) ratio is proposed as a promising metallicity tracer to be used in obscured objects, where optical lines fail to accurately measure the metallicity. The diagnostic power of mid- to far-infrared spectroscopy shown here for local galaxies will be of crucial importance to study galaxy evolution during the dust-obscured phase at the peak of the star formation and black hole accretion activity (1\\lt z\\lt 4). This study will be addressed by future deep spectroscopic surveys with present and forthcoming facilities such as the James Webb Space Telescope, the Atacama Large Millimeter/submillimeter Array, and the Space Infrared telescope for Cosmology and Astrophysics.

  1. The 2-79 keV X-ray Spectrum of the Circinus Galaxy with NuSTAR, XMM-Newton and Chandra: a Fully Compton-Thick Active Galactic Nucleus

    DOE PAGES

    Arevalo, P.; Bauer, F. E.; Puccetti, S.; ...

    2014-07-30

    Here, the Circinus galaxy is one of the closest obscured active galactic nuclei (AGNs), making it an ideal target for detailed study. Combining archival Chandra and XMM-Newton data with new NuSTAR observations, we model the 2-79 keV spectrum to constrain the primary AGN continuum and to derive physical parameters for the obscuring material. Chandra's high angular resolution allows a separation of nuclear and off-nuclear galactic emission. In the off-nuclear diffuse emission, we find signatures of strong cold reflection, including high equivalent-width neutral Fe lines. This Compton-scattered off-nuclear emission amounts to 18% of the nuclear flux in the Fe line region,more » but becomes comparable to the nuclear emission above 30 keV. The new analysis no longer supports a prominent transmitted AGN component in the observed band. We find that the nuclear spectrum is consistent with Compton scattering by an optically thick torus, where the intrinsic spectrum is a power law of photon index Γ = 2.2-2.4, the torus has an equatorial column density of N H = (6-10) × 10 24 cm –2, and the intrinsic AGN 2-10 keV luminosity is (2.3-5.1) × 10 42 erg s –1. These values place Circinus along the same relations as unobscured AGNs in accretion rate versus Γ and L X versus L IR phase space. NuSTAR's high sensitivity and low background allow us to study the short timescale variability of Circinus at X-ray energies above 10 keV for the first time. Here, the lack of detected variability favors a Compton-thick absorber, in line with the spectral fitting results.« less

  2. LLAMA: normal star formation efficiencies of molecular gas in the centres of luminous Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Rosario, D. J.; Burtscher, L.; Davies, R. I.; Koss, M.; Ricci, C.; Lutz, D.; Riffel, R.; Alexander, D. M.; Genzel, R.; Hicks, E. H.; Lin, M.-Y.; Maciejewski, W.; Müller-Sánchez, F.; Orban de Xivry, G.; Riffel, R. A.; Schartmann, M.; Schawinski, K.; Schnorr-Müller, A.; Saintonge, A.; Shimizu, T.; Sternberg, A.; Storchi-Bergmann, T.; Sturm, E.; Tacconi, L.; Treister, E.; Veilleux, S.

    2018-02-01

    Using new Atacama Pathfinder Experiment and James Clerk Maxwell Telescope spectroscopy of the CO 2→1 line, we undertake a controlled study of cold molecular gas in moderately luminous (Lbol = 1043-44.5 erg s-1) active galactic nuclei (AGN) and inactive galaxies from the Luminous Local AGN with Matched Analogs (LLAMA) survey. We use spatially resolved infrared photometry of the LLAMA galaxies from 2MASS, the Wide-field Infrared Survey Explorer the Infrared Astronomical Satellite and the Herschel Space Observatory (Herschel), corrected for nuclear emission using multicomponent spectral energy distribution fits, to examine the dust-reprocessed star formation rates, molecular gas fractions and star formation efficiencies (SFEs) over their central 1-3 kpc. We find that the gas fractions and central SFEs of both active and inactive galaxies are similar when controlling for host stellar mass and morphology (Hubble type). The equivalent central molecular gas depletion times are consistent with the discs of normal spiral galaxies in the local Universe. Despite energetic arguments that the AGN in LLAMA should be capable of disrupting the observable cold molecular gas in their central environments, our results indicate that nuclear radiation only couples weakly with this phase. We find a mild preference for obscured AGN to contain higher amounts of central molecular gas, which suggests connection between AGN obscuration and the gaseous environment of the nucleus. Systems with depressed SFEs are not found among the LLAMA AGN. We speculate that the processes that sustain the collapse of molecular gas into dense pre-stellar cores may also be a prerequisite for the inflow of material on to AGN accretion discs.

  3. High-Resolution Infrared Imaging and Polarimetry plus Spectroscopy of Evolved Red and Yellow Supergiants

    NASA Astrophysics Data System (ADS)

    Gordon, Michael Scott; Humphreys, Roberta; Jones, Terry J.; Gehrz, Robert D.

    2018-01-01

    To what extent mass loss and periods of enhanced stellar outflow can influence the terminal state of the most massive stars remains an outstanding question in the fields of stellar physics, chemical enrichment of the Local Universe, andsupernova research. For my dissertation, I focus on characterizing the stellar ejecta around supergiants through a combination of observing techniques. Using the LBT, MMT, IRTF, VLT, and SOFIA observatories, I have performed high-resolution imaging, spectroscopy, and polarimetry—methods that provide us with keen insight on mass-loss histories and 3D morphology of the Local Group's most fascinating stars.Based on spectroscopic evidence for mass loss in the optical and the presence ofcircumstellar (CS) dust in infrared SEDs, we find that 30%–40% of observed yellow supergiants in M31 and M33 are likely in a post-RSG state. We also presentnear-IR spectra from IRTF/SPeX of optically-obscured RSGs in M33. These IR-bright sources likely have some of the highest mass-loss rates and are self-obscured in the optical by their own CS ejecta. For Galactic red supergiants (RSGs), we are able to observe the gas and CS dust ejecta both close in to the central star and at larger distances. The resulting radial profiles are valuable probes on timescale for the ejecta when combined with radiative-transfer models. We find evidence for both variable/high mass-loss events and constant mass loss over the last few thousand years. Finally, we discuss the use of high-resolution imaging polarimetry with VLT/NACO of two co-eval RSG clusters toward the Galactic center. The resulting polarized intensity images in the near-infrared provide unprecedented spatial and contrast resolution of the scattered light from extended nebular material.

  4. Hubble’s Hidden Galaxy

    NASA Image and Video Library

    2017-12-08

    IC 342 is a challenging cosmic target. Although it is bright, the galaxy sits near the equator of the Milky Way’s galactic disk, where the sky is thick with glowing cosmic gas, bright stars, and dark, obscuring dust. In order for astronomers to see the intricate spiral structure of IC 342, they must gaze through a large amount of material contained within our own galaxy — no easy feat! As a result IC 342 is relatively difficult to spot and image, giving rise to its intriguing nickname: the “Hidden Galaxy.” Located very close (in astronomical terms) to the Milky Way, this sweeping spiral galaxy would be among the brightest in the sky were it not for its dust-obscured location. The galaxy is very active, as indicated by the range of colors visible in this NASA/ESA Hubble Space Telescope image, depicting the very central region of the galaxy. A beautiful mixture of hot, blue star-forming regions, redder, cooler regions of gas, and dark lanes of opaque dust can be seen, all swirling together around a bright core. In 2003, astronomers confirmed this core to be a specific type of central region known as an HII nucleus — a name that indicates the presence of ionized hydrogen — that is likely to be creating many hot new stars. Credit: ESA/Hubble & NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. An Extreme Protocluster of Luminous Dusty Starbursts in the Early Universe

    NASA Astrophysics Data System (ADS)

    Oteo, I.; Ivison, R. J.; Dunne, L.; Manilla-Robles, A.; Maddox, S.; Lewis, A. J. R.; de Zotti, G.; Bremer, M.; Clements, D. L.; Cooray, A.; Dannerbauer, H.; Eales, S.; Greenslade, J.; Omont, A.; Perez–Fournón, I.; Riechers, D.; Scott, D.; van der Werf, P.; Weiss, A.; Zhang, Z.-Y.

    2018-03-01

    We report the identification of an extreme protocluster of galaxies in the early universe whose core (nicknamed Distant Red Core, DRC, because of its very red color in Herschel SPIRE bands) is formed by at least 10 dusty star-forming galaxies (DSFGs), spectroscopically confirmed to lie at {z}spec}=4.002 via detection of [C I](1–0), 12CO(6–5), 12CO(4–3), 12CO(2–1), and {{{H}}}2{{O}}({2}11{--}{2}02) emission lines with ALMA and ATCA. These DSFGs are distributed over a 260 {kpc}× 310 {kpc} region and have a collective obscured star formation rate (SFR) of ∼ 6500 {M}ȯ {yr}}-1, considerably higher than those seen before in any protocluster at z≳ 4. Most of the star formation is taking place in luminous DSFGs since no Lyα emitters are detected in the protocluster core, apart from a Lyα blob located next to one of the DRC components, extending over 60 {kpc}. The total obscured SFR of the protocluster could rise to {SFR}∼ {{14,400}} {M}ȯ {yr}}-1 if all the members of an overdensity of bright DSFGs discovered around DRC in a wide-field Large APEX BOlometer CAmera 870 μm image are part of the same structure. [C I](1–0) emission reveals that DRC has a total molecular gas mass of at least {M}{{{H}}2}∼ 6.6× {10}11 {M}ȯ , and its total halo mass could be as high as ∼ 4.4× {10}13 {M}ȯ , indicating that it is the likely progenitor of a cluster at least as massive as Coma at z = 0.

  6. GAMA/H-ATLAS: the ultraviolet spectral slope and obscuration in galaxies

    NASA Astrophysics Data System (ADS)

    Wijesinghe, D. B.; da Cunha, E.; Hopkins, A. M.; Dunne, L.; Sharp, R.; Gunawardhana, M.; Brough, S.; Sadler, E. M.; Driver, S.; Baldry, I.; Bamford, S.; Liske, J.; Loveday, J.; Norberg, P.; Peacock, J.; Popescu, C. C.; Tuffs, R.; Andrae, E.; Auld, R.; Baes, M.; Bland-Hawthorn, J.; Buttiglione, S.; Cava, A.; Cameron, E.; Conselice, C. J.; Cooray, A.; Croom, S.; Dariush, A.; Dezotti, G.; Dye, S.; Eales, S.; Frenk, C.; Fritz, J.; Hill, D.; Hopwood, R.; Ibar, E.; Ivison, R.; Jarvis, M.; Jones, D. H.; van Kampen, E.; Kelvin, L.; Kuijken, K.; Maddox, S. J.; Madore, B.; Michałowski, M. J.; Nichol, B.; Parkinson, H.; Pascale, E.; Pimbblet, K. A.; Pohlen, M.; Prescott, M.; Rhodighiero, G.; Robotham, A. S. G.; Rigby, E. E.; Seibert, M.; Sergeant, S.; Smith, D. J. B.; Temi, P.; Sutherland, W.; Taylor, E.; Thomas, D.; van der Werf, P.

    2011-08-01

    We use multiwavelength data from the Galaxy And Mass Assembly (GAMA) and Herschel-ATLAS (H-ATLAS) surveys to compare the relationship between various dust obscuration measures in galaxies. We explore the connections between the ultraviolet (UV) spectral slope, β, the Balmer decrement and the far-infrared (FIR) to 150 nm far-ultraviolet (FUV) luminosity ratio. We explore trends with galaxy mass, star formation rate (SFR) and redshift in order to identify possible systematics in these various measures. We reiterate the finding of other authors that there is a large scatter between the Balmer decrement and the β parameter, and that β may be poorly constrained when derived from only two broad passbands in the UV. We also emphasize that FUV-derived SFRs, corrected for dust obscuration using β, will be overestimated unless a modified relation between β and the attenuation factor is used. Even in the optimum case, the resulting SFRs have a significant scatter, well over an order of magnitude. While there is a stronger correlation between the IR-to-FUV luminosity ratio and β parameter than with the Balmer decrement, neither of these correlations are particularly tight, and dust corrections based on β for high-redshift galaxy SFRs must be treated with caution. We conclude with a description of the extent to which the different obscuration measures are consistent with each other as well as the effects of including other galactic properties on these correlations.

  7. VERY METAL-POOR STARS IN THE OUTER GALACTIC BULGE FOUND BY THE APOGEE SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia Perez, Ana E.; Majewski, Steven R.; Hearty, Fred R.

    2013-04-10

    Despite its importance for understanding the nature of early stellar generations and for constraining Galactic bulge formation models, at present little is known about the metal-poor stellar content of the central Milky Way. This is a consequence of the great distances involved and intervening dust obscuration, which challenge optical studies. However, the Apache Point Observatory Galactic Evolution Experiment (APOGEE), a wide-area, multifiber, high-resolution spectroscopic survey within Sloan Digital Sky Survey III, is exploring the chemistry of all Galactic stellar populations at infrared wavelengths, with particular emphasis on the disk and the bulge. An automated spectral analysis of data on 2403more » giant stars in 12 fields in the bulge obtained during APOGEE commissioning yielded five stars with low metallicity ([Fe/H] {<=} -1.7), including two that are very metal-poor [Fe/H] {approx} -2.1 by bulge standards. Luminosity-based distance estimates place the 5 stars within the outer bulge, where 1246 of the other analyzed stars may reside. A manual reanalysis of the spectra verifies the low metallicities, and finds these stars to be enhanced in the {alpha}-elements O, Mg, and Si without significant {alpha}-pattern differences with other local halo or metal-weak thick-disk stars of similar metallicity, or even with other more metal-rich bulge stars. While neither the kinematics nor chemistry of these stars can yet definitively determine which, if any, are truly bulge members, rather than denizens of other populations co-located with the bulge, the newly identified stars reveal that the chemistry of metal-poor stars in the central Galaxy resembles that of metal-weak thick-disk stars at similar metallicity.« less

  8. Magnetic coronae and circumstellar disks - new insights from the Coordinated Synoptic Investigation of NGC2264 (CSI-NGC2264)

    NASA Astrophysics Data System (ADS)

    Flaccomio, E.

    2014-07-01

    Proto-planetary disks are affected by radiative and magnetic interactions with the central object. X-ray/UV coronal and accretion-shock emission may drive gas ionization and heating and, consequently, photo-evaporation and disk dispersal. The magnetosphere connecting the star and inner disk mediates mass and angular momentum exchanges and modifies the disk structure. These interconnected processes are highly dynamic and involve material emitting in different bands: the inner disk dust (mIR), the stellar photosphere (optical), accretion shocks (UV/X-rays), and coronae (X-rays). I will present selected results form the Coordinated Synoptic Investigation of NGC2264 (CSI-NGC2264), an unprecedented multi-wavelength month-long observing campaign of the NGC2264 region. Three space telescopes (Spitzer, CoRoT, and Chandra) simultaneously monitored a rich sample of ~3Myr old stars in the mIR, optical, and X-ray bands, providing new insights on the dynamics of the respective emitting regions and their interactions. First, I will discuss magnetic flares: for the first time we observe the heating phase (in the optical), the decay (in X-rays), and, possibly, the disk response to the flare (in the mIR). I will then focus on the longer time-scale relation between X-ray (coronal) and optical (photospheric)/mIR(disk) emission, with particular reference to the obscuration of coronal plasma by temporally varying disk structures.

  9. Discovery of a Damped Lyα Absorber at z = 3.3 along a Galaxy Sight-line in the SSA22 Field

    NASA Astrophysics Data System (ADS)

    Mawatari, K.; Inoue, A. K.; Kousai, K.; Hayashino, T.; Cooke, R.; Prochaska, J. X.; Yamada, T.; Matsuda, Y.

    2016-02-01

    Using galaxies as background light sources to map the Lyα absorption lines is a novel approach to study Damped Lyα Absorbers (DLAs). We report the discovery of an intervening z = 3.335 ± 0.007 DLA along a galaxy sight-line identified among 80 Lyman Break Galaxy (LBG) spectra obtained with our Very Large Telescope/Visible Multi-Object Spectrograph survey in the SSA22 field. The measured DLA neutral hydrogen (H I) column density is log(NH I/cm-2) = 21.68 ± 0.17. The DLA covering fraction over the extended background LBG is >70% (2σ), yielding a conservative constraint on the DLA area of ≳1 kpc2. Our search for a counterpart galaxy hosting this DLA concludes that there is no counterpart galaxy with star formation rate larger than a few M⊙ yr-1, ruling out an unobscured violent star formation in the DLA gas cloud. We also rule out the possibility that the host galaxy of the DLA is a passive galaxy with M* ≳ 5 × 1010M⊙ or a heavily dust-obscured galaxy with E(B - V) ≳ 2. The DLA may coincide with a large-scale overdensity of the spectroscopic LBGs. The occurrence rate of the DLA is compatible with that of DLAs found in QSO sight-lines.

  10. INTER- AND INTRA-CLUSTER AGE GRADIENTS IN MASSIVE STAR FORMING REGIONS AND INDIVIDUAL NEARBY STELLAR CLUSTERS REVEALED BY MYStIX

    NASA Astrophysics Data System (ADS)

    Getman, Konstantin V.; Feigelson, Eric; Kuhn, Michael A.; Broos, Patrick S; Townsley, Leisa K.; Naylor, Tim; Povich, Matthew S.; Luhman, Kevin; Garmire, Gordon

    2014-08-01

    The MYStIX (Massive Young Star-Forming Complex Study in Infrared and X-ray) project seeks to characterize 20 OB-dominated young star forming regions (SFRs) at distances <4 kpc using photometric catalogs from the Chandra X-ray Observatory, Spitzer Space Telescope, UKIRT and 2MASS surveys. As part of the MYStIX project, we developed a new stellar chronometer that employs near-infrared and X-ray photometry data, AgeJX. Computing AgeJX averaged over MYStIX (sub)clusters reveals previously unknown age gradients across most of the MYStIX regions as well as within some individual rich clusters. Within the SFRs, the inferred AgeJX ages are youngest in obscured locations in molecular clouds, intermediate in revealed stellar clusters, and oldest in distributed stellar populations. Noticeable intra-cluster gradients are seen in the NGC 2024 (Flame Nebula) star cluster and the Orion Nebula Cluster (ONC): stars in cluster cores appear younger and thus were formed later than stars in cluster halos. The latter result has two important implications for the formation of young stellar clusters. Clusters likely form slowly: they do not arise from a single nearly-instantaneous burst of star formation. The simple models where clusters form inside-out are likely incorrect, and more complex models are needed. We provide several star formation scenarios that alone or in combination may lead to the observed core-halo age gradients.

  11. Bursting with Stars and Black Holes

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A growing black hole, called a quasar, can be seen at the center of a faraway galaxy in this artist's concept. Astronomers using NASA's Spitzer and Chandra space telescopes discovered swarms of similar quasars hiding in dusty galaxies in the distant universe.

    The quasar is the orange object at the center of the large, irregular-shaped galaxy. It consists of a dusty, doughnut-shaped cloud of gas and dust that feeds a central supermassive black hole. As the black hole feeds, the gas and dust heat up and spray out X-rays, as illustrated by the white rays. Beyond the quasar, stars can be seen forming in clumps throughout the galaxy. Other similar galaxies hosting quasars are visible in the background.

    The newfound quasars belong to a long-lost population that had been theorized to be buried inside dusty, distant galaxies, but were never actually seen. While some quasars are easy to detect because they are oriented in such a way that their X-rays point toward Earth, others are oriented with their surrounding doughnut-clouds blocking the X-rays from our point of view. In addition, dust and gas in the galaxy itself can block the X-rays.

    Astronomers had observed the most energetic of this dusty, or obscured, bunch before, but the 'masses,' or more typical members of the population, remained missing. Using data from Spitzer and Chandra, the scientists uncovered many of these lost quasars in the bellies of massive galaxies between 9 and 11 billion light-years away. Because the galaxies were also busy making stars, the scientists now believe most massive galaxies spent their adolescence building up their stars and black holes simultaneously.

    The Spitzer observations were made as part of the Great Observatories Origins Deep Survey program, which aims to image the faintest distant galaxies using a variety of wavelengths.

  12. SERVS: the Spitzer Extragalactic Representative Volume Survey

    NASA Astrophysics Data System (ADS)

    Lacy, Mark; Afonso, Jose; Alexander, Dave; Best, Philip; Bonfield, David; Castro, Nieves; Cava, Antonio; Chapman, Scott; Dunlop, James; Dyke, Eleanor; Edge, Alastair; Farrah, Duncan; Ferguson, Harry; Foucaud, Sebastian; Franceschini, Alberto; Geach, Jim; Gonzales, Eduardo; Hatziminaoglou, Evanthia; Hickey, Samantha; Ivison, Rob; Jarvis, Matt; Le Fèvre, Olivier; Lonsdale, Carol; Maraston, Claudia; McLure, Ross; Mortier, Angela; Oliver, Seb; Ouchi, Masami; Parish, Glen; Perez-Fournon, Ismael; Petric, Andreea; Pierre, Mauguerite; Readhead, Tony; Ridgway, Susan; Romer, Katherine; Rottgering, Huub; Rowan-Robinson, Michael; Sajina, Anna; Seymour, Nick; Smail, Ian; Surace, Jason; Thomas, Peter; Trichas, Markos; Vaccari, Mattia; Verma, Aprajita; Xu, Kevin; van Kampen, Eelco

    2008-12-01

    We will use warm Spitzer to image 18deg^2 of sky to microJy depth. This is deep enough to undertake a complete census of massive galaxies from z~6 to ~1 in a volume ~0.8Gpc^3, large enough to overcome the effects of cosmic variance, which place severe limitations on the conclusions that can be drawn from smaller fields. We will greatly enhance the diagnostic power of the Spitzer data by performing most of this survey in the region covered by the near-IR VISTA-VIDEO survey, and in other areas covered by near-IR, Herschel and SCUBA2 surveys. We will build complete near-infrared spectral energy distributions using the superb datasets from VIDEO, in conjunction with our Spitzer data, to derive accurate photometric redshifts and the key properties of stellar mass and star formation rates for a large sample of high-z galaxies. Obscured star formation rates and dust-shrouded BH growth phases will be uncovered by combining the Spitzer data with the Herschel and SCUBA2 surveys. We will thus build a complete picture of the formation of massive galaxies from z~6, where only about 1% of the stars in massive galaxies have formed, to z~1 where ~50% of them haveE Our large volume will allow us to also find examples of rare objects such as high-z quasars (~10-100 at z>6.5), high-z galaxy clusters (~20 at z>1.5 with dark halo masses >10^14 solar masses), and evaluate how quasar activity and galaxy environment affect star formation. This survey makes nearly optimal use of warm Spitzer; (a) all of the complementary data is either taken or will be taken in the very near future, and will be immediately publicly accessible, (b) the slew overheads are relatively small, (c) the observations are deep enough to detect high redshift galaxies but not so deep that source confusion reduces the effective survey area.

  13. Five Good Reasons to Show "Great Guy" (1936) in Our U.S. History and American Studies Classes (and the Challenges We'll Face)

    ERIC Educational Resources Information Center

    Allocco, Katherine

    2010-01-01

    One of the most versatile and multi-faceted films that an educator can use to illustrate urban America in the 1930s is "Great Guy," a relatively obscure film from 1936 directed by John G. Blystone and starring James Cagney and Mae Clarke. There are some simple practical considerations that make the film such a good fit for an American history or…

  14. Evolution in the Continuum Morphological Properties of Ly alpha-Emitting Galaxies from Z=3.1 to Z=2.1

    NASA Technical Reports Server (NTRS)

    Bond, Nicholas A.; Gawiser, Eric; Guaita, Lucia; Padilla, Nelson; Gronwall, Chile Caryl; Ciardullo, Robin; Lai, Kamson

    2011-01-01

    We present a rest-frame ultraviolet morphological analysis of 108 z = 2.1 Lyman Alpha Emitters (LAEs) in the Extended Chandra Deep Field South (ECDF-S) and compare it to a similar sample of 171 LAEs at z = 3.1 . Using Hubble Space Telescope (HST) images taken as part of the Galaxy Evolution From Morphology and SEDs survey, Great Observatories Origins Deep Survey, and Hubble Ultradeep Field surveys, we measure the size and photometric component distributions, where photo- metric components are defined as distinct clumps of UV-continuum emission. At both redshifts, the majority of LAEs have observed half-light radii < 2 kpc, but the median half-light radius rises from 0.97 kpc at z = 3.1 to 1.41 kpc at z = 2.1. A similar evolution is seen in the sizes of individual rest-UV components, but there is no evidence for evolution in the number of mUlti-component systems. In the z = 2.1 LAE sample, we see clear correlations between the LAE size and other physical properties derived from its SED. LAEs are found to be larger for galaxies with larger stellar mass, larger star formation rate, and larger dust obscuration, but there is no evidence for a trend between equivalent width and half-light radius at either redshift. The presence of these correlations suggests that a wide range of objects are being selected by LAE surveys at that redshift, including a significant fraction of objects for which a massive and moderately extended population of old stars underlies the young starburst giving rise to the Lya emission.

  15. DISCOVERY OF FIVE CANDIDATE ANALOGS FOR η CARINAE IN NEARBY GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Rubab; Adams, Scott M.; Stanek, K. Z.

    The late-stage evolution of very massive stars such as η Carinae may be dominated by episodic mass ejections that may later lead to Type II superluminous supernova (SLSN-II; e.g., SN 2006gy). However, as long as η Car is one of a kind, it is nearly impossible to quantitatively evaluate these possibilities. Here, we announce the discovery of five objects in the nearby (∼4–8 Mpc) massive star-forming galaxies M51, M83, M101, and NGC 6946 that have optical through mid-infrared (mid-IR) photometric properties consistent with the hitherto unique η Car. The Spitzer mid-IR spectral energy distributions of these L{sub bol} ≃ 3–8 × 10{sup 6} L{submore » ⊙} objects rise steeply in the 3.6–8 μm bands and then turn over between 8 and 24 μm, indicating the presence of warm (∼400–600 K) circumstellar dust. Their optical counterparts in HST images are ∼1.5–2 dex fainter than their mid-IR peaks and require the presence of ∼5–10 M{sub ⊙} of obscuring material. Our finding implies that the rate of η Car–like events is a fraction f = 0.094 (0.040 < f < 0.21 at 90% confidence) of the core-collapse supernova (ccSN) rate. If there is only one eruption mechanism and Type II superluminous supernovae are due to ccSNe occurring inside these dense shells, then the ejection mechanism is likely associated with the onset of carbon burning (∼10{sup 3}–10{sup 4} years), which is also consistent with the apparent ages of massive Galactic shells.« less

  16. Ammonia downstream from HH 80 North

    NASA Technical Reports Server (NTRS)

    Girart, Jose M.; Rodriguez, Luis F.; Anglada, Guillem; Estalella, Robert; Torrelles, Jose, M.; Marti, Josep; Pena, Miriam; Ayala, Sandra; Curiel, Salvador; Noriega-Crespo, Alberto

    1994-01-01

    HH 80-81 are two optically visible Herbig-Haro (HH) objects located about 5 minutes south of their exciting source IRAS 18162-2048. Displaced symmetrically to the north of this luminous IRAS source, a possible HH counterpart was recently detected as a radio continuum source with the very large array (VLA). This radio source, HH 80 North, has been proposed to be a member of the Herbig-Haro class since its centimeter flux density, angular size, spectral index, and morphology are all similar to those of HH 80. However, no object has been detected at optical wavelengths at the position of HH 80 North, possibly because of high extinction, and the confirmation of the radio continuum source as an HH object has not been possible. In the prototypical Herbig-Haro objects HH 1 and 2, ammonia emission has been detected downstream of the flow in both objects. This detection has been intepreted as a result of an enhancement in the ammonia emission produced by the radiation field of the shock associated with the HH object. In this Letter we report the detection of the (1,1) and (2,2) inversion transitions of ammonia downstream HH 80 North. This detection gives strong suppport to the interpretation of HH 80 North as a heavily obscured HH object. In addition, we suggest that ammonia emission may be a tracer of embedded Herbig-Haro objects in other regions of star formation. A 60 micrometer IRAS source could be associated with HH 80 North and with the ammonia condensation. A tentative explanation for the far-infrared emission as arising in dust heated by their optical and UV radiation of the HH object is presented.

  17. Spitzer Spies Spectacular Sombrero

    NASA Image and Video Library

    2005-05-04

    NASA's Spitzer Space Telescope set its infrared eyes on one of the most famous objects in the sky, Messier 104, also called the Sombrero galaxy. In this striking infrared picture, Spitzer sees an exciting new view of a galaxy that in visible light has been likened to a "sombrero," but here looks more like a "bulls-eye." Recent observations using Spitzer's infrared array camera uncovered the bright, smooth ring of dust circling the galaxy, seen in red. In visible light, because this galaxy is seen nearly edge-on, only the near rim of dust can be clearly seen in silhouette. Spitzer's full view shows the disk is warped, which is often the result of a gravitational encounter with another galaxy, and clumpy areas spotted in the far edges of the ring indicate young star-forming regions. Spitzer's infrared view of the starlight from this galaxy, seen in blue, can pierce through obscuring murky dust that dominates in visible light. As a result, the full extent of the bulge of stars and an otherwise hidden disk of stars within the dust ring are easily seen. The Sombrero galaxy is located some 28 million light years away. Viewed from Earth, it is just six degrees south of its equatorial plane. Spitzer detected infrared emission not only from the ring, but from the center of the galaxy too, where there is a huge black hole, believed to be a billion times more massive than our Sun. This picture is composed of four images taken at 3.6 (blue), 4.5 (green), 5.8 (orange), and 8.0 (red) microns. The contribution from starlight (measured at 3.6 microns) has been subtracted from the 5.8 and 8-micron images to enhance the visibility of the dust features. http://photojournal.jpl.nasa.gov/catalog/PIA07899

  18. On the Star Formation-AGN Connection at zeta (is) approximately greater than 0.3

    NASA Technical Reports Server (NTRS)

    LaMassa, Stephanie M.; Heckman, T. M.; Ptak, Andrew; Urry, C. Megan

    2013-01-01

    Using the spectra of a sample of approximately 28,000 nearby obscured active galaxies from Data Release 7 of the Sloan Digital Sky Survey (SDSS), we probe the connection between active galactic nucleus (AGN) activity and star formation over a range of radial scales in the host galaxy. We use the extinction-corrected luminosity of the [O iii] 5007A line as a proxy of intrinsic AGN power and supermassive black hole (SMBH) accretion rate. The star formation rates (SFRs) are taken from the MPA-JHU value-added catalog and are measured through the 3 inch SDSS aperture. We construct matched samples of galaxies covering a range in redshifts. With increasing redshift, the projected aperture size encompasses increasing amounts of the host galaxy. This allows us to trace the radial distribution of star formation as a function of AGN luminosity. We find that the star formation becomes more centrally concentrated with increasing AGN luminosity and Eddington ratio. This implies that such circumnuclear star formation is associated with AGN activity, and that it increasingly dominates over omnipresent disk star formation at higher AGN luminosities, placing critical constraints on theoretical models that link host galaxy star formation and SMBH fueling. We parameterize this relationship and find that the star formation on radial scales (is) less than 1.7 kpc, when including a constant disk component, has a sub-linear dependence on SMBH accretion rate: SFR in proportion to solar mass(sup 0.36), suggesting that angular momentum transfer through the disk limits accretion efficiency rather than the supply from stellar mass loss.

  19. Black hole growth and starburst activity at z = 0.6-4 in the Chandra Deep Field South. Host galaxies properties of obscured AGN

    NASA Astrophysics Data System (ADS)

    Brusa, M.; Fiore, F.; Santini, P.; Grazian, A.; Comastri, A.; Zamorani, G.; Hasinger, G.; Merloni, A.; Civano, F.; Fontana, A.; Mainieri, V.

    2009-12-01

    Aims: The co-evolution of host galaxies and the active black holes which reside in their centre is one of the most important topics in modern observational cosmology. Here we present a study of the properties of obscured active galactic nuclei (AGN) detected in the CDFS 1 Ms observation and their host galaxies. Methods: We limited the analysis to the MUSIC area, for which deep K-band observations obtained with ISAAC@VLT are available, ensuring accurate identifications of the counterparts of the X-ray sources as well as reliable determination of photometric redshifts and galaxy parameters, such as stellar masses and star formation rates. In particular, we: 1) refined the X-ray/infrared/optical association of 179 sources in the MUSIC area detected in the Chandra observation; 2) studied the host galaxies observed and rest frame colors and properties. Results: We found that X-ray selected (LX ⪆ 1042 erg s-1) AGN show Spitzer colors consistent with both AGN and starburst dominated infrared continuum; the latter would not have been selected as AGN from infrared diagnostics. The host galaxies of X-ray selected obscured AGN are all massive (Mast > 1010 M_⊙) and, in 50% of the cases, are also actively forming stars (1/SSFR < tHubble) in dusty environments. The median L/LEdd value of the active nucleus is between 2% and 10% depending on the assumed MBH/Mast ratio. Finally, we found that the X-ray selected AGN fraction increases with the stellar mass up to a value of 30% at z > 1 and Mast > 3 × 1011 M_⊙, a fraction significantly higher than in the local Universe for AGN of similar luminosities. Tables [see full textsee full textsee full text] and [see full textsee full textsee full text] are only available in electronic form at http://www.aanda.org

  20. Optical Time-Domain and Radio Imaging Analyses of the Dynamic Hearts of AGN

    NASA Astrophysics Data System (ADS)

    Smith, Krista Lynne

    Active galactic nuclei (AGN) are among the most extreme objects in the universe: galaxies with a central supermassive black hole feeding on gas from a hot accretion disk. Despite their potential as powerful tools to study topics ranging from relativity to cosmology, they remain quite mysterious. In the first portion of this thesis, we explore how an AGN may influence the formation of stars in its host galaxy. Using high-resolution 22 GHz radio imaging of an X-ray selected sample of radio-quiet AGN, we find that the far-infrared radio correlation for normal star forming galaxies remains valid within a few hundred parsecs of the central engine. Because the core flux is often spatially isolated from star formation, we can also determine that the radio emission in radio-quiet AGN is consistent with both coronal and disk-jet coupling models. Finally, we find that AGN with jet-like radio morphologies have suppressed star formation, possibly indicating ongoing feedback. The second portion of this thesis uses optical AGN light curves to study the physics of accretion. The Kepler spacecraft produces groundbreaking light curves, but its fixed field of view only contained a handful of known AGN. We conduct an X-ray survey of this field, yielding 93 unique X-ray sources identified by optical follow-up spectroscopy as a mixture of AGN and stars. For the AGN, we spectroscopically measure black hole masses and accretion rates. We then analyze a sample of 22 Kepler AGN light curves. We develop a customized pipeline for AGN science with Kepler, a necessary step since the initial data was optimized for the unique goal of exoplanet detection. The light curves display an astonishing variety of behaviors in a new regime of optical variability inaccessible with previous facilities. We find power spectral slopes inconsistent with the damped random walk model, characteristic variability timescales, correlations of variability properties with physical parameters, and bimodal flux distributions possibly consistent with passing obscuring material. We also conclude that this regime of optical variability is not produced by simple X-ray reprocessing. Finally, we explain how this work supports future robust accretion studies with upcoming large timing surveys.

  1. WFIRST: Science with the coronagraphic instrument

    NASA Astrophysics Data System (ADS)

    Macintosh, Bruce; Turnbull, Margaret; Lewis, Nikole K.; Roberge, Aki; Kasdin, Jeremy; WFIRST Coronagraph Science Investigation Teams, JPL Coronagraph Instrument Team

    2018-01-01

    The Wide-Field Infrared Survey Telescope (WFIRST) is baselined to incorporate a coronagraphic instrument (CGI) for high-contast imaging and spectroscopy of extrasolar planets and circumstellar dust. CGI incorporates a pair of deformable mirrors to control the wavefront of light, occulting masks that control diffraction from the obscured WFIRST aperture, and two science modes: an integral field spectrograph and a direct imager. We give an overview of CGI’s architecture and science capabilities. CGI provides the first opportunity to fly a fully integrated active-optics coronagraph in space, paving the way for future missions such as HABEX or LUVOIR. The baseline science case includes spectroscopic characterization of known giant planets from 1-5 AU, photometric characterization of a broader sample, and searches for new lower-mass planets orbiting nearby stars. CGI will also be sensitive to extrsolar zodiacal dust associated with nearby stars, as well as debris disks and protoplanetary dust disks hosted by younger stars. These measurements will inform our understanding of planet formation and advance towards spectral characterization of earthilke planets.

  2. Hidden Lair at the Heart of Galaxy NGC 1068

    NASA Image and Video Library

    2015-12-17

    Galaxy NGC 1068 can be seen in close-up in this view from NASA's Hubble Space Telescope. NuSTAR's high-energy X-rays eyes were able to obtain the best view yet into the hidden lair of the galaxy's central, supermassive black hole. This active black hole -- shown as an illustration in the zoomed-in inset -- is one of the most obscured known, meaning that it is surrounded by extremely thick clouds of gas and dust. The NuSTAR data revealed that the torus of gas and dust surrounding the black hole, also referred to as a doughnut, is more clumpy than previously thought. doughnuts around active, supermassive black holes were originally proposed in the mid-1980s to be smooth entities. More recently, researchers have been finding that doughnuts are not so smooth but have lumps. NuSTAR's latest finding shows that this is true for even the thickest of doughnuts. http://photojournal.jpl.nasa.gov/catalog/PIA20058

  3. Star-spot distributions and chromospheric activity on the RS CVn type eclipsing binary SV Cam

    NASA Astrophysics Data System (ADS)

    Şenavcı, H. V.; Bahar, E.; Montes, D.; Zola, S.; Hussain, G. A. J.; Frasca, A.; Işık, E.; Yörükoǧlu, O.

    2018-06-01

    Using a time series of high-resolution spectra and high-quality multi-colour photometry, we reconstruct surface maps of the primary component of the RS CVn type rapidly rotating eclipsing binary, SV Cam (F9V + K4V). We measure a mass ratio, q, of 0.641(2) using our highest quality spectra and obtain surface brightness maps of the primary component, which exhibit predominantly high-latitude spots located between 60° - 70° latitudes with a mean filling factor of ˜35%. This is also indicated by the R-band light curve inversion, subjected to rigourous numerical tests. The spectral subtraction of the Hα line reveals strong activity of the secondary component. The excess Hα absorption detected near the secondary minimum hints to the presence of cool material partially obscuring the primary star. The flux ratios of Ca II IRT excess emission indicate that the contribution of chromospheric plage regions associated with star-spots is dominant, even during the passage of the filament-like absorption feature.

  4. The Evolution of Dust in the Multiphase Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J. (Technical Monitor); Slavin, Jonathan

    2003-01-01

    Interstellar dust has a profound effect on the structure and evolution of the interstellar medium (ISM) and on the processes by which stars form from it. Dust obscures regions of star formation from view, and the uncertain quantities of elements in dust makes it difficult to measure accurately the abundances of the elements in low density regions. Despite the central importance of dust in astrophysics, we cannot answer some of the most basic questions about it: Why is it that most of the refractory elements are in dust grains? What determines the sizes of interstellar grains? It has been the goal of our proposed theoretical investigations to address these questions by studying the destruction of interstellar grains, and to develop observational diagnostics that can test the models we develop.

  5. Formation of the young compact cluster GM 24 triggered by a cloud-cloud collision

    NASA Astrophysics Data System (ADS)

    Fukui, Yasuo; Kohno, Mikito; Yokoyama, Keiko; Nishimura, Atsushi; Torii, Kazufumi; Hattori, Yusuke; Sano, Hidetoshi; Ohama, Akio; Yamamoto, Hiroaki; Tachihara, Kengo

    2018-05-01

    High-mass star formation is an important step which controls galactic evolution. GM 24 is a heavily obscured star cluster including a single O9 star with more than ˜100 lower-mass stars within a 0.3 pc radius toward (l, b) ˜ (350.5°, 0.96°), close to the Galactic mini-starburst NGC 6334. We found two velocity components associated with the cluster by new observations of 12CO J =2-1 emission, whereas the cloud was previously considered to be single. We found that the distribution of the two components of 5 {km}s-1 separation shows complementary distribution; the two fit well with each other if a relative displacement of 3 pc is applied along the Galactic plane. A position-velocity diagram of the GM 24 cloud is explained by a model based on numerical simulations of two colliding clouds, where an intermediate velocity component created by the collision is taken into account. We estimate the collision time scale to be ˜Myr in projection of a relative motion tilted to the line of sight by 45°. The results lend further support for cloud-cloud collision as an important mechanism of high-mass star formation in the Carina-Sagittarius Arm.

  6. Obscuring and Feeding Supermassive Black Holes with Evolving Nuclear Star Clusters

    NASA Astrophysics Data System (ADS)

    Schartmann, M.; Burkert, A.; Krause, M.; Camenzind, M.; Meisenheimer, K.; Davies, R. I.

    2010-05-01

    Recently, high-resolution observations made with the help of the near-infrared adaptive optics integral field spectrograph SINFONI at the VLT proved the existence of massive and young nuclear star clusters in the centers of a sample of Seyfert galaxies. With the help of high-resolution hydrodynamical simulations with the pluto code, we follow the evolution of such clusters, especially focusing on mass and energy feedback from young stars. This leads to a filamentary inflow of gas on large scales (tens of parsecs), whereas a turbulent and very dense disk builds up on the parsec scale. Here we concentrate on the long-term evolution of the nuclear disk in NGC 1068 with the help of an effective viscous disk model, using the mass input from the large-scale simulations and accounting for star formation in the disk. This two-stage modeling enables us to connect the tens-of-parsecs scale region (observable with SINFONI) with the parsec-scale environment (MIDI observations). At the current age of the nuclear star cluster, our simulations predict disk sizes of the order 0.8 to 0.9 pc, gas masses of order 106 M⊙, and mass transfer rates through the inner boundary of order 0.025 M⊙ yr-1, in good agreement with values derived from observations.

  7. Young Stellar Variability of GM Cephei by Circumstellar Dust Clumps

    NASA Astrophysics Data System (ADS)

    Huang, Po-Chieh; Chen, Wen-Ping; Hu, Chia-Ling; Burkhonov, Otabek; Ehgamberdiev, Shuhrat; Liu, Jinzhong; Naito, Hiroyuki; Pakstiene, Erika; Qvam, Jan Kare Trandem; Rätz, Stefanie; Semkov, Evgeni

    2018-04-01

    UX Orionis stars are a sub-type of Herbig Ae/be or T Tauri stars exhibiting sporadic extinction of stellar light due to circumstellar dust obscuration. GM Cep is such an UX Orionis star in the young (∼ 4 Myr) open cluster Trumpler 37 at ∼ 900 pc, showing a prominent infrared access, H-alpha emission, and flare activity. Our multi-color photometric monitoring from 2009 to 2016 showed (i) sporadic brightening on a time scale of days due to young stellar accretion, (ii) cyclic, but not strictly periodical, occultation events, each lasting for a couple months, with a probable recurrence time of about two years, (iii) normal dust reddening as the star became redder when dimmer, (iv) the unusual "blueing" phenomena near the brightness minima, during which the star appeared bluer when dimmer, and (v) a noticeable polarization, from 3 to 9 percent in g', r', and i' -bands. The occultation events may be caused by dust clumps, signifying the density inhomogeneity in a young stellar disk from grain coagulation to planetesimal formation. The level of polarization was anti-correlated with the brightness in the bright state, when the dust clump backscattered stellar light. We discussed two potential hypotheses: orbiting dust clumps versus dust clumps along a spiral arm structure.

  8. Spiders in Lyot Coronagraphs

    NASA Astrophysics Data System (ADS)

    Sivaramakrishnan, Anand; Lloyd, James P.

    2005-11-01

    In principle, suppression of on-axis stellar light by a coronagraph is easier on an unobscured aperture telescope than on one with an obscured aperture. Recent designs such as the apodized pupil Lyot coronagraph, the ``band-limited'' Lyot coronagraph, and several variants of phase-mask coronagraphs work best on unobscured circular aperture telescopes. These designs were developed to enable the discovery and characterization of nearby Jovian or even terrestrial exoplanets. All of today's major space-based and adaptive optics-equipped ground-based telescopes are obscured-aperture systems with a secondary mirror held in place by secondary support ``spider'' vanes. The presence of a secondary obscuration can be dealt with by ingenious coronagraph designs, but the spider vanes themselves cause diffracted light, which can hamper the search for Jovian exoplanets around nearby stars. We look at the problem of suppressing spider vane diffraction in Lyot coronagraphs, including apodized pupil and band-limited designs. We show how spider vane diffraction can be reduced drastically and in fact contained in the final coronagraphic image, within one resolution element of the geometric image of the focal plane mask's occulting spot. This makes adaptive optics coronagraphic searches for exojupiters possible with the next generation of adaptive optics systems being developed for 8-10 m class telescopes such as Gemini and the Very Large Telescopes.

  9. An infrared diagnostic for magnetism in hot stars

    NASA Astrophysics Data System (ADS)

    Oksala, M. E.; Grunhut, J. H.; Kraus, M.; Borges Fernandes, M.; Neiner, C.; Condori, C. A. H.; Campagnolo, J. C. N.; Souza, T. B.

    2015-06-01

    Magnetospheric observational proxies are used for indirect detection of magnetic fields in hot stars in the X-ray, UV, optical, and radio wavelength ranges. To determine the viability of infrared (IR) hydrogen recombination lines as a magnetic diagnostic for these stars, we have obtained low-resolution (R~ 1200), near-IR spectra of the known magnetic B2V stars HR 5907 and HR 7355, taken with the Ohio State Infrared Imager/Spectrometer (OSIRIS) attached to the 4.1 m Southern Astrophysical Research (SOAR) Telescope. Both stars show definite variable emission features in IR hydrogen lines of the Brackett series, with similar properties as those found in optical spectra, including the derived location of the detected magnetospheric plasma. These features also have the added advantage of a lowered contribution of stellar flux at these wavelengths, making circumstellar material more easily detectable. IR diagnostics will be useful for the future study of magnetic hot stars, to detect and analyze lower-density environments, and to detect magnetic candidates in areas obscured from UV and optical observations, increasing the number of known magnetic stars to determine basic formation properties and investigate the origin of their magnetic fields. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the US National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  10. Combining collective, MSW, and turbulence effects in supernova neutrino flavor evolution

    NASA Astrophysics Data System (ADS)

    Lund, Tina; Kneller, James P.

    2013-07-01

    In order to decode the neutrino burst signal from a Galactic core-collapse supernova (ccSN) and reveal the complicated inner workings of the explosion we need a thorough understanding of the neutrino flavor evolution from the proto-neutron star outwards. The flavor content of the signal evolves due to both neutrino collective effects and matter effects which can lead to a highly interesting interplay and distinctive spectral features. In this paper we investigate the supernova neutrino flavor evolution in three different progenitors and include collective flavor effects, the evolution of the Mikheyev, Smirnov & Wolfenstein (MSW) conversion due to the shock wave passage through the star, and the impact of turbulence. We consider both normal and inverted neutrino mass hierarchies and a value of θ13 close to the current experimental measurements. In the Oxygen-Neon-Magnesium (ONeMg) supernova we find that the impact of turbulence is both brief and slight during a window of 1-2 seconds post bounce. This is because the shock races through the star extremely quickly and the turbulence amplitude is expected to be small, less than 10%, since these stars do not require multidimensional physics to explode. Thus the spectral features of collective and shock effects in the neutrino signals from Oxygen-Neon-Magnesium supernovae may be almost turbulence free making them the easiest to interpret. For the more massive progenitors we again find that small amplitude turbulence, up to 10%, leads to a minimal modification of the signal, and the emerging neutrino spectra retain both collective and MSW features. However, when larger amounts of turbulence is added, 30% and 50%, which is justified by the requirement of multidimensional physics in order to make these stars explode, the features of collective and shock wave effects in the high (H) density resonance channel are almost completely obscured at late times. Yet at the same time we find the other mixing channels—the low (L) density resonance channel and the nonresonant channels—begin to develop turbulence signatures. Large amplitude turbulent motions in the outer layers of more massive, iron core-collapse supernovae may obscure the most obvious fingerprints of collective and shock wave effects in the neutrino signal but cannot remove them completely, and additionally bring about new features in the signal.

  11. HUBBLE UNVEILS A GALAXY IN LIVING COLOR

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this view of the center of the magnificent barred spiral galaxy NGC 1512, NASA Hubble Space Telescope's broad spectral vision reveals the galaxy at all wavelengths from ultraviolet to infrared. The colors (which indicate differences in light intensity) map where newly born star clusters exist in both 'dusty' and 'clean' regions of the galaxy. This color-composite image was created from seven images taken with three different Hubble cameras: the Faint Object Camera (FOC), the Wide Field and Planetary Camera 2 (WFPC2), and the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). NGC 1512 is a barred spiral galaxy in the southern constellation of Horologium. Located 30 million light-years away, relatively 'nearby' as galaxies go, it is bright enough to be seen with amateur telescopes. The galaxy spans 70,000 light-years, nearly as much as our own Milky Way galaxy. The galaxy's core is unique for its stunning 2,400 light-year-wide circle of infant star clusters, called a 'circumnuclear' starburst ring. Starbursts are episodes of vigorous formation of new stars and are found in a variety of galaxy environments. Taking advantage of Hubble's sharp vision, as well as its unique wavelength coverage, a team of Israeli and American astronomers performed one of the broadest and most detailed studies ever of such star-forming regions. The results, which will be published in the June issue of the Astronomical Journal, show that in NGC 1512 newly born star clusters exist in both dusty and clean environments. The clean clusters are readily seen in ultraviolet and visible light, appearing as bright, blue clumps in the image. However, the dusty clusters are revealed only by the glow of the gas clouds in which they are hidden, as detected in red and infrared wavelengths by the Hubble cameras. This glow can be seen as red light permeating the dark, dusty lanes in the ring. 'The dust obscuration of clusters appears to be an on-off phenomenon,' says Dan Maoz, who headed the collaboration. 'The clusters are either completely hidden, enshrouded in their birth clouds, or almost completely exposed.' The scientists believe that stellar winds and powerful radiation from the bright, newly born stars have cleared away the original natal dust cloud in a fast and efficient 'cleansing' process. Aaron Barth, a co-investigator on the team, adds: 'It is remarkable how similar the properties of this starburst are to those of other nearby starbursts that have been studied in detail with Hubble.' This similarity gives the astronomers the hope that, by understanding the processes occurring in nearby galaxies, they can better interpret observations of very distant and faint starburst galaxies. Such distant galaxies formed the first generations of stars, when the universe was a fraction of its current age. Circumstellar star-forming rings are common in the universe. Such rings within barred spiral galaxies may in fact comprise the most numerous class of nearby starburst regions. Astronomers generally believe that the giant bar funnels the gas to the inner ring, where stars are formed within numerous star clusters. Studies like this one emphasize the need to observe at many different wavelengths to get the full picture of the processes taking place.

  12. Using WISE to Find Obscured AGN Activity in SDSS Mergers and Interactions

    NASA Astrophysics Data System (ADS)

    Weston, Madalyn; McIntosh, Daniel H.; Her, Xiachang; Rigby, Jane R.

    2015-01-01

    In simulations, major encounters between gas-rich galaxies are predicted to drive gas to the centers of interacting and merging systems triggering new star formation (SF) and fueling an active galactic nucleus (AGN). Depending on the rate of SF, large amounts of obscuring dust can make detection of merger-induced activity difficult and may be at the heart of the ongoing merger-AGN connection debate. To provide better constraints on the importance of obscured AGNs, we use data from the Wide-field Infrared Survey Explorer (WISE) for a comprehensive sample of over 1000 major galaxy interactions and ongoing mergers visually selected from the SDSS with Mstar>1e10 Msun and 0.01 < z < 0.08. We examine the [3.4]-[4.6] versus [4.6]-[12] micron color-color plane and find that most interactions and mergers have the same colors as normal (non-interacting and non-merging) galaxies, which define a narrow [3.4]-[4.6] micron locus and span a wide range in [4.6]-[12] micron colors from spectroscopically quiescent (blue, no dust) to galaxies with SF emission (dust-reddened). We find that 2-6% of mergers (and 2-3% of interactions) have unusually red [3.4]-[4.6] micron colors, which are associated with dust-obscured (Type-2) AGNs. We note that mergers (interactions) are 4-15 (3-8) times more likely to host a buried AGN than normal galaxies. We also find that optical emission-line AGNs (Seyferts) identified as mergers are 3-7 times more likely to be obscured than non-merging Seyferts. We investigate whether the obscured AGN subset of our sample have unique properties and find that their stellar masses, mass ratios, pair separations, and environments are not statistically different from those of the bulk of mergers and interactions with normal WISE colors. We note that among mergers and interactions with an AGN, the WISE-selected AGN favor higher [OIII] luminosities associated with higher AGN power than their unobscured counterparts. Our findings support an AGN-merger connection.

  13. NICMOS PEELS AWAY LAYERS OF DUST TO SHOW INNER REGION OF DUSTY NEBULA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The revived Near Infrared Camera and Multi-Object Spectrometer (NICMOS) aboard NASA's Hubble Space Telescope has penetrated layers of dust in a star-forming cloud to uncover a dense, craggy edifice of dust and gas . This region is called the Cone Nebula (NGC 2264), so named because, in ground-based images, it has a conical shape. NICMOS enables the Hubble telescope to see in near-infrared wavelengths of light, so that it can penetrate the dust that obscures the nebula's inner regions. But the Cone is so dense that even the near-infared 'eyes' of NICMOS can't penetrate all the way through it. The image shows the upper 0.5 light-years of the nebula. The entire nebula is 7 light-years long. The Cone resides in a turbulent star-forming region, located 2,500 light-years away in the constellation Monoceros. Radiation from hot, young stars [located beyond the top of the image] has slowly eroded the nebula over millions of years. Ultraviolet light heats the edges of the dark cloud, releasing gas into the relatively empty region of surrounding space. NICMOS has peeled away the outer layers of dust to reveal even denser dust. The denser regions give the nebula a more three-dimensional structure than can be seen in the visible-light picture at left, taken by the Advanced Camera for Surveys aboard the Hubble telescope. In peering through the dusty facade to the nebula's inner regions, NICMOS has unmasked several stars [yellow dots at upper right]. Astronomers don't know whether these stars are behind the dusty nebula or embedded in it. The four bright stars lined up on the left are in front of the nebula. The human eye cannot see infrared light, so colors have been assigned to correspond with near-infrared wavelengths. The blue light represents shorter near-infrared wavelengths and the red light corresponds to longer wavelengths. The NICMOS color composite image was made by combining photographs taken in J-band, H-band, and Paschen-alpha filters. The NICMOS images were taken on May 11, 2002. Credits for NICMOS image: NASA, the NICMOS Group (STScI, ESA), and the NICMOS Science Team (University of Arizona) Credits for ACS image: NASA, H. Ford (JHU), G. Illingworth (UCSC/LO), M.Clampin (STScI), G. Hartig (STScI), the ACS Science Team, and ESA

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Downes, R.A.

    Galactic plane ultraviolet-excess (uv-excess) objects covering about 1000 square degrees of sky were surveyed. Photographic plates were obtained with both uv and blue filters, to select the uv-excess candidates, which were then observed spectroscopically to determine their classification. Most of the objects selected were nearby early-type stars with low interstellar reddening; however, a collection of hot white dwarfs, subdwarf O (sdO) stars, subdwarf B (sdB) stars, and cataclysmic variables was also found. Photoelectric photometry was obtained for these stars and a statistical analysis was performed to determine the space densities and scale heights for the four classes of objects. Severalmore » interesting objects (or class of objects) were discovered, and data for some of these stars are presented. Among the peculiar objects found are an emission-line white dwarf similar to the pulsating PG 1159 stars, a Population II Wolf-Rayet star, a previously catalogued object with a strong Fe II emission-line spectrum, and a new class of object, resembling the sdB stars, that shows variable strength H..cap alpha.. absorption, with the H..cap alpha.. line sometimes completely filled in.« less

  15. Measuring the Clustering Around Normal and Dust-Obscured Quasars at 2 in the Spitzer Extragalactic Representative Volume Survey (SERVS)

    NASA Astrophysics Data System (ADS)

    Jones, Kristen M.; Lacy, M.; Spitzer Extragalactic Representative Volume Survey Team

    2014-01-01

    Little is known about the environments of high redshift quasars, particularly those obscured by dust. Previous work suggests that dust-shrouded (type 2) quasars are at least as common as un-obscured optical (type 1) quasars; therefore, in order to fully understand the role quasars play in the evolutionary history of the universe, we must understand both types of objects. This project seeks to explore the environments in which obscured quasars form. In this poster, we present mid-infrared clustering measurements for a sample of 45 quasars with 1.3 < z < 2.5, a redshift range that is unexplored in the literature. The objects were selected using IRAC multi-color criteria to remove low-redshift starburst and quiescent galaxies, and subsequently had spectroscopy carried out to both obtain redshifts, and to distinguish between type 1 and type 2 quasars; the high-redshift sample presented in this paper is roughly evenly distributed between the two types. We use the SERVS galaxy catalogs to estimate the cross-correlation between each quasar and its surrounding galaxies. The amplitude of this function gives us the richness of the environments in which these quasars are found, and we compare our results with a matched sample with z < 1.3.

  16. The distant red galaxy neighbour population of 1

    NASA Astrophysics Data System (ADS)

    Bornancini, C.; García Lambas, D.

    We study the Distant Red Galaxy (DRG, J-Ks > 2.3) neighbour population of Quasi Stellar Objects (QSOs) selected from the Sloan Digital Sky Survey (SDSS) in the redshift range 1 < z < 2. We perform a similar analysis for optically obscured AGNs (i.e. with a limiting magnitude I > 24) detected in the mid-infrared (24 microns) with the Spitzer Space Telescope and a mean redshift z~2.2 in the Flamingos Extragalactic Survey (FLAMEX). We present results on the cross-correlation function of DRGs around QSOs and optically faint mid-infrared sources. The corresponding correlation length obtained for the QSO sample targets is r_0=5.4+/-1.6 Mpc. For the optically obscured galaxy sample we find r_0=8.9+/-1.4 Mpc. These results indicate that optically faint obscured sources are located in denser environment of evolved red galaxies compare to QSOs.

  17. A study of the Galactic star forming region IRAS 02593+6016/S 201 in infrared and radio wavelengths

    NASA Astrophysics Data System (ADS)

    Ojha, D. K.; Ghosh, S. K.; Kulkarni, V. K.; Testi, L.; Verma, R. P.; Vig, S.

    2004-03-01

    We present infrared and radio continuum observations of the S 201 star forming region. A massive star cluster is seen, which contains different classes of young stellar objects. The near-infrared colour-colour and colour-magnitude diagrams are studied to determine the nature of these sources. We have discovered knots of molecular hydrogen emission at 2.122 μm in the central region of S 201. These knots are clearly seen along the diffuse emission to the north-west and are probably obscured Herbig-Haro objects. High sensitivity and high resolution radio continuum images from GMRT observations at 610 and 1280 MHz show an arc-shaped structure due to the interaction between the HII region and the adjacent molecular cloud. The ionization front at the interface between the HII region and the molecular cloud is clearly seen comparing the radio, molecular hydrogen and Brγ images. The emission from the carriers of Unidentified Infrared Bands in the mid-infrared 6-9 μm (possibly due to PAHs) as extracted from the Midcourse Space Experiment survey (at 8, 12, 14 and 21 μm) is compared with the radio emission. The HIRES processed IRAS maps at 12, 25, 60 and 100 μm have also been used for comparison. The spatial distribution of the temperature and the optical depth of the warm dust component around the S 201 region has been generated from the mid-infrared images. This paper is based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Centro Galileo Galilei of the CNAA (Consorzio Nazionale per l'Astronomia e l'Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. IPAC is thanked for providing HIRES processed IRAS data.

  18. Spectral Variability of the UXOR Star RR Tau Over 2.5 Magnitudes in V

    NASA Astrophysics Data System (ADS)

    Rodgers, B.; Wooden, D. H.; Grinin, V. P.; Shakhovskoy, D.

    2000-12-01

    We present moderate resolution optical spectra of the highly variable Herbig Ae star RR Tau over 12 epochs spanning 2.5 magnitudes in V. The data cover most of the optical spectrum from the CaII K line in the blue to the CaII infrared triplet in the far red. Using contemporaneous photometric measurements from two sources, we have reliable estimates of the visual magnitude of the system at each spectral epoch. We find some spectral activity to be closely correlated with photometric variability, while other features are remarkably stable. Significant variability is common in the cores of Hα and Hβ , but is not well correlated with photometric variability. On the other hand, the wings (Δ v>400km/s) of the Balmer lines are quite stable, showing no change in spectral type when compared to Kurucz line profiles. This, along with the constant equivalent width seen in several weak metal lines, suggest that the physical conditions of the underlying continuum source are not changing significantly, despite a factor of ten change in brightness. In contrast, strong low-ionization permitted lines, such as FeII, CaII and NaI, are seen in deep absorption when the star is bright (V <= 12), but disappear during photometric minima to reveal weak emission lines. These absorption lines are not being filled in by the emission but rather are physically disappearing from the system. This could occur, for example, if an obscuring screen moved between the continuum source and the absorbing gas. The [OI]6300 line, a common wind diagnostic, is seen in emission at all epochs, with flux which is roughly constant except increasing slightly when the system is faint. We discuss these data in the context of different scenarios for the photometric variability and find them to be more consistent with the obscuration hypothesis, than changing accretion luminosity. This work is part of the dissertation research of B. Rodgers, which has been funded in large part by a NASA Graduate Student Research Program (GSRP) grant, for which D.H. Wooden is Rodgers' advisor. We gratefully acknowledge the use of the database of the Amateur Astronomers Variable Star Organization (AAVSO).

  19. OBSCURED STAR FORMATION AND ENVIRONMENT IN THE COSMOS FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feruglio, C.; Aussel, H.; Le Floc'h, E.

    2010-09-20

    We investigate the effects of the environment on star formation in a sample of massive luminous and ultra-luminous infrared galaxies (LIRGs and ULIRGs) with S(24 {mu}m) >80 {mu}Jy and i {sup +} < 24 in the COSMOS field. We exploit the accurate photometric redshifts in COSMOS to characterize the galaxy environment and study the evolution of the fraction of LIRGs and ULIRGs in different environments in the redshift range z = 0.3-1.2 and in bins of stellar mass. We find that the environment plays a role in the star formation processes and evolution of LIRGs and ULIRGs. We find anmore » overall increase of the ULIRG+LIRG fraction in an optically selected sample with increasing redshift, as expected from the evolution of the star formation rate (SFR) density. We find that the ULIRG+LIRG fraction decreases with increasing density up to z {approx} 1, and that the dependence on density flattens with increasing redshift. We do not observe the reversal of the SFR density relation up to z = 1 in massive LIRGs and ULIRGs, suggesting that such reversal might occur at higher redshift in this infrared luminosity range.« less

  20. W.M. Keck Telescope High Resolution Near-Infrared Imaging of FSC 10214+4724: Evidence for Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Liu, Michael C.; Graham, James R.

    1995-05-01

    We present near--infrared observations of the ultraluminous high--redshift (z=2.286) IRAS source FSC 10214+4724 obtained in 0.''4 seeing at the W. M. Keck Telescope. These new observations show that FSC 10214+4724 consists of a highly symmetric circular arc centered on a second weaker source. The arc has an angular extent of about 140(deg) and is probably unresolved in the transverse direction. This morphology constitutes compelling prima facie evidence for a gravitationally lensed system. Our images also contain evidence for the faint counter image predicted by the lens hypothesis. The morphology of FSC 10214+4724 can be explained in terms of a gravitationally lensed background source if the object located close to the center of the arc is an L(*) galaxy located at z~ 0.4 . The origin of the luminosity of FSC 10214+4724 is unclear -- it may be a protogalaxy undergoing its initial burst of star formation or a highly obscured quasar. If FSC 10214+4724 is lensed then there is significant magnification and its luminosity has been overestimated by a large factor. Our results suggest FSC 10214+4724 is not a uniquely luminous object but ranks among the most powerful quasars and ultraluminous IRAS galaxies.

  1. On the Distance Measurements toward Young Milky Way Objects. I. Study of IC 2944

    NASA Astrophysics Data System (ADS)

    Krełowski, J.; Strobel, A.; Godunova, V.; Bondar, A.

    2017-12-01

    We compare distances to a very young stellar aggregate, IC 2944, using three methods: direct parallaxes of Gaia, spectrophotometric parallax and our method based on intensities of interstellar CaII lines. The discrepancies between spectrophotometric distances and those, based on CaII K and H lines, were already reported. The interstellar CaII H and K lines allow one to determine both distances and radial velocities of the intervening clouds. Thus, these data allow us to check the aggregate membership. It is also possible to check the spectral classification of considered targets which is necessary for spectrophotometric parallaxes. Using three methods, we determined distances to IC 2944 stars. We demonstrate that CaII based distances agree very well with the kinematic ones but are generally much smaller than the spectrophotometric ones. We conclude that the majority of IC 2944 objects is obscured by clouds producing neutral ("gray") extinction which diminishes their brightness exactly like extended distances. This influences spectrophotometric parallaxes while those, based on the CaII lines, do not depend on extinction and this method seems to be the most reliable one inside the thin disk of our Galaxy. The Gaia trigonometric parallaxes lead to distances similar to those obtained using the CaII method if their errors are reasonably small.

  2. Exploring the Connection Between Star Formation and AGN Activity in the Local Universe

    NASA Technical Reports Server (NTRS)

    LaMassa, Stephanie M.; Heckman. T. M.; Ptak, Andrew; Schiminovich, D.; O'Dowd, M.; Bertincourt, B.

    2012-01-01

    We study a combined sample of 264 star-forming, 51 composite, and 73 active galaxies using optical spectra from SDSS and mid-infrared (mid-IR) spectra from the Spitzer Infrared Spectrograph. We examine optical and mid-IR spectroscopic diagnostics that probe the amount of star formation and relative energetic con- tributions from star formation and an active galactic nucleus (AGN). Overall we find good agreement between optical and mid-IR diagnostics. Misclassifications of galaxies based on the SDSS spectra are rare despite the presence of dust obscuration. The luminosity of the [NeII] 12.8 micron emission-line is well correlated with the star formation rate (SFR) measured from the SDSS spectra, and this holds for the star forming, composite, and AGN-dominated systems. AGN show a clear excess of [NeIII] 15.6 micron emission relative to star forming and composite systems. We find good qualitative agreement between various parameters that probe the relative contributions of the AGN and star formation, including: the mid-IR spectral slope, the ratio of the [NeV] 14.3 micron to [NeII] micron 12.8 fluxes, the equivalent widths of the 7.7, 11.3, and 17 micron PAH features, and the optical "D" parameter which measures the distance a source lies from the locus of star forming galaxies in the optical BPT emission-line diagnostic diagram. We also consider the behavior of the three individual PAH features by examining how their flux ratios depend upon the degree of AGN-dominance. We find that the PAH 11.3 micron feature is significantly suppressed in the most AGN-dominated systems.

  3. A Natal Microcosm

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In the quest to better understand the birth of stars and the formation of new worlds, astronomers have used NASA's Spitzer Space Telescope to examine the massive stars contained in a cloudy region called Sharpless 140. This cloud is a fascinating microcosm of a star-forming region since it exhibits, within a relatively small area, all of the classic manifestations of stellar birth.

    Sharpless 140 lies almost 3000 light-years from Earth in the constellation Cepheus. At its heart is a cluster of three deeply embedded young stars, which are each several thousand times brighter than the Sun. Though they are strikingly visible in this image from Spitzer's infrared array camera, they are completely obscured in visible light, buried within the core of the surrounding dust cloud.

    The extreme youth of at least one of these stars is indicated by the presence of a stream of gas moving at high velocities. Such outflows are signatures of the processes surrounding a star that is still gobbling up material as part of its formation.

    The bright red bowl, or arc, seen in this image traces the outer surface of the dense dust cloud encasing the young stars. This arc is made up primarily of organic compounds called polycyclic aromatic hydrocarbons, which glow on the surface of the cloud. Ultraviolet light from a nearby bright star outside of the image is 'eating away' at these molecules. Eventually, this light will destroy the dust envelope and the masked young stars will emerge.

    This false-color image was taken on Oct. 11, 2003 and is composed of photographs obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red).

  4. A Natal Microcosm

    NASA Image and Video Library

    2004-05-11

    In the quest to better understand the birth of stars and the formation of new worlds, astronomers have used NASA's Spitzer Space Telescope to examine the massive stars contained in a cloudy region called Sharpless 140. This cloud is a fascinating microcosm of a star-forming region since it exhibits, within a relatively small area, all of the classic manifestations of stellar birth. Sharpless 140 lies almost 3000 light-years from Earth in the constellation Cepheus. At its heart is a cluster of three deeply embedded young stars, which are each several thousand times brighter than the Sun. Though they are strikingly visible in this image from Spitzer's infrared array camera, they are completely obscured in visible light, buried within the core of the surrounding dust cloud. The extreme youth of at least one of these stars is indicated by the presence of a stream of gas moving at high velocities. Such outflows are signatures of the processes surrounding a star that is still gobbling up material as part of its formation. The bright red bowl, or arc, seen in this image traces the outer surface of the dense dust cloud encasing the young stars. This arc is made up primarily of organic compounds called polycyclic aromatic hydrocarbons, which glow on the surface of the cloud. Ultraviolet light from a nearby bright star outside of the image is "eating away" at these molecules. Eventually, this light will destroy the dust envelope and the masked young stars will emerge. This false-color image was taken on Oct. 11, 2003 and is composed of photographs obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red). http://photojournal.jpl.nasa.gov/catalog/PIA05878

  5. ALMA Detections of CO Emission in the Most Luminous, Heavily Dust-obscured Quasars at z > 3

    NASA Astrophysics Data System (ADS)

    Fan, Lulu; Knudsen, Kirsten K.; Fogasy, Judit; Drouart, Guillaume

    2018-03-01

    We report the results of a pilot study of CO(4 ‑ 3) emission line of three Wide-field Infrared Survey Explorer (WISE)-selected hyper-luminous, dust-obscured quasars (QSOs) with sensitive ALMA Band 3 observations. These obscured QSOs with L bol > 1014 L ⊙ are among the most luminous objects in the universe. All three QSO hosts are clearly detected both in continuum and in CO(4 ‑ 3) emission line. Based on CO(4 ‑ 3) emission line detection, we derive the molecular gas masses (∼1010‑11 M ⊙), suggesting that these QSOs are gas-rich systems. We find that the obscured QSOs in our sample follow the similar {L}CO}{\\prime }{--}{L}FIR} relation as unobscured QSOs at high redshifts. We also find the complex velocity structures of CO(4 ‑ 3) emission line, which provide the possible evidence for a gas-rich merger in W0149+2350 and possible molecular outflow in W0220+0137 and W0410‑0913. Massive molecular outflow can blow away the obscured interstellar medium and make obscured QSOs evolve toward the UV/optical bright, unobscured phase. Our result is consistent with the popular active galactic nucleus (AGN) feedback scenario involving the co-evolution between the supermassive black holes and host galaxy.

  6. The "Water-Fountain Nebula" IRAS 16342-3814: Hubble Space Telescope/Very Large Array Study of a Bipolar Protoplanetary Nebula

    NASA Technical Reports Server (NTRS)

    Sahal, Raghvendra; teLintelHekkert, Peter; Morris, Mark; Zijlstra, Albert; Likkel, Lauren

    1999-01-01

    We present Hubble Space Telescope (HST) Wide-Field Planetary Camera 2 images and VLA OH maser emission-line maps of the cold infrared object IRAS 16342-3814, believed to be a protoplanetary nebula. The HST images show an asymmetrical bipolar nebula, with the lobes separated by a dark equatorial waist. The two bright lobes and the dark waist are simply interpreted as bubble-like reflection nebulae illuminated by starlight escaping through polar holes in a dense, flattened, optically thick cocoon of dust, which completely obscures the central star. A faint halo can be seen surrounding each of the lobes. The bubbles are likely to have been created by a fast outflow (evidenced by H2O emission) plowing into a surrounding dense, more slowly expanding, circumstellar envelope of the progenitor asymptotic giant-branch (AGB) star (evidenced by the halo). The IRAS fluxes indicate a circumstellar mass of about 0.7 solar mass (D/2 kpc) and an AGB mass-loss rate of about 10(exp -4) solar mass/yr (V(sub exp)/15 km/s)(D/2 kpc)(sup 2) (assuming a gas-to-dust ratio of 200). OH features with the largest redshifted and blueshifted velocities are concentrated around the bright eastern and western polar lobes, respectively, whereas intermediate-velocity features generally occur at low latitudes, in the dark waist region. We critically examine evidence for the post-AGB classification of IRAS 16342-3814.

  7. Exploring the early dust-obscured phase of galaxy formation with blind mid-/far-infrared spectroscopic surveys

    NASA Astrophysics Data System (ADS)

    Bonato, M.; Negrello, M.; Cai, Z.-Y.; De Zotti, G.; Bressan, A.; Lapi, A.; Gruppioni, C.; Spinoglio, L.; Danese, L.

    2014-03-01

    While continuum imaging data at far-infrared to submillimetre wavelengths have provided tight constraints on the population properties of dusty star-forming galaxies up to high redshifts, future space missions like the Space Infrared Telescope for Cosmology and Astrophysics (SPICA) and ground-based facilities like the Cerro Chajnantor Atacama Telescope (CCAT) will allow detailed investigations of their physical properties via their mid-/far-infrared line emission. We present updated predictions for the number counts and the redshift distributions of star-forming galaxies spectroscopically detectable by these future missions. These predictions exploit a recent upgrade of evolutionary models, that include the effect of strong gravitational lensing, in the light of the most recent Herschel and South Pole Telescope data. Moreover the relations between line and continuum infrared luminosity are re-assessed, considering also differences among source populations, with the support of extensive simulations that take into account dust obscuration. The derived line luminosity functions are found to be highly sensitive to the spread of the line to continuum luminosity ratios. Estimates of the expected numbers of detections per spectral line by SPICA/SpicA FAR-infrared Instrument (SAFARI) and by CCAT surveys for different integration times per field of view at fixed total observing time are presented. Comparing with the earlier estimates by Spinoglio et al. we find, in the case of SPICA/SAFARI, differences within a factor of 2 in most cases, but occasionally much larger. More substantial differences are found for CCAT.

  8. HIGH-REDSHIFT DUST OBSCURED GALAXIES: A MORPHOLOGY-SPECTRAL ENERGY DISTRIBUTION CONNECTION REVEALED BY KECK ADAPTIVE OPTICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melbourne, J.; Matthews, K.; Soifer, B. T.

    A simple optical to mid-IR color selection, R - [24]>14, i.e., f {sub {nu}}(24 {mu}m)/f {sub {nu}}(R) {approx}> 1000, identifies highly dust obscured galaxies (DOGs) with typical redshifts of z {approx} 2 {+-} 0.5. Extreme mid-IR luminosities (L {sub IR} > 10{sup 12-14}) suggest that DOGs are powered by a combination of active galactic nuclei (AGNs) and star formation, possibly driven by mergers. In an effort to compare their photometric properties with their rest-frame optical morphologies, we obtained high-spatial resolution (0.''05-0.''1) Keck Adaptive Optics K'-band images of 15 DOGs. The images reveal a wide range of morphologies, including small exponentialmore » disks (eight of 15), small ellipticals (four of 15), and unresolved sources (two of 15). One particularly diffuse source could not be classified because of low signal-to-noise ratio. We find a statistically significant correlation between galaxy concentration and mid-IR luminosity, with the most luminous DOGs exhibiting higher concentration and smaller physical size. DOGs with high concentration also tend to have spectral energy distributions (SEDs) suggestive of AGN activity. Thus, central AGN light may be biasing the morphologies of the more luminous DOGs to higher concentration. Conversely, more diffuse DOGs tend to show an SED shape suggestive of star formation. Two of 15 in the sample show multiple resolved components with separations of {approx}1 kpc, circumstantial evidence for ongoing mergers.« less

  9. Space technology for directly imaging and characterizing exo-Earths

    NASA Astrophysics Data System (ADS)

    Crill, Brendan P.; Siegler, Nicholas

    2017-09-01

    The detection of Earth-like exoplanets in the habitable zone of their stars, and their spectroscopic characterization in a search for biosignatures, requires starlight suppression that exceeds the current best ground-based performance by orders of magnitude. The required planet/star brightness ratio of order 10-10 at visible wavelengths can be obtained by blocking stellar photons with an occulter, either externally (a starshade) or internally (a coronagraph) to the telescope system, and managing diffracted starlight, so as to directly image the exoplanet in reflected starlight. Coronagraph instruments require advancement in telescope aperture (either monolithic or segmented), aperture obscurations (obscured by secondary mirror and its support struts), and wavefront error sensitivity (e.g. line-of-sight jitter, telescope vibration, polarization). The starshade, which has never been used in a science application, benefits a mission by being decoupled from the telescope, allowing a loosening of telescope stability requirements. In doing so, it transfers the difficult technology from the telescope system to a large deployable structure (tens of meters to greater than 100 m in diameter) that must be positioned precisely at a distance of tens of thousands of kilometers from the telescope. We describe in this paper a roadmap to achieving the technological capability to search for biosignatures on an Earth-like exoplanet from a future space telescope. Two of these studies, HabEx and LUVOIR, include the direct imaging of Earth-sized habitable exoplanets as a central science theme.

  10. LONG-TERM EVOLUTION OF THE MAIN-ON STATES IN HERCULES X-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Šimon, Vojtech, E-mail: simon@asu.cas.cz

    2015-07-15

    Rossi X-ray Timing Explorer All-sky Monitor (RXTE ASM) observations and American Association of Variable Star Observers (AAVSO) optical data were used for a time-series analysis of the long-term activity of Her X-1. The problem of measuring the long-term evolution of the X-ray intensity in the light curve which consists only of separated intense spikes was addressed. For this purpose, the fluence of each Main-On state was determined. The fluences vary generally (not only in the transitions into/from anomalous low states (ALSs)) by tens of percent on timescales of at least several epochs of the cycle length of the superorbital cyclemore » (but without any stable cycle) while irradiation of the donor producing the optical modulation remains considerably more stable. ALS1 and ALS2 are extensions of the tail in the statistical distribution of these fluences. In this interpretation, the variations of the fluences are caused by the changes of the structure of the inner disk region, which produces variable obscuration of the beams (emitting in the ASM band) at the neutron star. A small change of obscuration of these beams by the inner disk region suffices to change the fluences largely. However, the irradiation of the donor is changed significantly less because this inner disk region (which emits beyond the ASM band and acts as the occulting region of the beams) also irradiates the donor.« less

  11. A Possible Technology Development Path to Direct Imaging of Exo-Earths from Space

    NASA Astrophysics Data System (ADS)

    Siegler, Nicholas

    2018-01-01

    We describe a possible roadmap to achieving the technological capability to search for biosignatures on an Earth-like exoplanet from a future space telescope. The detection of Earth-like exoplanets in the habitable zone of their stars, and their spectroscopic characterization in a search for biosignatures, requires starlight suppression that exceeds the current best ground-based performance by orders of magnitude. The required planet/star brightness ratio of order 1e-10 at visible wavelengths can be obtained by blocking stellar photons with an occulter, either externally (a starshade) or internally (a coronagraph) to the telescope system, and managing diffracted starlight, so as to directly image the exoplanet in reflected starlight. Coronagraph instruments require advancement in telescope aperture (either monolithic or segmented), aperture obscurations (obscured by secondary mirror and its support struts), and wavefront error sensitivity (e.g. line-of-sight jitter, telescope vibration, polarization). The starshade, which has never been used in a science application, benefits a mission by being decoupled from the telescope, allowing a loosening of telescope stability requirements. In doing so, it transfers the difficult technology from the telescope system to a large deployable structure (tens of meters to greater than ~ 100 m in diameter) that must be positioned precisely at a distance of tens of thousands of kilometers from the telescope. Two ongoing mission concept studies, HabEx and LUVOIR, include the direct imaging of Earth-sized habitable exoplanets as a central science theme.

  12. "Observation Obscurer" - Time Series Viewer, Editor and Processor

    NASA Astrophysics Data System (ADS)

    Andronov, I. L.

    The program is described, which contains a set of subroutines suitable for East viewing and interactive filtering and processing of regularly and irregularly spaced time series. Being a 32-bit DOS application, it may be used as a default fast viewer/editor of time series in any compute shell ("commander") or in Windows. It allows to view the data in the "time" or "phase" mode, to remove ("obscure") or filter outstanding bad points; to make scale transformations and smoothing using few methods (e.g. mean with phase binning, determination of the statistically opti- mal number of phase bins; "running parabola" (Andronov, 1997, As. Ap. Suppl, 125, 207) fit and to make time series analysis using some methods, e.g. correlation, autocorrelation and histogram analysis: determination of extrema etc. Some features have been developed specially for variable star observers, e.g. the barycentric correction, the creation and fast analysis of "OC" diagrams etc. The manual for "hot keys" is presented. The computer code was compiled with a 32-bit Free Pascal (www.freepascal.org).

  13. NICMOS FINDS A GOLDEN RING AT THE HEART OF A GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The revived Near Infrared Camera and Multi-Object Spectrometer (NICMOS) aboard NASA's Hubble Space Telescope has pierced the dusty disk of the 'edge-on' galaxy NGC 4013 and peered all the way to the galactic core. To the surprise of astronomers, NICMOS found a brilliant band-like structure, that may be a ring of newly formed stars [yellow band in middle photo] seen edge-on. In the visible-light view of the galaxy [top photo], the star-forming ring cannot be seen because it is embedded in dust. The most prominent feature in the visible-light image -- taken by the Wide Field and Planetary Camera 2 (WFPC2) -- is the thin, dark band of gas and dust, which is about 500 light-years thick. NICMOS enables the Hubble telescope to see in near-infrared wavelengths of light, so that it can penetrate the dust that obscures the inner hub of the galaxy. The ring-like structure spied by NICMOS encircles the core and is about 720 light-years wide, which is the typical size of most star-forming rings found in disk galaxies. The small ring is churning out stars at a torrid pace. The Milky Way Galaxy, for example, is more than 10,000 times larger than the ring. If the Milky Way produced stars at the same rate, it would be making 1,000 times more stars a year. The human eye cannot see infrared light, so colors have been assigned to correspond with near-infrared wavelengths. The blue light represents shorter near-infrared wavelengths and the red light corresponds to longer wavelengths. The ring-like structure is seen more clearly in the photo at bottom. This picture, taken with a filter sensitive to hydrogen, shows the glow of stars and gas. Astronomers used this information to calculate the rate of star formation in the ring-like structure. The extremely bright star near the center of each picture is a nearby foreground star belonging to our own Milky Way. Rings of developing stars are common in barred spiral galaxies, which have 'bars' of stars and gas slicing across their disks. The bars funnel gas to the galactic cores. But gravitational disturbances near the cores cause gas to accumulate into a lane or a ring. The gas then condenses to form stars. Because NGC 4013 is seen edge-on, astronomers don't know whether a bar of gas or some other mechanism formed the ring-like structure. NGC 4013, which looks similar to our Milky Way Galaxy, resides in the constellation Ursa Major, 55 million light-years from Earth. The middle picture is a color composite image that was made by combining photographs taken with the J-band, H-band, and Paschen-alpha filters. The bottom picture was taken with the Paschen-alpha filter. The images were taken on May 12. Credits for NICMOS images: NASA, the NICMOS Group (STScI, ESA), and the NICMOS Science Team (University of Arizona) Credits for WFPC2 image: NASA, the Hubble Heritage Team (STScI/AURA) and ESA

  14. The MACHO Project Sample of Galactic Bulge High-Amplitude δ Scuti Stars: Pulsation Behavior and Stellar Properties

    NASA Astrophysics Data System (ADS)

    Alcock, C.; Allsman, R. A.; Alves, D. R.; Axelrod, T. S.; Becker, A. C.; Bennett, D. P.; Cook, K. H.; Freeman, K. C.; Geha, M.; Griest, K.; Lehner, M. J.; Marshall, S. L.; McNamara, B. J.; Minniti, D.; Nelson, C.; Peterson, B. A.; Popowski, P.; Pratt, M. R.; Quinn, P. J.; Rodgers, A. W.; Sutherland, W.; Templeton, M. R.; Vandehei, T.; Welch, D. L.

    2000-06-01

    We have detected 90 objects with periods and light-curve structures similar to those of field δ Scuti stars using the Massive Compact Halo Object (MACHO) Project database of Galactic bulge photometry. If we assume similar extinction values for all candidates and absolute magnitudes similar to those of other field high-amplitude δ Scuti stars (HADS), the majority of these objects lie in or near the Galactic bulge. At least two of these objects are likely foreground δ Scuti stars, one of which may be an evolved nonradial pulsator, similar to other evolved, disk-population δ Scuti stars. We have analyzed the light curves of these objects and find that they are similar to the light curves of field δ Scuti stars and the δ Scuti stars found by the Optical Gravitational Lens Experiment (OGLE). However, the amplitude distribution of these sources lies between those of low- and high-amplitude δ Scuti stars, which suggests that they may be an intermediate population. We have found nine double-mode HADS with frequency ratios ranging from 0.75 to 0.79, four probable double- and multiple-mode objects, and another four objects with marginal detections of secondary modes. The low frequencies (5-14 cycles day-1) and the observed period ratios of ~0.77 suggest that the majority of these objects are evolved stars pulsating in fundamental or first overtone radial modes.

  15. High-redshift Extremely Red Quasars in X-Rays

    NASA Astrophysics Data System (ADS)

    Goulding, Andy D.; Zakamska, Nadia L.; Alexandroff, Rachael M.; Assef, Roberto J.; Banerji, Manda; Hamann, Fred; Wylezalek, Dominika; Brandt, William N.; Greene, Jenny E.; Lansbury, George B.; Pâris, Isabelle; Richards, Gordon; Stern, Daniel; Strauss, Michael A.

    2018-03-01

    Quasars may have played a key role in limiting the stellar mass of massive galaxies. Identifying those quasars in the process of removing star formation fuel from their hosts is an exciting ongoing challenge in extragalactic astronomy. In this paper, we present X-ray observations of 11 extremely red quasars (ERQs) with L bol ∼ 1047 erg s‑1 at z = 1.5–3.2 with evidence for high-velocity (v ≥slant 1000 km s‑1) [O III] λ5007 outflows. X-rays allow us to directly probe circumnuclear obscuration and to measure the instantaneous accretion luminosity. We detect 10 out of 11 ERQs available in targeted and archival data. Using a combination of X-ray spectral fitting and hardness ratios, we find that all of the ERQs show signs of absorption in the X-rays with inferred column densities of N H ≈ 1023 cm‑2, including four Compton-thick candidates (N H ≥slant 1024 cm‑2). We stack the X-ray emission of the seven weakly detected sources, measuring an average column density of N H ∼ 8 × 1023 cm‑2. The absorption-corrected (intrinsic) 2–10 keV X-ray luminosity of the stack is 2.7 × 1045 erg s‑1, consistent with X-ray luminosities of type 1 quasars of the same infrared luminosity. Thus, we find that ERQs are a highly obscured, borderline Compton-thick population, and based on optical and infrared data we suggest that these objects are partially hidden by their own equatorial outflows. However, unlike some quasars with known outflows, ERQs do not appear to be intrinsically underluminous in X-rays for their bolometric luminosity. Our observations indicate that low X-rays are not necessary to enable some types of radiatively driven winds.

  16. No Sign of Strong Molecular Gas Outflow in an Infrared-bright Dust-obscured Galaxy with Strong Ionized-gas Outflow

    NASA Astrophysics Data System (ADS)

    Toba, Yoshiki; Komugi, Shinya; Nagao, Tohru; Yamashita, Takuji; Wang, Wei-Hao; Imanishi, Masatoshi; Sun, Ai-Lei

    2017-12-01

    We report the discovery of an infrared (IR)-bright dust-obscured galaxy (DOG) that shows a strong ionized-gas outflow but no significant molecular gas outflow. Based on detailed analysis of their optical spectra, we found some peculiar IR-bright DOGs that show strong ionized-gas outflow ([O III] λ5007) from the central active galactic nucleus (AGN). For one of these DOGs (WISE J102905.90+050132.4) at z spec = 0.493, we performed follow-up observations using ALMA to investigate their CO molecular gas properties. As a result, we successfully detected 12CO(J = 2–1) and 12CO(J = 4–3) lines and the continuum of this DOG. The intensity-weighted velocity map of both lines shows a gradient, and the line profile of those CO lines is well-fitted by a single narrow Gaussian, meaning that this DOG has no sign of strong molecular gas outflow. The IR luminosity of this object is log (L IR/L ⊙) = 12.40, which is classified as an ultraluminous IR galaxy (ULIRG). We found that (i) the stellar mass and star formation rate relation and (ii) the CO luminosity and far-IR luminosity relation are consistent with those of typical ULIRGs at similar redshifts. These results indicate that the molecular gas properties of this DOG are normal despite the fact that its optical spectrum shows a powerful AGN outflow. We conclude that a powerful ionized-gas outflow caused by the AGN does not necessarily affect the cold interstellar medium in the host galaxy, at least for this DOG.

  17. Infrared Photometry of 487 Sources in the Inner Regions of NGC 5128 (Centaurus A)

    NASA Astrophysics Data System (ADS)

    Alonso, M. Victoria; Minniti, Dante

    1997-04-01

    We study the sources present in the inner 3 kpc region of NGC 5128 (Cen A), most of which are star clusters of different ages. Photometry of archival Hubble Space Telescope WFPC images (F675W filter) is complemented with IR photometry (JHK' filters) obtained with the IRAC2B infrared array camera at the ESO/MPI 2.2 m telescope. From IR color maps we divide the field into two regions: a clear region outside the dust lane, and an obscured region well inside the dust lane of NGC 5128. In the unreddened region there is a great variety of sources such as globular clusters, star associations, and H II regions. These sources are not individual stars, which would be too faint to be resolved from ground-based telescopes. The vast majority of IR sources in the reddened region, where the dust lane dominates, are not seen at all in the deep HST images. The presence of large amounts of differential extinction makes it difficult to evaluate them. In total, there are 372 objects detected in the inner region of NGC 5128. From them, 125 objects are detected both in IR and HST frames. There are 247 IR sources without optical counterparts (47 in the clear region and 200 in the dust lane). Accounting for the small volume sampled, there must be a total of ~500 sources with K < 18 in the dust lane region. The distribution of these sources is rather uniform and not particularly centrally concentrated. This fact suggests that the majority of them are located in a disk, as would be expected if they are young associations or clusters. The degree of background and foreground contamination is evaluated using observations of a nearby field. We found 115 IR sources in this field. The nucleus itself is invisible in deep optical images, but it is clearly identified in the IR. In the region just south of the nucleus the extinction must be larger than AK = 3. In the clear region, where the effect of the dust lane is negligible, we have identified some objects as intermediate-age clusters containing carbon stars. From color-magnitude diagrams we do not find evidence of very young clusters in this region. Such clusters might be fainter than our detection limit in JHK'. We measure metallicities for 42 globular clusters, confirming the presence of a metallicity gradient with Δ[Fe/H]/ΔR = -0.06 dex kpc-1. Based on observations collected at La Silla Observatory and on archival data of the NASA/ESA Hubble Space Telescope, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  18. Into the Eye of the Helix

    NASA Astrophysics Data System (ADS)

    2009-02-01

    A deep new image of the magnificent Helix planetary nebula has been obtained using the Wide Field Imager at ESO's La Silla Observatory. The image shows a rich background of distant galaxies, usually not seen in other images of this object. ESO PR Photo 07a/09 The Helix Nebula ESO PR Video 06a/09 Helix Nebula Zoom-in ESO PR Video 06b/09 Pan over the Helix Nebula ESO PR Video 06c/09 Zoom and pan over the Helix Nebula The Helix Nebula, NGC 7293, lies about 700 light-years away in the constellation of Aquarius (the Water Bearer). It is one of the closest and most spectacular examples of a planetary nebula. These exotic objects have nothing to do with planets, but are the final blooming of Sun-like stars before their retirement as white dwarfs. Shells of gas are blown off from a star's surface, often in intricate and beautiful patterns, and shine under the harsh ultraviolet radiation from the faint, but very hot, central star. The main ring of the Helix Nebula is about two light-years across or half the distance between the Sun and its closest stellar neighbour. Despite being photographically very spectacular the Helix is hard to see visually as its light is thinly spread over a large area of sky and the history of its discovery is rather obscure. It first appears in a list of new objects compiled by the German astronomer Karl Ludwig Harding in 1824. The name Helix comes from the rough corkscrew shape seen in the earlier photographs. Although the Helix looks very much like a doughnut, studies have shown that it possibly consists of at least two separate discs with outer rings and filaments. The brighter inner disc seems to be expanding at about 100 000 km/h and to have taken about 12 000 years to have formed. Because the Helix is relatively close -- it covers an area of the sky about a quarter of the full Moon -- it can be studied in much greater detail than most other planetary nebulae and has been found to have an unexpected and complex structure. All around the inside of the ring are small blobs, known as "cometary knots", with faint tails extending away from the central star. They look remarkably like droplets of liquid running down a sheet of glass. Although they look tiny, each knot is about as large as our Solar System. These knots have been extensively studied, both with the ESO Very Large Telescope and with the NASA/ESA Hubble Space Telescope, but remain only partially understood. A careful look at the central part of this object reveals not only the knots, but also many remote galaxies seen right through the thinly spread glowing gas. Some of these seem to be gathered in separate galaxy groups scattered over various parts of the image.

  19. Time Resolved X-Ray Spectral Analysis of Class II YSOs in NGC 2264 During Optical Dips and Bursts

    NASA Astrophysics Data System (ADS)

    Guarcello, Mario Giuseppe; Flaccomio, Ettore; Micela, Giuseppina; Argiroffi, Costanza; Venuti, Laura

    2016-07-01

    Pre-Main Sequence stars are variable sources. The main mechanisms responsible for their variability are variable extinction, unsteady accretion, and rotational modulation of both hot and dark photospheric spots and X-ray active regions. In stars with disks this variability is thus related to the morphology of the inner circumstellar region (<0.1 AU) and that of photosphere and corona, all impossible to be spatially resolved with present day techniques. This has been the main motivations of the Coordinated Synoptic Investigation of NGC2264, a set of simultaneous observations of NGC2264 with 15 different telescopes.We analyze the X-ray spectral properties of stars with disks extracted during optical bursts and dips in order to unveil the nature of these phenomena. Stars are analyzed in two different samples. In stars with variable extinction a simultaneous increase of optical extinction and X-ray absorption is searched during the optical dips; in stars with accretion bursts we search for soft X-ray emission and increasing X-ray absorption during the bursts. In 9/33 stars with variable extinction we observe simultaneous increase of X-ray absorption and optical extinction. In seven dips it is possible to calculate the NH/AV ratio in order to infer the composition of the obscuring material. In 5/27 stars with optical accretion bursts, we observe soft X-ray emission during the bursts that we associate to the emission of accreting gas. It is not surprising that these properties are not observed in all the stars with dips and bursts since favorable geometric configurations are required. The observed variable absorption during the dips is mainly due to dust-free material in accretion streams. In stars with accretion bursts we observe in average a larger soft X-ray spectral component not observed in non accreting stars. This indicates that this soft X-ray emission arises from the accretion shocks.

  20. A CANDELS-3D-HST synergy: Resolved Star Formation Patterns at 0.7 < z < 1.5

    NASA Astrophysics Data System (ADS)

    Wuyts, Stijn; Förster Schreiber, Natascha M.; Nelson, Erica J.; van Dokkum, Pieter G.; Brammer, Gabe; Chang, Yu-Yen; Faber, Sandra M.; Ferguson, Henry C.; Franx, Marijn; Fumagalli, Mattia; Genzel, Reinhard; Grogin, Norman A.; Kocevski, Dale D.; Koekemoer, Anton M.; Lundgren, Britt; Lutz, Dieter; McGrath, Elizabeth J.; Momcheva, Ivelina; Rosario, David; Skelton, Rosalind E.; Tacconi, Linda J.; van der Wel, Arjen; Whitaker, Katherine E.

    2013-12-01

    We analyze the resolved stellar populations of 473 massive star-forming galaxies at 0.7 < z < 1.5, with multi-wavelength broadband imaging from CANDELS and Hα surface brightness profiles at the same kiloparsec resolution from 3D-HST. Together, this unique data set sheds light on how the assembled stellar mass is distributed within galaxies, and where new stars are being formed. We find the Hα morphologies to resemble more closely those observed in the ACS I band than in the WFC3 H band, especially for the larger systems. We next derive a novel prescription for Hα dust corrections, which accounts for extra extinction toward H II regions. The prescription leads to consistent star formation rate (SFR) estimates and reproduces the observed relation between the Hα/UV luminosity ratio and visual extinction, on both a pixel-by-pixel and a galaxy-integrated level. We find the surface density of star formation to correlate with the surface density of assembled stellar mass for spatially resolved regions within galaxies, akin to the so-called "main sequence of star formation" established on a galaxy-integrated level. Deviations from this relation toward lower equivalent widths are found in the inner regions of galaxies. Clumps and spiral features, on the other hand, are associated with enhanced Hα equivalent widths, bluer colors, and higher specific SFRs compared to the underlying disk. Their Hα/UV luminosity ratio is lower than that of the underlying disk, suggesting that the ACS clump selection preferentially picks up those regions of elevated star formation activity that are the least obscured by dust. Our analysis emphasizes that monochromatic studies of galaxy structure can be severely limited by mass-to-light ratio variations due to dust and spatially inhomogeneous star formation histories.

  1. The evolution of CNO isotopes: a new window on cosmic star formation history and the stellar IMF in the age of ALMA

    NASA Astrophysics Data System (ADS)

    Romano, D.; Matteucci, F.; Zhang, Z.-Y.; Papadopoulos, P. P.; Ivison, R. J.

    2017-09-01

    We use state-of-the-art chemical models to track the cosmic evolution of the CNO isotopes in the interstellar medium of galaxies, yielding powerful constraints on their stellar initial mass function (IMF). We re-assess the relative roles of massive stars, asymptotic giant branch (AGB) stars and novae in the production of rare isotopes such as 13C, 15N, 17O and 18O, along with 12C, 14N and 16O. The CNO isotope yields of super-AGB stars, novae and fast-rotating massive stars are included. Having reproduced the available isotope enrichment data in the solar neighbourhood, and across the Galaxy, and having assessed the sensitivity of our models to the remaining uncertainties, e.g. nova yields and star formation history, we show that we can meaningfully constrain the stellar IMF in galaxies using C, O and N isotope abundance ratios. In starburst galaxies, where data for multiple isotopologue lines are available, we find compelling new evidence for a top-heavy stellar IMF, with profound implications for their star formation rates and efficiencies, perhaps also their stellar masses. Neither chemical fractionation nor selective photodissociation can significantly perturb globally averaged isotopologue abundance ratios away from the corresponding isotope ones, as both these processes will typically affect only small mass fractions of molecular clouds in galaxies. Thus, the Atacama Large Millimeter Array now stands ready to probe the stellar IMF, and even the ages of specific starburst events in star-forming galaxies across cosmic time unaffected by the dust obscuration effects that plague optical/near-infrared studies.

  2. A CANDELS-3d-HST Synergy: Resolved Star Formation Patterns at 0.7 less than z less than 1.5

    NASA Technical Reports Server (NTRS)

    Wuyts, Stijn; Foerster Schreiber, Natascha M.; Nelson, Erica J.; Van Dokkum, Pieter G.; Brammer, Gabe; Chang, Yu-Yen; Faber, Sandra M.; Ferguson, Henry C.; Franx, Marijn; Fumagalli, Mattia; hide

    2013-01-01

    We analyze the resolved stellar populations of 473 massive star-forming galaxies at 0.7 < z < 1.5, with multiwavelength broadband imaging from CANDELS andHalpha surface brightness profiles at the same kiloparsec resolution from 3D-HST. Together, this unique data set sheds light on how the assembled stellar mass is distributed within galaxies, and where new stars are being formed. We find the Halpha morphologies to resemble more closely those observed in the ACS I band than in the WFC3 H band, especially for the larger systems. We next derive a novel prescription for Halpha dust corrections, which accounts for extra extinction toward H II regions. The prescription leads to consistent star formation rate (SFR) estimates and reproduces the observed relation between the Halpha/UV luminosity ratio and visual extinction, on both a pixel-by-pixel and a galaxy-integrated level. We find the surface density of star formation to correlate with the surface density of assembled stellar mass for spatially resolved regions within galaxies, akin to the so-called "main sequence of star formation" established on a galaxy-integrated level. Deviations from this relation toward lower equivalent widths are found in the inner regions of galaxies. Clumps and spiral features, on the other hand, are associated with enhanced H alpha equivalent widths, bluer colors, and higher specific SFRs compared to the underlying disk. Their Halpha/UV luminosity ratio is lower than that of the underlying disk, suggesting that the ACS clump selection preferentially picks up those regions of elevated star formation activity that are the least obscured by dust. Our analysis emphasizes that monochromatic studies of galaxy structure can be severely limited by mass-to-light ratio variations due to dust and spatially inhomogeneous star formation histories.

  3. Blowin' in the wind: both `negative' and `positive' feedback in an outflowing quasar at z~1.6

    NASA Astrophysics Data System (ADS)

    Cresci, Giovanni

    2015-02-01

    Quasar feedback in the form of powerful outflows is invoked as a key mechanism to quench star formation, preventing massive galaxies to over-grow and producing the red colors of ellipticals. On the other hand, some models are also requiring `positive' AGN feedback, inducing star formation in the host galaxy through enhanced gas pressure in the interstellar medium. However, finding observational evidence of the effects of both types of feedback is still one of the main challenges of extragalactic astronomy, as few observations of energetic and extended radiatively-driven winds are available. We present SINFONI near infrared integral field spectroscopy of XID2028, an obscured, radio-quiet z=1.59 QSO, in which we clearly resolve a fast (1500 km/s) and extended (up to 13 kpc from the black hole) outflow in the [OIII] lines emitting gas, whose large velocity and outflow rate are not sustainable by star formation only. The narrow component of Hα emission and the rest frame U band flux show that the outflow position lies in the center of an empty cavity surrounded by star forming regions on its edge. The outflow is therefore removing the gas from the host galaxy (`negative feedback'), but also triggering star formation by outflow induced pressure at the edges (`positive feedback'). XID2028 represents the first example of a host galaxy showing both types of feedback simultaneously at work.

  4. SPECTROSCOPY OF LUMINOUS COMPACT BLUE GALAXIES IN DISTANT CLUSTERS. II. PHYSICAL PROPERTIES OF dE PROGENITOR CANDIDATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, S. M.; Wirth, Gregory D.; Bershady, M. A.

    2016-02-01

    Luminous Compact Blue Galaxies (LCBGs) are an extreme star-bursting population of galaxies that were far more common at earlier epochs than today. Based on spectroscopic and photometric measurements of LCBGs in massive (M > 10{sup 15} M{sub ⊙}), intermediate redshift (0.5 < z < 0.9) galaxy clusters, we present their rest-frame properties including star formation rate, dynamical mass, size, luminosity, and metallicity. The appearance of these small, compact galaxies in clusters at intermediate redshift helps explain the observed redshift evolution in the size–luminosity relationship among cluster galaxies. In addition, we find the rest-frame properties of LCBGs appearing in galaxy clusters are indistinguishable from field LCBGs atmore » the same redshift. Up to 35% of the LCBGs show significant discrepancies between optical and infrared indicators of star formation, suggesting that star formation occurs in obscured regions. Nonetheless, the star formation for LCBGs shows a decrease toward the center of the galaxy clusters. Based on their position and velocity, we estimate that up to 10% of cluster LCBGs are likely to merge with another cluster galaxy. Finally, the observed properties and distributions of the LCBGs in these clusters lead us to conclude that we are witnessing the quenching of the progenitors of dwarf elliptical galaxies that dominate the number density of present-epoch galaxy clusters.« less

  5. Optical/Infrared properties of Be stars in X-ray Binary systems

    NASA Astrophysics Data System (ADS)

    Naik, Sachindra

    2018-04-01

    Be/X-ray binaries, consisting of a Be star and a compact object (neutron star), form the largest subclass of High Mass X-ray Binaries. The orbit of the compact object around the Be star is wide and highly eccentric. Neutron stars in the Be/X-ray binaries are generally quiescent in X-ray emission. Transient X-ray outbursts seen in these objects are thought to be due to the interaction between the compact object and the circumstellar disk of the Be star at the periastron passage. Optical/infrared observations of the companion Be star during these outbursts show that the increase in the X-ray intensity of the neutron star is coupled with the decrease in the optical/infrared flux of the companion star. Apart from the change in optical/infrared flux, dramatic changes in the Be star emission line profiles are also seen during X-ray outbursts. Observational evidences of changes in the emission line profiles and optical/infrared continuum flux along with associated X-ray outbursts from the neutron stars in several Be/X-ray binaries are presented in this paper.

  6. GEMINI/GeMS Observations Unveil the Structure of the Heavily Obscured Globular Cluster Liller 1.

    NASA Astrophysics Data System (ADS)

    Saracino, S.; Dalessandro, E.; Ferraro, F. R.; Lanzoni, B.; Geisler, D.; Mauro, F.; Villanova, S.; Moni Bidin, C.; Miocchi, P.; Massari, D.

    2015-06-01

    By exploiting the exceptional high-resolution capabilities of the near-IR camera GSAOI combined with the Gemini Multi-Conjugate Adaptive System at the GEMINI South Telescope, we investigated the structural and physical properties of the heavily obscured globular cluster Liller 1 in the Galactic bulge. We have obtained the deepest and most accurate color-magnitude diagram published so far for this cluster, reaching {{K}s}˜ 19 (below the main-sequence turnoff level). We used these data to redetermine the center of gravity of the system, finding that it is located about 2.″2 southeast from the literature value. We also built new star density and surface brightness profiles for the cluster and rederived its main structural and physical parameters (scale radii, concentration parameter, central mass density, total mass). We find that Liller 1 is significantly less concentrated (concentration parameter c=1.74) and less extended (tidal radius {{r}t}=298\\prime\\prime and core radius {{r}c}=5\\buildrel{\\prime\\prime}\\over{.} 39) than previously thought. By using these newly determined structural parameters, we estimated the mass of Liller 1 to be {{M}tot}=2.3+0.3-0.1× {{10}6} {{M}⊙ } ({{M}tot}=1.5+0.2-0.1× {{10}6} {{M}⊙ } for a Kroupa initial mass function), which is comparable to that of the most massive clusters in the Galaxy (ω Centari and Terzan 5). Also, Liller 1 has the second-highest collision rate (after Terzan 5) among all star clusters in the Galaxy, thus confirming that it is an ideal environment for the formation of collisional objects (such as millisecond pulsars). Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina). Based on observations gathered with the ESO-VISTA telescope (program ID 179.B-2002).

  7. ALE OF TWO CLUSTERS YIELDS SECRETS OF STAR BIRTH IN THE EARLY UNIVERSE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This NASA Hubble Space Telescope (HST) image shows rich detail, previously only seen in neighboring star birth regions, in a pair of star clusters 166,000 light-years away in the Large Magellanic Cloud (LMC), in the southern constellation Doradus. The field of view is 130 light-years across and was taken with the Wide Field Planetary Camera 2. HST's unique capabilities -- ultraviolet sensitivity, ability to see faint stars, and high resolution -- have been utilized fully to identify three separate populations in this concentration of nearly 10,000 stars down to the 25th magnitude (more that twice as many as can be seen over the entire sky with the naked eye on a clear night on Earth). The field of view is only 130 light-years across. Previous observations with ground-based telescopes resolve less than 1,000 stars in the same region. About 60 percent of the stars belong to the dominant yellow cluster called NGC 1850, which is estimated to be 50 million years old. A scattering of white stars in the image are massive stars that are only about 4 million years old and represent about 20 percent of the stars in the image. (The remainder are field stars in the LMC.) Besides being much younger, the white stars are much more loosely distributed than the yellow cluster. The significant difference between the two cluster ages suggests these are two separate star groups that lie along the same line of sight. The younger, more open cluster probably lies 200 light-years beyond the older cluster. If it were in the foreground, then dust contained in the white cluster would obscure stars in the older yellow cluster. To observe two well-defined star populations separated by such a small gap of space is unusual. This juxtaposition suggests that supernova explosions in the older cluster might have triggered the birth of the younger cluster. This color composite image is assembled from exposures taken in ultraviolet, visible, and near-infrared light. Yellow stars correspond to Main Sequence stars (like our Sun) with average surface temperatures of 6000 Kelvin; red stars are cool giants and supergiants (3500 K); white stars are hot young stars (25,000 K or more) that are bright in ultraviolet. Credit: R. Gilmozzi, Space Telescope Science Institute/European Space Agency; Shawn Ewald, JPL; and NASA

  8. X-Ray Spectroscopy of the Nearby, Classical T Tauri Star TW Hydrae

    NASA Astrophysics Data System (ADS)

    Kastner, Joel H.; Huenemoerder, David P.; Schulz, Norbert S.; Weintraub, David A.

    1999-11-01

    We present ASCA and ROSAT X-ray observations of the classical T Tauri star TW Hya, the namesake of a small association that, at a distance of ~50 pc, represents the nearest known region of recent star formation. Analysis of ASCA and ROSAT spectra indicates characteristic temperatures of ~1.7 and ~9.7 MK for the X-ray-emitting region(s) of TW Hya, with emission lines of highly ionized Fe dominating the spectrum at energies of ~1 keV. The X-ray data show variations in X-ray flux on timescales of <~1 hr as well as indications of changes in the X-ray-absorbing column on timescales of several years, suggesting that flares and variable obscuration are responsible for the large-amplitude optical variability of TW Hya on short and long timescales, respectively. Comparison with model calculations suggests that TW Hya produces sufficient hard X-ray flux to produce significant ionization of molecular gas within its circumstellar disk; such X-ray ionization may regulate both protoplanetary accretion and protoplanetary chemistry.

  9. Spectrophotometry of Symbiotic Stars (Abstract)

    NASA Astrophysics Data System (ADS)

    Boyd, D.

    2017-12-01

    (Abstract only) Symbiotic stars are fascinating objects - complex binary systems comprising a cool red giant star and a small hot object, often a white dwarf, both embedded in a nebula formed by a wind from the giant star. UV radiation from the hot star ionizes the nebula, producing a range of emission lines. These objects have composite spectra with contributions from both stars plus the nebula and these spectra can change on many timescales. Being moderately bright, they lend themselves well to amateur spectroscopy. This paper describes the symbiotic star phenomenon, shows how spectrophotometry can be used to extract astrophysically useful information about the nature of these systems, and gives results for three symbiotic stars based on the author's observations.

  10. Spectrophotometry of Symbiotic Stars

    NASA Astrophysics Data System (ADS)

    Boyd, David

    2017-06-01

    Symbiotic stars are fascinating objects - complex binary systems comprising a cool red giant star and a small hot object, often a white dwarf, both embedded in a nebula formed by a wind from the giant star. UV radiation from the hot star ionises the nebula producing a range of emission lines. These objects have composite spectra with contributions from both stars plus the nebula and these spectra can change on many timescales. Being moderately bright, they lend themselves well to amateur spectroscopy. This paper describes the symbiotic star phenomenon, shows how spectrophotometry can be used to extract astrophysically useful information about the nature of these systems, and gives results for three symbiotic stars based on the author's observations.

  11. Active Galactic Nuclei with James Webb Space Telescope (JWST)

    NASA Technical Reports Server (NTRS)

    Rigby, Jane R.

    2011-01-01

    I'll discuss several ways in which JWST will probe the cosmic history of accretion onto supermassive black holes, and the co-evolution of host galaxies. Key investigations include: 1) Measurements of redshift, luminosity, and AGN fraction for obscured AGN candidates identified by other missions. 2) Measurements of AGN hosts at all redshifts, including stellar masses, morphology, interactions, and star formation rates. 3) Measurements of stellar mass and black hole mass in AGN at high redshift, to chart the early history of black hole and galaxy growth.

  12. A new way to make Thorne-Zytkow objects

    NASA Technical Reports Server (NTRS)

    Leonard, Peter J. T.; Hills, Jack G.; Dewey, Rachel J.

    1994-01-01

    We have found a new way to make Thorne-Zytkow objects, which are massive stars with degenerate neutron cores. The asymmetric kick given to the neutron star formed when the primary of a massive tight binary system explodes as a supernova sometimes has the appropriate direction and amplitude to place the newly formed neutron star into a bound orbit with a pericenter distance smaller than the radius of the secondary. Consequently, the neutron star becomes embedded in the secondary. Thorne-Zytkow objects are expected to look like extreme M-type supergiants, assuming that they can avoid a runaway neutrino instability. Accretion onto the embedded neutron star will produce either an isolated, spun-up neutron star (possibly a short-period pulsar) or a black hole. Whether neutron star or black hole remnants predominate depends on the lifetime of Thorne-Zytkow objects, the accretion rates involved, and the maximum neutron star mass, none of which are definitively understood.

  13. A spectroscopic survey of WISE-selected obscured quasars with the southern african large telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hainline, Kevin N.; Hickox, Ryan C.; Carroll, Christopher M.

    2014-11-10

    We present the results of an optical spectroscopic survey of a sample of 40 candidate obscured quasars identified on the basis of their mid-infrared emission detected by the Wide-Field Infrared Survey Explorer (WISE). Optical spectra for this survey were obtained using the Robert Stobie Spectrograph on the Southern African Large Telescope. Our sample was selected with WISE colors characteristic of active galactic nuclei (AGNs), as well as red optical to mid-IR colors indicating that the optical/UV AGN continuum is obscured by dust. We obtain secure redshifts for the majority of the objects that comprise our sample (35/40), and find thatmore » sources that are bright in the WISE W4 (22 μm) band are typically at moderate redshift ((z) = 0.35) while sources fainter in W4 are at higher redshifts ((z) = 0.73). The majority of the sources have narrow emission lines with optical colors and emission line ratios of our WISE-selected sources that are consistent with the locus of AGN on the rest-frame g – z color versus [Ne III] λ3869/[O II] λλ3726+3729 line ratio diagnostic diagram. We also use empirical AGN and galaxy templates to model the spectral energy distributions (SEDs) for the objects in our sample, and find that while there is significant variation in the observed SEDs for these objects, the majority require a strong AGN component. Finally, we use the results from our analysis of the optical spectra and the SEDs to compare our selection criteria to alternate criteria presented in the literature. These results verify the efficacy of selecting luminous obscured AGNs based on their WISE colors.« less

  14. Calibration of H-alpha/H-beta Indexes for Emission Line Objects

    NASA Astrophysics Data System (ADS)

    Hintz, Eric G.; Joner, Michael D.

    2016-01-01

    In Joner and Hintz (2015) they report on a standard star system for calibration of H-alpha and H-beta observations. This work was based on data obtained with the Dominion Astrophysical Observatory 1.2-m telescope. As part of the data acquisition for that project, a large number of emission line objects were also observed. We will report on the preliminary results for the emission line data set. This will include a comparison of equivalent width measurements of each line with the matching index. We will also examine the relation between the absorption line objects previously published and the emission line objects, along with a discussion of the transition point. Object types included are Be stars, high mass x-ray binaries, one low mass x-ray binary, Herbig Ae/Be stars, pre-main sequence stars, T Tauri stars, young stellar objects, and one BY Draconis star. Some of these objects come from Cygnus OB-2, NGC 659, NGC 663, NGC 869 and NGC 884.

  15. The NuSTAR  Extragalactic Surveys: X-Ray Spectroscopic Analysis of the Bright Hard-band Selected Sample

    NASA Astrophysics Data System (ADS)

    Zappacosta, L.; Comastri, A.; Civano, F.; Puccetti, S.; Fiore, F.; Aird, J.; Del Moro, A.; Lansbury, G. B.; Lanzuisi, G.; Goulding, A.; Mullaney, J. R.; Stern, D.; Ajello, M.; Alexander, D. M.; Ballantyne, D. R.; Bauer, F. E.; Brandt, W. N.; Chen, C.-T. J.; Farrah, D.; Harrison, F. A.; Gandhi, P.; Lanz, L.; Masini, A.; Marchesi, S.; Ricci, C.; Treister, E.

    2018-02-01

    We discuss the spectral analysis of a sample of 63 active galactic nuclei (AGN) detected above a limiting flux of S(8{--}24 {keV})=7× {10}-14 {erg} {{{s}}}-1 {{cm}}-2 in the multi-tiered NuSTAR extragalactic survey program. The sources span a redshift range z=0{--}2.1 (median < z> =0.58). The spectral analysis is performed over the broad 0.5–24 keV energy range, combining NuSTAR with Chandra and/or XMM-Newton data and employing empirical and physically motivated models. This constitutes the largest sample of AGN selected at > 10 {keV} to be homogeneously spectrally analyzed at these flux levels. We study the distribution of spectral parameters such as photon index, column density ({N}{{H}}), reflection parameter ({\\boldsymbol{R}}), and 10–40 keV luminosity ({L}{{X}}). Heavily obscured ({log}[{N}{{H}}/{{cm}}-2]≥slant 23) and Compton-thick (CT; {log}[{N}{{H}}/{{cm}}-2]≥slant 24) AGN constitute ∼25% (15–17 sources) and ∼2–3% (1–2 sources) of the sample, respectively. The observed {N}{{H}} distribution agrees fairly well with predictions of cosmic X-ray background population-synthesis models (CXBPSM). We estimate the intrinsic fraction of AGN as a function of {N}{{H}}, accounting for the bias against obscured AGN in a flux-selected sample. The fraction of CT AGN relative to {log}[{N}{{H}}/{{cm}}-2]=20{--}24 AGN is poorly constrained, formally in the range 2–56% (90% upper limit of 66%). We derived a fraction (f abs) of obscured AGN ({log}[{N}{{H}}/{{cm}}-2]=22{--}24) as a function of {L}{{X}} in agreement with CXBPSM and previous z< 1 X-ray determinations. Furthermore, f abs at z=0.1{--}0.5 and {log}({L}{{x}}/{erg} {{{s}}}-1)≈ 43.6{--}44.3 agrees with observational measurements/trends obtained over larger redshift intervals. We report a significant anti-correlation of R with {L}{{X}} (confirmed by our companion paper on stacked spectra) with considerable scatter around the median R values.

  16. Are We Observing Coronal Mass Ejections in OH/IR AGB Stars?

    NASA Astrophysics Data System (ADS)

    Heiles, Carl

    2017-05-01

    Solar Coronal Mass Ejections (CMEs) are magnetic electron clouds that are violently ejected by the same magnetic reconnection events that produce Solar flares. CMEs are the major driving source of the hazardous space weather environments near the Earth. In exoplanet systems, the equivalent of Solar wind and CMEs can affect a planet's atmosphere, and in extreme cases can erode it, as probably happened with Mars, or disrupt the cosmic-ray shielding aspect of the planet's magnetic field.We (Jensen et al. 2013SoPh..285...83J, 2016SoPh..291..465J) have developed a new way to observe the electron column density and magnetic field of CMEs, namely to measure the frequency change and Faraday rotation of a spacecraft downlink carrier produced by propagation effects in the plasma. Surprisingly, this can work on other stars if they have the equivalent of the spacecraft carrier, as do OH/IR stars.OH/IR stars are Asymptotic Giant Branch (AGB) stars, which are red giant stars burning He in their final stages of stellar evolution. They have highly convective surfaces and large mass-ejection rates in the form of expanding dense shells of molecular gas and obscuring dust, which were ejected from the star by chaotic turbulent motions and then accelerated by radiation pressure. OH masers reside in these shells, pumped by the IR emission from the dust. The OH masers on the far side of the star (i.e., the positive-velocity masers) are the surrogate for the Solar-case spacecraft signal.The big question: Can we see CMEs in OH/IR stars? We have observed six OH/IR stars with the Arecibo Observatory for a total of about 150 hours over the past 1.5 years. We see changes in OH maser frequency and in the position angle of linear polarization. Both can be produced by electron clouds moving across the line of sight. We will present statistical summaries of the variability and interpret them in terms of CME models.

  17. Stellar populations dominated by massive stars in dusty starburst galaxies across cosmic time

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Yu; Romano, D.; Ivison, R. J.; Papadopoulos, Padelis P.; Matteucci, F.

    2018-06-01

    All measurements of cosmic star formation must assume an initial distribution of stellar masses—the stellar initial mass function—in order to extrapolate from the star-formation rate measured for typically rare, massive stars (of more than eight solar masses) to the total star-formation rate across the full stellar mass spectrum1. The shape of the stellar initial mass function in various galaxy populations underpins our understanding of the formation and evolution of galaxies across cosmic time2. Classical determinations of the stellar initial mass function in local galaxies are traditionally made at ultraviolet, optical and near-infrared wavelengths, which cannot be probed in dust-obscured galaxies2,3, especially distant starbursts, whose apparent star-formation rates are hundreds to thousands of times higher than in the Milky Way, selected at submillimetre (rest-frame far-infrared) wavelengths4,5. The 13C/18O isotope abundance ratio in the cold molecular gas—which can be probed via the rotational transitions of the 13CO and C18O isotopologues—is a very sensitive index of the stellar initial mass function, with its determination immune to the pernicious effects of dust. Here we report observations of 13CO and C18O emission for a sample of four dust-enshrouded starbursts at redshifts of approximately two to three, and find unambiguous evidence for a top-heavy stellar initial mass function in all of them. A low 13CO/C18O ratio for all our targets—alongside a well tested, detailed chemical evolution model benchmarked on the Milky Way6—implies that there are considerably more massive stars in starburst events than in ordinary star-forming spiral galaxies. This can bring these extraordinary starbursts closer to the `main sequence' of star-forming galaxies7, although such main-sequence galaxies may not be immune to changes in initial stellar mass function, depending on their star-formation densities.

  18. Stellar populations dominated by massive stars in dusty starburst galaxies across cosmic time.

    PubMed

    Zhang, Zhi-Yu; Romano, D; Ivison, R J; Papadopoulos, Padelis P; Matteucci, F

    2018-06-01

    All measurements of cosmic star formation must assume an initial distribution of stellar masses-the stellar initial mass function-in order to extrapolate from the star-formation rate measured for typically rare, massive stars (of more than eight solar masses) to the total star-formation rate across the full stellar mass spectrum 1 . The shape of the stellar initial mass function in various galaxy populations underpins our understanding of the formation and evolution of galaxies across cosmic time 2 . Classical determinations of the stellar initial mass function in local galaxies are traditionally made at ultraviolet, optical and near-infrared wavelengths, which cannot be probed in dust-obscured galaxies 2,3 , especially distant starbursts, whose apparent star-formation rates are hundreds to thousands of times higher than in the Milky Way, selected at submillimetre (rest-frame far-infrared) wavelengths 4,5 . The 13 C/ 18 O isotope abundance ratio in the cold molecular gas-which can be probed via the rotational transitions of the 13 CO and C 18 O isotopologues-is a very sensitive index of the stellar initial mass function, with its determination immune to the pernicious effects of dust. Here we report observations of 13 CO and C 18 O emission for a sample of four dust-enshrouded starbursts at redshifts of approximately two to three, and find unambiguous evidence for a top-heavy stellar initial mass function in all of them. A low 13 CO/C 18 O ratio for all our targets-alongside a well tested, detailed chemical evolution model benchmarked on the Milky Way 6 -implies that there are considerably more massive stars in starburst events than in ordinary star-forming spiral galaxies. This can bring these extraordinary starbursts closer to the 'main sequence' of star-forming galaxies 7 , although such main-sequence galaxies may not be immune to changes in initial stellar mass function, depending on their star-formation densities.

  19. AH-64E Apache New Build (AH-64E New Build)

    DTIC Science & Technology

    2015-12-01

    night, obscured battlefield and adverse weather conditions. The AH-64E enables the Joint Air/Ground Maneuver Team to dominate the battle space by...capability over the AH-64A and AH-64D. It is capable of being employed day or night in adverse weather and obscurants , and can effectively engage and...80 Survivability Safe operation (minutes) 30 30 30 Met Objective 30 Survive Band IV MANPADS IR Missile Engagement IAW JROCM 086-10 IAW JROCM 086-10 IAW

  20. Star Streams and the Assembly History of the Galaxy

    NASA Astrophysics Data System (ADS)

    Carlberg, Raymond G.

    2017-03-01

    Thin halo star streams originate from the evaporation of globular clusters and therefore provide information about the early epoch globular cluster population. The observed tidal tails from halo globular clusters in the Milky Way are much shorter than expected from a star cluster orbiting for 10 Gyr. The discrepancy is likely the result of the assumptions that nearly nonevolving clusters have been orbiting in a nonevolving galactic halo for a Hubble time. As a first step toward more realistic stream histories, a toy model that combines an idealized merger model with a simplified model of the internal collisional relaxation of individual star clusters is developed. On average, the resulting stream velocity dispersion increases with distance, causing the density of the stream to decline with distance. The accretion time sets an upper limit to the length of the readily visible stream, with the internal evolution of the cluster usually playing the dominant role in limiting the sky visibility of the older parts of streams. Nevertheless, the high surface density segment of the stellar streams created from the evaporation of the more massive globular clusters should all be visible in low-obscuration parts of the sky if closer than about 30 kpc. The Pan-STARRS1 halo volume is used to compare the numbers of halo streams and globular clusters.

  1. ISOGAL: A deep survey of the obscured inner Milky Way with ISO at 7 mu m and 15 mu m and with DENIS in the near-infrared

    NASA Astrophysics Data System (ADS)

    Omont, A.; Gilmore, G. F.; Alard, C.; Aracil, B.; August, T.; Baliyan, K.; Beaulieu, S.; Bégon, S.; Bertou, X.; Blommaert, J. A. D. L.; Borsenberger, J.; Burgdorf, M.; Caillaud, B.; Cesarsky, C.; Chitre, A.; Copet, E.; de Batz, B.; Egan, M. P.; Egret, D.; Epchtein, N.; Felli, M.; Fouqué, P.; Ganesh, S.; Genzel, R.; Glass, I. S.; Gredel, R.; Groenewegen, M. A. T.; Guglielmo, F.; Habing, H. J.; Hennebelle, P.; Jiang, B.; Joshi, U. C.; Kimeswenger, S.; Messineo, M.; Miville-Deschênes, M. A.; Moneti, A.; Morris, M.; Ojha, D. K.; Ortiz, R.; Ott, S.; Parthasarathy, M.; Pérault, M.; Price, S. D.; Robin, A. C.; Schultheis, M.; Schuller, F.; Simon, G.; Soive, A.; Testi, L.; Teyssier, D.; Tiphène, D.; Unavane, M.; van Loon, J. T.; Wyse, R.

    2003-06-01

    The ISOGAL project is an infrared survey of specific regions sampling the Galactic Plane selected to provide information on Galactic structure, stellar populations, stellar mass-loss and the recent star formation history of the inner disk and Bulge of the Galaxy. ISOGAL combines 7 and 15 μm ISOCAM observations -- with a resolution of 6 arcsec at worst -- with DENIS IJKs data to determine the nature of the sources and the interstellar extinction. We have observed about 16 square degrees with a sensitivity approaching 10-20 mJy, detecting ˜105 sources, mostly AGB stars, red giants and young stars. The main features of the ISOGAL survey and the observations are summarized in this paper, together with a brief discussion of data processing and quality. The primary ISOGAL products are described briefly (a full desciption is given in Schuller et al. 2003): viz. the images and the ISOGAL-DENIS five-wavelength point source catalogue. The main scientific results already derived or in progress are summarized. These include astrometrically calibrated 7 and 15 μm images, determining structures of resolved sources; identification and properties of interstellar dark clouds; quantification of the infrared extinction law and source dereddening; analysis of red giant and (especially) AGB stellar populations in the central Bulge, determining luminosity, presence of circumstellar dust and mass-loss rate, and source classification, supplemented in some cases by ISO/CVF spectroscopy; detection of young stellar objects of diverse types, especially in the inner Bulge with information about the present and recent star formation rate; identification of foreground sources with mid-IR excess. These results are the subject of about 25 refereed papers published or in preparation. This is paper No. 20 in a refereed journal based on data from the ISOGAL project. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, The Netherlands and the UK) and with the participation of ISAS and NASA. Based on observations collected at the European Southern Observatory, La Silla, Chile.

  2. Field O stars: formed in situ or as runaways?

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Weidner, C.; Kroupa, P.; Pflamm-Altenburg, J.

    2012-08-01

    A significant fraction of massive stars in the Milky Way and other galaxies are located far from star clusters and star-forming regions. It is known that some of these stars are runaways, i.e. possess high space velocities (determined through the proper motion and/or radial velocity measurements), and therefore most likely were formed in embedded clusters and then ejected into the field because of dynamical few-body interactions or binary-supernova explosions. However, there exists a group of field O stars whose runaway status is difficult to prove via direct proper motion measurements (e.g. in the Magellanic Clouds) or whose (measured) low space velocities and/or young ages appear to be incompatible with their large separation from known star clusters. The existence of this group led some authors to believe that field O stars can form in situ. Since the question of whether or not O stars can form in isolation is of crucial importance for star formation theory, it is important to thoroughly test candidates of such stars in order to improve the theory. In this paper, we examine the runaway status of the best candidates for isolated formation of massive stars in the Milky Way and the Magellanic Clouds by searching for bow shocks around them, by using the new reduction of the Hipparcos data, and by searching for stellar systems from which they could originate within their lifetimes. We show that most of the known O stars thought to have formed in isolation are instead very likely runaways. We show also that the field must contain a population of O stars whose low space velocities and/or young ages are in apparent contradiction to the large separation of these stars from their parent clusters and/or the ages of these clusters. These stars (the descendants of runaway massive binaries) cannot be traced back to their parent clusters and therefore can be mistakenly considered as having formed in situ. We argue also that some field O stars could be detected in optical wavelengths only because they are runaways, while their cousins residing in the deeply embedded parent clusters might still remain totally obscured. The main conclusion of our study is that there is no significant evidence whatsoever in support of the in situ proposal on the origin of massive stars.

  3. By Draconis Stars

    NASA Astrophysics Data System (ADS)

    Bopp, Bernard W.

    An optical spectroscopic survey of dK-M stars has resulted in the discovery of several new H-alpha emission objects. Available optical data suggest these stars have a level of chromospheric activity midway between active BY Dra stars and quiet dM's. These "marginal" BY Dra stars are single objects that have rotation velocities slightly higher than that of quiet field stars but below that of active flare/BY Dra objects. The marginal BY Dra stars provide us with a class of objects rotating very near a "trigger velocity" (believed to be 5 km/s) which appears to divide active flare/BY Dra stars from quiet dM's. UV data on Mg II emission fluxes and strength of transition region features such as C IV will serve to fix activity levels in the marginal objects and determine chromosphere and transition-region heating rates. Simultaneous optical magnetic field measures will be used to explore the connection between fieldstrength/filling-factor and atmospheric heating. Comparison of these data with published information on active and quiet dM stars will yield information on the character of the stellar dynamo as it makes a transition from "low" to "high" activity.

  4. NuSTAR SPECTROSCOPY OF MULTI-COMPONENT X-RAY REFLECTION FROM NGC 1068

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Franz E.; Arévalo, Patricia; Walton, Dominic J.

    2015-10-20

    We report on high-energy X-ray observations of the Compton-thick Seyfert 2 galaxy NGC 1068 with NuSTAR, which provide the best constraints to date on its >10 keV spectral shape. The NuSTAR data are consistent with those from past and current instruments to within cross-calibration uncertainties, and we find no strong continuum or line variability over the past two decades, which is in line with its X-ray classification as a reflection-dominated Compton-thick active galactic nucleus. The combined NuSTAR, Chandra, XMM-Newton, and Swift BAT spectral data set offers new insights into the complex secondary emission seen instead of the completely obscured transmittedmore » nuclear continuum. The critical combination of the high signal-to-noise NuSTAR data and the decomposition of the nuclear and extranuclear emission with Chandra allow us to break several model degeneracies and greatly aid physical interpretation. When modeled as a monolithic (i.e., a single N{sub H}) reflector, none of the common Compton reflection models are able to match the neutral fluorescence lines and broad spectral shape of the Compton reflection hump without requiring unrealistic physical parameters (e.g., large Fe overabundances, inconsistent viewing angles, or poor fits to the spatially resolved spectra). A multi-component reflector with three distinct column densities (e.g., with best-fit values of N{sub H} of 1.4 × 10{sup 23}, 5.0 × 10{sup 24}, and 10{sup 25} cm{sup −2}) provides a more reasonable fit to the spectral lines and Compton hump, with near-solar Fe abundances. In this model, the higher N{sub H} component provides the bulk of the flux to the Compton hump, while the lower N{sub H} component produces much of the line emission, effectively decoupling two key features of Compton reflection. We find that ≈30% of the neutral Fe Kα line flux arises from >2″ (≈140 pc) and is clearly extended, implying that a significant fraction (and perhaps most) of the <10 keV reflected component arises from regions well outside a parsec-scale torus. These results likely have ramifications for the interpretation of Compton-thick spectra from observations with poorer signal-to-noise and/or more distant objects.« less

  5. Arp 142: The Penguin and the Egg

    NASA Image and Video Library

    2018-01-31

    This image of distant interacting galaxies, known collectively as Arp 142, bears an uncanny resemblance to a penguin guarding an egg. Data from NASA's Spitzer and Hubble space telescopes have been combined to show these dramatic galaxies in light that spans the visible and infrared parts of the spectrum. This dramatic pairing shows two galaxies that couldn't look more different as their mutual gravitational attraction slowly drags them closer together. The "penguin" part of the pair, NGC 2336, was probably once a relatively normal-looking spiral galaxy, flattened like a pancake with smoothly symmetric spiral arms. Rich with newly-formed hot stars, seen in visible light from Hubble as bluish filaments, its shape has now been twisted and distorted as it responds to the gravitational tugs of its neighbor. Strands of gas mixed with dust stand out as red filaments detected at longer wavelengths of infrared light seen by Spitzer. The "egg" of the pair, NGC 2937, by contrast, is nearly featureless. The distinctly different greenish glow of starlight tells the story of a population of much older stars. The absence of glowing red dust features informs us that it has long since lost its reservoir of gas and dust from which new stars can form. While this galaxy is certainly reacting to the presence of its neighbor, its smooth distribution of stars obscures any obvious distortions of its shape. Eventually these two galaxies will merge to form a single object, with their two populations of stars, gas and dust intermingling. This kind of merger was likely a significant step in the history of most large galaxies we see around us in the nearby universe, including our own Milky Way. At a distance of about 23 million light-years, these two galaxies are roughly 10 times farther away than our nearest major galactic neighbor, the Andromeda galaxy. The blue streak at the top of the image is an unrelated background galaxy that is farther away than Arp 142. Combining light from across the visible and infrared spectrums helps astronomers piece together the complex story of the life cycles of galaxies. While this image required data from both the Spitzer and Hubble telescopes to cover this range of light, NASA's upcoming James Webb Space Telescope will be able to see all of these wavelengths of light, and with dramatically better clarity. https://photojournal.jpl.nasa.gov/catalog/PIA22092

  6. A Wide Area Survey for High-Redshift Massive Galaxies. II. Near-Infrared Spectroscopy of BzK-Selected Massive Star-Forming Galaxies

    NASA Astrophysics Data System (ADS)

    Onodera, Masato; Arimoto, Nobuo; Daddi, Emanuele; Renzini, Alvio; Kong, Xu; Cimatti, Andrea; Broadhurst, Tom; Alexander, Dave M.

    2010-05-01

    Results are presented from near-infrared spectroscopic observations of a sample of BzK-selected, massive star-forming galaxies (sBzKs) at 1.5 < z < 2.3 that were obtained with OHS/CISCO at the Subaru telescope and with SINFONI at the Very Large Telescope. Among the 28 sBzKs observed, Hα emission was detected in 14 objects, and for 11 of them the [N II] λ6583 flux was also measured. Multiwavelength photometry was also used to derive stellar masses and extinction parameters, whereas Hα and [N II] emissions have allowed us to estimate star formation rates (SFRs), metallicities, ionization mechanisms, and dynamical masses. In order to enforce agreement between SFRs from Hα with those derived from rest-frame UV and mid-infrared, additional obscuration for the emission lines (that originate in H II regions) was required compared to the extinction derived from the slope of the UV continuum. We have also derived the stellar mass-metallicity relation, as well as the relation between stellar mass and specific SFR (SSFR), and compared them to the results in other studies. At a given stellar mass, the sBzKs appear to have been already enriched to metallicities close to those of local star-forming galaxies of similar mass. The sBzKs presented here tend to have higher metallicities compared to those of UV-selected galaxies, indicating that near-infrared selected galaxies tend to be a chemically more evolved population. The sBzKs show SSFRs that are systematically higher, by up to ~2 orders of magnitude, compared to those of local galaxies of the same mass. The empirical correlations between stellar mass and metallicity, and stellar mass and SSFR are then compared with those of evolutionary population synthesis models constructed either with the simple closed-box assumption, or within an infall scenario. Within the assumptions that are built-in such models, it appears that a short timescale for the star formation (sime100 Myr) and large initial gas mass appear to be required if one wants to reproduce both relations simultaneously. Based on data collected at the Subaru telescope, which is operated by the National Astronomical Observatory of Japan (S04A-081, S05A-098), and on observations collected at the European Southern Observatory, Paranal, Chile (075.A-0439).

  7. Probing Collimated Jets and Dusty Waists in Dying Stars with Keck LGSAO

    NASA Astrophysics Data System (ADS)

    Sahai, R.; Le Mignant, D.; Sanchez Contreras, C.; Stute, M.; Morris, M.

    2005-12-01

    The shaping of planetary nebulae (PNs) is probably the most exciting yet least understood problem in the late evolution of intermediate mass stars. PNs evolve from the envelopes of AGB stars via a supposedly short ( ˜1000 yr) pre-planetary nebula (PPN) phase. HST imaging of PPNs and PNs has shown the widespread presence of diverse bipolar and multipolar morphologies. In 1998, in a radical departure from the long-standing theoretical paradigm for PN formation, Sahai & Trauger proposed that as most stars evolve off the AGB, they drive collimated fast winds that sweep up and shock the AGB circumstellar envelope, producing the observed dramatic changes in circumstellar geometry and kinematics from the AGB to the PN phase. The search for these collimated jets has proved to be rather elusive, partly because these are most likely episodic and operate only for a few x 100 years in the early PPN phase. During this phase, much of the circumstellar environment, including the central dusty waist of these nebulae, is optically-thick at visible wavelengths. We are therefore carrying out a program of observing PPNs with the LGSAO system on Keck II at near-infrared (1.1-4.7 micron) wavelengths. Our very first attempt met with remarkable success -- observations of the bipolar young PPN, IRAS16342-3814, revealed a remarkable corkscrew-shaped structure apparently etched into the lobe walls -- direct signature of an underlying precessing jet. Here we present results from new high-resolution (55 mas at 2 micron) observations of a small sample of PPNs with the LGSAO system. As in their HST images, our objects display bipolar/multipolar morphologies, but in addition, the bubble-like ``wind-swept" structure of the lobes is clearly revealed. Furthermore, the dusty waists appear much thinner geometrically than in the HST images, but surprisingly, in some PPNs, the central stars still remain obscured, with important implications for the poorly-known physical structure of the waists. We discuss some preliminary results from our data such as the nature of the illuminating sources, quantitative analysis of the mass and dynamics of different nebular components by combining our AO data with complementary data from our multi-wavelength survey of PPNs, and numerical simulations of precessing jets interacting with AGB winds.

  8. Uncovering the secrets of the Quintuplet Cluster

    NASA Image and Video Library

    2015-07-13

    Although this cluster of stars gained its name due to its five brightest stars, it is home to hundreds more. The huge number of massive young stars in the cluster is clearly captured in this NASA/ESA Hubble Space Telescope image. The cluster is located close to the Arches Cluster and is just 100 light-years from the centre of our galaxy. The cluster’s proximity to the dust at the centre of the galaxy means that much of its visible light is blocked, which helped to keep the cluster unknown until its discovery in 1990, when it was revealed by observations in the infrared. Infrared images of the cluster, like the one shown here, allow us to see through the obscuring dust to the hot stars in the cluster. The Quintuplet Cluster hosts two extremely rare luminous blue variable stars: the Pistol Star and the lesser known V4650 Sgr. If you were to draw a line horizontally through the centre of this image from left to right, you could see the Pistol Star hovering just above the line about one third of the way along it. The Pistol Star is one of the most luminous known stars in the Milky Way and takes its name from the shape of the Pistol Nebula that it illuminates, but which is not visible in this infrared image. The exact age and future of the Pistol Star are uncertain, but it is expected to end in a supernova or even a hypernova in one to three million years. The cluster also contains a number of red supergiants. These stars are among the largest in the galaxy and are burning their fuel at an incredible speed, meaning they will have a very short lifetime. Their presence suggests an average cluster age of nearly four million years. At the moment these stars are on the verge of exploding as supernovae. During their spectacular deaths they will release vast amounts of energy which, in turn, will heat the material — dust and gas — between the other stars. This observation shows the Quintuplet Cluster in the infrared and demonstrates the leap in Hubble’s performance sinc

  9. Small jets in radio-loud hot DOGs

    NASA Astrophysics Data System (ADS)

    Lonsdale, C. J.; Whittle, M.; Trapp, A.; Patil, P.; Lonsdale, C. J.; Thorp, R.; Lacy, M.; Kimball, A. E.; Blain, A.; Jones, S.; Kim, M.

    2016-02-01

    We address the impact of young radio jets on the ISM and star formation in a sample of radiatively efficient, highly obscured, radio AGN with look back times that place them near the peak of the galaxy and BH building era, z˜ 1-3. By selecting systems with a high mid-infrared (MIR) luminosity we aim to identify radiatively efficient (``quasar-mode'' or ``radiative-mode") AGN in a peak fueling phase, and by selecting compact radio sources we favor young or re-generated radio jets which are confined within the hosts. By selecting AGN which are very red through the optical-MIR we favor highly obscured systems likely to have been recently merger-triggered and still in the pre-blow-out phase of AGN feedback into the surrounding ISM. ALMA imaging at 345 GHz of 49 sources has revealed that they are accretion dominated, relative to star formation, with luminosities reaching 1014 L⊙. Extensive VLA imaging at 8-10 GHz in both A-array and B-array for 155 sources reveals that the majority of these powerful radio systems are compact on < 2-5 kpc scales while some have resolved structures on 3-25 kpc scales, and a small number have giant radio lobes on hundreds of kpc scales. The majority of the GHz range radio SEDs are typical of optically thin synchrotron, however for the 34 sources with data at more than 2 frequencies, 40 % are likely to be CSS, GPS, or HFP sources. VLBA imaging of 62 sources reveals varied morphologies, from unresolved sources to complex multicomponent 1-10 mas scale structures. Data from ALMA, VLA, and VLBA

  10. Age gradients in the stellar populations of massive star forming regions based on a new stellar chronometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Getman, Konstantin V.; Feigelson, Eric D.; Kuhn, Michael A.

    2014-06-01

    A major impediment to understanding star formation in massive star-forming regions (MSFRs) is the absence of a reliable stellar chronometer to unravel their complex star formation histories. We present a new estimation of stellar ages using a new method that employs near-infrared (NIR) and X-ray photometry, Age {sub JX} . Stellar masses are derived from X-ray luminosities using the L{sub X} -M relation from the Taurus cloud. J-band luminosities are compared to mass-dependent pre-main-sequence (PMS) evolutionary models to estimate ages. Age {sub JX} is sensitive to a wide range of evolutionary stages, from disk-bearing stars embedded in a cloud tomore » widely dispersed older PMS stars. The Massive Young Star-Forming Complex Study in Infrared and X-ray (MYStIX) project characterizes 20 OB-dominated MSFRs using X-ray, mid-infrared, and NIR catalogs. The Age {sub JX} method has been applied to 5525 out of 31,784 MYStIX Probable Complex Members. We provide a homogeneous set of median ages for over 100 subclusters in 15 MSFRs; median subcluster ages range between 0.5 Myr and 5 Myr. The important science result is the discovery of age gradients across MYStIX regions. The wide MSFR age distribution appears as spatially segregated structures with different ages. The Age {sub JX} ages are youngest in obscured locations in molecular clouds, intermediate in revealed stellar clusters, and oldest in distributed populations. The NIR color index J – H, a surrogate measure of extinction, can serve as an approximate age predictor for young embedded clusters.« less

  11. Update On the Puzzling Boyajian's Star

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-09-01

    Photometric time series for a neighboring star thats 25 NNW of Boyajians Star. No significant long-term dimming is seen which constrains the size of potential material obscuring Boyajians Star. [Wright et al. 2016/Benjamin Montet]Whats causing the mysterious light-curve dips of the so-called alien megastructure star, Boyajians Star? A recent study analyzes a variety of possible explanations to determine which ones are the most plausible.An Unusual Light CurveEarlier this year, astronomer Tabetha Boyajian reported on the unusual light curve of the star KIC 8462852. This star, now nicknamed Tabbys Star or Boyajians Star, showsunusual dips on day-long timescales that are too large to be explained by planet transits or similar phenomena.In addition to these short dips in luminosity, recent observations have also indicated that the star has faded by roughly 20% over the past hundred years. What could be causing both the short-term dips in the stars light and the long-term dimming over a century?Could the dimming be caused by an alien megastructure built by an extraterrestrial civilization? The authors find that a spherical structure is very unlikely. [Danielle Futselaar/SETI International]Alien Megastructures? Or Another Explanation?Boyajians Star was vaulted into the media spotlight when astronomer Jason Wright (Pennsylvania State University and University of California, Berkeley) proposed that its unusual light curve could potentially be explained by a surrounding megastructure built by an extraterrestrial civilization.Now Wright is back with co-author Steinn Sigurdsson (Pennsylvania State University). In a new study, Wright and Sigurdsson analyze an extensive list of explanations for the puzzling apparent behavior of Boyajians Star, based on our latest knowledge about this strange object.The Realm of PossibilitiesHere are just a few possible causes of Boyajians Stars dimming, as well as the authors assessment of their plausibility. For the full list, see the authors original article, or check out Wrights own summary of the article here!Pulsations, polar spots, and other stellar variability: unlikelyThe authors show that the variety of timescales observed for dimming events make scenarios involving stellar variations unlikely.Circumstellar material: unlikelyMaterial orbiting the star (like comets) would explain some of the light-curve dips, but it cant explain the long-term dimming observed.Post-merger return to normal: unclearPerhaps Boyajians Star recently merged with a brown dwarf or other star? Now it could be gradually dimming as it returns to its normal brightness, and restructuring of the stars material could causethe short-term dips. Though this scenariois possible, the timescales for the brightness changes are shorter than we would expect.Artificial structures: unclearSpherical swarms of structures would intercept the stars light and re-radiate it in infrared. Since long-wavelength observations have found no evidence of such radiation, the authors declare spherical geometries to be unlikely. Other structure geometries cant yet be ruled out, though.Small-scale interstellar medium (ISM) structure: plausibleSmall-scale density variations in the ISM between us and Boyajians Star could cause the dimming we observe, but the fact that nearby stars dont show similar dimming sets tight limits on the size of such ISM clumps.Spectral energy distribution of Boyajians Star. The upper-limit arrows on the right-hand side indicate that big clouds of megastructures are unlikely, because we would detect their heat as they re-radiate the stars light in infrared. [Wright et al. 2016]Looking to the FutureOf the possible locations for the source of the dimming, Wright and Sigurdsson deem the interstellar space between us and Boyajians Star to be the most likely culprit. They identify several future lines of research that could help us further eliminate possibilities, however, including a study of the ISM toward Boyajians Star, a hunt for similar variations in stars near in the sky to Boyajians Star, and infrared observation of the star with JWST to search for heat signatures.CitationJason T. Wright and Steinn Sigurdsson 2016 ApJ 829 L3. doi:10.3847/2041-8205/829/1/L3

  12. Estrellas asociadas con planetas extrasolares vs. estrellas de tipo β Pictoris

    NASA Astrophysics Data System (ADS)

    Chavero, C.; Gómez, M.

    In this contribution we initially confront physical properties of two groups of stars: the Planet Host Stars and the Vega-like objects. The Planet Host Star group has one or more planet mass object associated and the Vega-like stars have circumstellar disks. We have compiled magnitudes, colors, parallaxes, spectral types, etc. for these objects from the literature and analyzed the distribution of both groups. We find that the samples are very similar in metallicities, ages, and spatial distributions. Our analysis suggests that the circumstellar environments are probably different while the central objects have similar physical properties. This difference may explain, at least in part, why the Planet Host Stars form extra-solar planetary objects such as those detected by the Doppler effect while the Vega-like objects are not commonly associated with these planet-mass bodies.

  13. Global Infrared–Radio Spectral Energy Distributions of Galactic Massive Star-Forming Regions

    NASA Astrophysics Data System (ADS)

    Povich, Matthew Samuel; Binder, Breanna Arlene

    2018-01-01

    We present a multiwavelength study of 30 Galactic massive star-forming regions. We fit multicomponent dust, blackbody, and power-law continuum models to 3.6 µm through 10 mm spectral energy distributions obtained from Spitzer, MSX, IRAS, Herschel, and Planck archival survey data. Averaged across our sample, ~20% of Lyman continuum photons emitted by massive stars are absorbed by dust before contributing to the ionization of H II regions, while ~50% of the stellar bolometric luminosity is absorbed and reprocessed by dust in the H II regions and surrounding photodissociation regions. The most luminous, infrared-bright regions that fully sample the upper stellar initial mass function (ionizing photon rates NC ≥ 1050 s–1 and total infrared luminosity LTIR ≥ 106.8 L⊙) have higher percentages of absorbed Lyman continuum photons (~40%) and dust-reprocessed starlight (~80%). The monochromatic 70-µm luminosity L70 is linearly correlated with LTIR, and on average L70/LTIR = 50%, in good agreement with extragalactic studies. Calibrated against the known massive stellar content in our sampled H II regions, we find that star formation rates based on L70 are in reasonably good agreement with extragalactic calibrations, when corrected for the smaller physical sizes of the Galactic regions. We caution that absorption of Lyman continuum photons prior to contributing to the observed ionizing photon rate may reduce the attenuation-corrected Hα emission, systematically biasing extragalactic calibrations toward lower star formation rates when applied to spatially-resolved studies of obscured star formation.This work was supported by the National Science Foundation under award CAREER-1454333.

  14. The emerging planetary nebula CRL 618 and its unsettled central star(s)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balick, B.; Riera, A.; Raga, A.

    We report deep long-slit emission-line spectra, the line flux ratios, and Doppler profile shapes of various bright optical lines. The low-ionization lines (primarily [N I], [O I], [S II], and [N II]) originate in shocked knots, as reported by many previous observers. Dust-scattered lines of higher ionization are seen throughout the lobes but do not peak in the knots. Our analysis of these line profiles and the readily discernible stellar continuum shows that (1) the central star is an active symbiotic (whose spectrum resembles the central stars of highly bipolar and young planetary nebulae such as M2-9 and Hen2-437) whosemore » compact companion shows a WC8-type spectrum, (2) extended nebular lines of [O III] and He I originate in the heavily obscured nuclear H II region, and (3) the Balmer lines observed throughout the lobes are dominated by reflected Hα emission from the symbiotic star. Comparing our line ratios with those observed historically shows that (1) the [O III]/Hβ and He I/Hβ ratios have been steadily rising by large amounts throughout the nebula, (2) the Hα/Hβ ratio is steadily decreasing while Hγ/Hβ remains nearly constant, and (3) the low-ionization line ratios formed in the shocked knots have been in decline in different ways at various locations. We show that the first two of these results might be expected if the symbiotic central star has been active and if its bright Hα line has faded significantly in the past 20 years.« less

  15. Galaxy Evolution Explorer Celebrates Five Years in Space

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Poster Version

    Since its launch five years ago, the Galaxy Evolution Explorer has photographed hundreds of millions of galaxies in ultraviolet light. M106 is one of those galaxies, and from 22 light years away, it strikes a pose in blue and gold for this new commemorative portrait.

    The galaxy's extended arms are the blue filaments that curve around its edge, creating its outer disk. Tints of blue in M106's arms reveal hot, young massive stars. Traces of gold toward the center show an older stellar population and indicate the presence of obscuring dust.

    From 24 million light-years away, neighboring galaxy NGC 4248 also makes a memorable appearance, sitting just right of M106. The irregular galaxy looks like a yellow smudge, with a bluish-white bar in the center. The galaxy's outer golden glow indicates a population of older stars, while the blue central region shows a younger stellar demographic.

    Dwarf galaxy UGC 7365 emerges at the bottom center of this image, as a faint yellow smudge directly below M106. This galaxy is not forming any new stars, and looks much smaller than M106 despite being closer to Earth, at 14 million light-years away.

    Over the past five years, the Galaxy Evolution Explorer has imaged half a billion objects over 27,000 square degrees of sky equivalent to an area that would be covered by 138,000 full moons. The telescope orbits Earth every 94 minutes and travels approximately 408,470 million miles per day. Its overarching question is: how do galaxies grow and change over 10 billion years of cosmic history?

    M106, also known as NGC 4258, is located in the constellation Canes Venatici. This image is a two-color composite, where far-ultraviolet light is blue, and near-ultraviolet light is red.

  16. Galaxy Evolution Explorer Celebrates Five Years in Space

    NASA Image and Video Library

    2008-04-28

    Since its launch five years ago, the Galaxy Evolution Explorer has photographed hundreds of millions of galaxies in ultraviolet light. M106 is one of those galaxies, 22 light years away, it strikes a pose in blue and gold for this new commemorative portrait. The galaxy's extended arms are the blue filaments that curve around its edge, creating its outer disk. Tints of blue in M106's arms reveal hot, young massive stars. Traces of gold toward the center show an older stellar population and indicate the presence of obscuring dust. From 24 million light-years away, neighboring galaxy NGC 4248 also makes a memorable appearance, sitting just right of M106. The irregular galaxy looks like a yellow smudge, with a bluish-white bar in the center. The galaxy's outer golden glow indicates a population of older stars, while the blue central region shows a younger stellar demographic. Dwarf galaxy UGC 7365 emerges at the bottom center of this image, as a faint yellow smudge directly below M106. This galaxy is not forming any new stars, and looks much smaller than M106 despite being closer to Earth, at 14 million light-years away. Over the past five years, the Galaxy Evolution Explorer has imaged half a billion objects over 27,000 square degrees of sky —equivalent to an area that would be covered by 138,000 full moons. The telescope orbits Earth every 94 minutes and travels approximately 408,470 million miles per day. Its overarching question is: how do galaxies grow and change over 10 billion years of cosmic history? M106, also known as NGC 4258, is located in the constellation Canes Venatici. This image is a two-color composite, where far-ultraviolet light is blue, and near-ultraviolet light is red. http://photojournal.jpl.nasa.gov/catalog/PIA10600

  17. Tracing accelerated galaxy formation in a proto-cluster at z=3.8 with GMOS

    NASA Astrophysics Data System (ADS)

    Handel Hughes, David; Lowenthal, James; Wilson, Grant; Yun, Min S.; Fazio, Giovanni G.; Huang, Jiasheng; Aretxaga, Itziar; Porras, Alicia; Smail, Ian; Ivison, Rob J.; Stevens, Jason; Dunlop, James S.

    2007-08-01

    The 1.1mm AzTEC camera has recently conducted the largest and most sensitive survey at mm-wavelengths towards a powerful high-redshift radio galaxy: 4C41.17 at z 3.8. The 1.1mm map reveals a significant over-density of luminous, massive dust-enshrouded galaxies, a factor of 10 more numerous than the blank-field mm-galaxy population, which statistically is expected to lie at lower-redshifts, z 2.2. The AzTEC sources are expected to trace the bulk of the elliptical galaxy formation within a massive protocluster at z 3.8, over an unprecedentedly large area of 6 x 6 Mpc^2. We propose to acquire multi-object spectroscopic observations over 3 adjacent GMOS fields to provide redshifts for 5 SMA/AzTEC sources, which have sub-arcsec interferometric precisions, identifying unambiguously their optical/IR counterparts, which are inferred to be forming stars at rates in excess of 500 M_sun/yr ( L(FIR) > 10^13 L_sun ). Although these are dusty objects, we expect most of them to have patchy obscuration, and thus be able to detect emission-lines from the star-forming regions, as has been achieved with the mm-selected blank-field population. Additional slitlets in the 3 GMOS masks will also simultaneously measure the redshift of 30 neighbouring (< 20") optical/Spitzer selected galaxies that could be associated with the haloes of these SMA detected AzTEC sources, and 60 additional optical/Spitzer sources that, through photo-z, are likely to be at z 3.8 and be associated with other mm-galaxies that lie within the AzTEC map. These GMOS data will identify whether small groups of dynamically-interacting galaxies in the local environment (dark matter haloes) of the gas-rich, luminous starburst AzTEC sources are stimulating the accelerated levels of galaxy formation observed towards this biased region (protocluster) in the early Universe.

  18. Star formation rate and extinction in faint z ∼ 4 Lyman break galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    To, Chun-Hao; Wang, Wei-Hao; Owen, Frazer N.

    We present a statistical detection of 1.5 GHz radio continuum emission from a sample of faint z ∼ 4 Lyman break galaxies (LBGs). To constrain their extinction and intrinsic star formation rate (SFR), we combine the latest ultradeep Very Large Array 1.5 GHz radio image and the Hubble Space Telescope Advanced Camera for Surveys (ACS) optical images in the GOODS-N. We select a large sample of 1771 z ∼ 4 LBGs from the ACS catalog using B {sub F435W}-dropout color criteria. Our LBG samples have I {sub F775W} ∼ 25-28 (AB), ∼0-3 mag fainter than M{sub UV}{sup ⋆} at zmore » ∼ 4. In our stacked radio images, we find the LBGs to be point-like under our 2'' angular resolution. We measure their mean 1.5 GHz flux by stacking the measurements on the individual objects. We achieve a statistical detection of S {sub 1.5} {sub GHz} = 0.210 ± 0.075 μJy at ∼3σ for the first time on such a faint LBG population at z ∼ 4. The measurement takes into account the effects of source size and blending of multiple objects. The detection is visually confirmed by stacking the radio images of the LBGs, and the uncertainty is quantified with Monte Carlo simulations on the radio image. The stacked radio flux corresponds to an obscured SFR of 16.0 ± 5.7 M {sub ☉} yr{sup –1}, and implies a rest-frame UV extinction correction factor of 3.8. This extinction correction is in excellent agreement with that derived from the observed UV continuum spectral slope, using the local calibration of Meurer et al. This result supports the use of the local calibration on high-redshift LBGs to derive the extinction correction and SFR, and also disfavors a steep reddening curve such as that of the Small Magellanic Cloud.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luhman, K. L.; Esplin, T. L.; Loutrel, N. P., E-mail: kluhman@astro.psu.edu

    We have obtained optical and near-infrared spectra of candidate members of the star-forming clusters IC 348 and NGC 1333. We classify 100 and 42 candidates as new members of the clusters, respectively, which brings the total numbers of known members to 478 and 203. We also have performed spectroscopy on a large majority of the previously known members of NGC 1333 in order to provide spectral classifications that are measured with the same scheme that has been applied to IC 348 in previous studies. The new census of members is nearly complete for K {sub s}< 16.8 at A {submore » J}< 1.5 in IC 348 and for K {sub s}< 16.2 at A {sub J}< 3 in NGC 1333, which correspond to masses of ≳0.01 M {sub ⊙} for ages of 3 Myr according to theoretical evolutionary models. The faintest known members extend below these completeness limits and appear to have masses of ∼0.005 M {sub ⊙}. In extinction-limited samples of cluster members, NGC 1333 exhibits a higher abundance of objects at lower masses than IC 348. It would be surprising if the initial mass functions of these clusters differ significantly given their similar stellar densities and formation environments. Instead, it is possible that average extinctions are lower for less massive members of star-forming clusters, in which case extinction-limited samples could be biased in favor of low-mass objects in the more heavily embedded clusters like NGC 1333. In the Hertzsprung–Russell diagram, the median sequences of IC 348 and NGC 1333 coincide with each other for the adopted distances of 300 and 235 pc, which would suggest that they have similar ages. However, NGC 1333 is widely believed to be younger than IC 348 based on its higher abundance of disks and protostars and its greater obscuration. Errors in the adopted distances may be responsible for this discrepancy.« less

  20. Mildly obscured active galaxies and the cosmic X-ray background

    NASA Astrophysics Data System (ADS)

    Esposito, V.; Walter, R.

    2016-05-01

    Context. The diffuse cosmic X-ray background (CXB) is the sum of the emission of discrete sources, mostly massive black-holes accreting matter in active galactic nuclei (AGN). The CXB spectrum differs from the integration of the spectra of individual sources, calling for a large population, undetected so far, of strongly obscured Compton-thick AGN. Such objects are predicted by unified models, which attribute most of the AGN diversity to their inclination on the line of sight, and play an important role for the understanding of the growth of black holes in the early Universe. Aims: The percentage of strongly obscured Compton-thick AGN at low redshift can be derived from the observed CXB spectrum, if we assume AGN spectral templates and luminosity functions. Methods: We show that high signal-to-noise stacked hard X-ray spectra, derived from more than a billion seconds of effective exposure time with the Swift/BAT instrument, imply that mildly obscured Compton-thin AGN feature a strong reflection and contribute massively to the CXB. Results: A population of Compton-thick AGN larger than that which is effectively detected is not required to reproduce the CXB spectrum, since no more than 6% of the CXB flux can be attributed to them. The stronger reflection observed in mildly obscured AGN suggests that the covering factor of the gas and dust surrounding their central engines is a key factor in shaping their appearance. These mildly obscured AGN are easier to study at high redshift than Compton-thick sources are.

  1. The Drama of Starbirth - new-born stars wreak havoc in their nursery

    NASA Astrophysics Data System (ADS)

    2011-03-01

    A new image from ESO's Very Large Telescope gives a close-up view of the dramatic effects new-born stars have on the gas and dust from which they formed. Although the stars themselves are not visible, material they have ejected is colliding with the surrounding gas and dust clouds and creating a surreal landscape of glowing arcs, blobs and streaks. The star-forming region NGC 6729 is part of one of the closest stellar nurseries to the Earth and hence one of the best studied. This new image from ESO's Very Large Telescope gives a close-up view of a section of this strange and fascinating region (a wide-field view is available here: eso1027). The data were selected from the ESO archive by Sergey Stepanenko as part of the Hidden Treasures competition [1]. Sergey's picture of NGC 6729 was ranked third in the competition. Stars form deep within molecular clouds and the earliest stages of their development cannot be seen in visible-light telescopes because of obscuration by dust. In this image there are very young stars at the upper left of the picture. Although they cannot be seen directly, the havoc that they have wreaked on their surroundings dominates the picture. High-speed jets of material that travel away from the baby stars at velocities as high as one million kilometres per hour are slamming into the surrounding gas and creating shock waves. These shocks cause the gas to shine and create the strangely coloured glowing arcs and blobs known as Herbig-Haro objects [2]. In this view the Herbig-Haro objects form two lines marking out the probable directions of ejected material. One stretches from the upper left to the lower centre, ending in the bright, circular group of glowing blobs and arcs at the lower centre. The other starts near the left upper edge of the picture and extends towards the centre right. The peculiar scimitar-shaped bright feature at the upper left is probably mostly due to starlight being reflected from dust and is not a Herbig-Haro object. This enhanced-colour picture [3] was created from images taken using the FORS1 instrument on ESO's Very Large Telescope. Images were taken through two different filters that isolate the light coming from glowing hydrogen (shown as orange) and glowing ionised sulphur (shown as blue). The different colours in different parts of this violent star formation region reflect different conditions - for example where ionised sulphur is glowing brightly (blue features) the velocities of the colliding material are relatively low - and help astronomers to unravel what is going on in this dramatic scene. Notes [1] ESO's Hidden Treasures 2010 competition gave amateur astronomers the opportunity to search through ESO's vast archives of astronomical data, hoping to find a well-hidden gem that needed polishing by the entrants. Participants submitted nearly 100 entries and ten skilled people were awarded some extremely attractive prizes, including an all expenses paid trip for the overall winner to ESO's Very Large Telescope (VLT) on Cerro Paranal, in Chile, the world's most advanced optical telescope. The ten winners submitted a total of 20 images that were ranked as the highest entries in the competition out of the near 100 images. [2] The astronomers George Herbig and Guillermo Haro were not the first to see one of the objects that now bear their names, but they were the first to study the spectra of these strange objects in detail. They realised that they were not just clumps of gas and dust that reflected light, or glowed under the influence of the ultraviolet light from young stars, but were a new class of objects associated with ejected material in star formation regions. [3] Both the ionised sulphur and hydrogen atoms in this nebula emit red light. To differentiate between them in this image the sulphur emission has been coloured blue. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  2. CSI 2264: Simultaneous optical and X-ray variability in pre-main sequence stars. I. Time resolved X-ray spectral analysis during optical dips and accretion bursts in stars with disks

    NASA Astrophysics Data System (ADS)

    Guarcello, M. G.; Flaccomio, E.; Micela, G.; Argiroffi, C.; Sciortino, S.; Venuti, L.; Stauffer, J.; Rebull, L.; Cody, A. M.

    2017-06-01

    Context. Pre-main sequence stars are variable sources. The main mechanisms responsible for their variability are variable extinction, unsteady accretion, and rotational modulation of both hot and dark photospheric spots and X-ray-active regions. In stars with disks, this variability is related to the morphology of the inner circumstellar region (≤0.1 AU) and that of the photosphere and corona, all impossible to be spatially resolved with present-day techniques. This has been the main motivation for the Coordinated Synoptic Investigation of NGC 2264, a set of simultaneous observations of NGC 2264 with 15 different telescopes. Aims: In this paper, we focus on the stars with disks. We analyze the X-ray spectral properties extracted during optical bursts and dips in order to unveil the nature of these phenomena. Stars without disks are studied in a companion paper. Methods: We analyze simultaneous CoRoT and Chandra/ACIS-I observations to search for coherent optical and X-ray flux variability in stars with disks. Then, stars are analyzed in two different samples. In stars with variable extinction, we look for a simultaneous increase of optical extinction and X-ray absorption during the optical dips; in stars with accretion bursts, we search for soft X-ray emission and increasing X-ray absorption during the bursts. Results: We find evidence for coherent optical and X-ray flux variability among the stars with variable extinction. In 9 of the 24 stars with optical dips, we observe a simultaneous increase of X-ray absorption and optical extinction. In seven dips, it is possible to calculate the NH/AV ratio in order to infer the composition of the obscuring material. In 5 of the 20 stars with optical accretion bursts, we observe increasing soft X-ray emission during the bursts that we associate to the emission of accreting gas. It is not surprising that these properties are not observed in all the stars with dips and bursts, since favorable geometric configurations are required. Conclusions: The observed variable absorption during the dips is mainly due to dust-free material in accretion streams. In stars with accretion bursts, we observe, on average, a larger soft X-ray spectral component not observed in non-accreting stars.

  3. First identification of direct collapse black hole candidates in the early Universe in CANDELS/GOODS-S

    NASA Astrophysics Data System (ADS)

    Pacucci, Fabio; Ferrara, Andrea; Grazian, Andrea; Fiore, Fabrizio; Giallongo, Emanuele; Puccetti, Simonetta

    2016-06-01

    The first black hole seeds, formed when the Universe was younger than ˜500 Myr, are recognized to play an important role for the growth of early (z ˜ 7) supermassive black holes. While progresses have been made in understanding their formation and growth, their observational signatures remain largely unexplored. As a result, no detection of such sources has been confirmed so far. Supported by numerical simulations, we present a novel photometric method to identify black hole seed candidates in deep multiwavelength surveys. We predict that these highly obscured sources are characterized by a steep spectrum in the infrared (1.6-4.5 μm), I.e. by very red colours. The method selects the only two objects with a robust X-ray detection found in the CANDELS/GOODS-S survey with a photometric redshift z ≳ 6. Fitting their infrared spectra only with a stellar component would require unrealistic star formation rates (≳2000 M⊙ yr-1). To date, the selected objects represent the most promising black hole seed candidates, possibly formed via the direct collapse black hole scenario, with predicted mass >105 M⊙. While this result is based on the best photometric observations of high-z sources available to date, additional progress is expected from spectroscopic and deeper X-ray data. Upcoming observatories, like the JWST, will greatly expand the scope of this work.

  4. Observing metal-poor stars with X-Shooter

    NASA Astrophysics Data System (ADS)

    Caffau, E.; Bonifacio, P.; Sbordone, L.; Monaco, L.; François; , P.

    The extremely metal-poor stars (EMP) hold in their atmospheres the fossil record of the chemical composition of the early phases of the Galactic evolution. The chemical analysis of such objects provides important constraints on these early phases. EMP stars are very rare objects; to dig them out large amounts of data have to be considered. With an automatic procedure, we analysed objects with colours of Turn-Off stars from the Sloan Digital Sky Survey to select a sample of good candidate EMP stars. During the French-Italian GTO of the spectrograph X-Shooter, we observed a sample of these candidates. We could confirm the low metallicity of our sample of stars, and we succeeded in finding a record metal-poor star.

  5. DISCOVERY OF A DAMPED Lyα ABSORBER AT z = 3.3 ALONG A GALAXY SIGHT-LINE IN THE SSA22 FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mawatari, K.; Inoue, A. K.; Kousai, K.

    2016-02-01

    Using galaxies as background light sources to map the Lyα absorption lines is a novel approach to study Damped Lyα Absorbers (DLAs). We report the discovery of an intervening z = 3.335 ± 0.007 DLA along a galaxy sight-line identified among 80 Lyman Break Galaxy (LBG) spectra obtained with our Very Large Telescope/Visible Multi-Object Spectrograph survey in the SSA22 field. The measured DLA neutral hydrogen (H i) column density is log(N{sub H} {sub i}/cm{sup −2}) = 21.68 ± 0.17. The DLA covering fraction over the extended background LBG is >70% (2σ), yielding a conservative constraint on the DLA area of ≳1 kpc{sup 2}. Our search for a counterpartmore » galaxy hosting this DLA concludes that there is no counterpart galaxy with star formation rate larger than a few M{sub ⊙} yr{sup −1}, ruling out an unobscured violent star formation in the DLA gas cloud. We also rule out the possibility that the host galaxy of the DLA is a passive galaxy with M{sub *} ≳ 5 × 10{sup 10}M{sub ⊙} or a heavily dust-obscured galaxy with E(B − V) ≳ 2. The DLA may coincide with a large-scale overdensity of the spectroscopic LBGs. The occurrence rate of the DLA is compatible with that of DLAs found in QSO sight-lines.« less

  6. Superluminous object in the Large Cloud of Magellan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathis, J.S.; Savage, B.D.; Cassinelli, J.P.

    1984-08-01

    A superluminous and possibly supermassive object has been observed in the Large Cloud of Magellan. The object is designated R136 and is in the Tarantula Nebula. In 1980, it was discovered that R136 actually has 3 distinct components. The brightest was designated R136a. The ultraviolet spectra of R136a implies that it is a very hot star, similar to 03 stars, and that it has a steller wind of speeds up 3500 km/sec., also similar to 03 stars. The broad emission lines of the II are similar to those found in the spectrum of Wolf-Rayet stars. In 1983, Y.H. Chu ofmore » the University of Wisconsin after analyzing many images of R136 concluded that within the R136a component one can identify four steller objects. The dominate object was labeled R136a1 and it is this object that is now the candidate for a superluminous star. If R136a1 is a single star, it must have a mass of between 400 and 1000 solar masses. The ultraviolet spectroscopic data are consistent with a single-star hypothesis. However, the data do not rule out other possibilities.« less

  7. Far-infrared observations of the exciting stars of Herbig-Haro objects. III - Circumstellar disks

    NASA Technical Reports Server (NTRS)

    Cohen, M.; Harvey, P. M.; Schwartz, R. D.

    1985-01-01

    Far-infrared observations of the exciting stars of Herbig-Haro objects are presented that (1) show these stars to be of low luminosity; (2) indicate that it is not usual for these objects themselves to be visible at far-infrared wavelengths; and (3) demonstrate the existence of spatially resolved, physically large, potentially disklike structures. These latter structures are resolved perpendicular to the directions of flow from the stars, but not parallel to the flows. In addition to these general properties, two new HH-exciting stars were discovered by searching along the extrapolated proper motion vectors for these HHs; and the jetlike object 'DG Tau B' was also detected.

  8. Red and nebulous objects in dark clouds - A survey

    NASA Technical Reports Server (NTRS)

    Cohen, M.

    1980-01-01

    A search on the NGS-PO Sky Survey photographs has revealed 150 interesting nebulous and/or red objects, mostly lying in dark clouds and not previously catalogued. Spectral classifications are presented for 55 objects. These indicate a small number of new members of the class of Herbig-Haro objects, a significant number of new T Tauri stars, and a few emission-line hot stars. It is argued that hot, high-mass stars form preferentially in the dense cores of dark clouds. The possible symbiosis of high and low mass stars is considered. A new morphology class is defined for cometary nebulae, in which a star lies on the periphery of a nebulous ring.

  9. PHIBSS: MOLECULAR GAS, EXTINCTION, STAR FORMATION, AND KINEMATICS IN THE z = 1.5 STAR-FORMING GALAXY EGS13011166

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genzel, R.; Tacconi, L. J.; Kurk, J.

    We report matched resolution imaging spectroscopy of the CO 3-2 line (with the IRAM Plateau de Bure millimeter interferometer) and of the H{alpha} line (with LUCI at the Large Binocular Telescope) in the massive z = 1.53 main-sequence galaxy EGS 13011166, as part of the ''Plateau de Bure high-z, blue-sequence survey'' (PHIBSS: Tacconi et al.). We combine these data with Hubble Space Telescope V-I-J-H-band maps to derive spatially resolved distributions of stellar surface density, star formation rate, molecular gas surface density, optical extinction, and gas kinematics. The spatial distribution and kinematics of the ionized and molecular gas are remarkably similarmore » and are well modeled by a turbulent, globally Toomre unstable, rotating disk. The stellar surface density distribution is smoother than the clumpy rest-frame UV/optical light distribution and peaks in an obscured, star-forming massive bulge near the dynamical center. The molecular gas surface density and the effective optical screen extinction track each other and are well modeled by a ''mixed'' extinction model. The inferred slope of the spatially resolved molecular gas to star formation rate relation, N = dlog{Sigma}{sub starform}/dlog{Sigma}{sub molgas}, depends strongly on the adopted extinction model, and can vary from 0.8 to 1.7. For the preferred mixed dust-gas model, we find N = 1.14 {+-} 0.1.« less

  10. Hot Subdwarf Stars Among the Objects Rejected from the PG Catalog: a First Assessment Using GALEX Photometry

    NASA Technical Reports Server (NTRS)

    Wade, Richard A.; Stark, M. A.; Green, Richard F.; Durrell, Patrick R.

    2009-01-01

    The hot subdwarf (sd) stars in the Palomar Green (PG) catalog of ultraviolet excess (UVX) objects play a key role in investigations of the frequency and types of binary companions and the distribution of orbital periods. These are important for establishing whether and by which channels the sd stars arise from interactions in close binary systems. It has been suggested that the list of PG sd stars is biased by the exclusion of many stars in binaries, whose spectra show the Ca I1 K line in absorption. A total of 1125 objects that were photometrically selected as candidates were ultimately rejected from the final PG catalog using this K-line criterion. We study 88 of these 'PG-Rejects' (PGRs), to assess whether there are significant numbers of unrecognized sd stars in binaries among the PGR objects. The presence of a sd should cause a large UVX, compared with the cool K-line star. We assemble GALEX, Johnson V, and 2MASS photometry and compare the colors of these PGR objects with those of known sd stars, cool single stars, and hot+cool binaries. Sixteen PGRs were detected in both the far- and near-ultraviolet GALEX passbands. Eleven of these, plus the 72 cases with only an upper limit in the far-ultraviolet band, are interpreted as single cool stars, appropriately rejected by the PG spectroscopy. Of the remaining five stars, three are consistent with being sd stars paired with a cool main sequence companion, while two may be single stars or composite systems of another type. We discuss the implications of these findings for the 1125 PGR objects as a whole. An enlarged study is desirable to increase confidence in these first results and to identify individual sd+cool binaries or other composites for follow-up study. The GALEX AIS data have sufficient sensitivity to carry out this larger study.

  11. Chandra Observations of Galaxy Zoo Mergers: Frequency of Binary Active Nuclei in Massive Mergers

    NASA Technical Reports Server (NTRS)

    Teng, Stacy H.; Schawinski, Kevin; Urry, C. Megan; Darg, Dan W.; Kaviraj, Sugata; Oh, Kyuseok; Bonning, Erin W.; Cardamone, Carolin N.; Keel, William C.; Lintott, Chris J.; hide

    2012-01-01

    We present the results from a Chandra pilot study of 12 massive galaxy mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 1011 M that already have optical AGN signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N(sub H) approx < 1.1 10(exp 22)/sq cm) X-ray nuclei are relatively common (8/12), but the detections are too faint (< 40 counts per nucleus; (sub -10) keV approx < 1.2 10(exp -13) erg/s/sq cm) to reliably separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGN in these mergers are rare (0-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.

  12. Hubble Space Telescope Imaging of the Circumnuclear Environments of the CfA Seyfert Galaxies: Nuclear Spirals and Fueling

    NASA Technical Reports Server (NTRS)

    Pogge, Richard W.; Martini, Paul

    2002-01-01

    We present archival Hubble Space Telescope (HST) images of the nuclear regions of 43 of the 46 Seyfert galaxies found in the volume limited,spectroscopically complete CfA Redshift Survey sample. Using an improved method of image contrast enhancement, we created detailed high-quality " structure maps " that allow us to study the distributions of dust, star clusters, and emission-line gas in the circumnuclear regions (100-1000 pc scales) and in the associated host galaxy. Essentially all of these Seyfert galaxies have circumnuclear dust structures with morphologies ranging from grand-design two-armed spirals to chaotic dusty disks. In most Seyfert galaxies there is a clear physical connection between the nuclear dust spirals on hundreds of parsec scales and large-scale bars and spiral arms in the host galaxies proper. These connections are particularly striking in the interacting and barred galaxies. Such structures are predicted by numerical simulations of gas flows in barred and interacting galaxies and may be related to the fueling of active galactic nuclei by matter inflow from the host galaxy disks. We see no significant differences in the circumnuclear dust morphologies of Seyfert 1s and 2s, and very few Seyfert 2 nuclei are obscured by large-scale dust structures in the host galaxies. If Sevfert 2s are obscured Sevfert Is, then the obscuration must occur on smaller scales than those probed by HST.

  13. Main-sequence magnetic CP stars: II. Physical parameters and chemical composition of the atmosphere

    NASA Astrophysics Data System (ADS)

    Romanyuk, I. I.

    2007-03-01

    This paper continues a series of reviews dedicated to magnetic CP stars. The occurrence frequency of CP stars among B5 F0-type main-sequence stars is shown to be equal to about 15 20%. The problems of identification and classification of these objects are addressed. We prefer the classification of Preston, which subdivides chemically peculiar stars into the following groups: Am, λ Boo, Ap/Bp, Hg-Mn, He-weak, and He-strong stars. The main characteristic features of objects of each group are briefly analyzed. The rotation velocities of CP stars are shown to be about three times lower than those of normal stars of the same spectral types (except for λ Boo and He-strong objects). The rotation periods of CP stars range from 0.5 to 100 days, however, there is also a small group of objects with especially long (up to several tens of years) variability periods. All kinds of peculiar stars can be found in visual binaries, with Am-and Hg-Mn-type stars occurring mostly in short-period binaries with P < 10 days, and the binary rate of these stars is close to normal. The percentage of binaries among magnetic stars (20%) is lower than among normal stars. A rather large fraction of CP1-and CP2-type stars was found to occur in young clusters (with ages smaller than 107 years). Photometric and spectral variability of peculiar stars of various types is discussed, and it is shown that only objects possessing magnetic fields exhibit light and spectral variations. The chemical composition of the atmospheres of CP stars of various types is considered. The abundances of various elements are usually determined by comparing the line profiles in the observed spectrum with those of the synthetic spectra computed for various model atmospheres. Different mechanisms are shown to contribute to chemical inhomogeneity at the star’s surface, and the hypothesis of selective diffusion of atoms in a stable atmosphere is developed. Attention is also paid to the problems of the determination of local chemical composition including the stratification of elements. Some of the coolest SrCrEu peculiar stars are found to exhibit fast light variations with periods ranging from 6 to 15 min. These variations are unassociated with rotation, but are due to nonradial pulsations. The final part of the the review considers the fundamental parameters of CP stars. The effective temperatures, luminosities, radii, and masses of these objects are shown to agree with the corresponding physical parameters of normal main-sequence stars of the same spectral types.

  14. New T Tauri stars in Chamaeleon I and Chamaeleon II

    NASA Technical Reports Server (NTRS)

    Hartigan, Patrick

    1993-01-01

    A new objective prism survey of the entire Chamaeleon I dark cloud and 2/3 of the Chamaeleon II cloud has uncovered 26 new H-alpha emission line objects that were missed by previous H-alpha plate surveys. The new H-alpha emission line objects have similar IR colors and spatial distributions to the known T Tauri stars in these dark clouds, and could represent the very low mass end of the stellar population in these clouds or an older, less active component to the usual classical T Tauri star population. The new H-alpha survey identified 70 percent of the total known Young Stellar Objects (YSOs) in Cha I, compared with 35 percent for IRAS, and 25 percent from the Einstein X-ray survey. Ten of the new objects are weak-lined stars, with H-alpha equivalent widths less than 10 A. Weak-lined T Tauri stars make up about half of the total population of young stars in the Chamaeleon I cloud, a proportion similar to the Taurus-Auriga cloud. Presented are coordinates, finding charts, and optical and IR photometry of the new emission-line objects.

  15. The Unevenly Distributed Nearest Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Bihain, Gabriel; Scholz, Ralf-Dieter

    2016-08-01

    To address the questions of how many brown dwarfs there are in the Milky Way, how do these objects relate to star formation, and whether the brown dwarf formation rate was different in the past, the star-to-brown dwarf number ratio can be considered. While main sequence stars are well known components of the solar neighborhood, lower mass, substellar objects increasingly add to the census of the nearest objects. The sky projection of the known objects at <6.5 pc shows that stars present a uniform distribution and brown dwarfs a non-uniform distribution, with about four times more brown dwarfs behind than ahead of the Sun relative to the direction of rotation of the Galaxy. Assuming that substellar objects distribute uniformly, their observed configuration has a probability of 0.1 %. The helio- and geocentricity of the configuration suggests that it probably results from an observational bias, which if compensated for by future discoveries, would bring the star-to-brown dwarf ratio in agreement with the average ratio found in star forming regions.

  16. International Ultraviolet Explorer (IUE) ultraviolet spectral atlas of selected astronomical objects

    NASA Technical Reports Server (NTRS)

    Wu, Chi-Chao; Reichert, Gail A.; Ake, Thomas B.; Boggess, Albert; Holm, Albert V.; Imhoff, Catherine L.; Kondo, Yoji; Mead, Jaylee M.; Shore, Steven N.

    1992-01-01

    The IUE Ultraviolet Spectral Atlas of Selected Astronomical Objects (or 'the Atlas'), is based on the data that were available in the IUE archive in 1986, and is intended to be a quick reference for the ultraviolet spectra of many categories of astronomical objects. It shows reflected sunlight from the Moon, planets, and asteroids, and also shows emission from comets. Comprehensive compilations of UV spectra for main sequence, subgiant, giant, bright giant, and supergiant stars are published elsewhere. This Atlas contains the spectra for objects occupying other areas of the Hertzsprung-Russell diagram: pre-main sequence stars, chemically peculiar stars, pulsating variables, subluminous stars, and Wolf-Rayet stars. This Atlas also presents phenomena such as the chromospheric and transition region emissions from late-type stars; composite spectra of stars, gas streams, accretion disks and gas envelopes of binary systems; the behavior of gas ejecta shortly after the outburst of novac and supernovac; and the H II regions, planetary nebulae, and supernova remnants. Population 2 stars, globular clusters, and luminous stars in the Magellanic Clouds, M31, and M33, are also included in this publication. Finally, the Atlas gives the ultraviolet spectra of galaxies of different Hubble types and of active galaxies.

  17. Variable extinction in HD 45677 and the evolution of dust grains in pre-main-sequence disks

    NASA Technical Reports Server (NTRS)

    Sitko, Michael L.; Halbedel, Elaine M.; Lawrence, Geoffrey F.; Smith, J. Allyn; Yanow, Ken

    1994-01-01

    Changes in the UV extinction and IR emission were sought in the Herbig Ae/Be star candidate HD 45677 (= FS CMa) by comparing UV, optical, and IR observations made approximately 10 yr apart. HD 45677 varied significantly, becoming more than 50% brighter in the UV and optical than it was a decade ago. A comparison of the observations between epochs indicates that if the variations are due to changes in dust obscuration, the dust acts as a gray absorber into the near-IR and must be depleted in grains smaller than 1 micron. This is similar to the results obtained on the circumstellar disks of stars like Vega and Beta Pic, and suggests that radiation pressure may be responsible for the small-grain depletion. In addition, the total IR flux seems to have declined, indicating a decrease in the total mass of the dust envelope that contributes to the IR emission in this part of the spectrum. Due to the anomalous nature of the extinction, the use of normal extinction curves to deredden the spectral energy distributions of stars with circumstellar dust may lead to significant errors and should be used with great caution.

  18. Obscured and powerful AGN and starburst activities at z ~ 3.5

    NASA Astrophysics Data System (ADS)

    Polletta, M.; Omont, A.; Berta, S.; Bergeron, J.; Stalin, C. S.; Petitjean, P.; Giorgetti, M.; Trinchieri, G.; Srianand, R.; McCracken, H. J.; Pei, Y.; Dannerbauer, H.

    2008-12-01

    Aims: Short phases of coeval powerful starburst and AGN activity during the lifetimes of the most massive galaxies are predicted by various models of galaxy formation and evolution. In spite of their recurrence and high luminosity, such events are rarely observed. Finding such systems, understanding their nature, and constraining their number density can provide key constraints to galaxy evolutionary models and insights into the interplay between starburst and AGN activities. Methods: We report the discovery of two sources at z=3.867 and z=3.427 that exhibit both powerful starburst and AGN activities. They benefit from multi-wavelength data from radio to X rays from the CFHTLS-D1/SWIRE/XMDS surveys. Follow-up optical and near-infrared spectroscopy, and millimeter IRAM/MAMBO observations are also available. We performed a multi-wavelength analysis of their spectral energy distributions with the aim of understanding the origin of their emission and constraining their luminosities. A comparison with other composite systems at similar redshifts from the literature is also presented. Results: The AGN and starburst bolometric luminosities are 1013 L⊙. The AGN emission dominates at X ray, optical, mid-infrared wavelengths, and probably also in the radio. The starburst emission dominates in the far-infrared. The estimated star formation rates range from 500 to 3000 M⊙/yr. The AGN near-infrared and X ray emissions are heavily obscured in both sources with an estimated dust extinction {A_V} ≥ 4, and Compton-thick gas column densities. The two sources are the most obscured and most luminous AGNs detected at millimeter wavelengths currently known. Conclusions: The sources presented in this work are heavily obscured QSOs, but their properties are not fully explained by the standard AGN unification model. In one source, the ultraviolet and optical spectra suggest the presence of outflowing gas and shocks, and both sources show emission from hot dust, most likely in the vicinity of the nucleus. Evidence of moderate, AGN-driven radio activity is also found in both sources. Based on the estimated stellar and black hole masses, the two sources lie on the local M_BH{-}M_bulge relation. To remain on this relation as they evolve, their star formation rate has to decrease or stop. Our results support evolutionary models that invoke radio feedback such as the star formation quenching mechanism, and suggest that such a mechanism might play a major role also in powerful AGNs. This paper makes use of observations collected at the European Southern Observatory, Chile, ESO program No. 079.A-0522(A), and at the IRAM 30 m-Telescope. IRAM is funded by the Centre National de la Recherche Scientifique (France), the Max-Planck Gesellschaft (Germany), and the Instituto Geografico Nacional (Spain). Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS.

  19. The RMS survey: near-IR spectroscopy of massive young stellar objects

    NASA Astrophysics Data System (ADS)

    Cooper, H. D. B.; Lumsden, S. L.; Oudmaijer, R. D.; Hoare, M. G.; Clarke, A. J.; Urquhart, J. S.; Mottram, J. C.; Moore, T. J. T.; Davies, B.

    2013-04-01

    Near-infrared H- and K-band spectra are presented for 247 objects, selected from the Red MSX Source (RMS) survey as potential young stellar objects (YSOs). 195 (˜80 per cent) of the targets are YSOs, of which 131 are massive YSOs (LBOL > 5 × 103 L⊙, M > 8 M⊙). This is the largest spectroscopic study of massive YSOs to date, providing a valuable resource for the study of massive star formation. In this paper, we present our exploratory analysis of the data. The YSOs observed have a wide range of embeddedness (2.7 < AV < 114), demonstrating that this study covers minimally obscured objects right through to very red, dusty sources. Almost all YSOs show some evidence for emission lines, though there is a wide variety of observed properties. The most commonly detected lines are Brγ, H2, fluorescent Fe II, CO bandhead, [Fe II] and He I 2-1 1S-1P, in order of frequency of occurrence. In total, ˜40 per cent of the YSOs display either fluorescent Fe II 1.6878 μm or CO bandhead emission (or both), indicative of a circumstellar disc; however, no correlation of the strength of these lines with bolometric luminosity was found. We also find that ˜60 per cent of the sources exhibit [Fe II] or H2 emission, indicating the presence of an outflow. Three quarters of all sources have Brγ in emission. A good correlation with bolometric luminosity was observed for both the Brγ and H2 emission line strengths, covering 1 < LBOL < 3.5 × 105 L⊙. This suggests that the emission mechanism for these lines is the same for low-, intermediate- and high-mass YSOs, i.e. high-mass YSOs appear to resemble scaled-up versions of low-mass YSOs.

  20. THE EXTREMELY RED HOST GALAXY OF GRB 080207

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, Leslie; Cresci, Giovanni; Palazzi, Eliana

    2011-08-01

    We present optical, near-infrared, and Spitzer IRAC and MIPS observations of the host galaxy of the dark Swift gamma-ray burst GRB 080207. The host is faint, with extremely red optical-infrared colors (R - K = 6.3, 24 {mu}m/R-band flux {approx}1000) making it an extremely red object (ERO) and a dust-obscured galaxy (DOG). The spectral energy distribution (SED) shows the clear signature of the 1.6 {mu}m photometric 'bump', typical of evolved stellar populations. We use this bump to establish the photometric redshift z{sub phot} as 2.2{sup +0.2}{sub -0.3}, using a vast library of SED templates, including M 82. The star formationmore » rate (SFR) inferred from the SED fitting is {approx}119 M{sub sun} yr{sup -1}, the stellar mass 3 x 10{sup 11} M{sub sun}, and A{sub V} extinction from 1 to 2 mag. The ERO and DOG nature of the host galaxy of the dark GRB 080207 may be emblematic of a distinct class of dark GRB hosts, with high SFRs, evolved and metal-rich stellar populations, and significant dust extinction within the host galaxy.« less

  1. The Early Spectra of Eta Carinae 1892 to 1941 and the Onset of its High Excitation Emission Spectrum

    NASA Astrophysics Data System (ADS)

    Humphreys, Roberta M.; Davidson, Kris; Koppelman, Michael

    2008-04-01

    The observed behavior of η Car from 1860 to 1940 has not been considered in most recent accounts, nor has it been explained in any quantitative model. We have used modern digital processing techniques to examine Harvard objective-prism spectra made from 1892 to 1941. Relatively high excitation He I λ4471 and [Fe III] λ4658 emission, conspicuous today, were weak and perhaps absent throughout those years. Feast et al. noted this qualitative fact for other pre-1920 spectra, but we quantify it and extend it to a time only three years before Gaviola's first observations of the high-excitation features. Evidently the supply of helium-ionizing photons (λ < 504 Å) grew rapidly between 1941 and 1944. The apparent scarcity of such far-UV radiation before 1944 is difficult to explain in models that employ a hot massive secondary star, because no feasible dense wind or obscuration by dust would have hidden the photoionization caused by the proposed companion during most of its orbital period. We also discuss the qualitative near-constancy of the spectrum from 1900 to 1940, and η Car's photometric and spectroscopic transition between 1940 and 1953.

  2. Extreme magnification of an individual star at redshift 1.5 by a galaxy-cluster lens

    NASA Astrophysics Data System (ADS)

    Kelly, Patrick L.; Diego, Jose M.; Rodney, Steven; Kaiser, Nick; Broadhurst, Tom; Zitrin, Adi; Treu, Tommaso; Pérez-González, Pablo G.; Morishita, Takahiro; Jauzac, Mathilde; Selsing, Jonatan; Oguri, Masamune; Pueyo, Laurent; Ross, Timothy W.; Filippenko, Alexei V.; Smith, Nathan; Hjorth, Jens; Cenko, S. Bradley; Wang, Xin; Howell, D. Andrew; Richard, Johan; Frye, Brenda L.; Jha, Saurabh W.; Foley, Ryan J.; Norman, Colin; Bradac, Marusa; Zheng, Weikang; Brammer, Gabriel; Benito, Alberto Molino; Cava, Antonio; Christensen, Lise; de Mink, Selma E.; Graur, Or; Grillo, Claudio; Kawamata, Ryota; Kneib, Jean-Paul; Matheson, Thomas; McCully, Curtis; Nonino, Mario; Pérez-Fournon, Ismael; Riess, Adam G.; Rosati, Piero; Schmidt, Kasper Borello; Sharon, Keren; Weiner, Benjamin J.

    2018-04-01

    Galaxy-cluster gravitational lenses can magnify background galaxies by a total factor of up to 50. Here we report an image of an individual star at redshift z = 1.49 (dubbed MACS J1149 Lensed Star 1) magnified by more than ×2,000. A separate image, detected briefly 0.26″ from Lensed Star 1, is probably a counterimage of the first star demagnified for multiple years by an object of ≳3 solar masses in the cluster. For reasonable assumptions about the lensing system, microlensing fluctuations in the stars' light curves can yield evidence about the mass function of intracluster stars and compact objects, including binary fractions and specific stellar evolution and supernova models. Dark-matter subhaloes or massive compact objects may help to account for the two images' long-term brightness ratio.

  3. The Asymmetric Nebula Surrounding the Extreme Red Supergiant VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Smith, Nathan; Humphreys, Roberta M.; Davidson, Kris; Gehrz, Robert D.; Schuster, M. T.; Krautter, Joachim

    2001-02-01

    We present HST/WFPC2 images plus ground-based infrared images and photometry of the very luminous OH/IR star VY Canis Majoris. Our WFPC2 data show a complex distribution of knots and filamentary arcs in the asymmetric reflection nebula around the obscured central star. The reflection arcs may result from multiple, asymmetric ejection episodes due to localized events on VY CMa's surface. Such events probably involve magnetic fields and convection, by analogy with solar activity. Surface photometry indicates that the star may have experienced enhanced mass loss over the past 1000 yr. We also demonstrate that the apparent asymmetry of the nebula results from a combination of high extinction and backscattering by dust grains. Thermal-infrared images reveal a more symmetric distribution, elongated along a nearly east-west direction. VY CMa probably has a flattened disklike distribution of dust with a northeast-southwest polar axis and may be experiencing activity analogous to solar prominences. The presence of an axis of symmetry raises interesting questions for a star the size of Saturn's orbit. Magnetic fields and surface activity may play an important role in VY CMa's mass-loss history. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  4. A Transient Transit Signature Associated with the Young Star RIK-210

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, Trevor J.; Hillenbrand, Lynne A.; Howard, Andrew W.

    We find transient transit-like dimming events within the K2 time series photometry of the young star RIK-210 in the Upper Scorpius OB association. These dimming events are variable in depth, duration, and morphology. High spatial resolution imaging revealed that the star is single and radial velocity monitoring indicated that the dimming events cannot be due to an eclipsing stellar or brown dwarf companion. Archival and follow-up photometry suggest the dimming events are transient in nature. The variable morphology of the dimming events suggests they are not due to a single spherical body. The ingress of each dimming event is alwaysmore » shallower than egress, as one would expect for an orbiting body with a leading tail. The dimming events are periodic and synchronous with the stellar rotation. However, we argue it is unlikely the dimming events could be attributed to anything on the stellar surface based on the observed depths and durations. Variable obscuration by a protoplanetary disk is unlikely on the basis that the star is not actively accreting and lacks the infrared excess associated with an inner disk. Rather, we explore the possibilities that the dimming events are due to magnetospheric clouds, a transiting protoplanet surrounded by circumplanetary dust and debris, eccentric orbiting bodies undergoing periodic tidal disruption, or an extended field of dust or debris near the corotation radius.« less

  5. Irradiated interfaces in the Ara OB1, Carina, Eagle Nebula, and Cyg OB2 massive star formation regions

    DOE PAGES

    Hartigan, P.; Palmer, J.; Cleeves, L. I.

    2012-09-05

    Regions of massive star formation offer some of the best and most easily-observed examples of radiation hydrodynamics. Boundaries where fully-ionized H II regions transition to neutral/molecular photodissociation regions (PDRs) are of particular interest because marked temperature and density contrasts across the boundaries lead to evaporative flows and fluid dynamical instabilities that can evolve into spectacular pillar-like structures. Furthermore, when detached from their parent clouds, pillars become ionized globules that often harbor one or more young stars. H2 molecules at the interface between a PDR and an H II region absorb ultraviolet light from massive stars, and the resulting fluoresced infraredmore » emission lines are an ideal way to trace this boundary independent of obscuring dust. This paper presents H2 images of four regions of massive star formation that illustrate different types of PDR boundaries. The Ara OB1 star formation region contains a striking long wall that has several wavy structures which are present in H2, but the emission is not particularly bright because the ambient UV fluxes are relatively low. In contrast, the Carina star formation region shows strong H2 fluorescence both along curved walls and at the edges of spectacular pillars that in some cases have become detached from their parent clouds. The less-spectacular but more well-known Eagle Nebula has two regions that have strong fluorescence in addition to its pillars. And while somewhat older than the other regions, Cyg OB2 has the highest number of massive stars of the regions surveyed and contains many isolated, fluoresced globules that have head–tail morphologies which point towards the sources of ionizing radiation. Our images provide a collection of potential astrophysical analogs that may relate to ablated interfaces observed in laser experiments of radiation hydrodynamics.« less

  6. Massive open star clusters using the VVV survey. II. Discovery of six clusters with Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Chené, A.-N.; Borissova, J.; Bonatto, C.; Majaess, D. J.; Baume, G.; Clarke, J. R. A.; Kurtev, R.; Schnurr, O.; Bouret, J.-C.; Catelan, M.; Emerson, J. P.; Feinstein, C.; Geisler, D.; de Grijs, R.; Hervé, A.; Ivanov, V. D.; Kumar, M. S. N.; Lucas, P.; Mahy, L.; Martins, F.; Mauro, F.; Minniti, D.; Moni Bidin, C.

    2013-01-01

    Context. The ESO Public Survey "VISTA Variables in the Vía Láctea" (VVV) provides deep multi-epoch infrared observations for an unprecedented 562 sq. degrees of the Galactic bulge, and adjacent regions of the disk. Nearly 150 new open clusters and cluster candidates have been discovered in this survey. Aims: This is the second in a series of papers about young, massive open clusters observed using the VVV survey. We present the first study of six recently discovered clusters. These clusters contain at least one newly discovered Wolf-Rayet (WR) star. Methods: Following the methodology presented in the first paper of the series, wide-field, deep JHKs VVV observations, combined with new infrared spectroscopy, are employed to constrain fundamental parameters for a subset of clusters. Results: We find that the six studied stellar groups are real young (2-7 Myr) and massive (between 0.8 and 2.2 × 103 M⊙) clusters. They are highly obscured (AV ~ 5-24 mag) and compact (1-2 pc). In addition to WR stars, two of the six clusters also contain at least one red supergiant star, and one of these two clusters also contains a blue supergiant. We claim the discovery of 8 new WR stars, and 3 stars showing WR-like emission lines which could be classified WR or OIf. Preliminary analysis provides initial masses of ~30-50 M⊙ for the WR stars. Finally, we discuss the spiral structure of the Galaxy using the six new clusters as tracers, together with the previously studied VVV clusters. Based on observations with ISAAC, VLT, ESO (programme 087.D-0341A), New Technology Telescope at ESO's La Silla Observatory (programme 087.D-0490A) and with the Clay telescope at the Las Campanas Observatory (programme CN2011A-086). Also based on data from the VVV survey (programme 172.B-2002).

  7. Observations of two peculiar emission objects in the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Kafatos, M.; Michalitsianos, A. G.; Allen, D. A.; Stencel, R. E.

    1983-01-01

    Ultraviolet and visual wavelength spectra were obtained of two peculiar emission objects, Henize S63 and Sanduleak's star in the Large Magellanic Cloud. Previously not observed in the near- or far-ultraviolet, both objects exhibit strong permitted and semiforbidden line emissions. Estimates based on the absolute continuum flux of the hot companion star in Hen S63 indicate that it rivals the luminosity of the carbon star primary. The emission-line profile structure in both objects does not suggest Wolf-Rayet type emission. Carbon in Sanduleak's star (LMC anonymous) is conspicuously absent, while N V, semiforbidden N IV, and semiforbidden N III dominate the UV emission-line spectrum. Nitrogen is overabundant with respect to carbon and oxygen in both objects. The large overabundance of nitrogen in Sanduleak's star suggests evidence for CNO processes material similar to that seen in Nu Car.

  8. Disk Detective Follow-Up Program

    NASA Astrophysics Data System (ADS)

    Kuchner, Marc

    As new data on exoplanets and young stellar associations arrive, we will want to know: which of these planetary systems and young stars have circumstellar disks? The vast allsky database of 747 million infrared sources from NASA's Wide-field Infrared Survey Explorer (WISE) mission can supply answers. WISE is a discovery tool intended to find targets for JWST, sensitive enough to detect circumstellar disks as far away as 3000 light years. The vast WISE archive already serves us as a roadmap to guide exoplanet searches, provide information on disk properties as new planets are discovered, and teach us about the many hotly debated connections between disks and exoplanets. However, because of the challenges of utilizing the WISE data, this resource remains underutilized as a tool for disk and planet hunters. Attempts to use WISE to find disks around Kepler planet hosts were nearly scuttled by confusion noise. Moreover, since most of the stars with WISE infrared excesses were too red for Hipparcos photometry, most of the disks sensed by WISE remain obscure, orbiting stars unlisted in the usual star databases. To remedy the confusion noise problem, we have begun a massive project to scour the WISE data archive for new circumstellar disks. The Disk Detective project (Kuchner et al. 2016) engages layperson volunteers to examine images from WISE, NASA's Two Micron All-Sky Survey (2MASS) and optical surveys to search for new circumstellar disk candidates via the citizen science website DiskDetective.org. Fueled by the efforts of > 28,000 citizen scientists, Disk Detective is the largest survey for debris disks with WISE. It has already uncovered 4000 disk candidates worthy of follow-up. However, most host stars of the new Disk Detective disk candidates have no known spectral type or distance, especially those with red colors: K and M stars and Young Stellar Objects. Others require further observations to check for false positives. The Disk Detective project is supported by NASA ADAP funds, which are not allowed to fund a major observational follow-up campaign. So here we propose a campaign of follow-up observations that will turn the unique, growing catalog of Disk Detective disk candidates into a reliable, publically-available treasure trove of new data on nearby disks in time to complement the upcoming new catalogs of planet hosts and stellar moving groups. We will use automated adaptive optics (AO) instruments to image disk candidates and check them for contamination from background objects. We will correlate our discoveries with the vast Gaia and LAMOST surveys to study disks in associations with other young stars. We will follow up disk candidates spectroscopically to remove more false positives. We will search for cold dust around our disk candidates with the James Clerk Maxwell Telescope (JCMT) and analyze data from the Gemini Planet Imager (GPI) to image young, nearby disk candidates. This follow up work will realize the full potential of the WISE mission as a roadmap to future exoplanet discoveries. It will yield contamination rates that will be crucial for interpreting all disk searches done with WISE. Our search will yield 2000 well-vetted nearby disks, including 60 that the Gaia mission will likely find to contain giant planets. This crucial follow-up work should be done now to take full advantage of Gaia during JWST's planned lifetime.

  9. Infrared astronomy research and high altitude observations

    NASA Technical Reports Server (NTRS)

    Jones, B.; Stein, W. A.; Willner, S. P.; Soifer, B. T.

    1984-01-01

    Highlights are presented of studies of the emission mechanisms in the 4 to 8 micron region of the spectrum using a circular variable filter wheel spectrometer with a PbSnTe photovoltaic detector. Investigations covered include the spectroscopy of planets, stellar atmospheres, highly obscured objects in molecular clouds, planetary nebulae, H2 regions, and extragalactic objects.

  10. Large granulation cells on the surface of the giant star π1 Gruis

    NASA Astrophysics Data System (ADS)

    Paladini, C.; Baron, F.; Jorissen, A.; Le Bouquin, J.-B.; Freytag, B.; van Eck, S.; Wittkowski, M.; Hron, J.; Chiavassa, A.; Berger, J.-P.; Siopis, C.; Mayer, A.; Sadowski, G.; Kravchenko, K.; Shetye, S.; Kerschbaum, F.; Kluska, J.; Ramstedt, S.

    2018-01-01

    Convection plays a major part in many astrophysical processes, including energy transport, pulsation, dynamos and winds on evolved stars, in dust clouds and on brown dwarfs. Most of our knowledge about stellar convection has come from studying the Sun: about two million convective cells with typical sizes of around 2,000 kilometres across are present on the surface of the Sun—a phenomenon known as granulation. But on the surfaces of giant and supergiant stars there should be only a few large (several tens of thousands of times larger than those on the Sun) convective cells, owing to low surface gravity. Deriving the characteristic properties of convection (such as granule size and contrast) for the most evolved giant and supergiant stars is challenging because their photospheres are obscured by dust, which partially masks the convective patterns. These properties can be inferred from geometric model fitting, but this indirect method does not provide information about the physical origin of the convective cells. Here we report interferometric images of the surface of the evolved giant star π1 Gruis, of spectral type S5,7. Our images show a nearly circular, dust-free atmosphere, which is very compact and only weakly affected by molecular opacity. We find that the stellar surface has a complex convective pattern with an average intensity contrast of 12 per cent, which increases towards shorter wavelengths. We derive a characteristic horizontal granule size of about 1.2 × 1011 metres, which corresponds to 27 per cent of the diameter of the star. Our measurements fall along the scaling relations between granule size, effective temperature and surface gravity that are predicted by simulations of stellar surface convection.

  11. Young star clusters in nearby molecular clouds

    NASA Astrophysics Data System (ADS)

    Getman, K. V.; Kuhn, M. A.; Feigelson, E. D.; Broos, P. S.; Bate, M. R.; Garmire, G. P.

    2018-06-01

    The SFiNCs (Star Formation in Nearby Clouds) project is an X-ray/infrared study of the young stellar populations in 22 star-forming regions with distances ≲ 1 kpc designed to extend our earlier MYStIX (Massive Young Star-Forming Complex Study in Infrared and X-ray) survey of more distant clusters. Our central goal is to give empirical constraints on cluster formation mechanisms. Using parametric mixture models applied homogeneously to the catalogue of SFiNCs young stars, we identify 52 SFiNCs clusters and 19 unclustered stellar structures. The procedure gives cluster properties including location, population, morphology, association with molecular clouds, absorption, age (AgeJX), and infrared spectral energy distribution (SED) slope. Absorption, SED slope, and AgeJX are age indicators. SFiNCs clusters are examined individually, and collectively with MYStIX clusters, to give the following results. (1) SFiNCs is dominated by smaller, younger, and more heavily obscured clusters than MYStIX. (2) SFiNCs cloud-associated clusters have the high ellipticities aligned with their host molecular filaments indicating morphology inherited from their parental clouds. (3) The effect of cluster expansion is evident from the radius-age, radius-absorption, and radius-SED correlations. Core radii increase dramatically from ˜0.08 to ˜0.9 pc over the age range 1-3.5 Myr. Inferred gas removal time-scales are longer than 1 Myr. (4) Rich, spatially distributed stellar populations are present in SFiNCs clouds representing early generations of star formation. An appendix compares the performance of the mixture models and non-parametric minimum spanning tree to identify clusters. This work is a foundation for future SFiNCs/MYStIX studies including disc longevity, age gradients, and dynamical modelling.

  12. Hard X-ray emission of the luminous infrared galaxy NGC 6240 as observed by NuSTAR

    NASA Astrophysics Data System (ADS)

    Puccetti, S.; Comastri, A.; Bauer, F. E.; Brandt, W. N.; Fiore, F.; Harrison, F. A.; Luo, B.; Stern, D.; Urry, C. M.; Alexander, D. M.; Annuar, A.; Arévalo, P.; Baloković, M.; Boggs, S. E.; Brightman, M.; Christensen, F. E.; Craig, W. W.; Gandhi, P.; Hailey, C. J.; Koss, M. J.; La Massa, S.; Marinucci, A.; Ricci, C.; Walton, D. J.; Zappacosta, L.; Zhang, W.

    2016-01-01

    We present a broadband (~0.3-70 keV) spectral and temporal analysis of NuSTAR observations of the luminous infrared galaxy NGC 6240 combined with archival Chandra, XMM-Newton, and BeppoSAX data. NGC 6240 is a galaxy in a relatively early merger state with two distinct nuclei separated by ~1.̋5. Previous Chandra observations resolved the two nuclei and showed that they are both active and obscured by Compton-thick material. Although they cannot be resolved by NuSTAR, we were able to clearly detect, for the first time, both the primary and the reflection continuum components thanks to the unprecedented quality of the NuSTAR data at energies >10 keV. The NuSTAR hard X-ray spectrum is dominated by the primary continuum piercing through an absorbing column density which is mildly optically thick to Compton scattering (τ ≃ 1.2, NH ~ 1.5 × 1024 cm-2). We detect moderately hard X-ray (>10 keV) flux variability up to 20% on short (15-20 ks) timescales. The amplitude of the variability is largest at ~30 keV and is likely to originate from the primary continuum of the southern nucleus. Nevertheless, the mean hard X-ray flux on longer timescales (years) is relatively constant. Moreover, the two nuclei remain Compton-thick, although we find evidence of variability in the material along the line of sight with column densities NH ≤ 2 × 1023 cm-2 over long (~3-15 yr) timescales. The observed X-ray emission in the NuSTAR energy range is fully consistent with the sum of the best-fit models of the spatially resolved Chandra spectra of the two nuclei.

  13. Eta Carinae's Thermal X-Ray Tail Measured with XMM-Newton and NuStar

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Kenji; Corcoran, Michael F.; Gull, Theodore R.; Takahashi, Hiromitsu; Grefenstette, Brian; Yuasa, Takayuki; Stuhlinger, Martin; Russell, Christopher; Moffat, Anthony F. J.; Madura, Thomas

    2016-01-01

    The evolved, massive highly eccentric binary system, Car, underwent a periastron passage in the summer of 2014. We obtained two coordinated X-ray observations with XMM-Newton and NuSTAR during the elevated X-ray flux state and just before the X-ray minimum flux state around this passage. These NuSTAR observations clearly detected X-ray emission associated with eta Car extending up to approx. 50 keV for the first time. The NuSTAR spectrum above 10 keV can be fit with the bremsstrahlung tail from a kT approx. 6 keV plasma. This temperature is delta kT 2 keV higher than those measured from the iron K emission line complex, if the shocked gas is in collisional ionization equilibrium. This result may suggest that the companion star's pre-shock wind velocity is underestimated. The NuSTAR observation near the X-ray minimum state showed a gradual decline in the X-ray emission by 40% at energies above 5 keV in a day, the largest rate of change of the X-ray flux yet observed in individual eta Car observations. The column density to the hardest emission component, N(sub H) approx. 10(exp24) H cm(exp-2), marked one of the highest values ever observed for eta Car, strongly suggesting the increased obscuration of the wind-wind colliding X-ray emission by the thick primary stellar wind prior to superior conjunction. Neither observation detected the power-law component in the extremely hard band that INTEGRAL and Suzaku observed prior to 2011. The power-law source might have faded before these observations.

  14. Merger driven star-formation activity in Cl J1449+0856 at z=1.99 as seen by ALMA and JVLA

    NASA Astrophysics Data System (ADS)

    Coogan, R. T.; Daddi, E.; Sargent, M. T.; Strazzullo, V.; Valentino, F.; Gobat, R.; Magdis, G.; Bethermin, M.; Pannella, M.; Onodera, M.; Liu, D.; Cimatti, A.; Dannerbauer, H.; Carollo, M.; Renzini, A.; Tremou, E.

    2018-06-01

    We use ALMA and JVLA observations of the galaxy cluster Cl J1449+0856 at z=1.99, in order to study how dust-obscured star-formation, ISM content and AGN activity are linked to environment and galaxy interactions during the crucial phase of high-z cluster assembly. We present detections of multiple transitions of 12CO, as well as dust continuum emission detections from 11 galaxies in the core of Cl J1449+0856. We measure the gas excitation properties, star-formation rates, gas consumption timescales and gas-to-stellar mass ratios for the galaxies. We find evidence for a large fraction of galaxies with highly-excited molecular gas, contributing >50% to the total SFR in the cluster core. We compare these results with expectations for field galaxies, and conclude that environmental influences have strongly enhanced the fraction of excited galaxies in this cluster. We find a dearth of molecular gas in the galaxies' gas reservoirs, implying a high star-formation efficiency (SFE) in the cluster core, and find short gas depletion timescales τdep<0.1-0.4 Gyrs for all galaxies. Interestingly, we do not see evidence for increased specific star-formation rates (sSFRs) in the cluster galaxies, despite their high SFEs and gas excitations. We find evidence for a large number of mergers in the cluster core, contributing a large fraction of the core's total star-formation compared with expectations in the field. We conclude that the environmental impact on the galaxy excitations is linked to the high rate of galaxy mergers, interactions and active galactic nuclei in the cluster core.

  15. Large granulation cells on the surface of the giant star π1 Gruis.

    PubMed

    Paladini, C; Baron, F; Jorissen, A; Le Bouquin, J-B; Freytag, B; Van Eck, S; Wittkowski, M; Hron, J; Chiavassa, A; Berger, J-P; Siopis, C; Mayer, A; Sadowski, G; Kravchenko, K; Shetye, S; Kerschbaum, F; Kluska, J; Ramstedt, S

    2018-01-18

    Convection plays a major part in many astrophysical processes, including energy transport, pulsation, dynamos and winds on evolved stars, in dust clouds and on brown dwarfs. Most of our knowledge about stellar convection has come from studying the Sun: about two million convective cells with typical sizes of around 2,000 kilometres across are present on the surface of the Sun-a phenomenon known as granulation. But on the surfaces of giant and supergiant stars there should be only a few large (several tens of thousands of times larger than those on the Sun) convective cells, owing to low surface gravity. Deriving the characteristic properties of convection (such as granule size and contrast) for the most evolved giant and supergiant stars is challenging because their photospheres are obscured by dust, which partially masks the convective patterns. These properties can be inferred from geometric model fitting, but this indirect method does not provide information about the physical origin of the convective cells. Here we report interferometric images of the surface of the evolved giant star π 1 Gruis, of spectral type S5,7. Our images show a nearly circular, dust-free atmosphere, which is very compact and only weakly affected by molecular opacity. We find that the stellar surface has a complex convective pattern with an average intensity contrast of 12 per cent, which increases towards shorter wavelengths. We derive a characteristic horizontal granule size of about 1.2 × 10 11 metres, which corresponds to 27 per cent of the diameter of the star. Our measurements fall along the scaling relations between granule size, effective temperature and surface gravity that are predicted by simulations of stellar surface convection.

  16. Constraining the initial conditions and final outcomes of accretion processes around young stars and supermassive black holes

    NASA Astrophysics Data System (ADS)

    Stone, Jordan M.

    2015-04-01

    In this thesis I discuss probes of small spatial scales around young stars and protostars and around the supermassive black hole at the galactic center. I begin by describing adaptive optics-fed infrared spectroscopic studies of nascent and newborn binary systems. Binary star formation is a significant mode of star formation that could be responsible for the production of a majority of the galactic stellar population. Better characterization of the binary formation mechanism is important for better understanding many facets of astronomy, from proper estimates of the content of unresolved populations, to stellar evolution and feedback, to planet formation. My work revealed episodic accretion onto the more massive component of the pre-main sequence binary system UY Aur. I also showed changes in the accretion onto the less massive component, revealing contradictory indications of the change in accretion rate when considering disk-based and shock-based tracers. I suggested two scenarios to explain the inconsistency. First, increased accretion should alter the disk structure, puffing it up. This change could obscure the accretion shock onto the central star if the disk is highly inclined. Second, if accretion through the disk is impeded before it makes it all the way onto the central star, then increased disk tracers of accretion would not be accompanied by increased shock tracers. In this case mass must be piling up at some radius in the disk, possibly supplying the material for planet formation or a future burst of accretion. My next project focused on characterizing the atmospheres of very low-mass companions to nearby young stars. Whether these objects form in an extension of the binary-star formation mechanism to very low masses or they form via a different process is an open question. Different accretion histories should result in different atmospheric composition, which can be constrained with spectroscopy. I showed that 3--4mum spectra of a sample of these objects with effective temperatures greater than 1500 K are similar to the spectra of older more massive brown dwarfs at the same temperature, in contrast to objects at 1000 K that exhibit distinct L-band SEDs. The oldest object in my sample of young companions, 50 My old CD-35 2722 B, appears redder than field dwarfs with similar spectral type based on 1--2.5mum spectra. This could indicate reduced cloud opacity compared to field dwarfs at the same temperature. I also present work to better understand the supermassive blackhole at the center of our Galaxy. Astrometric monitoring of stellar orbits about the black hole have been used to sketch the gravitational potential, revealing 4 x 106 [solar masses] within a radius of 40 AU. Further constraints on the gravitational potential, and the detection of post-Newtonian effects on the stellar orbits, will require improved astrometric precision. Currently confusion noise in the crowded central cluster limits astrometric precision. Increased spatial resolution can alleviate confusion noise. Dual field phase referencing on large-aperture infrared interferometers provides the sensitivity needed to observe the Galactic center, providing the fastest route to increased spatial resolution. I present simulations of dual-field phase referencing performance with the Keck Interferometer and with the VLTI GRAVITY instrument, to describe the potential contributions each could make to Galactic center stellar astrometry. I demonstrate that the near-future GRAVITY instrument at the VLTI will have a large impact on the ability to precisely track the paths of stars orbiting there, as long as a star with K-band apparent magnitude less than 20 exists within 70 milliarcseconds of the blackhole. Many of the stars orbiting the blackhole are in a post-main sequence wind phase. The wind from these stars is feeding an accretion flow falling onto the blackhole. This flow is radiatively inefficient, producing only 10-8 times the Eddington limit. Thus our relative proximity to the center of our own Galaxy, provides the opportunity to study a low-luminosity accretion mode that would be difficult or impossible to observe in more remote galaxies. Variable emission from the accretion flow arises from very deep within the flow and could be used to reveal the physics of the accretion process. Characterizing the variability is challenging because all wavelength regimes from radio through X-ray are affected by the process(es) that gives rise to the variations. I report observations of variability at wavelengths that are difficult or challenging to observe from the ground using the SPIRE instrument onboard the Herschel Space Observatory. My work provides the first constraints on the flux of the accretion flow at 250mum. Variations at 500, 350, and 250mum observed with Herschel exhibit typical amplitudes similar to the variations observed at 1300mum from the ground, but the amplitude distribution of flux variations observe with Herschel does not exhibit a tail to large amplitudes that is seen at 1300mum. This could suggest a connection between large-amplitude mm/submillimeter variations and X-ray activity, since no increased X-ray activity was observed during our Herschel monitoring.

  17. New View of Distant Galaxy Reveals Furious Star Formation

    NASA Astrophysics Data System (ADS)

    2007-12-01

    A furious rate of star formation discovered in a distant galaxy shows that galaxies in the early Universe developed either much faster or in a different way from what astronomers have thought. "This galaxy is forming stars at an incredible rate," said Wei-Hao Wang, an astronomer at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico. The galaxy, Wang said, is forming the equivalent of 4,000 Suns a year. This is a thousand times more violent than our own Milky Way Galaxy. Location of Distant Galaxy Visible-light, left (from HST) and Infrared, right, (from Spitzer) Images: Circles indicate location of GOODS 850-5. CREDIT: Wang et al., STScI, Spitzer, NASA, NRAO/AUI/NSF Click on image for high-resolution file (1 MB) The galaxy, called GOODS 850-5, is 12 billion light-years from Earth, and thus is seen as it was only about 1.5 billion years after the Big Bang. Wang and his colleagues observed it using the Smithsonian Astrophysical Observatory's Submillimeter Array (SMA) on Mauna Kea in Hawaii. Young stars in the galaxy were enshrouded in dust that was heated by the stars and radiated infrared light strongly. Because of the galaxy's great distance from Earth, the infrared light waves have been stretched out to submillimeter-length radio waves, which are seen by the SMA. The waves were stretched or "redshifted," as astronomers say, by the ongoing expansion of the Universe. "This evidence for prolific star formation is hidden by the dust from visible-light telescopes," Wang explained. The dust, in turn, was formed from heavy elements that had to be built up in the cores of earlier stars. This indicates, Wang said, that significant numbers of stars already had formed, then spewed those heavy elements into interstellar space through supernova explosions and stellar winds. "Seeing the radiation from this heated dust revealed star formation we could have found in no other way," Wang said. Similar dusty galaxies in the early Universe may contain most of the star formation at those times. "This means that future telescopes such as the Atacama Large Millimeter/submillimeter Array (ALMA) can reveal many more such galaxies and give us a much more complete picture of star formation in the early Universe," he added. Lennox Cowie of the University of Hawaii said, "We found out in the last decade that most of the recent star formation in the Universe occurs in large dusty galaxies, but we had always expected that early star formation would be dominated by smaller and less obscured galaxies. Now it seems that even at very early times it may be the same big dusty star formers that are the sites of most of the star formation. That's quite a surprise." Astronomers believe that large galaxies originally formed through mergers of smaller objects. Seeing a large galaxy such as GOODS 850-5 forming stars so rapidly at such an early time in the history of the Universe is a surprise. "Either the mergers that formed the galaxy happened much faster than we thought or some other process altogether produced the galaxy," Wang said. Wang and Cowie worked with Jennifer van Saders of Rutgers University and NRAO, Amy Barger of the University of Wisconsin-Madison, and Jonathan Williams of the University of Hawaii. The scientists published their findings in the December 1 edition of the Astrophysical Journal. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.The Submillimeter Array is an 8-element interferometer located atop Mauna Kea in Hawaii. It is a collaboration between the Smithsonian Astrophysical Observatory and the Institute of Astronomy and Astrophysics of the Academia Sinica of Taiwan.

  18. Infrared Extinction and Stellar Populations in the Milky Way Midplane

    NASA Astrophysics Data System (ADS)

    Zasowski, Gail; Majewski, S. R.; Benjamin, R. A.; Nidever, D. L.; Skrutskie, M. F.; Indebetouw, R.; Patterson, R. J.; Meade, M. R.; Whitney, B. A.; Babler, B.; Churchwell, E.; Watson, C.

    2012-01-01

    The primary laboratory for developing and testing models of galaxy formation, structure, and evolution is our own Milky Way, the closest large galaxy and the only one in which we can resolve large numbers of individual stars. The recent availability of extensive stellar surveys, particularly infrared ones, has enabled precise, contiguous measurement of large-scale Galactic properties, a major improvement over inferences based on selected, but scattered, sightlines. However, our ability to fully exploit the Milky Way as a galactic laboratory is severely hampered by the fact that its midplane and central bulge -- where most of the Galactic stellar mass lies -- is heavily obscured by interstellar dust. Therefore, proper consideration of the interstellar extinction is crucial. This thesis describes a new extinction-correction method (the RJCE method) that measures the foreground extinction towards each star and, in many cases, enables recovery of its intrinsic stellar type. We have demonstrated the RJCE Method's validity and used it to produce new, reliable extinction maps of the heavily-reddened Galactic midplane. Taking advantage of the recovered stellar type information, we have generated maps probing the extinction at different heliocentric distances, thus yielding information on the elusive three-dimensional distribution of the interstellar dust. We also performed a study of the interstellar extinction law itself which revealed variations previously undetected in the diffuse ISM and established constraints on models of ISM grain formation and evolution. Furthermore, we undertook a study of large-scale stellar structure in the inner Galaxy -- the bar(s), bulge(s), and inner spiral arms. We used observed and extinction-corrected infrared photometry to map the coherent stellar features in these heavily-obscured parts of the Galaxy, placing constraints on models of the central stellar mass distribution.

  19. The 15 273 Å diffuse interstellar band in the dark cloud Barnard 68

    NASA Astrophysics Data System (ADS)

    Elyajouri, Meriem; Cox, Nick L. J.; Lallement, Rosine

    2017-09-01

    High obscuration of background stars behind dark clouds precludes the detection of optical diffuse interstellar bands (DIBs) and hence our knowledge of DIB carriers in these environments. Taking advantage of the reduced obscuration of starlight in the near-infrared (NIR) we used one of the strongest NIR DIBs at 15 273 Å to probe the presence and properties of its carrier throughout the nearby interstellar dark cloud Barnard 68. We measured equivalent widths (EW) for different ranges of visual extinction AV, using VLT/KMOS H-band (1.46-1.85 μm) moderate-resolution (R 4000) spectra of 43 stars situated behind the cloud. To do so, we fitted the data with synthetic stellar spectra from the APOGEE project and TAPAS synthetic telluric transmissions appropriate for the observing site and time period. The results show an increase of DIB EW with increasing AV. However, the rate of increase is much flatter than expected from the EW-AV quasi-proportionality established for this DIB in the Galactic diffuse interstellar medium. Based on a simplified inversion assuming sphericity, it is found that the volume density of the DIB carrier is 2.7 and 7.9 times lower than this expected average value in the external and central regions of the cloud, which have nH≃ 0.4 and 3.5 × 105 cm-3, respectively. Further measurements with multiplex NIR spectrographs should allow detailed modeling of such an edge effect of this DIB and other bands and help clarify its actual origin. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 096.C-0931(A).

  20. Discovery of an Extremely Luminous Dust-obscured Galaxy Observed with SDSS, WISE, JCMT, and SMA

    NASA Astrophysics Data System (ADS)

    Toba, Yoshiki; Ueda, Junko; Lim, Chen-Fatt; Wang, Wei-Hao; Nagao, Tohru; Chang, Yu-Yen; Saito, Toshiki; Kawabe, Ryohei

    2018-04-01

    We present the discovery of an extremely luminous dust-obscured galaxy (DOG) at z spec = 3.703, WISE J101326.25+611220.1. This DOG is selected as a candidate of extremely luminous infrared (IR) galaxies based on the photometry from the Sloan Digital Sky Survey and Wide-field Infrared Survey Explorer. In order to derive its accurate IR luminosity, we perform follow-up observations at 450 and 850 μm using the Submillimetre Common User Bolometer Array 2 on the James Clerk Maxwell Telescope, and at 870 and 1300 μm using the Submillimeter Array, which enable us to pin down its IR Spectral Energy Distribution (SED). We perform SED fitting using 14 photometric data (0.4–1300 μm) and estimate its IR luminosity, L IR (8–1000 μm), to be {2.2}-1.0+1.5 ×1014 L ⊙, making it one of the most luminous IR galaxies in the universe. The energy contribution from an active galactic nucleus (AGN) to the IR luminosity is {94}-20+6%, which indicates that it is an AGN-dominated DOG. On the other hand, its stellar mass (M *) and star formation rate (SFR) are {log}({M}* /{M}ȯ ) = {11.2}-0.2+0.6 and {log}({SFR}/{M}ȯ {yr}}-1) = {3.1}-0.1+0.2, respectively, which means that this DOG can be considered a starburst galaxy in the M *–SFR plane. This extremely luminous DOG shows significant AGN and star-forming activity that provides us with an important laboratory to probe the maximum phase of the coevolution of galaxies and supermassive black holes.

  1. The nuclear regions of NGC 3311 and NGC 7768 imaged with the Hubble Space Telescope Planetary Camera

    NASA Technical Reports Server (NTRS)

    Grillmair, Carl J.; Faber, S.M.; Lauer, Tod R.; Baum, William A.; Lynds, Roger C.; O'Neil, Earl J., Jr.; Shaya, Edward J.

    1994-01-01

    We present high-resolution, V band images of the central regions of the brightest cluster ellipticals NGC 3311 and NGC 7768 taken with the Planetary Camera of the Hubble Space Telescope. The nuclei of both galaxies are found to be obscured by dust, though the morphology of the dust is quite different in the two cases. The dust cloud which obscures the central 3 arcsec of NGC 3311 is complex and irregular, while the central region of NGC 7768 contains a disk of material similar in appearance and scale to that recently observed in HST images of NGC 4261. The bright, relatively blue source detected in ground-based studies of NGC 3311 is marginally resolved and is likely to be a site of ongoing star formation. We examine the distribution of globular clusters in the central regions of NGC 3311. The gradient in the surface density profile of the cluster system is significantly shallower than that found by previous investigators at larger radii. We find a core radius for the cluster distribution of 12 plus or minus 3 kpc, which is even larger than the core radius of the globular cluster system surrounding M87. It is also an order of magnitude larger than the upper limit on the core radius of NGC 3311's stellar light and suggests that the central field-star population and the globular cluster system are dynamically distinct. We briefly discuss possible sources for the cold/warm interstellar material in early-type galaxies. While the issue has not been resolved, models which involve galactic wind failure appear to be mo st naturally consistent with the observations.

  2. Neutrino Flavor Evolution in Turbulent Supernova Matter

    NASA Astrophysics Data System (ADS)

    Lund, Tina; Kneller, James P.

    In order to decode the neutrino burst signal from a Galactic core-collapse supernova and reveal the complicated inner workings of the explosion, we need a thorough understanding of the neutrino flavor evolution from the proto-neutron-star outwards. The flavor content of the signal evolves due to both neutrino collective effects and matter effects which can lead to a highly interesting interplay and distinctive spectral features. In this paper we investigate the supernova neutrino flavor evolution by including collective flavor effects, the evolution of the Mikheyev, Smirnov & Wolfenstein (MSW) matter conversions due to the shock wave passing through the star, and the impact of turbulence. The density profiles utilized in our calculations represent a 10.8 MG progenitor and comes from a 1D numerical simulation by Fischer et al.[1]. We find that small amplitude turbulence, up to 10% of the average potential, leads to a minimal modification of the signal, and the emerging neutrino spectra retain both collective and MSW features. However, when larger amounts of turbulence are added, 30% and 50%, the features of collective and shock wave effects in the high density resonance channel are almost completely obscured at late times. At the same time we find the other mixing channels - the low density resonance channel and the non-resonant channels - begin to develop turbulence signatures. Large amplitude turbulent motions in the outer layers of massive, iron core-collapse supernovae may obscure the most obvious fingerprints of collective and shock wave effects in the neutrino signal but cannot remove them completely, and additionally bring about new features in the signal. We illustrate how the progression of the shock wave is reflected in the changing survival probabilities over time, and we show preliminary results on how some of these collective and shock wave induced signatures appear in a detector signal.

  3. The Cosmic Bat - An Island of Stars in the Making on the Outskirts of Orion

    NASA Astrophysics Data System (ADS)

    2010-03-01

    The delicate nebula NGC 1788, located in a dark and often neglected corner of the Orion constellation, is revealed in a new and finely nuanced image that ESO is releasing today. Although this ghostly cloud is rather isolated from Orion's bright stars, the latter's powerful winds and light have had a strong impact on the nebula, forging its shape and making it home to a multitude of infant suns. Stargazers all over the world are familiar with the distinctive profile of the constellation of Orion (the Hunter). Fewer know about the nebula NGC 1788, a subtle, hidden treasure just a few degrees away from the bright stars in Orion's belt. NGC 1788 is a reflection nebula, whose gas and dust scatter the light coming from a small cluster of young stars in such a way that the tenuous glow forms a shape reminiscent of a gigantic bat spreading its wings. Very few of the stars belonging to the nebula are visible in this image, as most of them are obscured by the dusty cocoons surrounding them. The most prominent, named HD 293815, can be distinguished as the bright star in the upper part of the cloud, just above the centre of the image and the pronounced dark lane of dust extending through the nebula. Although NGC 1788 appears at first glance to be an isolated cloud, observations covering a field beyond the one presented in this image have revealed that bright, massive stars, belonging to the vast stellar groupings in Orion, have played a decisive role in shaping NGC 1788 and stimulating the formation of its stars. They are also responsible for setting the hydrogen gas ablaze in the parts of the nebula facing Orion, leading to the red, almost vertical rim visible in the left half of the image. All the stars in this region are extremely young, with an average age of only a million years, a blink of an eye compared to the Sun's age of 4.5 billion years. Analysing them in detail, astronomers have discovered that these "preschool" stars fall naturally into three well separated classes: the slightly older ones, located on the left side of the red rim, the fairly young ones, to its right, making up the small cluster enclosed in the nebula and illuminating it, and eventually the very youngest stars, still deeply embedded in their nascent dusty cocoons, further to the right. Although none of the latter are visible in this image because of the obscuring dust, dozens of them have been revealed through observations in the infrared and millimetre wavelengths of light. This fine distribution of stars, with the older ones closer to Orion and the younger ones concentrated on the opposite side, suggests that a wave of star formation, generated around the hot and massive stars in Orion, propagated throughout NGC 1788 and beyond. This image has been obtained using the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  4. Unbound or distant planetary mass population detected by gravitational microlensing.

    PubMed

    2011-05-19

    Since 1995, more than 500 exoplanets have been detected using different techniques, of which 12 were detected with gravitational microlensing. Most of these are gravitationally bound to their host stars. There is some evidence of free-floating planetary-mass objects in young star-forming regions, but these objects are limited to massive objects of 3 to 15 Jupiter masses with large uncertainties in photometric mass estimates and their abundance. Here, we report the discovery of a population of unbound or distant Jupiter-mass objects, which are almost twice (1.8(+1.7)(-0.8)) as common as main-sequence stars, based on two years of gravitational microlensing survey observations towards the Galactic Bulge. These planetary-mass objects have no host stars that can be detected within about ten astronomical units by gravitational microlensing. However, a comparison with constraints from direct imaging suggests that most of these planetary-mass objects are not bound to any host star. An abrupt change in the mass function at about one Jupiter mass favours the idea that their formation process is different from that of stars and brown dwarfs. They may have formed in proto-planetary disks and subsequently scattered into unbound or very distant orbits.

  5. Towards universal hybrid star formation rate estimators

    NASA Astrophysics Data System (ADS)

    Boquien, M.; Kennicutt, R.; Calzetti, D.; Dale, D.; Galametz, M.; Sauvage, M.; Croxall, K.; Draine, B.; Kirkpatrick, A.; Kumari, N.; Hunt, L.; De Looze, I.; Pellegrini, E.; Relaño, M.; Smith, J.-D.; Tabatabaei, F.

    2016-06-01

    Context. To compute the star formation rate (SFR) of galaxies from the rest-frame ultraviolet (UV), it is essential to take the obscuration by dust into account. To do so, one of the most popular methods consists in combining the UV with the emission from the dust itself in the infrared (IR). Yet, different studies have derived different estimators, showing that no such hybrid estimator is truly universal. Aims: In this paper we aim at understanding and quantifying what physical processes fundamentally drive the variations between different hybrid estimators. In so doing, we aim at deriving new universal UV+IR hybrid estimators to correct the UV for dust attenuation at local and global scales, taking the intrinsic physical properties of galaxies into account. Methods: We use the CIGALE code to model the spatially resolved far-UV to far-IR spectral energy distributions of eight nearby star-forming galaxies drawn from the KINGFISH sample. This allows us to determine their local physical properties, and in particular their UV attenuation, average SFR, average specific SFR (sSFR), and their stellar mass. We then examine how hybrid estimators depend on said properties. Results: We find that hybrid UV+IR estimators strongly depend on the stellar mass surface density (in particular at 70 μm and 100 μm) and on the sSFR (in particular at 24 μm and the total infrared). Consequently, the IR scaling coefficients for UV obscuration can vary by almost an order of magnitude: from 1.55 to 13.45 at 24 μm for instance. This result contrasts with other groups who found relatively constant coefficients with small deviations. We exploit these variations to construct a new class of adaptative hybrid estimators based on observed UV to near-IR colours and near-IR luminosity densities per unit area. We find that they can reliably be extended to entire galaxies. Conclusions: The new estimators provide better estimates of attenuation-corrected UV emission than classical hybrid estimators published in the literature. Taking naturally variable impact of dust heated by old stellar populations into account, they constitute an important step towards universal estimators.

  6. (Fe II) 1.53 and 1.64 micron emission from pre-main-sequence stars

    NASA Technical Reports Server (NTRS)

    Hamann, Fred; Simon, Michal; Carr, John S.; Prato, Lisa

    1994-01-01

    We present flux-calibrated profiles of the (Fe II) 1.53 and 1.64 micron lines in five pre-main-sequence stars, PV Cep, V1331 Cyg, R Mon, and DG and HL Tau. The line centroids are blueshifted in all five sources, and four of the five have only blueshifted flux. In agreement with previous studies, we attribute the line asymmetries to local obscuration by dusty circumstellar disks. The absence of redshifted flux implies a minimum column density of obscuring material. The largest limit, N(sub H) greater than 3 x 10(exp 22)/sq cm, derived for V1331 Cyg, suggests disk surface densities greater than 0.05 g/sq cm and disk masses greater than 0.001 solar mass within a radius of approximately 200 AU. The narrow high-velocity lines in PV Cep, V1331 Cyg, and HL Tau require formation in well collimated winds. The maximum full opening angles of their winds range from less than 20 deg in V1331 Cyg to less than 40 deg in HL Tau. The (Fe II) data also yield estimates of the electron densities (n(sub e) approximately 10(exp 4)/cu cm), hydrogen ionization fractions (f(sub H(+)) approximately 1/3), mass-loss rates (approximately 10(exp -7) to 2 x 10(exp -6) solar mass/yr), and characteristic radii of the emitting regions (approximately 32 to approximately 155 AU). The true radial extents will be larger, and the mass-loss rates smaller, by factors of a few for the outflows with limited opening angles. In our small sample the higher mass stars have stronger lines, larger emitting regions, and greater mass-loss rates. These differences are probably limited to the scale and energetics of the envelopes, because the inferred geometries, kinematics and physical conditions are similar. The measured (Fe II) profiles samples both 'high'- and 'low'-velocity environments. Recent studies indicate that these regions have some distinct physical properties and may be spatially separate. The (Fe II) data show that similar sizes and densities can occur in both environments.

  7. From starburst to quiescence: testing active galactic nucleus feedback in rapidly quenching post-starburst galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yesuf, Hassen M.; Faber, S. M.; Trump, Jonathan R.

    Post-starbursts are galaxies in transition from the blue cloud to the red sequence. Although they are rare today, integrated over time they may be an important pathway to the red sequence. This work uses Sloan Digital Sky Survey, the Galaxy Evolution Explorer, and Wide-field Infrared Survey Explorer observations to identify the evolutionary sequence from starbursts to fully quenched post-starbursts (QPSBs) in the narrow mass range log M(M {sub ☉}) = 10.3-10.7, and identifies 'transiting' post-starbursts (TPSBs) which are intermediate between these two populations. In this mass range, ∼0.3% of galaxies are starbursts, ∼0.1% are QPSBs, and ∼0.5% are the transitingmore » types in between. The TPSBs have stellar properties that are predicted for fast-quenching starbursts and morphological characteristics that are already typical of early-type galaxies. The active galactic nucleus (AGN) fraction, as estimated from optical line ratios, of these post-starbursts is about three times higher (≳ 36% ± 8%) than that of normal star forming galaxies of the same mass, but there is a significant delay between the starburst phase and the peak of nuclear optical AGN activity (median age difference of ≳ 200 ± 100 Myr), in agreement with previous studies. The time delay is inferred by comparing the broadband near-NUV-to-optical photometry with stellar population synthesis models. We also find that starbursts and post-starbursts are significantly more dust obscured than normal star forming galaxies in the same mass range. About 20% of the starbursts and 15% of the TPSBs can be classified as 'dust-obscured galaxies' (DOGs), with a near-UV-to-mid-IR flux ratio of ≳ 900, while only 0.8% of normal galaxies are DOGs. The time delay between the starburst phase and AGN activity suggests that AGNs do not play a primary role in the original quenching of starbursts but may be responsible for quenching later low-level star formation by removing gas and dust during the post-starburst phase.« less

  8. (Fe II) 1.53 and 1.64 micron emission from pre-main-sequence stars

    NASA Astrophysics Data System (ADS)

    Hamann, Fred; Simon, Michal; Carr, John S.; Prato, Lisa

    1994-11-01

    We present flux-calibrated profiles of the (Fe II) 1.53 and 1.64 micron lines in five pre-main-sequence stars, PV Cep, V1331 Cyg, R Mon, and DG and HL Tau. The line centroids are blueshifted in all five sources, and four of the five have only blueshifted flux. In agreement with previous studies, we attribute the line asymmetries to local obscuration by dusty circumstellar disks. The absence of redshifted flux implies a minimum column density of obscuring material. The largest limit, NH greater than 3 x 1022/sq cm, derived for V1331 Cyg, suggests disk surface densities greater than 0.05 g/sq cm and disk masses greater than 0.001 solar mass within a radius of approximately 200 AU. The narrow high-velocity lines in PV Cep, V1331 Cyg, and HL Tau require formation in well collimated winds. The maximum full opening angles of their winds range from less than 20 deg in V1331 Cyg to less than 40 deg in HL Tau. The (Fe II) data also yield estimates of the electron densities (ne approximately 104/cu cm), hydrogen ionization fractions (fH(+) approximately 1/3), mass-loss rates (approximately 10-7 to 2 x 10-6 solar mass/yr), and characteristic radii of the emitting regions (approximately 32 to approximately 155 AU). The true radial extents will be larger, and the mass-loss rates smaller, by factors of a few for the outflows with limited opening angles. In our small sample the higher mass stars have stronger lines, larger emitting regions, and greater mass-loss rates. These differences are probably limited to the scale and energetics of the envelopes, because the inferred geometries, kinematics and physical conditions are similar. The measured (Fe II) profiles samples both 'high'- and 'low'-velocity environments. Recent studies indicate that these regions have some distinct physical properties and may be spatially separate. The (Fe II) data show that similar sizes and densities can occur in both environments.

  9. Unveiling Obscured AGN with X-ray Spectral Analysis

    NASA Astrophysics Data System (ADS)

    LaMassa, Stephanie M.; Yaqoob, Tahir; Ptak, Andrew; Jia, Jianjun; Heckman, Timothy M.; Gandhi, Poshak; Urry, C. Megan

    2014-06-01

    With the recent advent of physically motivated, self-consistent X-ray models, the circumnuclear medium enshrouding AGN can now be investigated in unprecedented detail. We applied these models to 19 SDSS [OIII] 5007 Angstrom selected Type 2 AGN, where 9 are local Seyfert 2 galaxies and 10 are more luminous and distant Type 2 quasars. For the first time in a sample of AGN, we constrained both the line-of-sight and global column densities, finding that over half (11/19) are heavily obscured or Compton-thick (NH > 10^23 cm^-2). Four objects have different global from line-of-sight column densities. When correcting the observed X-ray luminosities for obscuration, the L_x/L_[OIII] ratio for these Type 2 AGN is essentially identical to the Seyfert 1 (i.e., unabsorbed AGN) value, which is consistent with both parameters cleanly probing AGN emission.

  10. A 2dF survey of the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Evans, Christopher J.; Howarth, Ian D.; Irwin, Michael J.; Burnley, Adam W.; Harries, Timothy J.

    2004-09-01

    We present a catalogue of new spectral types for hot, luminous stars in the Small Magellanic Cloud (SMC). The catalogue contains 4161 objects, giving an order-of-magnitude increase in the number of SMC stars with published spectroscopic classifications. The targets are primarily B- and A-type stars (2862 and 853 objects respectively), with one Wolf-Rayet, 139 O-type and 306 FG stars, sampling the main sequence to ~mid-B. The selection and classification criteria are described, and objects of particular interest are discussed, including UV-selected targets from the Ultraviolet Imaging Telescope (UIT) experiment, Be and B[e] stars, `anomalous A supergiants' and composite-spectrum systems. We examine the incidence of Balmer-line emission, and the relationship between Hγ equivalent width and absolute magnitude for BA stars.

  11. X-shooter Finds an Extremely Primitive Star

    NASA Astrophysics Data System (ADS)

    Caffau, E.; Bonifacio, P.; François, P.; Sbordone, L.; Monaco, L.; Spite, M.; Spite, F.; Ludwig, H.-G.; Cayrel, R.; Zaggia, S.; Hammer, F.; Randich, S.; Molaro, P.; Hill, V.

    2011-12-01

    Low-mass extremely metal-poor (EMP) stars hold the fossil record of the chemical composition of the early phases of the Universe in their atmospheres. Chemical analysis of such objects provides important constraints on these early phases. EMP stars are rather rare objects: to dig them out, large amounts of data have to be considered. We have analysed stars from the Sloan Digital Sky Survey using an automatic procedure and selected a sample of good candidate EMP stars, which we observed with the spectrographs X-shooter and UVES. We could confirm the low metallicity of our sample of stars, and we succeeded in finding a record metal-poor star.

  12. The Host Galaxies of Fast-Ejecta Core-Collapse Supernovae

    NASA Technical Reports Server (NTRS)

    Kelly, Patrick L.; Filippenko, Alexei V.; Modjaz, Maryam; Kocevski, Daniel

    2014-01-01

    Spectra of broad-lined Type Ic supernovae (SN Ic-BL), the only kind of SN observed at the locations of long-duration gamma-ray bursts (LGRBs), exhibit wide features indicative of high ejecta velocities ((is) approximately 0.1c). We study the host galaxies of a sample of 245 low-redshift (z (is) less than 0.2) core-collapse SN, including 17 SN Ic-BL, discovered by galaxy-untargeted searches, and 15 optically luminous and dust-obscured z (is) less than 1.2 LGRBs. We show that, in comparison with SDSS galaxies having similar stellar masses, the hosts of low-redshift SN Ic- BL and z (is) is less than 1.2 LGRBs have high stellar-mass and star-formation-rate densities. Core-collapse SN having typical ejecta velocities, in contrast, show no preference for such galaxies. Moreover, we find that the hosts of SN Ic-BL, unlike those of SN Ib/Ic and SN II, exhibit high gas velocity dispersions for their stellar masses. The patterns likely reflect variations among star-forming environments, and suggest that LGRBs can be used as probes of conditions in high-redshift galaxies. They may be caused by efficient formation of massive binary progenitors systems in densely star-forming regions, or, less probably, a higher fraction of stars created with the initial masses required for a SN Ic-BL or LGRB. Finally, we show that the preference of SN Ic-BL and LGRBs for galaxies with high stellar-mass and star-formation-rate densities cannot be attributed to a preference for low metal abundances but must reflect the influence of a separate environmental factor.

  13. The Expanding Bipolar Shell of the Helium Nova V445 Puppis

    NASA Astrophysics Data System (ADS)

    Woudt, P. A.; Steeghs, D.; Karovska, M.; Warner, B.; Groot, P. J.; Nelemans, G.; Roelofs, G. H. A.; Marsh, T. R.; Nagayama, T.; Smits, D. P.; O'Brien, T.

    2009-11-01

    From multi-epoch adaptive optics imaging and integral field unit spectroscopy, we report the discovery of an expanding and narrowly confined bipolar shell surrounding the helium nova V445 Puppis (Nova Puppis 2000). An equatorial dust disc obscures the nova remnant, and the outflow is characterized by a large polar outflow velocity of 6720 ± 650 km s-1 and knots moving at even larger velocities of 8450 ± 570 km s-1. We derive an expansion parallax distance of 8.2 ± 0.5 kpc and deduce a pre-outburst luminosity of the underlying binary of log L/L sun = 4.34 ± 0.36. The derived luminosity suggests that V445 Puppis probably contains a massive white dwarf accreting at high rate from a helium star companion making it part of a population of binary stars that potentially lead to supernova Ia explosions due to accumulation of helium-rich material on the surface of a massive white dwarf.

  14. Eclipse and Collapse of the Colliding Wind X-ray Emission from Eta Carinae

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Kenji; Corcoran, Michael F.

    2012-01-01

    X-ray emission from the massive stellar binary system, Eta Carinae, drops strongly around periastron passage; the event is called the X-ray minimum. We launched a focused observing campaign in early 2009 to understand the mechanism of causing the X-ray minimum. During the campaign, hard X-ray emission (<10 keV) from Eta Carinae declined as in the previous minimum, though it recovered a month earlier. Extremely hard X-ray emission between 15-25 keV, closely monitored for the first time with the Suzaku HXD/PIN, decreased similarly to the hard X-rays, but it reached minimum only after hard X-ray emission from the star had already began to recover. This indicates that the X-ray minimum is produced by two composite mechanisms: the thick primary wind first obscured the hard, 2-10 keV thermal X-ray emission from the wind-wind collision (WWC) plasma; the WWC activity then decays as the two stars reach periastron.

  15. Unidentified emission features in the R Coronae Borealis star V854 Centauri

    NASA Astrophysics Data System (ADS)

    Oostrum, L. C.; Ochsendorf, B. B.; Kaper, L.; Tielens, A. G. G. M.

    2018-02-01

    During its 2012 decline, the R Coronae Borealis star (RCB) V854 Cen was spectroscopically monitored with X-shooter on the ESO Very Large Telescope. The obscured optical and near-infrared spectrum exhibits many narrow and several broad emission features, as previously observed. The envelope is spatially resolved along the slit and allows for a detailed study of the circumstellar material. In this Letter, we report on the properties of a number of unidentified visual emission features (UFs), including the detection of a new feature at 8692 Å. These UFs have been observed in the Red Rectangle (RR), but their chemical and physical nature is still a mystery. The previously known UFs behave similarly in the RR and in V854 Cen, but are not detected in six other observed RCBs. Some hydrogen might be required for the formation of their carrier(s). The λ8692 UF is present in all RCBs. Its carrier is likely of a carbonaceous molecular nature, presumably different from that of the other UFs.

  16. A deep NuSTAR observation of M51: Investigating its Compton-thick nucleus, LINER companion and ULXs above 10 keV

    NASA Astrophysics Data System (ADS)

    Brightman, Murray; Annuar, Ady; Alexander, David M.; Earnshaw, Hannah; Gandhi, Poshak; Hornschemeier, Ann E.; Lehmer, Bret; Ptak, Andrew; Rangelov, Blagoy; Roberts, Tim P.; Stern, Daniel; Zezas, Andreas

    2017-08-01

    We present the results from a deep 200ks observation of M51 with NuSTAR. This observation was taken simultaneously with Chandra to provide soft-X-ray-coverage as well as to resolve the different point sources. We detect the Compton-thick nucleus of M51a, the LINER nucleus of M51b and several ultraluminous X-ray sources located in the galaxies above 10 keV. From X-ray torus modeling, we find that the covering factor of the torus in the nucleus of M51a is ~40% and supports a decline in the obscured fration at low X-ray luminosities. We find that the X-ray spectrum of the intermediate mass black hole candidate, ULX-7, is consistent with a power-law up to high energies, supporting its IMBH status. We further resolve the nucleus of M51b into two X-ray sources with Chandra, and measure its X-ray luminosity.

  17. Frontiers of X-Ray Astronomy

    NASA Astrophysics Data System (ADS)

    Fabian, Andrew C.; Pounds, Kenneth A.; Blandford, Roger D.

    2004-07-01

    Preface; 1. Forty years on from Aerobee 150: a personal perspective K. Pounds; 2. X-ray spectroscopy of astrophysical plasmas S. M. Kahn, E. Behar, A. Kinkhabwala and D. W. Savin; 3. X-rays from stars M. Gudel; 4. X-ray observations of accreting white-dwarf systems M. Cropper, G. Ramsay, C. Hellier, K. Mukai, C. Mauche and D. Pandel; 5. Accretion flows in X-ray binaries C. Done; 6. Recent X-ray observations of supernova remnants C. R. Canizares; 7. Luminous X-ray sources in spiral and star-forming galaxies M. Ward; 8. Cosmological constraints from Chandra observations of galaxy clusters S. W. Allen; 9. Clusters of galaxies: a cosmological probe R. Mushotzky; 10. Obscured active galactic nuclei: the hidden side of the X-ray Universe G. Matt; 11. The Chandra Deep Field-North Survey and the cosmic X-ray background W. N. Brandt, D. M. Alexander, F. E. Bauer and A. E. Hornschemeier; 12. Hunting the first black holes G. Hasinger; 13. X-ray astronomy in the new millennium: a summary R. D. Blandford.

  18. High Resolution Radio Observations Of Energetically Dominant Regions In Local Luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Barcos-Munoz, Loreto

    2016-07-01

    Luminous and Ultra-luminous Infrared galaxies (U/LIRGs) are one of the most powerful classes of extragalactic objects in the local universe, and they provide a unique opportunity to study star formation and feedback processes in extreme environments. They are primarily observed to be interacting or merging disk galaxies. During the interaction, large amounts of gas are funneled to the central few kpc, triggering high star formation rates (SFR) and dust production. The absorption of UV and optical radiation from stars, or active galactic nuclei (AGN), by dust produces their observed high infrared luminosities.The high level of dust obscuration intrinsic to U/LIRGs makes them difficult to study. Radio interferometry is thus the perfect tool for revealing the nature of these systems - it provides the high spatial resolution needed to resolve energetically dominant regions in U/LIRGs at wavelengths that have both diagnostic power and transparency to dust. In this thesis, 6 and 33 GHz radio continuum interferometric observations with the upgraded Karl G. Jansky Very Large Array (VLA) are used to study a sample of 22 local U/LIRGs.First, a detailed analysis of the 6 and 33 GHz radio continuum emission from the closest ULIRG, Arp 220, is presented. This late stage merger is highly obscured, being optically thick even at mid-infrared wavelengths. Further, due to its extreme environment, it is often used as a template for high redshift starbursts. Arp 220 hosts two distinct nuclei that are separated by (\\sim) 370 pc. The nuclei are well resolved with the 33 GHz observations (i.e., with a spatial resolution of ˜ 30 pc). The deconvolved radii enclosing half of the total 33 GHz light are approximately 50 and 35 pc for the eastern and western nucleus, respectively. Literature values of the gas mass and infrared luminosity are combined with the 33 GHz sizes under the assumption of co-spatiality to show that Arp 220 has one of the highest molecular gas surface densities ((\\Sigma_mol \\sim 10^{5.3}) (east) and (10^{5.7}) (west) (\\mathrm{M_\\odot pc^{-2}})) and SFR surface densities ((\\mathrm{\\Sigma_{SFR} \\sim 10^{4.0} (east) and 10^{4.0} (west) M_{\\odot} yr^{-1} kpc^{-2}})) measured for any star-forming system. Despite these high values, the nuclei of Arp 220 are not maximal starbursts (i.e., under the assumption that the main feedback mechanism is radiation pressure on dust). The small derived sizes for the nuclei indicate Arp 220 is only optically thin in a narrow frequency range, (\\sim) 5 to 350 GHz.The analysis of a larger sample of 22 U/LIRGs at 33 GHz with the VLA is also presented. It is found that, for most of these galaxies, the integrated radio flux densities correlate well with those at infrared wavelengths, indicating these systems follow the radio-IR correlation and that the emission at 33 GHz is primarily produced by star formation activity. The radio emission from most of these galaxies are resolved, with deconvolved half-light radii ranging from 20 pc to 1.7 kpc. Similar assumptions for Arp 220 above are used here to estimate SFR surface densities of (\\Sigma_SFR) from (10^{0.5}) to (10^{4.5}) (\\mathrm{M_{\\odot} yr^{-1} kpc^{-2}}) and molecular gas surface densities (\\Sigma_mol) of (\\mathrm{10^{2.5} to 10^{5.7} M_{\\odot} pc^{-2}}). These values are among the highest values measured for any galaxies. The star formation-gas scaling relation is used to compare the U/LIRGs with regions within normal spiral galaxies. The presence of two ``modes" of star formation is inferred in the comparison, although this result is extremely dependent on the CO-to-({H_{2}}) conversion factor. The local U/LIRGs studied in this survey show high infrared surface brightnesses, however 19 of the 22 sources are not maximal starbursts. Finally, those targets showing the flattest 1.5-6 GHz spectral indices and the highest surface brightnesses exhibit the strongest [Cii] deficits, which supports the idea that deficit is associated with the most highly obscured, high energy density star-forming regions.In order to determine the true limit for star formation in galaxies (e.g., through Eddington limit analysis), better measures of the gas content, opacity and velocity dispersion of U/LIRGs are needed. The last study presented in this thesis is an analysis of the first high spatial resolution ALMA observations of the mm continuum and dense molecular gas tracers in Arp 220. A spatial resolution of 30 pc is achieved using the most extended configuration available in Cycle 3. An optically thin model of the spectral flux density distribution is found to predict the continuum emission at 92 GHz, within the uncertainties of the measurement and accounting for extended emission that is potentially filtered out. At 92 GHz, the western nucleus is dominated by dust emission, while the eastern nucleus by free-free emission. High critical gas density tracers HCN, HCO(^{+}), their isotopologues, and the shock tracer SiO are detected. P-Cygni profiles are observed in the central beam of both nuclei, with a cleaner profile shape in the eastern nucleus. The western nucleus shows strong absorption in the center, which makes determination of the profile line shapes more complicated. These P-Cygni features indicate the presence of outflowing gas. The derived mass loading factors are 18 (east) and 35 (west), which may be an indication that active galactic nuclei help to boost the outflow mass rates. However, these numbers are strongly dependent on the highly uncertain HCN-to-gas mass conversion factor and should only be considered as upper limits. In addition to signatures of outflowing gas, clear evidence of gas rotation in both nuclei are observed.

  19. Accretion, winds and jets: High-energy emission from young stellar objects

    NASA Astrophysics Data System (ADS)

    Günther, Hans Moritz

    2009-03-01

    Stars form by gravitational collapse from giant molecular clouds. Due to the conservation of angular momentum this collapse does not happen radially, but the matter forms circumstellar disk first and is consequently accreted from the disk onto the star. This thesis deals with the high-energy emission from young stellar objects, which are on the one hand still actively accreting from their disk, and on the other hand are no longer deeply obscured by their natal cloud. Stars of spectral type B and A are called Herbig Ae/Be (HAeBe) stars in this stage, all stars of later spectral type are termed classical T Tauri stars (CTTS); strictly speaking both types are defined by spectroscopic signatures, which are equivalent to the evolutionary stage described above. In this thesis CTTS and HAeBes are studied through high-resolution X-ray and UV spectroscopy and through detailed physical simulations. Spectroscopic X-ray data is reduced and presented for two targets: The CTTS V4046 Sgr was observed with Chandra for 100 ks, using a high-resolution grating spectrometer. The lightcurve contains one flare and the He-like triplets of SiXIII, NeIX and OVII indicate high densities in the X-ray emitting regions. The second target is the HAeBe HD 163296, which was observed with XMM-Newton for 130 ks. The lightcurve shows only moderate variability, the elemental abundance follows a pattern, that is usual for active stars. The He-like triplet of OVII exhibits line ratios similar to coronal sources, indicating that neither a high density nor a strong UV-field is present in the region of the X-ray emission. Using these and similar observations, it can be concluded that at least three mechanisms contribute to the observed high-energy emission from CTTS: First, those stars have active coronae similar to main-sequence stars, second, the accreted material passes through a strong accretion shock at the stellar surface, which heats it to a few MK, and, third, some CTTS drive powerful outflows. Shocks within these jets can heat the matter to X-ray emitting temperatures. The first is already well characterised; for the latter two scenarios models are presented in this thesis. The accretion shock is treated in a stationary 1D model, taking non-equilibrium ionisations explicitly into account. The magnetic field is strong enough to suppress motion perpendicular to the field lines, so the use of a 1D geometry is justified. The radiative loss is calculated as optically thin emission with the CHIANTI database. A combination of simulated post-shock cooling zone spectra and coronal gas is fitted to the observations of the CTTS TW Hya and V4046 Sgr. Both stars require only small mass accretion rates to power the X-ray emission (2×10-10 Msun/yr and 3×10-11 Msun/yr, respectively). The CTTS DG Tau is heavily absorbed and the observed soft X-ray emission originates spatially offset from the star. In this thesis a physical model is presented which explains the emission by a shock front travelling along the ejected jet. Shock velocities between 400 and 500 km/s are required to explain the observed spectrum. For a electron density >105 cm-3 all shock dimensions are so small that they remain undetectable in optical observations as observed. The spectral resolution in X-rays is not sufficient to analyse the line profiles, so UV data is used for this purpose. Line profiles extend up to 500 km/s in sample of CTTS observed with FUSE. Likely contribution from both, infalling and outflowing gas, contributes to the observed emission. The current models do not explain the observed line profiles in detail, especially the line width causes problems. HAeBe stars have hot plasma, which can only be explained as an active corona, similar to the CTTS. Accretion does not contribute significantly to the X-ray emission, instead the line ratios in the He-like triplets point to an origin in the outflows, similar to the CTTS jets. A model comparable to DG Tau reproduces the observed emission.

  20. Catalog of far-ultraviolet objective-prism spectrophotometry: Skylab experiment S-019, ultraviolet steller astronomy

    NASA Technical Reports Server (NTRS)

    Henize, K. G.; Wray, J. D.; Parsons, S. B.; Benedict, G. F.

    1979-01-01

    Ultraviolet stellar spectra in the wavelength region from 1300 to 5000 A (130 to 500) were photographed during the three manned Skylab missions using a 15 cm aperture objective-prism telescope. The prismatic dispersion varied from 58 A mm/1 at 1400 A to 1600 A mm/1 at 3000 A. Approximately 1000 spectra representing 500 stars were measured and reduced to observed fluxes. About 100 stars show absorption lines of Si IV, C IV, or C II. Numerous line features are also recorded in supergiant stars, shell stars, A and F stars, and Wolf-Rayet stars. Most of the stars in the catalog are of spectral class B, with a number of O and A type stars and a sampling of WC, WN, F and C type stars. Spectrophotometric results are tabulated for these 500 stars.

  1. Gaia-ESO Survey: Global properties of clusters Trumpler 14 and 16 in the Carina nebula ⋆⋆

    NASA Astrophysics Data System (ADS)

    Damiani, F.; Klutsch, A.; Jeffries, R. D.; Randich, S.; Prisinzano, L.; Maíz Apellániz, J.; Micela, G.; Kalari, V.; Frasca, A.; Zwitter, T.; Bonito, R.; Gilmore, G.; Flaccomio, E.; Francois, P.; Koposov, S.; Lanzafame, A. C.; Sacco, G. G.; Bayo, A.; Carraro, G.; Casey, A. R.; Alfaro, E. J.; Costado, M. T.; Donati, P.; Franciosini, E.; Hourihane, A.; Jofré, P.; Lardo, C.; Lewis, J.; Magrini, L.; Monaco, L.; Morbidelli, L.; Worley, C. C.; Vink, J. S.; Zaggia, S.

    2017-07-01

    Aims: We present the first extensive spectroscopic study of the global population in star clusters Trumpler 16, Trumpler 14, and Collinder 232 in the Carina nebula, using data from the Gaia-ESO Survey, down to solar-mass stars. Methods: In addition to the standard homogeneous survey data reduction, a special processing was applied here because of the bright nebulosity surrounding Carina stars. Results: We find about 400 good candidate members ranging from OB types down to slightly subsolar masses. About 100 heavily reddened early-type Carina members found here were previously unrecognized or poorly classified, including two candidate O stars and several candidate Herbig Ae/Be stars. Their large brightness makes them useful tracers of the obscured Carina population. The spectroscopically derived temperatures for nearly 300 low-mass members enables the inference of individual extinction values and the study of the relative placement of stars along the line of sight. Conclusions: We find a complex spatial structure with definite clustering of low-mass members around the most massive stars and spatially variable extinction. By combining the new data with existing X-ray data, we obtain a more complete picture of the three-dimensional spatial structure of the Carina clusters and of their connection to bright and dark nebulosity and UV sources. The identification of tens of background giants also enables us to determine the total optical depth of the Carina nebula along many sightlines. We are also able to put constraints on the star formation history of the region with Trumpler 14 stars found to be systematically younger than stars in other subclusters. We find a large percentage of fast-rotating stars among Carina solar-mass members, which provide new constraints on the rotational evolution of pre-main-sequence stars in this mass range. Based on observations collected with the FLAMES spectrograph at VLT/UT2 telescope (Paranal Observatory, ESO, Chile), for the Gaia-ESO Large Public Survey (program 188.B-3002). Full Tables 1, 2, and 7 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/603/A81

  2. A Software Designed For STP Data Plot and Analysis Based on Object-oriented Methodology

    NASA Astrophysics Data System (ADS)

    Lina, L.; Murata, K.

    2006-12-01

    In the present study, we design a system that is named "STARS (Solar-Terrestrial data Analysis and Reference System)". The STARS provides a research environment that researchers can refer to and analyse a variety of data with single software. This software design is based on the OMT (Object Modeling Technique). The OMT is one of the object-oriented techniques, which has an advantage in maintenance improvement, reuse and long time development of a system. At the Center for Information Technology, Ehime University, after our designing of the STARS, we have already started implementing the STARS. The latest version of the STARS, the STARS5, was released in 2006. Any user can download the system from our WWW site (http:// www.infonet.cite.ehime-u.ac.jp/STARS). The present paper is mainly devoted to the design of a data analysis software system. Through our designing, we paid attention so that the design is flexible and applicable when other developers design software for the similar purpose. If our model is so particular only for our own purpose, it would be useless for other developers. Through our design of the domain object model, we carefully removed the parts, which depend on the system resources, e.g. hardware and software. We put the dependent parts into the application object model. In the present design, therefore, the domain object model and the utility object model are independent of computer resource. This helps anther developer to construct his/her own system based the present design. They simply modify their own application object models according to their system resource. This division of the design between dependent and independent part into three object models is one of the advantages in the OMT. If the design of software is completely done along with the OMT, implementation is rather simple and automatic: developers simply map their designs on our programs. If one creates "ganother STARS" with other programming language such as Java, the programmer simply follows the present system as long as the language is object-oriented language. Researchers would want to add their data into the STARS. In this case, they simply add their own data class in the domain object model. It is because any satellite data has properties such as time or date, which are inherited from the upper class. In this way, their effort is less than in other old methodologies. In the OMT, description format of the system is rather strictly standardized. When new developers take part in STARS project, they have only to understand each model to obtain the overview of the STARS. Then they follow this designs and documents to implement the system. The OMT makes a new comer easy to join into the project already running.

  3. Suzaku  Observations of Heavily Obscured (Compton-thick) Active Galactic Nuclei Selected by the Swift/BAT Hard X-Ray Survey

    NASA Astrophysics Data System (ADS)

    Tanimoto, Atsushi; Ueda, Yoshihiro; Kawamuro, Taiki; Ricci, Claudio; Awaki, Hisamitsu; Terashima, Yuichi

    2018-02-01

    We present a uniform broadband X-ray (0.5–100.0 keV) spectral analysis of 12 Swift/Burst Alert Telescope selected Compton-thick ({log}{N}{{H}}/{{cm}}-2≥slant 24) active galactic nuclei (CTAGNs) observed with Suzaku. The Suzaku data of three objects are published here for the first time. We fit the Suzaku and Swift spectra with models utilizing an analytic reflection code and those utilizing the Monte-Carlo-based model from an AGN torus by Ikeda et al. The main results are as follows: (1) The estimated intrinsic luminosity of a CTAGN strongly depends on the model; applying Compton scattering to the transmitted component in an analytic model may largely overestimate the intrinsic luminosity at large column densities. (2) Unabsorbed reflection components are commonly observed, suggesting that the tori are clumpy. (3) Most of CTAGNs show small scattering fractions (<0.5%), implying a buried AGN nature. (4) Comparison with the results obtained for Compton-thin AGNs suggests that the properties of these CTAGNs can be understood as a smooth extension from Compton-thin AGNs with heavier obscuration; we find no evidence that the bulk of the population of hard-X-ray-selected CTAGNs are different from less obscured objects.

  4. Hubble Sees a Stellar "Sneezing Fit"

    NASA Image and Video Library

    2017-12-08

    Look at the bright star in the middle of this image. It appears as if it just sneezed. This sight will only last for a few thousand years — a blink of an eye in the young star's life. If you could carry on watching for a few years you would realize it's not just one sneeze, but a sneezing fit. This young star is firing off rapid releases of super-hot, super-fast gas, like multiple sneezes, before it finally exhausts itself. These bursts of gas have shaped the turbulent surroundings, creating structures known as Herbig-Haro objects. These objects are formed from the star's energetic "sneezes." Launched due to magnetic fields around the forming star, these energetic releases can contain as much mass as our home planet, and cannon into nearby clouds of gas at hundreds of kilometers/miles per second. Shock waves form, such as the U-shape below this star. Unlike most other astronomical phenomena, as the waves crash outwards, they can be seen moving across human timescales of years. Soon, this star will stop sneezing, and mature to become a star like our sun. This region is actually home to several interesting objects. The star at the center of the frame is a variable star named V633 Cassiopeiae, with Herbig-Haro objects HH 161 and HH 164 forming parts of the horseshoe-shaped loop emanating from it. The slightly shrouded star just to the left is known as V376 Cassiopeiae, another variable star that has succumbed to its neighbor's infectious sneezing fits; this star is also sneezing, creating yet another Herbig-Haro object — HH 162. Both stars are very young and are still surrounded by dusty material left over from their formation, which spans the gap between the two. Credit: ESA/Hubble & NASA, Acknowledgement: Gilles Chapdelaine NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. Observations of southern emission-line stars

    NASA Technical Reports Server (NTRS)

    Henize, K. G.

    1976-01-01

    A catalog of 1929 stars showing H-alpha emission on photographic plates is presented which covers the entire southern sky south of declination -25 deg to a red limiting magnitude of about 11.0. The catalog provides previous designations of known emission-line stars equatorial (1900) and galactic coordinates, visual and photographic magnitudes, H-alpha emission parameters, spectral types, and notes on unusual spectral features. The objects listed include 16 M stars, 25 S stars, 37 carbon stars, 20 symbiotic stars, 40 confirmed or suspected T Tauri stars, 16 novae, 14 planetary nebulae, 11 P Cygni stars, 9 Bep stars, 87 confirmed or suspected Wolf-Rayet stars, and 26 'peculiar' stars. Two new T associations are discovered, one in Lupus and one in Chamaeleon. Objects with variations in continuum or H-alpha intensity are noted, and the distribution by spectral type is analyzed. It is found that the sky distribution of these emission-line stars shows significant concentrations in the region of the small Sagittarius cloud and in the Carina region.

  6. The distant red galaxy neighbour population of 1 <~ z <~ 2 QSOs and optically obscured sources

    NASA Astrophysics Data System (ADS)

    Bornancini, Carlos G.; García Lambas, Diego

    2007-05-01

    We study the distant red galaxy (DRG; J - Ks > 2.3) neighbour population of quasi-stellar objects (QSOs) selected from the Sloan Digital Sky Survey (SDSS) in the redshift range 1 <~ z <~ 2. We perform a similar analysis for optically obscured active galactic nuclei (AGNs; i.e. with a limiting magnitude I > 24) detected in the mid-infrared (24 μm) with the Spitzer Space Telescope and a mean redshift z ~ 2.2 in the Flamingos Extragalactic Survey (FLAMEX). Both QSOs and obscured AGN target samples cover 4.7 deg2 in the same region of the sky. We find a significant difference in the environment of these two target samples. Neighbouring galaxies close to QSOs tend to be bluer than galaxies in optically obscured source environments. We also present results on the cross-correlation function of DRGs around QSOs and optically faint mid-infrared sources. The corresponding correlation length obtained for the QSO sample targets is r0 = 5.4 +/- 1.6 Mpc h-1 and a slope of γ = 1.94 +/- 0.10. For the optically obscured galaxy sample, we find r0 = 8.9 +/- 1.4 Mpc h-1 and a slope of γ = 2.27 +/- 0.20. These results indicate that optically faint obscured sources are located in denser environment of evolved red galaxies compared to QSOs. Based on observations and/or data products by the Flamingos Extragalactic Survey. FLAMINGOS was designed and constructed by the IR instrumentation group (PI: R. Elston) at the University of Florida, Department of Astronomy, with support from NSF grant AST97-31180 and Kitt Peak National Observatory. E-mail: bornancini@oac.uncor.edu

  7. TOPoS: chemical study of extremely metal-poor stars.

    NASA Astrophysics Data System (ADS)

    Caffau, E.; Sbordone, L.; Bonifacio, P.; Cayrel, R.; Christlieb, N.; Clark, P.; François, P.; Glover, S.; Klessen, R.; Koch, A.; Ludwig, H.-G.; Monaco, L.; Plez, B.; Spite, F.; Spite, M.; Steffen, M.; Zaggia, S.

    The extremely metal-poor (EMP) stars hold in their atmospheres the fossil record of the chemical composition of the early phases of the Galactic evolution. The chemical analysis of such objects provides important constraints on these early phases. EMP stars are very rare objects; to dig them out, large amounts of data have to be processed. With an automatic procedure, we analysed objects with colours of Turn-Off stars from the Sloan Digital Sky Survey to select a sample of good candidate EMP stars. In the latest years, we observed a sample of these candidates with X-Shooter and UVES, and we have an ongoing ESO large programme to use these spectrographs to observe EMP stars. I will report here the results on metallicity and Strontium abundance. Based on observations obtained at ESO Paranal Observatory, programme 189.D-0165(A)

  8. MAMBO observations at 240GHz of optically obscured Spitzer sources: source clumps and radio activity at high redshift

    NASA Astrophysics Data System (ADS)

    Andreani, P.; Magliocchetti, M.; de Zotti, G.

    2010-01-01

    Optically very faint (R > 25.5) sources detected by the Spitzer Space Telescope at 24μm represent a very interesting population at redshift z ~ (1.5-3). They exhibit strong clustering properties, implying that they are hosted by very massive haloes, and their mid-infrared emission could be powered by either dust-enshrouded star formation and/or by an obscured active galactic nucleus (AGN). We report observations carried out with the Max Planck Millimetre Bolometer (MAMBO) array at the IRAM 30-m antenna on Pico Veleta of a candidate protocluster with five optically obscured sources selected from the 24-μm Spitzer sample of the First-Look Survey. Interestingly, these sources appear to lie on a high-density filament aligned with the two radio jets of an AGN. Four out of five of the observed sources were detected. We combine these measurements with optical, infrared and radio observations to probe the nature of the candidate protocluster members. Our preliminary conclusions can be summarized as follows: the spectral energy distributions (SEDs) of all sources include both AGN and starburst contributions; the AGN contribution to the bolometric luminosities ranges between 14 and 26 per cent of the total. Such a contribution is enough for the AGN to dominate the emission at 5.8, 8 and 24μm, while the stellar component, inferred from SED fitting, prevails at 1.25mm and at λ < 4.5μm. The present analysis suggests a coherent interplay at high z between extended radio activity and the development of filamentary large-scale structures.

  9. SPECTROSCOPIC ANALYSIS OF METAL-POOR STARS FROM LAMOST: EARLY RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hai-Ning; Zhao, Gang; Wang, Liang

    2015-01-10

    We report on early results from a pilot program searching for metal-poor stars with LAMOST and follow-up high-resolution observation acquired with the MIKE spectrograph attached to the Magellan II telescope. We performed detailed abundance analysis for eight objects with iron abundances [Fe/H] < -2.0, including five extremely metal-poor (EMP; [Fe/H] < -3.0) stars with two having [Fe/H] < -3.5. Among these objects, three are newly discovered EMP stars, one of which is confirmed for the first time with high-resolution spectral observations. Three program stars are regarded as carbon-enhanced metal-poor (CEMP) stars, including two stars with no enhancement in their neutron-capturemore » elements, which thus possibly belong to the class of CEMP-no stars; one of these objects also exhibits significant enhancement in nitrogen, and is thus a potential carbon and nitrogen-enhanced metal-poor star. The [X/Fe] ratios of the sample stars generally agree with those reported in the literature for other metal-poor stars in the same [Fe/H] range. We also compared the abundance patterns of individual program stars with the average abundance pattern of metal-poor stars and find only one chemically peculiar object with abundances of at least two elements (other than C and N) showing deviations larger than 0.5 dex. The distribution of [Sr/Ba] versus [Ba/H] agrees that an additional nucleosynthesis mechanism is needed aside from a single r-process. Two program stars with extremely low abundances of Sr and Ba support the prospect that both main and weak r-processes may have operated during the early phase of Galactic chemical evolution. The distribution of [C/N] shows that there are two groups of carbon-normal giants with different degrees of mixing. However, it is difficult to explain the observed behavior of the [C/N] of the nitrogen-enhanced unevolved stars based on current data.« less

  10. Organic matter in meteorites and comets - Possible origins

    NASA Technical Reports Server (NTRS)

    Anders, Edward

    1991-01-01

    At least six extraterrestrial environments may have contributed organic compounds to meteorites and comets: solar nebula, giant-planet subnebulae, asteroid interiors containing liquid water, carbon star atmospheres, and diffuse or dark interstellar clouds. The record in meteorites is partly obscured by pervasive reheating that transformed much of the organic matter to kerogen; nonetheless, it seems that all six formation sites contributed. For comets, the large abundance of HCHO, HCN, and unsaturated hydrocarbons suggests an interstellar component of 50 percent or more, but the contributions of various interstellar processes, and of a solar-nebula component, are hard to quantify. A research program is outlined that may help reduce these uncertainties.

  11. A NEAR-INFRARED STUDY OF THE STAR-FORMING REGION RCW 34

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van der Walt, D. J.; De Villiers, H. M.; Czanik, R. J.

    2012-07-15

    We report the results of a near-infrared imaging study of a 7.8 Multiplication-Sign 7.8 arcmin{sup 2} region centered on the 6.7 GHz methanol maser associated with the RCW 34 star-forming region using the 1.4 m IRSF telescope at Sutherland. A total of 1283 objects were detected simultaneously in J, H, and K for an exposure time of 10,800 s. The J - H, H - K two-color diagram revealed a strong concentration of more than 700 objects with colors similar to what is expected of reddened classical T Tauri stars. The distribution of the objects on the K versus Jmore » - K color-magnitude diagram is also suggestive that a significant fraction of the 1283 objects is made up of lower mass pre-main-sequence stars. We also present the luminosity function for the subset of about 700 pre-main-sequence stars and show that it suggests ongoing star formation activity for about 10{sup 7} years. An examination of the spatial distribution of the pre-main-sequence stars shows that the fainter (older) part of the population is more dispersed over the observed region and the brighter (younger) subset is more concentrated around the position of the O8.5V star. This suggests that the physical effects of the O8.5V star and the two early B-type stars on the remainder of the cloud out of which they formed could have played a role in the onset of the more recent episode of star formation in RCW 34.« less

  12. The origin of interstellar asteroidal objects like 1I/2017 U1 'Oumuamua

    NASA Astrophysics Data System (ADS)

    Zwart, S. Portegies; Torres, S.; Pelupessy, I.; Bédorf, J.; Cai, Maxwell X.

    2018-05-01

    We study the origin of the interstellar object 1I/2017 U1 'Oumuamua by juxtaposing estimates based on the observations with simulations. We speculate that objects like 'Oumuamua are formed in the debris disc as left over from the star and planet formation process, and subsequently liberated. The liberation process is mediated either by interaction with other stars in the parental star-cluster, by resonant interactions within the planetesimal disc or by the relatively sudden mass loss when the host star becomes a compact object. Integrating 'Oumuamua backward in time in the Galactic potential together with stars from the Gaia-TGAS catalogue we find that about 1.3 Myr ago 'Oumuamua passed the nearby star HIP 17288 within a mean distance of 1.3 pc. By comparing nearby observed L-dwarfs with simulations of the Galaxy we conclude that the kinematics of 'Oumuamua is consistent with relatively young objects of 1.1-1.7 Gyr. We just met 'Oumuamua by chance, and with a derived mean Galactic density of ˜3 × 105 similarly sized objects within 100 au from the Sun or ˜1014 per cubic parsec we expect about 2 to 12 such visitors per year within 1 au from the Sun.

  13. TH28 (Krautter's star) and its string of Herbig-Haro objects

    NASA Technical Reports Server (NTRS)

    Graham, J. A.; Heyer, Mark H.

    1988-01-01

    A high-quality spectrogram of the unusual T Tauri-like star Th28 and its string of Herbig-Haro (HH) objects has been obtained. New velocities and line intensities for the star and the gaseous knots are reported, and data are given for a third HH object located 87 arcsec to the SE along the same collimation axis as defined by the other features. Th28 has a heliocentric velocity of +5 km/s which is close to the velocity of the CO in the area. The star's spectral type is probably in the G8-K2 range.

  14. ETA CARINAE’S THERMAL X-RAY TAIL MEASURED WITH XMM-NEWTON AND NuSTAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamaguchi, Kenji; Corcoran, Michael F.; Gull, Theodore R.

    The evolved, massive highly eccentric binary system, η Car, underwent a periastron passage in the summer of 2014. We obtained two coordinated X-ray observations with XMM-Newton and NuSTAR during the elevated X-ray flux state and just before the X-ray minimum flux state around this passage. These NuSTAR observations clearly detected X-ray emission associated with η Car extending up to ∼50 keV for the first time. The NuSTAR spectrum above 10 keV can be fit with the bremsstrahlung tail from a kT ∼ 6 keV plasma. This temperature is ΔkT ∼ 2 keV higher than those measured from the iron K emission line complex, if the shockedmore » gas is in collisional ionization equilibrium. This result may suggest that the companion star's pre-shock wind velocity is underestimated. The NuSTAR observation near the X-ray minimum state showed a gradual decline in the X-ray emission by 40% at energies above 5 keV in a day, the largest rate of change of the X-ray flux yet observed in individual η Car observations. The column density to the hardest emission component, N{sub H} ∼ 10{sup 24} H cm{sup −2}, marked one of the highest values ever observed for η Car, strongly suggesting increased obscuration of the wind–wind colliding X-ray emission by the thick primary stellar wind prior to superior conjunction. Neither observation detected the power-law component in the extremely hard band that INTEGRAL and Suzaku observed prior to 2011. If the non-detection by NuSTAR is caused by absorption, the power-law source must be small and located very near the wind–wind collision apex. Alternatively, it may be that the power-law source is not related to either η Car or the GeV γ-ray source.« less

  15. Hubble Sees Pinwheel of Star Birth

    NASA Image and Video Library

    2017-12-08

    NASA image release October 19, 2010 Though the universe is chock full of spiral-shaped galaxies, no two look exactly the same. This face-on spiral galaxy, called NGC 3982, is striking for its rich tapestry of star birth, along with its winding arms. The arms are lined with pink star-forming regions of glowing hydrogen, newborn blue star clusters, and obscuring dust lanes that provide the raw material for future generations of stars. The bright nucleus is home to an older population of stars, which grow ever more densely packed toward the center. NGC 3982 is located about 68 million light-years away in the constellation Ursa Major. The galaxy spans about 30,000 light-years, one-third of the size of our Milky Way galaxy. This color image is composed of exposures taken by the Hubble Space Telescope's Wide Field Planetary Camera 2 (WFPC2), the Advanced Camera for Surveys (ACS), and the Wide Field Camera 3 (WFC3). The observations were taken between March 2000 and August 2009. The rich color range comes from the fact that the galaxy was photographed invisible and near-infrared light. Also used was a filter that isolates hydrogen emission that emanates from bright star-forming regions dotting the spiral arms. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI) conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc. in Washington, D.C. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) Acknowledgment: A. Riess (STScI) NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  16. Star Watch: The Amateur Astronomer's Guide to Finding, Observing, and Learning about Over 125 Celestial Objects

    NASA Astrophysics Data System (ADS)

    Harrington, Philip S.

    2003-07-01

    Your Passport to the Universe The night sky is alive with many wonders--distant planets, vast star clusters, glowing nebulae, and expansive galaxies, all waiting to be explored. Let respected astronomy writer Philip Harrington introduce you to the universe in Star Watch, a complete beginner's guide to locating, observing, and understanding these celestial objects. You'll start by identifying the surface features of the Moon, the banded cloud tops of Jupiter, the stunning rings of Saturn, and other members of our solar system. Then you'll venture out beyond our solar system, where you'll learn tips and tricks for finding outstanding deep-sky objects from stars to galaxies, including the entire Messier catalog--a primary goal of every serious beginner. Star Watch features a detailed physical description of each target, including size, distance, and structure, as well as concise directions for locating the objects, handy finder charts, hints on the best times to view each object, and descriptions of what you'll really see through a small telescope or binoculars and with the naked eye. Star Watch will transport you to the farthest depths of space--and return you as a well-traveled, experienced stargazer.

  17. A Robust Test of the Unified Model for Seyfert Galaxies with Implications for the Starburst Phenomenon

    NASA Technical Reports Server (NTRS)

    Weaver, Kimberly A.

    1997-01-01

    My research involves detailed analysis of X-ray emission from Active Galactic Nuclei (AGN). For over a decade, the paradigm for AGN has rested soundly on the unified model hypothesis, which posits that the only difference between broad-line objects (e.g., Type 1 Seyfert galaxies) and narrow-line objects (e.g., Type 2 Seyferts) is that in the former case our line of sight evades toroidal obscuration surrounding the nucleus, while in the latter, our line of sight is blocked by the optically thick torus. It is well established that some Seyfert 2s contain Seyfert I nuclei (i.e., a hidden broad line region), but whether or not all Seyfert 2s contain obscured Seyfert 1 nuclei or whether some Seyfert 2s are intrinsically Seyfert 2s is not known. Optical, IR, and UV surveys are not appropriate to examine this hypothesis because such emissions are either anisotropic or subject to the effects of obscuration, and thus depend strongly on viewing angle. Hard X-rays, on the other hand, can penetrate gas with column densities as high as 10( exp 24.5) cm(-2) and thus provide reliable, direct probes of the cores of heavily obscured AGN. Combining NASA archival data from the Advanced Satellite of Cosmology and Astrophysics (ASCA), the Rossi X-ray Timing Explorer (RXTE), and Rosat, I am accumulating X-ray data between 0.1 and 60 keV to produce a catalog of the broad-band X-ray spectral properties of Seyfert galaxies. These data will be used to perform concrete tests of the unified model, and (compared with similar data on Starbursts) to examine a possible evolutionary connection between Seyfert and Starburst galaxies.

  18. An extrasolar extreme-ultraviolet object. II - The nature of HZ 43. [hot white dwarf star

    NASA Technical Reports Server (NTRS)

    Margon, B.; Liebert, J.; Lampton, M.; Spinrad, H.; Bowyer, S.; Gatewood, G.

    1976-01-01

    A variety of data are presented concerning the spectrum, distance, temperature, and evolutionary state of the hot white dwarf HZ 43, the first extrasolar object to be detected in the EUV band. The data include spectrophotometry of the star and its red dwarf companion (HZ 43B), a trigonometric parallax for the star, its tangential velocity, and results of soft X-ray and EUV observations. The main conclusions are that: (1) the spectrum of HZ 43A is that of a hot DAwk star, (2) HZ 43B is a dM3.5e star, (3) the distance of the system is about 65 pc, (4) the tangential velocity is not atypical of white dwarfs, and (5) the stellar energy distribution of HZ 43A is well fitted by a black body with an effective temperature of approximately 110,000 K. Evolutionary implications of the existence of an object as hot as HZ 43A are briefly considered, and it is suggested that the progenitors of hot DA stars must include objects hotter than spectral type sdB, with logical possibilities being nuclei of planetary nebulae and sdO stars.

  19. CHANDRA OBSERVATIONS OF GALAXY ZOO MERGERS: FREQUENCY OF BINARY ACTIVE NUCLEI IN MASSIVE MERGERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, Stacy H.; Schawinski, Kevin; Urry, C. Megan

    We present the results from a Chandra pilot study of 12 massive galaxy mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 10{sup 11} M{sub Sun} that already have optical active galactic nucleus (AGN) signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N{sub H} {approx}< 1.1 Multiplication-Sign 10{sup 22} cm{sup -2}) X-ray nuclei are relatively common (8/12), but the detections are too faint (<40 counts per nucleus; f{sub 2-10keV} {approx}< 1.2 Multiplication-Sign 10{sup -13} erg s{sup -1} cm{sup -2})more » to reliably separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGNs in these mergers are rare (0%-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.« less

  20. Compton Thick AGN in the XMM-COSMOS field

    NASA Astrophysics Data System (ADS)

    Lanzuisi, G.; Perna, M.; Delvecchio, I.; Berta, S.; Brusa, M.; Gruppioni, C.; Comastri, A.

    2016-06-01

    I will present results we published in two recent papers (Lanzuisi et al. 2015, A&A 573A 137, Lanzuisi et al. 2015, A≈A 578A 120) on the properties of X-ray selected Compton Thick (CT, NH>10^{24} cm^{-2}) AGN, in the XMM-COSMOS survey. We exploited the rich multi-wavelength dataset available in this field, to show that CT AGN tend to harbor smaller, rapidly growing SMBH with respect to unobscured AGN, and have a higher chance of being hosted by star-forming, merging and post-merger systems. We also demonstrated the detectability of even more heavily obscured AGN (NH>10^{25} cm^{-2}), thanks to a truly multi-wavelength approach in the same field, and to the unrivaled XMM sensitivity. The extreme source detected in this way shows strong evidences of ongoing powerful AGN feedback, detected as blue-shifted wings of high ionization optical emission lines such as [NeV] and [FeVII], as well as of the [OIII] emission line. The results obtained from these works point toward a scenario in which highly obscured AGN occupy a peculiar place in the galaxy-AGN co-evolution process, in which both the host and the SMBH rapidly evolve toward the local relations.

  1. Bibliographic Data in Astronomy: Experience with the IBVS Reference List Revision

    NASA Astrophysics Data System (ADS)

    Holl, A.

    2015-04-01

    Literature has to be both visible and accessible. What is not on the web is almost non-existent. Let's turn this adage around: are our present bibliographies complete? Where are the blind spots? Are there resources missing from the web, or not readily accessible? The author shares his experience gained during the extensive revision of old reference lists from the Information Bulletin on Variable Stars (IBVS). ADS contains about twenty-five thousand references from IBVS issues between 1961 and 2013. There are some more references in journals, unidentifiable by ADS. Some are incomplete or inaccurate, and the rest is mostly old and obscure. But however old or obscure it is, it must contain important information, because it is cited. Old observatory publications, and aged gray literature in general, is just in the process of being cleared off from library shelves. It is not only the literature of the past we need to discuss — there are challenges for the present and the future: these include new forms of publications that are hard to render into bibcodes, data and data products, and items that are not strictly data or literature, like VOEvents and nanopublications.

  2. Chandra Observations of Galaxy Zoo Mergers: Frequency of Binary Active Nuclei in Massive Mergers

    NASA Technical Reports Server (NTRS)

    Teng, Stacy H.; Schwainski, Kevin; Urry, C. Megan; Darg, Dan W.; Kaviraj, Sugata; Oh, Kyuseok; Bonning, Erin W.; Cardamone, Carolin N.; Keel, William C.; Lintott, Chris J.; hide

    2012-01-01

    We present the results from a Chandra pilot study of 12 massive mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 10(sup 11) solar mass that already have optical AGN signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N(sub H) less than or approximately 1.1 x 10(exp 22) per square centimeter) X-ray nuclei are relatively common (8/12), but the detections are too faint (less than 40 counts per nucleus; f(sub 2-10 keV) less than or approximately 1.2 x 10(exp -13) ergs per second per square centimeter) to separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGN in these mergers are rare (0-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.

  3. Mid-infrared Variability of Changing-look AGNs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Zhenfeng; Wang, Tinggui; Jiang, Ning

    2017-09-01

    It is known that some active galactic nuclei (AGNs) transit from Type 1 to Type 2 or vice versa. There are two explanations for the so-called changing-look AGNs: one is the dramatic change of the obscuration along the line of sight, and the other is the variation of accretion rate. In this Letter, we report the detection of large amplitude variations in the mid-infrared luminosity during the transitions in 10 changing-look AGNs using the Wide-field Infrared Survey Explorer ( WISE ) and newly released Near-Earth Object WISE Reactivation data. The mid-infrared light curves of 10 objects echo the variability inmore » the optical band with a time lag expected for dust reprocessing. The large variability amplitude is inconsistent with the scenario of varying obscuration, rather it supports the scheme of dramatic change in the accretion rate.« less

  4. A spectroscopic and photometric study of the unique pre- main sequence system KH 15D

    NASA Astrophysics Data System (ADS)

    Hamilton, Catrina Marie

    2004-09-01

    As a class, T Tauri stars are YSOs, some which are surrounded by circumstellar disks, and are recognized as the final stage of low-mass star formation. They also represent the earliest stage of stellar evolution that is optically visible, and, therefore, can be easily studied in detail. Understanding the processes through which these young stars interact with and eventually disperse their circumstellar disks is critical for understanding how they evolve from the T Tauri phase to the zero age main sequence (ZAMS), and how this affects the formation of planets, as well as their rotational evolution. KH 15D is a unique eclipsing system that could provide invaluable insight into the evolution of circumstellar disk material, as well as clues to the close stellar environment. Discovered in 1997, this star system has been observed to undergo an eclipse every 48 days in which the star's light is diminished by 3.5 magnitudes. What is so unusual about the eclipse is that the length of the eclipse has evolved over time, growing in length from 16 days initially, to ˜25 days in 2002/2003. Evolution of disk material on these timescales has never been observed before, and therefore provides us with a unique opportunity to refine our theories about remnant disks around young stars, how they transition, possibly into planets, and what role they play as the star matures and arrives on the zero age main sequence. Additionally, high resolution spectra obtained at specific phases during the December 2001 eclipse showed that as the obscuring matter cut across the star, dramatic spectral changes in the Hα and Hβ lines were seen. Its unique eclipse produces a “natural coronographic” effect in which the stellar photosphere is occulted, revealing details of its magnetosphere and surroundings during eclipse. There is evidence that the weak-lined T Tauri star (WTTS) central to the system is actively accreting gas, although probably not at the rate of a typical classical T Tauri star, calling into question the common practice of associating WTTS characteristics with the absence of an accretion disk. Here I present an investigation of the photometric and spectroscopic properties of the KH 15D eclipsing system, and discuss the implications that this system holds for the future research of T Tauri stars.

  5. A mid-IR study of the circumstellar environment of Herbig Be stars

    NASA Astrophysics Data System (ADS)

    Verhoeff, A. P.; Waters, L. B. F. M.; van den Ancker, M. E.; Min, M.; Stap, F. A.; Pantin, E.; van Boekel, R.; Acke, B.; Tielens, A. G. G. M.; de Koter, A.

    2012-02-01

    Context. The study of the formation of massive stars is complicated because of the short times scales, large distances, and obscuring natal clouds. There are observational and theoretical indications that the circumstellar environment of Herbig Be (HBe) stars is substantially different from that of their lower mass counterparts, the T Tauri and Herbig Ae stars. Aims: We map the spatial distribution and mineralogy of the warm circumstellar dust of a sample of HBe stars. We compare our results to a sample of less massive Herbig Ae stars. Methods: We used literature photometry to obtain optical extinctions and stellar parameters of the targets. We obtained N-band imaging and long-slit spectroscopic data with the VISIR instrument at the VLT and we analyzed these data. We performed photometry of the images and extracted spatial information. We corrected the spectra for extinction and performed mineralogical fits. We fitted Gaussian profiles to characterize the spatial extent of the spectra along the VISIR slit. Results: We find that the mid-infrared (IR) emission of the HBe stars is typically characterized by a circumstellar disk that efficiently reprocesses a substantial portion of the stellar flux. The mid-IR flux levels, the spatial compactness, and the dust composition are quite similar to those of the Herbig Ae stars. We find upper limits to the full-width-at-half-maximum (FWHM) size of the mid-IR emission of ~500 AU. The main differences with the lower mass stars are the lower overall IR excess with a greater variety in shapes, the weaker PAH reprocessing power, and the lack of a silica-forsterite relation. The discrepancies between VISIR and IRAS photometry, the far-IR contributions and the large PAH sizes of HBe stars are attributed to natal clouds. Conclusions: Our results suggest that the Herbig Be disks are flatter than those around lower mass stars and they are likely truncated from the outside by photoevaporation. Based on observations collected at the European Southern Observatory, Chile. Under program IDs: 078.C-0750B, 078.C-0750C, 079.C-0207A, 079.C-0207B and 080.C-0410A.Tables 4 and 5 are available in electronic form at http://www.aanda.org

  6. Electronic imaging system and technique

    DOEpatents

    Bolstad, J.O.

    1984-06-12

    A method and system for viewing objects obscurred by intense plasmas or flames (such as a welding arc) includes a pulsed light source to illuminate the object, the peak brightness of the light reflected from the object being greater than the brightness of the intense plasma or flame; an electronic image sensor for detecting a pulsed image of the illuminated object, the sensor being operated as a high-speed shutter; and electronic means for synchronizing the shutter operation with the pulsed light source.

  7. Electronic imaging system and technique

    DOEpatents

    Bolstad, Jon O.

    1987-01-01

    A method and system for viewing objects obscurred by intense plasmas or flames (such as a welding arc) includes a pulsed light source to illuminate the object, the peak brightness of the light reflected from the object being greater than the brightness of the intense plasma or flame; an electronic image sensor for detecting a pulsed image of the illuminated object, the sensor being operated as a high-speed shutter; and electronic means for synchronizing the shutter operation with the pulsed light source.

  8. NGC 1275: an outlier of the black hole-host scaling relations

    NASA Astrophysics Data System (ADS)

    Sani, Eleonora; Ricci, Federica; La Franca, Fabio; Bianchi, Stefano; Bongiorno, Angela; Brusa, Marcella; Marconi, Alessandro; Onori, Francesca; Shankar, Francesco; Vignali, Cristian

    2018-02-01

    The active galaxy NGC 1275 lies at the center of the Perseus cluster of galaxies, being an archetypal BH-galaxy system that is supposed to fit well with the M_{BH}-host scaling relations obtained for quiescent galaxies. Since it harbours an obscured AGN, only recently our group has been able to estimate its black hole mass. Here our aim is to pinpoint NGC 1275 on the less dispersed scaling relations, namely the M_{BH}-σ_\\star and M_{BH}-L_{bul} planes. Starting from our previous work tep{ricci17b}, we estimate that NGC 1275 falls well outside the intrinsic dispersion of the M_{BH}-σ_\\star plane being 1.2 dex (in black hole mass) displaced with respect to the scaling relations. We then perform a 2D morphological decomposition analysis on Spitzer/IRAC images at 3.6 μm and find that, beyond the bright compact nucleus that dominates the central emission, NGC 1275 follows a de Vaucouleurs profile with no sign of significant star formation nor clear merger remnants. Nonetheless, its displacement on the M_{BH}-L_{bul,3.6} plane with respect to the scaling relation is as high as observed in the M_{BH}-σ_\\star. We explore various scenarios to interpret such behaviors, of which the most realistic one is the evolutionary pattern followed by NGC 1275 to approach the scaling relation. We indeed speculate that NGC 1275 might be a specimen for those galaxies in which the black holes adjusted to its host.

  9. Super Star Clusters and H II Regions in Nuclear Rings

    NASA Astrophysics Data System (ADS)

    Filippenko, Alex

    1996-07-01

    We propose to obtain WFPC2 optical broad-band {F547M and F814W} and narrow-band Halpha+ionN2 {F658N} images of nuclear starburst rings in four nearby galaxies for which we already have ultraviolet {F220W} FOC data. Nuclear rings {or ``hot- spot'' regions} in barred spirals are some of the nearest and least obscured starburst regions, and HST images of nuclear rings in several galaxies show that the rings contain large populations of super star clusters similar to those recently discovered in other types of starburst systems. These compact clusters, many having luminosities exceeding that of the R136 cluster in 30 Doradus, represent a violent mode of star formation distinct from that seen in ordinary disk ionH2 regions, and the nuclear rings present us with an opportunity to study large numbers of these extreme clusters in relatively unobscured starburst environments. It has been suggested that super star clusters are present-day versions of young globular clusters. To evaluate this hypothesis, it is important to understand the physical properties and stellar contents of the clusters, but previous HST studies of nuclear ring galaxies have only used single-filter observations. Together with our UV data, new WFPC2 images will enable us to determine the H II region and cluster luminosity functions within nuclear rings, measure cluster radii, derive age and mass estimates for the clusters by comparison with evolutionary synthesis models, and study the structure and evolution of nuclear rings.

  10. Hard X-ray spectral properties of distant AGN in the NuSTAR surveys

    NASA Astrophysics Data System (ADS)

    Del Moro, Agnese

    2016-08-01

    I will present a study on the average broad X-ray band (~0.5-30 keV) spectral properties of the NuSTAR sources detected in the ECDF-S, EGS and COSMOS fields. Constructing the rest-frame composite spectra of AGN in different hydrogen column density (NH) and 10-40 keV luminosity bins, using Chandra and NuSTAR data, we investigate the typical spectral parameters of the AGN population, such as the photon index, NH, strength of the iron emission line (~6.4 keV) and of the Compton reflection at ~20-30 keV. Placing constraints on the reflection fraction (R) is of particular importance for the synthesis models of the cosmic X-ray background (CXB), as this parameter is strongly linked with the fraction of Compton-thick AGN needed to fit the CXB spectrum. Thanks to its sensitivity at ~20-30 keV, NuSTAR allows for the first time, to directly place such constraints for non-local AGN. We find typical reflection fractions of R~1-1.5, consistent the AGN in the local Universe, with a tentative evidence for the most obscured AGN to have, on average, stronger Compton reflection compared to unobscured AGN. Moreover, contrary to previous works, we do not find significant evidence for a decrease of the reflection strength with luminosity for typical Γ=1.8-1.9. Our results support CXB models that require a relatively small fraction of CT AGN, of the order of ~10-15%.

  11. Deep Chandra Observations of HCG 16. I. Active Nuclei, Star Formation, and Galactic Winds

    NASA Astrophysics Data System (ADS)

    O'Sullivan, E.; Zezas, A.; Vrtilek, J. M.; Giacintucci, S.; Trevisan, M.; David, L. P.; Ponman, T. J.; Mamon, G. A.; Raychaudhury, S.

    2014-10-01

    We present new, deep Chandra X-ray and Giant Metrewave Radio Telescope 610 MHz observations of the spiral-galaxy-rich compact group HCG 16, which we use to examine nuclear activity, star formation, and high-luminosity X-ray binary populations in the major galaxies. We confirm the presence of obscured active nuclei in NGC 833 and NGC 835, and identify a previously unrecognized nuclear source in NGC 838. All three nuclei are variable on timescales of months to years, and for NGC 833 and NGC 835 this is most likely caused by changes in accretion rate. The deep Chandra observations allow us to detect for the first time an Fe Kα emission line in the spectrum of the Seyfert 2 nucleus of NGC 835. We find that NGC 838 and NGC 839 are both starburst-dominated systems, with only weak nuclear activity, in agreement with previous optical studies. We estimate the star formation rates in the two galaxies from their X-ray and radio emission, and compare these results with estimates from the infrared and ultraviolet bands to confirm that star formation in both galaxies is probably declining after galaxy-wide starbursts were triggered ~400-500 Myr ago. We examine the physical properties of their galactic superwinds, and find that both have temperatures of ~0.8 keV. We also examine the X-ray and radio properties of NGC 848, the fifth largest galaxy in the group, and show that it is dominated by emission from its starburst.

  12. Spitzer Makes 'Invisible' Visible

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Hidden behind a shroud of dust in the constellation Cygnus is a stellar nursery called DR21, which is giving birth to some of the most massive stars in our galaxy. Visible light images reveal no trace of this interstellar cauldron because of heavy dust obscuration. In fact, visible light is attenuated in DR21 by a factor of more than 10,000,000,000,000,000,000,000,000,000,000,000,000,000 (ten thousand trillion heptillion).

    New images from NASA's Spitzer Space Telescope allow us to peek behind the cosmic veil and pinpoint one of the most massive natal stars yet seen in our Milky Way galaxy. The never-before-seen star is 100,000 times as bright as the Sun. Also revealed for the first time is a powerful outflow of hot gas emanating from this star and bursting through a giant molecular cloud.

    The colorful image is a large-scale composite mosaic assembled from data collected at a variety of different wavelengths. Views at visible wavelengths appear blue, near-infrared light is depicted as green, and mid-infrared data from the InfraRed Array Camera (IRAC) aboard NASA's Spitzer Space Telescope is portrayed as red. The result is a contrast between structures seen in visible light (blue) and those observed in the infrared (yellow and red). A quick glance shows that most of the action in this image is revealed to the unique eyes of Spitzer. The image covers an area about two times that of a full moon.

  13. The Ultraviolet and Infrared Star Formation Rates of Compact Group Galaxies: An Expanded Sample

    NASA Technical Reports Server (NTRS)

    Lenkic, Laura; Tzanavaris, Panayiotis; Gallagher, Sarah C.; Desjardins, Tyler D.; Walker, Lisa May; Johnson, Kelsey E.; Fedotov, Konstantin; Charlton, Jane; Cardiff, Ann H.; Durell, Pat R.

    2016-01-01

    Compact groups of galaxies provide insight into the role of low-mass, dense environments in galaxy evolution because the low velocity dispersions and close proximity of galaxy members result in frequent interactions that take place over extended time-scales. We expand the census of star formation in compact group galaxies by Tzanavaris et al. (2010) and collaborators with Swift UVOT, Spitzer IRAC and MIPS 24 m photometry of a sample of 183 galaxies in 46 compact groups. After correcting luminosities for the contribution from old stellar populations, we estimate the dust-unobscured star formation rate (SFRUV) using the UVOT uvw2 photometry. Similarly, we use the MIPS 24 m photometry to estimate the component of the SFR that is obscured by dust (SFRIR). We find that galaxies which are MIR-active (MIR-red), also have bluer UV colours, higher specific SFRs, and tend to lie in Hi-rich groups, while galaxies that are MIR-inactive (MIR-blue) have redder UV colours, lower specific SFRs, and tend to lie in Hi-poor groups. We find the SFRs to be continuously distributed with a peak at about 1 M yr1, indicating this might be the most common value in compact groups. In contrast, the specific SFR distribution is bimodal, and there is a clear distinction between star-forming and quiescent galaxies. Overall, our results suggest that the specific SFR is the best tracer of gas depletion and galaxy evolution in compact groups.

  14. GRB 080517: a local, low-luminosity gamma-ray burst in a dusty galaxy at z = 0.09

    NASA Astrophysics Data System (ADS)

    Stanway, Elizabeth R.; Levan, Andrew J.; Tanvir, Nial; Wiersema, Klaas; van der Horst, Alexander; Mundell, Carole G.; Guidorzi, Cristiano

    2015-02-01

    We present an analysis of the photometry and spectroscopy of the host galaxy of Swift-detected GRB 080517. From our optical spectroscopy, we identify a redshift of z = 0.089 ± 0.003, based on strong emission lines, making this a rare example of a very local, low-luminosity, long gamma-ray burst. The galaxy is detected in the radio with a flux density of S4.5 GHz = 0.22 ± 0.04 mJy - one of relatively few known gamma-ray bursts hosts with a securely measured radio flux. Both optical emission lines and a strong detection at 22 μm suggest that the host galaxy is forming stars rapidly, with an inferred star formation rate ˜16 M⊙ yr-1 and a high dust obscuration (E(B - V) > 1, based on sightlines to the nebular emission regions). The presence of a companion galaxy within a projected distance of 25 kpc, and almost identical in redshift, suggests that star formation may have been triggered by galaxy-galaxy interaction. However, fitting of the remarkably flat spectral energy distribution from the ultraviolet through to the infrared suggests that an older, 500 Myr post-starburst stellar population is present along with the ongoing star formation. We conclude that the host galaxy of GRB 080517 is a valuable addition to the still very small sample of well-studied local gamma-ray burst hosts.

  15. No supernovae detected in two long-duration gamma-ray bursts.

    PubMed

    Watson, D; Fynbo, J P U; Thöne, C C; Sollerman, J

    2007-05-15

    There is strong evidence that long-duration gamma-ray bursts (GRBs) are produced during the collapse of a massive star. In the standard version of the collapsar model, a broad-lined and luminous Type Ic core-collapse supernova (SN) accompanies the GRB. This association has been confirmed in observations of several nearby GRBs. Recent observations show that some long-duration GRBs are different. No SN emission accompanied the long-duration GRBs 060505 and 060614 down to limits fainter than any known Type Ic SN and hundreds of times fainter than the archetypal SN 1998bw that accompanied GRB 980425. Multi-band observations of the early afterglows, as well as spectroscopy of the host galaxies, exclude the possibility of significant dust obscuration. Furthermore, the bursts originated in star-forming galaxies, and in the case of GRB 060505, the burst was localized to a compact star-forming knot in a spiral arm of its host galaxy. We find that the properties of the host galaxies, the long duration of the bursts and, in the case of GRB 060505, the location of the burst within its host, all imply a massive stellar origin. The absence of an SN to such deep limits therefore suggests a new phenomenological type of massive stellar death.

  16. A populous intermediate-age open cluster and evidence of an embedded cluster among the FSR globular cluster candidates

    NASA Astrophysics Data System (ADS)

    Bica, E.; Bonatto, C.

    2008-03-01

    We study the nature of the globular cluster (GC) candidates FSR 1603 and FSR1755 selected from the catalogue of Froebrich, Scholz & Raftery. Their properties are investigated with Two-Micron All-Sky Survey field-star decontaminated photometry, which is used to build colour-magnitude diagrams (CMDs) and stellar radial density profiles. FSR1603 has the open cluster Ruprecht 101 as optical counterpart, and we show it to be a massive intermediate-age cluster. Relevant parameters of FSR1603 are the age ~1Gyr, distance from the Sun dsolar ~ 2.7kpc, Galactocentric distance RGC ~ 6.4kpc, core radius RC ~ 1.1pc, mass function slope χ ~ 1.8, observed stellar mass (for stars with mass in the range 1.27 <= m <= 2.03Msolar) Mobs ~ 500Msolar and a total (extrapolated to m = 0.08Msolar) stellar mass Mtot ~ 2300Msolar. FSR1755, on the other hand, is not a populous cluster. It may be a sparse young cluster embedded in the HII region Sh2-3, subject to an absorption AV ~ 4.1, located at dsolar ~ 1.3kpc. Important field-star contamination, spatially variable heavy dust obscuration, even in Ks, and gas emission characterize its field. A nearly vertical, sparse blue stellar sequence shows up in the CMDs.

  17. ASPCAP: THE APOGEE STELLAR PARAMETER AND CHEMICAL ABUNDANCES PIPELINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    García Pérez, Ana E.; Majewski, Steven R.; Shane, Neville

    2016-06-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) has built the largest moderately high-resolution ( R  ≈ 22,500) spectroscopic map of the stars across the Milky Way, and including dust-obscured areas. The APOGEE Stellar Parameter and Chemical Abundances Pipeline (ASPCAP) is the software developed for the automated analysis of these spectra. ASPCAP determines atmospheric parameters and chemical abundances from observed spectra by comparing observed spectra to libraries of theoretical spectra, using χ {sup 2} minimization in a multidimensional parameter space. The package consists of a fortran90 code that does the actual minimization and a wrapper IDL code for book-keeping and datamore » handling. This paper explains in detail the ASPCAP components and functionality, and presents results from a number of tests designed to check its performance. ASPCAP provides stellar effective temperatures, surface gravities, and metallicities precise to 2%, 0.1 dex, and 0.05 dex, respectively, for most APOGEE stars, which are predominantly giants. It also provides abundances for up to 15 chemical elements with various levels of precision, typically under 0.1 dex. The final data release (DR12) of the Sloan Digital Sky Survey III contains an APOGEE database of more than 150,000 stars. ASPCAP development continues in the SDSS-IV APOGEE-2 survey.« less

  18. DISENTANGLING AGN AND STAR FORMATION ACTIVITY AT HIGH REDSHIFT USING HUBBLE SPACE TELESCOPE GRISM SPECTROSCOPY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bridge, Joanna S.; Zeimann, Gregory R.; Trump, Jonathan R.

    2016-08-01

    Differentiating between active galactic nucleus (AGN) activity and star formation in z ∼ 2 galaxies is difficult because traditional methods, such as line-ratio diagnostics, change with redshift, while multi-wavelength methods (X-ray, radio, IR) are sensitive to only the brightest AGNs. We have developed a new method for spatially resolving emission lines using the Hubble Space Telescope /Wide Field Camera 3 G141 grism spectra and quantifying AGN activity through the spatial gradient of the [O iii]/H β line ratio. Through detailed simulations, we show that our novel line-ratio gradient approach identifies ∼40% more low-mass and obscured AGNs than obtained by classicalmore » methods. Based on our simulations, we developed a relationship that maps the stellar mass, star formation rate, and measured [O iii]/H β gradient to the AGN Eddington ratio. We apply our technique to previously studied stacked samples of galaxies at z ∼ 2 and find that our results are consistent with these studies. This gradient method will also be able to inform other areas of galaxy evolution science, such as inside-out quenching and metallicity gradients, and will be widely applicable to future spatially resolved James Webb Space Telescope data.« less

  19. The Diffuse Interstellar Bands: Solving a Century Old Problem

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2017-01-01

    The Diffuse Interstellar Bands (DIBs) are a set of apporoximately 500 absorption bands that are seen in the spectra of reddened stars (i.e., stars obscured by the presence of interstellar clouds in their line of sight). The first DIBs were detected in the visible over a century ago. Diffuse Interstellar Bands are now detected from the near ultraviolet to the near infrared in the spectra of reddened stars spanning a variety of interstellar environments in our local, and in other galaxies. Although DIB carriers are a significant part of the interstellar chemical inventory as they account for a noticeable fraction of the interstellar extinction, the nature of their carriers is still unknown over a century after the detection of the first bands. DIB carriers are stable and ubiquitous in a broad variety of interstellar environments and play a unique role in interstellar physics and chemistry. It has long been realized that the solving of the DIB problem requires a strong synergy between astronomical observations, laboratory astrophysics and astrochemistry, quantum chemistry calculations and astrophysical modeling of line-of-sights. In this review, we'll present and discuss the current state of this perplexing problem. We'll review the progress and the failures that have been encountered in the long quest for the identification of the carriers of these ubiquitous interstellar bands.

  20. High Resolution Active Optics Observations from the Kepler Follow-up Observation Program

    NASA Astrophysics Data System (ADS)

    Gautier, Thomas N.; Ciardi, D. R.; Marcy, G. W.; Hirsch, L.

    2014-01-01

    The ground based follow-up observation program for candidate exoplanets discovered with the Kepler observatory has supported a major effort for high resolution imaging of candidate host stars using adaptive optics wave-front correction (AO), speckle imaging and lucky imaging. These images allow examination of the sky as close as a few tenths of an arcsecond from the host stars to detect background objects that might be the source of the Kepler transit signal instead of the host star. This poster reports on the imaging done with AO cameras on the Keck, Palomar 5m and Shane 3m (Lick Observatory) which have been used to obtain high resolution images of over 500 Kepler Object of Interest (KOI) exoplanet candidate host stars. All observations were made at near infrared wavelengths in the J, H and K bands, mostly using the host target star as the AO guide star. Details of the sensitivity to background objects actually attained by these observations and the number of background objects discovered are presented. Implications to the false positive rate of the Kepler candidates are discussed.

  1. Autonomous space target recognition and tracking approach using star sensors based on a Kalman filter.

    PubMed

    Ye, Tao; Zhou, Fuqiang

    2015-04-10

    When imaged by detectors, space targets (including satellites and debris) and background stars have similar point-spread functions, and both objects appear to change as detectors track targets. Therefore, traditional tracking methods cannot separate targets from stars and cannot directly recognize targets in 2D images. Consequently, we propose an autonomous space target recognition and tracking approach using a star sensor technique and a Kalman filter (KF). A two-step method for subpixel-scale detection of star objects (including stars and targets) is developed, and the combination of the star sensor technique and a KF is used to track targets. The experimental results show that the proposed method is adequate for autonomously recognizing and tracking space targets.

  2. Properties of evolved mass-losing stars in the Milky Way and variations in the interstellar dust composition

    NASA Technical Reports Server (NTRS)

    Thronson, Harley A., Jr.; Latter, William B.; Black, John H.; Bally, John; Hacking, Perry

    1987-01-01

    A large sample of evolved carbon-rich and oxygen-rich objects has been studied using data from the IRAS Point Source Catalog. The number density of infrared-emitting 'carbon' stars shows no variation with Galactocentric radius, while the evolved 'oxygen' star volume density can be well fitted by a given law. A law is given for the number of carbon stars; a total is found in the Galaxy of 48,000 highly evolved oxygen stars. The mass-return rate for all evolved stars is found to be 0.35 solar mass/yr, with a small percentage contribution from carbon stars. The mass-loss rates for both types of stars are dominated by the small number of objects with the smallest rates. A mean lifetime of about 200,000 yr is obtained for both carbon and oxygen stars. Main-sequence stars in the mass range of three to five solar masses are the probable precursors of the carbon stars.

  3. What the Most Metal-poor Stars Tell Us About the Early Universe

    NASA Astrophysics Data System (ADS)

    Frebel, Anna

    2008-05-01

    The chemical evolution of the Galaxy and the early Universe is a key topic in modern astrophysics. The most metal-poor Galactic halo stars are now frequently used in an attempt to reconstruct the onset of the chemical and dynamical formation processes of the Galaxy. These stars are an easily-accessible local equivalent of the high-redshift Universe, and can thus be used to carry out field-field cosmology. The discovery of two astrophysically very important metal-poor objects has recently lead to a significant advance in the field. One object is the most iron-poor star yet found (with [Fe/H]=-5.4). The other stars displays the strongest known overabundances of heavy neutron-capture elements, such as uranium, and nucleo-chronometry yields a stellar age of 13 Gyr. Both stars already serve as benchmark objects for various theoretical studies with regard to nucleosynthesis processes in the early Galaxy. I will discuss how the abundance patterns of these and other metal-poor stars solidify and advance our understanding of the early Universe, and provide constraints on the nature of the first stars, as well as their explosion mechanisms and corresponding supernova nucleosynthesis yields. Large samples of these old objects are also employed to test theoretical predictions about the formation of the very first low-mass stars. In the near future, the combined power of near-field cosmology results with those of the next-generation facilities (e.g., MWA, JWST, GMT) may yield exceptional details about the formation processes of the first generations of stars and galaxies.

  4. Opacity Limit for Supermassive Protostars

    NASA Astrophysics Data System (ADS)

    Becerra, Fernando; Marinacci, Federico; Inayoshi, Kohei; Bromm, Volker; Hernquist, Lars E.

    2018-04-01

    We present a model for the evolution of supermassive protostars from their formation at {M}\\star ≃ 0.1 {M}ȯ until their growth to {M}\\star ≃ {10}5 {M}ȯ . To calculate the initial properties of the object in the optically thick regime, we follow two approaches: one based on idealized thermodynamic considerations, and another based on a more detailed one-zone model. Both methods derive a similar value of {n}{{F}}≃ 2× {10}17 {cm}}-3 for the density of the object when opacity becomes important, i.e., the opacity limit. The subsequent evolution of the growing protostar is determined by the accretion of gas onto the object and can be described by a mass–radius relation of the form {R}\\star \\propto {M}\\star 1/3 during the early stages, and of the form {R}\\star \\propto {M}\\star 1/2 when internal luminosity becomes important. For the case of a supermassive protostar, this implies that the radius of the star grows from {R}\\star ≃ 0.65 {au} to {R}\\star ≃ 250 {au} during its evolution. Finally, we use this model to construct a subgrid recipe for accreting sink particles in numerical simulations. A prime ingredient thereof is a physically motivated prescription for the accretion radius and the effective temperature of the growing protostar embedded inside it. From the latter, we can conclude that photoionization feedback can be neglected until very late in the assembly process of the supermassive object.

  5. Nova-like variables

    NASA Technical Reports Server (NTRS)

    Ladous, Constanze

    1993-01-01

    On grounds of different observable characteristics five classes of nova-like objects are distinguished: the UX Ursae Majoris stars, the antidwarf novae, the DQ Herculis stars, the AM Herculis stars, and the AM Canum Venaticorum stars. Some objects have not been classified specifically. Nova-like stars share most observable features with dwarf novae, except for the outburst behavior. The understanding is that dwarf novae, UX Ursae Majoris stars, and anti-dwarf novae are basically the same sort of objects. The difference between them is that in UX Ursae Majoris stars the mass transfer through the accretion disc always is high so the disc is stationary all the time; in anti-dwarf novae for some reason the mass transfer occasionally drops considerably for some time, and in dwarf novae it is low enough for the disc to undergo semiperiodic changes between high and low accretion events. DQ Herculis stars are believed to possess weakly magnetic white dwarfs which disrupt the inner disc at some distance from the central star; the rotation of the white dwarf can be seen as an additional photometric period. In AM Herculis stars, a strongly magnetic white dwarf entirely prevents the formation of an accretion disk and at the same time locks the rotation of the white dwarf to the binary orbit. Finally, AM Canum Venaticorum stars are believed to be cataclysmic variables that consist of two white dwarf components.

  6. Ambitious Survey Spots Stellar Nurseries

    NASA Astrophysics Data System (ADS)

    2010-08-01

    Astronomers scanning the skies as part of ESO's VISTA Magellanic Cloud survey have now obtained a spectacular picture of the Tarantula Nebula in our neighbouring galaxy, the Large Magellanic Cloud. This panoramic near-infrared view captures the nebula itself in great detail as well as the rich surrounding area of sky. The image was obtained at the start of a very ambitious survey of our neighbouring galaxies, the Magellanic Clouds, and their environment. The leader of the survey team, Maria-Rosa Cioni (University of Hertfordshire, UK) explains: "This view is of one of the most important regions of star formation in the local Universe - the spectacular 30 Doradus star-forming region, also called the Tarantula Nebula. At its core is a large cluster of stars called RMC 136, in which some of the most massive stars known are located." ESO's VISTA telescope [1] is a new survey telescope at the Paranal Observatory in Chile (eso0949). VISTA is equipped with a huge camera that detects light in the near-infrared part of the spectrum, revealing a wealth of detail about astronomical objects that gives us insight into the inner workings of astronomical phenomena. Near-infrared light has a longer wavelength than visible light and so we cannot see it directly for ourselves, but it can pass through much of the dust that would normally obscure our view. This makes it particularly useful for studying objects such as young stars that are still enshrouded in the gas and dust clouds from which they formed. Another powerful aspect of VISTA is the large area of the sky that its camera can capture in each shot. This image is the latest view from the VISTA Magellanic Cloud Survey (VMC). The project will scan a vast area - 184 square degrees of the sky (corresponding to almost one thousand times the apparent area of the full Moon) including our neighbouring galaxies the Large and Small Magellanic Clouds. The end result will be a detailed study of the star formation history and three-dimensional geometry of the Magellanic system. Chris Evans from the VMC team adds: "The VISTA images will allow us to extend our studies beyond the inner regions of the Tarantula into the multitude of smaller stellar nurseries nearby, which also harbour a rich population of young and massive stars. Armed with the new, exquisite infrared images, we will be able to probe the cocoons in which massive stars are still forming today, while also looking at their interaction with older stars in the wider region." The wide-field image shows a host of different objects. The bright area above the centre is the Tarantula Nebula itself, with the RMC 136 cluster of massive stars in its core. To the left is the NGC 2100 star cluster. To the right is the tiny remnant of the supernova SN1987A (eso1032). Below the centre are a series of star-forming regions including NGC 2080 - nicknamed the "Ghost Head Nebula" - and the NGC 2083 star cluster. The VISTA Magellanic Cloud Survey is one of six huge near-infrared surveys of the southern sky that will take up most of the first five years of operations of VISTA. Notes [1] VISTA ― the Visible and Infrared Survey Telescope for Astronomy ― is the newest telescope at ESO's Paranal Observatory in northern Chile. VISTA is a survey telescope working at near-infrared wavelengths and is the world's largest survey telescope. Its large mirror, wide field of view and very sensitive detectors will reveal a completely new view of the southern sky. The telescope is housed on the peak adjacent to the one hosting ESO's Very Large Telescope (VLT) and shares the same exceptional observing conditions. VISTA has a main mirror that is 4.1 m across. In photographic terms it can be thought of as a 67-megapixel digital camera with a 13 000 mm f/3.25 mirror lens. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  7. Distributions and motions of nearby stars defined by objective prism surveys and Hipparcos data

    NASA Technical Reports Server (NTRS)

    Hemenway, P. D.; Lee, J. T.; Upgren, A. R.

    1997-01-01

    Material and objective prism spectral classification work is used to determine the space density distribution of nearby common stars to the limits of objective prism spectral surveys. The aim is to extend the knowledge of the local densities of specific spectral types from a radius of 25 pc from the sun, as limited in the Gliese catalog of nearby stars, to 50 pc or more. Future plans for the application of these results to studies of the kinematic and dynamical properties of stars in the solar neighborhood as a function of their physical properties and ages are described.

  8. Searching for δ Scuti-type pulsation and characterising northern pre-main-sequence field stars

    NASA Astrophysics Data System (ADS)

    Díaz-Fraile, D.; Rodríguez, E.; Amado, P. J.

    2014-08-01

    Context. Pre-main-sequence (PMS) stars are objects evolving from the birthline to the zero-age main sequence (ZAMS). Given a mass range near the ZAMS, the temperatures and luminosities of PMS and main-sequence stars are very similar. Moreover, their evolutionary tracks intersect one another causing some ambiguity in the determination of their evolutionary status. In this context, the detection and study of pulsations in PMS stars is crucial for differentiating between both types of stars by obtaining information of their interiors via asteroseismic techniques. Aims: A photometric variability study of a sample of northern field stars, which previously classified as either PMS or Herbig Ae/Be objects, has been undertaken with the purpose of detecting δ Scuti-type pulsations. Determination of physical parameters for these stars has also been carried out to locate them on the Hertzsprung-Russell diagram and check the instability strip for this type of pulsators. Methods: Multichannel photomultiplier and CCD time series photometry in the uvby Strömgren and BVI Johnson bands were obtained during four consecutive years from 2007 to 2010. The light curves have been analysed, and a variability criterion has been established. Among the objects classified as variable stars, we have selected those which present periodicities above 4 d-1, which was established as the lowest limit for δ Scuti-type pulsations in this investigation. Finally, these variable stars have been placed in a colour-magnitude diagram using the physical parameters derived with the collected uvbyβ Strömgren-Crawford photometry. Results: Five PMS δ Scuti- and three probable β Cephei-type stars have been detected. Two additional PMS δ Scuti stars are also confirmed in this work. Moreover, three new δ Scuti- and two γ Doradus-type stars have been detected among the main-sequence objects used as comparison or check stars.

  9. Anchoring the Population II Distance Scale: Accurate Ages for Globular Clusters

    NASA Technical Reports Server (NTRS)

    Chaboyer, Brian C.; Chaboyer, Brian C.; Carney, Bruce W.; Latham, David W.; Dunca, Douglas; Grand, Terry; Layden, Andy; Sarajedini, Ataollah; McWilliam, Andrew; Shao, Michael

    2004-01-01

    The metal-poor stars in the halo of the Milky Way galaxy were among the first objects formed in our Galaxy. These Population II stars are the oldest objects in the universe whose ages can be accurately determined. Age determinations for these stars allow us to set a firm lower limit, to the age of the universe and to probe the early formation history of the Milky Way. The age of the universe determined from studies of Population II stars may be compared to the expansion age of the universe and used to constrain cosmological models. The largest uncertainty in estimates for the ages of stars in our halo is due to the uncertainty in the distance scale to Population II objects. We propose to obtain accurate parallaxes to a number of Population II objects (globular clusters and field stars in the halo) resulting in a significant improvement in the Population II distance scale and greatly reducing the uncertainty in the estimated ages of the oldest stars in our galaxy. At the present time, the oldest stars are estimated to be 12.8 Gyr old, with an uncertainty of approx. 15%. The SIM observations obtained by this key project, combined with the supporting theoretical research and ground based observations outlined in this proposal will reduce the estimated uncertainty in the age estimates to 5%).

  10. ASCA Observations of "Type 2" LINERs Evidence for a Stellar Source of Ionization

    NASA Technical Reports Server (NTRS)

    Terashima, Yuichi; Ho, Luis C.; Ptak, Andrew F.; Mushotzky, Richard F.; Serlemitsos, Peter J.; Yaqoob, Tahir; Kunieda, Hideyo

    1999-01-01

    We present ASCA observations of LINERs without broad H.alpha emission in their optical spectra. The sample of "type 2" LINERs consists of NGC 404, 4111, 4192, 4457, and 4569. We have detected X-ray emission from all the objects except for NGC 404; among the detected objects are two so-called transition objects (NGC 4192 and NGC 4569), which have been postulated to be composite nuclei having both an H II region and a LINER component. The images of NGC 4111 and NGC 4569 in the soft (0.5-2 keV) and hard (2-7 keV) X-ray bands are extended on scales of several kpc. The X-ray spectra of NGC 4111, NGC 4457 and NGC 4569 are well fitted by a two-component model that consists of soft thermal emission with kT approximately 0.65 keV and a hard component represented by a power law (photon index approximately 2) or by thermal bremsstrahlung emission (kT approximately several keV). The extended hard X-rays probably come from discrete sources, while the soft emission most likely originates from hot gas produced by active star formation in the host galaxy. We have found no clear evidence for the presence of active galactic nuclei (AGNs) in the sample. Using black hole masses estimated from host galaxy bulge luminosities, we obtain an upper limit on the implied Eddington ratios less than 5 x 10(exp -5). If an AGN component is the primary ionization source of the optical emission lines, then it must be heavily obscured with a column density significantly larger than 10(exp 23)/sq cm, since the observed X-ray luminosity is insufficient to drive the luminosities of the optical emission lines. Alternatively, the optical emission could be ionized by a population of exceptionally hot stars. This interpretation is consistent with the small [O I] lambda6300/H.alpha ratios observed in these sources, the ultraviolet spectral characteristics in the cases where such information exists, and the X-ray results reported here. We also analyze the X-ray properties of NGC 4117, a low-luminosity Seyfert 2 galaxy serendipitously observed in the field of NGC 4111.

  11. The Optical Gravitational Lensing Experiment. Eclipsing Binary Stars in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Wyrzykowski, L.; Udalski, A.; Kubiak, M.; Szymanski, M. K.; Zebrun, K.; Soszynski, I.; Wozniak, P. R.; Pietrzynski, G.; Szewczyk, O.

    2004-03-01

    We present new version of the OGLE-II catalog of eclipsing binary stars detected in the Small Magellanic Cloud, based on Difference Image Analysis catalog of variable stars in the Magellanic Clouds containing data collected from 1997 to 2000. We found 1351 eclipsing binary stars in the central 2.4 square degree area of the SMC. 455 stars are newly discovered objects, not found in the previous release of the catalog. The eclipsing objects were selected with the automatic search algorithm based on the artificial neural network. The full catalog is accessible from the OGLE Internet archive.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamajek, Eric E.; Bartlett, Jennifer L.; Finch, Charlie T.

    LP 876-10 is a nearby active M4 dwarf in Aquarius at a distance of 7.6 pc. The star is a new addition to the 10 pc census, with a parallax measured via the REsearch Consortium On Nearby Stars (RECONS) astrometric survey on the Small and Moderate Aperture Research Telescope System's 0.9 m telescope. We demonstrate that the astrometry, radial velocity, and photometric data for LP 876-10 are consistent with the star being a third bound stellar component to the Fomalhaut multiple system, despite the star lying nearly 6° away from Fomalhaut A in the sky. The three-dimensional separation of LPmore » 876-10 from Fomalhaut is only 0.77 ± 0.01 pc, and 0.987 ± 0.006 pc from TW PsA (Fomalhaut B), well within the estimated tidal radius of the Fomalhaut system (1.9 pc). LP 876-10 shares the motion of Fomalhaut within ∼1 km s{sup –1}, and we estimate an interloper probability of ∼10{sup –5}. Neither our echelle spectroscopy nor astrometry are able to confirm the close companion to LP 876-10 reported in the Washington Double Star Catalog (WSI 138). We argue that the Castor Moving Group to which the Fomalhaut system purportedly belongs, is likely to be a dynamical stream, and hence membership to the group does not provide useful age constraints for group members. LP 876-10 (Fomalhaut C) has now risen from obscurity to become a rare example of a field M dwarf with well-constrained age (440 ± 40 Myr) and metallicity. Besides harboring a debris disk system and candidate planet, Fomalhaut now has two of the widest known stellar companions.« less

  13. Polarized light curves illuminate wind geometries in Wolf-Rayet binary stars

    NASA Astrophysics Data System (ADS)

    Hoffman, Jennifer L.; Fullard, Andrew G.; Nordsieck, Kenneth H.

    2018-01-01

    Although the majority of massive stars are affected by a companion during the course of their evolution, the role of binary systems in creating supernova and GRB progenitors is not well understood. Binaries containing Wolf-Rayet stars are particularly interesting because they may provide a mechanism for producing the rapid rotation necessary for GRB formation. However, constraining the evolutionary fate of a Wolf-Rayet binary system requires characterizing its mass loss and mass transfer, a difficult prospect in systems whose colliding winds obscure the stars and produce complicated spectral signatures.The technique of spectropolarimetry is ideally suited to studying WR binary systems because it can disentangle spectral components that take different scattering paths through a complex distribution of circumstellar material. In particular, comparing the polarization behavior as a function of orbital phase of the continuum (which arises from the stars) with that of the emission lines (which arise from the interaction region) can provide a detailed view of the wind structures in a WR+O binary and constrain the system’s mass loss and mass transfer properties.We present new continuum and line polarization curves for three WR+O binaries (WR 30, WR 47, and WR 113) obtained with the RSS spectropolarimeter at the Southern African Large Telescope. We use radiative transfer simulations to analyze the polarization curves, and discuss our interpretations in light of current models for V444 Cygni, a well-studied related binary system. Accurately characterizing the structures of the wind collision regions in these massive binaries is key to understanding their evolution and properly accounting for their contribution to the supernova (and possible GRB) progenitor population.

  14. Hard X-Ray Emission of the Luminous Infrared Galaxy NGC 6240 as Observed by Nustar

    NASA Technical Reports Server (NTRS)

    Puccetti, S.; Comastri, A.; Bauer, F. E.; Brandt, W. N.; Fiore, F.; Harrison, F. A.; Luo, B.; Stern, D.; Urry, C. M.; Alexander, D. M.; hide

    2016-01-01

    We present a broadband (approx.0.3-70 keV) spectral and temporal analysis of NuSTAR observations of the luminous infrared galaxy NGC 6240 combined with archival Chandra, XMM-Newton, and BeppoSAX data. NGC 6240 is a galaxy in a relatively early merger state with two distinct nuclei separated by approx.1.5. Previous Chandra observations resolved the two nuclei and showed that they are both active and obscured by Compton-thick material. Although they cannot be resolved by NuSTAR, we were able to clearly detect, for the first time, both the primary and the reflection continuum components thanks to the unprecedented quality of the NuSTAR data at energies >10 keV. The NuSTAR hard X-ray spectrum is dominated by the primary continuum piercing through an absorbing column density which is mildly optically thick to Compton scattering (tau approx. = 1.2, NH approx. 1.5×10(exp 24)/sq cm. We detect moderately hard X-ray (>10 keV) flux variability up to 20% on short (15-20 ks) timescales. The amplitude of the variability is largest at approx..30 keV and is likely to originate from the primary continuum of the southern nucleus. Nevertheless, the mean hard X-ray flux on longer timescales (years) is relatively constant. Moreover, the two nuclei remain Compton-thick, although we find evidence of variability in the material along the line of sight with column densities NH < or = 2×10(exp 23)/sq cm over long (approx.3-15 yr) timescales. The observed X-ray emission in the NuSTAR energy range is fully consistent with the sum of the best-fit models of the spatially resolved Chandra spectra of the two nuclei.

  15. TRUE MASSES OF RADIAL-VELOCITY EXOPLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Robert A., E-mail: rbrown@stsci.edu

    We study the task of estimating the true masses of known radial-velocity (RV) exoplanets by means of direct astrometry on coronagraphic images to measure the apparent separation between exoplanet and host star. Initially, we assume perfect knowledge of the RV orbital parameters and that all errors are due to photon statistics. We construct design reference missions for four missions currently under study at NASA: EXO-S and WFIRST-S, with external star shades for starlight suppression, EXO-C and WFIRST-C, with internal coronagraphs. These DRMs reveal extreme scheduling constraints due to the combination of solar and anti-solar pointing restrictions, photometric and obscurational completeness,more » image blurring due to orbital motion, and the “nodal effect,” which is the independence of apparent separation and inclination when the planet crosses the plane of the sky through the host star. Next, we address the issue of nonzero uncertainties in RV orbital parameters by investigating their impact on the observations of 21 single-planet systems. Except for two—GJ 676 A b and 16 Cyg B b, which are observable only by the star-shade missions—we find that current uncertainties in orbital parameters generally prevent accurate, unbiased estimation of true planetary mass. For the coronagraphs, WFIRST-C and EXO-C, the most likely number of good estimators of true mass is currently zero. For the star shades, EXO-S and WFIRST-S, the most likely numbers of good estimators are three and four, respectively, including GJ 676 A b and 16 Cyg B b. We expect that uncertain orbital elements currently undermine all potential programs of direct imaging and spectroscopy of RV exoplanets.« less

  16. The Infrared Hunter

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2

    This image composite compares infrared and visible views of the famous Orion nebula and its surrounding cloud, an industrious star-making region located near the hunter constellation's sword. The infrared picture is from NASA's Spitzer Space Telescope, and the visible image is from the National Optical Astronomy Observatory, headquartered in Tucson, Ariz.

    In addition to Orion, two other nebulas can be seen in both pictures. The Orion nebula, or M42, is the largest and takes up the lower half of the images; the small nebula to the upper left of Orion is called M43; and the medium-sized nebula at the top is NGC 1977. Each nebula is marked by a ring of dust that stands out in the infrared view. These rings make up the walls of cavities that are being excavated by radiation and winds from massive stars. The visible view of the nebulas shows gas heated by ultraviolet radiation from the massive stars.

    Above the Orion nebula, where the massive stars have not yet ejected much of the obscuring dust, the visible image appears dark with only a faint glow. In contrast, the infrared view penetrates the dark lanes of dust, revealing bright swirling clouds and numerous developing stars that have shot out jets of gas (green). This is because infrared light can travel through dust, whereas visible light is stopped short by it.

    The infrared image shows light captured by Spitzer's infrared array camera. Light with wavelengths of 8 and 5.8 microns (red and orange) comes mainly from dust that has been heated by starlight. Light of 4.5 microns (green) shows hot gas and dust; and light of 3.6 microns (blue) is from starlight.

  17. Water Emission from Early Universe

    NASA Astrophysics Data System (ADS)

    Jarugula, Sreevani; Vieira, Joaquin

    2017-06-01

    The study of dusty star forming galaxies (DSFGs) is important to understand galaxy assembly in early universe. A bulk of star formation at z ˜ 2-3 takes place in DSFGs but are obscured by dust in optical/UV. However, they are extremely bright in far infrared (FIR) and submillimeter with infrared luminosities of 10^{11} - 10^{13} L_{⊙}. ALMA, with its high spatial and spectral resolution, has opened up a new window to study molecular lines, which are vital to our understanding of the excitation and physical processes in the galaxy. Carbon monoxide (CO) being the second most abundant and bright molecule after hydrogen (H_{2}), is an important tracer of star forming potential. Besides CO, water (H_{2}O) is also abundant and it's line strength is comparable to high-J CO lines in high redshift Ultra Luminous Infrared Galaxies (ULIRGs). Studies have shown H_{2}O to directly trace the FIR field and hence the star forming regions. Moreover, L_{H_{2}O}/L_{IR} ratio is nearly constant for five of the most important water lines and does not depend on the presence of AGN implying that H_{2}O is one of the best tracers of star forming regions (SFRs). This incredible correlation holds for nearly five orders of magnitude in luminosity and observed in both local and high redshift luminous infrared galaxies. In this talk, I will discuss the importance of H_{2}O in tracing FIR field and show the preliminary results of resolved water emission from three high-redshift gravitationally lensed South Pole Telescope (SPT) sources obtained from ALMA cycle 3 and cycle 4. These sources are among the first H_{2}O observations with resolved spatial scales ˜ 1 kpc and will prove to be important for ALMA and galaxy evolution studies.

  18. The remarkable eclipsing asynchronous AM Herculis binary RX J19402-1025

    NASA Technical Reports Server (NTRS)

    Patterson, Joseph; Skillman, David R.; Thorstensen, John; Hellier, Coel

    1995-01-01

    We report on two years of photometric and spectroscopic observation of the recently discovered AM Herculis star RX J19402-1025. A sharp eclipse feature is present in the optical and X-ray light curves, repeating with a period of 12116.290 +/- 0.003 s. The out-of-eclipse optical waveform contains approximately equal contributions from a signal at the same period and another signal at 12150 s. As these signals drift in and out of phase, the wave form of the light curve changes in a complex but predictable manner. After one entire 'supercycle' of 50 days (the beat period between the shorter periods), the light curve returns to its initial shape. We present long-term ephemerides for each of these periods. It is highly probable that the eclipse period is the underlying orbital period, while the magnetic white dwarf rotates with P = 12150 s. The eclipses appear to be eclipses of the white dwarf by the secondary star. But there is probably also a small obscuring effect from cold gas surrounding the secondary, especially on the orbit-leading side where the stream begins to fall towards the white dwarf. The latter hypothesis can account for several puzzling effects in this star, as well as the tendency among most AM Her stars for the sharp emission-line components to slightly precede the actual motion of the secondary. The presence of eclipses in an asynchronous AM Her star provides a marvelous opportunity to study how changes in the orientation of magnetic field lines affect the accretion flows. Repeated polarimetric light curves and high-resolution studies of the emission lines are now critical to exploit this potential.

  19. A search for T Tauri stars and related objects: Archival photometry of candidate variables in V733 Cep field

    NASA Astrophysics Data System (ADS)

    Jurdana-Šepić, R.; Poljančić Beljan, I.

    Searching for T Tauri stars or related early type variables we carried out a BVRI photometric measurements of five candidates with positions within the field of the pre-main sequence object V733 Cephei (Persson's star) located in the dark cloud L1216 near to Cepheus OB3 Association: VES 946, VES 950, NSV 14333, NSV 25966 and V385 Cep. Their magnitudes are determined on the plates from Asiago Observatory historical photographic archive exposed 1971 - 1978. We provide finding charts for program stars and comparison sequence stars, magnitude estimations, magnitude mean values and BVR_cI_c light curves of program stars.

  20. Mass return to the interstellar medium from highly-evolved carbon stars

    NASA Technical Reports Server (NTRS)

    Latter, W. B.; Thronson, H. A., Jr.; Hacking, P.; Bally, J.; Black, J.

    1986-01-01

    Data produced by the Infrared Astronomy Satellite (IRAS) was surveyed at the mid- and far-infrared wavelengths. Visually-identified carbon stars in the 12/25/60 micron color-color diagram were plotted, along with the location of a number of mass-losing stars that lie near the location of the carbon stars, but are not carbon rich. The final sample consisted of 619 objects, which were estimated to be contaminated by 7 % noncarbon-rich objects. The mass return rate was estimated for all evolved circumstellar envelopes. The IRAS Point Source Catalog (PSC) was also searched for the entire class of stars with excess emission. Mass-loss rates, lifetimes, and birthrates for evolved stars were also estimated.

Top