Sample records for oblate-prolate shape competition

  1. Deformation of giant vesicles in AC electric fields —Dependence of the prolate-to-oblate transition frequency on vesicle radius

    NASA Astrophysics Data System (ADS)

    Antonova, K.; Vitkova, V.; Mitov, M. D.

    2010-02-01

    The electrodeformation of giant vesicles is studied as a function of their radii and the frequency of the applied AC field. At low frequency the shape is prolate, at sufficiently high frequency it is oblate and at some frequency, fc, the shape changes from prolate to oblate. A linear dependence of the prolate-to-oblate transition inverse frequency, 1/fc, on the vesicle radius is found. The nature of this phenomenon does not change with the variation of both the solution conductivity, σ, and the type of the fluid enclosed by the lipid membrane (water, sucrose or glucose aqueous solution). When σ increases, the value of fc increases while the slope of the line 1/fc(r) decreases. For vesicles in symmetrical conditions (the same conductivity of the inner and the outer solution) a linear dependence between σ and the critical frequency, fc, is obtained for conductivities up to σ=114 μS/cm. For vesicles with sizes below a certain minimum radius, depending on the solution conductivity, no shape transition could be observed.

  2. Roles of dynamical symmetry breaking in driving oblate-prolate transitions of atomic clusters

    NASA Astrophysics Data System (ADS)

    Oka, Yurie; Yanao, Tomohiro; Koon, Wang Sang

    2015-04-01

    This paper explores the driving mechanisms for structural transitions of atomic clusters between oblate and prolate isomers. We employ the hyperspherical coordinates to investigate structural dynamics of a seven-atom cluster at a coarse-grained level in terms of the dynamics of three gyration radii and three principal axes, which characterize overall mass distributions of the cluster. Dynamics of gyration radii is governed by two kinds of forces. One is the potential force originating from the interactions between atoms. The other is the dynamical forces called the internal centrifugal forces, which originate from twisting and shearing motions of the system. The internal centrifugal force arising from twisting motions has an effect of breaking the symmetry between two gyration radii. As a result, in an oblate isomer, activation of the internal centrifugal force that has the effect of breaking the symmetry between the two largest gyration radii is crucial in triggering structural transitions into prolate isomers. In a prolate isomer, on the other hand, activation of the internal centrifugal force that has the effect of breaking the symmetry between the two smallest gyration radii is crucial in triggering structural transitions into oblate isomers. Activation of a twisting motion that switches the movement patterns of three principal axes is also important for the onset of structural transitions between oblate and prolate isomers. Based on these trigger mechanisms, we finally show that selective activations of specific gyration radii and twisting motions, depending on the isomer of the cluster, can effectively induce structural transitions of the cluster. The results presented here could provide further insights into the control of molecular reactions.

  3. Roles of dynamical symmetry breaking in driving oblate-prolate transitions of atomic clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oka, Yurie, E-mail: ok-yu@fuji.waseda.jp; Yanao, Tomohiro, E-mail: yanao@waseda.jp; Koon, Wang Sang, E-mail: koon@cds.caltech.edu

    2015-04-07

    This paper explores the driving mechanisms for structural transitions of atomic clusters between oblate and prolate isomers. We employ the hyperspherical coordinates to investigate structural dynamics of a seven-atom cluster at a coarse-grained level in terms of the dynamics of three gyration radii and three principal axes, which characterize overall mass distributions of the cluster. Dynamics of gyration radii is governed by two kinds of forces. One is the potential force originating from the interactions between atoms. The other is the dynamical forces called the internal centrifugal forces, which originate from twisting and shearing motions of the system. The internalmore » centrifugal force arising from twisting motions has an effect of breaking the symmetry between two gyration radii. As a result, in an oblate isomer, activation of the internal centrifugal force that has the effect of breaking the symmetry between the two largest gyration radii is crucial in triggering structural transitions into prolate isomers. In a prolate isomer, on the other hand, activation of the internal centrifugal force that has the effect of breaking the symmetry between the two smallest gyration radii is crucial in triggering structural transitions into oblate isomers. Activation of a twisting motion that switches the movement patterns of three principal axes is also important for the onset of structural transitions between oblate and prolate isomers. Based on these trigger mechanisms, we finally show that selective activations of specific gyration radii and twisting motions, depending on the isomer of the cluster, can effectively induce structural transitions of the cluster. The results presented here could provide further insights into the control of molecular reactions.« less

  4. Theoretical investigation of resonance frequencies in long wavelength electromagnetic wave scattering process from plasma prolate and oblate spheroids placed in a dielectric layer

    NASA Astrophysics Data System (ADS)

    Ahmadizadeh, Y.; Jazi, B.; Abdoli-Arani, A.

    2014-01-01

    Response of a prolate spheroid plasma and/or an oblate spheroid plasma in presence of long wavelength electromagnetic wave has been studied. The resonance frequencies of these objects are obtained and it is found that they reduce to the resonance frequency of spherical cold plasma. Moreover, the resonant frequencies of prolate spheroid plasma and oblate spheroid plasma covered by a dielectric are investigated as well. Furthermore, their dependency on dielectric permittivity and geometry dimensions is simulated.

  5. Electromagnetic characteristics of systems of prolate and oblate ellipsoids

    NASA Astrophysics Data System (ADS)

    Karimi, Pouyan; Amiri-Hezaveh, Amirhossein; Ostoja-Starzewski, Martin; Jin, Jian-Ming

    2017-11-01

    The present study suggests a novel model for simulating electromagnetic characteristics of spheroidal nanofillers. The electromagnetic interference shielding efficiency of prolate and oblate ellipsoids in the X-band frequency range is studied. Different multilayered nanocomposite configurations incorporating carbon nanotubes, graphene nanoplatelets, and carbon blacks are fabricated and tested. The best performance for a specific thickness is observed for the multilayered composite with a gradual increase in the thickness and electrical conductivity of layers. The simulation results based on the proposed model are shown to be in good agreement with the experimental data. The effect of filler alignment on shielding efficiency is also studied by using the nematic order parameter. The ability of a nanocomposite to shield the incident power is found to decrease by increasing alignment especially for high volume fractions of prolate fillers. The interaction of the electromagnetic wave and the fillers is mainly affected by the polarization of the electric field; when the electric field is perpendicular to the equatorial axis of a spheroid, the interaction is significantly reduced and results in a lower shielding efficiency. Apart from the filler alignment, size polydispersity is found to have a significant effect on reflected and transmitted powers. It is demonstrated that the nanofillers with a higher aspect ratio mainly contribute to the shielding performance. The results are of interest in both shielding structures and microwave absorbing materials.

  6. Is the dark halo of the Milky Way prolate?

    NASA Astrophysics Data System (ADS)

    Bowden, A.; Evans, N. W.; Williams, A. A.

    2016-07-01

    We introduce the flattening equation, which relates the shape of the dark halo to the angular velocity dispersions and the density of a tracer population of stars. It assumes spherical alignment of the velocity dispersion tensor, as seen in the data on stellar halo stars in the Milky Way. The angular anisotropy and gradients in the angular velocity dispersions drive the solutions towards prolateness, whilst the gradient in the stellar density is a competing effect favouring oblateness. We provide an efficient numerical algorithm to integrate the flattening equation. Using tests on mock data, we show that there is a strong degeneracy between circular speed and flattening, which can be circumvented with informative priors. Therefore, we advocate the use of the flattening equation to test for oblateness or prolateness, though the precise value of q can only be measured with the addition of the radial Jeans equation. We apply the flattening equation to a sample extracted from the Sloan Digital Sky Survey of ˜15 000 halo stars with full phase space information and errors. We find that between Galactocentric radii of 5 and 10 kpc, the shape of the dark halo is prolate, whilst even mildly oblate models are disfavoured. Strongly oblate models are ruled out. Specifically, for a logarithmic halo model, if the asymptotic circular speed v0 lies between 210 and 250 km s-1, then we find the axis ratio of the equipotentials q satisfies 1.5 ≲ q ≲ 2.

  7. Eye size and shape in newborn children and their relation to axial length and refraction at 3 years.

    PubMed

    Lim, Laurence Shen; Chua, Sharon; Tan, Pei Ting; Cai, Shirong; Chong, Yap-Seng; Kwek, Kenneth; Gluckman, Peter D; Fortier, Marielle V; Ngo, Cheryl; Qiu, Anqi; Saw, Seang-Mei

    2015-07-01

    To determine if eye size and shape at birth are associated with eye size and refractive error 3 years later. A subset of 173 full-term newborn infants from the Growing Up in Singapore Towards healthy Outcomes (GUSTO) birth cohort underwent magnetic resonance imaging (MRI) to measure the dimensions of the internal eye. Eye shape was assessed by an oblateness index, calculated as 1 - (axial length/width) or 1 - (axial length/height). Cycloplegic autorefraction (Canon Autorefractor RK-F1) and optical biometry (IOLMaster) were performed 3 years later. Both eyes of 173 children were analysed. Eyes with longer axial length at birth had smaller increases in axial length at 3 years (p < 0.001). Eyes with larger baseline volumes and surface areas had smaller increases in axial length at 3 years (p < 0.001 for both). Eyes which were more oblate at birth had greater increases in axial length at 3 years (p < 0.001). Using width to calculate oblateness, prolate eyes had smaller increases in axial length at 3 years compared to oblate eyes (p < 0.001), and, using height, prolate and spherical eyes had smaller increases in axial length at 3 years compared to oblate eyes (p < 0.001 for both). There were no associations between eye size and shape at birth and refraction, corneal curvature or myopia at 3 years. Eyes that are larger and have prolate or spherical shapes at birth exhibit smaller increases in axial length over the first 3 years of life. Eye size and shape at birth influence subsequent eye growth but not refractive error development. © 2015 The Authors Ophthalmic & Physiological Optics © 2015 The College of Optometrists.

  8. Anisometric Particle Systems—from Shape Characterization to Suspension Rheology

    NASA Astrophysics Data System (ADS)

    Gregorová, Eva; Pabst, Willi; Vaněrková, Lucie

    2009-06-01

    Methods for the characterization of anisometric particle systems are discussed. For prolate particles, the aspect ratio determination via microscopic image analysis is recalled, and aspect ratio distributions as well as shape-size dependences are commented upon. For oblate particles a simple relation is recalled with can be used to determine an average aspect ratio when size distributions are available from two methods, typically from sedimentation analysis and laser diffraction. The connection between particle shape (aspect ratio) and suspension rheology is outlined and it is shown how a generic procedure, based on Brenner's theory, can be applied to predict the intrinsic viscosity when the aspect ratio is known. On the other hand it is shown, how information on the intrinsic viscosity and the critical solids volume fraction can be extracted from experiments, when the measured concentration dependence of the effective suspension viscosity is adequately interpreted (using the Krieger relation for fitting). The examples mentioned in this paper include systems with oblate or prolate ceramic particles (kaolins, pyrophyllite, wollastonite, silicon carbide) as well as (prolate) pharmaceuticals (mesalamine, ibuprofen, nifuroxazide, paracetamol).

  9. The intrinsic shape of bulges in the CALIFA survey

    NASA Astrophysics Data System (ADS)

    Costantin, L.; Méndez-Abreu, J.; Corsini, E. M.; Eliche-Moral, M. C.; Tapia, T.; Morelli, L.; Dalla Bontà, E.; Pizzella, A.

    2018-02-01

    Context. The intrinsic shape of galactic bulges in nearby galaxies provides crucial information to separate bulge types. Aims: We aim to derive accurate constraints to the intrinsic shape of bulges to provide new clues on their formation mechanisms and set new limitations for future simulations. Methods: We retrieved the intrinsic shape of a sample of CALIFA bulges using a statistical approach. Taking advantage of GalMer numerical simulations of binary mergers we estimated the reliability of the procedure. Analyzing the i-band mock images of resulting lenticular remnants, we studied the intrinsic shape of their bulges at different galaxy inclinations. Finally, we introduced a new (B/A, C/A) diagram to analyze possible correlations between the intrinsic shape and the properties of bulges. Results: We tested the method on simulated lenticular remnants, finding that for galaxies with inclinations of 25° ≤ θ ≤ 65° we can safely derive the intrinsic shape of their bulges. We found that our CALIFA bulges tend to be nearly oblate systems (66%), with a smaller fraction of prolate spheroids (19%), and triaxial ellipsoids (15%). The majority of triaxial bulges are in barred galaxies (75%). Moreover, we found that bulges with low Sérsic indices or in galaxies with low bulge-to-total luminosity ratios form a heterogeneous class of objects; additionally, bulges in late-type galaxies or in less massive galaxies have no preference for being oblate, prolate, or triaxial. On the contrary, bulges with high Sérsic index, in early-type galaxies, or in more massive galaxies are mostly oblate systems. Conclusions: We concluded that various evolutionary pathways may coexist in galaxies, with merging events and dissipative collapse being the main mechanisms driving the formation of the most massive oblate bulges and bar evolution reshaping the less massive triaxial bulges.

  10. Nuclear shapes: Quest for triaxiality in 86Ge and the shape of 98Zr

    NASA Astrophysics Data System (ADS)

    Werner, V.; Lettmann, M.; Lizarazo, C.; Witt, W.; Cline, D.; Carpenter, M.; Doornenbal, P.; Obertelli, A.; Pietralla, N.; Savard, G.; Söderström, P.-A.; Wu, C.-Y.; Zhu, S.

    2018-05-01

    The region of neutron-rich nuclei above the N = 50 magic neutron shell closure encompasses a rich variety of nuclear structure, especially shapeevolutionary phenomena. This can be attributed to the complexity of sub-shell closures, their appearance and disappearance in the region, such as the N = 56 sub shell or Z = 40 for protons. Structural effects reach from a shape phase transition in the Zr isotopes, over shape coexistence between spherical, prolate, and oblate shapes, to possibly rigid triaxial deformation. Recent experiments in this region and their main physics viewpoints are summarized.

  11. Systematics of first and second shape transition temperatures in heavy nuclei

    NASA Astrophysics Data System (ADS)

    Goodman, Alan L.; Jin, Taihao

    1996-09-01

    Thirty-one even-even isotopes (Z=72-80 and N=110-126) have two shape transition temperatures, where Tc2>~Tc1. For temperatures above Tc1, the equilibrium shape is spherical if the rotational frequency is zero. For these 31 nuclei, a slow rotation of the spherical shape creates a prolate shape rotating about its symmetry axis if the temperature is between Tc1 and Tc2, and an oblate shape rotating about its symmetry axis if the temperature is above Tc2.

  12. Shapes of rotating superfluid helium nanodroplets

    DOE PAGES

    Bernando, Charles; Tanyag, Rico Mayro P.; Jones, Curtis; ...

    2017-02-16

    Rotating superfluid He droplets of approximately 1 μm in diameter were obtained in a free nozzle beam expansion of liquid He in vacuum and were studied by single-shot coherent diffractive imaging using an x-ray free electron laser. The formation of strongly deformed droplets is evidenced by large anisotropies and intensity anomalies (streaks) in the obtained diffraction images. The analysis of the images shows that in addition to previously described axially symmetric oblate shapes, some droplets exhibit prolate shapes. Forward modeling of the diffraction images indicates that the shapes of rotating superfluid droplets are very similar to their classical counterparts, givingmore » direct access to the droplet angular momenta and angular velocities. Here, the analyses of the radial intensity distribution and appearance statistics of the anisotropic images confirm the existence of oblate metastable superfluid droplets with large angular momenta beyond the classical bifurcation threshold.« less

  13. Shapes of rotating superfluid helium nanodroplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernando, Charles; Tanyag, Rico Mayro P.; Jones, Curtis

    Rotating superfluid He droplets of approximately 1 μm in diameter were obtained in a free nozzle beam expansion of liquid He in vacuum and were studied by single-shot coherent diffractive imaging using an x-ray free electron laser. The formation of strongly deformed droplets is evidenced by large anisotropies and intensity anomalies (streaks) in the obtained diffraction images. The analysis of the images shows that in addition to previously described axially symmetric oblate shapes, some droplets exhibit prolate shapes. Forward modeling of the diffraction images indicates that the shapes of rotating superfluid droplets are very similar to their classical counterparts, givingmore » direct access to the droplet angular momenta and angular velocities. Here, the analyses of the radial intensity distribution and appearance statistics of the anisotropic images confirm the existence of oblate metastable superfluid droplets with large angular momenta beyond the classical bifurcation threshold.« less

  14. Prolateness of the Solar Tachocline Inferred from Latitudinal Force Balance in a Magnetohydrodynamic Shallow-Water Model

    NASA Astrophysics Data System (ADS)

    Dikpati, Mausumi; Gilman, Peter A.

    2001-05-01

    Motivated by recent helioseismic observations concerning solar tachocline shape and thickness and by the theoretical development of MHD shallow-water equations for the tachocline, we compute the prolateness of the tachocline using an MHD shallow-water model, in which the shape and thickness are determined from the latitudinal force balance equation. We show that a strong toroidal magnetic field stored at or below the overshoot part of the tachocline leads to a pileup of fluid at high latitude, owing to the poleward magnetic curvature stress which has to be balanced by an equatorward latitudinal hydrostatic pressure gradient. For toroidal fields of solar amplitude (~100 kG), results for differentially rotating and uniformly rotating tachoclines are almost the same. In contrast, the unmagnetized differentially rotating tachocline would always be weakly oblate. We propose that a strong toroidal field in the overshoot part of the tachocline should tend to suppress the overshooting, thereby increasing the magnetic storage capacity of the layer since the stratification there should become more subadiabatic. We illustrate the effect of this process on the shape and thickness of the layer by assuming its effective gravity is a function of field strength. If toroidal fields are concentrated in relatively narrow bands which migrate toward the equator with the advance of the sunspot cycle, then they should be accompanied by a ``thickness front'' advancing at the same rate. Applying our model to the prolateness estimate of Charbonneau et al. yields toroidal fields of 60-150 kG in the overshoot layer, consistent with other considerations. Their prolateness in the radiative part of the tachocline would require ~600 kG fields to be present.

  15. Quantitative evaluation of changes in eyeball shape in emmetropization and myopic changes based on elliptic fourier descriptors.

    PubMed

    Ishii, Kotaro; Iwata, Hiroyoshi; Oshika, Tetsuro

    2011-11-04

    To evaluate changes in eyeball shape in emmetropization and myopic changes using magnetic resonance imaging (MRI) and elliptic Fourier descriptors (EFDs). The subjects were 105 patients (age range, 1 month-19 years) who underwent head MRI. The refractive error was determined in 30 patients, and eyeball shape was expressed numerically by principal components analysis of standardized EFDs. In the first principal component (PC1; the oblate-to-prolate change), the proportion of variance/total variance in the development of the eyeball shape was 76%. In all subjects, PC1 showed a significant correlation with age (Pearson r = -0.314; P = 0.001), axial length (AL, r = -0.378; P < 0.001), width (r = -0.200, P = 0.0401), oblateness (r = 0.657, P < 0.001), and spherical equivalent refraction (SER, r = 0.438; P = 0.0146; n = 30). In the group containing patients aged 1 month to 6 years (n = 49), PC1 showed a significant correlation with age (r = -0.366; P = 0.0093). In the group containing patients aged 7 to 19 years (n = 56), PC1 showed a significant correlation with SER (r = 0.640; P = 0.0063). The main deformation pattern in the development of the eyeball shape from oblate to prolate was clarified by quantitative analysis based on EFDs. The results showed clear differences between age groups with regard to changes in the shape of the eyeball, the correlation between these changes, and refractive status changes.

  16. Classifying orbits in galaxy models with a prolate or an oblate dark matter halo component

    NASA Astrophysics Data System (ADS)

    Zotos, Euaggelos E.

    2014-03-01

    Aims: The distinction between regular and chaotic motion in galaxies is undoubtedly an issue of paramount importance. We explore the nature of orbits of stars moving in the meridional plane (R,z) of an axially symmetric galactic model with a disk, a spherical nucleus, and a flat biaxial dark matter halo component. In particular, we study the influence of all the involved parameters of the dynamical system by computing both the percentage of chaotic orbits and the percentages of orbits of the main regular resonant families in each case. Methods: To distinguish between ordered and chaotic motion, we use the smaller alignment index (SALI) method to extensive samples of orbits by numerically integrating the equations of motion as well as the variational equations. Moreover, a method based on the concept of spectral dynamics that utilizes the Fourier transform of the time series of each coordinate is used to identify the various families of regular orbits and also to recognize the secondary resonances that bifurcate from them. Two cases are studied for every parameter: (i) the case where the halo component is prolate and (ii) the case where an oblate dark halo is present. Results: Our numerical investigation indicates that all the dynamical quantities affect, more or less, the overall orbital structure. It was observed that the mass of the nucleus, the halo flattening parameter, the scale length of the halo, the angular momentum, and the orbital energy are the most influential quantities, while the effect of all the other parameters is much weaker. It was also found that all the parameters corresponding to the disk only have a minor influence on the nature of orbits. Furthermore, some other quantities, such as the minimum distance to the origin, the horizontal, and the vertical force, were tested as potential chaos detectors. Our analysis revealed that only general information can be obtained from these quantities. We also compared our results with early related work

  17. Lifetime measurements in shape transition nucleus 188Pt

    NASA Astrophysics Data System (ADS)

    Rohilla, Aman; Gupta, C. K.; Singh, R. P.; Muralithar, S.; Chakraborty, S.; Sharma, H. P.; Kumar, A.; Govil, I. M.; Biswas, D. C.; Chamoli, S. K.

    2017-04-01

    Nuclear level lifetimes of high spin states in yrast and non-yrast bands of 188Pt nucleus have been measured using recoil distance plunger setup present at IUAC, Delhi. In the experiment nuclear states of interest were populated via 174Yb(18O,4 n)188Pt reaction at a beam energy of 79MeV provided by 15 UD Pelletron accelerator. The extracted B(E2\\downarrow) values show an initial rise up to 4+ state and then a nearly constant behavior with spin along yrast band, indicating change of nuclear structure in 188Pt at low spins. The good agreement between experimental and TPSM model B(E2\\downarrow) values up to 4^+ state suggests an increase in axial deformation of the nucleus. The average absolute β2 = 0.20 (3) obtained from measured B(E2\\downarrow) values matches well the values predicted by CHFB and IBM calculations for oblate ( β2 ˜ -0.19) and prolate (β2 ˜ 0.22) shapes. As the lifetime measurements do not yield the sign of β2, no definite conclusion can be drawn on the prolate or oblate collectivity of 188Pt on the basis of present measurements.

  18. Mediating broadband light into graphene–silicon Schottky photodiodes by asymmetric silver nanospheroids: effect of shape anisotropy

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Shivani; Parashar, Piyush K.; Roopak, Sangita; Ji, Alok; Uma, R.; Sharma, R. P.

    2018-05-01

    Designing thinner, more efficient and cost-effective 2D materials/silicon Schottky photodiodes using the plasmonic concept is one of the most recent quests for the photovoltaic research community. This work demonstrates the enhanced performance of graphene–Si Schottky junction solar cells by introducing asymmetric spheroidal shaped Ag nanoparticles (NPs) embedded in a graphene monolayer (GML). The optical signatures of these Ag NPs (oblate, ortho-oblate, prolate and ortho-prolate) have been analyzed by discrete dipole approximation in terms of extinction efficiency and surface plasmon resonance tunability, against the quasi-static approximation. The spatial field distribution is enhanced by optimizing the size (a eff  =  100 nm) and aspect ratio (0.4) for all of the utilized Ag NPs with an optimized graphene environment (t  =  0.1 nm). An improvement of photon absorption in the thin Si wafer for the polychromatic spectral region (λ ~ 300–1100 nm) under an AM 1.5 G solar spectrum has been observed. This resulted in a photocurrent enhancement from 7.98 mA cm‑2 to 10.0 mA cm‑2 for oblate-shaped NPs integrated into GML/Si Schottky junction solar cells as compared to the bare cell. The structure used in this study to improve the graphene–Si Schottky junction’s performance is also advantageous for other graphene-like 2D material-based Schottky devices.

  19. Semiclassical Origin of Superdeformed Shell Structure in the Spheroidal Cavity Model

    NASA Astrophysics Data System (ADS)

    Arita, K.; Sugita, A.; Matsuyanagi, K.

    1998-12-01

    Classical periodic orbits responsible for emergence of the superdeformed shell structures of single-particle motion in spheroidal cavities are identified and their relative contributions to the shell structures are evaluated. Both prolate and oblate superdeformations (axis ratio approximately 2:1) as well as prolate hyperdeformation (axis ratio approximately 3:1) are investigated. Fourier transforms of quantum spectra clearly show that three-dimensional periodic orbits born out of bifurcations of planar orbits in the equatorial plane become predominant at large prolate deformations, while butterfly-shaped planar orbits bifurcated from linear orbits along the minor axis are important at large oblate deformations.

  20. The Shapes of Splash-Form Tektites: Their Geometrical Analysis, Classification and Mechanics of Formation

    NASA Astrophysics Data System (ADS)

    Stauffer, Mel R.; Butler, Samuel L.

    2010-12-01

    Splash-form tektites are found with a wide range of sizes and in an intriguing array of shapes ranging from spheres to flat discs to dumbbells. Despite the considerable interest that exists in tektites, there has been relatively little effort to develop rational shape descriptors and to understand the origin of their shapes based on basic physics. Tektites represent a natural laboratory experiment that can be analyzed to better understand the physics of rotating fluid drops. In this paper, we propose a classification scheme based on the axial ratios of ellipsoids, and we analyze the frequency of tektite shapes using a database of over 1,000 measured tektites. We show that the shape distribution for tektites from Thailand and Vietnam are very similar and that the most common tektites are moderately deformed discs but there exist also a significant number of moderately deformed dumbbells, and we argue that this distribution comes about because fluid drops first deform as oblate forms and then undergo a non-axisymmetric instability to become prolate. We also find that the largest tektites are most likely to be weakly deformed oblate objects while the most strongly deformed and most highly prolate forms are considerably smaller. A numerical model for the evolution of an axisymmetric fluid drop, such as a tektite in its molten early stage, is presented which demonstrates that drops that deform relatively slowly over a longer period of time are likely to develop central thinning while those that deform more rapidly are more likely to retain the shape of an ellipsoid. For the numerical parameters used the characteristic time scale for deformation was less than 1 s.

  1. Shape-Coexistence in ^191Tl and ^189Tl.

    NASA Astrophysics Data System (ADS)

    Reviol, W.; Riedinger, L. L.; Carpenter, M. P.; Fischer, S. M.; Janssens, R. V. F.; Nisius, D.; Moore, E. F.

    1997-10-01

    The Tl isotopes at A ~ 190 are, like the neighboring Hg and Pb nuclei, recognized for a multiplicity of shapes. These shapes reach from spherical or weakly deformed oblate to well-deformed and superdeformed prolate, as mainly inferred from γ -ray spectroscopic studies. We have previously reported on shape-coexistence phenomena in ^191Tl and ^189Tl(W. Reviol et al., Phys. Scr. T56, 167 (1995), and references therein.). Here, we will focus on new results on the ``normally" deformed states in both nuclei obtained from a recent and an upcoming experiment at GAMMASPHERE. The states in ^191Tl and ^189Tl are populated by the reactions ^159Tb(^36S,4n)^191Tl at E_lab = 165 MeV and ^156Gd(^37Cl,4n)^189Tl at E_lab = 171 MeV, respectively. One of the questions to be addressed is about the main level structure in the positive-parity branch of ^191Tl^2. Whether this structure is oblate-collective in nature, like the [505]9/2^- yrast band, we will try to answer on the basis of the available lifetime data.

  2. New insight into the shape coexistence and shape evolution of {sup 157}Yb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, C.; Hua, H.; Li, X. Q.

    2011-01-15

    High-spin states in {sup 157}Yb have been populated in the {sup 144}Sm({sup 16}O,3n){sup 157}Yb fusion-evaporation reaction at a beam energy of 85 MeV. Two rotational bands built on the {nu}f{sub 7/2} and {nu}h{sub 9/2} intrinsic states, respectively, have been established for the first time. The newly observed {nu}f{sub 7/2} band and previously known {nu}i{sub 13/2} band in {sup 157}Yb are discussed in terms of total Routhian surface methods and compared with the structures in the neighboring N = 87 isotones. The structural characters observed in {sup 157}Yb provide evidence for shape coexistence of three distinct shapes: prolate, triaxial, and oblate.more » At higher spins, both the {nu}f{sub 7/2} band and {nu}i{sub 13/2} band in {sup 157}Yb undergo a shape evolution with sizable alignments occurring.« less

  3. New low-energy 0 + state and shape coexistence in Ni 70

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokop, C. J.; Crider, B. P.; Liddick, S. N.

    2015-12-01

    In recent models, the neutron-rich Ni isotopes around N = 40 are predicted to exhibit multiple low-energy excited 0(+) states attributed to neutron and proton excitations across both the N = 40 and Z = 28 shell gaps. In Ni-68, the three observed 0(+) states have been interpreted in terms of triple shape coexistence between spherical, oblate, and prolate deformed shapes. In the present work a new (0(2)(+)) state at an energy of 1567 keV has been discovered in Ni-70 by using beta-delayed, gamma-ray spectroscopy following the decay of Co-70. The precipitous drop in the energy of the prolate-deformed 0(+)more » level between Ni-68 and Ni-70 with the addition of two neutrons compares favorably with results of Monte Carlo shell-model calculations carried out in the large fpg(9/2)d(5/2) model space, which predict a 0(2)(+) state at 1525 keV in Ni-70. The result extends the shape-coexistence picture in the region to Ni-70 and confirms the importance of the role of the tensor component of the monopole interaction in describing the structure of neutron-rich nuclei.« less

  4. The effect of the Earth's oblate spheroid shape on the accuracy of a time-of-arrival lightning ground strike locating system

    NASA Technical Reports Server (NTRS)

    Casper, Paul W.; Bent, Rodney B.

    1991-01-01

    The algorithm used in previous technology time-of-arrival lightning mapping systems was based on the assumption that the earth is a perfect spheroid. These systems yield highly-accurate lightning locations, which is their major strength. However, extensive analysis of tower strike data has revealed occasionally significant (one to two kilometer) systematic offset errors which are not explained by the usual error sources. It was determined that these systematic errors reduce dramatically (in some cases) when the oblate shape of the earth is taken into account. The oblate spheroid correction algorithm and a case example is presented.

  5. Axial acoustic radiation force on rigid oblate and prolate spheroids in Bessel vortex beams of progressive, standing and quasi-standing waves.

    PubMed

    Mitri, F G

    2017-02-01

    The analysis using the partial-wave series expansion (PWSE) method in spherical coordinates is extended to evaluate the acoustic radiation force experienced by rigid oblate and prolate spheroids centered on the axis of wave propagation of high-order Bessel vortex beams composed of progressive, standing and quasi-standing waves, respectively. A coupled system of linear equations is derived after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid, and solved numerically by matrix inversion after performing a single numerical integration procedure. The system of linear equations depends on the partial-wave index n and the order of the Bessel vortex beam m using truncated but converging PWSEs in the least-squares sense. Numerical results for the radiation force function, which is the radiation force per unit energy density and unit cross-sectional surface, are computed with particular emphasis on the amplitude ratio describing the transition from the progressive to the pure standing waves cases, the aspect ratio (i.e., the ratio of the major axis over the minor axis of the spheroid), the half-cone angle and order of the Bessel vortex beam, as well as the dimensionless size parameter. A generalized expression for the radiation force function is derived for cases encompassing the progressive, standing and quasi-standing waves of Bessel vortex beams. This expression can be reduced to other types of beams/waves such as the zeroth-order Bessel non-vortex beam or the infinite plane wave case by appropriate selection of the beam parameters. The results for progressive waves reveal a tractor beam behavior, characterized by the emergence of an attractive pulling force acting in opposite direction of wave propagation. Moreover, the transition to the quasi-standing and pure standing wave cases shows the acoustical tweezers behavior in dual-beam Bessel vortex beams. Applications in acoustic levitation, particle manipulation and acousto

  6. The intrinsic three-dimensional shape of galactic bars

    NASA Astrophysics Data System (ADS)

    Méndez-Abreu, J.; Costantin, L.; Aguerri, J. A. L.; de Lorenzo-Cáceres, A.; Corsini, E. M.

    2018-06-01

    We present the first statistical study on the intrinsic three-dimensional (3D) shape of a sample of 83 galactic bars extracted from the CALIFA survey. We use the galaXYZ code to derive the bar intrinsic shape with a statistical approach. The method uses only the geometric information (ellipticities and position angles) of bars and discs obtained from a multi-component photometric decomposition of the galaxy surface-brightness distributions. We find that bars are predominantly prolate-triaxial ellipsoids (68%), with a small fraction of oblate-triaxial ellipsoids (32%). The typical flattening (intrinsic C/A semiaxis ratio) of the bars in our sample is 0.34, which matches well the typical intrinsic flattening of stellar discs at these galaxy masses. We demonstrate that, for prolate-triaxial bars, the intrinsic shape of bars depends on the galaxy Hubble type and stellar mass (bars in massive S0 galaxies are thicker and more circular than those in less massive spirals). The bar intrinsic shape correlates with bulge, disc, and bar parameters. In particular with the bulge-to-total (B/T) luminosity ratio, disc g - r color, and central surface brightness of the bar, confirming the tight link between bars and their host galaxies. Combining the probability distributions of the intrinsic shape of bulges and bars in our sample we show that 52% (16%) of bulges are thicker (flatter) than the surrounding bar at 1σ level. We suggest that these percentages might be representative of the fraction of classical and disc-like bulges in our sample, respectively.

  7. Kinematic Model of Transient Shape-Induced Anisotropy in Dense Granular Flow

    NASA Astrophysics Data System (ADS)

    Nadler, B.; Guillard, F.; Einav, I.

    2018-05-01

    Nonspherical particles are ubiquitous in nature and industry, yet previous theoretical models of granular media are mostly limited to systems of spherical particles. The problem is that in systems of nonspherical anisotropic particles, dynamic particle alignment critically affects their mechanical response. To study the tendency of such particles to align, we propose a simple kinematic model that relates the flow to the evolution of particle alignment with respect to each other. The validity of the proposed model is supported by comparison with particle-based simulations for various particle shapes ranging from elongated rice-like (prolate) to flattened lentil-like (oblate) particles. The model shows good agreement with the simulations for both steady-state and transient responses, and advances the development of comprehensive constitutive models for shape-anisotropic particles.

  8. Lifetime measurements in A˜100 nuclei using LaBr3(Ce) arrays.

    NASA Astrophysics Data System (ADS)

    Bruce, A. M.

    2018-05-01

    The region of the nuclear chart around neutron-rich A˜100 nuclei is one where prolate and oblate nuclear shapes are predicted to be in close competition. An indirect measurement of the shape of the nucleus can be obtained from measuring level lifetimes which relate, via transition rates, to β2 deformation. In order to make measurements of level lifetimes in the sub nanosecond range an array of 36 LaBr3(Ce) detectors has been constructed for use at the FAIR facility in Darmstadt, Germany. This presentation will give an overview of the array and examples of its use in commissioning experiments at the RIKEN Nishina Center in Japan and the Argonne National Laboratory in the USA.

  9. Tilted-ring models of the prolate spiral galaxies NGC 5033 and 5055

    NASA Technical Reports Server (NTRS)

    Christodoulou, Dimitris M.; Tohline, Joel E.; Steiman-Cameron, Thomas Y.

    1988-01-01

    Observations of the kinematics of H I in the disks of spiral galaxies have shown that isovelocity contours often exhibit a twisted pattern. The shape of a galaxy's gravitational potential well (whether due to luminous matter or dark matter) can be determined from the direction of the twist. If this twist is a manifestation of the precession of a nonsteady-state disk, it is shown that the twists of NGC 5033 and 5055 imply an overall prolate shape, with the major axis of the potential well aligned along the rotation axis of the disk. Therefore, the luminous disks of these galaxies must be embedded in dark halos that are prolate spheroids or prolatelike triaxial figures.

  10. Optically tunable Quincke rotation of a nanometer-thin oblate spheroid

    NASA Astrophysics Data System (ADS)

    Gu, Yu; Zeng, Haibo

    2017-08-01

    Ever since the discovery of Quincke rotation (spontaneous rotation of a particle in fluid under a dc electric field) more than 100 years ago [G. Quincke, Ann. Phys. (Leipzig) 295, 417 (1896), 10.1002/andp.18962951102], the strength of the dc field has been the only external parameter to actively tune the rotation speed. In this paper we theoretically propose an optically tunable Quincke rotor exploiting the photoconductivity of a semiconducting nanometer-thin oblate spheroid. A full analysis of the instability of the Quincke rotation reveals that, unlike a prolate spheroid, no bistability is possible in such a dynamical system. In addition, the required material property and the strength of the dc electric field needed to realize the rotation are also elucidated. It is also predicted that light can be used to tune the spinning speed or simply turn on and off the Quincke rotation very effectively.

  11. Climbing to the top of the galactic mass ladder: evidence for frequent prolate-like rotation among the most massive galaxies

    NASA Astrophysics Data System (ADS)

    Krajnović, Davor; Emsellem, Eric; den Brok, Mark; Marino, Raffaella Anna; Schmidt, Kasper Borello; Steinmetz, Matthias; Weilbacher, Peter M.

    2018-04-01

    We present the stellar velocity maps of 25 massive early-type galaxies located in dense environments observed with MUSE. Galaxies are selected to be brighter than MK = -25.7 magnitude, reside in the core of the Shapley Super Cluster or be the brightest galaxy in clusters richer than the Virgo Cluster. We thus targeted galaxies more massive than 1012 M⊙ and larger than 10 kpc (half-light radius). The velocity maps show a large variety of kinematic features: oblate-like regular rotation, kinematically distinct cores and various types of non-regular rotation. The kinematic misalignment angles show that massive galaxies can be divided into two categories: those with small or negligible misalignment, and those with misalignment consistent with being 90°. Galaxies in this latter group, comprising just under half of our galaxies, have prolate-like rotation (rotation around the major axis). Among the brightest cluster galaxies the incidence of prolate-like rotation is 50 per cent, while for a magnitude limited sub-sample of objects within the Shapley Super Cluster (mostly satellites), 35 per cent of galaxies show prolate-like rotation. Placing our galaxies on the mass - size diagram, we show that they all fall on a branch extending almost an order of magnitude in mass and a factor of 5 in size from the massive end of galaxies, previously recognised as associated with major dissipation-less mergers. The presence of galaxies with complex kinematics and, particularly, prolate-like rotators suggests, according to current numerical simulations, that the most massive galaxies grow predominantly through dissipation-less equal-mass mergers.

  12. Climbing to the top of the galactic mass ladder: evidence for frequent prolate-like rotation among the most massive galaxies

    NASA Astrophysics Data System (ADS)

    Krajnović, Davor; Emsellem, Eric; den Brok, Mark; Marino, Raffaella Anna; Schmidt, Kasper Borello; Steinmetz, Matthias; Weilbacher, Peter M.

    2018-07-01

    We present the stellar velocity maps of 25 massive early-type galaxies located in dense environments observed with MUSE. Galaxies are selected to be brighter than MK = -25.7 mag, reside in the core of the Shapley Super Cluster or be the brightest galaxy in clusters richer than the Virgo Cluster. We thus targeted galaxies more massive than 1012 M⊙ and larger than 10 kpc (half-light radius). The velocity maps show a large variety of kinematic features: oblate-like regular rotation, kinematically distinct cores, and various types of non-regular rotation. The kinematic misalignment angles show that massive galaxies can be divided into two categories: those with small or negligible misalignment and those with misalignment consistent with being 90°. Galaxies in this latter group, comprising just under half of our galaxies, have prolate-like rotation (rotation around the major axis). Among the brightest cluster galaxies the incidence of prolate-like rotation is 50 per cent, while for a magnitude limited sub-sample of objects within the Shapley Super Cluster (mostly satellites), 35 per cent of galaxies show prolate-like rotation. Placing our galaxies on the mass-size diagram, we show that they all fall on a branch extending almost an order of magnitude in mass and a factor of 5 in size from the massive end of galaxies, previously recognized as associated with major dissipation-less mergers. The presence of galaxies with complex kinematics and, particularly, prolate-like rotators suggests, according to current numerical simulations, that the most massive galaxies grow predominantly through dissipation-less equal-mass mergers.

  13. Empty liquid phase of colloidal ellipsoids: the role of shape and interaction anisotropy.

    PubMed

    Varga, Szabolcs; Meneses-Júarez, Efrain; Odriozola, Gerardo

    2014-04-07

    We study the effect of anisotropic excluded volume and attractive interactions on the vapor-liquid phase transition of colloidal ellipsoids. In our model, the hard ellipsoid is embedded into an ellipsoidal well, where both the shape of the hard ellipsoid and that of the added enclosing ellipsoidal well can be varied independently. The bulk properties of these particles are examined by means of a van der Waals type perturbation theory and validated with replica exchange Monte Carlo simulations. It is shown that both the critical volume fraction (ηc) and the critical temperature (Tc) of the vapor-liquid phase transition vanish with increasing shape anisotropy for oblate shapes, while ηc → 0 and Tc ≠ 0 are obtained for very elongated prolate shapes. These results suggest that the chance to stabilize empty liquids (a liquid phase with vanishing density) is higher in suspensions of rod-like colloidal ellipsoids than in those of plate-like ones.

  14. Ultra-Wideband Electromagnetic Induction for UXO Discrimination

    DTIC Science & Technology

    2002-11-30

    prolate to oblate shapes do not present problematical considerations, we will just proceed below in terms of the prolate case. The coefficients bpmn in...these equations are known in the sense that they are calculated from the primary field, while the unknown Bpmn must be solved for. Obtaining the... Bpmn constitutes solving the problem, given that the associated Legendre functions m mn nandP Q are readily evaluated. A set of bpmn can be obtained

  15. Effect of deformation and orientation on spin orbit density dependent nuclear potential

    NASA Astrophysics Data System (ADS)

    Mittal, Rajni; Kumar, Raj; Sharma, Manoj K.

    2017-11-01

    Role of deformation and orientation is investigated on spin-orbit density dependent part VJ of nuclear potential (VN=VP+VJ) obtained within semi-classical Thomas Fermi approach of Skyrme energy density formalism. Calculations are performed for 24-54Si+30Si reactions, with spherical target 30Si and projectiles 24-54Si having prolate and oblate shapes. The quadrupole deformation β2 is varying within range of 0.023 ≤ β2 ≤0.531 for prolate and -0.242 ≤ β2 ≤ -0.592 for oblate projectiles. The spin-orbit dependent potential gets influenced significantly with inclusion of deformation and orientation effect. The spin-orbit barrier and position gets significantly influenced by both the sign and magnitude of β2-deformation. Si-nuclei with β22<0 have higher spin-orbit barrier (compact spin-orbit configuration) in comparison to systems with β2>0. The possible role of spin-orbit potential on barrier characteristics such as barrier height, barrier curvature and on the fusion pocket is also probed. In reference to prolate and oblate systems, the angular dependence of spin-orbit potential is further studied on fusion cross-sections.

  16. Shear alignment and orientational order of shape-anisotropic grains

    NASA Astrophysics Data System (ADS)

    Stannarius, Ralf; Wegner, Sandra; Szabó, Balázs; Börzsönyi, Tamás

    2014-03-01

    Granular matter research was focused for a long time mainly on ensembles of spherical or irregularly shaped grains. In recent years, interest has grown in the study of anisometric, i.e. elongated or flattened particles [see e. g. Börzsönyi, Soft Matter 9, 7401 (2013)]. However, many related phenomena are still only little understood, quantitative experiments are scarce. We investigate shear induced order and alignment of macroscopic shape-anisotropic particles by means of X-ray computed tomography. Packing and orientation of individual grains in sheared ensembles of prolate and oblate objects (ellipsoids, cylinders and similar) are resolved non-invasively [T. Börzsönyi PRL 108, 228302 (2012)]. The experiments show that many observations are qualitatively and even quantitatively comparable to the behavior of well-understood molecular liquid crystals. We establish quantitative relations between aspect ratios and shear alignment. The induced orientational order influences local packing as well as macroscopic friction properties.

  17. Dark halos formed via dissipationless collapse. I - Shapes and alignment of angular momentum

    NASA Astrophysics Data System (ADS)

    Warren, Michael S.; Quinn, Peter J.; Salmon, John K.; Zurek, Wojciech H.

    1992-11-01

    We use N-body simulations on highly parallel supercomputers to study the structure of Galactic dark matter halos. The systems form by gravitational collapse from scale-free and more general Gaussian initial density perturbations in an expanding 400 Mpc-cubed spherical slice of an Einstein-deSitter universe. We analyze the structure and kinematics of about 100 of the largest relaxed halos in each of 10 separate simulations. A typical halo is a triaxial spheroid which tends to be more often prolate than oblate. These shapes are maintained by anisotropic velocity dispersion rather than by angular momentum. Nevertheless, there is a significant tendency for the total angular momentum vector to be aligned with the minor axis of the density distribution.

  18. The Prolate Dark Matter Halo of the Andromeda Galaxy

    NASA Astrophysics Data System (ADS)

    Hayashi, Kohei; Chiba, Masashi

    2014-07-01

    We present new limits on the global shape of the dark matter halo in the Andromeda galaxy using and generalizing non-spherical mass models developed by Hayashi & Chiba and compare our results with theoretical predictions of cold dark matter (CDM) models. This is motivated by the fact that CDM models predict non-spherical virialized dark halos, which reflect the process of mass assembly in the galactic scale. Applying our models to the latest kinematic data of globular clusters and dwarf spheroidal galaxies in the Andromeda halo, we find that the most plausible cases for Andromeda yield a prolate shape for its dark halo, irrespective of assumed density profiles. We also find that this prolate dark halo in Andromeda is consistent with theoretical predictions in which the satellites are distributed anisotropically and preferentially located along major axes of their host halos. It is a reflection of the intimate connection between galactic dark matter halos and the cosmic web. Therefore, our result is profound in understanding internal dynamics of halo tracers in Andromeda, such as orbital evolutions of tidal stellar streams, which play important roles in extracting the abundance of CDM subhalos through their dynamical effects on stream structures.

  19. Effect of surface charge convection and shape deformation on the dielectrophoretic motion of a liquid drop

    NASA Astrophysics Data System (ADS)

    Mandal, Shubhadeep; Bandopadhyay, Aditya; Chakraborty, Suman

    2016-04-01

    The dielectrophoretic motion and shape deformation of a Newtonian liquid drop in an otherwise quiescent Newtonian liquid medium in the presence of an axisymmetric nonuniform dc electric field consisting of uniform and quadrupole components is investigated. The theory put forward by Feng [J. Q. Feng, Phys. Rev. E 54, 4438 (1996), 10.1103/PhysRevE.54.4438] is generalized by incorporating the following two nonlinear effects—surface charge convection and shape deformation—towards determining the drop velocity. This two-way coupled moving boundary problem is solved analytically by considering small values of electric Reynolds number (ratio of charge relaxation time scale to the convection time scale) and electric capillary number (ratio of electrical stress to the surface tension) under the framework of the leaky dielectric model. We focus on investigating the effects of charge convection and shape deformation for different drop-medium combinations. A perfectly conducting drop suspended in a leaky (or perfectly) dielectric medium always deforms to a prolate shape and this kind of shape deformation always augments the dielectrophoretic drop velocity. For a perfectly dielectric drop suspended in a perfectly dielectric medium, the shape deformation leads to either increase (for prolate shape) or decrease (for oblate shape) in the dielectrophoretic drop velocity. Both surface charge convection and shape deformation affect the drop motion for leaky dielectric drops. The combined effect of these can significantly increase or decrease the dielectrophoretic drop velocity depending on the electrohydrodynamic properties of both the liquids and the relative strength of the electric Reynolds number and electric capillary number. Finally, comparison with the existing experiments reveals better agreement with the present theory.

  20. Shape study of the N =Z nucleus 72Kr via β decay

    NASA Astrophysics Data System (ADS)

    Briz, J. A.; Nácher, E.; Borge, M. J. G.; Algora, A.; Rubio, B.; Dessagne, Ph.; Maira, A.; Cano-Ott, D.; Courtin, S.; Escrig, D.; Fraile, L. M.; Gelletly, W.; Jungclaus, A.; Le Scornet, G.; Maréchal, F.; Miehé, Ch.; Poirier, E.; Poves, A.; Sarriguren, P.; Taín, J. L.; Tengblad, O.

    2015-11-01

    The β decay of the N =Z nucleus 72Kr has been studied with the total absorption spectroscopy technique at ISOLDE (CERN). A total B (GT) =0.79 (4 ) gA2/4 π has been found up to an excitation energy of 2.7 MeV. The B (GT) distribution obtained is compared with predictions from state-of-the-art theoretical calculations to learn about the ground state deformation of 72Kr. Although a dominant oblate deformation is suggested by direct comparison with quasiparticle random phase approximation (QRPA) calculations, beyond-mean-field and shell-model calculations favor a large oblate-prolate mixing in the ground state.

  1. On the oblateness and rotation rate of Neptune's atmosphere

    NASA Technical Reports Server (NTRS)

    Hubbard, W. B.

    1986-01-01

    Recent observations of a stellar occultation by Neptune give an oblateness of 0.022 + or - 0.004 for Neptune's atmosphere at the 1-microbar pressure level. This results is consistent with hydrostatic equilibrium at a uniform atmospheric rotation period of 15 hours, although the error bars on quantities used in the calculation are such that an 18-hour period is not excluded. The oblateness of a planetary atmosphere is determined from stellar occultations by measuring the times at which a specified point on immersion or emersion occultation profiles is reached. Whether this standard procedure for deriving the shape of the atmosphere is consistent with what is known about vertical and horizontal temperature gradients in Neptune's atmosphere is evaluated. The nature of the constraint placed on the interior mass distribution by an oblateness determined in this manner is consided, as is the effects of possible differential rotation. A 15-hour Neptune internal mass distribution is approximately homologous to Uranus', but an 18-hour period is not. The implications for Neptune's interior structure if its body rotation period is actually 18 hours are discussed.

  2. Multifaceted Quadruplet of Low-Lying Spin-Zero States in 66Ni: Emergence of Shape Isomerism in Light Nuclei

    NASA Astrophysics Data System (ADS)

    Leoni, S.; Fornal, B.; Mǎrginean, N.; Sferrazza, M.; Tsunoda, Y.; Otsuka, T.; Bocchi, G.; Crespi, F. C. L.; Bracco, A.; Aydin, S.; Boromiza, M.; Bucurescu, D.; Cieplicka-Oryǹczak, N.; Costache, C.; Cǎlinescu, S.; Florea, N.; GhiÅ£ǎ, D. G.; Glodariu, T.; Ionescu, A.; Iskra, Ł. W.; Krzysiek, M.; Mǎrginean, R.; Mihai, C.; Mihai, R. E.; Mitu, A.; NegreÅ£, A.; NiÅ£ǎ, C. R.; Olǎcel, A.; Oprea, A.; Pascu, S.; Petkov, P.; Petrone, C.; Porzio, G.; Şerban, A.; Sotty, C.; Stan, L.; Ştiru, I.; Stroe, L.; Şuvǎilǎ, R.; Toma, S.; Turturicǎ, A.; Ujeniuc, S.; Ur, C. A.

    2017-04-01

    A search for shape isomers in the 66Ni nucleus was performed, following old suggestions of various mean-field models and recent ones, based on state-of-the-art Monte Carlo shell model (MCSM), all considering 66Ni as the lightest nuclear system with shape isomerism. By employing the two-neutron transfer reaction induced by an 18O beam on a 64Ni target, at the sub-Coulomb barrier energy of 39 MeV, all three lowest-excited 0+ states in 66Ni were populated and their γ decay was observed by γ -coincidence technique. The 0+ states lifetimes were assessed with the plunger method, yielding for the 02+, 03+, and 04+ decay to the 21+ state the B (E 2 ) values of 4.3, 0.1, and 0.2 Weisskopf units (W.u.), respectively. MCSM calculations correctly predict the existence of all three excited 0+ states, pointing to the oblate, spherical, and prolate nature of the consecutive excitations. In addition, they account for the hindrance of the E 2 decay from the prolate 04+ to the spherical 21+ state, although overestimating its value. This result makes 66Ni a unique nuclear system, apart from U,238236 , in which a retarded γ transition from a 0+ deformed state to a spherical configuration is observed, resembling a shape-isomerlike behavior.

  3. The prolate dark matter halo of the Andromeda galaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, Kohei; Chiba, Masashi, E-mail: k.hayasi@astr.tohoku.ac.jp, E-mail: chiba@astr.tohoku.ac.jp

    We present new limits on the global shape of the dark matter halo in the Andromeda galaxy using and generalizing non-spherical mass models developed by Hayashi and Chiba and compare our results with theoretical predictions of cold dark matter (CDM) models. This is motivated by the fact that CDM models predict non-spherical virialized dark halos, which reflect the process of mass assembly in the galactic scale. Applying our models to the latest kinematic data of globular clusters and dwarf spheroidal galaxies in the Andromeda halo, we find that the most plausible cases for Andromeda yield a prolate shape for itsmore » dark halo, irrespective of assumed density profiles. We also find that this prolate dark halo in Andromeda is consistent with theoretical predictions in which the satellites are distributed anisotropically and preferentially located along major axes of their host halos. It is a reflection of the intimate connection between galactic dark matter halos and the cosmic web. Therefore, our result is profound in understanding internal dynamics of halo tracers in Andromeda, such as orbital evolutions of tidal stellar streams, which play important roles in extracting the abundance of CDM subhalos through their dynamical effects on stream structures.« less

  4. Measuring stone volume - three-dimensional software reconstruction or an ellipsoid algebra formula?

    PubMed

    Finch, William; Johnston, Richard; Shaida, Nadeem; Winterbottom, Andrew; Wiseman, Oliver

    2014-04-01

    To determine the optimal method for assessing stone volume, and thus stone burden, by comparing the accuracy of scalene, oblate, and prolate ellipsoid volume equations with three-dimensional (3D)-reconstructed stone volume. Kidney stone volume may be helpful in predicting treatment outcome for renal stones. While the precise measurement of stone volume by 3D reconstruction can be accomplished using modern computer tomography (CT) scanning software, this technique is not available in all hospitals or with routine acute colic scanning protocols. Therefore, maximum diameters as measured by either X-ray or CT are used in the calculation of stone volume based on a scalene ellipsoid formula, as recommended by the European Association of Urology. In all, 100 stones with both X-ray and CT (1-2-mm slices) were reviewed. Complete and partial staghorn stones were excluded. Stone volume was calculated using software designed to measure tissue density of a certain range within a specified region of interest. Correlation coefficients among all measured outcomes were compared. Stone volumes were analysed to determine the average 'shape' of the stones. The maximum stone diameter on X-ray was 3-25 mm and on CT was 3-36 mm, with a reasonable correlation (r = 0.77). Smaller stones (<9 mm) trended towards prolate ellipsoids ('rugby-ball' shaped), stones of 9-15 mm towards oblate ellipsoids (disc shaped), and stones >15 mm towards scalene ellipsoids. There was no difference in stone shape by location within the kidney. As the average shape of renal stones changes with diameter, no single equation for estimating stone volume can be recommended. As the maximum diameter increases, calculated stone volume becomes less accurate, suggesting that larger stones have more asymmetric shapes. We recommend that research looking at stone clearance rates should use 3D-reconstructed stone volumes when available, followed by prolate, oblate, or scalene ellipsoid formulas depending on the

  5. Virial coefficients of anisotropic hard solids of revolution: The detailed influence of the particle geometry

    NASA Astrophysics Data System (ADS)

    Herold, Elisabeth; Hellmann, Robert; Wagner, Joachim

    2017-11-01

    We provide analytical expressions for the second virial coefficients of differently shaped hard solids of revolution in dependence on their aspect ratio. The second virial coefficients of convex hard solids, which are the orientational averages of the mutual excluded volume, are derived from volume, surface, and mean radii of curvature employing the Isihara-Hadwiger theorem. Virial coefficients of both prolate and oblate hard solids of revolution are investigated in dependence on their aspect ratio. The influence of one- and two-dimensional removable singularities of the surface curvature to the mutual excluded volume is analyzed. The virial coefficients of infinitely thin oblate and infinitely long prolate particles are compared, and analytical expressions for their ratios are derived. Beyond their dependence on the aspect ratio, the second virial coefficients are influenced by the detailed geometry of the particles.

  6. Virial coefficients of anisotropic hard solids of revolution: The detailed influence of the particle geometry.

    PubMed

    Herold, Elisabeth; Hellmann, Robert; Wagner, Joachim

    2017-11-28

    We provide analytical expressions for the second virial coefficients of differently shaped hard solids of revolution in dependence on their aspect ratio. The second virial coefficients of convex hard solids, which are the orientational averages of the mutual excluded volume, are derived from volume, surface, and mean radii of curvature employing the Isihara-Hadwiger theorem. Virial coefficients of both prolate and oblate hard solids of revolution are investigated in dependence on their aspect ratio. The influence of one- and two-dimensional removable singularities of the surface curvature to the mutual excluded volume is analyzed. The virial coefficients of infinitely thin oblate and infinitely long prolate particles are compared, and analytical expressions for their ratios are derived. Beyond their dependence on the aspect ratio, the second virial coefficients are influenced by the detailed geometry of the particles.

  7. Shape Evolution in Neutron-Rich Krypton Isotopes Beyond N =60 : First Spectroscopy of Kr,10098

    NASA Astrophysics Data System (ADS)

    Flavigny, F.; Doornenbal, P.; Obertelli, A.; Delaroche, J.-P.; Girod, M.; Libert, J.; Rodriguez, T. R.; Authelet, G.; Baba, H.; Calvet, D.; Château, F.; Chen, S.; Corsi, A.; Delbart, A.; Gheller, J.-M.; Giganon, A.; Gillibert, A.; Lapoux, V.; Motobayashi, T.; Niikura, M.; Paul, N.; Roussé, J.-Y.; Sakurai, H.; Santamaria, C.; Steppenbeck, D.; Taniuchi, R.; Uesaka, T.; Ando, T.; Arici, T.; Blazhev, A.; Browne, F.; Bruce, A.; Carroll, R.; Chung, L. X.; Cortés, M. L.; Dewald, M.; Ding, B.; Franchoo, S.; Górska, M.; Gottardo, A.; Jungclaus, A.; Lee, J.; Lettmann, M.; Linh, B. D.; Liu, J.; Liu, Z.; Lizarazo, C.; Momiyama, S.; Moschner, K.; Nagamine, S.; Nakatsuka, N.; Nita, C.; Nobs, C. R.; Olivier, L.; Orlandi, R.; Patel, Z.; Podolyák, Zs.; Rudigier, M.; Saito, T.; Shand, C.; Söderström, P. A.; Stefan, I.; Vaquero, V.; Werner, V.; Wimmer, K.; Xu, Z.

    2017-06-01

    We report on the first γ -ray spectroscopy of low-lying states in neutron-rich Kr,10098 isotopes obtained from Rb,10199(p ,2 p ) reactions at ˜220 MeV /nucleon . A reduction of the 21+ state energies beyond N =60 demonstrates a significant increase of deformation, shifted in neutron number compared to the sharper transition observed in strontium and zirconium isotopes. State-of-the-art beyond-mean-field calculations using the Gogny D1S interaction predict level energies in good agreement with experimental results. The identification of a low-lying (02+, 22+) state in Kr 98 provides the first experimental evidence of a competing configuration at low energy in neutron-rich krypton isotopes consistent with the oblate-prolate shape coexistence picture suggested by theory.

  8. Solar oblateness from Archimedes to Dicke

    NASA Astrophysics Data System (ADS)

    Sigismondi, C.; Oliva, P.

    2005-10-01

    The non-spherical shape of the Sun has been invoked to explain the anomalous precession of Mercury. A brief history of some methods for measuring the solar diameter is presented. Archimedes was the first to give upper and lower values for the solar diameter in the third century before Christ. Then there followed the method of total eclipses, used after Halley's observative campaign of 1715 eclipse. We will also discuss the variant of partial eclipses, useful to measure different chords of the solar disk and the method of Dicke, which correlates oblateness with luminous excess in the equatorial zone.

  9. High-spin states in {sup 188}Au: Further evidence for nonaxial shape

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Y. D.; Zhang, Y. H.; Zhou, X. H.

    2010-12-15

    The high-spin level structure of {sup 188}Au has been investigated via the {sup 173}Yb({sup 19}F,4n{gamma}) reaction at beam energies of 86 and 90 MeV. The previously reported level scheme has been modified and extended significantly. A new I{sup {pi}}=20{sup +} state associated with {pi}h{sub 11/2}{sup -1} x {nu}i{sub 13/2}{sup -2}h{sub 9/2}{sup -1} configuration and two new rotational bands, one of which is built on the {pi}h{sub 9/2} x {nu}i{sub 13/2} configuration, have been identified. The prolate-to-oblate shape transition through triaxial shape has been proposed to occur around {sup 188}Au for the {pi}h{sub 9/2} x {nu}i{sub 13/2} bands in odd-odd Aumore » isotopes. Evidence for {pi}h{sub 11/2}{sup -1} x {nu}i{sub 13/2}{sup -1} structure of nonaxial shape with {gamma}<-70 deg. has been obtained by comparison with total Routhian surface and cranked-shell-model calculations.« less

  10. CONVECTION IN OBLATE SOLAR-TYPE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Junfeng; Liang, Chunlei; Miesch, Mark S.

    2016-10-10

    We present the first global 3D simulations of thermal convection in the oblate envelopes of rapidly rotating solar-type stars. This has been achieved by exploiting the capabilities of the new compressible high-order unstructured spectral difference (CHORUS) code. We consider rotation rates up to 85% of the critical (breakup) rotation rate, which yields an equatorial radius that is up to 17% larger than the polar radius. This substantial oblateness enhances the disparity between polar and equatorial modes of convection. We find that the convection redistributes the heat flux emitted from the outer surface, leading to an enhancement of the heat fluxmore » in the polar and equatorial regions. This finding implies that lower-mass stars with convective envelopes may not have darker equators as predicted by classical gravity darkening arguments. The vigorous high-latitude convection also establishes elongated axisymmetric circulation cells and zonal jets in the polar regions. Though the overall amplitude of the surface differential rotation, ΔΩ, is insensitive to the oblateness, the oblateness does limit the fractional kinetic energy contained in the differential rotation to no more than 61%. Furthermore, we argue that this level of differential rotation is not enough to have a significant impact on the oblateness of the star.« less

  11. Electrohydrodynamic instabilities of viscous drops*

    NASA Astrophysics Data System (ADS)

    Vlahovska, Petia M.

    2016-10-01

    A classic result due to Taylor is that a weakly conducting drop bearing zero net charge placed in a uniform electric field adopts a prolate or oblate spheroidal shape, the flow and shape being axisymmetrically aligned with the applied field. Here I overview some intriguing symmetry-breaking instabilities occurring in strong applied dc fields: Quincke rotation resulting in drop steady tilt or tumbling, and pattern formation on the surface of a particle-coated drop.

  12. Electrohydrodynamics of a compound vesicle under an AC electric field

    NASA Astrophysics Data System (ADS)

    Priti Sinha, Kumari; Thaokar, Rochish M.

    2017-07-01

    Compound vesicles are relevant as simplified models for biological cells as well as in technological applications such as drug delivery. Characterization of these compound vesicles, especially the inner vesicle, remains a challenge. Similarly their response to electric field assumes importance in light of biomedical applications such as electroporation. Fields lower than that required for electroporation cause electrodeformation in vesicles and can be used to characterize their mechanical and electrical properties. A theoretical analysis of the electrohydrodynamics of a compound vesicle with outer vesicle of radius R o and an inner vesicle of radius λ {{R}o} , is presented. A phase diagram for the compound vesicle is presented and elucidated using detailed plots of electric fields, free charges and electric stresses. The electrohydrodynamics of the outer vesicle in a compound vesicle shows a prolate-sphere and prolate-oblate-sphere shape transitions when the conductivity of the annular fluid is greater than the outer fluid, and vice-versa respectively, akin to single vesicle electrohydrodynamics reported in the literature. The inner vesicle in contrast shows sphere-prolate-sphere and sphere-prolate-oblate-sphere transitions when the inner fluid conductivity is greater and smaller than the annular fluid, respectively. Equations and methodology are provided to determine the bending modulus and capacitance of the outer as well as the inner membrane, thereby providing an easy way to characterize compound vesicles and possibly biological cells.

  13. Computer simulation study of the nematic-vapour interface in the Gay-Berne model

    NASA Astrophysics Data System (ADS)

    Rull, Luis F.; Romero-Enrique, José Manuel

    2017-06-01

    We present computer simulations of the vapour-nematic interface of the Gay-Berne model. We considered situations which correspond to either prolate or oblate molecules. We determine the anchoring of the nematic phase and correlate it with the intermolecular potential parameters. On the other hand, we evaluate the surface tension associated to this interface. We find a corresponding states law for the surface tension dependence on the temperature, valid for both prolate and oblate molecules.

  14. Taxonomy and pollen morphology of Ankyropetalum Fenzl (Caryophyllaceae) species in Türkiye.

    PubMed

    Muca, Belkis; Ozçelik, Hasan

    2014-04-01

    There are 4 species belong to Ankyropetalum Fenzl (Caryophyllaceae) genus and three of them (A. reuteri Boiss. and Hausskn, A. arsusianum Kotschy ex Boiss. and A. gypsophiloides Fenzl) are distributed in Turkey. There are doubts about taxonomical studies depending on only morphological characteristics. This study has been made to put forth that palinological studies also contribute taxonomical studies. Pollen morphology of the three species belong to Ankyropetalum Fenzl (Caryophyllaceae) genus distributed in Turkey examined with ray microscope and electron microscope in this study. Results evaluated according to Duncan's multiple range test using SPSS statistic program. Pollen's polar and ecvatoral seeming photographs were taken in preparates. Morphology of pollens examined with 50 repetition for each taxon and morphological assessments were made. The common trait of pollens can be summarized as they are circular, oblate and prolate spheroidal, periporate (pore numbers ranged between 20-33), operculum is granulated, annulus is distinct, the form of pollens are tectat. Definition of pollens are given for each taxon, diagnostic specifications recognized as important are used for making diagnosis key. The difference between species are as below: A. arsusianum's pollen shape is oblate-spheroidal, type of pollen is periporate, pore numbers are between 23-33, form of pollen is tectat, ornamentation is perforate. A. reuteri's pollen shape is prolate-spheroidal, type of pollen is periporate, pore numbers are between 20-33, form of pollen is tectat, ornamentation is from perforate to eureticulate A. gypsophiloides pollen shape is oblate-spheroidal, type of pollen is periporate, pore numbers are between 21-30, form of pollen is tectat, ornamentation is perforate.

  15. On the Determination and Constancy of the Solar Oblateness

    NASA Astrophysics Data System (ADS)

    Meftah, M.; Irbah, A.; Hauchecorne, A.; Corbard, T.; Turck-Chièze, S.; Hochedez, J.-F.; Boumier, P.; Chevalier, A.; Dewitte, S.; Mekaoui, S.; Salabert, D.

    2015-03-01

    The equator-to-pole radius difference (Δ r= R eq- R pol) is a fundamental property of our star, and understanding it will enrich future solar and stellar dynamical models. The solar oblateness (Δ⊙) corresponds to the excess ratio of the equatorial solar radius ( R eq) to the polar radius ( R pol), which is of great interest for those working in relativity and different areas of solar physics. Δ r is known to be a rather small quantity, where a positive value of about 8 milli-arcseconds (mas) is suggested by previous measurements and predictions. The Picard space mission aimed to measure Δ r with a precision better than 0.5 mas. The Solar Diameter Imager and Surface Mapper (SODISM) onboard Picard was a Ritchey-Chrétien telescope that took images of the Sun at several wavelengths. The SODISM measurements of the solar shape were obtained during special roll maneuvers of the spacecraft by 30° steps. They have produced precise determinations of the solar oblateness at 782.2 nm. After correcting measurements for optical distortion and for instrument temperature trend, we found a solar equator-to-pole radius difference at 782.2 nm of 7.9±0.3 mas (5.7±0.2 km) at one σ. This measurement has been repeated several times during the first year of the space-borne observations, and we have not observed any correlation between oblateness and total solar irradiance variations.

  16. Drag reduction in turbulent channel laden with finite-size oblate spheroids

    NASA Astrophysics Data System (ADS)

    Niazi Ardekani, Mehdi; Pedro Costa Collaboration; Wim-Paul Breugem Collaboration; Francesco Picano Collaboration; Luca Brandt Collaboration

    2016-11-01

    Suspensions of oblate rigid particles in a turbulent plane channel flow are investigated for different values of the particle volume fraction. We perform direct numerical simulations (DNS), using a direct-forcing immersed boundary method to account for the particle-fluid interactions, combined with a soft-sphere collision model and lubrication corrections for short-range particle-particle and particle-wall interactions. We show a clear drag reduction and turbulence attenuation in flows laden with oblate spheroids, both with respect to the single phase turbulent flow and to suspensions of rigid spheres. We explain the drag reduction by the lack of the particle layer at the wall, observed before for spherical particles. In addition, the special shape of the oblate particles creates a tendency to stay parallel to the wall in its vicinity, forming a shield of particles that prevents strong fluctuations in the outer layer to reach the wall and vice versa. Detailed statistics of the fluid and particle phase will be presented at the conference to explain the observed drag reduction. Supported by the European Research Council Grant No. ERC-2013-CoG-616186, TRITOS. The authors acknowledge computer time provided by SNIC (Swedish National Infrastructure for Computing) and the support from the COST Action MP1305: Flowing matter.

  17. I-Love-Q Anisotropically

    NASA Astrophysics Data System (ADS)

    Yagi, Kent; Yunes, Nicolas

    2015-04-01

    Recent work shows that rotating incompressible stars with anisotropic matter in the weak-field limit become prolate, which is rather counter-intuitive. We construct slowly-rotating, incompressible and anisotropic stellar solutions in full General Relativity valid to quadratic order in spin and show that the stellar shape shifts from prolate to oblate as one increases the relativistic effect. Anisotropic stars are also interesting because they can be more compact than isotropic stars, and can even be as compact as black holes. We present how stellar multipole moments approach the black hole limit as one increases the compactness, suggesting that they reach the black hole limit continuously.

  18. Inhibitory competition between shape properties in figure-ground perception.

    PubMed

    Peterson, Mary A; Skow, Emily

    2008-04-01

    Theories of figure-ground perception entail inhibitory competition between either low-level units (edge or feature units) or high-level shape properties. Extant computational models instantiate the 1st type of theory. The authors investigated a prediction of the 2nd type of theory: that shape properties suggested on the ground side of an edge are suppressed when they lose the figure-ground competition. In Experiment 1, the authors present behavioral evidence of the predicted suppression: Object decisions were slower for line drawings that followed silhouettes suggesting portions of objects from the same rather than a different category on their ground sides. In Experiment 2, the authors reversed the silhouette's figure-ground relationships and obtained speeding rather than slowing in the same category condition, thereby demonstrating that the Experiment 1 results reflect suppression of those shape properties that lose the figure-ground competition. These experiments provide the first clear empirical evidence that figure-ground perception entails inhibitory competition between high-level shape properties and demonstrate the need for amendments to existing computational models. Furthermore, these results suggest that figure-ground perception may itself be an instance of biased competition in shape perception. (Copyright) 2008 APA, all rights reserved.

  19. Simulation of multistatic and backscattering cross sections for airborne radar

    NASA Astrophysics Data System (ADS)

    Biggs, Albert W.

    1986-07-01

    In order to determine susceptibilities of airborne radar to electronic countermeasures and electronic counter-countermeasures simulations of multistatic and backscattering cross sections were developed as digital modules in the form of algorithms. Cross section algorithms are described for prolate (cigar shape) and oblate (disk shape) spheroids. Backscattering cross section algorithms are also described for different categories of terrain. Backscattering cross section computer programs were written for terrain categorized as vegetation, sea ice, glacial ice, geological (rocks, sand, hills, etc.), oceans, man-made structures, and water bodies. PROGRAM SIGTERRA is a file for backscattering cross section modules of terrain (TERRA) such as vegetation (AGCROP), oceans (OCEAN), Arctic sea ice (SEAICE), glacial snow (GLASNO), geological structures (GEOL), man-made structures (MAMMAD), or water bodies (WATER). AGCROP describes agricultural crops, trees or forests, prairies or grassland, and shrubs or bush cover. OCEAN has the SLAR or SAR looking downwind, upwind, and crosswind at the ocean surface. SEAICE looks at winter ice and old or polar ice. GLASNO is divided into a glacial ice and snow or snowfields. MANMAD includes buildings, houses, roads, railroad tracks, airfields and hangars, telephone and power lines, barges, trucks, trains, and automobiles. WATER has lakes, rivers, canals, and swamps. PROGRAM SIGAIR is a similar file for airborne targets such as prolate and oblate spheroids.

  20. Nucleon Alignment and Shape Competition at High Spin in ^180Hf

    NASA Astrophysics Data System (ADS)

    Tandel, U. S.; Chowdhury, P.; Tandel, S. K.; Sheppard, S.; Cline, D.; Wu, C. Y.; Carpenter, M. P.; Janssens, R. V. F.; Khoo, T. L.; Lauritsen, T.; Lister, C. J.; Seweryniak, D.; Zhu, S.

    2006-10-01

    In light even-N Hf isotopes (N = 96-106), the first i13/2 neutron alignment occurs at hφ< 0.3 MeV. In contrast, no alignment was observed up to ˜ 0.4 MeV in ^180,182Hf (N = 108,110) [1]. Theoretical calculations predict that oblate collective rotation becomes yrast at high spins in ^180Hf [2, 3]. In the present work, the yrast band of ^180Hf has been extended to high spins, via inelastic excitation, using a 1300 MeV ^180Hf beam incident on a thin ^232Th target. The γ rays were detected by Gammasphere, with event by event Doppler correction and Q-value selectivity provided by CHICO. The data reveal onset of the first nucleon alignment in ^180Hf at hφ ˜ 0.43 MeV, which is significantly higher than predictions (˜ 0.35 MeV). Interestingly, the γ-vibrational band is crossed by a band with apparent high moment-of-inertia at ˜ 0.25 MeV. This structure, which becomes near yrast at the highest observed spins will be discussed in the context of nucleon alignment and shape competition at high spin in ^180Hf. [1] E. Ngijoi-Yogo, Ph.D. thesis, U.Mass. Lowell (2004) [2] R.R. Hilton and H.J. Mang, Phys. Rev. Lett. 43, 1979 (1979). [3] F.R. Xu et al., Phys. Rev. C62, 014301 (2000).

  1. Verified solutions for the gravitational attraction to an oblate spheroid: Implications for planet mass and satellite orbits

    NASA Astrophysics Data System (ADS)

    Hofmeister, Anne M.; Criss, Robert E.; Criss, Everett M.

    2018-03-01

    Forces external to the oblate spheroid shape, observed from planetary to galactic scales, are demonstrably non-central, which has important ramifications for planetary science. We simplify historic formulae and derive new analytical solutions for the gravitational potential and force outside a constant density oblate. Numerical calculations that sum point mass contributions in a >109 element mesh confirm our equations. We show that contours of constant force and potential about oblate bodies are closely approximated by two confocal families whose foci (f) respectively are (9/10)½ae and (3/5)½ae for a body with f = ae. This leads to useful approximations that address internal density variations. We demonstrate that the force on a general point is not directed towards the oblate's center, nor are forces simply proportional to the inverse square of that distance, despite forces in the equatorial and axial directions pointing towards the center. Our results explain complex dynamics of galactic systems. Because most planets and stars have an aspect ratio >0.9, the spherical approximation is reasonable except for orbits within ∼2 body radii. We show that applying the "generalized" potential, which assumes central forces, yields J2 values half those expected for oblate bodies, and probably underestimates masses of Uranus and Neptune by ∼0.2%. We show that the inner Saturnian moons are subject to non-central forces, which may affect calculations of their orbital precession. Our new series should improve interpretation of flyby data.

  2. Scattering by randomly oriented ellipsoids: Application to aerosol and cloud problems

    NASA Technical Reports Server (NTRS)

    Asano, S.; Sato, M.; Hansen, J. E.

    1979-01-01

    A program was developed for computing the scattering and absorption by arbitrarily oriented and randomly oriented prolate and oblate spheroids. This permits examination of the effect of particle shape for cases ranging from needles through spheres to platelets. Applications of this capability to aerosol and cloud problems are discussed. Initial results suggest that the effect of nonspherical particle shape on transfer of radiation through aerosol layers and cirrus clouds, as required for many climate studies, can be readily accounted for by defining an appropriate effective spherical particle radius.

  3. The behavior of cold gas in spheroidal galactic potentials

    NASA Astrophysics Data System (ADS)

    Simonson, G. F.

    1982-03-01

    The motions of cold gas residing in various spheroidal galactic potential wells are investigated, both analytically and through extensive numerical calculations. It is found that a gaseous layer embedded in the potential has a preferred orientation, in which individual gas clouds have orbits which do not precess. The gas will damp to the preferred orbits, through the combined effects of differential precession and radial excursions from circular trajectories, on time scales of less than one to two billion years for orbits of moderate radius. For elliptical galaxies with embedded gas disks this work provides a clear discriminator between prolate and oblate mass distributions. The preferred gas orbits lie in the equatorial planes of both of these potentials, so if a gas disk is seen projected against the minor axis of an elliptical, that galaxy is truly prolate, while if the lane is aligned with the major axis, the system is oblate. Tabulated observations show that both prolate and oblate ellipticals exist, in perhaps equal numbers. True axial ratios and spatial orientations can also be determined for these objects.

  4. Vibrational Modes of Oblate Clouds of Charge

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Spencer, Ross L.

    2000-10-01

    When a nonneutral plasma confined in a Penning trap is allowed time to expand, its shape at global thermal equilibrium is that of a thin oblate spheroid [D. L. Paulson et al., Phys. Plasmas 5, 345 (1998)]. Oscillations similar to those of a drumhead can be externally induced in such a plasma. Although a theory developed by Dubin predicts the frequencies of the various normal modes of oscillation [Phys. Rev. Lett. 66, 2076 (1991)], this theory assumes that the plasma has zero temperature and is confined by an ideal quadrupole electric field. Neither of these conditions is strictly true in experiments [C. S. Weimer et al., Phys. Rev. A 49, 3842 (1994)] where physical properties of the plasma are deduced from measurements of these frequencies, causing the measurements and ideal theory to differ by about 20%. We reformulate the problem of the normal oscillatory modes as a principal-value integral eigenvalue equation, including finite-temperature and non-ideal confinement effects. The equation is solved numerically to obtain the plasma's normal mode frequencies and shapes; reasonable agreement with experiment is obtained.

  5. The Influence of Vesicle Shape and Medium Conductivity on Possible Electrofusion under a Pulsed Electric Field

    PubMed Central

    Liu, Linying; Mao, Zheng; Zhang, Jianhua; Liu, Na; Liu, Qing Huo

    2016-01-01

    The effects of electric field on lipid membrane and cells have been extensively studied in the last decades. The phenomena of electroporation and electrofusion are of particular interest due to their wide use in cell biology and biotechnology. However, numerical studies on the electrofusion of cells (or vesicles) with different deformed shapes are still rare. Vesicle, being of cell size, can be treated as a simple model of cell to investigate the behaviors of cell in electric field. Based on the finite element method, we investigate the effect of vesicle shape on electrofusion of contact vesicles in various medium conditions. The transmembrane voltage (TMV) and pore density induced by a pulsed field are examined to analyze the possibility of vesicle fusion. In two different medium conditions, the prolate shape is observed to have selective electroporation at the contact area of vesicles when the exterior conductivity is smaller than the interior one; selective electroporation is more inclined to be found at the poles of the oblate vesicles when the exterior conductivity is larger than the interior one. Furthermore, we find that when the exterior conductivity is lower than the internal conductivity, the pulse can induce a selective electroporation at the contact area between two vesicles regardless of the vesicle shape. Both of these two findings have important practical applications in guiding electrofusion experiments. PMID:27391692

  6. High gain durable anti-reflective coating with oblate voids

    DOEpatents

    Maghsoodi, Sina; Brophy, Brenor L.; Colson, Thomas E.; Gonsalves, Peter R.; Abrams, Ze'ev

    2016-06-28

    Disclosed herein are single layer transparent coatings with an anti-reflective property, a hydrophobic property, and that are highly abrasion resistant. The single layer transparent coatings contain a plurality of oblate voids. At least 1% of the oblate voids are open to a surface of the single layer transparent coatings.

  7. Optical caustics associated with the primary and the secondary rainbows of oblate droplets

    NASA Astrophysics Data System (ADS)

    Yu, Haitao; Shen, Jianqi; Tropea, Cameron

    2014-08-01

    The vector ray tracing (VRT) model is used to simulate the optical caustic structures near the primary and the secondary rainbow angles of oblate water droplets. The evolution process of the optical caustic structures in response to shape deformation of the water droplet is discussed. The dependence of the caustic structures on equatorial radius, refractive index and aspect ratio of the droplet are studied and the curvatures of the two rainbow fringes are calculated.

  8. The Orbital precession around oblate spheroids

    NASA Astrophysics Data System (ADS)

    Montanus, J. M. C.

    2006-07-01

    An exact series will be given for the gravitational potential generated by an oblate gravitating source. To this end the corresponding Epstein-Hubbell type elliptic integral is evaluated. The procedure is based on the Legendre polynomial expansion method and on combinatorial techniques. The result is of interest for gravitational models based on the linearity of the gravitational potential. The series approximation for such potentials is of use for the analysis of orbital motions around a nonspherical source. It can be considered advantageous that the analysis is purely algebraic. Numerical approximations are not required. As an important example, the expression for the orbital precession will be derived for an object orbiting around an oblate homogeneous spheroid.

  9. Precession relaxation of viscoelastic oblate rotators

    NASA Astrophysics Data System (ADS)

    Frouard, Julien; Efroimsky, Michael

    2018-01-01

    Perturbations of all sorts destabilize the rotation of a small body and leave it in a non-principal spin state. In such a state, the body experiences alternating stresses generated by the inertial forces. This yields nutation relaxation, i.e. evolution of the spin towards the principal rotation about the maximal-inertia axis. Knowledge of the time-scales needed to damp the nutation is crucial in studies of small bodies' dynamics. In the literature hitherto, nutation relaxation has always been described with aid of an empirical quality factor Q introduced to parametrize the energy dissipation rate. Among the drawbacks of this approach was its inability to describe the dependence of the relaxation rate upon the current nutation angle. This inability stemmed from our lack of knowledge of the quality factor's dependence on the forcing frequency. In this article, we derive our description of nutation damping directly from the rheological law obeyed by the material. This renders us the nutation damping rate as a function of the current nutation angle, as well as of the shape and the rheological parameters of the body. In contradistinction from the approach based on an empirical Q factor, our development gives a zero damping rate in the spherical-shape limit. Our method is generic and applicable to any shape and to any linear rheological law. However, to simplify the developments, here we consider a dynamically oblate rotator with a Maxwell rheology.

  10. Fully-resolved prolate spheroids in turbulent channel flows: A lattice Boltzmann study

    NASA Astrophysics Data System (ADS)

    Eshghinejadfard, Amir; Hosseini, Seyed Ali; Thévenin, Dominique

    2017-09-01

    Particles are present in many natural and industrial multiphase flows. In most practical cases, particle shape is not spherical, leading to additional difficulties for numerical studies. In this paper, DNS of turbulent channel flows with finite-size prolate spheroids is performed. The geometry includes a straight wall-bounded channel at a frictional Reynolds number of 180 seeded with particles. Three different particle shapes are considered, either spheroidal (aspect ratio λ =2 or 4) or spherical (λ =1 ). Solid-phase volume fraction has been varied between 0.75% and 1.5%. Lattice Boltzmann method (LBM) is used to model the fluid flow. The influence of the particles on the flow field is simulated by immersed boundary method (IBM). In this Eulerian-Lagrangian framework, the trajectory of each particle is computed individually. All particle-particle and particle-fluid interactions are considered (four-way coupling). Results show that, in the range of examined volume fractions, mean fluid velocity is reduced by addition of particles. However, velocity reduction by spheroids is much lower than that by spheres; 2% and 1.6%, compared to 4.6%. Maximum streamwise velocity fluctuations are reduced by addition of particle. By comparing particle and fluid velocities, it is seen that spheroids move faster than the fluid before reaching the same speed in the channel center. Spheres, on the other hand, move slower than the fluid in the buffer layer. Close to the wall, all particle types move faster than the fluid. Moreover, prolate spheroids show a preferential orientation in the streamwise direction, which is stronger close to the wall. Far from the wall, the orientation of spheroidal particles tends to isotropy.

  11. Scattering of elastic waves by a spheroidal inclusion

    NASA Astrophysics Data System (ADS)

    Johnson, Lane R.

    2018-03-01

    An analytical solution is presented for scattering of elastic waves by prolate and oblate spheroidal inclusions. The problem is solved in the frequency domain where separation of variables leads to a solution involving spheroidal wave functions of the angular and radial kind. Unlike the spherical problem, the boundary equations remain coupled with respect to one of the separation indices. Expanding the angular spheroidal wave functions in terms of associated Legendre functions and using their orthogonality properties leads to a set of linear equations that can be solved to simultaneously obtain solutions for all coupled modes of both scattered and interior fields. To illustrate some of the properties of the spheroidal solution, total scattering cross-sections for P, SV and SH plane waves incident at an oblique angle on a prolate spheroid, an oblate spheroid and a sphere are compared. The waveforms of the scattered field exterior to the inclusion are calculated for these same incident waves. The waveforms scattered by a spheroid are strongly dependent upon the angle of incidence, are different for incident SV and SH waves and are asymmetrical about the centre of the spheroid with the asymmetry different for prolate and oblate spheroids.

  12. Revisiting the Solar Oblateness: Is Relevant Astrophysics Possible?

    NASA Astrophysics Data System (ADS)

    Rozelot, J. P.; Fazel, Z.

    2013-10-01

    The measurement of solar oblateness has a rich history extending well back into the past. Until recently, its estimate has been actively disputed, as has its temporal dependence. Recent accurate observations of the solar shape gave cause for doubt, and so far only balloon flights or satellite experiments, such as those onboard SDO, seem to achieve the required sensitivity to measure the expected small deviations from sphericity. A shrinking or an expanding shape is ultimately linked to solar activity (likely not homologously with its change), as gravitational or magnetic fields, which are existing mechanisms for storing energy during a solar cycle, lead to distinct perturbations in the equilibrium solar-structure and changes in the diameter. It follows that a sensitive determination of the solar radius fluctuations might give information about the origin of the solar cycle. In periods of higher activity, the outer photospheric shape seems to become aspheric under the influence of higher-order multipole moments of the Sun, resulting both from the centrifugal force and the core rotation. An accurate determination of the shape of the Sun is thus one of the ways that we have now for peering into its interior, learning empirically about flows and motions there that would otherwise only be guessed at from theoretical considerations, developing more precise inferences, and ultimately building possible alternative gravitational theories.

  13. Ray propagation in oblate atmospheres. [for Jupiter

    NASA Technical Reports Server (NTRS)

    Hubbard, W. B.

    1976-01-01

    Phinney and Anderson's (1968) exact theory for the inversion of radio-occultation data for planetary atmospheres breaks down seriously when applied to occultations by oblate atmospheres because of departures from Bouguer's law. It has been proposed that this breakdown can be overcome by transforming the theory to a local spherical symmetry which osculates a ray's point of closest approach. The accuracy of this transformation procedure is assessed by evaluating the size of terms which are intrinsic to an oblate atmosphere and which are not eliminated by a local spherical approximation. The departures from Bouguer's law are analyzed, and it is shown that in the lowest-order deviation from that law, the plane of refraction is defined by the normal to the atmosphere at closest approach. In the next order, it is found that the oblateness of the atmosphere 'warps' the ray path out of a single plane, but the effect appears to be negligible for most purposes. It is concluded that there seems to be no source of serious error in making an approximation of local spherical symmetry with the refraction plane defined by the normal at closest approach.

  14. Pollen Morphology of Caesalpinia pulcherrima (L.) Swartz in Highland and Lowland West Sumatra

    NASA Astrophysics Data System (ADS)

    Fitri, R.; Des, M.

    2018-04-01

    Determine the morphology structure of pollen on some variation colour of corolla Caesalpinia pulcherrima L. (Swartz) in highland and lowland West Sumatra has been conducted. The result reveals that topography and variation colour of corolla C. pulcherrima L. (Swartz) affects the shape of pollen. Pollen of C. pulcherrima L. (Swartz) has single grains or monad, isopolar polarity, radial symmetry, and size categories large. The length of polar axis (P) 58.16 to 74.11 μm, the length of the equatorial diameter (E) 59.86 to 75.97 μm, so that pollen can be classified into sub-spheroidal sub-oblate, spheriodal sub-spheroidal oblate, and sub-spheroidal prolate. Ornamentation of C. pulcherrima (L.) Swartz was reticulate. The pollen has aperture 3, the type pore and located in equatorial. From these data can be concluded that pollen from varying colour of corolla C. pulcherrima (L.) Swartz has same in terms of unit, polarity, symmetry, size, and type aperture, but it different in terms of shape.

  15. Effect of Cu Salt Molarity on the Nanostructure of CuO Prolate Spheroid

    NASA Astrophysics Data System (ADS)

    Sabeeh, Sabah H.; Hussein, Hashim Abed; Judran, Hadia Kadhim

    Copper sulfate pentahydrate was used as a source of Cu ion with five different molarities (0.02, 0.05, 0.1, 0.15, 2 and 0.25M). XRD, FE-SEM and TEM techniques all showed that CuO samples have polycrystalline monoclinic structure. CuO prolate spheroid is assembled from nanoparticles as building units. It was demonstrated that the purity, morphology, size range of prolate spheroid and density of nano building units are significantly influenced by Cu precursor’s molarity. The pure phase of CuO prolate spheroid was produced via molarity of 0.2M with crystallite size of 15.1565nm while the particle size of building units ranges from 16nm to 21nm. The stability of CuO nanosuspension or nanofluid was evaluated by zeta potential analysis. The obtained properties of specific structure with large surface area of CuO prolate spheroid make it a promising candidate for wide range of potential applications as in nanofluids for cooling purposes.

  16. Taylor Series Trajectory Calculations Including Oblateness Effects and Variable Atmospheric Density

    NASA Technical Reports Server (NTRS)

    Scott, James R.

    2011-01-01

    Taylor series integration is implemented in NASA Glenn's Spacecraft N-body Analysis Program, and compared head-to-head with the code's existing 8th- order Runge-Kutta Fehlberg time integration scheme. This paper focuses on trajectory problems that include oblateness and/or variable atmospheric density. Taylor series is shown to be significantly faster and more accurate for oblateness problems up through a 4x4 field, with speedups ranging from a factor of 2 to 13. For problems with variable atmospheric density, speedups average 24 for atmospheric density alone, and average 1.6 to 8.2 when density and oblateness are combined.

  17. Crystallization of Deformable Spherical Colloids

    NASA Astrophysics Data System (ADS)

    Batista, Vera M. O.; Miller, Mark A.

    2010-08-01

    We introduce and characterize a first-order model for a generic class of colloidal particles that have a preferred spherical shape but can undergo deformations while always maintaining hard-body interactions. The model consists of hard spheres that can continuously change shape at fixed volume into prolate or oblate ellipsoids of revolution, subject to an energetic penalty. The severity of this penalty is specified by a single parameter that determines the flexibility of the particles. The deformable hard spheres crystallize at higher packing fractions than rigid hard spheres, have a narrower solid-fluid coexistence region and can reach high densities by a second transition to an orientationally ordered crystal.

  18. Green's function and image system for the Laplace operator in the prolate spheroidal geometry

    NASA Astrophysics Data System (ADS)

    Xue, Changfeng; Deng, Shaozhong

    2017-01-01

    In the present paper, electrostatic image theory is studied for Green's function for the Laplace operator in the case where the fundamental domain is either the exterior or the interior of a prolate spheroid. In either case, an image system is developed to consist of a point image inside the complement of the fundamental domain and an additional symmetric continuous surface image over a confocal prolate spheroid outside the fundamental domain, although the process of calculating such an image system is easier for the exterior than for the interior Green's function. The total charge of the surface image is zero and its centroid is at the origin of the prolate spheroid. In addition, if the source is on the focal axis outside the prolate spheroid, then the image system of the exterior Green's function consists of a point image on the focal axis and a line image on the line segment between the two focal points.

  19. The Geometry and Origin of Ultra-diffuse Ghost Galaxies

    NASA Astrophysics Data System (ADS)

    Burkert, A.

    2017-04-01

    The geometry and intrinsic ellipticity distribution of ultra-diffuse galaxies (UDG) is determined from the line-of-sight distribution of axial ratios q of a large sample of UDGs, detected by Koda et al. in the Coma cluster. With high significance, the data rules out an oblate, disk-like geometry, characterized by major axes a = b > c. The data is, however, in good agreement with prolate shapes, corresponding to a = b < c. This indicates that UDGs are not thickened, rotating, axisymmetric disks, puffed up by violent processes. Instead, they are anisotropic elongated cigar- or bar-like structures, similar to the prolate dwarf spheroidal galaxy population of the Local Group. The intrinsic distribution of axial ratios of the Coma UDGs is flat in the range of 0.4 ≤ a/c ≤ 0.9 with a mean value of < a/c> =0.65+/- 0.14. This might provide important constraints for theoretical models of their origin. Formation scenarios that could explain the extended prolate nature of UDGs are discussed.

  20. Posterior Eye Shape Measurement With Retinal OCT Compared to MRI

    PubMed Central

    Kuo, Anthony N.; Verkicharla, Pavan K.; McNabb, Ryan P.; Cheung, Carol Y.; Hilal, Saima; Farsiu, Sina; Chen, Christopher; Wong, Tien Y.; Ikram, M. Kamran; Cheng, Ching Y.; Young, Terri L.; Saw, Seang M.; Izatt, Joseph A.

    2016-01-01

    Purpose Posterior eye shape assessment by magnetic resonance imaging (MRI) is used to study myopia. We tested the hypothesis that optical coherence tomography (OCT), as an alternative, could measure posterior eye shape similarly to MRI. Methods Macular spectral-domain OCT and brain MRI images previously acquired as part of the Singapore Epidemiology of Eye Diseases study were analyzed. The right eye in the MRI and OCT images was automatically segmented. Optical coherence tomography segmentations were corrected for optical and display distortions requiring biometry data. The segmentations were fitted to spheres and ellipsoids to obtain the posterior eye radius of curvature (Rc) and asphericity (Qxz). The differences in Rc and Qxz measured by MRI and OCT were tested using paired t-tests. Categorical assignments of prolateness or oblateness using Qxz were compared. Results Fifty-two subjects (67.8 ± 5.6 years old) with spherical equivalent refraction from +0.50 to −5.38 were included. The mean paired difference between MRI and original OCT posterior eye Rc was 24.03 ± 46.49 mm (P = 0.0005). For corrected OCT images, the difference in Rc decreased to −0.23 ± 2.47 mm (P = 0.51). The difference between MRI and OCT asphericity, Qxz, was −0.052 ± 0.343 (P = 0.28). However, categorical agreement was only moderate (κ = 0.50). Conclusions Distortion-corrected OCT measurements of Rc and Qxz were not statistically significantly different from MRI, although the moderate categorical agreement suggests that individual differences remained. This study provides evidence that with distortion correction, noninvasive office-based OCT could potentially be used instead of MRI for the study of posterior eye shape. PMID:27409473

  1. Morphological Evolution of Block Copolymer Particles: Effect of Solvent Evaporation Rate on Particle Shape and Morphology.

    PubMed

    Shin, Jae Man; Kim, YongJoo; Yun, Hongseok; Yi, Gi-Ra; Kim, Bumjoon J

    2017-02-28

    Shape and morphology of polymeric particles are of great importance in controlling their optical properties or self-assembly into unusual superstructures. Confinement of block copolymers (BCPs) in evaporative emulsions affords particles with diverse structures, including prolate ellipsoids, onion-like spheres, oblate ellipsoids, and others. Herein, we report that the evaporation rate of solvent from emulsions encapsulating symmetric polystyrene-b-polybutadiene (PS-b-PB) determines the shape and internal nanostructure of micron-sized BCP particles. A distinct morphological transition from the ellipsoids with striped lamellae to the onion-like spheres was observed with decreasing evaporation rate. Experiments and dissipative particle dynamics (DPD) simulations showed that the evaporation rate affected the organization of BCPs at the particle surface, which determined the final shape and internal nanostructure of the particles. Differences in the solvent diffusion rates in PS and PB at rapid evaporation rates induced alignment of both domains perpendicular to the particle surface, resulting in ellipsoids with axial lamellar stripes. Slower evaporation rates provided sufficient time for BCP organization into onion-like structures with PB as the outermost layer, owing to the preferential interaction of PB with the surroundings. BCP molecular weight was found to influence the critical evaporation rate corresponding to the morphological transition from ellipsoid to onion-like particles, as well as the ellipsoid aspect ratio. DPD simulations produced morphologies similar to those obtained from experiments and thus elucidated the mechanism and driving forces responsible for the evaporation-induced assembly of BCPs into particles with well-defined shapes and morphologies.

  2. Inhibitory Competition between Shape Properties in Figure-Ground Perception

    ERIC Educational Resources Information Center

    Peterson, Mary A.; Skow, Emily

    2008-01-01

    Theories of figure-ground perception entail inhibitory competition between either low-level units (edge or feature units) or high-level shape properties. Extant computational models instantiate the 1st type of theory. The authors investigated a prediction of the 2nd type of theory: that shape properties suggested on the ground side of an edge are…

  3. Searching for high-K isomers in the proton-rich A ˜ 80 mass region

    NASA Astrophysics Data System (ADS)

    Bai, Zhi-Jun; Jiao, Chang-Feng; Gao, Yuan; Xu, Fu-Rong

    2016-09-01

    Configuration-constrained potential-energy-surface calculations have been performed to investigate the K isomerism in the proton-rich A ˜ 80 mass region. An abundance of high-K states are predicted. These high-K states arise from two and four-quasi-particle excitations, with Kπ = 8+ and Kπ = 16+, respectively. Their excitation energies are comparatively low, making them good candidates for long-lived isomers. Since most nuclei under study are prolate spheroids in their ground states, the oblate shapes of the predicted high-K states may indicate a combination of K isomerism and shape isomerism. Supported by National Key Basic Research Program of China (2013CB834402) and National Natural Science Foundation of China (11235001, 11320101004 and 11575007)

  4. Determination of morphological characteristics of metallic nanoparticles based on modified Maxwell-Garnett fitting of optical responses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battie, Y., E-mail: yann.battie@univ-lorraine.fr; Resano-Garcia, A.; En Naciri, A.

    2015-10-05

    A modified effective medium theory (MEMT) is introduced to determine morphological characteristics and the volume fraction of colloidal metallic nanoparticles. By analyzing the optical absorption spectra of gold nanoparticles (NPs), this model is used to determine the distribution of prolate and oblate NPs and to demonstrate the presence of spherical NPs. In addition to interband transition, the model takes into account the longitudinal and transversal surface plasmon resonances. The results predicted by the MEMT theory were found to be in very good agreement with the shape distributions obtained by transmission electron microscopy. We found that fitting optical absorption spectra usingmore » MEMT provides a robust tool for measuring the shape and concentration of metallic NPs.« less

  5. Spinning superfluid 4He nanodroplets

    NASA Astrophysics Data System (ADS)

    Ancilotto, Francesco; Barranco, Manuel; Pi, Martí

    2018-05-01

    We have studied spinning superfluid 4He nanodroplets at zero temperature using density functional theory. Due to the irrotational character of the superfluid flow, the shapes of the spinning nanodroplets are very different from those of a viscous normal fluid drop in steady rotation. We show that when vortices are nucleated inside the superfluid droplets, their morphology, which evolves from axisymmetric oblate to triaxial prolate to two-lobed shapes, is in good agreement with experiments. The presence of vortex arrays confers to the superfluid droplets the rigid-body behavior of a normal fluid in steady rotation, and this is the ultimate reason for the surprising good agreement between recent experiments and the classical models used for their description.

  6. Axial-type olivine crystallographic preferred orientations: The effect of strain geometry on mantle texture

    NASA Astrophysics Data System (ADS)

    Chatzaras, Vasileios; Kruckenberg, Seth C.; Cohen, Shaina M.; Medaris, L. Gordon; Withers, Anthony C.; Bagley, Brian

    2016-07-01

    The effect of finite strain geometry on crystallographic preferred orientation (CPO) is poorly constrained in the upper mantle. Specifically, the relationship between shape preferred orientation (SPO) and CPO in mantle rocks remains unclear. We analyzed a suite of 40 spinel peridotite xenoliths from Marie Byrd Land, West Antarctica. X-ray computed tomography allows for quantification of spinel SPO, which ranges from prolate to oblate shape. Electron backscatter diffraction analysis reveals a range of olivine CPO patterns, including A-type, axial-[010], axial-[100], and B-type patterns. Until now, these CPO types were associated with different deformation conditions, deformation mechanisms, or strain magnitudes. Microstructures and deformation mechanism maps suggest that deformation in all studied xenoliths is dominated by dislocation-accommodated grain boundary sliding. For the range of temperatures (780-1200°C), extraction depths (39-72 km), differential stresses (2-60 MPa), and water content (up to 500 H/106Si) of the xenolith suite, variations in olivine CPO do not correlate with changes in deformation conditions. Here we establish for the first time in naturally deformed mantle rocks that finite strain geometry controls the development of axial-type olivine CPOs; axial-[010] and axial-[100] CPOs form in relation to oblate and prolate fabric ellipsoids, respectively. Girdling of olivine crystal axes results from intracrystalline slip with activation of multiple slip systems and grain boundary sliding. Our results demonstrate that mantle deformation may deviate from simple shear. Olivine texture in field studies and seismic anisotropy in geophysical investigations can provide critical constraints for the 3-D strain in the upper mantle.

  7. Contragenic functions on spheroidal domains

    NASA Astrophysics Data System (ADS)

    García-Ancona, Raybel; Morais, Joao; Porter, R. Michael

    2018-05-01

    We construct bases of polynomials for the spaces of square-integrable harmonic functions which are orthogonal to the monogenic and antimonogenic $\\mathbb{R}^3$-valued functions defined in a prolate or oblate spheroid.

  8. Structural and decay properties of Z = 132, 138 superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Rather, Asloob A.; Ikram, M.; Usmani, A. A.; Kumar, Bharat; Patra, S. K.

    2016-12-01

    In this paper, we analyze the structural properties of Z = 132 and Z = 138 superheavy nuclei within the ambit of axially deformed relativistic mean-field framework with NL3 * parametrization and calculate the total binding energies, radii, quadrupole deformation parameter, separation energies, density distributions. We also investigate the phenomenon of shape coexistence by performing the calculations for prolate, oblate and spherical configurations. For clear presentation of nucleon distributions, the two-dimensional contour representation of individual nucleon density and total matter density has been made. Further, a competition between possible decay modes such as α-decay, β-decay and spontaneous fission of the isotopic chain of superheavy nuclei with Z = 132 within the range 312 ≤ A ≤ 392 and 318 ≤ A ≤ 398 for Z = 138 is systematically analyzed within self-consistent relativistic mean-field model. From our analysis, we inferred that the α-decay and spontaneous fission are the principal modes of decay in majority of the isotopes of superheavy nuclei under investigation apart from β-decay as dominant mode of decay in 318-322138 isotopes.

  9. GRMHD formulation of highly super-Chandrasekhar magnetized white dwarfs: stable configurations of non-spherical white dwarfs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Upasana; Mukhopadhyay, Banibrata, E-mail: upasana@physics.iisc.ernet.in, E-mail: bm@physics.iisc.ernet.in

    The topic of magnetized super-Chandrasekhar white dwarfs is in the limelight, particularly in the last few years, since our proposal of their existence. By full-scale general relativistic magnetohydrodynamic (GRMHD) numerical analysis, we confirm in this work the existence of stable, highly magnetized, significantly super-Chandrasekhar white dwarfs with mass more than 3 solar mass. While a poloidal field geometry renders the white dwarfs oblate, a toroidal field makes them prolate retaining an overall quasi-spherical shape, as speculated in our earlier work. These white dwarfs are expected to serve as the progenitors of over-luminous type Ia supernovae.

  10. Prolate-Spheroid (``Rugby-Shaped'') Hohlraum for Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Vandenboomgaerde, M.; Bastian, J.; Casner, A.; Galmiche, D.; Jadaud, J.-P.; Laffite, S.; Liberatore, S.; Malinie, G.; Philippe, F.

    2007-08-01

    A novel rugby-ball shaped hohlraum is designed in the context of the indirect-drive scheme of inertial-confinement fusion (ICF). Experiments were performed on the OMEGA laser and are the first use of rugby hohlraums for ICF studies. Analysis of experimental data shows that the hohlraum energetics is well understood. We show that the rugby-ball shape exhibits advantages over cylinder, in terms of temperature and of symmetry control of the capsule implosion. Simulations indicate that rugby hohlraum driven targets may be candidates for ignition in a context of early Laser MegaJoule experiments with reduced laser energy.

  11. Modeling of roll/pitch determination with horizon sensors - Oblate Earth

    NASA Astrophysics Data System (ADS)

    Hablani, Hari B.

    Model calculations are presented of roll/pitch determinations for oblate Earth, with horizon sensors. Two arrangements of a pair of horizon sensors are considered: left and right of the velocity vactor (i.e., along the pitch axis), and aft and forward (along the roll axis). Two approaches are used to obtain the roll/pitch oblateness corrections: (1) the crossing point approach, where the two crossings of the horizon sensor's scan and the earth's horizon are determined, and (2) by decomposing the angular deviation of the geocentric normal from the geodetic normal into roll and pitch components. It is shown that the two approaches yield essentially the same corrections if two sensors are used simultaneously. However, if the spacecraft is outfitted with only one sensor, the oblateness correction about one axis is far different from that predicted by the geocentric/geodetic angular deviation approach. In this case, the corrections may be calculated on ground for the sensor location under consideration and stored in the flight computer, using the crossing point approach.

  12. The low-degree shape of Mercury

    NASA Astrophysics Data System (ADS)

    Perry, Mark E.; Neumann, Gregory A.; Phillips, Roger J.; Barnouin, Olivier S.; Ernst, Carolyn M.; Kahan, Daniel S.; Solomon, Sean C.; Zuber, Maria T.; Smith, David E.; Hauck, Steven A.; Peale, Stanton J.; Margot, Jean-Luc; Mazarico, Erwan; Johnson, Catherine L.; Gaskell, Robert W.; Roberts, James H.; McNutt, Ralph L.; Oberst, Juergen

    2015-09-01

    The shape of Mercury, particularly when combined with its geoid, provides clues to the planet's internal structure, thermal evolution, and rotational history. Elevation measurements of the northern hemisphere acquired by the Mercury Laser Altimeter on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft, combined with 378 occultations of radio signals from the spacecraft in the planet's southern hemisphere, reveal the low-degree shape of Mercury. Mercury's mean radius is 2439.36 ± 0.02 km, and there is a 0.14 km offset between the planet's centers of mass and figure. Mercury is oblate, with a polar radius 1.65 km less than the mean equatorial radius. The difference between the semimajor and semiminor equatorial axes is 1.25 km, with the long axis oriented 15° west of Mercury's dynamically defined principal axis. Mercury's geoid is also oblate and elongated, but it deviates from a sphere by a factor of 10 less than Mercury's shape, implying compensation of elevation variations on a global scale.

  13. Heart Performance Determination by Visualization in Larval Fishes: Influence of Alternative Models for Heart Shape and Volume

    PubMed Central

    Perrichon, Prescilla; Grosell, Martin; Burggren, Warren W.

    2017-01-01

    Understanding cardiac function in developing larval fishes is crucial for assessing their physiological condition and overall health. Cardiac output measurements in transparent fish larvae and other vertebrates have long been made by analyzing videos of the beating heart, and modeling this structure using a conventional simple prolate spheroid shape model. However, the larval fish heart changes shape during early development and subsequent maturation, but no consideration has been made of the effect of different heart geometries on cardiac output estimation. The present study assessed the validity of three different heart models (the “standard” prolate spheroid model as well as a cylinder and cone tip + cylinder model) applied to digital images of complete cardiac cycles in larval mahi-mahi and red drum. The inherent error of each model was determined to allow for more precise calculation of stroke volume and cardiac output. The conventional prolate spheroid and cone tip + cylinder models yielded significantly different stroke volume values at 56 hpf in red drum and from 56 to 104 hpf in mahi. End-diastolic and stroke volumes modeled by just a simple cylinder shape were 30–50% higher compared to the conventional prolate spheroid. However, when these values of stroke volume multiplied by heart rate to calculate cardiac output, no significant differences between models emerged because of considerable variability in heart rate. Essentially, the conventional prolate spheroid shape model provides the simplest measurement with lowest variability of stroke volume and cardiac output. However, assessment of heart function—especially if stroke volume is the focus of the study—should consider larval heart shape, with different models being applied on a species-by-species and developmental stage-by-stage basis for best estimation of cardiac output. PMID:28725199

  14. Oblateness, radius, and mean stratospheric temperature of Neptune from the 1985 August 20 occultation

    NASA Technical Reports Server (NTRS)

    Hubbard, W. B.; Nicholson, Philip D.; Lellouch, Emmanuel; Sicardy, Bruno; Brahic, Andre; Vilas, Faith

    1987-01-01

    The oblateness and equatorial radius of Neptune at the 1-microbar pressure level, together with the position angle of the projected spin axis, are the goals of a general oblate atmosphere model for Neptune employing a data ensemble obtained from the occultation of a bright IR star that provided accurate measurements of the limb position at these and several other stations. The observed reduction in central flash intensity is explained by a 150-135 K temperature decrease as pressure rises from 1 to 400 microbar. Attention is given to the implications of these oblateness results for models of the Neptune interior.

  15. Figures of equilibrium inside a gravitating ring and the limiting oblateness of elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Kondratyev, B. P.; Trubitsyna, N. G.; Kireeva, E. N.

    2016-05-01

    A new class of figures of equilibrium for a rotating gravitating fluid located inside a gravitating ring or torus is studied. These figures form a family of sequences of generalized oblate spheroids, in which there is for any value of the tidal parameter α in the interval 0 ≤ 0 ≤slant α /{π Gρ } ≤slant 0.1867 ≤ 0.1867 a sequence of spheroids with oblatenesses emin ( α) ≤ e ≤ e max ( α). A series of classicalMaclaurin spheroids from a sphere to a flat disk is obtained for α = 0. At intermediate values 0 < α ≤ α max, there are two limiting non-rotating spheroids in each sequence. When α = α max, the sequence degenerates into a single non-rotating spheroid with e cr ≈ 0.9600, corresponding to the maximum oblateness of E7 elliptical galaxies. The second part of the paper considers the influence of rings of dark matter on the dynamics of elliptical galaxies. It is proposed that the equilibrium of an oblate isolated non-rotating galaxy is unstable, and it cannot be supported purely by anisotropy of the stellar velocity dispersion. A ring of dark matter can stabilize a weakly rotating galaxy, supplementing standard dynamical models for such stellar systems. In order for a galaxy to acquire appreciable oblateness, the mass of the ring must be an order of magnitude higher than the mass of the galaxy itself, consistent with the ratios of the masses of dark and baryonic matter in the Universe. The influence of massive external rings could shed light on the existence of galaxies with the critical oblateness E7.

  16. Structural modeling of carbonaceous mesophase amphotropic mixtures under uniaxial extensional flow.

    PubMed

    Golmohammadi, Mojdeh; Rey, Alejandro D

    2010-07-21

    The extended Maier-Saupe model for binary mixtures of model carbonaceous mesophases (uniaxial discotic nematogens) under externally imposed flow, formulated in previous studies [M. Golmohammadi and A. D. Rey, Liquid Crystals 36, 75 (2009); M. Golmohammadi and A. D. Rey, Entropy 10, 183 (2008)], is used to characterize the effect of uniaxial extensional flow and concentration on phase behavior and structure of these mesogenic blends. The generic thermorheological phase diagram of the single-phase binary mixture, given in terms of temperature (T) and Deborah (De) number, shows the existence of four T-De transition lines that define regions that correspond to the following quadrupolar tensor order parameter structures: (i) oblate (perpendicular, parallel), (ii) prolate (perpendicular, parallel), (iii) scalene O(perpendicular, parallel), and (iv) scalene P(perpendicular, parallel), where the symbols (perpendicular, parallel) indicate alignment of the tensor order ellipsoid with respect to the extension axis. It is found that with increasing T the dominant component of the mixture exhibits weak deviations from the well-known pure species response to uniaxial extensional flow (uniaxial perpendicular nematic-->biaxial nematic-->uniaxial parallel paranematic). In contrast, the slaved component shows a strong deviation from the pure species response. This deviation is dictated by the asymmetric viscoelastic coupling effects emanating from the dominant component. Changes in conformation (oblate <==> prolate) and orientation (perpendicular <==> parallel) are effected through changes in pairs of eigenvalues of the quadrupolar tensor order parameter. The complexity of the structural sensitivity to temperature and extensional flow is a reflection of the dual lyotropic/thermotropic nature (amphotropic nature) of the mixture and their cooperation/competition. The analysis demonstrates that the simple structures (biaxial nematic and uniaxial paranematic) observed in pure discotic

  17. General circular velocity relation of a test particle in a 3D gravitational potential: application to the rotation curves analysis and total mass determination of UGC 8490 and UGC 9753

    NASA Astrophysics Data System (ADS)

    Repetto, P.; Martínez-García, E. E.; Rosado, M.; Gabbasov, R.

    2018-06-01

    In this paper, we derive a novel circular velocity relation for a test particle in a 3D gravitational potential applicable to every system of curvilinear coordinates, suitable to be reduced to orthogonal form. As an illustration of the potentiality of the determined circular velocity expression, we perform the rotation curves analysis of UGC 8490 and UGC 9753 and we estimate the total and dark matter mass of these two galaxies under the assumption that their respective dark matter haloes have spherical, prolate, and oblate spheroidal mass distributions. We employ stellar population synthesis models and the total H I density map to obtain the stellar and H I+He+metals rotation curves of both galaxies. The subtraction of the stellar plus gas rotation curves from the observed rotation curves of UGC 8490 and UGC 9753 generates the dark matter circular velocity curves of both galaxies. We fit the dark matter rotation curves of UGC 8490 and UGC 9753 through the newly established circular velocity formula specialized to the spherical, prolate, and oblate spheroidal mass distributions, considering the Navarro, Frenk, and White, Burkert, Di Cintio, Einasto, and Stadel dark matter haloes. Our principal findings are the following: globally, cored dark matter profiles Burkert and Einasto prevail over cuspy Navarro, Frenk, and White, and Di Cintio. Also, spherical/oblate dark matter models fit better the dark matter rotation curves of both galaxies than prolate dark matter haloes.

  18. Motion in a modified Chermnykh's restricted three-body problem with oblateness

    NASA Astrophysics Data System (ADS)

    Singh, Jagadish; Leke, Oni

    2014-03-01

    In this paper, the restricted problem of three bodies is generalized to include a case when the passively gravitating test particle is an oblate spheroid under effect of small perturbations in the Coriolis and centrifugal forces when the first primary is a source of radiation and the second one an oblate spheroid, coupled with the influence of the gravitational potential from the belt. The equilibrium points are found and it is seen that, in addition to the usual three collinear equilibrium points, there appear two new ones due to the potential from the belt and the mass ratio. Two triangular equilibrium points exist. These equilibria are affected by radiation of the first primary, small perturbation in the centrifugal force, oblateness of both the test particle and second primary and the effect arising from the mass of the belt. The linear stability of the equilibrium points is explored and the stability outcome of the collinear equilibrium points remains unstable. In the case of the triangular points, motion is stable with respect to some conditions which depend on the critical mass parameter; influenced by the small perturbations, radiating effect of the first primary, oblateness of the test body and second primary and the gravitational potential from the belt. The effects of each of the imposed free parameters are analyzed. The potential from the belt and small perturbation in the Coriolis force are stabilizing parameters while radiation, small perturbation in the centrifugal force and oblateness reduce the stable regions. The overall effect is that the region of stable motion increases under the combine action of these parameters. We have also found the frequencies of the long and short periodic motion around stable triangular points. Illustrative numerical exploration is rendered in the Sun-Jupiter and Sun-Earth systems where we show that in reality, for some values of the system parameters, the additional equilibrium points do not in general exist even when

  19. Effects of shape and stroke parameters on the propulsion performance of an axisymmetric swimmer.

    PubMed

    Peng, Jifeng; Alben, Silas

    2012-03-01

    In nature, there exists a special group of aquatic animals which have an axisymmetric body and whose primary swimming mechanism is to use periodic body contractions to generate vortex rings in the surrounding fluid. Using jellyfish medusae as an example, this study develops a mathematical model of body kinematics of an axisymmetric swimmer and uses a computational approach to investigate the induced vortex wakes. Wake characteristics are identified for swimmers using jet propulsion and rowing, two mechanisms identified in previous studies of medusan propulsion. The parameter space of body kinematics is explored through four quantities: a measure of body shape, stroke amplitude, the ratio between body contraction duration and extension duration, and the pulsing frequency. The effects of these parameters on thrust, input power requirement and circulation production are quantified. Two metrics, cruising speed and energy cost of locomotion, are used to evaluate the propulsion performance. The study finds that a more prolate-shaped swimmer with larger stroke amplitudes is able to swim faster, but its cost of locomotion is also higher. In contrast, a more oblate-shaped swimmer with smaller stroke amplitudes uses less energy for its locomotion, but swims more slowly. Compared with symmetric strokes with equal durations of contraction and extension, faster bell contractions increase the swimming speed whereas faster bell extensions decrease it, but both require a larger energy input. This study shows that besides the well-studied correlations between medusan body shape and locomotion, stroke variables also affect the propulsion performance. It provides a framework for comparing the propulsion performance of axisymmetric swimmers based on their body kinematics when it is difficult to measure and analyze their wakes empirically. The knowledge from this study is also useful for the design of robotic swimmers that use axisymmetric body contractions for propulsion.

  20. The five competitive forces that shape strategy.

    PubMed

    Porter, Michael E

    2008-01-01

    In 1979, a young associate professor at Harvard Business School published his first article for HBR, "How Competitive Forces Shape Strategy." In the years that followed, Michael Porter's explication of the five forces that determine the long-run profitability of any industry has shaped a generation of academic research and business practice. In this article, Porter undertakes a thorough reaffirmation and extension of his classic work of strategy formulation, which includes substantial new sections showing how to put the five forces analysis into practice. The five forces govern the profit structure of an industry by determining how the economic value it creates is apportioned. That value may be drained away through the rivalry among existing competitors, of course, but it can also be bargained away through the power of suppliers or the power of customers or be constrained by the threat of new entrants or the threat of substitutes. Strategy can be viewed as building defenses against the competitive forces or as finding a position in an industry where the forces are weaker. Changes in the strength of the forces signal changes in the competitive landscape critical to ongoing strategy formulation. In exploring the implications of the five forces framework, Porter explains why a fast-growing industry is not always a profitable one, how eliminating today's competitors through mergers and acquisitions can reduce an industry's profit potential, how government policies play a role by changing the relative strength of the forces, and how to use the forces to understand complements. He then shows how a company can influence the key forces in its industry to create a more favorable structure for itself or to expand the pie altogether. The five forces reveal why industry profitability is what it is. Only by understanding them can a company incorporate industry conditions into strategy.

  1. Elastic Free Energy Drives the Shape of Prevascular Solid Tumors

    PubMed Central

    Mills, K. L.; Kemkemer, Ralf; Rudraraju, Shiva; Garikipati, Krishna

    2014-01-01

    It is well established that the mechanical environment influences cell functions in health and disease. Here, we address how the mechanical environment influences tumor growth, in particular, the shape of solid tumors. In an in vitro tumor model, which isolates mechanical interactions between cancer tumor cells and a hydrogel, we find that tumors grow as ellipsoids, resembling the same, oft-reported observation of in vivo tumors. Specifically, an oblate ellipsoidal tumor shape robustly occurs when the tumors grow in hydrogels that are stiffer than the tumors, but when they grow in more compliant hydrogels they remain closer to spherical in shape. Using large scale, nonlinear elasticity computations we show that the oblate ellipsoidal shape minimizes the elastic free energy of the tumor-hydrogel system. Having eliminated a number of other candidate explanations, we hypothesize that minimization of the elastic free energy is the reason for predominance of the experimentally observed ellipsoidal shape. This result may hold significance for explaining the shape progression of early solid tumors in vivo and is an important step in understanding the processes underlying solid tumor growth. PMID:25072702

  2. Hyperbolic umbilic caustics from oblate water drops with tilted illumination: Observations

    NASA Astrophysics Data System (ADS)

    Jobe, Oli; Thiessen, David B.; Marston, Philip L.

    2017-11-01

    Various groups have reported observations of hyperbolic umbilic diffraction catastrophe patterns in the far-field scattering by oblate acoustically levitated drops with symmetric illumination. In observations of that type the drop's symmetry axis is vertical and the illuminating light beam (typically an expanded laser beam) travels horizontally. In the research summarized here, scattering patterns in the primary rainbow region and drop measurements were recorded with vertically tilted laser beam illumination having a grazing angle as large as 4 degrees. The findings from these observations may be summarized as follows: (a) It remains possible to adjust the drop aspect ratio (diameter/height) = D/H so as to produce a V-shaped hyperbolic umbilic focal section (HUFS) in the far-field scattering. (b) The shift in the required D/H was typically an increase of less than 1% and was quadratic in the tilt. (c) The apex of the V-shaped HUFS was shifted vertically by an amount proportional to the tilt with a coefficient close to unity. The levitated drops had negligible up-down asymmetry. Our method of investigation should be useful for other generalized rainbows with tilted illumination.

  3. Origin of three-dimensional shapes of chondrules. I. Hydrodynamics simulations of rotating droplet exposed to high-velocity rarefied gas flow

    NASA Astrophysics Data System (ADS)

    Miura, Hitoshi; Nakamoto, Taishi; Doi, Masao

    2008-09-01

    The origin of three-dimensional shapes of chondrules is an important information to identify their formation mechanism in the early solar nebula. The measurement of their shapes by using X-ray computed topography suggested that they are usually close to perfect spheres, however, some of them have rugby-ball-like (prolate) shapes [Tsuchiyama, A., Shigeyoshi, R., Kawabata, T., Nakano, T., Uesugi, K., Shirono, S., 2003. Lunar Planet. Sci. 34, 1271-1272]. We considered that the prolate shapes reflect the deformations of chondrule precursor dust particles when they are heated and melted in the high velocity gas flow. In order to reveal the origin of chondrule shapes, we carried out the three-dimensional hydrodynamics simulations of a rotating molten chondrule exposed to the gas flow in the framework of the shock-wave heating model for chondrule formation. We adopted the gas ram pressure acting on the chondrule surface of p=10 dyncm in a typical shock wave. Considering that the chondrule precursor dust particle has an irregular shape before melting, the ram pressure causes a net torque to rotate the particle. The estimated angular velocity is ω=140 rads for the precursor radius of r=1 mm, though it has a different value depending on the irregularity of the shape. In addition, the rotation axis is likely to be perpendicular to the direction of the gas flow. Our calculations showed that the rotating molten chondrule elongates along the rotation axis, in contrast, shrinks perpendicularly to it. It is a prolate shape. The reason why the molten chondrule is deformed to a prolate shape was clearly discussed. Our study gives a complementary constraint for chondrule formation mechanisms, comparing with conventional chemical analyses and dynamic crystallization experiments that have mainly constrained the thermal evolutions of chondrules.

  4. Two-dimensional particle-in-cell plasma source ion implantation of a prolate spheroid target

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Sen; Han, Hong-Ying; Peng, Xiao-Qing; Chang, Ye; Wang, De-Zhen

    2010-03-01

    A two-dimensional particle-in-cell simulation is used to study the time-dependent evolution of the sheath surrounding a prolate spheroid target during a high voltage pulse in plasma source ion implantation. Our study shows that the potential contour lines pack more closely in the plasma sheath near the vertex of the major axis, i.e. where a thinner sheath is formed, and a non-uniform total ion dose distribution is incident along the surface of the prolate spheroid target due to the focusing of ions by the potential structure. Ion focusing takes place not only at the vertex of the major axis, where dense potential contour lines exist, but also at the vertex of the minor axis, where sparse contour lines exist. This results in two peaks of the received ion dose, locating at the vertices of the major and minor axes of the prolate spheroid target, and an ion dose valley, staying always between the vertices, rather than at the vertex of the minor axis.

  5. The energy of a prolate spheroidal shell in a uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Koksharov, Yu. A.

    2017-04-01

    The problem of the energy of a spheroidal magnetic shell, solved by methods of classical electrodynamics, arises, in particular, upon the study of thin-wall biocompatible microcapsules in connection with a pressing issue of targeted drug delivery. The drug inside a microcapsule should be released from the shell at a required instant of time by destroying the capsule's shell. The placement inside a shell of magnetic nanoparticles sensitive to an external magnetic field theoretically makes it possible to solve both problems: to transport a capsule to the required place and to destroy its shell. In particular, the shell can be destroyed under the action of internal stress when the shape of a capsule is changed. In this paper, the analysis of the model of a magnetic microcapsule in the form of a prolate spheroidal shell is performed and formulas for the magnetostatic and magnetic free energy when the magnetic field is directed along the major axis of the spheroid are derived.

  6. Vesicle electrohydrodynamics.

    PubMed

    Schwalbe, Jonathan T; Vlahovska, Petia M; Miksis, Michael J

    2011-04-01

    A small amplitude perturbation analysis is developed to describe the effect of a uniform electric field on the dynamics of a lipid bilayer vesicle in a simple shear flow. All media are treated as leaky dielectrics and fluid motion is described by the Stokes equations. The instantaneous vesicle shape is obtained by balancing electric, hydrodynamic, bending, and tension stresses exerted on the membrane. We find that in the absence of ambient shear flow, it is possible that an applied stepwise uniform dc electric field could cause the vesicle shape to evolve from oblate to prolate over time if the encapsulated fluid is less conducting than the suspending fluid. For a vesicle in ambient shear flow, the electric field damps the tumbling motion, leading to a stable tank-treading state.

  7. Nonlinear electrohydrodynamics of a viscous droplet

    NASA Astrophysics Data System (ADS)

    Salipante, Paul; Vlahovska, Petia

    2012-02-01

    A classic result due to G.I.Taylor is that a drop placed in a uniform electric field adopts a prolate or oblate spheroidal shape, the flow and shape being axisymmetrically aligned with the applied field. We report an instability and transition to a nonaxisymmetric rotational flow in strong fields, similar to the rotation of solid dielectric spheres observed by Quincke in the 19th century. Our experiments reveal novel droplet behaviors such as tumbling, oscillations and chaotic dynamics even under creeping flow conditions. A phase diagram demonstrates the dependence of these behaviors on drop size, viscosity ratio and electric field strength. The theoretical model, which includes anisotropy in the polarization relaxation, elucidates the interplay of interface deformation and charging as the source of the rich nonlinear dynamics.

  8. Generalized prolate spheroidal wave functions for optical finite fractional Fourier and linear canonical transforms.

    PubMed

    Pei, Soo-Chang; Ding, Jian-Jiun

    2005-03-01

    Prolate spheroidal wave functions (PSWFs) are known to be useful for analyzing the properties of the finite-extension Fourier transform (fi-FT). We extend the theory of PSWFs for the finite-extension fractional Fourier transform, the finite-extension linear canonical transform, and the finite-extension offset linear canonical transform. These finite transforms are more flexible than the fi-FT and can model much more generalized optical systems. We also illustrate how to use the generalized prolate spheroidal functions we derive to analyze the energy-preservation ratio, the self-imaging phenomenon, and the resonance phenomenon of the finite-sized one-stage or multiple-stage optical systems.

  9. Five Equivalent d Orbitals

    ERIC Educational Resources Information Center

    Pauling, Linus; McClure, Vance

    1970-01-01

    Amplifies and clarifies a previous paper on pyramidal d orbitals. Discusses two sets of pyramid d orbitals with respect to their maximum bond strength and their symmetry. Authors described the oblate and prolate pentagonal antiprisms arising from the two sets of five equivalent d orbitals. (RR)

  10. Symmetry breaking and chaos in droplet electrohydrodynamics

    NASA Astrophysics Data System (ADS)

    Salipante, Paul; Vlahovska, Petia

    2010-11-01

    A classic result due to G.I.Taylor is that a drop placed in a uniform electric field adopts a prolate or oblate spheroidal shape, the flow and shape being axisymmetrically aligned with the applied field. However, recent studies have revealed an instability and transition to a nonaxisymmetric rotational flow in strong fields, similar to the rotation of solid dielectric particles observed by Quincke in the 19th century. We present an experimental and theoretical study of this phenomenon in DC uniform fields, focusing on nonlinear behavior arising from electromechanial coupling at the fluid-fluid interface. Charge convection by the both rotational and straining flows is included in the our model to explain the dependence of critical electric field on viscosity ratio. Hysteresis in the transition is observed for large low-viscosity drops. At stronger fields, chaotic drop tumbling and sustained shape oscillations are observed.

  11. Meso-oblate spheroids of thermal-stabile linker-free aggregates with size-tunable subunits for reversible lithium storage.

    PubMed

    Deng, Da; Lee, Jim Yang

    2014-01-22

    The organization of nanoscale materials as building units into extended structures with specific geometry and functional properties is a challenging endeavor. Hereby, an environmentally benign, simple, and scalable method for preparation of stable, linker-free, self-supported, high-order 3D meso-oblate spheroids of CuO nanoparticle aggregates with size-tunable building nanounits for reversible lithium-ion storage is reported. In contrast to traditional spherical nanoparticle aggregation, a unique oblate spheroid morphology is achieved. The formation mechanism of the unusual oblate spheroid of aggregated nanoparticles is proposed. When tested for reversible lithium ion storage, the unique 3D meso-oblate spheroids of CuO nanoparticle aggregate demonstrated highly improved electrochemical performance (around ∼600 mAh/g over 20 cycles), which could be ascribed to the nanoporous aggregated mesostructure with abundant crystalline imperfection. Furthermore, the size of building units can be controlled (12 and 21 nm were tested) to further improve their electrochemical performance.

  12. Coulomb energy of uniformly charged spheroidal shell systems.

    PubMed

    Jadhao, Vikram; Yao, Zhenwei; Thomas, Creighton K; de la Cruz, Monica Olvera

    2015-03-01

    We provide exact expressions for the electrostatic energy of uniformly charged prolate and oblate spheroidal shells. We find that uniformly charged prolate spheroids of eccentricity greater than 0.9 have lower Coulomb energy than a sphere of the same area. For the volume-constrained case, we find that a sphere has the highest Coulomb energy among all spheroidal shells. Further, we derive the change in the Coulomb energy of a uniformly charged shell due to small, area-conserving perturbations on the spherical shape. Our perturbation calculations show that buckling-type deformations on a sphere can lower the Coulomb energy. Finally, we consider the possibility of counterion condensation on the spheroidal shell surface. We employ a Manning-Oosawa two-state model approximation to evaluate the renormalized charge and analyze the behavior of the equilibrium free energy as a function of the shell's aspect ratio for both area-constrained and volume-constrained cases. Counterion condensation is seen to favor the formation of spheroidal structures over a sphere of equal area for high values of shell volume fractions.

  13. Phase transitions in the sdg interacting boson model

    NASA Astrophysics Data System (ADS)

    Van Isacker, P.; Bouldjedri, A.; Zerguine, S.

    2010-05-01

    A geometric analysis of the sdg interacting boson model is performed. A coherent state is used in terms of three types of deformation: axial quadrupole ( β), axial hexadecapole ( β) and triaxial ( γ). The phase-transitional structure is established for a schematic sdg Hamiltonian which is intermediate between four dynamical symmetries of U(15), namely the spherical U(5)⊗U(9), the (prolate and oblate) deformed SU(3) and the γ-soft SO(15) limits. For realistic choices of the Hamiltonian parameters the resulting phase diagram has properties close to what is obtained in the sd version of the model and, in particular, no transition towards a stable triaxial shape is found.

  14. Spectroscopic study of the possibly triaxial transitional nucleus 75Ge

    NASA Astrophysics Data System (ADS)

    Niu, C. Y.; Dai, A. C.; Xu, C.; Hua, H.; Zhang, S. Q.; Wang, S. Y.; Bark, R. A.; Meng, J.; Wang, C. G.; Wu, X. G.; Li, X. Q.; Li, Z. H.; Wyngaardt, S. M.; Zang, H. L.; Chen, Z. Q.; Wu, H. Y.; Xu, F. R.; Ye, Y. L.; Jiang, D. X.; Han, R.; Li, C. G.; Chen, X. C.; Liu, Q.; Feng, J.; Yang, B.; Li, Z. H.; Wang, S.; Sun, D. P.; Liu, C.; Li, Z. Q.; Zhang, N. B.; Guo, R. J.; Li, G. S.; He, C. Y.; Zheng, Y.; Li, C. B.; Chen, Q. M.; Zhong, J.; Zhou, W. K.; Zhu, B. J.; Deng, L. T.; Liu, M. L.; Wang, J. G.; Jones, P.; Lawrie, E. A.; Lawrie, J. J.; Sharpey-Schafer, J. F.; Wiedeking, M.; Majola, S. N. T.; Bucher, T. D.; Dinoko, T.; Magabuka, B.; Makhathini, L.; Mdletshe, L.; Khumalo, N. A.; Shirinda, O.; Sowazi, K.

    2018-03-01

    The collective structures of 75Ge have been studied for the first time via the 74Ge(α ,2 p 1 n )75Ge fusion-evaporation reaction. Two negative-parity bands and one tentative positive-parity band built on the ν p1 /2,ν f5 /2 , and ν g9 /2 states, respectively, are established and compared with the structures in the neighboring N =43 isotones. According to the configuration-constrained potential-energy surface calculations, a shape transition from oblate to prolate along the isotopic chain in odd-A Ge isotopes is suggested to occur at 75Ge. The properties of the bands in 75Ge are analyzed in comparison with the triaxial particle rotor model calculations.

  15. Perihelion precession caused by solar oblateness variation in equatorial and ecliptic coordinate systems

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Shen, Yunzhong; Xu, Guochang; Shan, Xinjian; Rozelot, Jean-Pierre

    2017-12-01

    Analytic solutions of planetary orbits disturbed by solar gravitational oblateness have been derived and given in the solar equatorial coordinate system, although the results usually have to be represented in the ecliptic coordinate system. The perihelion precession of interest in the solar equatorial and ecliptic coordinate systems is partly periodical and not negligible. The result shows that the difference in Mercury's perihelion precession between the solar equatorial plane and the ecliptic plane can reach a magnitude of 126708J2, which is even bigger than the perihelion precession itself (101516J2). Due to the temporal variability of the oblateness, the periodic variation of the J2 term, instead of simply a constant, is taken into account and solutions are derived. In the case of Mercury, the periodic J2 has an effect of nearly 0.8 per cent of the secular perihelion precession of Mercury. This indicates that a better understanding of the solar oblateness is required, which could be done through observation in the solar orbits instead of on Earth.

  16. Physical properties of compact toroids generated by a coaxial source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henins, I.; Hoida, H.W.; Jarboe, T.R.

    1980-01-01

    In the CTX experiments we have been studying CTs generated with a magnetized coaxial plasma gun. CTs have been generated in prolate and oblate cylindrically symmetric metallic flux conservers. The plasma and magnetic field properties are studied through the use of magnetic probes, Thomson scattering, interferometry, and spectroscopy.

  17. Closed Analytic Solution for the Potential and Equations of Motion in the Presence of a Gravitating Oblate Spheroid

    NASA Astrophysics Data System (ADS)

    Atkinson, William

    2008-10-01

    A closed analytic solution for the potential due to a gravitating solid oblate spheroid, derived in oblate spheroidal coordinates in this paper, is shown to be much simpler than those obtained either in cylindrical coordinates (MacMillan) or in spherical coordinates (McCullough). The derivation in oblate spheroidal coordinates is also much simpler to follow than those of the MacMillan or McCullough. The potential solution is applied in exacting a closed solution for the equations of motion for an object rolling on the surface of the spheroid subjected only to the gravitational force component tangential to the surface of the spheroid. The exact solution was made possible by the fact that the force can be represented as separable functions of the coordinates only in oblate spheroidal coordinates. The derivation is a good demonstration of the use of curvilinear coordinates to problems in classical mechanics, potential theory, and mathematical physics for both undergraduate and graduate students.

  18. Shape Comparison Between 0.4–2.0 and 20–60 lm Cement Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holzer, L.; Flatt, R; Erdogan, S

    Portland cement powder, ground from much larger clinker particles, has a particle size distribution from about 0.1 to 100 {micro}m. An important question is then: does particle shape depend on particle size? For the same cement, X-ray computed tomography has been used to examine the 3-D shape of particles in the 20-60 {micro}m sieve range, and focused ion beam nanotomography has been used to examine the 3-D shape of cement particles found in the 0.4-2.0 {micro}m sieve range. By comparing various kinds of computed particle shape data for each size class, the conclusion is made that, within experimental uncertainty, bothmore » size classes are prolate, but the smaller size class particles, 0.4-2.0 {micro}m, tend to be somewhat more prolate than the 20-60 {micro}m size class. The practical effect of this shape difference on the set-point was assessed using the Virtual Cement and Concrete Testing Laboratory to simulate the hydration of five cement powders. Results indicate that nonspherical aspect ratio is more important in determining the set-point than are the actual shape details.« less

  19. Clinical Outcomes of an Optimized Prolate Ablation Procedure for Correcting Residual Refractive Errors Following Laser Surgery.

    PubMed

    Chung, Byunghoon; Lee, Hun; Choi, Bong Joon; Seo, Kyung Ryul; Kim, Eung Kwon; Kim, Dae Yune; Kim, Tae-Im

    2017-02-01

    The purpose of this study was to investigate the clinical efficacy of an optimized prolate ablation procedure for correcting residual refractive errors following laser surgery. We analyzed 24 eyes of 15 patients who underwent an optimized prolate ablation procedure for the correction of residual refractive errors following laser in situ keratomileusis, laser-assisted subepithelial keratectomy, or photorefractive keratectomy surgeries. Preoperative ophthalmic examinations were performed, and uncorrected distance visual acuity, corrected distance visual acuity, manifest refraction values (sphere, cylinder, and spherical equivalent), point spread function, modulation transfer function, corneal asphericity (Q value), ocular aberrations, and corneal haze measurements were obtained postoperatively at 1, 3, and 6 months. Uncorrected distance visual acuity improved and refractive errors decreased significantly at 1, 3, and 6 months postoperatively. Total coma aberration increased at 3 and 6 months postoperatively, while changes in all other aberrations were not statistically significant. Similarly, no significant changes in point spread function were detected, but modulation transfer function increased significantly at the postoperative time points measured. The optimized prolate ablation procedure was effective in terms of improving visual acuity and objective visual performance for the correction of persistent refractive errors following laser surgery.

  20. DETECTING TRIAXIALITY IN THE GALACTIC DARK MATTER HALO THROUGH STELLAR KINEMATICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rojas-Nino, Armando; Valenzuela, Octavio; Pichardo, Barbara

    Assuming the dark matter halo of the Milky Way to be a non-spherical potential (i.e., triaxial, prolate, oblate), we show how the assembling process of the Milky Way halo may have left long-lasting stellar halo kinematic fossils due to the shape of the dark matter halo. In contrast with tidal streams, which are associated with recent satellite accretion events, these stellar kinematic groups will typically show inhomogeneous chemical and stellar population properties. However, they may be dominated by a single accretion event for certain mass assembling histories. If the detection of these peculiar kinematic stellar groups were confirmed, they wouldmore » be the smoking gun for the predicted triaxiality of dark halos in cosmological galaxy formation scenarios.« less

  1. Effects of Nonsphericity on the Behavior of Lorenz-Mie Resonances in Scattering Characteristics of Liquid-Cloud Droplets

    NASA Technical Reports Server (NTRS)

    Dlugach, Janna M.; Mishchenko, Michael I.

    2014-01-01

    By using the results of highly accurate T-matrix computations for randomly oriented oblate and prolate spheroids and Chebyshev particles with varying degrees of asphericity, we analyze the effects of a deviation of water-droplet shapes from that of a perfect sphere on the behavior of Lorenz-Mie morphology-dependent resonances of various widths. We demonstrate that the positions and profiles of the resonances can change significantly with increasing asphericity. The absolute degree of asphericity required to suppress a Lorenz-Mie resonance is approximately proportional to the resonance width. Our results imply that numerical averaging of scattering characteristics of real cloud droplets over sizes may rely on a significantly coarser size-parameter resolution than that required for ideal, perfectly spherical particles.

  2. Acoustic scattering of a Bessel vortex beam by a rigid fixed spheroid

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2015-12-01

    Partial-wave series representation of the acoustic scattering field of high-order Bessel vortex beams by rigid oblate and prolate spheroids using the modal matching method is developed. The method, which is applicable to slightly elongated objects at low-to-moderate frequencies, requires solving a system of linear equations which depends on the partial-wave index n and the order of the Bessel vortex beam m using truncated partial-wave series expansions (PWSEs), and satisfying the Neumann boundary condition for a rigid immovable surface in the least-squares sense. This original semi-analytical approach developed for Bessel vortex beams is demonstrated for finite oblate and prolate spheroids, where the mathematical functions describing the spheroidal geometry are written in a form involving single angular (polar) integrals that are numerically computed. The transverse (θ = π / 2) and 3D scattering directivity patterns are evaluated in the far-field for both prolate and oblate spheroids, with particular emphasis on the aspect ratio (i.e., the ratio of the major axis over the minor axis of the spheroid) not exceeding 3:1, the half-cone angle β and order m of the Bessel vortex beam, as well as the dimensionless size parameter kr0. Periodic oscillations in the magnitude plots of the far-field scattering form function are observed, which result from the interference of the reflected waves with the circumferential (Franz') waves circumnavigating the surface of the spheroid in the surrounding fluid. Moreover, the 3D directivity patterns illustrate the far-field scattering from the spheroid, that vanishes in the forward (θ = 0) and backward (θ = π) directions. Particular applications in underwater acoustics and scattering, acoustic levitation and the detection of submerged elongated objects using Bessel vortex waves to name a few, would benefit from the results of the present investigation.

  3. Rotation of a spheroid in a Couette flow at moderate Reynolds numbers.

    PubMed

    Yu, Zhaosheng; Phan-Thien, Nhan; Tanner, Roger I

    2007-08-01

    The rotation of a single spheroid in a planar Couette flow as a model for simple shear flow is numerically simulated with the distributed Lagrangian multiplier based fictitious domain method. The study is focused on the effects of inertia on the orbital behavior of prolate and oblate spheroids. The numerical orbits are found to be well described by a simple empirical model, which states that the rate of the spheroid rotation about the vorticity axis is a sinusoidal function of the corresponding projection angle in the flow-gradient plane, and that the exponential growth rate of the orbit function is a constant. The following transitions in the steady state with increasing Reynolds number are identified: Jeffery orbit, tumbling, quasi-Jeffery orbit, log rolling, and inclined rolling for a prolate spheroid; and Jeffery orbit, log rolling, inclined rolling, and motionless state for an oblate spheroid. In addition, it is shown that the orbit behavior is sensitive to the initial orientation in the case of strong inertia and there exist different steady states for certain shear Reynolds number regimes.

  4. Superdeformation in the a Approximately 190 Mass Region and Shape Coexistence in LEAD-194

    NASA Astrophysics Data System (ADS)

    Brinkman, Matthew James

    Near-yrast states in ^{194 }Pb have been identified up to a spin of {~}35hbar following the ^{176}Yb(^ {24}Mg,6n)^{194} Pb^{*} reaction at a beam energy of 134 MeV, measured with the High Energy -Resolution Array located at the Lawrence Berkeley Laboratory 88-Inch Cyclotron facility. Eighteen new transitions were placed. Examples of non-collective prolate and oblate and collective oblate excitations are seen. In addition a rotational band consisting of twelve transitions, with energy spacings characteristic of superdeformed shapes, were also seen. These results have been interpreted using both Nilsson model calculations and previously published potential energy surface calculations. The superdeformed bands in the A ~ 190 mass region are discussed with primary emphasis on ten superdeformed bands in ^{192,193,194 }Hg and ^{192,194,196,198 }Pb discovered or codiscovered by our collaboration. The discussion of superdeformation in these nuclei have been broken into three portions, focusing on the population of, the physics associated with, and the depopulation of these bands, respectively. The population behavior of the superdeformed structures is presented, and discussed with respect to theoretical predictions for nuclei near A ~ 190 expected to support superdeformation. A detailed analysis of the population of the ^{193} Hg^{rm 1a} band is provided, and the results are compared with statistical model calculations predictions. Significant differences were found between the population of the superdeformed bands in the A ~ 150 and 190 mass regions. The systematics of the intraband region are presented. Nilsson model calculations are carried out, with nucleon configurations for the primary superdeformed bands proposed. A discussion of possible mechanisms for reproducing the smooth increase in dynamic moments of inertia observed in all superdeformed bands in this mass region is provided. A number of superdeformed bands in the A ~ 190 mass region have transition energies

  5. Stability and periodicity in the Sitnikov three-body problem when primaries are oblate spheroids

    NASA Astrophysics Data System (ADS)

    Rahman, M. A.; Garain, D. N.; Hassan, M. R.

    2015-05-01

    This paper deals with the effect of oblateness of the primaries of equal masses on the series solutions of the Sitnikov problem of three bodies. Effects of oblateness have also been shown on the stability of libration points and Poincare surface of section. Here series solutions have been developed with the help of iteration process of Green's function and by the Lindstedt-Poincare method. Following Murray and Dermott (Solar System Dynamics, Cambridge University Press, Cambridge, 1999) we have checked the stability of the equilibrium points in the Sitnikov problem. Periodicity and quasi-periodicity have been examined by drawing the Poincare surfaces of section using the mathematical software.

  6. Volume phase transitions of cholesteric liquid crystalline gels.

    PubMed

    Matsuyama, Akihiko

    2015-05-07

    We present a mean field theory to describe anisotropic deformations of a cholesteric elastomer without solvent molecules and a cholesteric liquid crystalline gel immersed in isotropic solvents at a thermal equilibrium state. Based on the neoclassical rubber theory of nematic elastomers, we derive an elastic energy and a twist distortion energy, which are important to determine the shape of a cholesteric elastomer (or gel). We demonstrate that when the elastic energy dominates in the free energy, the cholesteric elastomer causes a spontaneous compression in the pitch axis and elongates along the director on the plane perpendicular to the pitch axis. Our theory can qualitatively describe the experimental results of a cholesteric elastomer. We also predict the first-order volume phase transitions and anisotropic deformations of a gel at the cholesteric-isotropic phase transition temperature. Depending on a chirality of a gel, we find a prolate or oblate shape of cholesteric gels.

  7. Molecular dynamics simulations of field emission from a prolate spheroidal tip

    NASA Astrophysics Data System (ADS)

    Torfason, Kristinn; Valfells, Agust; Manolescu, Andrei

    2016-12-01

    High resolution molecular dynamics simulations with full Coulomb interactions of electrons are used to investigate field emission from a prolate spheroidal tip. The space charge limited current is several times lower than the current calculated with the Fowler-Nordheim formula. The image-charge is taken into account with a spherical approximation, which is good around the top of the tip, i.e., region where the current is generated.

  8. Long-Term Evolution of Orbits About a Precessing Oblate Planet: 3. A Semianalytical and a Purely Numerical Approach

    DTIC Science & Technology

    2007-11-01

    Keywords Orbital elements · Osculating elements · Mars · Natural satellites · Natural satellites’ orbits · Deimos · Equinoctial precession · The...theory of orbits about a precessing and nutating oblate planet, in terms of osculating elements defined in a frame associated with the equator of...solar-gravity-perturbed satellite orbiting an oblate planet subject to nonuniform equinoctial precession. This nonuniformity of precession is caused by

  9. Frequency-dependent electrodeformation of giant phospholipid vesicles in AC electric field

    PubMed Central

    2010-01-01

    A model of vesicle electrodeformation is described which obtains a parametrized vesicle shape by minimizing the sum of the membrane bending energy and the energy due to the electric field. Both the vesicle membrane and the aqueous media inside and outside the vesicle are treated as leaky dielectrics, and the vesicle itself is modeled as a nearly spherical shape enclosed within a thin membrane. It is demonstrated (a) that the model achieves a good quantitative agreement with the experimentally determined prolate-to-oblate transition frequencies in the kilohertz range and (b) that the model can explain a phase diagram of shapes of giant phospholipid vesicles with respect to two parameters: the frequency of the applied alternating current electric field and the ratio of the electrical conductivities of the aqueous media inside and outside the vesicle, explored in a recent paper (S. Aranda et al., Biophys J 95:L19–L21, 2008). A possible use of the frequency-dependent shape transitions of phospholipid vesicles in conductometry of microliter samples is discussed. PMID:21886342

  10. Peripheral refraction and image blur in four meridians in emmetropes and myopes.

    PubMed

    Shen, Jie; Spors, Frank; Egan, Donald; Liu, Chunming

    2018-01-01

    The peripheral refractive error of the human eye has been hypothesized to be a major stimulus for the development of its central refractive error. The purpose of this study was to investigate the changes in the peripheral refractive error across horizontal, vertical and two diagonal meridians in emmetropic and low, moderate and high myopic adults. Thirty-four adult subjects were recruited and aberration was measured using a modified commercial aberrometer. We then computed the refractive error in power vector notation from second-order Zernike terms. Statistical analysis was performed to evaluate the statistical differences in refractive error profiles between the subject groups and across all measured visual field meridians. Small amounts of relative myopic shift were observed in emmetropic and low myopic subjects. However, moderate and high myopic subjects exhibited a relative hyperopic shift in all four meridians. Astigmatism J 0 and J 45 had quadratic or linear changes dependent on the visual field meridians. Peripheral Sphero-Cylindrical Retinal Image Blur increased in emmetropic eyes in most of the measured visual fields. The findings indicate an overall emmetropic or slightly relative myopic periphery (spherical or oblate retinal shape) formed in emmetropes and low myopes, while moderate and high myopes form relative hyperopic periphery (prolate, or less oblate, retinal shape). In general, human emmetropic eyes demonstrate higher amount of peripheral retinal image blur.

  11. Collective motion in prolate γ-rigid nuclei within minimal length concept via a quantum perturbation method

    NASA Astrophysics Data System (ADS)

    Chabab, M.; El Batoul, A.; Lahbas, A.; Oulne, M.

    2018-05-01

    Based on the minimal length concept, inspired by Heisenberg algebra, a closed analytical formula is derived for the energy spectrum of the prolate γ-rigid Bohr-Mottelson Hamiltonian of nuclei, within a quantum perturbation method (QPM), by considering a scaled Davidson potential in β shape variable. In the resulting solution, called X(3)-D-ML, the ground state and the first β-band are all studied as a function of the free parameters. The fact of introducing the minimal length concept with a QPM makes the model very flexible and a powerful approach to describe nuclear collective excitations of a variety of vibrational-like nuclei. The introduction of scaling parameters in the Davidson potential enables us to get a physical minimum of this latter in comparison with previous works. The analysis of the corrected wave function, as well as the probability density distribution, shows that the minimal length parameter has a physical upper bound limit.

  12. Secular Effect of Sun Oblateness on the Orbital Parameters of Mars and Jupiter

    NASA Astrophysics Data System (ADS)

    Vaishwar, Avaneesh; Kushvah, Badam Singh; Mishra, Devi Prasad

    2018-01-01

    In this paper we considered the Mars-Jupiter system to study the behaviour of Near Earth Asteroids (NEAs) as most of the NEAs originate in the main asteroid belt located between Mars and Jupiter. The materials obtained from NEAs are very useful for space industrialisation. The variations in orbital parameters, such as eccentricity, inclination, longitude of pericenter and longitude of ascending node of Mars and Jupiter were investigated for a time span of 200,000 years centered on J2000 (January 2000) using secular perturbation theory. We considered the Sun oblateness and studied the effect of Sun oblateness on orbital parameters of Mars and Jupiter. Moreover, we determined the orbital parameters for asteroids moving under the perturbation effect of Mars and Jupiter by using a secular solution of Mars-Jupiter system.

  13. Prolate spheroidal hematite particles equatorially belt with drug-carrying layered double hydroxide disks: Ring Nebula-like nanocomposites.

    PubMed

    Nedim Ay, Ahmet; Konuk, Deniz; Zümreoglu-Karan, Birgul

    2011-02-03

    A new nanocomposite architecture is reported which combines prolate spheroidal hematite nanoparticles with drug-carrying layered double hydroxide [LDH] disks in a single structure. Spindle-shaped hematite nanoparticles with average length of 225 nm and width of 75 nm were obtained by thermal decomposition of hydrothermally synthesized hematite. The particles were first coated with Mg-Al-NO3-LDH shell and then subjected to anion exchange with salicylate ions. The resulting bio-nanohybrid displayed a close structural resemblance to that of the Ring Nebula. Scanning electron microscope and transmission electron microscopy images showed that the LDH disks are stacked around the equatorial part of the ellipsoid extending along the main axis. This geometry possesses great structural tunability as the composition of the LDH and the nature of the interlayer region can be tailored and lead to novel applications in areas ranging from functional materials to medicine by encapsulating various guest molecules.

  14. The effect of oblateness and gravity darkening on the radiation driving in winds from rapidly rotating B stars

    NASA Technical Reports Server (NTRS)

    Cranmer, Steven R.; Owocki, Stanley P.

    1995-01-01

    We calculate the radiative driving force for winds around rapidly rotating oblate B stars, and we estimate the impact these forces should have on the production of a wind compressed disk. The effects of limb darkening, gravity darkening, oblateness, and an arbitrary wind velocity field are included in the computation of vector 'oblate finite disk' (OFD) factors, which depend on both radius and colatitude in the wind. The impact of limb darkening alone, with or without rotation, can increase the mass loss by as much as 10% over values computed using the standard uniformly bright spherical finite disk factor. For rapidly rotating stars, limb darkening makes 'sub-stellar' gravity darkening the dominant effect in the radial and latitudinal OFD factors, and lessens the impact of gravity darkening at other visible latitudes (nearer to the oblate limb). Thus, the radial radiative driving is generally stronger over the poles and weaker over the equator, following the gravity darkening at these latitudes. The nonradial radiative driving is considerably smaller in magnitude than the radial component, but is directed both away from the equatorial plane and in a retrograde azimuthal direction, acting to decrease the effective stellar rotation velocity. These forces thus weaken the equatorward wind compression compared to wind models computed with nonrotating finite disk factors.

  15. Stability and confinement improvement of an oblate field-reversed configuration by using neutral beam injection

    NASA Astrophysics Data System (ADS)

    T., Ii; Inomoto, M.; Gi, K.; Umezawa, T.; Ito, T.; Kadowaki, K.; Kaminou, Y.; Ono, Y.

    2013-07-01

    A low-energy, high-current neutral beam injection (NBI) was applied to an oblate field-reversed configuration (FRC) for the first time. The NB fast ions reduce growth rates of low-n modes dangerous for the oblate FRC, extending the FRC lifetime by a factor of 1.2. The reduced loss power of 5 MW is much higher than the NBI power of 0.5 MW, indicating that the NBI not only heats the FRC plasma but also improves its stability and transport properties. The NBI also maintains higher pressure and current density profiles of the FRC, improving its flux and energy decay times by a factor of 2.

  16. Cortical Flow-Driven Shapes of Nonadherent Cells.

    PubMed

    Callan-Jones, A C; Ruprecht, V; Wieser, S; Heisenberg, C P; Voituriez, R

    2016-01-15

    Nonadherent polarized cells have been observed to have a pearlike, elongated shape. Using a minimal model that describes the cell cortex as a thin layer of contractile active gel, we show that the anisotropy of active stresses, controlled by cortical viscosity and filament ordering, can account for this morphology. The predicted shapes can be determined from the flow pattern only; they prove to be independent of the mechanism at the origin of the cortical flow, and are only weakly sensitive to the cytoplasmic rheology. In the case of actin flows resulting from a contractile instability, we propose a phase diagram of three-dimensional cell shapes that encompasses nonpolarized spherical, elongated, as well as oblate shapes, all of which have been observed in experiment.

  17. Size and Shape of the Distant Magnetotail

    NASA Technical Reports Server (NTRS)

    Sibeck, D.G.; Lin, R.-Q.

    2014-01-01

    We employ a global magnetohydrodynamic model to study the effects of the interplanetary magnetic field (IMF) strength and direction upon the cross-section of the magnetotail at lunar distances. The anisotropic pressure of draped magnetosheath magnetic field lines and the inclusion of a reconnection-generated standing slow mode wave fan bounded by a rotational discontinuity within the definition of the magnetotail result in cross-sections elongated in the direction parallel to the component of the IMF in the plane perpendicular to the Sun-Earth line. Tilted cross-tail plasma sheets separate the northern and southern lobes within these cross-sections. Greater fast mode speeds perpendicular than parallel to the draped magnetos heath magnetic field lines result in greater distances to the bow shock in the direction perpendicular than parallel to the component of the IMF in the plane transverse to the Sun-Earth line. The magnetotail cross-section responds rapidly to reconnected magnetic field lines requires no more than the magnetosheath convection time to appear at any distance downstream, and further adjustments of the cross-section in response to the anisotropic pressures of the draped magnetic field lines require no more than 10-20 minutes. Consequently for typical ecliptic IMF orientations and strengths, the magnetotail cross-section is oblate while the bow shock is prolate.

  18. Thermoelastic-plastic flow equations in general coordinates

    DOE PAGES

    Blaschke, Daniel N.; Preston, Dean L.

    2018-03-28

    The equations governing the thermoelastic-plastic flow of isotropic solids in the Prandtl- Reuss and small anisotropy approximations in Cartesian coordinates are generalized to arbitrary coordinate systems. In applications the choice of coordinates is dictated by the symmetry of the solid flow. The generally invariant equations are evaluated in spherical, cylindrical (including uniaxial), and both prolate and oblate spheroidal coordinates.

  19. Thermoelastic-plastic flow equations in general coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaschke, Daniel N.; Preston, Dean L.

    The equations governing the thermoelastic-plastic flow of isotropic solids in the Prandtl- Reuss and small anisotropy approximations in Cartesian coordinates are generalized to arbitrary coordinate systems. In applications the choice of coordinates is dictated by the symmetry of the solid flow. The generally invariant equations are evaluated in spherical, cylindrical (including uniaxial), and both prolate and oblate spheroidal coordinates.

  20. Olivine and spinel fabric development in lineated peridotites

    NASA Astrophysics Data System (ADS)

    German, Lindsey; Newman, Julie; Chatzaras, Vasileios; Kruckenberg, Seth; Stewart, Eric; Tikoff, Basil

    2016-04-01

    Investigation of olivine and spinel fabrics in lineated harzburgites from the Red Hills peridotite massif, New Zealand, reveals that the spinel grain population records the same orientation of the principal finite strain axes as olivine grains, however, olivine grains generally record stronger fabric anisotropy. Further, olivine crystallographic preferred orientation (CPO) reflects the constrictional kinematic context of these rocks. In these harzburgites, deformed at ~1200 °C and >6 kbar, spinel grains are variably oriented and display weak to no CPO. Shape fabric in spinels, determined using X-ray computed tomography (XRCT) indicates a range of geometries (L>S, L=S and Lshape factor ranging from -0.30 (prolate fabric) to +0.55 (oblate fabric). Olivine grains (mean diameter: 0.13 - 0.27 mm) exhibit evidence for dislocation creep, including subgrains, undulose extinction and a strong shape preferred orientation, with long axes parallel or subparallel to the mean spinel long axis orientation derived from XRCT. Olivine fabric analyses, carried out using Image SXM on grain traces from optical photomicrographs of two mutually perpendicular thin sections from each sample, yield moderately to strongly prolate fabrics (L>S tectonites) for olivine in all samples. CPO, plotted with respect to lineation and foliation as defined by XRCT analyses of spinel grains, is characterized by [100] maxima parallel or subparallel to the lineation; [010] and [001] form girdles perpendicular to the lineation, consistent with the D-type CPO for olivine. Olivine CPO is typically interpreted in the context of deformation conditions (e.g., temperature, stress) based on experimental studies. However, the D-type CPO for olivine is generally associated with deformation at relatively lower temperatures than suggested by the mineral compositions in these rocks. Our data suggest that olivine CPO may not only respond to deformation conditions, but may be controlled by the

  1. Symmetry control in subscale near-vacuum hohlraums

    NASA Astrophysics Data System (ADS)

    Turnbull, D.; Berzak Hopkins, L. F.; Le Pape, S.; Divol, L.; Meezan, N.; Landen, O. L.; Ho, D. D.; Mackinnon, A.; Zylstra, A. B.; Rinderknecht, H. G.; Sio, H.; Petrasso, R. D.; Ross, J. S.; Khan, S.; Pak, A.; Dewald, E. L.; Callahan, D. A.; Hurricane, O.; Hsing, W. W.; Edwards, M. J.

    2016-05-01

    Controlling the symmetry of indirect-drive inertial confinement fusion implosions remains a key challenge. Increasing the ratio of the hohlraum diameter to the capsule diameter (case-to-capsule ratio, or CCR) facilitates symmetry tuning. By varying the balance of energy between the inner and outer cones as well as the incident laser pulse length, we demonstrate the ability to tune from oblate, through round, to prolate at a CCR of 3.2 in near-vacuum hohlraums at the National Ignition Facility, developing empirical playbooks along the way for cone fraction sensitivity of various laser pulse epochs. Radiation-hydrodynamic simulations with enhanced inner beam propagation reproduce most experimental observables, including hot spot shape, for a majority of implosions. Specular reflections are used to diagnose the limits of inner beam propagation as a function of pulse length.

  2. Deformed shell model calculations of half lives for β+/EC decay and 2ν β+β+/β+EC/ECEC decay in medium-heavy N~Z nuclei

    NASA Astrophysics Data System (ADS)

    Mishra, S.; Shukla, A.; Sahu, R.; Kota, V. K. B.

    2008-08-01

    The β+/EC half-lives of medium heavy N~Z nuclei with mass number A~64-80 are calculated within the deformed shell model (DSM) based on Hartree-Fock states by employing a modified Kuo interaction in (2p3/2,1f5/2,2p1/2,1g9/2) space. The DSM model has been quite successful in predicting many spectroscopic properties of N~Z medium heavy nuclei with A~64-80. The calculated β+/EC half-lives, for prolate and oblate shapes, compare well with the predictions of the calculations with Skyrme force by Sarriguren Going further, following recent searches, half-lives for 2ν β+β+/β+EC/ECEC decay for the nucleus Kr78 are calculated using DSM and the results compare well with QRPA predictions.

  3. Dynamics of vesicles in electric fields

    NASA Astrophysics Data System (ADS)

    Vlahovska, Petia; Gracia, Ruben

    2007-11-01

    Electromechanical forces are widely used for cell manipulation. Knowledge of the physical mechanisms underlying the interaction of cells and external fields is essential for practical applications. Vesicles are model cells made of a lipid bilayer membrane. They are examples of ``soft'' particles, i.e., their shape when subjected to flow or electric field is not given a priori but it is governed by the balance of membrane, fluid and electrical stresses. This generic ``softness'' gives rise to a very complex vesicle dynamics in external fields. In an AC electric field, as the frequency is increased, vesicles filled with a fluid less conducting than the surrounding fluid undergo shape transition from prolate to oblate ellipsoids. The opposite effect is observed with drops. We present an electro- hydrodynamic theory based on the leaky dielectric model that quantitatively describes experimental observations. We compare drops and vesicles, and show how their distinct behavior stems from different interfacial properties.

  4. Combined effect of oblateness, radiation and a circular cluster of material points on the stability of triangular liberation points in the R3BP

    NASA Astrophysics Data System (ADS)

    Singh, Jagadish; Taura, Joel John

    2014-06-01

    This paper studies the motion of an infinitesimal mass in the framework of the restricted three-body problem (R3BP) under the assumption that the primaries of the system are radiating-oblate spheroids, enclosed by a circular cluster of material points. It examines the effects of radiation and oblateness up to J 4 of the primaries and the potential created by the circular cluster, on the linear stability of the liberation locations of the infinitesimal mass. The liberation points are found to be stable for 0< μ< μ c and unstable for , where μ c is the critical mass value depending on terms which involve parameters that characterize the oblateness, radiation forces and the circular cluster of material points. The oblateness up to J 4 of the primaries and the gravitational potential from the circular cluster of material points have stabilizing propensities, while the radiation of the primaries and the oblateness up to J 2 of the primaries have destabilizing tendencies. The combined effect of these perturbations on the stability of the triangular liberation points is that, it has stabilizing propensity.

  5. Prolate spheroidal hematite particles equatorially belt with drug-carrying layered double hydroxide disks: Ring Nebula-like nanocomposites

    PubMed Central

    2011-01-01

    A new nanocomposite architecture is reported which combines prolate spheroidal hematite nanoparticles with drug-carrying layered double hydroxide [LDH] disks in a single structure. Spindle-shaped hematite nanoparticles with average length of 225 nm and width of 75 nm were obtained by thermal decomposition of hydrothermally synthesized hematite. The particles were first coated with Mg-Al-NO3-LDH shell and then subjected to anion exchange with salicylate ions. The resulting bio-nanohybrid displayed a close structural resemblance to that of the Ring Nebula. Scanning electron microscope and transmission electron microscopy images showed that the LDH disks are stacked around the equatorial part of the ellipsoid extending along the main axis. This geometry possesses great structural tunability as the composition of the LDH and the nature of the interlayer region can be tailored and lead to novel applications in areas ranging from functional materials to medicine by encapsulating various guest molecules. PMID:21711652

  6. Equilibrium electrodeformation of a spheroidal vesicle in an ac electric field

    NASA Astrophysics Data System (ADS)

    Nganguia, H.; Young, Y.-N.

    2013-11-01

    In this work, we develop a theoretical model to explain the equilibrium spheroidal deformation of a giant unilamellar vesicle (GUV) under an alternating (ac) electric field. Suspended in a leaky dielectric fluid, the vesicle membrane is modeled as a thin capacitive spheroidal shell. The equilibrium vesicle shape results from the balance between mechanical forces from the viscous fluid, the restoring elastic membrane forces, and the externally imposed electric forces. Our spheroidal model predicts a deformation-dependent transmembrane potential, and is able to capture large deformation of a vesicle under an electric field. A detailed comparison against both experiments and small-deformation (quasispherical) theory showed that the spheroidal model gives better agreement with experiments in terms of the dependence on fluid conductivity ratio, permittivity ratio, vesicle size, electric field strength, and frequency. The spheroidal model also allows for an asymptotic analysis on the crossover frequency where the equilibrium vesicle shape crosses over between prolate and oblate shapes. Comparisons show that the spheroidal model gives better agreement with experimental observations.

  7. Buckling Design Studies of Inverted, Oblate Bulkheads for a Propellant Tank

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III; Bowman, Lynn M.

    2002-01-01

    An investigation of the deformation and buckling characteristics of a composite, oblate bulkhead that has an inverted geometry and is subjected to pressure-only loading is presented for three bulkhead geometries and thicknesses. The effects of a stiffening support ring at the bulkhead to cylinder interface are also evaluated. Buckling analyses conducted using the axisymmetric shell code BOSOR4 are discussed for several bulkhead configurations. These results are analytically verified using results from the Structural Analysis of General Shells (STAGS) code for a selected bulkhead configuration. The buckling characterization of an inverted, oblate bulkhead requires careful attention as small changes in bulkhead parameters can have a significant effect on the critical buckling load. Comparison of BOSOR4 and STAGS results provided a very good correlation between the two analysis methods. In addition, the analysis code BOSOR4 was found to be an efficient sizing tool that is useful during the preliminary design stage of a practical shell structure. Together, these two aspects should give the design engineer confidence in sizing these stability critical structures. Additional characterization is warranted, especially for a composite tank structure, since only one bulkhead configuration was examined closely.

  8. Optimal Shapes of Surface Slip Driven Self-Propelled Microswimmers

    NASA Astrophysics Data System (ADS)

    Vilfan, Andrej

    2012-09-01

    We study the efficiency of self-propelled swimmers at low Reynolds numbers, assuming that the local energetic cost of maintaining a propulsive surface slip velocity is proportional to the square of that velocity. We determine numerically the optimal shape of a swimmer such that the total power is minimal while maintaining the volume and the swimming speed. The resulting shape depends strongly on the allowed maximum curvature. When sufficient curvature is allowed the optimal swimmer exhibits two protrusions along the symmetry axis. The results show that prolate swimmers such as Paramecium have an efficiency that is ˜20% higher than that of a spherical body, whereas some microorganisms have shapes that allow even higher efficiency.

  9. Stacking and T-shape competition in aromatic-aromatic amino acid interactions.

    PubMed

    Chelli, Riccardo; Gervasio, Francesco Luigi; Procacci, Piero; Schettino, Vincenzo

    2002-05-29

    The potential of mean force of interacting aromatic amino acids is calculated using molecular dynamics simulations. The free energy surface is determined in order to study stacking and T-shape competition for phenylalanine-phenylalanine (Phe-Phe), phenylalanine-tyrosine (Phe-Tyr), and tyrosine-tyrosine (Tyr-Tyr) complexes in vacuo, water, carbon tetrachloride, and methanol. Stacked structures are favored in all solvents with the exception of the Tyr-Tyr complex in carbon tetrachloride, where T-shaped structures are also important. The effect of anchoring the two alpha-carbons (C(alpha)) at selected distances is investigated. We find that short and large C(alpha)-C(alpha) distances favor stacked and T-shaped structures, respectively. We analyze a set of 2396 protein structures resolved experimentally. Comparison of theoretical free energies for the complexes to the experimental analogue shows that Tyr-Tyr interaction occurs mainly at the protein surface, while Phe-Tyr and Phe-Phe interactions are more frequent in the hydrophobic protein core. This is confirmed by the Voronoi polyhedron analysis on the database protein structures. As found from the free energy calculation, analysis of the protein database has shown that proximal and distal interacting aromatic residues are predominantly stacked and T-shaped, respectively.

  10. What can (^3He,d) tell us about the structure of ^186,188Os

    NASA Astrophysics Data System (ADS)

    Phillips, A. A.; Garrett, P. E.; Demand, G. A.; Finlay, P.; Green, K. L.; Leach, K. G.; Schumaker, M. A.; Svensson, C. E.; Wong, J.; Hertenberger, R.; Faestermann, T.; Krücken, R.; Wirth, H.-F.; Bettermann, L.; Braun, N.; Burke, D. G.

    2008-10-01

    The structure of Os nuclei are of interest for a number of reasons including a debate over the vibrational nature of the K^π=4^+ bands, and a shape transition from well-deformed prolate to γ-soft oblate as the number of neutrons increases. In order to investigate the structure of ^186,188Os, we have performed a (^3He,d) reaction on targets of ^185,187Re. The 30 MeV ^3He beams were obtained from the LMU/TUM Tandem Accelerator facility, and the Q3D spectrometer was used to analyze deuterons with 13 keV energy resolution. The absolute cross sections were measured at 9 angles from 5^o to 50^o up to ˜3 MeV in excitation energy. Fingerprint patterns are used to identify orbitals coupled to the 5/2^+[402]π target configuration.

  11. Persistence of collective behavior at high spin in the N = 88 nucleus Tb 153

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartley, D. J.; Riley, M. A.; Wang, X.

    Excited states in the N = 88 nucleus Tb-153 were observed up to spin similar to 40 in an experiment utilizing the Gammasphere array. The Tb-153 states were populated in a weak alpha 4n evaporation channel of the Cl-37 + Sn-124 reaction. Two previously known sequences were extended to higher spins, and a new decoupled structure was identified. The pi h(11/2) band was observed in the spin region where other N = 88 isotopes exhibit effects of prolate to oblate shape changes leading to band termination along the yrast line, whereas Tb-153 displays a persistent collective behavior. However, minor perturbationsmore » of the very highest state in both signatures of this h(11/2) band are observed, which perhaps signal the start of the transition towards band termination.« less

  12. Symmetry control in subscale near-vacuum hohlraums

    DOE PAGES

    Turnbull, D.; Berzak Hopkins, L. F.; Le Pape, S.; ...

    2016-05-18

    Controlling the symmetry of indirect-drive inertial confinement fusion implosions remains a key challenge. Increasing the ratio of the hohlraum diameter to the capsule diameter (case-to-capsule ratio, or CCR) facilitates symmetry tuning. By varying the balance of energy between the inner and outer cones as well as the incident laser pulse length, we demonstrate the ability to tune from oblate, through round, to prolate at a CCR of 3.2 in near-vacuum hohlraums at the National Ignition Facility, developing empirical playbooks along the way for cone fraction sensitivity of various laser pulse epochs. Radiation-hydrodynamic simulations with enhanced inner beam propagation reproduce mostmore » experimental observables, including hot spot shape, for a majority of implosions. In conclusion, specular reflections are used to diagnose the limits of inner beam propagation as a function of pulse length.« less

  13. Turning Mechanics During Swimming by Oblate Hydromedusae

    NASA Astrophysics Data System (ADS)

    Costello, J.; Colin, S.; Sutherland, K.; Gemmell, B. J.

    2016-02-01

    Maneuverability is critical to the success of many species. Selective forces acting over millions of years have resulted in a range of capabilities currently unmatched by machines. Thus, understanding animal control of fluids for maneuvering has both biological and engineering applications. Medusae are radially symmetrical swimmers that must use asymmetric body motions to change direction during turning maneuvers. But what types of asymmetric motions are useful and how do they interact with surrounding fluids to generate rotational forces? We used high speed digital particle image velocimetry (DPIV) to investigate comparative swimming patterns of three hydromedusan species (Aequorea victoria, Clytia gregaria and Mitrocoma cellularia). We provide evidence for consistent animal-fluid interactions that underlie turning mechanics of oblate hydromedusae and provide new insights into the modulation and control of vorticity for low-speed animal maneuvering.

  14. Transformations from an oblate spheroid to a plane and vice versa: The equations used in the cartographic projection program MAP2

    NASA Technical Reports Server (NTRS)

    Elliott, D. A.; Schwartz, A. A.

    1977-01-01

    The relationships between the coordinates of a point on the surface on an oblate spheroid and the coordinates of the projection of that point in several common map projections are discussed. Because several of the projections are conformal, the theory of conformally mapping an oblate spheroid to the plane is summarized. For each projection considered, the equations which map the spheroid to the plane and their inverses are given.

  15. Stability of triangular points in the elliptic restricted three-body problem with oblateness up to zonal harmonic J4 of both primaries

    NASA Astrophysics Data System (ADS)

    Singh, Jagadish; Tyokyaa, Richard K.

    2016-10-01

    In this paper, we study the locations and stability of triangular points in the elliptic restricted three-body problem when both primaries are taken as oblate spheroids with oblateness up to J4. The positions of the triangular points are seen to be affected by oblateness of the primaries and the eccentricity of their orbits. The triangular points are conditionally stable for 0<μ<μc0<μ<μc and unstable for μc≤μ≤12μc≤μ≤12, where μcμc is the critical mass parameter depending on the oblateness coefficients J2iJ2i (i =1,2) and the eccentricity of the orbits. We further observe that both coefficients J2 and J4, semi-major axis and the eccentricity have destabilizing tendencies resulting in a decrease in the size of the region of stability with an increase in the parameters involved. Knowing that, in general, the triangular equilibrium points are stable for 0<μ<μc0<μ<μc, in particular systems (Alpha Centauri, X1X1 Bootis, Sirius and Kruger 60) this does not hold and such points are unstable.

  16. Coulomb explosion of uniformly charged spheroids

    NASA Astrophysics Data System (ADS)

    Grech, M.; Nuter, R.; Mikaberidze, A.; di Cintio, P.; Gremillet, L.; Lefebvre, E.; Saalmann, U.; Rost, J. M.; Skupin, S.

    2011-11-01

    A simple, semianalytical model is proposed for nonrelativistic Coulomb explosion of a uniformly charged spheroid. This model allows us to derive the time-dependent particle energy distributions. Simple expressions are also given for the characteristic explosion time and maximum particle energies in the limits of extreme prolate and oblate spheroids as well as for the sphere. Results of particle simulations are found to be in remarkably good agreement with the model.

  17. Hard convex lens-shaped particles: Densest-known packings and phase behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cinacchi, Giorgio, E-mail: giorgio.cinacchi@uam.es; Torquato, Salvatore, E-mail: torquato@princeton.edu

    2015-12-14

    By using theoretical methods and Monte Carlo simulations, this work investigates dense ordered packings and equilibrium phase behavior (from the low-density isotropic fluid regime to the high-density crystalline solid regime) of monodisperse systems of hard convex lens-shaped particles as defined by the volume common to two intersecting congruent spheres. We show that, while the overall similarity of their shape to that of hard oblate ellipsoids is reflected in a qualitatively similar phase diagram, differences are more pronounced in the high-density crystal phase up to the densest-known packings determined here. In contrast to those non-(Bravais)-lattice two-particle basis crystals that are themore » densest-known packings of hard (oblate) ellipsoids, hard convex lens-shaped particles pack more densely in two types of degenerate crystalline structures: (i) non-(Bravais)-lattice two-particle basis body-centered-orthorhombic-like crystals and (ii) (Bravais) lattice monoclinic crystals. By stacking at will, regularly or irregularly, laminae of these two crystals, infinitely degenerate, generally non-periodic in the stacking direction, dense packings can be constructed that are consistent with recent organizing principles. While deferring the assessment of which of these dense ordered structures is thermodynamically stable in the high-density crystalline solid regime, the degeneracy of their densest-known packings strongly suggests that colloidal convex lens-shaped particles could be better glass formers than colloidal spheres because of the additional rotational degrees of freedom.« less

  18. The effect of the Earth's oblateness on the Moon's physical libration in latitude

    NASA Astrophysics Data System (ADS)

    Kondratyev, B. P.

    2013-05-01

    The Moon's physical libration in latitude generated by gravitational forces caused by the Earth's oblateness has been examined by a vector analytical method. Libration oscillations are described by a close set of five linear inhomogeneous differential equations, the dispersion equation has five roots, one of which is zero. A complete solution is obtained. It is revealed that the Earth's oblateness: a) has little effect on the instantaneous axis of Moon's rotation, but causes an oscillatory rotation of the body of the Moon with an amplitude of 0.072″ and pulsation period of 16.88 Julian years; b) causes small nutations of poles of the orbit and of the ecliptic along tight spirals, which occupy a disk with a cut in a center and with radius of 0.072″. Perturbations caused by the spherical Earth generate: a) physical librations in latitude with an amplitude of 34.275″; b) nutational motion for centers of small spiral nutations of orbit (ecliptic) pole over ellipses with semi-major axes of 113.850″ (85.158″) and the first pole rotates round the second one along a circle with radius of 28.691″; c) nutation of the Moon's celestial pole over an ellipse with a semi-major axis of 45.04″ and with an axes ratio of about 0.004 with a period of T = 27.212 days. The principal ellipse's axis is directed tangentially with respect to the precession circumference, along which the celestial pole moves nonuniformly nearly in one dimension. In contrast to the accepted concept, the latitude does not change while the Moon's poles of rotation move. The dynamical reason for the inclination of the Moon's mean equator with respect to the ecliptic is oblateness of the body of the Moon.

  19. Resonance between a Prolate and a Superprolate Structure of the Er Nucleus.

    PubMed

    Pauling, L; Blethen, J

    1974-07-01

    Observed energy levels of (162)Er from the normal state J = 0 to the excited rotational state J = 18 correspond to values of the moment of inertia and rotational frequency that indicate that a pronounced change in structure occurs at about J = 14. It is shown that the observed values agree well with the values calculated on the assumption that there is resonance between a more stable prolate structure with a core of two spherons and a less stable superprolate structure with a core of three spherons in line.

  20. Axisymmetric scattering of an acoustical Bessel beam by a rigid fixed spheroid.

    PubMed

    Mitri, Farid G

    2015-10-01

    Based on the partial-wave series expansion (PWSE) method in spherical coordinates, a formal analytical solution for the acoustic scattering of a zeroth-order Bessel acoustic beam centered on a rigid fixed (oblate or prolate) spheroid is provided. The unknown scattering coefficients of the spheroid are determined by solving a system of linear equations derived for the Neumann boundary condition. Numerical results for the modulus of the backscattered pressure (θ = π) in the near field and the backscattering form function in the far field for both prolate and oblate spheroids are presented and discussed, with particular emphasis on the aspect ratio (i.e., the ratio of the major axis over the minor axis of the spheroid), the half-cone angle of the Bessel beam, and the dimensionless frequency. The plots display periodic oscillations (versus the dimensionless frequency) because of the interference of specularly reflected waves in the backscattering direction with circumferential Franz' waves circumnavigating the surface of the spheroid in the surrounding fluid. Moreover, the 3-D directivity patterns illustrate the near- and far-field axisymmetric scattering. Investigations in underwater acoustics, particle levitation, scattering, and the detection of submerged elongated objects and other related applications utilizing Bessel waves would benefit from the results of the present study.

  1. In-Beam Studies of High Spin States in Mercury -182 and MERCURY-184

    NASA Astrophysics Data System (ADS)

    Bindra, Kanwarjit Singh

    The high spin states in ^{182 }Hg were studied by using the reaction ^{154}Gd(^{32}S, 4n) at the Holifield Heavy Ion Research Facility. In addition, the in-beam gamma-rays in ^{183}Hg were identified for the first time using the reaction ^{155}Gd(^{32}S, 4n) at the Argonne BGO-FMA facility. Five new bands were observed for the first time in ^{182}Hg by studying the gamma-gamma coincidence relationships. The spins and parities of the nuclear levels were assigned on the basis of the measured ratios of directional correlations for oriented nuclei (DCO ratios). Shape co-existence similar to that observed in ^{184{-}186}Hg was established. The well deformed prolate band was extended to a state with tentative spin (20^+). The 2^+ state of the prolate band was identified at an energy of 548.6 keV which is higher in energy than in ^{184}Hg. A two parameter band mixing calculation yielded an interaction strength of 87 keV between the prolate 2^+ and the oblate 2^+ states. Four of the five new bands were found to be similar in behavior to ones seen in ^{184}Hg. An attempt was made to study the behavior of some of these bands at high spins by analyzing their kinematic and dynamic moments of inertia. The gamma-ray transitions in ^{183}Hg were identified from fragment-gamma and gamma-gamma coincidence measurements. A total of five bands of levels were identified and the spins and parities of the levels were assigned by comparing the level scheme of ^{138 }Hg obtained with that of ^ {185}Hg established previously. The interpretation of these bands in terms of associated quasi-particle configurations also relies on noted similarities with the structure of ^{185}Hg. Shape co-existence was established in ^{183}Hg as a result of this study. Two of the bands associated with the (624) 9/2^+ orbital were found to exhibit signature splitting, as expected for i _{13/2} excitations built on the prolate shape with moderate deformation. Two other bands which do not show signature splitting

  2. Analysis of long wavelength electromagnetic scattering by a magnetized cold plasma prolate spheroid

    NASA Astrophysics Data System (ADS)

    Ahmadizadeh, Yadollah; Jazi, Bahram; Abdoli-Arani, Abbas

    2013-08-01

    Using dielectric permittivity tensor of the magnetized prolate plasma, the scattering of long wavelength electromagnetic waves from the mentioned object is studied. The resonance frequency and differential scattering cross section for the backward scattered waves are presented. Consistency between the resonance frequency in this configuration and results obtained for spherical plasma are investigated. Finally, the effective factors on obtained results such as incident wave polarization, the frequency of the incident wave, the plasma frequency and the cyclotron frequency are analyzed.

  3. Shape matters: The case for Ellipsoids and Ellipsoidal Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tillack, Andreas F.; Robinson, Bruce H.

    We describe the shape potentials used for the van der Waals interactions between soft-ellipsoids used to coarse-grain molecular moieties in our Metropolis Monte-Carlo simulation software. The morphologies resulting from different expressions for these van der Waals interaction potentials are discussed for the case of a prolate spheroid system with a strong dipole at the ellipsoid center. We also show that the calculation of ellipsoids is, at worst, only about fivefold more expensive computationally when compared to a simple Lennard- Jones sphere. Finally, as an application of the ellipsoidal shape we parametrize water from the original SPC water model and observemore » – just through the difference in shape alone – a significant improvement of the O-O radial distribution function when compared to experimental data.« less

  4. Graphical Representation and Origin of Piezoresistance Effect in Germanium

    NASA Astrophysics Data System (ADS)

    Matsuda, K.; Nagaoka, S.; Kanda, Y.

    2017-06-01

    The longitudinal and transverse piezoresistance coefficients of Ge at room temperature are represented graphically as a function of the crystal directions for orientation (001), (110) and (211) planes. Many valley model of conduction band and stress decoupling decoupling of the degenerate valence band into two bands of prolate and oblate ellipsoidal energy surface are shown to explain origin of the piezoresistance. One this basis, comparison between piezoresistance coefficient and theoretical model is discussed.

  5. Kinematical Modeling of WARPS in the H i Disks of Galaxies

    NASA Astrophysics Data System (ADS)

    Christodoulou, Dimitris M.; Tohline, Joel E.; Steiman-Cameron, Thomas Y.

    1993-10-01

    In order to gain an appreciation for the general structure of warped gas layers in galaxies, we have constructed kinematical, tilted-ring models of 21 galaxies for which detailed H I observations already exist in the literature. In this paper we present results for the 15 normal spiral galaxies of this sample that are not viewed edge-on. A comparison between our models and tilted-ring models of the same galaxies previously constructed by other authors shows that there is generally good agreement. We make an attempt to unify the notation of diff&rent authors who have published radio observations and/or kinematical models of individual galaxies in this sample. We also suggest how, in future work of this nature, model parameters should be presented and referenced in order to maintain a reasonable degree of consistency in the literature. When viewed in the perspective of dynamical models, a twisted warped gas layer can be understood as arising from orbiting gas which is in the process of settling to a preferred orientation in the nonspherical, gravitational potential well of the galaxy. Hence, detailed kinematical modeling of a specific galaxy disk can provide not only information regarding the orientation and structure of its warp but also information about the shape (whether oblate or prolate) of the dark halo in which the disk is embedded. By examining a large number of galaxies in a consistent manner, we have deduced some general characteristics of warped disks that have heretofore gone unnoticed. We have also identified uniqueness problems that can arise in this type of modeling procedure which can considerably cloud one's ability to completely decipher an individual disk's structure. For 14 out of 15 spiral galaxies modeled here, we have been able to determine the local kinematical structure of the warp. Gas layers do not appear to warp more than ˜40° out of the plane defined by the central disk of the galaxy, but they can twist through angles as large as ˜170

  6. Electrohydrodynamics of drops in strong uniform dc electric fields

    NASA Astrophysics Data System (ADS)

    Salipante, Paul F.; Vlahovska, Petia M.

    2010-11-01

    Drop deformation in an uniform dc electric field is a classic problem. The pioneering work of Taylor demonstrated that for weakly conducting media, the drop fluid undergoes a toroidal flow and the drop adopts a prolate or oblate spheroidal shape, the flow and shape being axisymmetrically aligned with the applied field. However, recent studies have revealed a nonaxisymmetric rotational flow in strong fields, similar to the rotation of solid dielectric particles observed by Quincke in the 19th century. We present a systematic experimental study of this phenomenon, which highlights the importance of charge convection along the drop surface. The critical electric field, drop inclination angle, and rate of rotation are measured. We find that for small, high viscosity drops, the threshold field strength is well approximated by the Quincke rotation criterion. Reducing the viscosity ratio shifts the onset for rotation to stronger fields. The drop inclination angle increases with field strength. The rotation rate is approximately given by the inverse Maxwell-Wagner polarization time. Novel features are also observed such as a hysteresis in the tilt angle for large low-viscosity drops.

  7. Non-collinear libration points in ER3BP with albedo effect and oblateness

    NASA Astrophysics Data System (ADS)

    Idrisi, M. Javed; Ullah, M. Shahbaz

    2018-06-01

    In this paper we establish a relation between direct radiations (generally called radiation factor) and reflected radiations (albedo) to show their effects on the existence and stability of non-collinear libration points in the elliptic restricted three-body problem taking into account the oblateness of smaller primary. It is discussed briefly when α =0 and σ =0, the non-collinear libration points form an isosceles triangle with the primaries and as e increases the libration points L_{4,5} move vertically downward (α , σ and e represents the radiation factor, oblateness factor and eccentricity of the primaries respectively). If α = 0 but σ ≠ 0, the libration points slightly displaced to the right-side from its previous location and form scalene triangle with the primaries and go vertically downward as e increases. If α ≠ 0 and σ ≠ 0, the libration points L_{4,5} form scalene triangle with the primaries and as e increases L_{4,5} move downward and displaced to the left-side. Also, the libration points L_{4,5} are stable for the critical mass parameter μ ≤ μ c.

  8. Shape evolution of 72,74Kr with temperature in covariant density functional theory

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Niu, Yi-Fei

    2017-09-01

    The rich phenomena of deformations in neutron-deficient krypton isotopes, such as shape evolution with neutron number and shape coexistence, have attracted the interest of nuclear physicists for decades. It is interesting to study such shape phenomena using a novel way, e.g. by thermally exciting the nucleus. In this work, we develop the finite temperature covariant density functional theory for axially deformed nuclei with the treatment of pairing correlations by the BCS approach, and apply this approach for the study of shape evolution in 72,74Kr with increasing temperature. For 72Kr, with temperature increasing, the nucleus firstly experiences a relatively quick weakening in oblate deformation at temperature T ˜0.9 MeV, and then changes from oblate to spherical at T ˜2.1 MeV. For 74Kr, its global minimum is at quadrupole deformation β 2 ˜ -0.14 and abruptly changes to spherical at T˜ 1.7 MeV. The proton pairing transition occurs at critical temperature 0.6 MeV following the rule T c=0.6Δ p(0), where Δ p(0) is the proton pairing gap at zero temperature. The signatures of the above pairing transition and shape changes can be found in the specific heat curve. The single-particle level evolutions with temperature are presented. Supported by National Natural Science Foundation of China (11105042, 11305161, 11505157), Open Fund of Key Laboratory of Time and Frequency Primary Standards, CAS, and Support from Henan Administration of Foreign Experts Affairs

  9. The discrete prolate spheroidal filter as a digital signal processing tool

    NASA Technical Reports Server (NTRS)

    Mathews, J. D.; Breakall, J. K.; Karawas, G. K.

    1983-01-01

    The discrete prolate spheriodall (DPS) filter is one of the glass of nonrecursive finite impulse response (FIR) filters. The DPS filter is superior to other filters in this class in that it has maximum energy concentration in the frequency passband and minimum ringing in the time domain. A mathematical development of the DPS filter properties is given, along with information required to construct the filter. The properties of this filter were compared with those of the more commonly used filters of the same class. Use of the DPS filter allows for particularly meaningful statements of data time/frequency resolution cell values. The filter forms an especially useful tool for digital signal processing.

  10. Resonance between a Prolate and a Superprolate Structure of the 162Er Nucleus

    PubMed Central

    Pauling, Linus; Blethen, John

    1974-01-01

    Observed energy levels of 162Er from the normal state J = 0 to the excited rotational state J = 18 correspond to values of the moment of inertia and rotational frequency that indicate that a pronounced change in structure occurs at about J = 14. It is shown that the observed values agree well with the values calculated on the assumption that there is resonance between a more stable prolate structure with a core of two spherons and a less stable superprolate structure with a core of three spherons in line. PMID:16592173

  11. Generativity in Elderly Oblate Sisters of Providence

    PubMed Central

    Black, Helen K.; Hannum, Susan M.; Rubinstein, Robert L.; de Medeiros, Kate

    2016-01-01

    Purpose of the Study: We explored how generativity and well-being merged in a group of childless older women: African and Hispanic Roman Catholic Religious Sisters, linking two minority identity characteristics. Design and Methods: We qualitatively interviewed 8 Oblate Sisters of Providence (OSP), by providing a framework for examining the range of the women’s generativity—cultural spheres in which generativity is rooted and outlets for generativity. Results: Early negative experiences, such as fleeing despotism in Haiti and Cuba and racism within the Catholic Church, occurred alongside positive experiences—families who stressed education, and Caucasian Religious who taught children of color. This became a foundation for the Sister’s generative commitment. Implications: Findings highlight that research gains from a phenomenological understanding of how religious faith promotes generative cognitions and emotions. Findings also reveal that the experiences of a subculture in society—African-American elderly women religious—add to theories and definitions of generativity. PMID:25352535

  12. Equilibrium figures inside the dark-matter ring and the shapes of elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Kondratyev, B. P.; Trubitsyna, N. G.; Kireeva, E. N.

    We solve the general problem of the theory of equilibrium figures and analyze two classes of liquid rotating gravitating figures residing inside a gravitating ring or torus. These figures form families of sequences of generalized oblate spheroids and triaxial ellipsoids, which at the lower limit of the tidal parameter α = 0 have the form of the Maclaurin spheroids and the Jacobi ellipsoids. In intermediate cases 0 < α ≤ αmax each new sequence of axisymmetric equilibrium figures has two non-rotating boundary spheroids. At the upper limit αmax/(π Gρ ) = 0.1867 the sequence degenerates into a single non-rotating spheroid with the eccentricity {e cr} ≈ 0.96 corresponding to the flattening limit of elliptical galaxies (E7). We also perform a detailed study of the sequences of generalized triaxial ellipsoids and find bifurcation points of triaxial ellipsoids in the sequences of generalized spheroids. We use this method to explain the shapes of E-galaxies. According to observations, very slowly rotating oblate E-type galaxies are known that have the shapes, which, because of instability, cannot be supported by velocity dispersion anisotropy exclusively. The hypothesis of a massive dark-matter outer ring requires no extreme anisotropy of pressure; it not only explains the shape of these elliptical galaxies, but also sheds new light on the riddle of the ellipticity limit (E7) of elliptical galaxies.

  13. Axially Symmetric Brans-Dicke-Maxwell Solutions

    NASA Astrophysics Data System (ADS)

    Chatterjee, S.

    1981-05-01

    Following a method of John and Goswami new solutions of coupled Brans-Dicke-Maxwell theory are generated from Zipoy's solutions in oblate and prolate spheroidal coordinates for source-free gravitational field. All these solutions become Euclidean at infinity. The asymptotic behavior and the singularity of the solutions are discussed and a comparative study made with the corresponding Einstein-Maxwell solutions. The possibility of a very large red shift from the boundary of the spheroids is also discussed.

  14. Formation and Maintenance of Galactic Warps in Triaxial Halos

    NASA Astrophysics Data System (ADS)

    Jeon, M. W.; Kim, S. S.; Ann, H. B.

    2008-10-01

    We investigate the evolution of the self-gravitating disk in a fixed axisymmetric halo with a torus of late cosmic infall that is tilted relative to the initial disk. This is an extension to the study by Shen & Sellwood (2006). We find that the magnitude of the warp is suppressed by a factor of ˜ 2 when the halo is moderately oblate while the magnitude of the warp periodically oscillates when the halo is moderately prolate.

  15. Analytical study of spheroidal dust grains in plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahed, H.; Mahmoodi, J.; Sobhanian, S.

    2006-05-15

    Using the modified spheroidal equations, the potential of a spheroidal conducting grain, floated in a plasma, is calculated. The electric field and capacitance for both prolate and oblate spheroidal grains are investigated. The solutions, obtained up to the second-order approximation, show that the plasma screening causes the equipotential surfaces around the grain to be more elongated or flattened than the potential spheroids of the Laplace equation. This leads to the variation of the plasma concentration around the grain.

  16. Recent Earth oblateness variations: unraveling climate and postglacial rebound effects.

    PubMed

    Dickey, Jean O; Marcus, Steven L; de Viron, Olivier; Fukumori, Ichiro

    2002-12-06

    Earth's dynamic oblateness (J2) has been decreasing due to postglacial rebound (PGR). However, J2 began to increase in 1997, indicating a pronounced global-scale mass redistribution within Earth's system. We have determined that the observed increases in J2 are caused primarily by a recent surge in subpolar glacial melting and by mass shifts in the Southern, Pacific, and Indian oceans. When these effects are removed, the residual trend in J2 (-2.9 x 10(-11) year-1) becomes consistent with previous estimates of PGR from satellite and eclipse data. The climatic significance of these rapid shifts in glacial and oceanic mass, however, remains to be investigated.

  17. Nanotomography and Micromagnetic Modelling of Remanence Carriers in the Semarkona LL3.0 Chondrite: A New View of the Vortex State

    NASA Astrophysics Data System (ADS)

    Harrison, R. J.; Einsle, J. F.; Williams, W.; Ó Conbhuí, P.; Fu, R. R.; Weiss, B. P.; Kasama, T.

    2015-12-01

    Dusty-olivine chondrules are carriers of stable pre-accretionary remanence, and have recently been used to obtain the first reliable estimate of the magnetic field of the early solar nebula. Here we show how the magnetic architecture of a single dusty olivine grain from the Semarkona LL3.0 ordinary chondrite meteorite can be fully characterised in three-dimensions, using a combination of Focussed-Ion-Beam nanotomography (FIB-nt), electron tomography and finite-element micromagnetic modelling. We present a 3D volume reconstruction of a dusty olivine grain, obtained by selective milling through a region of interest in a series of sequential 20 nm slices, which are then imaged using scanning electron microscopy. The data provide a quantitative description of the iron particle ensemble, including the distribution of particle sizes, shapes, interparticle spacings and preferred orientations. Iron particles are predominantly oblate ellipoids. Particles nucleate on dislocation networks and are loosely arranged in a series of parallel sheets with their shortest dimension oriented normal to the sheets and their longest dimensions preferentially aligned within the sheets. Individual particle geometries are converted to a finite-element mesh and used to perform micromagnetic simulations. The majority of particles adopt a single vortex state, with 'bulk' spins that rotate around a central vortex core. The results challenge pre-conceived ideas about the remanence carrying properties of vortex states. We find that remanence is carried by bulk spins rather than the vortex core. Although the orientation of the core is determined by the ellipsoidal geometry (parallel to the major axis for prolate ellipsoids; parallel to the minor axis for oblate ellipsoids), the remanence vectors generally lie at large angles (and in many cases antiparallel) to the core magnetisation. Even in the case of prolate particles, the resulting remanence vector can make a large angle of ~50° to the

  18. Shape dependent phoretic propulsion of slender active particles

    NASA Astrophysics Data System (ADS)

    Ibrahim, Y.; Golestanian, R.; Liverpool, T. B.

    2018-03-01

    We theoretically study the self-propulsion of a thin (slender) colloid driven by asymmetric chemical reactions on its surface at vanishing Reynolds number. Using the method of matched asymptotic expansions, we obtain the colloid self-propulsion velocity as a function of its shape and surface physicochemical properties. The mechanics of self-phoresis for rod-like swimmers has a richer spectrum of behaviors than spherical swimmers due to the presence of two small length scales, the slenderness of the rod and the width of the slip layer. This leads to subtleties in taking the limit of vanishing slenderness. As a result, even for very thin rods, the distribution of curvature along the surface of the swimmer, namely, its shape, plays a surprising role in determining the efficiency of propulsion. We find that thin cylindrical self-phoretic swimmers with blunt ends move faster than thin prolate spheroid shaped swimmers with the same aspect ratio.

  19. The Effect of Direct Solar Radiation Pressure on a Spacecraft of Complex Shape

    NASA Astrophysics Data System (ADS)

    El-Saftawy, M. I.; Ahmed, M. K. M.; Helali, Y. E.

    1998-07-01

    The canonical equations of motion of a spacecraft of complex shape under the joint effects of earth oblateness and direct solar radiation pressure are formulated. The shape of the satellite is modeled as an axisymmetric body plus despun antenna emitting or receiving a radio beam which is suitable to describe the main effects for the telecommunication satellites. The attitude of the satellite is assumed stabilized such that the axis of the symmetric part be along the tangent to the orbit. The Hamiltonian is developed in terms of the Delaunay elements augmented so as to remove the time dependence of the Hamiltonian.

  20. Generativity in Elderly Oblate Sisters of Providence.

    PubMed

    Black, Helen K; Hannum, Susan M; Rubinstein, Robert L; de Medeiros, Kate

    2016-06-01

    We explored how generativity and well-being merged in a group of childless older women: African and Hispanic Roman Catholic Religious Sisters, linking two minority identity characteristics. We qualitatively interviewed 8 Oblate Sisters of Providence (OSP), by providing a framework for examining the range of the women's generativity-cultural spheres in which generativity is rooted and outlets for generativity. Early negative experiences, such as fleeing despotism in Haiti and Cuba and racism within the Catholic Church, occurred alongside positive experiences-families who stressed education, and Caucasian Religious who taught children of color. This became a foundation for the Sister's generative commitment. Findings highlight that research gains from a phenomenological understanding of how religious faith promotes generative cognitions and emotions. Findings also reveal that the experiences of a subculture in society-African-American elderly women religious-add to theories and definitions of generativity. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Ecology of dark matter haloes - II. Effects of interactions on the alignment of halo pairs

    NASA Astrophysics Data System (ADS)

    L'Huillier, Benjamin; Park, Changbom; Kim, Juhan

    2017-04-01

    We use the Horizon Run 4 cosmological N-body simulation to study the effects of distant and close interactions on the alignments of the shapes, spins and orbits of targets haloes with their neighbours, and their dependence on the local density environment and neighbour separation. Interacting targets have a significantly lower spin and higher sphericity and oblateness than all targets. Interacting pairs initially have antiparallel spins, but the spins develop parallel alignment as time goes on. Neighbours tend to evolve in the plane of rotation of the target, and in the direction of the major axis of prolate haloes. Moreover, interactions are preferentially radial, while pairs with non-radial orbits are preferentially prograde. The alignment signals are stronger at high mass and for close separations, and independent of the large-scale density. Positive alignment signals are found at redshifts up to 4, and increase with decreasing redshifts. Moreover, the orbits tend to become prograde at low redshift, while no alignment is found at high redshift (z = 4).

  2. Swarming in viscous fluids: three-dimensional patterns in swimmer- and force-induced flows

    NASA Astrophysics Data System (ADS)

    Chuang, Yao-Li; D'Orsogna, Maria R.; Chou, Tom

    Mathematical models of self-propelled interacting particles have reproduced various fascinating ``swarming'' patterns observed in natural and artificial systems. The formulation of such models usually ignores the influence of the surrounding medium in which the particles swarm. Here we develop from first principles a three-dimensional theory of swarming particles in a viscous fluid environment and investigate how the hydrodynamic coupling among the particles may affect their collective behavior. Specifically, we examine the hydrodynamic coupling among self-propelled particles interacting through ``social'' or ``mechanical'' forces. We discover that new patterns arise as a consequence of different interactions and self-propulsion mechanisms. Examples include flocks with prolate or oblate shapes, intermittent mills, recirculating peloton-like structures, and jet-like fluid flows that kinetically destabilize mill-like structures. Our results reveal possible mechanisms for three-dimensional swarms to kinetically control their collective behaviors in fluids. Supported by NSF DMS 1021818 & 1021850, ARO W1911NF-14-1-0472, ARO MURI W1911NF-11-10332.

  3. Optimal shapes of surface-slip driven self-propelled swimmers

    NASA Astrophysics Data System (ADS)

    Vilfan, Andrej; Osterman, Natan

    2012-11-01

    If one defines the swimming efficiency of a microorganism as the power needed to move it against viscous drag, divided by the total dissipated power, one usually finds values no better than 1%. In order to find out how close this is to the theoretically achievable optimum, we first introduced a new efficiency measure at the level of a single cilium or an infinite ciliated surface and numerically determined the optimal beating patterns according to this criterion. In the following we also determined the optimal shape of a swimmer such that the total power is minimal while maintaining the volume and the swimming speed. The resulting shape depends strongly on the allowed maximum curvature. When sufficient curvature is allowed the optimal swimmer exhibits two protrusions along the symmetry axis. The results show that prolate swimmers such as Paramecium have an efficiency that is ~ 20% higher than that of a spherical body, whereas some microorganisms have shapes that allow even higher efficiency.

  4. Deformation and Rotation of a Drop in a Uniform Electric Field

    NASA Astrophysics Data System (ADS)

    Salipante, Paul; Hanna, James; Vlahovska, Petia

    2009-11-01

    Drop deformation in uniform electric fields is a classic problem. The pioneering work of G.I.Taylor demonstrated that for weakly conducting media, the drop fluid undergoes a toroidal flow and the drop adopts a prolate or oblate spheroidal shape, the flow and shape being axisymmetrically aligned with the applied field. However, recent studies have revealed a nonaxisymmetric rotational mode for drops of lower conductivity than the surrounding medium, similar to the rotation of solid dielectric particles observed by Quincke in the 19th century. We will present an experimental and theoretical study of this phenomenon in DC fields. The critical electric field, drop inclination angle, and rate of rotation are measured. For small, high viscosity drops, the threshold field strength is well approximated by the Quincke rotation criterion. Reducing the viscosity ratio shifts the onset for rotation to stronger fields. The drop inclination angle increases with field strength. The rotation rate is approximately given by the inverse Maxwell-Wagner polarization time. We also observe a hysteresis in the tilt angle for low-viscosity drops. The effects of AC fields and surfactants are also explored.

  5. Structure Of Neutron-Rich Nuclei In A˜100 Region Observed In Fusion-Fission Reactions

    NASA Astrophysics Data System (ADS)

    Wu, C. Y.; Hua, H.; Cline, D.; Hayes, A. B.; Teng, R.; Clark, R. M.; Fallon, P.; Görgen, A.; Macchiavelli, A. O.; Vetter, K.

    2003-03-01

    Neutron-rich nuclei around A˜100 were populated as fission fragments produced by the 238U(α,f) fusion-fission reaction. The deexcitation γ rays were detected by Gammasphere in coincidence with the detection of both fission fragments by the Rochester 4π heavy-ion detector array, CHICO. This technique allows Doppler-shift corrections to be applied for the observed γ rays on an event-by-event basis thus establishing the origin of γ rays from either fission fragment. In addition, it allows observation of γ-ray transitions from states with short lifetimes and offers the opportunity to study nuclear species beyond the reach of the spontaneous fission process. With these advantages, one can extend the spectroscopic study to higher spins than those derived using the thick-target technique, and to more neutron-rich nuclei than those derived from spontaneous fissions. Among the new and interesting phenomena identified in this rapid shape-changing region, the most distinct result is the evidence for a prolate-to-oblate shape transition occurring at 116Pd, which may have important implications to our understanding of the shell structure for neutron-rich nuclei.

  6. Dynamical passage to approximate equilibrium shapes for spinning, gravitating rubble asteroids

    NASA Astrophysics Data System (ADS)

    Sharma, Ishan; Jenkins, James T.; Burns, Joseph A.

    2009-03-01

    Many asteroids are thought to be particle aggregates held together principally by self-gravity. Here we study — for static and dynamical situations — the equilibrium shapes of spinning asteroids that are permitted for rubble piles. As in the case of spinning fluid masses, not all shapes are compatible with a granular rheology. We take the asteroid to always be an ellipsoid with an interior modeled as a rigid-plastic, cohesion-less material with a Drucker-Prager yield criterion. Using an approximate volume-averaged procedure, based on the classical method of moments, we investigate the dynamical process by which such objects may achieve equilibrium. We first collapse our dynamical approach to its statical limit to derive regions in spin-shape parameter space that allow equilibrium solutions to exist. At present, only a graphical illustration of these solutions for a prolate ellipsoid following the Drucker-Prager failure law is available [Sharma, I., Jenkins, J.T., Burns, J.A., 2005a. Bull. Am. Astron. Soc. 37, 643; Sharma, I., Jenkins, J.T., Burns, J.A., 2005b. Equilibrium shapes of ellipsoidal soil asteroids. In: García-Rojo, R., Hermann, H.J., McNamara, S. (Eds.), Proceedings of the 5th International Conference on Micromechanics of Granular Media, vol. 1. A.A. Balkema, UK; Holsapple, K.A., 2007. Icarus 187, 500-509]. Here, we obtain the equilibrium landscapes for general triaxial ellipsoids, as well as provide the requisite governing formulae. In addition, we demonstrate that it may be possible to better interpret the results of Richardson et al. [Richardson, D.C., Elankumaran, P., Sanderson, R.E., 2005. Icarus 173, 349-361] within the context of a Drucker-Prager material. The graphical result for prolate ellipsoids in the static limit is the same as those of Holsapple [Holsapple, K.A., 2007. Icarus 187, 500-509] because, when worked out, his final equations will match ours. This is because, though the formalisms to reach these expressions differ, in statics

  7. Visualization of Surface Flow on a Prolate Spheroid Model Suspended by Magnetic Suspension and Balance System

    NASA Astrophysics Data System (ADS)

    Ambo, Takumi; Nakamura, Yuki; Ochiai, Taku; Nonomura, Taku; Asai, Keisuke

    2017-11-01

    In this study, the surface flow on a 6:1 prolate spheroid model was visualized by oil flow method in the magnetic suspension and balance system (MSBS). The MSBS is a support-free system for wind-tunnel test in that a model is levitated by magnetic force. In this experiment, the 0.3-m MSBS was installed in the low-speed wind tunnel. The Reynolds number was 0.5 million and the angle of attack was set 0 and 5 degrees. In addition to free-levitation tests, a thin rod simulating disturbance of a support system was placed on the model surface and the influence of support interference was evaluated. The obtained results indicate that complicated separation patterns are present even at zero angle of attack. At α = 5°, separation pattern becomes more complicated than that at α = 0° and the streamlines form a highly three-dimensional structure. A characteristic pattern of open separation is observed and a focal point is formed at the end of the separation line. In evaluation of the support interference, the separation is delayed in the downstream of the rod, suggesting that the change of separation pattern is caused by the transition of laminar boundary layer behind the rod. These results indicate that one must take particular care to the support interference in studying three-dimensional separation on a prolate spheroid.

  8. Determination of the topological shape of integral membrane protein light-harvesting complex LH2 from photosynthetic bacteria in the detergent solution by small-angle X-ray scattering.

    PubMed

    Hong, Xinguo; Weng, Yu-Xiang; Li, Ming

    2004-02-01

    The topological shape of the integral membrane protein light-harvesting complex LH2 from photosynthetic bacteria Rhodobacter spheroides 2.4.1 in detergent solution has been determined from synchrotron small-angle X-ray scattering data using direct curve-fitting by the ellipsoid, ab initio shape determination methods of simulated annealing algorithm and multipole expansion, respectively. The results indicate that the LH2 protein in aqueous solution is encapsulated by a monolayered detergent shell. The detergent-stabilized structure has the shape of an oblate plate, with a thickness of 40 A, a long axis of 110 A, and a short axis of 85 A. After correction for the detergent shell, the shape of the LH2 core is also an oblate plate with a height of 40 A, a long axis of 80 A, and a short axis of 55 A. In contrast to the cylindrical crystal structure with a height of 40 A and a diameter of 68 A, the molecular shape of the LH2 complex in detergent solution clearly deviates from the ringlike crystal structure, with an eccentricity found to be 0.59-consistent with the result of single molecular spectroscopy study of the isolated single LH2 molecules.

  9. Determination of the Topological Shape of Integral Membrane Protein Light-Harvesting Complex LH2 from Photosynthetic Bacteria in the Detergent Solution by Small-Angle X-Ray Scattering

    PubMed Central

    Hong, Xinguo; Weng, Yu-Xiang; Li, Ming

    2004-01-01

    The topological shape of the integral membrane protein light-harvesting complex LH2 from photosynthetic bacteria Rhodobacter spheroides 2.4.1 in detergent solution has been determined from synchrotron small-angle X-ray scattering data using direct curve-fitting by the ellipsoid, ab initio shape determination methods of simulated annealing algorithm and multipole expansion, respectively. The results indicate that the LH2 protein in aqueous solution is encapsulated by a monolayered detergent shell. The detergent-stabilized structure has the shape of an oblate plate, with a thickness of 40 Å, a long axis of 110 Å, and a short axis of 85 Å . After correction for the detergent shell, the shape of the LH2 core is also an oblate plate with a height of 40 Å, a long axis of 80 Å, and a short axis of 55 Å. In contrast to the cylindrical crystal structure with a height of 40 Å and a diameter of 68 Å, the molecular shape of the LH2 complex in detergent solution clearly deviates from the ringlike crystal structure, with an eccentricity found to be 0.59—consistent with the result of single molecular spectroscopy study of the isolated single LH2 molecules. PMID:14747343

  10. Local differences in parasitism and competition shape defensive investment in a polymorphic eusocial bee.

    PubMed

    Segers, Francisca H I D; von Zuben, Lucas; Grüter, Christoph

    2016-02-01

    Many colonial animals rely for their defense on a soldier caste. Adaptive colony demography theory predicts that colonies should flexibly adjust the investment in different worker castes depending on the colony needs. For example, colonies should invest more in defensive workers (e.g., soldiers) in dangerous environments. However, evidence for this prediction has been mixed. We combined descriptive and experimental approaches to examine whether defensive investment and worker size are adjusted to local ecology in the only known bee with polymorphic workers, Tetragonisca angustula. Colonies of this species are defended by a morphologically specialized soldier caste. Our study included three populations that differed in the density of food competition and the occurrence of a parasitic robber bee. We found that colonies coexisting with robber bees had on average 43% more soldiers defending the nest entrance, while colonies facing stronger foraging competition had soldiers that were -6-7% smaller. We then experimentally relocated colonies to areas with different levels of competition. When released from intense food competition, body sizes of guards and foragers increased. After introducing chemical robber bee cues at nest entrances, we found both a short-term and a long-term up-regulation of the number of soldiers defending the colony. Active soldier numbers remained high after the experiment for a duration equivalent to 2-3 worker life spans. How information about past parasite threat is stored in the colony is currently unknown. In summary, T. angustula adjusts both the number and the body size of active soldiers to local ecological conditions. Competitor density also affects forager (or minor) size, an important colony trait with potential community ecological consequences. Our study supports adaptive colony demography theory in a eusocial bee and highlights the importance of colony threats and competition as selective forces shaping colony phenotype.

  11. Anisotropy of the Reynolds stress tensor in the wakes of wind turbine arrays in Cartesian arrangements with counter-rotating rotors

    NASA Astrophysics Data System (ADS)

    Hamilton, Nicholas; Cal, Raúl Bayoán

    2015-01-01

    A 4 × 3 wind turbine array in a Cartesian arrangement was constructed in a wind tunnel setting with four configurations based on the rotational sense of the rotor blades. The fourth row of devices is considered to be in the fully developed turbine canopy for a Cartesian arrangement. Measurements of the flow field were made with stereo particle-image velocimetry immediately upstream and downstream of the selected model turbines. Rotational sense of the turbine blades is evident in the mean spanwise velocity W and the Reynolds shear stress - v w ¯ . The flux of kinetic energy is shown to be of greater magnitude following turbines in arrays where direction of rotation of the blades varies. Invariants of the normalized Reynolds stress anisotropy tensor (η and ξ) are plotted in the Lumley triangle and indicate that distinct characters of turbulence exist in regions of the wake following the nacelle and the rotor blade tips. Eigendecomposition of the tensor yields principle components and corresponding coordinate system transformations. Characteristic spheroids representing the balance of components in the normalized anisotropy tensor are composed with the eigenvalues yielding shapes predicted by the Lumley triangle. Rotation of the coordinate system defined by the eigenvectors demonstrates trends in the streamwise coordinate following the rotors, especially trailing the top-tip of the rotor and below the hub. Direction of rotation of rotor blades is shown by the orientation of characteristic spheroids according to principle axes. In the inflows of exit row turbines, the normalized Reynolds stress anisotropy tensor shows cumulative effects of the upstream turbines, tending toward prolate shapes for uniform rotational sense, oblate spheroids for streamwise organization of rotational senses, and a mixture of characteristic shapes when the rotation varies by row. Comparison between the invariants of the Reynolds stress anisotropy tensor and terms from the mean

  12. Superclustering in the explosion scenario. II - Prolate spheroidal shells from superconducting cosmic strings

    NASA Technical Reports Server (NTRS)

    Borden, David; Ostriker, Jeremiah P.; Weinberg, David H.

    1989-01-01

    If galaxies form on shells, then clusters of galaxies should form at the vertices where three shells intersect. Weinberg, Ostriker, and Dekel (WOD, 1989) studied this picture quantitatively and found that an intersecting spherical shell model reproduces many of the properties of the observed distribution of galaxy clusters, but that too much superclustering is produced. In this paper, the WOD analysis is repeated with prolate spheroids that could be created by superconducting cosmic strings. It is found that most of the attractive features of the WOD model are maintained in the more general case and there is slight improvement in some aspects, but that the overall problem of excessive superclustering is not really alleviated.

  13. Dynamical instabilities in axisymmetric stellar systems. I - Oblate E6 models

    NASA Technical Reports Server (NTRS)

    Levison, Harold F.; Duncan, Martin J.; Smith, Bruce F.

    1990-01-01

    The stability of a set of models based on isothermal oblate E6 elliptical galaxies is studied using N-body techniques. The only stable models are those that are near the isotropic model and have nearly equal number of stars in retrograde and prograde orbits. Fast rotators are unstable to modes that appear to be analogous to the classical streaming instability seen in many disk systems. Systems with a large velocity dispersion in the direction of the cylindrical radius are unstable to modes that appear to be similar to the radial orbit instability observed in some spherical systems. However, evidence is presented that these two instabilities may be related, and an instability criterion that applies to both is constructed.

  14. Electrohydrodynamics of drops covered with small particles

    NASA Astrophysics Data System (ADS)

    Ouriemi, Malika; Vlahovska, Petia

    2013-11-01

    A weakly conductive drop immersed in a more conductive liquid first undergoes an oblate deformation, and then experiences a rotation similar to Quincke rotation when submitted to an increasing DC uniform electrical field. We present an experimental study of a drop with an interface partially or completely covered with microscopic particles. Depending on the field intensity, the surface coverage, and the characteristics of the particles, the drop exhibits: (i) prolate deformation, (ii) emergence of pattern of sustained particle motions, or (iii) decrease of the electrical field that induces rotation.

  15. Efficient method for the calculation of mean extinction. II. Analyticity of the complex extinction efficiency of homogeneous spheroids and finite cylinders.

    PubMed

    Xing, Z F; Greenberg, J M

    1994-08-20

    The analyticity of the complex extinction efficiency is examined numerically in the size-parameter domain for homogeneous prolate and oblate spheroids and finite cylinders. The T-matrix code, which is the most efficient program available to date, is employed to calculate the individual particle-extinction efficiencies. Because of its computational limitations in the size-parameter range, a slightly modified Hilbert-transform algorithm is required to establish the analyticity numerically. The findings concerning analyticity that we reported for spheres (Astrophys. J. 399, 164-175, 1992) apply equally to these nonspherical particles.

  16. Dynamics of simultaneously impinging drops on a dry surface: Role of inhomogeneous wettability and impact shape.

    PubMed

    Ashoke Raman, K

    2018-04-15

    The quality of the printed lines in applications such as ink-jet printing and additive manufacturing is affected by the interactions between the impinging drops. Impact shape and the inhomogeneity in surface wettability govern the spreading and recoiling dynamics of the interacting drops. Hence, understanding the role of these factors on the interaction dynamics is essential to optimize these applications. Phase-field based lattice Boltzmann method solver has been employed to investigate the interaction dynamics of two simultaneously impinging drops onto a dry surface. A geometry-based contact angle scheme is used to model the moving contact line. Numerical simulations reveal that the previously identified interaction modes (Raman et al., 2017) are sensitive to the contact angle hysteresis, resulting in different impact outcomes. Two different interaction mechanisms have been discerned when drops impinge on a surface with a wettability gradient. It is shown that the deviation from the spherical geometry of the impact shape leads to different spreading behaviors and droplet morphology around the connecting region. With the increase in the cross-sectional aspect ratio, the interaction dynamics of oblate-oblate combination is similar to its spherical counterpart, albeit at a faster recoiling rate. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Needlelike motion of prolate ellipsoids in the sea of spheres

    NASA Astrophysics Data System (ADS)

    Vasanthi, R.; Ravichandran, S.; Bagchi, Biman

    2001-05-01

    Molecular dynamics simulations of translational motion of isolated prolate ellipsoids in the sea of spheres have been carried out for several different values of the aspect ratio (κ), obtained by changing either the length or the diameter of the ellipsoids, at several different solvent densities. The interaction among the spheres is given by the Lennard-Jones pair potential while that between spheres and ellipsoids is given by a modified Gay-Berne potential. Both the mean-square displacements of the center of mass of the ellipsoids and their orientational time correlation function have been calculated. It is found that at short to intermediate times, the motion of ellipsoids is anisotropic and primarily needlelike—the molecules prefer to move parallel to their long axis. The ratio of these two diffusion constants (D∥ and D⊥) approaches κ, suggesting a decoupling of D∥ from the length of the ellipsoid. The diffusion becomes isotropic in the long time with the total diffusion coefficient given by D∥+2D⊥. The crossover from the anisotropic to the isotropic diffusion is surprisingly sharp and clear in most cases.

  18. Development of Semi-Empirical Damping Equation for Baffled Tank with Oblate Spheroidal Dome

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; West, Jeff; Brodnick, Jacob; Eberhart, Chad

    2016-01-01

    Propellant slosh is a potential source of disturbance that can significantly impact the stability of space vehicles. The slosh dynamics are typically represented by a mechanical model of a spring-mass-damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control analysis. The typical parameters required by the mechanical model include natural frequency of the slosh, slosh mass, slosh mass center location, and the critical damping ratio. A fundamental study has been undertaken at NASA MSFC to understand the fluid damping physics from a ring baffle in the barrel section of a propellant tank. An asymptotic damping equation and CFD blended equation have been derived by NASA MSFC team to complement the popularly used Miles equation at different flow regimes. The new development has found success in providing a nonlinear damping model for the Space Launch System. The purpose of this study is to further extend the semi-empirical damping equations into the oblate spheroidal dome section of the propellant tanks. First, previous experimental data from the spherical baffled tank are collected and analyzed. Several methods of taking the dome curvature effect, including a generalized Miles equation, area projection method, and equalized fill height method, are assessed. CFD simulation is used to shed light on the interaction of vorticity around the baffle with the locally curved wall and liquid-gas interface. The final damping equation will be validated by a recent subscale test with an oblate spheroidal dome conducted at NASA MSFC.

  19. Internalization of Red Blood Cell-Mimicking Hydrogel Capsules with pH-Triggered Shape Responses

    PubMed Central

    2015-01-01

    We report on naturally inspired hydrogel capsules with pH-induced transitions from discoids to oblate ellipsoids and their interactions with cells. We integrate characteristics of erythrocytes such as discoidal shape, hollow structure, and elasticity with reversible pH-responsiveness of poly(methacrylic acid) (PMAA) to design a new type of drug delivery carrier to be potentially triggered by chemical stimuli in the tumor lesion. The capsules are fabricated from cross-linked PMAA multilayers using sacrificial discoid silicon templates. The degree of capsule shape transition is controlled by the pH-tuned volume change, which in turn is regulated by the capsule wall composition. The (PMAA)15 capsules undergo a dramatic 24-fold volume change, while a moderate 2.3-fold volume variation is observed for more rigid PMAA–(poly(N-vinylpyrrolidone) (PMAA–PVPON)5 capsules when solution pH is varied between 7.4 and 4. Despite that both types of capsules exhibit discoid-to-oblate ellipsoid transitions, a 3-fold greater swelling in radial dimensions is found for one-component systems due to a greater degree of the circular face bulging. We also show that (PMAA–PVPON)5 discoidal capsules interact differently with J774A.1 macrophages, HMVEC endothelial cells, and 4T1 breast cancer cells. The discoidal capsules show 60% lower internalization as compared to spherical capsules. Finally, hydrogel capsules demonstrate a 2-fold decrease in size upon internalization. These capsules represent a unique example of elastic hydrogel discoids capable of pH-induced drastic and reversible variations in aspect ratios. Considering the RBC-mimicking shape, their dimensions, and their capability to undergo pH-triggered intracellular responses, the hydrogel capsules demonstrate considerable potential as novel carriers in shape-regulated transport and cellular uptake. PMID:24848786

  20. Roles of Shape and Internal Structure in Rotational Disruption of Asteroids

    NASA Astrophysics Data System (ADS)

    Hirabayashi, Masatoshi; Scheeres, Daniel Jay

    2015-08-01

    An active research area over the last decade has been to explore configuration changes of rubble pile asteroids due to rotationally induced disruption, initially driven by the remarkable fact that there is a spin period threshold of 2 hr for asteroids larger than a few hundred meters in size. Several different disruption modes due to rapid rotation can be identified, as surface shedding, fission and failure of the internal structure. Relevant to these discussions are many observations of asteroid shapes that have revealed a diversity of forms such as oblate spheroids with equatorial ridges, strongly elongated shapes and contact binaries, to say nothing of multi-body systems. With consideration that rotationally induced deformation is one of the primary drivers of asteroid evolution, we have been developing two techniques for investigating the structure of asteroids, while accounting for their internal mechanical properties through plastic theory. The first technique developed is an analytical model based on limit analysis, which provides rigorous bounds on the asteroid mechanical properties for their shapes to remain stable. The second technique applies finite element model analysis that accounts for plastic deformation. Combining these models, we have explored the correlation between unique shape features and failure modes. First, we have been able to show that contact binary asteroids preferentially fail at their narrow necks at a relatively slow spin period, due to stress concentration. Second, applying these techniques to the breakup event of active asteroid P/2013 R3, we have been able to develop explicit constraints on the cohesion within rubble pile asteroids. Third, by probing the effect of inhomogeneous material properties, we have been able to develop conditions for whether an oblate body will fail internally or through surface shedding. These different failure modes can be tested by measuring the density distribution within a rubble pile body through

  1. Documenting the NASA Armstrong Flight Research Center Oblate Earth Simulation Equations of Motion and Integration Algorithm

    NASA Technical Reports Server (NTRS)

    Clarke, R.; Lintereur, L.; Bahm, C.

    2016-01-01

    A desire for more complete documentation of the National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center (AFRC), Edwards, California legacy code used in the core simulation has led to this e ort to fully document the oblate Earth six-degree-of-freedom equations of motion and integration algorithm. The authors of this report have taken much of the earlier work of the simulation engineering group and used it as a jumping-o point for this report. The largest addition this report makes is that each element of the equations of motion is traced back to first principles and at no point is the reader forced to take an equation on faith alone. There are no discoveries of previously unknown principles contained in this report; this report is a collection and presentation of textbook principles. The value of this report is that those textbook principles are herein documented in standard nomenclature that matches the form of the computer code DERIVC. Previous handwritten notes are much of the backbone of this work, however, in almost every area, derivations are explicitly shown to assure the reader that the equations which make up the oblate Earth version of the computer routine, DERIVC, are correct.

  2. True ternary fission, the collinear cluster tripartition (CCT) of {sup 252}Cf

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oertzen, W. von; Pyatkov, Y. V.; Kamanin, D.

    2012-10-20

    In systematic work over the last decade (see Pyatkov et al. [12] and refs therein), the ternary fission decay of heavy nuclei, in {sup 235}U(n,fff) and {sup 252}Cf(sf) has been studied in a collinear geometry. The name used for this process is (CCT), with three fragments of similar size in a collinear decay, it is the true ternary fission. This decay has been observed in spontaneous fission as well as in a neutron induced reaction. The measurements are based on different experimental set-ups, with binary coincidences containing TOF and energy determinations. With two detector telescopes placed at 180 Degree-Sign ,more » the measurements of masses and energies of each of the registered two fragments, give complete kinematic solutions. Thus the missing mass events in binary coincidences can be determined, these events are obtained by blocking one of the lighter fragments on a structure in front of the detectors. The relatively high yield of CCT (more than 10{sup -3} per binary fission) is explained. It is due to the favourable Q-values (more positive than for binary) and the large phase space of the ternary CCT-decay, dominated by three (magic) clusters: e.g. isotopes of Sn, Ca and Ni, {sup 132}Sn+{sup 50}Ca+{sup 70}Ni. It is shown that the collinear (prolate) geometry has the favoured potential energy relative to the oblate shapes. The ternary fission is considered to be a sequential process. With this assumption the kinetic energies of the fragments have been calculated by Vijay et al.. The third fragments have very low kinetic energies (below 20 MeV) and have thus escaped their detection in previous work on 'ternary fission', where in addition an oblate shape and a triangle for the momentum vectors have been assumed.« less

  3. Comparing the basins of attraction for several methods in the circular Sitnikov problem with spheroid primaries

    NASA Astrophysics Data System (ADS)

    Zotos, Euaggelos E.

    2018-06-01

    The circular Sitnikov problem, where the two primary bodies are prolate or oblate spheroids, is numerically investigated. In particular, the basins of convergence on the complex plane are revealed by using a large collection of numerical methods of several order. We consider four cases, regarding the value of the oblateness coefficient which determines the nature of the roots (attractors) of the system. For all cases we use the iterative schemes for performing a thorough and systematic classification of the nodes on the complex plane. The distribution of the iterations as well as the probability and their correlations with the corresponding basins of convergence are also discussed. Our numerical computations indicate that most of the iterative schemes provide relatively similar convergence structures on the complex plane. However, there are some numerical methods for which the corresponding basins of attraction are extremely complicated with highly fractal basin boundaries. Moreover, it is proved that the efficiency strongly varies between the numerical methods.

  4. Echinocyte shapes: bending, stretching, and shear determine spicule shape and spacing.

    PubMed Central

    Mukhopadhyay, Ranjan; Lim H W, Gerald; Wortis, Michael

    2002-01-01

    We study the shapes of human red blood cells using continuum mechanics. In particular, we model the crenated, echinocytic shapes and show how they may arise from a competition between the bending energy of the plasma membrane and the stretching/shear elastic energies of the membrane skeleton. In contrast to earlier work, we calculate spicule shapes exactly by solving the equations of continuum mechanics subject to appropriate boundary conditions. A simple scaling analysis of this competition reveals an elastic length Lambda(el), which sets the length scale for the spicules and is, thus, related to the number of spicules experimentally observed on the fully developed echinocyte. PMID:11916836

  5. Investigating the anisotropy of magnetic susceptibility and other rock magnetic properties of the Beaver River Diabase in northeastern Minnesota

    NASA Astrophysics Data System (ADS)

    Hariri, Samer H.

    The Beaver River Diabase (BRD) is a series of mafic dikes and sills within the Beaver Bay Complex (BBC) of northern Minnesota, which formed during the development of the ~1.1 Ga Midcontinent Rift (MCR). The BRD is one of the youngest and most extensive intrusive phases of the BBC. The BRD dikes and sills were emplaced into the medial levels of the 6-10 kilometer-thick North Shore Volcanic Group and occur over an arcuate area extending 120 by 20 kilometers. The BRD is composed of fine- to medium-grained ophitic olivine gabbro and does not display obvious foliation or lineation features and rarely displays modal layering. Without obvious magmatic internal structures, it is difficult to determine emplacement properties such as flow direction using standard geologic mapping or petrographic techniques. For this reason, we measured the anisotropy of magnetic susceptibility (AMS), in conjunction with other rock magnetic properties, to better understand the BRD's emplacement and deformation history in the context of the MCR. AMS measures the directional dependence of low-field magnetic susceptibility, and is used to infer a shape-preferred orientation of magnetic minerals within a rock, which can be related to specific emplacement mechanisms (e.g. directional flow or settling). Preliminary analysis of AMS at 20 sites within the southern half of the BRD (with 4-7 samples per site) shows maximum susceptibility values between 4.48 x 10-6 and 2.22 x 10-4 m 3/kg (1165 and 65400 μSI). Most specimens display nearly isotropic AMS ellipsoids (Pj < 1.15) with minor degrees of prolateness and oblateness. However, about 20% of specimens have higher anisotropies (Pj between 1.15 and 1.67) and higher degrees of oblateness and prolateness. Variations in AMS properties may reflect differences in concentration and composition of magnetic minerals, as well as emplacement mechanisms. Measurements of susceptibility as a function of temperature yield Curie points between 470 and 570

  6. The SAMI Galaxy Survey: the intrinsic shape of kinematically selected galaxies

    NASA Astrophysics Data System (ADS)

    Foster, C.; van de Sande, J.; D'Eugenio, F.; Cortese, L.; McDermid, R. M.; Bland-Hawthorn, J.; Brough, S.; Bryant, J.; Croom, S. M.; Goodwin, M.; Konstantopoulos, I. S.; Lawrence, J.; López-Sánchez, Á. R.; Medling, A. M.; Owers, M. S.; Richards, S. N.; Scott, N.; Taranu, D. S.; Tonini, C.; Zafar, T.

    2017-11-01

    Using the stellar kinematic maps and ancillary imaging data from the Sydney AAO Multi Integral field (SAMI) Galaxy Survey, the intrinsic shape of kinematically selected samples of galaxies is inferred. We implement an efficient and optimized algorithm to fit the intrinsic shape of galaxies using an established method to simultaneously invert the distributions of apparent ellipticities and kinematic misalignments. The algorithm output compares favourably with previous studies of the intrinsic shape of galaxies based on imaging alone and our re-analysis of the ATLAS3D data. Our results indicate that most galaxies are oblate axisymmetric. We show empirically that the intrinsic shape of galaxies varies as a function of their rotational support as measured by the 'spin' parameter proxy λ _{R_e}. In particular, low-spin systems have a higher occurrence of triaxiality, while high-spin systems are more intrinsically flattened and axisymmetric. The intrinsic shape of galaxies is linked to their formation and merger histories. Galaxies with high-spin values have intrinsic shapes consistent with dissipational minor mergers, while the intrinsic shape of low-spin systems is consistent with dissipationless multimerger assembly histories. This range in assembly histories inferred from intrinsic shapes is broadly consistent with expectations from cosmological simulations.

  7. New and improved CH implosions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hinkel, D. E.; Doeppner, T.; Kritcher, A. L.; Ralph, J. E.; Jarrott, L. C.; Albert, F.; Benedetti, L. R.; Field, J. E.; Goyon, C. S.; Hohenberger, M.; Izumi, N.; Milovich, J. L.; Bachmann, B.; Casey, D. T.; Yeamans, C. B.; Callahan, D. A.; Hurricane, O. A.

    2017-10-01

    Improvements to the hohlraum for CH implosions have resulted in near-record hot spot pressures, 225 Gbar. Implosion symmetry and laser energy coupling are improved by using a hohlraum that, compared to the previous high gas-fill hohlraum, is longer, larger, at lower gas fill density, and is fielded at zero wavelength separation to minimize cross-beam energy transfer. With a capsule at 90% of its original size in this hohlraum, implosion symmetry changes from oblate to prolate, at 33% cone fraction. Simulations highlight improved inner beam propagation as the cause of this symmetry change. These implosions have produced the highest yield for CH ablators at modest power and energy, i.e., 360 TW and 1.4 MJ. Upcoming experiments focus on continued improvement in shape as well as an increase in implosion velocity. Further, results and future plans on an increase in capsule size to improve margin will also be presented. Work performed under the auspices of the U.S. D.O.E. by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  8. Rings of non-spherical, axisymmetric bodies

    NASA Astrophysics Data System (ADS)

    Gupta, Akash; Nadkarni-Ghosh, Sharvari; Sharma, Ishan

    2018-01-01

    We investigate the dynamical behavior of rings around bodies whose shapes depart considerably from that of a sphere. To this end, we have developed a new self-gravitating discrete element N-body code, and employed a local simulation method to simulate a patch of the ring. The central body is modeled as a symmetric (oblate or prolate) ellipsoid, or defined through the characteristic frequencies (circular, vertical, epicyclic) that represent its gravitational field. Through our simulations we explore how a ring's behavior - characterized by dynamical properties like impact frequency, granular temperature, number density, vertical thickness and radial width - varies with the changing gravitational potential of the central body. We also contrast properties of rings about large central bodies (e.g. Saturn) with those of smaller ones (e.g. Chariklo). Finally, we investigate how the characteristic frequencies of a central body, restricted to being a solid of revolution with an equatorial plane of symmetry, affect the ring dynamics. The latter process may be employed to qualitatively understand the dynamics of rings about any symmetric solid of revolution.

  9. Effect of a strong-current ion ring on spheromak stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litwin, C.; Sudan, R.N.

    The stability of a spheromak with an energetic ion ring, carrying a current comparable to the plasma current, to the tilt mode is considered. For small departures from sphericity a perturbative approach is applied to an appropriate energy principle in order to calculate the lowest nontrivial kinetic contribution of the ion ring. An analytic stability criterion is obtained. It is seen that the prolate configuration becomes more stable while the oblate one is less stable than in the absence of the ring. The prolomak becomes stable when the ring kinetic energy exceeds the magnetic energy within the separatrix.

  10. 3D Simulations of Void collapse in Energetic Materials

    NASA Astrophysics Data System (ADS)

    Rai, Nirmal Kumar; Udaykumar, H. S.

    2017-06-01

    Voids present in the microstructure of heterogeneous energetic materials effect the sensitivity towards ignition. It is established that the morphology of voids can play a significant role in sensitivity enhancement of energetic materials. Depending on the void shape, sensitivity can be either increased or decreased under given loading conditions. In the past, effects of different void shapes i.e. triangular, ellipse, cylindrical etc. on the sensitivity of energetic materials have been analyzed. However, most of these studies are performed in 2D and are limited under the plain strain assumption. Axisymmetric studies have also been performed in the past to incorporate the 3D effects, however axisymmetric modeling is limited to only certain geometries i.e. sphere. This work analyzes the effects of various void shapes in three dimensions on the ignition behavior of HMX. Various void shapes are analyzed including spherical, prolate and oblate speheroid oriented at different orientations, etc. Three dimensional void collapse simulations are performed on a single void to quantify the effects void morphology on initiation. A Cartesian grid based Eulerian solver SCIMITAR3D is used to perform the void collapse simulations. Various aspects of void morphology i.e. size, thickness of voids, elongation, orientation etc. are considered to obtain a comprehensive analysis. Also, 2D plane strain calculations are compared with the three dimensional analysis to evaluate the salient differences between 2D and 3D modeling.

  11. Size and shape of Saturn's moon Titan.

    PubMed

    Zebker, Howard A; Stiles, Bryan; Hensley, Scott; Lorenz, Ralph; Kirk, Randolph L; Lunine, Jonathan

    2009-05-15

    Cassini observations show that Saturn's moon Titan is slightly oblate. A fourth-order spherical harmonic expansion yields north polar, south polar, and mean equatorial radii of 2574.32 +/- 0.05 kilometers (km), 2574.36 +/- 0.03 km, and 2574.91 +/- 0.11 km, respectively; its mean radius is 2574.73 +/- 0.09 km. Titan's shape approximates a hydrostatic, synchronously rotating triaxial ellipsoid but is best fit by such a body orbiting closer to Saturn than Titan presently does. Titan's lack of high relief implies that most--but not all--of the surface features observed with the Cassini imaging subsystem and synthetic aperture radar are uncorrelated with topography and elevation. Titan's depressed polar radii suggest that a constant geopotential hydrocarbon table could explain the confinement of the hydrocarbon lakes to high latitudes.

  12. Size and shape of Saturn's moon Titan

    USGS Publications Warehouse

    Zebker, Howard A.; Stiles, Bryan; Hensley, Scott; Lorenz, Ralph; Kirk, Randolph L.; Lunine, Jonathan

    2009-01-01

    Cassini observations show that Saturn's moon Titan is slightly oblate. A fourth-order spherical harmonic expansion yields north polar, south polar, and mean equatorial radii of 2574.32 ± 0.05 kilometers (km), 2574.36 ± 0.03 km, and 2574.91 ± 0.11 km, respectively; its mean radius is 2574.73 ± 0.09 km. Titan's shape approximates a hydrostatic, synchronously rotating triaxial ellipsoid but is best fit by such a body orbiting closer to Saturn than Titan presently does. Titan's lack of high relief implies that most—but not all—of the surface features observed with the Cassini imaging subsystem and synthetic aperture radar are uncorrelated with topography and elevation. Titan's depressed polar radii suggest that a constant geopotential hydrocarbon table could explain the confinement of the hydrocarbon lakes to high latitudes.

  13. An investigation on the motion and deformation of viscoelastic drops descending in another viscoelastic media

    NASA Astrophysics Data System (ADS)

    Davoodi, M.; Norouzi, M.

    2016-10-01

    In the present study, an investigation of the motion and shape deformation of drops is carried out in creeping flow to highlight the effect of viscoelastic properties on the problem. A perturbation method is employed to derive an analytical solution for the general case that both interior and exterior fluids are viscoelastic, both fluids obeying the Giesekus model. An experiment is also performed for the limiting case of an immiscible drop of a 0.03% (w/w) polyacrylamide in an 80:20 glycerol/water solution falling through a viscous Newtonian silicon oil (410 cP polydimethylsiloxane oil) in order to check the accuracy of the analytical solution. It is shown that the addition of elastic properties to the interior fluid may cause a decrease in the terminal velocity of the droplet while an increase in the elastic properties of the exterior fluid results in the opposite behavior and increases the terminal velocity. The well-known spherical shape of creeping drops for Newtonian fluids is modified by elasticity into either prolate or oblate shapes. Using the analytical solution, it is shown that normal stresses play a key role on the final steady-state shape of the drops. To keep the drops spherical in viscoelastic phases, it is shown that the effect of normal stresses on the interior and exterior media can cancel out under certain conditions. The results presented here may be of interest to industries dealing with petroleum and medicine processing, paint and power-plant related fields where knowledge of the shape and terminal velocity of descending droplets is of great importance.

  14. Current from a nano-gap hyperbolic diode using shape-factors: Theory

    NASA Astrophysics Data System (ADS)

    Jensen, Kevin L.; Shiffler, Donald A.; Peckerar, Martin; Harris, John R.; Petillo, John J.

    2017-08-01

    Quantum tunneling by field emission from nanoscale features or sharp field emission structures for which the anode-cathode gap is nanometers in scale ("nano diodes") experience strong deviations from the planar image charge lowered tunneling barrier used in the Murphy and Good formulation of the Fowler-Nordheim equation. These deviations alter the prediction of total current from a curved surface. Modifications to the emission barrier are modeled using a hyperbolic (prolate spheroidal) geometry to determine the trajectories along which the Gamow factor in a WKB-like treatment is undertaken; a quadratic equivalent potential is determined, and a method of shape factors is used to evaluate the corrected total current from a protrusion or wedge geometry.

  15. Comment on "Out-of-plane equilibrium points in the restricted three-body problem with oblateness (Research Note)"

    NASA Astrophysics Data System (ADS)

    Wu, Nan; Wang, Xuefeng; Zhou, Li-Yong

    2018-06-01

    Douskos & Markellos (2006, A&A, 446, 357) first reported the existence of the out-of-plane equilibrium points in restricted three-body problem with oblateness. This result deviates significantly from the intuitive physical point of view that there is no other force that can balance the combined gravitation in Z direction. In fact, the out-of-plane equilibrium in that model is illusory and we prove here that such equilibrium points arise from the improper application of the potential function.

  16. Acoustic scattering on spheroidal shapes near boundaries

    NASA Astrophysics Data System (ADS)

    Miloh, Touvia

    2016-11-01

    A new expression for the Lamé product of prolate spheroidal wave functions is presented in terms of a distribution of multipoles along the axis of the spheroid between its foci (generalizing a corresponding theorem for spheroidal harmonics). Such an "ultimate" singularity system can be effectively used for solving various linear boundary-value problems governed by the Helmholtz equation involving prolate spheroidal bodies near planar or other boundaries. The general methodology is formally demonstrated for the axisymmetric acoustic scattering problem of a rigid (hard) spheroid placed near a hard/soft wall or inside a cylindrical duct under an axial incidence of a plane acoustic wave.

  17. Estimation of chirp rates of music-adapted prolate spheroidal atoms using reassignment

    NASA Astrophysics Data System (ADS)

    Mesz, Bruno; Serrano, Eduardo

    2007-09-01

    We introduce a modified Matching Pursuit algorithm for estimating frequency and frequency slope of FM-modulated music signals. The use of Matching Pursuit with constant frequency atoms provides coarse estimates which could be improved with chirped atoms, more suited in principle to this kind of signals. Application of the reassignment method is suggested by its good localization properties for chirps. We start considering a family of atoms generated by modulation and scaling of a prolate spheroidal wave function. These functions are concentrated in frequency on intervals of a semitone centered at the frequencies of the well-tempered scale. At each stage of the pursuit, we search the atom most correlated with the signal. We then consider the spectral peaks at each frame of the spectrogram and calculate a modified frequency and frequency slope using the derivatives of the reassignment operators; this is then used to estimate the parameters of a cubic interpolation polynomial that models local pitch fluctuations. We apply the method both to synthetic and music signals.

  18. Robust signal recovery using the prolate spherical wave functions and maximum correntropy criterion

    NASA Astrophysics Data System (ADS)

    Zou, Cuiming; Kou, Kit Ian

    2018-05-01

    Signal recovery is one of the most important problem in signal processing. This paper proposes a novel signal recovery method based on prolate spherical wave functions (PSWFs). PSWFs are a kind of special functions, which have been proved having good performance in signal recovery. However, the existing PSWFs based recovery methods used the mean square error (MSE) criterion, which depends on the Gaussianity assumption of the noise distributions. For the non-Gaussian noises, such as impulsive noise or outliers, the MSE criterion is sensitive, which may lead to large reconstruction error. Unlike the existing PSWFs based recovery methods, our proposed PSWFs based recovery method employs the maximum correntropy criterion (MCC), which is independent of the noise distribution. The proposed method can reduce the impact of the large and non-Gaussian noises. The experimental results on synthetic signals with various types of noises show that the proposed MCC based signal recovery method has better robust property against various noises compared to other existing methods.

  19. Integrating Competition for Food, Hosts, or Mates via Experimental Evolution.

    PubMed

    Rodrigues, Leonor R; Duncan, Alison B; Clemente, Salomé H; Moya-Laraño, Jordi; Magalhães, Sara

    2016-02-01

    Competitive interactions shape the evolution of organisms. However, often it is not clear whether competition is the driving force behind the patterns observed. The recent use of experimental evolution in competitive environments can help establish such causality. Unfortunately, this literature is scattered, as competition for food, mates, and hosts are subject areas that belong to different research fields. Here, we group these bodies of literature, extract common processes and patterns concerning the role of competition in shaping evolutionary trajectories, and suggest perspectives stemming from an integrative view of competition across these research fields. This review reinstates the power of experimental evolution in addressing the evolutionary consequences of competition, but highlights potential pitfalls in the design of such experiments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. An Economical Semi-Analytical Orbit Theory for Retarded Satellite Motion About an Oblate Planet

    NASA Technical Reports Server (NTRS)

    Gordon, R. A.

    1980-01-01

    Brouwer and Brouwer-Lyddanes' use of the Von Zeipel-Delaunay method is employed to develop an efficient analytical orbit theory suitable for microcomputers. A succinctly simple pseudo-phenomenologically conceptualized algorithm is introduced which accurately and economically synthesizes modeling of drag effects. The method epitomizes and manifests effortless efficient computer mechanization. Simulated trajectory data is employed to illustrate the theory's ability to accurately accommodate oblateness and drag effects for microcomputer ground based or onboard predicted orbital representation. Real tracking data is used to demonstrate that the theory's orbit determination and orbit prediction capabilities are favorably adaptable to and are comparable with results obtained utilizing complex definitive Cowell method solutions on satellites experiencing significant drag effects.

  1. Immersion transmission ellipsometry (ITE): a new method for the precise determination of the 3D indicatrix of thin films

    NASA Astrophysics Data System (ADS)

    Jung, C. C.; Stumpe, J.

    2005-02-01

    The new method of immersion transmission ellipsometry (ITE) [1] has been developed. It allows the highly accurate determination of the absolute three-dimensional (3D) refractive indices of anisotropic thin films. The method is combined with conventional ellipsometry in transmission and reflection, and the thickness determination of anisotropic films solely by optical methods also becomes more accurate. The method is applied to the determination of the 3D refractive indices of thin spin-coated films of an azobenzene-containing liquid-crystalline copolymer. The development of the anisotropy in these films by photo-orientation and subsequent annealing is demonstrated. Depending on the annealing temperature, oblate or prolate orders are generated.

  2. Fully vectorial accelerating diffraction-free Helmholtz beams.

    PubMed

    Aleahmad, Parinaz; Miri, Mohammad-Ali; Mills, Matthew S; Kaminer, Ido; Segev, Mordechai; Christodoulides, Demetrios N

    2012-11-16

    We show that new families of diffraction-free nonparaxial accelerating optical beams can be generated by considering the symmetries of the underlying vectorial Helmholtz equation. Both two-dimensional transverse electric and magnetic accelerating wave fronts are possible, capable of moving along elliptic trajectories. Experimental results corroborate these predictions when these waves are launched from either the major or minor axis of the ellipse. In addition, three-dimensional spherical nondiffracting field configurations are presented along with their evolution dynamics. Finally, fully vectorial self-similar accelerating optical wave solutions are obtained via oblate-prolate spheroidal wave functions. In all occasions, these effects are illustrated via pertinent examples.

  3. The magnification of structural anomalies with Grodzins systematic in the framework of Asymmetric Rotor Model

    NASA Astrophysics Data System (ADS)

    Bindra, Amit; Mittal, H. M.

    2018-07-01

    The dependence of Grodzins systematic as shape fluctuation energy product ESF * B (E 2) ↑ and rotational energy product EROT * B (E 2) ↑ on the Asymmetry parameter γ0 is carried out in the Z = 50-82, N = 82-126 major shell space. The Asymmetry parameter γ0, varying from 0° to 60°, reflects the change in nuclear structure from prolate to oblate. Strong anomalies are highlighted in the shape transitional isotopes. The product ESF * B (E 2) ↑ evolves from low negative values for vibrator nuclei, passing close to zero and then substantially increasing towards triaxial rotor limit with γ0 ∼ 30 °. However, the product EROT * B (E 2) ↑ decreases as a function of γ0 for all the nuclei approaching towards triaxiality from Z = 50-82, N = 82-126. Anomalies are also noticed for the N > 104 region where the product EROT * B (E 2) ↑ decreases in zigzag phase for 188-196Pt isotopes corresponding to γ0 ∼ 25- 30 ° and this reflects the breakdown of coherence between rotational energy EROT and excitation strength B (E 2) ↑. The product EROT * B (E 2) ↑ indicates the shape phase transition for Pt isotopic chain from spherical to γ - soft to slightly triaxial. We have studied for the first time the role of Grodzins systematic ESF and EROT in the framework of Asymmetric Rotor Model.

  4. Shape of a slowly rotating star measured by asteroseismology

    PubMed Central

    Gizon, Laurent; Sekii, Takashi; Takata, Masao; Kurtz, Donald W.; Shibahashi, Hiromoto; Bazot, Michael; Benomar, Othman; Birch, Aaron C.; Sreenivasan, Katepalli R.

    2016-01-01

    Stars are not perfectly spherically symmetric. They are deformed by rotation and magnetic fields. Until now, the study of stellar shapes has only been possible with optical interferometry for a few of the fastest-rotating nearby stars. We report an asteroseismic measurement, with much better precision than interferometry, of the asphericity of an A-type star with a rotation period of 100 days. Using the fact that different modes of oscillation probe different stellar latitudes, we infer a tiny but significant flattening of the star’s shape of ΔR/R = (1.8 ± 0.6) × 10−6. For a stellar radius R that is 2.24 times the solar radius, the difference in radius between the equator and the poles is ΔR = 3 ± 1 km. Because the observed ΔR/R is only one-third of the expected rotational oblateness, we conjecture the presence of a weak magnetic field on a star that does not have an extended convective envelope. This calls to question the origin of the magnetic field. PMID:28138541

  5. Symmetry control using beam phasing in ~0.2 NIF scale high temperature Hohlraum experiment on OMEGA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delamater, Norman D; Wilson, Goug C; Kyrala, George A

    2009-01-01

    Results are shown from recent experiments at the Omega laser facility, using 40 Omega beams driving the hohlraum with 3 cones from each side and up to 19.5 kJ of laser energy. Beam phasing is achieved by decreasing the energy separately in each of the three cones, by 3 kJ, for a total drive energy of 16.5kJ. This results in a more asymmetric drive, which will vary the shape of the imploded symmetry capsule core from round to oblate or prolate in a systematic and controlled manner. These results would be the first demonstration of beam phasing for implosions inmore » such 'high temperature' (275 eV) hohlraums at Omega. Dante measurements confirmed the predicted peak drive temperatures of 275 eV. Implosion core time dependent x-ray images were obtained from framing camera data which show the expected change in symmetry due to beam phasing and which also agree well with post processed hydro code calculations. Time resolved hard x-ray data has been obtained and it was found that the hard x-rays are correlated mainly with the low angle 21{sup o} degree cone.« less

  6. Entropy production of a Brownian ellipsoid in the overdamped limit.

    PubMed

    Marino, Raffaele; Eichhorn, Ralf; Aurell, Erik

    2016-01-01

    We analyze the translational and rotational motion of an ellipsoidal Brownian particle from the viewpoint of stochastic thermodynamics. The particle's Brownian motion is driven by external forces and torques and takes place in an heterogeneous thermal environment where friction coefficients and (local) temperature depend on space and time. Our analysis of the particle's stochastic thermodynamics is based on the entropy production associated with single particle trajectories. It is motivated by the recent discovery that the overdamped limit of vanishing inertia effects (as compared to viscous fricion) produces a so-called "anomalous" contribution to the entropy production, which has no counterpart in the overdamped approximation, when inertia effects are simply discarded. Here we show that rotational Brownian motion in the overdamped limit generates an additional contribution to the "anomalous" entropy. We calculate its specific form by performing a systematic singular perturbation analysis for the generating function of the entropy production. As a side result, we also obtain the (well-known) equations of motion in the overdamped limit. We furthermore investigate the effects of particle shape and give explicit expressions of the "anomalous entropy" for prolate and oblate spheroids and for near-spherical Brownian particles.

  7. Cryogenic THD and DT layer implosions with high density carbon ablators in near-vacuum hohlraums

    DOE PAGES

    Meezan, N. B.; Berzak Hopkins, L. F.; Le Pape, S.; ...

    2015-06-02

    High Density Carbon (HDC or diamond) is a promising ablator material for use in near-vacuum hohlraums, as its high density allows for ignition designs with laser pulse durations of <10 ns. A series of Inertial Confinement Fusion (ICF) experiments in 2013 on the National Ignition Facility [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] culminated in a DT layered implosion driven by a 6.8 ns, 2-shock laser pulse. This paper describes these experiments and comparisons with ICF design code simulations. Backlit radiography of a THD layered capsule demonstrated an ablator implosion velocity of 385 km/s with a slightlymore » oblate hot spot shape. Other diagnostics suggested an asymmetric compressed fuel layer. A streak camera-based hot spot self-emission diagnostic (SPIDER) showed a double-peaked history of the capsule self-emission. Simulations suggest that this is a signature of low quality hot spot formation. Changes to the laser pulse and pointing for a subsequent DT implosion resulted in a higher temperature, prolate hot spot and a thermonuclear yield of 1.8 x 10¹⁵ neutrons, 40% of the 1D simulated yield.« less

  8. Characteristics of terrestrial basaltic rock populations: Implications for Mars lander and rover science and safety

    NASA Astrophysics Data System (ADS)

    Craddock, Robert A.; Golombek, Matthew P.

    2016-08-01

    We analyzed the morphometry of basaltic rock populations that have been emplaced or affected by a variety of geologic processes, including explosive volcanic eruptions (as a proxy for impact cratering), catastrophic flooding, frost shattering, salt weathering, alluvial deposition, and chemical weathering. Morphometric indices for these rock populations were compared to an unmodified population of rocks that had broken off a solidified lava flow to understand how different geologic processes change rock shape. We found that a majority of rocks have an sphericity described as either a disc or sphere in the Zingg classification system and posit that this is a function of cooling fractures in the basalt (Zingg [1935] Schweiz. Miner. Petrogr. Mitt., 15, 39-140). Angularity (roundness) is the most diagnostic morphometric index, but the Corey Shape Factor (CSF), Oblate-Prolate Index (OPI) and deviation from compactness (D) also sometimes distinguished weathering processes. Comparison of our results to prior analyses of rock populations found at the Mars Pathfinder, Spirit, and Curiosity landing sites support previous conclusions. The observation that the size-frequency distribution of terrestrial rock populations follow exponential functions similar to lander and orbital measurements of rocks on Mars, which is expected from fracture and fragmentation theory, indicates that these distributions are being dominantly controlled by the initial fracture and fragmentation of the basalt.

  9. Shape-Based Virtual Screening with Volumetric Aligned Molecular Shapes

    PubMed Central

    Koes, David Ryan; Camacho, Carlos J.

    2014-01-01

    Shape-based virtual screening is an established and effective method for identifying small molecules that are similar in shape and function to a reference ligand. We describe a new method of shape-based virtual screening, volumetric aligned molecular shapes (VAMS). VAMS uses efficient data structures to encode and search molecular shapes. We demonstrate that VAMS is an effective method for shape-based virtual screening and that it can be successfully used as a pre-filter to accelerate more computationally demanding search algorithms. Unique to VAMS is a novel minimum/maximum shape constraint query for precisely specifying the desired molecular shape. Shape constraint searches in VAMS are particularly efficient and millions of shapes can be searched in a fraction of a second. We compare the performance of VAMS with two other shape-based virtual screening algorithms a benchmark of 102 protein targets consisting of more than 32 million molecular shapes and find that VAMS provides a competitive trade-off between run-time performance and virtual screening performance. PMID:25049193

  10. Investigating the anisotropy of magnetic susceptibility and other rock magnetic properties of the Beaver River Diabase in northeastern Minnesota

    NASA Astrophysics Data System (ADS)

    Hariri, S. H.; Brownlee, S. J.; Feinberg, J. M.; Jackson, M. J.; Miller, J. D.

    2013-12-01

    The Beaver River Diabase (BRD) is a series of mafic dikes and sills within the Beaver Bay Complex (BBC) of northern Minnesota, which formed during the development of the ~1.1 Ga Midcontinent Rift (MCR). The BRD is one of the youngest and most extensive intrusive phases of the BBC. The BRD dikes and sills were emplaced into the medial levels of the 6-10 kilometer-thick North Shore Volcanic Group and occur over an arcuate area extending 120 by 20 kilometers. The BRD is composed of fine- to medium-grained ophitic olivine gabbro and does not display obvious foliation or lineation features and rarely displays modal layering. Without obvious magmatic internal structures, it is difficult to determine emplacement properties such as flow direction using standard geologic mapping or petrographic techniques. For this reason, we measured the anisotropy of magnetic susceptibility (AMS), in conjunction with other rock magnetic properties, to better understand the BRD's emplacement and deformation history in the context of the MCR. AMS measures the directional dependence of low-field magnetic susceptibility, and is used to infer a shape-preferred orientation of magnetic minerals within a rock, which can be related to specific emplacement mechanisms (e.g. directional flow or settling). Preliminary analysis of AMS at 20 sites within the southern half of the BRD (with 4-7 samples per site) shows maximum susceptibility values between 4.48 x 10-6 and 2.22 x 10-4 m3/kg (1165 and 65400 μSI). Most specimens display nearly isotropic AMS ellipsoids (Pj < 1.15) with minor degrees of prolateness and oblateness. However, about 20% of specimens have higher anisotropies (Pj between 1.15 and 1.67) and higher degrees of oblateness and prolateness. Variations in AMS properties may reflect differences in concentration and composition, as well as emplacement mechanisms. Measurements of susceptibility as a function of temperature yield Curie points between 470 and 570 °C, indicating a presence of

  11. Light refocusing with up-scalable resonant waveguide gratings in confocal prolate spheroid arrangements

    NASA Astrophysics Data System (ADS)

    Quaranta, Giorgio; Basset, Guillaume; Benes, Zdenek; Martin, Olivier J. F.; Gallinet, Benjamin

    2018-01-01

    Resonant waveguide gratings (RWGs) are thin-film structures, where coupled modes interfere with the diffracted incoming wave and produce strong angular and spectral filtering. The combination of two finite-length and impedance matched RWGs allows the creation of a passive beam steering element, which is compatible with up-scalable fabrication processes. Here, we propose a design method to create large patterns of such elements able to filter, steer, and focus the light from one point source to another. The method is based on ellipsoidal mirrors to choose a system of confocal prolate spheroids where the two focal points are the source point and observation point, respectively. It allows finding the proper orientation and position of each RWG element of the pattern, such that the phase is constructively preserved at the observation point. The design techniques presented here could be implemented in a variety of systems, where large-scale patterns are needed, such as optical security, multifocal or monochromatic lenses, biosensors, and see-through optical combiners for near-eye displays.

  12. Oblate Field-Reversed Configuration Experiments with Neutral Beam Injection

    NASA Astrophysics Data System (ADS)

    T., II; Gi, K.; Umezawa, T.; Inomoto, M.; Ono, Y.

    2011-11-01

    The effect of energetic beam ions on oblate Field-Reversed Configurations (FRCs) has been studied experimentally in the TS-4 plasma merging device. In order to examine its kinetic effects, we developed an economical pulsed Neutral Beam Injection (NBI) system by using a washer gun plasma source and finally attained the beam power of 0.6 MW (15 kV, 40 A) for its pulse length of 0.5 ms, longer than the FRC lifetime in TS-4. The Monte Carlo simulation indicates that the tangential NB ions of 15 keV are trapped between the magnetic axis and the separatrix. We found that two merging high-s (s is plasma size normalized by ion gyroradius) hydrogen spheromaks with opposite helicities relaxed into the large scale FRC with poloidal flux as high as 15 mWb under the assistance of the NBI. Without the assistance of NBI, however, they did not relax to an FRC but to another spheromak. These facts suggest some ion kinetic effects such as toroidal ion flow are essential to FRC stability. Recently, two new NB sources with acceleration voltage and current of 15 kV and 20 A were installed on the TS-4 device on the midplane for tangential injection, increasing the beam power over 1 MW. We will start the upgraded FRC experiments using the 1 MW NBI for ion flow control.

  13. Competition for hummingbird pollination shapes flower color variation in Andean solanaceae.

    PubMed

    Muchhala, Nathan; Johnsen, Sönke; Smith, Stacey Dewitt

    2014-08-01

    One classic explanation for the remarkable diversity of flower colors across angiosperms involves evolutionary shifts among different types of pollinators with different color preferences. However, the pollinator shift model fails to account for the many examples of color variation within clades that share the same pollination system. An alternate explanation is the competition model, which suggests that color divergence evolves in response to interspecific competition for pollinators, as a means to decrease interspecific pollinator movements. This model predicts color overdispersion within communities relative to null assemblages. Here, we combine morphometric analyses, field surveys, and models of pollinator vision with a species-level phylogeny to test the competition model in the primarily hummingbird-pollinated clade Iochrominae (Solanaceae). Results show that flower color as perceived by pollinators is significantly overdispersed within sites. This pattern is not simply due to phylogenetic history: phylogenetic community structure does not deviate from random expectations, and flower color lacks phylogenetic signal. Moreover, taxa that occur in sympatry occupy a significantly larger volume of color space than those in allopatry, supporting the hypothesis that competition in sympatry drove the evolution of novel colors. We suggest that competition among close relatives may commonly underlie floral divergence, especially in species-rich habitats where congeners frequently co-occur. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  14. The power of competition: Effects of social motivation on attention, sustained physical effort, and learning.

    PubMed

    DiMenichi, Brynne C; Tricomi, Elizabeth

    2015-01-01

    Competition has often been implicated as a means to improve effort-based learning and attention. Two experiments examined the effects of competition on effort and memory. In Experiment 1, participants completed a physical effort task in which they were rewarded for winning an overall percentage, or for winning a competition they believed was against another player. In Experiment 2, participants completed a memory task in which they were rewarded for remembering an overall percentage of shapes, or more shapes than a "competitor." We found that, in the physical effort task, participants demonstrated faster reaction times (RTs)-a previous indicator of increased attention-in the competitive environment. Moreover, individual differences predicted the salience of competition's effect. Furthermore, male participants showed faster RTs and greater sustained effort as a result of a competitive environment, suggesting that males may be more affected by competition in physical effort tasks. However, in Experiment 2, participants remembered fewer shapes when competing, and later recalled less of these shapes during a post-test, suggesting that competition was harmful in our memory task. The different results from these two experiments suggest that competition can improve attention in a physical effort task, yet caution the use of competition in memory tasks.

  15. Observed changes in the Earth's dynamic oblateness from GRACE data and geophysical models.

    PubMed

    Sun, Y; Ditmar, P; Riva, R

    A new methodology is proposed to estimate changes in the Earth's dynamic oblateness ([Formula: see text] or equivalently, [Formula: see text]) on a monthly basis. The algorithm uses monthly Gravity Recovery and Climate Experiment (GRACE) gravity solutions, an ocean bottom pressure model and a glacial isostatic adjustment (GIA) model. The resulting time series agree remarkably well with a solution based on satellite laser ranging (SLR) data. Seasonal variations of the obtained time series show little sensitivity to the choice of GRACE solutions. Reducing signal leakage in coastal areas when dealing with GRACE data and accounting for self-attraction and loading effects when dealing with water redistribution in the ocean is crucial in achieving close agreement with the SLR-based solution in terms of de-trended solutions. The obtained trend estimates, on the other hand, may be less accurate due to their dependence on the GIA models, which still carry large uncertainties.

  16. g factors of coexisting isomeric states in {sup 188}Pb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ionescu-Bujor, M.; Iordachescu, A.; Marginean, N.

    2010-02-15

    The g factors of the 12{sup +}, 11{sup -}, and 8{sup -} isomeric states in {sup 188}Pb were measured using the time-differential perturbed angular distribution method as g(12{sup +})=-0.179(6), g(11{sup -})=+1.03(3), and g(8{sup -})=-0.037(7). The g factor of the 12{sup +} state follows the observed slight down-sloping evolution of the g factors of the i{sub 13/2}{sup 2} neutron spherical states with decreasing N. The g factors of the 11{sup -} and 8{sup -} isomers proposed as oblate and prolate deformed states, respectively, were interpreted within the rotational model, using calculated and empirical g factor values for the involved single-particle orbitals.

  17. Onset of carbon-carbon bonding in Ta(5)C(y) (y = 0-6) clusters: a threshold photoionization and density functional theory study.

    PubMed

    Dryza, Viktoras; Alvino, Jason F; Metha, Gregory F

    2010-04-01

    We have used photoionization efficiency spectroscopy to determine ionization energies (IEs) of the gas-phase tantalum-carbide clusters Ta(5)C(y) (y = 0-6). The structures of the clusters observed in the experiment are assigned by comparing the experimental IEs with those of candidate isomers, calculated by density functional theory. Two competing geometries of the underlying Ta(5) cluster are found to be present in the assigned Ta(5)C(y) structures; either a "prolate" or "distorted oblate" trigonal bipyramid geometry. The onset of carbon-carbon bonding in the Ta(5)C(y) series is proposed to occur at y = 6, with the structure of Ta(5)C(6) containing two molecular C(2) units.

  18. The moments of inertia of Mars

    NASA Technical Reports Server (NTRS)

    Bills, Bruce G.

    1989-01-01

    The mean moment of inertia of Mars is, at present, very poorly constrained. The generally accepted value of 0.365 M(R-squared) is obtained by assuming that the observed second degree gravity field can be decomposed into a hydrostatic oblate spheroid and a nonhydrostatic prolate spheroid with an equatorial axis of symmetry. An alternative decomposition is advocated in the present analysis. If the nonhydrostatic component is a maximally triaxial ellipsoid (intermediate moment exactly midway between greatest and least), the hydrostatic component is consistent with a mean moment of 0.345 M(R-squared). The plausibility of this decomposition is supported by statistical arguments and comparison with the earth, moon and Venus.

  19. Shapes matter: examining the optical response evolution in stretched aluminium nanoparticles via time-dependent density functional theory.

    PubMed

    Mokkath, Junais Habeeb

    2017-12-20

    Using first-principles time-dependent density functional theory calculations, we investigate the shape-anisotropy effects on the optical response of a spherical aluminium nanoparticle subjected to a stretching process in different directions. Progressively increased stretching in one direction resulted in prolate spheroid (nanorice) geometries and produced a couple of well-distinguishable dominant peaks together with some satellite peaks in the UV-visible region of the electromagnetic spectrum. On the other hand, progressively increased stretching in two directions caused multiple peaks to appear in the UV-visible region of the electromagnetic spectrum. We believe that our findings can be beneficial for the emerging and potentially far-reaching field of aluminum plasmonics.

  20. Molded Magnetic Article

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G. (Inventor); Namkung, Min (Inventor); Wincheski, Russell A. (Inventor); Fulton, James P. (Inventor); Fox, Robert L. (Inventor)

    2000-01-01

    A molded magnetic article and fabrication method are provided. Particles of ferromagnetic material embedded in a polymer binder are molded under heat and pressure into a geometric shape. Each particle is an oblate spheroid having a radius-to-thickness aspect ratio approximately in the range of 15-30. Each oblate spheroid has flattened poles that are substantially in perpendicular alignment to a direction of the molding pressure throughout the geometric shape.

  1. Strongly deformed nuclear shapes at ultra-high spin and shape coexistence in N ~ 90 nuclei

    DOE PAGES

    Riley, M. A.; Aguilar, A.; Evans, A. O.; ...

    2009-01-01

    The N ~ 90 region of the nuclear chart has featured prominently as the spectroscopy of nuclei at extreme spin has progressed. This talk will present recent discoveries from investigations of high spin behavior in the N ~ 90 Er, Tm and Yb nuclei utilizing the Gammasphere gamma-ray spectrometer. In particular it will include discussion of the beautiful shape evolution and coexistence observed in these nuclei along with the identification of a remarkable new family of band structures. The latter are very weakly populated rotational sequences with high moment of inertia that bypass the classic terminating configurations near spin 40-50h,more » marking a return to collectivity that extends discrete γ-ray spectroscopy to well over 60h. Establishing the nature of the yrast states in these nuclei beyond the oblate band-termination states has been a major goal for the past two decades. Cranking calculations suggest that these new structures most likely represent stable triaxial strongly deformed bands that lie in a valley of favored shell energy in deformation and particle-number space.« less

  2. The power of competition: Effects of social motivation on attention, sustained physical effort, and learning

    PubMed Central

    DiMenichi, Brynne C.; Tricomi, Elizabeth

    2015-01-01

    Competition has often been implicated as a means to improve effort-based learning and attention. Two experiments examined the effects of competition on effort and memory. In Experiment 1, participants completed a physical effort task in which they were rewarded for winning an overall percentage, or for winning a competition they believed was against another player. In Experiment 2, participants completed a memory task in which they were rewarded for remembering an overall percentage of shapes, or more shapes than a “competitor.” We found that, in the physical effort task, participants demonstrated faster reaction times (RTs)—a previous indicator of increased attention—in the competitive environment. Moreover, individual differences predicted the salience of competition’s effect. Furthermore, male participants showed faster RTs and greater sustained effort as a result of a competitive environment, suggesting that males may be more affected by competition in physical effort tasks. However, in Experiment 2, participants remembered fewer shapes when competing, and later recalled less of these shapes during a post-test, suggesting that competition was harmful in our memory task. The different results from these two experiments suggest that competition can improve attention in a physical effort task, yet caution the use of competition in memory tasks. PMID:26388801

  3. Shear-horizontal vibration modes of an oblate elliptical cylinder and energy trapping in contoured acoustic wave resonators.

    PubMed

    He, Huijing; Yang, Jiashi; Kosinski, John A

    2012-08-01

    We study shear-horizontal free vibrations of an elastic cylinder with an oblate elliptical cross section and a traction-free surface. Exact vibration modes and frequencies are obtained. The results show the existence of thickness-shear and thickness-twist modes. The energy-trapping behavior of these modes is examined. Trapped modes are found wherein the vibration energy is largely confined to the central portion of the cross section and little vibration energy is found at the edges. It is also shown that face-shear modes are not allowed in such a cylinder. The results are useful for the understanding of the energy trapping phenomenon in contoured acoustic wave resonators.

  4. Electrohydrodynamics of a viscous drop with inertia.

    PubMed

    Nganguia, H; Young, Y-N; Layton, A T; Lai, M-C; Hu, W-F

    2016-05-01

    Most of the existing numerical and theoretical investigations on the electrohydrodynamics of a viscous drop have focused on the creeping Stokes flow regime, where nonlinear inertia effects are neglected. In this work we study the inertia effects on the electrodeformation of a viscous drop under a DC electric field using a novel second-order immersed interface method. The inertia effects are quantified by the Ohnesorge number Oh, and the electric field is characterized by an electric capillary number Ca_{E}. Below the critical Ca_{E}, small to moderate electric field strength gives rise to steady equilibrium drop shapes. We found that, at a fixed Ca_{E}, inertia effects induce larger deformation for an oblate drop than a prolate drop, consistent with previous results in the literature. Moreover, our simulations results indicate that inertia effects on the equilibrium drop deformation are dictated by the direction of normal electric stress on the drop interface: Larger drop deformation is found when the normal electric stress points outward, and smaller drop deformation is found otherwise. To our knowledge, such inertia effects on the equilibrium drop deformation has not been reported in the literature. Above the critical Ca_{E}, no steady equilibrium drop deformation can be found, and often the drop breaks up into a number of daughter droplets. In particular, our Navier-Stokes simulations show that, for the parameters we use, (1) daughter droplets are larger in the presence of inertia, (2) the drop deformation evolves more rapidly compared to creeping flow, and (3) complex distribution of electric stresses for drops with inertia effects. Our results suggest that normal electric pressure may be a useful tool in predicting drop pinch-off in oblate deformations.

  5. On the Coplanar Integrable Case of the Twice-Averaged Hill Problem with Central Body Oblateness

    NASA Astrophysics Data System (ADS)

    Vashkov'yak, M. A.

    2018-01-01

    The twice-averaged Hill problem with the oblateness of the central planet is considered in the case where its equatorial plane coincides with the plane of its orbital motion relative to the perturbing body. A qualitative study of this so-called coplanar integrable case was begun by Y. Kozai in 1963 and continued by M.L. Lidov and M.V. Yarskaya in 1974. However, no rigorous analytical solution of the problem can be obtained due to the complexity of the integrals. In this paper we obtain some quantitative evolution characteristics and propose an approximate constructive-analytical solution of the evolution system in the form of explicit time dependences of satellite orbit elements. The methodical accuracy has been estimated for several orbits of artificial lunar satellites by comparison with the numerical solution of the evolution system.

  6. Sperm competition, immunity, selfish genes and cancer.

    PubMed

    Lewis, Z; Price, T A R; Wedell, N

    2008-10-01

    Sperm competition is widespread and has played an important role in shaping male reproductive characters such as testis size and numbers of sperm produced, and this is reflected in the rapid evolution of many reproductive genes. Additionally, sperm competition has been implicated in the rapid evolution of seminal fluids. However, our understanding of the molecular basis of many traits thought to be important in sperm competition is rudimentary. Furthermore, links between sperm competition and a range of issues not directly related to reproduction are only just beginning to be explored. These include associations between sperm competition and selfish genes, immunity and diseases such as cancer.We briefly review these topics and suggest areas we consider worthy of additional research.

  7. Formation and field-driven dynamics of nematic spheroids.

    PubMed

    Fu, Fred; Abukhdeir, Nasser Mohieddin

    2017-07-19

    Unlike the canonical application of liquid crystals (LCs), LC displays, emerging technologies based on LC materials are increasingly leveraging the presence of nanoscale defects. The inherent nanoscale characteristics of LC defects present both significant opportunities as well as barriers for the application of this fascinating class of materials. Simulation-based approaches to the study of the effects of confinement and interface anchoring conditions on LC domains has resulted in significant progress over the past decade, where simulations are now able to access experimentally-relevant length scales while simultaneously capturing nanoscale defect structures. In this work, continuum simulations were performed in order to study the dynamics of micron-scale nematic LC spheroids of varying shape. Nematic spheroids are one of the simplest inherently defect-containing LC structures and are relevant to polymer-dispersed LC-based "smart" window technology. Simulation results include nematic phase formation and external field-switching dynamics of nematic spheroids ranging in shape from oblate to prolate. Results include both qualitative and quantitative insight into the complex coupling of nanoscale defect dynamics and structure transitions to micron-scale reorientation. Dynamic mechanisms are presented and related to structural transitions in LC defects present in the nematic domain. Domain-averaged metrics including order parameters and response times are determined for a range of experimentally-accessible electric field strengths. These results have both fundamental and technological relevance, in that increased understanding of LC dynamics in the presence of defects is a key barrier to continued advancement in the field.

  8. AMS of an Analogue Non-Scale Model Simulating Diapiric Pluton Emplacement

    NASA Astrophysics Data System (ADS)

    Hrouda, F.; Kratinova, Z.; Zavada, P.; Schulmann, K.

    2004-12-01

    Development of magnetic fabric within a pluton during its diapiric ascent was investigated using an analogue non-scale model of plaster of Paris containing small amount of fine-grained (less than 0.09 mm) homogeneously mixed magnetite, with resulting bulk susceptibility being in the order of 10-3 [SI]. The apparatus for this modelling consists of a manual squeezer with calibrated spring and a perspex container. Stratified coloured to visualize internal flow geometries, weak plaster layer at the bottom of the container was forced to intrude overlying fine-grained (>0.017mm) sand through a hole in a board attached to the squeezer. A retarding compound was admixed into the plaster to postpone the solidification of plaster. After solidifying the model, small oriented cylindrical specimens (7 mm in diameter and 6 mm in height) were drilled and their anisotropy of magnetic susceptibility (AMS) was measured with the KLY-4S Kappabridge. The magnetic fabric in the margins of the vertical column of the diapir is characterized by high degree of AMS (P'=1.26-1.30), neutral to oblate AMS ellipsoid (T=0.2-0.6) and vertical magnetic lineations and foliations. In the vent area, the degree of AMS is also high, but the AMS ellipsoid being strongly prolate (T= -1 to -0.8) with vertical magnetic lineations. In the interior of the plug above the vent zone, abrupt transition into horizontal lineations and foliations take place and the low degree of AMS (P'=1.05-1.10) marks the area where strongly prolate magnetic fabric is being gradually changed into the magnetic fabric characterized by neutral to oblate AMS ellipsoid. This type of magnetic fabric extends to the apical part of the body. In the extrusive portions of the diapir, oblate magnetic fabric increases in anisotropy (T=0.8-1, P'=1.26-1.29), while the front of the radial extrusion shows horizontal lineations parallel to the margin and neutral AMS ellipsoids (T=0.2-0.6,P'=1.23-1.26). This changeover of fabric thus indicates

  9. Orthogonal Invariant Sets of the Diffusion Tensor and the Development of a Curvilinear Set Suitable for Low-Anisotropy Tissues

    PubMed Central

    Damion, Robin A.; Radjenovic, Aleksandra; Ingham, Eileen; Jin, Zhongmin; Ries, Michael E.

    2013-01-01

    We develop a curvilinear invariant set of the diffusion tensor which may be applied to Diffusion Tensor Imaging measurements on tissues and porous media. This new set is an alternative to the more common invariants such as fractional anisotropy and the diffusion mode. The alternative invariant set possesses a different structure to the other known invariant sets; the second and third members of the curvilinear set measure the degree of orthotropy and oblateness/prolateness, respectively. The proposed advantage of these invariants is that they may work well in situations of low diffusion anisotropy and isotropy, as is often observed in tissues such as cartilage. We also explore the other orthogonal invariant sets in terms of their geometry in relation to eigenvalue space; a cylindrical set, a spherical set (including fractional anisotropy and the mode), and a log-Euclidean set. These three sets have a common structure. The first invariant measures the magnitude of the diffusion, the second and third invariants capture aspects of the anisotropy; the magnitude of the anisotropy and the shape of the diffusion ellipsoid (the manner in which the anisotropy is realised). We also show a simple method to prove the orthogonality of the invariants within a set. PMID:24244366

  10. First principles absorption spectra of Cu{sub n} (n = 2 - 20) clusters.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baishya, K.; Idrobo, J. C.; Ogut, S.

    2011-06-17

    Optical absorption spectra for the computed ground state structures of copper clusters (Cu{sub n}, n = 2-20) are investigated from first principles using time-dependent density functional theory in the adiabatic local density approximation (TDLDA). The results are compared with available experimental data, existing calculations, and with results from our previous computations on silver and gold clusters. The main effects of d electrons on the absorption spectra, quenching the oscillator strengths, and getting directly involved in low-energy excitations increase in going from Ag{sub n} to Au{sub n} to Cu{sub n} due to the increase in the hybridization of the occupied, yetmore » shallow, d orbitals and the partially occupied s orbitals. We predict that while Cu nanoparticles of spherical or moderately ellipsoidal shape do not exhibit Mie (surface plasmon) resonances, unlike the case for Ag and Au, extremely prolate or oblate Cu nanoparticles with eccentricities near unity should give rise to Mie resonances in the lower end of the visible range and in the infrared. This tunable resonance predicted by the classical Mie-Gans theory is reproduced with remarkable accuracy by our TDLDA computations on hypothetical Cu clusters in the form of zigzag chains with as few as 6 to 20 atoms.« less

  11. High Foot Implosion Experiments in Rugby Hohlraums

    NASA Astrophysics Data System (ADS)

    Ralph, Joseph; Leidinger, J.-P.; Callahan, D.; Kaiser, P.; Morice, O.; Marion, D.; Moody, J. D.; Ross, J. S.; Amendt, P.; Kritcher, A. L.; Milovich, J. L.; Strozzi, D.; Hinkel, D.; Michel, P.; Berzak Hopkins, L.; Pak, A.; Dewald, E. L.; Divol, L.; Khan, S.; Rygg, R.; Hurricane, O.; Lawrence Livermore National Lab Team; CEA/DAM Team

    2015-11-01

    The rugby hohlraum design is aimed at providing uniform x-ray drive on the capsule while minimizing the need for crossed beam energy transfer (CBET). As part of a series of experiments at the NIF using rugby hohlraums, design improvements in dual axis shock tuning experiments produced some of the most symmetric shocks measured on implosion experiments at the NIF. Additionally, tuning of the in-flight shell and hot spot shape have demonstrated that capsules can be tuned between oblate and prolate with measured velocities of nearly 340 km/s. However, these experimental measurements were accompanied by high levels of Stimulated Raman Scattering (SRS) that may result from the long inner beam path length, reamplification of the inner SRS by the outers, significant (CBET) or a combination of these. All rugby shots results were achieved with lower levels of hot electrons that can preheat the DT fuel layer for increased adiabat and reduced areal density. Detailed results from these experiments and those planned throughout the summer will be presented and compared with results obtained from cylindrical hohlraums. This work performed under the auspices of U.S. Department of Energy by Lawrence Livermore National Lab under Contract DE-AC52-07NA27344.

  12. Cryogenic tritium-hydrogen-deuterium and deuterium-tritium layer implosions with high density carbon ablators in near-vacuum hohlraums

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meezan, N. B., E-mail: meezan1@llnl.gov; Hopkins, L. F. Berzak; Pape, S. Le

    2015-06-15

    High Density Carbon (or diamond) is a promising ablator material for use in near-vacuum hohlraums, as its high density allows for ignition designs with laser pulse durations of <10 ns. A series of Inertial Confinement Fusion (ICF) experiments in 2013 on the National Ignition Facility [Moses et al., Phys. Plasmas 16, 041006 (2009)] culminated in a deuterium-tritium (DT) layered implosion driven by a 6.8 ns, 2-shock laser pulse. This paper describes these experiments and comparisons with ICF design code simulations. Backlit radiography of a tritium-hydrogen-deuterium (THD) layered capsule demonstrated an ablator implosion velocity of 385 km/s with a slightly oblate hot spot shape.more » Other diagnostics suggested an asymmetric compressed fuel layer. A streak camera-based hot spot self-emission diagnostic (SPIDER) showed a double-peaked history of the capsule self-emission. Simulations suggest that this is a signature of low quality hot spot formation. Changes to the laser pulse and pointing for a subsequent DT implosion resulted in a higher temperature, prolate hot spot and a thermonuclear yield of 1.8 × 10{sup 15} neutrons, 40% of the 1D simulated yield.« less

  13. Faraday forcing of high-temperature levitated liquid metal drops for the measurement of surface tension.

    PubMed

    Brosius, Nevin; Ward, Kevin; Matsumoto, Satoshi; SanSoucie, Michael; Narayanan, Ranga

    2018-01-01

    In this work, a method for the measurement of surface tension using continuous periodic forcing is presented. To reduce gravitational effects, samples are electrostatically levitated prior to forcing. The method, called Faraday forcing, is particularly well suited for fluids that require high temperature measurements such as liquid metals where conventional surface tension measurement methods are not possible. It offers distinct advantages over the conventional pulse-decay analysis method when the sample viscosity is high or the levitation feedback control system is noisy. In the current method, levitated drops are continuously translated about a mean position at a small, constant forcing amplitude over a range of frequencies. At a particular frequency in this range, the drop suddenly enters a state of resonance, which is confirmed by large executions of prolate/oblate deformations about the mean spherical shape. The arrival at this resonant condition is a signature that the parametric forcing frequency is equal to the drop's natural frequency, the latter being a known function of surface tension. A description of the experimental procedure is presented. A proof of concept is given using pure Zr and a Ti 39.5 Zr 39.5 Ni 21 alloy as examples. The results compare favorably with accepted literature values obtained using the pulse-decay method.

  14. Analysis of the interplay among charge, hydration and shape of proteins through the modeling of their CZE mobility data.

    PubMed

    Piaggio, Maria V; Peirotti, Marta B; Deiber, Julio A

    2009-07-01

    Electrophoretic mobility data of four proteins are analyzed and interpreted through a physicochemical CZE model, which provides estimates of quantities like equivalent hydrodynamic radius (size), effective charge number, shape orientation factor, hydration, actual pK values of ionizing groups, and pH near molecule, among others. Protein friction coefficients are simulated through the creeping flow theory of prolate spheroidal particles. The modeling of the effective electrophoretic mobility of proteins requires consideration of hydrodynamic size and shape coupled to hydration and effective charge. The model proposed predicts native protein hydration within the range of values obtained experimentally from other techniques. Therefore, this model provides consistently other physicochemical properties such as average friction and diffusion coefficients and packing fractal dimension. As the pH varies from native conditions to those that are denaturing the protein, hydration and packing fractal dimension change substantially. Needs for further research are also discussed and proposed.

  15. The effect of Earth's oblateness on the seismic moment estimation from satellite gravimetry

    NASA Astrophysics Data System (ADS)

    Dai, Chunli; Guo, Junyi; Shang, Kun; Shum, C. K.; Wang, Rongjiang

    2018-05-01

    Over the last decade, satellite gravimetry, as a new class of geodetic sensors, has been increasingly studied for its use in improving source model inversion for large undersea earthquakes. When these satellite-observed gravity change data are used to estimate source parameters such as seismic moment, the forward modelling of earthquake seismic deformation is crucial because imperfect modelling could lead to errors in the resolved source parameters. Here, we discuss several modelling issues and focus on one modelling deficiency resulting from the upward continuation of gravity change considering the Earth's oblateness, which is ignored in contemporary studies. For the low degree (degree 60) time-variable gravity solutions from Gravity Recovery and Climate Experiment mission data, the model-predicted gravity change would be overestimated by 9 per cent for the 2011 Tohoku earthquake, and about 6 per cent for the 2010 Maule earthquake. For high degree gravity solutions, the model-predicted gravity change at degree 240 would be overestimated by 30 per cent for the 2011 Tohoku earthquake, resulting in the seismic moment to be systematically underestimated by 30 per cent.

  16. An inverse approach to constraining strain and vorticity using rigid clast shape preferred orientation data

    NASA Astrophysics Data System (ADS)

    Davis, Joshua R.; Giorgis, Scott

    2014-11-01

    We describe a three-part approach for modeling shape preferred orientation (SPO) data of spheroidal clasts. The first part consists of criteria to determine whether a given SPO and clast shape are compatible. The second part is an algorithm for randomly generating spheroid populations that match a prescribed SPO and clast shape. In the third part, numerical optimization software is used to infer deformation from spheroid populations, by finding the deformation that returns a set of post-deformation spheroids to a minimally anisotropic initial configuration. Two numerical experiments explore the strengths and weaknesses of this approach, while giving information about the sensitivity of the model to noise in data. In monoclinic transpression of oblate rigid spheroids, the model is found to constrain the shortening component but not the simple shear component. This modeling approach is applied to previously published SPO data from the western Idaho shear zone, a monoclinic transpressional zone that deformed a feldspar megacrystic gneiss. Results suggest at most 5 km of shortening, as well as pre-deformation SPO fabric. The shortening estimate is corroborated by a second model that assumes no pre-deformation fabric.

  17. Competition and Markets in Higher Education: A "Glonacal" Analysis

    ERIC Educational Resources Information Center

    Marginson, Simon

    2004-01-01

    Higher education--particularly the research-intensive university, which is the focus of this article--is the subject of global/national/local effects, and is shaped by hierarchy and uneven development on a world scale. The article theorises social competition in higher education, and traces inter-university competition and stratification on the…

  18. Maternal Competition in Women.

    PubMed

    Linney, Catherine; Korologou-Linden, Laurel; Campbell, Anne

    2017-03-01

    We examined maternal competition, an unexplored form of competition between women. Given women's high investment in offspring and mothers' key role in shaping their reproductive, social, and cultural success as adults, we might expect to see maternal competition between women as well as mate competition. Predictions about the effect of maternal characteristics (age, relationship status, educational background, number of children, investment in the mothering role) and child variables (age, sex) were drawn from evolutionary theory and sociological research. Mothers of primary school children (in two samples: N = 210 and 169) completed a series of questionnaires. A novel nine-item measure of maternal competitive behavior (MCQ) and two subscales assessing Covert (MCQ-C) and Face-to-Face (MCQ-FF) forms of competition were developed using confirmatory factor analysis. Competitiveness (MCQ score) was predicted by maternal investment, single motherhood, fewer children, and (marginally) child's older age. The effect of single motherhood (but not other predictors) was partially mediated by greater maternal investment. In response to a scenario of their child underperforming relative to their peers, a mother's competitive distress was a positive function of the importance she ascribed to their success and her estimation of her child's ability. Her competitive distress was highly correlated with the distress she attributed to a female friend, hinting at bidirectional dyadic effects. Qualitative responses indicated that nonspecific bragging and boasting about academic achievements were the most common irritants. Although 40% of women were angered or annoyed by such comments, less than 5% endorsed a direct hostile response. Instead, competitive mothers were conversationally shunned and rejected as friends. We suggest that the interdependence of mothers based on reciprocal childcare has supported a culture of egalitarianism that is violated by explicit competitiveness.

  19. Gender, Interest, and Prior Experience Shape Opportunities to Learn Programming in Robotics Competitions

    ERIC Educational Resources Information Center

    Witherspoon, Eben B.; Schunn, Christian D.; Higashi, Ross M.; Baehr, Emily C.

    2016-01-01

    Background: Robotics competitions are increasingly popular and potentially provide an on-ramp to computer science, which is currently highly gender imbalanced. However, within competitive robotics teams, student participation in programming is not universal. This study gathered surveys from over 500 elementary, middle, and high school robotics…

  20. Dimensional analysis of the endometrial cavity: how many dimensions should the ideal intrauterine device or system have?

    PubMed

    Goldstuck, Norman D

    2018-01-01

    The geometrical shape of the human uterus most closely approximates that of a prolate ellipsoid. The endometrial cavity itself is more likely to also have the shape of a prolate ellipsoid especially when the extension of the cervix is omitted. Using this information and known endometrial cavity volumes and lateral and vertical dimensions, it is possible to calculate the anteroposterior (AP) dimensions and get a complete evaluation of all possible dimensions of the endometrial cavity. These are singular observations and not part of any other study. The AP dimensions of the endometrial cavity of the uterus were calculated using the formula for the volume of the prolate ellipsoid to complete a three-dimensional picture of the endometrial cavity. Calculations confirm ultrasound imaging which shows large variations in cavity size and shape. Known cavity volumes and length and breadth measurements indicate that the AP diameter may vary from 6.29 to 38.2 mm. These measurements confirm the difficulty of getting a fixed-frame intrauterine device (IUD) to accommodate to a space of highly variable dimensions. This is especially true of three-dimension IUDs. A one-dimensional frameless IUD is most likely to be able to conform to this highly variable space and shape. The endometrial cavity may assume many varied prolate ellipsoid configurations where one or more measurements may be too small to accommodate standard IUDs. A one-dimensional device is most likely to be able to be accommodated by most uterine cavities as compared to two- and three-dimensional devices.

  1. Particle shape impacts export and fate in the ocean through interactions with the globally abundant appendicularian Oikopleura dioica.

    PubMed

    Conley, Keats R; Sutherland, Kelly R

    2017-01-01

    Marine microbes exhibit highly varied, often non-spherical shapes that have functional significance for essential processes, including nutrient acquisition and sinking rates. There is a surprising absence of data, however, on how cell shape affects grazing, which is crucial for predicting the fate of oceanic carbon. We used synthetic spherical and prolate spheroid microbeads to isolate the effect of particle length-to-width ratios on grazing and fate in the ocean. Here we show that the shape of microbe-sized particles affects predation by the appendicularian Oikopleura dioica, a globally abundant marine grazer. Using incubation experiments, we demonstrate that shape affects how particles are retained in the house and that the minimum particle diameter is the key variable determining how particles are ingested. High-speed videography revealed the mechanism behind these results: microbe-sized spheroids oriented with the long axis parallel to fluid streamlines, matching the speed and tortuosity of spheres of equivalent width. Our results suggest that the minimum particle diameter determines how elongated prey interact with the feeding-filters of appendicularians, which may help to explain the prevalence of ellipsoidal cells in the ocean, since a cell's increased surface-to-volume ratio does not always increase predation. We provide the first evidence that grazing by appendicularians can cause non-uniform export of different shaped particles, thereby influencing particle fate.

  2. Accurate measurement of volume and shape of resting and activated blood platelets from light scattering.

    PubMed

    Moskalensky, Alexander E; Yurkin, Maxim A; Konokhova, Anastasiya I; Strokotov, Dmitry I; Nekrasov, Vyacheslav M; Chernyshev, Andrei V; Tsvetovskaya, Galina A; Chikova, Elena D; Maltsev, Valeri P

    2013-01-01

    We introduce a novel approach for determination of volume and shape of individual blood platelets modeled as an oblate spheroid from angle-resolved light scattering with flow-cytometric technique. The light-scattering profiles (LSPs) of individual platelets were measured with the scanning flow cytometer and the platelet characteristics were determined from the solution of the inverse light-scattering problem using the precomputed database of theoretical LSPs. We revealed a phenomenon of parameter compensation, which is partly explained in the framework of anomalous diffraction approximation. To overcome this problem, additional a priori information on the platelet refractive index was used. It allowed us to determine the size of each platelet with subdiffraction precision and independent of the particular value of the platelet aspect ratio. The shape (spheroidal aspect ratio) distributions of platelets showed substantial differences between native and activated by 10 μM adenosine diphosphate samples. We expect that the new approach may find use in hematological analyzers for accurate measurement of platelet volume distribution and for determination of the platelet activation efficiency.

  3. Comment on "Anisotropic s-wave superconductivity: Comparison with experiments on MgB2" by A. I. Posazhennikova et al.

    NASA Astrophysics Data System (ADS)

    Mishonov, T. M.; Penev, E. S.; Indekeu, J. O.

    2003-02-01

    An analytical result for the renormalization of the jump of the heat capacity ΔC/CN by the anisotropy of the order parameter is derived within the framework of the very recent model proposed by Posazhennikova, Dahm and Maki (Europhys. Lett., 60 (2002) 134), for both oblate and prolate anisotropy. The graph of ΔC/CN vs. the ratio of the gaps on the equator and the pole of the Fermi surface, Δe/Δp, allows a direct determination of the gap anisotropy parameter Δe/Δp by fitting data from specific-heat measurements ΔC/CN. Using the experimental value ΔC/CN = 0.82 ± 10% by Wang, Plackowski, and Junod (Physica C 355 (2001) 179) we find Δe/Δp approx 4.0.

  4. Onset of carbon-carbon bonding in the Nb(5)C(y) (y = 0-6) clusters: a threshold photo-ionisation and density functional theory study.

    PubMed

    Dryza, Viktoras; Gascooke, Jason R; Buntine, Mark A; Metha, Gregory F

    2009-02-21

    We have used photo-ionisation efficiency spectroscopy to determine the ionisation potentials (IPs) of the niobium-carbide clusters, Nb(5)C(y) (y = 0-6). Of these clusters Nb(5)C(2) and Nb(5)C(3) exhibit the lowest IPs. Complementary density functional theory calculations have been performed to locate the lowest energy isomers for each cluster. By comparing the experimental IPs with those calculated for candidate isomers, the structures of the Nb(5)C(y) clusters observed in the experiment are inferred. For all these structures, the underlying Nb(5) cluster has either a "prolate" or "oblate" trigonal bipyramid geometry. Both Nb(5)C(5) and Nb(5)C(6) are shown to contain carbon-carbon bonding in the form of one and two molecular C(2) units, respectively.

  5. Decentralized supply chain network design: monopoly, duopoly and oligopoly competitions under uncertainty

    NASA Astrophysics Data System (ADS)

    Seyedhosseini, Seyed Mohammad; Fahimi, Kaveh; Makui, Ahmad

    2017-12-01

    This paper presents the competitive supply chain network design problem in which n decentralized supply chains simultaneously enter the market with no existing rival chain, shape their networks and set wholesale and retail prices in competitive mode. The customer demand is elastic and price dependent, customer utility function is based on the Hoteling model and the chains produce identical or highly substitutable products. We construct a solution algorithm based on bi-level programming and possibility theory. In the proposed bi-level model, the inner part sets the prices based on simultaneous extra- and Stackleberg intra- chains competitions, and the outer part shapes the networks in cooperative competitions. Finally, we use a real-word study to discuss the effect of the different structures of the competitors on the equilibrium solution. Moreover, sensitivity analyses are conducted and managerial insights are offered.

  6. Does Competition Really Bring Out the Worst? Testosterone, Social Distance and Inter-Male Competition Shape Parochial Altruism in Human Males

    PubMed Central

    Diekhof, Esther Kristina; Wittmer, Susanne; Reimers, Luise

    2014-01-01

    Parochial altruism, defined as increased ingroup favoritism and heightened outgroup hostility, is a widespread feature of human societies that affects altruistic cooperation and punishment behavior, particularly in intergroup conflicts. Humans tend to protect fellow group members and fight against outsiders, even at substantial costs for themselves. Testosterone modulates responses to competition and social threat, but its exact role in the context of parochial altruism remains controversial. Here, we investigated how testosterone influences altruistic punishment tendencies in the presence of an intergroup competition. Fifty male soccer fans played an ultimatum game (UG), in which they faced anonymous proposers that could either be a fan of the same soccer team (ingroup) or were fans of other teams (outgroups) that differed in the degree of social distance and enmity to the ingroup. The UG was played in two contexts with varying degrees of intergroup rivalry. Our data show that unfair offers were rejected more frequently than fair proposals and the frequency of altruistic punishment increased with increasing social distance to the outgroups. Adding an intergroup competition led to a further escalation of outgroup hostility and reduced punishment of unfair ingroup members. High testosterone levels were associated with a relatively increased ingroup favoritism and also a change towards enhanced outgroup hostility in the intergroup competition. High testosterone concentrations further predicted increased proposer generosity in interactions with the ingroup. Altogether, a significant relation between testosterone and parochial altruism could be demonstrated, but only in the presence of an intergroup competition. In human males, testosterone may promote group coherence in the face of external threat, even against the urge to selfishly maximize personal reward. In that way, our observation refutes the view that testosterone generally promotes antisocial behaviors and

  7. A shape and compositional analysis of ice-rafted debris in cores from IODP Expedition 323 in the Bering Sea

    NASA Astrophysics Data System (ADS)

    Dadd, Kelsie; Foley, Kristen

    2016-03-01

    Sediment cores recovered during IODP Expedition 323 in the Bering Sea, northern Pacific, contained numerous ice-rafted debris (IRD) clasts up to 85 mm in length. The physical properties (including roundness and sphericity) of 136 clasts from the working half of the cores, a subsample of the total clast number, were analysed and their composition determined using standard petrographic techniques. After removal of pumice and possible fall-in derived material from the clast population, a total of 86 clasts from the original collection were considered to be IRD. While roundness and sphericity vary greatly in the clast population, the IRD are predominately discoid in shape with oblate/prolate indices typically between -5 and 5. There are four time periods over the approximately 4.5 Ma sample interval, 0.36-0.67 Ma, 0.82-1.06 Ma 1.54-1.77 Ma and >3.28 Ma, where there are no IRD in the sample set for sites of the Bering slope, suggesting that these times may have been ice-free. Most clasts show some rounding and are likely to have spent time on beaches with wave action. Wave action on beaches suggests periods of no ice or only seasonal sea-ice. The low roundness values of other clasts, however, suggest they underwent little working and, therefore, the presence of glaciers or more permanent sea-ice at times in those locations. The abundance of rounded and unfaceted clasts as IRD suggests a lack of large ice sheets in the area during cool periods. Clast composition of the IRD is divided into four broad groups, basalt and andesite, granite and metamorphic, sedimentary, and felsic volcanic. The granite and metamorphic and more mature sedimentary lithologies are most likely derived from the Alaskan continental margin, while the extrusive igneous clasts could be derived from a variety of volcanic sources surrounding the Bering Sea, both emergent now or emergent at times of lower sea level. There is only a poor correlation with IRD abundance and marine isotope stages (MIS) for

  8. A theoretical study of the spheroidal droplet evaporation in forced convection

    NASA Astrophysics Data System (ADS)

    Li, Jie; Zhang, Jian

    2014-11-01

    In many applications, the shape of a droplet may be assumed to be an oblate spheroid. A theoretical study is conducted on the evaporation of an oblate spheroidal droplet under forced convection conditions. Closed-form analytical expressions of the mass evaporation rate for an oblate spheroid are derived, in the regime of controlled mass-transfer and heat-transfer, respectively. The variation of droplet size during the evaporation process is presented in the regime of shrinking dynamic model. Comparing with the droplets having the same surface area, an increase in the aspect ratio enhances the mass evaporation rate and prolongs the burnout time.

  9. Computation of stress on the surface of a soft homogeneous arbitrarily shaped particle.

    PubMed

    Yang, Minglin; Ren, Kuan Fang; Wu, Yueqian; Sheng, Xinqing

    2014-04-01

    Prediction of the stress on the surface of an arbitrarily shaped particle of soft material is essential in the study of elastic properties of the particles with optical force. It is also necessary in the manipulation and sorting of small particles with optical tweezers, since a regular-shaped particle, such as a sphere, may be deformed under the nonuniform optical stress on its surface. The stress profile on a spherical or small spheroidal soft particle trapped by shaped beams has been studied, however little work on computing the surface stress of an irregular-shaped particle has been reported. We apply in this paper the surface integral equation with multilevel fast multipole algorithm to compute the surface stress on soft homogeneous arbitrarily shaped particles. The comparison of the computed stress profile with that predicted by the generalized Lorenz-Mie theory for a water droplet of diameter equal to 51 wavelengths in a focused Gaussian beam show that the precision of our method is very good. Then stress profiles on spheroids with different aspect ratios are computed. The particles are illuminated by a Gaussian beam of different waist radius at different incidences. Physical analysis on the mechanism of optical stress is given with help of our recently developed vectorial complex ray model. It is found that the maximum of the stress profile on the surface of prolate spheroids is not only determined by the reflected and refracted rays (orders p=0,1) but also the rays undergoing one or two internal reflections where they focus. Computational study of stress on surface of a biconcave cell-like particle, which is a typical application in life science, is also undertaken.

  10. Magnetic fabric study of rock deformation during alpine tectonic evolution on a cross section through the Eastern Alps (Austria)

    NASA Astrophysics Data System (ADS)

    Gruber, K.; Scholger, R.; Pueyo, E. L.

    2010-05-01

    steeper NE or SW dipping k1-axis are present. In a previous paleomagnetic study of the same samples (Pueyo et al., 2002) both, primary and secondary remanent magnetization vectors were observed. No significant rotations were detected in the Flysh units. All samples from the Bajuvaric system show dominantly very low susceptibility values and isotropic fabrics and were therefore excluded from further investigations. Bajuvaric nappes hardly show any significant rotations based on paleomagnetic data (Pueyo et al., 2002). The nappes of the Tirolic and Juvavic systems have very low susceptibility values but they increase slightly towards the south. The shape of the anisotropy ellipsoid remains oblate (group A) in most cases and the degree of anisotropy is very weak. Also more prolate fabrics (group B) are present. Group A and B show a trend to shallow N or S dipping k1-axis in the North. Further in the south the k1-axis of group A tend to dip steeply NE. Shallow NE or SW dipping and slightly steeper NE or SW dipping oriented prolate susceptibility ellipsoids are dominant in group B. Tirolic and Juvavic units display clockwise rotation ranging between 30 and more than 100° (Pueyo et al., 2002), which was assigned to block rotation. Shallow E dipping and NNW dipping oblate susceptibility ellipsoids are dominant in the Basement. A general increase of the degree of rotation (Pueyo et al., 2002) as well as better defined susceptibility ellipsoids with mainly oblate fabrics towards the south can be observed. Six Tertiary deviatoric paleostress tensor groups are described by Peresson & Decker (1997). The new AMS data will be presented and correlated to the young tectonic history of the Eastern Alps. The study was funded by the Austrian Academy of Sciences (ÖAW) in the frame of the Geophysics of the Earths Crust Programme. Peresson, H. and Decker, K., 1997. The Tertiary dynamics of the northern Eastern Alps (Austria): Changing palaeostresses in a collisional plate boundary

  11. The peculiar shapes of Saturn's small inner moons as evidence of mergers of similar-sized moonlets

    NASA Astrophysics Data System (ADS)

    Leleu, A.; Jutzi, M.; Rubin, M.

    2018-05-01

    The Cassini spacecraft revealed the spectacular, highly irregular shapes of the small inner moons of Saturn1, ranging from the unique 'ravioli-like' forms of Pan and Atlas2,3 to the highly elongated structure of Prometheus. Closest to Saturn, these bodies provide important clues regarding the formation process of small moons in close orbits around their host planet4, but their range of irregular shapes has not been explained yet. Here, we show that the spectrum of shapes among Saturn's small moons is a natural outcome of merging collisions among similar-sized moonlets possessing physical properties and orbits that are consistent with those of the current moons. A significant fraction of such merging collisions take place either at the first encounter or after 1-2 hit-and-run events, with impact velocities in the range of 1-5 times the mutual escape velocity. Close to head-on mergers result in flattened objects with large equatorial ridges, as observed on Atlas and Pan. With slightly more oblique impact angles, collisions lead to elongated, Prometheus-like shapes. These results suggest that the current forms of the small moons provide direct evidence of the processes at the final stages of their formation, involving pairwise encounters of moonlets of comparable size4-6. Finally, we show that this mechanism may also explain the formation of Iapetus' equatorial ridge7, as well as its oblate shape8.

  12. The role of drought- and disturbance-mediated competition in shaping community responses to varied environments.

    PubMed

    Napier, Joseph D; Mordecai, Erin A; Heckman, Robert W

    2016-06-01

    By altering the strength of intra- and interspecific competition, droughts may reshape plant communities. Furthermore, species may respond differently to drought when other influences, such as herbivory, are considered. To explore this relationship, we conducted a greenhouse experiment measuring responses to inter- and intraspecific competition for two grasses, Schedonorus arundinaceus and Paspalum dilatatum, while varying water availability and simulating herbivory via clipping. We then parameterized population growth models to examine the long-term outcome of competition under these conditions. Under drought, S. arundinaceus was less water stressed than P. dilatatum, which exhibited severe water stress; clipping alleviated this stress, increasing the competitive ability of P. dilatatum relative to S. arundinaceus. Although P. dilatatum competed weakly under drought, clipping reduced water stress in P. dilatatum, thereby enhancing its ability to compete with S. arundinaceus under drought. Supporting these observations, population growth models predicted that P. dilatatum would exclude S. arundinaceus when clipped under drought, while S. arundinaceus would exclude P. dilatatum when unclipped under drought. When the modeled environment varied temporally, environmental variation promoted niche differences that, though insufficient to maintain stable coexistence, prevented unconditional competitive exclusion by promoting priority effects. Our results suggest that it is important to consider how species respond not just to stable, but also to variable, environments. When species differ in their responses to drought, competition, and simulated herbivory, stable environments may promote competitive exclusion, while fluctuating environments may promote coexistence. These interactions are critical to understanding how species will respond to global change.

  13. Rise and fall of competitiveness in individualistic and collectivistic societies.

    PubMed

    Leibbrandt, Andreas; Gneezy, Uri; List, John A

    2013-06-04

    Competitiveness pervades life: plants compete for sunlight and water, animals for territory and food, and humans for mates and income. Herein we investigate human competitiveness with a natural experiment and a set of behavioral experiments. We compare competitiveness in traditional fishing societies where local natural forces determine whether fishermen work in isolation or in collectives. We find sharp evidence that fishermen from individualistic societies are far more competitive than fishermen from collectivistic societies, and that this difference emerges with work experience. These findings suggest that humans can evolve traits to specific needs, support the idea that socio-ecological factors play a decisive role for individual competitiveness, and provide evidence how individualistic and collectivistic societies shape economic behavior.

  14. Rise and fall of competitiveness in individualistic and collectivistic societies

    PubMed Central

    Leibbrandt, Andreas; Gneezy, Uri; List, John A.

    2013-01-01

    Competitiveness pervades life: plants compete for sunlight and water, animals for territory and food, and humans for mates and income. Herein we investigate human competitiveness with a natural experiment and a set of behavioral experiments. We compare competitiveness in traditional fishing societies where local natural forces determine whether fishermen work in isolation or in collectives. We find sharp evidence that fishermen from individualistic societies are far more competitive than fishermen from collectivistic societies, and that this difference emerges with work experience. These findings suggest that humans can evolve traits to specific needs, support the idea that socio-ecological factors play a decisive role for individual competitiveness, and provide evidence how individualistic and collectivistic societies shape economic behavior. PMID:23696669

  15. Decadal variation in Earth's oblateness (J2) from satellite laser ranging data

    NASA Astrophysics Data System (ADS)

    Cheng, Minkang; Ries, John C.

    2018-02-01

    For four decades, satellite laser ranging has recorded the global nature of the long-wavelength hydrological mass redistribution within the Earth system, which results in significant variations in the Earth's dynamical oblateness, characterized by the second degree zonal geopotential spherical harmonic J2 (or C20). Analysis of the J2 time-series has shown a significant variation related to the strong El Niño-Southern Oscillation events with periods of 2-6 yr. In particular, the variation related to the powerful 2015-2016 El Niño that peaked during 2015 November-December was one of the strongest on record, comparable with the 1982-1983 and 1997-1998 events. In this study, we investigate further the hydrological mass transfer between atmosphere-ocean-land and their signature in the decadal variations of J2 with timescales of ˜10 yr. We found that the ˜6.4-yr variations can be accounted for by the atmosphere and ocean mass variations based on the improved Atmosphere-Ocean De-aliasing data, and the observed decadal variation in J2 correlates well with the decadal tropical variability characterized by the 5-yr running mean of the El Niño-Southern Oscillation Index, although existing physical models, especially the land water storage, are limited for the purpose of further studies of the excitation.

  16. Optically driven oscillations of ellipsoidal particles. Part I: experimental observations.

    PubMed

    Mihiretie, B M; Snabre, P; Loudet, J-C; Pouligny, B

    2014-12-01

    We report experimental observations of the mechanical effects of light on ellipsoidal micrometre-sized dielectric particles, in water as the continuous medium. The particles, made of polystyrene, have shapes varying between near disk-like (aspect ratio k = 0.2) to very elongated needle-like (k = 8). Rather than the very tightly focused beam geometry of optical tweezers, we use a moderately focused laser beam to manipulate particles individually by optical levitation. The geometry allows us varying the longitudinal position of the particle, and to capture images perpendicular to the beam axis. Experiments show that moderate-k particles are radially trapped with their long axis lying parallel to the beam. Conversely, elongated (k > 3) or flattened (k < 0.3) ellipsoids never come to rest, and permanently "dance" around the beam, through coupled translation-rotation motions. The oscillations are shown to occur in general, be the particle in bulk water or close to a solid boundary, and may be periodic or irregular. We provide evidence for two bifurcations between static and oscillating states, at k ≈ 0.33 and k ≈ 3 for oblate and prolate ellipsoids, respectively. Based on a recently developed 2-dimensional ray-optics simulation (Mihiretie et al., EPL 100, 48005 (2012)), we propose a simple model that allows understanding the physical origin of the oscillations.

  17. A drop in uniaxial and biaxial nonlinear extensional flows

    NASA Astrophysics Data System (ADS)

    Favelukis, M.

    2017-08-01

    In this theoretical report, we explore small deformations of an initially spherical drop subjected to uniaxial or biaxial nonlinear extensional creeping flows. The problem is governed by the capillary number (Ca), the viscosity ratio (λ), and the nonlinear intensity of the flow (E). When the extensional flow is linear (E = 0), the familiar internal circulations are obtained and the same is true with E > 0, except that the external and internal flow rates increase with increasing E. If E < 0, the external flow consists of some unconnected regions leading to the same number of internal circulations (-3/7 < E < 0) or twice the number of internal circulations (E < -3/7), when compared to the linear case. The shape of the deformed drop is represented in terms of a modified Taylor deformation parameter, and the conditions for the breakup of the drop by a center pinching mechanism are also established. When the flow is linear (E = 0), the literature predicts prolate spheroidal drops for uniaxial flows (Ca > 0) and oblate spheroidal drops for biaxial flows (Ca < 0). For the same |Ca|, if E > 0, the drop is more elongated than the linear case, while E < 0 results in less elongated drops than the linear case. Compared to the linear case, for both uniaxial and biaxial extensional flows, E > 0 tends to facilitate drop breakup, while E < 0 makes drop breakup more difficult.

  18. How direct competition shapes coexistence and vaccine effects in multi-strain pathogen systems.

    PubMed

    Gjini, Erida; Valente, Carina; Sá-Leão, Raquel; Gomes, M Gabriela M

    2016-01-07

    We describe an integrated modeling framework for understanding strain coexistence in polymorphic pathogen systems. Previous studies have debated the utility of neutral formulations and focused on cross-immunity between strains as a major stabilizing mechanism. Here we convey that direct competition for colonization mediates stable coexistence only when competitive abilities amongst pathogen clones satisfy certain pairwise asymmetries. We illustrate our ideas with nested SIS models of single and dual colonization, applied to polymorphic pneumococcal bacteria. By fitting the models to cross-sectional prevalence data from Portugal (before and after the introduction of a seven-valent pneumococcal conjugate vaccine), we are able to not only statistically compare neutral and non-neutral epidemiological formulations, but also estimate vaccine efficacy, transmission and competition parameters simultaneously. Our study highlights that the response of polymorphic pathogen populations to interventions holds crucial information about strain interactions, which can be extracted by suitable nested modeling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Implicit memory for novel figure-ground displays includes a history of cross-border competition.

    PubMed

    Peterson, Mary A; Lampignano, Daniel W

    2003-08-01

    When configural cues specify that a figure lies on opposite sides of a repeated border in prime andprobe shapes, probe latencies are longer than when prime and probe borders are unrelated. Do such results reflect negative priming for the shape of the prime ground or cross-border competition from figure memory? The present study tested these alternatives by adding partial closure as a competing cue and reducing the similarity between the prime ground and the shape of the probe. Results supported the cross-border competition interpretation. Additional findings were that partial closure is a configural cue and that response effects can emerge from the potential shape on the ground side of a border. One prior experience was sufficient for these effects.

  20. Experimental demonstration of the importance of competition under disturbance.

    PubMed

    Violle, Cyrille; Pu, Zhichao; Jiang, Lin

    2010-07-20

    Ecologists have long recognized the roles of competition and disturbance in shaping ecological communities, and the combinatorial effects of these two factors have been the subject of substantial ecological research. Nevertheless, it is still unclear whether competition remains as an important structuring force in habitats strongly influenced by disturbance. The conventional belief remains that the importance of competition decreases with increasing disturbance, but limited theory suggests otherwise. Using protist communities established in laboratory microcosms, we demonstrate that disturbance does not diminish the importance of competition. Interspecific competition significantly increased rates of species extinction over a broad disturbance gradient, and increasing disturbance intensities increased, rather than decreased, the tempo of competitive exclusion. This community-level pattern is linked to the species-level pattern that interspecific competition led to most frequent extinctions of each species at the highest level of disturbance that the species can tolerate. Consequently, despite a strong tradeoff between competitive ability and disturbance tolerance across the competing species, species diversity generally declined with disturbance. The consistent structuring role of competition throughout the disturbance gradient underscores the need to understand competitive interactions and their consequences even in highly disturbed habitats.

  1. Binding energy and photoionization cross-section of hydrogen-like donor impurity in strongly oblate ellipsoidal quantum dot

    NASA Astrophysics Data System (ADS)

    Hayrapetyan, D. B.; Ohanyan, G. L.; Baghdasaryan, D. A.; Sarkisyan, H. A.; Baskoutas, S.; Kazaryan, E. M.

    2018-01-01

    Hydrogen-like donor impurity states in strongly oblate ellipsoidal quantum dot have been studied. The hydrogen-like donor impurity states are investigated within the framework of variational method. The trial wave function constructed on the base of wave functions of the system without impurity. The dependence of the energy and binding energy for the ground and first excited states on the geometrical parameters of the ellipsoidal quantum dot and on the impurity position have been calculated. The behavior of the oscillator strength for different angles of incident light and geometrical parameters have been revealed. Photoionization cross-section of the electron transitions from the impurity ground state to the size-quantized ground and first excited states have been studied. The effects of impurity position and the geometrical parameters of the ellipsoidal quantum dot on the photoionization cross section dependence on the photon energy have been considered.

  2. Resource and competitive dynamics shape the benefits of public goods cooperation in a plant pathogen

    PubMed Central

    Platt, Thomas G.; Fuqua, Clay; Bever, James D.

    2012-01-01

    Cooperative benefits depend on a variety of ecological factors. Many cooperative bacteria increase the population size of their groups by making a public good available. Increased local population size can alleviate the constraints of kin competition on the evolution of cooperation by enhancing the between-group fitness of cooperators. The cooperative pathogenesis of Agrobacterium tumefaciens causes infected plants to exude opines—resources that provide a nearly exclusive source of nutrient for the pathogen. We experimentally demonstrate that opines provide cooperative A. tumefaciens cells a within-group fitness advantage over saprophytic agrobacteria. Our results are congruent with a resource-consumer competition model, which predicts that cooperative, virulent agrobacteria are at a competitive disadvantage when opines are unavailable, but have an advantage when opines are available at sufficient levels. This model also predicts that freeloading agrobacteria that catabolize opines but cannot infect plants competitively displace the cooperative pathogen from all environments. However, we show that these cooperative public goods also promote increased local population size. A model built from the Price Equation shows that this effect on group size can contribute to the persistence of cooperative pathogenesis despite inherent kin competition for the benefits of pathogenesis. PMID:22671559

  3. Artificial tektites: an experimental technique for capturing the shapes of spinning drops

    NASA Astrophysics Data System (ADS)

    Baldwin, K. A.

    2014-12-01

    Tektites are small stones formed from rapidly cooling drops of molten rock ejected from high velocity asteroid impacts with the Earth, that freeze into a myriad of shapes during flight. Many splash-form tektites have an elongated or dumb-bell shape owing to their rotation prior to solidification[1]. Here we present a novel method for creating 'artificial tektites' from spinning drops of molten wax, using diamagnetic levitation to suspend the drops[2]. We find that the solid wax models produced this way are the stable equilibrium shapes of a spinning liquid droplet held together by surface tension. In addition to the geophysical interest in tektite formation, the stable equilibrium shapes of liquid drops have implications for many physical phenomena, covering a wide range of length scales, from nuclear physics (e.g. in studies of rapidly rotating atomic nuclei), to astrophysics (e.g. in studies of the shapes of astronomical bodies such as asteroids, rapidly rotating stars and event horizons of rotating black holes). For liquid drops bound by surface tension, analytical and numerical methods predict a series of stable equilibrium shapes with increasing angular momentum. Slowly spinning drops have an oblate-like shape. With increasing angular momentum these shapes become secularly unstable to a series of triaxial pseudo-ellipsoids that then evolve into a family of two-lobed 'dumb-bell' shapes as the angular momentum is increased still further. Our experimental method allows accurate measurements of the drops to be taken, which are useful to validate numerical models. This method has provided a means for observing tektite formation, and has additionally confirmed experimentally the stable equilibrium shapes of liquid drops, distinct from the equivalent shapes of rotating astronomical bodies. Potentially, this technique could be applied to observe the non-equilibrium dynamic processes that are also important in real tektite formation, involving, e.g. viscoelastic

  4. Dynamics and Energetics of Deformable Evaporating Droplets at Intermediate Reynolds Numbers.

    NASA Astrophysics Data System (ADS)

    Haywood, Ross Jeffrey

    The behaviour of vaporizing droplets, representative of droplets present in hydrocarbon fuel sprays, has been investigated. A finite volume numerical model using a non-orthogonal, adaptive grid has been developed to examine both steady deformed and transient deforming droplet behaviour. Computations are made of the shapes of, and the velocity, pressure, temperature and concentration fields around and within n-heptane droplets evaporating in high temperature air environments at intermediate Reynolds and Weber numbers (10 <= Re <= 100, We <= 10). The numerical model has been rigorously tested by comparison with existing theoretical and numerical solutions and experimental data for problems of intermediate Reynolds number flows over spheroids, inviscid deforming droplets, viscous oscillating droplets, and transient deforming liquid droplets subjected to electrostatic fields. Computations show steady deformed droplets assuming oblate shapes with major axes perpendicular to the mean flow direction. When based on volume equivalent diameters, existing quasi-steady correlations of Nusselt and Sherwood numbers (Renksizbulut and Yuen (1983), Haywood et al. (1989), and Renksizbulut et al. (1991)) for spherical droplets are in good agreement with the numerical results. Providing they are based on actual frontal area, the computed drag coefficients are also reasonably well predicted by the existing quasi-steady drag correlation (Haywood et al. (1989), Renksizbulut and Yuen (1983)). A new correlation is developed for the total drag coefficient of quasi-steady deformed vaporizing droplets. The computed transient histories of droplets injected with an initial Reynolds number of 100 into 1000 K air at 1 and 10 atmospheres ambient pressure show strongly damped initial oscillations at frequencies within 25 percent of the theoretical natural frequency of Lamb (1932). Gas phase shear induced circulation within the droplets is responsible for the observed strong damping and promotes the

  5. Attention and competition in figure-ground perception.

    PubMed

    Peterson, Mary A; Salvagio, Elizabeth

    2009-01-01

    What are the roles of attention and competition in determining where objects lie in the visual field, a phenomenon known as figure-ground perception? In this chapter, we review evidence that attention and other high-level factors such as familiarity affect figure-ground perception, and we discuss models that implement these effects. Next, we consider the Biased Competition Model of Attention in which attention is used to resolve the competition for neural representation between two nearby stimuli; in this model the response to the stimulus that loses the competition is suppressed. In the remainder of the chapter we discuss recent behavioral evidence that figure-ground perception entails between-object competition in which the response to the shape of the losing competitor is suppressed. We also describe two experiments testing whether more attention is drawn to resolve greater figure-ground competition, as would be expected if the Biased Competition Model of Attention extends to figure-ground perception. In these experiments we find that responses to targets on the location of a losing strong competitor are slowed, consistent with the idea that the location of the losing competitor is suppressed, but responses to targets on the winning competitor are not speeded, which is inconsistent with the hypothesis that attention is used to resolve figure-ground competition. In closing, we discuss evidence that attention can operate by suppression as well as by facilitation.

  6. Effect of tumor shape, size, and tissue transport properties on drug delivery to solid tumors

    PubMed Central

    2014-01-01

    Background The computational methods provide condition for investigation related to the process of drug delivery, such as convection and diffusion of drug in extracellular matrices, drug extravasation from microvessels or to lymphatic vessels. The information of this process clarifies the mechanisms of drug delivery from the injection site to absorption by a solid tumor. In this study, an advanced numerical method is used to solve fluid flow and solute transport equations simultaneously to investigate the effect of tumor shape and size on drug delivery to solid tumor. Methods The advanced mathematical model used in our previous work is further developed by adding solute transport equation to the governing equations. After applying appropriate boundary and initial conditions on tumor and surrounding tissue geometry, the element-based finite volume method is used for solving governing equations of drug delivery in solid tumor. Also, the effects of size and shape of tumor and some of tissue transport parameters such as effective pressure and hydraulic conductivity on interstitial fluid flow and drug delivery are investigated. Results Sensitivity analysis shows that drug delivery in prolate shape is significantly better than other tumor shapes. Considering size effect, increasing tumor size decreases drug concentration in interstitial fluid. This study shows that dependency of drug concentration in interstitial fluid to osmotic and intravascular pressure is negligible. Conclusions This study shows that among diffusion and convection mechanisms of drug transport, diffusion is dominant in most different tumor shapes and sizes. In tumors in which the convection has considerable effect, the drug concentration is larger than that of other tumors at the same time post injection. PMID:24987457

  7. Study of Magnetic Fabrics across the Central Part of the Chimei Fault, the Coastal Range of Eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Yeh, E. C.; Chu, Y. R.; Chou, Y. M.; Lee, T. Q.; Kuo, S. T.; Cai, Y. M.

    2015-12-01

    Taiwan is an ongoing collisional mountain belt located in the conjunction of two subduction-arc systems with opposite vergences between the Philippine Sea and Eurasian plates. The Coastal Range along the eastern Taiwan is the accreted Luzon arcs and surrounding basins onto the Eurasian crust. The Chimei fault, a typical lithology-contrast fault thrusting the Miocene volcanic Tuluanshan Formation over the Pleistocene sedimentary Paliwan Formation, is the only major reverse fault across the entire Coastal Range. To investigate the deformation pattern and strain history across the Chimei fault, we analyzed oriented samples of mudstone and volcanic rocks across the fault zone, fold zone, damage zone, and wall rocks along the Hsiukuluan River via anisotropy of magnetic susceptibility (AMS). AMS can be represented as a susceptibility ellipsoid with 3 principal directions and values (Kmax, Kint, Kmin) and therefore is well known as a tool of magnetic fabrics to study the deformation. Results of AMS across the central part of the Chimei fault show that the direction of Kmax changed from N-S orientation to sub-vertical and the orientation of Kmin switched from 270/70 to N-S orientation when samples were closed to the fault zone. At the same time, anisotropy was increasing and susceptibility ellipsoid changed from oblate to prolate in the fold zone back to oblate in the fault zone. Based on identification works of magnetic minerals, the major magnetic carrier is magnetite with pseudo-single domain. As a result, it strongly speculated when samples were approaching to the central part of Chimei fault, stress altered from sub-vertical sedimentary loading to horizontally N-S tectonic compression. Due to increasing deformation, oblate ellipsoids with strong anisotropy developed within the fault zone highlighted the strain history of the central part of the Chimei fault.

  8. Almost analytical Karhunen-Loeve representation of irregular waves based on the prolate spheroidal wave functions

    NASA Astrophysics Data System (ADS)

    Lee, Gibbeum; Cho, Yeunwoo

    2017-11-01

    We present an almost analytical new approach to solving the matrix eigenvalue problem or the integral equation in Karhunen-Loeve (K-L) representation of random data such as irregular ocean waves. Instead of solving this matrix eigenvalue problem purely numerically, which may suffer from the computational inaccuracy for big data, first, we consider a pair of integral and differential equations, which are related to the so-called prolate spheroidal wave functions (PSWF). For the PSWF differential equation, the pair of the eigenvectors (PSWF) and eigenvalues can be obtained from a relatively small number of analytical Legendre functions. Then, the eigenvalues in the PSWF integral equation are expressed in terms of functional values of the PSWF and the eigenvalues of the PSWF differential equation. Finally, the analytically expressed PSWFs and the eigenvalues in the PWSF integral equation are used to form the kernel matrix in the K-L integral equation for the representation of exemplary wave data; ordinary irregular waves and rogue waves. We found that the present almost analytical method is better than the conventional data-independent Fourier representation and, also, the conventional direct numerical K-L representation in terms of both accuracy and computational cost. This work was supported by the National Research Foundation of Korea (NRF). (NRF-2017R1D1A1B03028299).

  9. Wing Shape as an Indicator of Larval Rearing Conditions for Aedes albopictus and Ae. aegypti (Diptera: Culicidae)

    PubMed Central

    Stephens, C. R.; Juliano, S. A.

    2012-01-01

    Estimating a mosquito’s vector competence, or likelihood of transmitting disease, if it takes an infectious blood meal, is an important aspect of predicting when and where outbreaks of infectious diseases will occur. Vector competence can be affected by rearing temperature and inter- and intraspecific competition experienced by the individual mosquito during its larval development. This research investigates whether a new morphological indicator of larval rearing conditions, wing shape, can be used to distinguish reliably temperature and competitive conditions experienced during larval stages. Aedes albopictus and Aedes aegypti larvae were reared in low intra-specific, high intra-specific, or high inter-specific competition treatments at either 22°C or 32°C. The right wing of each dried female was removed and photographed. Nineteen landmarks and twenty semilandmarks were digitized on each wing. Shape variables were calculated using geometric morphometric software. Canonical variate analysis, randomization multivariate analysis of variance, and visualization of landmark movement using deformation grids provided evidence that although semilandmark position was significantly affected by larval competition and temperature for both species, the differences in position did not translate into differences in wing shape, as shown in deformation grids. Two classification procedures yielded success rates of 26–49%. Accounting for wing size produced no increase in classification success. There appeared to be a significant relationship between shape and size. These results, particularly the low success rate of classification based on wing shape, show that shape is unlikely to be a reliable indicator of larval rearing competition and temperature conditions for Aedes albopictus and Aedes aegypti. PMID:22897054

  10. New Mathematical Model for the Surface Area of the Left Ventricle by the Truncated Prolate Spheroid

    PubMed Central

    Vale, Marcos de Paula; Martinez, Carlos Barreira

    2017-01-01

    The main aim of this study was the formula application of the superficial area of a truncated prolate spheroid (TPS) in Cartesian coordinates in obtaining a cardiac parameter that is not so much discussed in literature, related to the left ventricle (LV) surface area of the human heart, by age and sex. First we obtain a formula for the area of a TPS. Then a simple mathematical model of association of the axes measures of a TPS with the axes of the LV is built. Finally real values of the average dimensions of the humans LV are used to measure surface areas approximations of this heart chamber. As a result, the average superficial area of LV for normal patients is obtained and it is observed that the percentage differences of areas between men and women and their consecutive age groups are constant. A strong linear correlation between the obtained areas and the ventricular volumes normalized by the body areas was observed. The obtained results indicate that the superficial area of the LV, besides enabling a greater knowledge of the geometrical characteristics of the human LV, may be used as one of the normality cardiac verification criteria and be useful for medical and biological applications. PMID:28547001

  11. Halo orbit transfer trajectory design using invariant manifold in the Sun-Earth system accounting radiation pressure and oblateness

    NASA Astrophysics Data System (ADS)

    Srivastava, Vineet K.; Kumar, Jai; Kushvah, Badam Singh

    2018-01-01

    In this paper, we study the invariant manifold and its application in transfer trajectory problem from a low Earth parking orbit to the Sun-Earth L1 and L2-halo orbits with the inclusion of radiation pressure and oblateness. Invariant manifold of the halo orbit provides a natural entrance to travel the spacecraft in the solar system along some specific paths due to its strong hyperbolic character. In this regard, the halo orbits near both collinear Lagrangian points are computed first. The manifold's approximation near the nominal halo orbit is computed using the eigenvectors of the monodromy matrix. The obtained local approximation provides globalization of the manifold by applying backward time propagation to the governing equations of motion. The desired transfer trajectory well suited for the transfer is explored by looking at a possible intersection between the Earth's parking orbit of the spacecraft and the manifold.

  12. Post-Newtonian direct and mixed orbital effects due to the oblateness of the central body

    NASA Astrophysics Data System (ADS)

    Iorio, L.

    2015-06-01

    The orbital dynamics of a test particle moving in the nonspherically symmetric field of a rotating oblate primary is impacted also by certain indirect, mixed effects arising from the interplay of the different Newtonian and post-Newtonian accelerations which induce known direct perturbations. We systematically calculate the indirect gravitoelectromagnetic shifts per orbit of the Keplerian orbital elements of the test particle arising from the crossing among the first even zonal harmonic J2 of the central body and the post-Newtonian static and stationary components of its gravitational field. We also work out the Newtonian shifts per orbit of order J22, and the direct post-Newtonian gravitoelectric effects of order J2c-2 arising from the equations of motion. In the case of both the indirect and direct gravitoelectric J2c-2 shifts, our calculation holds for an arbitrary orientation of the symmetry axis of the central body. We yield numerical estimates of their relative magnitudes for systems ranging from Earth's artificial satellites to stars orbiting supermassive black holes. As far as their measurability is concerned, highly elliptical orbital configuration are desirable.

  13. The balance between adaptation to catalysts and competition radius shapes the total wealth, time variability and inequality

    NASA Astrophysics Data System (ADS)

    Davidovich, Hadar; Louzoun, Yoram

    2013-05-01

    The globalization of modern markets has led to the emergence of competition between producers in ever growing distances. This opens the interesting question in population dynamics of the effect of long-range competition. We here study a model of non-local competition to test the effect of the competition radius on the wealth distribution, using the framework of a stochastic birth-death process, with non-local interactions. We show that this model leads to non-trivial dynamics that can have implications in other domains of physics. Competition is studied in the context of the catalyst induced growth of autocatalytic agents, representing the growth of capital in the presence of investment opportunities. These agents are competing with all other agents in a given radius on growth possibilities. We show that a large scale competition leads to an extreme localization of the agents, where typically a single aggregate of agents can survive within a given competition radius. The survival of these aggregates is determined by the diffusion rates of the agents and the catalysts. For high and low agent diffusion rates, the agent population is always annihilated, while for intermediate diffusion rates, a finite agent population persists. Increasing the catalyst diffusion rate always leads to a decrease in the average agent population density. The extreme localization of the agents leads to the emergence of intermittent fluctuations, when a large aggregate of agents disappear. As the competition radius increases, so does the average agent density and its spatial variance as well as the volatility.

  14. COUPLED SPIN AND SHAPE EVOLUTION OF SMALL RUBBLE-PILE ASTEROIDS: SELF-LIMITATION OF THE YORP EFFECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cotto-Figueroa, Desireé; Statler, Thomas S.; Richardson, Derek C.

    2015-04-10

    We present the first self-consistent simulations of the coupled spin-shape evolution of small gravitational aggregates under the influence of the YORP effect. Because of YORP’s sensitivity to surface topography, even small centrifugally driven reconfigurations of aggregates can alter the YORP torque dramatically, resulting in spin evolution that can differ qualitatively from the rigid-body prediction. One-third of our simulations follow a simple evolution described as a modified YORP cycle. Two-thirds exhibit one or more of three distinct behaviors—stochastic YORP, self-governed YORP, and stagnating YORP—which together result in YORP self-limitation. Self-limitation confines rotation rates of evolving aggregates to far narrower ranges thanmore » those expected in the classical YORP cycle, greatly prolonging the times over which objects can preserve their sense of rotation. Simulated objects are initially randomly packed, disordered aggregates of identical spheres in rotating equilibrium, with low internal angles of friction. Their shape evolution is characterized by rearrangement of the entire body, including the deep interior. They do not evolve to axisymmetric top shapes with equatorial ridges. Mass loss occurs in one-third of the simulations, typically in small amounts from the ends of a prolate-triaxial body. We conjecture that YORP self-limitation may inhibit formation of top-shapes, binaries, or both, by restricting the amount of angular momentum that can be imparted to a deformable body. Stochastic YORP, in particular, will affect the evolution of collisional families whose orbits drift apart under the influence of Yarkovsky forces, in observable ways.« less

  15. Automatic Marker-free Longitudinal Infrared Image Registration by Shape Context Based Matching and Competitive Winner-guided Optimal Corresponding

    PubMed Central

    Lee, Chia-Yen; Wang, Hao-Jen; Lai, Jhih-Hao; Chang, Yeun-Chung; Huang, Chiun-Sheng

    2017-01-01

    Long-term comparisons of infrared image can facilitate the assessment of breast cancer tissue growth and early tumor detection, in which longitudinal infrared image registration is a necessary step. However, it is hard to keep markers attached on a body surface for weeks, and rather difficult to detect anatomic fiducial markers and match them in the infrared image during registration process. The proposed study, automatic longitudinal infrared registration algorithm, develops an automatic vascular intersection detection method and establishes feature descriptors by shape context to achieve robust matching, as well as to obtain control points for the deformation model. In addition, competitive winner-guided mechanism is developed for optimal corresponding. The proposed algorithm is evaluated in two ways. Results show that the algorithm can quickly lead to accurate image registration and that the effectiveness is superior to manual registration with a mean error being 0.91 pixels. These findings demonstrate that the proposed registration algorithm is reasonably accurate and provide a novel method of extracting a greater amount of useful data from infrared images. PMID:28145474

  16. Shape and Size of Patroclus and Menoetius from a Stellar Occultation

    NASA Astrophysics Data System (ADS)

    Buie, Marc W.; Olkin, Catherine B.; Merline, William J.; Timerson, Brad; Herald, Dave; Owen, William M.; Abramson, Harry B.; Abramson, Katherine J.; Breit, Derek C.; Caton, D. B.; Conard, Steve J.; Croom, Mark A.; Dunford, R. W.; Dunford, J. A.; Dunham, David W.; Ellington, Chad K.; Liu, Yanzhe; Maley, Paul D.; Olsen, Aart M.; Royer, Ronald; Scheck, Andrew E.; Sherrod, Clay; Sherrod, Lowell; Swift, Theodore J.; Taylor, Lawrence W.; Venable, Roger

    2014-11-01

    We will present results of a stellar occultation by the Jupiter Trojan asteroid, Patroclus and its nearly equal size moon, Menoetius. The occultation was observed widely across the United States on 2013 Oct 21 UT. Eleven sites out of 36 successfully recorded an occultation. Seven chords across Patroclus yielded a elliptical limb fit of 124.6 km by 98.2 km. There were six chords across Menoetius that yielded an elliptical limb fit of 117.2 km by 93.0 km. There were three sites that got chords on both objects. At the time of the occultation we measured a separation of 0.247 arcsec and a position angle for Menoetius of 265.7 deg measured eastward from J2000 North. More surprisingly, there were two sites that should have seen an occultation by Menoetius but instead never saw the star disappear. These two non-detections indicate the presence of a large void on the southern limb of the satellite. The observations are consistent with a large impact basin centered on the rotation pole. The depth of the projected crater profile is roughly 15 km, measured from the elliptical limb profile. The inferred diameter of the crater would be about 85 km. Combining this occultation data with previous lightcurve data, the axial ratios (ignoring the mass void) of both objects is 1.26:1.19:1 indicative of a mostly oblate ellipsoid with a slight asymmetry in its equatorial projection. These results are consistent with a fully tidally evolved system with the mass void or putative crater in a position consistent with principal axis rotation that is itself consistent with the largely oblate shape. Note: the location for IOTA listed in the affiliations is not correct (but was required to be entered) as there is no location for this global virtual organization. This research is funded, in part, by NSF AST-1212159.

  17. Nanorice Particles: Hybrid Plasmonic Nanostructures

    NASA Technical Reports Server (NTRS)

    Le, Fei (Inventor); Halas, Nancy J. (Inventor); Nordlander, Peter (Inventor); Brandl, Daniel (Inventor); Wang, Hui (Inventor)

    2010-01-01

    A new hybrid nanoparticle, i.e., a nanorice particle, which combines the intense local fields of nanorods with the highly tunable plasmon resonances of nanoshells, is described herein. This geometry possesses far greater structural tunability than previous nanoparticle geometries, along with much larger local field enhancements and far greater sensitivity as a surface plasmon resonance (SPR) nanosensor than presently known dielectric-conductive material nanostructures. In an embodiment, a nanoparticle comprises a prolate spheroid-shaped core having a first aspect ratio. The nanoparticle also comprises at least one conductive shell surrounding said prolate spheroid-shaped core. The nanoparticle has a surface plasmon resonance sensitivity of at least 600 nm RIU(sup.-1). Methods of making the disclosed nanorice particles are also described herein.

  18. Ecogeographical Variation in Skull Shape of South-American Canids: Abiotic or Biotic Processes?

    PubMed

    de Moura Bubadué, Jamile; Cáceres, Nilton; Dos Santos Carvalho, Renan; Meloro, Carlo

    Species morphological changes can be mutually influenced by environmental or biotic factors, such as competition. South American canids represent a quite recent radiation of taxa that evolved forms very disparate in phenotype, ecology and behaviour. Today, in the central part of South America there is one dominant large species (the maned wolf, Chrysocyon brachyurus ) that directly influence sympatric smaller taxa via interspecific killing. Further south, three species of similar sized foxes ( Lycalopex spp.) share the same habitats. Such unique combination of taxa and geographic distribution makes South American dogs an ideal group to test for the simultaneous impact of climate and competition on phenotypic variation. Using geometric morphometrics, we quantified skull size and shape of 431 specimens belonging to the eight extant South American canid species: Atelocynus microtis , Cerdocyon thous , Ch. brachyurus , Lycalopex culpaeus , L. griseus , L. gymnocercus , L. vetulus and Speothos venaticus . South American canids are significantly different in both skull size and shape. The hypercarnivorous bush dog is mostly distinct in shape from all the other taxa while a degree of overlap in shape-but not size-occurs between species of the genus Lycalopex . Both climate and competition impacts interspecific morphological variation. We identified climatic adaptations as the main driving force of diversification for the South American canids. Competition has a lower degree of impact on their skull morphology although it might have played a role in the past, when canid community was richer in morphotypes.

  19. Shape-dependent dispersion and alignment of nonaggregating plasmonic gold nanoparticles in lyotropic and thermotropic liquid crystals.

    PubMed

    Liu, Qingkun; Tang, Jianwei; Zhang, Yuan; Martinez, Angel; Wang, Shaowei; He, Sailing; White, Timothy J; Smalyukh, Ivan I

    2014-05-01

    We use both lyotropic liquid crystals composed of prolate micelles and thermotropic liquid crystals made of rod-like molecules to uniformly disperse and unidirectionally align relatively large gold nanorods and other complex-shaped nanoparticles at high concentrations. We show that some of these ensuing self-assembled orientationally ordered soft matter systems exhibit polarization-dependent plasmonic properties with strongly pronounced molar extinction exceeding that previously achieved in self-assembled composites. The long-range unidirectional alignment of gold nanorods is mediated mainly by anisotropic surface anchoring interactions at the surfaces of gold nanoparticles. Polarization-sensitive absorption, scattering, and extinction are used to characterize orientations of nanorods and other nanoparticles. The experimentally measured unique optical properties of these composites, which stem from the collective plasmonic effect of the gold nanorods with long-range order in a liquid crystal matrix, are reproduced in computer simulations. A simple phenomenological model based on anisotropic surface interaction explains the alignment of gold nanorods dispersed in liquid crystals and the physical underpinnings behind our observations.

  20. Deducing Shape of Anisotropic Particles in Solution from Light Scattering: Spindles and Nanorods

    NASA Astrophysics Data System (ADS)

    Tsuper, Ilona; Terrano, Daniel; Streletzky, Kiril A.; Dement'eva, Olga V.; Semyonov, Sergey A.; Rudoy, Victor M.

    Depolarized Dynamic Light Scattering (DDLS) enables to measure rotational and translational diffusion of nanoparticles suspended in solution. The particle size, shape, diffusion, and interactions can then be inferred from the DDLS data using various models of diffusion. Incorporating the technique of DDLS to analyze the dimensions of easily imaged elongated particles, such as Iron (III) oxyhydroxide (FeOOH) Spindles and gold Nanorods, allows testing of the models for rotational and translational diffusion of elongated particles in solution. This, in turn, can help to better interpret DDLS data on hard-to-image anisotropic wet systems such as micelles, microgels, and protein complexes. This study focused on FeOOH Spindles and gold nanorod particles. The light scattering results on FeOOH analyzed using the basic model of non-interacting prolate ellipsoids yielded dimensions within 17% of the SEM measured dimensions. The dimensions of gold nanorod obtained from the straight cylinder model of DDLS data provided results within 25% of the sizes that were obtained from TEM. The nanorod DDLS data was also analyzed by a spherocylinder model.

  1. Beyond TQM: Competition and Cooperation Create the Agile Institution.

    ERIC Educational Resources Information Center

    Godbey, Galen

    1993-01-01

    The market environment for higher education is being shaped by developments in technology, business practices, partnerships between education and industry, and adoption of Total Quality Management principles. Shrewd college administrators will combine competitiveness and cooperation to maintain or enhance their institutions' distinctiveness in the…

  2. Competitive disadvantage makes attitudes towards rape less negative.

    PubMed

    Nunes, Kevin L; Pettersen, Cathrine

    2011-10-12

    Evolutionary theorists have argued that perceived competitive disadvantage may lead to more positive evaluation of, and greater likelihood of engaging in, risky and antisocial behavior. However, experimental studies have not yet examined the effects of competitive disadvantage on perceptions of rape. In the current study, we created a manipulation of perceived competitive status to test its effects on beliefs about rape. In one condition, participants were made to feel disadvantaged relative to male peers in terms of financial, physical, and intellectual power, whereas in the other condition they were made to feel advantaged. Participants were 120 heterosexual male undergraduate students. The manipulation was effective; compared to participants in the advantage condition, those in the disadvantage condition rated themselves as significantly worse off financially, shorter, in worse physical shape, and as having lower course marks than the average male student at the university. Compared to perceived competitive advantage, perceived disadvantage led to less negative attitudes towards rape. However, perceived competitive status did not significantly affect justifications and excuses for rape. Future studies using similar experimental manipulations can complement correlational studies and may contribute to greater clarity, precision, and sophistication of research and theory on the role of competitive disadvantage in rape.

  3. Dust models compatible with Planck intensity and polarization data in translucent lines of sight

    NASA Astrophysics Data System (ADS)

    Guillet, V.; Fanciullo, L.; Verstraete, L.; Boulanger, F.; Jones, A. P.; Miville-Deschênes, M.-A.; Ysard, N.; Levrier, F.; Alves, M.

    2018-02-01

    Context. Current dust models are challenged by the dust properties inferred from the analysis of Planck observations in total and polarized emission. Aims: We propose new dust models compatible with polarized and unpolarized data in extinction and emission for translucent lines of sight (0.5 < AV < 2.5). Methods: We amended the DustEM tool to model polarized extinction and emission. We fit the spectral dependence of the mean extinction, polarized extinction, total and polarized spectral energy distributions (SEDs) with polycyclic aromatic hydrocarbons, astrosilicate and amorphous carbon (a-C) grains. The astrosilicate population is aligned along the magnetic field lines, while the a-C population may be aligned or not. Results: With their current optical properties, oblate astrosilicate grains are not emissive enough to reproduce the emission to extinction polarization ratio P353/pV derived with Planck data. Successful models are those using prolate astrosilicate grains with an elongation a/b = 3 and an inclusion of 20% porosity. The spectral dependence of the polarized SED is steeper in our models than in the data. Models perform slightly better when a-C grains are aligned. A small (6%) volume inclusion of a-C in the astrosilicate matrix removes the need for porosity and perfect grain alignment, and improves the fit to the polarized SED. Conclusions: Dust models based on astrosilicates can be reconciled with data by adapting the shape of grains and adding inclusions of porosity or a-C in the astrosilicate matrix.

  4. Evolutionary Pathways for Asteroid Satellites

    NASA Astrophysics Data System (ADS)

    Jacobson, Seth Andrew

    2015-08-01

    The YORP-induced rotational fission hypothesis is a proposed mechanism for the creation of small asteroid binaries, which make up approximately 1/6-th of the near-Earth asteroid and small Main Belt asteroid populations. The YORP effect is a radiative torque that rotationally accelerates asteroids on timescales of thousands to millions of years. As asteroids rotationally accelerate, centrifugal accelerations on material within the body can match gravitational accelerations holding that material in place. When this occurs, that material goes into orbit. Once in orbit that material coalesces into a companion that undergoes continued dynamical evolution.Observations with radar, photometric and direct imaging techniques reveal a diverse array of small asteroid satellites. These systems can be sorted into a number of morphologies according to size, multiplicity of members, dynamical orbit and spin states, and member shapes. For instance, singly synchronous binaries have short separation distances between the two members, rapidly rotating oblate primary members, and tidally locked prolate secondary members. Other confirmed binary morphologies include doubly synchronous, tight asynchronous and wide asynchronous binaries. Related to these binary morphologies are unbound paired asteroid systems and bi-lobate contact binaries.A critical test for the YORP-induced rotational fission hypothesis is whether the binary asteroids produced evolve to the observed binary and related systems. In this talk I will review how this evolution is believed to occur according to gravitational dynamics, mutual body tides and the binary YORP effect.

  5. Simulation of particle size distributions in Polar Mesospheric Clouds from Microphysical Models

    NASA Astrophysics Data System (ADS)

    Thomas, G. E.; Merkel, A.; Bardeen, C.; Rusch, D. W.; Lumpe, J. D.

    2009-12-01

    The size distribution of ice particles is perhaps the most important observable aspect of microphysical processes in Polar Mesospheric Cloud (PMC) formation and evolution. A conventional technique to derive such information is from optical observation of scattering, either passive solar scattering from photometric or spectrometric techniques, or active backscattering by lidar. We present simulated size distributions from two state-of-the-art models using CARMA sectional microphysics: WACCM/CARMA, in which CARMA is interactively coupled with WACCM3 (Bardeen et al, 2009), and stand-alone CARMA forced by WACCM3 meteorology (Merkel et al, this meeting). Both models provide well-resolved size distributions of ice particles as a function of height, location and time for realistic high-latitude summertime conditions. In this paper we present calculations of the UV scattered brightness at multiple scattering angles as viewed by the AIM Cloud Imaging and Particle Size (CIPS) satellite experiment. These simulations are then considered discretely-sampled “data” for the scattering phase function, which are inverted using a technique (Lumpe et al, this meeting) to retrieve particle size information. We employ a T-matrix scattering code which applies to a wide range of non-sphericity of the ice particles, using the conventional idealized prolate/oblate spheroidal shape. This end-to-end test of the relatively new scattering phase function technique provides insight into both the retrieval accuracy and the information content in passive remote sensing of PMC.

  6. Reorientation-effect measurement of the first 2+ state in 12C: Confirmation of oblate deformation

    NASA Astrophysics Data System (ADS)

    Kumar Raju, M.; Orce, J. N.; Navrátil, P.; Ball, G. C.; Drake, T. E.; Triambak, S.; Hackman, G.; Pearson, C. J.; Abrahams, K. J.; Akakpo, E. H.; Al Falou, H.; Churchman, R.; Cross, D. S.; Djongolov, M. K.; Erasmus, N.; Finlay, P.; Garnsworthy, A. B.; Garrett, P. E.; Jenkins, D. G.; Kshetri, R.; Leach, K. G.; Masango, S.; Mavela, D. L.; Mehl, C. V.; Mokgolobotho, M. J.; Ngwetsheni, C.; O'Neill, G. G.; Rand, E. T.; Sjue, S. K. L.; Sumithrarachchi, C. S.; Svensson, C. E.; Tardiff, E. R.; Williams, S. J.; Wong, J.

    2018-02-01

    A Coulomb-excitation reorientation-effect measurement using the TIGRESS γ-ray spectrometer at the TRIUMF/ISAC II facility has permitted the determination of the 〈 21+ ‖ E 2 ˆ ‖21+ 〉 diagonal matrix element in 12C from particle-γ coincidence data and state-of-the-art no-core shell model calculations of the nuclear polarizability. The nuclear polarizability for the ground and first-excited (21+) states in 12C have been calculated using chiral NN N4LO500 and NN+3NF350 interactions, which show convergence and agreement with photo-absorption cross-section data. Predictions show a change in the nuclear polarizability with a substantial increase between the ground state and first excited 21+ state at 4.439 MeV. The polarizability of the 21+ state is introduced into the current and previous Coulomb-excitation reorientation-effect analyses of 12C. Spectroscopic quadrupole moments of QS (21+) = + 0.053 (44) eb and QS (21+) = + 0.08 (3) eb are determined, respectively, yielding a weighted average of QS (21+) = + 0.071 (25) eb, in agreement with recent ab initio calculations. The present measurement confirms that the 21+ state of 12C is oblate and emphasizes the important role played by the nuclear polarizability in Coulomb-excitation studies of light nuclei.

  7. Low-latitude glaciation and rapid changes in the Earth's obliquity explained by obliquity-oblateness feedback

    NASA Astrophysics Data System (ADS)

    Williams, Darren M.; Kasting, James F.; Frakes, Lawrence A.

    1998-12-01

    Palaeomagnetic data suggest that the Earth was glaciated at low latitudes during the Palaeoproterozoic, (about 2.4-2.2Gyr ago) and Neoproterozoic (about 820-550Myr ago) eras, although some of the Neoproterozoic data are disputed,. If the Earth's magnetic field was aligned more or less with its spin axis, as it is today, then either the polar ice caps must have extended well down into the tropics - the `snowball Earth' hypothesis - or the present zonation of climate with respect to latitude must have been reversed. Williams has suggested that the Earth's obliquity may have been greater than 54° during most of its history, which would have made the Equator the coldest part of the planet. But this would require a mechanism to bring the obliquity down to its present value of 23.5°. Here we propose that obliquity-oblateness feedback could have reduced the Earth's obliquity by tens of degrees in less than 100Myr if the continents were situated so as to promote the formation of large polar ice sheets. A high obliquity for the early Earth may also provide a natural explanation for the present inclination of the lunar orbit with respect to the ecliptic (5°), which is otherwise difficult to explain.

  8. Low-latitude glaciation and rapid changes in the Earth's obliquity explained by obliquity-oblateness feedback.

    PubMed

    Williams, D M; Kasting, J F; Frakes, L A

    1998-12-03

    Palaeomagnetic data suggest that the Earth was glaciated at low latitudes during the Palaeoproterozoic (about 2.4-2.2 Gyr ago) and Neoproterozoic (about 820-550 Myr ago) eras, although some of the Neoproterozoic data are disputed. If the Earth's magnetic field was aligned more or less with its spin axis, as it is today, then either the polar ice caps must have extended well down into the tropics-the 'snowball Earth' hypothesis-or the present zonation of climate with respect to latitude must have been reversed. Williams has suggested that the Earth's obliquity may have been greater than 54 degrees during most of its history, which would have made the Equator the coldest part of the planet. But this would require a mechanism to bring the obliquity down to its present value of 23.5 degrees. Here we propose that obliquity-oblateness feedback could have reduced the Earth's obliquity by tens of degrees in less than 100 Myr if the continents were situated so as to promote the formation of large polar ice sheets. A high obliquity for the early Earth may also provide a natural explanation for the present inclination of the lunar orbit with respect to the ecliptic (5 degrees), which is otherwise difficult to explain.

  9. Reconstructing liver shape and position from MR image slices using an active shape model

    NASA Astrophysics Data System (ADS)

    Fenchel, Matthias; Thesen, Stefan; Schilling, Andreas

    2008-03-01

    We present an algorithm for fully automatic reconstruction of 3D position, orientation and shape of the human liver from a sparsely covering set of n 2D MR slice images. Reconstructing the shape of an organ from slice images can be used for scan planning, for surgical planning or other purposes where 3D anatomical knowledge has to be inferred from sparse slices. The algorithm is based on adapting an active shape model of the liver surface to a given set of slice images. The active shape model is created from a training set of liver segmentations from a group of volunteers. The training set is set up with semi-manual segmentations of T1-weighted volumetric MR images. Searching for the optimal shape model that best fits to the image data is done by maximizing a similarity measure based on local appearance at the surface. Two different algorithms for the active shape model search are proposed and compared: both algorithms seek to maximize the a-posteriori probability of the grey level appearance around the surface while constraining the surface to the space of valid shapes. The first algorithm works by using grey value profile statistics in normal direction. The second algorithm uses average and variance images to calculate the local surface appearance on the fly. Both algorithms are validated by fitting the active shape model to abdominal 2D slice images and comparing the shapes, which have been reconstructed, to the manual segmentations and to the results of active shape model searches from 3D image data. The results turn out to be promising and competitive to active shape model segmentations from 3D data.

  10. Rigid shape matching by segmentation averaging.

    PubMed

    Wang, Hongzhi; Oliensis, John

    2010-04-01

    We use segmentations to match images by shape. The new matching technique does not require point-to-point edge correspondence and is robust to small shape variations and spatial shifts. To address the unreliability of segmentations computed bottom-up, we give a closed form approximation to an average over all segmentations. Our method has many extensions, yielding new algorithms for tracking, object detection, segmentation, and edge-preserving smoothing. For segmentation, instead of a maximum a posteriori approach, we compute the "central" segmentation minimizing the average distance to all segmentations of an image. For smoothing, instead of smoothing images based on local structures, we smooth based on the global optimal image structures. Our methods for segmentation, smoothing, and object detection perform competitively, and we also show promising results in shape-based tracking.

  11. Demixing and nematic behaviour of oblate hard spherocylinders and hard spheres mixtures: Monte Carlo simulation and Parsons-Lee theory

    NASA Astrophysics Data System (ADS)

    Gámez, Francisco; Acemel, Rafael D.; Cuetos, Alejandro

    2013-10-01

    Parsons-Lee approach is formulated for the isotropic-nematic transition in a binary mixture of oblate hard spherocylinders and hard spheres. Results for the phase coexistence and for the equation of state in both phases for fluids with different relative size and composition ranges are presented. The predicted behaviour is in agreement with Monte Carlo simulations in a qualitative fashion. The study serves to provide a rational view of how to control key aspects of the behaviour of these binary nematogenic colloidal systems. This behaviour can be tuned with an appropriate choice of the relative size and molar fractions of the depleting particles. In general, the mixture of discotic and spherical particles is stable against demixing up to very high packing fractions. We explore in detail the narrow geometrical range where demixing is predicted to be possible in the isotropic phase. The influence of molecular crowding effects on the stability of the mixture when spherical molecules are added to a system of discotic colloids is also studied.

  12. Intrasexual competition in females: evidence for sexual selection?

    PubMed

    Rosvall, Kimberly A

    2011-11-01

    In spite of recent interest in sexual selection in females, debate exists over whether traits that influence female-female competition are sexually selected. This review uses female-female aggressive behavior as a model behavioral trait for understanding the evolutionary mechanisms promoting intrasexual competition, focusing especially on sexual selection. I employ a broad definition of sexual selection, whereby traits that influence competition for mates are sexually selected, whereas those that directly influence fecundity or offspring survival are naturally selected. Drawing examples from across animal taxa, including humans, I examine 4 predictions about female intrasexual competition based on the abundance of resources, the availability of males, and the direct or indirect benefits those males provide. These patterns reveal a key sex difference in sexual selection: Although females may compete for the number of mates, they appear to compete more so for access to high-quality mates that provide direct and indirect (genetic) benefits. As is the case in males, intrasexual selection in females also includes competition for essential resources required for access to mates. If mate quality affects the magnitude of mating success, then restricting sexual selection to competition for quantity of mates may ignore important components of fitness in females and underestimate the role of sexual selection in shaping female phenotype. In the future, understanding sex differences in sexual selection will require further exploration of the extent of mutual intrasexual competition and the incorporation of quality of mating success into the study of sexual selection in both sexes.

  13. Semi-analytical Karhunen-Loeve representation of irregular waves based on the prolate spheroidal wave functions

    NASA Astrophysics Data System (ADS)

    Lee, Gibbeum; Cho, Yeunwoo

    2018-01-01

    A new semi-analytical approach is presented to solving the matrix eigenvalue problem or the integral equation in Karhunen-Loeve (K-L) representation of random data such as irregular ocean waves. Instead of direct numerical approach to this matrix eigenvalue problem, which may suffer from the computational inaccuracy for big data, a pair of integral and differential equations are considered, which are related to the so-called prolate spheroidal wave functions (PSWF). First, the PSWF is expressed as a summation of a small number of the analytical Legendre functions. After substituting them into the PSWF differential equation, a much smaller size matrix eigenvalue problem is obtained than the direct numerical K-L matrix eigenvalue problem. By solving this with a minimal numerical effort, the PSWF and the associated eigenvalue of the PSWF differential equation are obtained. Then, the eigenvalue of the PSWF integral equation is analytically expressed by the functional values of the PSWF and the eigenvalues obtained in the PSWF differential equation. Finally, the analytically expressed PSWFs and the eigenvalues in the PWSF integral equation are used to form the kernel matrix in the K-L integral equation for the representation of exemplary wave data such as ordinary irregular waves. It is found that, with the same accuracy, the required memory size of the present method is smaller than that of the direct numerical K-L representation and the computation time of the present method is shorter than that of the semi-analytical method based on the sinusoidal functions.

  14. Shock competition and circulation deposition in shock interactions with heavy prolate cylinders

    NASA Astrophysics Data System (ADS)

    Ray, Jaideep; Samtaney, R.; Zabusky, Norman J.

    1998-11-01

    We investigate the interaction of a shock wave with elliptical heavier-than-ambient gaseous cylinders. We identify two different modes of interaction between the incident and transmitted shocks on the leeward side of the cylinder which yeild different mechanisms for the baroclinic vorticity generation. We model the net baroclinic circulation generated on the interface by both the shocks and validate the model via numerical simulations of the Euler equations. The principal parameters governing the interaction are the Mach number of the shock (M), the density ratio of the two gases (η, η > 1), λ (the aspect ratio) and the ratio of specific heats of the two gases. We derive a time ratio which uniquely characterizes the mode of interaction. In the range 1.2 <= M <= 3.5, 1.54 <= η <= 5.04 and λ = 1.5 and 3.0, our model predicts circulation within 10 % of the simulation results. Further developments on this topic will be posted on the Web at http://www.caip.rutgers.edu/ ~jaray/ellipse/RM_ellipse.html.

  15. Robe's restricted problem of 2+2 bodies when the bigger primary is a Roche ellipsoid and the smaller primary is an oblate body

    NASA Astrophysics Data System (ADS)

    Kaur, Bhavneet; Aggarwal, Rajiv

    2014-01-01

    In this problem, one of the primaries of mass m 1 is a Roche ellipsoid filled with a homogeneous incompressible fluid of density ρ 1. The smaller primary of mass m 2 is an oblate body outside the Ellipsoid. The third and the fourth bodies (of mass m 3 and m 4 respectively) are small solid spheres of density ρ 3 and ρ 4 respectively inside the Ellipsoid, with the assumption that the mass and the radius of the third and the fourth body are infinitesimal. We assume that m 2 is describing a circle around m 1. The masses m 3 and m 4 mutually attract each other, do not influence the motions of m 1 and m 2 but are influenced by them. We have extended the Robe's restricted three-body problem to 2+2 body problem under the assumption that the fluid body assumes the shape of the Roche ellipsoid (Chandrashekhar in Ellipsoidal figures of equilibrium, Chap. 8, Dover, New York, 1987). We have taken into consideration all the three components of the pressure field in deriving the expression for the buoyancy force viz (i) due to the own gravitational field of the fluid (ii) that originating in the attraction of m 2 (iii) that arising from the centrifugal force. In this paper, equilibrium solutions of m 3 and m 4 and their linear stability are analyzed. We have proved that there exist only six equilibrium solutions of the system, provided they lie within the Roche ellipsoid. In a system where the primaries are considered as Earth-Moon and m 3, m 4 as submarines, the equilibrium solutions of m 3 and m 4 respectively when the displacement is given in the direction of x 1-axis or x 2-axis are unstable.

  16. Us versus Them: Social Identity Shapes Neural Responses to Intergroup Competition and Harm

    PubMed Central

    Cikara, Mina; Botvinick, Matthew M.; Fiske, Susan T.

    2013-01-01

    Intergroup competition makes social identity salient, which affects how people respond to competitors’ hardships. The failures of a fellow group member are painful, while those of a rival group member may give pleasure—a feeling that may motivate harming rivals. The present study examines whether valuation-related neural responses to rival groups’ failures correlate with likelihood of harming individuals associated with those rivals. Avid fans of the Red Sox and Yankees teams viewed baseball plays while undergoing fMRI. Subjectively negative outcomes (favored-failure, rival-success) activated anterior cingulate cortex and insula, while positive outcomes (favored-success, rival-failure—even against a third team) activated ventral striatum. The ventral striatum effect, associated with subjective pleasure, also correlated with self-reported likelihood of aggressing against a fan of the rival team (controlling for general aggression). Outcomes of social group competition can directly affect primary reward-processing neural systems, with implications for intergroup harm. PMID:21270447

  17. A Quarter Century of Variation in Color and Allometric Characteristics of Eggs from a Rain Forest Population of the Pearly-eyed Thrasher (Margarops fuscatus).

    Treesearch

    WAYNE J. ARENDT

    2004-01-01

    Egg color, size, and shape vary considerably within and among female Pearly-eyed Thrashers (Margarops fuscatus). Results of a 25-yr study (1979-2004) are presented to provide comparative data. In a sample of 4,128 eggs, typical shape was prolate spheroid; but several variations were observed, depending on the age, stature, and physiological condition of the female, as...

  18. Impacts of regulated competition on pricing in Chinese pharmaceutical market under urban employee basic medical insurance.

    PubMed

    Zhao, Mingyue; Wu, Jing

    2017-06-01

    Examine the effects of regulated competition on the drug pricing in China. Based on product-level data, a regression method was employed for pricing by using data from Tianjin Urban Employee Basic Medical Insurance (UEBMI) database. The market competition measures distinguished generic competition within the same molecule from therapeutic competition within the same therapeutic class. The increases in pricing are inversely related to the number of generic competitions. The generic sub-group results vary from the originator sub-group. For the generics, generic competition has a significantly reduced effect on the price; however, only therapeutic competition has a significantly reduced effect on the originator price. Regulated competition has a positive role in shaping the pharmaceutical market. Furthermore, regulated competition affects the price differently for the sub-groups. The promotion of competition between generic and originator in order to reap full competition benefit and reduce frictions among policies are necessary.

  19. First-order analytic propagation of satellites in the exponential atmosphere of an oblate planet

    NASA Astrophysics Data System (ADS)

    Martinusi, Vladimir; Dell'Elce, Lamberto; Kerschen, Gaëtan

    2017-04-01

    The paper offers the fully analytic solution to the motion of a satellite orbiting under the influence of the two major perturbations, due to the oblateness and the atmospheric drag. The solution is presented in a time-explicit form, and takes into account an exponential distribution of the atmospheric density, an assumption that is reasonably close to reality. The approach involves two essential steps. The first one concerns a new approximate mathematical model that admits a closed-form solution with respect to a set of new variables. The second step is the determination of an infinitesimal contact transformation that allows to navigate between the new and the original variables. This contact transformation is obtained in exact form, and afterwards a Taylor series approximation is proposed in order to make all the computations explicit. The aforementioned transformation accommodates both perturbations, improving the accuracy of the orbit predictions by one order of magnitude with respect to the case when the atmospheric drag is absent from the transformation. Numerical simulations are performed for a low Earth orbit starting at an altitude of 350 km, and they show that the incorporation of drag terms into the contact transformation generates an error reduction by a factor of 7 in the position vector. The proposed method aims at improving the accuracy of analytic orbit propagation and transforming it into a viable alternative to the computationally intensive numerical methods.

  20. Diffractive imaging of a rotational wavepacket in nitrogen molecules with femtosecond megaelectronvolt electron pulses

    DOE PAGES

    Yang, Jie; Guehr, Markus; Vecchione, Theodore; ...

    2016-04-05

    Imaging changes in molecular geometries on their natural femtosecond timescale with sub-Angström spatial precision is one of the critical challenges in the chemical sciences, as the nuclear geometry changes determine the molecular reactivity. For photoexcited molecules, the nuclear dynamics determine the photoenergy conversion path and efficiency. Here we report a gas-phase electron diffraction experiment using megaelectronvolt (MeV) electrons, where we captured the rotational wavepacket dynamics of nonadiabatically laser-aligned nitrogen molecules. We achieved a combination of 100 fs root-mean-squared temporal resolution and sub-Angstrom (0.76 Å) spatial resolution that makes it possible to resolve the position of the nuclei within the molecule.more » In addition, the diffraction patterns reveal the angular distribution of the molecules, which changes from prolate (aligned) to oblate (anti-aligned) in 300 fs. Lastly, our results demonstrate a significant and promising step towards making atomically resolved movies of molecular reactions.« less

  1. Competitive Science: Is Competition Ruining Science?

    PubMed Central

    Casadevall, Arturo

    2015-01-01

    Science has always been a competitive undertaking. Despite recognition of the benefits of cooperation and team science, reduced availability of funding and jobs has made science more competitive than ever. Here we consider the benefits of competition in providing incentives to scientists and the adverse effects of competition on resource sharing, research integrity, and creativity. The history of science shows that transformative discoveries often occur in the absence of competition, which only emerges once fields are established and goals are defined. Measures to encourage collaboration and ameliorate competition in the scientific enterprise are discussed. PMID:25605760

  2. AMS analysis and flow source relationship of lava flows and ignimbrites from the eastern Trans-Mexican Volcanic Belt, Mexico

    NASA Astrophysics Data System (ADS)

    Caballero, C. I.; Alva-Valdivia, L. M.; Morales-Barrera, W.; Rodríguez, S. R.

    2013-05-01

    The results of an AMS analysis carried on 36 sites from a late Miocene - Holocene volcanic stratigraphic sequence from the eastern Trans-Mexican Volcanic Belt is presented. 22 sites (450 samples) belong to lava flows, mainly of basaltic composition, from different emission centers from the Xalapa Monogenitc Volcanic Field, (Rodríguez et al 2010, González-Mercado, 2005), "Cofre de Perote Vent Cluster" (CPVC), "Naolinco Volcanic Field" (NVF), (Siebert and Carrasco-Núñez, 2002), and the Chiconquiaco-Palma Sola volcanic complex (López-Infanzón, 1991; Ferrari et al., 2005). 14 sites belong to the widely distributed El Castillo rhyolitic ignimbrite dated 2.44 to 2.21 Ma (Morales-Barrera, 2009) which is a non-welded to welded ignimbrite. AMS measurements were performed with a KLY2 Kappabridge and processed with Anisoft software using Jelinek statistics. Sometimes a density distribution analysis was also performed when magnetic fabric showed more dispersed distribution patterns. AMS ellipsoids from basalt sites show mostly prolate shapes, while those from ignimbrites show mostly oblate shapes, which may partly due to magnetic mineralogy and also to flow dynamics. Flow directions were mostly obtained from the imbrication angle of magnetic foliation (evaluated from kmin axis mean as corresponding to its pole) and considering the symmetry of the axes distribution. Flow direction inferences are discussed in relation with flow source when it is clearly evident from geologic field observations, as it is usually the case with basalt lava flows. While in ignimbrites, flow inferences from petrographic and facies distributions are compared with AMS flow inferences, showing agreement between them in some cases but not in others, may be due to local tilting occurring after ignimbrite emplacement.

  3. Void Growth and Coalescence in Dynamic Fracture of FCC and BCC Metals - Molecular Dynamics Study

    NASA Astrophysics Data System (ADS)

    Seppälä, Eira

    2004-03-01

    In dynamic fracture of ductile metals, the state of tension causes the nucleation of voids, typically from inclusions or grain boundary junctions, which grow and ultimately coalesce to form the fracture surface. Significant plastic deformation occurs in the process, including dislocations emitted to accommodate the growing voids. We have studied at the atomistic scale growth and coalescence processes of voids with concomitant dislocation formation. Classical molecular dynamics (MD) simulations of one and two pre-existing spherical voids initially a few nanometers in radius have been performed in single-crystal face-centered-cubic (FCC) and body-centered-cubic (BCC) lattices under dilational strain with high strain-rates. Million atom simulations of single void growth have been done to study the effect of stress triaxiality,^1 along with strain rate and lattice-structure dependence. An interesting prolate-to-oblate transition in the void shape in uniaxial expansion has been observed and quantitatively analyzed. The simulations also confirm that the plastic strain results directly from the void growth. Interaction and coalescence between two voids have been studied utilizing a parallel MD code in a seven million atom system. In particular, the movement of centers of the voids, linking of the voids, and the shape changes in vicinity of the other void are studied. Also the critical intervoid ligament distance after which the voids can be treated independently has been searched. ^1 E. T. Seppälä, J. Belak, and R. E. Rudd, cond-mat/0310541, submitted to Phys. Rev. B. Acknowledgment: This work was done in collaboration with Dr. James Belak and Dr. Robert E. Rudd, LLNL. It was performed under the auspices of the US Dept. of Energy at the Univ. of Cal./Lawrence Livermore National Laboratory under contract no. W-7405-Eng-48.

  4. Intrasexual competition in females: evidence for sexual selection?

    PubMed Central

    2011-01-01

    In spite of recent interest in sexual selection in females, debate exists over whether traits that influence female–female competition are sexually selected. This review uses female–female aggressive behavior as a model behavioral trait for understanding the evolutionary mechanisms promoting intrasexual competition, focusing especially on sexual selection. I employ a broad definition of sexual selection, whereby traits that influence competition for mates are sexually selected, whereas those that directly influence fecundity or offspring survival are naturally selected. Drawing examples from across animal taxa, including humans, I examine 4 predictions about female intrasexual competition based on the abundance of resources, the availability of males, and the direct or indirect benefits those males provide. These patterns reveal a key sex difference in sexual selection: Although females may compete for the number of mates, they appear to compete more so for access to high-quality mates that provide direct and indirect (genetic) benefits. As is the case in males, intrasexual selection in females also includes competition for essential resources required for access to mates. If mate quality affects the magnitude of mating success, then restricting sexual selection to competition for quantity of mates may ignore important components of fitness in females and underestimate the role of sexual selection in shaping female phenotype. In the future, understanding sex differences in sexual selection will require further exploration of the extent of mutual intrasexual competition and the incorporation of quality of mating success into the study of sexual selection in both sexes. PMID:22479137

  5. The global dark halo structure of the Andromeda galaxy

    NASA Astrophysics Data System (ADS)

    Hayashi, Kohei; Chiba, Masashi

    2014-01-01

    We set new limits on the global shape of the dark halo in the Andromeda galaxy based on axisymmetric mass models constructed by Hayashi & Chiba (2012). This is motivated by the fact that CDM models predict non-spherical virialized dark halos, which reflect the process of mass assembly in the galactic scale. Based on the application of our models to latest kinematical data of globular clusters and dwarf spheroidal galaxies in the Andromeda halo, we find that the most plausible cases for Andromeda yield not a spherical but a prolate shape for its dark halo. We also find that the prolate dark halo is consistent with theoretical predictions in which the satellites are distributed anisotropically and preferentially located along major axes of their galactic host halos. It is a reflection of the intimate connection between galactic dark matter halos and the cosmic web.

  6. Competitive science: is competition ruining science?

    PubMed

    Fang, Ferric C; Casadevall, Arturo

    2015-04-01

    Science has always been a competitive undertaking. Despite recognition of the benefits of cooperation and team science, reduced availability of funding and jobs has made science more competitive than ever. Here we consider the benefits of competition in providing incentives to scientists and the adverse effects of competition on resource sharing, research integrity, and creativity. The history of science shows that transformative discoveries often occur in the absence of competition, which only emerges once fields are established and goals are defined. Measures to encourage collaboration and ameliorate competition in the scientific enterprise are discussed. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Resource Availability and Competition Shape the Evolution of Survival and Growth Ability in a Bacterial Community

    PubMed Central

    Pekkonen, Minna; Ketola, Tarmo; Laakso, Jouni T.

    2013-01-01

    Resource availability is one of the main factors determining the ecological dynamics of populations or species. Fluctuations in resource availability can increase or decrease the intensity of resource competition. Resource availability and competition can also cause evolutionary changes in life-history traits. We studied how community structure and resource fluctuations affect the evolution of fitness related traits using a two-species bacterial model system. Replicated populations of Serratia marcescens (copiotroph) and Novosophingobium capsulatum (oligotroph) were reared alone or together in environments with intergenerational, pulsed resource renewal. The comparison of ancestral and evolved bacterial clones with 1 or 13 weeks history in pulsed resource environment revealed species-specific changes in life-history traits. Co-evolution with S. marcescens caused N. capsulatum clones to grow faster. The evolved S. marcescens clones had higher survival and slower growth rate then their ancestor. The survival increased in all treatments after one week, and thereafter continued to increase only in the S. marcescens monocultures that experienced large resource pulses. Though adaptive radiation is often reported in evolution studies with bacteria, clonal variation increased only in N. capsulatum growth rate. Our results suggest that S. marcescens adapted to the resource renewal cycle whereas N. capsulatum was more affected by the interspecific competition. Our results exemplify species-specific evolutionary response to both competition and environmental variation. PMID:24098791

  8. Resource availability and competition shape the evolution of survival and growth ability in a bacterial community.

    PubMed

    Pekkonen, Minna; Ketola, Tarmo; Laakso, Jouni T

    2013-01-01

    Resource availability is one of the main factors determining the ecological dynamics of populations or species. Fluctuations in resource availability can increase or decrease the intensity of resource competition. Resource availability and competition can also cause evolutionary changes in life-history traits. We studied how community structure and resource fluctuations affect the evolution of fitness related traits using a two-species bacterial model system. Replicated populations of Serratia marcescens (copiotroph) and Novosphingobium capsulatum (oligotroph) were reared alone or together in environments with intergenerational, pulsed resource renewal. The comparison of ancestral and evolved bacterial clones with 1 or 13 weeks history in pulsed resource environment revealed species-specific changes in life-history traits. Co-evolution with S. marcescens caused N. capsulatum clones to grow faster. The evolved S. marcescens clones had higher survival and slower growth rate then their ancestor. The survival increased in all treatments after one week, and thereafter continued to increase only in the S. marcescens monocultures that experienced large resource pulses. Though adaptive radiation is often reported in evolution studies with bacteria, clonal variation increased only in N. capsulatum growth rate. Our results suggest that S. marcescens adapted to the resource renewal cycle whereas N. capsulatum was more affected by the interspecific competition. Our results exemplify species-specific evolutionary response to both competition and environmental variation.

  9. Demolishing the competition: the longitudinal link between competitive video games, competitive gambling, and aggression.

    PubMed

    Adachi, Paul J C; Willoughby, Teena

    2013-07-01

    The majority of research on the link between video games and aggression has focused on the violent content in games. In contrast, recent experimental research suggests that it is video game competition, not violence, that has the greatest effect on aggression in the short-term. However, no researchers have examined the long-term relationship between video game competition and aggression. In addition, if competition in video games is a significant reason for the link between video game play and aggression, then other competitive activities, such as competitive gambling, also may predict aggression over time. In the current study, we directly assessed the socialization (competitive video game play and competitive gambling predicts aggression over time) versus selection hypotheses (aggression predicts competitive video game play and competitive gambling over time). Adolescents (N = 1,492, 50.8 % female) were surveyed annually from Grade 9 to Grade 12 about their video game play, gambling, and aggressive behaviors. Greater competitive video game play and competitive gambling predicted higher levels of aggression over time, after controlling for previous levels of aggression, supporting the socialization hypothesis. The selection hypothesis also was supported, as aggression predicted greater competitive video game play and competitive gambling over time, after controlling for previous competitive video game play and competitive gambling. Our findings, taken together with the fact that millions of adolescents play competitive video games every day and that competitive gambling may increase as adolescents transition into adulthood, highlight the need for a greater understanding of the relationship between competition and aggression.

  10. Long-term evolution of orbits about a precessing oblate planet: 3. A semianalytical and a purely numerical approach

    NASA Astrophysics Data System (ADS)

    Gurfil, Pini; Lainey, Valéry; Efroimsky, Michael

    2007-12-01

    Construction of an accurate theory of orbits about a precessing and nutating oblate planet, in terms of osculating elements defined in a frame associated with the equator of date, was started in Efroimsky and Goldreich (2004) and Efroimsky (2004, 2005, 2006a, b). Here we continue this line of research by combining that analytical machinery with numerical tools. Our model includes three factors: the J 2 of the planet, its nonuniform equinoctial precession described by the Colombo formalism, and the gravitational pull of the Sun. This semianalytical and seminumerical theory, based on the Lagrange planetary equations for the Keplerian elements, is then applied to Deimos on very long time scales (up to 1 billion years). In parallel with the said semianalytical theory for the Keplerian elements defined in the co-precessing equatorial frame, we have also carried out a completely independent, purely numerical, integration in a quasi-inertial Cartesian frame. The results agree to within fractions of a percent, thus demonstrating the applicability of our semianalytical model over long timescales. Another goal of this work was to make an independent check of whether the equinoctial-precession variations predicted for a rigid Mars by the Colombo model could have been sufficient to repel its moons away from the equator. An answer to this question, in combination with our knowledge of the current position of Phobos and Deimos, will help us to understand whether the Martian obliquity could have undergone the large changes ensuing from the said model (Ward 1973; Touma and Wisdom 1993, 1994; Laskar and Robutel 1993), or whether the changes ought to have been less intensive (Bills 2006; Paige et al. 2007). It has turned out that, for low initial inclinations, the orbit inclination reckoned from the precessing equator of date is subject only to small variations. This is an extension, to non-uniform equinoctial precession given by the Colombo model, of an old result obtained by

  11. Earth horizon modeling and application to static Earth sensors on TRMM spacecraft

    NASA Technical Reports Server (NTRS)

    Keat, J.; Challa, M.; Tracewell, D.; Galal, K.

    1995-01-01

    Data from Earth sensor assemblies (ESA's) often are used in the attitude determination (AD) for both spinning and Earth-pointing spacecraft. The ESA's on previous such spacecraft for which the ground-based AD operation was performed by the Flight Dynamics Division (FDD) used the Earth scanning method. AD on such spacecraft requires a model of the shape of the Earth disk as seen from the spacecraft. AD accuracy requirements often are too severe to permit Earth oblateness to be ignored when modeling disk shape. Section 2 of this paper reexamines and extends the methods for Earth disk shape modeling employed in AD work at FDD for the past decade. A new formulation, based on a more convenient Earth flatness parameter, is introduced, and the geometric concepts are examined in detail. It is shown that the Earth disk can be approximated as an ellipse in AD computations. Algorithms for introducing Earth oblateness into the AD process for spacecraft carrying scanning ESA's have been developed at FDD and implemented into the support systems. The Tropical Rainfall Measurement Mission (TRMM) will be the first spacecraft with AD operation performed at FDD that uses a different type of ESA - namely, a static one - containing four fixed detectors D(sub i) (i = 1 to 4). Section 3 of this paper considers the effect of Earth oblateness on AD accuracy for TRMM. This effect ideally will not induce AD errors on TRMM when data from all four D(sub i) are present. When data from only two or three D(sub i) are available, however, a spherical Earth approximation can introduce errors of 0.05 to 0.30 deg on TRMM. These oblateness-induced errors are eliminated by a new algorithm that uses the results of Section 2 to model the Earth disk as an ellipse.

  12. Evolution of phenotypic clusters through competition and local adaptation along an environmental gradient.

    PubMed

    Leimar, Olof; Doebeli, Michael; Dieckmann, Ulf

    2008-04-01

    We have analyzed the evolution of a quantitative trait in populations that are spatially extended along an environmental gradient, with gene flow between nearby locations. In the absence of competition, there is stabilizing selection toward a locally best-adapted trait that changes gradually along the gradient. According to traditional ideas, gradual spatial variation in environmental conditions is expected to lead to gradual variation in the evolved trait. A contrasting possibility is that the trait distribution instead breaks up into discrete clusters. Doebeli and Dieckmann (2003) argued that competition acting locally in trait space and geographical space can promote such clustering. We have investigated this possibility using deterministic population dynamics for asexual populations, analyzing our model numerically and through an analytical approximation. We examined how the evolution of clusters is affected by the shape of competition kernels, by the presence of Allee effects, and by the strength of gene flow along the gradient. For certain parameter ranges clustering was a robust outcome, and for other ranges there was no clustering. Our analysis shows that the shape of competition kernels is important for clustering: the sign structure of the Fourier transform of a competition kernel determines whether the kernel promotes clustering. Also, we found that Allee effects promote clustering, whereas gene flow can have a counteracting influence. In line with earlier findings, we could demonstrate that phenotypic clustering was favored by gradients of intermediate slope.

  13. Lifetime measurement of neutron-rich even-even molybdenum isotopes

    NASA Astrophysics Data System (ADS)

    Ralet, D.; Pietri, S.; Rodríguez, T.; Alaqeel, M.; Alexander, T.; Alkhomashi, N.; Ameil, F.; Arici, T.; Ataç, A.; Avigo, R.; Bäck, T.; Bazzacco, D.; Birkenbach, B.; Boutachkov, P.; Bruyneel, B.; Bruce, A. M.; Camera, F.; Cederwall, B.; Ceruti, S.; Clément, E.; Cortés, M. L.; Curien, D.; De Angelis, G.; Désesquelles, P.; Dewald, M.; Didierjean, F.; Domingo-Pardo, C.; Doncel, M.; Duchêne, G.; Eberth, J.; Gadea, A.; Gerl, J.; Ghazi Moradi, F.; Geissel, H.; Goigoux, T.; Goel, N.; Golubev, P.; González, V.; Górska, M.; Gottardo, A.; Gregor, E.; Guastalla, G.; Givechev, A.; Habermann, T.; Hackstein, M.; Harkness-Brennan, L.; Henning, G.; Hess, H.; Hüyük, T.; Jolie, J.; Judson, D. S.; Jungclaus, A.; Knoebel, R.; Kojouharov, I.; Korichi, A.; Korten, W.; Kurz, N.; Labiche, M.; Lalović, N.; Louchart-Henning, C.; Mengoni, D.; Merchán, E.; Million, B.; Morales, A. I.; Napoli, D.; Naqvi, F.; Nyberg, J.; Pietralla, N.; Podolyák, Zs.; Pullia, A.; Prochazka, A.; Quintana, B.; Rainovski, G.; Reese, M.; Recchia, F.; Reiter, P.; Rudolph, D.; Salsac, M. D.; Sanchis, E.; Sarmiento, L. G.; Schaffner, H.; Scheidenberger, C.; Sengele, L.; Singh, B. S. Nara; Singh, P. P.; Stahl, C.; Stezowski, O.; Thoele, P.; Valiente Dobon, J. J.; Weick, H.; Wendt, A.; Wieland, O.; Winfield, J. S.; Wollersheim, H. J.; Zielinska, M.; PreSPEC Collaboration

    2017-03-01

    Background: In the neutron-rich A ≈100 mass region, rapid shape changes as a function of nucleon number as well as coexistence of prolate, oblate, and triaxial shapes are predicted by various theoretical models. Lifetime measurements of excited levels in the molybdenum isotopes allow the determination of transitional quadrupole moments, which in turn provides structural information regarding the predicted shape change. Purpose: The present paper reports on the experimental setup, the method that allowed one to measure the lifetimes of excited states in even-even molybdenum isotopes from mass A =100 up to mass A =108 , and the results that were obtained. Method: The isotopes of interest were populated by secondary knock-out reaction of neutron-rich nuclei separated and identified by the GSI fragment separator at relativistic beam energies and detected by the sensitive PreSPEC-AGATA experimental setup. The latter included the Lund-York-Cologne calorimeter for identification, tracking, and velocity measurement of ejectiles, and AGATA, an array of position sensitive segmented HPGe detectors, used to determine the interaction positions of the γ ray enabling a precise Doppler correction. The lifetimes were determined with a relativistic version of the Doppler-shift-attenuation method using the systematic shift of the energy after Doppler correction of a γ -ray transition with a known energy. This relativistic Doppler-shift-attenuation method allowed the determination of mean lifetimes from 2 to 250 ps. Results: Even-even molybdenum isotopes from mass A =100 to A =108 were studied. The decays of the low-lying states in the ground-state band were observed. In particular, two mean lifetimes were measured for the first time: τ =29 .7-9.1+11.3 ps for the 4+ state of 108Mo and τ =3 .2-0.7+0.7 ps for the 6+ state of 102Mo. Conclusions: The reduced transition strengths B (E 2 ) , calculated from lifetimes measured in this experiment, compared to beyond

  14. The competition between magnetocrystalline and shape anisotropy on the magnetic and magneto-transport properties of crystallographically aligned CuCr2Se4 thin films

    NASA Astrophysics Data System (ADS)

    Edelman, I.; Esters, M.; Johnson, D. C.; Yurkin, G.; Tarasov, A.; Rautsky, M.; Volochaev, M.; Lyashchenko, S.; Ivantsov, R.; Petrov, D.; Solovyov, L. A.

    2017-12-01

    Crystallographically aligned nanocrystalline films of the ferromagnetic spinel CuCr2Se4 were successfully synthesized and their structure and alignment were confirmed by X-ray diffraction and high-resolution transmission electron microscopy. The average size of the crystallites is about 200-250 nm, and their (1 1 1) crystal planes are parallel to the film plane. A good match of the film's electronic structure to that of bulk CuCr2Se4 is confirmed by transverse Kerr effect measurements. Four easy 〈1 1 1〉 axes are present in the films. One of these axes is oriented perpendicular and three others are oriented at an angle of 19.5° relative to the film plane. The magnetic properties of the films are determined by a competition between the out-of-plane magnetocrystalline anisotropy and the in-plane shape anisotropy. Magnetic measurements show that the dominating type of anisotropy switches from shape to magnetocrystalline anisotropy near 160 K, which leads to a switch of the effective easy axis from inside the film plane at room temperature to perpendicular to the film plane as the temperature decreases. At last, a moderately large, negative value of the low-temperature magnetoresistance was observed for the first time in CuCr2Se4 films.

  15. Analytical Expressions for Deformation from an Arbitrarily Oriented Spheroid in a Half-Space

    NASA Astrophysics Data System (ADS)

    Cervelli, P. F.

    2013-12-01

    Deformation from magma chambers can be modeled by an elastic half-space with an embedded cavity subject to uniform pressure change along its interior surface. For a small number of cavity shapes, such as a sphere or a prolate spheroid, closed-form, analytical expressions for deformation have been derived, although these only approximate the uniform-pressure-change boundary condition, with the approximation becoming more accurate as the ratio of source depth to source dimension increases. Using the method of Elshelby [1957] and Yang [1988], which consists of a distribution of double forces and centers of dilatation along the vertical axis, I have derived expressions for displacement from a finite spheroid of arbitrary orientation and aspect ratio that are exact in an infinite elastic medium and approximate in a half-space. The approximation, like those for other cavity shapes, becomes increasingly accurate as the depth to source ratio grows larger, and is accurate to within a few percent in most real-world cases. I have also derived expressions for the deformation-gradient tensor, i.e., the derivatives of each component of displacement with respect to each coordinate direction. These can be transformed easily into the strain and stress tensors. The expressions give deformation both at the surface and at any point within the half-space, and include conditional statements that account for limiting cases that would otherwise prove singular. I have developed MATLAB code for these expressions (and their derivatives), which I use to demonstrate the accuracy of the approximation by showing how well the uniform-pressure-change boundary condition is satisfied in a variety of cases. I also show that a vertical, oblate spheroid with a zero-length vertical axis is equivalent to the penny-shaped crack of Fialko [2001] in an infinite medium and an excellent approximation in a half-space. Finally, because, in many cases, volume change is more tangible than pressure change, I have

  16. Rock magnetic and anisotropy of magnetic susceptibility(AMS) of earthquake affected soft sediments: Examples from Shillong and Latur (Deccan Trap), India.

    NASA Astrophysics Data System (ADS)

    Lakshmi, B. V., ,, Dr.; Gawali, Mr. Praveen B.; Deenadayalan, K., ,, Dr.; Ramesh, D. S., ,, Prof.

    2017-04-01

    Rock magnetic and anisotropy of magnetic susceptibility (AMS) of earthquake affected soft sediments: Examples from Shillong and Latur (Deccan Trap), India. B.V.Lakshmi, Praveen B.Gawali, K.Deenadayalan and D.S.Ramesh Indian Institute of Geomagnetism, plot 5, sector 18, Near Kalamboli Highway, New Panvel(W), Navi Mumbai 410218 Combined rock magnetism and anisotropy of magnetic susceptibility (AMS) studies on earthquake induced soft and non-soft sediments from Shillong and Latur, India have thrown up interesting results. The morphology of hysteresis loops, the pattern of isothermal remanent magnetization (IRM) acquisition, and temperature dependence of susceptibility indicate that titano-magnetite/magnetite is the main magnetic carrier in these sediments. We also analyzed the anisotropy of magnetic susceptibility (AMS) of liquefaction features within the seismically active Dauki fault, Shillong Plateau. We discovered that host sediments (non-liquefied), are characterized by an oblate AMS ellipsoid and liquefied sediment are characterized by a triaxial AMS ellipsoid, well grouped maximum susceptibility axis K1 (NNW-SSE trend). Field evidence and AMS analysis indicate that most of these features were emplaced by injection inferred to be due to seismically triggered fluidization. Anisotropy of magnetic susceptibility (AMS) of deformed and undeformed unconsolidated clay samples of Deccan Trap terrain from the 2000-year-old paleoearthquake site of Ther village, Maharashtra, India, was also studied. Such deposits are rare in the compact basaltic terrain because of which the results acquired are very important. The undeformed clay samples exhibit typical sedimentary fabric with an oblate AMS ellipsoid, whereas the deformed samples are tightly grouped in the inferred compression direction, probably effected by an earthquake, exhibiting prolate as well as oblate AMS ellipsoids. Rock magnetic and AMS methodology can help understand the behavior of different sediments to the

  17. Spheroidal models of the exterior gravitational field of Asteroids Bennu and Castalia

    NASA Astrophysics Data System (ADS)

    Sebera, Josef; Bezděk, Aleš; Pešek, Ivan; Henych, Tomáš

    2016-07-01

    Gravitational field of small bodies can be modeled e.g. with mascons, a polyhedral model or in terms of harmonic functions. If the shape of a body is close to the spheroid, it is advantageous to employ the spheroidal basis functions for expressing the gravitational field. Spheroidal harmonic models, similarly to the spherical ones, may be used in navigation and geophysical tasks. We focus on modeling the exterior gravitational field of oblate-like Asteroid (101955) Bennu and prolate-like Asteroid (4769) Castalia with spheroidal harmonics. Using the Gauss-Legendre quadrature and the spheroidal basis functions, we converted the gravitational potential of a particular polyhedral model of a constant density into the spheroidal harmonics. The results consist of (i) spheroidal harmonic coefficients of the exterior gravitational field for the Asteroids Bennu and Castalia, (ii) spherical harmonic coefficients for Bennu, and (iii) the first and second-order Cartesian derivatives in the local spheroidal South-East-Up frame for both bodies. The spheroidal harmonics offer biaxial flexibility (compared with spherical harmonics) and low computational costs that allow high-degree expansions (compared with ellipsoidal harmonics). The obtained spheroidal models for Bennu and Castalia represent the exterior gravitational field valid on and outside the Brillouin spheroid but they can be used even under this surface. For Bennu, 5 m above the surface the agreement with point-wise integration was 1% or less, while it was about 10% for Castalia due to its more irregular shape. As the shape models may produce very high frequencies, it was crucial to use higher maximum degree to reduce the aliasing. We have used the maximum degree 360 to achieve 9-10 common digits (in RMS) when reconstructing the input (the gravitational potential) from the spheroidal coefficients. The physically meaningful maximum degree may be lower (≪ 360) but its particular value depends on the distance and/or on the

  18. Animacy and Competition in Relative Clause Production: A Cross-Linguistic Investigation

    ERIC Educational Resources Information Center

    Gennari, Silvia P.; Mirkovic, Jelena; MacDonald, Maryellen C.

    2012-01-01

    This work investigates production preferences in different languages. Specifically, it examines how animacy, competition processes, and language-specific constraints shape speakers' choices of structure. English, Spanish and Serbian speakers were presented with depicted events in which either an animate or inanimate entity was acted upon by an…

  19. Contrasting impacts of competition on ecological and social trait evolution in songbirds

    PubMed Central

    Tobias, Joseph A.; Burns, Kevin J.; Mason, Nicholas A.; Shultz, Allison J.; Morlon, Hélène

    2018-01-01

    Competition between closely related species has long been viewed as a powerful selective force that drives trait diversification, thereby generating phenotypic diversity over macroevolutionary timescales. However, although the impact of interspecific competition has been documented in a handful of iconic insular radiations, most previous studies have focused on traits involved in resource use, and few have examined the role of competition across large, continental radiations. Thus, the extent to which broad-scale patterns of phenotypic diversity are shaped by competition remain largely unclear, particularly for social traits. Here, we estimate the effect of competition between interacting lineages by applying new phylogenetic models that account for such interactions to an exceptionally complete dataset of resource-use traits and social signaling traits for the entire radiation of tanagers (Aves, Thraupidae), the largest family of songbirds. We find that interspecific competition strongly influences the evolution of traits involved in resource use, with a weaker effect on plumage signals, and very little effect on song. Our results provide compelling evidence that interspecific exploitative competition contributes to ecological trait diversification among coexisting species, even in a large continental radiation. In comparison, signal traits mediating mate choice and social competition seem to diversify under different evolutionary models, including rapid diversification in the allopatric stage of speciation. PMID:29385141

  20. Contrasting impacts of competition on ecological and social trait evolution in songbirds.

    PubMed

    Drury, Jonathan P; Tobias, Joseph A; Burns, Kevin J; Mason, Nicholas A; Shultz, Allison J; Morlon, Hélène

    2018-01-01

    Competition between closely related species has long been viewed as a powerful selective force that drives trait diversification, thereby generating phenotypic diversity over macroevolutionary timescales. However, although the impact of interspecific competition has been documented in a handful of iconic insular radiations, most previous studies have focused on traits involved in resource use, and few have examined the role of competition across large, continental radiations. Thus, the extent to which broad-scale patterns of phenotypic diversity are shaped by competition remain largely unclear, particularly for social traits. Here, we estimate the effect of competition between interacting lineages by applying new phylogenetic models that account for such interactions to an exceptionally complete dataset of resource-use traits and social signaling traits for the entire radiation of tanagers (Aves, Thraupidae), the largest family of songbirds. We find that interspecific competition strongly influences the evolution of traits involved in resource use, with a weaker effect on plumage signals, and very little effect on song. Our results provide compelling evidence that interspecific exploitative competition contributes to ecological trait diversification among coexisting species, even in a large continental radiation. In comparison, signal traits mediating mate choice and social competition seem to diversify under different evolutionary models, including rapid diversification in the allopatric stage of speciation.

  1. Visual feature integration and focused attention: response competition from multiple distractor features.

    PubMed

    Lavie, N

    1997-05-01

    Predictions from Treisman's feature integration theory of attention were tested in a variant of the response-competition paradigm. Subjects made choice responses to particular color-shape conjunctions (e.g., a purple cross vs. a green circle) while withholding their responses to the opposite conjunctions (i.e., a purple circle vs. a green cross). The results showed that compatibility effects were based on both distractor color and shape. For unattended distractors in preknown irrelevant positions, compatibility effects were equivalent for conjunctive distractors (e.g., a purple cross and a blue triangle) and for disjunctive distractors (e.g., a purple triangle and a blue cross). Manipulation of attention to the distractors positions resulted in larger compatibility effects from conjoined features. These results accord with Treisman's claim that correct conjunction information is unavailable under conditions of inattention, and they provide new information on response-competition effects from multiple features.

  2. Galactic Warps in Triaxial Halos

    NASA Astrophysics Data System (ADS)

    Jeon, Myoungwon; Kim, Sungsoo S.; Ann, Hong Bae

    2009-05-01

    We study the behavior of galactic disks in triaxial halos both numerically and analytically to see if warps can be excited and sustained in triaxial potentials. We consider the following two scenarios: (1) galactic disks that are initially tilted relative to the equatorial plane of the halo (for a pedagogical purpose), and (2) tilted infall of dark matter relative to the equatorial plane of the disk and the halo. With numerical simulations of 100,000 disk particles in a fixed halo potential, we find that in triaxial halos, warps can be excited and sustained just as in spherical or axisymmetric halos but they show some oscillatory behavior and even can be transformed to a polar-ring system if the halo has a prolate-like triaxiality. The nonaxisymmetric component of the halo causes the disk to nutate, and the differential nutation between the inner and outer parts of the disk generally makes the magnitude of the warp slightly diminish and fluctuate. We also find that warps are relatively weaker in oblate and oblate-like triaxial halos, and since these halos are the halo configurations of disk galaxies inferred by cosmological simulations, our results are consistent with the fact that most of the observed warps are quite weak. We derive approximate formulae for the torques exerted on the disk by the triaxial halo and the dark matter torus, and with these formulae we successfully describe the behavior of the disks in our simulations. The techniques used in deriving these formulae could be applied for realistic halos with more complex structures.

  3. 3D controlled electrorotation of conducting tri-axial ellipsoidal nanoparticles

    NASA Astrophysics Data System (ADS)

    Weis Goldstein, Ben; Miloh, Touvia

    2017-05-01

    We present a theoretical study of 3D electrorotation of ideally polarizable (metallic) nano∖micro-orthotropic particles that are freely suspended in an unbounded monovalent symmetric electrolyte. The metallic tri-axial ellipsoidal particle is subjected to three independent uniform AC electric fields acting along the three principal axes of the particle. The analysis of the electrokinetic problem is carried under the Poisson-Nernst-Planck approximation and the standard "weak" field assumption. For simplicity, we consider the electric double layer as thin and the Dukhin number to be small. Both nonlinear phenomena of dielectrophoresis induced by the dipole-moment within the particle and the induced-charge electrophoresis caused by the Coulombic force density within the Debye layer in the solute surrounding the conducting particle are analytically analyzed by linearization, constructing approximate expressions for the total dipolophoresis angular particle motion for various geometries. The analytical expressions thus obtained are valid for an arbitrary tri-axial orthotropic (exhibiting three planes of symmetry) particle, excited by an arbitrary ambient three-dimensional AC electric field of constant amplitude. The present study is general in the sense that by choosing different geometric parameters of the ellipsoidal particle, the corresponding nonlinear electrostatic problem governed by the Robin (mixed-type) boundary condition can be reduced to common nano-shapes including spheres, slender rods (needles), prolate and oblate spheroids, as well as flat disks. Furthermore, by controlling the parameters (amplitudes and phases) of the forcing electric field, one can reduce the present general 3D electrokinetic model to the familiar planar electro-rotation (ROT) and electro-orientation (EOR) cases.

  4. A computer model for the simulation of nanoparticle deposition in the alveolar structures of the human lungs.

    PubMed

    Sturm, Robert

    2015-11-01

    According to epidemiological and experimental studies, inhalation of nanoparticles is commonly believed as a main trigger for several pulmonary dysfunctions and lung diseases. Concerning the transport and deposition of such nano-scale particles in the different structures of the human lungs, some essential questions are still in need of a clarification. Therefore, main objective of the study was the simulation of nanoparticle deposition in the alveolar region of the human respiratory tract (HRT). Respective factors describing the aerodynamic behavior of spherical and non-spherical particles in the inhaled air stream (i.e., Cunningham slip correction factors, dynamic shape factors, equivalent-volume diameters, aerodynamic diameters) were computed. Alveolar deposition of diverse nanomaterials according to several known mechanisms, among which Brownian diffusion and sedimentation play a superior role, was approximated by the use of empirical and analytical formulae. Deposition calculations were conducted with a currently developed program, termed NANODEP, which allows the variation of numerous input parameters with regard to particle geometry, lung morphometry, and aerosol inhalation. Generally, alveolar deposition of nanoparticles concerned for this study varies between 0.1% and 12.4% during sitting breathing and between 2.0% and 20.1% during heavy-exercise breathing. Prolate particles (e.g., nanotubes) exhibit a significant increase in deposition, when their aspect ratio is enhanced. In contrast, deposition of oblate particles (e.g., nanoplatelets) is remarkably declined with any reduction of the aspect ratio. The study clearly demonstrates that alveolar deposition of nanoparticles represents a topic certainly being of superior interest for physicists and respiratory physicians in future.

  5. Tectonic insight based on anisotropy of magnetic susceptibility and compaction studies in the Sierras Australes thrust and fold belt (southwest Gondwana boundary, Argentina)

    NASA Astrophysics Data System (ADS)

    Arzadún, Guadalupe; Tomezzoli, Renata N.; Cesaretti, Nora N.

    2016-04-01

    The Sierras Australes fold and thrust belt (Buenos Aires Province, Argentina) was in the southwestern Gondwanaland margin during the Paleozoic. The Tunas Formation (Permian) is exposed along the eastern part of it and continues eastward beneath the Claromecó Basin. Anisotropy of magnetic susceptibility (AMS) and compaction studies are described and compared with previous paleomagnetic studies with the aim of determining direction and magnitude of the main stresses acting during the sedimentation of the Tunas Formation. The anisotropy ellipsoids are triaxial with oblate or prolate shapes, reflecting different stages of layer parallel shortening during the evolution of the basin. Kmax axes trend NW-SE, parallel to the fold axes, while Kmin move from a horizontal (base) to a vertical orientation at the top of the succession, showing a change from a tectonic to almost a sedimentary fabric. The magnitude of anisotropy and compaction degree decreases toward the top of the succession. The AMS results are consistent with the outcrop structural observations and the compaction and paleomagnetic data. Regional pattern indicates a compression from the SW along this part of Gondwana, with a migration of the orogenic front and attenuation toward the NE in the foreland basin during the Upper Paleozoic. This deformation, locally assigned to the San Rafael noncollisional orogenic phase, is the result of the latitudinal movements toward the Equator of Gondwana (southern plates) and Laurentia (northern plates) during the Permian. This movement is the result of a rearrangement of the microplates that collided with Gondwana during the Late Devonian, to configure Pangea during the Triassic.

  6. TESTING THE NO-HAIR THEOREM WITH OBSERVATIONS IN THE ELECTROMAGNETIC SPECTRUM. II. BLACK HOLE IMAGES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johannsen, Tim; Psaltis, Dimitrios, E-mail: timj@physics.arizona.ed, E-mail: dpsaltis@email.arizona.ed

    2010-07-20

    According to the no-hair theorem, all astrophysical black holes are fully described by their masses and spins. This theorem can be tested observationally by measuring (at least) three different multipole moments of the spacetimes of black holes. In this paper, we analyze images of black holes within a framework that allows us to calculate observables in the electromagnetic spectrum as a function of the mass, spin, and, independently, the quadrupole moment of a black hole. We show that a deviation of the quadrupole moment from the expected Kerr value leads to images of black holes that are either prolate ormore » oblate depending on the sign and magnitude of the deviation. In addition, there is a ring-like structure around the black hole shadow with a diameter of {approx}10 black hole masses that is substantially brighter than the image of the underlying accretion flow and that is independent of the astrophysical details of accretion flow models. We show that the shape of this ring depends directly on the mass, spin, and quadrupole moment of the black hole and can be used for an independent measurement of all three parameters. In particular, we demonstrate that this ring is highly circular for a Kerr black hole with a spin a {approx}< 0.9 M, independent of the observer's inclination, but becomes elliptical and asymmetric if the no-hair theorem is violated. Near-future very long baseline interferometric observations of Sgr A* will image this ring and may allow for an observational test of the no-hair theorem.« less

  7. Simulation of the shape and size of casein micelles in a film state.

    PubMed

    Gebhardt, Ronald; Kulozik, Ulrich

    2014-04-01

    Size fractionated casein micelles (CMs) form homogeneous films in which they are densely packed. The lateral size of CMs in films can be well resolved by surface-sensitive methods, but the estimation of their heights is still a challenge. We show that height information can be obtained from scattering patterns of GISAXS experiments on highly ordered casein films. We use an elastic scattering approach within the distorted wave Born approximation (DWBA) to simulate for the first time the two-dimensional intensity distribution of a GISAXS experiment of the CM near their critical angle. The model which fits the GISAXS data best considers an ellipsoidal form factor for the CM and an arrangement on a hexagonal lattice. Our results indicate that during film formation the spherical solution structure of CMs becomes compressed in the direction perpendicular to the film surface. In the film state, the micelles assume an oblate ellipsoidal shape with an aspect ratio of 1.9. Hence, their surface and contact area to the surrounding increases. As a result, the density of κ-casein on the micellar surface decreases, which could influence the functional properties of coatings and films.

  8. Preemptive spatial competition under a reproduction-mortality constraint.

    PubMed

    Allstadt, Andrew; Caraco, Thomas; Korniss, G

    2009-06-21

    Spatially structured ecological interactions can shape selection pressures experienced by a population's different phenotypes. We study spatial competition between phenotypes subject to antagonistic pleiotropy between reproductive effort and mortality rate. The constraint we invoke reflects a previous life-history analysis; the implied dependence indicates that although propagation and mortality rates both vary, their ratio is fixed. We develop a stochastic invasion approximation predicting that phenotypes with higher propagation rates will invade an empty environment (no biotic resistance) faster, despite their higher mortality rate. However, once population density approaches demographic equilibrium, phenotypes with lower mortality are favored, despite their lower propagation rate. We conducted a set of pairwise invasion analyses by simulating an individual-based model of preemptive competition. In each case, the phenotype with the lowest mortality rate and (via antagonistic pleiotropy) the lowest propagation rate qualified as evolutionarily stable among strategies simulated. This result, for a fixed propagation to mortality ratio, suggests that a selective response to spatial competition can extend the time scale of the population's dynamics, which in turn decelerates phenotypic evolution.

  9. Endocrine and aggressive responses to competition are moderated by contest outcome, gender, individual versus team competition, and implicit motives

    PubMed Central

    Oxford, Jon K.; Tiedtke, Johanna M.; Ossmann, Anna; Özbe, Dominik

    2017-01-01

    This study examined hormonal responses to competition in relation to gender, social context, and implicit motives. Participants (N = 326) were randomly assigned to win or lose in a 10-round, virtual face-to-face competition, in same-sex individual- and team-competition contexts. Saliva samples, taken before and twice after the competition, were assayed for testosterone (T), estradiol (E), progesterone (P), and cortisol (C). Implicit needs for power (nPower) and affiliation (nAffiliation) were assessed with a picture-story exercise before the competition. Aggression was measured via the volume at which participants set noise blasts for their opponents. Men competing individually and women competing as teams showed similar T increases after winning. C was differentially associated with outcome in the team matches, with higher post-match cortisol for winning women, and an opposite effect for male teams. Analyses including implicit motives indicated that situational variables interacted with motivational needs in shaping hormonal responses to competition: in naturally cycling women, nPower predicted T increases after winning and T and E decreases after losing. In men, nPower predicted T increases after losing and decreases after winning. In male teams, nPower predicted C increases after losing, but not after winning, whereas in individual competitions, nPower was a general negative predictor of C changes in women. nAffiliation predicted P increases for women competing as teams, and P decreases for women competing individually. Aggression was higher in men, losers, and teams than in women, winners, and individuals. High aggression was associated with high baseline C in women competing individually and with low baseline C and C decreases in women competing as teams and in men generally. Our findings suggest that while situational and gender factors play a role in hormonal responses to competition, they also depend on their interplay with motivational factors. They also

  10. EDITORIAL: Physics competitions Physics competitions

    NASA Astrophysics Data System (ADS)

    Jordens, H.; Mathelitsch, L.

    2009-11-01

    1. Physics competitions: aims and realizations One aim of physics competitions is to increase the interest of young students, primarily at upper secondary level, to physics and natural sciences in general. A competition has motivational aspects known usually from sports events or games—comparing one's own ability with others, of course with the desire to be better and to win. If competitions reach nationwide and even international levels, additional stimulation is created. Competitions provide greatest attraction to possible winners, to the group of gifted people in a particular field. This implies that science contests are excellent tools for the promotion of talented students. Traditional teaching has been shown to have problems in supporting this group of students. Very often teachers are overstretched with the demands of teaching both low- and high-level students. Extracurricular activities are therefore a good chance to relieve the teacher, and to give talented students the opportunity for appropriate training and challenge. The competitions, however, have a broader impact and address more young people than one might guess from the statements above. Training courses and selection at school level give a larger group of students extra and, to some extent, complimentary education in physics. The degree of complexity of the tasks corresponds very often to the standards of the next level of education in the school system. Interestingly, many physics competitions have their origin in countries beyond the former Iron Curtain. They started as regional and national tournaments, were joined by neighbouring countries and have grown, in some cases, to events with participants from more than 80 countries. Although the features mentioned above are common to the different competitions, there are distinct differences between them [1]. The International Physics Olympiad (IPhO) is the oldest international physics competition for students at upper secondary level [2]. It dates

  11. Contraction of high eccentricity satellite orbits using uniformly regular KS canonical elements with oblate diurnally varying atmosphere.

    NASA Astrophysics Data System (ADS)

    Raj, Xavier James

    2016-07-01

    atmosphere to be oblate only. In this paper a new non-singular analytical theory is developed for the motion of high eccentricity satellite orbits with oblate diurnally varying atmosphere in terms of the uniformly regular KS canonical elements. The analytical solutions are generated up to fourth-order terms using a new independent variable and c (a small parameter dependent on the flattening of the atmosphere). Due to symmetry, only two of the nine equations need to be solved analytically to compute the state vector and change in energy at the end of each revolution. The theory is developed on the assumption that density is constant on the surfaces of spheroids of fixed ellipticity ɛ (equal to the Earth's ellipticity, 0.00335) whose axes coincide with the Earth's axis. Numerical experimentation with the analytical solution for a wide range of perigee height, eccentricity, and orbital inclination has been carried out up to 100 revolutions. Comparisons are made with numerically integrated values and found that they match quite well. Effectiveness of the present analytical solutions will be demonstrated by comparing the results with other analytical solutions in the literature.

  12. Competitive exclusion over broad spatial extents is a slow process: Evidence and implications for species distribution modeling

    USGS Publications Warehouse

    Yackulic, Charles B.

    2016-01-01

    There is considerable debate about the role of competition in shaping species distributions over broad spatial extents. This debate has practical implications because predicting changes in species' geographic ranges in response to ongoing environmental change would be simpler if competition could be ignored. While this debate has been the subject of many reviews, recent literature has not addressed the rates of relevant processes. This omission is surprising in that ecologists hypothesized decades ago that regional competitive exclusion is a slow process. The goal of this review is to reassess the debate under the hypothesis that competitive exclusion over broad spatial extents is a slow process.Available evidence, including simulations presented for the first time here, suggests that competitive exclusion over broad spatial extents occurs slowly over temporal extents of many decades to millennia. Ecologists arguing against an important role for competition frequently study modern patterns and/or range dynamics over periods of decades, while much of the evidence for competition shaping geographic ranges at broad spatial extents comes from paleoecological studies over time scales of centuries or longer. If competition is slow, as evidence suggests, the geographic distributions of some, perhaps many species, would continue to change over time scales of decades to millennia, even if environmental conditions did not continue to change. If the distributions of competing species are at equilibrium it is possible to predict species distributions based on observed species–environment relationships. However, disequilibrium is widespread as a result of competition and many other processes. Studies whose goal is accurate predictions over intermediate time scales (decades to centuries) should focus on factors associated with range expansion (colonization) and loss (local extinction), as opposed to current patterns. In general, understanding of modern range dynamics would be

  13. Ion beam-induced shaping of Ni nanoparticles embedded in a silica matrix: from spherical to prolate shape

    PubMed Central

    2011-01-01

    Present work reports the elongation of spherical Ni nanoparticles (NPs) parallel to each other, due to bombardment with 120 MeV Au+9 ions at a fluence of 5 × 1013 ions/cm2. The Ni NPs embedded in silica matrix have been prepared by atom beam sputtering technique and subsequent annealing. The elongation of Ni NPs due to interaction with Au+9 ions as investigated by cross-sectional transmission electron microscopy (TEM) shows a strong dependence on initial Ni particle size and is explained on the basis of thermal spike model. Irradiation induces a change from single crystalline nature of spherical particles to polycrystalline nature of elongated particles. Magnetization measurements indicate that changes in coercivity (Hc) and remanence ratio (Mr/Ms) are stronger in the ion beam direction due to the preferential easy axis of elongated particles in the beam direction. PMID:21711659

  14. Study of the Plutino Object (208996) 2003 AZ84 from Stellar Occultations: Size, Shape, and Topographic Features

    NASA Astrophysics Data System (ADS)

    Dias-Oliveira, A.; Sicardy, B.; Ortiz, J. L.; Braga-Ribas, F.; Leiva, R.; Vieira-Martins, R.; Benedetti-Rossi, G.; Camargo, J. I. B.; Assafin, M.; Gomes-Júnior, A. R.; Baug, T.; Chandrasekhar, T.; Desmars, J.; Duffard, R.; Santos-Sanz, P.; Ergang, Z.; Ganesh, S.; Ikari, Y.; Irawati, P.; Jain, J.; Liying, Z.; Richichi, A.; Shengbang, Q.; Behrend, R.; Benkhaldoun, Z.; Brosch, N.; Daassou, A.; Frappa, E.; Gal-Yam, A.; Garcia-Lozano, R.; Gillon, M.; Jehin, E.; Kaspi, S.; Klotz, A.; Lecacheux, J.; Mahasena, P.; Manfroid, J.; Manulis, I.; Maury, A.; Mohan, V.; Morales, N.; Ofek, E.; Rinner, C.; Sharma, A.; Sposetti, S.; Tanga, P.; Thirouin, A.; Vachier, F.; Widemann, T.; Asai, A.; Hayato, Watanabe; Hiroyuki, Watanabe; Owada, M.; Yamamura, H.; Hayamizu, T.; Bradshaw, J.; Kerr, S.; Tomioka, H.; Andersson, S.; Dangl, G.; Haymes, T.; Naves, R.; Wortmann, G.

    2017-07-01

    We present results derived from four stellar occultations by the plutino object (208996) 2003 AZ84, detected on 2011 January 8 (single-chord event), 2012 February 3 (multi-chord), 2013 December 2 (single-chord), and 2014 November 15 (multi-chord). Our observations rule out an oblate spheroid solution for 2003 AZ84's shape. Instead, assuming hydrostatic equilibrium, we find that a Jacobi triaxial solution with semiaxes (470+/- 20)× (383+/- 10)× (245+/- 8) km can better account for all our occultation observations. Combining these dimensions with the rotation period of the body (6.75 hr) and the amplitude of its rotation light curve, we derive a density ρ =0.87+/- 0.01 g cm-3, a geometric albedo {p}V=0.097+/- 0.009. A grazing chord observed during the 2014 occultation reveals a topographic feature along 2003 AZ84's limb, which can be interpreted as an abrupt chasm of width ˜23 km and depth > 8 km, or a smooth depression of width ˜80 km and depth ˜13 km (or an intermediate feature between those two extremes).

  15. Shape reanalysis and sensitivities utilizing preconditioned iterative boundary solvers

    NASA Technical Reports Server (NTRS)

    Guru Prasad, K.; Kane, J. H.

    1992-01-01

    The computational advantages associated with the utilization of preconditined iterative equation solvers are quantified for the reanalysis of perturbed shapes using continuum structural boundary element analysis (BEA). Both single- and multi-zone three-dimensional problems are examined. Significant reductions in computer time are obtained by making use of previously computed solution vectors and preconditioners in subsequent analyses. The effectiveness of this technique is demonstrated for the computation of shape response sensitivities required in shape optimization. Computer times and accuracies achieved using the preconditioned iterative solvers are compared with those obtained via direct solvers and implicit differentiation of the boundary integral equations. It is concluded that this approach employing preconditioned iterative equation solvers in reanalysis and sensitivity analysis can be competitive with if not superior to those involving direct solvers.

  16. Players' expertise and competition with others shape the satisfaction of competence needs, gaming gratifications, and contingent self-esteem in a gaming context.

    PubMed

    Kazakova, Snezhanka; Cauberghe, Veroline; Pandelaere, Mario; De Pelsmacker, Patrick

    2014-01-01

    The current study explores how competition and gaming expertise affect the satisfaction of competence needs and gaming gratifications. We demonstrate that competition moderates the effect of gaming expertise on the satisfaction of competence needs, which in turn affects game enjoyment and replay intention. Gaming expertise predicted players' need satisfaction, game enjoyment, and replay intention significantly better in a competitive compared to a noncompetitive context. The effect of gaming expertise on game enjoyment and replay intention was, furthermore, mediated by the satisfaction of competence needs. Finally, gaming expertise positively affected the importance of competition for players' self-esteem only in the competitive gaming context. The present findings demonstrate the importance of competition and gaming expertise for the satisfaction of competence needs, gaming gratifications, and the pursuit of self-esteem during gameplay, attesting to the applicability of self-determination theory to gaming contexts.

  17. The Welfare Effects of Monopoly versus Competition: A Clarification of Textbook Presentations.

    ERIC Educational Resources Information Center

    Lamdin, Douglas J.

    1992-01-01

    Addresses effects of monopoly and competition on societal welfare. Discusses inadequacy of economics textbooks. Concludes that most texts fail to explain the shape of monopolists' underlying cost curves. Argues that the monopolist's long run marginal cost curve cannot be obtained by horizontal summation of the long run marginal cost curves of…

  18. Push and Pull in the Classroom: Competition, Gender and the Neoliberal Subject

    ERIC Educational Resources Information Center

    Wilkins, Andrew

    2012-01-01

    In this paper I explore how learning strategies based on competition and zero-sum thinking are inscribed into the dynamics of classroom interaction shaping relations between high-achieving pupils, and link elements of these practices to market trends in British education policy discourse. A detour through the politico-historical negotiations…

  19. Simulating competitive egress of noncircular pedestrians.

    PubMed

    Hidalgo, R C; Parisi, D R; Zuriguel, I

    2017-04-01

    We present a numerical framework to simulate pedestrian dynamics in highly competitive conditions by means of a force-based model implemented with spherocylindrical particles instead of the traditional, symmetric disks. This modification of the individuals' shape allows one to naturally reproduce recent experimental findings of room evacuations through narrow doors in situations where the contact pressure among the pedestrians was rather large. In particular, we obtain a power-law tail distribution of the time lapses between the passage of consecutive individuals. In addition, we show that this improvement leads to new features where the particles' rotation acquires great significance.

  20. Competitive interactions among four pest species of earth mites (Acari: Penthaleidae).

    PubMed

    Umina, P A; Hoffmann, A A

    2005-04-01

    Earth mites are major winter pests of a variety of crops and pastures in southern Australia. Competition between four earth mite species was investigated using field and shadehouse experiments. The influence of different plant hosts on the frequency and intensity of competitive interactions also were examined. This information is important, because control attempts that eradicate one species of mite could be directly followed by an increase in abundance of another earth mite species. There were strong effects of intraspecific competition on the reproductive rate of species, while interspecific interactions between Halotydeus destructor (Tucker) and Penthaleus species and between the three Penthaleus species also were detected. Competitive abilities were altered on the different plant types. On pasture, the competitive advantage swayed between Penthaleus major (Dugés), H. destructor, and Penthaleus falcatus (Qin & Halliday). Penthaleus sp. x was the strongest competitor in a mixture of wheat, Triticum aestivum (L.), and oats, Avena sativa (L.), whereas on canola, Brassica napus (L.), and bristly ox-tongue, Picris echioides (L.), P. falcatus, and H. destructor were superior competitors. These results suggest that competition is a strong force influencing the abundance of earth mites in the field and that host plant factors are important in shaping the type of interactions. This highlights the importance of identifying mite species when considering control options and suggests that effective control recommendations need to be developed for each individual species.

  1. On the stability of triangular points in the relativistic R3BP when the bigger primary is oblate and the smaller one radiating with application on Cen X-4 binary system

    NASA Astrophysics Data System (ADS)

    Bello, Nakone; Umar, Aishetu

    2018-06-01

    In the framework of the relativistic R3BP, we examine the effects of oblateness of the primary body and radiation pressure of the secondary on the positions and stability of the triangular points L4,5. It is found that the parameters involved all affect the positions and increase in any of the parameters leads to a reduction in the size of the region of stability. Thus establishing their destabilizing tendencies. The presence of positive real roots or positive real part in complex roots affirms the instability of L4,5 of the problem when applied to Cen X-4.

  2. The Growth Dynamics of Words: How Historical Context Shapes the Competitive Linguistic Environment

    NASA Astrophysics Data System (ADS)

    Tenenbaum, Joel; Petersen, Alexander; Havlin, Shlomo; Stanley, H. Eugene

    2012-02-01

    Using the massive Google n-gram database of over 10^11 word uses in English, Hebrew, and Spanish, we explore the connection between the growth rates of relative word use and the observed growth rates of disparate competing actors in a common environment such as businesses, scientific journals, and universities, supporting the concept that a language's lexicon is a generic arena for competition, evolving according to selection laws. We find aggregate-level anomalies in the collective statistics corresponding to the time of key historical events such as World War II and the Balfour Declaration.

  3. Models for predicting the mass of lime fruits by some engineering properties.

    PubMed

    Miraei Ashtiani, Seyed-Hassan; Baradaran Motie, Jalal; Emadi, Bagher; Aghkhani, Mohammad-Hosein

    2014-11-01

    Grading fruits based on mass is important in packaging and reduces the waste, also increases the marketing value of agricultural produce. The aim of this study was mass modeling of two major cultivars of Iranian limes based on engineering attributes. Models were classified into three: 1-Single and multiple variable regressions of lime mass and dimensional characteristics. 2-Single and multiple variable regressions of lime mass and projected areas. 3-Single regression of lime mass based on its actual volume and calculated volume assumed as ellipsoid and prolate spheroid shapes. All properties considered in the current study were found to be statistically significant (ρ < 0.01). The results indicated that mass modeling of lime based on minor diameter and first projected area are the most appropriate models in the first and the second classifications, respectively. In third classification, the best model was obtained on the basis of the prolate spheroid volume. It was finally concluded that the suitable grading system of lime mass is based on prolate spheroid volume.

  4. Stimulus Competition in Pre/Post and Online Ratings in an Evaluative Learning Design

    ERIC Educational Resources Information Center

    Purkis, Helena M.; Lipp, Ottmar V.

    2010-01-01

    Evaluative learning is said to differ from Pavlovian associative learning in that it reflects stimulus contiguity, not contingency. Thus, evaluative learning should not be subject to stimulus competition, a proposal tested in the current experiments. Participants were presented in elemental and compound training phases with pictures of shapes as…

  5. Nonlinear electrohydrodynamics of leaky dielectric drops in the Quincke regime: Numerical simulations

    NASA Astrophysics Data System (ADS)

    Das, Debasish; Saintillan, David

    2015-11-01

    The deformation of leaky dielectric drops in a dielectric fluid medium when subject to a uniform electric field is a classic electrohydrodynamic phenomenon best described by the well-known Melcher-Taylor leaky dielectric model. In this work, we develop a three-dimensional boundary element method for the full leaky dielectric model to systematically study the deformation and dynamics of liquid drops in strong electric fields. We compare our results with existing numerical studies, most of which have been constrained to axisymmetric drops or have neglected interfacial charge convection by the flow. The leading effect of convection is to enhance deformation of prolate drops and suppress deformation of oblate drops, as previously observed in the axisymmetric case. The inclusion of charge convection also enables us to investigate the dynamics in the Quincke regime, in which experiments exhibit a symmetry-breaking bifurcation leading to a tank-treading regime. Our simulations confirm the existence of this bifurcation for highly viscous drops, and also reveal the development of sharp interfacial charge gradients driven by convection near the drop's equator. American Chemical Society, Petroleum Research Fund.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shum, Andrew D.; Parkinson, Dilworth Y.; Xiao, Xianghui

    The performance of polymer-electrolyte fuel cells is heavily dependent on proper management of liquid water. One particular reason is that liquid water can collect in the gas diffusion layers (GDLs) blocking the reactant flow to the catalyst layer. This results in increased mass-transport losses. At higher temperatures, evaporation of water becomes a dominant water-removal mechanism and specifically phase-change-induced (PCI) flow is present due to thermal gradients. This study used synchrotron based micro X-ray computed tomography (CT) to visualize and quantify the water distribution within gas diffusion layers subject to a thermal gradient. Plotting saturation as a function of through-plane distancemore » quantitatively shows water redistribution, where water evaporates at hotter locations and condenses in colder locations. The morphology of the 2 GDLs on the micro-scale, as well as evaporating water clusters, are resolved, indicating that the GDL voids are slightly prolate, whereas water clusters are oblate. From the mean radii of water distributions and visual inspection, it is observed that larger water clusters evaporate faster than smaller ones.« less

  7. Models of human platelet thrombospondin in solution. A dynamic light-scattering study.

    PubMed Central

    Vuillard, L; Clezardin, P; Miller, A

    1991-01-01

    The translational diffusion coefficient (D20,w) of human platelet thrombospondin was measured by dynamic light-scattering. D20,w, measured in 20 mM-Hepes buffer, pH 7.4, containing 350 mM-NaCl and 2 mM-CaCl2, was 1.73(+/- 0.02) x 10(-7) cm2.s-1. After removal of bound Ca2+ by addition of EDTA, D20,w decreased to 1.56(+/- 0.04) x 10(-7) cm2.s-1; this was not a consequence of aggregation. D20,w showed little sensitivity to NaCl concentration between 130 and 550 mM. Through hydrodynamic analysis combining D20,w and other parameters taken from the literature, two major types of models for thrombospondin can be proposed: either classic compact models (i.e. low degree of hydration) such as prolate or oblate ellipsoids with a high axial ratio (greater than 20) or models of low axial ratio made of multiple subunits with significant cavities (i.e. high degree of hydration). PMID:1902085

  8. Investigating Phase-Change-Induced Flow in Gas Diffusion Layers in Fuel Cells with X-ray Computed Tomography

    DOE PAGES

    Shum, Andrew D.; Parkinson, Dilworth Y.; Xiao, Xianghui; ...

    2017-10-07

    The performance of polymer-electrolyte fuel cells is heavily dependent on proper management of liquid water. One particular reason is that liquid water can collect in the gas diffusion layers (GDLs) blocking the reactant flow to the catalyst layer. This results in increased mass-transport losses. At higher temperatures, evaporation of water becomes a dominant water-removal mechanism and specifically phase-change-induced (PCI) flow is present due to thermal gradients. This study used synchrotron based micro X-ray computed tomography (CT) to visualize and quantify the water distribution within gas diffusion layers subject to a thermal gradient. Plotting saturation as a function of through-plane distancemore » quantitatively shows water redistribution, where water evaporates at hotter locations and condenses in colder locations. The morphology of the 2 GDLs on the micro-scale, as well as evaporating water clusters, are resolved, indicating that the GDL voids are slightly prolate, whereas water clusters are oblate. From the mean radii of water distributions and visual inspection, it is observed that larger water clusters evaporate faster than smaller ones.« less

  9. Environmental structure and competitive scoring advantages in team competitions.

    PubMed

    Merritt, Sears; Clauset, Aaron

    2013-10-29

    In most professional sports, playing field structure is kept neutral so that scoring imbalances may be attributed to differences in team skill. It thus remains unknown what impact environmental heterogeneities can have on scoring dynamics or competitive advantages. Applying a novel generative model of scoring dynamics to roughly 10 million team competitions drawn from an online game, we quantify the relationship between the structure within a competition and its scoring dynamics, while controlling the impact of chance. Despite wide structural variations, we observe a common three-phase pattern in the tempo of events. Tempo and balance are highly predictable from a competition's structural features alone and teams exploit environmental heterogeneities for sustained competitive advantage. Surprisingly, the most balanced competitions are associated with specific environmental heterogeneities, not from equally skilled teams. These results shed new light on the design principles of balanced competition, and illustrate the potential of online game data for investigating social dynamics and competition.

  10. Environmental structure and competitive scoring advantages in team competitions

    NASA Astrophysics Data System (ADS)

    Merritt, Sears; Clauset, Aaron

    2013-10-01

    In most professional sports, playing field structure is kept neutral so that scoring imbalances may be attributed to differences in team skill. It thus remains unknown what impact environmental heterogeneities can have on scoring dynamics or competitive advantages. Applying a novel generative model of scoring dynamics to roughly 10 million team competitions drawn from an online game, we quantify the relationship between the structure within a competition and its scoring dynamics, while controlling the impact of chance. Despite wide structural variations, we observe a common three-phase pattern in the tempo of events. Tempo and balance are highly predictable from a competition's structural features alone and teams exploit environmental heterogeneities for sustained competitive advantage. Surprisingly, the most balanced competitions are associated with specific environmental heterogeneities, not from equally skilled teams. These results shed new light on the design principles of balanced competition, and illustrate the potential of online game data for investigating social dynamics and competition.

  11. Competition.

    PubMed

    Chambers, D W

    1997-01-01

    Our ambivalence toward competition can be traced to an unspoken preference for certain types of competition which give us an advantage over the types we value less. Four types are defined (a) pure (same rules, same objectives), (b) collaborative (same rules, shared objective), (c) market share (different rules, same objectives), and (d) market growth (different rules, value added orientation). The defining characteristics of the four types of competition are respectively: needing a referee, arguing over the spoils, differentiation and substitutability, and customer focus. Dentistry has features of all four types of competition, thus making it difficult to have a meaningful discussion or frame a coherent policy on this topic.

  12. Polydispersity-Driven Block Copolymer Amphiphile Self-Assembly into Prolate-Spheroid Micelles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, Andrew L.; Repollet-Pedrosa, Milton H.; Mahanthappa, Mahesh K.

    The aqueous self-assembly behavior of polydisperse poly(ethylene oxide-b-1,4-butadiene-b-ethylene oxide) (OBO) macromolecular triblock amphiphiles is examined to discern the implications of continuous polydispersity in the hydrophobic block on the resulting aqueous micellar morphologies of otherwise monodisperse polymer surfactants. The chain length polydispersity and implicit composition polydispersity of these samples furnishes a distribution of preferred interfacial curvatures, resulting in dilute aqueous block copolymer dispersions exhibiting coexisting spherical and rod-like micelles with vesicles in a single sample with a O weight fraction, w{sub O}, of 0.18. At higher w{sub O} = 0.51-0.68, the peak in the interfacial curvature distribution shifts and we observemore » the formation of only American football-shaped micelles. We rationalize the formation of these anisotropically shaped aggregates based on the intrinsic distribution of preferred curvatures adopted by the polydisperse copolymer amphiphiles and on the relief of core block chain stretching by chain-length-dependent intramicellar segregation.« less

  13. Radar-derived asteroid shapes point to a 'zone of stability' for topography slopes and surface erosion rates

    NASA Astrophysics Data System (ADS)

    Richardson, J.; Graves, K.; Bowling, T.

    2014-07-01

    Previous studies of the combined effects of asteroid shape, spin, and self-gravity have focused primarily upon the failure limits for bodies with a variety of standard shapes, friction, and cohesion values [1,2,3]. In this study, we look in the opposite direction and utilize 22 asteroid shape-models derived from radar inversion [4] and 7 small body shape-models derived from spacecraft observations [5] to investigate the region in shape/spin space [1,2] wherein self-gravity and rotation combine to produce a stable minimum state with respect to surface potential differences, dynamic topography, slope magnitudes, and erosion rates. This erosional minimum state is self-correcting, such that changes in the body's rotation rate, either up or down, will increase slope magnitudes across the body, thereby driving up erosion rates non-linearly until the body has once again reached a stable, minimized surface state [5]. We investigated this phenomenon in a systematic fashion using a series of synthesized, increasingly prolate spheroid shape models. Adjusting the rotation rate of each synthetic shape to minimize surface potential differences, dynamic topography, and slope magnitudes results in the magenta curve of the figure (right side), defining the zone of maximum surface stability (MSS). This MSS zone is invariant both with respect to body size (gravitational potential and rotational potential scale together with radius), and density when the scaled-spin of [2] is used. Within our sample of observationally derived small-body shape models, slow rotators (Group A: blue points), that are not in the maximum surface stability (MSS) zone and where gravity dominates the slopes, will generally experience moderate erosion rates (left plot) and will tend to move up and to the right in shape/spin space as the body evolves (right plot). Fast rotators (Group C: red points), that are not in the MSS zone and where spin dominates the slopes, will generally experience high erosion rates

  14. Interspecific competition influences the organization of a diverse sessile insect community

    NASA Astrophysics Data System (ADS)

    Cornelissen, Tatiana; de Carvalho Guimarães, Carla Daniele; Rodrigues Viana, João Paulo; Silva, Bárbara

    2013-10-01

    Interspecific competition has played a major role in determining the effects of species interactions in terrestrial communities and the perception of its role on shaping population dynamics and community structure has changed throughout the years. In this study, we evaluated the existence of interspecific competition in the herbivore community of the dioecious plant Baccharis pseudomyriocephala (Asteraceae), which holds a diverse community of gall-forming insects. Sixty plants were studied and gall richness and abundance among plants were evaluated. To address whether a plant already occupied by a gall species is preferred or avoided by another gall species, null models were used for all 60 plants combined and for male and female plants separately. Our results have shown that the 11 species of gall-formers found on B. pseudomyriocephala co-occur less than expected by chance alone, indicating that interspecific competition might be an important force structuring the insect community in this tropical host plant, regardless of plant gender.

  15. Structural analysis and shape-preferred orientation determination of the mélange facies in the Chañaral mélange, Las Tórtolas Formation, Coastal Cordillera, northern Chile

    NASA Astrophysics Data System (ADS)

    Fuentes, Paulina; Díaz-Alvarado, Juan; Fernández, Carlos; Díaz-Azpiroz, Manuel; Rodríguez, Natalia

    2016-04-01

    This study sheds light on the tectonic and structural knowledge of the mélange facies located to the south of Chañaral city, Chile. The Chañaral mélange has been related to an accretionary prism at the western active continental margin of Gondwana. Based on the fossil content, the original turbidite sequence would have been deposited during Devonian to Carboniferous times. The Chañaral mélange is included in the Las Tórtolas Formation, which corresponds to the Paleozoic metasedimentary basement located in the Coastal Range in northern Chile. It consists of a monotonous sequence of more than 90% of interbedded sandstones and shales, with a few limestones, pelagic chert, conglomerates and basic volcanic rocks, metamorphosed to the greenschist facies. In the study area, the Las Tórtolas Formation is divided into two structural domains separated by a major reverse dextral structure, called here the Infieles fault. To the east, the Las Tórtolas Formation is characterized by a brittle-ductile deformation, defined by the original sedimentary contacts in the turbiditic sequence. Besides, thrust faults and associated thrust propagation folds promotes a penetrative axial plane foliation. Mélange facies are located to the west of the Infieles fault. Although lithologies comprising this domain are similar to the rest of the Las Tórtolas Formation, mélange facies (ductile domain) are characterized by the complete disruption of the original architecture of the turbidite succession. The most significant structures in the mélange are the ubiquitous boudinage and pinch and swell structures, asymmetric objects, S-C structures and tight to isoclinal folds. This deformation is partitioned in the Chañaral mélange between linear fabric domains (L), characterized by quartzite blocks with prolate shape in a phyllite matrix with pencil structures, and linear-planar fabric domains (L-S), where quartzite objects show oblate shape and phyllites present a penetrative foliation

  16. A white-box model of S-shaped and double S-shaped single-species population growth

    PubMed Central

    Kalmykov, Lev V.

    2015-01-01

    Complex systems may be mechanistically modelled by white-box modeling with using logical deterministic individual-based cellular automata. Mathematical models of complex systems are of three types: black-box (phenomenological), white-box (mechanistic, based on the first principles) and grey-box (mixtures of phenomenological and mechanistic models). Most basic ecological models are of black-box type, including Malthusian, Verhulst, Lotka–Volterra models. In black-box models, the individual-based (mechanistic) mechanisms of population dynamics remain hidden. Here we mechanistically model the S-shaped and double S-shaped population growth of vegetatively propagated rhizomatous lawn grasses. Using purely logical deterministic individual-based cellular automata we create a white-box model. From a general physical standpoint, the vegetative propagation of plants is an analogue of excitation propagation in excitable media. Using the Monte Carlo method, we investigate a role of different initial positioning of an individual in the habitat. We have investigated mechanisms of the single-species population growth limited by habitat size, intraspecific competition, regeneration time and fecundity of individuals in two types of boundary conditions and at two types of fecundity. Besides that, we have compared the S-shaped and J-shaped population growth. We consider this white-box modeling approach as a method of artificial intelligence which works as automatic hyper-logical inference from the first principles of the studied subject. This approach is perspective for direct mechanistic insights into nature of any complex systems. PMID:26038717

  17. Geometric morphometrics reveals sex-differential shape allometry in a spider.

    PubMed

    Fernández-Montraveta, Carmen; Marugán-Lobón, Jesús

    2017-01-01

    Common scientific wisdom assumes that spider sexual dimorphism (SD) mostly results from sexual selection operating on males. However, testing predictions from this hypothesis, particularly male size hyperallometry, has been restricted by methodological constraints. Here, using geometric morphometrics (GMM) we studied for the first time sex-differential shape allometry in a spider ( Donacosa merlini , Araneae: Lycosidae) known to exhibit the reverse pattern (i.e., male-biased) of spider sexual size dimorphism. GMM reveals previously undetected sex-differential shape allometry and sex-related shape differences that are size independent (i.e., associated to the y-intercept, and not to size scaling). Sexual shape dimorphism affects both the relative carapace-to-opisthosoma size and the carapace geometry, arguably resulting from sex differences in both reproductive roles (female egg load and male competition) and life styles (wandering males and burrowing females). Our results demonstrate that body portions may vary modularly in response to different selection pressures, giving rise to sex differences in shape, which reconciles previously considered mutually exclusive interpretations about the origins of spider SD.

  18. Prepublication disclosure of scientific results: Norms, competition, and commercial orientation

    PubMed Central

    2018-01-01

    On the basis of a survey of 7103 active faculty researchers in nine fields, we examine the extent to which scientists disclose prepublication results, and when they do, why? Except in two fields, more scientists disclose results before publication than not, but there is significant variation in their reasons to disclose, in the frequency of such disclosure, and in withholding crucial results when making public presentations. They disclose results for feedback and credit and to attract collaborators. Particularly in formulaic fields, scientists disclose to attract new researchers to the field independent of collaboration and to deter others from working on their exact problem. A probability model shows that 70% of field variation in disclosure is related to differences in respondent beliefs about norms, competition, and commercialization. Our results suggest new research directions—for example, do the problems addressed or the methods of scientific production themselves shape norms and competition? Are the levels we observe optimal or simply path-dependent? What is the interplay of norms, competition, and commercialization in disclosure and the progress of science? PMID:29774233

  19. What makes the family of barred disc galaxies so rich: damping stellar bars in spinning haloes

    NASA Astrophysics Data System (ADS)

    Collier, Angela; Shlosman, Isaac; Heller, Clayton

    2018-05-01

    We model and analyse the secular evolution of stellar bars in spinning dark matter (DM) haloes with the cosmological spin λ ˜ 0-0.09. Using high-resolution stellar and DM numerical simulations, we focus on angular momentum exchange between stellar discs and DM haloes of various axisymmetric shapes - spherical, oblate, and prolate. We find that stellar bars experience a diverse evolution that is guided by the ability of parent haloes to absorb angular momentum, J, lost by the disc through the action of gravitational torques, resonant and non-resonant. We confirm that dynamical bar instability is accelerated via resonant J-transfer to the halo. Our main findings relate to the long-term secular evolution of disc-halo systems: with an increasing λ, bars experience less growth and basically dissolve after they pass through vertical buckling instability. Specifically, with increasing λ, (1) the vertical buckling instability in stellar bars colludes with inability of the inner halo to absorb J - this emerges as the main factor weakening or destroying bars in spinning haloes; (2) bars lose progressively less J, and their pattern speeds level off; (3) bars are smaller, and for λ ≳ 0.06 cease their growth completely following buckling; (4) bars in λ > 0.03 haloes have ratio of corotation-to-bar radii, RCR/Rb > 2, and represent so-called slow bars without offset dust lanes. We provide a quantitative analysis of J-transfer in disc-halo systems, and explain the reasons for absence of growth in fast spinning haloes and its observational corollaries. We conclude that stellar bar evolution is substantially more complex than anticipated, and bars are not as resilient as has been considered so far.

  20. Effective Medium Theories for Multicomponent Poroelastic Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berryman, J G

    2005-02-08

    In Biot's theory of poroelasticity, elastic materials contain connected voids or pores and these pores may be filled with fluids under pressure. The fluid pressure then couples to the mechanical effects of stress or strain applied externally to the solid matrix. Eshelby's formula for the response of a single ellipsoidal elastic inclusion in an elastic whole space to a strain imposed at a distant boundary is a very well-known and important result in elasticity. Having a rigorous generalization of Eshelby's results valid for poroelasticity means that the hard part of Eshelby's work (in computing the elliptic integrals needed to evaluatemore » the fourth-rank tensors for inclusions shaped like spheres, oblate and prolate spheroids, needles and disks) can be carried over from elasticity to poroelasticity--and also thermoelasticity--with only relatively minor modifications. Effective medium theories for poroelastic composites such as rocks can then be formulated easily by analogy to well-established methods used for elastic composites. An identity analogous to Eshelby's classic result has been derived [Physical Review Letters 79:1142-1145 (1997)] for use in these more complex and more realistic problems in rock mechanics analysis. Descriptions of the application of this result as the starting point for new methods of estimation are presented, including generalizations of the coherent potential approximation (CPA), differential effective medium (DEM) theory, and two explicit schemes. Results are presented for estimating drained shear and bulk modulus, the Biot-Willis parameter, and Skempton's coefficient. Three of the methods considered appear to be quite reliable estimators, while one of the explicit schemes is found to have some undesirable characteristics.« less

  1. Ω-slow Solutions and Be Star Disks

    NASA Astrophysics Data System (ADS)

    Araya, I.; Jones, C. E.; Curé, M.; Silaj, J.; Cidale, L.; Granada, A.; Jiménez, A.

    2017-09-01

    As the disk formation mechanism(s) in Be stars is(are) as yet unknown, we investigate the role of rapidly rotating radiation-driven winds in this process. We implemented the effects of high stellar rotation on m-CAK models accounting for the shape of the star, the oblate finite disk correction factor, and gravity darkening. For a fast rotating star, we obtain a two-component wind model, I.e., a fast, thin wind in the polar latitudes and an Ω-slow, dense wind in the equatorial regions. We use the equatorial mass densities to explore Hα emission profiles for the following scenarios: (1) a spherically symmetric star, (2) an oblate star with constant temperature, and (3) an oblate star with gravity darkening. One result of this work is that we have developed a novel method for solving the gravity-darkened, oblate m-CAK equation of motion. Furthermore, from our modeling we find that (a) the oblate finite disk correction factor, for the scenario considering the gravity darkening, can vary by at least a factor of two between the equatorial and polar directions, influencing the velocity profile and mass-loss rate accordingly, (b) the Hα profiles predicted by our model are in agreement with those predicted by a standard power-law model for following values of the line-force parameters: 1.5≲ k≲ 3,α ˜ 0.6, and δ ≳ 0.1, and (c) the contribution of the fast wind component to the Hα emission line profile is negligible; therefore, the line profiles arise mainly from the equatorial disks of Be stars.

  2. Competitive Intelligence.

    ERIC Educational Resources Information Center

    Bergeron, Pierrette; Hiller, Christine A.

    2002-01-01

    Reviews the evolution of competitive intelligence since 1994, including terminology and definitions and analytical techniques. Addresses the issue of ethics; explores how information technology supports the competitive intelligence process; and discusses education and training opportunities for competitive intelligence, including core competencies…

  3. The importance of motivation, weapons, and foul odors in driving encounter competition in carnivores.

    PubMed

    Allen, Maximilian L; Wilmers, Christopher C; Elbroch, L Mark; Golla, Julie M; Wittmer, Heiko U

    2016-08-01

    Encounter competition is interference competition in which animals directly contend for resources. Ecological theory predicts the trait that determines the resource holding potential (RHP), and hence the winner of encounter competition, is most often body size or mass. The difficulties of observing encounter competition in complex organisms in natural environments, however, has limited opportunities to test this theory across diverse species. We studied the outcome of encounter competition contests among mesocarnivores at deer carcasses in California to determine the most important variables for winning these contests. We found some support for current theory in that body mass is important in determining the winner of encounter competition, but we found that other factors including hunger and species-specific traits were also important. In particular, our top models were "strength and hunger" and "size and hunger," with models emphasizing the complexity of variables influencing outcomes of encounter competition. In addition, our wins above predicted (WAP) statistic suggests that an important aspect that determines the winner of encounter competition is species-specific advantages that increase their RHP, as bobcats (Lynx rufus) and spotted skunks (Spilogale gracilis) won more often than predicted based on mass. In complex organisms, such as mesocarnivores, species-specific adaptations, including strategic behaviors, aggressiveness, and weapons, contribute to competitive advantages and may allow certain species to take control or defend resources better than others. Our results help explain how interspecific competition shapes the occurrence patterns of species in ecological communities. © 2016 by the Ecological Society of America.

  4. Healthy Competition and Unsound Comparison: Reforming Educational Competition in Singapore

    ERIC Educational Resources Information Center

    Christensen, Søren

    2015-01-01

    It is frequently claimed that the "competition state" responds to external competition by making competition increasingly central to its internal processes as well. This article discusses education reform in Singapore as departing from the opposite position. In Singapore "excessive" competition in education is now targeted by…

  5. EDITORIAL: Physics competitions Physics competitions

    NASA Astrophysics Data System (ADS)

    Jordens, H.; Mathelitsch, L.

    2010-07-01

    This editorial opens the second special section on physics competitions in European Journal of Physics. In the first section last year, we asked for feedback on the idea of such a section and on the content of the articles. We received no answer whatsoever, which can be interpreted in two ways: the section is not interesting enough to raise motivation for feedback, or the reader is satisfied. Having no indication which scenario is the correct one, we are optimistic and favour the second. The section at hand contains three articles. Again, as last year, the organizer of the annual Olympiad reports on tasks and outcomes of this competition. The Olympiad took place in Merida, Mexico, and was by far the largest event with 316 contestants from 68 countries. Again, the predominance of Asian/Chinese students was manifest, showing how serious the training is taken by both their authorities and students. Unfortunately, the winners of the last International Young Physicists' Tournament (IYPT), the team from Korea, did not accept the offer to report on their prize-winning contribution. We are thankful that two students from Austria, who achieved second place with their team, took over and reported on the task which they presented in the finals of the competition. It connects the fields of sport and physics and explains a special move in skateboarding. The third contribution introduces a different competition, 'International Conference of Young Scientists'. On one hand, as in the Olympiad, it addresses individuals, not teams. On the other, as in the IYPT, students have several months to prepare and also the quality of the presentation is an important element of the judgment. In fact, this competition comes closer to real scientific research compared to the other events. Finally and again, we hope that this section will serve several purposes: To show the competitions as a very important tool in the support of gifted students. To raise awareness amongst university teachers, and

  6. Lunabotics Mining Competition

    NASA Technical Reports Server (NTRS)

    Mueller, Rob; Murphy, Gloria

    2010-01-01

    This slide presentation describes a competition to design a lunar robot (lunabot) that can be controlled either remotely or autonomously, isolated from the operator, and is designed to mine a lunar aggregate simulant. The competition is part of a systems engineering curriculum. The 2010 competition winners in five areas of the competition were acknowledged, and the 2011 competition was announced.

  7. Sperm Competition Selects for Sperm Quantity and Quality in the Australian Maluridae

    PubMed Central

    Rowe, Melissah; Pruett-Jones, Stephen

    2011-01-01

    When ejaculates from rival males compete for fertilization, there is strong selection for sperm traits that enhance fertilization success. Sperm quantity is one such trait, and numerous studies have demonstrated a positive association between sperm competition and both testes size and the number of sperm available for copulations. Sperm competition is also thought to favor increases in sperm quality and changes in testicular morphology that lead to increased sperm production. However, in contrast to sperm quantity, these hypotheses have received considerably less empirical support and remain somewhat controversial. In a comparative study using the Australian Maluridae (fairy-wrens, emu-wrens, grasswrens), we tested whether increasing levels of sperm competition were associated with increases in both sperm quantity and quality, as well as an increase in the relative amount of seminiferous tubule tissue contained within the testes. After controlling for phylogeny, we found positive associations between sperm competition and sperm numbers, both in sperm reserves and in ejaculate samples. Additionally, as sperm competition level increased, the proportion of testicular spermatogenic tissue also increased, suggesting that sperm competition selects for greater sperm production per unit of testicular tissue. Finally, we also found that sperm competition level was positively associated with multiple sperm quality traits, including the proportion of motile sperm in ejaculates and the proportion of both viable and morphologically normal sperm in sperm reserves. These results suggest multiple ejaculate traits, as well as aspects of testicular morphology, have evolved in response to sperm competition in the Australian Maluridae. Furthermore, our findings emphasize the importance of post-copulatory sexual selection as an evolutionary force shaping macroevolutionary differences in sperm phenotype. PMID:21283577

  8. Sperm competition selects for sperm quantity and quality in the Australian Maluridae.

    PubMed

    Rowe, Melissah; Pruett-Jones, Stephen

    2011-01-25

    When ejaculates from rival males compete for fertilization, there is strong selection for sperm traits that enhance fertilization success. Sperm quantity is one such trait, and numerous studies have demonstrated a positive association between sperm competition and both testes size and the number of sperm available for copulations. Sperm competition is also thought to favor increases in sperm quality and changes in testicular morphology that lead to increased sperm production. However, in contrast to sperm quantity, these hypotheses have received considerably less empirical support and remain somewhat controversial. In a comparative study using the Australian Maluridae (fairy-wrens, emu-wrens, grasswrens), we tested whether increasing levels of sperm competition were associated with increases in both sperm quantity and quality, as well as an increase in the relative amount of seminiferous tubule tissue contained within the testes. After controlling for phylogeny, we found positive associations between sperm competition and sperm numbers, both in sperm reserves and in ejaculate samples. Additionally, as sperm competition level increased, the proportion of testicular spermatogenic tissue also increased, suggesting that sperm competition selects for greater sperm production per unit of testicular tissue. Finally, we also found that sperm competition level was positively associated with multiple sperm quality traits, including the proportion of motile sperm in ejaculates and the proportion of both viable and morphologically normal sperm in sperm reserves. These results suggest multiple ejaculate traits, as well as aspects of testicular morphology, have evolved in response to sperm competition in the Australian Maluridae. Furthermore, our findings emphasize the importance of post-copulatory sexual selection as an evolutionary force shaping macroevolutionary differences in sperm phenotype.

  9. Academic Competitions.

    ERIC Educational Resources Information Center

    Marin County Office of Education, San Rafael, CA.

    Descriptions of scholastic competitions for Marin County (California) students are presented. Following a rationale for conducting scholastic competitions, community groups and businesses which lend support are listed along with the type of support given. Participating grade levels, dates of competition during the 1983-84 school year, and a brief…

  10. Regulation and competition in the Taiwanese pharmaceutical market under national health insurance.

    PubMed

    Liu, Ya-Ming; Yang, Yea-Huei Kao; Hsieh, Chee-Ruey

    2012-05-01

    This article investigates the determinants of the prices of pharmaceuticals and their impact on the demand for prescription drugs in the context of Taiwan's pharmaceutical market where medical providers earn profit directly from prescribing and dispensing drugs. Based on product-level data, we find evidence that the profit-seeking behavior of the medical providers in the prescription drug market transfers the force of competition from the unregulated wholesale market to the regulated retail market and hence market competition still plays an important role in the determination of the regulated price. We also find that the profit-seeking behavior plays a similar role to advertising in that it increases the brand loyalty and hence lowers price elasticity. An important implication of our study is that the institutional features in the pharmaceutical market matter in shaping the nature of pharmaceutical competition and the responsiveness of pharmaceutical consumption with respect to changes in price. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Analysis of polarization radar returns from ice clouds

    NASA Astrophysics Data System (ADS)

    Battaglia, A.; Sturniolo, O.; Prodi, F.

    Using a modified T-matrix code, some polarimetric single-scattering radar parameters ( Zh,v, LDR h,v, ρhv, ZDR and δhv) from populations of ice crystals in ice phase at 94 GHz, modeled with axisymmetric prolate and oblate spheroidal shapes for a Γ-size distribution with different α parameter ( α=0, 1, 2) and characteristic dimension Lm varying from 0.1 to 1.8 mm, have been computed. Some of the results for different radar elevation angles and different orientation distribution for fixed water content are shown. Deeper analysis has been carried out for pure extensive radar polarimetric variables; all of them are strongly dependent on the shapes (characterised by the aspect ratio), the canting angle and the radar elevation angle. Quantities like ZDR or δhv at side incidence or LDR h and ρhv at vertical incidence can be used to investigate the preferred orientation of the particles and, in some cases, their habits. We analyze scatterplots using couples of pure extensive variables. The scatterplots with the most evident clustering properties for the different habits seem to be those in the ( ZDR [ χ=0°], δhv [ χ=0°]), in the ( ZDR [ χ=0°], LDR h [ χ=90°]) and in the ( ZDR [ χ=0°], ρhv [ χ=90°]) plane. Among these, the most appealing one seems to be that involving ZDR and ρhv variables. To avoid the problem of having simultaneous measurements with a side and a vertical-looking radar, we believe that measurements of these two extensive variables using a radar with an elevation angle around 45° can be an effective instrument to identify different habits. In particular, this general idea can be useful for future space-borne polarimetric radars involved in the studies of high ice clouds. It is also believed that these results can be used in next challenge of developing probabilistic and expert methods for identifying hydrometeor types by W-band radars.

  12. Coherent diffractive imaging of single helium nanodroplets with a high harmonic generation source.

    PubMed

    Rupp, Daniela; Monserud, Nils; Langbehn, Bruno; Sauppe, Mario; Zimmermann, Julian; Ovcharenko, Yevheniy; Möller, Thomas; Frassetto, Fabio; Poletto, Luca; Trabattoni, Andrea; Calegari, Francesca; Nisoli, Mauro; Sander, Katharina; Peltz, Christian; J Vrakking, Marc; Fennel, Thomas; Rouzée, Arnaud

    2017-09-08

    Coherent diffractive imaging of individual free nanoparticles has opened routes for the in situ analysis of their transient structural, optical, and electronic properties. So far, single-shot single-particle diffraction was assumed to be feasible only at extreme ultraviolet and X-ray free-electron lasers, restricting this research field to large-scale facilities. Here we demonstrate single-shot imaging of isolated helium nanodroplets using extreme ultraviolet pulses from a femtosecond-laser-driven high harmonic source. We obtain bright wide-angle scattering patterns, that allow us to uniquely identify hitherto unresolved prolate shapes of superfluid helium droplets. Our results mark the advent of single-shot gas-phase nanoscopy with lab-based short-wavelength pulses and pave the way to ultrafast coherent diffractive imaging with phase-controlled multicolor fields and attosecond pulses.Diffraction imaging studies of free individual nanoparticles have so far been restricted to XUV and X-ray free - electron laser facilities. Here the authors demonstrate the possibility of using table-top XUV laser sources to image prolate shapes of superfluid helium droplets.

  13. Competition in the pharmaceutical industry: how do quality differences shape advertising strategies?

    PubMed

    de Frutos, Maria-Angeles; Ornaghi, Carmine; Siotis, Georges

    2013-01-01

    We present a Hotelling model of price and advertising competition between prescription drugs that differ in quality/side effects. Promotional effort results in the endogenous formation of two consumer groups: brand loyal and non-brand loyal ones. We show that advertising intensities are strategic substitutes, with the better quality drugs being the ones that are most advertised. This positive association stems from the higher rents that firms can extract from consumers whose brand loyalty is endogenously determined by promotional effort. The model's main results on advertising and pricing strategies are taken to the data. The latter consists of product level data on prices and quantities, product level advertising data, as well as the qualitative information on drug quality contained in the Orange Book compiled by the Food and Drug Administration (FDA). The empirical results provide strong support to the model's predictions. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Provenance of sand on the Poverty Bay shelf, the link between source and sink sectors of the Waipaoa River sedimentary system

    NASA Astrophysics Data System (ADS)

    Parra, Julie G.; Marsaglia, Kathleen M.; Rivera, Kevin S.; Dawson, Shelby T.; Walsh, J. P.

    2012-12-01

    The Poverty Shelf, North Island, New Zealand, is a segment of the Waipaoa Sedimentary System (WSS), a MARGINS Source-to-Sink focus site. Our petrographic analysis of sand from shelf core samples indicates that the sand fraction is mainly derived from intra- and potentially extrabasinal sources, but surprisingly, the major fluvial system that drains into Poverty Bay, the Waipaoa River (mean %QFL = xQyFzL), is not the dominant source. Only one vibracore at the mouth of Poverty Bay contained sand (%QFL = xQyFzL) potentially derived from the Waipaoa River. The shelf sand (mean %QFL = xQyFzL) more strongly resembles beach sand (mean %QFL = xQyFzL) collected along the coast, which is likely sourced from pervasive local cliff erosion of Miocene-Pliocene sedimentary units that exhibit similar sandstone detrital modes (mean %QFL = xQyFzL). Texturally, coarser, more poorly sorted and more angular sand is located along the outer shelf, while finer, well-sorted sand characterizes the mid-shelf. These findings suggest a shorter transport history for the material near the outer-shelf bathymetric high areas, and this observation along with the composition data suggests that they were sourced by erosion of locally exposed Miocene-Pliocene units. A potential extrabasinal source of shelf sediment is indicated by anomalous prolate and equant-shaped greywacke (Torlesse) and minor red chert pebbles collected in two outer-shelf box cores on the Lachlan anticline; these are not lithologies found within the terrestrial segment of the WSS or strata comprising the outer-shelf highs. The clast shapes are also distinctly different from the oblate-shaped, pebble-sized greywacke gravel clasts on beaches in Hawke Bay. Rather, these sediments are more similar to Torlesse stream gravel. Seismic and multibeam data support the possibility that during the most recent sea-level lowstand, the Hawke Bay fluvial system flowed into Poverty Canyon, bringing these unique gravels onto what is now the Poverty

  15. Competition in Education.

    ERIC Educational Resources Information Center

    Rich, John Martin; DeVitis, Joseph L.

    This book discusses various major aspects of competition in education. It identifies competition within educational policies, programs, and practices, as well as the problems that certain forms of competition create. It also traces the influences of American competitive values on education. Chapter 1 provides an introductory overview of the…

  16. Phylogeny and adaptation shape the teeth of insular mice

    PubMed Central

    Ledevin, Ronan; Chevret, Pascale; Ganem, Guila; Britton-Davidian, Janice; Hardouin, Emilie A.; Chapuis, Jean-Louis; Pisanu, Benoit; da Luz Mathias, Maria; Schlager, Stefan; Auffray, Jean-Christophe; Renaud, Sabrina

    2016-01-01

    By accompanying human travels since prehistorical times, the house mouse dispersed widely throughout the world, and colonized many islands. The origin of the travellers determined the phylogenetic source of the insular mice, which encountered diverse ecological and environmental conditions on the various islands. Insular mice are thus an exceptional model to disentangle the relative role of phylogeny, ecology and climate in evolution. Molar shape is known to vary according to phylogeny and to respond to adaptation. Using for the first time a three-dimensional geometric morphometric approach, compared with a classical two-dimensional quantification, the relative effects of size variation, phylogeny, climate and ecology were investigated on molar shape diversity across a variety of islands. Phylogeny emerged as the factor of prime importance in shaping the molar. Changes in competition level, mostly driven by the presence or absence of the wood mouse on the different islands, appeared as the second most important effect. Climate and size differences accounted for slight shape variation. This evidences a balanced role of random differentiation related to history of colonization, and of adaptation possibly related to resource exploitation. PMID:26842576

  17. Phylogeny and adaptation shape the teeth of insular mice.

    PubMed

    Ledevin, Ronan; Chevret, Pascale; Ganem, Guila; Britton-Davidian, Janice; Hardouin, Emilie A; Chapuis, Jean-Louis; Pisanu, Benoit; da Luz Mathias, Maria; Schlager, Stefan; Auffray, Jean-Christophe; Renaud, Sabrina

    2016-02-10

    By accompanying human travels since prehistorical times, the house mouse dispersed widely throughout the world, and colonized many islands. The origin of the travellers determined the phylogenetic source of the insular mice, which encountered diverse ecological and environmental conditions on the various islands. Insular mice are thus an exceptional model to disentangle the relative role of phylogeny, ecology and climate in evolution. Molar shape is known to vary according to phylogeny and to respond to adaptation. Using for the first time a three-dimensional geometric morphometric approach, compared with a classical two-dimensional quantification, the relative effects of size variation, phylogeny, climate and ecology were investigated on molar shape diversity across a variety of islands. Phylogeny emerged as the factor of prime importance in shaping the molar. Changes in competition level, mostly driven by the presence or absence of the wood mouse on the different islands, appeared as the second most important effect. Climate and size differences accounted for slight shape variation. This evidences a balanced role of random differentiation related to history of colonization, and of adaptation possibly related to resource exploitation. © 2016 The Author(s).

  18. Early competition shapes maize whole-plant development in mixed stands

    PubMed Central

    Evers, Jochem B.

    2014-01-01

    Mixed cropping is practised widely in developing countries and is gaining increasing interest for sustainable agriculture in developed countries. Plants in intercrops grow differently from plants in single crops, due to interspecific plant interactions, but adaptive plant morphological responses to competition in mixed stands have not been studied in detail. Here the maize (Zea mays) response to mixed cultivation with wheat (Triticum aestivum) is described. Evidence is provided that early responses of maize to the modified light environment in mixed stands propagate throughout maize development, resulting in different phenotypes compared with pure stands. Photosynthetically active radiation (PAR), red:far-red ratio (R:FR), leaf development, and final organ sizes of maize grown in three cultivation systems were compared: pure maize, an intercrop with a small distance (25cm) between maize and wheat plants, and an intercop with a large distance (44cm) between the maize and the wheat. Compared with maize in pure stands, maize in the mixed stands had lower leaf and collar appearance rates, increased blade and sheath lengths at low ranks and smaller sizes at high ranks, increased blade elongation duration, and decreased R:FR and PAR at the plant base during early development. Effects were strongest in the treatment with a short distance between wheat and maize strips. The data suggest a feedback between leaf initiation and leaf emergence at the plant level and coordination between blade and sheath growth at the phytomer level. A conceptual model, based on coordination rules, is proposed to explain the development of the maize plant in pure and mixed stands. PMID:24307719

  19. Is competition needed for ecological character displacement? Does displacement decrease competition?

    PubMed Central

    Abrams, Peter A.; Cortez, Michael H.

    2015-01-01

    Interspecific competition for resources is generally considered to be the selective force driving ecological character displacement, and displacement is assumed to reduce competition. Skeptics of the prevalence of character displacement often cite lack of evidence of competition. The present article uses a simple model to examine whether competition is needed for character displacement and whether displacement reduces competition. It treats systems with competing resources, and considers cases when only one consumer evolves. It quantifies competition using several different measures. The analysis shows that selection for divergence of consumers occurs regardless of the level of between‐resource competition or whether the indirect interaction between the consumers is competition (−,−), mutualism (+,+), or contramensalism (+,−). Also, divergent evolution always decreases the equilibrium population size of the evolving consumer. Whether divergence of one consumer reduces or increases the impact of a subsequent perturbation of the other consumer depends on the parameters and the method chosen for measuring competition. Divergence in mutualistic interactions may reduce beneficial effects of subsequent increases in the other consumer's population. The evolutionary response is driven by an increase in the relative abundance of the resource the consumer catches more rapidly. Such an increase can occur under several types of interaction. PMID:26548922

  20. Three-Jet Production in Electron-Positron Collisions at Next-to-Next-to-Leading Order Accuracy

    NASA Astrophysics Data System (ADS)

    Del Duca, Vittorio; Duhr, Claude; Kardos, Adam; Somogyi, Gábor; Trócsányi, Zoltán

    2016-10-01

    We introduce a completely local subtraction method for fully differential predictions at next-to-next-to-leading order (NNLO) accuracy for jet cross sections and use it to compute event shapes in three-jet production in electron-positron collisions. We validate our method on two event shapes, thrust and C parameter, which are already known in the literature at NNLO accuracy and compute for the first time oblateness and the energy-energy correlation at the same accuracy.

  1. Three-Jet Production in Electron-Positron Collisions at Next-to-Next-to-Leading Order Accuracy.

    PubMed

    Del Duca, Vittorio; Duhr, Claude; Kardos, Adam; Somogyi, Gábor; Trócsányi, Zoltán

    2016-10-07

    We introduce a completely local subtraction method for fully differential predictions at next-to-next-to-leading order (NNLO) accuracy for jet cross sections and use it to compute event shapes in three-jet production in electron-positron collisions. We validate our method on two event shapes, thrust and C parameter, which are already known in the literature at NNLO accuracy and compute for the first time oblateness and the energy-energy correlation at the same accuracy.

  2. Emplacement of the early Miocene Pinto Peak intrusion, Southwest Utah, USA

    NASA Astrophysics Data System (ADS)

    Petronis, Michael S.; O'Driscoll, Brian

    2013-12-01

    In this contribution, we report rock magnetic, petrographic, and anisotropy of magnetic susceptibility (AMS) data from the Pinto Peak intrusion, all of which bear on volcanic construction. Rock magnetic data indicate that the dominant magnetic mineral phase is low-Ti titanomagnetite of multidomain grain size, the composition of which varies spatially across the intrusion. The intrusion is a porphyritic andesite dominated by Ca-rich plagioclase (>60%) as well as biotite, amphibole, olivine, and opaque minerals. Reflected light petrography reveals mostly euhedral-subhedral (titano)magnetite crystals that often form clustered glomerocrysts and stringers of equant crystals, without exhibiting a consistent mineral alignment fabric. Moderate-to-shallow plunging prolate magnetic susceptibility ellipsoids dominate the northern part of the intrusion while steeply dipping/plunging magnetic susceptibility ellipsoids are generally restricted to the southern part of the intrusion. The vent facies rocks yield moderate-to-steep oblate susceptibility ellipsoids. We interpret the flow pattern in the north to reflect subhorizontal flow of magma, filling a tabular sheet-like body associated with propagation of the intrusion to the north. We argue that the southern part of the intrusion represents the ascent site of the magma rising to shallow crustal levels along a steep feeder system. The oblate magnetic fabrics in the vent area plausibly represent flattening against the conduit walls as evidenced by a weak planar flow foliation observed in the vent conduit rocks. On reaching shallow crustal levels, the magma deformed and uplifted the roof rocks leading to gravitational instability. As the slide mass released from the roof, an explosive eruption ensued resulting in the emplacement of the Rocks of Paradise tuff and associated effusive lava flows. Following eruption, magma pressure decreased and the magma drained northward forming the northern intrusive phase.

  3. Gender and competitive preferences: The role of competition size.

    PubMed

    Hanek, Kathrin J; Garcia, Stephen M; Tor, Avishalom

    2016-08-01

    In a series of 8 studies, we examine whether gender differences in competition entry preferences are moderated by the size of the competition. Drawing on theories of gender roles and stereotypes, we show that women, relative to men, prefer to enter smaller compared with larger competitions. Studies 1a and 1b demonstrate this effect in observational data on preferences for working in differently sized firms and applying to differently sized colleges. Studies 2a and 2b replicate the effect with real behavioral decisions in different domains. We also find empirical evidence that prescriptive gender norms and stereotypes underlie this effect. In Study 3, we find experimental evidence that women and men differ in their preferences for differently sized groups under competition, but not in noncompetitive settings. Three additional experimental studies (Studies 4, 5a, and 5b) show that perceptions of comfort in small versus larger competitions underlie women's preferences. These findings suggest that women's preferences for smaller competitions may be driven by an adherence to prescriptive gender norms. We discuss the implications of the current findings for gender inequalities in organizations. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  4. Canadian biotechnology start-ups, 1991-1997: the role of incumbents' patents and strategic alliances in controlling competition.

    PubMed

    Calabrese, T; Baum, J A; Silverman, B S

    2000-12-01

    Fligstein (1996) contends that organizations act to exploit the institutional context in which they are embedded so as to stabilize the competition they face. Drawing on Fligstein's theoretical analysis, we conceptualize incumbent biotechnology firms' patent-ing and alliance-building activities as attempts to stabilize and control potential competition and analyze how these activities shape rates of founding in the Canadian biotechnology industry. We find that increases in the level and concentration of incumbents' patenting discourage founding, particularly in human application sectors of the industry where development and approval processes are more costly and time consuming. Incumbents' horizontal alliances depress start-ups; vertical alliances stimulate start-ups. Our findings highlight how technology appropriation and strategic alliances structure the competitive dynamics and evolution of high-technology, knowledge-intensive industries.

  5. Local Competition-Based Superpixel Segmentation Algorithm in Remote Sensing

    PubMed Central

    Liu, Jiayin; Tang, Zhenmin; Cui, Ying; Wu, Guoxing

    2017-01-01

    Remote sensing technologies have been widely applied in urban environments’ monitoring, synthesis and modeling. Incorporating spatial information in perceptually coherent regions, superpixel-based approaches can effectively eliminate the “salt and pepper” phenomenon which is common in pixel-wise approaches. Compared with fixed-size windows, superpixels have adaptive sizes and shapes for different spatial structures. Moreover, superpixel-based algorithms can significantly improve computational efficiency owing to the greatly reduced number of image primitives. Hence, the superpixel algorithm, as a preprocessing technique, is more and more popularly used in remote sensing and many other fields. In this paper, we propose a superpixel segmentation algorithm called Superpixel Segmentation with Local Competition (SSLC), which utilizes a local competition mechanism to construct energy terms and label pixels. The local competition mechanism leads to energy terms locality and relativity, and thus, the proposed algorithm is less sensitive to the diversity of image content and scene layout. Consequently, SSLC could achieve consistent performance in different image regions. In addition, the Probability Density Function (PDF), which is estimated by Kernel Density Estimation (KDE) with the Gaussian kernel, is introduced to describe the color distribution of superpixels as a more sophisticated and accurate measure. To reduce computational complexity, a boundary optimization framework is introduced to only handle boundary pixels instead of the whole image. We conduct experiments to benchmark the proposed algorithm with the other state-of-the-art ones on the Berkeley Segmentation Dataset (BSD) and remote sensing images. Results demonstrate that the SSLC algorithm yields the best overall performance, while the computation time-efficiency is still competitive. PMID:28604641

  6. Local Competition-Based Superpixel Segmentation Algorithm in Remote Sensing.

    PubMed

    Liu, Jiayin; Tang, Zhenmin; Cui, Ying; Wu, Guoxing

    2017-06-12

    Remote sensing technologies have been widely applied in urban environments' monitoring, synthesis and modeling. Incorporating spatial information in perceptually coherent regions, superpixel-based approaches can effectively eliminate the "salt and pepper" phenomenon which is common in pixel-wise approaches. Compared with fixed-size windows, superpixels have adaptive sizes and shapes for different spatial structures. Moreover, superpixel-based algorithms can significantly improve computational efficiency owing to the greatly reduced number of image primitives. Hence, the superpixel algorithm, as a preprocessing technique, is more and more popularly used in remote sensing and many other fields. In this paper, we propose a superpixel segmentation algorithm called Superpixel Segmentation with Local Competition (SSLC), which utilizes a local competition mechanism to construct energy terms and label pixels. The local competition mechanism leads to energy terms locality and relativity, and thus, the proposed algorithm is less sensitive to the diversity of image content and scene layout. Consequently, SSLC could achieve consistent performance in different image regions. In addition, the Probability Density Function (PDF), which is estimated by Kernel Density Estimation (KDE) with the Gaussian kernel, is introduced to describe the color distribution of superpixels as a more sophisticated and accurate measure. To reduce computational complexity, a boundary optimization framework is introduced to only handle boundary pixels instead of the whole image. We conduct experiments to benchmark the proposed algorithm with the other state-of-the-art ones on the Berkeley Segmentation Dataset (BSD) and remote sensing images. Results demonstrate that the SSLC algorithm yields the best overall performance, while the computation time-efficiency is still competitive.

  7. The effect of shape on drag: a physics exercise inspired by biology

    NASA Astrophysics Data System (ADS)

    Fingerut, Jonathan; Johnson, Nicholas; Mongeau, Eric; Habdas, Piotr

    2017-07-01

    As part of a biomechanics course aimed at upper-division biology and physics majors, but applicable to a range of student learning levels, this laboratory exercise provides an insight into the effect of shape on hydrodynamic performance, as well an introduction to computer aided design (CAD) and 3D printing. Students use hydrodynamic modeling software and simple CAD programs to design a shape with the least amount of drag based on strategies gleaned from the study of natural forms. Students then print the shapes using a 3D printer and test their shapes against their classmates in a friendly competition. From this exercise, students gain a more intuitive sense of the challenges that organisms face when moving through fluid environments, the physical phenomena involved in moving through fluids at high Reynolds numbers and observe how and why certain morphologies, such as streamlining, are common answers to the challenge of swimming at high speeds.

  8. Competitive bidding in Medicare: who benefits from competition?

    PubMed

    Song, Zirui; Landrum, Mary Beth; Chernew, Michael E

    2012-09-01

    To conduct the first empirical study of competitive bidding in Medicare. We analyzed 2006-2010 Medicare Advantage data from the Centers for Medicare and Medicaid Services using longitudinal models adjusted for market and plan characteristics. A $1 increase in Medicare's payment to health maintenance organization (HMO) plans led to a $0.49 (P <.001) increase in plan bids, with $0.34 (P <.001) going to beneficiaries in the form of extra benefits or lower cost sharing. With preferred provider organization and private fee-for-service plans included, higher Medicare payments increased bids less ($0.33 per dollar), suggesting more competition among these latter plans. As a market-based alternative to cost control through administrative pricing, competitive bidding relies on private insurance plans proposing prices they are willing to accept for insuring a beneficiary. However, competition is imperfect in the Medicare bidding market. As much as half of every dollar in increased plan payment went to higher bids rather than to beneficiaries. While having more insurers in a market lowered bids, the design of any bidding system for Medicare should recognize this shortcoming of competition.

  9. Competitive Bidding in Medicare: Who Benefits From Competition?

    PubMed Central

    Song, Zirui; Landrum, Mary Beth; Chernew, Michael E.

    2012-01-01

    Objectives To conduct the first empirical study of competitive bidding in Medicare. Study Design and Methods We analyzed 2006–2010 Medicare Advantage data from the Centers for Medicare & Medicaid Services using longitudinal models adjusted for market and plan characteristics. Results A $1 increase in Medicare's payment to health maintenance organization (HMO) plans led to a $0.49 (P <.001) increase in plan bids, with $0.34 (P <.001) going to beneficiaries in the form of extra benefits or lower cost sharing. With preferred provider organization and private fee-for-service plans included, higher Medicare payments increased bids less ($0.33 per dollar), suggesting more competition among these latter plans. Conclusions As a market-based alternative to cost control through administrative pricing, competitive bidding relies on private insurance plans proposing prices they are willing to accept for insuring a beneficiary. However, competition is imperfect in the Medicare bidding market. As much as half of every dollar in increased plan payment went to higher bids rather than to beneficiaries. While having more insurers in a market lowered bids, the design of any bidding system for Medicare should recognize this shortcoming of competition. PMID:23009305

  10. Interaction location outweighs the competitive advantage of numerical superiority in Cebus capucinus intergroup contests.

    PubMed

    Crofoot, Margaret C; Gilby, Ian C; Wikelski, Martin C; Kays, Roland W

    2008-01-15

    Numerical superiority confers a competitive advantage during contests among animal groups, shaping patterns of resource access, and, by extension, fitness. However, relative group size does not always determine the winner of intergroup contests. Smaller, presumably weaker social groups often defeat their larger neighbors, but how and when they are able to do so remains poorly understood. Models of competition between individuals suggest that location may influence contest outcome. However, because of the logistical difficulties of studying intergroup interactions, previous studies have been unable to determine how contest location and group size interact to shape relationships among groups. We address this question by using an automated radio telemetry system to study intergroup interactions among six capuchin monkey (Cebus capucinus) social groups of varying sizes. We find that the odds of winning increase with relative group size; one additional group member increases the odds of winning an interaction by 10%. However, this effect is not uniform across space; with each 100 m that a group moves away from the center of its home range, its odds of winning an interaction decrease by 31%. We demonstrate that contest outcome depends on an interaction between group size and location, such that small groups can defeat much larger groups near the center of their home range. The tendency of resident groups to win contests may help explain how small groups persist in areas with intense intergroup competition.

  11. Interaction location outweighs the competitive advantage of numerical superiority in Cebus capucinus intergroup contests

    PubMed Central

    Crofoot, Margaret C.; Gilby, Ian C.; Wikelski, Martin C.; Kays, Roland W.

    2008-01-01

    Numerical superiority confers a competitive advantage during contests among animal groups, shaping patterns of resource access, and, by extension, fitness. However, relative group size does not always determine the winner of intergroup contests. Smaller, presumably weaker social groups often defeat their larger neighbors, but how and when they are able to do so remains poorly understood. Models of competition between individuals suggest that location may influence contest outcome. However, because of the logistical difficulties of studying intergroup interactions, previous studies have been unable to determine how contest location and group size interact to shape relationships among groups. We address this question by using an automated radio telemetry system to study intergroup interactions among six capuchin monkey (Cebus capucinus) social groups of varying sizes. We find that the odds of winning increase with relative group size; one additional group member increases the odds of winning an interaction by 10%. However, this effect is not uniform across space; with each 100 m that a group moves away from the center of its home range, its odds of winning an interaction decrease by 31%. We demonstrate that contest outcome depends on an interaction between group size and location, such that small groups can defeat much larger groups near the center of their home range. The tendency of resident groups to win contests may help explain how small groups persist in areas with intense intergroup competition. PMID:18184811

  12. Competition Underway at NASA 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-24

    NASA’s Eighth Annual Robotic Mining Competition (RMC) began its first of three days of actual competition at Kennedy Space Center in Florida. Forty-five teams of college undergraduate and graduate students – and their uniquely-designed and built mining robots – race against the clock to collect and move the most simulated Martian soil. Students also are judged on how they use their robots to inspire their community about science, technology, engineering and math (STEM). Competition continues through Friday. Managed by, and held annually at Kennedy Space Center, RMC is a NASA Human Exploration and Operations Mission Directorate project designed to engage and retain students in STEM fields by expanding opportunities for student research and design. The project provides a competitive environment to foster innovative ideas and solutions with potential use on NASA’s deep space exploration missions, including to Mars.

  13. Is competition needed for ecological character displacement? Does displacement decrease competition?

    PubMed

    Abrams, Peter A; Cortez, Michael H

    2015-12-01

    Interspecific competition for resources is generally considered to be the selective force driving ecological character displacement, and displacement is assumed to reduce competition. Skeptics of the prevalence of character displacement often cite lack of evidence of competition. The present article uses a simple model to examine whether competition is needed for character displacement and whether displacement reduces competition. It treats systems with competing resources, and considers cases when only one consumer evolves. It quantifies competition using several different measures. The analysis shows that selection for divergence of consumers occurs regardless of the level of between-resource competition or whether the indirect interaction between the consumers is competition (-,-), mutualism (+,+), or contramensalism (+,-). Also, divergent evolution always decreases the equilibrium population size of the evolving consumer. Whether divergence of one consumer reduces or increases the impact of a subsequent perturbation of the other consumer depends on the parameters and the method chosen for measuring competition. Divergence in mutualistic interactions may reduce beneficial effects of subsequent increases in the other consumer's population. The evolutionary response is driven by an increase in the relative abundance of the resource the consumer catches more rapidly. Such an increase can occur under several types of interaction. © 2015 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  14. European Responses to Global Competitiveness in Higher Education. Research & Occasional Paper Series: CSHE.7.09

    ERIC Educational Resources Information Center

    van der Wende, Marijk

    2009-01-01

    The growing global competition in which knowledge is a prime factor for economic growth is increasingly shaping policies and setting the agenda for the future of European higher education. With its aim to become the world's leading knowledge economy, the European Union is concerned about its performance in the knowledge sector, in particular in…

  15. Collective Phase in Resource Competition in a Highly Diverse Ecosystem.

    PubMed

    Tikhonov, Mikhail; Monasson, Remi

    2017-01-27

    Organisms shape their own environment, which in turn affects their survival. This feedback becomes especially important for communities containing a large number of species; however, few existing approaches allow studying this regime, except in simulations. Here, we use methods of statistical physics to analytically solve a classic ecological model of resource competition introduced by MacArthur in 1969. We show that the nonintuitive phenomenology of highly diverse ecosystems includes a phase where the environment constructed by the community becomes fully decoupled from the outside world.

  16. Competition-Colonization Trade-Offs, Competitive Uncertainty, and the Evolutionary Assembly of Species

    PubMed Central

    Pillai, Pradeep; Guichard, Frédéric

    2012-01-01

    We utilize a standard competition-colonization metapopulation model in order to study the evolutionary assembly of species. Based on earlier work showing how models assuming strict competitive hierarchies will likely lead to runaway evolution and self-extinction for all species, we adopt a continuous competition function that allows for levels of uncertainty in the outcome of competition. We then, by extending the standard patch-dynamic metapopulation model in order to include evolutionary dynamics, allow for the coevolution of species into stable communities composed of species with distinct limiting similarities. Runaway evolution towards stochastic extinction then becomes a limiting case controlled by the level of competitive uncertainty. We demonstrate how intermediate competitive uncertainty maximizes the equilibrium species richness as well as maximizes the adaptive radiation and self-assembly of species under adaptive dynamics with mutations of non-negligible size. By reconciling competition-colonization tradeoff theory with co-evolutionary dynamics, our results reveal the importance of intermediate levels of competitive uncertainty for the evolutionary assembly of species. PMID:22448253

  17. Interference competition and invasion: spatial structure, novel weapons and resistance zones.

    PubMed

    Allstadt, Andrew; Caraco, Thomas; Molnár, F; Korniss, G

    2012-08-07

    Certain invasive plants may rely on interference mechanisms (e.g., allelopathy) to gain competitive superiority over native species. But expending resources on interference presumably exacts a cost in another life-history trait, so that the significance of interference competition for invasion ecology remains uncertain. We model ecological invasion when combined effects of preemptive and interference competition govern interactions at the neighborhood scale. We consider three cases. Under "novel weapons," only the initially rare invader exercises interference. For "resistance zones" only the resident species interferes, and finally we take both species as interference competitors. Interference increases the other species' mortality, opening space for colonization. However, a species exercising greater interference has reduced propagation, which can hinder its colonization of open sites. Interference never enhances a rare invader's growth in the homogeneously mixing approximation to our model. But interference can significantly increase an invader's competitiveness, and its growth when rare, if interactions are structured spatially. That is, interference can increase an invader's success when colonization of open sites depends on local, rather than global, species densities. In contrast, interference enhances the common, resident species' resistance to invasion independently of spatial structure, unless the propagation-cost is too great. The particular combination of propagation and interference producing the strongest biotic resistance in a resident species depends on the shape of the tradeoff between the two traits. Increases in background mortality (i.e., mortality not due to interference) always reduce the effectiveness of interference competition. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Vibrational modes of thin oblate clouds of charge

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Spencer, Ross L.

    2002-07-01

    A numerical method is presented for finding the eigenfunctions (normal modes) and mode frequencies of azimuthally symmetric non-neutral plasmas confined in a Penning trap whose axial thickness is much smaller than their radial size. The plasma may be approximated as a charged disk in this limit; the normal modes and frequencies can be found if the surface charge density profile σ(r) of the disk and the trap bounce frequency profile ωz(r) are known. The dependence of the eigenfunctions and equilibrium plasma shapes on nonideal components of the confining Penning trap fields is discussed. The results of the calculation are compared with the experimental data of Weimer et al. [Phys. Rev. A 49, 3842 (1994)] and it is shown that the plasma in this experiment was probably hollow and had mode displacement functions that were concentrated near the center of the plasma.

  19. Lunar Regolith Excavation Competition

    NASA Technical Reports Server (NTRS)

    Liles, Cassandra

    2009-01-01

    The Lunar Regolith Excavation Competition is a new competition that needs graphics, logos, rules, as well as an arena. Although this is the first year of the competition, the competition is modeled after an existing competition, the Centennial Lunar Excavator Challenge. This competition however is aimed at college students. This makes the challenge identifying key aspects of the original competition and modeling them to fit into an easier task, and creating exciting advertisement that helps encourage participation. By using a youth focus group, young insight, as well as guiding advice from experts in the field, hopefully an arena can be designed and built, rules can be molded and created to fit, and alluring graphics can be printed to bring about a successful first year of the Lunar Regolith Excavation Competition.

  20. EDITORIAL: Physics competitions Physics competitions

    NASA Astrophysics Data System (ADS)

    Jordens, H.; Mathelitsch, L.

    2011-07-01

    International tests on competences, such as TIMSS or PISA, and knowledge of young students have revealed low average scores in many countries, often unexpectedly. One effective measure to increase the average standard of a population is to bring the last third of the group to a higher level. Therefore, many nations put some effort into this activity. This brings the danger that not enough attention is paid to students at the other end, those who are talented. Indeed, it is a very difficult task for a teacher to support the less able and at the same time challenge the gifted students, to lead them to the limits of their abilities and provide for a smooth transition to university study. Physics competitions have been proven to fulfil these last demands to a large degree, and therefore are an important additional and, to some extent, complementary tool for the promotion of talented students. This third special section on physics competitions in European Journal of Physics contains three papers, each dealing with a different form of science contest. The first continues the series of presentations of tasks performed at the International Young Physicists' Tournament, which was held in Vienna in 2011. First place went to the team from Singapore, and they have put their investigation on vertical oscillations of coupled magnets into written form (not required by the tournament, where an oral presentation and a defence and discussion are the central aspects). Their paper shows how rich in physics this problem is, and what level of solutions high-school students can already achieve. Sadly, those responsible for the organization of last year's International Physics Olympiad did not provide us with a report on this competition. This is unfortunate, since the Olympiad in Zagreb was very successful and, in particular, the experimental tasks were creative and demanding. Very similar to the aims and the execution of the Physics Olympiad is the International Olympiad on Astronomy

  1. Exploring an Age Difference in Preschool Children's Competitiveness Following a Competition.

    PubMed

    Hu, Yu; Zhu, Yi

    2018-01-01

    Literature suggests that resource acquisition compels competition in young children. However, little is still known about the development of preschool children's competitiveness. In this preliminary study, 166 children (aged 2-4 and 5-6 years) engaged in a dyadic competition which resulted in a winning and a losing group (in a control/non-competition group, participants engaged in a similar task which did not lead to winning/losing outcome), and then experimenters tracked their decisions to compete again with a rival (i.e., an individual they interacted in the previous competition task) and a non-rival competitor (i.e., an anonymous classmate they did not interact in the previous competition task) for a reward, respectively. As expected, results showed an age-related decreasing trend in the percentage of choices to compete with a competitor. However, this age difference was only significant in the control group when participants played with the partner with whom they interacted in the previous game and in the losing group when participants competed with a non-rival competitor. This study contributes to our knowledge of how competitiveness develop in preschool childhood, and calls for further research on the roles of motivation and cognitive control in children's competitiveness.

  2. Animacy and competition in relative clause production: A cross-linguistic investigation

    PubMed Central

    Gennari, Silvia P.; Mirkovi, Jelena; MacDonald, Maryellen C.

    2014-01-01

    This work investigates production preferences in different languages. Specifically, it examines how animacy, competition processes, and language-specific constraints shape speakers’ choices of structure. English, Spanish and Serbian speakers were presented with depicted events in which either an animate or inanimate entity was acted upon by an agent. Questions about the affected participant in these events prompted the production of relative clauses identifying these entities (e.g., the bag the woman is punching). Results indicated that in English, animacy plays a strong role in determining the choice of passive structures. In contrast, it plays a less prominent role in Spanish and Serbian structure choices, where more active structures were produced to varying degrees. Critically, the semantic similarity between the agent and the patient of the event correlated with the omission of the agent in all languages, indicating that competition resulted in the agent’s inhibition. Similarity also correlated with different functional choices in Spanish. The results suggest that similarity-based competition may influence various stages of production planning but its manifestations are constrained by language-specific grammatical options. Implications for models of sentence production and the relationship between production and comprehension are discussed. PMID:22537914

  3. Patterns and Drivers of Tree Mortality in Iberian Forests: Climatic Effects Are Modified by Competition

    PubMed Central

    Ruiz-Benito, Paloma; Lines, Emily R.; Gómez-Aparicio, Lorena; Zavala, Miguel A.; Coomes, David A.

    2013-01-01

    Tree mortality is a key process underlying forest dynamics and community assembly. Understanding how tree mortality is driven by simultaneous drivers is needed to evaluate potential effects of climate change on forest composition. Using repeat-measure information from c. 400,000 trees from the Spanish Forest Inventory, we quantified the relative importance of tree size, competition, climate and edaphic conditions on tree mortality of 11 species, and explored the combined effect of climate and competition. Tree mortality was affected by all of these multiple drivers, especially tree size and asymmetric competition, and strong interactions between climate and competition were found. All species showed L-shaped mortality patterns (i.e. showed decreasing mortality with tree size), but pines were more sensitive to asymmetric competition than broadleaved species. Among climatic variables, the negative effect of temperature on tree mortality was much larger than the effect of precipitation. Moreover, the effect of climate (mean annual temperature and annual precipitation) on tree mortality was aggravated at high competition levels for all species, but especially for broadleaved species. The significant interaction between climate and competition on tree mortality indicated that global change in Mediterranean regions, causing hotter and drier conditions and denser stands, could lead to profound effects on forest structure and composition. Therefore, to evaluate the potential effects of climatic change on tree mortality, forest structure must be considered, since two systems of similar composition but different structure could radically differ in their response to climatic conditions. PMID:23451096

  4. Global inhibition and stimulus competition in the owl optic tectum

    PubMed Central

    Mysore, Shreesh P.; Asadollahi, Ali; Knudsen, Eric I.

    2010-01-01

    Stimulus selection for gaze and spatial attention involves competition among stimuli across sensory modalities and across all of space. We demonstrate that such cross-modal, global competition takes place in the intermediate and deep layers of the optic tectum, a structure known to be involved in gaze control and attention. A variety of either visual or auditory stimuli located anywhere outside of a neuron's receptive field (RF) were shown to suppress or completely eliminate responses to a visual stimulus located inside the RF in nitrous oxide sedated owls. The essential mechanism underlying this stimulus competition is global, divisive inhibition. Unlike the effect of the classical inhibitory surround, which decreases with distance from the RF center and shapes neuronal responses to individual stimuli, global inhibition acts across the entirety of space and modulates responses primarily in the context of multiple stimuli. Whereas the source of this global inhibition is as yet unknown, our data indicate that different networks mediate the classical surround and global inhibition. We hypothesize that this global, cross-modal inhibition, which acts automatically in a bottom-up fashion even in sedated animals, is critical to the creation of a map of stimulus salience in the optic tectum. PMID:20130182

  5. "Wanna Race?": Primary Student Preference for Competitive or Non-Competitive Singing Games

    ERIC Educational Resources Information Center

    Roberts, J. Christopher

    2016-01-01

    This study compared primary student preference for competitive and non-competitive singing games. Students in three intact classes of second graders (n = 65) and three classes of fourth graders (n = 67) at one school in the USA served as subjects. After playing a pair of games, one competitive and one non-competitive, over the course of five…

  6. Diversifying evolution of competitiveness.

    PubMed

    Baldauf, Sebastian A; Engqvist, Leif; Weissing, Franz J

    2014-10-29

    In many species, individuals express phenotypic characteristics that enhance their competitiveness, that is, the ability to acquire resources in competition with others. Moreover, the degree of competitiveness varies considerably across individuals and in time. By means of an evolutionary model, we provide an explanation for this finding. We make the assumption that investment into competitiveness enhances the probability to acquire a high-quality resource, but at the same time reduces the ability of exploiting acquired resources with maximal efficiency. The model reveals that under a broad range of conditions competitiveness either converges to a polymorphic state, where individuals differing in competitive ability stably coexist, or is subject to perpetual transitions between periods of high and low competitiveness. The dynamics becomes even more complex if females can evolve preferences for (or against) competitive males. In extreme cases, such preferences can even drive the population to extinction.

  7. High-spin structures in the 139Pr nucleus

    NASA Astrophysics Data System (ADS)

    Yeoh, E. Y.; Zhu, S. J.; Wang, J. G.; Xiao, Z. G.; Zhang, M.; Yan, W. H.; Wang, R. S.; Xu, Q.; Wu, X. G.; He, C. Y.; Li, G. S.; Zheng, Y.; Li, C. B.; Cao, X. P.; Hu, S. P.; Yao, S. H.; Yu, B. B.

    2012-06-01

    Background: 139Pr is located in a transitional region of neutron number close to the N=82 shell. The study of its high-spin states and collective bands is important for systematically understanding the nuclear structural characteristics in this region.Purpose: To investigate the high-spin levels and to search for oblate bands in 139Pr.Methods: The high-spin states of 139Pr have been studied via the reaction 124Sn(19F,4n) at a beam energy of 80 MeV. The experiment was carried out at the HI-13 Tandem Accelerator at the China Institute of Atomic Energy (CIAE). The data analysis was done by using the γ-γ coincidence method.Results: The level scheme of 139Pr has been expanded with spin up to 45/2ℏ. A total of 39 new levels and 45 new transitions are identified. Four collective band structures at high-spin states have been newly established. From systematic analysis, one of the bands is proposed as a double decoupled band; two bands are proposed as oblate bands with γ˜-60∘; another band is suggested as an oblate-triaxial band with γ˜-90∘. The other characteristics for these bands are discussed.Conclusions: A new level scheme in 139Pr has been established and the collective bands at high spin have been identified. The result shows that the strong oblate shape-driving effect is caused by neutrons at the high-spin states in 139Pr.

  8. The I-Raum: A new shaped hohlraum for improved inner beam propagation in indirectly-driven ICF implosions on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Robey, H. F.; Berzak Hopkins, L.; Milovich, J. L.; Meezan, N. B.

    2018-01-01

    Recent work in indirectly-driven inertial confinement fusion implosions on the National Ignition Facility has indicated that late-time propagation of the inner cones of laser beams (23° and 30°) is impeded by the growth of a "bubble" of hohlraum wall material (Au or depleted uranium), which is initiated by and is located at the location where the higher-intensity outer beams (44° and 50°) hit the hohlraum wall. The absorption of the inner cone beams by this "bubble" reduces the laser energy reaching the hohlraum equator at late time driving an oblate or pancaked implosion, which limits implosion performance. In this article, we present the design of a new shaped hohlraum designed specifically to reduce the impact of this bubble by adding a recessed pocket at the location where the outer cones hit the hohlraum wall. This recessed pocket displaces the bubble radially outward, reducing the inward penetration of the bubble at all times throughout the implosion and increasing the time for inner beam propagation by approximately 1 ns. This increased laser propagation time allows one to drive a larger capsule, which absorbs more energy and is predicted to improve implosion performance. The new design is based on a recent National Ignition Facility shot, N170601, which produced a record neutron yield. The expansion rate and absorption of laser energy by the bubble is quantified for both cylindrical and shaped hohlraums, and the predicted performance is compared.

  9. Dynamics of deformation and pinch-off of a migrating compound droplet in a tube

    NASA Astrophysics Data System (ADS)

    Borthakur, Manash Pratim; Biswas, Gautam; Bandyopadhyay, Dipankar

    2018-04-01

    A computational fluid dynamic investigation has been carried out to study the dynamics of a moving compound droplet inside a tube. The motions associated with such a droplet is uncovered by solving the axisymmetric Navier-Stokes equations in which the spatiotemporal evolution of a pair of twin-deformable interfaces has been tracked employing the volume-of-fluid approach. The deformations at the interfaces and their subsequent dynamics are found to be stimulated by the subtle interplay between the capillary and viscous forces. The simulations uncover that when a compound drop composed of concentric inner and outer interfaces migrates inside a tube, initially in the unsteady domain of evolution, the inner drop shifts away from the concentric position to reach a morphology of constant eccentricity at the steady state. The coupled motions of the droplets in the unsteady regime causes a continuous deformation of the inner and outer interfaces to obtain a configuration with a (an) prolate (oblate) shaped outer (inner) interface. The magnitudes of capillary number and viscosity ratio are found to have significant influence on the temporal evolution of the interfacial deformations as well as the eccentricity of the droplets. Further, the simulations uncover that, following the asymmetric deformation of the interfaces, the migrating compound droplet can undergo an uncommon breakup stimulated by a rather irregular pinch-off of the outer shell. The breakup is found to initiate with the thinning of the outer shell followed by the pinch-off. Interestingly, the kinetics of the thinning of outer shell is found to follow two distinct power-law regimes—a swiftly thinning stage at the onset followed by a rate limiting stage before pinch-off, which eventually leads to the uncommon breakup of the migrating compound droplets.

  10. Why There Are No Elliptical Galaxies More Flattened Than E7. Thirty Years Later

    NASA Astrophysics Data System (ADS)

    Caimmi, R.

    2006-12-01

    Elliptical galaxies are modelled as homeoidally striated Jacobi ellipsoids (Caimmi and Marmo 2005) where the peculiar velocity distribution is anisotropic, or equivalently as their adjoint configurations i.e. classical Jacobi ellipsoids of equal mass and axes, in real or imaginary rotation (Caimmi 2006). Reasons for the coincidence of bifurcation points from axisymmetric to triaxial configurations in both the sequences (Caimmi 2006), contrary to earlier findings (Wiegandt 1982a,b, Caimmi and Marmo 2005) are presented and discussed. The effect of centrifugal support at the ends of the major equatorial axis is briefly outlined. The existence of a lower limit to the flattening of elliptical galaxies is investigated in dealing with a number of limiting situations. More specifically, (i) elliptical galaxies are considered as isolated systems, and an allowed region within Ellipsoidland (Hunter and de Zeeuw 1997), related to the occurrence of bifurcation points from ellipsoidal to pear-shaped configurations, is shown to be consistent with observations; (ii) elliptical galaxies are considered as embedded within dark matter haloes and, under reasonable assumptions, it is shown that tidal effects from hosting haloes have little influence on the above mentioned results; (iii) dark matter haloes and embedded elliptical galaxies, idealized as a single homeoidally striated Jacobi ellipsoid, are considered in connection with the cosmological transition from expansion to relaxation, by generalizing an earlier model (Thuan and Gott 1975), and the existence of a lower limit to the flattening of relaxed (oblate-like) configurations, is established. On the other hand, no lower limit is found to the elongation of relaxed (prolate-like) configurations, and the existence of some sort of instability is predicted, owing to the observed lack of elliptical galaxies more flattened or elongated than E7.

  11. Re-evaluation of polyphase kinematic and 40Ar/39Ar cooling history of Moldanubian hot nappe at the eastern margin of the Bohemian Massif

    NASA Astrophysics Data System (ADS)

    Racek, M.; Lexa, O.; Schulmann, K.; Corsini, M.; Štípská, P.; Maierová, P.

    2017-03-01

    A structural and geochronological 40Ar/39Ar study was performed in kilometre-scale middle and lower crustal lens-shaped domains dominated by a preserved subvertical foliation, surrounded by horizontally foliated migmatites. These domains occur within the Moldanubian nappe overlying the Brunia microcontinent at the eastern margin of the European Variscides. Three main deformation phases were recognized: subvertical S2 fabric trending NW-SE in lower crustal rocks and NE-SW in mid-crustal rocks. It is reworked by HT/MT horizontal fabric S3 along margins of crustal domains and in surrounding migmatites. S3 bears a prolate NE lineation parallel to the S2-S3 intersection in the lower crustal domain. In the middle crustal units, L3 is weak, connected to oblate strain and trends NE-SW parallel to the S2-S3 intersection. D4 non-coaxial shear deformation is mainly localized at the boundary between the Moldanubian nappe and Brunia and bears strong top to the NNE shear criteria. In order to constrain kinematics of the D3 deformation, strain modelling was performed to show that the Moldanubian hot nappe was frontally thrust over the Brunia indentor. The renewed D4 tangential movement only heterogeneously reactivates the horizontal S3. This evolution is recorded in 40Ar/39Ar amphibole cooling ages, which show two statistically significant Carboniferous peaks at 342 and 332 Ma, which are also reflected by published detrital muscovite 40Ar/39Ar ages in the adjacent foreland basin. This geochronological record is correlated with progressive erosion of the topographically elevated upper crustal part of the Moldanubian nappe during D3 frontal thrusting, followed by greenschist facies D4 transpressive reactivation and subsequent erosion of high-grade parts of the nappe.

  12. Robotics Competitions: An Overview of First© Events and VEX© Competitions

    ERIC Educational Resources Information Center

    Habib, Maria A.

    2012-01-01

    Robotics competitions generate excitement and raise the profile of a robotics program. This article provides an overview of robotics competitions, concentrating on those sponsored by FIRST (For Inspiration and Recognition of Science and Technology) and RECF (Robotics Education and Competition Foundation). FIRST® LEGO® League and VEX® robotics…

  13. The Four Faces of Competition: The Development of the Multidimensional Competitive Orientation Inventory

    PubMed Central

    Orosz, Gábor; Tóth-Király, István; Büki, Noémi; Ivaskevics, Krisztián; Bőthe, Beáta; Fülöp, Márta

    2018-01-01

    To date, no short scale exists with established factor structure that can assess individual differences in competition. The aim of the present study was to uncover and operationalize the facets of competitive orientations with theoretical underpinning and strong psychometric properties. A total of 2676 respondents were recruited for four studies. The items were constructed based on qualitative research in different cultural contexts. A combined method of exploratory structural equation modeling (ESEM) and confirmatory factor analysis (CFA) was employed. ESEM resulted in a four-factor structure of the competitive orientations and this structure was supported by a series of CFAs on different comprehensive samples. The Multidimensional Competitive Orientation Inventory (MCOI) included 12 items and four factors: hypercompetitive orientation, self-developmental competitive orientation, anxiety-driven competition avoidance, and lack of interest toward competition. Strong gender invariance was established. The four facets of competition have differentiated relationship patterns with adaptive and maladaptive personality and motivational constructs. The MCOI can assess the adaptive and maladaptive facets of competitive orientations with a short, reliable, valid and theoretically underlined multidimensional measure. PMID:29872415

  14. Using Classroom Competitions to Prepare Students for the Competitive Business World

    ERIC Educational Resources Information Center

    Gibson, Fay Y.; Kincade, Doris H.; Frasier, Pamela Y.

    2013-01-01

    This paper describes how a university, collaborating with industry, integrated research with active learning (e.g., collaboration in teams and competitions) for fashion majors. The redesigned introductory course uses two strategies: team competitions and a genius bar to guide students, give ongoing feedback, and judge final competitions. Active…

  15. Root-like enamel pearl: a case report

    PubMed Central

    2014-01-01

    Introduction In general, enamel pearls are found in maxillary molars as a small globule of enamel. However, this case report describes an enamel pearl with a prolate spheroid shape which is 1.8mm wide and 8mm long. The different type of enamel pearl found in my clinic has significantly improved our understanding of enamel pearl etiology and pathophysiology. Case presentation A 42-year-old Han Chinese woman with severe toothache received treatment in my Department of Endodontics. She had no significant past medical history. A dental examination revealed extensive distal decay in her left mandibular first molar, tenderness to percussion and palpation of the periradicular zone, and found a deep periodontal pocket on the buccal lateral. Vitality testing was negative. Periapical radiographic images revealed radiolucency around the mesial apex. Cone beam computed tomography detected an opaque enamel pearl in the furcation area with a prolate spheroid shape of 1.8mm wide and 8mm long. Conclusion The enamel pearl described in this case report is like a very long dental root. Cone beam computed tomography may be used for evaluating enamel pearls. PMID:25008098

  16. Mechanisms linking affective reactions to competition-related and competition-extraneous concerns in male martial artists

    PubMed Central

    Cerin, E; Barnett, A

    2011-01-01

    The main aim of this study was to examine affective linkages between competition-related and competition-extraneous concern domains. A secondary purpose was to establish the contributions of pre-competition affects to post-competition performance appraisals, independent of pre-competition performance expectations. Thirty-nine highly skilled male martial artists were assessed at five random times a day for a week and 1 h before a major competition on affective states and sources of concern. They also reported their performance expectations and post-competition performance appraisals. Affective states triggered by competition-related and competition-extraneous concerns persisted in time. Carry-over effects were stronger after reports of competition-related concerns, emphasizing the subjective importance of the competitive event. Although positive (enjoyment and surprise) and negative (sadness and guilt) affective spill-over was observed from competition-extraneous to competition-related concerns, the reverse held true only for disgust. These findings may be due to the athletes' ability to regulate affective reactions within a sporting setting, in particular. Spill-over from competition-extraneous to competition-related concerns is indicative of a lesser degree of control over work/study and family life. Given that average weekly negative affects and anger/disgust were independent predictors of post-competition performance appraisals, the phenomenon of spill-over and other affective linkage mechanisms in sport warrant further investigation. PMID:21917020

  17. SPITE VERSUS CHEATS: COMPETITION AMONG SOCIAL STRATEGIES SHAPES VIRULENCE IN PSEUDOMONAS AERUGINOSA

    PubMed Central

    Inglis, R Fredrik; Brown, Sam P; Buckling, Angus

    2012-01-01

    Social interactions have been shown to play an important role in bacterial evolution and virulence. The majority of empirical studies conducted have only considered social traits in isolation, yet numerous social traits, such as the production of spiteful bacteriocins (anticompetitor toxins) and iron-scavenging siderophores (a public good) by the opportunistic pathogen Pseudomonas aeruginosa, are frequently expressed simultaneously. Crucially, both bacteriocin production and siderophore cheating can be favored under the same competitive conditions, and we develop theory and carry out experiments to determine how the success of a bacteriocin-producing genotype is influenced by social cheating of susceptible competitors and the resultant impact on disease severity (virulence). Consistent with our theoretical predictions, we find that the spiteful genotype is favored at higher local frequencies when competing against public good cheats. Furthermore, the relationship between spite frequency and virulence is significantly altered when the spiteful genotype is competed against cheats compared with cooperators. These results confirm the ecological and evolutionary importance of considering multiple social traits simultaneously. Moreover, our results are consistent with recent theory regarding the invasion conditions for strong reciprocity (helping cooperators and harming noncooperators). PMID:23106711

  18. Approximate kernel competitive learning.

    PubMed

    Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang

    2015-03-01

    Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Revealing the nanoparticles aspect ratio in the glass-metal nanocomposites irradiated with femtosecond laser

    PubMed Central

    Chervinskii, S.; Drevinskas, R.; Karpov, D. V.; Beresna, M.; Lipovskii, A. A.; Svirko, Yu. P.; Kazansky, P. G.

    2015-01-01

    We studied a femtosecond laser shaping of silver nanoparticles embedded in soda-lime glass. Comparing experimental absorption spectra with the modeling based on Maxwell Garnett approximation modified for spheroidal inclusions, we obtained the mean aspect ratio of the re-shaped silver nanoparticles as a function of the laser fluence. We demonstrated that under our experimental conditions the spherical shape of silver nanoparticles changed to a prolate spheroid with the aspect ratio as high as 3.5 at the laser fluence of 0.6 J/cm2. The developed approach can be employed to control the anisotropy of the glass-metal composites. PMID:26348691

  20. Competition drives trait evolution and character displacement between Mimulus species along an environmental gradient.

    PubMed

    Kooyers, Nicholas J; James, Brooke; Blackman, Benjamin K

    2017-05-01

    Closely related species may evolve to coexist stably in sympatry through niche differentiation driven by in situ competition, a process termed character displacement. Alternatively, past evolution in allopatry may have already sufficiently reduced niche overlap to permit establishment in sympatry, a process called ecological sorting. The relative importance of each process to niche differentiation is contentious even though they are not mutually exclusive and are both mediated via multivariate trait evolution. We explore how competition has impacted niche differentiation in two monkeyflowers, Mimulus alsinoides and M. guttatus, which often co-occur. Through field observations, common gardens, and competition experiments, we demonstrate that M. alsinoides is restricted to marginal habitats in sympatry and that the impacts of character displacement on niche differentiation are complex. Competition with M. guttatus alters selection gradients and has favored taller M. alsinoides with earlier seasonal flowering at low elevation and floral shape divergence at high elevation. However, no trait exhibits the pattern typically associated with character displacement, higher divergence between species in sympatry than allopatry. Thus, although character displacement was unlikely the process driving initial divergence along niche axes necessary for coexistence, we conclude that competition in sympatry has likely driven trait evolution along additional niche axes. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  1. Geographic variation in apparent competition between native and invasive Phragmites australis.

    PubMed

    Bhattarai, Ganesh P; Meyerson, Laura A; Cronin, James T

    2017-02-01

    Apparent competition, the negative interaction between species mediated by shared natural enemies, is thought to play an important role in shaping the structure and dynamics of natural communities. However, its importance in driving species invasions, and whether the strength of this indirect interaction varies across the latitudinal range of the invasion, has not been fully explored. We performed replicated field experiments at four sites spanning 900 km along the Atlantic Coast of the United States to assess the presence and strength of apparent competition between sympatric native and invasive lineages of Phragmites australis. Four herbivore guilds were considered: stem-feeders, leaf-miners, leaf-chewers and aphids. We also tested the hypothesis that the strength of this interaction declines with increasing latitude. Within each site, native and invasive plants of P. australis were cross-transplanted between co-occurring native and invasive patches in the same marsh habitat and herbivore damage was evaluated at the end of the growing season. Apparent competition was evident for both lineages and involved all but the leaf-chewer guild. For native plants, total aphids per plant was 296% higher and the incidence of stem-feeding and leaf-mining herbivores was 34% and 221% higher, respectively, when transplanted into invasive than native patches. These data suggest that invasive P. australis has a negative effect on native P. australis via apparent competition. Averaged among herbivore types, the indirect effects of the invasive lineage on the native lineage was 57% higher than the reverse situation, suggesting that apparent competition was asymmetric. We also found that the strength of apparent competition acting against the native lineage was comparable to the benefits to the invasive lineage from enemy release (i.e., proportionately lower mean herbivory of the invasive relative to the native taxa). Finally, we found the first evidence that the strength of

  2. Exploring an Age Difference in Preschool Children’s Competitiveness Following a Competition

    PubMed Central

    Hu, Yu; Zhu, Yi

    2018-01-01

    Literature suggests that resource acquisition compels competition in young children. However, little is still known about the development of preschool children’s competitiveness. In this preliminary study, 166 children (aged 2–4 and 5–6 years) engaged in a dyadic competition which resulted in a winning and a losing group (in a control/non-competition group, participants engaged in a similar task which did not lead to winning/losing outcome), and then experimenters tracked their decisions to compete again with a rival (i.e., an individual they interacted in the previous competition task) and a non-rival competitor (i.e., an anonymous classmate they did not interact in the previous competition task) for a reward, respectively. As expected, results showed an age-related decreasing trend in the percentage of choices to compete with a competitor. However, this age difference was only significant in the control group when participants played with the partner with whom they interacted in the previous game and in the losing group when participants competed with a non-rival competitor. This study contributes to our knowledge of how competitiveness develop in preschool childhood, and calls for further research on the roles of motivation and cognitive control in children’s competitiveness. PMID:29593610

  3. FIRST 2002, 2003, 2004 Robotics Competition(s)

    NASA Technical Reports Server (NTRS)

    Purman, Richard

    2004-01-01

    The New Horizons Regional Education Center (NHREC) in Hampton, VA sought and received NASA funding to support its participation in the 2002, 2003, and 2004 FIRST Robotics Competitions. FIRST, Inc. (For Inspiration and Recognition of Science and Technology) is an organization which encourages the application of creative science, math, and computer science principles to solve real-world engineering problems. The FIRST competition is an international engineering contest featuring high school, government, and business partnerships.

  4. Sperm competition games: a general model for precopulatory male-male competition.

    PubMed

    Parker, Geoff A; Lessells, Catherine M; Simmons, Leigh W

    2013-01-01

    Reproductive males face a trade-off between expenditure on precopulatory male-male competition--increasing the number of females that they secure as mates--and sperm competition--increasing their fertilization success with those females. Previous sperm allocation models have focused on scramble competition in which males compete by searching for mates and the number of matings rises linearly with precopulatory expenditure. However, recent studies have emphasized contest competition involving precopulatory expenditure on armaments, where winning contests may be highly dependent on marginal increases in relative armament level. Here, we develop a general model of sperm allocation that allows us to examine the effect of all forms of precopulatory competition on sperm allocation patterns. The model predicts that sperm allocation decreases if either the "mate-competition loading,"a, or the number of males competing for each mating, M, increases. Other predictions remain unchanged from previous models: (i) expenditure per ejaculate should increase and then decrease, and (ii) total postcopulatory expenditure should increase, as the level of sperm competition increases. A negative correlation between a and M is biologically plausible, and may buffer deviations from the previous models. There is some support for our predictions from comparative analyses across dung beetle species and frog populations. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  5. Training Alters the Resolution of Lexical Interference: Evidence for Plasticity of Competition and Inhibition

    PubMed Central

    Kapnoula, Efthymia C.; McMurray, Bob

    2016-01-01

    Language learning is generally described as a problem of acquiring new information (e.g., new words). However, equally important are changes in how the system processes known information. For example, a wealth of studies has suggested dramatic changes over development in how efficiently children recognize familiar words, but it is unknown what kind of experience-dependent mechanisms of plasticity give rise to such changes in real-time processing. We examined the plasticity of the language processing system by testing whether a fundamental aspect of spoken word recognition, lexical interference, can be altered by experience. Adult participants were trained on a set of familiar words over a series of 4 tasks. In the high-competition (HC) condition, tasks were designed to encourage coactivation of similar words (e.g., net and neck) and to require listeners to resolve this competition. Tasks were similar in the low-competition (LC) condition, but did not enhance this competition. Immediately after training, interlexical interference was tested using a visual world paradigm task. Participants in the HC group resolved interference to a fuller degree than those in the LC group, demonstrating that experience can shape the way competition between words is resolved. TRACE simulations showed that the observed late differences in the pattern of interference resolution can be attributed to differences in the strength of lexical inhibition. These findings inform cognitive models in many domains that involve competition/interference processes, and suggest an experience-dependent mechanism of plasticity that may underlie longer term changes in processing efficiency associated with both typical and atypical development. PMID:26709587

  6. Efficient and Competitive Rationing

    DTIC Science & Technology

    1988-05-01

    that state S enterprises can organize markets that implement priority service efficiently. In Section 5 we study the operation of competitive markets ...exposition.) 5. COMPETITIVE RATIONING We examine next the incentives for profit-maximizing firms in competitive markets to offer priority service. Our...importantly, those equilibria that do exist show that firms have an incentive not to differentiate. It seems clear, 59 therefore, that in competitive markets

  7. Development of olivine crystallographic preferred orientation in response to strain-induced fabric geometry

    NASA Astrophysics Data System (ADS)

    Chatzaras, Vasileios; Kruckenberg, Seth C.; Cohen, Shaina M.; Medaris, L. Gordon, Jr.; Withers, Anthony C.; Bagley, Brian

    2016-04-01

    The effect of finite strain ellipsoid geometry on crystallographic preferred orientation (CPO) is well known for crustal minerals (e.g., quartz, calcite, biotite, and hornblende). In the upper mantle, however, it remains poorly constrained how strain and fabric may affect olivine CPO. We present data from a suite of 40 spinel peridotite xenoliths from Marie Byrd Land (west Antarctica), which support an interpretation that fabric geometry rather than deformation conditions control the development of olivine CPO. We use X-ray computed tomography (XRCT) to quantitatively determine spinel fabric (orientation and geometry). Olivine CPOs, determined by Electron Backscattered Diffraction (EBSD), are plotted with respect to the XRCT-derived spinel foliation and lineation; this approach allows for the accurate, and unbiased, identification of CPO symmetries and types in mantle xenoliths. The combined XRCT and EBSD data show that the xenoliths are characterized by a range of fabric geometries (from oblate to prolate) and olivine CPO patterns; we recognize the A-type, axial-[010], axial-[100], and B-type patterns. The mantle xenoliths equilibrated at temperatures 779-1198 oC, as determined by 2-Px geothermometry. Using a geotherm consistent with the stability of spinel in all xenoliths, the range of equilibration temperatures occurs at depths between 39 and 72 km. Olivine recrystallized grain size piezometry reveals differential stresses ranging 2-60 MPa. Analysis of low-angle misorientation axes show a wide range in the distribution of rotation axes, with dominant {0kl}[100] slip. We use Fourier Transform Infrared (FTIR) spectroscopy to estimate the water content in the xenolith with the B-type CPO pattern. FTIR analysis shows that the equilibrium H concentration in olivine is low (4-13 ppm H2O). Combining these data, we observe that olivine CPO symmetry is controlled neither by the deformation conditions (stress, temperature, pressure, water content) for the range of

  8. Getting Competitive: Competitive Intelligence Is a Smart next Step for Information Pros

    ERIC Educational Resources Information Center

    Correia, Cynthia Cheng

    2006-01-01

    Competitive Intelligence (CI) has become an attractive concept for Library and Information Science professionals, as information and research functions have become commoditized by end users, and financial, competitive, and performance pressures increase the need to demonstrate value. In the current competitive and cost-cutting environment,…

  9. Atypical Balance between Occipital and Fronto-Parietal Activation for Visual Shape Extraction in Dyslexia

    PubMed Central

    Zhang, Ying; Whitfield-Gabrieli, Susan; Christodoulou, Joanna A.; Gabrieli, John D. E.

    2013-01-01

    Reading requires the extraction of letter shapes from a complex background of text, and an impairment in visual shape extraction would cause difficulty in reading. To investigate the neural mechanisms of visual shape extraction in dyslexia, we used functional magnetic resonance imaging (fMRI) to examine brain activation while adults with or without dyslexia responded to the change of an arrow’s direction in a complex, relative to a simple, visual background. In comparison to adults with typical reading ability, adults with dyslexia exhibited opposite patterns of atypical activation: decreased activation in occipital visual areas associated with visual perception, and increased activation in frontal and parietal regions associated with visual attention. These findings indicate that dyslexia involves atypical brain organization for fundamental processes of visual shape extraction even when reading is not involved. Overengagement in higher-order association cortices, required to compensate for underengagment in lower-order visual cortices, may result in competition for top-down attentional resources helpful for fluent reading. PMID:23825653

  10. Drop Shapes Versus Fall Velocities in Rain: 2 Contrasting Examples

    NASA Technical Reports Server (NTRS)

    Thurai, M.; Bringi, V. N.; Petersen, W. A.; Carey, L. D.; Gatlin, P. N.; Tokay, A.

    2011-01-01

    Rainfall retrievals from polarimetric radar measurements require the knowledge of four fundamental rain microstructure parameters, namely, drop size distribution, drop shape distribution, canting angles and drop fall velocities. Some recent measurements of all four parameters in natural rain are summarized in [1]. In this paper, we perform an in-depth analysis of two events, using two co-located 2D video disdrometers (2DVD; see [2]) both with high calibration accuracy, and a C-band polarimetric radar [3], located 15 km away. The two events, which occurred 7 days apart (on the 18th and the 25th of Dec 2009), had moderate-to-intense rainfall rates, but the second event had an embedded convection line within the storm. The line had passed over the 2DVD site, thus enabling the shapes and fall velocities to be determined as the line crossed the site. The first event was also captured in a similar manner by both the 2DVDs as well as the C-band radar. Drop fall velocity measurements for, say, the 3 mm drops show noticeable differences between the two events. Whereas for the first event, the velocity distribution showed a narrow and symmetric distribution, with a mode at the expected value (7.95 m/s, as given by the formula in [4]), the second event produced a wider distribution with a significant skewness towards lower velocities (although its mode too was close to the expected value). Moreover, the slower 3 mm drops in the second event occurred when the convection line was directly over the 2DVD site (03:35-03:45 utc), and not before nor after. A similar trend was observed in terms of the horizontal dimensions of the 3 mm drops, i.e. large fluctuations during the same time period, but not outside the period. Vertical dimensions of the drops also fluctuated but not to the same extent. Interestingly, the horizontal dimensions tended towards larger values during the 10-minute period, implying an increase in drop oblateness, which in turn indicates the possibility of the

  11. Competition for land

    PubMed Central

    Smith, Pete; Gregory, Peter J.; van Vuuren, Detlef; Obersteiner, Michael; Havlík, Petr; Rounsevell, Mark; Woods, Jeremy; Stehfest, Elke; Bellarby, Jessica

    2010-01-01

    A key challenge for humanity is how a future global population of 9 billion can all be fed healthily and sustainably. Here, we review how competition for land is influenced by other drivers and pressures, examine land-use change over the past 20 years and consider future changes over the next 40 years. Competition for land, in itself, is not a driver affecting food and farming in the future, but is an emergent property of other drivers and pressures. Modelling studies suggest that future policy decisions in the agriculture, forestry, energy and conservation sectors could have profound effects, with different demands for land to supply multiple ecosystem services usually intensifying competition for land in the future. In addition to policies addressing agriculture and food production, further policies addressing the primary drivers of competition for land (population growth, dietary preference, protected areas, forest policy) could have significant impacts in reducing competition for land. Technologies for increasing per-area productivity of agricultural land will also be necessary. Key uncertainties in our projections of competition for land in the future relate predominantly to uncertainties in the drivers and pressures within the scenarios, in the models and data used in the projections and in the policy interventions assumed to affect the drivers and pressures in the future. PMID:20713395

  12. Influence of particle aspect ratio on the midinfrared extinction spectra of wavelength-sized ice crystals.

    PubMed

    Wagner, Robert; Benz, Stefan; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Leisner, Thomas

    2007-12-20

    We have used the T-matrix method and the discrete dipole approximation to compute the midinfrared extinction cross-sections (4500-800 cm(-1)) of randomly oriented circular ice cylinders for aspect ratios extending up to 10 for oblate and down to 1/6 for prolate particle shapes. Equal-volume sphere diameters ranged from 0.1 to 10 microm for both particle classes. A high degree of particle asphericity provokes a strong distortion of the spectral habitus compared to the extinction spectrum of compactly shaped ice crystals with an aspect ratio around 1. The magnitude and the sign (increase or diminution) of the shape-related changes in both the absorption and the scattering cross-sections crucially depend on the particle size and the values for the real and imaginary part of the complex refractive index. When increasing the particle asphericity for a given equal-volume sphere diameter, the values for the overall extinction cross-sections may change in opposite directions for different parts of the spectrum. We have applied our calculations to the analysis of recent expansion cooling experiments on the formation of cirrus clouds, performed in the large coolable aerosol and cloud chamber AIDA of Forschungszentrum Karlsruhe at a temperature of 210 K. Depending on the nature of the seed particles and the temperature and relative humidity characteristics during the expansion, ice crystals of various shapes and aspect ratios could be produced. For a particular expansion experiment, using Illite mineral dust particles coated with a layer of secondary organic matter as seed aerosol, we have clearly detected the spectral signatures characteristic of strongly aspherical ice crystal habits in the recorded infrared extinction spectra. We demonstrate that the number size distributions and total number concentrations of the ice particles that were generated in this expansion run can only be accurately derived from the recorded infrared spectra when employing aspect ratios as high as

  13. Competition for Assistance Agreements

    EPA Pesticide Factsheets

    It is EPA policy to promote competition in the award of assistance agreements to the maximum extent practicable.When assistance agreements are awarded competitively, it is EPA policy that the competitive process be fair and open & that no applicant receive

  14. Predators Exacerbate Competitive Interactions and Dominance Hierarchies between Two Coral Reef Fishes

    PubMed Central

    Hall, April; Kingsford, Michael

    2016-01-01

    Predation and competition are critical processes influencing the ecology of organisms, and can play an integral role in shaping coral reef fish communities. This study compared the relative and interacting effects of competition and predation on two competing species of coral reef fish, Pomacentrus amboinensis and P. moluccensis (Pomacentridae), using a multifactorial experiment. Fish were subjected to the sight and smell of a known predator (Pseudochromis fuscus), the presence of the heterospecific competitor (i.e., P. amboinensis vs. P. moluccensis), or a combination of the two for a period of 19 days. The sub-lethal effects of predator/competitor treatments were compared with controls; a combination of otolith microstructure analysis and observations were used to determine otolith growth patterns and behaviour. We predicted that the stress of competition and/or predation would result in strong sub-lethal impacts, and act synergistically on growth and behavioural patterns. We found strong evidence to support this prediction, but only for P. amboinensis, which suffered reductions in growth in both predator and competitor treatments, with the largest reductions occurring when subjected to both predation and competition concurrently. There was strong evidence of asymmetrical competition between the two damselfish species, with P. moluccensis as the dominant competitor, displaying strong aggressive behaviour towards P. amboinensis. Growth reductions for P. amboinensis in predator/competitor treatments appeared to come about primarily due to increases in shelter seeking behaviour, which significantly reduced the foraging rates of individuals compared with controls. These data highlight the importance of predator/competitor synergisms in influencing key behaviours and demographic parameters for juvenile coral reef fishes. PMID:26992169

  15. Competition-cooperation relationship networks characterize the competition and cooperation between proteins

    PubMed Central

    Li, Hong; Zhou, Yuan; Zhang, Ziding

    2015-01-01

    By analyzing protein-protein interaction (PPI) networks, one can find that a protein may have multiple binding partners. However, it is difficult to determine whether the interactions with these partners occur simultaneously from binary PPIs alone. Here, we construct the yeast and human competition-cooperation relationship networks (CCRNs) based on protein structural interactomes to clearly exhibit the relationship (competition or cooperation) between two partners of the same protein. If two partners compete for the same interaction interface, they would be connected by a competitive edge; otherwise, they would be connected by a cooperative edge. The properties of three kinds of hubs (i.e., competitive, modest, and cooperative hubs) are analyzed in the CCRNs. Our results show that competitive hubs have higher clustering coefficients and form clusters in the human CCRN, but these tendencies are not observed in the yeast CCRN. We find that the human-specific proteins contribute significantly to these differences. Subsequently, we conduct a series of computational experiments to investigate the regulatory mechanisms that avoid competition between proteins. Our comprehensive analyses reveal that for most yeast and human protein competitors, transcriptional regulation plays an important role. Moreover, the human-specific proteins have a particular preference for other regulatory mechanisms, such as alternative splicing. PMID:26108281

  16. Preschoolers' Perceptions of Performance and Satisfaction under Competitive and Non-Competitive Conditions

    ERIC Educational Resources Information Center

    Tsiakara, Angeliki A.; Digelidis, Nikolaos M.

    2015-01-01

    The aim of this study was to explore preschool children's perceptions of their performance under competitive and non-competitive conditions (NCC) and their satisfaction. Eighty preschool children (40 boys, 40 girls) aged 4-6 years (M age?=?5.48, SD?=?0.57) took part in this study. Preschool children built a tower under competitive and NCC and…

  17. Illuminating the multifaceted roles of neurotransmission in shaping neuronal circuitry.

    PubMed

    Okawa, Haruhisa; Hoon, Mrinalini; Yoshimatsu, Takeshi; Della Santina, Luca; Wong, Rachel O L

    2014-09-17

    Across the nervous system, neurons form highly stereotypic patterns of synaptic connections that are designed to serve specific functions. Mature wiring patterns are often attained upon the refinement of early, less precise connectivity. Much work has led to the prevailing view that many developing circuits are sculpted by activity-dependent competition among converging afferents, which results in the elimination of unwanted synapses and the maintenance and strengthening of desired connections. Studies of the vertebrate retina, however, have recently revealed that activity can play a role in shaping developing circuits without engaging competition among converging inputs that differ in their activity levels. Such neurotransmission-mediated processes can produce stereotypic wiring patterns by promoting selective synapse formation rather than elimination. We discuss how the influence of transmission may also be limited by circuit design and further highlight the importance of transmission beyond development in maintaining wiring specificity and synaptic organization of neural circuits. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. In Defence of Competition.

    ERIC Educational Resources Information Center

    Prvulovich, Zika Rad

    1982-01-01

    Examines objections to competition as presented by educational philosopher Michael Fielding and others. The two major types of criticism of competition are that it is unfair and divisive and that it is selfish and immoral. The author advocates educational experiences which combine self-competition with cooperation. (AM)

  19. Strategizing for Intense Competition.

    ERIC Educational Resources Information Center

    Hahn, William; Bourgeois, Ernest J., Jr.

    1999-01-01

    Examines trend toward more aggressive student recruiting strategies by colleges and universities, applying a model that assesses five competitive forces-cause and effect of competition, the expanding marketplace, substitute products, buyer power, and supplier power, and examines various strategies for dealing with these competitive forces, such as…

  20. Palynological study of the genera Ruellia, Ecbolium, Asystasia, Blepharis and Dicliptera (Acanthaceae) of Yemen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Hakimi, S. Anisa; Maideen, Haja; Latiff, A.

    Pollen morphology of five genera of the family Acanthaceae, namely Ruellia, Blepharis, Asystasia, Ecbolium and Dicliptera (Acanthaceae) of Yemen has been examined using light and scanning electron microscope. Pollen descriptions were provided with two shapes distinguished, spheroidal and prolate. Most of the pollen grains were tricolporate amd psuedocolpi except those of Blepharis which are colpate. The surface is coarsely reticulate, in addition to the lumina that varies in size.

  1. Changes in Subjective Sleep Quality Before a Competition and Their Relation to Competitive Anxiety.

    PubMed

    Ehrlenspiel, Felix; Erlacher, Daniel; Ziegler, Matthias

    2016-12-09

    The aim of this study was to examine the effects of competitions on subjective sleep quality. Previous studies have been inconclusive and lack differentiated and standardized measurements of subjective sleep quality. Furthermore the temporal relation between precompetitive anxiety and sleep quality was investigated. Anxiety and nervousness associated with competitions are considered to cause sleep impairments. A convenience sample of N = 79 elite male athletes from various sports participated. In a time-to-event paradigm, sleep quality and competitive anxiety were assessed via standardized self-report measurements 4 days before a competition and on the day of the competition. Univariate analyses were used to examine differences between time points. To examine cross-lagged effects between anxiety and sleep quality a latent change score model (LCSM) was specified that tested an effect of anxiety on changes in sleep quality. Evaluations of nocturnal sleep deteriorated significantly from 4 days before competition to the day of competition, but there were no differences regarding perceptions of the restorative value of sleep. LCSM revealed that athletes who reported more intense worry symptoms 4 days before competition also reported greater deterioration in evaluations of nocturnal sleep. The findings support earlier reports of impaired subjective sleep quality before competitions. Precompetitive sleep impairments appear also to be preceded by cognitive anxiety. Whereas interventions should thus address worry-cognitions associated with competition and sleep, research should address the practical importance of these perceptions of sleep impairments.

  2. Direct Versus Indirect Competition.

    ERIC Educational Resources Information Center

    Billing, John

    Competition in sport and physical education programs has been used to motivate the learning of skills, increase physical fitness, and to create environments purportedly conducive to the development of desirable personality qualities. However, the way in which competition is conceptualized is of great importance. In direct competition, achievement…

  3. The effects of nurse staffing on hospital financial performance: competitive versus less competitive markets.

    PubMed

    Everhart, Damian; Neff, Donna; Al-Amin, Mona; Nogle, June; Weech-Maldonado, Robert

    2013-01-01

    Hospitals facing financial uncertainty have sought to reduce nurse staffing as a way to increase profitability. However, nurse staffing has been found to be important in terms of quality of patient care and nursing-related outcomes. Nurse staffing can provide a competitive advantage to hospitals and as a result of better financial performance, particularly in more competitive markets. In this study, we build on the Resource-Based View of the Firm to determine the effect of nurse staffing on total profit margin in more competitive and less competitive hospital markets in Florida. By combining a Florida statewide nursing survey with the American Hospital Association Annual Survey and the Area Resource File, three separate multivariate linear regression models were conducted to determine the effect of nurse staffing on financial performance while accounting for market competitiveness. The analysis was limited to acute care hospitals. Nurse staffing levels had a positive association with financial performance (β = 3.3, p = .02) in competitive hospital markets, but no significant association was found in less competitive hospital markets. Hospitals in more competitive hospital markets should reconsider reducing nursing staff, as these cost-cutting measures may be inefficient and negatively affect financial performance.

  4. Species interactions and response time to climate change: ice-cover and terrestrial run-off shaping Arctic char and brown trout competitive asymmetries

    NASA Astrophysics Data System (ADS)

    Finstad, A. G.; Palm Helland, I.; Jonsson, B.; Forseth, T.; Foldvik, A.; Hessen, D. O.; Hendrichsen, D. K.; Berg, O. K.; Ulvan, E.; Ugedal, O.

    2011-12-01

    There has been a growing recognition that single species responses to climate change often mainly are driven by interaction with other organisms and single species studies therefore not are sufficient to recognize and project ecological climate change impacts. Here, we study how performance, relative abundance and the distribution of two common Arctic and sub-Arctic freshwater fishes (brown trout and Arctic char) are driven by competitive interactions. The interactions are modified both by direct climatic effects on temperature and ice-cover, and indirectly through climate forcing of terrestrial vegetation pattern and associated carbon and nutrient run-off. We first use laboratory studies to show that Arctic char, which is the world's most northernmost distributed freshwater fish, outperform trout under low light levels and also have comparable higher growth efficiency. Corresponding to this, a combination of time series and time-for-space analyses show that ice-cover duration and carbon and nutrient load mediated by catchment vegetation properties strongly affected the outcome of the competition and likely drive the species distribution pattern through competitive exclusion. In brief, while shorter ice-cover period and decreased carbon load favored brown trout, increased ice-cover period and increased carbon load favored Arctic char. Length of ice-covered period and export of allochthonous material from catchments are major, but contrasting, climatic drivers of competitive interaction between these two freshwater lake top-predators. While projected climate change lead to decreased ice-cover, corresponding increase in forest and shrub cover amplify carbon and nutrient run-off. Although a likely outcome of future Arctic and sub-arctic climate scenarios are retractions of the Arctic char distribution area caused by competitive exclusion, the main drivers will act on different time scales. While ice-cover will change instantaneously with increasing temperature

  5. Detecting Surgical Tools by Modelling Local Appearance and Global Shape.

    PubMed

    Bouget, David; Benenson, Rodrigo; Omran, Mohamed; Riffaud, Laurent; Schiele, Bernt; Jannin, Pierre

    2015-12-01

    Detecting tools in surgical videos is an important ingredient for context-aware computer-assisted surgical systems. To this end, we present a new surgical tool detection dataset and a method for joint tool detection and pose estimation in 2d images. Our two-stage pipeline is data-driven and relaxes strong assumptions made by previous works regarding the geometry, number, and position of tools in the image. The first stage classifies each pixel based on local appearance only, while the second stage evaluates a tool-specific shape template to enforce global shape. Both local appearance and global shape are learned from training data. Our method is validated on a new surgical tool dataset of 2 476 images from neurosurgical microscopes, which is made freely available. It improves over existing datasets in size, diversity and detail of annotation. We show that our method significantly improves over competitive baselines from the computer vision field. We achieve 15% detection miss-rate at 10(-1) false positives per image (for the suction tube) over our surgical tool dataset. Results indicate that performing semantic labelling as an intermediate task is key for high quality detection.

  6. NOAA Photo Library - Geodesy

    Science.gov Websites

    Collections page. Takes you to the search page. Takes you to the Links page. Collage with Earth Image and the words Geodesy The Earth is round - true or false? FALSE!!!! The Earth is a solid known as an oblate the work of geodesists who measure and study the shape of the Earth. Geodesy is the science of

  7. Is healthy competition healthy? New evidence of the impact of hospital competition.

    PubMed

    Gift, Thomas L; Arnould, Richard; DeBrock, Larry

    2002-01-01

    Competition among hospitals is commonly regarded as inefficient due to the medical arms race phenomenon, but most evidence for this hypothesis predates the Medicare prospective payment system and preferred provider legislation. Recent studies indicate hospital competition reduces costs and prices, but nearly all such research has focused on California. We add to the body of literature that analyzes the effects of competition in hospital markets. Using data from the state of Washington, we show that hospitals assume more risk in competitive markets by being more likely to accept prospective payment arrangements with insurers. If the arrangement is retrospective, the hospital is more likely to offer a discount as the number of competing hospitals increases. Both findings indicate that competitive forces operate the same in hospital markets as in most others: as the number of competitors increases, prices decrease and market power shifts from the suppliers to purchasers. The medical arms race hypothesis that favors more concentrated hospital markets no longer appears to be valid.

  8. The Effects of Nurse Staffing on Hospital Financial Performance: Competitive Versus Less Competitive Markets

    PubMed Central

    Everhart, Damian; Neff, Donna; Al-Amin, Mona; Nogle, June; Weech-Maldonado, Robert

    2013-01-01

    Background Hospitals facing financial uncertainty have sought to reduce nurse staffing as a way to increase profitability. However, nurse staffing has been found to be important in terms of quality of patient care and nursing related outcomes. Nurse staffing can provide a competitive advantage to hospitals and as a result better financial performance, particularly in more competitive markets Purpose In this study we build on the Resource-Based View of the Firm to determine the effect of nurse staffing on total profit margin in more competitive and less competitive hospital markets in Florida. Methodology/Approach By combining a Florida statewide nursing survey with the American Hospital Association Annual Survey and the Area Resource File, three separate multivariate linear regression models were conducted to determine the effect of nurse staffing on financial performance while accounting for market competitiveness. The analysis was limited to acute care hospitals. Findings Nurse staffing levels had a positive association with financial performance (β=3.3; p=0.02) in competitive hospital markets, but no significant association was found in less competitive hospital markets. Practice Implications Hospitals in more competitive hospital markets should reconsider reducing nursing staff, as these cost cutting measures may be inefficient and negatively affect financial performance. PMID:22543824

  9. Search for global-minimum geometries of medium-sized germanium clusters. II. Motif-based low-lying clusters Ge21-Ge29

    NASA Astrophysics Data System (ADS)

    Yoo, S.; Zeng, X. C.

    2006-05-01

    We performed a constrained search for the geometries of low-lying neutral germanium clusters GeN in the size range of 21⩽N⩽29. The basin-hopping global optimization method is employed for the search. The potential-energy surface is computed based on the plane-wave pseudopotential density functional theory. A new series of low-lying clusters is found on the basis of several generic structural motifs identified previously for silicon clusters [S. Yoo and X. C. Zeng, J. Chem. Phys. 124, 054304 (2006)] as well as for smaller-sized germanium clusters [S. Bulusu et al., J. Chem. Phys. 122, 164305 (2005)]. Among the generic motifs examined, we found that two motifs stand out in producing most low-lying clusters, namely, the six/nine motif, a puckered-hexagonal-ring Ge6 unit attached to a tricapped trigonal prism Ge9, and the six/ten motif, a puckered-hexagonal-ring Ge6 unit attached to a bicapped antiprism Ge10. The low-lying clusters obtained are all prolate in shape and their energies are appreciably lower than the near-spherical low-energy clusters. This result is consistent with the ion-mobility measurement in that medium-sized germanium clusters detected are all prolate in shape until the size N ˜65.

  10. Competitive intransitivity promotes species coexistence.

    PubMed

    Laird, Robert A; Schamp, Brandon S

    2006-08-01

    Using a spatially explicit cellular automaton model with local competition, we investigate the potential for varied levels of competitive intransitivity (i.e., nonhierarchical competition) to promote species coexistence. As predicted, on average, increased levels of intransitivity result in more sustained coexistence within simulated communities, although the outcome of competition also becomes increasingly unpredictable. Interestingly, even a moderate degree of intransitivity within a community can promote coexistence, in terms of both the length of time until the first competitive exclusion and the number of species remaining in the community after 500 simulated generations. These results suggest that modest levels of intransitivity in nature, such as those that are thought to be characteristic of plant communities, can contribute to coexistence and, therefore, community-scale biodiversity. We explore a potential connection between competitive intransitivity and neutral theory, whereby competitive intransitivity may represent an important mechanism for "ecological equivalence."

  11. SHAPE Selection (SHAPES) enrich for RNA structure signal in SHAPE sequencing-based probing data

    PubMed Central

    Poulsen, Line Dahl; Kielpinski, Lukasz Jan; Salama, Sofie R.; Krogh, Anders; Vinther, Jeppe

    2015-01-01

    Selective 2′ Hydroxyl Acylation analyzed by Primer Extension (SHAPE) is an accurate method for probing of RNA secondary structure. In existing SHAPE methods, the SHAPE probing signal is normalized to a no-reagent control to correct for the background caused by premature termination of the reverse transcriptase. Here, we introduce a SHAPE Selection (SHAPES) reagent, N-propanone isatoic anhydride (NPIA), which retains the ability of SHAPE reagents to accurately probe RNA structure, but also allows covalent coupling between the SHAPES reagent and a biotin molecule. We demonstrate that SHAPES-based selection of cDNA–RNA hybrids on streptavidin beads effectively removes the large majority of background signal present in SHAPE probing data and that sequencing-based SHAPES data contain the same amount of RNA structure data as regular sequencing-based SHAPE data obtained through normalization to a no-reagent control. Moreover, the selection efficiently enriches for probed RNAs, suggesting that the SHAPES strategy will be useful for applications with high-background and low-probing signal such as in vivo RNA structure probing. PMID:25805860

  12. Insecticide use and competition shape the genetic diversity of the aphid Aphis gossypii in a cotton-growing landscape.

    PubMed

    Brévault, T; Carletto, J; Tribot, J; Vanlerberghe-Masutti, F

    2011-08-01

    Field populations of the cotton aphid, Aphis gossypii Glover, are structured into geographically widespread host races. In the cotton-producing regions of West and Central Africa (WCA), two genotypes have been repeatedly detected within the cotton host race, one of which (Burk1) is prevalent (>90%) and resistant to several insecticides, as opposed to the second one (Ivo). Here, we conducted whole plant and field cage experiments to test hypotheses for such low genetic diversity, including selection from insecticide treatments, interclonal competition and adaptation to host plant, or climatic conditions. To assess the genetic diversity of immigrant aphids, alatae were trapped and collected on cotton and relay host plants (okra and roselle) in the early cropping season. Individuals were genotyped at eight specific microsatellite loci and characterized by a multilocus genotype (MLG). When independently transferred from cotton (Gossypium hirustum L.) leaf discs to whole plants (G. hirsutum and G. arboreum, roselle and okra), Ivo and Burk1 performed equally well. When concurrently transferred from cotton leaf discs to the same plant species, Ivo performed better than Burk1, indicating that competition favoured Ivo. This was also the case on G. hirsutum growing outdoors. Conversely, Burk1 prevailed when cotton plants were sprayed with insecticides. In experiments where aphids were allowed to move to neighbouring plants, Burk1 was better represented than Ivo on low-populated plants, suggesting that dispersal may be a way to avoid competition on crowded plants. Most cotton aphids collected on cotton or relay host plants in the early cropping season were Burk1 (>90%), indicating high dispersal ability and, probably reflecting high frequency on host plants from which they dispersed. In the agricultural landscape of WCA, the use of broad-range insecticides on both cotton and relay host plants has led to the prevalence of one genotype of A. gossypii resistant to different

  13. An invasive herbivore structures plant competitive dynamics.

    PubMed

    Wong, Lydia; Grainger, Tess Nahanni; Start, Denon; Gilbert, Benjamin

    2017-11-01

    Species interactions are central to our understanding of ecological communities, but may change rapidly with the introduction of invasive species. Invasive species can alter species interactions and community dynamics directly by having larger detrimental effects on some species than others, or indirectly by changing the ways in which native species compete among themselves. We tested the direct and indirect effects of an invasive aphid herbivore on a native aphid species and two host milkweed species. The invasive aphid caused a 10-fold decrease in native aphid populations, and a 30% increase in plant mortality (direct effects). The invasive aphid also increased the strength of interspecific competition between the two native plant hosts (indirect effects). By investigating the role that indirect effects play in shaping species interactions in native communities, our study highlights an understudied component of species invasions. © 2017 The Author(s).

  14. Shaping the operating room and perioperative systems of the future: innovating for improved competitiveness.

    PubMed

    Seim, Andreas R; Sandberg, Warren S

    2010-12-01

    To review the current state of anesthesiology for operative and invasive procedures, with an eye toward possible future states. Anesthesiology is at once a mature specialty and in a crisis--requiring breakthrough to move forward. The cost of care now approaches reimbursement, and outcomes as commonly measured approach perfection. Thus, the cost of further improvements seems ready to topple the field, just as the specialty is realizing that seemingly innocuous anesthetic choices have long-term consequences, and better practice is required. Anesthesiologists must create more headroom between costs and revenues in order to sustain the academic vigor and creativity required to create better clinical practice. We outline three areas in which technological and organizational innovation in anesthesiology can improve competitiveness and become a driving force in collaborative efforts to develop the operating rooms and perioperative systems of the future: increasing the profitability of operating rooms; increasing the efficiency of anesthesia; and technological and organizational innovation to foster improved patient flow, communication, coordination, and organizational learning.

  15. Tree competition and species coexistence in a Quercus--Betula forest in the Dongling Mountains in northern China

    NASA Astrophysics Data System (ADS)

    Hou, Ji-hua; Mi, Xiang-cheng; Liu, Can-ran; Ma, Ke-ping

    2006-09-01

    The population size structure, growth dynamics and mode of competition among adult trees (≥ 4 cm DBH) of six abundant tree species in a 5 ha study plot of a temperate deciduous forest in the Dongling Mountains in northern China were investigated using diffusion and growth dynamics models. In the year of 2000, two dominant species, Quercus liaotungensis and Betula dahurica accounted for ca. 68.69% of the total basal area and 52.71% of the total density of adult plants. Q. liaotungensis, Populus davidiana and Acer mono exhibited inverse J-shaped DBH distributions whereas Betula dahurica, B. platyphylla and Salix caprea had unimodal DBH distributions. One-sided interspecific competition was detected between some species combinations at the scale of the 5 ha study plot, and the competitive effect was mainly size-dependent rather than from species-specific interactions with large individuals in the canopy layer out competing smaller individuals in the understory. Symmetric competition was found between Q. liaotungensis and A. mono only. However, considering the straight line relationship of G ( t, x) - √{D(t, x)}, which suggests that competitive asymmetry is very low or absent, combined with the relatively low mortality of trees with a DBH larger than 4 cm, we speculate that asymmetric interspecific competition was not important in structuring this tree community. Regeneration characteristics of each species are most likely important in regulating species coexistence and stand dynamics in this forest.

  16. Competitive Strategies

    DTIC Science & Technology

    1988-05-27

    Competitive Strategies Individual Essay 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(@) S. CONTRACT OR GRANT NUMBER( e ) Robert M. Davis, LTC, AD S...DO FOe 1473 emIotN or, Nov es IS OBSOLETE -JA I Unclassifi fed SECURITY CLASSIFICATION OF THIS PA7. E (Whrn Does Entered) Unclassified SECURITY...focus within the Department of Defense to provide technical and tactical leverage over the Soviets. Competitive Strategies are a management tool which

  17. Competitive styles in men and women.

    PubMed

    Reed, S; Reed, R C; Lantz, J

    1997-01-01

    Competition is a function intrinsic to current clinical practice. Of the two competitive styles, goal competitiveness is found by both men and women to be more worthy of respect. Interpersonal competitiveness is manifested more by highly competitive women than by highly competitive men, especially in relationships with female co-workers, representing a significant problem for organizations and employees. The styles and their effects are described, their possible sources discussed, additional research outlined, and recommendations proposed.

  18. Anisotropy of diamagnetic susceptibility in Thassos marble: A comparison between measured and modeled data

    NASA Astrophysics Data System (ADS)

    de Wall, Helga; Bestmann, Michel; Ullemeyer, Klaus

    2000-11-01

    A study of shear zones within the calcite marble complex of the island of Thassos (Greece) shows that the low field anisotropy of magnetic susceptibility (AMS)-technique can be successfully applied to diamagnetic rocks for characterizing rock fabrics. The strain path involves both an early pure shear stage and a simple shear overprint that is documented by a transition from triaxial (neutral) to uniaxial (prolate) shapes of AMS ellipsoids. The maximum susceptibility is oriented perpendicular to the rock foliation, reflecting the preferred orientation of calcite c-axes in the protolith as well as in the mylonites. For three samples that represent different types of calcite fabrics, the AMS was recalculated from neutron and electron backscatter diffraction textural data. A comparison of the measured and modeled data shows a good coincidence for the orientation of the principal AMS axes and for the recalculated anisotropy data. Both measured and modeled data sets reflect the change from neutral to distinct prolate ellipsoids during progressive deformation.

  19. Kinematics and Chemistry of Halo Substructures: The Vicinity of the Virgo Overdensity

    NASA Astrophysics Data System (ADS)

    Casey, Andrew R.; Keller, Stefan C.; Da Costa, Gary

    2012-04-01

    We present observations obtained with the Anglo-Australian Telescope's 2dF wide field spectrograph AAOmega of K-type stars located within a region of the sky which contains the Virgo Overdensity and the leading arm of the Sagittarius Stream. On the basis of the resulting velocity histogram, we isolate halo substructures in these overlapping regions including Sagittarius and previously discovered Virgo groups. Through comparisons with N-body models of the Galaxy-Sagittarius interaction, we find a tri-axial dark matter halo is favored and we exclude a prolate shape. This result is contradictory with other observations along the Sagittarius leading arm, which typically favor prolate models. We have also uncovered K-giant members of Sagittarius that are notably more metal-poor (lang[Fe/H]rang = -1.7 ± 0.3 dex) than previous studies. This suggests a significantly wider metallicity distribution exists in the Sagittarius Stream than formerly considered. We also present data on five carbon stars which were discovered in our sample.

  20. Competition Among Near-Substitutable Systems

    DTIC Science & Technology

    2012-09-01

    the context of the dominant “Weapon System Franchise ” model of competition for major defense acquisition programs (MDAPs). Competition between near...leading to the award of a franchise . AoAs or other cost-effectiveness analyses can be pivotal in bringing attention to near-substitute systems. However...dominant ?Weapon System Franchise ? model of competition for major defense acquisition programs (MDAPs). Competition between near-substitutes can occur

  1. Deterrence in Oligopolistic Competition.

    DTIC Science & Technology

    1987-03-01

    maneuvering for advantage in an oligopolistic market . Competitive battles for entry into a market , and subsequently for market shares or continued survival...on institutional features peculiar to market competition among firms, the available case studies and sta- tistical evidence are not described here...that might enter the market in competition with the present incumbents, which is usually detrimental to the incumbents. Each firm can affect its market

  2. Chemical and Physical Characterization of the Activation of Ribulosebiphosphate Carboxylase/Oxygenase

    DOE R&D Accomplishments Database

    Donnelly, M. I.; Ramakrishnan, V.; Hartman, F. C.

    1983-08-01

    Molecular structure of ribulosebiphosphate carboxylase/oxygenase isolated from Rhodospirillium was compared with the enzyme isolated from Alcaligens eutrophus. Peptides derived from the active center of the bacterial enzyme were highly homologous with those isolated from spinach. Molecular shapes of the carboxylases were estimated using neutron scattering data. These studies suggested that the enzyme as isolated from R. rubrum is a solid prolate ellipsoid or cylinder, while the spinach enzyme resembles a hollow sphere.

  3. Rigid rotators. [deriving the time-independent energy states associated with rotational motions of the molecule

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The two-particle, steady-state Schroedinger equation is transformed to center of mass and internuclear distance vector coordinates, leading to the free particle wave equation for the kinetic energy motion of the molecule and a decoupled wave equation for a single particle of reduced mass moving in a spherical potential field. The latter describes the vibrational and rotational energy modes of the diatomic molecule. For fixed internuclear distance, this becomes the equation of rigid rotator motion. The classical partition function for the rotator is derived and compared with the quantum expression. Molecular symmetry effects are developed from the generalized Pauli principle that the steady-state wave function of any system of fundamental particles must be antisymmetric. Nuclear spin and spin quantum functions are introduced and ortho- and para-states of rotators, along with their degeneracies, are defined. Effects of nuclear spin on entropy are deduced. Next, rigid polyatomic rotators are considered and the partition function for this case is derived. The patterns of rotational energy levels for nonlinear molecules are discussed for the spherical symmetric top, for the prolate symmetric top, for the oblate symmetric top, and for the asymmetric top. Finally, the equilibrium energy and specific heat of rigid rotators are derived.

  4. Pollen grain morphology of Fabaceae in the Special Protection Area (SPA) Pau-de-Fruta, Diamantina, Minas Gerais, Brazil.

    PubMed

    Luz, Cynthia F P da; Maki, Erica S; Horák-Terra, Ingrid; Vidal-Torrado, Pablo; Mendonça Filho, Carlos Victor

    2013-01-01

    The presented paper considered the pollen morphology of thirteen species belonging to seven genera of the Fabaceae family occurring in the Pau-de-Fruta Special Protection Area (SPA), Diamantina, state of Minas Gerais, Brazil. The pollen grains of six species of Chamaecrista [C. cathartica (Mart.) H.S. Irwin & Barneby, C. debilis Vogel, C. flexuosa (L.) Greene, C. hedysaroides (Vogel) H.S. Irwin & Barneby, C. glandulosa (L.) Greene, and C. papillata H.S. Irwin & Barneby] have a similar morphology, characterized by three long colporated apertures with a central constriction. The species share specific morphological features regarding pollen size, endoaperture type (circular, lalongate or lolongate) and SEM ornamentation patterns of the exine (rugulate with perforations or perforate). Andira fraxinifolia Benth., Dalbergia miscolobium Benth, Galactia martii DC, Periandra mediterranea (Vell.) Taub., Senna rugosa (G.Don) H.S. Irwin & Barneby and Zornia diphylla (L.) Pers showed different pollen types in small to large size; oblate spheroidal to prolate form; colpus or colporus apertures; circular, lalongate or lolongate endoapertures and distinctive SEM ornamentation patterns of the exine (perforate, microreticulate, reticulate or rugulate with perforations). Only Stryphnodendron adstringens (Mart.) Coville presents polyads. The pollen morphology variation of these species allowed the Fabaceae family to be characterized as eurypalynous in the SPA Pau-de-Fruta.

  5. Dissociation of heavy quarkonia in an anisotropic hot QCD medium in a quasiparticle model

    NASA Astrophysics Data System (ADS)

    Jamal, Mohammad Yousuf; Nilima, Indrani; Chandra, Vinod; Agotiya, Vineet Kumar

    2018-05-01

    The present article is the follow-up work of Phys. Rev. D 94, 094006 (2016), 10.1103/PhysRevD.94.094006, where we have extended the study of quarkonia dissociation in (momentum) anisotropic hot QCD medium. As evident by the experimentally observed collective flow at the RHIC and LHC, the momentum anisotropy is present at almost all the stages after the collision, and therefore, it is important to include its effects in the analysis. Employing the in-medium (corrected) potential while considering the anisotropy (both oblate and prolate cases) in the medium, the thermal widths and the binding energies of the heavy quarkonia states (s -wave charmonia and s -wave bottomonia specifically, for radial quantum numbers n =1 and 2) have been determined. The hot QCD medium effects have been included by employing a quasiparticle description. The presence of anisotropy has modified the potential and then the thermal widths and binding energies of these states in a significant manner. The results show a quite visible shift in the values of dissociation temperatures as compared to the isotropic case. Further, the hot QCD medium interaction effects suppress the dissociation temperature as compared to the case where we consider the medium as a noninteracting ultrarelativistic gas of quarks (antiquarks) and gluons.

  6. Kinematics of the Neogene Terror Rift: Constraints from calcite twinning strain in AND-1B core, McMurdo Ice Shelf

    NASA Astrophysics Data System (ADS)

    Paulsen, T.; Wilson, T. J.; Demosthenous, C.; Millan, C.; Jarrard, R. D.; Laufer, A.

    2013-12-01

    Strain analyses of mechanically twinned calcite in veins and faults hosted by Neogene (13.6 Ma to 4.3 Ma) sedimentary and volcanic rocks recovered within the ANDRILL AND-1B drill core from the Terror Rift in the southern Ross Sea, Antarctica, yield prolate and oblate ellipsoids with principal shortening and extension strains ranging from 0.1% to 8.5%. The majority of samples show homogeneous coaxial strain predominantly characterized by subvertical shortening, which we attribute to lithostatic loading in an Andersonian normal faulting stress regime during sedimentary and ice sheet burial of the stratigraphic sequence. The overall paucity of a non-coaxial layer-parallel shortening signal in the AND-1B twin populations suggests that horizontal compressive stresses predicted by Neogene transtensional kinematic models for the rift system have been absent or of insufficient magnitude to cause a widespread noncoaxial strain overprint. Limited numbers of oriented samples yield a possible average ESE extension direction for the rift that is subparallel to other indicators of Neogene extension. The lack of horizontal shortening in the twin data suggests the Neogene Terror Rift system either lacks a strong longitudinal strike-slip component, or that spatial partitioning of strain controls the maximum shortening axes seen in rocks of this age.

  7. Apparent competition and native consumers exacerbate the strong competitive effect of an exotic plant species.

    PubMed

    Orrock, John L; Dutra, Humberto P; Marquis, Robert J; Barber, Nicholas

    2015-04-01

    Direct and indirect effects can play a key role in invasions, but experiments evaluating both are rare. We examined the roles of direct competition and apparent competition by exotic Amur honeysuckle (Lonicera maackii) by manipulating (1) L. maackii vegetation, (2) presence of L. maackii fruits, and (3) access to plants by small mammals and deer. Direct competition with L. maackii reduced the abundance and richness of native and exotic species, and native consumers significantly reduced the abundance and richness of native species. Although effects of direct competition and consumption were more pervasive, richness of native plants was also reduced through apparent competition, as small-mammal consumers reduced richness only when L. maackii fruits were present. Our experiment reveals the multiple, interactive pathways that affect the success and impact of an invasive exotic plant: exotic plants may directly benefit from reduced attack by native consumers, may directly exert strong competitive effects on native plants, and may also benefit from apparent competition.

  8. Superordinate Shape Classification Using Natural Shape Statistics

    ERIC Educational Resources Information Center

    Wilder, John; Feldman, Jacob; Singh, Manish

    2011-01-01

    This paper investigates the classification of shapes into broad natural categories such as "animal" or "leaf". We asked whether such coarse classifications can be achieved by a simple statistical classification of the shape skeleton. We surveyed databases of natural shapes, extracting shape skeletons and tabulating their…

  9. Neural correlates of strategic reasoning during competitive games.

    PubMed

    Seo, Hyojung; Cai, Xinying; Donahue, Christopher H; Lee, Daeyeol

    2014-10-17

    Although human and animal behaviors are largely shaped by reinforcement and punishment, choices in social settings are also influenced by information about the knowledge and experience of other decision-makers. During competitive games, monkeys increased their payoffs by systematically deviating from a simple heuristic learning algorithm and thereby countering the predictable exploitation by their computer opponent. Neurons in the dorsomedial prefrontal cortex (dmPFC) signaled the animal's recent choice and reward history that reflected the computer's exploitative strategy. The strength of switching signals in the dmPFC also correlated with the animal's tendency to deviate from the heuristic learning algorithm. Therefore, the dmPFC might provide control signals for overriding simple heuristic learning algorithms based on the inferred strategies of the opponent. Copyright © 2014, American Association for the Advancement of Science.

  10. Inhibitory competition in figure-ground perception: context and convexity.

    PubMed

    Peterson, Mary A; Salvagio, Elizabeth

    2008-12-15

    Convexity has long been considered a potent cue as to which of two regions on opposite sides of an edge is the shaped figure. Experiment 1 shows that for a single edge, there is only a weak bias toward seeing the figure on the convex side. Experiments 1-3 show that the bias toward seeing the convex side as figure increases as the number of edges delimiting alternating convex and concave regions increases, provided that the concave regions are homogeneous in color. The results of Experiments 2 and 3 rule out a probability summation explanation for these context effects. Taken together, the results of Experiments 1-3 show that the homogeneity versus heterogeneity of the convex regions is irrelevant. Experiment 4 shows that homogeneity of alternating regions is not sufficient for context effects; a cue that favors the perception of the intervening regions as figures is necessary. Thus homogeneity alone does not alone operate as a background cue. We interpret our results within a model of figure-ground perception in which shape properties on opposite sides of an edge compete for representation and the competitive strength of weak competitors is further reduced when they are homogeneous.

  11. Opinion dynamics on interacting networks: media competition and social influence.

    PubMed

    Quattrociocchi, Walter; Caldarelli, Guido; Scala, Antonio

    2014-05-27

    The inner dynamics of the multiple actors of the informations systems - i.e, T.V., newspapers, blogs, social network platforms, - play a fundamental role on the evolution of the public opinion. Coherently with the recent history of the information system (from few main stream media to the massive diffusion of socio-technical system), in this work we investigate how main stream media signed interaction might shape the opinion space. In particular we focus on how different size (in the number of media) and interaction patterns of the information system may affect collective debates and thus the opinions' distribution. We introduce a sophisticated computational model of opinion dynamics which accounts for the coexistence of media and gossip as separated mechanisms and for their feedback loops. The model accounts also for the effect of the media communication patterns by considering both the simple case where each medium mimics the behavior of the most successful one (to maximize the audience) and the case where there is polarization and thus competition among media memes. We show that plurality and competition within information sources lead to stable configurations where several and distant cultures coexist.

  12. Opinion dynamics on interacting networks: media competition and social influence

    NASA Astrophysics Data System (ADS)

    Quattrociocchi, Walter; Caldarelli, Guido; Scala, Antonio

    2014-05-01

    The inner dynamics of the multiple actors of the informations systems - i.e, T.V., newspapers, blogs, social network platforms, - play a fundamental role on the evolution of the public opinion. Coherently with the recent history of the information system (from few main stream media to the massive diffusion of socio-technical system), in this work we investigate how main stream media signed interaction might shape the opinion space. In particular we focus on how different size (in the number of media) and interaction patterns of the information system may affect collective debates and thus the opinions' distribution. We introduce a sophisticated computational model of opinion dynamics which accounts for the coexistence of media and gossip as separated mechanisms and for their feedback loops. The model accounts also for the effect of the media communication patterns by considering both the simple case where each medium mimics the behavior of the most successful one (to maximize the audience) and the case where there is polarization and thus competition among media memes. We show that plurality and competition within information sources lead to stable configurations where several and distant cultures coexist.

  13. Opinion dynamics on interacting networks: media competition and social influence

    PubMed Central

    Quattrociocchi, Walter; Caldarelli, Guido; Scala, Antonio

    2014-01-01

    The inner dynamics of the multiple actors of the informations systems – i.e, T.V., newspapers, blogs, social network platforms, – play a fundamental role on the evolution of the public opinion. Coherently with the recent history of the information system (from few main stream media to the massive diffusion of socio-technical system), in this work we investigate how main stream media signed interaction might shape the opinion space. In particular we focus on how different size (in the number of media) and interaction patterns of the information system may affect collective debates and thus the opinions' distribution. We introduce a sophisticated computational model of opinion dynamics which accounts for the coexistence of media and gossip as separated mechanisms and for their feedback loops. The model accounts also for the effect of the media communication patterns by considering both the simple case where each medium mimics the behavior of the most successful one (to maximize the audience) and the case where there is polarization and thus competition among media memes. We show that plurality and competition within information sources lead to stable configurations where several and distant cultures coexist. PMID:24861995

  14. 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-23

    College team members prepare to enter the robotic mining arena for a test run during NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  15. 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-24

    The robotic miner from Mississippi State University digs in the mining arena during NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  16. 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-24

    A robotic miner digs in the mining arena during NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  17. 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-24

    Energy levels are high in the RoboPit as teams prepare for NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. arel using their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  18. 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-23

    NASA Kennedy Space Center Director Bob Cabana welcomes participants to the agency's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  19. Beyond the competition-colonization trade-off: linking multiple trait response to disturbance characteristics.

    PubMed

    Seifan, Merav; Seifan, Tal; Schiffers, Katja; Jeltsch, Florian; Tielbörger, Katja

    2013-02-01

    Disturbances' role in shaping communities is well documented but highly disputed. We suggest replacing the overused two-trait trade-off approach with a functional group scheme, constructed from combinations of four key traits that represent four classes of species' responses to disturbances. Using model results and field observations from sites affected by two highly different disturbances, we demonstrated that popular dichotomous trade-offs are not sufficient to explain community dynamics, even if some emerge under certain conditions. Without disturbances, competition was only sufficient to predict species survival but not relative success, which required some escape mechanism (e.g., long-term dormancy). With highly predictable and large-scale disturbances, successful species showed a combination of high individual tolerance to disturbance and, more surprisingly, high competitive ability. When disturbances were less predictable, high individual tolerance and long-term seed dormancy were favored, due to higher environmental uncertainty. Our study demonstrates that theories relying on a small number of predefined trade-offs among traits (e.g., competition-colonization trade-off) may lead to unrealistic results. We suggest that the understanding of disturbance-community relationships can be significantly improved by employing sets of relevant trait assemblies instead of the currently common approach in which trade-offs are assumed in advance.

  20. The Janus face of Darwinian competition.

    PubMed

    Hintze, Arend; Phillips, Nathaniel; Hertwig, Ralph

    2015-09-10

    Without competition, organisms would not evolve any meaningful physical or cognitive abilities. Competition can thus be understood as the driving force behind Darwinian evolution. But does this imply that more competitive environments necessarily evolve organisms with more sophisticated cognitive abilities than do less competitive environments? Or is there a tipping point at which competition does more harm than good? We examine the evolution of decision strategies among virtual agents performing a repetitive sampling task in three distinct environments. The environments differ in the degree to which the actions of a competitor can affect the fitness of the sampling agent, and in the variance of the sample. Under weak competition, agents evolve decision strategies that sample often and make accurate decisions, which not only improve their own fitness, but are good for the entire population. Under extreme competition, however, the dark side of the Janus face of Darwinian competition emerges: Agents are forced to sacrifice accuracy for speed and are prevented from sampling as often as higher variance in the environment would require. Modest competition is therefore a good driver for the evolution of cognitive abilities and of the population as a whole, whereas too much competition is devastating.