Sample records for oblique deposition angle

  1. Oblique angle deposition-induced anisotropy in Co2FeAl films

    NASA Astrophysics Data System (ADS)

    Zhou, W.; Brock, J.; Khan, M.; Eid, K. F.

    2018-06-01

    A series of Co2FeAl Heusler alloy films, fabricated on Si/SiO2 substrates by magnetron sputtering-oblique angle deposition technique, have been investigated by magnetization and transport measurements. The morphology and magnetic anisotropy of the films strongly depended on the deposition angle. While the film deposited at zero degree (i.e. normal incidence) did not show any anisotropy, the films deposited at higher angles showed unusually strong in-plane anisotropy that increased with deposition angle. The enhanced anisotropy was well-reflected in the direction-dependent magnetization and the coercivity of the films that increased dramatically from 30 Oe to 490 Oe. In a similar vein, the electrical resistivity of the films also increased drastically, especially for deposition angles larger than 60°. These anisotropic effects and their relation to the morphology of the films are discussed.

  2. Improved performance of organic light-emitting diodes with MoO3 interlayer by oblique angle deposition.

    PubMed

    Liu, S W; Divayana, Y; Sun, X W; Wang, Y; Leck, K S; Demir, H V

    2011-02-28

    We fabricated and demonstrated improved organic light emitting diodes (OLEDs) in a thin film architecture of indium tin oxide (ITO)/ molybdenum trioxide (MoO3) (20 nm)/N,N'-Di(naphth-2-yl)-N,N'-diphenyl-benzidine (NPB) (50 nm)/ tris-(8-hydroxyquinoline) (Alq3) (70 nm)/Mg:Ag (200 nm) using an oblique angle deposition technique by which MoO3 was deposited at oblique angles (θ) with respect to the surface normal. It was found that, without sacrificing the power efficiency of the device, the device current efficiency and external quantum efficiency were significantly enhanced at an oblique deposition angle of θ=60° for MoO3.

  3. Fabrication of Ultra-thin Color Films with Highly Absorbing Media Using Oblique Angle Deposition.

    PubMed

    Yoo, Young Jin; Lee, Gil Ju; Jang, Kyung-In; Song, Young Min

    2017-08-29

    Ultra-thin film structures have been studied extensively for use as optical coatings, but performance and fabrication challenges remain.  We present an advanced method for fabricating ultra-thin color films with improved characteristics. The proposed process addresses several fabrication issues, including large area processing. Specifically, the protocol describes a process for fabricating ultra-thin color films using an electron beam evaporator for oblique angle deposition of germanium (Ge) and gold (Au) on silicon (Si) substrates.  Film porosity produced by the oblique angle deposition induces color changes in the ultra-thin film. The degree of color change depends on factors such as deposition angle and film thickness. Fabricated samples of the ultra-thin color films showed improved color tunability and color purity. In addition, the measured reflectance of the fabricated samples was converted into chromatic values and analyzed in terms of color. Our ultra-thin film fabricating method is expected to be used for various ultra-thin film applications such as flexible color electrodes, thin film solar cells, and optical filters. Also, the process developed here for analyzing the color of the fabricated samples is broadly useful for studying various color structures.

  4. Microstructure-related properties of magnesium fluoride films at 193nm by oblique-angle deposition.

    PubMed

    Guo, Chun; Kong, Mingdong; Lin, Dawei; Liu, Cunding; Li, Bincheng

    2013-01-14

    Magnesium fluoride (MgF2) films deposited by resistive heating evaporation with oblique-angle deposition have been investigated in details. The optical and micro-structural properties of single-layer MgF2 films were characterized by UV-VIS and FTIR spectrophotometers, scanning electron microscope (SEM), atomic force microscope (AFM), and x-ray diffraction (XRD), respectively. The dependences of the optical and micro-structural parameters of the thin films on the deposition angle were analyzed. It was found that the MgF2 film in a columnar microstructure was negatively inhomogeneous of refractive index and polycrystalline. As the deposition angle increased, the optical loss, extinction coefficient, root-mean-square (rms) roughness, dislocation density and columnar angle of the MgF2 films increased, while the refractive index, packing density and grain size decreased. Furthermore, IR absorption of the MgF2 films depended on the columnar structured growth.

  5. Scaling behavior of the surface roughness of platinum films grown by oblique angle deposition

    NASA Astrophysics Data System (ADS)

    Dolatshahi-Pirouz, A.; Hovgaard, M. B.; Rechendorff, K.; Chevallier, J.; Foss, M.; Besenbacher, F.

    2008-03-01

    Thin platinum films with well-controlled rough surface morphologies are grown by e-gun evaporation at an oblique angle of incidence between the deposition flux and the substrate normal. Atomic force microscopy is used to determine the root-mean-square value w of the surface roughness on the respective surfaces. From the scaling behavior of w , we find that while the roughness exponent α remains nearly unchanged at about 0.90, the growth exponent β changes from 0.49±0.04 to 0.26±0.01 as the deposition angle approaches grazing incidence. The values of the growth exponent β indicate that the film growth is influenced by both surface diffusion and shadowing effects, while the observed change from 0.49 to 0.26 can be attributed to differences in the relative importance of diffusion and shadowing with the deposition angle.

  6. Linear polarization-discriminatory state inverter fabricated by oblique angle deposition.

    PubMed

    Park, Yong Jun; Sobahan, K M A; Kim, Jin Joo; Hwangbo, Chang Kwon

    2009-06-22

    In this paper, we report a linear polarization-discriminatory state inverter made of three-layer sculpture thin film fabricated by oblique angle deposition technique. The first and third layers are quarter-wave plates of zigzag structure and the middle of them is a circular Bragg reflector of left-handed helical structure. It is found that the normal incidence of P-polarized light on this polarization-discriminatory state inverter becomes the S-polarized light at output, while the incident S-polarized light of wavelength lying in the Bragg regime is reflected. The microstructure of the linear polarization-discriminatory state inverter is also investigated by using a scanning electron microscope.

  7. Photocatalytic activity of self-assembled porous TiO2 nano-columns array fabricated by oblique angle sputter deposition

    NASA Astrophysics Data System (ADS)

    Shi, Pengjun; Li, Xibo; Zhang, Qiuju; Yi, Zao; Luo, Jiangshan

    2018-04-01

    A well-separated and oriented TiO2 nano-columns arrays with porous structure were fabricated by the oblique angle sputter deposition technique and subsequently annealing at 450 °C in Ar/O2 mixed atmosphere. The deposited substrate was firstly modified by a template of self-assembled close-packed arrays of 500 nm-diameter silica (SiO2) spheres. Scanning electronic microscopic (SEM) images show that the porous columnar nanostructure is formed as a result of the geometric shadowing effect and surface diffusion of the adatoms in oblique angle deposition (OAD). X-ray diffraction (XRD) measurements reveal that the physically OAD film with annealing treatment are generally mixed phase of rutile and anatase TiO2 polymorphic forms. The morphology induced absorbance and band gap tuning by different substrates was demonstrated by the UV–vis spectroscopy. The well-separated one-dimensional (1D) nano-columns array with specific large porous surface area is beneficial for charge separation in photocatalytic degradation. Compared with compact thin film, such self-assembled porous TiO2 nano-columns array fabricated by oblique angle sputter deposition performed an enhanced visible light induced photocatalytic activity by decomposing methyl orange (MO) solution. The well-designed periodic array-structured porous TiO2 films by using modified patterned substrates has been demonstrated significantly increased absorption edge in the UV-visible light region with a narrower optical band gap, which are expected to be favorable for application in photovoltaic, lithium-ion insertion and photocatalytic, etc.

  8. Residual stress in obliquely deposited MgF2 thin films.

    PubMed

    Jaing, Cheng-Chung; Liu, Ming-Chung; Lee, Cheng-Chung; Cho, Wen-Hao; Shen, Wei-Ting; Tang, Chien-Jen; Liao, Bo-Huei

    2008-05-01

    MgF(2) films with a columnar microstructure are obliquely deposited on glass substrates by resistive heating evaporation. The columnar angles of the films increases with the deposition angle. Anisotropic stress does not develop in the films with tilted columns. The residual stresses in the films depend on the deposition and columnar angles in a columnar microstructure.

  9. A Thin Film Flexible Supercapacitor Based on Oblique Angle Deposited Ni/NiO Nanowire Arrays.

    PubMed

    Ma, Jing; Liu, Wen; Zhang, Shuyuan; Ma, Zhe; Song, Peishuai; Yang, Fuhua; Wang, Xiaodong

    2018-06-11

    With high power density, fast charging-discharging speed, and a long cycling life, supercapacitors are a kind of highly developed novel energy-storage device that has shown a growing performance and various unconventional shapes such as flexible, linear-type, stretchable, self-healing, etc. Here, we proposed a rational design of thin film, flexible micro-supercapacitors with in-plane interdigital electrodes, where the electrodes were fabricated using the oblique angle deposition technique to grow oblique Ni/NiO nanowire arrays directly on polyimide film. The obtained electrodes have a high specific surface area and good adhesion to the substrate compared with other in-plane micro-supercapacitors. Meanwhile, the as-fabricated micro-supercapacitors have good flexibility and satisfactory energy-storage performance, exhibiting a high specific capacity of 37.1 F/cm³, a high energy density of 5.14 mWh/cm³, a power density of up to 0.5 W/cm³, and good stability during charge-discharge cycles and repeated bending-recovery cycles, respectively. Our micro-supercapacitors can be used as ingenious energy storage devices for future portable and wearable electronic applications.

  10. Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using oblique deposited silver nanorods.

    PubMed

    Chung, Hung-Yi; Chen, Chih-Chia; Wu, Pin Chieh; Tseng, Ming Lun; Lin, Wen-Chi; Chen, Chih-Wei; Chiang, Hai-Pang

    2014-01-01

    Sensitivity of surface plasmon resonance phase-interrogation biosensor is demonstrated to be enhanced by oblique deposited silver nanorods. Silver nanorods are thermally deposited on silver nanothin film by oblique angle deposition (OAD). The length of the nanorods can be tuned by controlling the deposition parameters of thermal deposition. By measuring the phase difference between the p and s waves of surface plasmon resonance heterodyne interferometer with different wavelength of incident light, we have demonstrated that maximum sensitivity of glucose detection down to 7.1 × 10(-8) refractive index units could be achieved with optimal deposition parameters of silver nanorods.

  11. Electric-regulated enhanced in-plane uniaxial anisotropy in FeGa/PMN-PT composite using oblique pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Huang, Chaojuan; Turghun, Mutellip; Duan, Zhihua; Wang, Feifei; Shi, Wangzhou

    2018-04-01

    The FeGa film with in-plane uniaxial magnetic anisotropy was fabricated onto different oriented single-crystal lead magnesium niobate-lead titanate using oblique pulsed laser deposition. An enhanced in-plane uniaxial magnetic anisotropy field of FeGa film can be adjusted from 18 Oe to 275 Oe by tuning the oblique angle and polarizing voltage. The competitive relationship of shape anisotropy and strain anisotropy has been discussed, which was induced by oblique angle and polarizing voltage, respectively. The (100)-oriented and (110)-oriented PMN-PT show completely different characters on voltage-dependent magnetic properties, which could be attributed to various anisotropy directions depended on different strain directions.

  12. Solid-State Dewetting of Gold Aggregates/Islands on TiO2 Nanorod Structures Grown by Oblique Angle Deposition.

    PubMed

    Liu, Shizhao; Plawsky, Joel L

    2017-12-12

    A composite film made of a stable gold nanoparticle (NP) array with well-controlled separation and size atop a TiO 2 nanorod film was fabricated via the oblique angle deposition (OAD) technique. The fabrication of the NP array is based on controlled, Rayleigh-instability-induced, solid-state dewetting of as-deposited gold aggregates on the TiO 2 nanorods. It was found that the initial spacing between as-deposited gold aggregates along the vapor flux direction should be greater than the TiO 2 interrod spacing created by 80° OAD to control dewetting and produce NP arrays. A numerical investigation of the process was conducted using a phase-field modeling approach. Simulation results showed that coalescence between neighboring gold aggregates is likely to have caused the uncontrolled dewetting in the 80° deposition, and this could be circumvented if the initial spacing between gold aggregates is larger than a critical value s min . We also found that TiO 2 nanorod tips affect dewetting dynamics differently than planar TiO 2 . The topology of the tips can induce contact line pinning and an increase in the contact angle along the vapor flux direction to the supported gold aggregates. These two effects are beneficial for the fabrication of monodisperse NPs based on Rayleigh-instability-governed self-assembly of materials, as they help to circumvent the undesired coalescence and facilitate the instability growth on the supported material. The findings uncover the application potential of OAD as a new method to fabricate structured films as template substrates to mediate dewetting. The reported composite films would have uses in optical coatings and photocatalytic systems, taking advantage of their ability to combine plasmonic nanostructures within a nanostructured dielectric film.

  13. Wafer scale oblique angle plasma etching

    DOEpatents

    Burckel, David Bruce; Jarecki, Jr., Robert L.; Finnegan, Patrick Sean

    2017-05-23

    Wafer scale oblique angle etching of a semiconductor substrate is performed in a conventional plasma etch chamber by using a fixture that supports a multiple number of separate Faraday cages. Each cage is formed to include an angled grid surface and is positioned such that it will be positioned over a separate one of the die locations on the wafer surface when the fixture is placed over the wafer. The presence of the Faraday cages influences the local electric field surrounding each wafer die, re-shaping the local field to be disposed in alignment with the angled grid surface. The re-shaped plasma causes the reactive ions to follow a linear trajectory through the plasma sheath and angled grid surface, ultimately impinging the wafer surface at an angle. The selected geometry of the Faraday cage angled grid surface thus determines the angle at with the reactive ions will impinge the wafer.

  14. [Preparation and transmissivity of ZnS nanocolumn thin films with glancing angle deposition technology].

    PubMed

    Lu, Li-Fang; Xu, Zheng; Zhang, Fu-Jun; Zhao, Su-Ling; Song, Dan-Dan; Li, Jun-Ming; Wang, Yong-Sheng; Xu, Xu-Rong

    2010-02-01

    Nanocrystalline ZnS thin films were fabricated by glancing angle deposition (GLAD) technology in an electron beam evaporation system. Deposition was carried out in the custom vacuum chamber at a base pressure 3 x 10(-4) Pa, and the deposition rate was fixed at 0.2 nm x s(-1). ZnS films were deposited on pieces of indium tin oxide (ITO) substrates when the oblique angle of the substrate relative to the incoming molecular flux was set to 0 degrees, 80 degrees and 85 degrees off the substrate normal respectively. X-ray diffraction (XRD) spectra and scanning electron microscope (SEM) images showed that ZnS nanocrystalline films were formed on the substrates at different oblique angle, but the nanocolumn structure was only formed under the situation of alpha = 80 degrees and 85 degrees. The dynamics during the deposition process of the ZnS films at alpha = 0 degrees, 80 degrees and 85 degrees was analyzed. The transmitted spectra of ZnS thin films deposited on ITO substrates showed that the ZnS nanocolumn thin films could enhance the transmissivity in visible range. The ZnS nanocolumn could be used into electroluminescence device, and it would enhance the luminous efficiency of the device.

  15. Morphology and crystallinity of ZnS nanocolumns prepared by glancing angle deposition.

    PubMed

    Lu, Lifang; Zhang, Fujun; Xu, Zheng; Zhao, Suling; Wang, Yongsheng

    2010-03-01

    ZnS films with different morphologies and nanometer structures were fabricated via high vacuum electron beam deposition by changing the oblique angle alpha between the incoming particle flux and the substrate normal. The morphology and crystallinity of ZnS nanocrystalline films prepared on the substrates at alpha = 0 degrees and 80 degrees were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction. These experimental results show that the ZnS nanocolumn structure was formed at the situation of alpha = 80 degrees. The incidence angle also strongly influenced the crystallinity of thin films. The most intensive diffraction peaks changed from (220) to (111) when the incidence angle was set to 0 degrees and 80 degrees. The dynamic growth process of ZnS films at alpha = 0 degrees and 80 degrees has been analyzed by shadow effect and atomic surface diffusion. The transmittance spectra of the ZnS thin films prepared at different oblique angles were measured, and the transmissivity of ZnS nanocolumn thin films was enhanced compared with ZnS thin films prepared by normal deposition in the visible light range.

  16. Strong Surface Diffusion Mediated Glancing-Angle Deposition: Growth, Recrystallization and Reorientation of Tin Nanorods

    NASA Astrophysics Data System (ADS)

    Wang, Huan-Hua; Shi, Yi-Jian; William, Chu; Yigal, Blum

    2008-01-01

    Different from usual glancing-angle deposition where low surface diffusion is necessary to form nanorods, strong surface diffusion mediated glancing-angle deposition is exemplified by growing tin nanorod films on both silicon and glass substrates simultaneously via thermal evaporation. During growth, the nanorods were simultaneously baked by the high-temperature evaporator, and therefore re-crystallized into single crystals in consequence of strong surface diffusion. The monocrystalline tin nanorods have a preferred orientation perpendicular to the substrate surface, which is quite different from the usual uniformly oblique nanorods without recrystallization.

  17. Effect of Oblique-Angle Sputtered ITO Electrode in MAPbI3 Perovskite Solar Cell Structures.

    PubMed

    Lee, Kun-Yi; Chen, Lung-Chien; Wu, Yu-June

    2017-10-03

    This investigation reports on the characteristics of MAPbI 3 perovskite films on obliquely sputtered ITO/glass substrates that are fabricated with various sputtering times and sputtering angles. The grain size of a MAPbI 3 perovskite film increases with the oblique sputtering angle of ITO thin films from 0° to 80°, indicating that the surface properties of the ITO affect the wettability of the PEDOT:PSS thin film and thereby dominates the number of perovskite nucleation sites. The optimal power conversion efficiency (Eff) is achieved 11.3% in a cell with an oblique ITO layer that was prepared using a sputtering angle of 30° for a sputtering time of 15 min.

  18. Recent progress of obliquely deposited thin films for industrial applications

    NASA Astrophysics Data System (ADS)

    Suzuki, Motofumi; Itoh, Tadayoshi; Taga, Yasunori

    1999-06-01

    More than 10 years ago, birefringent films of metal oxides were formed by oblique vapor deposition and investigated with a view of their application to optical retardation plates. The retardation function of the films was explained in terms of the birefringence caused by the characteristic anisotropic nanostructure inside the films. These films are now classified in the genre of the so-called sculptured thin films. However, the birefringent films thus prepared are not yet industrialized even now due to the crucial lack of the durability and the yield of products. In this review paper, we describe the present status of application process of the retardation films to the information systems such as compact disc and digital versatile disc devices with a special emphasis on the uniformity of retardation properties in a large area and the stability of the optical properties of the obliquely deposited thin films. Finally, further challenges for wide application of the obliquely deposited thin films are also discussed.

  19. Theoretical and experimental analyses to determine the effects of crystal orientation and grain size on the thermoelectric properties of oblique deposited bismuth telluride thin films

    NASA Astrophysics Data System (ADS)

    Morikawa, Satoshi; Satake, Yuji; Takashiri, Masayuki

    2018-06-01

    The effects of crystal orientation and grain size on the thermoelectric properties of Bi2Te3 thin films were investigated by conducting experimental and theoretical analyses. To vary the crystal orientation and grain size, we performed oblique deposition, followed by thermal annealing treatment. The crystal orientation decreased as the oblique angle was increased, while the grain size was not changed significantly. The thermoelectric properties were measured at room temperature. A theoretical analysis was performed using a first principles method based on density functional theory. Then the semi-classical Boltzmann transport equation was used in the relaxation time approximation, with the effect of grain size included. Furthermore, the effect of crystal orientation was included in the calculation based on a simple semi-experimental model. A maximum power factor of 11.6 µW/(cm·K2) was obtained at an oblique angle of 40°. The calculated thermoelectric properties were in very good agreement with the experimentally measured values.

  20. Physical vapor deposition and metalorganic chemical vapor deposition of yttria-stabilized zirconia thin films

    NASA Astrophysics Data System (ADS)

    Kaufman, David Y.

    Two vapor deposition techniques, dual magnetron oblique sputtering (DMOS) and metalorganic chemical vapor deposition (MOCVD), have been developed to produce yttria-stabilized zirconia (YSZ) films with unique microstructures. In particular, biaxially textured thin films on amorphous substrates and dense thin films on porous substrates have been fabricated by DMOS and MOCVD, respectively. DMOS YSZ thin films were deposited by reactive sputtering onto Si (native oxide surface) substrates positioned equidistant between two magnetron sources such that the fluxes arrived at oblique angles with respect to the substrate normal. Incident fluxes from two complimentary oblique directions were necessary for the development of biaxial texture. The films displayed a strong [001] out-of-plane orientation with the <110> direction in the film aligned with the incident flux. Biaxial texture improved with increasing oblique angle and film thickness, and was stronger for films deposited with Ne than with Ar. The films displayed a columnar microstructure with grain bundling perpendicular to the projected flux direction, the degree of which increased with oblique angle and thickness. The texture decreased by sputtering at pressures at which the flux of sputtered atoms was thermalized. These results suggested that grain alignment is due to directed impingement of both sputtered atoms and reflected energetic neutrals. The best texture, a {111} phi FWHM of 23°, was obtained in a 4.8 mum thick film deposited at an oblique angle of 56°. MOCVD YSZ thin films were deposited in a vertical cold-wall reactor using Zr(tmhd)4 and Y(tmhd)3 precursors. Fully stabilized YSZ films with 9 mol% could be deposited by controlling the bubbler temperatures. YSZ films on Si substrates displayed a transition at 525°C from surface kinetic limited growth, with an activation energy of 5.5 kJ/mole, to mass transport limited growth. Modifying the reactor by lowering the inlet height and introducing an Ar baffle

  1. Study of Wave-Particle Interactions for Whistler Mode Waves at Oblique Angles by Utilizing the Gyroaveraging Method

    NASA Astrophysics Data System (ADS)

    Hsieh, Yi-Kai; Omura, Yoshiharu

    2017-10-01

    We investigate the properties of whistler mode wave-particle interactions at oblique wave normal angles to the background magnetic field. We find that electromagnetic energy of waves at frequencies below half the electron cyclotron frequency can flow nearly parallel to the ambient magnetic field. We thereby confirm that the gyroaveraging method, which averages the cyclotron motion to the gyrocenter and reduces the simulation from two-dimensional to one-dimensional, is valid for oblique wave-particle interaction. Multiple resonances appear for oblique propagation but not for parallel propagation. We calculate the possible range of resonances with the first-order resonance condition as a function of electron kinetic energy and equatorial pitch angle. To reveal the physical process and the efficiency of electron acceleration by multiple resonances, we assume a simple uniform wave model with constant amplitude and frequency in space and time. We perform test particle simulations with electrons starting at specific equatorial pitch angles and kinetic energies. The simulation results show that multiple resonances contribute to acceleration and pitch angle scattering of energetic electrons. Especially, we find that electrons with energies of a few hundred keV can be accelerated efficiently to a few MeV through the n = 0 Landau resonance.

  2. Tantalum films with well-controlled roughness grown by oblique incidence deposition

    NASA Astrophysics Data System (ADS)

    Rechendorff, K.; Hovgaard, M. B.; Chevallier, J.; Foss, M.; Besenbacher, F.

    2005-08-01

    We have investigated how tantalum films with well-controlled surface roughness can be grown by e-gun evaporation with oblique angle of incidence between the evaporation flux and the surface normal. Due to a more pronounced shadowing effect the root-mean-square roughness increases from about 2 to 33 nm as grazing incidence is approached. The exponent, characterizing the scaling of the root-mean-square roughness with length scale (α), varies from 0.75 to 0.93, and a clear correlation is found between the angle of incidence and root-mean-square roughness.

  3. Incident flux angle induced crystal texture transformation in nanostructured molybdenum films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, L.; Lu, T.-M.; Wang, G.-C.

    2012-07-15

    Molybdenum films were observed to undergo a dramatic change in crystal texture orientation when the incident flux angle was varied in an oblique angle sputter deposition on amorphous substrates. Reflection high-energy electron diffraction pole figure and scanning electron microscopy were used to analyze in detail the texture orientation of the films. The normal incident deposition resulted in a fiber texture film with the minimum energy (110) crystal plane parallel to the substrate surface. A (110)[110] biaxial texture was observed for the samples grown with low incident angles of less than 45 Degree-Sign , with respect to the surface normal. Onmore » the other hand, for an oblique angle deposition of larger than 60 Degree-Sign , a (111)[112] biaxial texture was observed and appeared to be consistent with a zone T structure where the geometrically fastest growth [001] direction of a crystal plays a dominant role in defining the texture. We argue that a structural transition had occurred when the incident flux was varied from near normal incidence to a large angle.« less

  4. Oblique Wing Flights

    NASA Image and Video Library

    2018-05-09

    Flown in the mid 70's, this Oblique Wing was a large-scale R/C experimental aircraft to demonstrate the ability to pivot its wing to an oblique angle, allowing for a reduced drag penalty at transonic speeds.

  5. Oblique drop impact onto a deep liquid pool

    NASA Astrophysics Data System (ADS)

    Gielen, Marise V.; Sleutel, Pascal; Benschop, Jos; Riepen, Michel; Voronina, Victoria; Visser, Claas Willem; Lohse, Detlef; Snoeijer, Jacco H.; Versluis, Michel; Gelderblom, Hanneke

    2017-08-01

    Oblique impact of drops onto a solid or liquid surface is frequently observed in nature. Most studies on drop impact and splashing, however, focus on perpendicular impact. Here we study oblique impact of 100 μ m drops onto a deep liquid pool, where we quantify the splashing threshold, maximum cavity dimensions and cavity collapse by high-speed imaging above and below the water surface. Gravity can be neglected in these experiments. Three different impact regimes are identified: smooth deposition onto the pool, splashing in the direction of impact only, and splashing in all directions. We provide scaling arguments that delineate these regimes by accounting for the drop impact angle and Weber number. The angle of the axis of the cavity created below the water surface follows the impact angle of the drop irrespectively of the Weber number, while the cavity depth and its displacement with respect to the impact position do depend on the Weber number. Weber number dependency of both the cavity depth and displacement is modeled using an energy argument.

  6. Normal- and oblique-shock flow parameters in equilibrium air including attached-shock solutions for surfaces at angles of attack, sweep, and dihedral

    NASA Technical Reports Server (NTRS)

    Hunt, J. L.; Souders, S. W.

    1975-01-01

    Normal- and oblique-shock flow parameters for air in thermochemical equilibrium are tabulated as a function of shock angle for altitudes ranging from 15.24 km to 91.44 km in increments of 7.62 km at selected hypersonic speeds. Post-shock parameters tabulated include flow-deflection angle, velocity, Mach number, compressibility factor, isentropic exponent, viscosity, Reynolds number, entropy difference, and static pressure, temperature, density, and enthalpy ratios across the shock. A procedure is presented for obtaining oblique-shock flow properties in equilibrium air on surfaces at various angles of attack, sweep, and dihedral by use of the two-dimensional tabulations. Plots of the flow parameters against flow-deflection angle are presented at altitudes of 30.48, 60.96, and 91.44 km for various stream velocities.

  7. Bow and Oblique Shock Formation in Soap Film

    NASA Astrophysics Data System (ADS)

    Kim, Ildoo; Mandre, Shreyas; Sane, Aakash

    2015-11-01

    In recent years, soap films have been exploited primarily to approximate two-dimensional flows while their three-dimensional character is relatively unattended. An example of the three-dimensional character of the flow in a soap film is the observed Marangoni shock wave when the flow speed exceeds the wave speed. In this study, we investigated the formation of bow and oblique shocks in soap films generated by wedges with different deflection angles. When the wedge deflection angle is small and the film flows fast, oblique shocks are observed. When the oblique shock cannot exists, bow shock is formed upstream the wedge. We characterized the oblique shock angle as a function of the wedge deflection angle and the flow speed, and we also present the criteria for transition between bow and oblique Marangoni shocks in soap films.

  8. Modification of the morphology and optical properties of SnS films using glancing angle deposition technique

    NASA Astrophysics Data System (ADS)

    Sazideh, M. R.; Dizaji, H. Rezagholipour; Ehsani, M. H.; Moghadam, R. Zarei

    2017-05-01

    Tin sulfide (SnS) films were prepared by thermal evaporation method using Glancing Angle Deposition (GLAD) technique at zero and different oblique incident flux angles (α = 45°, 55°, 65°, 75° and 85°). The physical properties of prepared films were systematically investigated. The X-ray diffraction analysis indicated that the film deposited at α = 0° formed as single phase with an orthorhombic structure. However, the layers became amorphous at α = 45°, 55°, 65°, 75° and 85°. Beside the appearance of amorphous feature in the film prepared at α higher than zero, Sn2S3 phase was also observed. The top and cross-sectional field emission scanning electron microscope (FESEM) images of the samples showed noticeable changes in the structure and morphology of individual nano-plates as a function of incident angle. The band gap and refractive index values of the films were calculated by optical transmission measurements. The optical band-gap values were observed to increase with increasing the incident flux angle. This can be due to presence of Sn2S3 phase observed in the samples produced at α values other than zero. The effective refractive index and porosity exhibit an opposite evolution as the incident angle α rises. At α = 85° the layers show a considerable change in effective refractive index (Δn = 1.7) at near-IR spectral range.

  9. A Radiative Analysis of Angular Signatures and Oblique Radiance Retrievals over the Polar Regions from the Multi-Angle Imaging Spectroradiometer

    ERIC Educational Resources Information Center

    Wilson, Michael Jason

    2009-01-01

    This dissertation studies clouds over the polar regions using the Multi-angle Imaging SpectroRadiometer (MISR) on-board EOS-Terra. Historically, low thin clouds have been problematic for satellite detection, because these clouds have similar brightness and temperature properties to the surface they overlay. However, the oblique angles of MISR…

  10. Surface dose measurements for highly oblique electron beams.

    PubMed

    Ostwald, P M; Kron, T

    1996-08-01

    Clinical applications of electrons may involve oblique incidence of beams, and although dose variations for angles up to 60 degrees from normal incidence are well documented, no results are available for highly oblique beams. Surface dose measurements in highly oblique beams were made using parallel-plate ion chambers and both standard LiF:Mg, Ti and carbon-loaded LiF Thermoluminescent Dosimeters (TLD). Obliquity factors (OBF) or surface dose at an oblique angle divided by the surface dose at perpendicular incidence, were obtained for electron energies between 4 and 20 MeV. Measurements were performed on a flat solid water phantom without a collimator at 100 cm SSD. Comparisons were also made to collimated beams. The OBFs of surface doses plotted against the angle of incidence increased to a maximum dose followed by a rapid dropoff in dose. The increase in OBF was more rapid for higher energies. The maximum OBF occurred at larger angles for higher-energy beams and ranged from 73 degrees for 4 MeV to 84 degrees for 20 MeV. At the dose maximum, OBFs were between 130% and 160% of direct beam doses, yielding surface doses of up to 150% of Dmax for the 20 MeV beam. At 2 mm depth the dose ratio was found to increase initially with angle and then decrease as Dmax moved closer to the surface. A higher maximum dose was measured at 2 mm depth than at the surface. A comparison of ion chamber types showed that a chamber with a small electrode spacing and large guard ring is required for oblique dose measurement. A semiempirical equation was used to model the dose increase at the surface with different energy electron beams.

  11. Oblique nonlinear whistler wave

    NASA Astrophysics Data System (ADS)

    Yoon, Peter H.; Pandey, Vinay S.; Lee, Dong-Hun

    2014-03-01

    Motivated by satellite observation of large-amplitude whistler waves propagating in oblique directions with respect to the ambient magnetic field, a recent letter discusses the physics of large-amplitude whistler waves and relativistic electron acceleration. One of the conclusions of that letter is that oblique whistler waves will eventually undergo nonlinear steepening regardless of the amplitude. The present paper reexamines this claim and finds that the steepening associated with the density perturbation almost never occurs, unless whistler waves have sufficiently high amplitude and propagate sufficiently close to the resonance cone angle.

  12. Migration of the Cratering Flow-Field Center with Implications for Scaling Oblique Impacts

    NASA Technical Reports Server (NTRS)

    Anderson, J. L. B.; Schultz, P. H.; Heineck, J. T.

    2004-01-01

    Crater-scaling relationships are used to predict many cratering phenomena such as final crater diameter and ejection speeds. Such nondimensional relationships are commonly determined from experimental impact and explosion data. Almost without exception, these crater-scaling relationships have used data from vertical impacts (90 deg. to the horizontal). The majority of impact craters, however, form by impacts at angles near 45 deg. to the horizontal. While even low impact angles result in relatively circular craters in sand targets, the effects of impact angle have been shown to extend well into the excavation stage of crater growth. Thus, the scaling of oblique impacts needs to be investigated more thoroughly in order to quantify fully how impact angle affects ejection speed and angle. In this study, ejection parameters from vertical (90 deg.) and 30 deg. oblique impacts are measured using three-dimensional particle image velocimetry (3D PIV) at the NASA Ames Vertical Gun Range (AVGR). The primary goal is to determine the horizontal migration of the cratering flow-field center (FFC). The location of the FFC at the time of ejection controls the scaling of oblique impacts. For vertical impacts the FFC coincides with the impact point (IP) and the crater center (CC). Oblique impacts reflect a more complex, horizontally migrating flow-field. A single, stationary point-source model cannot be used accurately to describe the evolution of the ejection angles from oblique impacts. The ejection speeds for oblique impacts also do not follow standard scaling relationships. The migration of the FFC needs to be understood and incorporated into any revised scaling relationships.

  13. Obliquity of the Ecliptic

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The angle between the planes of the ecliptic and the equator. On the celestial sphere, the angle at which the ecliptic intersects the celestial equator. The current (year 2000) value of the obliquity of ecliptic, which is denoted by the symbol ɛ, is 23° 26' 21''. Its value varies by ±9'' over a period of 18.6 years as a consequence of a phenomenon called nutation. Over a much longer period (abou...

  14. Ceres' obliquity history: implications for permanently shadowed regions

    NASA Astrophysics Data System (ADS)

    Ermakov, A.; Mazarico, E.; Schroeder, S.; Carsenty, U.; Schorghofer, N.; Raymond, C. A.; Zuber, M. T.; Smith, D. E.; Russell, C. T.

    2016-12-01

    The Dawn spacecraft's Framing Camera (FC) images and radio-tracking data have allowed precise determination of Ceres' rotational pole and obliquity. Presently, the obliquity (ɛ) of Ceres is ≈4°. Because of the low obliquity, permanently shadowed regions (PSRs) can exist on Ceres, and have been identified using both images and shape models (Schorghofer et al., 2016). These observations make Ceres only the third body in the solar system with recognized PSRs after the Moon (Zuber et al., 1997) and Mercury (Chabot et al., 2012). Some craters in Ceres' polar regions possess bright crater floor deposits (BCFD). These crater floors are typically in shadow. However, they receive light scattered from the surrounding sunlit crater walls and therefore can be seen by FC. These bright deposits are hypothesized to be water ice accumulated in PSR cold traps, analogous to the Moon (Watson et al., 1961). The existence of the PSRs critically depends on the body's obliquity. The goal of this work is to study the history of Ceres' obliquity. Knowing past obliquity variations can shed light on the history of PSRs, and can help constrain the water-ice deposition time scales. We integrate the obliquity of Ceres over the last 3 My for the range of C/MR2vol constrained by the Dawn gravity measurements (Park et al., 2016, Ermakov et al., 2016) using methods described in Wisdom & Holman (1991) and Touma & Wisdom (1994). The obliquity history for C/MR2vol=0.392 is shown in Fig. 1. The integrations show that the obliquity of Ceres undergoes large oscillations with the main period of T=25 ky and a maximum of 19.7°. The obliquity oscillations are driven by the periodic change of Ceres' orbit inclination (T=22 ky) and the pole precession (T=210 ky). Ceres passed a local obliquity minimum 1327 years ago when (ɛmin=2.4°). The most recent maximum was 13895 years ago (ɛmax=18.5°). At such high obliquity, most of the present-day PSRs receive direct sunlight. We find a correlation between

  15. Oblique collision of dust acoustic solitons in a strongly coupled dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boruah, A.; Sharma, S. K., E-mail: sumita-sharma82@yahoo.com; Bailung, H.

    2015-09-15

    The oblique collision between two equal amplitude dust acoustic solitons is observed in a strongly coupled dusty plasma. The solitons are subjected to oblique interaction at different colliding angles. We observe a resonance structure during oblique collision at a critical colliding angle which is described by the idea of three wave resonance interaction modeled by Kadomtsev-Petviashvili equation. After collision, the solitons preserve their identity. The amplitude of the resultant wave formed during interaction is measured for different collision angles as well as for different colliding soliton amplitudes. At resonance, the maximum amplitude of the new soliton formed is nearly 3.7more » times the initial soliton amplitude.« less

  16. Comparison of Chevron and Distal Oblique Osteotomy for Bunion Correction.

    PubMed

    Scharer, Brandon M; DeVries, J George

    2016-01-01

    The chevron osteotomy is a standard procedure by which bunions are corrected. One of us routinely performs a distal oblique osteotomy, which, to the best of our knowledge, has not been described for the correction of bunion deformities. The purpose of the present study was to compare the short- and medium-term results of the distal oblique and chevron osteotomies for bunion correction. We performed a retrospective clinical and radiographic comparison of patients who had undergone a distal oblique or chevron osteotomy for the correction of bunion deformity. In addition, a prospective patient satisfaction survey was undertaken. A total of 55 patients were included in the present study and were treated from January 2012 to November 2014. Of the 55 patients, 27 (49.2%) were in the chevron group and 28 (50.8%) in the distal oblique group. Radiographically, no statistically significant difference was found between the 2 groups with respect to postoperative first intermetatarsal angle (p < .0001) and hallux valgus angle (p < .0001), but a greater change was found in the intermetatarsal angle in the distal oblique group (p = .467). Prospective patient satisfaction scores were available for 33 patients (60%), 16 (29%) in the chevron group and 17 (31%) in the distal oblique group. When converting the satisfaction score to a numerical score, the chevron group scored 3.3 ± 1.1 and the distal oblique group scored 3.2 ± 0.8 (p = .812). We found that the distal oblique osteotomy used in the present study is simple and reliable and showed radiographic correction and patient satisfaction equivalent to those in the chevron osteotomy. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Thermal expansion coefficients of obliquely deposited MgF2 thin films and their intrinsic stress.

    PubMed

    Jaing, Cheng-Chung

    2011-03-20

    This study elucidates the effects of columnar angles and deposition angles on the thermal expansion coefficients and intrinsic stress behaviors of MgF2 films with columnar microstructures. The behaviors associated with temperature-dependent stresses in the MgF2 films are measured using a phase-shifting Twyman-Green interferometer with a heating stage and the application of a phase reduction algorithm. The thermal expansion coefficients of MgF2 films at various columnar angles were larger than those of glass substrates. The intrinsic stress in the MgF2 films with columnar microstructures was compressive, while the thermal stress was tensile. The thermal expansion coefficients of MgF2 films with columnar microstructures and their intrinsic stress evidently depended on the deposition angle and the columnar angle.

  18. Reverse design of a bull's eye structure for oblique incidence and wider angular transmission efficiency.

    PubMed

    Yamada, Akira; Terakawa, Mitsuhiro

    2015-04-10

    We present a design method of a bull's eye structure with asymmetric grooves for focusing oblique incident light. The design method is capable of designing transmission peaks to a desired oblique angle with capability of collecting light from a wider range of angles. The bull's eye groove geometry for oblique incidence is designed based on the electric field intensity pattern around an isolated subwavelength aperture on a thin gold film at oblique incidence, calculated by the finite difference time domain method. Wide angular transmission efficiency is successfully achieved by overlapping two different bull's eye groove patterns designed with different peak angles. Our novel design method would overcome the angular limitations of the conventional methods.

  19. Oblique Wing Research Aircraft on ramp

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This 1976 photograph of the Oblique Wing Research Aircraft was taken in front of the NASA Flight Research Center hangar, located at Edwards Air Force Base, California. In the photograph the noseboom, pitot-static probe, and angles-of-attack and sideslip flow vanes(covered-up) are attached to the front of the vehicle. The clear nose dome for the television camera, and the shrouded propellor for the 90 horsepower engine are clearly seen. The Oblique Wing Research Aircraft was a small, remotely piloted, research craft designed and flight tested to look at the aerodynamic characteristics of an oblique wing and the control laws necessary to achieve acceptable handling qualities. NASA Dryden Flight Research Center and the NASA Ames Research Center conducted research with this aircraft in the mid-1970s to investigate the feasibility of flying an oblique wing aircraft.

  20. Vectorial point spread function and optical transfer function in oblique plane imaging.

    PubMed

    Kim, Jeongmin; Li, Tongcang; Wang, Yuan; Zhang, Xiang

    2014-05-05

    Oblique plane imaging, using remote focusing with a tilted mirror, enables direct two-dimensional (2D) imaging of any inclined plane of interest in three-dimensional (3D) specimens. It can image real-time dynamics of a living sample that changes rapidly or evolves its structure along arbitrary orientations. It also allows direct observations of any tilted target plane in an object of which orientational information is inaccessible during sample preparation. In this work, we study the optical resolution of this innovative wide-field imaging method. Using the vectorial diffraction theory, we formulate the vectorial point spread function (PSF) of direct oblique plane imaging. The anisotropic lateral resolving power caused by light clipping from the tilted mirror is theoretically analyzed for all oblique angles. We show that the 2D PSF in oblique plane imaging is conceptually different from the inclined 2D slice of the 3D PSF in conventional lateral imaging. Vectorial optical transfer function (OTF) of oblique plane imaging is also calculated by the fast Fourier transform (FFT) method to study effects of oblique angles on frequency responses.

  1. 3D dynamics of crustal deformation driven by oblique subduction: Northern and Central Andes

    NASA Astrophysics Data System (ADS)

    Schütt, Jorina M.; Whipp, David M., Jr.

    2017-04-01

    The geometry and relative motion of colliding plates will affect how and where they deform. In oblique subduction systems, factors such as the dip angle of the subducting plate and the convergence obliquity, as well as the presence of weak zones in the overriding plate, all influence how oblique convergence is partitioned onto various fault systems in the overriding plate. The partitioning of strain into margin-normal slip on the plate-bounding fault and horizontal shearing on a strike-slip system parallel to the margin is mainly controlled by the margin-parallel shear forces acting on the plate interface and the strength of the continental crust. While these plate interface forces are influenced by the dip angle of the subducting plate (i.e., the length of plate interface in the frictional domain) and the obliquity angle between the normal to the plate margin and the plate convergence vector, the strength of the continental crust in the upper plate is strongly affected by the presence or absence of weak zones such as regions of arc volcanism, pre-existing fault systems, or boundaries of stronger crustal blocks. In order to investigate which of these factors are most important in controlling how the overriding continental plate deforms, we compare results of lithospheric-scale 3D numerical geodynamic experiments from two regions in the north-central Andes: the Northern Volcanic Zone (NVZ; 5°N - 3°S) and adjacent Peruvian Flat Slab Segment (PFSS; 3°S -14°S). The NVZ is characterized by a 35° subduction dip angle with an obliquity angle of about 40°, extensive volcanism and significant strain partitioning in the continental crust. In contrast, the PFSS is characterized by flat subduction (the slab flattens beneath the continent at around 100 km depth for several hundred kilometers), an obliquity angle of about 20°, no volcanism and minimal strain partitioning. The plate geometry and convergence obliquity for these regions are incorporated in 3D (1600 x 1600 x

  2. Effects of excimer laser illumination on microdrilling into an oblique polymer surface

    NASA Astrophysics Data System (ADS)

    Wu, Chih-Yang; Shu, Chun-Wei; Yeh, Zhi-Chang

    2006-08-01

    In this work, we present the experimental results of micromachining into polymethy-methacrylate exposed to oblique KrF excimer laser beams. The results of low-aspect-ratio ablations show that the ablation rate decreases monotonously with the increase of incident angle for various fluences. The ablation rate of high-aspect-ratio drilling with opening center on the focal plane is almost independent of incident angles and is less than that of low-aspect-ratio ablation. The results of high-aspect-ratio ablations show that the openings of the holes at a distance from the focal plane are enlarged and their edges are blurred. Besides, the depth of a hole in the samples oblique to the laser beam at a distance from the focal plane decreases with the increase of the distance from the focal plane. The number of deep holes generated by oblique laser beams through a matrix of apertures decreases with the increase of incident angle. Those phenomena reveal the influence of the local light intensity on microdrilling into an oblique surface.

  3. Coeval emplacement and orogen-parallel transport of gold in oblique convergent orogens

    NASA Astrophysics Data System (ADS)

    Upton, Phaedra; Craw, Dave

    2016-12-01

    Varying amounts of gold mineralisation is occurring in all young and active collisional mountain belts. Concurrently, these syn-orogenic hydrothermal deposits are being eroded and transported to form placer deposits. Local extension occurs in convergent orogens, especially oblique orogens, and facilitates emplacement of syn-orogenic gold-bearing deposits with or without associated magmatism. Numerical modelling has shown that extension results from directional variations in movement rates along the rock transport trajectory during convergence, and is most pronounced for highly oblique convergence with strong crustal rheology. On-going uplift during orogenesis exposes gold deposits to erosion, transport, and localised placer concentration. Drainage patterns in variably oblique convergent orogenic belts typically have an orogen-parallel or sub-parallel component; the details of which varies with convergence obliquity and the vagaries of underlying geological controls. This leads to lateral transport of eroded syn-orogenic gold on a range of scales, up to > 100 km. The presence of inherited crustal blocks with contrasting rheology in oblique orogenic collision zones can cause perturbations in drainage patterns, but numerical modelling suggests that orogen-parallel drainage is still a persistent and robust feature. The presence of an inherited block of weak crust enhances the orogen-parallel drainage by imposition of localised subsidence zones elongated along a plate boundary. Evolution and reorientation of orogen-parallel drainage can sever links between gold placer deposits and their syn-orogenic sources. Many of these modelled features of syn-orogenic gold emplacement and varying amounts of orogen-parallel detrital gold transport can be recognised in the Miocene to Recent New Zealand oblique convergent orogen. These processes contribute little gold to major placer goldfields, which require more long-term recycling and placer gold concentration. Most eroded syn

  4. Reduced magnetohydrodynamic theory of oblique plasmoid instabilities

    NASA Astrophysics Data System (ADS)

    Baalrud, S. D.; Bhattacharjee, A.; Huang, Y.-M.

    2012-02-01

    The three-dimensional nature of plasmoid instabilities is studied using the reduced magnetohydrodynamic equations. For a Harris equilibrium with guide field, represented by Bo=Bpotanh(x /λ)ŷ+Bzoẑ, a spectrum of modes are unstable at multiple resonant surfaces in the current sheet, rather than just the null surface of the poloidal field Byo(x)=Bpotanh(x /λ), which is the only resonant surface in 2D or in the absence of a guide field. Here, Bpo is the asymptotic value of the equilibrium poloidal field, Bzo is the constant equilibrium guide field, and λ is the current sheet width. Plasmoids on each resonant surface have a unique angle of obliquity θ ≡arctan(kz/ky). The resonant surface location for angle θ is xs=λarctanh(μ), where μ =tanθBzo/Bpo and the existence of a resonant surface requires |θ |angle is oblique, i.e., θ ≠0 and xs≠0, in the constant-ψ regime, but parallel, i.e., θ =0 and xs=0, in the nonconstant-ψ regime. For a fixed angle of obliquity, the most unstable wavenumber lies at the intersection of the constant-ψ and nonconstant-ψ regimes. The growth rate of this mode is γmax/Γo≃SL1/4(1-μ4)1/2, in which Γo=VA/L, VA is the Alfvén speed, L is the current sheet length, and SL is the Lundquist number. The number of plasmoids scales as N ~SL3/8(1-μ2)-1/4(1+μ2)3/4.

  5. Optical and structural properties of cadmium telluride films grown by glancing angle deposition

    NASA Astrophysics Data System (ADS)

    Ehsani, M. H.; Rezagholipour Dizaji, H.; Azizi, S.; Ghavami Mirmahalle, S. F.; Siyanaki, F. Hosseini

    2013-08-01

    Cadmium telluride films were grown by the glancing angle deposition (GLAD) technique. The samples were prepared under different incident deposition flux angles (α = 0°, 20° and 70° measured from the normal to the substrate surface). During deposition, the substrate temperature was maintained at room temperature. The structural study was performed using an x-ray diffraction diffractometer. The samples were found to be poly-crystalline with cubic structure for those deposited at α = 0° and 20° and hexagonal structure for the one deposited at 70°. The images of samples obtained by the field emission scanning electron microscopy technique showed that the GLAD method could produce a columnar layer tilted toward the incident deposition flux. The optical properties study by the UV-Vis spectroscopy technique showed that the use of this growth technique affected the optical properties of the films. A higher absorption coefficient in the visible and near-IR spectral range was observed for the sample deposited at α = 70°. This is an important result from the photovoltaic applications point of view where absorber materials with large absorption coefficients are needed. Also, it seems that the sample with a high incident deposition flux angle has the capability of making an n-CdTe/p-CdTe homo-junction.

  6. Repeatability and oblique flow response characteristics of current meters

    USGS Publications Warehouse

    Fulford, Janice M.; Thibodeaux, Kirk G.; Kaehrle, William R.; ,

    1993-01-01

    Laboratory investigation into the precision and accuracy of various mechanical-current meters are presented. Horizontal-axis and vertical-axis meters that are used for the measurement of point velocities in streams and rivers were tested. Meters were tested for repeatability and response to oblique flows. Both horizontal- and vertical-axis meters were found to under- and over-register oblique flows with errors generally increasing as the velocity and angle of flow increased. For the oblique flow tests, magnitude of errors were smallest for horizontal-axis meters. Repeatability of all meters tested was good, with the horizontal- and vertical-axis meters performing similarly.

  7. The Evolution of Oblique Impact Flow Fields Using Maxwell's Z Model

    NASA Technical Reports Server (NTRS)

    Anderson, J. L. B.; Schultz, P. H.; Heineck, J. T.

    2003-01-01

    Oblique impacts are the norm rather than the exception for impact craters on planetary surfaces. This work focuses on the excavation of experimental oblique impact craters using the NASA Ames Vertical Gun Range (AVGR). Three-dimensional particle image velocimetry (3D PIV) is used to obtain quantitative data on ejection positions, three dimensional velocities and angles. These data are then used to constrain Maxwell's Z Model and follow the subsurface evolution of the excavation-stage flow-field center during oblique impacts.

  8. Magnetization reversal in epitaxial exchange-biased IrMn/FeGa bilayers with anisotropy geometries controlled by oblique deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Zhan, Qingfeng; Zuo, Zhenghu; Yang, Huali; Zhang, Xiaoshan; Dai, Guohong; Liu, Yiwei; Yu, Ying; Wang, Jun; Wang, Baomin; Li, Run-Wei

    2015-05-01

    We fabricated epitaxial exchange biased (EB) IrMn/FeGa bilayers by oblique deposition and systematically investigated their magnetization reversal. Two different configurations with the uniaxial magnetic anisotropy Ku parallel and perpendicular to the unidirectional anisotropy Ke b were obtained by controlling the orientation of the incident FeGa beam during deposition. A large ratio of Ku/Ke b was obtained by obliquely depositing the FeGa layer to achieve a large Ku while reducing the IrMn thickness to obtain a small Ke b. Besides the previously reported square loops, conventional asymmetrically shaped loops, and one-sided and two-sided two-step loops, unusual asymmetrically shaped loops with a three-step magnetic transition for the descending branch and a two-step transition for the ascending branch and biased three-step loops were observed at various field orientations in the films of both IrMn (tIrMn=1.5 to 20 nm)/FeGa (10 nm) with Ku⊥ Ke b and IrMn (tIrMn≤2 nm)/FeGa (10 nm) with Ku|| Ke b . Considering the geometries of anisotropies, a model based on domain wall nucleation and propagation was employed to quantitatively describe the angular dependent behaviors of IrMn/FeGa bilayers. The biased three-step magnetic switching was predicted to take place when | Ku|> ɛ90°+Ke b , where ɛ90° is the 90° domain wall nucleation energy, and the EB leads to the appearance of the unusual asymmetrically shaped hysteresis loops.

  9. Oblique contractional reactivation of inherited heterogeneities: Cause for arcuate orogens

    PubMed Central

    Sokoutis, D.; Willingshofer, E.; Brun, J.‐P.; Gueydan, F.; Cloetingh, S.

    2017-01-01

    Abstract We use lithospheric‐scale analog models to study the reactivation of pre‐existing heterogeneities under oblique shortening and its relation to the origin of arcuate orogens. Reactivation of inherited rheological heterogeneities is an important mechanism for localization of deformation in compressional settings and consequent initiation of contractional structures during orogenesis. However, the presence of an inherited heterogeneity in the lithosphere is in itself not sufficient for its reactivation once the continental lithosphere is shortened. The heterogeneity orientation is important in determining if reactivation occurs and to which extent. This study aims at giving insights on this process by means of analog experiments in which a linear lithospheric heterogeneity trends with various angles to the shortening direction. In particular, the key parameter investigated is the orientation (angle α) of a strong domain (SD) with respect to the shortening direction. Experimental results show that angles α ≥ 75° (high obliquity) allow for reactivation along the entire SD and the development of a linear orogen. For α ≤ 60° (low obliquity) the models are characterized by the development of an arcuate orogen, with the SD remaining partially non‐reactivated. These results provide a new mechanism for the origin of some arcuate orogens, in which orocline formation was not driven by indentation or subduction processes, but by oblique shortening of inherited heterogeneities, as exemplified by the Ouachita orogen of the southern U.S. PMID:28670046

  10. Angle-selective optical filter for highly sensitive reflection photoplethysmogram

    PubMed Central

    Hwang, Chan-Sol; Yang, Sung-Pyo; Jang, Kyung-Won; Park, Jung-Woo; Jeong, Ki-Hun

    2017-01-01

    We report an angle-selective optical filter (ASOF) for highly sensitive reflection photoplethysmography (PPG) sensors. The ASOF features slanted aluminum (Al) micromirror arrays embedded in transparent polymer resin, which effectively block scattered light under human tissue. The device microfabrication was done by using geometry-guided resist reflow of polymer micropatterns, polydimethylsiloxane replica molding, and oblique angle deposition of thin Al film. The angular transmittance through the ASOF is precisely controlled by the angle of micromirrors. For the mirror angle of 30 degrees, the ASOF accepts an incident light between - 90 to + 50 degrees and the maximum transmittance at - 55 degrees. The ASOF exhibits the substantial reduction of both the in-band noise of PPG signals over a factor of two and the low-frequency noise by three times. Consequently, this filter allows distinguishing the diastolic peak that allows miscellaneous parameters with diverse vascular information. This optical filter provides a new opportunity for highly sensitive PPG monitoring or miscellaneous optical tomography. PMID:29082070

  11. Exact and approximate solutions to the oblique shock equations for real-time applications

    NASA Technical Reports Server (NTRS)

    Hartley, T. T.; Brandis, R.; Mossayebi, F.

    1991-01-01

    The derivation of exact solutions for determining the characteristics of an oblique shock wave in a supersonic flow is investigated. Specifically, an explicit expression for the oblique shock angle in terms of the free stream Mach number, the centerbody deflection angle, and the ratio of the specific heats, is derived. A simpler approximate solution is obtained and compared to the exact solution. The primary objectives of obtaining these solutions is to provide a fast algorithm that can run in a real time environment.

  12. Portable mini-chamber for temperature dependent studies using small angle and wide angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Dev, Arun Singh; Kumar, Dileep; Potdar, Satish; Pandit, Pallavi; Roth, Stephan V.; Gupta, Ajay

    2018-04-01

    The present work describes the design and performance of a vacuum compatible portable mini chamber for temperature dependent GISAXS and GIWAXS studies of thin films and multilayer structures. The water cooled body of the chamber allows sample annealing up to 900 K using ultra high vacuum compatible (UHV) pyrolytic boron nitride heater, thus making it possible to study the temperature dependent evolution of structure and morphology of two-dimensional nanostructured materials. Due to its light weight and small size, the chamber is portable and can be accommodated at synchrotron facilities worldwide. A systematic illustration of the versatility of the chamber has been demonstrated at beamline P03, PETRA-III, DESY, Hamburg, Germany. Temperature dependent grazing incidence small angle x-ray scattering (GISAXS) and grazing incidence wide angle x-ray scattering (GIWAXS) measurements were performed on oblique angle deposited Co/Ag multilayer structure, which jointly revealed that the surface diffusion in Co columns in Co/Ag multilayer enhances by increasing temperature from RT to ˜573 K. This results in a morphology change from columnar tilted structure to densely packed morphological isotropic multilayer.

  13. The Evolution of Oblique Impact Flow Fields Using Maxwell's Z Model

    NASA Technical Reports Server (NTRS)

    Anderson, J. L. B.; Schultz, P. H.; Heineck, J. T.

    2003-01-01

    Oblique impacts are the norm rather than the exception for impact craters on planetary surfaces. This work focuses on the excavation of experimental oblique impact craters using the NASA Ames Vertical Gun Range (AVGR). Three-dimensional particle image velocimetry (3D PIV) is used to obtain quantitative data on ejection positions, three-dimensional velocities and angles. These data are then used to test the applicability and limitations of Maxwell's Z Model in representing the subsurface evolution of the excavation-stage flow-field center during vertical and oblique impacts.

  14. Subduction obliquity as a prime indicator for geotherm in subduction zone

    NASA Astrophysics Data System (ADS)

    Plunder, Alexis; Thieulot, Cédric; van Hinsbergen, Douwe

    2016-04-01

    The geotherm of a subduction zone is thought to vary as a function of subduction rate and the age of the subducting lithosphere. Along a single subduction zone the rate of subduction can strongly vary due to changes in the angle between the trench and the plate convergence vector, namely the subduction obliquity. This phenomenon is observed all around the Pacific (i.e., Marianna, South America, Aleutian…). However due to observed differences in subducting lithosphere age or lateral convergence rate in nature, the quantification of temperature variation due to obliquity is not obvious. In order to investigate this effect, 3D generic numerical models were carried out using the finite element code ELEFANT. We designed a simplified setup to avoid interaction with other parameters. An ocean/ocean subduction setting was chosen and the domain is represented by a 800 × 300 × 200 km Cartesian box. The trench geometry is prescribed by means of a simple arc-tangent function. Velocity of the subducting lithosphere is prescribed using the analytical solution for corner flow and only the energy conservation equation is solved in the domain. Results are analysed after steady state is reached. First results show that the effect of the trench curvature on the geotherm with respect to the convergence direction is not negligible. A small obliquity yields isotherms which are very slightly deflected upwards where the obliquity is maximum. With an angle of ˜30°, the isotherms are deflected upwards of about 10 kilometres. Strong obliquity (i.e., angles from 60° to almost 90°) reveal extreme effects of the position of the isotherms. Further model will include other parameter as the dip of the slab and convergence rate to highlight their relative influence on the geotherm of subduction zone.

  15. The saturation of monochromatic lights obliquely incident on the retina.

    PubMed Central

    Alpern, M; Tamaki, R

    1983-01-01

    Foveal dark-adaptation undertaken to test the hypothesis that the excitation of rods causes the desaturation of 'yellow' lights in a 1 degree field traversing the margin of the pupil, fails to exclude that possibility. The desaturation is largest for a 1 degree outside diameter annular test, is still measurable with a 0.5 degree circular disk, but disappears for a 0.29 degree disk. The supersaturation of obliquely incident 501.2 nm test light follows the opposite pattern; it disappears with an annulus and is largest for a 0.29 degree circular field. It is unlikely that rods replace short-wave sensitive cones in the trichromatic match of an obliquely incident test with normally incident primaries. If rods as well as all three cones species are involved, the matches might not be trichromatic in the strong sense. Grassmann's law of scalar multiplication was tested and shown not to hold for the match of an obliquely incident test with normally incident primaries, though it remains valid whenever, both primaries and test strike the retina at the same angle of incidence (independent of that angle). The result in section 3 (above) cannot be due to rod intrusion. It persists (and becomes more conspicuous) on backgrounds (4.0 log scotopic td) which saturate rods. Moreover obliquely incident 'yellow' lights remain desaturated in intervals in the dark after a full bleach, whilst the test field is below rod threshold. The amount of desaturation does not differ appreciably from that normally found. The assumption of the unified theory of Alpern, Kitahara & Tamaki (1983) that the outer segments of only a single set of three cone species (with acceptance angles wide enough to include the entire exit pupil) contain the visual pigments absorbing both the normally incident primaries and the obliquely incident test is disproved by these results. Failure of Grassmann's law is most conspicuous under the conditions for which the changes in saturation upon changing from normal to oblique

  16. Flow morphologies after oblique shock acceelration of a cylindrical density interface

    NASA Astrophysics Data System (ADS)

    Wayne, Patrick; Simons, Dylan; Olmstead, Dell; Truman, C. Randall; Vorobieff, Peter; Kumar, Sanjay

    2015-11-01

    We present an experimental study of instabilities developing after an oblique shock interaction with a heavy gas column. The heavy gas in our experiments is sulfur hexafluoride infused with 11% acetone by mass. A misalignment of the pressure and density gradients results in three-dimensional vorticity deposition on the gaseous interface, dtriggering the onset of Richtmyer-Meshkov instability (RMI). Shortly thereafter, other instabilities develop along the interface, including a shear-driven instability that presents itself on the leading (with respect to the shock) and trailing edges of the column. This leads to the development of rows of co-rotating ``cat's eye'' vortices, characteristic of Kelvin-Helmholtz instability (KHI). Characteristics of the KHI, such as growth rate and wavelength, depend on several factors including the Mach number of the shock, the shock tube angle of inclination α (equal to the angle between the axis of the column and the plane of the shock), and the Atwood number. This work is supported by the US National Nuclear Security Agency (NNSA) via grant DE-NA0002913.

  17. The scaling and dynamics of a projectile obliquely impacting a granular medium.

    PubMed

    Wang, Dengming; Ye, Xiaoyan; Zheng, Xiaojing

    2012-01-01

    In this paper, the dynamics of a spherical projectile obliquely impacting into a two-dimensional granular bed is numerically investigated using the discrete element method. The influences of projectile's initial velocities and impacting angles are mainly considered. Numerical results show that the relationship between the final penetration depth and the initial impact velocity is very similar to that in the vertical-impact case. However, the dependence of the stopping time on the impact velocity of the projectile exhibits critical characteristics at different impact angles: the stopping time approximately increases linearly with the impact velocity for small impact angles but decreases in an exponential form for larger impact angles, which demonstrates the existence of two different regimes at low and high impact angles. When the impact angle is regarded as a parametric variable, a phenomenological force model at large impact angles is eventually proposed based on the simulation results, which can accurately describe the nature of the resistance force exerted on the projectile by the granular medium at different impact angels during the whole oblique-impact process. The degenerate model agrees well with the existing experimental results in the vertical-impact cases.

  18. A numerical study on the oblique focus in MR-guided transcranial focused ultrasound

    NASA Astrophysics Data System (ADS)

    Hughes, Alec; Huang, Yuexi; Pulkkinen, Aki; Schwartz, Michael L.; Lozano, Andres M.; Hynynen, Kullervo

    2016-11-01

    Recent clinical data showing thermal lesions from treatments of essential tremor using MR-guided transcranial focused ultrasound shows that in many cases the focus is oblique to the main axis of the phased array. The potential for this obliquity to extend the focus into lateral regions of the brain has led to speculation as to the cause of the oblique focus, and whether it is possible to realign the focus. Numerical simulations were performed on clinical export data to analyze the causes of the oblique focus and determine methods for its correction. It was found that the focal obliquity could be replicated with the numerical simulations to within 23.2+/- {{13.6}\\circ} of the clinical cases. It was then found that a major cause of the focal obliquity was the presence of sidelobes, caused by an unequal deposition of power from the different transducer elements in the array at the focus. In addition, it was found that a 65% reduction in focal obliquity was possible using phase and amplitude corrections. Potential drawbacks include the higher levels of skull heating required when modifying the distribution of power among the transducer elements, and the difficulty at present in obtaining ideal phase corrections from CT information alone. These techniques for the reduction of focal obliquity can be applied to other applications of transcranial focused ultrasound involving lower total energy deposition, such as blood-brain barrier opening, where the issue of skull heating is minimal.

  19. Climates of Oblique Exoplanets

    NASA Astrophysics Data System (ADS)

    Dobrovolskis, A. R.

    2008-12-01

    A previous paper (Dobrovolskis 2007; Icarus 192, 1-23) showed that eccentricity can have profound effects on the climate, habitability, and detectability of extrasolar planets. This complementary study shows that obliquity can have comparable effects. The known exoplanets exhibit a wide range of orbital eccentricities, but those within several million km of their suns are generally in near-circular orbits. This fact is widely attributed to the dissipation of tides in the planets, which is particularly effective for solid/liquid bodies like "Super-Earths". Along with friction between a solid mantle and a liquid core, tides also are expected to despin a planet until it is captured in the synchronous resonance, so that its rotation period is identical to its orbital period. The canonical example of synchronous spin is the way that our Moon always keeps nearly the same hemisphere facing the Earth. Tides also tend to reduce the planet's obliquity (the angle between its spin and orbital angular velocities). However, orbit precession can cause the rotation to become locked in a "Cassini state", where it retains a nearly constant non-zero obliquity. For example, our Moon maintains an obliquity of about 6.7° with respect to its orbit about the Earth. For comparison, stable Cassini states can exist for practically any obliquity up to 180° for planets of binary stars, or in multi-planet systems with high mutual inclinations, such as are produced by scattering or by the Kozai mechanism. This work considers planets in synchronous rotation with circular orbits. For obliquities greater than 90°, the ground track of the sub-solar point wraps around all longitudes on the surface of such a planet. For smaller obliquities, the sub-solar track takes the figure-8 shape of an analemma. This can be visualized as the intersection of the planet's spherical surface with a right circular cylinder, parallel to the spin axis and tangent to the equator from the inside. The excursion of the

  20. Lunar Obliquity History Revisited

    NASA Astrophysics Data System (ADS)

    Siegler, M.; Bills, B.; Paige, D.

    2007-12-01

    In preparation for a LRO (Lunar Reconnaissance Orbiter) related study of possible lunar polar volatiles, we re- examined the lunar orbital and rotational history, with primary focus on the obliquity history of the Moon. Though broad models have been made of lunar obliquity, a cohesive obliquity history was not found. We report on a new model of lunar obliquity including secular changes in inclination of the lunar orbit, tidal dissipation, lunar moments of inertia, and details for periods outside of the stable configurations known as Cassini states. For planets, the obliquity, or angle between the spin and orbit poles, is the dominant control on incident solar radiation. For planetary satellites, the radiation pattern can be more complex, as it depends on the mutual inclinations of three poles; the satellite spin and orbit poles, and the planetary heliocentric orbit pole. Presently, the lunar spin pole and orbit pole co-precess about the ecliptic pole, in a stable situation known as a Cassini state. As a result, permanently shadowed regions near the poles are expected to exist and act as cold traps, retaining water or other volatiles delivered to the surface by comets, solar wind, or via outgassing of the lunar interior. However, tidally driven secular changes in the lunar semimajor axis cause changes in precession rates of the spin and orbit poles, and thereby alter or destabilize the Cassini states. Only one prograde Cassini state exists at present (state 2). In the standard Cassini state model of Ward [1975], two other such states would have existed in the past (states 1 and 4) with the Moon starting in the low obliquity state 1, and remaining there until states 1 and 4 merged and disappear, at roughly half the present Earth-Moon distance. At that point, the Moon transitioned into the currently occupied state 2, and briefly attained very high obliquity values during the transition, and then stayed in state 2 until the present. If correct, this model implies that

  1. Centrifuge models simulating magma emplacement during oblique rifting

    NASA Astrophysics Data System (ADS)

    Corti, Giacomo; Bonini, Marco; Innocenti, Fabrizio; Manetti, Piero; Mulugeta, Genene

    2001-07-01

    A series of centrifuge analogue experiments have been performed to model the mechanics of continental oblique extension (in the range of 0° to 60°) in the presence of underplated magma at the base of the continental crust. The experiments reproduced the main characteristics of oblique rifting, such as (1) en-echelon arrangement of structures, (2) mean fault trends oblique to the extension vector, (3) strain partitioning between different sets of faults and (4) fault dips higher than in purely normal faults (e.g. Tron, V., Brun, J.-P., 1991. Experiments on oblique rifting in brittle-ductile systems. Tectonophysics 188, 71-84). The model results show that the pattern of deformation is strongly controlled by the angle of obliquity ( α), which determines the ratio between the shearing and stretching components of movement. For α⩽35°, the deformation is partitioned between oblique-slip and normal faults, whereas for α⩾45° a strain partitioning arises between oblique-slip and strike-slip faults. The experimental results show that for α⩽35°, there is a strong coupling between deformation and the underplated magma: the presence of magma determines a strain localisation and a reduced strain partitioning; deformation, in turn, focuses magma emplacement. Magmatic chambers form in the core of lower crust domes with an oblique trend to the initial magma reservoir and, in some cases, an en-echelon arrangement. Typically, intrusions show an elongated shape with a high length/width ratio. In nature, this pattern is expected to result in magmatic and volcanic belts oblique to the rift axis and arranged en-echelon, in agreement with some selected natural examples of continental rifts (i.e. Main Ethiopian Rift) and oceanic ridges (i.e. Mohns and Reykjanes Ridges).

  2. Glancing angle deposition of Fe triangular nanoprisms consisting of vertically-layered nanoplates

    NASA Astrophysics Data System (ADS)

    Li, Jianghao; Li, Liangliang; Ma, Lingwei; Zhang, Zhengjun

    2016-10-01

    Fe triangular nanoprisms consisting of vertically-layered nanoplates were synthesized on Si substrate by glancing angle deposition (GLAD) with an electron beam evaporation system. It was found that Fe nanoplates with a crystallographic plane index of BCC (110) were stacked vertically to form triangular nanoprisms and the axial direction of the nanoprisms, BCC <001>, was normal to the substrate. The effects of experimental parameters of GLAD on the growth and morphology of Fe nanoprisms were systematically studied. The deposition rate played an important role in the morphology of Fe nanoprisms at the same length, the deposition angle just affected the areal density of nanoprisms, and the rotation speed of substrate had little influence within the parameter range we investigated. In addition, the crystal growth mechanism of Fe nanoprisms was explained with kinetically-controlled growth mechanism and zone model theory. The driving force of crystal growth was critical to the morphology and microstructure of Fe nanoprisms deposited by GLAD. Our work introduced an oriented crystal structure into the nanomaterials deposited by GLAD, which provided a new approach to manipulate the properties and functions of nanomaterials.

  3. Effect of angle of deposition on the Fractal properties of ZnO thin film surface

    NASA Astrophysics Data System (ADS)

    Yadav, R. P.; Agarwal, D. C.; Kumar, Manvendra; Rajput, Parasmani; Tomar, D. S.; Pandey, S. N.; Priya, P. K.; Mittal, A. K.

    2017-09-01

    Zinc oxide (ZnO) thin films were prepared by atom beam sputtering at various deposition angles in the range of 20-75°. The deposited thin films were examined by glancing angle X-ray diffraction and atomic force microscopy (AFM). Scaling law analysis was performed on AFM images to show that the thin film surfaces are self-affine. Fractal dimension of each of the 256 vertical sections along the fast scan direction of a discretized surface, obtained from the AFM height data, was estimated using the Higuchi's algorithm. Hurst exponent was computed from the fractal dimension. The grain sizes, as determined by applying self-correlation function on AFM micrographs, varied with the deposition angle in the same manner as the Hurst exponent.

  4. Collisionless kinetic theory of oblique tearing instabilities

    NASA Astrophysics Data System (ADS)

    Baalrud, S. D.; Bhattacharjee, A.; Daughton, W.

    2018-02-01

    The linear dispersion relation for collisionless kinetic tearing instabilities is calculated for the Harris equilibrium. In contrast to the conventional 2D geometry, which considers only modes at the center of the current sheet, modes can span the current sheet in 3D. Modes at each resonant surface have a unique angle with respect to the guide field direction. Both kinetic simulations and numerical eigenmode solutions of the linearized Vlasov-Maxwell equations have recently revealed that standard analytic theories vastly overestimate the growth rate of oblique modes. We find that this stabilization is associated with the density-gradient-driven diamagnetic drift. The analytic theories miss this drift stabilization because the inner tearing layer broadens at oblique angles sufficiently far that the assumption of scale separation between the inner and outer regions of boundary-layer theory breaks down. The dispersion relation obtained by numerically solving a single second order differential equation is found to approximately capture the drift stabilization predicted by solutions of the full integro-differential eigenvalue problem. A simple analytic estimate for the stability criterion is provided.

  5. Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid medium

    NASA Astrophysics Data System (ADS)

    Wang, Lihong; Jacques, Steven L.

    1995-05-01

    A simple and quick approach is used to measure the reduced scattering coefficient ( mu s `) of a semi-infinite turbid medium having a much smaller absorption coefficient than mu s`. A laser beam with an oblique angle of incidence to the medium causes the center of the diffuse reflectance that is several transport mean-free paths away from the incident point to shift away from the point of incidence by an amount Delta x. This amount is used to compute mu s` by mu s` = sin( alpha i)/(n Delta x), where n is the refractive index of the turbid medium divided by that of the incident medium and alpha i is the angle of incidence measured from the surface normal. For a turbid medium having an absorption coefficient comparable with mu s `, a revision to the above formula is made. This method is tested theoretically by Monte Carlo simulations and experimentally by a video reflectometer.

  6. Morphogenesis of nanostructures in glancing angle deposition of metal thin film coatings

    NASA Astrophysics Data System (ADS)

    Brown, Timothy James

    Atomic vapors condensed onto solid surfaces form a remarkable category of condensed matter materials, the so-called thin films, with a myriad of compositions, morphological structures, and properties. The dynamic process of atomic condensation exhibits self-assembled pattern formation, producing morphologies with atomic-scale three- dimensional structures of seemingly limitless variety. This study attempts to shed new light on the dynamical growth processes of thin film deposition by analyzing in detail a previously unreported specific distinct emergent structure, a crystalline triangular-shaped spike that grows within copper and silver thin films. I explored the deposition parameters that lead to the growth of these unique structures, referred to as "nanospikes", fabricating approximately 55 thin films and used scanning electron microscopy and x-ray diffraction analysis. The variation of parameters include: vapor incidence angle, film thickness, substrate temperature, deposition rate, deposition material, substrate, and source-to-substrate distance. Microscopy analysis reveals that the silver and copper films deposited at glancing vapor incidence angles, 80 degrees and greater, have a high degree of branching interconnectivity between adjacent inclined nanorods. Diffraction analysis reveals that the vapor incidence angle influences the sub-populations of crystallites in the films, producing two different [110] crystal texture orientations. I hypothesize that the growth of nanospikes from nanorods is initiated by the stochastic arrival of vapor atoms and photons emitted from the deposition source at small diameter nanorods, and then driven by localized heating from vapor condensation and photon absorption. Restricted heat flow due to nanoscale thermal conduction maintains an elevated local temperature at the nanorod, enhancing adatom diffusion and enabling fast epitaxial crystal growth, leading to the formation and growth of nanospikes. Electron microscopy and x

  7. Controls on continental strain partitioning above an oblique subduction zone, Northern Andes

    NASA Astrophysics Data System (ADS)

    Schütt, Jorina M.; Whipp, David M., Jr.

    2016-04-01

    Strain partitioning is a common process at obliquely convergent plate margins dividing oblique convergence into margin-normal slip on the plate-bounding fault and horizontal shearing on a strike-slip system parallel to the subduction margin. In subduction zones, strain partitioning in the upper continental plate is mainly controlled by the shear forces acting on the plate interface and the strength of the continental crust. The plate interface forces are influenced by the subducting plate dip angle and the obliquity angle between the normal to the plate margin and the convergence velocity vector, and the crustal strength of the continent is strongly affected by the presence or absence of a volcanic arc, with the presence of the volcanic arcs being common at steep subduction zones. Along the ˜7000 km western margin of South America the convergence obliquity, subduction dip angles and presence of a volcanic arc all vary, but strain partitioning is only observed along parts of it. This raises the questions, to what extent do subduction zone characteristics control strain partitioning in the overriding continental plate, and which factors have the largest influence? We address these questions using lithospheric-scale 3D numerical geodynamic experiments to investigate the influence of subduction dip angle, convergence obliquity, and weaknesses in the crust owing to the volcanic arc on strain partitioning behavior. We base the model design on the Northern Volcanic Zone of the Andes (5° N - 2° S), characterized by steep subduction (˜ 35°), a convergence obliquity between 31° -45° and extensive arc volcanism, and where strain partitioning is observed. The numerical modelling software (DOUAR) solves the Stokes flow and heat transfer equations for a viscous-plastic creeping flow to calculate velocity fields, thermal evolution, rock uplift and strain rates in a 1600 km x 1600 km box with depth 160 km. Subduction geometry and material properties are based on a

  8. Optimal angle of needle insertion for fluoroscopy-guided transforaminal epidural injection of L5.

    PubMed

    Ra, In-Hoo; Min, Woo-Kie

    2015-06-01

    Unlike other sites, there is difficulty in performing TFESI at the L5-S1 level because the iliac crest is an obstacle to needle placement. The objective of this study was to identify the optimal angle of fluoroscopy for insertion and advancement of a needle during L5 TEFSI. We conducted an observational study of patients undergoing fluoroscopy-guided L5 TFESI in the prone position. A total of 80 patients (40 men and 40 women) with radiating pain of lower limbs were enrolled. During TFESI, we measured the angle at which the L5 vertebral body forms a rectangular shape and compared men and women. Then, we measured area of safe triangle in tilting angle of fluoroscopy from 15° to 35° and compared men and women. The mean cephalocaudal angle, where the vertebral body takes the shape of a rectangle, was 11.0° in men and 13.9° in women (P = 0.007). In men, the triangular area was maximal at 18.3 mm² with an oblique view angle of 25°. In women, the area was maximal at 23.6 mm² with an oblique view angle of 30°. At an oblique view angle of 30° and 35°, the area was significantly greater in women (P < 0.05). When TFESI is performed at the L5 region in the prone position, placement of fluoroscopy at a cephalocaudal angle of 11.0° and an oblique angle of 25° in men and cephalocaudal angle of 13.9° and an oblique angle of 30° in women would be most reasonable. © 2014 World Institute of Pain.

  9. Hydrodynamic instabilities at an oblique interface: Experiments and Simulations

    NASA Astrophysics Data System (ADS)

    Douglas-Mann, E.; Fiedler Kawaguchi, C.; Trantham, M. A.; Malamud, G.; Wan, W. C.; Klein, S. R.; Kuranz, C. C.

    2017-10-01

    Hydrodynamic instabilities are important phenomena that occur in high-energy-density systems, such as astrophysical systems and inertial confinement fusion experiments, where pressure, density, and velocity gradients are present. Using a 30 ns laser pulse from the Omega EP laser system, a steady shock wave is driven into a target. A Spherical Crystal Imager provides high-resolution x-ray radiographs to study the evolution of complex hydrodynamic structures. This experiment has a light-to-heavy interface at an oblique angle with a precision-machined perturbation. The incident shock wave deposits shear and vorticity at the interface causing the perturbation to grow via Richtmyer-Meshkov and Kelvin-Helmholtz processes. We present results from analysis of radiographic data and hydrodynamics simulations showing the evolution of the shock and unstable structure. This work is supported by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956 and the National Science Foundation through the Basic Plasma Science and Engineering program and LILAC.

  10. Quasi-monochromatic ULF foreshock waves as observed by the four-spacecraft Cluster mission: 2. Oblique propagation

    NASA Astrophysics Data System (ADS)

    Eastwood, J. P.; Balogh, A.; Lucek, E. A.; Mazelle, C.; Dandouras, I.

    2005-11-01

    This paper presents the results of a statistical investigation into the nature of oblique wave propagation in the foreshock. Observations have shown that foreshock ULF waves tend to propagate obliquely to the background magnetic field. This is in contrast to theoretical work, which predicts that the growth rate of the mechanism responsible for the waves is maximized for parallel propagation, at least in the linear regime in homogenous plasma. Here we use data from the Cluster mission to study in detail the oblique propagation of a particular class of foreshock ULF wave, the 30 s quasi-monochromatic wave. We find that these waves persistently propagate at oblique angles to the magnetic field. Over the whole data set, the average value of θkB was found to be 21 ± 14°. Oblique propagation is observed even when the interplanetary magnetic field (IMF) cone angle is small, such that the convective component of the solar wind velocity, vE×B, is comparable to the wave speed. In this subset of the data, the mean value of θkB was 12.9 ± 7.1°. In the subset of data for which the IMF cone angle exceeded 45°, the mean value of θkB was 19.5 ± 10.7°. When the angle between the IMF and the x geocentric solar ecliptic (GSE) direction (i.e., the solar wind vector) is large, the wave k vectors tend to be confined in the plane defined by the x GSE direction and the magnetic field and a systematic deflection is observed. The dependence of θkB on vE×B is also studied.

  11. Generation of Highly Oblique Lower Band Chorus Via Nonlinear Three-Wave Resonance

    DOE PAGES

    Fu, Xiangrong; Gary, Stephen Peter; Reeves, Geoffrey D.; ...

    2017-09-05

    Chorus in the inner magnetosphere has been observed frequently at geomagnetically active times, typically exhibiting a two-band structure with a quasi-parallel lower band and an upper band with a broad range of wave normal angles. But recent observations by Van Allen Probes confirm another type of lower band chorus, which has a large wave normal angle close to the resonance cone angle. It has been proposed that these waves could be generated by a low-energy beam-like electron component or by temperature anisotropy of keV electrons in the presence of a low-energy plateau-like electron component. This paper, however, presents an alternativemore » mechanism for generation of this highly oblique lower band chorus. Through a nonlinear three-wave resonance, a quasi-parallel lower band chorus wave can interact with a mildly oblique upper band chorus wave, producing a highly oblique quasi-electrostatic lower band chorus wave. This theoretical analysis is confirmed by 2-D electromagnetic particle-in-cell simulations. Furthermore, as the newly generated waves propagate away from the equator, their wave normal angle can further increase and they are able to scatter low-energy electrons to form a plateau-like structure in the parallel velocity distribution. As a result, the three-wave resonance mechanism may also explain the generation of quasi-parallel upper band chorus which has also been observed in the magnetosphere.« less

  12. Researching on Real 3d Modeling Constructed with the Oblique Photogrammetry and Terrestrial Photogrammetry

    NASA Astrophysics Data System (ADS)

    Han, Youmei; Jiao, Minglian; Shijuan

    2018-04-01

    With the rapid development of the oblique photogrammetry, many cities have built some real 3D model with this technology. Although it has the advantages of short period, high efficiency and good air angle effect, the near ground view angle of these real 3D models are not very good. With increasing development of smart cities, the requirements of reality, practicality and accuracy on real 3D models are becoming higher. How to produce and improve the real 3D models quickly has become one of the hot research directions of geospatial information. To meet this requirement In this paper, Combined with the characteristics of current oblique photogrammetry modeling and the terrestrial photogrammetry, we proposed a new technological process, which consists of close range sensor design, data acquisition and processing. The proposed method is being tested by using oblique photography images acquired. The results confirm the effectiveness of the proposed approach.

  13. Periodic grain-boundary formation in a poly-Si thin film crystallized by linearly polarized Nd:YAG pulse laser with an oblique incident angle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaki, Hirokazu; Horita, Susumu

    2005-01-01

    We investigated the periodic grain-boundary formation in the polycrystalline silicon film crystallized by a linearly polarized Nd:YAG (where YAG is yttrium aluminum garnet) pulse laser with an oblique incident angle {theta}{sub i}=25 deg. , compared with the normal incident angle {theta}{sub i}=0. The alignment of the grain boundary was uncontrollable and fluctuated in the case of the oblique incident and large irradiation pulse number while that in the case of the normal incident was performed stably. It was found that the main cause for its low controllability was the nonphase matching between the periodic surface corrugation of the crystallized siliconmore » film and the periodic temperature profile induced by the laser irradiation. Also, it was found that, in the case of {theta}{sub i}=25 deg. , the dominant periodic width of the grain boundary depended on the pulse number N. That is, it was around {lambda}/(1+sin {theta}{sub i}) for small N{approx_equal}10 and {lambda}/(1-sin {theta}{sub i}) for large N{approx_equal}100 at the laser wavelength of {lambda}=532 nm. In order to explain this dependence, we proposed a model to take into account the periodic corrugation height proportional to the molten volume of the silicon film, the impediment in interference between the incident beam and diffracted beam on the irradiated surface due to the corrugation height, and the reduction of the liquid surface roughness during melting-crystallization process due to liquid-silicon viscosity.« less

  14. Experimental Aerodynamic Characteristics of an Oblique Wing for the F-8 OWRA

    NASA Technical Reports Server (NTRS)

    Kennelly, Robert A., Jr.; Carmichael, Ralph L.; Smith, Stephen C.; Strong, James M.; Kroo, Ilan M.

    1999-01-01

    An experimental investigation was conducted during June-July 1987 in the NASA Ames 11-Foot Transonic Wind Tunnel to study the aerodynamic performance and stability and control characteristics of a 0.087-scale model of an F-8 airplane fitted with an oblique wing. This effort was part of the Oblique Wing Research Aircraft (OWRA) program performed in conjunction with Rockwell International. The Ames-designed, aspect ratio 10.47, tapered wing used specially designed supercritical airfoils with 0.14 thickness/chord ratio at the root and 0.12 at the 85% span location. The wing was tested at two different mounting heights above the fuselage. Performance and longitudinal stability data were obtained at sweep angles of 0deg, 30deg, 45deg, 60deg, and 65deg at Mach numbers ranging from 0.30 to 1.40. Reynolds number varied from 3.1 x 10(exp 6)to 5.2 x 10(exp 6), based on the reference chord length. Angle of attack was varied from -5deg to 18deg. The performance of this wing is compared with that of another oblique wing, designed by Rockwell International, which was tested as part of the same development program. Lateral-directional stability data were obtained for a limited combination of sweep angles and Mach numbers. Sideslip angle was varied from -5deg to +5deg. Landing flap performance was studied, as were the effects of cruise flap deflections to achieve roll trim and tailor wing camber for various flight conditions. Roll-control authority of the flaps and ailerons was measured. A novel, deflected wing tip was evaluated for roll-control authority at high sweep angles.

  15. Effect of Oblique Electromagnetic Ion Cyclotron Waves on Relativistic Electron Scattering: CRRES Based Calculation

    NASA Technical Reports Server (NTRS)

    Gamayunov, K. V.; Khazanov, G. V.

    2007-01-01

    We consider the effect of oblique EMIC waves on relativistic electron scattering in the outer radiation belt using simultaneous observations of plasma and wave parameters from CRRES. The main findings can be s ummarized as follows: 1. In 1comparison with field-aligned waves, int ermediate and highly oblique distributions decrease the range of pitc h-angles subject to diffusion, and reduce the local scattering rate b y an order of magnitude at pitch-angles where the principle absolute value of n = 1 resonances operate. Oblique waves allow the absolute va lue of n > 1 resonances to operate, extending the range of local pitc h-angle diffusion down to the loss cone, and increasing the diffusion at lower pitch angles by orders of magnitude; 2. The local diffusion coefficients derived from CRRES data are qualitatively similar to the local results obtained for prescribed plasma/wave parameters. Conseq uently, it is likely that the bounce-averaged diffusion coefficients, if estimated from concurrent data, will exhibit the dependencies similar to those we found for model calculations; 3. In comparison with f ield-aligned waves, intermediate and highly oblique waves decrease th e bounce-averaged scattering rate near the edge of the equatorial lo ss cone by orders of magnitude if the electron energy does not excee d a threshold (approximately equal to 2 - 5 MeV) depending on specified plasma and/or wave parameters; 4. For greater electron energies_ ob lique waves operating the absolute value of n > 1 resonances are more effective and provide the same bounce_averaged diffusion rate near the loss cone as fiel_aligned waves do.

  16. Collisionless kinetic theory of oblique tearing instabilities

    DOE PAGES

    Baalrud, S. D.; Bhattacharjee, A.; Daughton, W.

    2018-02-15

    The linear dispersion relation for collisionless kinetic tearing instabilities is calculated for the Harris equilibrium. In contrast to the conventional 2D geometry, which considers only modes at the center of the current sheet, modes can span the current sheet in 3D. Modes at each resonant surface have a unique angle with respect to the guide field direction. Both kinetic simulations and numerical eigenmode solutions of the linearized Vlasov-Maxwell equations have recently revealed that standard analytic theories vastly overestimate the growth rate of oblique modes. In this paper, we find that this stabilization is associated with the density-gradient-driven diamagnetic drift. Themore » analytic theories miss this drift stabilization because the inner tearing layer broadens at oblique angles sufficiently far that the assumption of scale separation between the inner and outer regions of boundary-layer theory breaks down. The dispersion relation obtained by numerically solving a single second order differential equation is found to approximately capture the drift stabilization predicted by solutions of the full integro-differential eigenvalue problem. Finally, a simple analytic estimate for the stability criterion is provided.« less

  17. Collisionless kinetic theory of oblique tearing instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baalrud, S. D.; Bhattacharjee, A.; Daughton, W.

    The linear dispersion relation for collisionless kinetic tearing instabilities is calculated for the Harris equilibrium. In contrast to the conventional 2D geometry, which considers only modes at the center of the current sheet, modes can span the current sheet in 3D. Modes at each resonant surface have a unique angle with respect to the guide field direction. Both kinetic simulations and numerical eigenmode solutions of the linearized Vlasov-Maxwell equations have recently revealed that standard analytic theories vastly overestimate the growth rate of oblique modes. In this paper, we find that this stabilization is associated with the density-gradient-driven diamagnetic drift. Themore » analytic theories miss this drift stabilization because the inner tearing layer broadens at oblique angles sufficiently far that the assumption of scale separation between the inner and outer regions of boundary-layer theory breaks down. The dispersion relation obtained by numerically solving a single second order differential equation is found to approximately capture the drift stabilization predicted by solutions of the full integro-differential eigenvalue problem. Finally, a simple analytic estimate for the stability criterion is provided.« less

  18. Oblique impacts: Catastrophic vs. protracted effects

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.

    1988-01-01

    Proposed impacts as the cause of biologic catastrophes at the end of the Cretaceous and Eocene face several enigmas: protracted extinctions, even prior to the stratigraphic cosmogenic signature; widespread but non-uniform dispersal of the meteoritic component; absence of a crater of sufficient size; and evidence for massive intensive fires. Various hypotheses provide reasonable mechanisms for mass mortalities: global cooling by continental impact sites; global warming by oceanic impact sites; contrasting effects of asteroidal, cometary, and even multiple impacts; and stress on an already fragile global environment. Yet not every known large impact is associated with a major biologic catastrophe. An alternative is expanded: the consequences of an oblique impact. The most probable angle of impact is 45 deg with the probability for an impact at smaller angles decreasing: A vertical impact is as rare as a tangential impact with a 5 deg impact angle or less occurring only 8 percent of the time. Consequently a low-angle impact is a rare but probable event. Laboratory experiments at the NASA-Ames Vertical Gun Range reveal important information about cratering efficiency, impact vaporization, projectile dispersal, and phenomenology, thereby providing perspective for possible consequences of such an impact on both the Earth and Moon. Oblique impacts are rare but certain events through geologic time: A 5 deg impact by a 2 km-diameter impactor on the Earth would occur only once in about 18 my with a 10 km-diameter once in about 450 my. Major life extinctions beginning prior to the stratigraphic cosmogenic signature or protracted extinctions seemingly too long after the proposed event may not be evidence against an impact as a cause but evidence for a more complex but probable sequence of events.

  19. Oblique Wing Research Aircraft on ramp

    NASA Image and Video Library

    1976-08-02

    This 1976 photograph of the Oblique Wing Research Aircraft was taken in front of the NASA Flight Research Center hangar, located at Edwards Air Force Base, California. In the photograph the noseboom, pitot-static probe, and angles-of-attack and sideslip flow vanes(covered-up) are attached to the front of the vehicle. The clear nose dome for the television camera, and the shrouded propellor for the 90 horsepower engine are clearly seen.

  20. Application of side-oblique image-motion blur correction to Kuaizhou-1 agile optical images.

    PubMed

    Sun, Tao; Long, Hui; Liu, Bao-Cheng; Li, Ying

    2016-03-21

    Given the recent development of agile optical satellites for rapid-response land observation, side-oblique image-motion (SOIM) detection and blur correction have become increasingly essential for improving the radiometric quality of side-oblique images. The Chinese small-scale agile mapping satellite Kuaizhou-1 (KZ-1) was developed by the Harbin Institute of Technology and launched for multiple emergency applications. Like other agile satellites, KZ-1 suffers from SOIM blur, particularly in captured images with large side-oblique angles. SOIM detection and blur correction are critical for improving the image radiometric accuracy. This study proposes a SOIM restoration method based on segmental point spread function detection. The segment region width is determined by satellite parameters such as speed, height, integration time, and side-oblique angle. The corresponding algorithms and a matrix form are proposed for SOIM blur correction. Radiometric objective evaluation indices are used to assess the restoration quality. Beijing regional images from KZ-1 are used as experimental data. The radiometric quality is found to increase greatly after SOIM correction. Thus, the proposed method effectively corrects image motion for KZ-1 agile optical satellites.

  1. Oblique impact: Projectile richochet, concomitant ejecta and momentum transfer

    NASA Technical Reports Server (NTRS)

    Gault, Donald E.; Schultz, Peter H.

    1987-01-01

    Experimental studies of oblique impact indicate that projectile richochet occurs for trajectory angles less than 30 deg and that the richocheted projectile, accompanied by some target material, are ejected at velocities that are a large fraction of the impact velocity. Because the probability of occurrence of oblique impact less than 30 deg on a planetary body is about one out of every four impact events, oblique impacts would seem to be a potential mechanism to provide a source of meteorites from even the largest atmosphere-free planetary bodies. Because the amount of richocheted target material cannot be determined from previous results, additional experiments in the Ames Vertical Gun laboratory were undertaken toward that purpose using pendulums; one to measure momentum of the richocheted projectile and concomitant target ejecta, and a second to measure the momentum transferred from projectile to target. These experiments are briefly discussed.

  2. View angle dependence of cloud optical thicknesses retrieved by MODIS

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Varnai, Tamas

    2005-01-01

    This study examines whether cloud inhomogeneity influences the view angle dependence of MODIS cloud optical thickness (tau) retrieval results. The degree of cloud inhomogeneity is characterized through the local gradient in 11 microns brightness temperature. The analysis of liquid phase clouds in a one year long global dataset of Collection 4 MODIS data reveals that while optical thickness retrievals give remarkably consistent results for all view directions if clouds are homogeneous, they give much higher tau-values for oblique views than for overhead views if clouds are inhomogeneous and the sun is fairly oblique. For solar zenith angles larger than 55deg, the mean optical thickness retrieved for the most inhomogeneous third of cloudy pixels is more than 30% higher for oblique views than for overhead views. After considering a variety of possible scenarios, the paper concludes that the most likely reason for the increase lies in three-dimensional radiative interactions that are not considered in current, one-dimensional retrieval algorithms. Namely, the radiative effect of cloud sides viewed at oblique angles seems to contribute most to the enhanced tau-values. The results presented here will help understand cloud retrieval uncertainties related to cloud inhomogeneity. They complement the uncertainty estimates that will start accompanying MODIS cloud products in Collection 5 and may eventually help correct for the observed view angle dependent biases.

  3. Characteristic angles in the wetting of an angular region: deposit growth.

    PubMed

    Popov, Yuri O; Witten, Thomas A

    2003-09-01

    Solids dispersed in a drying drop migrate to the (pinned) contact line. This migration is caused by outward flows driven by the loss of the solvent due to evaporation and by geometrical constraint that the drop maintains an equilibrium surface shape with a fixed boundary. Here, in continuation of our earlier paper, we theoretically investigate the evaporation rate, the flow field, and the rate of growth of the deposit patterns in a drop over an angular sector on a plane substrate. Asymptotic power laws near the vertex (as distance to the vertex goes to zero) are obtained. A hydrodynamic model of fluid flow near the singularity of the vertex is developed and the velocity field is obtained. The rate of the deposit growth near the contact line is found in two time regimes. The deposited mass falls off as a weak power gamma of distance close to the vertex and as a stronger power beta of distance further from the vertex. The power gamma depends only slightly on the opening angle alpha and stays roughly between -1/3 and 0. The power beta varies from -1 to 0 as the opening angle increases from 0 degrees to 180 degrees. At a given distance from the vertex, the deposited mass grows faster and faster with time, with the greatest increase in the growth rate occurring at the early stages of the drying process.

  4. Mean flow characteristics for the oblique impingement of an axisymmetric jet

    NASA Technical Reports Server (NTRS)

    Foss, J. F.; Kleis, S. J.

    1975-01-01

    The oblique impingement of an axisymmetric jet has been investigated. A summary of the data and the analytical interpretations of the dominant mechanisms which influence the flow are reported. The major characteristics of the shallow angle oblique jet impingement flow field are: (1) minimal dynamic spreading as revealed by the surface pressure field, (2) pronounced kinematic spreading as revealed by the jet flow velocity field, (3) a pronounced upstream shift of the stagnation point from the maximum pressure point, (4) the production of streamwise vorticity by the impingement process.

  5. Study on Practical Technologies of Aerial Triangulation for Real Scene 3d Moeling with Oblique Photography

    NASA Astrophysics Data System (ADS)

    Cai, Z.; Liu, W.; Luo, G.; Xiang, Z.

    2018-04-01

    The key technologies in the real scene 3D modeling of oblique photography mainly include the data acquisition of oblique photography, layout and surveying of photo control points, oblique camera calibration, aerial triangulation, dense matching of multi-angle image, building of triangulation irregular network (TIN) and TIN simplification and automatic texture mapping, among which aerial triangulation is the core and the results of aerial triangulation directly affect the later model effect and the corresponding data accuracy. Starting from this point of view, this paper aims to study the practical technologies of aerial triangulation for real scene 3D modeling with oblique photography and finally proposes a technical method of aerial triangulation with oblique photography which can be put into practice.

  6. The Effect of Suture Anchor Insertion Angle on Calcaneus Pullout Strength: Challenging the Deadman's Angle.

    PubMed

    Weiss, William M; Saucedo, Ramon P; Robinson, John D; Lo, Chung-Chieh Jason; Morris, Randal P; Panchbhavi, Vinod K

    2017-10-01

    Refractory cases of Achilles tendinopathy amenable to surgery may include reattachment of the tendon using suture anchors. However, there is paucity of information describing the optimal insertion angle to maximize the tendon footprint and anchor stability in the calcaneus. The purpose of this investigation is to compare the fixation strength of suture anchors inserted at 90° and 45° (the Deadman's angle) relative to the primary compressive trabeculae of the calcaneus. A total of 12 matched pairs of adult cadaveric calcanei were excised and potted to approximate their alignment in vivo. Each pair was implanted with 5.5-mm bioabsorbable suture anchors placed either perpendicular (90°) or oblique (45°) to the primary compressive trabeculae. A tensile load was applied until failure of anchor fixation. Differences in failure load and stiffness between anchor fixation angles were determined by paired t-tests. No significant differences were detected between perpendicular and oblique suture anchor insertion relative to primary compressive trabeculae in terms of load to failure or stiffness. This investigation suggests that the fixation strength of suture anchors inserted perpendicular to the primary compression trabeculae and at the Deadman's angle are possibly comparable. Biomechanical comparison study.

  7. Torsional Growth Modulation of Long Bones by Oblique Plating in a Rabbit Model.

    PubMed

    Lazarus, David E; Farnsworth, Christine L; Jeffords, Megan E; Marino, Nikolas; Hallare, Jericho; Edmonds, Eric W

    2018-02-01

    There is evidence that oblique tension band plating can affect torsional growth in long bones. This study sought to determine if the torsional growth could be modulated based on the angles of the tension band plating and whether or not oblique plating affected overall longitudinal growth. New Zealand White rabbits (10.5 wk old) had one screw placed on the metaphyseal side and one on the epiphyseal side of both medial and lateral sides of the right knee distal femoral physis. The sham group (n=5) included screw placement only. For the plate group (n=13), unlocked plates, angled from 0 to 76 degrees, connected the screws and spanned the physis. Radiographs were taken at biweekly intervals. After 6 weeks of growth, hindlimbs were harvested and microCT scans performed. Femoral length, distances between screw heads and angle between the plates were measured on radiographs. Femoral length differences were compared between groups. Femoral version was measured from 3D microCT. Plate angle changes were correlated to the difference in femoral version between limbs using Pearson correlation (significance was set to P<0.05 for all comparisons). Femur length difference between the contralateral and the operative side was significantly greater in the plate group compared with the sham group over time (P=0.049). Medial and lateral screw distances changed significantly more in the sham group than the plate group on both sides (P<0.001). A greater initial angle between plates resulted in a greater change in the angle between plates (P<0.001). Significant correlations were found between right-left side femoral version differences and initial plate angle (P=0.003) and plate angle change (P=0.014). The torsional effect of oblique plating seems to correlate with the amount of initial plate angle, with an additional, not negligible, longitudinal growth effect. Placing plates at given angles across open physes may result in predictable changes in bone torsion allowing for a safer and

  8. Chaotic obliquity and the nature of the Martian climate

    NASA Technical Reports Server (NTRS)

    Jakosky, Bruce M.; Henderson, Bradley G.; Mellon, Michael T.

    1995-01-01

    Recent calculations of the Martian obliquity suggests that it varies chaotically on timescales longer than about 10(exp 7) years and varies between about 0 and 60 deg. We examine the seasonal water behavior at obliquities between 40 and 60 deg. Up to several tens of centimeters of water may sublime from the polar caps each year, and possibly move to the equator, where it is more stable. The CO2 frost and CO2-H2O clathrate hydrate are stable in thepolar deposits below a few tens of meters depth, so that the polar cap could contain a significant CO2 reservoir. If CO2 is present, it could be left over from the early history of Mars; also, it could be released into the atmosphere during periods of high obliquity, causing occasional periods of more-clement climate.

  9. Material processing of convection-driven flow field and temperature distribution under oblique gravity

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1995-01-01

    A set of mathematical formulation is adopted to study vapor deposition from source materials driven by heat transfer process under normal and oblique directions of gravitational acceleration with extremely low pressure environment of 10(exp -2) mm Hg. A series of time animation of the initiation and development of flow and temperature profiles during the course of vapor deposition has been obtained through the numerical computation. Computations show that the process of vapor deposition has been accomplished by the transfer of vapor through a fairly complicated flow pattern of recirculation under normal direction gravitational acceleration. It is obvious that there is no way to produce a homogeneous thin crystalline films with fine grains under such a complicated flow pattern of recirculation with a non-uniform temperature distribution under normal direction gravitational acceleration. There is no vapor deposition due to a stably stratified medium without convection for reverse normal direction gravitational acceleration. Vapor deposition under oblique direction gravitational acceleration introduces a reduced gravitational acceleration in vertical direction which is favorable to produce a homogeneous thin crystalline films. However, oblique direction gravitational acceleration also induces an unfavorable gravitational acceleration along horizontal direction which is responsible to initiate a complicated flow pattern of recirculation. In other words, it is necessary to carry out vapor deposition under a reduced gravity in the future space shuttle experiments with extremely low pressure environment to process vapor deposition with a homogeneous crystalline films with fine grains. Fluid mechanics simulation can be used as a tool to suggest most optimistic way of experiment with best setup to achieve the goal of processing best nonlinear optical materials.

  10. Making structured metals transparency for broadband and wide-incidence-angle electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Fan, Renhao; Peng, Ruwen; Huang, Xianrong; Wang, Mu

    2014-03-01

    Very recently, we have demonstrated that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic (EM) waves under oblique incidence. However, the oblique-incidence geometry, is inconvenient for the technological applications. To overcome this drawback, here we instead use oblique metal gratings with optimal tilt angles to achieve normal-incidence broadband transparence for EM waves. Further we use two-dimensional periodic metallic cuboids to achieve broadband and broad-angle high transmission and antireflection. By introducing such metallic cuboids arrays into silicon solar cells, we find that high performance of light trapping in the cells can be obtained with a significant enhancement of the ultimate quantum efficiency. The structured metals, which achieve broadband and broad-angle high transmission for EM waves, may have many other potential applications, such as transparent conducting panels, white-beam polarizers, and stealth objects.

  11. Scale relativity and quantization of planet obliquities.

    NASA Astrophysics Data System (ADS)

    Nottale, L.

    1998-07-01

    The author applies the theory of scale relativity to the equations of rotational motion of solid bodies. He predicts in the new framework that the obliquities and inclinations of planets and satellites in the solar system must be quantized. Namely, one expects their distribution to be no longer uniform between 0 and π, but instead to display well-defined peaks of probability density at angles θk = kπ/n. The author shows in the present paper that the observational data agree very well with the prediction for n = 7, including the retrograde bodies and those which are heeled over the ecliptic plane. In particular, the value 23°27' of the obliquity of the Earth, which partly determines its climate, is not a random one, but lies in one of the main probability peaks at θ = π/7.

  12. Swept Impinging Oblique Shock/Boundary-Layer Interactions

    NASA Astrophysics Data System (ADS)

    Little, Jesse; Threadgill, James; Stab, Ilona

    2016-11-01

    Oblique shock waves impinging on boundary layers are common flow features associated with high-speed flows around complex body geometries and through internal channel flows. The increasingly three-dimensional surface geometries of modern vehicles has led to a prevalence of complex shock/boundary-layer interactions. Sweep has been observed to vary the interaction structure, unsteadinesses, and similarity scalings. Sharp-fins and highly-swept ramps have been noted to induce a quasi-conical development of the interaction, in contrast to a quasi-cylindrical scaling observed in low-sweep interactions. However, swept impinging oblique shock cases have largely been overlooked, with evidence of only cylindrical similarities observed in hypersonic conditions. Flow deflection beyond the maximum turning angle has been proposed as the mechanism for conical interaction development but such behavior has not been established for the present configuration. This study examines the effect of sweep on the interaction induced by a 12.5° generator in Mach 2.3 flow using oil-flow, Schlieren and PIV. Results document the development of similarity scalings at various angles of sweep, and highlight the difficulty in replicating a quasi-infinite span conditions in a moderately sized wind tun Supported by the Air Force Office of Scientific Research (FA9550-15-1-0430) and Raytheon Missile Systems.

  13. Nonlinear damping of oblique whistler mode waves through Landau resonance

    NASA Astrophysics Data System (ADS)

    Hsieh, Y.; Omura, Y.

    2017-12-01

    Nonlinear trapping of electrons through Landau resonance is a characteristic dynamics in oblique whistler-mode wave particle interactions. The resonance velocity of the Landau resonance at quasi-parallel propagation becomes very close to the parallel group velocity of whistler-mode wave at frequency around 0.5 Ωe, causing a long distance of resonant interaction and strong acceleration of resonant electrons [1]. We demonstrate these effective accelerations for electrons with high equatorial pitch angle ( > 60°) by test particle simulations with parameters for the Earth's inner magnetosphere at L=5. In the simulations, we focus on slightly oblique whistler mode waves with wave normal angle < 20°. Analyzing the wave electric field E and the resonant current J, which is composed of electrons undergoing the Landau resonance, we find that the J·E is mainly positive, which denotes the damping of the wave. Furthermore, we confirm that this positive J•E is dominated by transverse component Jperp·Eperp rather than by longitudinal component Jpara·Eperp. The simulation results reveal that the Landau resonance contributes to the nonlinear damping at 0.5 Ωe for whistler mode waves. Reference [1] Hsieh, Y.-K., and Y. Omura (2017), Nonlinear dynamics of electrons interacting with oblique whistler mode chorus in the magnetosphere, J. Geophys. Res. Space Physics, 122, doi:10.1002/2016JA023255.

  14. Subcaptial oblique fifth metatarsal osteotomy versus distal chevron osteotomy for correction of bunionette deformity: a cadaveric study.

    PubMed

    Cooper, Minton Truitt; Coughlin, Michael J

    2012-10-01

    The aim of this study was to compare a distal subcapital oblique fifth metatarsal with a distal chevron osteotomy for correction of bunionette deformity. Twenty cadaveric feet were randomly assigned to undergo either a subcapital oblique or chevron osteotomy of the distal fifth metatarsal. Radiographic measurements, including 4-5 intermetatarsal angle (IMA), fifth metatarsophalangeal angle (5-MPA) and foot width, were compared between the 2 groups. Foot width and 5-MPA was significantly decreased in both groups with no difference between the groups. The 4-5 IMA was not significantly altered in either group. Decrease in foot width and 5-MPA was similarly achieved with either distal chevron or subcapital oblique osteotomy of the fifth metatarsal in normal cadaveric specimens. No significant difference was found between the 2 techniques in any of the radiographic parameters measured.

  15. Obliquity variation in a Mars climate evolution model

    NASA Technical Reports Server (NTRS)

    Tyler, D.; Haberle, Robert M.

    1993-01-01

    The existence of layered terrain in both polar regions of Mars is strong evidence supporting a cyclic variation in climate. It has been suggested that periods of net deposition have alternated with periods of net erosion in creating the layered structure that is seen today. The cause for this cyclic climatic behavior is variation in the annually averaged latitudinal distribution of solar insolation in response to obliquity cycles. For Mars, obliquity variation leads to major climatological excursion due to the condensation and sublimation of the major atmospheric constituent, CO2. The atmosphere will collapse into the polar caps, or existing caps will rapidly sublimate into the atmosphere, dependent upon the polar surface heat balance and the direction of the change in obliquity. It has been argued that variations in the obliquity of Mars cause substantial departures from the current climatological values of the surface pressure and the amount of CO2 stored in both the planetary regolith and polar caps. In this new work we have modified the Haberle et al. model to incorporate variable obliquity by allowing the polar and equatorial insolation to become functions of obliquity, which we assume to vary sinusoidally in time. As obliquity varies in the model, there can be discontinuities in the time evolution of the model equilibrium values for surface pressure, regolith, and polar cap storage. The time constant, tau r, for the regolith to find equilibrium with the climate is estimated--depending on the depth, thermal conductivity, and porosity of the regolith--between 10(exp 4) and 10(exp 6) yr. Thus, using 2000-yr timesteps to move smoothly through the 0.1250 m.y. obliquity cycles, we have an atmosphere/regolith system that cannot be assumed in equilibrium. We have dealt with this problem by limiting the rate at which CO2, can move between the atmosphere and regolith, mimicking the diffusive nature and effects of the temperature and pressure waves, by setting the time

  16. Controlled growth of standing Ag nanorod arrays on bare Si substrate using glancing angle deposition for self-cleaning applications

    NASA Astrophysics Data System (ADS)

    Singh, Dhruv P.; Singh, J. P.

    2014-03-01

    A facile approach to manipulate the hydrophobicity of surface by controlled growth of standing Ag nanorod arrays is presented. Instead of following the complicated conventional method of the template-assisted growth, the morphology or particularly average diameter and number density (nanorods cm-2) of nanorods were controlled on bare Si substrate by simply varying the deposition rate during glancing angle deposition. The contact angle measurements showed that the evolution of Ag nanorods reduces the surface energy and makes an increment in the apparent water contact angle compared to the plain Ag thin film. The contact angle was found to increase for the Ag nanorod samples grown at lower deposition rates. Interestingly, the morphology of the nanorod arrays grown at very low deposition rate (1.2 Å sec-1) results in a self-cleaning superhydrophobic surface of contact angle about 157° and a small roll-off angle about 5°. The observed improvement in hydrophobicity with change in the morphology of nanorod arrays is explained as the effect of reduction in solid fraction within the framework of Cassie-Baxter model. These self-cleaning Ag nanorod arrays could have a significant impact in wide range of applications such as anti-icing coatings, sensors and solar panels.

  17. Multi-Angle View of the Canary Islands

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A multi-angle view of the Canary Islands in a dust storm, 29 February 2000. At left is a true-color image taken by the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite. This image was captured by the MISR camera looking at a 70.5-degree angle to the surface, ahead of the spacecraft. The middle image was taken by the MISR downward-looking (nadir) camera, and the right image is from the aftward 70.5-degree camera. The images are reproduced using the same radiometric scale, so variations in brightness, color, and contrast represent true variations in surface and atmospheric reflectance with angle. Windblown dust from the Sahara Desert is apparent in all three images, and is much brighter in the oblique views. This illustrates how MISR's oblique imaging capability makes the instrument a sensitive detector of dust and other particles in the atmosphere. Data for all channels are presented in a Space Oblique Mercator map projection to facilitate their co-registration. The images are about 400 km (250 miles)wide, with a spatial resolution of about 1.1 kilometers (1,200 yards). North is toward the top. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  18. Broadband and wide-angle distributed Bragg reflectors based on amorphous germanium films by glancing angle deposition.

    PubMed

    Leem, Jung Woo; Yu, Jae Su

    2012-08-27

    We fabricated the distributed Bragg reflectors (DBRs) with amorphous germanium (a-Ge) films consisted of the same materials at a center wavelength (λc) of 1.33 μm by the glancing angle deposition. Their optical reflectance properties were investigated in the infrared wavelength region of 1-1.9 μm at incident light angles (θ inc) of 8-70°, together with the theoretical analysis using a rigorous coupled-wave analysis simulation. The two alternating a-Ge films at the incident vapor flux angles of 0 and 75° were formed as the high and low refractive index materials, respectively. The a-Ge DBR with only 5 periods exhibited a normalized stop bandwidth (∆λ/λ c) of ~24.1%, maintaining high reflectance (R) values of > 99%. Even at a high θ inc of 70°, the ∆λ/λ c was ~21.9%, maintaining R values of > 85%. The a-Ge DBR with good uniformity was obtained over the area of a 2 inch Si wafer. The calculated reflectance results showed a similar tendency to the measured data.

  19. 2. OBLIQUE VIEW OF WEST FRONT. The frames on an ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. OBLIQUE VIEW OF WEST FRONT. The frames on an angle originally held mirrors for viewing the tests from inside the building. Vertical frame originally held bullet glass. - Edwards Air Force Base, South Base Sled Track, Firing Control Blockhouse, South of Sled Track at east end, Lancaster, Los Angeles County, CA

  20. Guided wave imaging of oblique reflecting interfaces in pipes using common-source synthetic focusing

    NASA Astrophysics Data System (ADS)

    Sun, Zeqing; Sun, Anyu; Ju, Bing-Feng

    2018-04-01

    Cross-mode-family mode conversion and secondary reflection of guided waves in pipes complicate the processing of guided waves signals, and can cause false detection. In this paper, filters operating in the spectral domain of wavenumber, circumferential order and frequency are designed to suppress the signal components of unwanted mode-family and unwanted traveling direction. Common-source synthetic focusing is used to reconstruct defect images from the guided wave signals. Simulations of the reflections from linear oblique defects and a semicircle defect are separately implemented. Defect images, which are reconstructed from the simulation results under different excitation conditions, are comparatively studied in terms of axial resolution, reflection amplitude, detectable oblique angle and so on. Further, the proposed method is experimentally validated by detecting linear cracks with various oblique angles (10-40°). The proposed method relies on the guided wave signals that are captured during 2-D scanning of a cylindrical area on the pipe. The redundancy of the signals is analyzed to reduce the time-consumption of the scanning process and to enhance the practicability of the proposed method.

  1. Nonlinear interaction between a pair of oblique modes in a supersonic mixing layer: Long-wave limit

    NASA Technical Reports Server (NTRS)

    Balsa, Thomas F.; Gartside, James

    1995-01-01

    The nonlinear interaction between a pair of symmetric, oblique, and spatial instability modes is studied in the long-wave limit using asymptotic methods. The base flow is taken to be a supersonic mixing layer whose Mach number is such that the corresponding vortex sheet is marginally stable according to Miles' criterion. It is shown that the amplitude of the mode obeys a nonlinear integro-differential equation. Numerical solutions of this equation show that, when the obliqueness angle is less than pi/4, the effect of the nonlinearity is to enhance the growth rate of the instability. The solution terminates in a singularity at a finite streamwise location. This result is reminiscent of that obtained in the vicinity of the neutral point by other authors in several different types of flows. On the other hand, when the obliqueness angle is more than pi/4, the streamwise development of the amplitude is characterized by a series of modulations. This arises from the fact that the nonlinear term in the amplitude equation may be either stabilizing or destabilizing, depending on the value of the streamwise coordinate. However, even in this case the amplitude of the disturbance increases, though not as rapidly as in the case for which the angle is less than pi/4. Quite generally then, the nonlinear interaction between two oblique modes in a supersonic mixing layer enhances the growth of the disturbance.

  2. Ceres Obliquity History and Its Implications for the Permanently Shadowed Regions

    NASA Technical Reports Server (NTRS)

    Ermakov, A. I.; Mazarico, E.; Schroder, S. E.; Carsenty, U.; Schorghofer, N.; Preusker, F.; Raymond, C. A.; Russell, C. T.; Zuber, Maria T.

    2017-01-01

    Due to the small current obliquity of Ceres ( epsilon approximately equal to 4), permanently shadowed regions (PSRs) exist on the dwarf planets surface. Since the existence and persistence of the PSRs depend on the obliquity, we compute the obliquity history over the last 3 My and find that it undergoes large oscillations with a period of 24.5 ky and a maximum of max 19:5. During periods of large obliquity, most of the present-day PSRs receive direct sunlight. Some craters in Ceres polar regions possess bright crater floor deposits (BCFDs).We find an apparent correlation between BCFDs and the most persistent PSRs. In the north, only two PSRs remain at max and they both contain BCFDs. In the south, one of the two only craters that remain in shadow at max contains a BCFD. The location of BCFDs within persistent PSRs strongly suggests BCFDs consist of volatiles accumulated in PSR cold traps: either water molecules trapped from the exosphere or exposed ground ice.

  3. Initiation structure of oblique detonation waves behind conical shocks

    NASA Astrophysics Data System (ADS)

    Yang, Pengfei; Ng, Hoi Dick; Teng, Honghui; Jiang, Zonglin

    2017-08-01

    The understanding of oblique detonation dynamics has both inherent basic research value for high-speed compressible reacting flow and propulsion application in hypersonic aerospace systems. In this study, the oblique detonation structures formed by semi-infinite cones are investigated numerically by solving the unsteady, two-dimensional axisymmetric Euler equations with a one-step irreversible Arrhenius reaction model. The present simulation results show that a novel wave structure, featured by two distinct points where there is close-coupling between the shock and combustion front, is depicted when either the cone angle or incident Mach number is reduced. This structure is analyzed by examining the variation of the reaction length scale and comparing the flow field with that of planar, wedge-induced oblique detonations. Further simulations are performed to study the effects of chemical length scale and activation energy, which are both found to influence the formation of this novel structure. The initiation mechanism behind the conical shock is discussed to investigate the interplay between the effect of the Taylor-Maccoll flow, front curvature, and energy releases from the chemical reaction in conical oblique detonations. The observed flow fields are interpreted by means of the energetic limit as in the critical regime for initiation of detonation.

  4. Effects of nozzle type and spray angle on spray deposition in ivy pot plants.

    PubMed

    Foqué, Dieter; Nuyttens, David

    2011-02-01

    Fewer plant protection products are now authorised for use in ornamental growings. Frequent spraying with the same product or a suboptimal technique can lead to resistance in pests and diseases. Better application techniques could improve the sustainable use of the plant protection products still available. Spray boom systems--instead of the still predominantly used spray guns--might improve crop protection management in greenhouses considerably. The effect of nozzle type, spray pressure and spray angle on spray deposition and coverage in ivy pot plants was studied, with a focus on crop penetration and spraying the bottom side of the leaves in this dense crop. The experiments showed a significant and important effect of collector position on deposition and coverage in the plant. Although spray deposition and coverage on the bottom side of the leaves are generally low, they could be improved 3.0-4.9-fold using the appropriate application technique. When using a spray boom in a dense crop, the nozzle choice, spray pressure and spray angle should be well considered. The hollow-cone, the air-inclusion flat-fan and the standard flat-fan nozzle with an inclined spray angle performed best because of the effect of swirling droplets, droplets with a high momentum and droplet direction respectively. Copyright © 2010 Society of Chemical Industry.

  5. Influence of fracture geometry on bone healing under locking plate fixations: A comparison between oblique and transverse tibial fractures.

    PubMed

    Miramini, Saeed; Zhang, Lihai; Richardson, Martin; Mendis, Priyan; Ebeling, Peter R

    2016-10-01

    Mechano-regulation plays a crucial role in bone healing and involves complex cellular events. In this study, we investigate the change of mechanical microenvironment of stem cells within early fracture callus as a result of the change of fracture obliquity, gap size and fixation configuration using mechanical testing in conjunction with computational modelling. The research outcomes show that angle of obliquity (θ) has significant effects on interfragmentary movement (IFM) which influences mechanical microenvironment of the callus cells. Axial IFM at near cortex of fracture decreases with θ, while shear IFM significantly increases with θ. While a large θ can increase shear IFM by four-fold compared to transverse fracture, it also result in the tension-stress effect at near cortex of fracture callus. In addition, mechanical stimuli for cell differentiation within the callus are found to be strongly negatively correlated to angle of obliquity and gap size. It is also shown that a relatively flexible fixation could enhance callus formation in presence of a large gap but could lead to excessive callus strain and interstitial fluid flow when a small transverse fracture gap is present. In conclusion, there appears to be an optimal fixation configuration for a given angle of obliquity and gap size. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  6. Effect of feedback techniques for lower back pain on gluteus maximus and oblique abdominal muscle activity and angle of pelvic rotation during the clam exercise.

    PubMed

    Koh, Eun-Kyung; Park, Kyue-Nam; Jung, Do-Young

    2016-11-01

    This study was conducted in order to determine the effect of feedback tools on activities of the gluteus maximus (Gmax) and oblique abdominal muscles and the angle of pelvic rotation during clam exercise (CE). Comparative study using repeated measures. University laboratory. Sixteen subjects with lower back pain. Each subject performed the CE without feedback, the CE using a pressure biofeedback unit (CE-PBU), and the CE with palpation and visual feedback (CE-PVF). Electromyographic (EMG) activity and the angles of pelvic rotation were measured using surface EMG and a three-dimensional motion-analysis system, respectively. One-way repeated-measures ANOVA followed by the Bonferroni post hoc test were used to compare the EMG activity in each muscle as well as the angle of pelvic rotation during the CE, CE-PBU, and CE-PVF. The results of post-hoc testing showed a significantly reduced angle of pelvic rotation and significantly more Gmax EMG activity during the CE-PVF compared with during the CE and CE-PBU. These findings suggest that palpation and visual feedback is effective for activating the Gmax and controlling pelvic rotation during the CE in subjects with lower back pain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Glancing-angle-deposited magnesium oxide films for high-fluence applications

    DOE PAGES

    Oliver, J. B.; Smith, C.; Spaulding, J.; ...

    2016-06-15

    Here, Birefringent magnesium oxide thin films are formed by glancing angle deposition to perform as quarter-wave plates at a wavelength of 351 nm. These films are being developed to fabricate a large aperture distributed-polarization rotator for use in vacuum, with an ultimate laser-damage–threshold goal of up to 12 J/cm 2 for a 5-ns flat-in-time pulse. The laser-damage threshold, ease of deposition, and optical film properties are evaluated. While the measured large-area laser-damage threshold is limited to ~4 J/cm 2 in vacuum, initial results based on small-spot testing in air (>20 J/cm 2) suggest MgO may be suitable with further processmore » development.« less

  8. Compensation of Corneal Oblique Astigmatism by Internal Optics: a Theoretical Analysis

    PubMed Central

    Liu, Tao; Thibos, Larry N.

    2017-01-01

    Purpose Oblique astigmatism is a prominent optical aberration of peripheral vision caused by oblique incidence of rays striking the refracting surfaces of the cornea and crystalline lens. We inquired whether oblique astigmatism from these two sources should be expected, theoretically, to have the same or opposite signs across the visual field at various states of accommodation. Methods Oblique astigmatism was computed across the central visual field for a rotationally-symmetric schematic-eye using optical design software. Accommodative state was varied by altering the apical radius of curvature and separation of the biconvex lens’s two aspheric surfaces in a manner consistent with published biometry. Oblique astigmatism was evaluated separately for the whole eye, the cornea, and the isolated lens over a wide range of surface curvatures and asphericity values associated with the accommodating lens. We also computed internal oblique astigmatism by subtracting corneal oblique astigmatism from whole-eye oblique astigmatism. Results A visual field map of oblique astigmatism for the cornea in the Navarro model follows the classic, textbook description of radially-oriented axes everywhere in the field. Despite large changes in surface properties during accommodation, intrinsic astigmatism of the isolated human lens for collimated light is also radially oriented and nearly independent of accommodation both in theory and in real eyes. However, the magnitude of ocular oblique astigmatism is smaller than that of the cornea alone, indicating partial compensation by the internal optics. This implies internal oblique astigmatism (which includes wavefront propagation from the posterior surface of the cornea to the anterior surface of the lens and intrinsic lens astigmatism) must have tangentially-oriented axes. This non-classical pattern of tangential axes for internal astigmatism was traced to the influence of corneal power on the angles of incidence of rays striking the

  9. Compensation of corneal oblique astigmatism by internal optics: a theoretical analysis.

    PubMed

    Liu, Tao; Thibos, Larry N

    2017-05-01

    Oblique astigmatism is a prominent optical aberration of peripheral vision caused by oblique incidence of rays striking the refracting surfaces of the cornea and crystalline lens. We inquired whether oblique astigmatism from these two sources should be expected, theoretically, to have the same or opposite signs across the visual field at various states of accommodation. Oblique astigmatism was computed across the central visual field for a rotationally-symmetric schematic-eye using optical design software. Accommodative state was varied by altering the apical radius of curvature and separation of the biconvex lens's two aspheric surfaces in a manner consistent with published biometry. Oblique astigmatism was evaluated separately for the whole eye, the cornea, and the isolated lens over a wide range of surface curvatures and asphericity values associated with the accommodating lens. We also computed internal oblique astigmatism by subtracting corneal oblique astigmatism from whole-eye oblique astigmatism. A visual field map of oblique astigmatism for the cornea in the Navarro model follows the classic, textbook description of radially-oriented axes everywhere in the field. Despite large changes in surface properties during accommodation, intrinsic astigmatism of the isolated human lens for collimated light is also radially oriented and nearly independent of accommodation both in theory and in real eyes. However, the magnitude of ocular oblique astigmatism is smaller than that of the cornea alone, indicating partial compensation by the internal optics. This implies internal oblique astigmatism (which includes wavefront propagation from the posterior surface of the cornea to the anterior surface of the lens and intrinsic lens astigmatism) must have tangentially-oriented axes. This non-classical pattern of tangential axes for internal astigmatism was traced to the influence of corneal power on the angles of incidence of rays striking the internal lens. Partial

  10. Three-Dimensional Simulations of Oblique Asteroid Impacts into Water

    NASA Astrophysics Data System (ADS)

    Gisler, G. R.; Ferguson, J. M.; Heberling, T.; Plesko, C. S.; Weaver, R.

    2016-12-01

    Waves generated by impacts into oceans may represent the most significant danger from near-earth asteroids and comets. For impacts near populated shores, the crown splash and subsequent waves, accompanied by sediment lofting and high winds, could be more damaging than storm surges from the strongest hurricanes. For asteroids less than 500 m in diameter that impact into deep water far from shores, the waves produced will be detectable over large distances, but probably not significantly dangerous. We present new three-dimensional simulations of oblique impacts into deep water, with trajectory angles ranging from 20 degrees to 60 degrees (where 90 degrees is vertical). These simulations are performed with the Los Alamos Rage hydrocode, and include atmospheric effects including ablation and airbursts. These oblique impact simulations are specifically performed in order to help determine whether there are additional dangers from the obliquity of impact not covered by previous two-dimensional studies. Water surface elevation profiles, surface pressures, and depth-averaged mass fluxes within the water are prepared for use in propagation studies.

  11. Integrated Aerodynamic and Control System Design of Oblique Wing Aircraft. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Morris, Stephen James

    1990-01-01

    An efficient high speed aircraft design must achieve a high lift to drag ratio at transonic and supersonic speeds. In 1952 Dr. R. T. Jones proved that for any flight Mach number minimum drag at a fixed lift is achieved by an elliptic wing planform with an appropriate oblique sweep angle. Since then, wind tunnel tests and numerical flow models have confirmed that the compressibility drag of oblique wing aircraft is lower than similar symmetrical sweep designs. At oblique sweep angles above thirty degrees the highly asymmetric planform gives rise to aerodynamic and inertia couplings which affect stability and degrade the aircraft's handling qualities. In the case of the NASA-Rockwell Oblique Wing Research Aircraft, attempts to improve the handling qualities by implementing a stability augmentation system have produced unsatisfactory results because of an inherent lack of controllability in the proposed design. The present work focuses on improving the handling qualities of oblique wing aircraft by including aerodynamic configuration parameters as variables in the control system synthesis to provide additional degrees of freedom with which to further decouple the aircraft's response. Handling qualities are measured using a quadratic cost function identical to that considered in optimal control problems, but the controller architecture is not restricted to full state feedback. An optimization procedure is used to simultaneously solve for the aircraft configuration and control gains which maximize a handling qualities measure, while meeting imposed constraints on trim. In some designs wing flexibility is also modeled and reduced order controllers are implemented. Oblique wing aircraft synthesized by this integrated design method show significant improvement in handling qualities when compared to the originally proposed closed loop aircraft. The integrated design synthesis method is then extended to show how handling qualities may be traded for other types of mission

  12. New approach to isometric transformations in oblique local coordinate systems of reference

    NASA Astrophysics Data System (ADS)

    Stępień, Grzegorz; Zalas, Ewa; Ziębka, Tomasz

    2017-12-01

    The research article describes a method of isometric transformation and determining an exterior orientation of a measurement instrument. The method is based on a designation of a "virtual" translation of two relative oblique orthogonal systems to a common, known in the both systems, point. The relative angle orientation of the systems does not change as each of the systems is moved along its axis. The next step is the designation of the three rotation angles (e.g. Tait-Bryan or Euler angles), transformation of the system convoluted at the calculated angles and moving the system to the initial position where the primary coordinate system was. This way eliminates movements of the systems from the calculations and makes it possible to calculate angles of mutual rotation angles of two orthogonal systems primarily involved in the movement. The research article covers laboratory calculations for simulated data. The accuracy of the results is 10-6 m (10-3 regarding the accuracy of the input data). This confi rmed the correctness of the assumed calculation method. In the following step the method was verifi ed under fi eld conditions, where the accuracy of the method raised to 0.003 m. The proposed method enabled to make the measurements with the oblique and uncentered instrument, e.g. total station instrument set over an unknown point. This is the reason why the method was named by the authors as Total Free Station - TFS. The method may be also used for isometric transformations for photogrammetric purposes.

  13. Patterns of folding and fold interference in oblique contraction of layered rocks of the inverted Cobar Basin, Australia

    NASA Astrophysics Data System (ADS)

    Smith, J. V.; Marshall, B.

    1992-12-01

    The inverted Cobar Basin, within the Lachlan Fold Belt of New South Wales, Australia, comprises a mid-Palaeozoic cover sequence, originally deposited in a NNW-trending basin. The pattern of F 1 folding in the layered cover rocks changes from east to west; from tight well-cleaved folds parallel to the NNW-trending basin margin on the east, to open poorly cleaved en echelon folds at about 35° to the margin, further to the west. The change in fold trend and strain intensity has been repeatedly ascribed to the differing behaviour of discrete zones, decoupled across a north-trending strike-slip fault boundary. New field data show that the changes in orientation and strain intensity of F 1 structures are progressively developed, that an abrupt boundary between discrete zones cannot be substantiated, and that interpretations involving decoupled blocks are not supported by the evidence. Conversely, the data require coherent behaviour across the basin, such that the overall pattern of F 1 folding must be explained by strain compatible processes. This new interpretation of the F 1 deformation pattern has been modelled and quantitatively analysed. Theoretical predictions of the orientation of structures in unlayered isotropic material undergoing oblique contraction are inapplicable to layered anisotropic material. The style of deformation in layered material will reflect the interaction of the bulk strain pattern due to convergence together with the influence of the layering anisotropy. The orientations of the finite strain axes inferred from the folding need not match those of the bulk deformation; the amount of strain recorded by folding may be unrepresentative of that developed in the deformed tract. Oblique contraction at a range of convergence angles was simulated by models employing layers of wet tissue paper. Quantitative analysis of the strain patterns in this layered anisotropic material showed consistent departures from the theoretical predictions for isotropic

  14. Efficient structure from motion for oblique UAV images based on maximal spanning tree expansion

    NASA Astrophysics Data System (ADS)

    Jiang, San; Jiang, Wanshou

    2017-10-01

    The primary contribution of this paper is an efficient Structure from Motion (SfM) solution for oblique unmanned aerial vehicle (UAV) images. First, an algorithm, considering spatial relationship constraints between image footprints, is designed for match pair selection with the assistance of UAV flight control data and oblique camera mounting angles. Second, a topological connection network (TCN), represented by an undirected weighted graph, is constructed from initial match pairs, which encodes the overlap areas and intersection angles into edge weights. Then, an algorithm, termed MST-Expansion, is proposed to extract the match graph from the TCN, where the TCN is first simplified by a maximum spanning tree (MST). By further analysis of the local structure in the MST, expansion operations are performed on the vertices of the MST for match graph enhancement, which is achieved by introducing critical connections in the expansion directions. Finally, guided by the match graph, an efficient SfM is proposed. Under extensive analysis and comparison, its performance is verified by using three oblique UAV datasets captured with different multi-camera systems. Experimental results demonstrate that the efficiency of image matching is improved, with speedup ratios ranging from 19 to 35, and competitive orientation accuracy is achieved from both relative bundle adjustment (BA) without GCPs (Ground Control Points) and absolute BA with GCPs. At the same time, images in the three datasets are successfully oriented. For the orientation of oblique UAV images, the proposed method can be a more efficient solution.

  15. Bidirectional measurements of surface reflectance for view angle corrections of oblique imagery

    NASA Technical Reports Server (NTRS)

    Jackson, R. D.; Teillet, P. M.; Slater, P. N.; Fedosejevs, G.; Jasinski, Michael F.

    1990-01-01

    An apparatus for acquiring bidirectional reflectance-factor data was constructed and used over four surface types. Data sets were obtained over a headed wheat canopy, bare soil having several different roughness conditions, playa (dry lake bed), and gypsum sand. Results are presented in terms of relative bidirectional reflectance factors (BRFs) as a function of view angle at a number of solar zenith angles, nadir BRFs as a function of solar zenith angles, and, for wheat, vegetation indices as related to view and solar zenith angles. The wheat canopy exhibited the largest BRF changes with view angle. BRFs for the red and the NIR bands measured over wheat did not have the same relationship with view angle. NIR/Red ratios calculated from nadir BRFs changed by nearly a factor of 2 when the solar zenith angle changed from 20 to 50 degs. BRF versus view angle relationships were similar for soils having smooth and intermediate rough surfaces but were considerably different for the roughest surface. Nadir BRF versus solar-zenith angle relationships were distinctly different for the three soil roughness levels. Of the various surfaces, BRFs for gypsum sand changed the least with view angle (10 percent at 30 degs).

  16. Fabrication of nanostructure by physical vapor deposition with glancing angle deposition technique and its applications

    NASA Astrophysics Data System (ADS)

    Horprathum, M.; Eiamchai, P.; Kaewkhao, J.; Chananonnawathorn, C.; Patthanasettakul, V.; Limwichean, S.; Nuntawong, N.; Chindaudom, P.

    2014-09-01

    A nanostructural thin film is one of the highly exploiting research areas particularly in applications in sensor, photocatalytic, and solar-cell technologies. In the past two decades, the integration of glancing-angle deposition (GLAD) technique to physical vapor deposition (PVD) process has gained significant attention for well-controlled multidimensional nanomorphologies because of fast, simple, cost-effective, and mass-production capability. The performance and functional properties of the coated thin films generally depend upon their nanostructural compositions, i.e., large aspect ratio, controllable porosity, and shape. Such structural platforms make the fabricated thin films very practical for several realistic applications. We therefore present morphological and nanostructural properties of various deposited materials, which included metals, i.e., silver (Ag), and oxide compounds, i.e., tungsten oxide (WO3), titanium dioxide (TiO2), and indium tin oxide (ITO). Different PVD techniques based on DC magnetron sputtering and electron-beam evaporation, both with the integrated GLAD component, were discussed. We further explore engineered nanostructures which enable controls of optical, electrical, and mechanical properties. These improvements led to several practical applications in surface-enhanced Raman, smart windows, gas sensors, self-cleaning materials and transparent conductive oxides (TCO).

  17. SU-E-T-577: Obliquity Factor and Surface Dose in Proton Beam Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, I; Andersen, A; Coutinho, L

    2015-06-15

    Purpose: The advantage of lower skin dose in proton beam may be diminished creating radiation related sequalae usually seen with photon and electron beams. This study evaluates the surface dose as a complex function of beam parameters but more importantly the effect of beam angle. Methods: Surface dose in proton beam depends on the beam energy, source to surface distance, the air gap between snout and surface, field size, material thickness in front of surface, atomic number of the medium, beam angle and type of nozzle (ie double scattering, (DS), uniform scanning (US) or pencil beam scanning (PBS). Obliquity factormore » (OF) is defined as ratio of surface dose in 0° to beam angle Θ. Measurements were made in water phantom at various beam angles using very small microdiamond that has shown favorable beam characteristics for high, medium and low proton energy. Depth dose measurements were performed in the central axis of the beam in each respective gantry angle. Results: It is observed that surface dose is energy dependent but more predominantly on the SOBP. It is found that as SSD increases, surface dose decreases. In general, SSD, and air gap has limited impact in clinical proton range. High energy has higher surface dose and so the beam angle. The OF rises with beam angle. Compared to OF of 1.0 at 0° beam angle, the value is 1.5, 1.6, 1,7 for small, medium and large range respectively for 60 degree angle. Conclusion: It is advised that just like range and SOBP, surface dose should be clearly understood and a method to reduce the surface dose should be employed. Obliquity factor is a critical parameter that should be accounted in proton beam therapy and a perpendicular beam should be used to reduce surface dose.« less

  18. Splashing Threshold of Oblique Droplet Impacts on Surfaces of Various Wettability.

    PubMed

    Aboud, Damon G K; Kietzig, Anne-Marie

    2015-09-15

    Oblique drop impacts were performed at high speeds (up to 27 m/s, We > 9000) with millimetric water droplets, and a linear model was applied to define the oblique splashing threshold. Six different sample surfaces were tested: two substrate materials of different inherent surface wettability (PTFE and aluminum), each prepared with three different surface finishes (smooth, rough, and textured to support superhydrophobicity). Our choice of surfaces has allowed us to make several novel comparisons. Considering the inherent surface wettability, we discovered that PTFE, as the more hydrophobic surface, exhibits lower splashing thresholds than the hydrophilic surface of aluminum of comparable roughness. Furthermore, comparing oblique impacts on smooth and textured surfaces, we found that asymmetrical spreading and splashing behaviors occurred under a wide range of experimental conditions on our smooth surfaces; however, impacts occurring on textured surfaces were much more symmetrical, and one-sided splashing occurred only under very specific conditions. We attribute this difference to the air-trapping nature of textured superhydrophobic surfaces, which lowers the drag between the spreading lamella and the surface. The reduced drag affects oblique drop impacts by diminishing the effect of the tangential component of the impact velocity, causing the impact behavior to be governed almost exclusively by the normal velocity. Finally, by comparing oblique impacts on superhydrophobic surfaces at different impact angles, we discovered that although the pinning transition between rebounding and partial rebounding is governed primarily by the normal impact velocity, there is also a weak dependence on the tangential velocity. As a result, pinning is inhibited in oblique impacts. This led to the observation of a new behavior in highly oblique impacts on our superhydrophobic surfaces, which we named the stretched rebound, where the droplet is extended into an elongated pancake shape

  19. Oblique Intrathecal Injection in Lumbar Spine Surgery: A Technical Note.

    PubMed

    Jewett, Gordon A E; Yavin, Daniel; Dhaliwal, Perry; Whittaker, Tara; Krupa, JoyAnne; Du Plessis, Stephan

    2017-09-01

    Intrathecal morphine (ITM) is an efficacious method of providing postoperative analgesia and reducing pain associated complications. Despite adoption in many surgical fields, ITM has yet to become a standard of care in lumbar spine surgery. Spine surgeons' reticence to make use of the technique may in part be attributed to concerns of precipitating a cerebrospinal fluid (CSF) leak. Herein we describe a method for oblique intrathecal injection during lumbar spine surgery to minimize risk of CSF leak. The dural sac is penetrated obliquely at a 30° angle to offset dural and arachnoid puncture sites. Oblique injection in instances of limited dural exposure is made possible by introducing a 60° bend to a standard 30-gauge needle. The technique was applied for injection of ITM or placebo in 104 cases of lumbar surgery in the setting of a randomized controlled trial. Injection was not performed in two cases (2/104, 1.9%) following preinjection dural tear. In the remaining 102 cases no instances of postoperative CSF leakage attributable to oblique intrathecal injection occurred. Three cases (3/102, 2.9%) of transient CSF leakage were observed immediately following intrathecal injection with no associated sequelae or requirement for postsurgical intervention. In two cases, the observed leak was repaired by sealing with fibrin glue, whereas in a single case the leak was self-limited requiring no intervention. Oblique dural puncture was not associated with increased incidence of postoperative CSF leakage. This safe and reliable method of delivery of ITM should therefore be routinely considered in lumbar spine surgery.

  20. Monte Carlo simulations of particle acceleration at oblique shocks

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.; Ellison, Donald C.; Jones, Frank C.

    1994-01-01

    The Fermi shock acceleration mechanism may be responsible for the production of high-energy cosmic rays in a wide variety of environments. Modeling of this phenomenon has largely focused on plane-parallel shocks, and one of the most promising techniques for its study is the Monte Carlo simulation of particle transport in shocked fluid flows. One of the principal problems in shock acceleration theory is the mechanism and efficiency of injection of particles from the thermal gas into the accelerated population. The Monte Carlo technique is ideally suited to addressing the injection problem directly, and previous applications of it to the quasi-parallel Earth bow shock led to very successful modeling of proton and heavy ion spectra, as well as other observed quantities. Recently this technique has been extended to oblique shock geometries, in which the upstream magnetic field makes a significant angle Theta(sub B1) to the shock normal. Spectral resutls from test particle Monte Carlo simulations of cosmic-ray acceleration at oblique, nonrelativistic shocks are presented. The results show that low Mach number shocks have injection efficiencies that are relatively insensitive to (though not independent of) the shock obliquity, but that there is a dramatic drop in efficiency for shocks of Mach number 30 or more as the obliquity increases above 15 deg. Cosmic-ray distributions just upstream of the shock reveal prominent bumps at energies below the thermal peak; these disappear far upstream but might be observable features close to astrophysical shocks.

  1. Effect of placement angle on the stability of loaded titanium microscrews in beagle jaws.

    PubMed

    Xu, Zhenrui; Wu, Yeke; Zhao, Lixing; Zhou, Yuqiao; Wei, Xing; Tang, Na; Feng, Xiaoxia; Tang, Tian; Zhao, Zhihe

    2013-07-01

    To evaluate the effect of insertion angle on stability of loaded titanium microscrews in beagle jaws. Forty-eight microscrews were inserted at four different angles (30°, 50°, 70°, and 90°) into the intraradicular zones of the mandibular first molars and third premolars of 12 beagles and immediately loaded with a force of 2 N for 8 weeks. Microcomputed tomography (micro-CT) and biomechanical pull-out tests were used to assess osseointegration of the interface. All micro-CT parameters and maximum pull-out force (FMAX) of the microscrews were affected by insertion angles of microscrews. Higher micro-CT parameters and FMAX were seen for implants inserted at angles between 50° and 70° (P < .05). Excessive oblique and vertical insertion angles resulted in reduced stability (P < .05). An insertion angle of 50° to 70° is more favorable than excessive oblique or vertical angles to achieve stability of microscrews.

  2. Analysis of Knee Joint Line Obliquity after High Tibial Osteotomy.

    PubMed

    Oh, Kwang-Jun; Ko, Young Bong; Bae, Ji Hoon; Yoon, Suk Tae; Kim, Jae Gyoon

    2016-11-01

    The aim of this study was to evaluate which lower extremity alignment (knee and ankle joint) parameters affect knee joint line obliquity (KJLO) in the coronal plane after open wedge high tibial osteotomy (OWHTO). Overall, 69 knees of patients that underwent OWHTO were evaluated using radiographs obtained preoperatively and from 6 weeks to 3 months postoperatively. We measured multiple parameters of knee and ankle joint alignment (hip-knee-ankle angle [HKA], joint line height [JLH], posterior tibial slope [PS], femoral condyle-tibial plateau angle [FCTP], medial proximal tibial angle [MPTA], mechanical lateral distal femoral angle [mLDFA], KJLO, talar tilt angle [TTA], ankle joint obliquity [AJO], and the lateral distal tibial ground surface angle [LDTGA]; preoperative [-pre], postoperative [-post], and the difference between -pre and -post values [-Δ]). We categorized patients into two groups according to the KJLO-post value (the normal group [within ± 4 degrees, 56 knees] and the abnormal group [greater than ± 4 degrees, 13 knees]), and compared their -pre parameters. Multiple logistic regression analysis was used to examine the contribution of the -pre parameters to abnormal KJLO-post. The mean HKA-Δ (-9.4 ± 4.7 degrees) was larger than the mean KJLO-Δ (-2.1 ± 3.2 degrees). The knee joint alignment parameters (the HKA-pre, FCTP-pre) differed significantly between the two groups ( p  < 0.05). In addition, the HKA-pre (odds ratio [OR] = 1.27, p  = 0.006) and FCTP-pre (OR = 2.13, p  = 0.006) were significant predictors of abnormal KJLO-post. However, -pre ankle joint parameters (TTA, AJO, and LDTGA) did not differ significantly between the two groups and were not significantly associated with the abnormal KJLO-post. The -pre knee joint alignment and knee joint convergence angle evaluated by HKA-pre and FCTP-pre angle, respectively, were significant predictors of abnormal KJLO after OWHTO. However, -pre ankle joint

  3. Glancing angle deposition of sculptured thin metal films at room temperature

    NASA Astrophysics Data System (ADS)

    Liedtke, S.; Grüner, Ch; Lotnyk, A.; Rauschenbach, B.

    2017-09-01

    Metallic thin films consisting of separated nanostructures are fabricated by evaporative glancing angle deposition at room temperature. The columnar microstructure of the Ti and Cr columns is investigated by high resolution transmission electron microscopy and selective area electron diffraction. The morphology of the sculptured metallic films is studied by scanning electron microscopy. It is found that tilted Ti and Cr columns grow with a single crystalline morphology, while upright Cr columns are polycrystalline. Further, the influence of continuous substrate rotation on the shaping of Al, Ti, Cr and Mo nanostructures is studied with view to surface diffusion and the shadowing effect. It is observed that sculptured metallic thin films deposited without substrate rotation grow faster compared to those grown with continuous substrate rotation. A theoretical model is provided to describe this effect.

  4. Fast calibration of electromagnetically tracked oblique-viewing rigid endoscopes.

    PubMed

    Liu, Xinyang; Rice, Christina E; Shekhar, Raj

    2017-10-01

    The oblique-viewing (i.e., angled) rigid endoscope is a commonly used tool in conventional endoscopic surgeries. The relative rotation between its two moveable parts, the telescope and the camera head, creates a rotation offset between the actual and the projection of an object in the camera image. A calibration method tailored to compensate such offset is needed. We developed a fast calibration method for oblique-viewing rigid endoscopes suitable for clinical use. In contrast to prior approaches based on optical tracking, we used electromagnetic (EM) tracking as the external tracking hardware to improve compactness and practicality. Two EM sensors were mounted on the telescope and the camera head, respectively, with considerations to minimize EM tracking errors. Single-image calibration was incorporated into the method, and a sterilizable plate, laser-marked with the calibration pattern, was also developed. Furthermore, we proposed a general algorithm to estimate the rotation center in the camera image. Formulas for updating the camera matrix in terms of clockwise and counterclockwise rotations were also developed. The proposed calibration method was validated using a conventional [Formula: see text], 5-mm laparoscope. Freehand calibrations were performed using the proposed method, and the calibration time averaged 2 min and 8 s. The calibration accuracy was evaluated in a simulated clinical setting with several surgical tools present in the magnetic field of EM tracking. The root-mean-square re-projection error averaged 4.9 pixel (range 2.4-8.5 pixel, with image resolution of [Formula: see text] for rotation angles ranged from [Formula: see text] to [Formula: see text]. We developed a method for fast and accurate calibration of oblique-viewing rigid endoscopes. The method was also designed to be performed in the operating room and will therefore support clinical translation of many emerging endoscopic computer-assisted surgical systems.

  5. Fabrication of Ni-silicide/Si heterostructured nanowire arrays by glancing angle deposition and solid state reaction.

    PubMed

    Hsu, Hsun-Feng; Huang, Wan-Ru; Chen, Ting-Hsuan; Wu, Hwang-Yuan; Chen, Chun-An

    2013-05-10

    This work develops a method for growing Ni-silicide/Si heterostructured nanowire arrays by glancing angle Ni deposition and solid state reaction on ordered Si nanowire arrays. Samples of ordered Si nanowire arrays were fabricated by nanosphere lithography and metal-induced catalytic etching. Glancing angle Ni deposition deposited Ni only on the top of Si nanowires. When the annealing temperature was 500°C, a Ni3Si2 phase was formed at the apex of the nanowires. The phase of silicide at the Ni-silicide/Si interface depended on the diameter of the Si nanowires, such that epitaxial NiSi2 with a {111} facet was formed at the Ni-silicide/Si interface in Si nanowires with large diameter, and NiSi was formed in Si nanowires with small diameter. A mechanism that is based on flux divergence and a nucleation-limited reaction is proposed to explain this phenomenon of size-dependent phase formation.

  6. Fabrication of Ni-silicide/Si heterostructured nanowire arrays by glancing angle deposition and solid state reaction

    PubMed Central

    2013-01-01

    This work develops a method for growing Ni-silicide/Si heterostructured nanowire arrays by glancing angle Ni deposition and solid state reaction on ordered Si nanowire arrays. Samples of ordered Si nanowire arrays were fabricated by nanosphere lithography and metal-induced catalytic etching. Glancing angle Ni deposition deposited Ni only on the top of Si nanowires. When the annealing temperature was 500°C, a Ni3Si2 phase was formed at the apex of the nanowires. The phase of silicide at the Ni-silicide/Si interface depended on the diameter of the Si nanowires, such that epitaxial NiSi2 with a {111} facet was formed at the Ni-silicide/Si interface in Si nanowires with large diameter, and NiSi was formed in Si nanowires with small diameter. A mechanism that is based on flux divergence and a nucleation-limited reaction is proposed to explain this phenomenon of size-dependent phase formation. PMID:23663726

  7. Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering in Outer RB

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.

    2007-01-01

    We present the equatorial and bounce average pitch angle diffusion coefficients for scattering of relativistic electrons by the H+ mode of EMIC waves. Both the model (prescribed) and self consistent distributions over the wave normal angle are considered. The main results of our calculation can be summarized as follows: First, in comparison with field aligned waves, the intermediate and highly oblique waves reduce the pitch angle range subject to diffusion, and strongly suppress the scattering rate for low energy electrons (E less than 2 MeV). Second, for electron energies greater than 5 MeV, the |n| = 1 resonances operate only in a narrow region at large pitch-angles, and despite their greatest contribution in case of field aligned waves, cannot cause electron diffusion into the loss cone. For those energies, oblique waves at |n| greater than 1 resonances are more effective, extending the range of pitch angle diffusion down to the loss cone boundary, and increasing diffusion at small pitch angles by orders of magnitude.

  8. A two-fluid study of oblique tearing modes in a force-free current sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akçay, Cihan, E-mail: akcay@lanl.gov; Daughton, William; Lukin, Vyacheslav S.

    2016-01-15

    Kinetic simulations have demonstrated that three-dimensional reconnection in collisionless regimes proceeds through the formation and interaction of magnetic flux ropes, which are generated due to the growth of tearing instabilities at multiple resonance surfaces. Since kinetic simulations are intrinsically expensive, it is desirable to explore the feasibility of reduced two-fluid models to capture this complex evolution, particularly, in the strong guide field regime, where two-fluid models are better justified. With this goal in mind, this paper compares the evolution of the collisionless tearing instability in a force-free current sheet with a two-fluid model and fully kinetic simulations. Our results indicatemore » that the most unstable modes are oblique for guide fields larger than the reconnecting field, in agreement with the kinetic results. The standard two-fluid tearing theory is extended to address the tearing instability at oblique angles. The resulting theory yields a flat oblique spectrum and underestimates the growth of oblique modes in a similar manner to kinetic theory relative to kinetic simulations.« less

  9. A two-fluid study of oblique tearing modes in a force-free current sheet

    DOE PAGES

    Akçay, Cihan; Daughton, William; Lukin, Vyacheslav S.; ...

    2016-01-01

    Kinetic simulations have demonstrated that three-dimensional reconnection in collisionless regimes proceeds through the formation and interaction of magnetic flux ropes, which are generated due to the growth of tearing instabilities at multiple resonance surfaces. Because kinetic simulations are intrinsically expensive, it is desirable to explore the feasibility of reduced two-fluid models to capture this complex evolution, particularly, in the strong guide field regime, where two-fluid models are better justified. With this goal in mind, this paper compares the evolution of the collisionless tearing instability in a force-free current sheet with a two-fluid model and fully kinetic simulations. Our results indicatemore » that the most unstable modes are oblique for guide fields larger than the reconnecting field, in agreement with the kinetic results. The standard two-fluid tearing theory is extended to address the tearing instability at oblique angles. As a results this theory yields a flat oblique spectrum and underestimates the growth of oblique modes in a similar manner to kinetic theory relative to kinetic simulations.« less

  10. Renal artery origins: best angiographic projection angles.

    PubMed

    Verschuyl, E J; Kaatee, R; Beek, F J; Patel, N H; Fontaine, A B; Daly, C P; Coldwell, D M; Bush, W H; Mali, W P

    1997-10-01

    To determine the best projection angles for imaging the renal artery origins in profile. A mathematical model of the anatomy at the renal artery origins in the transverse plane was used to analyze the amount of aortic lumen that projects over the renal artery origins at various projection angles. Computed tomographic (CT) angiographic data about the location of 400 renal artery origins in 200 patients were statistically analyzed. In patients with an abdominal aortic diameter no larger than 3.0 cm, approximately 0.5 mm of the proximal part of the renal artery and origin may be hidden from view if there is a projection error of +/-10 degrees from the ideal image. A combination of anteroposterior and 20 degrees and 40 degrees left anterior oblique projections resulted in a 92% yield of images that adequately profiled the renal artery origins. Right anterior oblique projections resulted in the least useful images. An error in projection angle of +/-10 degrees is acceptable for angiographic imaging of the renal artery origins. Patients sex, site of interest (left or right artery), and local diameter of the abdominal aorta are important factors to consider.

  11. Slip re-orientation in the oblique Abiquiu embayment, northern Rio Grande rift

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Murphy, M. A.; Andrea, R. A.

    2015-12-01

    Traditional models of oblique rifting predict that an oblique fault accommodates both dip-slip and strike-slip kinematics. However, recent analog experiments suggest that slip can be re-oriented to almost pure dip-slip on oblique faults if a preexisting weak zone is present at the onset of oblique extension. In this study, we use fault slip data from the Abiquiu embayment in northern Rio Grande rift to test the new model. The Rio Grande rift is a Cenozoic oblique rift extending from southern Colorado to New Mexico. From north to south, it comprises three major half grabens (San Luis, Española, and Albuquerque). The Abiquiu embayment is a sub-basin of the San Luis basin in northern New Mexico. Rift-border faults are generally older and oblique to the trend of the rift, whereas internal faults are younger and approximately N-S striking, i.e. orthogonal to the regional extension direction. Rift-border faults are deep-seated in the basement rocks while the internal faults only cut shallow stratigraphic sections. It has been suggested by many that inherited structures may influence the Rio Grande rifting. Particularly, Laramide structures (and possibly the Ancestral Rockies as well) that bound the Abiquiu embayment strike N- to NW. Our data show that internal faults in the Abiquiu embayment exhibit almost pure dip-slip (rake of slickenlines = 90º ± 15º), independent of their orientations with respect to the regional extension direction. On the contrary, border faults show two sets of rakes: almost pure dip-slip (rake = 90º ± 15º) where the fault is sub-parallel to the foliation, and moderately-oblique (rake = 30º ± 15º) where the fault is high angle to the foliation. We conclude that slip re-orientation occurs on most internal faults and some oblique border faults under the influence of inherited structures. Regarding those border faults on which slip is not re-oriented, we hypothesize that it may be caused by the Jemez volcanism or small-scale mantle

  12. Study of nanostructure and ethanol vapor sensing performance of WO3 thin films deposited by e-beam evaporation method under different deposition angles: application in breath analysis devices

    NASA Astrophysics Data System (ADS)

    Amani, E.; Khojier, K.; Zoriasatain, S.

    2018-01-01

    This paper studies the effect of deposition angle on the crystallographic structure, surface morphology, porosity and subsequently ethanol vapor sensing performance of e-beam-evaporated WO3 thin films. The WO3 thin films were deposited by e-beam evaporation technique on SiO2/Si substrates under different deposition angles (0°, 30°, and 60°) and then post-annealed at 500 °C with a flow of oxygen for 4 h. Crystallographic structure and surface morphology of the samples were checked using X-ray diffraction method and atomic force microscopy, respectively. Physical adsorption isotherm was also used to measure the porosity and effective surface area of the samples. The electrical response of the samples was studied to different concentrations of ethanol vapor (10-50 ppm) at the temperature range of 140-260 °C and relative humidity of 80%. The results reveal that the WO3 thin film deposited under 30° angle shows more sensitivity to ethanol vapor than the other samples prepared in this work due to the more crystallinity, porosity, and effective surface area. The investigations also show that the sample deposited at 30° can be a good candidate as a breath analysis device at the operating temperature of 240 °C because of its high response, low detection limit, and reliability at high relative humidity.

  13. Experimental observation of water saturation effects on shear wave splitting in synthetic rock with fractures aligned at oblique angles

    NASA Astrophysics Data System (ADS)

    Amalokwu, Kelvin; Chapman, Mark; Best, Angus I.; Sothcott, Jeremy; Minshull, Timothy A.; Li, Xiang-Yang

    2015-01-01

    Fractured rocks are known to exhibit seismic anisotropy and shear wave splitting (SWS). SWS is commonly used for fractured rock characterization and has been shown to be sensitive to fluid type. The presence of partial liquid/gas saturation is also known to affect the elastic properties of rocks. The combined effect of both fractures and partial liquid/gas saturation is still unknown. Using synthetic, silica-cemented sandstones with aligned penny-shaped voids, we conducted laboratory ultrasonic experiments to investigate the effect fractures aligned at an oblique angle to wave propagation would have on SWS under partial liquid/gas saturation conditions. The result for the fractured rock shows a saturation dependence which can be explained by combining a fractured rock model and a partial saturation model. At high to full water saturation values, SWS decreases as a result of the fluid bulk modulus effect on the quasi-shear wave. This bulk modulus effect is frequency dependent as a result of wave-induced fluid flow mechanisms, which would in turn lead to frequency dependent SWS. This result suggests the possible use of SWS for discriminating between full liquid saturation and partial liquid/gas saturation.

  14. Transonic wind tunnel test of a 14 percent thick oblique wing

    NASA Technical Reports Server (NTRS)

    Kennelly, Robert A., Jr.; Kroo, Ilan M.; Strong, James M.; Carmichael, Ralph L.

    1990-01-01

    An experimental investigation was conducted at the ARC 11- by 11-Foot Transonic Wind Tunnel as part of the Oblique Wing Research Aircraft Program to study the aerodynamic performance and stability characteristics of a 0.087-scale model of an F-8 airplane fitted with an oblique wing designed by Rockwell International. The 10.3 aspect ratio, straight-tapered wing of 0.14 thickness/chord ratio was tested at two different mounting heights above the fuselage. Additional tests were conducted to assess low-speed behavior with and without flaps, aileron effectiveness at representative flight conditions, and transonic drag divergence with 0 degree wing sweep. Longitudinal stability data were obtained at sweep angles of 0, 30, 45, 60, and 65 degrees, at Mach numbers ranging from 0.25 to 1.40. Test Reynolds numbers varied from 3.2 to 6.6 x 10 exp 6/ft. and angle of attack ranged from -5 to +18 degrees. Most data were taken at zero sideslip, but a few runs were at sideslip angles of +/- 5 degrees. The raised wing position proved detrimental overall, although side force and yawing moment were reduced at some conditions. Maximum lift coefficient with the flaps deflected was found to fall short of the value predicted in the preliminary design document. The performance and trim characteristics of the present wing are generally inferior to those obtained for a previously tested wing designed at ARC.

  15. Maximum dose angle for oblique incidence on primary beam protective barriers in the design of medical radiation therapy facilities.

    PubMed

    Fondevila, Damián; Arbiser, Silvio; Sansogne, Rosana; Brunetto, Mónica; Dosoretz, Bernardo

    2008-05-01

    Primary barrier determinations for the shielding of medical radiation therapy facilities are generally made assuming normal beam incidence on the barrier, since this is geometrically the most unfavorable condition for that shielding barrier whenever the occupation line is allowed to run along the barrier. However, when the occupation line (for example, the wall of an adjacent building) runs perpendicular to the barrier (especially roof barrier), then two opposing factors come in to play: increasing obliquity angle with respect to the barrier increases the attenuation, while the distance to the calculation point decreases, hence, increasing the dose. As a result, there exists an angle (alpha(max)) for which the equivalent dose results in a maximum, constituting the most unfavorable geometric condition for that shielding barrier. Based on the usual NCRP Report No. 151 model, this article presents a simple formula for obtaining alpha(max), which is a function of the thickness of the barrier (t(E)) and the equilibrium tenth-value layer (TVL(e)) of the shielding material for the nominal energy of the beam. It can be seen that alpha(max) increases for increasing TVL(e) (hence, beam energy) and decreases for increasing t(E), with a range of variation that goes from 13 to 40 deg for concrete barriers thicknesses in the range of 50-300 cm and most commercially available teletherapy machines. This parameter has not been calculated in the existing literature for radiotherapy facilities design and has practical applications, as in calculating the required unoccupied roof shielding for the protection of a nearby building located in the plane of the primary beam rotation.

  16. Analyzing RCD30 Oblique Performance in a Production Environment

    NASA Astrophysics Data System (ADS)

    Soler, M. E.; Kornus, W.; Magariños, A.; Pla, M.

    2016-06-01

    In 2014 the Institut Cartogràfic i Geològic de Catalunya (ICGC) decided to incorporate digital oblique imagery in its portfolio in response to the growing demand for this product. The reason can be attributed to its useful applications in a wide variety of fields and, most recently, to an increasing interest in 3d modeling. The selection phase for a digital oblique camera led to the purchase of the Leica RCD30 Oblique system, an 80MPixel multispectral medium-format camera which consists of one Nadir camera and four oblique viewing cameras acquiring images at an off-Nadir angle of 35º. The system also has a multi-directional motion compensation on-board system to deliver the highest image quality. The emergence of airborne oblique cameras has run in parallel to the inclusion of computer vision algorithms into the traditional photogrammetric workflows. Such algorithms rely on having multiple views of the same area of interest and take advantage of the image redundancy for automatic feature extraction. The multiview capability is highly fostered by the use of oblique systems which capture simultaneously different points of view for each camera shot. Different companies and NMAs have started pilot projects to assess the capabilities of the 3D mesh that can be obtained using correlation techniques. Beyond a software prototyping phase, and taking into account the currently immature state of several components of the oblique imagery workflow, the ICGC has focused on deploying a real production environment with special interest on matching the performance and quality of the existing production lines based on classical Nadir images. This paper introduces different test scenarios and layouts to analyze the impact of different variables on the geometric and radiometric performance. Different variables such as flight altitude, side and forward overlap and ground control point measurements and location have been considered for the evaluation of aerial triangulation and

  17. Transverse and Oblique Long Bone Fracture Evaluation by Low Order Ultrasonic Guided Waves: A Simulation Study

    PubMed Central

    Li, Ying; Liu, Dan; Xu, Kailiang; Le, Lawrence H.; Wang, Weiqi

    2017-01-01

    Ultrasonic guided waves have recently been used in fracture evaluation and fracture healing monitoring. An axial transmission technique has been used to quantify the impact of the gap breakage width and fracture angle on the amplitudes of low order guided wave modes S0 and A0 under a 100 kHz narrowband excitation. In our two dimensional finite-difference time-domain (2D-FDTD) simulation, the long bones are modeled as three layers with a soft tissue overlay and marrow underlay. The simulations of the transversely and obliquely fractured long bones show that the amplitudes of both S0 and A0 decrease as the gap breakage widens. Fixing the crack width, the increase of the fracture angle relative to the cross section perpendicular to the long axis enhances the amplitude of A0, while the amplitude of S0 shows a nonmonotonic trend with the decrease of the fracture angle. The amplitude ratio between the S0 and A0 modes is used to quantitatively evaluate the fracture width and angles. The study suggests that the low order guided wave modes S0 and A0 have potentials for transverse and oblique bone fracture evaluation and fracture healing monitoring. PMID:28182135

  18. Transverse and Oblique Long Bone Fracture Evaluation by Low Order Ultrasonic Guided Waves: A Simulation Study.

    PubMed

    Li, Ying; Liu, Dan; Xu, Kailiang; Ta, Dean; Le, Lawrence H; Wang, Weiqi

    2017-01-01

    Ultrasonic guided waves have recently been used in fracture evaluation and fracture healing monitoring. An axial transmission technique has been used to quantify the impact of the gap breakage width and fracture angle on the amplitudes of low order guided wave modes S 0 and A 0 under a 100 kHz narrowband excitation. In our two dimensional finite-difference time-domain (2D-FDTD) simulation, the long bones are modeled as three layers with a soft tissue overlay and marrow underlay. The simulations of the transversely and obliquely fractured long bones show that the amplitudes of both S 0 and A 0 decrease as the gap breakage widens. Fixing the crack width, the increase of the fracture angle relative to the cross section perpendicular to the long axis enhances the amplitude of A 0, while the amplitude of S 0 shows a nonmonotonic trend with the decrease of the fracture angle. The amplitude ratio between the S 0 and A 0 modes is used to quantitatively evaluate the fracture width and angles. The study suggests that the low order guided wave modes S 0 and A 0 have potentials for transverse and oblique bone fracture evaluation and fracture healing monitoring.

  19. Growth Assisted by Glancing Angle Deposition: A New Technique to Fabricate Highly Porous Anisotropic Thin Films.

    PubMed

    Sanchez-Valencia, Juan Ramon; Longtin, Remi; Rossell, Marta D; Gröning, Pierangelo

    2016-04-06

    We report a new methodology based on glancing angle deposition (GLAD) of an organic molecule in combination with perpendicular growth of a second inorganic material. The resulting thin films retain a very well-defined tilted columnar microstructure characteristic of GLAD with the inorganic material embedded inside the columns. We refer to this new methodology as growth assisted by glancing angle deposition or GAGLAD, since the material of interest (here, the inorganic) grows in the form of tilted columns, though it is deposited under a nonglancing configuration. As a "proof of concept", we have used silver and zinc oxide as the perpendicularly deposited material since they usually form ill-defined columnar microstructures at room temperature by GLAD. By means of our GAGLAD methodology, the typical tilted columnar microstructure can be developed for materials that otherwise do not form ordered structures under conventional GLAD. This simple methodology broadens significantly the range of materials where control of the microstructure can be achieved by tuning the geometrical deposition parameters. The two examples presented here, Ag/Alq3 and ZnO/Alq3, have been deposited by physical vapor deposition (PVD) and plasma enhanced chemical vapor deposition (PECVD), respectively: two different vacuum techniques that illustrate the generality of the proposed technique. The two type of hybrid samples present very interesting properties that demonstrate the potentiality of GAGLAD. On one hand, the Ag/Alq3 samples present highly optical anisotropic properties when they are analyzed with linearly polarized light. To our knowledge, these Ag/Alq3 samples present the highest angular selectivity reported in the visible range. On the other hand, ZnO/Alq3 samples are used to develop highly porous ZnO thin films by using Alq3 as sacrificial material. In this way, antireflective ZnO samples with very low refractive index and extinction coefficient have been obtained.

  20. Effects of annealing on arrays of Ge nanocolumns formed by glancing angle deposition

    NASA Astrophysics Data System (ADS)

    Khare, C.; Gerlach, J. W.; Höche, T.; Fuhrmann, B.; Leipner, H. S.; Rauschenbach, B.

    2012-10-01

    Post-deposition thermal annealing of glancing angle deposited Ge nanocolumn arrays was carried out in a continuous Ar-flow at temperatures ranging from TA = 300 to 800 °C for different annealing durations. Morphological alterations and the recrystallization process induced by the thermal annealing treatment were investigated for the Ge nanocolumns deposited on planar and pre-patterned Si substrates. From X-ray diffraction (XRD) measurements, the films annealed at TA ≥ 500 °C were found to be polycrystalline. On planar Si substrates, at TA = 600 °C nanocolumns exhibited strong coarsening and merging, while a complete disintegration of the nanocolumns was detected at TA = 700 °C. The morphology of nanostructures deposited on pre-patterned substrates differs substantially, where the merging or column-disintegration effect was absent at elevated annealing temperatures. The two-arm-chevron nanostructures grown on pre-patterned substrates retained their complex shape and morphology, after extended annealing intervals. Investigations by transmission electron microscopy revealed nanocrystalline domains of the order of 5-30 nm (in diameter) present within the chevron structures after the annealing treatment.

  1. Effects of squats accompanied by hip joint adduction on the selective activity of the vastus medialis oblique.

    PubMed

    Hyong, In Hyouk

    2015-06-01

    [Purpose] This study evaluated the effective selective activation method of the vastus medialis oblique for knee joint stabilization in patients with patellofemoral pain syndrome. [Subjects and Methods] Fifteen healthy college students (9 males, 6 females); mean age, height, and weight: 22.2 years, 167.8 cm, and 61.4 kg, respectively) participated. The knee angle was held at 60°. Muscle activities were measured once each during an ordinary squat and a squat accompanied by hip joint adduction. The muscle activities of the vastus medialis oblique and vastus lateralis were measured by electromyography for five seconds while maintaining 60° knee flexion. Electromyography signals were obtained at a sampling rate of 1,000 Hz and band pass filtering at 20-50 Hz. The obtained raw root mean square was divided by the maximal voluntary isometric contraction and expressed as a percentage. The selective activity of the vastus medialis oblique was assessed according to the muscle activity ratio of the vastus medialis oblique to the vastus lateralis. [Results] The activity ratio of the vastus medialis oblique was higher during a squat with hip joint adduction than without. [Conclusion] A squat accompanied by hip joint adduction is effective for the selective activation of the vastus medialis oblique.

  2. [Contralateral Recession of the Inferior Oblique Muscle in Grave's Disease Patients with Mild M. rectus inferior fibrosis].

    PubMed

    Eckstein, A; Raczynski, S; Dekowski, D; Esser, J

    2015-10-01

    The aim of this study was to evaluate the dose effect and the resulting binocular single vision for inferior oblique muscle recession in patients with Grave's orbitopathy. The evaluation covered all patients (n = 13) between 2010-2013 treated with recession of the inferior oblique muscle for vertical deviation caused by inferior fibrosis of the contralateral eye. The inclusion criterion was a small vertical squint angle with excyclotorsion. The corrected vertical squint angle was 3.75° [7 pdpt] (median, min 1.5° [3 pdpt], max 8° [16 pdpt]) in primary position and 5.5° in adduction [11pdpt] (median, min 3°[6 pdpt], max 9°[18pdpt]). Excyclotorsion was 4° [8 pdpt] (median, min 1° [2 pdpt], max 9° [18 pdpt]). Elevation was only slightly impaired and the side difference was 5° (median). The recession distance was preoperatively determined: 0.5° squint angle reduction per mm recession distance (calculation from patients who received surgery before 2010). Inferior oblique recession generated a good field of binocular single vision (BSV) for all patients. All patients reached BSV in the central area (20°) and within 30° of downgaze. Sixty nine percent of the patients were completely diplopia free in downgaze. Diplopia persisted in more than half of the patients in up gaze outside 15°. Squint reduction was 0.5° [1 pdpt] [0.45-0.67]/per mm recession distance in primary position and 0.65° [1.3 pdpt] [0.55-0.76]/per mm for the vertical deviation in adduction. Excyclotorsion was reduced to ≤ 2° in 77 % of the patients. Inferior oblique muscle recession can be very successfully performed on the contralateral eye in patients with mild inferior rectus muscle fibrosis. Surgery at the contralateral yoke muscle prevents the risk of overeffect with resulting diplopia in downgaze, which could occur if small distance recession had been performed at the inferior rectus muscle. An overeffect in relation to inferior oblique recession will only

  3. Optical and infrared properties of glancing angle-deposited nanostructured tungsten films.

    PubMed

    Ungaro, Craig; Shah, Ankit; Kravchenko, Ivan; Hensley, Dale K; Gray, Stephen K; Gupta, Mool C

    2015-02-15

    Nanotextured tungsten thin films were obtained on a stainless steel (SS) substrate using the glancing-angle-deposition (GLAD) method. It was found that the optical absorption and thermal emittance of the SS substrate can be controlled by varying the parameters used during deposition. Finite-difference time-domain (FDTD) simulations were used to predict the optical absorption and infrared (IR) reflectance spectra of the fabricated samples, and good agreement was found between simulated and measured data. FDTD simulations were also used to predict the effect of changes in the height and periodicity of the nanotextures. These simulations show that good control over the absorption can be achieved by altering the height and periodicity of the nanostructure. These nanostructures were shown to be temperature stable up to 500°C with the addition of a protective HfO2 layer. Applications for this structure are explored, including a promising application for solar thermal energy systems.

  4. Optical and infrared properties of glancing angle-deposited nanostructured tungsten films

    DOE PAGES

    Ungaro, Craig; Shah, Ankit; Kravchenko, Ivan; ...

    2015-02-06

    For this study, nanotextured tungsten thin films were obtained on a stainless steel (SS) substrate using the glancing-angle-deposition (GLAD) method. It was found that the optical absorption and thermal emittance of the SS substrate can be controlled by varying the parameters used during deposition. Finite-difference time-domain (FDTD) simulations were used to predict the optical absorption and infrared (IR) reflectance spectra of the fabricated samples, and good agreement was found between simulated and measured data. FDTD simulations were also used to predict the effect of changes in the height and periodicity of the nanotextures. These simulations show that good control overmore » the absorption can be achieved by altering the height and periodicity of the nanostructure. These nanostructures were shown to be temperature stable up to 500°C with the addition of a protective HfO 2 layer. Finally, applications for this structure are explored, including a promising application for solar thermal energy systems.« less

  5. ON THE TIDAL DISSIPATION OF OBLIQUITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, T. M.; Lin, D. N. C., E-mail: tami@lpl.arizona.edu, E-mail: lin@ucolick.org

    2013-05-20

    We investigate tidal dissipation of obliquity in hot Jupiters. Assuming an initial random orientation of obliquity and parameters relevant to the observed population, the obliquity of hot Jupiters does not evolve to purely aligned systems. In fact, the obliquity evolves to either prograde, retrograde, or 90 Degree-Sign orbits where the torque due to tidal perturbations vanishes. This distribution is incompatible with observations which show that hot Jupiters around cool stars are generally aligned. This calls into question the viability of tidal dissipation as the mechanism for obliquity alignment of hot Jupiters around cool stars.

  6. Reflection of Lamb waves obliquely incident on the free edge of a plate.

    PubMed

    Santhanam, Sridhar; Demirli, Ramazan

    2013-01-01

    The reflection of obliquely incident symmetric and anti-symmetric Lamb wave modes at the edge of a plate is studied. Both in-plane and Shear-Horizontal (SH) reflected wave modes are spawned by an obliquely incident in-plane Lamb wave mode. Energy reflection coefficients are calculated for the reflected wave modes as a function of frequency and angle of incidence. This is done by using the method of orthogonal mode decomposition and by enforcing traction free conditions at the plate edge using the method of collocation. A PZT sensor network, affixed to an Aluminum plate, is used to experimentally verify the predictions of the analysis. Experimental results provide support for the analytically determined results. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Review of the dynamic behaviour of sports balls during normal and oblique impacts

    NASA Astrophysics Data System (ADS)

    Haron, Muhammad Adli; Jailani, Azrol; Abdullah, Nik Ahmad Faris Nik; Ismail, Rafis Suizwan; Rahim, Shayfull Zamree Abd; Ghazali, Mohd Fathullah

    2017-09-01

    In this paper are review of impact experiment to study the dynamic behaviour of sports ball during oblique and normal impacts. In previous studies, the investigation was done on the dynamic behaviour of a sports ball during oblique and normal impacts from experimental, numerical, and theoretical viewpoints. The experimental results are analysed and compared with the theories, in order to understand the dynamics behaviours based on the phenomenological occurrence. Throughout the experimental studies previously, there are results of dynamics behaviours examined by many researchers such as the coefficient of restitution, tangential coefficient, local deformation, dynamic impact force, contact time, angle of impact (inbound and rebound), spin rate of the ball, ball stiffness and damping coefficient which dependable of the initial or impact velocity.

  8. Oblique reconstructions in tomosynthesis. II. Super-resolution

    PubMed Central

    Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2013-01-01

    Purpose: In tomosynthesis, super-resolution has been demonstrated using reconstruction planes parallel to the detector. Super-resolution allows for subpixel resolution relative to the detector. The purpose of this work is to develop an analytical model that generalizes super-resolution to oblique reconstruction planes. Methods: In a digital tomosynthesis system, a sinusoidal test object is modeled along oblique angles (i.e., “pitches”) relative to the plane of the detector in a 3D divergent-beam acquisition geometry. To investigate the potential for super-resolution, the input frequency is specified to be greater than the alias frequency of the detector. Reconstructions are evaluated in an oblique plane along the extent of the object using simple backprojection (SBP) and filtered backprojection (FBP). By comparing the amplitude of the reconstruction against the attenuation coefficient of the object at various frequencies, the modulation transfer function (MTF) is calculated to determine whether modulation is within detectable limits for super-resolution. For experimental validation of super-resolution, a goniometry stand was used to orient a bar pattern phantom along various pitches relative to the breast support in a commercial digital breast tomosynthesis system. Results: Using theoretical modeling, it is shown that a single projection image cannot resolve a sine input whose frequency exceeds the detector alias frequency. The high frequency input is correctly visualized in SBP or FBP reconstruction using a slice along the pitch of the object. The Fourier transform of this reconstructed slice is maximized at the input frequency as proof that the object is resolved. Consistent with the theoretical results, experimental images of a bar pattern phantom showed super-resolution in oblique reconstructions. At various pitches, the highest frequency with detectable modulation was determined by visual inspection of the bar patterns. The dependency of the highest

  9. Surface dose measurements from air gaps under a bolus by using a MOSFET dosimeter in clinical oblique photon beams

    NASA Astrophysics Data System (ADS)

    Chung, Jin-Beom; Kim, Jae-Sung; Kim, In-Ah; Lee, Jeong-Woo

    2012-10-01

    This study is intended to investigate the effects of surface dose from air gaps under the bolus in clinically used oblique photon beams by using a Markus parallel-plate chamber and a metal-oxide semiconductor field-effect transistor (MOSFET) dosimeter. To evaluate the performances of the two detectors, the percentage surface doses of the MOSFET dosimeters in without an air gap under the bolus material were measured and compared with those of the Markus parallel-plate chamber. MOSFET dosimeters at the surface provided results mostly in good agreement with the parallelplate chamber. The MOSFET dosimeters seemed suitable for surface dose measurements having excellent accuracy for clinical used photon beams. The relative surface doses were measured with air gaps (2, 5, 10 mm) and without an air gap under 3 different bolus setups: (1) unbolused (no bolus), (2) 5-mm bolus, and (3) 10-mm bolus. The reductions in the surface dose substantially increased with small field size, thick bolus, and large air gap. The absolute difference in the reductions of the surface dose between the MOSFET dosimeter and the Markus parallel-plate chamber was less than 1.1%. Results at oblique angles of incidence showed larger reductions in surface dose with increasing angle of incidence. The largest reduction in surface dose was recorded for a 6 × 6 cm2 field at a 60° angle of incidence with an 10-mm air gap under a 10-mm bolus. When a 10-mm bolus was used, a reduction in the surface dose with an air gap of up to 10.5% could be achieved by varying the field size and the incident angle. Therefore, air gaps under the bolus should be avoided in radiotherapy treatment, especially for photon beam with highly oblique angles of incidence.

  10. [Evaluation of the resolving power of different angles in MPR images of 16DAS-MDCT].

    PubMed

    Kimura, Mikio; Usui, Junshi; Nozawa, Takeo

    2007-03-20

    In this study, we evaluated the resolving power of three-dimensional (3D) multiplanar reformation (MPR) images with various angles by using 16 data acquisition system multi detector row computed tomography (16DAS-MDCT) . We reconstructed the MPR images using data with a 0.75 mm slice thickness of the axial image in this examination. To evaluate resolving power, we used an original new phantom (RC phantom) that can be positioned at any slice angle in MPR images. We measured the modulation transfer function (MTF) by using the methods of measuring pre-sampling MTF, and used Fourier transform of image data of the square wave chart. The scan condition and image reconstruction condition that were adopted in this study correspond to the condition that we use for three-dimensional computed tomographic angiography (3D-CTA) examination of the head in our hospital. The MTF of MPR images showed minimum values at slice angles in parallel with the axial slice, and showed maximum values at the sagittal slice and coronal slice angles that are parallel to the Z-axis. With an oblique MPR image, MTF did not change with angle changes in the oblique sagittal slice plane, but in the oblique coronal slice plane, MTF increased as the tilt angle increased from the axial plane to the Z plane. As a result, we could evaluate the resolving power of a head 3D image by measuring the MTF of the axial image and sagittal image or the coronal image.

  11. Variation in multiring basic structures as a function of impact angle

    NASA Technical Reports Server (NTRS)

    Wichman, R. W.; Schultz, P. H.

    1992-01-01

    Previous studies have demonstrated that the impact process in the laboratory varies as a function of impact angle. This variation is attributed to changes in energy partitioning and projectile failure during the impact and, in simple craters, produces a sequence of progressively smaller and more asymmetric crater forms as impact angle decreases from approximately 20 degrees. Variations in impact angle can produce differences in the appearance of multiring impact basins. Comparisons of Orientale to the more oblique impact structure at Crisium also suggests that these differences primarily reflect the degree of cavity collapse. The relative changes in massif ring topography, basin scarp relief, and the distribution of peripheral mare units are consistent with a reduction in degree of cavity collapse with decreasing impact angle. The prominent uprange basin scarps and the restriction of tectonically derived peripheral mare units along uprange ring structures also may indicate an uprange enhancement of failure during cavity collapse. Finally, although basin ring faults appear to be preferred pathways for mare volcanism, fault-controlled peripheral mare volcanism occurs most readily uprange of an oblique impact; elsewhere such volcanism apparently requires superposition of an impact structure on the ring fault.

  12. Omnidirectional anti-reflection properties of vertically align SiO2 nanorod films prepared by electron beam evaporation with glancing angle deposition

    NASA Astrophysics Data System (ADS)

    Prachachet, R.; Samransuksamer, B.; Horprathum, M.; Eiamchai, P.; Limwichean, S.; Chananonnawathorn, C.; Lertvanithphol, T.; Muthitamongkol, P.; Boonruang, S.; Buranasiri, P.

    2018-03-01

    Omnidirectional anti-reflection coating nanostructure film have attracted enormous attention for the developments of the optical coating, lenses, light emitting diode, display and photovoltaic. However, fabricated of the omnidirectional antireflection nanostructure film on glass substrate in large area was a challenge topic. In the past two decades, the invention of glancing angle deposition technique as a growth of well-controlled two and three-dimensional morphologies has gained significant attention because of it is simple, fast, cost-effective and high mass production capability. In this present work, the omnidirectional anti-reflection nanostructure coating namely silicon dioxide (SiO2) nanorods has been investigated for optimized high transparent layer at all light incident angle. The SiO2 nanorod films of an optimally low refractive index have been fabricated by electron beam evaporation with the glancing angle deposition technique. The morphological of the prepared sampled were characterized by field-emission scanning electron microscope (FE-SEM) and high-resolution transmission electron microscope (HRTEM). The optical transmission and omnidirectional property of the SiO2 nanorod films were investigated by UV-Vis-NIR spectrophotometer. The measurement were performed at normal incident angle and a full spectral range of 200 - 2000 nm. The angle dependent transmission measure were investigated by rotating the specimen, with incidence angle defined relative to the surface normal of the prepared samples. The morphological characterization results showed that when the glancing angle deposition technique was applied, the vertically align SiO2 nanorods with partially isolated columnar structure can be constructed due to the enhanced shadowing and limited addtom diffusion effect. The average transmission of the vertically align SiO2 nanorods were higher than the glass substrate reference sample over the visible wavelength range at all incident angle due to the

  13. Nanostructured Ti-Ta thin films synthesized by combinatorial glancing angle sputter deposition

    NASA Astrophysics Data System (ADS)

    Motemani, Yahya; Khare, Chinmay; Savan, Alan; Hans, Michael; Paulsen, Alexander; Frenzel, Jan; Somsen, Christoph; Mücklich, Frank; Eggeler, Gunther; Ludwig, Alfred

    2016-12-01

    Ti-Ta alloys are attractive materials for applications in actuators as well as biomedical implants. When fabricated as thin films, these alloys can potentially be employed as microactuators, components for micro-implantable devices and coatings on surgical implants. In this study, Ti100-x Ta x (x = 21, 30) nanocolumnar thin films are fabricated by glancing angle deposition (GLAD) at room temperature using Ti73Ta27 and Ta sputter targets. Crystal structure, morphology and microstructure of the nanostructured thin films are systematically investigated by XRD, SEM and TEM, respectively. Nanocolumns of ˜150-160 nm in width are oriented perpendicular to the substrate for both Ti79Ta21 and Ti70Ta30 compositions. The disordered α″ martensite phase with orthorhombic structure is formed in room temperature as-deposited thin films. The columns are found to be elongated small single crystals which are aligned perpendicular to the (20\\bar{4}) and (204) planes of α″ martensite, indicating that the films’ growth orientation is mainly dominated by these crystallographic planes. Laser pre-patterned substrates are utilized to obtain periodic nanocolumnar arrays. The differences in seed pattern, and inter-seed distances lead to growth of multi-level porous nanostructures. Using a unique sputter deposition geometry consisting of Ti73Ta27 and Ta sputter sources, a nanocolumnar Ti-Ta materials library was fabricated on a static substrate by a co-deposition process (combinatorial-GLAD approach). In this library, a composition spread developed between Ti72.8Ta27.2 and Ti64.4Ta35.6, as confirmed by high-throughput EDX analysis. The morphology over the materials library varies from well-isolated nanocolumns to fan-like nanocolumnar structures. The influence of two sputter sources is investigated by studying the resulting column angle on the materials library. The presented nanostructuring methods including the use of the GLAD technique along with pre-patterning and a

  14. Impact and Penetration of Thin Aluminum 2024 Flat Panels at Oblique Angles of Incidence

    NASA Technical Reports Server (NTRS)

    Ruggeri, Charles R.; Revilock, Duane M.; Pereira, J. Michael; Emmerling, William; Queitzsch, Gilbert K., Jr.

    2015-01-01

    under more extreme conditions, using a projectile with a more complex shape and sharp contacts, impacting flat panels at oblique angles of incidence.

  15. Controlling soliton excitations in Heisenberg spin chains through the magic angle.

    PubMed

    Lu, Jing; Zhou, Lan; Kuang, Le-Man; Sun, C P

    2009-01-01

    We study the nonlinear dynamics of collective excitation in an N -site XXZ quantum spin chain, which is manipulated by an oblique magnetic field. We show that, when the tilted field is applied along the magic angle, theta_{0}=+/-arccossqrt[13] , the anisotropic Heisenberg spin chain becomes isotropic and thus an freely propagating spin wave is stimulated. Also, in the regime of tilted angles larger and smaller than the magic angle, two types of nonlinear excitations appear: bright and dark solitons.

  16. Simulation and stability analysis of oblique shock-wave/boundary-layer interactions at Mach 5.92

    NASA Astrophysics Data System (ADS)

    Hildebrand, Nathaniel; Dwivedi, Anubhav; Nichols, Joseph W.; Jovanović, Mihailo R.; Candler, Graham V.

    2018-01-01

    We investigate flow instability created by an oblique shock wave impinging on a Mach 5.92 laminar boundary layer at a transitional Reynolds number. The adverse pressure gradient of the oblique shock causes the boundary layer to separate from the wall, resulting in the formation of a recirculation bubble. For sufficiently large oblique shock angles, the recirculation bubble is unstable to three-dimensional perturbations and the flow bifurcates from its original laminar state. We utilize direct numerical simulation (DNS) and global stability analysis to show that this first occurs at a critical shock angle of θ =12 .9∘ . At bifurcation, the least-stable global mode is nonoscillatory and it takes place at a spanwise wave number β =0.25 , in good agreement with DNS results. Examination of the critical global mode reveals that it originates from an interaction between small spanwise corrugations at the base of the incident shock, streamwise vortices inside the recirculation bubble, and spanwise modulation of the bubble strength. The global mode drives the formation of long streamwise streaks downstream of the bubble. While the streaks may be amplified by either the lift-up effect or by Görtler instability, we show that centrifugal instability plays no role in the upstream self-sustaining mechanism of the global mode. We employ an adjoint solver to corroborate our physical interpretation by showing that the critical global mode is most sensitive to base flow modifications that are entirely contained inside the recirculation bubble.

  17. The obturator oblique and iliac oblique/outlet views predict most accurately the adequate position of an anterior column acetabular screw.

    PubMed

    Guimarães, João Antonio Matheus; Martin, Murphy P; da Silva, Flávio Ribeiro; Duarte, Maria Eugenia Leite; Cavalcanti, Amanda Dos Santos; Machado, Jamila Alessandra Perini; Mauffrey, Cyril; Rojas, David

    2018-06-08

    Percutaneous fixation of the acetabulum is a treatment option for select acetabular fractures. Intra-operative fluoroscopy is required, and despite various described imaging strategies, it is debatable as to which combination of fluoroscopic views provides the most accurate and reliable assessment of screw position. Using five synthetic pelvic models, an experimental setup was created in which the anterior acetabular columns were instrumented with screws in five distinct trajectories. Five fluoroscopic images were obtained of each model (Pelvic Inlet, Obturator Oblique, Iliac Oblique, Obturator Oblique/Outlet, and Iliac Oblique/Outlet). The images were presented to 32 pelvic and acetabular orthopaedic surgeons, who were asked to draw two conclusions regarding screw position: (1) whether the screw was intra-articular and (2) whether the screw was intraosseous in its distal course through the bony corridor. In the assessment of screw position relative to the hip joint, accuracy of surgeon's response ranged from 52% (iliac oblique/outlet) to 88% (obturator oblique), with surgeon confidence in the interpretation ranging from 60% (pelvic inlet) to 93% (obturator oblique) (P < 0.0001). In the assessment of intraosseous position of the screw, accuracy of surgeon's response ranged from 40% (obturator oblique/outlet) to 79% (iliac oblique/outlet), with surgeon confidence in the interpretation ranging from 66% (iliac oblique) to 88% (pelvic inlet) (P < 0.0001). The obturator oblique and obturator oblique/outlet views afforded the most accurate and reliable assessment of penetration into the hip joint, and intraosseous position of the screw was most accurately assessed with pelvic inlet and iliac oblique/outlet views. Clinical Question.

  18. Focusers of obliquely incident laser radiation

    NASA Astrophysics Data System (ADS)

    Goncharskiy, A. V.; Danilov, V. A.; Popov, V. V.; Prokhorov, A. M.; Sisakyan, I. N.; Sayfer, V. A.; Stepanov, V. V.

    1984-08-01

    Focusing obliquely incident laser radiation along a given line in space with a given intensity distribution is treated as a problem of synthesizing a mirror surface. The intricate shape of such a surface, characterized by a function z= z (u,v) in the approximation of geometrical optics, is determined from the equation phi (u,v,z) - phi O(u,v,z)=O, which expresses that the incident field and the reflected field have identical eikonals. Further calculations are facilitated by replacing continuous mirror with a more easily manufactured piecewise continuous one. The problem is solved for the simple case of a plane incident wave with a typical iconal phi O(u,v,z)= -z cos0 at a large angle to a focus mirror in the z-plane region. Mirrors constructed on the basis of the theoretical solution were tested in an experiment with a CO2 laser. A light beam with Gaussian intensity distribution was, upon incidence at a 45 deg angle, focused into a circle or into an ellipse with uniform intensity distribution. Improvements in amplitudinal masking and selective tanning technology should reduce energy losses at the surface which results in efficient laser focusing mirrors.

  19. Comparative study of unilateral versus bilateral inferior oblique recession/anteriorization in unilateral inferior oblique overaction.

    PubMed

    Mostafa, Attiat M; Kassem, Rehab R

    2018-05-01

    To compare the effect of, and the rate of subsequent development of iatrogenic antielevation syndrome after, unilateral versus bilateral inferior oblique graded recession-anteriorization to treat unilateral inferior oblique overaction. Thirty-four patients with unilateral inferior oblique overaction were included in a randomized prospective study. Patients were equally divided into 2 groups. Group UNI underwent unilateral, group BI bilateral, inferior oblique graded recession-anteriorization. A successful outcome was defined as orthotropia, or within 2 ∆ of a residual hypertropia, in the absence of signs of antielevation syndrome, residual inferior oblique overaction, V-pattern, dissociated vertical deviation, or ocular torticollis. A successful outcome was achieved in 11 (64.7%) and 13 (76.5%) patients in groups UNI and BI, respectively (p = 0.452). Antielevation syndrome was diagnosed as the cause of surgical failure in 6 (35.3%) and 2 (11.8%) patients, in groups UNI and BI, respectively (p = 0.106). The cause of surgical failure in the other 2 patients in group BI was due to persistence of ocular torticollis and hypertropia in a patient with superior oblique palsy and a residual V-pattern and hypertropia in the other patient. The differences between unilateral and bilateral inferior oblique graded recession-anteriorization are insignificant. Unilateral surgery has a higher tendency for the subsequent development of antielevation syndrome. Bilateral surgery may still become complicated by antielevation syndrome, although at a lower rate. In addition, bilateral surgery had a higher rate of undercorrection. Further studies on a larger sample are encouraged.

  20. Unraveling the excitation mechanisms of highly oblique lower-band chorus waves

    DOE PAGES

    Li, Wen; Mourenas, D.; Artemyev, A. V.; ...

    2016-08-17

    Excitation mechanisms of highly oblique, quasi-electrostatic lower band chorus waves are investigated using Van Allen Probes observations near the equator of the Earth's magnetosphere. Linear growth rates are evaluated based on in situ, measured electron velocity distributions and plasma conditions and compared with simultaneously observed wave frequency spectra and wave normal angles. Accordingly, two distinct excitation mechanisms of highly oblique lower band chorus have been clearly identified for the first time. The first mechanism relies on cyclotron resonance with electrons possessing both a realistic temperature anisotropy at keV energies and a plateau at 100–500 eV in the parallel velocity distribution.more » The second mechanism corresponds to Landau resonance with a 100–500 eV beam. In both cases, a small low-energy beam-like component is necessary for suppressing an otherwise dominating Landau damping. In conclusion, our new findings suggest that small variations in the electron distribution could have important impacts on energetic electron dynamics.« less

  1. Effect of Impact Angle on Ceramic Deposition Behavior in Composite Cold Spray: A Finite-Element Study

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Rohan; Song, Jun

    2017-10-01

    During the cold spraying of particle-reinforced metal matrix composite coatings (ceramic and metal particles mixture) on metal substrates, ceramic particles may either get embedded in the substrate/deposited coating or may rebound from the substrate surface. In this study, the dependence of the ceramic rebounding phenomenon on the spray angle and its effect on substrate erosion have been analyzed using finite-element analysis. From the numerical simulations, it was found that the ceramic particle density and substrate material strength played the major roles in determining the embedding and ceramic retention behavior. Substrate material erosion also influenced the ceramic retention, and the material loss increased as the impact angles decreased from normal. In general, the results concluded that decreasing the impact angle promoted the retention possibility of ceramics in the substrate. This study provides new theoretical insights into the effect of spray angles on the ceramic retention and suggests a new route toward optimizing the spraying process to increase the ceramic retention in composite coatings cold spray.

  2. Surface electromyography activity of the rectus abdominis, internal oblique, and external oblique muscles during forced expiration in healthy adults.

    PubMed

    Ito, Kenichi; Nonaka, Koji; Ogaya, Shinya; Ogi, Atsushi; Matsunaka, Chiaki; Horie, Jun

    2016-06-01

    We aimed to characterize rectus abdominis, internal oblique, and external oblique muscle activity in healthy adults under expiratory resistance using surface electromyography. We randomly assigned 42 healthy adult subjects to 3 groups: 30%, 20%, and 10% maximal expiratory intraoral pressure (PEmax). After measuring 100% PEmax and muscle activity during 100% PEmax, the activity and maximum voluntary contraction of each muscle during the assigned experimental condition were measured. At 100% PEmax, the external oblique (p<0.01) and internal oblique (p<0.01) showed significantly elevated activity compared with the rectus abdominis muscle. Furthermore, at 20% and 30% PEmax, the external oblique (p<0.05 and<0.01, respectively) and the internal oblique (p<0.05 and<0.01, respectively) showed significantly elevated activity compared with the rectus abdominis muscle. At 10% PEmax, no significant differences were observed in muscle activity. Although we observed no significant difference between 10% and 20% PEmax, activity during 30% PEmax was significantly greater than during 20% PEmax (external oblique: p<0.05; internal oblique: p<0.01). The abdominal oblique muscles are the most active during forced expiration. Moreover, 30% PEmax is the minimum intensity required to achieve significant, albeit very slight, muscle activity during expiratory resistance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Habitable planets with high obliquities

    NASA Technical Reports Server (NTRS)

    Williams, D. M.; Kasting, J. F.

    1997-01-01

    Earth's obliquity would vary chaotically from 0 degrees to 85 degrees were it not for the presence of the Moon (J. Laskar, F. Joutel, and P. Robutel, 1993, Nature 361, 615-617). The Moon itself is thought to be an accident of accretion, formed by a glancing blow from a Mars-sized planetesimal. Hence, planets with similar moons and stable obliquities may be extremely rare. This has lead Laskar and colleagues to suggest that the number of Earth-like planets with high obliquities and temperate, life-supporting climates may be small. To test this proposition, we have used an energy-balance climate model to simulate Earth's climate at obliquities up to 90 degrees. We show that Earth's climate would become regionally severe in such circumstances, with large seasonal cycles and accompanying temperature extremes on middle- and high-latitude continents which might be damaging to many forms of life. The response of other, hypothetical, Earth-like planets to large obliquity fluctuations depends on their land-sea distribution and on their position within the habitable zone (HZ) around their star. Planets with several modest-sized continents or equatorial supercontinents are more climatically stable than those with polar supercontinents. Planets farther out in the HZ are less affected by high obliquities because their atmospheres should accumulate CO2 in response to the carbonate-silicate cycle. Dense, CO2-rich atmospheres transport heat very effectively and therefore limit the magnitude of both seasonal cycles and latitudinal temperature gradients. We conclude that a significant fraction of extrasolar Earth-like planets may still be habitable, even if they are subject to large obliquity fluctuations.

  4. Beyond Euler angles: exploiting the angle-axis parametrization in a multipole expansion of the rotation operator.

    PubMed

    Siemens, Mark; Hancock, Jason; Siminovitch, David

    2007-02-01

    Euler angles (alpha,beta,gamma) are cumbersome from a computational point of view, and their link to experimental parameters is oblique. The angle-axis {Phi, n} parametrization, especially in the form of quaternions (or Euler-Rodrigues parameters), has served as the most promising alternative, and they have enjoyed considerable success in rf pulse design and optimization. We focus on the benefits of angle-axis parameters by considering a multipole operator expansion of the rotation operator D(Phi, n), and a Clebsch-Gordan expansion of the rotation matrices D(MM')(J)(Phi, n). Each of the coefficients in the Clebsch-Gordan expansion is proportional to the product of a spherical harmonic of the vector n specifying the axis of rotation, Y(lambdamu)(n), with a fixed function of the rotation angle Phi, a Gegenbauer polynomial C(2J-lambda)(lambda+1)(cosPhi/2). Several application examples demonstrate that this Clebsch-Gordan expansion gives easy and direct access to many of the parameters of experimental interest, including coherence order changes (isolated in the Clebsch-Gordan coefficients), and rotation angle (isolated in the Gegenbauer polynomials).

  5. Oblique Sagittal Images Prevent Underestimation of the Neuroforaminal Stenosis Grade Caused by Disc Herniation in Cervical Spine MRI.

    PubMed

    Kintzelé, Laurent; Rehnitz, Christoph; Kauczor, Hans-Ulrich; Weber, Marc-André

    2018-06-06

     To identify whether standard sagittal MRI images result in underestimation of the neuroforaminal stenosis grade compared to oblique sagittal MRI images in patients with cervical spine disc herniation.  74 patients with a total of 104 cervical disc herniations compromising the corresponding nerve root were evaluated. Neuroforaminal stenosis grades were evaluated in standard and oblique sagittal images by one senior and one resident radiologist experienced in musculoskeletal imaging. Oblique images were angled 30° towards the standard sagittal plane. Neuroforaminal stenosis grades were classified from 0 (no stenosis) to 3 (high grade stenosis).  Average neuroforaminal stenosis grades of both readers were significantly lower in standard compared to oblique sagittal images (p < 0.001). For 47.1 % of the cases, one or both readers reported a stenosis grade, which was at least 1 grade lower in standard compared to oblique sagittal images. There was also a significant difference when looking at patients who had neurological symptoms (p = 0.002) or underwent cervical spine surgery subsequently (p = 0.004). Interreader reliability, as measured by kappa value, and accordance rates were better for oblique sagittal images (0.94 vs. 0.88 and 99 % vs. 93 %).  Standard sagittal images tend to underestimate neuroforaminal stenosis grades compared to oblique sagittal images and are less reliable in the evaluation of disc herniations within the cervical spine MRI. In order to assess the potential therapeutic consequence, oblique images should therefore be considered as a valuable adjunct to the standard MRI protocol for patients with a radiculopathy.   · Neuroforaminal stenosis grades are underestimated in standard compared to oblique sagittal images. · Interreader reliability is higher for oblique sagittal images. · Oblique sagittal images should be performed in patients with a cervical radiculopathy. · Kintzele L, Rehnitz C, Kauczor H et

  6. Proterozoic (pre-Ediacaran) glaciation and the high obliquity, low-latitude ice, strong seasonality (HOLIST) hypothesis: Principles and tests

    NASA Astrophysics Data System (ADS)

    Williams, George E.

    2008-03-01

    Sedimentological observations and palaeomagnetic data for Cryogenian glacial deposits present the climatic paradox of grounded glaciers and in situ cold climate near sea-level, glaciomarine deposition, and accompanying large (up to 40 °C) seasonal changes of temperature, all in low to near-equatorial (< 10°) palaeolatitudes (equated with geographic latitudes). Neither the "snowball Earth" nor the "slushball Earth" hypothesis can account for such strong seasonality near the palaeoequator, which together with findings from sedimentology, chemostratigraphy, biogeochemistry, micropalaeontology, geochronology and climate modelling argue against those scenarios. An alternative explanation of glaciation and strong seasonality in low palaeolatitudes is offered by a high (> 54°) obliquity of the ecliptic, which would render the equator cooler than the poles, on average, and amplify global seasonality. A high obliquity per se would not have been a primary trigger for glaciation, but would have strongly influenced the latitudinal distribution of glaciers. The principle of low-latitude glaciation on a terrestrial planet with high obliquity is validated by theoretical studies and observations of Mars. A high obliquity for the early Earth is a likely outcome of a single giant impact at 4.5 Ga, the widely favoured mechanism for lunar origin. This implies that a high obliquity could have prevailed during most of the Precambrian, controlling the low palaeolatitude of glaciations in the early and late Palaeoproterozoic and Cryogenian. It is postulated that the obliquity changed to < 54° between the termination of the last Cryogenian low-palaeolatitude glaciation at ≤ 635 Ma and the initiation of Late Ordovician-Early Silurian circum-polar glaciation at 445 Ma. The High Obliquity, Low-latitude Ice, STrong seasonality (HOLIST) hypothesis for pre-Ediacaran glaciation emerges favourably from numerous glacial and non-glacial tests. The hypothesis is in accord with such established

  7. Controllable fabrication of ultrafine oblique organic nanowire arrays and their application in energy harvesting

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Cheng, Li; Bai, Suo; Su, Chen; Chen, Xiaobo; Qin, Yong

    2015-01-01

    Ultrafine organic nanowire arrays (ONWAs) with a controlled direction were successfully fabricated by a novel one-step Faraday cage assisted plasma etching method. The mechanism of formation of nanowire arrays is proposed; the obliquity and aspect ratio can be accurately controlled from approximately 0° to 90° via adjusting the angle of the sample and the etching time, respectively. In addition, the ONWAs were further utilized to improve the output of the triboelectric nanogenerator (TENG). Compared with the output of TENG composed of vertical ONWAs, the open-circuit voltage, short-circuit current and inductive charges were improved by 73%, 150% and 98%, respectively. This research provides a convenient and practical method to fabricate ONWAs with various obliquities on different materials, which can be used for energy harvesting.

  8. Controllable fabrication of ultrafine oblique organic nanowire arrays and their application in energy harvesting.

    PubMed

    Zhang, Lu; Cheng, Li; Bai, Suo; Su, Chen; Chen, Xiaobo; Qin, Yong

    2015-01-28

    Ultrafine organic nanowire arrays (ONWAs) with a controlled direction were successfully fabricated by a novel one-step Faraday cage assisted plasma etching method. The mechanism of formation of nanowire arrays is proposed; the obliquity and aspect ratio can be accurately controlled from approximately 0° to 90° via adjusting the angle of the sample and the etching time, respectively. In addition, the ONWAs were further utilized to improve the output of the triboelectric nanogenerator (TENG). Compared with the output of TENG composed of vertical ONWAs, the open-circuit voltage, short-circuit current and inductive charges were improved by 73%, 150% and 98%, respectively. This research provides a convenient and practical method to fabricate ONWAs with various obliquities on different materials, which can be used for energy harvesting.

  9. The effect of oblique angle of sound incidence, realistic edge conditions, curvature and in-plane panel stresses on the noise reduction characteristics of general aviation type panels

    NASA Technical Reports Server (NTRS)

    Grosveld, F.; Lameris, J.; Dunn, D.

    1979-01-01

    Experiments and a theoretical analysis were conducted to predict the noise reduction of inclined and curved panels. These predictions are compared to the experimental results with reasonable agreement between theory and experiment for panels under an oblique angle of sound incidence. Theoretical as well as experimental results indicate a big increase in noise reduction when a flat test panel is curved. Further curving the panel slightly decreases the noise reduction. Riveted flat panels are shown to give a higher noise reduction in the stiffness-controlled frequency region, while bonded panels are superior in this region when the test panel is curved. Experimentally measured noise reduction characteristics of flat aluminum panels with uniaxial in-plane stresses are presented and discussed. These test results indicate an important improvement in the noise reduction of these panels in the frequency range below the fundamental panel/cavity frequency.

  10. Monte Carlo simulation of portal dosimetry on a rectilinear voxel geometry: a variable gantry angle solution.

    PubMed

    Chin, P W; Spezi, E; Lewis, D G

    2003-08-21

    A software solution has been developed to carry out Monte Carlo simulations of portal dosimetry using the BEAMnrc/DOSXYZnrc code at oblique gantry angles. The solution is based on an integrated phantom, whereby the effect of incident beam obliquity was included using geometric transformations. Geometric transformations are accurate within +/- 1 mm and +/- 1 degrees with respect to exact values calculated using trigonometry. An application in portal image prediction of an inhomogeneous phantom demonstrated good agreement with measured data, where the root-mean-square of the difference was under 2% within the field. Thus, we achieved a dose model framework capable of handling arbitrary gantry angles, voxel-by-voxel phantom description and realistic particle transport throughout the geometry.

  11. Gold coated metal nanostructures grown by glancing angle deposition and pulsed electroplating

    NASA Astrophysics Data System (ADS)

    Grüner, Christoph; Reeck, Pascal; Jacobs, Paul-Philipp; Liedtke, Susann; Lotnyk, Andriy; Rauschenbach, Bernd

    2018-05-01

    Nickel based nanostructures are grown by glancing angle deposition (GLAD) on flat and pre-patterned substrates. These fabricated porous thin films were subsequently coated by pulsed electroplating with gold. The morphology and conformity of the gold coating were investigated by scanning electron microscopy and X-ray diffraction. Controlled growth of closed gold layers on the nanostructures could be achieved, while the open-pore structure of the nanosculptured thin films was preserved. Such gold coated nanostructures are a candidate for optical sensing and catalysis applications. The demonstrated method can be applied for numerous material combinations, allowing to provide GLAD thin films with new surface properties.

  12. Climate at high obliquity

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Ferreira, D.; O'Gorman, P. A.; Seager, S.

    2011-12-01

    One method of studying earth-like exoplanets is to view earth as an exoplanet and consider how its climate might change if, for example, its obliquity were ranged from 0 to 90 degrees. High values of obliquity challenge our understanding of climate dynamics because if obliquity exceeds 54 degrees, then polar latitudes receive more energy per unit area than do equatorial latitudes. Thus the pole will become warmer than the equator and we are led to consider a world in which the meridional temperature gradients, and associated prevailing zonal wind, have the opposite sign to the present earth. The problem becomes even richer when one considers the dynamics of an ocean, should one exist below. A central question for the ocean circulation is: what is the pattern of surface winds at high obliquities?, for it is the winds that drive the ocean currents and thermohaline circulation. How do atmospheric weather systems growing in the easterly sheared middle latitude jets determine the surface wind pattern? Should one expect middle latitude easterly winds? Finally, a key aspect with regard to habitability is to understand how the atmosphere and ocean of this high obliquity planet work cooperatively together to transport energy meridionally, mediating the warmth of the poles and the coldness of the equator. How extreme are seasonal temperature fluctuations? Should one expect to find ice around the equator? Possible answers to some of these questions have been sought by experimentation with a coupled atmosphere, ocean and sea-ice General Circulation Model of an earth-like aquaplanet: i.e. a planet like our own but on which there is only an ocean but no land. The coupled climate is studied across a range of obliquities (23.5, 54 and 90). We present some of the descriptive climatology of our solutions and how they shed light on the deeper questions of coupled climate dynamics that motivate them. We also review what they tell us about habitability on such planets.

  13. Theory and analysis of a large field polarization imaging system with obliquely incident light.

    PubMed

    Lu, Xiaotian; Jin, Weiqi; Li, Li; Wang, Xia; Qiu, Su; Liu, Jing

    2018-02-05

    Polarization imaging technology provides information about not only the irradiance of a target but also the polarization degree and angle of polarization, which indicates extensive application potential. However, polarization imaging theory is based on paraxial optics. When a beam of obliquely incident light passes an analyser, the direction of light propagation is not perpendicular to the surface of the analyser and the applicability of the traditional paraxial optical polarization imaging theory is challenged. This paper investigates a theoretical model of a polarization imaging system with obliquely incident light and establishes a polarization imaging transmission model with a large field of obliquely incident light. In an imaging experiment with an integrating sphere light source and rotatable polarizer, the polarization imaging transmission model is verified and analysed for two cases of natural light and linearly polarized light incidence. Although the results indicate that the theoretical model is consistent with the experimental results, the theoretical model distinctly differs from the traditional paraxial approximation model. The results prove the accuracy and necessity of the theoretical model and the theoretical guiding significance for theoretical and systematic research of large field polarization imaging.

  14. Treatment of inferior oblique paresis with superior oblique silicone tendon expander.

    PubMed

    Greenberg, Marc F; Pollard, Zane F

    2005-08-01

    Patients with inferior oblique eye muscle paresis may show hypotropia and apparent superior oblique muscle overaction on the side of the presumed weak inferior oblique (IO) muscle. We report 8 such patients successfully treated using unilateral silicone superior oblique (SO) tendon expanders. Eight consecutive cases over the course of 6 years from the authors' private practice are described. None had a history of head trauma or a significant neurologic event. All patients showed IO paresis by 3-step test, with incyclotorsion and SO overacton of the hypotropic (paretic) eye. Forced ductions of the hypotropic eye were normal in all cases, and the vertical strabismus was treated with placement of a 7- mm silicone SO tendon expander in the hypotropic (paretic) eye. Mean preoperative primary position hypotropia was 6.5 prism diopters (PD); mean postoperative was 0.5 PD. Seven of 8 patients had resolution of primary position hypotropia, whereas the eighth was reduced. Mean preoperative SO overaction was 3+; all patients had postoperative resolution of SO overaction. Of 4 patients with preoperative ocular torticollis, mean preoperative head tilt was 9.3 degrees; mean postoperative tilt was 2.9 degrees. Two patients' head tilts had resolved, the other 2 showed improvement. All patients showed preoperative incylclotorsion of the hypotropic (paretic) eye; inclyclotorsion resolved in all patients after the placement of a SO tendon expander. The silicone SO tendon expander effectively restores ocular alignment in IO paresis with apparent SO overaction. Associated ocular torticollis can also be improved.

  15. Modeling Oblique Impact Dynamics of Particle-Laden Nanodroplets

    NASA Astrophysics Data System (ADS)

    Yong, Xin; Qin, Shiyi

    2016-11-01

    A fundamental understanding of the impact dynamics of nanoscopic droplets laden with nanoparticles has important implications for materials printing and thin film processing. Using many-body dissipative particle dynamics (MDPD), we model nanometer sized suspension droplets imping on dry solid substrate with oblique angles, and compare their behavior with pure liquid droplets. Equilibrated floating droplets containing two types of nanoparticles, namely fully-wetted hydrophilic particles and surface-active Janus particles, impact onto the solid surface with varying initial velocities and impact angles. The velocity components in the normal and tangential directions to the substrate defines normal and tangential Reynolds and Weber numbers, which are used to classify impact regimes. Droplets with nanoparticles dispersed in the bulk and covering the droplet surface (resembling liquid marbles) exhibit quite different behavior in the course of impact. We also reveal the influences of substrate wettability and its interaction with nanoparticles on the impact dynamics. In addition, the vapor film beneath an impinging droplet shows no significant effect on the impact dynamics in our MDPD simulations.

  16. Low-latitude glaciation and rapid changes in the Earth's obliquity explained by obliquity-oblateness feedback

    NASA Astrophysics Data System (ADS)

    Williams, Darren M.; Kasting, James F.; Frakes, Lawrence A.

    1998-12-01

    Palaeomagnetic data suggest that the Earth was glaciated at low latitudes during the Palaeoproterozoic, (about 2.4-2.2Gyr ago) and Neoproterozoic (about 820-550Myr ago) eras, although some of the Neoproterozoic data are disputed,. If the Earth's magnetic field was aligned more or less with its spin axis, as it is today, then either the polar ice caps must have extended well down into the tropics - the `snowball Earth' hypothesis - or the present zonation of climate with respect to latitude must have been reversed. Williams has suggested that the Earth's obliquity may have been greater than 54° during most of its history, which would have made the Equator the coldest part of the planet. But this would require a mechanism to bring the obliquity down to its present value of 23.5°. Here we propose that obliquity-oblateness feedback could have reduced the Earth's obliquity by tens of degrees in less than 100Myr if the continents were situated so as to promote the formation of large polar ice sheets. A high obliquity for the early Earth may also provide a natural explanation for the present inclination of the lunar orbit with respect to the ecliptic (5°), which is otherwise difficult to explain.

  17. Low-latitude glaciation and rapid changes in the Earth's obliquity explained by obliquity-oblateness feedback.

    PubMed

    Williams, D M; Kasting, J F; Frakes, L A

    1998-12-03

    Palaeomagnetic data suggest that the Earth was glaciated at low latitudes during the Palaeoproterozoic (about 2.4-2.2 Gyr ago) and Neoproterozoic (about 820-550 Myr ago) eras, although some of the Neoproterozoic data are disputed. If the Earth's magnetic field was aligned more or less with its spin axis, as it is today, then either the polar ice caps must have extended well down into the tropics-the 'snowball Earth' hypothesis-or the present zonation of climate with respect to latitude must have been reversed. Williams has suggested that the Earth's obliquity may have been greater than 54 degrees during most of its history, which would have made the Equator the coldest part of the planet. But this would require a mechanism to bring the obliquity down to its present value of 23.5 degrees. Here we propose that obliquity-oblateness feedback could have reduced the Earth's obliquity by tens of degrees in less than 100 Myr if the continents were situated so as to promote the formation of large polar ice sheets. A high obliquity for the early Earth may also provide a natural explanation for the present inclination of the lunar orbit with respect to the ecliptic (5 degrees), which is otherwise difficult to explain.

  18. Investigation of helicity-dependent photocurrent at room temperature from a Fe/x-AlO x /p-GaAs Schottky junction with oblique surface illumination

    NASA Astrophysics Data System (ADS)

    Roca, Ronel Christian; Nishizawa, Nozomi; Nishibayashi, Kazuhiro; Munekata, Hiro

    2017-04-01

    In view of a study on spin-polarized photodiodes, the helicity-dependent photocurrent (ΔI) in a Fe/γ-AlO x /p-GaAs Schottky diode is measured at room temperature by illuminating a circularly polarized light beam (λ = 785 nm) either horizontally on the cleaved sidewall or at an oblique angle on the top metal surface. The plane of incidence is fixed to be parallel to the magnetization vector of the in-plane magnetized Fe electrode. The conversion efficiency F, which is a relative value of ΔI with respect to the total photocurrent I ph, is determined to be 1.0 × 10-3 and 1.2 × 10-2 for sidewall illumination and oblique-angle illumination, respectively. Experimental data are compared with the results of a model calculation consisting of drift-diffusion and Julliere spin-dependent tunneling transports, from which two conclusions are obtained: the model accounts fairly well for the experimental data without introducing the annihilation of spin-polarized carriers at the γ-AlO x /p-GaAs interface for the oblique-angle illumination, but the model does not fully explain the relatively low F in terms of the surface recombination at the cleaved sidewall in the case of sidewall illumination. Microscopic damage to the tunneling barrier at the cleaved edge would be one possible cause of the reduced F.

  19. Oblique abdominal muscle activity in response to external perturbations when pushing a cart.

    PubMed

    Lee, Yun-Ju; Hoozemans, Marco J M; van Dieën, Jaap H

    2010-05-07

    Cyclic activation of the external and internal oblique muscles contributes to twisting moments during normal gait. During pushing while walking, it is not well understood how these muscles respond to presence of predictable (cyclic push-off forces) and unpredictable (external) perturbations that occur in pushing tasks. We hypothesized that the predictable perturbations due to the cyclic push-off forces would be associated with cyclic muscle activity, while external perturbations would be counteracted by cocontraction of the oblique abdominal muscles. Eight healthy male subjects pushed at two target forces and two handle heights in a static condition and while walking without and with external perturbations. For all pushing tasks, the median, the static (10th percentile) and the peak levels (90th percentile) of the electromyographic amplitudes were determined. Linear models with oblique abdominal EMGs and trunk angles as input were fit to the twisting moments, to estimate trunk stiffness. There was no significant difference between the static EMG levels in pushing while walking compared to the peak levels in pushing while standing. When pushing while walking, the additional dynamic activity was associated with the twisting moments, which were actively modulated by the pairs of oblique muscles as in normal gait. The median and static levels of trunk muscle activity and estimated trunk stiffness were significantly higher when perturbations occurred than without perturbations. The increase baseline of muscle activity indicated cocontraction of the antagonistic muscle pairs. Furthermore, this cocontraction resulted in an increased trunk stiffness around the longitudinal axis. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. The influence of spray properties on intranasal deposition.

    PubMed

    Foo, Mow Yee; Cheng, Yung-Sung; Su, Wei-Chung; Donovan, Maureen D

    2007-01-01

    While numerous devices, formulations, and spray characteristics have been shown to influence nasal deposition efficiency, few studies have attempted to identify which of these interacting factors plays the greatest role in nasal spray deposition. The deposition patterns of solutions with a wide range of surface tensions and viscosities were measured using an MRI-derived nasal cavity replica. The resulting spray plumes had angles between 29 degrees and 80 degrees and contained droplet sizes (D(v50)) from 37-157 microm. Each formulation contained rhodamine 590 as a fluorescent marker for detection. Administration angles of 30 degrees , 40 degrees , or 50 degrees above horizontal were tested to investigate the role of user technique on nasal deposition. The amount of spray deposited within specific regions of the nasal cavity was determined by disassembling the replica and measuring the amount of rhodamine retained in each section. Most of the spray droplets were deposited onto the anterior region of the model, but sprays with small plume angles were capable of reaching the turbinate region with deposition efficiencies approaching 90%. Minimal dependence on droplet size, viscosity, or device was observed. Changes in inspiratory flow rate (0-60 L/min) had no significant effect on turbinate deposition efficiency. Both plume angle and administration angle were found to be important factors in determining deposition efficiency. For administration angles of 40 degrees or 50 degrees , maximal turbinate deposition efficiency (30-50%) occurred with plume angles of 55-65 degrees , whereas a 30 degrees administration angle gave an approximately 75% deposition efficiency for similar plume angles. Deposition efficiencies of approximately 90% could be achieved with plume angles <30 degrees using 30 degrees administration angles. Both the plume angle and administration angle are critical factors in determining deposition efficiency, while many other spray parameters, including

  1. Digital Oblique Remote Ionospheric Sensing (DORIS) Program Development

    DTIC Science & Technology

    1992-04-01

    waveforms. A new with the ARTIST software (Reinisch and Iluang. autoscaling technique for oblique ionograms 1983, Gamache et al., 1985) which is...development and performance of a complete oblique ionogram autoscaling and inversion algorithm is presented. The inver.i-,n algorithm uses a three...OTIH radar. 14. SUBJECT TERMS 15. NUMBER OF PAGES Oblique Propagation; Oblique lonogram Autoscaling ; i Electron Density Profile Inversion; Simulated 16

  2. Large capacity oblique all-wing transport aircraft

    NASA Technical Reports Server (NTRS)

    Galloway, Thomas L.; Phillips, James A.; Kennelly, Robert A., Jr.; Waters, Mark H.

    1996-01-01

    Dr. R. T. Jones first developed the theory for oblique wing aircraft in 1952, and in subsequent years numerous analytical and experimental projects conducted at NASA Ames and elsewhere have established that the Jones' oblique wing theory is correct. Until the late 1980's all proposed oblique wing configurations were wing/body aircraft with the wing mounted on a pivot. With the emerging requirement for commercial transports with very large payloads, 450-800 passengers, Jones proposed a supersonic oblique flying wing in 1988. For such an aircraft all payload, fuel, and systems are carried within the wing, and the wing is designed with a variable sweep to maintain a fixed subsonic normal Mach number. Engines and vertical tails are mounted on pivots supported from the primary structure of the wing. The oblique flying wing transport has come to be known as the Oblique All-Wing (OAW) transport. This presentation gives the highlights of the OAW project that was to study the total concept of the OAW as a commercial transport.

  3. Obliquity dependence of the tangential YORP

    NASA Astrophysics Data System (ADS)

    Ševeček, P.; Golubov, O.; Scheeres, D. J.; Krugly, Yu. N.

    2016-08-01

    Context. The tangential Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect is a thermophysical effect that can alter the rotation rate of asteroids and is distinct from the so-called normal YORP effect, but to date has only been studied for asteroids with zero obliquity. Aims: We aim to study the tangential YORP force produced by spherical boulders on the surface of an asteroid with an arbitrary obliquity. Methods: A finite element method is used to simulate heat conductivity inside a boulder, to find the recoil force experienced by it. Then an ellipsoidal asteroid uniformly covered by these types of boulders is considered and the torque is numerically integrated over its surface. Results: Tangential YORP is found to operate on non-zero obliquities and decreases by a factor of two for increasing obliquity.

  4. Highly Sensitive H2S Sensor Based on the Metal-Catalyzed SnO2 Nanocolumns Fabricated by Glancing Angle Deposition

    PubMed Central

    Yoo, Kwang Soo; Han, Soo Deok; Moon, Hi Gyu; Yoon, Seok-Jin; Kang, Chong-Yun

    2015-01-01

    As highly sensitive H2S gas sensors, Au- and Ag-catalyzed SnO2 thin films with morphology-controlled nanostructures were fabricated by using e-beam evaporation in combination with the glancing angle deposition (GAD) technique. After annealing at 500 °C for 40 h, the sensors showed a polycrystalline phase with a porous, tilted columnar nanostructure. The gas sensitivities (S = Rgas/Rair) of Au and Ag-catalyzed SnO2 sensors fabricated by the GAD process were 0.009 and 0.015, respectively, under 5 ppm H2S at 300 °C, and the 90% response time was approximately 5 s. These sensors showed excellent sensitivities compared with the SnO2 thin film sensors that were deposited normally (glancing angle = 0°, S = 0.48). PMID:26134105

  5. Secular obliquity variations for Ceres

    NASA Astrophysics Data System (ADS)

    Bills, Bruce; Scott, Bryan R.; Nimmo, Francis

    2016-10-01

    We have constructed secular variation models for the orbit and spin poles of the asteroid (1) Ceres, and used them to examine how the obliquity, or angular separation between spin and orbit poles, varies over a time span of several million years. The current obliquity is 4.3 degrees, which means that there are some regions near the poles which do not receive any direct Sunlight. The Dawn mission has provided an improved estimate of the spin pole orientation, and of the low degree gravity field. That allows us to estimate the rate at which the spin pole precesses about the instantaneous orbit pole.The orbit of Ceres is secularly perturbed by the planets, with Jupiter's influence dominating. The current inclination of the orbit plane, relative to the ecliptic, is 10.6 degrees. However, it varies between 7.27 and 11.78 degrees, with dominant periods of 22.1 and 39.6 kyr. The spin pole precession rate parameter has a period of 205 kyr, with current uncertainty of 3%, dominated by uncertainty in the mean moment of inertia of Ceres.The obliquity varies, with a dominant period of 24.5 kyr, with maximum values near 26 degrees, and minimum values somewhat less than the present value. Ceres is currently near to a minimum of its secular obliquity variations.The near-surface thermal environment thus has at least 3 important time scales: diurnal (9.07 hours), annual (4.60 years), and obliquity cycle (24.5 kyr). The annual thermal wave likely only penetrates a few meters, but the much long thermal wave associated with the obliquity cycle has a skin depth larger by a factor of 70 or so, depending upon thermal properties in the subsurface.

  6. Detection Angle Calibration of Pressure-Sensitive Paints

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy J.

    2000-01-01

    Uses of the pressure-sensitive paint (PSP) techniques in areas other than external aerodynamics continue to expand. The NASA Glenn Research Center has become a leader in the application of the global technique to non-conventional aeropropulsion applications including turbomachinery testing. The use of the global PSP technique in turbomachinery applications often requires detection of the luminescent paint in confined areas. With the limited viewing usually available, highly oblique illumination and detection angles are common in the confined areas in these applications. This paper will describe the results of pressure, viewing and excitation angle dependence calibrations using three popular PSP formulations to get a better understanding of the errors associated with these non-traditional views.

  7. The effect of polar caps on obliquity

    NASA Technical Reports Server (NTRS)

    Lindner, B. L.

    1993-01-01

    Rubincam has shown that the Martian obliquity is dependent on the seasonal polar caps. In particular, Rubincam analytically derived this dependence and showed that the change in obliquity is directly proportional to the seasonal polar cap mass. Rubincam concludes that seasonal friction does not appear to have changed Mars' climate significantly. Using a computer model for the evolution of the Martian atmosphere, Haberle et al. have made a convincing case for the possibility of huge polar caps, about 10 times the mass of the current polar caps, that exist for a significant fraction of the planet's history. Since Rubincam showed that the effect of seasonal friction on obliquity is directly proportional to polar cap mass, a scenario with a ten-fold increase in polar cap mass over a significant fraction of the planet's history would result in a secular increase in Mars' obliquity of perhaps 10 degrees. Hence, the Rubincam conclusion of an insignificant contribution to Mars' climate by seasonal friction may be incorrect. Furthermore, if seasonal friction is an important consideration in the obliquity of Mars, this would significantly alter the predictions of past obliquity.

  8. Oblique-wing research airplane motion simulation with decoupling control laws

    NASA Technical Reports Server (NTRS)

    Kempel, Robert W.; Mc Neill, Walter E.; Maine, Trindel A.

    1988-01-01

    A large piloted vertical motion simulator was used to assess the performance of a preliminary decoupling control law for an early version of the F-8 oblique wing research demonstrator airplane. Evaluations were performed for five discrete flight conditions, ranging from low-altitude subsonic Mach numbers to moderate-altitude supersonic Mach numbers. Asymmetric sideforce as a function of angle of attack was found to be the primary cause of both the lateral acceleration noted in pitch and the tendency to roll into left turns and out of right turns. The flight control system was shown to be effective in generally decoupling the airplane and reducing the lateral acceleration in pitch maneuvers.

  9. A piloted evaluation of an oblique-wing research aircraft motion simulation with decoupling control laws

    NASA Technical Reports Server (NTRS)

    Kempel, Robert W.; Mcneill, Walter E.; Gilyard, Glenn B.; Maine, Trindel A.

    1988-01-01

    The NASA Ames Research Center developed an oblique-wing research plane from NASA's digital fly-by-wire airplane. Oblique-wing airplanes show large cross-coupling in control and dynamic behavior which is not present on conventional symmetric airplanes and must be compensated for to obtain acceptable handling qualities. The large vertical motion simulator at NASA Ames-Moffett was used in the piloted evaluation of a proposed flight control system designed to provide decoupled handling qualities. Five discrete flight conditions were evaluated ranging from low altitude subsonic Mach numbers to moderate altitude supersonic Mach numbers. The flight control system was effective in generally decoupling the airplane. However, all participating pilots objected to the high levels of lateral acceleration encountered in pitch maneuvers. In addition, the pilots were more critical of left turns (in the direction of the trailing wingtip when skewed) than they were of right turns due to the tendency to be rolled into the left turns and out of the right turns. Asymmetric side force as a function of angle of attack was the primary cause of lateral acceleration in pitch. Along with the lateral acceleration in pitch, variation of rolling and yawing moments as functions of angle of attack caused the tendency to roll into left turns and out of right turns.

  10. A GCM Recent History of the Northern Martian Polar Layered Deposits

    NASA Technical Reports Server (NTRS)

    Levrard, B.; Laskar, J.; Forget, F.; Montmessin, F.

    2003-01-01

    The polar layered deposits are thought to contain alternate layers of water and dust in different proportions resulting from the astronomical forcing of the martian climate. In particular, longterm variations in the orbital and axial elements of Mars are presumed to generate variations of the latitudes of surface water ice stability and of the amount of water exchanged in the polar areas. At high obliquity, simplified climate models and independent general circulation simulations suggest a transfer of water ice from the north polar region to tropical areas, whereas at lower and present obliquities, water ice is expected to be stable only at the poles. If so, over obliquity cycles, water ice may be redistributed between the surface water reservoirs leading to their incremental building or disintegration depending on the rates of water transfer. If only a relative limited amount of the available water is exchanged on orbital timescales, this may provide an efficient mechanism for the formation of the observed polar deposits. Within this context, GCM simulations of the martian water cycle have been performed for various obliquities ranging from 15 degrees to 45 degrees and for a large set of initial water ice locations to determine the rate of water exchange between the surface water reservoirs as a function of the obliquity. Propagating these rates over the last 10 Ma orbital history gives a possible recent evolution of these reservoirs.

  11. In situ grazing incidence small-angle X-ray scattering investigation of polystyrene nanoparticle spray deposition onto silicon.

    PubMed

    Herzog, Gerd; Benecke, Gunthard; Buffet, Adeline; Heidmann, Berit; Perlich, Jan; Risch, Johannes F H; Santoro, Gonzalo; Schwartzkopf, Matthias; Yu, Shun; Wurth, Wilfried; Roth, Stephan V

    2013-09-10

    We investigated the spray deposition and subsequent self-assembly during drying of a polystyrene nanoparticle dispersion with in situ grazing incidence small-angle X-ray scattering at high time resolution. During the fast deposition of the dispersion and the subsequent evaporation of the solvent, different transient stages of nanoparticle assembly can be identified. In the first stage, the solvent starts to evaporate without ordering of the nanoparticles. During the second stage, large-scale structures imposed by the breakup of the liquid film are observable. In this stage, the solvent evaporates further and nanoparticle ordering starts. In the late third drying stage, the nanoparticles self-assemble into the final layer structure.

  12. Ag-Cu mixed phase plasmonic nanostructures fabricated by shadow nanosphere lithography and glancing angle co-deposition

    NASA Astrophysics Data System (ADS)

    Ingram, Whitney; Larson, Steven; Carlson, Daniel; Zhao, Yiping

    2017-01-01

    By combining shadow nanosphere lithography with a glancing angle co-deposition technique, mixed-phase Ag-Cu triangular nanopatterns and films were fabricated. They were prepared at different compositions with respect to Ag from 100% to 0% by changing the relative deposition ratio of each metal. Characterizations by ellipsometry, energy dispersive x-ray spectroscopy, and x-ray diffraction revealed that the thin films and nanopatterns were composed of small, well-mixed Ag and Cu nano-grains with a diameter less than 20 nm, and their optical properties could be described by an effective medium theory. All compositions of the nanopattern had the same shape, but showed tunable localized surface plasmon resonance (LSPR) properties. In general, the LSPR of the nanopatterns redshifted with decreasing composition. Such a relation could be fitted by an empirical model based on the bulk theory of alloy plasmonics. By changing the colloidal template and the material deposited, this fabrication technique can be used to produce other alloy plasmonic nanostructures with predicted LSPR wavelengths.

  13. Ag-Cu mixed phase plasmonic nanostructures fabricated by shadow nanosphere lithography and glancing angle co-deposition.

    PubMed

    Ingram, Whitney; Larson, Steven; Carlson, Daniel; Zhao, Yiping

    2017-01-06

    By combining shadow nanosphere lithography with a glancing angle co-deposition technique, mixed-phase Ag-Cu triangular nanopatterns and films were fabricated. They were prepared at different compositions with respect to Ag from 100% to 0% by changing the relative deposition ratio of each metal. Characterizations by ellipsometry, energy dispersive x-ray spectroscopy, and x-ray diffraction revealed that the thin films and nanopatterns were composed of small, well-mixed Ag and Cu nano-grains with a diameter less than 20 nm, and their optical properties could be described by an effective medium theory. All compositions of the nanopattern had the same shape, but showed tunable localized surface plasmon resonance (LSPR) properties. In general, the LSPR of the nanopatterns redshifted with decreasing composition. Such a relation could be fitted by an empirical model based on the bulk theory of alloy plasmonics. By changing the colloidal template and the material deposited, this fabrication technique can be used to produce other alloy plasmonic nanostructures with predicted LSPR wavelengths.

  14. Effect of spray angle and spray volume on deposition of a medium droplet spray with air support in ivy pot plants.

    PubMed

    Foqué, Dieter; Pieters, Jan G; Nuyttens, David

    2014-03-01

    Spray boom systems, an alternative to the predominantly-used spray guns, have the potential to considerably improve crop protection management in glasshouses. Based on earlier experiments, the further optimization of the deposits of a medium spray quality extended range flat fan nozzle type using easy adjustable spray boom settings was examined. Using mineral chelate tracers and water sensitive papers, the spray results were monitored at three plant levels, on the upper side and the underside of the leaves, and on some off-target collectors. In addition, the deposition datasets of all tree experiments were compared. The data showed that the most efficient spray distribution with the medium spray quality flat fan nozzles was found with a 30° forward angled spray combined with air support and an application rate of 1000 L ha(-1) . This technique resulted in a more uniform deposition in the dense canopy and increased spray deposition on the lower side of the leaves compared with the a standard spray boom application. Applying 1000 L ha(-1) in two subsequent runs instead of one did not seem to show any added value. Spray deposition can be improved hugely simply by changing some spray boom settings like nozzle type, angling the spray, using air support and adjusting the spray volume to the crop. © 2013 Society of Chemical Industry.

  15. Frontal belt curvature and oblique ramp development at an obliquely collided irregular margin: Geometry and kinematics of the NW Taiwan fold-thrust belt

    NASA Astrophysics Data System (ADS)

    Lacombe, Olivier; Mouthereau, FréDéRic; Angelier, Jacques; Chu, Hao-Tsu; Lee, Jian-Cheng

    2003-06-01

    Combined structural and tectonic analyses demonstrate that the NW Foothills of the Taiwan collision belt constitute mainly an asymmetric "primary arc" type fold-thrust belt. The arcuate belt developed as a basin-controlled salient in the portion of the foreland basin that was initially thicker, due to the presence of a precollisional depocenter (the Taihsi basin). Additional but limited buttress effects at end points related to interaction with foreland basement highs (Kuanyin and Peikang highs) may have also slightly enhanced curvature. The complex structural pattern results from the interaction between low-angle thrusting related to shallow decollement tectonics and oblique inversion of extensional structures of the margin on the southern edge of the Kuanyin basement high. The tectonic regimes and mechanisms revealed by the pattern of paleostress indicators such as striated outcrop-scale faults are combined with the orientation and geometry of offshore and onshore regional faults in order to accurately define the Quaternary kinematics of the propagating units. The kinematics of this curved range is mainly controlled by distributed transpressional wrenching along the southern edge of the Kuanyin high, leading to the development of a regional-scale oblique ramp, the Kuanyin transfer fault zone, which is conjugate of the NW trending Pakua transfer fault zone north of the Peikang basement high. The divergence between the N120° regional transport direction and the maximum compressive trend that evolved from N120° to N150° (and even to N-S) in the northern part of the arc effectively supports distributed wrench deformation along its northern limb during the Pleistocene. The geometry and kinematics of the western Taiwan Foothills therefore appear to be highly influenced by both the preorogenic structural pattern of the irregularly shaped Chinese passive margin and the obliquity of its Plio-Quaternary collision with the Philippine Sea plate.

  16. Reflection Patterns Generated by Condensed-Phase Oblique Detonation Interaction with a Rigid Wall

    NASA Astrophysics Data System (ADS)

    Short, Mark; Chiquete, Carlos; Bdzil, John; Meyer, Chad

    2017-11-01

    We examine numerically the wave reflection patterns generated by a detonation in a condensed phase explosive inclined obliquely but traveling parallel to a rigid wall as a function of incident angle. The problem is motivated by the characterization of detonation-material confiner interactions. We compare the reflection patterns for two detonation models, one where the reaction zone is spatially distributed, and the other where the reaction is instantaneous (a Chapman-Jouguet detonation). For the Chapman-Jouguet model, we compare the results of the computations with an asymptotic study recently conducted by Bdzil and Short for small detonation incident angles. We show that the ability of a spatially distributed reaction energy release to turn flow streamlines has a significant impact on the nature of the observed reflection patterns. The computational approach uses a shock-fit methodology.

  17. Stratigraphy of Aeolis Dorsa, Mars: Stratigraphic context of the great river deposits

    NASA Astrophysics Data System (ADS)

    Kite, Edwin S.; Howard, Alan D.; Lucas, Antoine S.; Armstrong, John C.; Aharonson, Oded; Lamb, Michael P.

    2015-06-01

    . The time gap between the end of river deposition and the onset of yardang-forming layered deposits is constrained to >1 × 108 yr by the high density of impact craters embedded at the unconformity. The time gap between the end of alluvial-fan deposition and the onset of yardang-forming layered deposits was at least long enough for wind-induced saltation abrasion to erode 20-30 m into the alluvial-fan deposits. We correlate the yardang-forming layered deposits to the upper layers of Gale crater's mound (Mt. Sharp/Aeolis Mons), and the fan-shaped deposits to Peace Vallis fan in Gale crater. Alternations between periods of low mean obliquity and periods of high mean obliquity may have modulated erosion-deposition cycling in Aeolis. This is consistent with the results from an ensemble of simulations of Solar System orbital evolution and the resulting history of the obliquity of Mars. 57 of our 61 simulations produce one or more intervals of continuously low mean Mars obliquity that are long enough to match our Aeolis Dorsa unconformity data.

  18. Abdominal Hollowing Reduces Lateral Trunk Displacement During Single-Leg Squats in Healthy Females But Does Not Affect Peak Hip Abduction Angle or Knee Abductio Angle/Moment.

    PubMed

    Linde, Lukas D; Archibald, Jessica; Lampert, Eve C; Srbely, John Z

    2017-07-17

    Females suffer 4-6 times more non-contact anterior cruciate ligament (ACL) injuries than males due to neuromuscular control deficits of the hip musculature leading to increases in hip adduction angle, knee abduction angle, and knee abduction moment during dynamic tasks such as single-leg squats. Lateral trunk displacement has been further related to ACL injury risk in females, leading to the incorporation of core strength/stability exercises in ACL preventative training programs. However, the direct mechanism relating lateral trunk displacement and lower limb ACL risk factors is not well established. To assess the relationship between lateral trunk displacement and lower limb measures of ACL injury risk by altering trunk control through abdominal activation techniques during single-leg squats in healthy females. Interventional Study Setting: Movement and Posture Laboratory Participants: 13 healthy females (21.3±0.88y, 1.68±0.07m, 58.27±5.46kg) Intervention: Trunk position and lower limb kinematics were recorded using an optoelectric motion capture system during single-leg squats under differing conditions of abdominal muscle activation (abdominal hollowing, abdominal bracing, control), confirmed via surface electromyography. Lateral trunk displacement, peak hip adduction angle, peak knee abduction angle/moment, and average muscle activity from bilateral internal oblique, external oblique, and erector spinae muscles. No differences were observed for peak lateral trunk displacement, peak hip adduction angle or peak knee abduction angle/moment. Abdominal hollowing and bracing elicited greater muscle activation than the control condition, and bracing was greater than hollowing in four of six muscles recorded. The lack of reduction in trunk, hip, and knee measures of ACL injury risk during abdominal hollowing and bracing suggests that these techniques alone may provide minimal benefit in ACL injury prevention training.

  19. EMG and mechanical changes during sprint starts at different front block obliquities.

    PubMed

    Guissard, N; Duchateau, J; Hainaut, K

    1992-11-01

    The effect of decreased front block obliquity on start velocity was studied during sprint starts. The electromyographic (EMG) activity of the medial gastrocnemius (MG), the soleus (Sol), and the vastus medialis (VM) was recorded and analyzed at a 70 degrees, a 50 degrees, and a 30 degrees angle between the foot plate surface and the horizontal. Integrated EMGs (IEMG) were compared with muscle length changes in the MG and Sol in relation to foot and knee movements. The results indicate that decreasing front block obliquity significantly (P < 0.05) increases the start velocity without any change to the total duration of the pushing phase and the overall EMG activity. This improvement in sprint start performance is associated with the enhanced contribution of the MG during eccentric and concentric phases of calf muscles contraction. In the "set position" the initial length of MG and Sol is increased at 50 degrees and 30 degrees as compared with 70 degrees. The subsequent stretch-shortening cycle is improved and contributes more effectively to the speed of the muscle shortening. Moreover, lengthening these muscles during the eccentric phase stretches the muscle spindles, and the reflex activities that contribute to the observed increase in the MG IEMG, are present when the slope of the block is reduced. The results indicate that decreasing front block obliquity induces neural and mechanical modifications that contribute to increasing the sprint start velocity without any increase in the duration of the pushing phase.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Well-Preserved Impact Ejecta and Impact Melt-Rich Deposits in Terra Sabaea

    NASA Image and Video Library

    2017-01-12

    This image of a well-preserved unnamed elliptical crater in Terra Sabaea, is illustrative of the complexity of ejecta deposits forming as a by-product of the impact process that shapes much of the surface of Mars. Here we see a portion of the western ejecta deposits emanating from a 10-kilometer impact crater that occurs within the wall of a larger, 60-kilometer-wide crater. In the central part is a lobe-shaped portion of the ejecta blanket from the smaller crater. The crater is elliptical not because of an angled (oblique) impact, but because it occurred on the steep slopes of the wall of a larger crater. This caused it to be truncated along the slope and elongated perpendicular to the slope. As a result, any impact melt from the smaller crater would have preferentially deposited down slope and towards the floor of the larger crater (towards the west). Within this deposit, we can see fine-scale morphological features in the form of a dense network of small ridges and pits. These crater-related pitted materials are consistent with volatile-rich impact melt-bearing deposits seen in some of the best-preserved craters on Mars (e.g., Zumba, Zunil, etc.). These deposits formed immediately after the impact event, and their discernible presence relate to the preservation state of the crater. This image is an attempt to visualize the complex formation and emplacement history of these enigmatic deposits formed by this elliptical crater and to understand its degradation history. http://photojournal.jpl.nasa.gov/catalog/PIA13078

  1. Integration of aerial oblique imagery and terrestrial imagery for optimized 3D modeling in urban areas

    NASA Astrophysics Data System (ADS)

    Wu, Bo; Xie, Linfu; Hu, Han; Zhu, Qing; Yau, Eric

    2018-05-01

    Photorealistic three-dimensional (3D) models are fundamental to the spatial data infrastructure of a digital city, and have numerous potential applications in areas such as urban planning, urban management, urban monitoring, and urban environmental studies. Recent developments in aerial oblique photogrammetry based on aircraft or unmanned aerial vehicles (UAVs) offer promising techniques for 3D modeling. However, 3D models generated from aerial oblique imagery in urban areas with densely distributed high-rise buildings may show geometric defects and blurred textures, especially on building façades, due to problems such as occlusion and large camera tilt angles. Meanwhile, mobile mapping systems (MMSs) can capture terrestrial images of close-range objects from a complementary view on the ground at a high level of detail, but do not offer full coverage. The integration of aerial oblique imagery with terrestrial imagery offers promising opportunities to optimize 3D modeling in urban areas. This paper presents a novel method of integrating these two image types through automatic feature matching and combined bundle adjustment between them, and based on the integrated results to optimize the geometry and texture of the 3D models generated from aerial oblique imagery. Experimental analyses were conducted on two datasets of aerial and terrestrial images collected in Dortmund, Germany and in Hong Kong. The results indicate that the proposed approach effectively integrates images from the two platforms and thereby improves 3D modeling in urban areas.

  2. Enhanced contrast ratio and viewing angle of polymer-stabilized liquid crystal via refractive index matching between liquid crystal and polymer network.

    PubMed

    Lee, Ji-Hoon; Lee, Jung Jin; Lim, Young Jin; Kundu, Sudarshan; Kang, Shin-Woong; Lee, Seung Hee

    2013-11-04

    Long standing electro-optic problems of a polymer-dispersed liquid crystal (PDLC) such as low contrast ratio and transmittances decrease in oblique viewing angle have been challenged with a mixture of dual frequency liquid crystal (DFLC) and reactive mesogen (RM). The DFLC and RM molecules were vertically aligned and then photo-polymerized using a UV light. At scattering state under 50 kHz electric field, DFLC was switched to planar state, giving greater extraordinary refractive index than the normal PDLC cell. Consequently, the scattering intensity and the contrast ratio were increased compared to the conventional PDLC cell. At transparent state under 1 kHz electric field, the extraordinary refractive index of DFLC was simultaneously matched with the refractive index of vertically aligned RM so that the light scattering in oblique viewing angles was minimized, giving rise to high transmittance in all viewing angles.

  3. Area Estimation of Deep-Sea Surfaces from Oblique Still Images

    PubMed Central

    Souto, Miguel; Afonso, Andreia; Calado, António; Madureira, Pedro; Campos, Aldino

    2015-01-01

    Estimating the area of seabed surfaces from pictures or videos is an important problem in seafloor surveys. This task is complex to achieve with moving platforms such as submersibles, towed or remotely operated vehicles (ROV), where the recording camera is typically not static and provides an oblique view of the seafloor. A new method for obtaining seabed surface area estimates is presented here, using the classical set up of two laser devices fixed to the ROV frame projecting two parallel lines over the seabed. By combining lengths measured directly from the image containing the laser lines, the area of seabed surfaces is estimated, as well as the camera’s distance to the seabed, pan and tilt angles. The only parameters required are the distance between the parallel laser lines and the camera’s horizontal and vertical angles of view. The method was validated with a controlled in situ experiment using a deep-sea ROV, yielding an area estimate error of 1.5%. Further applications and generalizations of the method are discussed, with emphasis on deep-sea applications. PMID:26177287

  4. A comparative study on omnidirectional anti-reflection SiO2 nanostructure films coating by glancing angle deposition

    NASA Astrophysics Data System (ADS)

    Prachachet, R.; Samransuksamer, B.; Horprathum, M.; Eiamchai, P.; Limwichean, S.; Chananonnawathorn, C.; Lertvanithphol, T.; Muthitamongkol, P.; Boonruang, S.; Buranasiri, P.

    2018-02-01

    Fabricated omnidirectional anti-reflection nanostructure films as a one of the promising alternative solar cell applications have attracted enormous scientific and industrial research benefits to their broadband, effective over a wide range of incident angles, lithography-free and high-throughput process. Recently, the nanostructure SiO2 film was the most inclusive study on anti-reflection with omnidirectional and broadband characteristics. In this work, the three-dimensional silicon dioxide (SiO2) nanostructured thin film with different morphologies including vertical align, slant, spiral and thin films were fabricated by electron beam evaporation with glancing angle deposition (GLAD) on the glass slide and silicon wafer substrate. The morphological of the prepared samples were characterized by field-emission scanning electron microscope (FE-SEM) and high-resolution transmission electron microscope (HRTEM). The transmission, omnidirectional and birefringence property of the nanostructure SiO2 films were investigated by UV-Vis-NIR spectrophotometer and variable angle spectroscopic ellipsometer (VASE). The spectrophotometer measurement was performed at normal incident angle and a full spectral range of 200 - 2000 nm. The angle dependent transmission measurements were investigated by rotating the specimen, with incidence angle defined relative to the surface normal of the prepared samples. This study demonstrates that the obtained SiO2 nanostructure film coated on glass slide substrate exhibits a higher transmission was 93% at normal incident angle. In addition, transmission measurement in visible wavelength and wide incident angles -80 to 80 were increased in comparison with the SiO2 thin film and glass slide substrate due to the transition in the refractive index profile from air to the nanostructure layer that improve the antireflection characteristics. The results clearly showed the enhanced omnidirectional and broadband characteristic of the three dimensional Si

  5. Tailored Fano resonance and localized electromagnetic field enhancement in Ag gratings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhaozhu; Klopf, J. Michael; Wang, Lei

    Metallic gratings can support Fano resonances when illuminated with EM radiation, and their characteristic reflectivity versus incident angle lineshape can be greatly affected by the surrounding dielectric environment and the grating geometry. By using conformal oblique incidence thin film deposition onto an optical grating substrate, it is possible to increase the grating amplitude due to shadowing effects, thereby enabling tailoring of the damping processes and electromagnetic field couplings of the Fano resonances, hence optimizing the associated localized electric field intensity. To investigate these effects we compare the optical reflectivity under resonance excitation in samples prepared by oblique angle deposition (OAD)more » and under normal deposition (ND) onto the same patterned surfaces. We observe that by applying OAD method, the sample exhibits a deeper and narrower reflectivity dip at resonance than that obtained under ND. This can be explained in terms of a lower damping of Fano resonance on obliquely deposited sample and leads to a stronger localized electric field. This approach opens a fabrication path for applications where tailoring the electromagnetic field induced by Fano resonance can improve the figure of merit of specific device characteristics, e.g. quantum efficiency (QE) in grating-based metallic photocathodes.« less

  6. Tailored Fano resonance and localized electromagnetic field enhancement in Ag gratings

    DOE PAGES

    Li, Zhaozhu; Klopf, J. Michael; Wang, Lei; ...

    2017-03-14

    Metallic gratings can support Fano resonances when illuminated with EM radiation, and their characteristic reflectivity versus incident angle lineshape can be greatly affected by the surrounding dielectric environment and the grating geometry. By using conformal oblique incidence thin film deposition onto an optical grating substrate, it is possible to increase the grating amplitude due to shadowing effects, thereby enabling tailoring of the damping processes and electromagnetic field couplings of the Fano resonances, hence optimizing the associated localized electric field intensity. To investigate these effects we compare the optical reflectivity under resonance excitation in samples prepared by oblique angle deposition (OAD)more » and under normal deposition (ND) onto the same patterned surfaces. We observe that by applying OAD method, the sample exhibits a deeper and narrower reflectivity dip at resonance than that obtained under ND. This can be explained in terms of a lower damping of Fano resonance on obliquely deposited sample and leads to a stronger localized electric field. This approach opens a fabrication path for applications where tailoring the electromagnetic field induced by Fano resonance can improve the figure of merit of specific device characteristics, e.g. quantum efficiency (QE) in grating-based metallic photocathodes.« less

  7. The scaling of oblique plasma double layers

    NASA Technical Reports Server (NTRS)

    Borovsky, J. E.

    1983-01-01

    Strong oblique plasma double layers are investigated using three methods, i.e., electrostatic particle-in-cell simulations, numerical solutions to the Poisson-Vlasov equations, and analytical approximations to the Poisson-Vlasov equations. The solutions to the Poisson-Vlasov equations and numerical simulations show that strong oblique double layers scale in terms of Debye lengths. For very large potential jumps, theory and numerical solutions indicate that all effects of the magnetic field vanish and the oblique double layers follow the same scaling relation as the field-aligned double layers.

  8. Massive CO2 Ice Deposits Sequestered in the South Polar Layered Deposits of Mars

    USGS Publications Warehouse

    Phillips, Roger J.; Davis, Brian J.; Tanaka, Kenneth L.; Byrne, Shane; Mellon, Michael T.; Putzig, Nathaniel E.; Haberle, Robert M.; Kahre, Melinda A.; Campbell, Bruce A.; Carter, Lynn M.; Smith, Isaac B.; Holt, John W.; Smrekar, Suzanne E.; Nunes, Daniel C.; Plaut, Jeffrey J.; Egan, Anthony F.; Titus, Timothy N.; Seu, Roberto

    2011-01-01

    Shallow Radar soundings from the Mars Reconnaissance Orbiter reveal a buried deposit of carbon dioxide (CO2) ice within the south polar layered deposits of Mars with a volume of 9500 to 12,500 cubic kilometers, about 30 times that previously estimated for the south pole residual cap. The deposit occurs within a stratigraphic unit that is uniquely marked by collapse features and other evidence of interior CO2 volatile release. If released into the atmosphere at times of high obliquity, the CO2 reservoir would increase the atmospheric mass by up to 80%, leading to more frequent and intense dust storms and to more regions where liquid water could persist without boiling.

  9. Prostate Brachytherapy With Oblique Needles to Treat Large Glands and Overcome Pubic Arch Interference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Bon; Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario; Bax, Jeff

    2012-08-01

    Purpose: First, to show that low-dose-rate prostate brachytherapy plans using oblique needle trajectories are more successful than parallel trajectories for large prostates with pubic arch interference (PAI); second, to test the accuracy of delivering an oblique plan by using a three-dimensional (3D) transrectal ultrasonography (TRUS)-guided mechatronic system. Methods and Materials: Prostates were contoured for 5 subjects' 3D TRUS images showing a maximum PAI of {<=}1 cm and a prostate volume of <50 cc. Two planning studies were done. First, prostate contours were artificially enlarged to 45 to 80 cc in 5- to 10-cc increments for a single subject. Second, allmore » subject prostate contours were enlarged to 60 cc. For each study, three types of plans were manually created for comparison: a parallel needle template (PT) plan, a parallel needle no-template (PNT) plan, and an oblique needle no-template (OBL) plan. Needle positions and angles were not discretized for nontemplate plans. European Society for Therapeutic Radiology and Oncology dose-volume histogram guidelines, iodine-125 (145-Gy prescription, 0.43 U), and needle angles of <15 Degree-Sign were used. An OBL plan was delivered to a pubic arch containing a 60-cc prostate phantom that mimicked the anatomy of the subject with the greatest PAI (23% by volume). Results: In the increasing-prostate volume study, OBL plans were successful for prostates of {<=}80 cc, and PT plans were successful for prostates of <65 cc. In paired, one-sided t tests for the 60-cc volume study, OBL plans showed dosimetric improvements for all organs compared to both of the parallel type plans (p < 0.05); PNT plans showed a benefit only in planning target volumes receiving more than 100 Gy compared to PT plans. A computed tomography scan of the phantom showed submillimeter seed placement accuracy in all directions. Conclusion: OBL plans were significantly better than parallel plans, and an OBL plan was accurately delivered to a 60-cc

  10. An experimental investigation of an oblique-wing and body combination at Mach numbers between 0.60 and 1.40

    NASA Technical Reports Server (NTRS)

    Graham, L. A.; Jones, R. T.; Boltz, F. W.

    1972-01-01

    An experimental investigation was conducted in an 11- by 11-foot wind tunnel to determine the aerodynamic characteristics of an oblique high aspect ratio wing in combination with a high fineness-ratio Sears-Haack body. Longitudinal and lateral-directional stability data were obtained at wing yaw angles from 0 deg to 60 deg over a test Mach number range from 0.6 to 1.4 for angles of attack between minus 6 deg and 9 deg. The effects of changes in Reynolds number, dihedral, and trailing-edge angle were studied along with the effects of a roughness strip on the upper and lower surfaces of the wing. Flow-visualization studies were made to determine the nature of the flow on the wing surfaces.

  11. Long-Term Obliquity Variations of a Moonless Earth

    NASA Astrophysics Data System (ADS)

    Barnes, Jason W.; Lissauer, J. J.; Chambers, J. E.

    2012-05-01

    Earth's present-day obliquity varies by +/-1.2 degrees over 100,000-year timescales. Without the Moon's gravity increasing the rotation axis precession rate, prior theory predicted that a moonless Earth's obliquity would be allowed to vary between 0 and 85 degrees -- moreso even than present-day Mars (0 - 60 degrees). We use a modified version of the symplectic orbital integrator `mercury' to numerically investigate the obliquity evolution of hypothetical moonless Earths. Contrary to the large theoretically allowed range, we find that moonless Earths more typically experience obliquity variations of just +/- 10 degrees over Gyr timescales. Some initial conditions for the moonless Earth's rotation rate and obliquity yield slightly greater variations, but the majority have smaller variations. In particular, retrograde rotators are quite stable and should constitute 50% of the population if initial terrestrial planet rotation is isotropic. Our results have important implications for the prospects of long-term habitability of moonless planets in extrasolar systems.

  12. Radio frequency sheaths in an oblique magnetic field

    DOE PAGES

    Myra, James R.; D'Ippolito, Daniel A.

    2015-06-01

    The physics of radio-frequency (rf) sheaths near a conducting surface is studied for plasmas immersed in a magnetic field that makes an oblique angle θ with the surface. A set of one-dimensional equations is developed that describe the dynamics of the time-dependent magnetic presheath and non-neutral Debye sheath. The model employs Maxwell-Boltzmann electrons, and the magnetization and mobility of the ions is determined by the magnetic field strength, and wave frequency, respectively. The angle, θ assumed to be large enough to insure an electron-poor sheath, is otherwise arbitrary. Concentrating on the ion-cyclotron range of frequencies, the equations are solved numericallymore » to obtain the rectified (dc) voltage, the rf voltage across the sheath and the rf current flowing through the sheath. As an application of this model, the sheath voltage-current relation is used to obtain the rf sheath impedance, which in turn gives an rf sheath boundary condition for the electric field at the sheath-plasma interface that can be used in rf wave codes. In general the impedance has both resistive and capacitive contributions, and generalizes previous sheath boundary condition models. The resistive part contributes to parasitic power dissipation at the wall.« less

  13. Preferential Heating of Oxygen 5+ Ions by Finite-Amplitude Oblique Alfven Waves

    NASA Technical Reports Server (NTRS)

    Maneva, Yana G.; Vinas, Adolfo; Araneda, Jamie; Poedts, Stefaan

    2016-01-01

    Minor ions in the fast solar wind are known to have higher temperatures and to flow faster than protons in the interplanetary space. In this study we combine previous research on parametric instability theory and 2.5D hybrid simulations to study the onset of preferential heating of Oxygen 5+ ions by large-scale finite-amplitude Alfven waves in the collisionless fast solar wind. We consider initially non-drifting isotropic multi-species plasma, consisting of isothermal massless fluid electrons, kinetic protons and kinetic Oxygen 5+ ions. The external energy source for the plasma heating and energization are oblique monochromatic Alfven-cyclotron waves. The waves have been created by rotating the direction of initial parallel pump, which is a solution of the multi-fluid plasma dispersion relation. We consider propagation angles theta less than or equal to 30 deg. The obliquely propagating Alfven pump waves lead to strong diffusion in the ion phase space, resulting in highly anisotropic heavy ion velocity distribution functions and proton beams. We discuss the application of the model to the problems of preferential heating of minor ions in the solar corona and the fast solar wind.

  14. Evaluation of the oblique detonation wave ramjet

    NASA Technical Reports Server (NTRS)

    Morrison, R. B.

    1978-01-01

    The potential performance of oblique detonation wave ramjets is analyzed in terms of multishock diffusion, oblique detonation waves, and heat release. Results are presented in terms of thrust coefficients and specific impulses for a range of flight Mach numbers of 6 to 16.

  15. Structural and optical properties of glancing angle deposited TiO2 nanowires array.

    PubMed

    Chinnamuthu, P; Mondal, A; Singh, N K; Dhar, J C; Das, S K; Chattopadhyay, K K

    2012-08-01

    TiO2 nanowires (NWs) have been synthesized by glancing angle deposition technique using e-beam evaporator. The average length 490 nm and diameter 80 nm of NWs were examined by field emission-scanning electron microscopy. Transmission electron microscopy emphasized that the NWs were widely dispersed at the top. X-ray diffraction has been carried out on the TiO2 thin film (TF) and NW array. A small blue shift of 0.03 eV was observed in Photoluminescence (PL) main band emission for TiO2 NW as compared to TiO2 TF. The high temperature annealing at 980 degrees C partially removed the oxygen vacancy from the sample, which was investigated by PL and optical absorption measurements.

  16. A computational study of laser-supported detonation waves propagating up an oblique incident beam

    NASA Astrophysics Data System (ADS)

    Bohn, C. L.; Crawford, M. L.

    1987-01-01

    A series of numerical experiments was conducted to study the propagation of laser-supported detonation waves (LSDWs) in the case that a CO2 laser beam strikes an aluminum surface obliquely in air. A reflected shock formed at the aluminum surface was more prominent at higher angles of incidence theta of the beam, but otherwise the hydrodynamics of the plasma and the LSDW were insensitive to theta. Furthermore, the total impulse delivered to the aluminum varied approximately as 1/cos theta, a result that can be modeled with elementary blast-wave theory.

  17. Nano-sculptured Janus-like TiAg thin films obliquely deposited by GLAD co-sputtering for temperature sensing.

    PubMed

    Pedrosa, Paulo; Ferreira, Armando; Martin, Nicolas; Arab Pour Yazdi, Mohammad; Billard, Alain; Lanceros-Mendez, Senentxu; Vaz, Filipe

    2018-06-11

    Inclined, zigzag and spiral TiAg films were prepared by GLancing Angle Deposition (GLAD), using two distinct Ti and Ag targets with a particle incident angle of 80º and Ag contents ranging from 20 to 75 at. %. The effect of increasing Ag incorporation and columnar architecture change on the morphological, structural and electrical properties of the films was investigated. It is shown that inclined columnar features (β = 47º) with high porosity were obtained for 20 at. % Ag, with the column angle sharply decreasing (β = 21º) for 50 at. % Ag, and steeply increasing afterwards until 37º for the film with 75 at. % Ag. The sputtered films exhibit a rather well-crystallized structure for Ag contents ≥ 50 at. %, with a TiAg (111) preferential growth. No significant oxidation was detected in all films, except for the one with 20 at. % Ag, after two 298-473-298 K temperature cycles in air. The calculated temperature coefficient of resistivity (TCR) values vary between 1.4 and 5.5×10-4 K-1. Nano-sculptured spiral films exhibit consistently higher resistivity (ρ = 1.5×10-6 Ω m) and TCR values (2.9×10-4 K-1) than the inclined one with the same Ag content (ρ = 1.2×10-6 Ω m and TCR = 2.0×10-4 K-1). No significant changes are observed in the zigzag films concerning these properties. The effective anisotropy Aeff at 473 K changes from 1.3 to 1.7 for the inclined films. Spiral films exhibit an almost completely isotropic behavior with Aeff = 1.1. Ag-rich TiAg core + shell Janus-like columns were obtained with increasing Ag concentrations. © 2018 IOP Publishing Ltd.

  18. Evaluation of pediatric ATD biofidelity as compared to child volunteers in low-speed far-side oblique and lateral impacts.

    PubMed

    Seacrist, Thomas; Locey, Caitlin M; Mathews, Emily A; Jones, Dakota L; Balasubramanian, Sriram; Maltese, Matthew R; Arbogast, Kristy B

    2014-01-01

    Motor vehicle crashes are a leading cause of injury and mortality for children. Mitigation of these injuries requires biofidelic anthropomorphic test devices (ATDs) to design and evaluate automotive safety systems. Effective countermeasures exist for frontal and near-side impacts but are limited for far-side impacts. Consequently, far-side impacts represent increased injury and mortality rates compared to frontal impacts. Thus, the objective of this study was to evaluate the biofidelity of the Hybrid III and Q-series pediatric ATDs in low-speed far-side impacts, with and without shoulder belt pretightening. Low-speed (2 g) far-side oblique (60°) and lateral (90°) sled tests were conducted using the Hybrid III and Q-series 6- and 10-year-old ATDs. ATDs were restrained by a lap and shoulder belt equipped with a precrash belt pretightener. Photoreflective targets were attached to the head, spine, shoulders, and sternum. ATDs were exposed to 8 low-speed sled tests: 2 oblique nontightened, 2 oblique pretightened, 2 lateral nontightened, 2 lateral pretightened. ATDs were compared with previously collected 9- to 11-year-old (n=10) volunteer data and newly collected 6- to 8-year-old volunteer data (n=7) tested with similar methods. Kinematic data were collected from a 3D target tracking system. Metrics of comparison included excursion, seat belt and seat pan reaction loads, belt-to-torso angle, and shoulder belt slip-out. The ATDs exhibited increased lateral excursion of the head top, C4, and T1 as well as increased downward excursion of the head top compared to the volunteers. Volunteers exhibited greater forward excursion than the ATDs in oblique nontightened impacts. These kinematics correspond to increased shoulder belt slip-out for the ATDs in oblique tests (ATDs=90%; volunteers=36%). Contrarily, similar shoulder belt slip-out was observed between ATDs and volunteers in lateral impacts (ATDs=80%; volunteers=78%). In pretightened impacts, the ATDs exhibited reduced

  19. In-flight total forces, moments and static aeroelastic characteristics of an oblique-wing research airplane

    NASA Technical Reports Server (NTRS)

    Curry, R. E.; Sim, A. G.

    1984-01-01

    A low-speed flight investigation has provided total force and moment coefficients and aeroelastic effects for the AD-1 oblique-wing research airplane. The results were interpreted and compared with predictions that were based on wind tunnel data. An assessment has been made of the aeroelastic wing bending design criteria. Lateral-directional trim requirements caused by asymmetry were determined. At angles of attack near stall, flow visualization indicated viscous flow separation and spanwise vortex flow. These effects were also apparent in the force and moment data.

  20. Oblique effect in visual area 2 of macaque monkeys

    PubMed Central

    Shen, Guofu; Tao, Xiaofeng; Zhang, Bin; Smith, Earl L.; Chino, Yuzo M.

    2014-01-01

    The neural basis of an oblique effect, a reduced visual sensitivity for obliquely oriented stimuli, has been a matter of considerable debate. We have analyzed the orientation tuning of a relatively large number of neurons in the primary visual cortex (V1) and visual area 2 (V2) of anesthetized and paralyzed macaque monkeys. Neurons in V2 but not V1 of macaque monkeys showed clear oblique effects. This orientation anisotropy in V2 was more robust for those neurons that preferred higher spatial frequencies. We also determined whether V1 and V2 neurons exhibit a similar orientation anisotropy soon after birth. The oblique effect was absent in V1 of 4- and 8-week-old infant monkeys, but their V2 neurons showed a significant oblique effect. This orientation anisotropy in infant V2 was milder than that in adults. The results suggest that the oblique effect emerges in V2 based on the pattern of the connections that are established before birth and enhanced by the prolonged experience-dependent modifications of the neural circuitry in V2. PMID:24511142

  1. Two-plasmon decay instability in inhomogeneous plasmas at oblique laser incidence

    DOE PAGES

    Wen, H.; Maximov, A. V.; Short, R. W.; ...

    2016-09-30

    The two-plasmon decay (TPD) and stimulated Raman scattering (SRS) instabilities have been studied in the region near the quarter-critical density in the plasmas of the laser-driven inertial confinement fusion for a wide range of laser angles of incidence. The theoretical analysis of the TPD for oblique laser incidence has been carried out. The theoretical growth rates and thresholds have been compared with the results of the fluid-type simulations, and a good agreement has been found. Here, in the modeling including both TPD and SRS, the spectra of the growing perturbations have multiple peaks, and the maximum growth may be influencedmore » by the interplay between TPD and SRS.« less

  2. Microwave Absorption Properties of Co@C Nanofiber Composite for Normal and Oblique Incidence

    NASA Astrophysics Data System (ADS)

    Zhang, Junming; Wang, Peng; Chen, Yuanwei; Wang, Guowu; Wang, Dian; Qiao, Liang; Wang, Tao; Li, Fashen

    2018-05-01

    Co@C nanofibers have been prepared by an electrospinning technique. Uniform morphology of the nanofibers and good dispersion of the magnetic cobalt nanoparticles in the carbon fiber frame were confirmed by field-emission scanning electron microscopy and high-resolution transmission electron microscopy. The electromagnetic parameters of a composite absorber composed of Co@C nanofibers/paraffin were measured from 2 GHz to 15 GHz. The electromagnetic wave absorption properties were simulated and investigated in the case of normal and oblique incidence. In the normal case, the absorber achieved absorption performance of - 40 dB at 7.1 GHz. When the angle of incidence was increased to 60°, the absorption effect with reflection loss (RL) exceeding - 10 dB could still be obtained. These results demonstrate that the reported Co@C nanofiber absorber exhibits excellent absorption performance over a wide range of angle of incidence.

  3. The Obliquities of the Giant Planets

    NASA Astrophysics Data System (ADS)

    Hamilton, D. P.; Ward, Wm. R.

    2002-09-01

    Jupiter has by far the smallest obliquity ( ~ 3o) of the planets (not counting tidally de-spun Mercury and Venus) which may be reflective of its formation by hydrodynamic gas flow rather than stochastic impacts. Saturn's obliquity ( ~ 26o), however, seems to belie this simple formation picture. But since the spin angular momentum of any planet is much smaller than its orbital angular momentum, post-formation obliquity can be strongly modified by passing through secular spin-orbit resonances, i.e., when the spin axis precession rate of the planet matches one of the frequencies describing the precession of the orbit plane. Spin axis precession is due to the solar torque on both the oblate figure of the planet and any orbiting satellites. In the case of Jupiter, the torque on the Galilean satellites is the principal cause of its 4.5*105 year precession; Saturn's precession of 1.8*106 years is dominated by Titan. In the past, the planetary spin axis precession rates should have been much faster due to the massive circumplanetary disks from which the current satellites condensed. The regression of the orbital node of a planet is due to the gravitational perturbations of the other planets. Nodal regression is not uniform, but is instead a composite of the planetary system's normal modes. For Jupiter and Saturn, the principal frequency is the nu16, with a period of ~ 49,000 years; the amplitude of this term is I ~ 0o.36 for Jupiter and I ~ 0o.90 for Saturn. In spite of the small amplitudes, slow adiabatic passages through this resonance (due to circumplanetary disk dispersal) could increase planetary obliquities from near zero to ~ [tan1/3 I] ~ 10o. We will discuss scenarios in which giant planet obliquities are affected by this and other resonances, and will use Jupiter's low obliquity to constrain the mass and duration of a satellite precursor disk. DPH acknowledges support from NSF Career Grant AST 9733789 and WRW is grateful to the NASA OSS and PGG programs.

  4. Separation of O/X Polarization Modes on Oblique Ionospheric Soundings

    NASA Astrophysics Data System (ADS)

    Harris, T. J.; Cervera, M. A.; Pederick, L. H.; Quinn, A. D.

    2017-12-01

    The oblique-incidence sounder (OIS) is a well-established instrument for determining the state of the ionosphere, with several advantages over vertical-incidence sounders (VIS). However, the processing and interpretation of OIS ionograms is more complicated than that of VIS ionograms. Due to the Earth's magnetic field, the ionosphere is birefringent at radio frequencies and a VIS or OIS will typically see two distinct ionospheric returns, known as the O and X modes. The separation of these two modes on a VIS, using a polarimetric receive antenna, is a well-established technique. However, this process is more complicated on an OIS due to a variable separation in the phase difference between the two modes, as measured between the two arms of a polarimetric antenna. Using a polarimetric antenna that can be rotated and tilted, we show that this variation in phase separation within an ionogram is caused by the variation in incidence angle, with some configurations leading to greater variation in phase separation. We then develop an algorithm for separating O and X modes in oblique ionograms that can account for the variation in phase separation, and we demonstrate successful separation even in relatively difficult cases. The variation in phase separation can also be exploited to estimate the incident elevation, a technique which may be useful for other applications of HF radio.

  5. Spatial and Temporal Variations in Slip Partitioning During Oblique Convergence Experiments

    NASA Astrophysics Data System (ADS)

    Beyer, J. L.; Cooke, M. L.; Toeneboehn, K.

    2017-12-01

    Physical experiments of oblique convergence in wet kaolin demonstrate the development of slip partitioning, where two faults accommodate strain via different slip vectors. In these experiments, the second fault forms after the development of the first fault. As one strain component is relieved by one fault, the local stress field then favors the development of a second fault with different slip sense. A suite of physical experiments reveals three styles of slip partitioning development controlled by the convergence angle and presence of a pre-existing fault. In experiments with low convergence angles, strike-slip faults grow prior to reverse faults (Type 1) regardless of whether the fault is precut or not. In experiments with moderate convergence angles, slip partitioning is dominantly controlled by the presence of a pre-existing fault. In all experiments, the primarily reverse fault forms first. Slip partitioning then develops with the initiation of strike-slip along the precut fault (Type 2) or growth of a secondary reverse fault where the first fault is steepest. Subsequently, the slip on the first fault transitions to primarily strike-slip (Type 3). Slip rates and rakes along the slip partitioned faults for both precut and uncut experiments vary temporally, suggesting that faults in these slip-partitioned systems are constantly adapting to the conditions produced by slip along nearby faults in the system. While physical experiments show the evolution of slip partitioning, numerical simulations of the experiments provide information about both the stress and strain fields, which can be used to compute the full work budget, providing insight into the mechanisms that drive slip partitioning. Preliminary simulations of precut experiments show that strain energy density (internal work) can be used to predict fault growth, highlighting where fault growth can reduce off-fault deformation in the physical experiments. In numerical simulations of uncut experiments with a

  6. Transonic wind-tunnel tests of an F-8 airplane model equipped with 12 and 14-percent thick oblique wings

    NASA Technical Reports Server (NTRS)

    Smith, R. C.; Jones, R. T.; Summers, J. L.

    1975-01-01

    An experimental investigation was conducted in the Ames 14-foot transonic wind tunnel to study the aerodynamic performance and stability characteristics of a 0.087-scale model of an F-8 airplane fitted with an oblique wing. Two elliptical planform (axis ratio = 8:1) wings, each having a maximum thickness of 12 and 14 percent, were tested. Longitudinal stability data were obtained with no wing and with each of the two wings set at sweep angles of 0, 45, and 60 deg. Lateral directional stability data were obtained for the 12 percent wing only. Test Mach numbers ranged from 0.6 to 1.2 in the unit Reynolds number range from 11.2 to 13.1 million per meter. Angles of attack were between -6 and 22 deg at zero sideslip. Angles of sideslip were between -6 and +6 deg for two angles of attack, depending upon the wing configuration.

  7. Numerical study of unsteady MHD oblique stagnation point flow and heat transfer due to an oscillating stream

    NASA Astrophysics Data System (ADS)

    Javed, T.; Ghaffari, A.; Ahmad, H.

    2016-05-01

    The unsteady stagnation point flow impinging obliquely on a flat plate in presence of a uniform applied magnetic field due to an oscillating stream has been studied. The governing partial differential equations are transformed into dimensionless form and the stream function is expressed in terms of Hiemenz and tangential components. The dimensionless partial differential equations are solved numerically by using well-known implicit finite difference scheme named as Keller-box method. The obtained results are compared with those available in the literature. It is observed that the results are in excellent agreement with the previous studies. The effects of pertinent parameters involved in the problem namely magnetic parameter, Prandtl number and impinging angle on flow and heat transfer characteristics are illustrated through graphs. It is observed that the influence of magnetic field strength increases the fluid velocity and by the increase of obliqueness parameter, the skin friction increases.

  8. Investigation on the interfacial chemical state and band alignment for the sputtering-deposited CaF2/p-GaN heterojunction by angle-resolved X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Kexiong; Liao, Meiyong; Sumiya, Masatomo; Koide, Yasuo; Sang, Liwen

    2016-11-01

    The interfacial chemical state and the band alignment of the sputtering-deposited CaF2/p-GaN hetero-structure were investigated by angle-resolved X-ray photoelectron spectroscopy. The dependence of Ga 3p core-level positions on the collection angles proves that the downward band bending of p-GaN is reduced from 1.51 to 0.85 eV after the deposition of CaF2, which may be due to the reduction of Mg-Ga-O-related interface states by the oxygen-free deposition of CaF2. The band gap of sputtering-deposited CaF2 is estimated to be about 7.97 eV with a potential gradient of 0.48 eV obtained by the variation of the Ca 2p3/2 position on different collection angles. By taking into account the p-GaN surface band bending and potential gradient in the CaF2 layer, large valence and conduction band offsets of 2.66 ± 0.20 and 1.92 ± 0.20 eV between CaF2 and p-GaN are obtained. These results indicate that CaF2 is a promising gate dielectric layer on the p-GaN for the application of metal-insulator-semiconductor devices.

  9. Oblique Loading in Post Mortem Human Surrogates from Vehicle Lateral Impact Tests using Chestbands.

    PubMed

    Yoganandan, Narayan; Humm, John R; Pintar, Frank A; Arun, Mike W J; Rhule, Heather; Rudd, Rodney; Craig, Matthew

    2015-11-01

    While numerous studies have been conducted to determine side impact responses of Post Mortem Human Surrogates (PMHS) using sled and other equipment, experiments using the biological surrogate in modern full-scale vehicles are not available. The present study investigated the presence of oblique loading in moving deformable barrier and pole tests. Threepoint belt restrained PMHS were positioned in the left front and left rear seats in the former and left front seat in the latter condition and tested according to consumer testing protocols. Three chestbands were used in each specimen (upper, middle and lower thorax). Accelerometers were secured to the skull, shoulder, upper, middle and lower thoracic vertebrae, sternum, and sacrum. Chestband signals were processed to determine magnitudes and angulations of peak deflections. The magnitude and timing of various signal peaks are given. Vehicle accelerations, door velocities, and seat belt loads are also given. Analysis of deformation contours, peak deflections, and angulations indicated that the left rear seated specimen were exposed to anterior oblique loading while left front specimens in both tests sustained essentially pure lateral loading to the torso. These data can be used to validate human body computational models. The occurrence of oblique loading in full-scale testing, hitherto unrecognized, may serve to stimulate the exploration of its role in injuries to the thorax and lower extremities in modern vehicles. It may be important to continue research in this area because injury metrics have a lower threshold for angled loading.

  10. Motor mechanisms of vertical fusion in individuals with superior oblique paresis.

    PubMed

    Mudgil, Ananth V; Walker, Mark; Steffen, Heimo; Guyton, David L; Zee, David S

    2002-06-01

    We wanted to determine the mechanisms of motor vertical fusion in patients with superior oblique paresis and to correlate these mechanisms with surgical outcomes. Ten patients with superior oblique paresis underwent 3-axis, bilateral, scleral search coil eye movement recordings. Eye movements associated with fusion were analyzed. Six patients had decompensated congenital superior oblique paresis and 4 had acquired superior oblique paresis. All patients with acquired superior oblique paresis relied predominantly on the vertical rectus muscles for motor fusion. Patients with congenital superior oblique paresis were less uniform in their mechanisms for motor fusion: 2 patients used predominantly the oblique muscles, 2 patients used predominantly the vertical recti, and 2 patients used predominantly the superior oblique in the hyperdeviated eye and the superior rectus in the hypodeviated eye. The last 2 patients developed the largest changes in torsional eye alignment relative to changes in vertical eye alignment and were the only patients to develop symptomatic surgical overcorrections. There are 3 different mechanisms for vertical fusion in individuals with superior oblique paresis, with the predominant mechanism being the vertical recti. A subset of patients with superior oblique paresis uses predominantly the superior oblique muscle in the hyperdeviated paretic eye and the superior rectus muscle in the fellow eye for fusion. This results in intorsion of both eyes, causing a large change in torsional alignment. The consequent cyclodisparity, in addition to the existing vertical deviation, may make fusion difficult. The differing patterns of vertical fusional vergence may have implications for surgical treatment.

  11. Strike-Slip Fault Patterns on Europa: Obliquity or Polar Wander?

    NASA Technical Reports Server (NTRS)

    Rhoden, Alyssa Rose; Hurford, Terry A.; Manga, Michael

    2011-01-01

    Variations in diurnal tidal stress due to Europa's eccentric orbit have been considered as the driver of strike-slip motion along pre-existing faults, but obliquity and physical libration have not been taken into account. The first objective of this work is to examine the effects of obliquity on the predicted global pattern of fault slip directions based on a tidal-tectonic formation model. Our second objective is to test the hypothesis that incorporating obliquity can reconcile theory and observations without requiring polar wander, which was previously invoked to explain the mismatch found between the slip directions of 192 faults on Europa and the global pattern predicted using the eccentricity-only model. We compute predictions for individual, observed faults at their current latitude, longitude, and azimuth with four different tidal models: eccentricity only, eccentricity plus obliquity, eccentricity plus physical libration, and a combination of all three effects. We then determine whether longitude migration, presumably due to non-synchronous rotation, is indicated in observed faults by repeating the comparisons with and without obliquity, this time also allowing longitude translation. We find that a tidal model including an obliquity of 1.2?, along with longitude migration, can predict the slip directions of all observed features in the survey. However, all but four faults can be fit with only 1? of obliquity so the value we find may represent the maximum departure from a lower time-averaged obliquity value. Adding physical libration to the obliquity model improves the accuracy of predictions at the current locations of the faults, but fails to predict the slip directions of six faults and requires additional degrees of freedom. The obliquity model with longitude migration is therefore our preferred model. Although the polar wander interpretation cannot be ruled out from these results alone, the obliquity model accounts for all observations with a value

  12. Ag films deposited on Si and Ti: How the film-substrate interaction influences the nanoscale film morphology

    NASA Astrophysics Data System (ADS)

    Ruffino, F.; Torrisi, V.

    2017-11-01

    Submicron-thick Ag films were sputter deposited, at room temperature, on Si, covered by the native SiO2 layer, and on Ti, covered by the native TiO2 layer, under normal and oblique deposition angle. The aim of this work was to study the morphological differences in the grown Ag films on the two substrates when fixed all the other deposition parameters. In fact, the surface diffusivity of the Ag adatoms is different on the two substrates (higher on the SiO2 surface) due to the different Ag-SiO2 and Ag-TiO2 atomic interactions. So, the effect of the adatoms surface diffusivity, as determined by the adatoms-substrate interaction, on the final film morphology was analyzed. To this end, microscopic analyses were used to study the morphology of the grown Ag films. Even if the homologous temperature prescribes that the Ag film grows on both substrates in the zone I described by the structure zone model some significant differences are observed on the basis of the supporting substrate. In the normal incidence condition, on the SiO2/Si surface a dense close-packed Ag film exhibiting a smooth surface is obtained, while on the TiO2/Ti surface a more columnar film morphology is formed. In the oblique incidence condition the columnar morphology for the Ag film occurs both on SiO2/Si and TiO2/Ti but a higher porous columnar film is obtained on TiO2/Ti due to the lower Ag diffusivity. These results indicate that the adatoms diffusivity on the substrate as determined by the adatom-surface interaction (in addition to the substrate temperature) strongly determines the final film nanostructure.

  13. Calibration Procedures on Oblique Camera Setups

    NASA Astrophysics Data System (ADS)

    Kemper, G.; Melykuti, B.; Yu, C.

    2016-06-01

    Beside the creation of virtual animated 3D City models, analysis for homeland security and city planning, the accurately determination of geometric features out of oblique imagery is an important task today. Due to the huge number of single images the reduction of control points force to make use of direct referencing devices. This causes a precise camera-calibration and additional adjustment procedures. This paper aims to show the workflow of the various calibration steps and will present examples of the calibration flight with the final 3D City model. In difference to most other software, the oblique cameras are used not as co-registered sensors in relation to the nadir one, all camera images enter the AT process as single pre-oriented data. This enables a better post calibration in order to detect variations in the single camera calibration and other mechanical effects. The shown sensor (Oblique Imager) is based o 5 Phase One cameras were the nadir one has 80 MPIX equipped with a 50 mm lens while the oblique ones capture images with 50 MPix using 80 mm lenses. The cameras are mounted robust inside a housing to protect this against physical and thermal deformations. The sensor head hosts also an IMU which is connected to a POS AV GNSS Receiver. The sensor is stabilized by a gyro-mount which creates floating Antenna -IMU lever arms. They had to be registered together with the Raw GNSS-IMU Data. The camera calibration procedure was performed based on a special calibration flight with 351 shoots of all 5 cameras and registered the GPS/IMU data. This specific mission was designed in two different altitudes with additional cross lines on each flying heights. The five images from each exposure positions have no overlaps but in the block there are many overlaps resulting in up to 200 measurements per points. On each photo there were in average 110 well distributed measured points which is a satisfying number for the camera calibration. In a first step with the help of

  14. Reaching to virtual targets: The oblique effect reloaded in 3-D.

    PubMed

    Kaspiris-Rousellis, Christos; Siettos, Constantinos I; Evdokimidis, Ioannis; Smyrnis, Nikolaos

    2017-02-20

    Perceiving and reproducing direction of visual stimuli in 2-D space produces the visual oblique effect, which manifests as increased precision in the reproduction of cardinal compared to oblique directions. A second cognitive oblique effect emerges when stimulus information is degraded (such as when reproducing stimuli from memory) and manifests as a systematic distortion where reproduced directions close to the cardinal axes deviate toward the oblique, leading to space expansion at cardinal and contraction at oblique axes. We studied the oblique effect in 3-D using a virtual reality system to present a large number of stimuli, covering the surface of an imaginary half sphere, to which subjects had to reach. We used two conditions, one with no delay (no-memory condition) and one where a three-second delay intervened between stimulus presentation and movement initiation (memory condition). A visual oblique effect was observed for the reproduction of cardinal directions compared to oblique, which did not differ with memory condition. A cognitive oblique effect also emerged, which was significantly larger in the memory compared to the no-memory condition, leading to distortion of directional space with expansion near the cardinal axes and compression near the oblique axes on the hemispherical surface. This effect provides evidence that existing models of 2-D directional space categorization could be extended in the natural 3-D space. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. 3D architecture of cyclic-step and antidune deposits in glacigenic subaqueous fan and delta settings: Integrating outcrop and ground-penetrating radar data

    NASA Astrophysics Data System (ADS)

    Lang, Jörg; Sievers, Julian; Loewer, Markus; Igel, Jan; Winsemann, Jutta

    2017-12-01

    Bedforms related to supercritical flows are increasingly recognised as important constituents of many depositional environments, but outcrop studies are commonly hampered by long bedform wavelengths and complex three-dimensional geometries. We combined outcrop-based facies analysis with ground-penetrating radar (GPR) surveys to analyse the 3D facies architecture of subaqueous ice-contact fan and glacifluvial delta deposits. The studied sedimentary systems were deposited at the margins of the Middle Pleistocene Scandinavian ice sheets in Northern Germany. Glacifluvial Gilbert-type deltas are characterised by steeply dipping foreset beds, comprising cyclic-step deposits, which alternate with antidune deposits. Deposits of cyclic steps consist of lenticular scours infilled by backset cross-stratified pebbly sand and gravel. The GPR sections show that the scour fills form trains along the delta foresets, which can locally be traced for up to 15 m. Perpendicular and oblique to palaeoflow direction, these deposits appear as troughs with concentric or low-angle cross-stratified infills. Downflow transitions from scour fills into sheet-like low-angle cross-stratified or sinusoidally stratified pebbly sand, deposited by antidunes, are common. Cyclic steps and antidunes were deposited by sustained and surge-type supercritical density flows, which were related to hyperpycnal flows, triggered by major meltwater discharge or slope-failure events. Subaqueous ice-contact fan deposits include deposits of progradational scour fills, isolated hydraulic jumps, antidunes and (humpback) dunes. The gravel-rich fan succession consists of vertical stacks of laterally amalgamated pseudo-sheets, indicating deposition by pulses of waning supercritical flows under high aggradation rates. The GPR sections reveal the large-scale architecture of the sand-rich fan succession, which is characterised by lobe elements with basal erosional surfaces associated with scours filled with backsets related

  16. Surface treatment with linearly polarized laser beam at oblique incidence

    NASA Astrophysics Data System (ADS)

    Gutu, I.; Petre, C.; Mihailescu, I. N.; Taca, M.; Alexandrescu, E.; Ivanov, I.

    2002-07-01

    An effective method for surface heat treatment with 10.6 μm linear polarized laser beam at oblique incidence is reported. A circular focused laser spot on the workpiece surface, simultaneously with 2.2-4 times increasing of the absorption are obtained in the 70-80° range of the incidence angle. The main element of the experimental setup is the astigmatic focusing head which focalize the laser beam into an elliptical spot of ellipticity ɛ>3 at normal incidence. At a proper incidence angle (obtained by the focusing head tilting) the focused laser spot on the work piece surface gets a circular form and p-state of polarization is achieved. We performed laser heat treatment (transformation hardening, surface remelting) of the uncoated surface, as well as the alloying and cladding processes by powder injection. An enhancement of the processing efficiency was obtained; in this way the investment and operation costs for surface treatment with CO 2 laser can be significantly reduced. Several technical advantages concerning the pollution of the focusing optical components, powder jet flowing and reflected radiation by the work piece surface are obtained.

  17. Obliquely Propagating Waves in Bi-Kappa Plasmas

    NASA Astrophysics Data System (ADS)

    Gaelzer, R.; Ziebell, L. F.; Meneses, A. R.

    2016-12-01

    The effects of kappa velocity distribution functions (VDFs) have been the subjectof intense research. Such functions have beenfound to provide a better fitting to the VDFs measured by spacecraftin the solar wind. An anisotropic VDF contains free energy that can excite wavesin the plasma. The induced turbulence also determines the observed shape of the VDF.The general treatment for waves excited by (bi-)Maxwellian plasmas is well-established.However, for kappa distributions (isotropic or anisotropic), the majority of the studieswere restricted to the limiting cases of purely parallel or perpendicular propagation.Contributions to the general case of obliquely-propagating waves have been scarcely reported.The absence of a general treatment prevents a complete analysis of the wave-particle interactionin kappa plasmas, since some instabilities can operate both in the parallel and oblique directions.A series of papers published by the authors begin to remedy this situation. In a first work [1],we have obtained the dielectric tensor and dispersion relations for quasi-perpendicular dispersive Alfvén waves resulting from a kappa VDF. This approach was later generalized by [2],where the formalism was extended to the general case of electrostatic/electromagnetic waves propagatingin an isotropic kappa plasma in any frequency range and for arbitrary angles.In the present work [3], we generalize even further the formalism by the derivation of thegeneral dielectric tensor of an anisotropic bi-kappa plasma. We present the state-of-the-art of theformalism and show how it enables a systematic study of waves and instabilities propagating inarbitrary directions and frequencies in a bi-kappa plasma.[1] R. Gaelzer, L. F. Ziebell, J. Geophys. Res. 119, 9334 (2014), doi: 10.1002/2014JA020667.[2] R. Gaelzer, L. F. Ziebell, Phys. Plasmas 23, 022110 (2016), doi: 10.1063/1.4941260.[3] R. Gaelzer et al., Phys. Plasmas 23, 062108 (2016), doi: 10.1063/1.4953430.

  18. Reduced Oblique Effect in Children with Autism Spectrum Disorders (ASD)

    PubMed Central

    Sysoeva, Olga V.; Davletshina, Maria A.; Orekhova, Elena V.; Galuta, Ilia A.; Stroganova, Tatiana A.

    2016-01-01

    People are very precise in the discrimination of a line orientation relative to the cardinal (vertical and horizontal) axes, while their orientation discrimination sensitivity along the oblique axes is less refined. This difference in discrimination sensitivity along cardinal and oblique axes is called the “oblique effect.” Given that the oblique effect is a basic feature of visual processing with an early developmental origin, its investigation in children with Autism Spectrum Disorder (ASD) may shed light on the nature of visual sensory abnormalities frequently reported in this population. We examined line orientation sensitivity along oblique and vertical axes in a sample of 26 boys with ASD (IQ > 68) and 38 typically developing (TD) boys aged 7–15 years, as well as in a subsample of carefully IQ-matched ASD and TD participants. Children were asked to detect the direction of tilt of a high-contrast black-and-white grating relative to vertical (90°) or oblique (45°) templates. The oblique effect was reduced in children with ASD as compared to TD participants, irrespective of their IQ. This reduction was due to poor orientation sensitivity along the vertical axis in ASD children, while their ability to discriminate line orientation along the oblique axis was unaffected. We speculate that this deficit in sensitivity to vertical orientation may reflect disrupted mechanisms of early experience-dependent learning that takes place during the critical period for orientation selectivity. PMID:26834540

  19. Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime

    NASA Astrophysics Data System (ADS)

    Huang, Xiaojun; Yang, Helin; Shen, Zhaoyang; Chen, Jiao; Lin, Hail; Yu, Zetai

    2017-09-01

    We present a water-injected all-dielectric metamaterial that can offer an extremely wide bandwidth of electromagnetic absorption and prominent wide incident angle range. Different from conventional metal-dielectric based metamaterial absorbers, the absorption mechanism of the proposed all-dielectric metamaterial absorber is to take advantage of the dispersion of water, rather than electric or/and magnetic resonance, which thoroughly overcomes the defects of narrow bandwidth and oblique incidence from metal-dielectric based metamaterial absorber. The simulated absorption was over 90% in 8.1-22.9 GHz with the relative bandwidth of 95.5% when the incident angle reaches 60°, and the corresponding microwave experiment is performed to support the simulations. The obtained excellent absorption performance reveals a possible application of the proposed absorber, which can be exploited for electromagnetic stealth purposes, especially for electromagnetic stealth of sea targets.

  20. Three-dimensional frictional plastic strain partitioning during oblique rifting

    NASA Astrophysics Data System (ADS)

    Duclaux, Guillaume; Huismans, Ritske S.; May, Dave

    2017-04-01

    Throughout the Wilson cycle the obliquity between lithospheric plate motion direction and nascent or existing plate boundaries prompts the development of intricate three-dimensional tectonic systems. Where oblique divergence dominates, as in the vast majority of continental rift and incipient oceanic domains, deformation is typically transtensional and large stretching in the brittle upper crust is primarily achieved by the accumulation of displacement on fault networks of various complexity. In continental rift depressions such faults are initially distributed over tens to hundreds of kilometer-wide regions, which can ultimately stretch and evolve into passive margins. Here, we use high-resolution 3D thermo-mechanical finite element models to investigate the relative timing and distribution of localised frictional plastic deformation in the upper crust during oblique rift development in a simplified layered lithosphere. We vary the orientation of a wide oblique heterogeneous weak zone (representing a pre-existing geologic feature like a past orogenic domain), and test the sensitivity of the shear zones orientation to a range of noise distribution. These models allow us to assess the importance of material heterogeneities for controlling the spatio-temporal shear zones distribution in the upper crust during oblique rifting, and to discuss the underlying controls governing oblique continental breakup.

  1. A Semi-Analytical Method for the PDFs of A Ship Rolling in Random Oblique Waves

    NASA Astrophysics Data System (ADS)

    Liu, Li-qin; Liu, Ya-liu; Xu, Wan-hai; Li, Yan; Tang, You-gang

    2018-03-01

    The PDFs (probability density functions) and probability of a ship rolling under the random parametric and forced excitations were studied by a semi-analytical method. The rolling motion equation of the ship in random oblique waves was established. The righting arm obtained by the numerical simulation was approximately fitted by an analytical function. The irregular waves were decomposed into two Gauss stationary random processes, and the CARMA (2, 1) model was used to fit the spectral density function of parametric and forced excitations. The stochastic energy envelope averaging method was used to solve the PDFs and the probability. The validity of the semi-analytical method was verified by the Monte Carlo method. The C11 ship was taken as an example, and the influences of the system parameters on the PDFs and probability were analyzed. The results show that the probability of ship rolling is affected by the characteristic wave height, wave length, and the heading angle. In order to provide proper advice for the ship's manoeuvring, the parametric excitations should be considered appropriately when the ship navigates in the oblique seas.

  2. Obliquity evolution of the minor satellites of Pluto and Charon

    NASA Astrophysics Data System (ADS)

    Quillen, Alice C.; Nichols-Fleming, Fiona; Chen, Yuan-Yuan; Noyelles, Benoît

    2017-09-01

    New Horizons mission observations show that the small satellites Styx, Nix, Kerberos and Hydra, of the Pluto-Charon system, have not tidally spun-down to near synchronous spin states and have high obliquities with respect to their orbit about the Pluto-Charon binary (Weaver, 2016). We use a damped mass-spring model within an N-body simulation to study spin and obliquity evolution for single spinning non-round bodies in circumbinary orbit. Simulations with tidal dissipation alone do not show strong obliquity variations from tidally induced spin-orbit resonance crossing and this we attribute to the high satellite spin rates and low orbital eccentricities. However, a tidally evolving Styx exhibits intermittent obliquity variations and episodes of tumbling. During a previous epoch where Charon migrated away from Pluto, the minor satellites could have been trapped in orbital mean motion inclination resonances. An outward migrating Charon induces large variations in Nix and Styx's obliquities. The cause is a commensurability between the mean motion resonance frequency and the spin precession rate of the spinning body. As the minor satellites are near mean motion resonances, this mechanism could have lifted the obliquities of all four minor satellites. The high obliquities need not be primordial if the minor satellites were at one time captured into mean motion resonances.

  3. The SCEC 3D Community Fault Model (CFM-v5): An updated and expanded fault set of oblique crustal deformation and complex fault interaction for southern California

    NASA Astrophysics Data System (ADS)

    Nicholson, C.; Plesch, A.; Sorlien, C. C.; Shaw, J. H.; Hauksson, E.

    2014-12-01

    Southern California represents an ideal natural laboratory to investigate oblique deformation in 3D owing to its comprehensive datasets, complex tectonic history, evolving components of oblique slip, and continued crustal rotations about horizontal and vertical axes. As the SCEC Community Fault Model (CFM) aims to accurately reflect this 3D deformation, we present the results of an extensive update to the model by using primarily detailed fault trace, seismic reflection, relocated hypocenter and focal mechanism nodal plane data to generate improved, more realistic digital 3D fault surfaces. The results document a wide variety of oblique strain accommodation, including various aspects of strain partitioning and fault-related folding, sets of both high-angle and low-angle faults that mutually interact, significant non-planar, multi-stranded faults with variable dip along strike and with depth, and active mid-crustal detachments. In places, closely-spaced fault strands or fault systems can remain surprisingly subparallel to seismogenic depths, while in other areas, major strike-slip to oblique-slip faults can merge, such as the S-dipping Arroyo Parida-Mission Ridge and Santa Ynez faults with the N-dipping North Channel-Pitas Point-Red Mountain fault system, or diverge with depth. Examples of the latter include the steep-to-west-dipping Laguna Salada-Indiviso faults with the steep-to-east-dipping Sierra Cucapah faults, and the steep southern San Andreas fault with the adjacent NE-dipping Mecca Hills-Hidden Springs fault system. In addition, overprinting by steep predominantly strike-slip faulting can segment which parts of intersecting inherited low-angle faults are reactivated, or result in mutual cross-cutting relationships. The updated CFM 3D fault surfaces thus help characterize a more complex pattern of fault interactions at depth between various fault sets and linked fault systems, and a more complex fault geometry than typically inferred or expected from

  4. Optimal geometrical design of inertial vibration DC piezoelectric nanogenerators based on obliquely aligned InN nanowire arrays.

    PubMed

    Ku, Nai-Jen; Liu, Guocheng; Wang, Chao-Hung; Gupta, Kapil; Liao, Wei-Shun; Ban, Dayan; Liu, Chuan-Pu

    2017-09-28

    Piezoelectric nanogenerators have been investigated to generate electricity from environmental vibrations due to their energy conversion capabilities. In this study, we demonstrate an optimal geometrical design of inertial vibration direct-current piezoelectric nanogenerators based on obliquely aligned InN nanowire (NW) arrays with an optimized oblique angle of ∼58°, and driven by the inertial force of their own weight, using a mechanical shaker without any AC/DC converters. The nanogenerator device manifests potential applications not only as a unique energy harvesting device capable of scavenging energy from weak mechanical vibrations, but also as a sensitive strain sensor. The maximum output power density of the nanogenerator is estimated to be 2.9 nW cm -2 , leading to an improvement of about 3-12 times that of vertically aligned ZnO NW DC nanogenerators. Integration of two nanogenerators also exhibits a linear increase in the output power, offering an enormous potential for the creation of self-powered sustainable nanosystems utilizing incessantly natural ambient energy sources.

  5. Constraints on the Obliquities of Kepler Planet-hosting Stars

    NASA Astrophysics Data System (ADS)

    Winn, Joshua N.; Petigura, Erik A.; Morton, Timothy D.; Weiss, Lauren M.; Dai, Fei; Schlaufman, Kevin C.; Howard, Andrew W.; Isaacson, Howard; Marcy, Geoffrey W.; Justesen, Anders Bo; Albrecht, Simon

    2017-12-01

    Stars with hot Jupiters have obliquities ranging from 0° to 180°, but relatively little is known about the obliquities of stars with smaller planets. Using data from the California-Kepler Survey, we investigate the obliquities of stars with planets spanning a wide range of sizes, most of which are smaller than Neptune. First, we identify 156 planet hosts for which measurements of the projected rotation velocity (v\\sin i) and rotation period are both available. By combining estimates of v and v\\sin i, we find nearly all the stars to be compatible with high inclination, and hence, low obliquity (≲20°). Second, we focus on a sample of 159 hot stars ({T}{eff}> 6000 K) for which v\\sin i is available but not necessarily the rotation period. We find six stars for which v\\sin i is anomalously low, an indicator of high obliquity. Half of these have hot Jupiters, even though only 3% of the stars that were searched have hot Jupiters. We also compare the v\\sin i distribution of the hot stars with planets to that of 83 control stars selected without prior knowledge of planets. The mean v\\sin i of the control stars is lower than that of the planet hosts by a factor of approximately π /4, as one would expect if the planet hosts have low obliquities. All these findings suggest that the Kepler planet-hosting stars generally have low obliquities, with the exception of hot stars with hot Jupiters.

  6. Inferring planetary obliquity using rotational and orbital photometry

    NASA Astrophysics Data System (ADS)

    Schwartz, J. C.; Sekowski, C.; Haggard, H. M.; Pallé, E.; Cowan, N. B.

    2016-03-01

    The obliquity of a terrestrial planet is an important clue about its formation and critical to its climate. Previous studies using simulated photometry of Earth show that continuous observations over most of a planet's orbit can be inverted to infer obliquity. However, few studies of more general planets with arbitrary albedo markings have been made and, in particular, a simple theoretical understanding of why it is possible to extract obliquity from light curves is missing. Reflected light seen by a distant observer is the product of a planet's albedo map, its host star's illumination, and the visibility of different regions. It is useful to treat the product of illumination and visibility as the kernel of a convolution. Time-resolved photometry constrains both the albedo map and the kernel, the latter of which sweeps over the planet due to rotational and orbital motion. The kernel's movement distinguishes prograde from retrograde rotation for planets with non-zero obliquity on inclined orbits. We demonstrate that the kernel's longitudinal width and mean latitude are distinct functions of obliquity and axial orientation. Notably, we find that a planet's spin axis affects the kernel - and hence time-resolved photometry - even if this planet is east-west uniform or spinning rapidly, or if it is north-south uniform. We find that perfect knowledge of the kernel at 2-4 orbital phases is usually sufficient to uniquely determine a planet's spin axis. Surprisingly, we predict that east-west albedo contrast is more useful for constraining obliquity than north-south contrast.

  7. Effects of Extreme Obliquity Variations on the Habitability of Exoplanets

    NASA Technical Reports Server (NTRS)

    Armstrong, J. C.; Barnes, R.; Domagal-Goldman, S.; Breiner, J.; Quinn, T. R.; Meadows, V. S.

    2014-01-01

    We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We show that large-amplitude, high-frequency obliquity oscillations on Earth-like exoplanets can suppress the ice-albedo feedback, increasing the outer edge of the habitable zone. We restricted our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We verified that these systems are stable for 108 years with N-body simulations and calculated the obliquity variations induced by the orbital evolution of the Earth-mass planet and a torque from the host star. We ran a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface, and we calculated differences in the outer edge of the habitable zone for planets with rapid obliquity variations. For each hypothetical system, we calculated the outer edge of habitability for two conditions: (1) the full evolution of the planetary spin and orbit and (2) the eccentricity and obliquity fixed at their average values. We recovered previous results that higher values of fixed obliquity and eccentricity expand the habitable zone, but we also found that obliquity oscillations further expand habitable orbits in all cases. Terrestrial planets near the outer edge of the habitable zone may be more likely to support life in systems that induce rapid obliquity oscillations as opposed to fixed-spin planets. Such planets may be the easiest to directly characterize with space-borne telescopes.

  8. Effects of extreme obliquity variations on the habitability of exoplanets.

    PubMed

    Armstrong, J C; Barnes, R; Domagal-Goldman, S; Breiner, J; Quinn, T R; Meadows, V S

    2014-04-01

    We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We show that large-amplitude, high-frequency obliquity oscillations on Earth-like exoplanets can suppress the ice-albedo feedback, increasing the outer edge of the habitable zone. We restricted our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We verified that these systems are stable for 10(8) years with N-body simulations and calculated the obliquity variations induced by the orbital evolution of the Earth-mass planet and a torque from the host star. We ran a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface, and we calculated differences in the outer edge of the habitable zone for planets with rapid obliquity variations. For each hypothetical system, we calculated the outer edge of habitability for two conditions: (1) the full evolution of the planetary spin and orbit and (2) the eccentricity and obliquity fixed at their average values. We recovered previous results that higher values of fixed obliquity and eccentricity expand the habitable zone, but we also found that obliquity oscillations further expand habitable orbits in all cases. Terrestrial planets near the outer edge of the habitable zone may be more likely to support life in systems that induce rapid obliquity oscillations as opposed to fixed-spin planets. Such planets may be the easiest to directly characterize with space-borne telescopes.

  9. Obliquity Modulation of the Incoming Solar Radiation

    NASA Technical Reports Server (NTRS)

    Liu, Han-Shou; Smith, David E. (Technical Monitor)

    2001-01-01

    Based on a basic principle of orbital resonance, we have identified a huge deficit of solar radiation induced by the combined amplitude and frequency modulation of the Earth's obliquity as possibly the causal mechanism for ice age glaciation. Including this modulation effect on solar radiation, we have performed model simulations of climate change for the past 2 million years. Simulation results show that: (1) For the past 1 million years, temperature fluctuation cycles were dominated by a 100-Kyr period due to amplitude-frequency resonance effect of the obliquity; (2) From 2 to 1 million years ago, the amplitude-frequency interactions. of the obliquity were so weak that they were not able to stimulate a resonance effect on solar radiation; (3) Amplitude and frequency modulation analysis on solar radiation provides a series of resonance in the incoming solar radiation which may shift the glaciation cycles from 41-Kyr to 100-Kyr about 0.9 million years ago. These results are in good agreement with the marine and continental paleoclimate records. Thus, the proposed climate response to the combined amplitude and frequency modulation of the Earth's obliquity may be the key to understanding the glaciation puzzles in paleoclimatology.

  10. Exploratory Bi-factor Analysis: The Oblique Case.

    PubMed

    Jennrich, Robert I; Bentler, Peter M

    2012-07-01

    Bi-factor analysis is a form of confirmatory factor analysis originally introduced by Holzinger and Swineford (Psychometrika 47:41-54, 1937). The bi-factor model has a general factor, a number of group factors, and an explicit bi-factor structure. Jennrich and Bentler (Psychometrika 76:537-549, 2011) introduced an exploratory form of bi-factor analysis that does not require one to provide an explicit bi-factor structure a priori. They use exploratory factor analysis and a bifactor rotation criterion designed to produce a rotated loading matrix that has an approximate bi-factor structure. Among other things this can be used as an aid in finding an explicit bi-factor structure for use in a confirmatory bi-factor analysis. They considered only orthogonal rotation. The purpose of this paper is to consider oblique rotation and to compare it to orthogonal rotation. Because there are many more oblique rotations of an initial loading matrix than orthogonal rotations, one expects the oblique results to approximate a bi-factor structure better than orthogonal rotations and this is indeed the case. A surprising result arises when oblique bi-factor rotation methods are applied to ideal data.

  11. Oblique synoptic images, produced from digital data, display strong evidence of a "new" caldera in southwestern Guatemala

    USGS Publications Warehouse

    Duffield, W.; Heiken, G.; Foley, D.; McEwen, A.

    1993-01-01

    The synoptic view of broad regions of the Earth's surface as displayed in Landsat and other satellite images has greatly aided in the recognition of calderas, ignimbrite plateaus and other geologic landforms. Remote-sensing images that include visual representation of depth are an even more powerful tool for geologic interpretation of landscapes, but their use has been largely restricted to the exploration of planets other than Earth. By combining Landsat images with digitized topography, we have generated regional oblique views that display compelling evidence for a previously undocumented late-Cenozoic caldera within the active volcanic zone of southwestern Guatemala. This "new" caldera, herein called Xela, is a depression about 30 km wide and 400-600 m deep, which includes the Quezaltenango basin. The caldera depression is breached only by a single river canyon. The caldera outline is broadly circular, but a locally scalloped form suggests the occurrence of multiple caldera-collapse events, or local slumping of steep caldera walls, or both. Within its northern part, Xela caldera contains a toreva block, about 500 m high and 2 km long, that may be incompletely foundered pre-caldera bedrock. Xela contains several post-caldera volcanoes, some of which are active. A Bouguer gravity low, tens of milligals in amplitude, is approximately co-located with the proposed caldera. The oblique images also display an extensive plateau that dips about 2?? away from the north margin of Xela caldera. We interpret this landform to be underlain by pyroclastic outflow from Xela and nearby Atitla??n calderas. Field mapping by others has documented a voluminous rhyolitic pumiceous fallout deposit immediately east of Xela caldera. We speculate that Xela caldera was the source of this deposit. If so, the age of at least part of the caldera is between about 84 ka and 126 ka, the ages of deposits that stratigraphically bracket this fallout. Most of the floor of Xela caldera is covered

  12. 33 CFR 118.90 - Bridges crossing channel obliquely.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Bridges crossing channel obliquely. 118.90 Section 118.90 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.90 Bridges crossing channel obliquely. Bridges...

  13. 33 CFR 118.90 - Bridges crossing channel obliquely.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Bridges crossing channel obliquely. 118.90 Section 118.90 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.90 Bridges crossing channel obliquely. Bridges...

  14. Tunable angle absorption of hyperbolic metamaterials based on plasma photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Zheng; Ning, Renxia, E-mail: nrxxiner@hsu.edu.cn; Xu, Yuan

    2016-06-15

    We present the design of a multilayer structure of hyperbolic metamaterials based on plasma photonic crystals which composed of two kinds of traditional dielectric and plasma. The relative permittivity of hyperbolic metamaterials has been studied at certain frequency range. The absorption and reflection of the multilayer period structure at normal and oblique incident have been investigated by the transfer matrix method. We discussed that the absorption is affected by the thickness of material and the electron collision frequency γ of the plasma. The results show that an absorption band at the low frequency can be obtained at normal incident anglemore » and another absorption band at the high frequency can be found at a large incident angle. The results may be applied by logical gate, stealth, tunable angle absorber, and large angle filter.« less

  15. Angle-resolved Auger electron spectra induced by neon ion impact on aluminum

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.; Aron, P. R.

    1986-01-01

    Auger electron emission from aluminum bombarded with 1 to 5 keV neon ions was studied by angle-resolved electron spectroscopy. The position and shape of the spectral features depended on the incident ion energy, angle of ion incidence, and electron take-off angle with respect to the aluminum surface. These spectral dependencies were interpreted in terms of the Doppler shift given to the Auger electron velocity by the excited atom ejected into the vacuum. For oblique ion incidence it is concluded that a flux of high energy atoms are ejected in a direction close to the projection of the ion beam on the target surface. In addition, a new spectral feature was found and identified as due to Auger emission from excited neon in the aluminum matrix.

  16. DISSIPATION OF PARALLEL AND OBLIQUE ALFVÉN-CYCLOTRON WAVES—IMPLICATIONS FOR HEATING OF ALPHA PARTICLES IN THE SOLAR WIND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maneva, Y. G.; Poedts, Stefaan; Viñas, Adolfo F.

    2015-11-20

    We perform 2.5D hybrid simulations with massless fluid electrons and kinetic particle-in-cell ions to study the temporal evolution of ion temperatures, temperature anisotropies, and velocity distribution functions in relation to the dissipation and turbulent evolution of a broadband spectrum of parallel and obliquely propagating Alfvén-cyclotron waves. The purpose of this paper is to study the relative role of parallel versus oblique Alfvén-cyclotron waves in the observed heating and acceleration of alpha particles in the fast solar wind. We consider collisionless homogeneous multi-species plasma, consisting of isothermal electrons, isotropic protons, and a minor component of drifting α particles in a finite-βmore » fast stream near the Earth. The kinetic ions are modeled by initially isotropic Maxwellian velocity distribution functions, which develop nonthermal features and temperature anisotropies when a broadband spectrum of low-frequency nonresonant, ω ≤ 0.34 Ω{sub p}, Alfvén-cyclotron waves is imposed at the beginning of the simulations. The initial plasma parameter values, such as ion density, temperatures, and relative drift speeds, are supplied by fast solar wind observations made by the Wind spacecraft at 1 AU. The imposed broadband wave spectra are left-hand polarized and resemble Wind measurements of Alfvénic turbulence in the solar wind. The imposed magnetic field fluctuations for all cases are within the inertial range of the solar wind turbulence and have a Kraichnan-type spectral slope α = −3/2. We vary the propagation angle from θ = 0° to θ = 30° and θ = 60°, and find that the heating of alpha particles is most efficient for the highly oblique waves propagating at 60°, whereas the protons exhibit perpendicular cooling at all propagation angles.« less

  17. Oblique Shot of Earth

    NASA Image and Video Library

    2008-09-05

    This highly oblique image shot over northwestern part of the African continent captures the curvature of the Earth and shows its atmosphere as seen by NASA EarthKAM. You can see clouds and even the occasional thunderhead.

  18. Molten-Metal Droplet Deposition on a Moving Substrate in Microgravity: Aiding the Development of Novel Technologies for Microelectronic Assembly

    NASA Technical Reports Server (NTRS)

    Megaridis, C. M.; Bayer, I. S.; Poulikakos, D.; Nayagam, V.

    2002-01-01

    Driven by advancements in microelectronics manufacturing, this research investigates the oblique (non-axisymmetric) impact of liquid-metal droplets on flat substrates. The problem of interest is relevant to the development of the novel technology of on-demand dispension (printing) of microscopic solder deposits for the surface mounting of microelectronic devices. The technology, known as solder jetting, features on-demand deposition of miniature solder droplets (30 to 120 microns in diameter) in very fine, very accurate patterns using techniques analogous to those developed for the ink-jet printing industry. Despite its promise, severe limitations exist currently with regards to the throughput rates of the technology; some of these limitations are largely due to the lack of the capability for reliable prediction of solder bump positioning and shapes, especially under ballistic deposition conditions where the droplet impact phenomena are inherently three-dimensional. The study consists of a theoretical and an experimental component. The theoretical work uses a finite element formulation to simulate numerically the non-axisymmetric (3-D) fluid mechanics and heat transfer phenomena of a liquid solder droplet impacting at an angle alpha on a flat substrate. The work focuses on the pre-solidification regime. The modeling of the most challenging fluid mechanics part of the process has been completed successfully. It is based upon the full laminar Navier-Stokes equations employing a Lagrangian frame of reference. Due to the large droplet deformation, the surface (skin) as well as the volumetric mesh have to be regenerated during the calculations in order to maintain the high accuracy of the numerical scheme. The pressure and velocity fields are then interpolated on the newly created mesh. The numerical predictions are being tested against experiments, for cases where wetting phenomena are not important. For the impact parameters used in the example shown (We = 2.38, Fr

  19. Rotation, narrowing and preferential reactivation of brittle structures during oblique rifting

    NASA Astrophysics Data System (ADS)

    Huismans, R. S.; Duclaux, G.; May, D.

    2017-12-01

    Occurrence of multiple faults populations with contrasting orientations in oblique continental rifts and passive margins has long sparked debate about relative timing of deformation events and tectonic interpretations. Here, we use high-resolution three-dimensional thermo-mechanical numerical modeling to characterize the evolution of the structural style associated with moderately oblique rifting in the continental lithosphere. Automatic analysis of the distribution of active extensional shears at the surface of the model demonstrates a characteristic deformation sequence. We show that upon localization, Phase 1 wide oblique en-échelon grabens develop, limited by extensional shears oriented orthogonal to σ3. Subsequent widening of the grabens is accompanied by a progressive rotation of the Phase 1 extensional shears that become sub-orthogonal the plate motion direction. Phase 2 is marked by narrowing of active deformation resulting from thinning of the continental lithosphere and development of a second-generation of extensional shears. During Phase 2 deformation localizes both on plate motion direction-orthogonal structures that reactivate rotated Phase 1 shears, and on new oblique structures orthogonal to σ3. Finally, Phase 3 consists in the oblique rupture of the continental lithosphere and produces an oceanic domain where oblique ridge segments are linked with highly oblique accommodation zones. We conclude that while new structures form normal to σ3 in an oblique rift, progressive rotation and long-term reactivation of Phase 1 structures promotes orthorhombic fault systems, critical to accommodate upper crustal extension and control oblique passive margin architecture. The distribution, orientation, and evolution of frictional-plastic structures observed in our models is remarkably similar to documented fault populations in the Gulf of Aden conjugate passive margins, which developed in moderately oblique extensional settings.

  20. Climate Dynamics and Hysteresis at Low and High Obliquity

    NASA Astrophysics Data System (ADS)

    Colose, C.; Del Genio, A. D.; Way, M.

    2017-12-01

    We explore the large-scale climate dynamics at low and high obliquity for an Earth-like planet using the ROCKE-3D (Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics) 3-D General Circulation model being developed at NASA GISS as part of the Nexus for Exoplanet System Science (NExSS) initiative. We highlight the role of ocean heat storage and transport in determining the seasonal cycle at high obliquity, and describe the large-scale circulation and resulting regional climate patterns using both aquaplanet and Earth topographical boundary conditions. Finally, we contrast the hysteresis structure to varying CO2 concentration for a low and high obliquity planet near the outer edge of the habitable zone. We discuss the prospects for habitability for a high obliquity planet susceptible to global glaciation.

  1. Effects of Extreme Obliquity Variations on the Habitability of Exoplanets

    PubMed Central

    Barnes, R.; Domagal-Goldman, S.; Breiner, J.; Quinn, T.R.; Meadows, V.S.

    2014-01-01

    Abstract We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We show that large-amplitude, high-frequency obliquity oscillations on Earth-like exoplanets can suppress the ice-albedo feedback, increasing the outer edge of the habitable zone. We restricted our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We verified that these systems are stable for 108 years with N-body simulations and calculated the obliquity variations induced by the orbital evolution of the Earth-mass planet and a torque from the host star. We ran a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface, and we calculated differences in the outer edge of the habitable zone for planets with rapid obliquity variations. For each hypothetical system, we calculated the outer edge of habitability for two conditions: (1) the full evolution of the planetary spin and orbit and (2) the eccentricity and obliquity fixed at their average values. We recovered previous results that higher values of fixed obliquity and eccentricity expand the habitable zone, but we also found that obliquity oscillations further expand habitable orbits in all cases. Terrestrial planets near the outer edge of the habitable zone may be more likely to support life in systems that induce rapid obliquity oscillations as opposed to fixed-spin planets. Such planets may be the easiest to directly characterize with space-borne telescopes. Key Words: Exoplanets—Habitable zone—Energy balance models. Astrobiology 14, 277–291. PMID:24611714

  2. The Oblique Orbit of WASP-107b from K2 Photometry

    NASA Astrophysics Data System (ADS)

    Dai, Fei; Winn, Joshua N.

    2017-05-01

    Observations of nine transits of WASP-107 during the K2 mission reveal three separate occasions when the planet crossed in front of a starspot. The data confirm the stellar rotation period to be 17 days—approximately three times the planet’s orbital period—and suggest that large spots persist for at least one full rotation. If the star had a low obliquity, at least two additional spot crossings should have been observed. They were not observed, giving evidence for a high obliquity. We use a simple geometric model to show that the obliquity is likely in the range 40°-140°, I.e., both spin-orbit alignment and anti-alignment can be ruled out. WASP-107 thereby joins the small collection of relatively low-mass stars with a high obliquity. Most such stars have been observed to have low obliquities; all of the exceptions, including WASP-107, involve planets with relatively wide orbits (“warm Jupiters,” with {a}{{\\min }}/{R}\\star ≳ 8). This demonstrates a connection between stellar obliquity and planet properties, in contradiction to some theories for obliquity excitation.

  3. An analysis of penetration and ricochet phenomena in oblique hypervelocity impact

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Taylor, Roy A.; Horn, Jennifer R.

    1988-01-01

    An experimental investigation of phenomena associated with the oblique hypervelocity impact of spherical projectiles on multisheet aluminum structures is described. A model that can be employed in the design of meteoroid and space debris protection systems for space structures is developed. The model consists of equations that relate crater and perforation damage of a multisheet structure to parameters such as projectile size, impact velocity, and trajectory obliquity. The equations are obtained through a regression analysis of oblique hypervelocity impact test data. This data shows that the response of a multisheet structure to oblique impact is significantly different from its response to normal hypervelocity impact. It was found that obliquely incident projectiles produce ricochet debris that can severely damage panels or instrumentation located on the exterior of a space structure. Obliquity effects of high-speed impact must, therefore, be considered in the design of any structure exposed to the meteoroid and space debris environment.

  4. Automatic interpretation of oblique ionograms

    NASA Astrophysics Data System (ADS)

    Ippolito, Alessandro; Scotto, Carlo; Francis, Matthew; Settimi, Alessandro; Cesaroni, Claudio

    2015-03-01

    We present an algorithm for the identification of trace characteristics of oblique ionograms allowing determination of the Maximum Usable Frequency (MUF) for communication between the transmitter and receiver. The algorithm automatically detects and rejects poor quality ionograms. We performed an exploratory test of the algorithm using data from a campaign of oblique soundings between Rome, Italy (41.90 N, 12.48 E) and Chania, Greece (35.51 N, 24.01 E) and also between Kalkarindji, Australia (17.43 S, 130.81 E) and Culgoora, Australia (30.30 S, 149.55 E). The success of these tests demonstrates the applicability of the method to ionograms recorded by different ionosondes in various helio and geophysical conditions.

  5. Effect of substrate material selection on polychromatic integral diffraction efficiency for multilayer diffractive optics in oblique incident situation

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Cui, Qingfeng; Piao, Mingxu

    2018-05-01

    The effect of substrate material selection for multilayer diffractive optical elements (MLDOEs) on polychromatic integral diffraction efficiency (PIDE) is studied in the oblique incident situation. A mathematical model of substrate material selection is proposed to obtain the high PIDE with large incident angle. The extended expression of the microstructure heights with consideration of incident angle is deduced to calculate the PIDE difference Δ η bar(λ) for different substrate material combinations. The smaller value of Δ η bar(λ) indicates the more optimal substrate material combination in a wide incident angle range. Based on the deduced mathematical model, different MLDOEs are analyzed in visible and infrared wavebands. The results show that the three-layer DOEs can be applied in larger incident angle situation than the double-layer DOEs in visible waveband. When the two substrate materials are the same, polycarbonate (PC) is more reasonable than poly(methyl methacrylate) (PMMA) as the middle filling optical material for the three-layer DOEs. In the infrared waveband, the PIDE decreases in the LWIR are obviously smaller than that in the MWIR for the same substrate material combination, and the PIDE cannot be calculated when the incident angle larger than critical angle. The analysis results can be used to guide the hybrid optical system design with MLDOEs.

  6. Injury risk functions for frontal oblique collisions.

    PubMed

    Andricevic, Nino; Junge, Mirko; Krampe, Jonas

    2018-03-09

    The objective of this article was the construction of injury risk functions (IRFs) for front row occupants in oblique frontal crashes and a comparison to IRF of nonoblique frontal crashes from the same data set. Crashes of modern vehicles from GIDAS (German In-Depth Accident Study) were used as the basis for the construction of a logistic injury risk model. Static deformation, measured via displaced voxels on the postcrash vehicles, was used to calculate the energy dissipated in the crash. This measure of accident severity was termed objective equivalent speed (oEES) because it does not depend on the accident reconstruction and thus eliminates reconstruction biases like impact direction and vehicle model year. Imputation from property damage cases was used to describe underrepresented low-severity crashes-a known shortcoming of GIDAS. Binary logistic regression was used to relate the stimuli (oEES) to the binary outcome variable (injured or not injured). IRFs for the oblique frontal impact and nonoblique frontal impact were computed for the Maximum Abbreviated Injury Scale (MAIS) 2+ and 3+ levels for adults (18-64 years). For a given stimulus, the probability of injury for a belted driver was higher in oblique crashes than in nonoblique frontal crashes. For the 25% injury risk at MAIS 2+ level, the corresponding stimulus for oblique crashes was 40 km/h but it was 64 km/h for nonoblique frontal crashes. The risk of obtaining MAIS 2+ injuries is significantly higher in oblique crashes than in nonoblique crashes. In the real world, most MAIS 2+ injuries occur in an oEES range from 30 to 60 km/h.

  7. Inferior Oblique Overaction: Anterior Transposition Versus Myectomy.

    PubMed

    Rajavi, Zhale; Feizi, Mohadeseh; Behradfar, Narges; Yaseri, Mehdi; Sayanjali, Shima; Motevaseli, Tahmine; Sabbaghi, Hamideh; Faghihi, Mohammad

    2017-07-01

    To compare the efficacy of inferior oblique myectomy and anterior transposition for correcting inferior oblique overaction (IOOA). This retrospective study was conducted on 56 patients with IOOA who had either myectomy or anterior transposition of the inferior oblique muscle from 2010 to 2015. The authors compared preoperative and postoperative inferior oblique muscle function grading (-4 to +4) as the main outcome measure and vertical and horizontal deviation, dissociated vertical deviation (DVD), and A- and V-pattern between the two surgical groups as secondary outcomes. A total of 99 eyes of 56 patients with a mean age of 5.9 ± 6.5 years were included (47 eyes in the myectomy group and 52 eyes in the anterior transposition group). There were no differences in preoperative best corrected visual acuity, amblyopia, spherical equivalent, and primary versus secondary IOOA between the two groups. Both surgical procedures were effective in reducing IOOA and satisfactory results were similar between the two groups: 61.7% and 67.3% in the myectomy and anterior transposition groups, respectively (P = .56). After adjustment for the preoperative DVD, there was no statistically significant difference between the two groups postoperatively. The preoperative hypertropia was 6 to 14 and 6 to 18 prism diopters (PD) in the myectomy and anterior transposition groups, respectively. After surgery, no patient had a vertical deviation greater than 5 PD. Both the inferior oblique myectomy and anterior transposition procedures are effective in reducing IOOA with similar satisfactory results. DVD and hypertropia were also corrected similarly by these two surgical procedures. [J Pediatr Ophthalmol Strabismus. 2017;54(4):232-237.]. Copyright 2017, SLACK Incorporated.

  8. Effect of Material of Metal Sublayer and Deposition Configuration on the Texture Formation in the Piezoactive ZnO Films

    NASA Astrophysics Data System (ADS)

    Veselov, A. G.; Elmanov, V. I.; Kiryasova, O. A.; Nikulin, Yu. V.

    2018-01-01

    Effect of material of metal sublayer (aluminum, vanadium, chromium, iron, cobalt, nickel, and copper) and deposition configuration on the formation of the oblique and straight texture in the ZnO films is studied. The films that are synthesized in a dc magnetron sputtering system. It is shown that the piezoactive ZnO films with oblique texture that can generate shear waves are formed on the Cr and V metal sublayers in the shifted deposition configuration when the substrate is shifted relative to the magnetron axis toward the region of the target erosion. The piezoactive ZnO films with the straight structure that can generate longitudinal waves are formed on a chemically pure Al sublayer in the symmetric deposition configuration when the substrate is centered with respect to the target. Changes of the sublayer material in both deposition configurations or preliminary oxidation of the sublayer lead to the formation of the piezoactive ZnO films with mixed texture that excite shear and longitudinal waves. Chemical etching is used to show that the ZnO films with the oblique and straight textures exhibit piezoactive properties and can generate hypersound at thicknesses of no less than about 0.3 and about 0.9 μm, respectively.

  9. Light-curve modelling constraints on the obliquities and aspect angles of the young Fermi pulsars

    NASA Astrophysics Data System (ADS)

    Pierbattista, M.; Harding, A. K.; Grenier, I. A.; Johnson, T. J.; Caraveo, P. A.; Kerr, M.; Gonthier, P. L.

    2015-03-01

    In more than four years of observation the Large Area Telescope on board the Fermi satellite has identified pulsed γ-ray emission from more than 80 young or middle-aged pulsars, in most cases providing light curves with high statistics. Fitting the observed profiles with geometrical models can provide estimates of the magnetic obliquity α and of the line of sight angle ζ, yielding estimates of the radiation beaming factor and radiated luminosity. Using different γ-ray emission geometries (Polar Cap, Slot Gap, Outer Gap, One Pole Caustic) and core plus cone geometries for the radio emission, we fit γ-ray light curves for 76 young or middle-aged pulsars and we jointly fit their γ-ray plus radio light curves when possible. We find that a joint radio plus γ-ray fit strategy is important to obtain (α,ζ) estimates that can explain simultaneously detectable radio and γ-ray emission: when the radio emission is available, the inclusion of the radio light curve in the fit leads to important changes in the (α,ζ) solutions. The most pronounced changes are observed for Outer Gap and One Pole Caustic models for which the γ-ray only fit leads to underestimated α or ζ when the solution is found to the left or to the right of the main α-ζ plane diagonal respectively. The intermediate-to-high altitude magnetosphere models, Slot Gap, Outer Gap, and One pole Caustic, are favoured in explaining the observations. We find no apparent evolution of α on a time scale of 106 years. For all emission geometries our derived γ-ray beaming factors are generally less than one and do not significantly evolve with the spin-down power. A more pronounced beaming factor vs. spin-down power correlation is observed for Slot Gap model and radio-quiet pulsars and for the Outer Gap model and radio-loud pulsars. The beaming factor distributions exhibit a large dispersion that is less pronounced for the Slot Gap case and that decreases from radio-quiet to radio-loud solutions. For all

  10. Light-curve modelling constraints on the obliquities and aspect angles of the young Fermi pulsars

    DOE PAGES

    Pierbattista, M.; Harding, A. K.; Grenier, I. A.; ...

    2015-02-10

    In more than four years of observation the Large Area Telescope on board the Fermi satellite has identified pulsed γ-ray emission from more than 80 young or middle-aged pulsars, in most cases providing light curves with high statistics. Fitting the observed profiles with geometrical models can provide estimates of the magnetic obliquity α and of the line of sight angle ζ, yielding estimates of the radiation beaming factor and radiated luminosity. Using different γ-ray emission geometries (Polar Cap, Slot Gap, Outer Gap, One Pole Caustic) and core plus cone geometries for the radio emission, we fit γ-ray light curves formore » 76 young or middle-aged pulsars and we jointly fit their γ-ray plus radio light curves when possible. We find that a joint radio plus γ-ray fit strategy is important to obtain (α,ζ) estimates that can explain simultaneously detectable radio and γ-ray emission: when the radio emission is available, the inclusion of the radio light curve in the fit leads to important changes in the (α,ζ) solutions. The most pronounced changes are observed for Outer Gap and One Pole Caustic models for which the γ-ray only fit leads to underestimated α or ζ when the solution is found to the left or to the right of the main α-ζ plane diagonal respectively. The intermediate-to-high altitude magnetosphere models, Slot Gap, Outer Gap, and One pole Caustic, are favoured in explaining the observations. We find no apparent evolution of α on a time scale of 106 years. For all emission geometries our derived γ-ray beaming factors are generally less than one and do not significantly evolve with the spin-down power. A more pronounced beaming factor vs. spin-down power correlation is observed for Slot Gap model and radio-quiet pulsars and for the Outer Gap model and radio-loud pulsars. The beaming factor distributions exhibit a large dispersion that is less pronounced for the Slot Gap case and that decreases from radio-quiet to radio-loud solutions. For

  11. Light-Curve Modelling Constraints on the Obliquities and Aspect Angles of the Young Fermi Pulsars

    NASA Technical Reports Server (NTRS)

    Pierbattista, M.; Harding, A. K.; Grenier, I. A.; Johnson, T. J.; Caraveo, P. A.; Kerr, M.; Gonthier, P. L.

    2015-01-01

    In more than four years of observation the Large Area Telescope on board the Fermi satellite has identified pulsed gamma-ray emission from more than 80 young or middle-aged pulsars, in most cases providing light curves with high statistics. Fitting the observed profiles with geometrical models can provide estimates of the magnetic obliquity alpha and of the line of sight angle zeta, yielding estimates of the radiation beaming factor and radiated luminosity. Using different gamma-ray emission geometries (Polar Cap, Slot Gap, Outer Gap, One Pole Caustic) and core plus cone geometries for the radio emission, we fit gamma-ray light curves for 76 young or middle-aged pulsars and we jointly fit their gamma-ray plus radio light curves when possible. We find that a joint radio plus gamma-ray fit strategy is important to obtain (alpha, zeta) estimates that can explain simultaneously detectable radio and gamma-ray emission: when the radio emission is available, the inclusion of the radio light curve in the fit leads to important changes in the (alpha, gamma) solutions. The most pronounced changes are observed for Outer Gap and One Pole Caustic models for which the gamma-ray only fit leads to underestimated alpha or zeta when the solution is found to the left or to the right of the main alpha-zeta plane diagonal respectively. The intermediate-to-high altitude magnetosphere models, Slot Gap, Outer Gap, and One pole Caustic, are favored in explaining the observations. We find no apparent evolution of a on a time scale of 106 years. For all emission geometries our derived gamma-ray beaming factors are generally less than one and do not significantly evolve with the spin-down power. A more pronounced beaming factor vs. spin-down power correlation is observed for Slot Gap model and radio-quiet pulsars and for the Outer Gap model and radio-loud pulsars. The beaming factor distributions exhibit a large dispersion that is less pronounced for the Slot Gap case and that decreases from

  12. Obliquity Variations of Habitable Zone Planets Kepler-62f and Kepler-186f

    NASA Astrophysics Data System (ADS)

    Shan, Yutong; Li, Gongjie

    2018-06-01

    Obliquity variability could play an important role in the climate and habitability of a planet. Orbital modulations caused by planetary companions and the planet’s spin axis precession due to the torque from the host star may lead to resonant interactions and cause large-amplitude obliquity variability. Here we consider the spin axis dynamics of Kepler-62f and Kepler-186f, both of which reside in the habitable zone around their host stars. Using N-body simulations and secular numerical integrations, we describe their obliquity evolution for particular realizations of the planetary systems. We then use a generalized analytic framework to characterize regions in parameter space where the obliquity is variable with large amplitude. We find that the locations of variability are fine-tuned over the planetary properties and system architecture in the lower-obliquity regimes (≲40°). As an example, assuming a rotation period of 24 hr, the obliquities of both Kepler-62f and Kepler-186f are stable below ∼40°, whereas the high-obliquity regions (60°–90°) allow moderate variabilities. However, for some other rotation periods of Kepler-62f or Kepler-186f, the lower-obliquity regions could become more variable owing to resonant interactions. Even small deviations from coplanarity (e.g., mutual inclinations ∼3°) could stir peak-to-peak obliquity variations up to ∼20°. Undetected planetary companions and/or the existence of a satellite could also destabilize the low-obliquity regions. In all cases, the high-obliquity region allows for moderate variations, and all obliquities corresponding to retrograde motion (i.e., >90°) are stable.

  13. Layered Mantling Deposits in the Northern Mid-Latitudes

    NASA Image and Video Library

    2017-02-22

    Ice-rich mantling deposits accumulate from the atmosphere in the Martian mid-latitudes in cycles during periods of high obliquity (axial tilt), as recently as several million years ago. These deposits accumulate over cycles in layers, and here in the southern mid-latitudes, where the deposits have mostly eroded away due to warmer temperatures, small patches of the remnant layered deposits can still be observed. The map is projected here at a scale of 25 centimeters (9.8 inches) per pixel. [The original image scale is 29.5 centimeters (11.6 inches) per pixel (with 1 x 1 binning); objects on the order of 89 centimeters (35 inches) across are resolved.] North is up. http://photojournal.jpl.nasa.gov/catalog/PIA21462

  14. Tailored nanoporous coatings fabricated on conformable polymer substrates.

    PubMed

    Poxson, David J; Mont, Frank W; Cho, Jaehee; Schubert, E Fred; Siegel, Richard W

    2012-11-01

    Nanoporous coatings have become the subject of intense investigation, in part because they have been shown to have unique and tailorable physical properties that can depart greatly from their dense or macroscopic counterparts. Nanoporous coatings are frequently fabricated utilizing oblique-angle or glancing-angle physical vapor-phase deposition techniques. However, a significant limitation for such coatings exists; they are almost always deposited on smooth and rigid planar substrates, such as silicon and glass. This limitation greatly constrains the applicability, tailorability, functionality and even the economic viability, of such nanoporous coatings. Here, we report our findings on nanoporous/polymer composite systems (NPCS) fabricated by utilizing oblique-angle electron-beam methodology. These unique composite systems exhibit several favorable characteristics, namely, (i) fine-tuned control over coating nanoporosity and thickness, (ii) excellent adhesion between the nanoporous coating and polymer substrate, (iii) the ability to withstand significant and repeated bending, and (iv) the ability to be molded conformably on two and three-dimensional surfaces while closely retaining the composite system's designed nanoporous film structure and, hence, properties.

  15. Effect of core muscle thickness and static or dynamic balance on prone bridge exercise with sling by shoulder joint angle in healthy adults.

    PubMed

    Park, Mi Hwa; Yu, Jae Ho; Hong, Ji Heon; Kim, Jin Seop; Jung, Sang Woo; Lee, Dong Yeop

    2016-03-01

    [Purpose] To date, core muscle activity detected using ultrasonography during prone bridge exercises has not been reported. Here we investigated the effects of core muscle thickness and balance on sling exercise efficacy by shoulder joint angle in healthy individuals. [Subjects and Methods] Forty-three healthy university students were enrolled in this study. Ultrasonography thickness of external oblique, internal oblique, and transversus abdominis during sling workouts was investigated. Muscle thickness was measured on ultrasonography imaging before and after the experiment. Dynamic balance was tested using a functional reaching test. Static balance was tested using a Tetrax Interactive Balance System. [Results] Different muscle thicknesses were observed during the prone bridge exercise with the shoulder flexed at 60°, 90° or 120°. Shoulder flexion at 60° and 90° in the prone bridge exercise with a sling generated the greatest thickness of most transversus abdominis muscles. Shoulder flexion at 120° in the prone bridge exercise with a sling generated the greatest thickness of most external oblique muscles. [Conclusion] The results suggest that the prone bridge exercise with shoulder joint angle is an effective method of increasing global and local muscle strength.

  16. Concerning the flow about ring-shaped cowlings Part IX : the influence of oblique oncoming flow on the incremental velocities and air forces at the front part of circular cowls

    NASA Technical Reports Server (NTRS)

    Kuchemann, Dietrich; Weber, Johanna

    1952-01-01

    The dependence of the maximum incremental velocities and air forces on a circular cowling on the mass flow and the angle of attack of the oblique flow is determined with the aid of pressure-distribution measurements. The particular cowling tested had been partially investigated in NACA TM 1327.

  17. Fabrication of surfaces with extremely high contact angle hysteresis from polyelectrolyte multilayer.

    PubMed

    Wang, Liming; Wei, Jingjing; Su, Zhaohui

    2011-12-20

    High contact angle hysteresis on polyelectrolyte multilayers (PEMs) ion-paired with hydrophobic perfluorooctanoate anions is reported. Both the bilayer number of PEMs and the ionic strength of deposition solutions have significant influence on contact angle hysteresis: higher ionic strength and greater bilayer number cause increased contact angle hysteresis values. The hysteresis values of ~100° were observed on smooth PEMs and pinning of the receding contact line on hydrophilic defects is implicated as the cause of hysteresis. Surface roughness can be used to further tune the contact angle hysteresis on the PEMs. A surface with extremely high contact angle hysteresis of 156° was fabricated when a PEM was deposited on a rough substrate coated with submicrometer scale silica spheres. It was demonstrated that this extremely high value of contact angle hysteresis resulted from the penetration of water into the rough asperities on the substrate. The same substrate hydrophobized by chemical vapor deposition of 1H,1H,2H,2H-perfluorooctyltriethoxysilane exhibits high advancing contact angle and low hysteresis. © 2011 American Chemical Society

  18. The use of silver nanorod array based surface enhanced Raman scattering sensor for food safety applications

    USDA-ARS?s Scientific Manuscript database

    For the advancement of preventive strategies, it is critical to develop rapid and sensitive detection methods with nanotechnology for food safety applications. This article reports the recent development on the use of aligned silver nanorod (AgNR) arrays prepared by oblique angle deposition, as surf...

  19. Limitations of a localized surface plasmon resonance sensor on Salmonella detection

    USDA-ARS?s Scientific Manuscript database

    We have designed a localized surface plasmon resonance (LSPR) biosensor to perform the whole cell detection of Salmonella using gold nanoparticls fabricated by oblique angle deposition technique. The LSPR sensor showed a plasmon peak shift due to the Salmonella antigen and anti-Salmonella antibody r...

  20. The change in color matches with retinal angle of incidence of the colorimeter beams.

    PubMed

    Alpern, M; Kitahara, H; Fielder, G H

    1987-01-01

    Differences between W.D.W. chromaticities of monochromatic lights obtained with all colorimeter beams incident on the retina "off-axis" and those found for lights striking the retina normally have been studied throughout the visible spectrum on 4 normal trichromats. The results are inconsistent with: (i) the assumption in Weale's theories of the Stiles-Crawford hue shift that the sets of absorption spectra of the visual pigments catching normally and obliquely incident photons are identical, and (ii) "self-screening" explanations for the change in color with angle of incidence on the retina. The color matching functions of a protanomalous trichromat are inconsistent with the hypothesis that the absorption spectra of the visual pigments catching normally incident photons in his retina are those catching obliquely incident photons in the normal retina.

  1. Modal control of an oblique wing aircraft

    NASA Technical Reports Server (NTRS)

    Phillips, James D.

    1989-01-01

    A linear modal control algorithm is applied to the NASA Oblique Wing Research Aircraft (OWRA). The control law is evaluated using a detailed nonlinear flight simulation. It is shown that the modal control law attenuates the coupling and nonlinear aerodynamics of the oblique wing and remains stable during control saturation caused by large command inputs or large external disturbances. The technique controls each natural mode independently allowing single-input/single-output techniques to be applied to multiple-input/multiple-output systems.

  2. The oblique effect is both allocentric and egocentric

    PubMed Central

    Mikellidou, Kyriaki; Cicchini, Guido Marco; Thompson, Peter G.; Burr, David C.

    2016-01-01

    Despite continuous movements of the head, humans maintain a stable representation of the visual world, which seems to remain always upright. The mechanisms behind this stability are largely unknown. To gain some insight on how head tilt affects visual perception, we investigate whether a well-known orientation-dependent visual phenomenon, the oblique effect—superior performance for stimuli at cardinal orientations (0° and 90°) compared with oblique orientations (45°)—is anchored in egocentric or allocentric coordinates. To this aim, we measured orientation discrimination thresholds at various orientations for different head positions both in body upright and in supine positions. We report that, in the body upright position, the oblique effect remains anchored in allocentric coordinates irrespective of head position. When lying supine, gravitational effects in the plane orthogonal to gravity are discounted. Under these conditions, the oblique effect was less marked than when upright, and anchored in egocentric coordinates. The results are well explained by a simple “compulsory fusion” model in which the head-based and the gravity-based signals are combined with different weightings (30% and 70%, respectively), even when this leads to reduced sensitivity in orientation discrimination. PMID:26129862

  3. Investigating the use of the dual-polarized and large incident angle of SAR data for mapping the fluvial and aeolian deposits

    NASA Astrophysics Data System (ADS)

    Gaber, Ahmed; Amarah, Bassam A.; Abdelfattah, Mohamed; Ali, Sarah

    2017-12-01

    Mapping the spatial distributions of the fluvial deposits in terms of particles size as well as imaging the near-surface features along the non-vegetated aeolian sand-sheets, provides valuable geological information. Thus this work aims at investigating the contribution of the dual-polarization SAR data in classifying and mapping the surface sediments as well as investigating the effect of the radar incident-angle on improving the images of the hidden features under the desert sand cover. For mapping the fluvial deposits, the covariance matrix ([C2]) using four dual-polarized ALOS/PALSAR-1 scenes cover the Wadi El Matulla, East Qena, Egypt were generated. This [C2] matrix was used to generate a supervised classification map with three main classes (gravel, gravel/sand and sand). The polarimetric scattering response, spectral reflectance and temperatures brightness of these 3 classes were extracted. However for the aeolian deposits investigation, two Radarsat-1 and three full-polarimetric ALOS/PALSAR-1 images, which cover the northwestern sandy part of Sinai, Egypt were calibrated, filtered, geocoded and ingested in a GIS database to image the near-surface features. The fluvial mapping results show that the values of the radar backscattered coefficient (σ°) and the degree of randomness of the obtained three classes are increasing respectively by increasing their grain size. Moreover, the large incident angle (θi = 39.7) of the Radarsat-1 image has revealed a meandering buried stream under the sand sheet of the northwestern part of Sinai. Such buried stream does not appear in the other optical, SRTM and SAR dataset. The main reason is the enhanced contrast between the low backscattered return from the revealed meandering stream and the surroundings as a result of the increased backscattering intensity, which is related to the relatively large incident angle along the undulated surface of the study area. All archaeological observations support the existence of

  4. Reading the climate record of the martian polar layered deposits

    USGS Publications Warehouse

    Hvidberg, C.S.; Fishbaugh, K.E.; Winstrup, M.; Svensson, A.; Byrne, S.; Herkenhoff, K. E.

    2012-01-01

    The martian polar regions have layered deposits of ice and dust. The stratigraphy of these deposits is exposed within scarps and trough walls and is thought to have formed due to climate variations in the past. Insolation has varied significantly over time and caused dramatic changes in climate, but it has remained unclear whether insolation variations could be linked to the stratigraphic record. We present a model of layer formation based on physical processes that expresses polar deposition rates of ice and dust in terms of insolation. In this model, layer formation is controlled by the insolation record, and dust-rich layers form by two mechanisms: (1) increased summer sublimation during high obliquity, and (2) variations in the polar deposition of dust modulated by obliquity variations. The model is simple, yet physically plausible, and allows for investigations of the climate control of the polar layered deposits (PLD). We compare the model to a stratigraphic column obtained from the north polar layered deposits (NPLD) (Fishbaugh, K.E., Hvidberg, C.S., Byrne, S., Russel, P.S., Herkenhoff, K.E., Winstrup, M., Kirk, R. [2010a]. Geophys. Res. Lett., 37, L07201) and show that the model can be tuned to reproduce complex layer sequences. The comparison with observations cannot uniquely constrain the PLD chronology, and it is limited by our interpretation of the observed stratigraphic column as a proxy for NPLD composition. We identified, however, a set of parameters that provides a chronology of the NPLD tied to the insolation record and consistently explains layer formation in accordance with observations of NPLD stratigraphy. This model dates the top 500 m of the NPLD back to ∼1 million years with an average net deposition rate of ice and dust of 0.55 mm a−1. The model stratigraphy contains a quasi-periodic ∼30 m cycle, similar to a previously suggested cycle in brightness profiles from the NPLD (Laskar, J., Levrard, B., Mustard, F. [2002]. Nature, 419, 375

  5. Variable angle spectroscopic ellipsometric characterization of HfO2 thin film

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Kumari, N.; Karar, V.; Sharma, A. L.

    2018-02-01

    Hafnium Oxide film was deposited on BK7 glass substrate using reactive oxygenated E-Beam deposition technique. The film was deposited using in-situ quartz crystal thickness monitoring to control the film thickness and rate of evaporation. The thin film was grown with a rate of deposition of 0.3 nm/s. The coated substrate was optically characterized using spectrophotometer to determine its transmission spectra. The optical constants as well as film thickness of the hafnia film were extracted by variable angle spectroscopic ellipsometry with Cauchy fitting at incidence angles of 65˚, 70˚ and 75˚.

  6. Use of Vertical Aerial Images for Semi-Oblique Mapping

    NASA Astrophysics Data System (ADS)

    Poli, D.; Moe, K.; Legat, K.; Toschi, I.; Lago, F.; Remondino, F.

    2017-05-01

    The paper proposes a methodology for the use of the oblique sections of images from large-format photogrammetric cameras, by exploiting the effect of the central perspective geometry in the lateral parts of the nadir images ("semi-oblique" images). The point of origin of the investigation was the execution of a photogrammetric flight over Norcia (Italy), which was seriously damaged after the earthquake of 30/10/2016. Contrary to the original plan of oblique acquisitions, the flight was executed on 15/11/2017 using an UltraCam Eagle camera with focal length 80 mm, and combining two flight plans, rotated by 90º ("crisscross" flight). The images (GSD 5 cm) were used to extract a 2.5D DSM cloud, sampled to a XY-grid size of 2 GSD, a 3D point clouds with a mean spatial resolution of 1 GSD and a 3D mesh model at a resolution of 10 cm of the historic centre of Norcia for a quantitative assessment of the damages. From the acquired nadir images the "semi-oblique" images (forward, backward, left and right views) could be extracted and processed in a modified version of GEOBLY software for measurements and restitution purposes. The potential of such semi-oblique image acquisitions from nadir-view cameras is hereafter shown and commented.

  7. Development of an angle-scanning spectropolarimeter: Preliminary results

    NASA Astrophysics Data System (ADS)

    Nouri, Sahar A.; Gregory, Don A.; Fuller, Kirk

    2018-02-01

    A fixed-angle spectropolarimeter capable of measuring the Mueller matrix of particle deposits and conventional optical elements over the 300-1100 nm spectral range has been built, calibrated and extensively tested. A second generation of this instrument is being built which can scan from 0° to near 180° in both scattering angle and sample orientation, enabling studies of the bidirectional Mueller matrices of nanoparticle arrays, atmospheric aerosol deposits, and nano- and microstructured surfaces. This system will also provide a much needed metrology capability for fully characterizing the performance of optical devices and device components from the near-infrared through the medium wave ultraviolet. Experimental results taken using the first generation fixed-angle arrangement will be presented along with the rationale for building the second.

  8. Ureter Injury as a Complication of Oblique Lumbar Interbody Fusion.

    PubMed

    Lee, Hyeong-Jin; Kim, Jin-Sung; Ryu, Kyeong-Sik; Park, Choon Keun

    2017-06-01

    Oblique lumbar interbody fusion is a commonly used surgical method of achieving lumbar interbody fusion. There have been some reports about complications of oblique lumbar interbody fusion at the L2-L3 level. However, to our knowledge, there have been no reports about ureter injury during oblique lumbar interbody fusion. We report a case of ureter injury during oblique lumbar interbody fusion to share our experience. A 78-year-old male patient presented with a history of lower back pain and neurogenic intermittent claudication. He was diagnosed with spinal stenosis at L2-L3, L4-L5 level and spondylolisthesis at L4-L5 level. Symptoms were not improved after several months of medical treatments. Then, oblique lumbar interbody fusion was performed at L2-L3, L4-L5 level. During the surgery, anesthesiologist noticed hematuria. A retrourethrogram was performed immediately by urologist, and ureter injury was found. Ureteroureterostomy and double-J catheter insertion were performed. The patient was discharged 2 weeks after surgery without urologic or neurologic complications. At 2 months after surgery, an intravenous pyelogram was performed, which showed an intact ureter. Our study shows that a low threshold of suspicion of ureter injury and careful manipulation of retroperitoneal fat can be helpful to prevent ureter injury during oblique lumbar interbody fusion at the upper level. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Obliquity-paced Pliocene West Antarctic ice sheet oscillations.

    PubMed

    Naish, T; Powell, R; Levy, R; Wilson, G; Scherer, R; Talarico, F; Krissek, L; Niessen, F; Pompilio, M; Wilson, T; Carter, L; DeConto, R; Huybers, P; McKay, R; Pollard, D; Ross, J; Winter, D; Barrett, P; Browne, G; Cody, R; Cowan, E; Crampton, J; Dunbar, G; Dunbar, N; Florindo, F; Gebhardt, C; Graham, I; Hannah, M; Hansaraj, D; Harwood, D; Helling, D; Henrys, S; Hinnov, L; Kuhn, G; Kyle, P; Läufer, A; Maffioli, P; Magens, D; Mandernack, K; McIntosh, W; Millan, C; Morin, R; Ohneiser, C; Paulsen, T; Persico, D; Raine, I; Reed, J; Riesselman, C; Sagnotti, L; Schmitt, D; Sjunneskog, C; Strong, P; Taviani, M; Vogel, S; Wilch, T; Williams, T

    2009-03-19

    Thirty years after oxygen isotope records from microfossils deposited in ocean sediments confirmed the hypothesis that variations in the Earth's orbital geometry control the ice ages, fundamental questions remain over the response of the Antarctic ice sheets to orbital cycles. Furthermore, an understanding of the behaviour of the marine-based West Antarctic ice sheet (WAIS) during the 'warmer-than-present' early-Pliocene epoch ( approximately 5-3 Myr ago) is needed to better constrain the possible range of ice-sheet behaviour in the context of future global warming. Here we present a marine glacial record from the upper 600 m of the AND-1B sediment core recovered from beneath the northwest part of the Ross ice shelf by the ANDRILL programme and demonstrate well-dated, approximately 40-kyr cyclic variations in ice-sheet extent linked to cycles in insolation influenced by changes in the Earth's axial tilt (obliquity) during the Pliocene. Our data provide direct evidence for orbitally induced oscillations in the WAIS, which periodically collapsed, resulting in a switch from grounded ice, or ice shelves, to open waters in the Ross embayment when planetary temperatures were up to approximately 3 degrees C warmer than today and atmospheric CO(2) concentration was as high as approximately 400 p.p.m.v. (refs 5, 6). The evidence is consistent with a new ice-sheet/ice-shelf model that simulates fluctuations in Antarctic ice volume of up to +7 m in equivalent sea level associated with the loss of the WAIS and up to +3 m in equivalent sea level from the East Antarctic ice sheet, in response to ocean-induced melting paced by obliquity. During interglacial times, diatomaceous sediments indicate high surface-water productivity, minimal summer sea ice and air temperatures above freezing, suggesting an additional influence of surface melt under conditions of elevated CO(2).

  10. Towards engineered branch placement: Unreal™ match between vapour-liquid-solid glancing angle deposition nanowire growth and simulation

    NASA Astrophysics Data System (ADS)

    Taschuk, M. T.; Tucker, R. T.; LaForge, J. M.; Beaudry, A. L.; Kupsta, M. R.; Brett, M. J.

    2013-12-01

    The vapour-liquid-solid glancing angle deposition (VLS-GLAD) process is capable of producing complex nanotree structures with control over azimuthal branch orientation and height. We have developed a thin film growth simulation including ballistic deposition, simplified surface diffusion, and droplet-mediated cubic crystal growth for the VLS-GLAD process using the UnrealTM Development Kit. The use of a commercial game engine has provided an interactive environment while allowing a custom physics implementation. Our simulation's output is verified against experimental data, including a volumetric film reconstruction produced using focused ion beam and scanning-electron microscopy (SEM), crystallographic texture, and morphological characteristics such as branch orientation. We achieve excellent morphological and texture agreement with experimental data, as well as qualitative agreement with SEM imagery. The simplified physics in our model reproduces the experimental films, indicating that the dominant role flux geometry plays in the VLS-GLAD competitive growth process responsible for azimuthally oriented branches and biaxial crystal texture evolution. The simulation's successful reproduction of experimental data indicates that it should have predictive power in designing novel VLS-GLAD structures.

  11. F-8 oblique wing structural feasibility study

    NASA Technical Reports Server (NTRS)

    Koltko, E.; Katz, A.; Bell, M. A.; Smith, W. D.; Lauridia, R.; Overstreet, C. T.; Klapprott, C.; Orr, T. F.; Jobe, C. L.; Wyatt, F. G.

    1975-01-01

    The feasibility of fitting a rotating oblique wing on an F-8 aircraft to produce a full scale manned prototype capable of operating in the transonic and supersonic speed range was investigated. The strength, aeroelasticity, and fatigue life of such a prototype are analyzed. Concepts are developed for a new wing, a pivot, a skewing mechanism, control systems that operate through the pivot, and a wing support assembly that attaches in the F-8 wing cavity. The modification of the two-place NTF-8A aircraft to the oblique wing configuration is discussed.

  12. Band gap enhancement of glancing angle deposited TiO2 nanowire array

    NASA Astrophysics Data System (ADS)

    Chinnamuthu, P.; Mondal, A.; Singh, N. K.; Dhar, J. C.; Chattopadhyay, K. K.; Bhattacharya, Sekhar

    2012-09-01

    Vertically oriented TiO2 nanowire (NW) arrays were fabricated by glancing angle deposition technique. Field emission-scanning electron microscopy shows the formation of two different diameters ˜80 nm and ˜40 nm TiO2 NW for 120 and 460 rpm azimuthal rotation of the substrate. The x-ray diffraction and Raman scattering depicted the presence of rutile and anatase phase TiO2. The overall Raman scattering intensity decreased with nanowire diameter. The role of phonon confinement in anatase and rutile peaks has been discussed. The red (7.9 cm-1 of anatase Eg) and blue (7.4 cm-1 of rutile Eg, 7.8 cm-1 of rutile A1g) shifts of Raman frequencies were observed. UV-vis absorption measurements show the main band absorption at 3.42 eV, 3.48 eV, and ˜3.51 eV for thin film and NW prepared at 120 and 460 rpm, respectively. Three fold enhance photon absorption and intense light emission were observed for NW assembly. The photoluminescence emission from the NW assembly revealed blue shift in main band transition due to quantum confinement in NW structures.

  13. Origins of oblique-slip faulting during caldera subsidence

    NASA Astrophysics Data System (ADS)

    Holohan, Eoghan P.; Walter, Thomas R.; Schöpfer, Martin P. J.; Walsh, John J.; van Wyk de Vries, Benjamin; Troll, Valentin R.

    2013-04-01

    Although conventionally described as purely dip-slip, faults at caldera volcanoes may have a strike-slip displacement component. Examples occur in the calderas of Olympus Mons (Mars), Miyakejima (Japan), and Dolomieu (La Reunion). To investigate this phenomenon, we use numerical and analog simulations of caldera subsidence caused by magma reservoir deflation. The numerical models constrain mechanical causes of oblique-slip faulting from the three-dimensional stress field in the initial elastic phase of subsidence. The analog experiments directly characterize the development of oblique-slip faulting, especially in the later, non-elastic phases of subsidence. The combined results of both approaches can account for the orientation, mode, and location of oblique-slip faulting at natural calderas. Kinematically, oblique-slip faulting originates to resolve the following: (1) horizontal components of displacement that are directed radially toward the caldera center and (2) horizontal translation arising from off-centered or "asymmetric" subsidence. We informally call these two origins the "camera iris" and "sliding trapdoor" effects, respectively. Our findings emphasize the fundamentally three-dimensional nature of deformation during caldera subsidence. They hence provide an improved basis for analyzing structural, geodetic, and geophysical data from calderas, as well as analogous systems, such as mines and producing hydrocarbon reservoirs.

  14. On the time-variable nature of Titan's obliquity

    NASA Astrophysics Data System (ADS)

    Noyelles, Benoit; Nimmo, Francis

    2014-05-01

    Titan presents an unexpectedly high obliquity (Stiles et al. 2008, Meriggiola & Iess 2012) while its topography and gravity suggest a non-hydrostatic ice shell (Hemingway et al. 2013). We here present a 6-dof model of the rotation of Titan simultaneously simulating the full orientation of the shell and the inner core, and considering a global subsurface ocean with a partially-compensated shell of spatially-variable thickness. Between 10 and 13% of our realistic interior models induce a resonance with the annual forcing, that dramatically raises the obliquity. The relevant model Titans are composed of a 130-140 km thick shell floating on a ~250 km thick ocean. The observed obliquity should not be considered as a mean one but as an instantaneous one, that should vary by ~7 arcmin over the duration of the Cassini mission.

  15. Changes in the activity of trunk and hip extensor muscles during bridge exercises with variations in unilateral knee joint angle.

    PubMed

    Kim, Juseung; Park, Minchul

    2016-09-01

    [Purpose] This study compared abdominal and hip extensor muscle activity during a bridge exercise with various knee joint angles. [Subjects and Methods] Twenty-two healthy male subjects performed a bridge exercise in which the knee joint angle was altered. While subjects performed the bridge exercise, external oblique, internal oblique, gluteus maximus, and semitendinosus muscle activity was measured using electromyography. [Results] The bilateral external and internal oblique muscle activity was significantly higher at 0° knee flexion compared to 120°, 90°, and 60°. The bilateral gluteus maximus muscle activity was significantly different at 0° of knee flexion compared to 120°, 90°, and 60°. The ipsilateral semitendinosus muscle activity was significantly increased at 90° and 60° of knee flexion compared to 120°, and significantly decreased at 0° knee flexion compared with 120°, 90°, and 60°. The contralateral semitendinosus muscle activity was significantly higher at 60° of knee flexion than at 120°, and significantly higher at 0° of knee flexion than at 120°, 90°, and 60°. [Conclusion] Bridge exercises performed with knee flexion less than 90° may be used to train the ipsilateral semitendinosus. Furthermore, bridge exercise performed with one leg may be used to train abdominal and hip extensor muscles.

  16. Velocity field measurements in oblique static divergent vocal fold models

    NASA Astrophysics Data System (ADS)

    Erath, Byron

    2005-11-01

    During normal phonation, the vocal fold cycle is characterized by the glottal opening transitioning from a convergent to a divergent passage and then closing before the cycle is repeated. Under ordinary phonatory conditions, both vocal folds, which form the glottal passage, move in phase with each other, creating a time-varying symmetric opening. However, abnormal pathological conditions, such as unilateral paralysis, and polyps, can result in geometrical asymmetries between the vocal folds throughout the phonatory cycle. This study investigates pulsatile flow fields through 7.5 times life-size vocal fold models with included divergence angles of 5 to 30 degrees, and obliquities between the vocal folds of up to 15 degrees. Flow conditions were scaled to match physiological parameters. Data were taken at the anterior posterior mid-plane using phase-averaged Particle Image Velocimetry (PIV). Viscous flow phenomena including the Coanda effect, flow separation points, and jet "flapping" were investigated. The results are compared to previously reported work of flow through symmetric divergent vocal fold models.

  17. Effect of nanoparticle size on sessile droplet contact angle

    NASA Astrophysics Data System (ADS)

    Munshi, A. M.; Singh, V. N.; Kumar, Mukesh; Singh, J. P.

    2008-04-01

    We report a significant variation in the static contact angle measured on indium oxide (IO) nanoparticle coated Si substrates that have different nanoparticle sizes. These IO nanoparticles, which have well defined shape and sizes, were synthesized by chemical vapor deposition in a horizontal alumina tube furnace. The size of the IO nanoparticles was varied by changing the source material, substrate temperature, and the deposition time. A sessile droplet method was used to determine the macroscopic contact angle on these IO nanoparticle covered Si substrate using two different liquids: de-ionized water and diethylene glycol (DEG). It was observed that contact angle depends strongly on the nanoparticle size. The contact angle was found to vary from 24° to 67° for de-ionized water droplet and from 15° to 60° for DEG droplet, for the nanoparticle sizes varying from 14 to 620 nm. The contact angle decreases with a decrease in the particles size. We have performed a theoretical analysis to determine the dependence of contact angle on the nanoparticle size. This formulation qualitatively shows a similar trend of decrease in the contact angle with a decrease in nanoparticle size. Providing a rough estimate of nanoparticle size by sessile droplet contact angle measurement is the novelty in this work.

  18. Photolithographic patterning of vacuum-deposited organic light emitting devices

    NASA Astrophysics Data System (ADS)

    Tian, P. F.; Burrows, P. E.; Forrest, S. R.

    1997-12-01

    We demonstrate a photolithographic technique to fabricate vacuum-deposited organic light emitting devices. Photoresist liftoff combined with vertical deposition of the emissive organic materials and the metal cathode, followed by oblique deposition of a metal cap, avoids the use of high processing temperatures and the exposure of the organic materials to chemical degradation. The unpackaged devices show no sign of deterioration in room ambient when compared with conventional devices fabricated using low-resolution, shadow mask patterning. Furthermore, the devices are resistant to rapid degradation when operated in air for extended periods. This work illustrates a potential foundation for the volume production of very high-resolution, full color, flat panel displays based on small molecular weight organic light emitting devices.

  19. Light refraction in sapphire plates with a variable angle of crystal optical axis to the surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vetrov, V. N., E-mail: vasvetrov@mail.ru; Ignatenkov, B. A.

    2013-05-15

    The modification of sapphire by inhomogeneous plastic deformation makes it possible to obtain plates with a variable angle of inclination of the crystal optical axis to the plate surface. The refraction of light in this plate at perpendicular and oblique incidence of a parallel beam of rays is considered. The algorithm of calculating the refractive index of extraordinary ray and the birefringence is proposed.

  20. Protection of children in forward-facing child restraint systems during oblique side impact sled tests: Intrusion and tether effects.

    PubMed

    Hauschild, Hans W; Humm, John R; Pintar, Frank A; Yoganandan, Narayan; Kaufman, Bruce; Kim, Jinyong; Maltese, Matthew R; Arbogast, Kristy B

    2016-09-01

    Testing was conducted to quantify the kinematics, potential for head impact, and influence on head injury metrics for a center-seated Q3s in a forward-facing child restraint system (FFCRS) in oblique impacts. The influences of a tether and intruded door on these measures were explored. Nine lateral oblique sled tests were conducted on a convertible forward-facing child restraint seat (FFCRS). The FFCRSs were secured to a bench seat from a popular production small SUV at the center seating position utilizing the lower anchor and tether for children (LATCH). The vehicle seat was fixed on the sled carriage at 60° and 80° from full frontal (30° and 10° forward rotation from pure lateral) providing an oblique lateral acceleration to the Q3s and FFCRS. A structure simulating an intruded door was mounted to the near (left) side of vehicle seat. The sled input acceleration was the proposed FMVSS 213 lateral pulse scaled to a 35 km/h delta-V. Tests were conducted with and without the tether attached to the FFCRS. Results indicate the influence of the tether on kinematics and injury measures in oblique side impact crashes for a center- or far-side-seated child occupant. All tests without a tether resulted in head contact with the simulated door, and 2 tests at the less oblique angle (80°) with a tether also resulted in head contact. No head-to-door contact was observed in 2 tests utilizing a tether. High-speed video analysis showed that the head moved beyond the CRS head side wings and made contact with the simulated intruded door. Head injury criterion (HIC) 15 median values were 589 without the tether vs. 332 with the tether attached. Tests utilizing a tether had less lateral head excursion than tests without a tether (median 400 vs. 442 mm). These tests demonstrate the important role of the tether in controlling head excursion for center- or far-side-seated child occupants in oblique side impact crashes and limiting the head injury potential with an intruded door

  1. Wettability control of droplet deposition and detachment.

    PubMed

    Baret, Jean-Christophe; Brinkmann, Martin

    2006-04-14

    The conditions for droplet deposition on plane substrates are studied using electrowetting to continuously modulate the surface wettability. Droplets of controlled volume attached to the tip of a pipette are brought into contact with the surface. During retraction of the pipette the droplets are deposited or detach completely depending on volume and contact angle. The experimental limit of deposition in the contact angle or volume plane is in good agreement with analytical and numerical predictions obtained within the capillary model.

  2. Obliquely propagating low frequency electromagnetic shock waves in two dimensional quantum magnetoplasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masood, W.

    2009-04-15

    Linear and nonlinear propagation characteristics of low frequency magnetoacoustic waves in quantum magnetoplasmas are studied employing the quantum magnetohydrodynamic model. In this regard, a quantum Kadomtsev-Petviashvili-Burgers (KPB) equation is derived using the small amplitude expansion method. The dissipation is introduced by taking into account the kinematic viscosity among the plasma constituents. Furthermore, the solution of KPB equation is presented using the tangent hyperbolic (tanh) method. The variation in the fast and slow magnetoacoustic shock profiles with the quantum Bohm potential via increasing number density, obliqueness angle {theta}, magnetic field, and the resistivity are also investigated. It is observed that themore » aforementioned plasma parameters significantly modify the propagation characteristics of nonlinear magnetoacoustic shock waves in quantum magnetoplasmas. The relevance of the present investigation with regard to dense astrophysical environments is also pointed out.« less

  3. Acoustic plane waves incident on an oblique clamped panel in a rectangular duct

    NASA Technical Reports Server (NTRS)

    Unz, H.; Roskam, J.

    1980-01-01

    The theory of acoustic plane waves incident on an oblique clamped panel in a rectangular duct was developed from basic theoretical concepts. The coupling theory between the elastic vibrations of the panel (plate) and the oblique incident acoustic plane wave in infinite space was considered in detail, and was used for the oblique clamped panel in the rectangular duct. The partial differential equation which governs the vibrations of the clamped panel (plate) was modified by adding to it stiffness (spring) forces and damping forces. The Transmission Loss coefficient and the Noise Reduction coefficient for oblique incidence were defined and derived in detail. The resonance frequencies excited by the free vibrations of the oblique finite clamped panel (plate) were derived and calculated in detail for the present case.

  4. Oblique wing transonic transport configuration development

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Studies of transport aircraft designed for boom-free supersonic flight show the variable sweep oblique wing to be the most efficient configuration for flight at low supersonic speeds. Use of this concept leads to a configuration that is lighter, quieter, and more fuel efficient than symmetric aircraft designed for the same mission. Aerodynamic structural, weight, aeroelastic and flight control studies show the oblique wing concept to be technically feasible. Investigations are reported for wing planform and thickness, pivot design and weight estimation, engine cycle (bypass ratio), and climb, descent and reserve fuel. Results are incorporated into a final configuration. Performance, weight, and balance characteristics are evaluated. Flight control requirements are reviewed, and areas in which further research is needed are identified.

  5. Polarization and Compressibility of Oblique Kinetic Alfven Waves

    NASA Technical Reports Server (NTRS)

    Hunana, Peter; Goldstein, M. L.; Passot, T.; Sulem, P. L.; Laveder, D.; Zank, G. P.

    2012-01-01

    Even though solar wind, as a collisionless plasma, is properly described by the kineticMaxwell-Vlasov description, it can be argued that much of our understanding of solar wind observational data comes from an interpretation and numerical modeling which is based on a fluid description of magnetohydrodynamics. In recent years, there has been a significant interest in better understanding the importance of kinetic effects, i.e. the differences between the kinetic and usual fluid descriptions. Here we concentrate on physical properties of oblique kinetic Alfvn waves (KAWs), which are often recognized as one of the key ingredients in the solar wind turbulence cascade. We use three different fluid models with various degrees of complexity and calculate polarization and magnetic compressibility of oblique KAWs (propagation angle q = 88), which we compare to solutions derived from linear kinetic theory. We explore a wide range of possible proton plasma b = [0.1,10.0] and a wide range of length scales krL = [0.001,10.0]. It is shown that the classical isotropic two-fluid model is very compressible in comparison with kinetic theory and that the largest discrepancy occurs at scales larger than the proton gyroscale. We also show that the two-fluid model contains a large error in the polarization of electric field, even at scales krL 1. Furthermore, to understand these discrepancies between the two-fluid model and the kinetic theory, we employ two versions of the Landau fluid model that incorporate linear low-frequency kinetic effects such as Landau damping and finite Larmor radius (FLR) corrections into the fluid description. It is shown that Landau damping significantly reduces the magnetic compressibility and that FLR corrections (i.e. nongyrotropic contributions) are required to correctly capture the polarization.We also show that, in addition to Landau damping, FLR corrections are necessary to accurately describe the damping rate of KAWs. We conclude that kinetic effects

  6. Cosmic-ray shock acceleration in oblique MHD shocks

    NASA Technical Reports Server (NTRS)

    Webb, G. M.; Drury, L. OC.; Volk, H. J.

    1986-01-01

    A one-dimensional, steady-state hydrodynamical model of cosmic-ray acceleration at oblique MHD shocks is presented. Upstream of the shock the incoming thermal plasma is subject to the adverse pressure gradient of the accelerated particles, the J x B force, as well as the thermal gas pressure gradient. The efficiency of the acceleration of cosmic-rays at the shock as a function of the upstream magnetic field obliquity and upstream plasma beta is investigated. Astrophysical applications of the results are briefly discussed.

  7. Forty-five-degree or higher insertion angles are required to penetrate the opposite cortex in bicortical applications of Kirschner wires: an in vitro study on sheep bones.

    PubMed

    Colak, Mehmet; Gurer, Burak; Sungur, Mehmet Ali; Eskandari, Metin Manouchehr

    2012-04-01

    Slippage of the wires over the opposite cortex from the endosteal side is frequent and can lead to insufficient stability. This in vitro biomechanical study was planned to investigate the angle of wire insertion that leads to trans cortex perforation. Long bones of sheep were cut longitudinally into two pieces and half bones were stabilised on a frame. Three orthopaedic surgeons performed the experiment using ten wires of four different diameters at two different drilling speeds. Each wire was introduced from the endosteal side at angles starting at 30° in 5° increments until perforation. When perforation was achieved, the angle was recorded. To determinate the critical angle of perforation, receiver operating characteristic (ROC) curve analyses was performed. Two-way factorial analysis of variance (ANOVA) and Kruskal-Wallis tests were used for statistical comparisons. Kirschner-wire insertion angles of ≥ 45° provided perforation with a percentage of 83.9 %. Wire diameter, drilling speed and surgeon variables had no effect on perforation angles (p > 0.05). If preoperative evaluation of fractures to be fixed by K wires reveals the need for oblique wire insertion angle < 45°, a standard trocar-tip K wire application would lead to slippage of the wire tip on the endosteal surface of the opposite cortex. According to this study, the operative plan should be changed if such obliquity of the K wire is mandatory during bicortical applications.

  8. Constraints on the near-Earth asteroid obliquity distribution from the Yarkovsky effect

    NASA Astrophysics Data System (ADS)

    Tardioli, C.; Farnocchia, D.; Rozitis, B.; Cotto-Figueroa, D.; Chesley, S. R.; Statler, T. S.; Vasile, M.

    2017-12-01

    Aims: From light curve and radar data we know the spin axis of only 43 near-Earth asteroids. In this paper we attempt to constrain the spin axis obliquity distribution of near-Earth asteroids by leveraging the Yarkovsky effect and its dependence on an asteroid's obliquity. Methods: By modeling the physical parameters driving the Yarkovsky effect, we solve an inverse problem where we test different simple parametric obliquity distributions. Each distribution results in a predicted Yarkovsky effect distribution that we compare with a χ2 test to a dataset of 125 Yarkovsky estimates. Results: We find different obliquity distributions that are statistically satisfactory. In particular, among the considered models, the best-fit solution is a quadratic function, which only depends on two parameters, favors extreme obliquities consistent with the expected outcomes from the YORP effect, has a 2:1 ratio between retrograde and direct rotators, which is in agreement with theoretical predictions, and is statistically consistent with the distribution of known spin axes of near-Earth asteroids.

  9. Pre-late heavy bombardment evolution of the Earth's obliquity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Gongjie; Batygin, Konstantin, E-mail: gli@cfa.harvard.edu

    2014-11-01

    The Earth's obliquity is stabilized by the Moon, which facilitates a rapid precession of the Earth's spin axis, detuning the system away from resonance with orbital modulation. It is, however, likely that the architecture of the solar system underwent a dynamical instability-driven transformation, where the primordial configuration was more compact. Hence, the characteristic frequencies associated with orbital perturbations were likely faster in the past, potentially allowing for secular resonant encounters. In this work, we examine if, at any point in the Earth's evolutionary history, the obliquity varied significantly. Our calculations suggest that even though the orbital perturbations were different, themore » system nevertheless avoided resonant encounters throughout its evolution. This indicates that the Earth obtained its current obliquity during the formation of the Moon.« less

  10. DYNAMICAL INSTABILITIES IN HIGH-OBLIQUITY SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamayo, D.; Nicholson, P. D.; Burns, J. A.

    2013-03-01

    High-inclination circumplanetary orbits that are gravitationally perturbed by the central star can undergo Kozai oscillations-large-amplitude, coupled variations in the orbital eccentricity and inclination. We first study how this effect is modified by incorporating perturbations from the planetary oblateness. Tremaine et al. found that, for planets with obliquities >68. Degree-Sign 875, orbits in the equilibrium local Laplace plane are unstable to eccentricity perturbations over a finite radial range and execute large-amplitude chaotic oscillations in eccentricity and inclination. In the hope of making that treatment more easily understandable, we analyze the problem using orbital elements, confirming this threshold obliquity. Furthermore, we findmore » that orbits inclined to the Laplace plane will be unstable over a broader radial range, and that such orbits can go unstable for obliquities less than 68. Degree-Sign 875. Finally, we analyze the added effects of radiation pressure, which are important for dust grains and provide a natural mechanism for particle semimajor axes to sweep via Poynting-Robertson drag through any unstable range. For low-eccentricity orbits in the equilibrium Laplace plane, we find that generally the effect persists; however, the unstable radial range is shifted and small retrograde particles can avoid the instability altogether. We argue that this occurs because radiation pressure modifies the equilibrium Laplace plane.« less

  11. Terahertz radiation generation by beating of two laser beams in a collisional plasma with oblique magnetic field

    NASA Astrophysics Data System (ADS)

    Hematizadeh, Ayoob; Jazayeri, Seyed Masud; Ghafary, Bijan

    2018-02-01

    A scheme for excitation of terahertz (THz) radiation is presented by photo mixing of two super-Gaussian laser beams in a rippled density collisional magnetized plasma. Lasers having different frequencies and wave numbers but the same electric fields create a ponderomotive force on the electrons of plasma in the beating frequency. Super-Gaussian laser beam has the exclusive features such as steep gradient in laser intensity distribution, wider cross-section in comparison with Gaussian profiles, which make stronger ponderomotive force and higher THz radiation. The magnetic field is considered oblique to laser beams propagation direction; in this case, depending on the phase matching conditions different mode waves can propagate in plasma. It is found that amplitude and efficiency of the emitted THz radiation not only are sensitive to the beating frequency, collision frequency, and magnetic field strength but to the angle between laser beams and static magnetic field. The efficiency of THz radiation can be optimized in a certain angle.

  12. Librations and obliquity of Mercury from the BepiColombo laser altimetry, radio science and camera experiments

    NASA Astrophysics Data System (ADS)

    Pfyffer, G.; van Hoolst, T.; Dehant, V. M.

    2010-12-01

    Through its anomalously high uncompressed density implying a metal fraction of 60% or more by mass, Mercury represents an extreme outcome of planetary formation in the inner solar system. The space missions MESSENGER and BepiColombo are expected to advance largely our knowledge of the structure, formation, and evolution of Mercury. In particular, insight into Mercury's deep interior will be obtained from observations of the obliquity, the 88-day forced libration, the planetary induced librations and the degree-two coefficients of the gravity field of Mercury. We report here on aspects of the observational strategy of ESA’s BepiColombo mission to determine the libration amplitude and obliquity, taking into account the space as well as the ground segment of the experiment. Repeated photographic measurements of selected target positions on the surface of Mercury are central to the strategy to determine the obliquity and libration in the frame of the BepiColombo mission, but a significant constraint is posed by the fact that the planetary surface can only be photographed under very strict illumination conditions. We therefore study the possibility to use the information embedded in the groundtrack crossings (crosstracks) of the BepiColombo laser altimeter (BELA) in addition to the primary photographic data in order to estimate the librations and obliquity of Mercury. An advantage of the laser altimetry data is that it does not depend on the solar incidence angle on the surface nor on the presence of specific surface features as required for the camera data in the camera rotation experiment. Both laser and photographic measurements were simulated in a realistic set-up in order to estimate the accuracy of the reconstruction of the orientation and rotational motion of the planet as a function of the amount of measurements made, the number of different targets and crosstrack points considered and their locations on the surface of the planet. Such an analysis requires the

  13. Inferior oblique muscle paresis as a sign of myasthenia gravis.

    PubMed

    Almog, Yehoshua; Ben-David, Merav; Nemet, Arie Y

    2016-03-01

    Myasthenia gravis may affect any of the six extra-ocular muscles, masquerading as any type of ocular motor pathology. The frequency of involvement of each muscle is not well established in the medical literature. This study was designed to determine whether a specific muscle or combination of muscles tends to be predominantly affected. This retrospective review included 30 patients with a clinical diagnosis of myasthenia gravis who had extra-ocular muscle involvement with diplopia at presentation. The diagnosis was confirmed by at least one of the following tests: Tensilon test, acetylcholine receptor antibodies, thymoma on chest CT scan, or suggestive electromyography. Frequency of involvement of each muscle in this cohort was inferior oblique 19 (63.3%), lateral rectus nine (30%), superior rectus four (13.3%), inferior rectus six (20%), medial rectus four (13.3%), and superior oblique three (10%). The inferior oblique was involved more often than any other muscle (p<0.01). Eighteen (60%) patients had ptosis, six (20%) of whom had bilateral ptosis. Diagnosing myasthenia gravis can be difficult, because the disease may mimic every pupil-sparing pattern of ocular misalignment. In addition diplopia caused by paresis of the inferior oblique muscle is rarely encountered (other than as a part of oculomotor nerve palsy). Hence, when a patient presents with vertical diplopia resulting from an isolated inferior oblique palsy, myasthenic etiology should be highly suspected. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Independent sources of anisotropy in visual orientation representation: a visual and a cognitive oblique effect.

    PubMed

    Balikou, Panagiota; Gourtzelidis, Pavlos; Mantas, Asimakis; Moutoussis, Konstantinos; Evdokimidis, Ioannis; Smyrnis, Nikolaos

    2015-11-01

    The representation of visual orientation is more accurate for cardinal orientations compared to oblique, and this anisotropy has been hypothesized to reflect a low-level visual process (visual, "class 1" oblique effect). The reproduction of directional and orientation information also leads to a mean error away from cardinal orientations or directions. This anisotropy has been hypothesized to reflect a high-level cognitive process of space categorization (cognitive, "class 2," oblique effect). This space categorization process would be more prominent when the visual representation of orientation degrades such as in the case of working memory with increasing cognitive load, leading to increasing magnitude of the "class 2" oblique effect, while the "class 1" oblique effect would remain unchanged. Two experiments were performed in which an array of orientation stimuli (1-4 items) was presented and then subjects had to realign a probe stimulus within the previously presented array. In the first experiment, the delay between stimulus presentation and probe varied, while in the second experiment, the stimulus presentation time varied. The variable error was larger for oblique compared to cardinal orientations in both experiments reproducing the visual "class 1" oblique effect. The mean error also reproduced the tendency away from cardinal and toward the oblique orientations in both experiments (cognitive "class 2" oblique effect). The accuracy or the reproduced orientation degraded (increasing variable error) and the cognitive "class 2" oblique effect increased with increasing memory load (number of items) in both experiments and presentation time in the second experiment. In contrast, the visual "class 1" oblique effect was not significantly modulated by any one of these experimental factors. These results confirmed the theoretical predictions for the two anisotropies in visual orientation reproduction and provided support for models proposing the categorization of

  15. Dipolar geomagnetic field and low orbital obliquity during the last two billion years: Evidence from paleomagnetism of evaporite basins

    NASA Astrophysics Data System (ADS)

    Evans, D. A.

    2006-05-01

    Paleomagnetism of climatically sensitive sedimentary rock types, such as glacial deposits and evaporites, can test the uniformitarianism of ancient geomagnetic fields and paleoclimatic zones. Precambrian glacial deposits laid down in near-equatorial paleomagnetic latitudes indicate a paleoclimatic paradox that can be explained either by Snowball Earth episodes, or high orbital obliquity, or dramatically non-uniformitarian geomagnetic fields. Here I present the first global paleomagnetic compilation of the Earth's entire basin-scale evaporite record. Evaporation exceeds precipitation in today's subtropical desert belts, generally within a zone of 15-35° from the equator. Assuming a geocentric axial dipole (GAD) magnetic field for Cenozoic- Mesozoic time, evaporite basins of the past 250 Myr have a volume-weighted mean paleolatitude of 23±4°, also squarely within the subtropics. Carboniferous-Permian evaporites have an indistinguishable weighted-mean paleolatitude of 22±4°, which does not change significantly when recently hypothesized octupolar field components are included in the calculations. Early Paleozoic (including late Ediacaran) evaporites are lower-latitude (weighted mean 10±5°), but detailed analyses of individual examples show this cannot be attributed solely to nondipolar field components or sedimentary inclination biases; the cause may be due to particular paleogeographic effects on regional tropical climates, or incomplete sampling by the paleomagnetic data. Proterozoic (pre-Ediacaran) evaporite basins have a volume- weighted mean inclination of 33±4°, which would correspond to a mean paleolatitude of 18±3° for a pure GAD field. This latter mean is indistinguishable, within error, from the Cenozoic-Mesozoic mean and demonstrates the success of the GAD model as a first-order description of the geomagnetic field for the last two billion years. Also, general circulation climate models of a high-obliquity Earth predict either no strong zonal

  16. Experimental Study of the Angle of Repose of Surrogate Martian Dust

    NASA Technical Reports Server (NTRS)

    Moeller, L. E.; Tuller, M.; Baker, L.; Marshall, J.; Castiglione, P.; Kuhlman, K.

    2003-01-01

    Accumulation of wind-blown dust particles on solar cells and instruments will be a great challenge in the exploration of Mars, significantly reducing their lifetime, durability, and power output. For future Mars Lander missions it is crucial to gain information about the ideal angle at which solar panels can be positioned to minimize dust deposition and thus, maximize the power output and lifetime of the solar cells. The major determinant for the optimal panel angle is the angle of repose of the dust particles that is dependent on a variety of physical and chemical properties of the particles, the panel surface, and the environmental conditions on the Mars surface. To gain a basic understanding of the physical and chemical processes that govern dust deposition and to get feedback for the design of an experiment suitable for one of the future Mars Lander missions we simulate atmospheric conditions expected on the Mars surface in a controlled chamber, and observe the angle of repose of Mars dust surrogates. Dust deposition and angle of repose were observed on different sized spheres. To cover a range of potential materials we will use spheres made of 7075 aluminum (10 mm, and 15 mm), alumina oxide ceramic (10 mm), and Teflon(trademark) (10 mm) and wafers of gallium arsenide, silicon.

  17. Complete annular and partial oblique pulley release for pediatric locked trigger thumb

    PubMed Central

    Kuo, Meiying

    2010-01-01

    Purpose To report the surgical treatment outcome of pediatric locked trigger thumb by sequential release of the annular pulley and partial release of the oblique pulley. Materials and Methods A retrospective review was undertaken on 28 operative thumbs in 24 patients with an average follow-up of 79 months. Intraoperative observations focused on the pathology of the pulley system. Surgical technique involved complete release of the annular pulley, which alone was insufficient in relieving the deformity, along with release of the proximal 50% of the oblique pulley in all patients. Postoperative parameters of bowstringing, resolution of Notta's node, thumb interphalangeal motion, and patient/parent satisfaction were assessed. Results The oblique pulley appeared stenotic, whereas the annular pulley was observed to be membranous and nearly indistinguishable from the tendon sheath. No patients had recurrence of thumb locking or triggering. No bowstringing was detected, and Notta’s node resolved fully in 19 of 20 thumbs. Five thumbs had an average of 12o less active IP joint motion without flexion contracture (i.e., less flexion). All patients or families expressed overall satisfaction with the procedure. Conclusion The annular pulley was attenuated in the majority of cases and the proximal half of the oblique pulley was stenotic in all patients. Releasing 50% of the oblique pulley after complete annular pulley release was necessary in all thumbs to achieve full FPL excursion. Mistaking the constricted proximal oblique pulley for an annular pulley may encourage releasing the entire oblique pulley, leading to an adverse result. Satisfactory outcome was achieved after surgical treatment of pediatric locked trigger thumbs. Type of Study/Level of Evidence Therapeutic IV. PMID:22131924

  18. Global rotational motion and displacement estimation of digital image stabilization based on the oblique vectors matching algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Fei; Hui, Mei; Zhao, Yue-jin

    2009-08-01

    The image block matching algorithm based on motion vectors of correlative pixels in oblique direction is presented for digital image stabilization. The digital image stabilization is a new generation of image stabilization technique which can obtains the information of relative motion among frames of dynamic image sequences by the method of digital image processing. In this method the matching parameters are calculated from the vectors projected in the oblique direction. The matching parameters based on the vectors contain the information of vectors in transverse and vertical direction in the image blocks at the same time. So the better matching information can be obtained after making correlative operation in the oblique direction. And an iterative weighted least square method is used to eliminate the error of block matching. The weights are related with the pixels' rotational angle. The center of rotation and the global emotion estimation of the shaking image can be obtained by the weighted least square from the estimation of each block chosen evenly from the image. Then, the shaking image can be stabilized with the center of rotation and the global emotion estimation. Also, the algorithm can run at real time by the method of simulated annealing in searching method of block matching. An image processing system based on DSP was used to exam this algorithm. The core processor in the DSP system is TMS320C6416 of TI, and the CCD camera with definition of 720×576 pixels was chosen as the input video signal. Experimental results show that the algorithm can be performed at the real time processing system and have an accurate matching precision.

  19. Widefield fluorescence microscopy with sensor-based conjugate adaptive optics using oblique back illumination

    PubMed Central

    Li, Jiang; Bifano, Thomas G.; Mertz, Jerome

    2016-01-01

    Abstract. We describe a wavefront sensor strategy for the implementation of adaptive optics (AO) in microscope applications involving thick, scattering media. The strategy is based on the exploitation of multiple scattering to provide oblique back illumination of the wavefront-sensor focal plane, enabling a simple and direct measurement of the flux-density tilt angles caused by aberrations at this plane. Advantages of the sensor are that it provides a large measurement field of view (FOV) while requiring no guide star, making it particularly adapted to a type of AO called conjugate AO, which provides a large correction FOV in cases when sample-induced aberrations arise from a single dominant plane (e.g., the sample surface). We apply conjugate AO here to widefield (i.e., nonscanning) fluorescence microscopy for the first time and demonstrate dynamic wavefront correction in a closed-loop implementation. PMID:27653793

  20. Contributions to the Earth's Obliquity Rate, Precession, and Nutation

    NASA Technical Reports Server (NTRS)

    Williams, James G.

    1994-01-01

    The precession and nutation of the Earth's equator arise from solar, lunar, and planetary torques on the oblate Earth. The mean lunar orbit plane is nearly coincident with the ecliptic plane. A small tilt out of the ecliptic is caused by planetary perturbations and the Earth's gravitational harmonic J(sub 2). These planetary perturbations on the lunar orbit result in torques on the oblate Earth which contribute to precession, obliquity rate, and nutation while the J(sub 2) perturbations contribute to precession and nutation. Small additional contributions to the secular rates arise from tidal effects and planetary torques on the Earth's bulge. The total correction to the obliquity rate is -0.024 sec/century, it is an observable motion in space (the much larger conventional obliquity rate is wholly from the motion of the ecliptic, not the equator), and it is not present in the IAU-adopted expressions for the orientation of the Earth's equator. The effects have generally been allowed for in past nutation theories and some precession theories. For the planetary effect, the contributions to the 18.6 yr nutation are -0.03 mas (milliarcseconds) for the in-phase Delta(psi) plus out-of-phase contributions of 0.14 mas in Delta(psi) and -0.03 mas in Delta(sub epsilon). The latter terms demonstrate that out-of-phase contributions can arise by means other than dissipation. The sum of the contributions to the precession rate is considered and the inferred value of the moment of inertia combination (C-A)/C, which is used to scale the coefficients in the nutation series, is evaluated. Using an updated value for the precession rate, the rigid body (C-A)/C =0.003 273 763 4 which, in combination with a satellite-derived J(sub 2), gives a normalized polar moment of inertia C/MR(exp 2) = 0.330 700 7. The planetary contributions to the precession and obliquity rates are not constant for long times causing accelerations in both quantities. Acceleration in precession also arises from

  1. Obliquity-paced Pliocene West Antarctic ice sheet oscillations

    USGS Publications Warehouse

    Naish, T.; Powell, R.; Levy, R.; Wilson, G.; Scherer, R.; Talarico, F.; Krissek, L.; Niessen, F.; Pompilio, M.; Wilson, T.; Carter, L.; DeConto, R.; Huybers, P.; McKay, R.; Pollard, D.; Ross, J.; Winter, D.; Barrett, P.; Browne, G.; Cody, R.; Cowan, E.; Crampton, J.; Dunbar, G.; Dunbar, N.; Florindo, F.; Gebhardt, C.; Graham, I.; Hannah, M.; Hansaraj, D.; Harwood, D.; Helling, D.; Henrys, S.; Hinnov, L.; Kuhn, G.; Kyle, P.; Laufer, A.; Maffioli, P.; Magens, D.; Mandernack, K.; McIntosh, W.; Millan, C.; Morin, R.; Ohneiser, C.; Paulsen, T.; Persico, D.; Raine, I.; Reed, J.; Riesselman, C.; Sagnotti, L.; Schmitt, D.; Sjunneskog, C.; Strong, P.; Taviani, M.; Vogel, S.; Wilch, T.; Williams, T.

    2009-01-01

    Thirty years after oxygen isotope records from microfossils deposited in ocean sediments confirmed the hypothesis that variations in the Earth's orbital geometry control the ice ages1, fundamental questions remain over the response of the Antarctic ice sheets to orbital cycles2. Furthermore, an understanding of the behaviour of the marine-based West Antarctic ice sheet (WAIS) during the 'warmer-than-present' early-Pliocene epoch (5–3 Myr ago) is needed to better constrain the possible range of ice-sheet behaviour in the context of future global warming3. Here we present a marine glacial record from the upper 600 m of the AND-1B sediment core recovered from beneath the northwest part of the Ross ice shelf by the ANDRILL programme and demonstrate well-dated, 40-kyr cyclic variations in ice-sheet extent linked to cycles in insolation influenced by changes in the Earth's axial tilt (obliquity) during the Pliocene. Our data provide direct evidence for orbitally induced oscillations in the WAIS, which periodically collapsed, resulting in a switch from grounded ice, or ice shelves, to open waters in the Ross embayment when planetary temperatures were up to 3 °C warmer than today4 and atmospheric CO2 concentration was as high as 400 p.p.m.v. (refs 5, 6). The evidence is consistent with a new ice-sheet/ice-shelf model7 that simulates fluctuations in Antarctic ice volume of up to +7 m in equivalent sea level associated with the loss of the WAIS and up to +3 m in equivalent sea level from the East Antarctic ice sheet, in response to ocean-induced melting paced by obliquity. During interglacial times, diatomaceous sediments indicate high surface-water productivity, minimal summer sea ice and air temperatures above freezing, suggesting an additional influence of surface melt8 under conditions of elevated CO2.

  2. Mars Secular Obliquity Change Due to Water Ice Caps

    NASA Technical Reports Server (NTRS)

    Rubincam, David P.

    1998-01-01

    Mars may have substantially changed its average axial tilt over geologic time due to the waxing and waning of water ice caps. Depending upon Mars' climate and internal structure, the average obliquity could have increased or decreased through climate friction by tens of degrees. A decrease could account for the apparent youthfulness of the polar layered terrain. Alternatively, Mars' average obliquity may have changed until it became "stuck" at its present value of 24.4 deg.

  3. Random Combinatorial Gradient Metasurface for Broadband, Wide-Angle and Polarization-Independent Diffusion Scattering.

    PubMed

    Zhuang, Yaqiang; Wang, Guangming; Liang, Jiangang; Cai, Tong; Tang, Xiao-Lan; Guo, Tongfeng; Zhang, Qingfeng

    2017-11-29

    This paper proposes an easy, efficient strategy for designing broadband, wide-angle and polarization-independent diffusion metasurface for radar cross section (RCS) reduction. A dual-resonance unit cell, composed of a cross wire and cross loop (CWCL), is employed to enhance the phase bandwidth covering the 2π range. Both oblique-gradient and horizontal-gradient phase supercells are designed for illustration. The numerical results agree well with the theoretical ones. To significantly reduce backward scattering, the random combinatorial gradient metasurface (RCGM) is subsequently constructed by collecting eight supercells with randomly distributed gradient directions. The proposed metasurface features an enhanced specular RCS reduction performance and less design complexity compared to other candidates. Both simulated and measured results show that the proposed RCGM can significantly suppress RCS and exhibits broadband, wide-angle and polarization independence features.

  4. Stress sensitivity of fault seismicity: A comparison between limited-offset oblique and major strike-slip faults

    USGS Publications Warehouse

    Parsons, T.; Stein, R.S.; Simpson, R.W.; Reasenberg, P.A.

    1999-01-01

    We present a new three-dimensional inventory of the southern San Francisco Bay area faults and use it to calculate stress applied principally by the 1989 M = 7.1 Loma Prieta earthquake and to compare fault seismicity rates before and after 1989. The major high-angle right-lateral faults exhibit a different response to the stress change than do minor oblique (right-lateral/thrust) faults. Seismicity on oblique-slip faults in the southern Santa Clara Valley thrust belt increased where the faults were unclamped. The strong dependence of seismicity change on normal stress change implies a high coefficient of static friction. In contrast, we observe that faults with significant offset (>50-100 km) behave differently; microseismicity on the Hayward fault diminished where right-lateral shear stress was reduced and where it was unclamped by the Loma Prieta earthquake. We observe a similar response on the San Andreas fault zone in southern California after the Landers earthquake sequence. Additionally, the offshore San Gregorio fault shows a seismicity rate increase where right-lateral/oblique shear stress was increased by the Loma Prieta earthquake despite also being clamped by it. These responses are consistent with either a low coefficient of static friction or high pore fluid pressures within the fault zones. We can explain the different behavior of the two styles of faults if those with large cumulative offset become impermeable through gouge buildup; coseismically pressurized pore fluids could be trapped and negate imposed normal stress changes, whereas in more limited offset faults, fluids could rapidly escape. The difference in behavior between minor and major faults may explain why frictional failure criteria that apply intermediate coefficients of static friction can be effective in describing the broad distributions of aftershocks that follow large earthquakes, since many of these events occur both inside and outside major fault zones.

  5. Radiographic evaluation of perching-joint angles in cockatiels (Nymphicus hollandicus), Hispaniolan Amazon parrots (Amazona ventralis), and barred owls (Strix varia).

    PubMed

    Bonin, Glen; Lauer, Susanne K; Guzman, David Sanchez-Migallon; Nevarez, Javier; Tully, Thomas N; Hosgood, Giselle; Gaschen, Lorrie

    2009-06-01

    Information on perching-joint angles in birds is limited. Joint immobilization in a physiologic perching angle has the potential to result more often in complete restoration of limb function. We evaluated perching-joint angles in 10 healthy cockatiels (Nymphicus hollandicus), 10 Hispaniolan Amazons (Amazona ventralis), and 9 barred owls (Strix varia) and determined intra- and interobserver variability for goniometric measurements in 2 different radiographic projections. Intra- and interobserver variation was less than 7% for all stifle and intertarsal joint measurements but frequently exceeded 10% for the hip-joint measurements. Hip, stifle, and intertarsal perching angles differed significantly among cockatiels, Hispaniolan Amazon parrots, and barred owls. The accuracy of measurements performed on straight lateral radiographic projections with superimposed limbs was not consistently superior to measurements on oblique projections with a slightly rotated pelvis. Stifle and intertarsal joint angles can be measured on radiographs by different observers with acceptable variability, but intra- and interobserver variability for hip-joint-angle measurements is higher.

  6. Residual symptoms after surgery for unilateral congenital superior oblique palsy.

    PubMed

    Caca, Ihsan; Sahin, Alparslan; Cingu, Abdullah; Ari, Seyhmus; Akbas, Umut

    2012-01-01

    To establish the surgical results and residual symptoms in 48 cases with unilateral congenital superior oblique muscle palsy that had surgical intervention to the vertical muscles alone. Myectomy and concomitant disinsertion of the inferior oblique (IO) muscle was performed in 38 cases and myectomy and concomitant IO disinsertion and recession of the superior rectus muscle in the ipsilateral eye was performed in 10 cases. The preoperative and postoperative vertical deviation values and surgical results were compared. Of the patients who had myectomy and concomitant IO disinsertion, 74% achieved an "excellent" result, 21% a "good" result, and 5% a "poor" result postoperatively. The difference in deviation between preoperative and postoperative values was statistically significant (P < .001). Of the patients who had myectomy and concomitant inferior oblique disinsertion and ipsilateral superior rectus recession, 50% achieved an "excellent" result, 20% a "good" result, and 30% a "poor" result postoperatively. The difference in deviation between preoperative and postoperative values was statistically significant (P < .001). Both procedures are effective and successful in patients with superior oblique muscle palsy, but a secondary surgery may be required. Copyright 2012, SLACK Incorporated.

  7. Study of anisotropy, magnetization reversal and damping in ultrathin Co films on MgO (0 0 1) substrate

    NASA Astrophysics Data System (ADS)

    Mallik, Srijani; Bedanta, Subhankar

    2018-01-01

    Ultrathin Co films of 3 nm thickness have been prepared on MgO (0 0 1) substrate in presence or absence of substrate pre-annealing. Uniaxial anisotropy is induced in the samples due to the deposition under oblique angle of incidence. Along with the oblique deposition induced anisotropy, another uniaxial anisotropy contribution has been observed due to pre-annealing. However, no cubic anisotropy has been observed here as compared to the thicker films. Angle dependent ferromagnetic resonance (FMR) measurement confirms the presence of two anisotropies in the pre-annealed sample with ∼18° misalignment with each other. The two anisotropy constants were calculated from both superconducting quantum interference device (SQUID) magnetometry and FMR spectroscopy. The magnetization reversal is governed by nucleation dominated aftereffect followed by domain wall motion for the pre-annealed sample. Branched domains are observed for the sample prepared without pre-annealing which indicates grain disorientation of Co. However, in the thicker (25 nm) Co films ripple domains were observed in contrary to ultrathin (3 nm) films.

  8. An "oblique effect" in the visual evoked potential of the cat.

    PubMed

    Bonds, A B

    1982-01-01

    An oblique effect was observed in the amplitude of the VEP recorded from area 17 of the cat. The ratio of the responses to oblique gratings compared with responses to horizontal and vertical gratings averaged 0.77. Orientation dependence was strongest at low spatial frequencies, unlike the effect found in primates.

  9. Generation and Micro-scale Effects of Electrostatic Waves in an Oblique Shock

    NASA Astrophysics Data System (ADS)

    Goodrich, K.; Ergun, R.; Schwartz, S. J.; Newman, D.; Johlander, A.; Argall, M. R.; Wilder, F. D.; Torbert, R. B.; Khotyaintsev, Y. V.; Lindqvist, P. A.; Strangeway, R. J.; Russell, C. T.; Giles, B. L.; Gershman, D. J.; Burch, J. L.

    2017-12-01

    We present an analysis of large amplitude (>100 mV/m), high frequency (≤1 kHz), electrostatic waves observed by MMS during an oblique bow shock crossing event. The observed waves primarily consist of electrostatic solitary waves (ESWs) and oblique ion plasma waves (IPWs). ESWs typically include nonlinear structures such as double layers, ion phase-space holes, and electron phase-space holes. Oblique IPWs are observed to be similar to ion acoustic waves, but can propagate up to 70° from the ambient magnetic field direction. Both wave-modes, particularly IPWs, are observed to have very short wavelengths ( 100 m) and are highly localized. While such wave-modes have been previously observed in the terrestrial bow shock, instrumental constraints have limited detailed insight into their generation and their effect on their plasma shock environment. Analysis of this oblique shock event shows evidence that ESWs and oblique IPWs can be generated through field-aligned currents associated with magnetic turbulence and through a counterstreaming ion instability respectively. We also present evidence that this wave activity can facilitate momentum exchange between ion populations, resulting in deceleration of incoming solar wind, and localized electron heating.

  10. Mars north polar deposits: stratigraphy, age, and geodynamical response

    USGS Publications Warehouse

    Phillips, R.J.; Zuber, M.T.; Smrekar, S.E.; Mellon, M.T.; Head, J.W.; Tanaka, K.L.; Putzig, N.E.; Milkovich, S.M.; Campbell, B.A.; Plaut, J.J.; Safaeinili, A.; Seu, R.; Biccari, D.; Carter, L.M.; Picardi, G.; Orosei, R.; Surdas, Mohit P.; Heggy, E.; Zurek, R.W.; Egan, A.F.; Giacomoni, E.; Russo, F.; Cutigni, M.; Pettinelli, E.; Holt, J.W.; Leuschen, C.J.; Marinangeli, L.

    2008-01-01

    The Shallow Radar (SHARAD) on the Mars Reconnaissance Orbiter has imaged the internal stratigraphy of the north polar layered deposits of Mars. Radar reflections within the deposits reveal a laterally continuous deposition of layers, which typically consist of four packets of finely spaced reflectors separated by homogeneous interpacket regions of nearly pure ice. The packet/interpacket structure can be explained by approximately million-year periodicities in Mars' obliquity or orbital eccentricity. The observed ???100-meter maximum deflection of the underlying substrate in response to the ice load implies that the present-day thickness of an equilibrium elastic lithosphere is greater than 300 kilometers. Alternatively, the response to the load may be in a transient state controlled by mantle viscosity. Both scenarios probably require that Mars has a subchondritic abundance of heat-producing elements.

  11. Mars north polar deposits: stratigraphy, age, and geodynamical response.

    PubMed

    Phillips, Roger J; Zuber, Maria T; Smrekar, Suzanne E; Mellon, Michael T; Head, James W; Tanaka, Kenneth L; Putzig, Nathaniel E; Milkovich, Sarah M; Campbell, Bruce A; Plaut, Jeffrey J; Safaeinili, Ali; Seu, Roberto; Biccari, Daniela; Carter, Lynn M; Picardi, Giovanni; Orosei, Roberto; Mohit, P Surdas; Heggy, Essam; Zurek, Richard W; Egan, Anthony F; Giacomoni, Emanuele; Russo, Federica; Cutigni, Marco; Pettinelli, Elena; Holt, John W; Leuschen, Carl J; Marinangeli, Lucia

    2008-05-30

    The Shallow Radar (SHARAD) on the Mars Reconnaissance Orbiter has imaged the internal stratigraphy of the north polar layered deposits of Mars. Radar reflections within the deposits reveal a laterally continuous deposition of layers, which typically consist of four packets of finely spaced reflectors separated by homogeneous interpacket regions of nearly pure ice. The packet/interpacket structure can be explained by approximately million-year periodicities in Mars' obliquity or orbital eccentricity. The observed approximately 100-meter maximum deflection of the underlying substrate in response to the ice load implies that the present-day thickness of an equilibrium elastic lithosphere is greater than 300 kilometers. Alternatively, the response to the load may be in a transient state controlled by mantle viscosity. Both scenarios probably require that Mars has a subchondritic abundance of heat-producing elements.

  12. Paediatric lateral humeral condyle fractures: internal oblique radiographs alter the course of conservative treatment.

    PubMed

    Kurtulmuş, Tuhan; Sağlam, Necdet; Saka, Gursel; Avcı, Cem Coşkun; Uğurlar, Meriç; Türker, Mehmet

    2014-10-01

    At first presentation of paediatric humeral lateral condyle fractures, radiological methods such as computerised tomography, ultrasonography, magnetic resonance imaging, arthrography, and internal oblique radiography are used to determine stability. Very few studies show which radiological method should be used to evaluate displacement at follow-up for conservatively treated patients. This study aimed to show that internal oblique radiography is a simple, effective method to determine the subsequent development of fracture displacement in patients with an initially non-displaced or minimally displaced fracture. In this retrospective study, 27 paediatric patients with non-displaced or minimally displaced (<2 mm) humerus lateral condyle fracture were evaluated by elbow anteroposterior radiograph. The degree of fracture displacement was evaluated by anteroposterior then by internal oblique radiographs. The first follow-up was made between the 5th and 8th day and thereafter at intervals of 7-10 days. Of the 27 patients identified with non-displaced or minimally displaced (<2 mm) fracture from the initial anteroposterior radiograph, 16 were accepted as displacement >2 mm as a result of the evaluation of the internal oblique radiography and underwent surgery. At follow-up, 2 of 11 patients were defined with displacement from anteroposterior and internal oblique radiographs and 4 from the internal oblique radiographs and underwent surgery. Conservative treatment was applied to 5 patients. Internal oblique radiography is the best imaging showing subsequent fracture displacement in initially non-displaced or minimally displaced humerus lateral condyle fractures. At the first week follow-up, anteroposterior and particularly internal oblique radiographs should be taken of conservatively treated patients.

  13. Application of the wavenumber jump condition to the normal and oblique interaction of a plane acoustic wave and a plane shock

    NASA Technical Reports Server (NTRS)

    Kleinstein, G. G.; Gunzburger, M. D.

    1977-01-01

    The kinematics of normal and oblique interactions between a plane acoustic wave and a plane shock wave are investigated separately using an approach whereby the shock is considered as a sharp discontinuity surface separating two half-spaces, so that the dispersion relation on either side of the shock and the wavenumber jump condition across a discontinuity surface completely specify the kinematics of the problem in the whole space independently of the acoustic-field dynamics. The normal interaction is analyzed for a stationary shock, and the spectral change of the incident wave is investigated. The normal interaction is then examined for the case of a shock wave traveling into an ambient region where an acoustic disturbance is propagating in the opposite direction. Detailed attention is given to the consequences of the existence of a critical shock speed above which the frequency of the transmitted wave becomes negative. Finally, the oblique interaction with a fixed shock is considered, and the existence and nature of the transmitted wave is investigated, particularly as a function of the angle of incidence.

  14. Simulation of an oblique collision of a locomotive and an intermodal container

    DOT National Transportation Integrated Search

    1999-11-01

    This paper presents an approach to modeling an oblique collision of a locomotive and an intermodal container. Previous studies of offset and oblique train collisions have used one and two-dimensional models to determine the trajectories of the equipm...

  15. Investigation of powder injection moulded oblique fin heat sinks

    NASA Astrophysics Data System (ADS)

    Sai, Vadri Siva

    The present work attempts to study the fluid flow and heat transfer characteristics of PIM oblique finned microchannel heat sink both numerically and experimentally. Experimental results such as thermal resistance and pressure drop have been well validated with ANSYS FLUENT simulations. Hot spots are observed at the most downstream location of the channel is due to the effect of flow migration. Finally, a novel technique has been proposed to reduce the pressure drop on creating additional channels by removing some material at the middle portion of oblique fins. It is found that the creation of oblique cuts incurred a reduction in both pressure drop and Nuavg up to 31.36 % and 16.66 % respectively at a flow rate of 500 ml/min. Nevertheless, for all the flowrates considered in this analysis. % reduction in pressure drop is almost double as compared with % reduction in Nuavg. Therefore, this analysis is beneflcial in reducing the additional cost incurs due to pressure drop penalty.

  16. An Analytical Study for Subsonic Oblique Wing Transport Concept

    NASA Technical Reports Server (NTRS)

    Bradley, E. S.; Honrath, J.; Tomlin, K. H.; Swift, G.; Shumpert, P.; Warnock, W.

    1976-01-01

    The oblique wing concept has been investigated for subsonic transport application for a cruise Mach number of 0.95. Three different mission applications were considered and the concept analyzed against the selected mission requirements. Configuration studies determined the best area of applicability to be a commercial passenger transport mission. The critical parameter for the oblique wing concept was found to be aspect ratio which was limited to a value of 6.0 due to aeroelastic divergence. Comparison of the concept final configuration was made with fixed winged configurations designed to cruise at Mach 0.85 and 0.95. The crossover Mach number for the oblique wing concept was found to be Mach 0.91 for takeoff gross weight and direct operating cost. Benefits include reduced takeoff distance, installed thrust and mission block fuel and improved community noise characteristics. The variable geometry feature enables the final configuration to increase range by 10% at Mach 0.712 and to increase endurance by as much as 44%.

  17. Retroperitoneal oblique corridor to the L2-S1 intervertebral discs in the lateral position: an anatomic study.

    PubMed

    Davis, Timothy T; Hynes, Richard A; Fung, Daniel A; Spann, Scott W; MacMillan, Michael; Kwon, Brian; Liu, John; Acosta, Frank; Drochner, Thomas E

    2014-11-01

    accessed from an oblique angle consistently with gentle retraction of the iliac vessels. This study supports the potential of an MIS oblique retroperitoneal approach to the L2-S1 discs.

  18. Influence of the nozzle angle on refrigeration performance of a gas wave refrigerator

    NASA Astrophysics Data System (ADS)

    Liu, P.; Zhu, Y.; Wang, H.; Zhu, C.; Zou, J.; Wu, J.; Hu, D.

    2017-05-01

    A gas wave refrigerator (GWR) is a novel refrigerating device that refrigerates a medium by shock waves and expansion waves generated by gas pressure energy. In a typical GWR, the injection energy losses between the nozzle and the expansion tube are essential factors which influence the refrigeration efficiency. In this study, numerical simulations are used to analyze the underlying mechanism of the injection energy losses. The results of simulations show that the vortex loss, mixing energy loss, and oblique shock wave reflection loss are the main factors contributing to the injection energy losses in the expansion tube. Furthermore, the jet angle of the gas is found to dominate the injection energy losses. Therefore, the optimum jet angle is theoretically calculated based on the velocity triangle method. The value of the optimum jet angle is found to be 4^{circ }, 8^{circ }, and 12^{circ } when the refrigeration efficiency is the first-order, second-order, and third-order maximum value over all working ranges of jet frequency, respectively. Finally, a series of experiments are conducted with the jet angle ranging from -4^{circ } to 12^{circ } at a constant expansion ratio. The results indicate the optimal jet angle obtained by the experiments is in good agreement with the calculated value. The isentropic refrigeration efficiency increased by about 4 % after the jet angle was optimized.

  19. Experimental study on impact disruption of porous asteroids: Effects of oblique impact and multiple collisions on impact strength

    NASA Astrophysics Data System (ADS)

    Yasui, Minami; Takano, Shota; Matsue, Kazuma; Arakawa, Masahiko

    2015-08-01

    Most of asteroids would have pores and a plenty of pre-cracks in their interiors, and the pre-cracks could be formed by multiple impacts at various impact angles. Porosity and pre-cracks are important physical properties controlling the impact strength. Okamoto and Arakawa (2009) did impact experiments of porous gypsum spheres to obtain the impact strength of porous asteroids, but they carried out only single impact experiments on the same target at head-on. In this study, we conducted oblique impact and multiple impacts on porous gypsum and examined the effects of impact angle and pre-cracks on the impact strength.We carried out impact experiments by using the one-stage He gas gun and the two-stage H2 gas gun at Kobe University. The impact velocities were <200 m/s (low-vi) and >3 km/s (high-vi). Targets were porous gypsum spheres with the porosity of 55% and the diameters of 7 or 12 cm. The projectiles were a porous gypsum sphere with the diameter of 2.5 cm at low-vi or a polycarbonate sphere with the diameter of 4.7 cm at high-vi. The impact angle changed from 15° to 90°, and the projectile was impacted on the same target for 2-15 times. The impact phenomena were observed by a high-speed digital video camera to measure the fragment velocities.The oblique impact experiments showed that the impact strength did not depend on the impact angle θ between 45° and 90°, and obtained to be ~2000 J/kg, while it drastically changed at the θ from 15° to 30°. We reanalyzed our results by using the effective energy density defined as Qsin2θ, where Q is the energy density, and found that most of the results were consistent with the results of head-on impacts. The multiple impacts showed that the impact strength of pre-impacted targets was larger than that of intact targets in the case of low-vi. This might be caused by the compaction of the target surface. In the case of high-vi, the impact strength of pre-impacted targets was smaller than that of intact targets. This

  20. Crustal Rock: Recorder of Oblique Impactor Meteoroid Trajectories

    NASA Astrophysics Data System (ADS)

    Ahrens, Thomas J.

    2005-07-01

    Oblique impact experiments in which 2g lead bullets strike samples of San Marcos granite and Bedford limestone at 1.2 km/s induce zones of increased crack density (termed shocked damage) which result in local decreases in bulk and shear moduli that results in maximum decreases of 30-40% in compressional and shear wave velocity (Budianski and O'Connell). Initial computer simulation of oblique impacts of meteorites (Pierazzo and Melosh) demonstrate the congruence of peak shock stress trajectory with the pre-impact meteoroid trajectory. We measure (Ai and Ahrens) via multi-beam (˜ 300) tomographic inversion, the sub-impact surface distribution of damage from the decreases in compressional wave velocity in the 20 x 20 x 15 cm rock target. The damage profiles for oblique impacts are markedly asymmetric (in plane of pre-impact meteoroid pre-impact trajectory) beneath the nearly round excavated craters. Thus, meteorite trajectory information can be recorded in planetary surfaces. Asymmetric sub-surface seismic velocity profiles beneath the Manson (Iowa) and Ries (Germany) impact craters demonstrate that pre-impact meteoroid trajectories records remain accessible for at least ˜ 10 ^ 8 years.

  1. Interaction of disturbances with an oblique detonation wave attached to a wedge

    NASA Technical Reports Server (NTRS)

    Lasseigne, D. G.; Hussaini, M. Y.

    1993-01-01

    The linear response of an oblique overdriven detonation to impose free stream disturbances or to periodic movements of the wedge is examined. The free stream disturbances are assumed to be steady vorticity waves and the wedge motions are considered to be time periodic oscillations either about a fixed pivot point or along the plane of symmetry of the wedge aligned with the incoming stream. The detonation is considered to be a region of infinitesimal thickness in which a finite amount of heat is released. The response to the imposed disturbances is a function of the Mach number of the incoming flow, the wedge angle, and the exothermocity of the reaction within the detonation. It is shown that as the degree of overdrive increases, the amplitude of the response increases significantly; furthermore, a fundamental difference in the dependence of the response on the parameters of the problem is found between the response to a free stream disturbance and to a disturbance emanating from the wedge surface.

  2. Contributions to the Earth's obliquity rate, precession, and nutation

    NASA Technical Reports Server (NTRS)

    Williams, James G.

    1994-01-01

    The precession and nutation of the Earth's equator arise from solar, lunar, and planetary torques on the oblate Earth. The mean lunar orbit plane is nearly coincident with the ecliptic plane. A small tilt out of the ecliptic is caused by planetary perturbations and the Earth's gravitational harmonic J(sub2). These planetary perturbations on the lunar orbit result in torques on the oblate Earth which contribute to precession, obliquity rate, and nutation while the J(sub 2) perturbations contribute to precession and nutation. Small additional contributions to the secular rates arise from tidal effects and planetary torques on the Earth's bulge. The total correction to the obliquity rate is -0.024sec/century, it is an observable motion in space (the much larger conventional obliquity rate is wholly from the motion of the ecliptic, not the equator), and it is not present in the IAU-adopted expressions for the orientation of the Earth's equator. The J(sub2) effects have generally been allowed for in past nutation theories and some procession theories. For the planetary effect, the contributions to the 18.6 yr nutation are -0.03 mas (milliarcseconds) for the in-phase Delta phi plus out-of-phase contributions of 0.14 mas in Delta phi and -0.03 mas in Delta epsilon. The latter terms demonstrate that out-of-phase contributions can arise by means other than dissipation. The sum of the contributions to the precession rate is considered and the inferred value of the moment of inertia combination (C-A)/C, which is used to scale the coefficients in the nutation series, is evaluated. Using an updated value for the precession rate, the rigid body (C-A)/C = 0.003 273 763 4 which, in combination with a satellite-derived J(sub2), gives a normalized polar moment of inertia C/MR(exp2) = 0.330 700 7. The planetary contributions to the precession and obliquity rates are not constant for long times causing accelerations in both quantities. Acceleration in precession also arises from tides

  3. Variation of axial and oblique astigmatism with accommodation across the visual field

    PubMed Central

    Liu, Tao; Thibos, Larry N.

    2017-01-01

    In this study we investigated the impact of accommodation on axial and oblique astigmatism along 12 meridians of the central 30° of visual field and explored the compensation of corneal first-surface astigmatism by the remainder of the eye's optical system. Our experimental evidence revealed no systematic effect of accommodation on either axial or oblique astigmatism for two adult populations (myopic and emmetropic eyes). Although a few subjects exhibited systematic changes in axial astigmatism during accommodation, the dioptric value of these changes was much smaller than the amount of accommodation. For most subjects, axial and oblique astigmatism of the whole eye are both less than for the cornea alone, which indicates a compensatory role for internal optics at all accommodative states in both central and peripheral vision. A new method for determining the eye's optical axis based on visual field maps of oblique astigmatism revealed that, on average, the optical axis is 4.8° temporal and 0.39° superior to the foveal line-of-sight in object space, which agrees with previous results obtained by different methodologies and implies that foveal astigmatism includes a small amount of oblique astigmatism (0.06 D on average). Customized optical models of each eye revealed that oblique astigmatism of the corneal first surface is negligible along the pupillary axis for emmetropic and myopic eyes. Individual variation in the eye's optical axis is due in part to misalignment of the corneal and internal components that is consistent with tilting of the crystalline lens relative to the pupillary axis. PMID:28362902

  4. Oblique muscle surgery for treatment of nystagmus with head tilt.

    PubMed

    Lueder, Gregg T; Galli, Marlo

    2012-08-01

    Patients with nystagmus may adopt an abnormal head posture if they have a null zone in eccentric gaze. These patients uncommonly present with torticollis due to a null zone when the head is tilted. We describe the results of surgery on the oblique muscles to improve the abnormal head posture in this condition. This was a retrospective review of patients who had head tilts due to null zones of nystagmus. Surgery consisted of an anterior 50% tenectomy of the superior oblique tendon on one side and recession of the inferior oblique muscle to a position 6 mm posterior to the insertion of the inferior rectus muscle on the contralateral side. The patients' clinical histories and outcomes were reviewed. Six patients underwent the procedure. Of these, four had infantile nystagmus syndrome and two were born prematurely and had histories of intraventricular hemorrhages. Five of the patients had previous Kestenbaum surgery that corrected the horizontal component of their abnormal head postures. Age at time of surgery for the head tilt ranged from 3 to 13 years. Postoperative follow-up ranged from 1.5 to 3 years. The preoperative head tilts ranged from 25° to 45° (mean, 39°). The postoperative improvement ranged from 20° to 40° (mean, 28°). One of the patients with a history of intraventricular hemorrhage required additional surgery for strabismus unrelated to nystagmus. Anterior tenectomy of the superior oblique tendon combined with contralateral recession of the inferior oblique muscle improved head tilts related to a null zone of nystagmus. Copyright © 2012 American Association for Pediatric Ophthalmology and Strabismus. Published by Mosby, Inc. All rights reserved.

  5. Fabrication of Ag nanostructures with remarkable narrow plasmonic resonances by glancing angle deposition

    NASA Astrophysics Data System (ADS)

    Abbasian, Sara; Moshaii, Ahmad; Vayghan, Nader Sobhkhiz; Nikkhah, Maryam

    2018-05-01

    Glancing angle deposition (GLAD) is an efficient and inexpensive method to fabricate nanostructures with diverse complexities. However, this method has a limitation in fabrication of plasmonic nanostructures with narrow resonance peaks causing that the GLAD-nanostructures have rarely been used for refractive-index sensing. In this work, we proposed two approaches to overcome this limitation of GLAD and to fabricate Ag nanostructures with narrow plasmonic peaks. In the first approach, we introduce an effective method for seeding modification of the substrate and then growing the Ag nanocolumns on such seeded layer. The optical characterization shows that such pre-seeding of the substrate leads to nearly 40% narrowing of the plasmonic peak. In another approach, the nanostructures are grown by GLAD on a bare substrate and then are annealed at 200-400 °C. Such annealing converts the nanostructures to nanodomes with large inter-particle distances and about 60% reduction of their plasmonic width. Also, the annealing of the nanostructures at 400 °C provides a twofold improvement in figure of merit of sensing of the nanostructures. This improvement makes the GLAD comparative to other expensive alternate methods for fabrication of plasmonic sensors. In addition, the experimental plasmonic peaks are reproduced in a proper numerical simulation for similar nanostructures.

  6. Analytic Theory for the Yarkovsky-O Effect on Obliquity

    NASA Astrophysics Data System (ADS)

    Nesvorný, David; Vokrouhlický, David

    2008-07-01

    The Yarkovsky-O'Keefe-Radzievski-Paddack (YORP) effect is a thermal radiation torque that causes small objects to speed up or slow down their rotation and modify their spin vector orientation. This effect has important implications for spin dynamics of diameter D lsim 50 km asteroids. In our previous work we developed an analytic theory for the component of the YORP torque that affects the spin rate. Here we extend these calculations to determine the effect of the YORP torque on obliquity. Our theory is limited to objects with near-spherical shapes. Two limiting cases are studied: (1) immediate emission of the thermal energy that occurs for surface thermal conductivity K = 0; (2) the effects of K ≠ 0 in the limit of small temporal variations of the surface temperature. We use the linearized heat transport equation to model (2). The results include explicit scaling of the YORP torque on obliquity with physical and dynamical parameters such as the thermal conductivity and spin rate. The dependence of torques on the obliquity is given as series of the Legendre polynomials. Comparisons show excellent agreement of the analytic results with the numerically calculated YORP torques for objects such as asteroids 1998 KY26 and (66391) 1999 KW4. We suggest that an important fraction of main belt asteroids may have specific obliquity values (generalized Slivan states) arising from the roots of the Legendre polynomials.

  7. On the Obliquities of Planets in Close-in, Compact Systems

    NASA Astrophysics Data System (ADS)

    Millholland, Sarah; Laughlin, Gregory

    2018-04-01

    Secular spin-orbit resonances can be encountered when planets sweep through commensurabilities between nodal and spin-axis precession frequencies, for example, during disk-driven migration. These encounters can induce significant planetary spin-axis misalignment and capture into a “Cassini state”, a configuration involving synchronous precession of the planetary spin and orbital angular momentum vectors. We show that typical extrasolar systems – exemplified by the Kepler close-in, coplanar multiple-planet systems – frequently have nodal and spin-axis precession frequencies that are near-commensurable. This implies that obliquity-pumping should be common if the planets undergo any migration. We present analytic and numerical models of the spin evolution of typical Kepler-multi-type systems subject to the influences of disk migration, the quadrupole potential of an oblate young star, and tidal dissipation. Among other consequences of large obliquities, we find that the several orders of magnitude enhancement in tidal dissipation strength at non-zero obliquity may be able to generate the observed excess of planet pairs with period ratios just wide of 2:1 and 3:2. Though tidal origins of these excesses have previously been discussed, tidal dissipation is insufficient to reproduce the observations unless planets have non-negligible obliquities at some time in their history.

  8. Oblique view of Copernicus crater

    NASA Image and Video Library

    1972-12-13

    AS17-145-22287 (7-19 Dec. 1972) --- An oblique view of the large crater Copernicus on the lunar nearside, as photographed from the Apollo 17 spacecraft in lunar orbit. This view is looking generally southwest toward the crater on the horizon. The coordinates of the center of Copernicus are approximately 20 degrees west longitude and 9.5 degrees north latitude.

  9. Rectus Pulley Displacements without Abnormal Oblique Contractility Explain Strabismus in Superior Oblique Palsy.

    PubMed

    Suh, Soh Youn; Le, Alan; Clark, Robert A; Demer, Joseph L

    2016-06-01

    Using high-resolution magnetic resonance imaging (MRI), we investigated whether rectus pulleys are significantly displaced in superior oblique (SO) palsy and whether displacements account for strabismus patterns. Prospective case-control study. Twenty-four patients diagnosed with SO palsy based on atrophy of the SO muscle on MRI and 19 age-matched orthotropic control subjects. High-resolution, surface coil MRI scans were obtained in multiple, contiguous, quasicoronal planes during monocular central gaze fixation. Pulley locations in oculocentric coordinates in the following subgroups of patients with SO palsy were compared with normal results in subgroups of patients with SO palsy: unilateral versus bilateral, congenital versus acquired, and isotropic (round) versus anisotropic (elongated) SO atrophy. Expected effects of pulley displacements were modeled using Orbit 1.8 (Eidactics, San Francisco, CA) computational simulation. Rectus pulley positions and ocular torsion. Rectus pulleys typically were displaced in SO palsy. In unilateral SO palsy, on average the medial rectus (MR) pulley was displaced 1.1 mm superiorly, the superior rectus (SR) pulley was displaced 0.8 mm temporally, and the inferior rectus (IR) pulley was displaced 0.6 mm superiorly and 0.9 mm nasally from normal. Displacements were similar in bilateral SO palsy, with the SR pulley additionally displaced 0.9 mm superiorly. However, the lateral rectus pulley was not displaced in either unilateral or bilateral SO palsy. The SR and MR pulleys were displaced in congenital SO palsy, whereas the IR and MR pulleys were displaced in acquired palsy. Pulley positions did not differ between isotropic and anisotropic palsy or between patients with cyclotropia of less than 7° versus cyclotropia of 7° or more. Simulations predicted that the observed pulley displacements alone could cause patterns of incomitant strabismus typical of SO palsy, without requiring any abnormality of SO or inferior oblique strength

  10. Densely packed aluminum-silver nanohelices as an ultra-thin perfect light absorber

    PubMed Central

    Jen, Yi-Jun; Huang, Yu-Jie; Liu, Wei-Chih; Lin, Yueh Weng

    2017-01-01

    Metals have been formed into nanostructures to absorb light with high efficiency through surface plasmon resonances. An ultra-thin plasmonic structure that exhibits strong absorption over wide ranges of wavelengths and angles of incidence is sought. In this work, a nearly perfect plasmonic nanostructure is fabricated using glancing angle deposition. The difference between the morphologies of obliquely deposited aluminum and silver nanohelices is exploited to form a novel three-dimensional structure, which is an aluminum-silver nanohelix array on a pattern-free substrate. With a thickness of only 470 nm, densely distributed nanohelices support rod-to-rod localized surface plasmons for broadband and polarization-independent light extinction. The extinctance remains high over wavelengths from 400 nm to 2000 nm and angles of incidence from 0° to 70°. PMID:28045135

  11. Brewster-angle 50%-50% beam splitter for p-polarized infrared light using a high-index quarter-wave layer deposited on a low-index prism.

    PubMed

    Azzam, R M A

    2017-08-10

    A quarter-wave layer (QWL) of high refractive index, which is deposited on a transparent prism of low refractive index, can be designed to split an incident p-polarized light beam at the Brewster angle (BA) of the air-substrate interface into p-polarized reflected and transmitted beams of equal intensity (50% each) that travel in orthogonal directions. For reflection of p-polarized light at the BA, the supported QWL functions as a free-standing (unsupported) pellicle. An exemplary design is presented that uses Si x Ge 1-x QWL deposited on an IRTRAN1 prism for applications (such as Michelson and Mach-Zehnder interferometry) with a variable compositional fraction x in the 2-6 μm mid-IR spectral range.

  12. Cyclotron Acceleration of Relativistic Electrons through Landau Resonance with Obliquely Propagating Whistler Mode Chorus Emissions

    NASA Astrophysics Data System (ADS)

    Omura, Y.; Hsieh, Y. K.; Foster, J. C.; Erickson, P. J.; Kletzing, C.; Baker, D. N.

    2017-12-01

    A recent test particle simulation of obliquely propagating whistler mode wave-particle interaction [Hsieh and Omura, 2017] shows that the perpendicular wave electric field can play a significant role in trapping and accelerating relativistic electrons through Landau resonance. A further theoretical and numerical investigation verifies that there occurs nonlinear wave trapping of relativistic electrons by the nonlinear Lorentz force of the perpendicular wave magnetic field. An electron moving with a parallel velocity equal to the parallel phase velocity of an obliquely propagating wave basically see a stationary wave phase. Since the electron position is displaced from its gyrocenter by a distance ρ*sin(φ), where ρ is the gyroradius and φ is the gyrophase, the wave phase is modulated with the gyromotion, and the stationary wave fields as seen by the electron are expanded as series of Bessel functions Jn with phase variations n*φ. The J1 components of the wave electric and magnetic fields rotate in the right-hand direction with the gyrofrequency, and they can be in resonance with the electron undergoing the gyromotion, resulting in effective electron acceleration and pitch angle scattering. We have performed a subpacket analysis of chorus waveforms observed by the Van Allen Probes [Foster et al., 2017], and calculated the energy gain by the cyclotron acceleration through Landau resonance. We compare the efficiencies of accelerations by cyclotron and Landau resonances in typical events of rapid electron acceleration observed by the Van Allen Probes.References:[1] Hsieh, Y.-K., and Y. Omura (2017), Nonlinear dynamics of electrons interacting with oblique whistler mode chorus in the magnetosphere, J. Geophys. Res. Space Physics, 122, 675-694, doi:10.1002/2016JA023255.[2] Foster, J. C., P. J. Erickson, Y. Omura, D. N. Baker, C. A. Kletzing, and S. G. Claudepierre (2017), Van Allen Probes observations of prompt MeV radiation belt electron acceleration in nonlinear

  13. Accuracy Potential and Applications of MIDAS Aerial Oblique Camera System

    NASA Astrophysics Data System (ADS)

    Madani, M.

    2012-07-01

    Airborne oblique cameras such as Fairchild T-3A were initially used for military reconnaissance in 30s. A modern professional digital oblique camera such as MIDAS (Multi-camera Integrated Digital Acquisition System) is used to generate lifelike three dimensional to the users for visualizations, GIS applications, architectural modeling, city modeling, games, simulators, etc. Oblique imagery provide the best vantage for accessing and reviewing changes to the local government tax base, property valuation assessment, buying & selling of residential/commercial for better decisions in a more timely manner. Oblique imagery is also used for infrastructure monitoring making sure safe operations of transportation, utilities, and facilities. Sanborn Mapping Company acquired one MIDAS from TrackAir in 2011. This system consists of four tilted (45 degrees) cameras and one vertical camera connected to a dedicated data acquisition computer system. The 5 digital cameras are based on the Canon EOS 1DS Mark3 with Zeiss lenses. The CCD size is 5,616 by 3,744 (21 MPixels) with the pixel size of 6.4 microns. Multiple flights using different camera configurations (nadir/oblique (28 mm/50 mm) and (50 mm/50 mm)) were flown over downtown Colorado Springs, Colorado. Boresight fights for 28 mm nadir camera were flown at 600 m and 1,200 m and for 50 mm nadir camera at 750 m and 1500 m. Cameras were calibrated by using a 3D cage and multiple convergent images utilizing Australis model. In this paper, the MIDAS system is described, a number of real data sets collected during the aforementioned flights are presented together with their associated flight configurations, data processing workflow, system calibration and quality control workflows are highlighted and the achievable accuracy is presented in some detail. This study revealed that the expected accuracy of about 1 to 1.5 GSD (Ground Sample Distance) for planimetry and about 2 to 2.5 GSD for vertical can be achieved. Remaining systematic

  14. Quantification of surface uplift by using paleo beach deposits (Oman, Northern Indian Ocean)

    NASA Astrophysics Data System (ADS)

    Hoffmann, Gösta; Schneider, Bastian; Monschau, Martin; Mechernich, Silke

    2017-04-01

    The study focusses on a coastal area along the Arabian Sea in Oman. Here, a staircase of marine terraces is seen as geomorphological evidence suggesting sub-recent uplift of a crustal block in the northeast of the Arabian Peninsula. The erosional terraces are cut into Paleocene to Early Eocene limestone formations. These limestone formations are underlain by allochtonous ophiolites. We mapped the terraces over a distance of 60 km and identified at least 8 terrace levels in elevations up to 350 m above present sea level. The uppermost terraces are erosional, whereas the lower ones are depositional in style. Mollusc and coral remains as well as beach-rock are encountered on the terrace surfaces. The formations are dissected by NW-SE trending faults. Some of the terraces are very pronounced features in the landscape and easy to trace, others are partly eroded and preserved as remnants only. The deposit along the shoreline angle act as a datum making use of the fact that the rocks formed in a defined horizontal level which is the paleo-sea level. Hence, any offset from the primary depositional level is evidence for neotectonic movements. We utilise differential GPS to map the elevation of beachrock deposits. Age constraints on terrace formation is derived by sampling the beachrock deposits and dating using cosmogenic nuclii. The results indicate ongoing uplift in the range of less than a millimetre per year. The uplift is differential as the terraces are tilted. We mapped oblique normal and strike-slip faults in the younger terraces. We hypothesise that the mechanism responsible for the uplift is not tectonics but driven by the serpentinisation of the ophiolite that underlie the limestone formations. One process during the serpentinisation is the hydration of the mantle rocks which is responsible for a decrease in density. The resulting buoyancy and significant solid volume increase lead to the observed deformation including uplift.

  15. Comparative study of plasma-deposited fluorocarbon coatings on different substrates

    NASA Astrophysics Data System (ADS)

    Farsari, E.; Kostopoulou, M.; Amanatides, E.; Mataras, D.; Rapakoulias, D. E.

    2011-05-01

    The deposition of hydrophobic fluorocarbon coatings from C2F6 and C2F6-H2 rf discharges on different substrates was examined. Polyester textile, glass and two different ceramic compounds were used as substrates. The effect of the total gas pressure, the rf power dissipation and the deposition time on the hydrophobic character of the samples was investigated. Films deposited on polyester textiles at low pressure (0.03 mbar) and power consumption (16 mW cm-2) using pure C2F6 presented the highest water contact angles (~150°). On the other hand, the addition of hydrogen was necessary in order to deposit stable hydrophobic coatings on glass and ceramic substrates. Coatings deposited on glass at intermediate deposition rates (~100 Å min-1) and pressures presented the highest angles (~105°). Concerning the heavy clay ceramics, samples treated in low-pressure (0.05 mbar) and low-power (16 mW cm-2) discharges showed the highest contact angles. The deposition time was found to play an important role in the hydrophobicity and long-term behaviour of porous and rough substrates.

  16. Computation of Thermally Perfect Properties of Oblique Shock Waves

    NASA Technical Reports Server (NTRS)

    Tatum, Kenneth E.

    1996-01-01

    A set of compressible flow relations describing flow properties across oblique shock waves, derived for a thermally perfect, calorically imperfect gas, is applied within the existing thermally perfect gas (TPG) computer code. The relations are based upon a value of cp expressed as a polynomial function of temperature. The updated code produces tables of compressible flow properties of oblique shock waves, as well as the original properties of normal shock waves and basic isentropic flow, in a format similar to the tables for normal shock waves found in NACA Rep. 1135. The code results are validated in both the calorically perfect and the calorically imperfect, thermally perfect temperature regimes through comparisons with the theoretical methods of NACA Rep. 1135, and with a state-of-the-art computational fluid dynamics code. The advantages of the TPG code for oblique shock wave calculations, as well as for the properties of isentropic flow and normal shock waves, are its ease of use, and its applicability to any type of gas (monatomic, diatomic, triatomic, polyatomic, or any specified mixture thereof).

  17. Spatial evolution of Zagros collision zone in Kurdistan, NW Iran: constraints on Arabia-Eurasia oblique convergence

    NASA Astrophysics Data System (ADS)

    Sadeghi, Shahriar; Yassaghi, Ali

    2016-04-01

    Stratigraphy, detailed structural mapping and a crustal-scale cross section across the NW Zagros collision zone provide constraints on the spatial evolution of oblique convergence of the Arabian and Eurasian plates since the Late Cretaceous. The Zagros collision zone in NW Iran consists of the internal Sanandaj-Sirjan, Gaveh Rud and Ophiolite zones and the external Bisotoun, Radiolarite and High Zagros zones. The Main Zagros Thrust is the major structure of the Zagros suture zone. Two stages of oblique deformation are recognized in the external part of the NW Zagros in Iran. In the early stage, coexisting dextral strike-slip and reverse dominated domains in the Radiolarite zone developed in response to deformation partitioning due to oblique convergence. Dextral-reverse faults in the Bisotoun zone are also compatible with oblique convergence. In the late stage, deformation partitioning occurred during southeastward propagation of the Zagros orogeny towards its foreland resulting in synchronous development of orogen-parallel strike-slip and thrust faults. It is proposed that the first stage was related to Late Cretaceous oblique obduction, while the second stage resulted from Cenozoic collision. The Cenozoic orogen-parallel strike-slip component of Zagros oblique convergence is not confined to the Zagros suture zone (Main Recent Fault) but also occurred in the external part (Marekhil-Ravansar fault system). Thus, it is proposed that oblique convergence of Arabian and Eurasian plates in Zagros collision zone initiated with oblique obduction in the Late Cretaceous followed by oblique collision in the late Tertiary, consistent with global plate reconstructions.

  18. Ultralow refractive index optical films with enhanced mechanical performance obtained by hybrid glancing angle deposition.

    PubMed

    Trottier-Lapointe, W; Zabeida, O; Schmitt, T; Martinu, L

    2016-11-01

    Ultralow refractive index materials (n less than 1.38 at 550 nm) are of particular interest in the context of antireflective coatings, allowing one to enhance their overall optical performance. However, application of such materials is typically limited by their mechanical properties. In this study, we explore the characteristics of a new category of hybrid (organic/inorganic) SiOCH thin films prepared by glancing angle deposition (GLAD) using electron beam evaporation of SiO2 in the presence of an organosilicon precursor. The resulting layers exhibited n as low as 1.2, showed high elastic rebound, and generally better mechanical properties than their inorganic counterparts. In addition, hybrid GLAD films were found to be highly hydrophobic. The performance of the films is discussed in terms of their hybridicity (organic/inorganic) ratio determined by infrared spectroscopic ellipsometry as well as the presence of anisotropy assessed by the nanostructure-based spectroscopic ellipsometry model. Finally, we demonstrate successful implementation of the ultralow-index material in a complete antireflective stack.

  19. Red Shifts with Obliquely Approaching Light Sources.

    ERIC Educational Resources Information Center

    Head, C. E.; Moore-Head, M. E.

    1988-01-01

    Refutes the Doppler effect as the explanation of large red shifts in the spectra of distant galaxies and explains the relativistic effects in which the light sources approach the observer obliquely. Provides several diagrams and graphs. (YP)

  20. Atmospheric dynamics and habitability range in Earth-like aquaplanets obliquity simulations

    NASA Astrophysics Data System (ADS)

    Nowajewski, Priscilla; Rojas, M.; Rojo, P.; Kimeswenger, S.

    2018-05-01

    We present the evolution of the atmospheric variables that affect planetary climate by increasing the obliquity by using a general circulation model (PlaSim) coupled to a slab ocean with mixed layer flux correction. We increase the obliquity between 30° and 90° in 16 aquaplanets with liquid sea surface and perform the simulation allowing the sea ice cover formation to be a consequence of its atmospheric dynamics. Insolation is maintained constant in each experiment, but changing the obliquity affects the radiation budget and the large scale circulation. Earth-like atmospheric dynamics is observed for planets with obliquity under 54°. Above this value, the latitudinal temperature gradient is reversed giving place to a new regime of jet streams, affecting the shape of Hadley and Ferrel cells and changing the position of the InterTropical Convergence Zone. As humidity and high temperatures determine Earth's habitability, we introduce the wet bulb temperature as an atmospheric index of habitability for Earth-like aquaplanets with above freezing temperatures. The aquaplanets are habitable all year round at all latitudes for values under 54°; above this value habitability decreases toward the poles due to high temperatures.

  1. Giant landslide deposits in northwest Argentina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fauque, L.; Strecker, M.R.; Bloom, A.L.

    1985-01-01

    Giant Quaternary landslide deposits occur along mountain fronts in the structural transition zone between the high-angle reverse-fault-bounded Sierras Pampeanas and the low-angle thrust belt of the Sierras Subandinas. There are two modes of occurrence: (1) chaotic masses without distinct geometry, and (2) masses with distinct lobate geometry similar to glacial moraines. Type (1) deposits occur where the moving rock mass followed a narrow valley and blocked the drainage. Many of these caused subsequent formation of lakes and changed the sedimentation processes on pediments at the mountain fronts. In type (2) deposits, lateral and frontal ridges are up to 10 mmore » higher than the interior parts; in some places pressure ridges within the lobes are well preserved. Type (2) deposits show reverse grading and were deposited on relatively smooth pediments or alluvial fans. The lobate geometry strongly suggests that type (2) deposits are a product of flowage and are debris stream or sturzstrom deposits (sense of Heim, 1932 and Hsu, 1975). All investigated deposits occur in areas of demonstrated Quaternary faulting and are interpreted as the result of tectonic movements, although structural inhomogeneities in the source area may have been a significant factor for some of the landslides. No datable materials have yet been found associated with the deposits.« less

  2. Experimental study on mean overtopping of sloping seawall under oblique irregular waves

    NASA Astrophysics Data System (ADS)

    Wang, Deng-ting; Ju, Lie-hong; Zhu, Jia-ling; Wang, Zhen; Sun, Tian-ting; Chen, Wei-qiu

    2017-06-01

    In this paper, domestic and abroad research progresses and related calculation formulae of the mean overtopping discharge are summarized. Through integral physical model experiments, the relation between the wave direction and the overtopping discharge on the top of the sloping dike is focused on and put into analysis and discussion; and a modified formula for mean overtopping discharges under oblique irregular waves is proposed. The study shows that the mean overtopping discharge generally goes down as the relative wave obliquity β increases for a fixed measurement point and the mean overtopping discharge generally increases as the wave steepness H/L decreases (the cycle increases) for a fixed relative wave obliquity.

  3. Quality Inspection and Analysis of Three-Dimensional Geographic Information Model Based on Oblique Photogrammetry

    NASA Astrophysics Data System (ADS)

    Dong, S.; Yan, Q.; Xu, Y.; Bai, J.

    2018-04-01

    In order to promote the construction of digital geo-spatial framework in China and accelerate the construction of informatization mapping system, three-dimensional geographic information model emerged. The three-dimensional geographic information model based on oblique photogrammetry technology has higher accuracy, shorter period and lower cost than traditional methods, and can more directly reflect the elevation, position and appearance of the features. At this stage, the technology of producing three-dimensional geographic information models based on oblique photogrammetry technology is rapidly developing. The market demand and model results have been emerged in a large amount, and the related quality inspection needs are also getting larger and larger. Through the study of relevant literature, it is found that there are a lot of researches on the basic principles and technical characteristics of this technology, and relatively few studies on quality inspection and analysis. On the basis of summarizing the basic principle and technical characteristics of oblique photogrammetry technology, this paper introduces the inspection contents and inspection methods of three-dimensional geographic information model based on oblique photogrammetry technology. Combined with the actual inspection work, this paper summarizes the quality problems of three-dimensional geographic information model based on oblique photogrammetry technology, analyzes the causes of the problems and puts forward the quality control measures. It provides technical guidance for the quality inspection of three-dimensional geographic information model data products based on oblique photogrammetry technology in China and provides technical support for the vigorous development of three-dimensional geographic information model based on oblique photogrammetry technology.

  4. A Double Zone Dynamical Model For The Tidal Evolution Of The Obliquity

    NASA Astrophysics Data System (ADS)

    Damiani, Cilia

    2017-10-01

    It is debated wether close-in giants planets can form in-situ and if not, which mechanisms are responsible for their migration. One of the observable tests for migration theories is the current value of the obliquity. But after the main migration mechanism has ended, the combined effects of tidal dissipation and the magnetic braking of the star lead to the evolution of both the obliquity and the semi-major axis. The observed correlation between effective temperature and measured projected obliquity has been taken as evidence of such mechanisms being at play. Here I present an improved model for the tidal evolution of the obliquity. It includes all the components of the dynamical tide for circular misaligned systems. It uses an analytical formulation for the frequency-averaged dissipation for each mode, depending only on global stellar parameters, giving a measure of the dissipative properties of the convective zone of the host as it evolves in time. The model also includes the effect of magnetic braking in the framework of the double zone model. This results in the estimation of different tidal evolution timescales for the evolution of the planet's semi-major axis and obliquity depending on the properties of the stellar host. This model can be used to test migration theories, provided that a good determination of stellar radii, masses and ages can be obtained.

  5. Real-Time Speech/Music Classification With a Hierarchical Oblique Decision Tree

    DTIC Science & Technology

    2008-04-01

    REAL-TIME SPEECH/ MUSIC CLASSIFICATION WITH A HIERARCHICAL OBLIQUE DECISION TREE Jun Wang, Qiong Wu, Haojiang Deng, Qin Yan Institute of Acoustics...time speech/ music classification with a hierarchical oblique decision tree. A set of discrimination features in frequency domain are selected...handle signals without discrimination and can not work properly in the existence of multimedia signals. This paper proposes a real-time speech/ music

  6. Numerical analysis of conjugate heat transfer due to oblique impingement of turbulent slot jet onto a flat plate

    NASA Astrophysics Data System (ADS)

    Shashikant, Patel, Devendra Kumar; Kumar, Jayesh; Kumar, Vishwajeet

    2018-04-01

    The conjugate heat transfer due to oblique impingement of two-dimensional, steady state, incompressible, turbulent slot jet on a uniformly heated flat plate has been studied in the present work. The standard high Reynolds number two-equation k - ɛ eddy viscosity model has been used for numerical simulation. The Reynolds number based on the hydraulic diameter of nozzle exit and turbulent intensity maintained at 9, 900 and 2% respectively. The angle of inclination 30°, 45°, 60° and, 75° degrees are considered for the numerical study. A uniform temperature higher than the jet exit temperature is provided to the bottom surface of the plate. The flow field have been studied using the contour plots of pressure and velocity in the fluid domain. The influence of inclination on the distribution of the local Nusselt number over the surface of impingement have been presented. It is found that the angle of impingement influences the flow field and heat transfer characteristics more in the downhill direction of the stagnation zone compared to the uphill direction.

  7. Experimental and numerical investigations of the impingement of an oblique liquid jet onto a superhydrophobic surface: energy transformation

    NASA Astrophysics Data System (ADS)

    Kibar, Ali

    2016-02-01

    This study presents the theory of impinging an oblique liquid jet onto a vertical superhydrophobic surface based on both experimental and numerical results. A Brassica oleracea leaf with a 160° apparent contact angle was used for the superhydrophobic surface. Distilled water was sent onto the vertical superhydrophobic surface in the range of 1750-3050 Reynolds number, with an inclination angle of 20°-40°, using a circular glass tube with a 1.75 mm inner diameter. The impinging liquid jet spread onto the surface governed by the inertia of the liquid and then reflected off the superhydrophobic surface due to the surface energy of the spreading liquid. Two different energy approaches, which have time-scale and per-unit length, were performed to determine transformation of the energy. The kinetic energy of the impinging liquid jet was transformed into the surface energy with an increasing interfacial surface area between the liquid and air during spreading. Afterwards, this surface energy of the spreading liquid was transformed into the reflection kinetic energy.

  8. Nearshore shore-oblique bars, gravel outcrops, and their correlation to shoreline change

    USGS Publications Warehouse

    Schupp, C.A.; McNinch, J.E.; List, J.H.

    2006-01-01

    This study demonstrates the physical concurrence of shore-oblique bars and gravel outcrops in the surf zone along the northern Outer Banks of North Carolina. These subaqueous features are spatially correlated with shoreline change at a range of temporal and spatial scales. Previous studies have noted the existence of beach-surf zone interactions, but in general, relationships between nearshore geological features and coastal change are poorly understood. These new findings should be considered when exploring coastal zone dynamics and developing predictive engineering models.The surf zone and nearshore region of the Outer Banks is predominantly planar and sandy, but there are several discrete regions with shore-oblique bars and interspersed gravel outcrops. These bar fields have relief up to 3 m, are several kilometers wide, and were relatively stationary over a 1.5 year survey period; however, the shoreward component of the bar field does exhibit change during this time frame. All gravel outcrops observed in the study region, a 40 km longshore length, were located adjacent to a shore-oblique bar, in a trough that had width and length similar to that of the associated bar. Seismic surveys show that the outcrops are part of a gravel stratum underlying the active surface sand layer.Cross-correlation analyses demonstrate high correlation of monthly and multi-decadal shoreline change rates with the adjacent surf-zone bathymetry and sediment distribution. Regionally, areas with shore-oblique bars and gravel outcrops are correlated with on-shore areas of high short-term shoreline variability and high long-term shoreline change rates. The major peaks in long-term shoreline erosion are onshore of shore-oblique bars, but not all areas with high rates of long-term shoreline change are associated with shore-oblique bars and troughs.

  9. Oblique propagating electromagnetic ion - Cyclotron instability with A.C. field in outer magnetosphere

    NASA Astrophysics Data System (ADS)

    Pandey, R. S.; Singh, Vikrant; Rani, Anju; Varughese, George; Singh, K. M.

    2018-05-01

    In the present paper Oblique propagating electromagnetic ion-cyclotron wave has been analyzed for anisotropic multi ion plasma (H+, He+, O+ ions) in earth magnetosphere for the Dione shell of L=7 i.e., the outer radiation belt of the magnetosphere for Loss-cone distribution function with a spectral index j in the presence of A.C. electric field. Detail for particle trajectories and dispersion relation has been derived by using the method of characteristic solution on the basis of wave particle interaction and transformation of energy. Results for the growth rate have been calculated numerically for various parameters and have been compared for different ions present in magnetosphere. It has been found that for studying the wave over wider spectrum, anisotropy for different values of j should be taken. The effect of frequency of A.C. electric field and angle which propagation vector make with magnetic field, on growth rate has been explained.

  10. Monte Carlo simulations of particle acceleration at oblique shocks: Including cross-field diffusion

    NASA Technical Reports Server (NTRS)

    Baring, M. G.; Ellison, D. C.; Jones, F. C.

    1995-01-01

    The Monte Carlo technique of simulating diffusive particle acceleration at shocks has made spectral predictions that compare extremely well with particle distributions observed at the quasi-parallel region of the earth's bow shock. The current extension of this work to compare simulation predictions with particle spectra at oblique interplanetary shocks has required the inclusion of significant cross-field diffusion (strong scattering) in the simulation technique, since oblique shocks are intrinsically inefficient in the limit of weak scattering. In this paper, we present results from the method we have developed for the inclusion of cross-field diffusion in our simulations, namely model predictions of particle spectra downstream of oblique subluminal shocks. While the high-energy spectral index is independent of the shock obliquity and the strength of the scattering, the latter is observed to profoundly influence the efficiency of injection of cosmic rays into the acceleration process.

  11. Accuracy Analysis for Automatic Orientation of a Tumbling Oblique Viewing Sensor System

    NASA Astrophysics Data System (ADS)

    Stebner, K.; Wieden, A.

    2014-03-01

    Dynamic camera systems with moving parts are difficult to handle in photogrammetric workflow, because it is not ensured that the dynamics are constant over the recording period. Minimum changes of the camera's orientation greatly influence the projection of oblique images. In this publication these effects - originating from the kinematic chain of a dynamic camera system - are analysed and validated. A member of the Modular Airborne Camera System family - MACS-TumbleCam - consisting of a vertical viewing and a tumbling oblique camera was used for this investigation. Focus is on dynamic geometric modeling and the stability of the kinematic chain. To validate the experimental findings, the determined parameters are applied to the exterior orientation of an actual aerial image acquisition campaign using MACS-TumbleCam. The quality of the parameters is sufficient for direct georeferencing of oblique image data from the orientation information of a synchronously captured vertical image dataset. Relative accuracy for the oblique data set ranges from 1.5 pixels when using all images of the image block to 0.3 pixels when using only adjacent images.

  12. Flexibility and fatigue evaluation of oblique as compared with anterior lumbar interbody cages with integrated endplate fixation.

    PubMed

    Freeman, Andrew L; Camisa, William J; Buttermann, Glenn R; Malcolm, James R

    2016-01-01

    This study was undertaken to quantify the in vitro range of motion (ROM) of oblique as compared with anterior lumbar interbody devices, pullout resistance, and subsidence in fatigue. Anterior and oblique cages with integrated plate fixation (IPF) were tested using lumbar motion segments. Flexibility tests were conducted on the intact segments, cage, cage + IPF, and cage + IPF + pedicle screws (6 anterior, 7 oblique). Pullout tests were then performed on the cage + IPF. Fatigue testing was conducted on the cage + IPF specimens for 30,000 cycles. No ROM differences were observed in any test group between anterior and oblique cage constructs. The greatest reduction in ROM was with supplemental pedicle screw fixation. Peak pullout forces were 637 ± 192 N and 651 ± 127 N for the anterior and oblique implants, respectively. The median cage subsidence was 0.8 mm and 1.4 mm for the anterior and oblique cages, respectively. Anterior and oblique cages similarly reduced ROM in flexibility testing, and the integrated fixation prevented device displacement. Subsidence was minimal during fatigue testing, most of which occurred in the first 2500 cycles.

  13. Late Miocene extension in coastal Sonora, México: Implications for the evolution of dextral shear in the proto-Gulf of California oblique rift

    NASA Astrophysics Data System (ADS)

    Darin, M. H.; Bennett, S. E. K.; Dorsey, R. J.; Oskin, M. E.; Iriondo, A.

    2016-12-01

    The timing, kinematics, and processes responsible for the rapid transition from subduction to oblique rifting and the localization of the Pacific-North America plate boundary in the Gulf of California are not well understood. Well exposed volcanic rocks deposited between 15 and 10 Ma in the Sierra Bacha (coastal Sonora, México) preserve a record of late Miocene deformation on the eastern rifted margin of the Gulf of California and offer new insights into the timing and kinematic evolution of oblique rifting. Detailed geologic mapping, fault kinematic analysis, U-Pb and 40Ar/39Ar geochronology, and paleomagnetic data reveal that the > 2 km-thick composite volcanic section is cut by a series of southwest-dipping, domino-style normal faults and uniformly tilted down-to-the-northeast. Palinspastic cross-section restoration suggests that the region experienced ca. 55-60% northeast-southwest-directed extension between 11.7 and 10-9 Ma. Fault kinematic data reflect relatively minor dextral transtension either following or during the later stages of extension. Paleomagnetic results indicating modest clockwise vertical-axis block rotation suggest that dextral shear was concentrated in the southwest of the study area near the modern coastline. These results support an emerging model in which dextral strain was not ubiquitous across Sonora and did not initiate immediately following the 12.5 Ma transition from subduction to oblique rifting. Instead, strain east of the Baja California microplate at this latitude evolved from extension-dominated transtension prior to 8 Ma to dextral shear-dominated transtension by 7-6 Ma. The onset of dextral shear in coastal Sonora likely resulted from an increase in rift obliquity due to a change in relative plate motion direction at 8 Ma. The increase in rift obliquity and resultant onset of significant strike-slip faulting played a crucial role in facilitating subsequent plate boundary localization and marine incursion in the northern Gulf

  14. The conceptual design of a Mach 2 Oblique Flying Wing supersonic transport

    NASA Technical Reports Server (NTRS)

    Vandervelden, Alexander J. M.

    1989-01-01

    This paper is based on a performance and economics study of a Mach two oblique flying wing transport aircraft that is to replace the B747B. In order to fairly compare our configuration with the B747B an equal structural technology level is assumed. It will be shown that the oblique flying wing configuration will equal or outperform the B747 in speed, economy and comfort while a modern stability and control system will balance the aircraft and smooth out gusts. The aircraft is designed to comply with the FAR25 airworthiness requirements and FAR36 stage 3 noise regulations. Geometry, aerodynamics, stability and control parameters of the oblique flying wing transport are discussed.

  15. Interference effects on guided Cherenkov emission in silicon from perpendicular, oblique, and parallel boundaries

    NASA Astrophysics Data System (ADS)

    Couillard, M.; Yurtsever, A.; Muller, D. A.

    2010-05-01

    Waveguide electromagnetic modes excited by swift electrons traversing Si slabs at normal and oblique incidence are analyzed using monochromated electron energy-loss spectroscopy and interpreted using a local dielectric theory that includes relativistic effects. At normal incidence, sharp spectral features in the visible/near-infrared optical domain are directly assigned to p -polarized modes. When the specimen is tilted, s -polarized modes, which are completely absent at normal incidence, become visible in the loss spectra. In the tilted configuration, the dispersion of p -polarized modes is also modified. For tilt angles higher than ˜50° , Cherenkov radiation, the phenomenon responsible for the excitation of waveguide modes, is expected to partially escape the silicon slab and the influence of this effect on experimental measurements is discussed. Finally, we find evidence for an interference effect at parallel Si/SiO2 interfaces, as well as a delocalized excitation of guided Cherenkov modes.

  16. Soil-like deposits observed by Sojourner, the Pathfinder rover

    USGS Publications Warehouse

    Moore, Henry J.; Bickler, Donald B.; Crisp, Joy A.; Eisen, Howard J.; Gensler, Jeffrey A.; Haldemann, Albert F.C.; Matijevic, Jacob R.; Reid, Lisa K.; Pavlics, Ferenc

    1999-01-01

    Most of the soil-like materials at the Pathfinder landing site behave like moderately dense soils on Earth with friction angles near 34°-39° and are called cloddy deposits. Cloddy deposits appear to be poorly sorted with dust-sized to granule-sized mineral or rock grains; they may contain pebbles, small rock fragments, and clods. Thin deposits of porous, compressible drifts with friction angles near 26°-28° are also present. Drifts are fine grained. Cohesions of both types of deposits are small. There may be indurated soil-like deposits and/or coated or crusted rocks. Cloddy deposits may be fluvial sediments of the Ares-Tiu floods, but other origins, such as ejecta from nearby impact craters, should be considered. Drifts are probably dusts that settled from the Martian atmosphere. Remote-sensing signatures of the deposits inferred from rover observations are consistent with those observed from orbit and Earth.

  17. Syntectonic Deposition of Plio-Quaternary Sediments in the Santa Rosalia Basin of Baja California Sur, Mexico

    NASA Astrophysics Data System (ADS)

    Michels, A.; Johnson, L.; Niemi, T. M.

    2017-12-01

    Plio-Quaternary sediments of the Tirabuzón, Infierno, and Santa Rosalía formations record syntectonic deposition in the Santa Rosalía basin—an oblique-rift-margin basin along the Gulf of California in Baja California Sur, Mexico. These deposits unconformably overlie the upper Miocene, Cu-Zn-Co-Mn-rich Boleo Formation. The Mesa Soledad outcrops, exposed on the Minera Boleo mine property, show interfingering of marine and terrestrial deposits of the three formations along the inland margin of the basin in an area that has not previously been studied. Faults that cut the Pliocene section of the mesa are mostly steeply-dipping, NW- and NE-striking faults with normal displacement determined from stratigraphic offset and steep plunge in striations. Two stratigraphic sections were measured on either side of one of these high-angle, NW-striking fault that has a normal throw of 26 m. Our analyses of sediment grain size, fossil assemblages, and sedimentary petrography indicate a mismatch of the stratigraphic units across the fault and suggest a component of strike slip. North of the fault, poorly-sorted, well-rounded, fluvial gravels from the Pliocene-aged, Tirabuzón Formation unconformably underlie fossiliferous marine deposits from the late-Pliocene to Pleistocene? -aged Infierno Formation. South of the fault, marine deposits of the Tirabuzón Formation grade upward into imbricated, clast-supported beach gravel, and finally into non-marine conglomerates. The absence of the Infierno Formation on the southern side of the fault suggests the deposits were either eroded unevenly due to uplift or laterally displaced by strike-slip movement. Fossiliferous sandstones and conglomerates of the Santa Rosalía Formation unconformably cap the entire outcrop and show no displacement from faulting. The Santa Rosalía Formation is overlain by the 1.4 Ma La Reforma ignimbrite (Schmidt 2006), indicating that the style of deformation of the basin changed at approximately this time.

  18. Activities of the Vastus Lateralis and Vastus Medialis Oblique Muscles during Squats on Different Surfaces.

    PubMed

    Hyong, In Hyouk; Kang, Jong Ho

    2013-08-01

    [Purpose] The purpose of the present study was to examine the effects of squat exercises performed on different surfaces on the activity of the quadriceps femoris muscle in order to provide information on support surfaces for effective squat exercises. [Subjects and Method] Fourteen healthy subjects performed squat exercises for five seconds each on three different support surfaces: hard plates, foam, and rubber air discs. Their performance was measured using electromyography. As the subjects performed the squat exercises on each surface, data on the activity of the vastus medialis oblique and the vastus lateralis, and the vastus medials oblique/vastus lateralis ratio, were collected. [Results] The activity of the vastus medialis oblique and the vastus medialis oblique/vastus lateralis ratio were found to be statistically significantly higher on rubber air discs than when the squats were performed on hard plates or foam. [Conclusion] To activate the vastus medialis obilique, and to enhance the vastus medialis oblique/vastus lateralis ratio, unstable surfaces that are highly unstable should be selected.

  19. An oblique muscle hematoma as a rare cause of severe abdominal pain: a case report.

    PubMed

    Shimodaira, Masanori; Kitano, Tomohiro; Kibata, Minoru; Shirahata, Kumiko

    2013-01-18

    Abdominal wall hematomas are an uncommon cause of acute abdominal pain and are often misdiagnosed. They are more common in elderly individuals, particularly in those under anticoagulant therapy. Most abdominal wall hematomas occur in the rectus sheath, and hematomas within the oblique muscle are very rare and are poorly described in the literature. Here we report the case of an oblique muscle hematoma in a middle-aged patient who was not under anticoagulant therapy. A 42-year-old Japanese man presented with a painful, enlarging, lateral abdominal wall mass, which appeared after playing baseball. Abdominal computed tomography and ultrasonography showed a large soft tissue mass located in the patient's left internal oblique muscle. A diagnosis of a lateral oblique muscle hematoma was made and the patient was treated conservatively. Physicians should consider an oblique muscle hematoma during the initial differential diagnosis of pain in the lateral abdominal wall even in the absence of anticoagulant therapy or trauma.

  20. Effects of Oblique Extension and Inherited Structure Geometry on Transfer Zone Development in Continental Rifts: A 4D Analogue Modeling Approach

    NASA Astrophysics Data System (ADS)

    Zwaan, Frank; Schreurs, Guido

    2015-04-01

    INTRODUCTION Inherited structures in the crust form weak zones along which deformation will focus during rifting. Along-strike connection of rift segments may occur along transfer zones, as observed in East Africa. Previous studies have focused on numerical and analog modeling of transfer zones (e.g. Acocella et al., 1999, Allken et al., 2012). We elaborate upon those by investigating the effects of 1) oblique extension and 2) the geometry of linked and non-linked inherited structures on the development of transfer zones. A further improvement is the use of X-ray Computer Tomography (CT) for detailed internal analysis. METHODS The experimental set-up (see Schreurs & Colleta, 1998) contains two sidewalls with a base of compressed foam and plexiglass bars stacked in between. Decompressing this base results in distributed deformation of the overlying model materials. Deforming the model laterally with a mobile base plate produces the strike-slip components for oblique extension. Divergence velocities are in the order of 5 mm/h, translating to ca. 5 mm/Ma in nature, and 1 cm represents 10 km. A 2 cm thick layer of viscous silicone represents the ductile lower crust and a 2 cm quartz sand layer the brittle upper crust. Inherited structures are created with thin lines of silicon laid down on top of the basal silicone layer. Several models were run in a CT-scanner to reveal the 3D evolution of internal structures with time, hence 4D. RESULTS Localization of deformation along the pre-defined structures works well. The models show that the structural style changes with extension obliquity, from wide rift structures to narrower rifts with internal oblique-slip and finally strike-slip structures. Furthermore, rift offset is an important parameter influencing the occurrence of linkage: increasing rift offset decreases linkage as previously observed by Allken et al. (2012). However, increasing divergence obliquity promotes transfer zone formation, as does the presence of rift

  1. Effect of oblique channel on discharge characteristics of 200-W Hall thruster

    NASA Astrophysics Data System (ADS)

    Ding, Yongjie; Peng, Wuji; Sun, Hezhi; Xu, Yu; Wei, Liqiu; Li, Hong; Zeng, Ming; Wang, Fufeng; Yu, Daren

    2017-02-01

    In an experiment involving a 200-W Hall thruster, partial ionization occurs in the plume area because of the extrapolation of the magnetic field. To improve the thruster performance, the concept of an oblique channel is proposed for improving the ionization degree in the plume area. Calculations performed using a Particle-in-cell (PIC) simulator and the experimental results both show that an oblique channel structure can reduce the wall loss. Compared with a straight channel under similar conditions of the discharge voltage and current, the ionization degree in the plume area, thrust, specific impulse, propellant utilization, and anode efficiency are improved by ˜20%. The oblique channel is an important design consideration for improving the partial ionization of the plume area in the thruster.

  2. Can activity within the external abdominal oblique be measured using real-time ultrasound imaging?

    PubMed

    John, E K; Beith, I D

    2007-11-01

    Differences in the function of the anterolateral abdominal muscles have been the subject of much investigation, but primarily using electromyography. Recently changes in thickness of transversus abdominis and internal oblique measured from real-time ultrasound images have been shown to represent activity within these muscles. However it is still unclear if such a change in thickness in external oblique similarly represents activity within that muscle. The purpose of this study was to investigate the relationship between change in thickness and muscle activity in the external oblique using real-time ultrasound and surface electromyography. Simultaneous measurements of electromyography and real-time ultrasound images of external oblique were studied in up to 24 subjects during two tasks compared to the muscle at rest (1) isometric trunk rotation and (2) drawing in the lower abdomen. Changes in muscle thickness correlated significantly with electromyography during isometric trunk rotation in the majority of subjects but with a significant difference between subjects. In contrast, the relationship between change in thickness and electrical activity in the muscle when drawing in the lower abdomen was significant in less than 50% of subjects and the muscle often got thinner. Thickness changes of external oblique can be used as a valid indicator of electromyography activity during isometric trunk rotation, though the relationship is not as good as previously published data for transversus abdominis. Thickness changes of external oblique measured during lower abdominal drawing in cannot be used to detect activity within this muscle.

  3. Oblique ion-acoustic cnoidal waves in two temperature superthermal electrons magnetized plasma

    NASA Astrophysics Data System (ADS)

    Panwar, A.; Ryu, C. M.; Bains, A. S.

    2014-12-01

    A study is presented for the oblique propagation of ion acoustic cnoidal waves in a magnetized plasma consisting of cold ions and two temperature superthermal electrons modelled by kappa-type distributions. Using the reductive perturbation method, the nonlinear Korteweg de-Vries equation is derived, which further gives the solutions with a special type of cnoidal elliptical functions. Both compressive and rarefactive structures are found for these cnoidal waves. Nonlinear periodic cnoidal waves are explained in terms of plasma parameters depicting the Sagdeev potential and the phase curves. It is found that the density ratio of hot electrons to ions μ significantly modifies compressive/refractive wave structures. Furthermore, the combined effects of superthermality of cold and hot electrons κ c , κ h , cold to hot electron temperature ratio σ, angle of propagation and ion cyclotron frequency ωci have been studied in detail to analyze the height and width of compressive/refractive cnoidal waves. The findings in the present study could have important implications in understanding the physics of electrostatic wave structures in the Saturn's magnetosphere where two temperature superthermal electrons are present.

  4. Wide Angle of Incidence-Insensitive Polarization-Independent THz Metamaterial Absorber for Both TE and TM Mode Based on Plasmon Hybridizations.

    PubMed

    Huang, Xiu Tao; Lu, Cong Hui; Rong, Can Can; Wang, Sheng Ming; Liu, Ming Hai

    2018-04-25

    An ultra-wide-angle THz metamaterial absorber (MA) utilizing sixteen-circular-sector (SCR) resonator for both transverse electric (TE) and transverse magnetic (TM) mode is designed and investigated numerically. At normal incidence, the absorptivity of the proposed MA is higher than 93.7% at 9.05 THz for different polarization angles, due to the rotational symmetry structure of the unit cell. Under oblique incidence, the absorptivity can still exceed 90%, even when the incident angle is up to 70° for both TE and TM mode. Especially, the frequency variation in TE mode is less than 0.25% for different incident angles from 0° to 70°. The electric field (E z ) distributions are used to explain the absorption mechanism. Numerical simulation results show that the high absorption with wide-angle independence stems from fundamental dipole resonance and gap surface plasmons. The broadband deep-infrared MA is also obtained by stacking three metal-dielectric layers. The designed MA has great potential in bolometric pixel elements, biomedical sensors, THz imaging, and solar cells.

  5. Structure-related antibacterial activity of a titanium nanostructured surface fabricated by glancing angle sputter deposition

    NASA Astrophysics Data System (ADS)

    Sengstock, Christina; Lopian, Michael; Motemani, Yahya; Borgmann, Anna; Khare, Chinmay; Buenconsejo, Pio John S.; Schildhauer, Thomas A.; Ludwig, Alfred; Köller, Manfred

    2014-05-01

    The aim of this study was to reproduce the physico-mechanical antibacterial effect of the nanocolumnar cicada wing surface for metallic biomaterials by fabrication of titanium (Ti) nanocolumnar surfaces using glancing angle sputter deposition (GLAD). Nanocolumnar Ti thin films were fabricated by GLAD on silicon substrates. S. aureus as well as E. coli were incubated with nanostructured or reference dense Ti thin film test samples for one or three hours at 37 °C. Bacterial adherence, morphology, and viability were analyzed by fluorescence staining and scanning electron microscopy and compared to human mesenchymal stem cells (hMSCs). Bacterial adherence was not significantly different after short (1 h) incubation on the dense or the nanostructured Ti surface. In contrast to S. aureus the viability of E. coli was significantly decreased after 3 h on the nanostructured film compared to the dense film and was accompanied by an irregular morphology and a cell wall deformation. Cell adherence, spreading and viability of hMSCs were not altered on the nanostructured surface. The results show that the selective antibacterial effect of the cicada wing could be transferred to a nanostructured metallic biomaterial by mimicking the natural nanocolumnar topography.

  6. Enhanced photoemission from glancing angle deposited SiOx-TiO2 axial heterostructure nanowire arrays

    NASA Astrophysics Data System (ADS)

    Dhar, J. C.; Mondal, A.; Singh, N. K.; Chattopadhyay, K. K.

    2013-05-01

    The glancing angle deposition technique has been employed to synthesize SiOx-TiO2 heterostructure nanowire (NW) arrays on indium tin oxide (ITO) coated glass substrate. A field emission gun scanning electron microscopic image shows that the average diameter of the NWs is ˜50 nm. Transmission electron microscopy images show the formation of heterostructure NWs, which consist of ˜180 nm SiOx and ˜210 nm long TiO2. The selected-area electron diffraction shows the amorphous nature of the synthesized NWs, which was also confirmed by X-ray diffraction method. The main band absorption edges at 3.5 eV were found for both the SiOx-TiO2 and TiO2 NW arrays on ITO coated glass plate from optical absorption measurement. Ti3+ defect related sub-band gap transition at 2.5 eV was observed for TiO2 NWs, whereas heterostructure NWs revealed the SiOx optical band gap related transition at ˜2.2 eV. Two fold improved photon absorption as well as five times photoluminescence emission enhancement were observed for the SiOx-TiO2 multilayer NWs compared to TiO2 NWs.

  7. EPOXI at Earth's Poles: Empirical Test for Observations of an Exoplanet at High Obliquity

    NASA Astrophysics Data System (ADS)

    Livengood, Timothy A.; A'Hearn, M. F.; Deming, D.; Charbonneau, D.; Barry, R. K.; Hewagama, T.; Lisse, C. M.; McFadden, L.; Meadows, V.; Seager, S.; Wellnitz, D.; EPOXI-EPOCh Science Team

    2009-09-01

    Observations of the Earth have been obtained by the EPOXI mission to investigate empirically the visible-to-near infrared spectral distribution and lightcurve variations of the Earth as a model for terrestrial exoplanets. Exoplanetary systems may be at arbitrary inclination to the solar system, and may include planets of arbitrary obliquity. The EPOXI mission has previously observed the Earth from within the ecliptic plane and has now acquired measurements at high northern and southern sub-spacecraft latitude with nearly identical phase angle and range. On 27-28 Mar 2009 UT, the whole disc of the Earth was observed from a sub-spacecraft latitude of 62°N at 87° phase angle (53.5% illumination) and 0.114 AU range. On 27 Sep 2009, Earth will have been observed from a sub-spacecraft latitude of 74°S at 87° phase angle (52.7% illumination) and 0.115 AU range. The Earth was near the spring equinox of each pole as it was observed. The visible-light signal was sampled with 7 filters of approximately 100 nm width at 100 nm spacing over 350-950 nm central wavelength, at 15-minute intervals in 4 selected filters and 1-hour intervals in the remaining 3 filters. Near-IR spectroscopy at 1-4.8 µm was obtained at 2-hour intervals. These polar data, capturing the polar ice caps and high latitude climatic regions, will be compared to similar data previously acquired from over the equator, to investigate distinctions in the ability to discern from the global average the spectroscopic signature of vegetation and biogenic gas species. This work is supported by the NASA Discovery Program.

  8. Activities of the Vastus Lateralis and Vastus Medialis Oblique Muscles during Squats on Different Surfaces

    PubMed Central

    Hyong, In Hyouk; Kang, Jong Ho

    2013-01-01

    [Purpose] The purpose of the present study was to examine the effects of squat exercises performed on different surfaces on the activity of the quadriceps femoris muscle in order to provide information on support surfaces for effective squat exercises. [Subjects and Method] Fourteen healthy subjects performed squat exercises for five seconds each on three different support surfaces: hard plates, foam, and rubber air discs. Their performance was measured using electromyography. As the subjects performed the squat exercises on each surface, data on the activity of the vastus medialis oblique and the vastus lateralis, and the vastus medials oblique/vastus lateralis ratio, were collected. [Results] The activity of the vastus medialis oblique and the vastus medialis oblique/vastus lateralis ratio were found to be statistically significantly higher on rubber air discs than when the squats were performed on hard plates or foam. [Conclusion] To activate the vastus medialis obilique, and to enhance the vastus medialis oblique/vastus lateralis ratio, unstable surfaces that are highly unstable should be selected. PMID:24259884

  9. Mass Median Plume Angle: A novel approach to characterize plume geometry in solution based pMDIs.

    PubMed

    Moraga-Espinoza, Daniel; Eshaghian, Eli; Smyth, Hugh D C

    2018-05-30

    High-speed laser imaging (HSLI) is the preferred technique to characterize the geometry of the plume in pressurized metered dose inhalers (pMDIs). However, current methods do not allow for simulation of inhalation airflow and do not use drug mass quantification to determine plume angles. To address these limitations, a Plume Induction Port Evaluator (PIPE) was designed to characterize the plume geometry based on mass deposition patterns. The method is easily adaptable to current pMDI characterization methodologies, uses similar calculations methods, and can be used under airflow. The effect of airflow and formulation on the plume geometry were evaluated using PIPE and HSLI. Deposition patterns in PIPE were highly reproducible and log-normal distributed. Mass Median Plume Angle (MMPA) was a new characterization parameter to describe the effective angle of the droplets deposited in the induction port. Plume angles determined by mass showed a significant decrease in size as ethanol increases which correlates to the decrease on vapor pressure in the formulation. Additionally, airflow significantly decreased the angle of the plumes when cascade impactor was operated under flow. PIPE is an alternative to laser-based characterization methods to evaluate the plume angle of pMDIs based on reliable drug quantification while simulating patient inhalation. Copyright © 2018. Published by Elsevier B.V.

  10. Numerical simulation of the fracture process in ceramic FPD frameworks caused by oblique loading.

    PubMed

    Kou, Wen; Qiao, Jiyan; Chen, Li; Ding, Yansheng; Sjögren, Göran

    2015-10-01

    Using a newly developed three-dimensional (3D) numerical modeling code, an analysis was performed of the fracture behavior in a three-unit ceramic-based fixed partial denture (FPD) framework subjected to oblique loading. All the materials in the study were treated heterogeneously; Weibull׳s distribution law was applied to the description of the heterogeneity. The Mohr-Coulomb failure criterion with tensile strength cut-off was utilized in judging whether the material was in an elastic or failed state. The simulated loading area was placed either on the buccal or the lingual cusp of a premolar-shaped pontic with the loading direction at 30°, 45°, 60°, 75° or 90° angles to the occlusal surface. The stress distribution, fracture initiation and propagation in the framework during the loading and fracture process were analyzed. This numerical simulation allowed the cause of the framework fracture to be identified as tensile stress failure. The decisive fracture was initiated in the gingival embrasure of the pontic, regardless of whether the buccal or lingual cusp of the pontic was loaded. The stress distribution and fracture propagation process of the framework could be followed step by step from beginning to end. The bearing capacity and the rigidity of the framework vary with the loading position and direction. The framework loaded with 90° towards the occlusal surface has the highest bearing capacity and the greatest rigidity. The framework loaded with 30° towards the occlusal surface has the least rigidity indicating that oblique loading has a major impact on the fracture of ceramic frameworks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Histologic consequences of inferior oblique anastomosis to denervated lateral rectus muscle.

    PubMed

    Christiansen, S; Madhat, M; Baker, R S

    1987-01-01

    Secondary muscular neurotization has been proposed as a means of restoring contractility to paretic extraocular muscle. We studied this technique by anastomosing healthy inferior oblique muscle to lateral rectus muscle that had been denervated either orbitally or intracranially in 20 dogs. Nerve and muscle fiber growth from the inferior oblique to the lateral rectus was demonstrated but no new neuromuscular junctions were formed. Regeneration of the lesioned sixth nerve occurred frequently and may explain the restoration of function claimed after this procedure.

  12. SouthWest view; Station Building north elevation, oblique North ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    South-West view; Station Building - north elevation, oblique - North Philadelphia Station, 2900 North Broad Street, on northwest corner of Broad Street & Glenwood Avenue, Philadelphia, Philadelphia County, PA

  13. SouthEast view; Station Building north elevation, oblique North ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    South-East view; Station Building - north elevation, oblique - North Philadelphia Station, 2900 North Broad Street, on northwest corner of Broad Street & Glenwood Avenue, Philadelphia, Philadelphia County, PA

  14. OBLIQUE VIEW, REAR ELEVATION, LOOKING NORTHEAST Mountain Home Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE VIEW, REAR ELEVATION, LOOKING NORTHEAST - Mountain Home Air Force Base 1958 Senior Officers' Housing, General's Residence, Rabeni Street (originally Ivy Street), Mountain Home, Elmore County, ID

  15. The Resilience of Kepler Multi-systems to Stellar Obliquity

    NASA Astrophysics Data System (ADS)

    Spalding, Christopher; Marx, Noah W.; Batygin, Konstantin

    2018-04-01

    The Kepler mission and its successor K2 have brought forth a cascade of transiting planets. Many of these planetary systems exhibit multiple transiting members. However, a large fraction possesses only a single transiting planet. This high abundance of singles, dubbed the "Kepler Dichotomy," has been hypothesized to arise from significant mutual inclinations between orbits in multi-planet systems. Alternatively, the single-transiting population truly possesses no other planets in the system, but the true origin of the overabundance of single systems remains unresolved. In this work, we propose that planetary systems typically form with a coplanar, multiple-planetary architecture, but that quadrupolar gravitational perturbations from their rapidly-rotating host star subsequently disrupt this primordial coplanarity. We demonstrate that, given sufficient stellar obliquity, even systems beginning with 2 planetary constituents are susceptible to dynamical instability soon after planet formation, as a result of the stellar quadrupole moment. This mechanism stands as a widespread, yet poorly explored pathway toward planetary system instability. Moreover, by requiring that observed multi-systems remain coplanar on Gyr timescales, we are able to place upper limits on the stellar obliquity in systems such as K2-38 (obliquity < 20 degrees), where other methods of measuring spin-orbit misalignment are not currently available.

  16. Oblique sounding using the DPS-4D stations in Europe

    NASA Astrophysics Data System (ADS)

    Mosna, Zbysek; Kouba, Daniel; Koucka Knizova, Petra; Arikan, Feza; Arikan, Orhan; Gok, Gokhan; Rejfek, Lubos

    2016-07-01

    The DPS-4D Digisondes are capable of detection of echoes from neighbouring European stations. Currently, a campaign with high-temporal resolution of 5 min is being run. Further, ionograms from regular vertical sounding with 15 min resolution provide us with oblique reflections together with vertical reflections. We analyzed profiles of electron concentration and basic ionospheric parameters derived from the ionograms. We compared results derived from reflections from the ionosphere above the stations (vertical sounding) with information derived from oblique reflections between the stations. This study is supported by the Joint TUBITAK 114E092 and AS CR 14/001 projects.

  17. [Laser speckle suppression due to dynamic multiple scattering scheme introduced by oblique incidence].

    PubMed

    Xu, Mei-fang; Gao, Wen-hong; Shi, Yun-bo; Wang, Hao-quan; Du, Bin-bin

    2014-06-01

    Speckle suppression has been the research focus in laser display technology. In the present paper, the relation between multiple scattering and the size of speckle grains is established by analyzing the properties of speckle generated by the laser beam through SiO2 suspension. Combined with dynamic light scattering theory, laser speckle suppression due to dynamic multiple scattering scheme introduced by oblique incidence is proposed. A speckle suppression element consists of a static diffuser and a light pipe containing the water suspension of SiO2 microspheres with a diameter of 300 nm and a molar concentration of 3.0 x 10(-4) μm3, which is integrated with the laser display system. The laser beam with different incident angles into the SiO2 suspension affecting the contrast of the speckle images is analyzed by the experiments. The results demonstrate that the contrast of the speckle image can be reduced to 0.067 from 0.43 when the beam with the incident angle of approximately 8 degrees illuminates into the SiO2 suspension. The spatial average of speckle granules and the temporal average of speckle images were achieved by the proposed method, which improved the effect of speckle suppression. The proposed element for speckle suppression improved the reliability and reduced the cost of laser projection system, since no mechanical vibration is needed and it is convenient to integrate the element with the existing projection system.

  18. Teetering Stars: Resonant Excitation of Stellar Obliquities by Hot and Warm Jupiters with External Companions

    NASA Astrophysics Data System (ADS)

    Anderson, Kassandra; Lai, Dong

    2018-04-01

    Stellar spin-orbit misalignments (obliquities) in hot Jupiter systems have been extensively probed in recent years thanks to Rossiter-McLaughlin observations. Such obliquities may reveal clues about hot Jupiter dynamical and migration histories. Common explanations for generating stellar obliquities include high-eccentricity migration, or primordial disk misalignment. This talk investigates another mechanism for producing stellar spin-orbit misalignments in systems hosting a close-in giant planet with an external, inclined planetary companion. Spin-orbit misalignment may be excited due to a secular resonance, occurring when the precession rate of the stellar spin axis (due to the inner orbit) becomes comparable to the precession rate of the inner orbital axis (due to the outer companion). Due to the spin-down of the host star via magnetic braking, this resonance may be achieved at some point during the star's main sequence lifetime for a wide range of giant planet masses and orbital architectures. We focus on both hot Jupiters (with orbital periods less than ten days) and warm Jupiters (with orbital periods around tens of days), and identify the outer perburber properties needed to generate substantial obliquities via resonant excitation, in terms of mass, separation, and inclination. For hot Jupiters, the stellar spin axis is strongly coupled to the orbital axis, and resonant excitation of obliquity requires a close perturber, located within 1-2 AU. For warm Jupiters, the spin and orbital axes are more weakly coupled, and the resonance may be achieved for more distant perturbers (at several to tens of AU). Resonant excitation of the stellar obliquity is accompanied by a decrease in the planets' mutual orbital inclination, and can thus erase high mutual inclinations in two-planet systems. Since many warm Jupiters are known to have outer planetary companions at several AU or beyond, stellar obliquities in warm Jupiter systems may be common, regardless of the

  19. NorthWest view; Station Building south (front) elevation, oblique ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    North-West view; Station Building - south (front) elevation, oblique - North Philadelphia Station, 2900 North Broad Street, on northwest corner of Broad Street & Glenwood Avenue, Philadelphia, Philadelphia County, PA

  20. NorthEast view; Station Building south (front) elevation, oblique ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    North-East view; Station Building - south (front) elevation, oblique - North Philadelphia Station, 2900 North Broad Street, on northwest corner of Broad Street & Glenwood Avenue, Philadelphia, Philadelphia County, PA

  1. OBLIQUE VIEW, REAR ELEVATION, LOOKING SOUTHSOUTHWEST Mountain Home Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE VIEW, REAR ELEVATION, LOOKING SOUTH-SOUTHWEST - Mountain Home Air Force Base 1958 Senior Officers' Housing, General's Residence, Rabeni Street (originally Ivy Street), Mountain Home, Elmore County, ID

  2. OBLIQUE VIEW, FRONT ELEVATION, LOOKING WESTSOUTHWEST Mountain Home Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE VIEW, FRONT ELEVATION, LOOKING WEST-SOUTHWEST - Mountain Home Air Force Base 1958 Senior Officers' Housing, General's Residence, Rabeni Street (originally Ivy Street), Mountain Home, Elmore County, ID

  3. Oblique view of southeast corner; camera facing northwest. Mare ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Oblique view of southeast corner; camera facing northwest. - Mare Island Naval Shipyard, Defense Electronics Equipment Operating Center, I Street, terminus west of Cedar Avenue, Vallejo, Solano County, CA

  4. The evolution of forearc structures along an oblique convergent margin, central Aleutian Arc

    USGS Publications Warehouse

    Ryan, H.F.; Scholl, D. W.

    1989-01-01

    Multichannel seismic reflection data were used to determine the evolutionary history of the forearc region of the central Aleutian Ridge. Since at least late Miocene time this sector of the ridge has been obliquely underthrust 30?? west of orthogonal convergence by the northwestward converging Pacific plate at a rate of 80-90 km/m.y. Our data indicate that prior to late Eocene time the forearc region was composed of rocks of the arc massif thinly mantled by slope deposits. Beginning in latest Miocene or earliest Pliocene time, a zone of outer-arc structural highs and a forearc basin began to form. Initial structures of the zone of outer-arc highs formed as the thickening wedge underran, compressively deformed, and uplifted the seaward edge of the arc massive above a landward dipping backstop thrust. Forearc basin strata ponded arcward of the elevating zone of outer-arc highs. However, most younger structures of the zone of outer-arc highs cannot be ascribed simply to the orthogonal effects of an underrunning wedge. Oblique convergence created a major right-lateral shear zone (the Hawley Ridge shear zone) that longitudinally disrupted the zone of outer-arc highs, truncating the seaward flank of the forearc basin and shearing the southern limb of Hawley Ridge, an exceptionally large antiformal outer-arc high structure. Uplift of Hawley Ridge may be related to the thickening of the arc massif by westward directed basement duplexes. Great structural complexity, including the close juxtaposition of coeval structures recording compression, extension, differential vertical movements, and strike-slip displacement, should be expected, even within areas of generally kindred tectonostratigraphic terranes. -from Authors

  5. Surface Finish after Laser Metal Deposition

    NASA Astrophysics Data System (ADS)

    Rombouts, M.; Maes, G.; Hendrix, W.; Delarbre, E.; Motmans, F.

    Laser metal deposition (LMD) is an additive manufacturing technology for the fabrication of metal parts through layerwise deposition and laser induced melting of metal powder. The poor surface finish presents a major limitation in LMD. This study focuses on the effects of surface inclination angle and strategies to improve the surface finish of LMD components. A substantial improvement in surface quality of both the side and top surfaces has been obtained by laser remelting after powder deposition.

  6. Determination of Steering Wheel Angles during CAR Alignment by Image Analysis Methods

    NASA Astrophysics Data System (ADS)

    Mueller, M.; Voegtle, T.

    2016-06-01

    Optical systems for automatic visual inspections are of increasing importance in the field of automation in the industrial domain. A new application is the determination of steering wheel angles during wheel track setting of the final inspection of car manufacturing. The camera has to be positioned outside the car to avoid interruptions of the processes and therefore, oblique images of the steering wheel must be acquired. Three different approaches of computer vision are considered in this paper, i.e. a 2D shape-based matching (by means of a plane to plane rectification of the oblique images and detection of a shape model with a particular rotation), a 3D shape-based matching approach (by means of a series of different perspectives of the spatial shape of the steering wheel derived from a CAD design model) and a point-to-point matching (by means of the extraction of significant elements (e.g. multifunctional buttons) of a steering wheel and a pairwise connection of these points to straight lines). The HALCON system (HALCON, 2016) was used for all software developments and necessary adaptions. As reference a mechanical balance with an accuracy of 0.1° was used. The quality assessment was based on two different approaches, a laboratory test and a test during production process. In the laboratory a standard deviation of ±0.035° (2D shape-based matching), ±0.12° (3D approach) and ±0.029° (point-to-point matching) could be obtained. The field test of 291 measurements (27 cars with varying poses and angles of the steering wheel) results in a detection rate of 100% and ±0.48° (2D matching) and ±0.24° (point-to-point matching). Both methods also fulfil the request of real time processing (three measurements per second).

  7. Analytical and experimental validation of the Oblique Detonation Wave Engine concept

    NASA Technical Reports Server (NTRS)

    Adelman, Henry G.; Cambier, Jean-Luc; Menees, Gene P.; Balboni, John A.

    1988-01-01

    The Oblique Detonation Wave Engine (ODWE) for hypersonic flight has been analytically studied by NASA using the CFD codes which fully couple finite rate chemistry with fluid dynamics. Fuel injector designs investigated included wall and strut injectors, and the in-stream strut injectors were chosen to provide good mixing with minimal stagnation pressure losses. Plans for experimentally validating the ODWE concept in an arc-jet hypersonic wind tunnel are discussed. Measurements of the flow field properties behind the oblique wave will be compared to analytical predictions.

  8. Oblique rotaton in canonical correlation analysis reformulated as maximizing the generalized coefficient of determination.

    PubMed

    Satomura, Hironori; Adachi, Kohei

    2013-07-01

    To facilitate the interpretation of canonical correlation analysis (CCA) solutions, procedures have been proposed in which CCA solutions are orthogonally rotated to a simple structure. In this paper, we consider oblique rotation for CCA to provide solutions that are much easier to interpret, though only orthogonal rotation is allowed in the existing formulations of CCA. Our task is thus to reformulate CCA so that its solutions have the freedom of oblique rotation. Such a task can be achieved using Yanai's (Jpn. J. Behaviormetrics 1:46-54, 1974; J. Jpn. Stat. Soc. 11:43-53, 1981) generalized coefficient of determination for the objective function to be maximized in CCA. The resulting solutions are proved to include the existing orthogonal ones as special cases and to be rotated obliquely without affecting the objective function value, where ten Berge's (Psychometrika 48:519-523, 1983) theorems on suborthonormal matrices are used. A real data example demonstrates that the proposed oblique rotation can provide simple, easily interpreted CCA solutions.

  9. Constrained Least Squares Estimators of Oblique Common Factors.

    ERIC Educational Resources Information Center

    McDonald, Roderick P.

    1981-01-01

    An expression is given for weighted least squares estimators of oblique common factors of factor analyses, constrained to have the same covariance matrix as the factors they estimate. A proof of the uniqueness of the solution is given. (Author/JKS)

  10. Influence of increasing convergence obliquity and shallow slab geometry onto tectonic deformation and seismogenic behavior along the Northern Lesser Antilles zone

    NASA Astrophysics Data System (ADS)

    Laurencin, M.; Graindorge, D.; Klingelhoefer, F.; Marcaillou, B.; Evain, M.

    2018-06-01

    In subduction zones, the 3D geometry of the plate interface is one of the key parameters that controls margin tectonic deformation, interplate coupling and seismogenic behavior. The North American plate subducts beneath the convex Northern Lesser Antilles margin. This convergent plate boundary, with a northward increasing convergence obliquity, turns into a sinistral strike-slip limit at the northwestern end of the system. This geodynamic context suggests a complex slab geometry, which has never been imaged before. Moreover, the seismic activity and particularly the number of events with thrust focal mechanism compatible with subduction earthquakes, increases northward from the Barbuda-Anguilla segment to the Anguilla-Virgin Islands segment. One of the major questions in this area is thus to analyze the influence of the increasing convergence obliquity and the slab geometry onto tectonic deformation and seismogenic behavior of the subduction zone. Based on wide-angle and multichannel reflection seismic data acquired during the Antithesis cruises (2013-2016), we decipher the deep structure of this subduction zone. Velocity models derived from wide-angle data acquired across the Anegada Passage are consistent with the presence of a crust of oceanic affinity thickened by hotspot magmatism and probably affected by the Upper Cretaceous-Eocene arc magmatism forming the 'Great Arc of the Caribbean'. The slab is shallower beneath the Anguilla-Virgin Islands margin segment than beneath the Anguilla-Barbuda segment which is likely to be directly related to the convex geometry of the upper plate. This shallower slab is located under the forearc where earthquakes and partitioning deformations increase locally. Thus, the shallowing slab might result in local greater interplate coupling and basal friction favoring seismic activity and tectonic partitioning beneath the Virgin Islands platform.

  11. Oblique view of arches and ironwork on south breezeway ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Oblique view of arches and ironwork on south breezeway - National Home for Disabled Volunteer Soldiers, Pacific Branch, Mental Health Buildings, 11301 Wilshire Boulevard, West Los Angeles, Los Angeles County, CA

  12. Numerical analysis of deposition frequency for successive droplets coalescence dynamics

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaoding; Zhu, Yunlong; Zhang, Lei; Zhang, Dingyi; Ku, Tao

    2018-04-01

    A pseudopotential based multi-relaxation-time lattice Boltzmann model is employed to investigate the dynamic behaviors of successive droplets' impact and coalescence on a solid surface. The effects of deposition frequency on the morphology of the formed line are investigated with a zero receding contact angle by analyzing the droplet-to-droplet coalescence dynamics. Two collision modes (in-phase mode and out-of-phase mode) between the pre-deposited bead and the subsequent droplet are identified depending on the deposition frequency. A uniform line can be obtained at the optimal droplet spacing in the in-phase mode (Δt* < 1.875). However, a scalloped line pattern is formed in the out-of-phase mode (Δt* > 1.875). It is found that decreasing the droplet spacing or advancing contact angle can improve the smoothness of line in the out-of-phase mode. Furthermore, the effects of deposition frequency on the morphology of the formed lines are validated to be applicable to cases with a finite receding contact angle.

  13. Design of orbital debris shields for oblique hypervelocity impact

    NASA Technical Reports Server (NTRS)

    Fahrenthold, Eric P.

    1994-01-01

    A new impact debris propagation code was written to link CTH simulations of space debris shield perforation to the Lagrangian finite element code DYNA3D, for space structure wall impact simulations. This software (DC3D) simulates debris cloud evolution using a nonlinear elastic-plastic deformable particle dynamics model, and renders computationally tractable the supercomputer simulation of oblique impacts on Whipple shield protected structures. Comparison of three dimensional, oblique impact simulations with experimental data shows good agreement over a range of velocities of interest in the design of orbital debris shielding. Source code developed during this research is provided on the enclosed floppy disk. An abstract based on the work described was submitted to the 1994 Hypervelocity Impact Symposium.

  14. Investigations of ionospheric sporadic Es layer using oblique sounding method

    NASA Astrophysics Data System (ADS)

    Minullin, R.

    The characteristics of Es layer have been studied using oblique sounding at 28 radiolines at the frequencies of 34 -- 73 MHz at the transmission paths 400 -- 1600 km long during 30 years. Reflections from Es layer with a few hours duration were observed. The amplitude of the reflected signal reached 1000 μ V with the registration threshold 0,1 μ V. The borderlines between reflected and scattered signals were observed as sharp curves in 60 -- 100 s range on the distributions of duration of reflected signals for decameter waves. The duration of continuous Es reflections were decreased upon amplification of oblique sounding frequency. The distributions of duration of reflected signals for meter waves showed sharp curves in the range 200 -- 300 s, representing borderlines between signals reflected from meteoric traces and from Es layer. The filling coefficient for the oblique sounding as well as the Es layer emersion probability for the vertical sounding were shown to undergo daily, seasonal and periodic variations. The daily variations of the filling coefficient of Es signals showed clear-cut maximums at 10 -- 12 and 18 -- 20 hours and minimum at 4 -- 6 hours at all paths in summer time and the maximum at 12 -- 14 hours in winter time. The values of the filling coefficient for Es layer declined with the increase of oblique sounding frequency. The minimal values of the filling coefficient were observed in winter and early spring, while the maximal values were observed from May to August. Provided that the averaged filling coefficient is equal to one in summer, it reaches the level 0,25 in equinox and does not exceed the level 0,12 in winter as evident by the of oblique sounding. The filling coefficient relation to the value of the voltage detection threshold was approximated by power-mode law. The filling coefficients for summer period showed exponential relation with equivalent sounding frequencies. The experimental evidence was generalized in an analytical model

  15. Building 1204, oblique view to east, 90 mm lens. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Building 1204, oblique view to east, 90 mm lens. - Travis Air Force Base, Squadron Operations & Readiness Crew Facility, W Street, Armed Forces Special Weapons Project Q Area, Fairfield, Solano County, CA

  16. Building 1204, oblique view to west, 135 mm lens. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Building 1204, oblique view to west, 135 mm lens. - Travis Air Force Base, Squadron Operations & Readiness Crew Facility, W Street, Armed Forces Special Weapons Project Q Area, Fairfield, Solano County, CA

  17. Oblique Photogrammetry and Usage on Land Administration

    NASA Astrophysics Data System (ADS)

    Kisa, A.; Ozmus, L.; Erkek, B.; Ates, H. B.; Bakici, S.

    2013-08-01

    Projects based on Geographic Information Systems (GIS) have started within the body of the General Directorate of Land Registry and Cadastre (GDLRC) by the Land Registry and Cadastre Information System (LRCIS) in the beginning of 2000s. LRCIS was followed by other projects which are Turkish National Geographic Information System (TNGIS), Continuously Operating GPS Reference Stations (CORS-TR), Geo Metadata Portal (GMP), Orthophoto Web Services, Completion of Initial Cadastre, Cadastre Renovation Project (CRP), 2B and Land Registry Achieve Information System (LRAIS). When examining the projects generated by GDLRC, it is realized that they include basic functions of land administration required for sustainable development. Sustainable development is obtained through effective land administration as is known. Nowadays, land use becomes more intense as a result of rapid population increase. The importance of land ownership has increased accordingly. At this point, the necessity of cadastre appears. In Turkey, cadastral registration is carried out by the detection of parcels. In other words, it is obtained through the division of land surface into 2D boundaries and mapping of them. However, existing land administration systems have begun to lose their efficiency while coping with rights, restrictions and responsibilities (RRRs) belonging to land which become more complicated day by day. Overlapping and interlocking constructions appear particularly in urban areas with dense housing and consequently, the problem of how to project these structures onto the surface in 2D cadastral systems has arisen. Herein, the necessity of 3D cadastre concept and 3D property data is confronted. In recent years, oblique photogrammetry, whose applications are gradually spreading, is used as an effective method for producing 3D data. In this study, applications of oblique photogrammetry and usability of oblique images as base for 3D Cadastre and Land Administration projects are examined.

  18. Experimental and numerical investigation of the effect of distributed suction on oblique shock wave/turbulent boundary layer interaction. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Benhachmi, Driss; Greber, Isaac; Hingst, Warren R.

    1988-01-01

    A combined experimental and numerical study of the interaction of an incident oblique shock wave with a turbulent boundary layer on a rough plate and on a porous plate with suction is presented. The experimental phase involved the acquisition of mean data upstream of, within, and downstream of the interaction region at Mach numbers 2.5 and 3.0. Data were taken at unit Reynolds numbers of 1.66 E7 and 1.85 E7 m respectively, and for flow deflection angles of 0, 4, 6 and 8 degs. Measured data include wall static pressure, pitot pressure profiles, and local bleed distributions on the porous plate. On the rough plate, with no suction, the boundary layer profiles were modified near the wall, but not separated for the 4 deg flow deflection angle. For the higher deflection angles of 6 and 8 degs, the boundary layer was separated. Suction increases the strength of the incident shock required to separate the turbulent boundary layer; for all shock strengths tested, separation is completely eliminated. The pitot pressure profiles are affected throughout the whole boundary layer; they are fuller than the ones obtained on the rough plate. It is also found that the combination of suction and roughness introduces spatial perturbations.

  19. Obliquity Driven Climate Change in Mars' Recent Past

    NASA Technical Reports Server (NTRS)

    Haberle, R. M.; Montmessin, F.; Forget, F.; Spiga, A.; Colaprete, A.

    2003-01-01

    Mars has a natural mechanism for experiencing significant climate change and redistributing surface ice. Obliquity changes alone are quite capable of moving ice into low latitudes and may provide an explanation for the many geological landforms that strongly indicate recent climate change.

  20. The Computation of Orthogonal Independent Cluster Solutions and Their Oblique Analogs in Factor Analysis.

    ERIC Educational Resources Information Center

    Hofmann, Richard J.

    A very general model for the computation of independent cluster solutions in factor analysis is presented. The model is discussed as being either orthogonal or oblique. Furthermore, it is demonstrated that for every orthogonal independent cluster solution there is an oblique analog. Using three illustrative examples, certain generalities are made…

  1. Comments on the Parameters and Processes that Affect the Preservation Potential and Style of Oblique-Divergent Plate Boundaries

    NASA Astrophysics Data System (ADS)

    Umhoefer, P. J.

    2014-12-01

    Oblique-divergent or transtensional zones present particular challenges in ancient belts because of the poor preservation potential of the thinned continental crust and young oceanic crust. Many oblique belts will preferentially preserve their boundary zones that lie within continents rather than the main plate boundary zone, which will be at a much lower elevation and composed of denser crust. Zones of tectonic escape or strike-slip overprinting of arcs or plateaus deform continental crust and may be better preserved. Here I highlight parameters and processes that have major effects on oblique divergent belts. Strain partitioning is common, but not ubiquitous, along and across oblique boundaries; the causes of partitioning are not always clear and make this especially vexing for work in ancient belts. Partitioning causes complexity in the patterns of structures at all scales. Inherited structures commonly determine the orientation and style of structures along oblique boundaries and can control the pattern of faults across transtensional belts. Regionally, inherited trends of arcs or other 1000-km-scale features can control boundary structures. Experiments and natural examples suggest that oblique boundary zones contain less of a record of strike-slip faulting and more extensional structures. The obliquity of divergence produces predictable families of structures that typify (i) strike-slip dominated zones (obliquity <~20°), (ii) mixed zones (~20° - ~35°), and (iii) extension dominated zones (>~35°). The combination of partitioning and mixed structures in oblique zones means that the boundaries of belts with large-magnitude strike-slip faulting will commonly preserve little of no record of that faulting history. Plate boundaries localize strain onto the main plate boundary structures from the broader plate boundary and therefore the boundary zones commonly preserve the earlier structures more than later structures, a major problem in interpreting ancient belts

  2. Building 931, oblique view to northwest, 210 mm lens. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Building 931, oblique view to northwest, 210 mm lens. - Travis Air Force Base, Central Battery Charging Building, North of W Street, Armed Forces Special Weapons Project Q Area, Fairfield, Solano County, CA

  3. Building 931, oblique view to southeast, 135 mm lens. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Building 931, oblique view to southeast, 135 mm lens. - Travis Air Force Base, Central Battery Charging Building, North of W Street, Armed Forces Special Weapons Project Q Area, Fairfield, Solano County, CA

  4. The northern Lesser Antilles oblique subduction zone: new insight about the upper plate deformation, 3D slab geometry and interplate coupling.

    NASA Astrophysics Data System (ADS)

    Marcaillou, B.; Laurencin, M.; Graindorge, D.; Klingelhoefer, F.

    2017-12-01

    In subduction zones, the 3D geometry of the plate interface is thought to be a key parameter for the control of margin tectonic deformation, interplate coupling and seismogenic behavior. In the northern Caribbean subduction, precisely between the Virgin Islands and northern Lesser Antilles, these subjects remain controversial or unresolved. During the ANTITHESIS cruises (2013-2016), we recorded wide-angle seismic, multichannel reflection seismic and bathymetric data along this zone in order to constrain the nature and the geometry of the subducting and upper plate. This experiment results in the following conclusions: 1) The Anegada Passage is a 450-km long structure accross the forearc related to the extension due to the collision with the Bahamas platform. 2) More recently, the tectonic partitioning due to the plate convergence obliquity re-activated the Anegada Passage in the left-lateral strike-slip system. The partitioning also generated the left-lateral strike-slip Bunce Fault, separating the accretionary prism from the forearc. 3) Offshore of the Virgin Islands margin, the subducting plate shows normal faults parallel to the ancient spreading center that correspond to the primary fabric of the oceanic crust. In contrast, offshore of Barbuda Island, the oceanic crust fabric is unresolved (fracture zone?, exhumed mantle? ). 4) In the direction of the plate convergence vector, the slab deepening angle decreases northward. It results in a shallower slab beneath the Virgin Islands Platform compared to the St Martin-Barbuda forearc. In the past, the collision of the Bahamas platform likely changed the geodynamic settings of the northeastern corner of the Caribbean subduction zone and we present a revised geodynamic history of the region. Currently, various features are likely to control the 3D geometry of the slab: the margin convexity, the convergence obliquity, the heterogeneity of the primary fabric of the oceanic crust and the Bahamas docking. We suggest that

  5. The Resilience of Kepler Systems to Stellar Obliquity

    NASA Astrophysics Data System (ADS)

    Spalding, Christopher; Marx, Noah W.; Batygin, Konstantin

    2018-04-01

    The Kepler mission and its successor K2 have brought forth a cascade of transiting planets. Many of these planetary systems exhibit multiple members, but a large fraction possess only a single transiting example. This overabundance of singles has led to the suggestion that up to half of Kepler systems might possess significant mutual inclinations between orbits, reducing the transiting number (the so-called “Kepler Dichotomy”). In a recent paper, Spalding & Batygin demonstrated that the quadrupole moment arising from a young, oblate star is capable of misaligning the constituent orbits of a close-in planetary system enough to reduce their transit number, provided that the stellar spin axis is sufficiently misaligned with respect to the planetary orbital plane. Moreover, tightly packed planetary systems were shown to be susceptible to becoming destabilized during this process. Here, we investigate the ubiquity of the stellar obliquity-driven instability within systems with a range of multiplicities. We find that most planetary systems analyzed, including those possessing only two planets, underwent instability for stellar spin periods below ∼3 days and stellar tilts of order 30°. Moreover, we are able to place upper limits on the stellar obliquity in systems such as K2-38 (obliquity ≲20°), where other methods of measuring the spin–orbit misalignment are not currently available. Given the known parameters of T-Tauri stars, we predict that up to one-half of super-Earth-mass systems may encounter the instability, in general agreement with the fraction typically proposed to explain the observed abundance of single-transiting systems.

  6. Building 904, oblique view to southeast, 135 mm lens. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Building 904, oblique view to southeast, 135 mm lens. - Travis Air Force Base, Base Spares Warehouse No. 1, Dixon Avenue & W Street, Armed Forces Special Weapons Project Q Area, Fairfield, Solano County, CA

  7. Building 904, oblique view to northwest, 135 mm lens ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Building 904, oblique view to northwest, 135 mm lens - Travis Air Force Base, Base Spares Warehouse No. 1, Dixon Avenue & W Street, Armed Forces Special Weapons Project Q Area, Fairfield, Solano County, CA

  8. Oblique patterned etching of vertical silicon sidewalls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burckel, D. Bruce; Finnegan, Patrick S.; Henry, M. David

    A method for patterning on vertical silicon surfaces in high aspect ratio silicontopography is presented. A Faraday cage is used to direct energetic reactive ions obliquely through a patterned suspended membrane positioned over the topography. The technique is capable of forming high-fidelity pattern (100 nm) features, adding an additional fabrication capability to standard top-down fabrication approaches.

  9. Oblique patterned etching of vertical silicon sidewalls

    NASA Astrophysics Data System (ADS)

    Bruce Burckel, D.; Finnegan, Patrick S.; David Henry, M.; Resnick, Paul J.; Jarecki, Robert L.

    2016-04-01

    A method for patterning on vertical silicon surfaces in high aspect ratio silicon topography is presented. A Faraday cage is used to direct energetic reactive ions obliquely through a patterned suspended membrane positioned over the topography. The technique is capable of forming high-fidelity pattern (100 nm) features, adding an additional fabrication capability to standard top-down fabrication approaches.

  10. Oblique patterned etching of vertical silicon sidewalls

    DOE PAGES

    Burckel, D. Bruce; Finnegan, Patrick S.; Henry, M. David; ...

    2016-04-05

    A method for patterning on vertical silicon surfaces in high aspect ratio silicontopography is presented. A Faraday cage is used to direct energetic reactive ions obliquely through a patterned suspended membrane positioned over the topography. The technique is capable of forming high-fidelity pattern (100 nm) features, adding an additional fabrication capability to standard top-down fabrication approaches.

  11. Oblique Wave-Induced Responses of A VLFS Edged with A Pair of Inclined Perforated Plates

    NASA Astrophysics Data System (ADS)

    Cheng, Yong; Ji, Chun-yan; Zhai, Gang-jun; Oleg, Gaidai

    2018-03-01

    This paper is concerned with the hydroelastic responses of a mat-like, rectangular very large floating structure (VLFS) edged with a pair of horizontal/inclined perforated anti-motion plates in the context of the direct coupling method. The updated Lagrangian formulae are applied to establish the equilibrium equations of the VLFS and the total potential formula is employed for fluids in the numerical model including the viscous effect of the perforated plates through the Darcy's law. The hybrid finite element-boundary element (FE-BE) method is implemented to determine the response reduction of VLFS with attached perforated plates under various oblique incident waves. Also, the numerical solutions are validated against a series of experimental tests. The effectiveness of the attached perforated plates in reducing the deflections of the VLFS can be significantly improved by selecting the proper design parameters such as the porous parameter, submergence depth, plate width and inclination angle for the given sea conditions.

  12. Paleomagnetic and structural evidence for oblique slip in a fault-related fold, Grayback monocline, Colorado

    USGS Publications Warehouse

    Tetreault, J.; Jones, C.H.; Erslev, E.; Larson, S.; Hudson, M.; Holdaway, S.

    2008-01-01

    Significant fold-axis-parallel slip is accommodated in the folded strata of the Grayback monocline, northeastern Front Range, Colorado, without visible large strike-slip displacement on the fold surface. In many cases, oblique-slip deformation is partitioned; fold-axis-normal slip is accommodated within folds, and fold-axis-parallel slip is resolved onto adjacent strike-slip faults. Unlike partitioning strike-parallel slip onto adjacent strike-slip faults, fold-axis-parallel slip has deformed the forelimb of the Grayback monocline. Mean compressive paleostress orientations in the forelimb are deflected 15??-37?? clockwise from the regional paleostress orientation of the northeastern Front Range. Paleomagnetic directions from the Permian Ingleside Formation in the forelimb are rotated 16??-42?? clockwise about a bedding-normal axis relative to the North American Permian reference direction. The paleostress and paleomagnetic rotations increase with the bedding dip angle and decrease along strike toward the fold tip. These measurements allow for 50-120 m of fold-axis-parallel slip within the forelimb, depending on the kinematics of strike-slip shear. This resolved horizontal slip is nearly equal in magnitude to the ???180 m vertical throw across the fold. For 200 m of oblique-slip displacement (120 m of strike slip and 180 m of reverse slip), the true shortening direction across the fold is N90??E, indistinguishable from the regionally inferred direction of N90??E and quite different from the S53??E fold-normal direction. Recognition of this deformational style means that significant amounts of strike slip can be accommodated within folds without axis-parallel surficial faulting. ?? 2008 Geological Society of America.

  13. Document segmentation via oblique cuts

    NASA Astrophysics Data System (ADS)

    Svendsen, Jeremy; Branzan-Albu, Alexandra

    2013-01-01

    This paper presents a novel solution for the layout segmentation of graphical elements in Business Intelligence documents. We propose a generalization of the recursive X-Y cut algorithm, which allows for cutting along arbitrary oblique directions. An intermediate processing step consisting of line and solid region removal is also necessary due to presence of decorative elements. The output of the proposed segmentation is a hierarchical structure which allows for the identification of primitives in pie and bar charts. The algorithm was tested on a database composed of charts from business documents. Results are very promising.

  14. Analytical and experimental investigations of the oblique detonation wave engine concept

    NASA Technical Reports Server (NTRS)

    Menees, Gene P.; Adelman, Henry G.; Cambier, Jean-Luc

    1990-01-01

    Wave combustors, which include the oblique detonation wave engine (ODWE), are attractive propulsion concepts for hypersonic flight. These engines utilize oblique shock or detonation waves to rapidly mix, ignite, and combust the air-fuel mixture in thin zones in the combustion chamber. Benefits of these combustion systems include shorter and lighter engines which require less cooling and can provide thrust at higher Mach numbers than conventional scramjets. The wave combustor's ability to operate at lower combustor inlet pressures may allow the vehicle to operate at lower dynamic pressures which could lessen the heating loads on the airframe. The research program at NASA-Ames includes analytical studies of the ODWE combustor using Computational Fluid Dynamics (CFD) codes which fully couple finite rate chemistry with fluid dynamics. In addition, experimental proof-of-concept studies are being performed in an arc heated hypersonic wind tunnel. Several fuel injection design were studied analytically and experimentally. In-stream strut fuel injectors were chosen to provide good mixing with minimal stagnation pressure losses. Measurements of flow field properties behind the oblique wave are compared to analytical predictions.

  15. Analytical and experimental investigations of the oblique detonation wave engine concept

    NASA Technical Reports Server (NTRS)

    Menees, Gene P.; Adelman, Henry G.; Cambier, Jean-Luc

    1991-01-01

    Wave combustors, which include the Oblique Detonation Wave Engine (ODWE), are attractive propulsion concepts for hypersonic flight. These engines utilize oblique shock or detonation waves to rapidly mix, ignite, and combust the air-fuel mixture in thin zones in the combustion chamber. Benefits of these combustion systems include shorter and lighter engines which will require less cooling and can provide thrust at higher Mach numbers than conventional scramjets. The wave combustor's ability to operate at lower combustor inlet pressures may allow the vehicle to operate at lower dynamic pressures which could lessen the heating loads on the airframe. The research program at NASA-Ames includes analytical studies of the ODWE combustor using CFD codes which fully couple finite rate chemistry with fluid dynamics. In addition, experimental proof-of-concept studies are being carried out in an arc heated hypersonic wind tunnel. Several fuel injection designs were studied analytically and experimentally. In-stream strut fuel injectors were chosen to provide good mixing with minimal stagnation pressure losses. Measurements of flow field properties behind the oblique wave are compared to analytical predictions.

  16. Design of Human-Machine Interface and altering of pelvic obliquity with RGR Trainer.

    PubMed

    Pietrusinski, Maciej; Unluhisarcikli, Ozer; Mavroidis, Constantinos; Cajigas, Iahn; Bonato, Paolo

    2011-01-01

    The Robotic Gait Rehabilitation (RGR) Trainer targets secondary gait deviations in stroke survivors undergoing rehabilitation. Using an impedance control strategy and a linear electromagnetic actuator, the device generates a force field to control pelvic obliquity through a Human-Machine Interface (i.e. a lower body exoskeleton). Herein we describe the design of the RGR Trainer Human-Machine Interface (HMI) and we demonstrate the system's ability to alter the pattern of movement of the pelvis during gait in a healthy subject. Results are shown for experiments during which we induced hip-hiking - in healthy subjects. Our findings indicate that the RGR Trainer has the ability of affecting pelvic obliquity during gait. Furthermore, we provide preliminary evidence of short-term retention of the modified pelvic obliquity pattern induced by the RGR Trainer. © 2011 IEEE

  17. Effects of varying obliquity on Martian sublimation thermokarst landforms

    USGS Publications Warehouse

    Dundas, Colin M.

    2017-01-01

    Scalloped depressions in the Martian mid-latitudes are likely formed by sublimation of ice-rich ground. The stability of subsurface ice changes with the planetary obliquity, generally becoming less stable at lower axial tilt. As a result, the relative rates of sublimation and creep change over time. A landscape evolution model shows that these variations produce internal structure in scalloped depressions, commonly in the form of arcuate ridges, which emerge as depressions resume growth after pausing or slowing. In other scenarios, the formation of internal structure is minimal. Significant uncertainties in past climate and model parameters permit a range of scenarios. Ridges observed in some Martian scalloped depressions could date from obliquity lows or periods of low ice stability occurring <5 Ma, suggesting that the pits are young features and may be actively evolving.

  18. Freeform Deposition Method for Coolant Channel Closeout

    NASA Technical Reports Server (NTRS)

    Gradl, Paul R. (Inventor); Reynolds, David Christopher (Inventor); Walker, Bryant H. (Inventor)

    2017-01-01

    A method is provided for fabricating a coolant channel closeout jacket on a structure having coolant channels formed in an outer surface thereof. A line of tangency relative to the outer surface is defined for each point on the outer surface. Linear rows of a metal feedstock are directed towards and deposited on the outer surface of the structure as a beam of weld energy is directed to the metal feedstock so-deposited. A first angle between the metal feedstock so-directed and the line of tangency is maintained in a range of 20-90.degree.. The beam is directed towards a portion of the linear rows such that less than 30% of the cross-sectional area of the beam impinges on a currently-deposited one of the linear rows. A second angle between the beam and the line of tangency is maintained in a range of 5-65 degrees.

  19. Geological and geodynamic investigations of Alaskan tectonics: Responses in the ancient and modern geologic records to oblique plate convergence

    NASA Astrophysics Data System (ADS)

    Kalbas, James L.

    Stratigraphic, structural, and geophysical modeling studies focusing on both the Mesozoic and modern development of southern Alaska aid in understanding the nature of tectonic responses to oblique plate convergence. Analyses of the Lower to Upper (?) Cretaceous Kahiltna assemblage of the western Alaska Range and the Upper Cretaceous Kuskokwim Group of the northern Kuskokwim Mountains provide a stratigraphic record of orogenic growth in southwestern Alaska. The Kahiltna assemblage records dominantly west-directed gravity-flow transport of sediment to the axis of an obliquely closing basin that made up the suture zone between the allochthonous Wrangellia composite terrane and the North American pericratonic margin. Stratigraphic, compositional, and geochronologic analyses suggest that submarine-fan systems of the Kahiltna basin were fed from the subearial suture zone and contain detrital grains derived from both allochthonous and pericratonic sources, thereby implying a relatively close proximity of the island-arc terrane to the North American margin by late Early Cretaceous time. In contrast, Upper Cretaceous strata exposed immediately west of the Kahiltna assemblage record marine deposition during a period of transition from island arc accretion to strike-slip tectonics. The new stratigraphic model presented here recognizes diverse bathyal- to shelfal-marine depositional systems within the Kuskokwim Group that represent distinctive regional sediment entry points to the basin. Collectively, these strata suggest that the Kuskokwim Group represents the waning stages of marine deposition in a long-lived intra-oceanic and continental margin basin. Geodynamic studies focus on the mechanics of contemporary fault systems in southern Alaska inboard of the collisional Yakutat microplate. Finite-element analyses predict that a poorly understood Holocene strike-slip fault in the St. Elias Mountains transfers shear from the Queen Charlotte fault northward to the Denali fault

  20. Stellar Obliquity and Magnetic Activity of Planet-hosting Stars and Eclipsing Binaries Based on Transit Chord Correlation

    NASA Astrophysics Data System (ADS)

    Dai, Fei; Winn, Joshua N.; Berta-Thompson, Zachory; Sanchis-Ojeda, Roberto; Albrecht, Simon

    2018-04-01

    The light curve of an eclipsing system shows anomalies whenever the eclipsing body passes in front of active regions on the eclipsed star. In some cases, the pattern of anomalies can be used to determine the obliquity Ψ of the eclipsed star. Here we present a method for detecting and analyzing these patterns, based on a statistical test for correlations between the anomalies observed in a sequence of eclipses. Compared to previous methods, ours makes fewer assumptions and is easier to automate. We apply it to a sample of 64 stars with transiting planets and 24 eclipsing binaries for which precise space-based data are available, and for which there was either some indication of flux anomalies or a previously reported obliquity measurement. We were able to determine obliquities for 10 stars with hot Jupiters. In particular we found Ψ ≲ 10° for Kepler-45, which is only the second M dwarf with a measured obliquity. The other eight cases are G and K stars with low obliquities. Among the eclipsing binaries, we were able to determine obliquities in eight cases, all of which are consistent with zero. Our results also reveal some common patterns of stellar activity for magnetically active G and K stars, including persistently active longitudes.

  1. Oblique propagation of solitary waves in weakly relativistic magnetized plasma with kappa distributed electrons in the presence of negative ions

    NASA Astrophysics Data System (ADS)

    Salmanpoor, H.; Sharifian, M.; Gholipour, S.; Borhani Zarandi, M.; Shokri, B.

    2018-03-01

    The oblique propagation of nonlinear ion acoustic solitary waves (solitons) in magnetized collisionless and weakly relativistic plasma with positive and negative ions and super thermal electrons has been examined by using reduced perturbation method to obtain the Korteweg-de Vries equation that admits an obliquely propagating soliton solution. We have investigated the effects of plasma parameters like negative ion density, electrons temperature, angle between wave vector and magnetic field, ions velocity, and k (spectral index in kappa distribution) on the amplitude and width of solitary waves. It has been found out that four modes exist in our plasma model, but the analysis of the results showed that only two types of ion acoustic modes (fast and slow) exist in the plasma and in special cases only one mode could be propagated. The parameters of plasma for these two modes (or one mode) determine which one is rarefactive and which one is compressive. The main parameter is negative ions density (β) indicating which mode is compressive or rarefactive. The effects of the other plasma parameters on amplitude and width of the ion acoustic solitary waves have been studied. The main conclusion is that the effects of the plasma parameters on amplitude and width of the solitary wave strongly depend on the value of the negative ion density.

  2. Graded versus ungraded inferior oblique anterior transposition in patients with asymmetric dissociated vertical deviation.

    PubMed

    Rajavi, Zhale; Feizi, Mohadeseh; Naderi, Ali; Sabbaghi, Hamideh; Behradfar, Narges; Yaseri, Mehdi; Faghihi, Mohammad

    2017-12-01

    To report the surgical outcomes of graded versus ungraded inferior oblique anterior transposition (IOAT) in treatment of patients with asymmetric dissociated vertical deviation (DVD) and bilateral inferior oblique overaction (IOOA). A total of 74 eyes of 37 patients with asymmetric DVD (interocular difference of ≥5 Δ ) and bilateral IOOA of > +1 were included in this randomized clinical trial. In the ungraded group (n = 18), both inferior oblique muscles were sutured at the inferior rectus level; in the graded group (n = 19), the inferior oblique muscles of eyes with more DVD were sutured at the level of the inferior rectus and inferior oblique muscles of eyes with less DVD were sutured 2 mm posterior to the level of the inferior rectus muscle. DVD was significantly reduced in each group (P < 0.001 for both). Although the postoperative mean difference of asymmetry of DVD was less in the ungraded group compared to the graded group (1.2 ± 1.9 vs 3.2 ± 1.2 [P = 0.001]), the absolute amounts of reduction of DVD asymmetry were similar (4.3 ± 2.3 vs 4.4 ± 3.1 [P = 0.78]). IOOA and V patterns were also reduced postoperatively. Each method of IOAT was effective in reducing DVD, asymmetry, IOOA, and V patterns. Copyright © 2017 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.

  3. Titan's interior constrained from its obliquity and tidal Love number

    NASA Astrophysics Data System (ADS)

    Baland, Rose-Marie; Coyette, Alexis; Yseboodt, Marie; Beuthe, Mikael; Van Hoolst, Tim

    2016-04-01

    In the last few years, the Cassini-Huygens mission to the Saturn system has measured the shape, the obliquity, the static gravity field, and the tidally induced gravity field of Titan. The large values of the obliquity and of the k2 Love number both point to the existence of a global internal ocean below the icy crust. In order to constrain interior models of Titan, we combine the above-mentioned data as follows: (1) we build four-layer density profiles consistent with Titan's bulk properties; (2) we determine the corresponding internal flattening compatible with the observed gravity and topography; (3) we compute the obliquity and tidal Love number for each interior model; (4) we compare these predictions with the observations. Previously, we found that Titan is more differentiated than expected (assuming hydrostatic equilibrium), and that its ocean is dense and less than 100 km thick. Here, we revisit these conclusions using a more complete Cassini state model, including: (1) gravitational and pressure torques due to internal tidal deformations; (2) atmosphere/lakes-surface exchange of angular momentum; (3) inertial torque due to Poincaré flow. We also adopt faster methods to evaluate Love numbers (i.e. the membrane approach) in order to explore a larger parameter space.

  4. Oblique Photogrammetry Supporting 3d Urban Reconstruction of Complex Scenarios

    NASA Astrophysics Data System (ADS)

    Toschi, I.; Ramos, M. M.; Nocerino, E.; Menna, F.; Remondino, F.; Moe, K.; Poli, D.; Legat, K.; Fassi, F.

    2017-05-01

    Accurate 3D city models represent an important source of geospatial information to support various "smart city" applications, such as space management, energy assessment, 3D cartography, noise and pollution mapping as well as disaster management. Even though remarkable progress has been made in recent years, there are still many open issues, especially when it comes to the 3D modelling of complex urban scenarios like historical and densely-built city centres featuring narrow streets and non-conventional building shapes. Most approaches introduce strong building priors/constraints on symmetry and roof typology that penalize urban environments having high variations of roof shapes. Furthermore, although oblique photogrammetry is rapidly maturing, the use of slanted views for façade reconstruction is not completely included in the reconstruction pipeline of state-of-the-art software. This paper aims to investigate state-of-the-art methods for 3D building modelling in complex urban scenarios with the support of oblique airborne images. A reconstruction approach based on roof primitives fitting is tested. Oblique imagery is then exploited to support the manual editing of the generated building models. At the same time, mobile mapping data are collected at cm resolution and then integrated with the aerial ones. All approaches are tested on the historical city centre of Bergamo (Italy).

  5. A mathematical method for precisely calculating the radiographic angles of the cup after total hip arthroplasty.

    PubMed

    Zhao, Jing-Xin; Su, Xiu-Yun; Xiao, Ruo-Xiu; Zhao, Zhe; Zhang, Li-Hai; Zhang, Li-Cheng; Tang, Pei-Fu

    2016-11-01

    We established a mathematical method to precisely calculate the radiographic anteversion (RA) and radiographic inclination (RI) angles of the acetabular cup based on anterior-posterior (AP) pelvic radiographs after total hip arthroplasty. Using Mathematica software, a mathematical model for an oblique cone was established to simulate how AP pelvic radiographs are obtained and to address the relationship between the two-dimensional and three-dimensional geometry of the opening circle of the cup. In this model, the vertex was the X-ray beam source, and the generatrix was the ellipse in radiographs projected from the opening circle of the acetabular cup. Using this model, we established a series of mathematical formulas to reveal the differences between the true RA and RI cup angles and the measurements results achieved using traditional methods and AP pelvic radiographs and to precisely calculate the RA and RI cup angles based on post-operative AP pelvic radiographs. Statistical analysis indicated that traditional methods should be used with caution if traditional measurements methods are used to calculate the RA and RI cup angles with AP pelvic radiograph. The entire calculation process could be performed by an orthopedic surgeon with mathematical knowledge of basic matrix and vector equations. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  6. Designing a freeform optic for oblique illumination

    NASA Astrophysics Data System (ADS)

    Uthoff, Ross D.; Ulanch, Rachel N.; Williams, Kaitlyn E.; Ruiz Diaz, Liliana; King, Page; Koshel, R. John

    2017-11-01

    The Functional Freeform Fitting (F4) method is utilized to design a freeform optic for oblique illumination of Mark Rothko's Green on Blue (1956). Shown are preliminary results from an iterative freeform design process; from problem definition and specification development to surface fit, ray tracing results, and optimization. This method is applicable to both point and extended sources of various geometries.

  7. Oblique view to the northwest of the Antenna Array ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Oblique view to the northwest of the Antenna Array - Over-the-Horizon Backscatter Radar Network, Christmas Valley Radar Site Transmit Sector Six Antenna Array, On unnamed road west of Lost Forest Road, Christmas Valley, Lake County, OR

  8. Infra Patellar Branch of Saphenous Nerve Injury during Hamstring Graft Harvest: Vertical versus Oblique Incisions.

    PubMed

    Joshi, A; Kayasth, N; Shrestha, S; Kc, B R

    2016-09-01

    Autologous hamstring grafts are commonly used for anterior cruciate ligament reconstruction. The injury of infrapatellar branch of saphenous nerve is one of the concerns leading to various pattern of sensory loss in the operated leg. An oblique incision to harvest the graft has been reported to be better than the vertical one.The aim of this study was to compare the incidence, recovery of nerve injury and final outcome in patients with hamstring harvest of vertical or oblique incision. A total of 146 patients who underwent hamstring graft harvest for anterior cruciate ligament reconstruction, were included in the study. They were randomized into two (Vertical and Oblique) groups as per the incisions used. The sensory loss along the Infra Patellar Branch of Saphenous Nerve was documented on 3rd day. Recovery of the nerve injury was monitoredat three, six and 12 months follow-ups. At final follow up Tegner Lysholm score and scale was recorded to compare between two groups. The incidence of infrapatellar branch of saphenous nerve injury was 25% in vertical group and 16.36% in oblique group. Recovery of nerve injury started earlier in oblique group compared to vertical group. The mean TegnerLyshom score was not significantly different in both the groups. Oblique incision to harvest hamstring graft has lesser incidence of infrapatellar branch of saphenous nerve injury, recovers earlier and does not have any adverse effect on final outcome compared to the vertical incision.

  9. OBLIQUE VIEW FROM SOUTHEAST LOOKING NORTHEAST. NOTE CORNERSTONE IN ABUTMENT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE VIEW FROM SOUTHEAST LOOKING NORTHEAST. NOTE CORNERSTONE IN ABUTMENT. - Jackson Covered Bridge, Spanning Sugar Creek, CR 775N (Changed from Spanning Sugar Creek), Bloomingdale, Parke County, IN

  10. Frequency variations of the earth's obliquity and the 100-kyr ice-age cycles

    NASA Technical Reports Server (NTRS)

    Liu, Han-Shou

    1992-01-01

    Changes in the earth's climate are induced by variations in the earth's orbital parameters which modulate the seasonal distribution of solar radiation. Periodicities in the geological climate record with cycles of 100, 41, and 23 kyr have been linked with changes in obliquity, eccentricity, and precession of the equinoxes. The effect of variations of eccentricity during a 100 kyr period is weak relative to the signals from obliquity and precession variations and it may therefore be expected that the 100 kyr signal in the climate record would be of low intensity. However, this signal dominates the climate record and internal nonlinear processes within the climate system have previously been proposed to account for this fact. The author shows that variations in the frequency of the obliquity cycle can give rise to strong 100-kyr forcing of climate.

  11. Deformation record of 4-d accommodation of strain in the transition from transform to oblique convergent plate margin, southern Alaska (Invited)

    NASA Astrophysics Data System (ADS)

    Roeske, S.; Benowitz, J.; Enkelmann, E.; Pavlis, T. L.

    2013-12-01

    Crustal deformation at the transition from a dextral transform to subduction in the northern Cordillera is complicated by both the bend of the margin and the presence of low-angle subduction of an oceanic plateau, the Yakutat microplate, into the 'corner'. The dextral Denali Fault system located ~400 km inboard of the plate margin shows a similar transition from a dominantly strike-slip to transpressional regime as it curves to the west. Thermochronologic and structural studies in both areas indicate crustal response through the transition region is highly varied along and across strike. Previous thermochronology along the Fairweather fault SE of the St. Elias bend shows the most rapid exhumation occurs in close proximity to the fault, decreasing rapidly away from it. Enkelmann et al. (2010) and more recent detrital zircon FT (Falkowski et al., 2013 AGU abstract) show rapid and deep exhumation concentrated in the syntaxis, but over a fairly broad area continuing north beyond the Fairweather fault. Although the region is dominantly under ice, borders of the rapidly exhuming region appear to be previously identified major high-angle faults. This suggests that structures controlling the extreme exhumation may have significant oblique slip component, or, if flower structure, are reverse faults, and the region may be exhuming by transpression, with a significant component of pure shear. Southwest of the syntaxis, where convergence dominates over strike-slip, thin-skinned fold-and-thrust belts in the Yakutat microplate strata account for the shortening. The long-term record of convergence in this area is more cryptic due to sediment recycling through deep underplating and/or limited exhumation by upper crustal shortening, but a wide range of thermochronologic studies suggests that initial exhumation in the region began ~ 30 Ma and most rapid exhumation in the syntaxis began ~ 5 Ma. In the eastern Alaska Range a significant component of strike-slip, in addition to

  12. Continental breakup by oblique extension: the Gulf of California

    NASA Astrophysics Data System (ADS)

    van Wijk, J.; Axen, G. J.

    2017-12-01

    We address two aspects of oblique extension: 1) the evolution of pull-apart basins, and how/when they may evolve into seafloor spreading segments; and 2) the formation of microcontinents. The Gulf of California formed by oblique extension. Breakup resulted in oceanic crust generation in the southern and central parts, while in the northern Gulf/Salton Trough a thick layer of (meta-)sediments overlies thinned continental crust. We propose a simple mechanism to explain this N-S variation. We assume that oblique rifting of the proto-Gulf province resulted in pull-apart basins, and use numerical models to show that such pull-apart basins do not develop into seafloor spreading segments when their length-to-width ratios are small, as is the case in the northern Gulf. In the central and southern Gulf the length-to-width ratios were larger, promoting continent rupture. The mechanisms behind this fate of pull-apart basins will be discussed in the presentation. In the southern Gulf, potential field models show that the Tamayo Bank in the southern Gulf is likely a microcontinent, separated from the main continent by the Tamayo trough. The thickness of the ocean crust in the Tamayo trough is anomalously small, suggesting that initial seafloor spreading was magma-starved and unsuccessful, causing the location of rifting and seafloor spreading to jump. As a consequence a sliver of continent broke off, forming the microcontinent. We suggest that worldwide this may be a common process for microcontinent formation.

  13. Oblique view to the west of two communications antennas ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Oblique view to the west of two communications antennas - Over-the-Horizon Backscatter Radar Network, Mountain Home Air Force Operations Building, On Desert Street at 9th Avenue Mountain Home Air Force Base, Mountain Home, Elmore County, ID

  14. Oblique view to the west of the southeast elevation ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Oblique view to the west of the southeast elevation - Over-the-Horizon Backscatter Radar Network, Mountain Home Air Force Operations Building, On Desert Street at 9th Avenue Mountain Home Air Force Base, Mountain Home, Elmore County, ID

  15. FACILITY 814, FRONT AND SOUTHEAST SIDE, OBLIQUE VIEW FACING NORTH. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 814, FRONT AND SOUTHEAST SIDE, OBLIQUE VIEW FACING NORTH. - Schofield Barracks Military Reservation, Bachelor Officers' Quarters Type, Between Grimes & Tidball Streets near Ayres Avenue, Wahiawa, Honolulu County, HI

  16. FACILITY 814, COURTYARD AND SOUTHEAST WING, OBLIQUE VIEW FACING SOUTH. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 814, COURTYARD AND SOUTHEAST WING, OBLIQUE VIEW FACING SOUTH. - Schofield Barracks Military Reservation, Bachelor Officers' Quarters Type, Between Grimes & Tidball Streets near Ayres Avenue, Wahiawa, Honolulu County, HI

  17. Oblique view looking northeast at Machine Shop (Bldg. 163) from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Oblique view looking northeast at Machine Shop (Bldg. 163) from Second Street - Atchison, Topeka, Santa Fe Railroad, Albuquerque Shops, Machine Shop, 908 Second Street, Southwest, Albuquerque, Bernalillo County, NM

  18. Three depositional states and sedimentary processes of the western Taiwan foreland basin system

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Jung; Wu, Pei-Jen; Yu, Ho-Shing

    2010-05-01

    The western Taiwan foreland basin formed during the Early Pliocene as the flexural response to the loading of Taiwan orogen on the Eurasian plate. What makes Taiwan interesting is the oblique collision, which allows the foreland basin to be seen at different stages in its evolution at the present day. Due to oblique arc-continent collision from north to south, the western Taiwan foreland basin has evolved into three distinct subbasins: an over-filled basin proximal to the Taiwan orogen, mainly distributed in the Western Foothills and Coastal Plain provinces, a filled basin occupying the shallow Taiwan Strait continental shelf west of the Taiwan orogen and an under-filled basin distal to the Taiwan orogen in the deep marine Kaoping Slope offshore southwest Taiwan, respectively. The over-filled depositional phase is dominated by fluvial environments across the structurally controlled piggy-back basins. The filled depositional state in the Taiwan Strait is characterized by shallow marine environments and is filled by Pliocene-Quaternary sediments up to 4,000 m thick derived from the Taiwan orogen with an asymmetrical and wedge-shaped cross section. The under-filled depositional state is characteristic of deep marine environments in the wedge-top basins accompanied by active structures of thrust faults and mud diapers. Sediments derived from the Taiwan orogen have progressively filled the western Taiwan foreland basin across and along the orogen. Sediment dispersal model suggests that orogenic sediments derived from oblique dischronous collisional highlands are transported in two different ways. Transport of fluvial and shallow marine sediments is perpendicular to hill-slope and across-strike in the fluvial and shallow marine environments proximal to the orogen. Fine-grained sediments mainly longitudinally transported into the deep marine environments distal to the orogen. The present sedimentary processes in the over-filled basin on land are dominated by fluvial

  19. Multiple Climate States of Habitable Exoplanets: The Role of Obliquity and Irradiance

    NASA Astrophysics Data System (ADS)

    Kilic, C.; Raible, C. C.; Stocker, T. F.

    2017-08-01

    Stable, steady climate states on an Earth-size planet with no continents are determined as a function of the tilt of the planet’s rotation axis (obliquity) and stellar irradiance. Using a general circulation model of the atmosphere coupled to a slab ocean and a thermodynamic sea ice model, two states, the Aquaplanet and the Cryoplanet, are found for high and low stellar irradiance, respectively. In addition, four stable states with seasonally and perennially open water are discovered if comprehensively exploring a parameter space of obliquity from 0° to 90° and stellar irradiance from 70% to 135% of the present-day solar constant. Within 11% of today’s solar irradiance, we find a rich structure of stable states that extends the area of habitability considerably. For the same set of parameters, different stable states result if simulations are initialized from an aquaplanet or a cryoplanet state. This demonstrates the possibility of multiple equilibria, hysteresis, and potentially rapid climate change in response to small changes in the orbital parameters. The dynamics of the atmosphere of an aquaplanet or a cryoplanet state is investigated for similar values of obliquity and stellar irradiance. The atmospheric circulation substantially differs in the two states owing to the relative strength of the primary drivers of the meridional transport of heat and momentum. At 90° obliquity and present-day solar constant, the atmospheric dynamics of an Aquaplanet state and one with an equatorial ice cover is analyzed.

  20. Persisting roughness when deposition stops.

    PubMed

    Schwartz, Moshe; Edwards, S F

    2004-12-01

    Useful theories for growth of surfaces under random deposition of material have been developed by several authors. The simplest theory is that introduced by Edwards and Wilkinson (EW), which is linear and soluble. Its nonlinear generalization by Kardar, Parisi, and Zhang (KPZ) resulted in many subsequent studies. Yet both EW and KPZ theories contain an unphysical feature. When deposition of material is stopped, both theories predict that as time tends to infinity, the surface becomes flat. In fact, of course, the final surface is not flat, but simply has no gradients larger than the gradient related to the angle of repose. We modify the EW and KPZ theories to accommodate this feature and study the consequences for the simpler system which is a modification of the EW equation. In spite of the fact that the equation describing the evolution of the surface is not linear, we find that the steady state in the presence of noise is not very different in the long-wavelength limit from that of the linear EW equation. The situation is quite different from that of EW when deposition stops. Initially there is still some rearrangement of the surface, but that stops as everywhere on the surface the gradient is less than that related to the angle of repose. The most interesting feature observed after deposition stops is the emergence of history-dependent steady-state distributions.

  1. Gold nanoparticles deposited on glass: physicochemical characterization and cytocompatibility

    PubMed Central

    2013-01-01

    Properties of gold films sputtered under different conditions onto borosilicate glass substrate were studied. Mean thickness of sputtered gold film was measured by gravimetry, and film contact angle was determined by goniometry. Surface morphology was examined by atomic force microscopy, and electrical sheet resistance was determined by two-point technique. The samples were seeded with rat vascular smooth muscle cells, and their adhesion and proliferation were studied. Gold depositions lead to dramatical changes in the surface morphology and roughness in comparison to pristine substrate. For sputtered gold structures, the rapid decline of the sheet resistance appears on structures deposited for the times above 100 s. The thickness of deposited gold nanoparticles/layer is an increasing function of sputtering time and current. AFM images prove the creation of separated gold islands in the initial deposition phase and a continuous gold coverage for longer deposition times. Gold deposition has a positive effect on the proliferation of vascular smooth muscle cells. Largest number of cells was observed on sample sputtered with gold for 20 s and at the discharge current of 40 mA. This sample exhibits lowest contact angle, low relative roughness, and only mild increase of electrical conductivity. PMID:23705782

  2. 5. OBLIQUE INTERIOR VIEW OF CHEMICAL STORAGE BUILDING (#1776), LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. OBLIQUE INTERIOR VIEW OF CHEMICAL STORAGE BUILDING (#1776), LOOKING SOUTHEAST - Presidio Water Treatment Plant, Chemical Storage, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA

  3. Building G interior, second floor oblique looking southwest, showing storage ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Building G interior, second floor oblique looking southwest, showing storage area for samples - Daniel F. Waters Germantown Dye Works, Building G, 37-55 East Wister Street, Philadelphia, Philadelphia County, PA

  4. Screech Tones from Rectangular Jets with Spanwise Oblique Shock-Cell Structures

    NASA Technical Reports Server (NTRS)

    Raman, Ganesh

    1996-01-01

    Understanding screech is especially important for the design of advanced aircraft because screech can cause sonic fatigue failure of aircraft structures. Although the connection between shock-cell spacing and screech frequency is well understood, the relation between non-uniformities in the shock-cell structures and the resulting amplitude, mode, and steadiness of screech have remained unexplored. This paper addresses the above issues by intentionally producing spanwise (larger nozzle dimension) variations in the shock-cell structures and studying the resulting spanwise screech mode. The spanwise oblique shock-cell structures were produced using imperfectly expanded convergent-divergent rectangular nozzles (aspect ratio = 5) with nonuniform exit geometries. Three geometries were studied: (a) a nozzle with a spanwise uniform edge, (b) a nozzle with a spanwise oblique (single bevelled) edge, and (c) a nozzle that had two spanwise oblique (double bevelled) cuts to form an arrowhead-shaped nozzle. For all nozzles considered, the screech mode was antisymmetric in the transverse (smaller nozzle dimension) direction allowing focus on changes in the spanwise direction. Three types of spanwise modes were observed: symmetric (1), antisymmetric (2), and oblique (3). The following significant results emerged: (1) for all cases the screech mode corresponds with the spanwise shock-cell structure, (2) when multiple screech modes are present, the technique presented here makes it possible to distinguish between coexisting and mutually exclusive modes, (3) the strength of shocks 3 and 4 influences the screech source amplitude and determines whether screech is unsteady. The results presented here offer hope for a better understanding of screech and for tailoring shock-containing jets to minimize fatigue failure of aircraft components.

  5. Designing safer composite helmets to reduce rotational accelerations during oblique impacts.

    PubMed

    Mosleh, Yasmine; Cajka, Martin; Depreitere, Bart; Vander Sloten, Jos; Ivens, Jan

    2018-05-01

    Oblique impact is the most common accident situation that occupants in traffic accidents or athletes in professional sports experience. During oblique impact, the human head is subjected to a combination of linear and rotational accelerations. Rotational movement is known to be responsible for traumatic brain injuries. In this article, composite foam with a column/matrix composite configuration is proposed for head protection applications to replace single-layer uniform foam, to better attenuate rotational movement of the head during oblique impacts. The ability of composite foam in the mitigation of rotational head movement is studied by performing finite element (FE) simulations of oblique impact on flat and helmet shape specimens. The performance of composite foam with respect to parameters such as compliance of the matrix foam and the number, size and cross-sectional shape of the foam columns is explored in detail, and subsequently an optimized structure is proposed. The simulation results show that using composite foam instead of single-layer foam, the rotational acceleration and velocity of the headform can be significantly reduced. The parametric study indicates that using a more compliant matrix foam and by increasing the number of columns in the composite foam configuration, the rotation can be further mitigated. This was confirmed by experimental results. The simulation results were also analyzed based on global head injury criteria such as head injury criterion, rotational injury criterion, brain injury criterion and generalized acceleration model for brain injury threshold which further confirmed the superior performance of composite foam versus single-layer homogeneous expanded polystyrene foam. The findings of simulations give invaluable information for design of protective helmets or, for instance, headliners for the automotive industry.

  6. Possible precipitation of ice at low latitudes of Mars during periods of high obliquity

    USGS Publications Warehouse

    Jakosky, B.M.; Carr, M.H.

    1985-01-01

    Most of the old cratered highlands of Mars are dissected by branching river valleys that appear to have been cut by running water1,2 yet liquid water is unstable everywhere on the martian surface. In the equatorial region, where most of the valleys are observed, even ice is unstable3,4. It has been suggested, therefore, that Mars had an early denser atmosphere with sufficient greenhouse warming to allow the existence of liquid water 5. Here, we suggest instead that during periods of very high obliquities, ice could accumulate at low latitudes as a result of sustained sublimation of ice from the poles and transport of the water vapour equatorwards. At low latitudes, the water vapour would saturate the atmosphere and condense onto the surface where it would accumulate until lower obliquities prevailed. The mechanism is efficient only at the very high obliquities that occurred before formation of Tharsis very early in the planet's history, but limited equatorial ice accumulation could also have occurred at the highest obliquities during the rest of the planet's history. Partial melting of the ice could have provided runoff to form the channels or replenish the groundwater system. ?? 1985 Nature Publishing Group.

  7. Possible precipitation of ice at low latitudes of Mars during periods of high obliquity

    NASA Technical Reports Server (NTRS)

    Jakosky, B. M.; Carr, M. H.

    1985-01-01

    Most of the old cratered highlands of Mars are dissected by branching river valleys that appear to have been cut by running water, yet liquid water is unstable everywhere on the Martian surface. In the equatorial region, where most of the valleys are observed, even ice is unstable. It has been suggested, therefore, that Mars had an early denser atmosphere with sufficient greenhouse warming to allow the existence of liquid water. Here, it is suggested instead that during periods of very high obliquities, ice could accumulate at low latitudes as a result of sustained sublimation of ice from the poles and transport of the water vapor equatorwards. At low latitudes, the water vapor would saturate the atmosphere and condense onto the surface, where it would accumulate until lower obliquities prevailed. The mechanism is efficient only at the very high obliquities that occurred before formation of Tharsis very early in the planet's history, but limited equatorial ice accumulation could also have occurred at the highest obliquities during the rest of the planet's history. Partial melting of the ice could have provided runoff to form the channels or replenish the groundwater system.

  8. 8. OBLIQUE VIEW OF WEST ELEVATION. LOOKING EAST. Route ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. OBLIQUE VIEW OF WEST ELEVATION. LOOKING EAST. - Route 31 Bridge, New Jersey Route 31, crossing disused main line of Central Railroad of New Jersey (C.R.R.N.J.) (New Jersey Transit's Raritan Valley Line), Hampton, Hunterdon County, NJ

  9. 7. OBLIQUE VIEW OF EAST ELEVATION. LOOKING WEST. Route ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. OBLIQUE VIEW OF EAST ELEVATION. LOOKING WEST. - Route 31 Bridge, New Jersey Route 31, crossing disused main line of Central Railroad of New Jersey (C.R.R.N.J.) (New Jersey Transit's Raritan Valley Line), Hampton, Hunterdon County, NJ

  10. Hydrodynamic studies on two wiggling hydrofoils in an oblique arrangement

    NASA Astrophysics Data System (ADS)

    Lin, Xingjian; He, Guoyi; He, Xinyi; Wang, Qi; Chen, Longsheng

    2018-06-01

    The propulsive performance of an oblique school of fish is numerically studied using an immersed boundary technique. The effect of the spacing and wiggling phase on the hydrodynamics of the system is investigated. The hydrodynamics of the system is deeply affected by the spacing between each fish in the school. When the horizontal separation is smaller than the length of the fish body, the downstream fish exhibits a larger thrust coefficient and greater propulsive efficiency than the isolated fish. However, the corresponding values for the upstream fish are smaller. The opposite behavior occurs when the horizontal separation increases beyond the length of fish body. The propulsive performance of the entire oblique school of fish can be substantially enhanced when the separations are optimized.

  11. Geomorphologic mapping of the lunar crater Tycho and its impact melt deposits

    NASA Astrophysics Data System (ADS)

    Krüger, T.; van der Bogert, C. H.; Hiesinger, H.

    2016-07-01

    Using SELENE/Kaguya Terrain Camera and Lunar Reconnaissance Orbiter Camera (LROC) data, we produced a new, high-resolution (10 m/pixel), geomorphological and impact melt distribution map for the lunar crater Tycho. The distal ejecta blanket and crater rays were investigated using LROC wide-angle camera (WAC) data (100 m/pixel), while the fine-scale morphologies of individual units were documented using high resolution (∼0.5 m/pixel) LROC narrow-angle camera (NAC) frames. In particular, Tycho shows a large coherent melt sheet on the crater floor, melt pools and flows along the terraced walls, and melt pools on the continuous ejecta blanket. The crater floor of Tycho exhibits three distinct units, distinguishable by their elevation and hummocky surface morphology. The distribution of impact melt pools and ejecta, as well as topographic asymmetries, support the formation of Tycho as an oblique impact from the W-SW. The asymmetric ejecta blanket, significantly reduced melt emplacement uprange, and the depressed uprange crater rim at Tycho suggest an impact angle of ∼25-45°.

  12. Epidemiology and Impact of Abdominal Oblique Injuries in Major and Minor League Baseball

    PubMed Central

    Camp, Christopher L.; Conte, Stan; Cohen, Steven B.; Thompson, Matthew; D’ Angelo, John; Nguyen, Joseph T.; Dines, Joshua S.

    2017-01-01

    Background: Oblique injuries are known to be a common cause of time out of play for professional baseball players, and prior work has suggested that injury rates may be on the rise in Major League Baseball (MLB). Purpose: To better understand the current incidence of oblique injuries, determine their impact based on time out of play, and to identify common injury patterns that may guide future injury prevention programs. Study Design: Descriptive epidemiological study. Methods: Using the MLB Health and Injury Tracking System, all oblique injuries that resulted in time out of play in MLB and Minor League Baseball (MiLB) during the 2011 to 2015 seasons were identified. Player demographics such as age, position/role, and handedness were included. Injury-specific factors analyzed included the following: date of injury, timing during season, days missed, mechanism, side, treatment, and reinjury status. Results: A total of 996 oblique injuries occurred in 259 (26%) MLB and 737 (74%) MiLB players. Although the injury rate was steady in MiLB, the MLB injury rate declined (P = .037). A total of 22,064 days were missed at a mean rate of 4413 days per season and 22.2 days per injury. The majority of these occurred during batting (n = 455, 46%) or pitching (n = 348, 35%), with pitchers losing 5 days more per injury than batters (P < .001). The leading side was injured in 77% of cases and took 5 days longer to recover from than trailing side injuries (P = .009). Seventy-nine (7.9%) players received either a corticosteroid or platelet-rich plasma injection, and the mean recovery time was 11 days longer compared with those who did not receive an injection (P < .001). Conclusion: Although the rate of abdominal oblique injuries is on the decline in MLB, this is not the case for MiLB, and these injuries continue to represent a significant source of time out of play in professional baseball. The vast majority of injuries occur on the lead side, and these injuries result in the

  13. Abrupt plate acceleration through oblique rifting: Geodynamic aspects of Gulf of California evolution

    NASA Astrophysics Data System (ADS)

    Brune, S.

    2016-12-01

    The Gulf of California formed by oblique divergence across the Pacific-North America plate boundary. This presentation combines numerical forward modeling and plate tectonic reconstructions in order to address 2 important aspects of rift dynamics: (1) Plate motions during continental rifting are decisively controlled by the non-linear decay of rift strength. This conclusion is based on a recent plate-kinematic analysis of post-Pangea rift systems (Central Atlantic, South Atlantic, Iberia/Newfoundland, Australia/Antarctica, North Atlantic, South China Sea). In all cases, continental rifting starts with a slow phase followed by an abrupt acceleration within a few My introducing a fast rift phase. Numerical forward modeling with force boundary conditions shows that the two-phase velocity behavior and the rapid speed-up during rifting are intrinsic features of continental rupture that can be robustly inferred for different crust and mantle rheologies. (2) Rift strength depends on the obliquity of the rift system: the force required to maintain a given rift velocity can be computed from simple analytical and more realistic numerical models alike, and both modeling approaches demonstrate that less force is required to perpetuate oblique extension. The reason is that plastic yielding requires a smaller plate boundary force when extension is oblique to the rift trend. Comparing strike slip and pure extension end-member scenarios, it can be shown that about 50% less force is required to deform the lithosphere under strike-slip. This result implies that rift systems involving significant obliquity are mechanically preferred. These two aspects shed new light on the underlying geodynamic causes of Gulf of California rift history. Continental extension is thought to have started in Late Eocene/Oligocene times as part of the southern Basin and Range Province and evolved in a protracted history at low extension rate (≤15 mm/yr). However, with a direction change in Baja

  14. Characterization of previously unidentified lunar pyroclastic deposits using Lunar Reconnaissance Orbiter Camera (LROC) data

    USGS Publications Warehouse

    Gustafson, J. Olaf; Bell, James F.; Gaddis, Lisa R.R.; Hawke, B. Ray Ray; Giguere, Thomas A.

    2012-01-01

    We used a Lunar Reconnaissance Orbiter Camera (LROC) global monochrome Wide-angle Camera (WAC) mosaic to conduct a survey of the Moon to search for previously unidentified pyroclastic deposits. Promising locations were examined in detail using LROC multispectral WAC mosaics, high-resolution LROC Narrow Angle Camera (NAC) images, and Clementine multispectral (ultraviolet-visible or UVVIS) data. Out of 47 potential deposits chosen for closer examination, 12 were selected as probable newly identified pyroclastic deposits. Potential pyroclastic deposits were generally found in settings similar to previously identified deposits, including areas within or near mare deposits adjacent to highlands, within floor-fractured craters, and along fissures in mare deposits. However, a significant new finding is the discovery of localized pyroclastic deposits within floor-fractured craters Anderson E and F on the lunar farside, isolated from other known similar deposits. Our search confirms that most major regional and localized low-albedo pyroclastic deposits have been identified on the Moon down to ~100 m/pix resolution, and that additional newly identified deposits are likely to be either isolated small deposits or additional portions of discontinuous, patchy deposits.

  15. 7. OBLIQUE VIEW, HOME SIGNAL, WESTBOUND ON CATENARY BRIDGE 518 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. OBLIQUE VIEW, HOME SIGNAL, WESTBOUND ON CATENARY BRIDGE 518 - New York, New Haven & Hartford Railroad, Automatic Signalization System, Long Island Sound shoreline between Stamford & New Haven, Stamford, Fairfield County, CT

  16. 17. Oblique view of northwest corner of main plant looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Oblique view of northwest corner of main plant looking southeast with railroad tracks in foreground - Skinner Meat Packing Plant, Main Plant, 6006 South Twenty-seventh Street, Omaha, Douglas County, NE

  17. OBLIQUE VIEW OF WEST (FRONT) FACADE, LOOKING EAST/NORTHEAST Eglin ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE VIEW OF WEST (FRONT) FACADE, LOOKING EAST/NORTHEAST - Eglin Air Force Base, Storehouse & Company Administration, Southeast of Flager Road, Nassau Lane, & southern edge of Weekly Bayou, Valparaiso, Okaloosa County, FL

  18. 4. NORTH SIDE, OBLIQUE VIEW, FROM INTERSECTION OF G AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. NORTH SIDE, OBLIQUE VIEW, FROM INTERSECTION OF G AND 5TH STREETS, LOOKING SOUTHEAST. - Oakland Naval Supply Center, Storehouse, Between G & H Streets, & Fifth & Sixth Streets, Oakland, Alameda County, CA

  19. 2. EXTERIOR OBLIQUE VIEW OF BUILDING 746 FROM EAST K ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EXTERIOR OBLIQUE VIEW OF BUILDING 746 FROM EAST K STREET, LOOKING SOUTHEAST. - Oakland Naval Supply Center, Gymnasium-Cafeteria-Theater, East K Street between Eleventh & Twelfth Streets, Oakland, Alameda County, CA

  20. Structural and optical properties of glancing angle deposited In2O3 columnar arrays and Si/In2O3 photodetector

    NASA Astrophysics Data System (ADS)

    Mondal, A.; Shougaijam, B.; Goswami, T.; Dhar, J. C.; Singh, N. K.; Choudhury, S.; Chattopadhay, K. K.

    2014-04-01

    Ordered and perpendicular columnar arrays of In2O3 were synthesized on conducting ITO electrode by a simple glancing angle deposition (GLAD) technique. The as-deposited In2O3 columns were investigated by field emission gun-scanning electron microscope (FEG-SEM). The average length and diameter of the columns were estimated ˜400 nm and ˜100 nm, respectively. The morphology of the structure was examined by transmission electron microscopy (TEM). X-ray diffraction (XRD) analysis shows the polycrystalline nature of the sample which was verified by selective area electron diffraction (SAED) analysis. The growth mechanism and optical properties of the columns were also discussed. Optical absorption shows that In2O3 columns have a high band to band transition at ˜3.75 eV. The ultraviolet and green emissions were obtained from the In2O3 columnar arrays. The P-N junction was formed between In2O3 and P-type Si substrate. The GLAD synthesized In2O3 film exhibits low current conduction compared to In2O3 TF. However, the Si/GLAD-In2O3 detector shows ˜1.5 times enhanced photoresponsivity than that of Si/In2O3 TF.

  1. Rotational Uniqueness Conditions under Oblique Factor Correlation Metric

    ERIC Educational Resources Information Center

    Peeters, Carel F. W.

    2012-01-01

    In an addendum to his seminal 1969 article Joreskog stated two sets of conditions for rotational identification of the oblique factor solution under utilization of fixed zero elements in the factor loadings matrix (Joreskog in "Advances in factor analysis and structural equation models," pp. 40-43, 1979). These condition sets, formulated under…

  2. Linear and nonlinear interactions of an electron beam with oblique whistler and electrostatic waves in the magnetosphere

    NASA Astrophysics Data System (ADS)

    Zhang, Y. L.; Matsumoto, H.; Omura, Y.

    1993-12-01

    Both linear and nonlinear interactions between oblique whistler, electrostatic, quasi-upper hybrid mode waves and an electron beam are studied by linear analyses and electromagnetic particle simulations. In addition to a background cold plasma, we assumed a hot electron beam drifting along a static magnetic field. Growth rates of the oblique whistler, oblique electrostatic, and quasi-upper hybrid instabilities were first calculated. We found that there are four kinds of unstable mode waves for parallel and oblique propagations. They are the electromagnetic whistler mode wave (WW1), the electrostatic whistler mode wave (WW2), the electrostatic mode wave (ESW), and the quasi-upper hybrid mode wave (UHW). A possible mechanism is proposed to explain the satellite observations of whistler mode chorus and accompanied electrostatic waves, whose amplitudes are sometimes modulated at the chorus frequency.

  3. Obliquity (41kyr) Paced SE Asian Monsoon Variability Following the Miocene Climate Transition

    NASA Astrophysics Data System (ADS)

    Heitmann, E. O.; Breecker, D.; Ji, S.; Nie, J.

    2016-12-01

    We investigated Asian monsoon variability during the Miocene, which may provide a good analog for the future given the lack of northern hemisphere ice sheets. In the Miocene Yanwan Section (Tianshui Basin, China) 25cm thick CaCO3-cemented horizons overprint siltstones every 1m. We suggest this rhythmic layering records variations in water availability influenced by the Asian monsoon. We interpret the siltstones as stacked soils that formed in a seasonal climate with a fluctuating water table, evidenced by roots, clay films, mottling, presence of CaCO3 nodules, and stacked carbonate nodule δ13C and δ18O profiles that mimic modern soils. We interpret the CaCO3-cemented horizons as capillary-fringe carbonates that formed in an arid climate with a steady water table and high potential evapotranspiration (PET), evidenced by sharp upper and basal contacts, micrite, sparite, and root-pore cements. The magnetostratigraphy-based age model indicates obliquity-pacing of the CaCO3-cemented horizons suggesting an orbital control on water availability, for which we propose two mechanisms: 1) summer monsoon strength, moderated by the control of obliquity on the cross-equatorial pressure gradient, and 2) PET, moderated by the control of precession on 35oN summer insolation. We use orbital configurations to predict lithology. Coincidence of obliquity minima and insolation maxima drives strong summer monsoons, seasonal variations in water table depth and soil formation. Coincidence of obliquity maxima and insolation minima drives weak summer monsoons, high PET, and carbonate accumulation above a deepened, stable water table. Coincidence of obliquity and insolation minima drives strong monsoons, low PET, and a high water table, explaining the evidence for aquatic plants previously observed in this section. Southern hemisphere control of summer monsoon variability in the Miocene may thus have resulted in large water availability variations in central China.

  4. Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering

    NASA Technical Reports Server (NTRS)

    Gamayunov, K. V.; Khazanov, G. V.

    2006-01-01

    The flux level of outer-zone relativistic electrons (above 1 MeV) is extremely variable during geomagnetic storms, and controlled by a competition between acceleration and loss. Precipitation of these electrons due to resonant pitch-angle scattering by electromagnetic ion cyclotron (EMIC) waves is considered one of the major loss mechanisms. This mechanism was suggested in early theoretical studies more than three decades ago. However, direct experimental evidence of the wave role in relativistic electrons precipitation is difficult to obtain because of lack of concurrent measurements of precipitating electrons at low altitudes and the waves in a magnetically conjugate equatorial region. Recently, the data from balloon-borne X-ray instruments provided indirect but strong evidence on an efficiency of the EMIC wave induced loss for the outer-zone relativistic electrons. These observations stimulated theoretical studies that, particularly, demonstrated that EMIC wave induced pitch-angle diffusion of MeV electrons can operate in the strong diffusion limit and this mechanism can compete with relativistic electron depletion caused by the Dst effect during the initial and main phases of storm. Although an effectiveness of relativistic electron scattering by EMIC waves depends strongly on the wave spectral properties, the most favorable assumptions regarding wave characteristics has been made in all previous theoretical studies. Particularly, only quasi field-aligned EMIC waves have been considered as a driver for relativistic electron loss. At the same time, there is growing experimental and theoretical evidence that these waves can be highly oblique; EMIC wave energy can occupy not only the region of generation, i.e. the region of small wave normal angles, but also the entire wave normal angle region, and even only the region near 90 degrees. The latter can dramatically change he effectiveness of relativistic electron scattering by EMIC waves. In the present study, we

  5. Special type culvert headwall, Culvert No. 124 Outlet, oblique view, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Special type culvert headwall, Culvert No. 124 Outlet, oblique view, view to southwest - Route No. 1-Overton-Lake Mead Road, Culverts and Headwalls, 6 miles south of Overton, Overton, Clark County, NV

  6. Special type culvert headwall, Culvert No. 109 Outlet, oblique view, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Special type culvert headwall, Culvert No. 109 Outlet, oblique view, view to southeast - Route No. 1-Overton-Lake Mead Road, Culverts and Headwalls, 6 miles south of Overton, Overton, Clark County, NV

  7. Straight type culvert headwall, Culvert No. 105 Inlet, oblique view, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Straight type culvert headwall, Culvert No. 105 Inlet, oblique view, view to northeast - Route No. 1-Overton-Lake Mead Road, Culverts and Headwalls, 6 miles south of Overton, Overton, Clark County, NV

  8. BLDG 58, OBLIQUE VIEW FROM NW SHOWING NORTH ENTRY, WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BLDG 58, OBLIQUE VIEW FROM NW SHOWING NORTH ENTRY, WEST SIDE AND SURROUNDING BERM. - Naval Magazine Lualualei, West Loch Branch, Auto Hobby Shop, South of First Street, Pearl City, Honolulu County, HI

  9. 1. OBLIQUE VIEW OF BUNKER LOOKING NORTHWEST. GERMAN VILLAGE IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. OBLIQUE VIEW OF BUNKER LOOKING NORTHWEST. GERMAN VILLAGE IN BACKGROUND. - Dugway Proving Ground, German-Japanese Village, Observation Bunker, South of Stark Road, in WWII Incendiary Test Area, Dugway, Tooele County, UT

  10. 1. General oblique view of north and east sides, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. General oblique view of north and east sides, view to southwest, showing main loading docks - Fort Hood, World War II Temporary Buildings, Cold Storage Building, Seventeenth Street, Killeen, Bell County, TX

  11. OBLIQUE VIEW OF WEST (FRONT) AND NORTH FACADES, LOOKING SOUTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE VIEW OF WEST (FRONT) AND NORTH FACADES, LOOKING SOUTHEAST - Eglin Air Force Base, Storehouse & Company Administration, Southeast of Flager Road, Nassau Lane, & southern edge of Weekly Bayou, Valparaiso, Okaloosa County, FL

  12. 3. OBLIQUE DETAIL VIEW OF DOOR AT CHEMICAL STORAGE BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. OBLIQUE DETAIL VIEW OF DOOR AT CHEMICAL STORAGE BUILDING (#1776), LOOKING NORTHWEST - Presidio Water Treatment Plant, Chemical Storage, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA

  13. 2. Building J oblique, showing south and east elevations from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Building J oblique, showing south and east elevations from Lena Street. View looking northwest. - Daniel F. Waters Germantown Dye Works, Building J, 37-55 East Wister Street, Philadelphia, Philadelphia County, PA

  14. 12. OBLIQUE VIEW OF NORTH WORK ROOM IN FILTRATION PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. OBLIQUE VIEW OF NORTH WORK ROOM IN FILTRATION PLANT (#1773), LOOKING NORTHWEST - Presidio Water Treatment Plant, Filtration Plant, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA

  15. 3. OBLIQUE VIEW LOOKING NORTHWEST SHOWING GARAGE EXTENSION WITH DOORS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. OBLIQUE VIEW LOOKING NORTHWEST SHOWING GARAGE EXTENSION WITH DOORS. VIEW FROM BUILDING 15. - Chollas Heights Naval Radio Transmitting Facility, Public Works Shop, 6410 Zero Road, San Diego, San Diego County, CA

  16. Design of Human – Machine Interface and Altering of Pelvic Obliquity with RGR Trainer

    PubMed Central

    Pietrusinski, Maciej; Unluhisarcikli, Ozer; Mavroidis, Constantinos; Cajigas, Iahn; Bonato, Paolo

    2012-01-01

    The Robotic Gait Rehabilitation (RGR) Trainer targets secondary gait deviations in stroke survivors undergoing rehabilitation. Using an impedance control strategy and a linear electromagnetic actuator, the device generates a force field to control pelvic obliquity through a Human-Machine Interface (i.e. a lower body exoskeleton). Herein we describe the design of the RGR Trainer Human-Machine Interface (HMI) and we demonstrate the system’s ability to alter the pattern of movement of the pelvis during gait in a healthy subject. Results are shown for experiments during which we induced hip-hiking – in healthy subjects. Our findings indicate that the RGR Trainer has the ability of affecting pelvic obliquity during gait. Furthermore, we provide preliminary evidence of short-term retention of the modified pelvic obliquity pattern induced by the RGR Trainer. PMID:22275693

  17. Retroperitoneal oblique corridor to the L2-S1 intervertebral discs: an MRI study.

    PubMed

    Molinares, Diana M; Davis, Timothy T; Fung, Daniel A

    2015-10-09

    OBJECT The purpose of this study was to analyze MR images of the lumbar spine and document: 1) the oblique corridor at each lumbar disc level between the psoas muscle and the great vessels, and 2) oblique access to the L5-S1 disc space. Access to the lumbar spine without disruption of the psoas muscle could translate into decreased frequency of postoperative neurological complications observed after a transpsoas approach. The authors investigated the retroperitoneal oblique corridor of L2-S1 as a means of surgical access to the intervertebral discs. This oblique approach avoids the psoas muscle and is a safe and potentially superior alternative to the lateral transpsoas approach used by many surgeons. METHODS One hundred thirty-three MRI studies performed between May 4, 2012, and February 27, 2013, were randomly selected from the authors' database. Thirty-three MR images were excluded due to technical issues or altered lumbar anatomy due to previous spine surgery. The oblique corridor was defined as the distance between the left lateral border of the aorta (or iliac artery) and the anterior medial border of the psoas. The L5-S1 oblique corridor was defined transversely from the midsagittal line of the inferior endplate of L-5 to the medial border of the left common iliac vessel (axial view) and vertically to the first vascular structure that crossed midline (sagittal view). RESULTS The oblique corridor measurements to the L2-5 discs have the following mean distances: L2-3 = 16.04 mm, L3-4 = 14.21 mm, and L4-5 = 10.28 mm. The L5-S1 corridor mean distance was 10 mm between midline and left common iliac vessel, and 10.13 mm from the first midline vessel to the inferior endplate of L-5. The bifurcation of the aorta and confluence of the vena cava were also analyzed in this study. The aortic bifurcation was found at the L-3 vertebral body in 2% of the MR images, at the L3-4 disc in 5%, at the L-4 vertebral body in 43%, at the L4-5 disc in 11%, and at the L-5 vertebral

  18. Evaluation of Chest Injury Mechanisms in Nearside Oblique Frontal Impacts

    PubMed Central

    Iraeus, Johan; Lindquist, Mats; Wistrand, Sofie; Sibgård, Elin; Pipkorn, Bengt

    2013-01-01

    Despite the use of seat belts and modern safety systems, many automobile occupants are still seriously injured or killed in car crashes. Common configurations in these crashes are oblique and small overlap frontal impacts that often lead to chest injuries. To evaluate the injury mechanism in these oblique impacts, an investigation was carried out using mathematical human body model simulations. A model of a simplified vehicle interior was developed and validated by means of mechanical sled tests with the Hybrid III dummy. The interior model was then combined with the human body model THUMS and validated by means of mechanical PMHS sled tests. Occupant kinematics as well as rib fracture patterns were predicted with reasonable accuracy. The final model was updated to conform to modern cars and a simulation matrix was run. In this matrix the boundary conditions, ΔV and PDOF, were varied and rib fracture risk as a function of the boundary conditions was evaluated using a statistical framework. In oblique frontal impacts, two injury producing mechanisms were found; (i) diagonal belt load and (ii) side structure impact. The second injury mechanism was found for PDOFs of 25°–35°, depending on ΔV. This means that for larger PDOFs, less ΔV is needed to cause a serious chest injury. PMID:24406957

  19. Calculation Of Correction Angles Of 3-Dimensional Vertebral Rotations Based On Bi-Plane X-Ray Photogrammetry

    NASA Astrophysics Data System (ADS)

    Tamaki, Tamotsu; Umezaki, Eisaku; Yamagata, Masatsune; Inoue, Shun-ichi

    1984-10-01

    For the therapy of diseases of spinal deformity such as scoliosis, the data of 3-dimensional and correct spinal configuration are needed. Authors developed the system of spinal configuration analysis using bi-plane X-ray photogrammetry which is strong aid for this subject. The idea of correction angle of rotation of vertebra is introduced for this system. Calculated result under this idea has the clinical meaning because the correction angle is the angle which should be corrected on the treatment such as operation or wearing the equipment. Method of 30° oblique projection which gives the apparent X-ray image and eases the measurement of the anatomically characteristic points is presented. The anatomically characteristic bony points whose images should be measured on a- or b-film are of four points. These are centers of upper and lower end plates of each vertebra the center is calculated from two points which are most distant each other on the contour of vertebral end plate ), the lower end points of root of right and left pedicles. Some clinical applications and the effectiveness of this system are presented.

  20. Exhumation History of an Oblique Plate Boundary: Investigating Kaikoura Mountain-building within the Marlborough Fault System, NE South Island New Zealand

    NASA Astrophysics Data System (ADS)

    Collett, C.; Duvall, A. R.; Flowers, R. M.; Tucker, G. E.

    2015-12-01

    The Kaikoura Mountains stand high as topographic anomalies in the oblique Pacific-Australian plate boundary zone known as the Marlborough Fault System (MFS), NE South Island New Zealand. The base of both the Inland and Seaward Kaikoura Ranges are bound on the SE by major, steeply NW-dipping, right lateral, active strike-slips (Clarence and Hope faults of the MFS, respectively). Previous geologic mapping, observations of predominantly horizontal fault slip at the surface from GPS and offset Quaternary deposits, and uplift of marine terraces, provide evidence for shortening and mountain-building via distributed deformation off of the main MFS strike-slip faults. However, quantitative estimates of the magnitude and spatial patterns of exhumation and of the timing of mountain-building in the Kaikouras are needed to understand more fully the nature of oblique deformation in the MFS. We present new apatite and zircon (U-Th)/He ages from opposite sides of the Hope and Clarence faults, spanning over 2 km of relief within the Kaikoura Mountains to identify spatial and temporal changes in exhumation rates in relation to the adjacent faults. Young (~3 Ma) apatite He ages and rapid (potentially > 1 mm/yr) exhumation rates from opposite sides of the faults are consistent with previously mentioned evidence of recent, regional, distributed deformation off of the main MFS faults. Moreover, early Miocene zircon He ages imply that parts of this region experienced an earlier phase of fault-related exhumation. Large changes in zircon He ages across the faults from ~20 Ma to > 100 Ma support hypotheses that portions of the Marlborough Faults may be re-activated, early Miocene thrusts. The zircon data are also consistent with the hypothesis of an early Miocene initiation of the oblique Pacific-Australian plate boundary in this region. Evidence for this comes from a change in sedimentation during this time from fine marine sediments to coarse, terrigenous conglomerates. Observing more