Science.gov

Sample records for oblique hypervelocity impact

  1. An investigation of oblique hypervelocity impact

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.

    1987-01-01

    This report describes the results of an investigation of phenomena associated with the oblique hypervelocity impact of spherical projectiles on multi-sheet aluminum structures. A model to be employed in the design of meteoroid and space debris protection systems for space structures is developed. The model consists of equations relating crater and perforation damage of a multi-sheet structure to parameters such as projectile size, impact velocity, and trajectory obliquity. The equations are obtained through a regression analysis of oblique hypervelocity impact test data. This data shows that the response of a multi-sheet structure to oblique impact is significantly different from its response to normal hypervelocity impact. It was found that obliquely incident projectiles produce ricochet debris that can severely damage panels or instrumentation located on the exterior of a space structure. Obliquity effects of high-speed impact must, therefore, be considered in the design of any structure exposed to the hazardous meteoroid and space debris environment.

  2. Analysis of oblique hypervelocity impact phenomena

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Taylor, Roy A.

    1988-01-01

    This paper describes the results of an experimental investigation of phenomena associated with the oblique hypervelocity impact of spherical projectiles on multisheet aluminum structures. A model that can be employed in the design of meteoroid and space debris protection systems for space structures is developed. The model consists of equations that relate crater and perforation damage of a multisheet structure to parameters such as projectile size, impact velocity, and trajectory obliquity. The equations are obtained through a regression analysis of oblique hypervelocity impact test data. This data shows that the response of a multisheet structure to oblique impact is significantly different from its response to normal hypervelocity impact. It was found that obliquely incident projectiles produce ricochet debris that can severely damage panels or instrumentation located on the exterior of a space structure. Obliquity effects of high-speed impact must, therefore, be considered in the design of any structure exposed to a meteoroid or space debris environement.

  3. Penetration and ricochet phenomena in oblique hypervelocity impact

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Taylor, Roy A.

    1989-01-01

    An experimental investigation of phenomena associated with the oblique hypervelocity impact of spherical projectile on multisheet aluminum structures is described. A model that can be employed in the design of meteoroid and space debris protection systems for space structures is developed. The model consists of equations that relate crater and perforation damage of a multisheet structure to parameters such as projectile size, impact velocity, and trajectory obliquity. The equations are obtained through a regression analysis of oblique hypervelocity impact test data. This data shows that the response of a multisheet structure to oblique impact is significantly different from its response to normal hypervelocity impact. It was found that obliquely incident projectiles produce ricochet debris that can severely damage panels or instrumentation located on the exterior of a space structure. Obliquity effects of high-speed impact must, therefore, be considered in the design of any structure exposed to the meteoroid and space debris environment.

  4. Design of orbital debris shields for oblique hypervelocity impact

    NASA Technical Reports Server (NTRS)

    Fahrenthold, Eric P.

    1994-01-01

    A new impact debris propagation code was written to link CTH simulations of space debris shield perforation to the Lagrangian finite element code DYNA3D, for space structure wall impact simulations. This software (DC3D) simulates debris cloud evolution using a nonlinear elastic-plastic deformable particle dynamics model, and renders computationally tractable the supercomputer simulation of oblique impacts on Whipple shield protected structures. Comparison of three dimensional, oblique impact simulations with experimental data shows good agreement over a range of velocities of interest in the design of orbital debris shielding. Source code developed during this research is provided on the enclosed floppy disk. An abstract based on the work described was submitted to the 1994 Hypervelocity Impact Symposium.

  5. Design of orbital debris shields for oblique hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Fahrenthold, Eric P.

    1994-02-01

    A new impact debris propagation code was written to link CTH simulations of space debris shield perforation to the Lagrangian finite element code DYNA3D, for space structure wall impact simulations. This software (DC3D) simulates debris cloud evolution using a nonlinear elastic-plastic deformable particle dynamics model, and renders computationally tractable the supercomputer simulation of oblique impacts on Whipple shield protected structures. Comparison of three dimensional, oblique impact simulations with experimental data shows good agreement over a range of velocities of interest in the design of orbital debris shielding. Source code developed during this research is provided on the enclosed floppy disk. An abstract based on the work described was submitted to the 1994 Hypervelocity Impact Symposium.

  6. Using Hydrocode Modelling to Track Ejecta from Oblique Hypervelocity Impacts onto Glass

    NASA Astrophysics Data System (ADS)

    Price, M. C.; Burchell, M.

    2012-03-01

    Hydrocode modelling has been implemented to track the ejecta from hypervelocity impacts of oblique impactors onto glass. This supports the ongoing Stardust ISPE as a method to aid discrimination between spacecraft secondary impacts and IDP/ISPs.

  7. An analysis of penetration and ricochet phenomena in oblique hypervelocity impact

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Taylor, Roy A.; Horn, Jennifer R.

    1988-01-01

    An experimental investigation of phenomena associated with the oblique hypervelocity impact of spherical projectiles on multisheet aluminum structures is described. A model that can be employed in the design of meteoroid and space debris protection systems for space structures is developed. The model consists of equations that relate crater and perforation damage of a multisheet structure to parameters such as projectile size, impact velocity, and trajectory obliquity. The equations are obtained through a regression analysis of oblique hypervelocity impact test data. This data shows that the response of a multisheet structure to oblique impact is significantly different from its response to normal hypervelocity impact. It was found that obliquely incident projectiles produce ricochet debris that can severely damage panels or instrumentation located on the exterior of a space structure. Obliquity effects of high-speed impact must, therefore, be considered in the design of any structure exposed to the meteoroid and space debris environment.

  8. Oblique hypervelocity impact response of dual-sheet structures

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Taylor, Roy A.

    1989-01-01

    The results of a continuing investigation of the phenomena associated with the oblique hypervelocity impact of spherical projectiles onto multi-sheet aluminum structures are given. A series of equations that quantitatively describes these phenomena is obtained through a regression of experimental data. These equations characterize observed ricochet and penetration damage phenomena in a multi-sheet structure as functions of geometric parameters of the structure and the diameter, obliquity, and velocity of the impacting projectile. Crater damage observed on the ricochet witness plates is used to determine the sizes and speeds of the ricochet debris particles that caused the damage. It is observed that the diameter of the most damaging ricochet debris particle can be as large as 40 percent of the original particle diameter and can travel at speeds between 24 percent and 36 percent of the original projectile impact velocity. The equations necessary for the design of shielding panels that will protect external systems from such ricochet debris damage are also developed. The dimensions of these shielding panels are shown to be strongly dependent on their inclination and on their circumferential distribution around the spacecraft.

  9. A fresh look at crater scaling laws for normal and oblique hypervelocity impacts

    NASA Technical Reports Server (NTRS)

    Watts, A. J.; Atkinson, D. R.; Rieco, S. R.; Brandvold, J. B.; Lapin, S. L.; Coombs, C. R.

    1993-01-01

    With the concomitant increase in the amount of man-made debris and an ever increasing use of space satellites, the issue of accidental collisions with particles becomes more severe. While the natural micrometeoroid population is unavoidable and assumed constant, continued launches increase the debris population at a steady rate. Debris currently includes items ranging in size from microns to meters which originated from spent satellites and rocket cases. To understand and model these environments, impact damage in the form of craters and perforations must be analyzed. Returned spacecraft materials such as those from LDEF and Solar Max have provided such a testbed. From these space-aged samples various impact parameters (i.e., particle size, particle and target material, particle shape, relative impact speed, etc.) may be determined. These types of analyses require the use of generic analytic scaling laws which can adequately describe the impact effects. Currently, most existing analytic scaling laws are little more than curve-fits to limited data and are not based on physics, and thus are not generically applicable over a wide range of impact parameters. During this study, a series of physics-based scaling laws for normal and oblique crater and perforation formation has been generated into two types of materials: aluminum and Teflon.

  10. Hypervelocity impact physics

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Bean, Alan J.; Darzi, Kent

    1991-01-01

    All large spacecraft are susceptible to impacts by meteoroids and orbiting space debris. These impacts occur at extremely high speed and can damage flight-critical systems, which can in turn lead to a catastrophic failure of the spacecraft. Therefore, the design of a spacecraft for a long-duration mission must take into account the possibility of such impacts and their effects on the spacecraft structure and on all of its exposed subsystems components. The work performed under the contract consisted of applied research on the effects of meteoroid/space debris impacts on candidate materials, design configurations, and support mechanisms of long term space vehicles. Hypervelocity impact mechanics was used to analyze the damage that occurs when a space vehicle is impacted by a micrometeoroid or a space debris particle. An impact analysis of over 500 test specimens was performed to generate by a hypervelocity impact damage database.

  11. Hypervelocity impact phenomena

    NASA Astrophysics Data System (ADS)

    Chhabildas, L. C.

    There is a need to determine the equations of state of materials in regimes of extreme high pressures, temperatures, and strain rates that are not attainable on current two-stage light-gas guns. Understanding high-pressure material behavior is crucial to address the physical processes associated with a variety of hypervelocity impact events related to space sciences: orbital-debris impact, debris-shield designs, high-speed plasma propagation, and impact lethality applications. At very high impact velocities material properties will be dominated by phase-changes, such as melting or vaporization, which cannot be achieved at lower impact velocities. Development of well-controlled and repeatable hypervelocity launch capabilities is the first step necessary to improve our understanding of material behavior at extreme pressures and temperatures not currently available using conventional two-stage light-gas gun techniques. Techniques that have been used to extend both the launch capabilities of a two-stage light-gas gun to 16 km/s, and their use to determine the material properties at pressures and temperature states higher than those ever obtained in the laboratory, are summarized. The newly developed hypervelocity launcher (HVL) can launch intact (macroscopic dimensions) plates to 16 km/s. Time-resolved interferometric techniques have been used to determine shock-loading/release characteristics of materials impacted by such fliers as well as shock-induced vaporization phenomena in fully vaporized states. High-speed photography or radiography has been used to evaluate the debris propagation characteristics resulting from disc impact of thin bumper sheets at hypervelocities in excess of 10 km/s using the HVL. Examples of these experiments are provided.

  12. Hypervelocity impact phenomena

    SciTech Connect

    Chhabildas, L.C.

    1995-07-01

    There is a need to determine the equations of state of materials in regimes of extreme high pressures, temperatures and strain rates that are not attainable on current two-stage light-gas guns. Understanding high-pressure material behavior is crucial to address the physical processes associated with a variety of hypervelocity impact events related to space sciences-orbital-debris impact, debris-shield designs, high-speed plasma propagation, and impact lethality applications. At very high impact velocities material properties will be dominated by phase-changes, such as melting or vaporization, which cannot be achieved at lower impact velocities. Development of well-controlled and repeatable hypervelocity launch capabilities is the first step necessary to improve our understanding of material behavior at extreme pressures and temperatures not currently available using conventional two-stage light-gas gun techniques. In this paper, techniques that have been used to extend both the launch capabilities of a two-stage light gas gun to 16 km/s, and their use to determine the material properties at pressures and temperature states higher than those ever obtained in the laboratory are summarized. The newly developed hypervelocity launcher (HVL) can launch intact (macroscopic dimensions) plates to 16 km/s. Time-resolved interferometric techniques have been used to determine shock-loading/release characteristics of materials impacted by such fliers as well as shock-induced vaporization phenomena in fully vaporized states. High-speed photography or radiography has been used to evaluate the debris propagation characteristics resulting from disc impact of thin bumper sheets at hypervelocities in excess of 10 km/s using the HVL. Examples of these experiments are provided in this paper.

  13. Shuttle Hypervelocity Impact Database

    NASA Technical Reports Server (NTRS)

    Hyde, James I.; Christiansen, Eric I.; Lear, Dana M.

    2011-01-01

    With three flights remaining on the manifest, the shuttle impact hypervelocity database has over 2800 entries. The data is currently divided into tables for crew module windows, payload bay door radiators and thermal protection system regions, with window impacts compromising just over half the records. In general, the database provides dimensions of hypervelocity impact damage, a component level location (i.e., window number or radiator panel number) and the orbiter mission when the impact occurred. Additional detail on the type of particle that produced the damage site is provided when sampling data and definitive analysis results are available. The paper will provide details and insights on the contents of the database including examples of descriptive statistics using the impact data. A discussion of post flight impact damage inspection and sampling techniques that were employed during the different observation campaigns will be presented. Future work to be discussed will be possible enhancements to the database structure and availability of the data for other researchers. A related database of ISS returned surfaces that are under development will also be introduced.

  14. Shuttle Hypervelocity Impact Database

    NASA Technical Reports Server (NTRS)

    Hyde, James L.; Christiansen, Eric L.; Lear, Dana M.

    2011-01-01

    With three missions outstanding, the Shuttle Hypervelocity Impact Database has nearly 3000 entries. The data is divided into tables for crew module windows, payload bay door radiators and thermal protection system regions, with window impacts compromising just over half the records. In general, the database provides dimensions of hypervelocity impact damage, a component level location (i.e., window number or radiator panel number) and the orbiter mission when the impact occurred. Additional detail on the type of particle that produced the damage site is provided when sampling data and definitive analysis results are available. Details and insights on the contents of the database including examples of descriptive statistics will be provided. Post flight impact damage inspection and sampling techniques that were employed during the different observation campaigns will also be discussed. Potential enhancements to the database structure and availability of the data for other researchers will be addressed in the Future Work section. A related database of returned surfaces from the International Space Station will also be introduced.

  15. Hypervelocity impact shield

    NASA Technical Reports Server (NTRS)

    Cour-Palais, Burton G. (Inventor); Crews, Jeanne Lee (Inventor)

    1991-01-01

    A hypervelocity impact shield and method for protecting a wall structure, such as a spacecraft wall, from impact with particles of debris having densities of about 2.7 g/cu cm and impact velocities up to 16 km/s are disclosed. The shield comprises a stack of ultra thin sheets of impactor disrupting material supported and arranged by support means in spaced relationship to one another and mounted to cover the wall in a position for intercepting the particles. The sheets are of a number and spacing such that the impacting particle and the resulting particulates of the impacting particle and sheet material are successively impact-shocked to a thermal state of total melt and/or vaporization to a degree as precludes perforation of the wall. The ratio of individual sheet thickness to the theoretical diameter of particles of debris which may be of spherical form is in the range of 0.03 to 0.05. The spacing between adjacent sheets is such that the debris cloud plume of liquid and vapor resulting from an impacting particle penetrating a sheet does not puncture the next adjacent sheet prior to the arrival thereat of fragment particulates of sheet material and the debris particle produced by a previous impact.

  16. Hypervelocity impact testing of tethers

    NASA Technical Reports Server (NTRS)

    Woodis, William R.; Tallentire, Francis I.

    1988-01-01

    An experimental test program has been conducted to ascertain the strength losses to which representative space tether materials may be prone upon impact by hypervelocity particles of known size, density, and velocity, when the tether is under tensile loading typical of flight design loads. Twelve hypervelocity impacts were followed by tensile tests to failure to determine residual strength; relationships are established between particle velocity and strength loss due to impact damage, as well as between tether strength loss and the relationship between particle and tether diameters. Tentative design criteria are formulated in terms of a design factor allowing for strength degradation by impact.

  17. Alloys formation upon hypervelocity impacts

    NASA Astrophysics Data System (ADS)

    Mandeville, J. C.; Perrin, J. M.; Vidal, L.; Vidal, A.

    Satellite materials exposed to the space environment are indeed valuable detectors for cosmic and man-made solid particles Many investigations have been made to deduce the geometric size shape and dynamic incidence angle parameters of these projectiles from the morphology of the impact features Furthermore the chemical analysis of remnants when they are found inside craters can provide valuable information about the nature and the origin of these particles However interpretation difficulties have made necessary laboratory hypervelocity impact tests A number of impacts with well defined angles of incidence and velocities using calibrated projectiles have been performed on various targets Alloys obviously formed from projectile and targets components are found We have studied the links between the morphologies the physical and chemical properties of these alloys and those of the incident particles and the targets When projectiles and targets are made of pure materials such as in laboratory tests we have found a clear connection between the composition of the alloys and the kinetic energy of the projectiles Explanations using phase diagrams are given An extrapolation to complex materials such as those used in solar arrays is presented Further modelling of the alloys formation upon hypervelocity impacts is proposed

  18. Hypervelocity impact simulations of Whipple shields

    NASA Technical Reports Server (NTRS)

    Segletes, Steven B.; Zukas, Jonas A.

    1992-01-01

    The problem associated with protecting space vehicles from space debris impact is described. Numerical simulation is espoused as a useful complement to experimentation: as a means to help understand and describe the hypervelocity impact phenomena. The capabilities of a PC-based hydrocode, ZeuS, are described, for application to the problem of hypervelocity impact. Finally, results of ZeuS simulations, as applied to the problem of bumper shield impact, are presented and compared with experimental results.

  19. Hypervelocity impact on shielded plates

    NASA Technical Reports Server (NTRS)

    Smith, James P.

    1993-01-01

    A ballistic limit equation for hypervelocity impact on thin plates is derived analytically. This equation applies to cases of impulsive impact on a plate that is protected by a multi-shock shield, and it is valid in the range of velocity above 6 km/s. Experimental tests were conducted at the NASA Johnson Space Center on square aluminum plates. Comparing the center deflections of these plates with the theoretical deflections of a rigid-plastic plate subjected to a blast load, one determines the dynamic yield strength of the plate material. The analysis is based on a theory for the expansion of the fragmented projectile and on a simple failure criterion. Curves are presented for the critical projectile radius versus the projectile velocity, and for the critical plate thickness versus the velocity. These curves are in good agreement with curves that have been generated empirically.

  20. Hypervelocity Impact (HVI). Volume 1; General Introduction

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. This volume contains an executive summary, overview of the method, brief descriptions of all targets, and highlights of results and conclusions.

  1. Hypervelocity impact technology and applications: 2007.

    SciTech Connect

    Reinhart, William Dodd; Chhabildas, Lalit C.

    2008-07-01

    The Hypervelocity Impact Society is devoted to the advancement of the science and technology of hypervelocity impact and related technical areas required to facilitate and understand hypervelocity impact phenomena. Topics of interest include experimental methods, theoretical techniques, analytical studies, phenomenological studies, dynamic material response as related to material properties (e.g., equation of state), penetration mechanics, and dynamic failure of materials, planetary physics and other related phenomena. The objectives of the Society are to foster the development and exchange of technical information in the discipline of hypervelocity impact phenomena, promote technical excellence, encourage peer review publications, and hold technical symposia on a regular basis. It was sometime in 1985, partly in response to the Strategic Defense Initiative (SDI), that a small group of visionaries decided that a conference or symposium on hypervelocity science would be useful and began the necessary planning. A major objective of the first Symposium was to bring the scientists and researchers up to date by reviewing the essential developments of hypervelocity science and technology between 1955 and 1985. This Symposia--HVIS 2007 is the tenth Symposium since that beginning. The papers presented at all the HVIS are peer reviewed and published as a special volume of the archival journal International Journal of Impact Engineering. HVIS 2007 followed the same high standards and its proceedings will add to this body of work.

  2. Hypervelocity impact damage in alumina

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng

    2007-12-01

    Ceramics are important engineering materials for their outstanding hardness. One of the most widely used ceramics is alumina, a candidate for armor in defense and aerospace industry. Deformation and fracture mechanisms in alpha-alumina under hypervelocity impact up to 18km/s are investigated using molecular dynamics (MD) simulations containing 540-million atoms. Impacting projectile causes melting and local amorphization of the substrate in a spherical surrounding region. Away from the impact face, a wide range of deformations emerge and disappear under the influence of local stress fields, e.g., basal and pyramidal slips, basal and rhombohedral twins, which show good agreement with the experimental and theoretical results. Furthermore, new deformation modes such as twin along {01¯11} are observed, and the relation between deformation patterns and local stress levels are probed. During unloading, micro-cracks nucleate extensively at the intersections of previous deformations. These micro-cracks grow and coalesce to form fractures under tensile stresses by the unloading wave. The substrate eventually fails along the surface of an hourglass-shaped region, when spallation ejects clusters of substrate material into the vacuum. We also carried out planar shock simulations of alpha-alumina single crystal and nanophase systems. The results show correlations between the atomistic deformation mechanisms and the elastic-plastic response of ceramic material observed in shock loading experiments.

  3. Hypervelocity impact testing of spacecraft optical sensors

    SciTech Connect

    1995-07-01

    Hypervelocity tests of spacecraft optical sensors were conducted to determine if the optical signature from an impact inside the optical sensor sunshade resembled signals that have been observed on-orbit. Impact tests were conducted in darkness and with the ejected debris illuminated. The tests were conducted at the Johnson Space Center Hypervelocity Impact Test Facility. The projectile masses and velocities that may be obtained at the facility are most representative of the hypervelocity particles thought to be responsible for a group of anomalous optical sensors responses that have been observed on-orbit. The projectiles are a few micrograms, slightly more massive than the microgram particles thought to be responsible for the signal source. The test velocities were typically 7.3 km/s, which are somewhat slower than typical space particles.

  4. Hazards of Hypervelocity Impacts on Spacecraft

    DTIC Science & Technology

    2002-02-01

    ROCKETS Vol. 39, No. 1, January-February 2002 Hazards of Hypervelocity Impacts on Spacecraft Shu T. Lai* and Edmond Muradt U.S. Air Force Research...1-3, 2000, pp. 149- 12Krueger, F. R., "Ion Formation by High- and Medium Velocities Dust 190. Impacts from Laboratory Measurements and Halley

  5. Experimental studies of oblique impact. [of meteorites on planetary surfaces

    NASA Technical Reports Server (NTRS)

    Gault, D. E.; Wedekind, J. A.

    1978-01-01

    Meteoritic materials most probably impact planetary bodies along oblique trajectories inclined less than 45 deg above their surfaces. Laboratory studies of hypervelocity impacts against rock and particulate media are presented that indicate important effects of obliquity on crater size, shape, and ejecta distribution. The effects are particularly important to crater size-frequency analyses and geologic interpretations of crater formations. Impacts at shallow incidence, which are not uncommon, lead to ricochet of the impacting object accompanied with some entrained excavated materials at velocities only slightly reduced from the pre-impact value.

  6. DebriSat Hypervelocity Impact Test

    DTIC Science & Technology

    2015-08-01

    10. SPONSOR/MONITOR’S ACRONYM(S) NASA Orbital Debris Program Office Attn: Dr. J.C. Liou 2101 NASA Parkway Houston, TX 77058 11. SPONSOR...of providing information on the physics of the entire impact event. 15. Subject Terms Orbital debris ; light gas gun; AEDC Range G; hypervelocity...based on the 1992 Satellite Orbital Debris Characterization Impact Test (SOCIT) project in the AEDC Range G facility (Ref. 1). This previous test

  7. Hypervelocity Impact of Explosive Transfer Lines

    NASA Technical Reports Server (NTRS)

    Bjorkman, Michael D.; Christiansen, Eric L.

    2012-01-01

    Hypervelocity impact tests of 2.5 grains per foot flexible confined detonating chord (FCDC) shielded by a 1 mm thick 2024-T3 aluminum alloy bumper standing off 51 mm from the FCDC were performed. Testing showed that a 6 mm diameter 2017-T4 aluminum alloy ball impacting the bumper at 6.97 km/s and 45 degrees impact angle initiated the FCDC. However, impact by the same diameter and speed ball at 0 degrees angle of impact did not initiate the FCDC. Furthermore, impact at 45 degrees and the same speed by a slightly smaller diameter ball (5.8 mm diameter) also did not initiate the FCDC.

  8. Simulating plasma production from hypervelocity impacts

    SciTech Connect

    Fletcher, Alex Close, Sigrid; Mathias, Donovan

    2015-09-15

    Hypervelocity particles, such as meteoroids and space debris, routinely impact spacecraft and are energetic enough to vaporize and ionize themselves and as well as a portion of the target material. The resulting plasma rapidly expands into the surrounding vacuum. While plasma measurements from hypervelocity impacts have been made using ground-based technologies such as light gas guns and Van de Graaff dust accelerators, some of the basic plasma properties vary significantly between experiments. There have been both ground-based and in-situ measurements of radio frequency (RF) emission from hypervelocity impacts, but the physical mechanism responsible and the possible connection to the impact-produced plasma are not well understood. Under certain conditions, the impact-produced plasma can have deleterious effects on spacecraft electronics by providing a new current path, triggering an electrostatic discharge, causing electromagnetic interference, or generating an electromagnetic pulse. Multi-physics simulations of plasma production from hypervelocity impacts are presented. These simulations incorporate elasticity and plasticity of the solid target, phase change and plasma formation, and non-ideal plasma physics due to the high density and low temperature of the plasma. A smoothed particle hydrodynamics method is used to perform a continuum dynamics simulation with these additional physics. By examining a series of hypervelocity impacts, basic properties of the impact produced plasma plume (density, temperature, expansion speed, charge state) are determined for impactor speeds between 10 and 72 km/s. For a large range of higher impact speeds (30–72 km/s), we find the temperature is unvarying at 2.5 eV. We also find that the plasma plume is weakly ionized for impact speeds less than 14 km/s and fully ionized for impact speeds greater than 20 km/s, independent of impactor mass. This is the same velocity threshold for the detection of RF emission in recent

  9. Structural Damage Prediction and Analysis for Hypervelocity Impacts: Handbook

    NASA Technical Reports Server (NTRS)

    Elfer, N. C.

    1996-01-01

    This handbook reviews the analysis of structural damage on spacecraft due to hypervelocity impacts by meteoroid and space debris. These impacts can potentially cause structural damage to a Space Station module wall. This damage ranges from craters, bulges, minor penetrations, and spall to critical damage associated with a large hole, or even rupture. The analysis of damage depends on a variety of assumptions and the area of most concern is at a velocity beyond well controlled laboratory capability. In the analysis of critical damage, one of the key questions is how much momentum can actually be transfered to the pressure vessel wall. When penetration occurs without maximum bulging at high velocity and obliquities (if less momentum is deposited in the rear wall), then large tears and rupture may be avoided. In analysis of rupture effects of cylindrical geometry, biaxial loading, bending of the crack, a central hole strain rate and R-curve effects are discussed.

  10. Hypervelocity Impact Studies on Solar Cell Modules

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.; Best, Stevie R.

    2001-01-01

    Space environmental effects have caused severe problems as satellites move toward increased power and operating voltage levels. The greatest unknown, however, is the effect of high velocity micrometeoroid impacts on high voltage arrays (>200V). Understanding such impact phenomena is necessary for the design of future reliable, high voltage solar arrays, especially for Space Solar Power applications. Therefore, the objective of this work was to study the effect of hypervelocity impacts on high voltage solar arrays. Initially, state of the art, 18% efficient GaAs solar cell strings were targeted. The maximum bias voltage on a two-cell string was -200 V while the adjacent string was held at -140 V relative to the plasma potential. A hollow cathode device provided the plasma. Soda lime glass particles 40-120 micrometers in diameter were accelerated in the Hypervelocity Impact Facility to velocities as high as 11.6 km/sec. Coordinates and velocity were obtained for each of the approximately 40 particle impact sites on each shot. Arcing did occur, and both discharging and recharging of arcs between the two strings was observed. The recharging phenomena appeared to stop at approximately 66V string differential. No arcing was observed at 400 V on concentrator cell modules for the Stretched Lens Array.

  11. Hypervelocity impact survivability experiments for carbonaceous impactors

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.; Becker, Luann; Bada, Jeffrey; Macklin, John; Radicatidibrozolo, Filippo; Fleming, R. H.; Erlichman, Jozef

    1993-01-01

    We performed a series of hypervelocity impact experiments using carbon-bearing impactors (diamond, graphite, fullerenes, phthalic acid crystals, and Murchison meteorite) into Al plate at velocities between 4.2 and 6.1 km/s. These tests were made to do the following: (1) determine the survivability of carbon forms and organize molecules in low hypervelocity impact; (2) characterize carbonaceous impactor residues; and (3) determine whether or not fullerenes could form from carbonaceous impactors, under our experimental conditions, or survive as impactors. An analytical protocol of field emission SEM imagery, SEM-EDX, laser Raman spectroscopy, single and 2-stage laser mass spectrometry, and laser induced fluorescence (LIF) found the following: (1) diamonds did not survive impact at 4.8 km/s, but were transformed into various forms of disordered graphite; (2) intact, well-ordered graphite impactors did survive impact at 5.9 km/sec, but were only found in the crater bottom centers; the degree of impact-induced disorder in the graphite increases outward (walls, rims, ejecta); (3) phthalic acid crystals were destroyed on impact (at 4.2 km/s, although a large proportion of phthalic acid molecules did survive impact); (4) fullerenes did not form as products of carbonaceous impactors (5.9 - 6.1 km/s, fullerene impactor molecules mostly survived impact at 5.9 km/s; and (5) two Murchison meteorite samples (launched at 4.8 and 5.9 km/s) show preservation of some higher mass polycyclic aromatic hydrocarbons (PAHs) compared with the non-impacted sample. Each impactor type shows unique impactor residue morphologies produced at a given impact velocity. An expanded methodology is presented to announce relatively new analytical techniques together with innovative modifications to other methods that can be used to characterize small impact residues in LDEF craters, in addition to other acquired extraterrestrial samples.

  12. Molecular Dynamics Simulations of Hypervelocity Impacts

    NASA Astrophysics Data System (ADS)

    Owens, Eli T.; Bachlechner, Martina E.

    2007-03-01

    Outer space silicon solar cells are exposed to impacts with micro meteors that can destroy the surface leading to device failure. A protective coating of silicon nitride will protect against such failure. Large-scale molecular dynamics simulations are used to study how silicon/silicon nitride fails due to hypervelocity impacts. Three impactors made of silicon nitride are studied. Their cross-sectional areas, relative to the target, are as follows: the same as the target, half of the target, and a quarter of the target. Impactor speeds from 5 to 11 km/second yield several modes of failure, such as deformation of the target by the impactor and delimitation of the silicon nitride from the silicon at the interface. These simulations will give a much clearer picture of how solar cells composed of a silicon/silicon nitride interface will respond to impacts in outer space. This will ultimately lead to improved devices with longer life spans.

  13. The XLLGG — A Hypervelocity Launcher for Impact Cratering Research

    NASA Astrophysics Data System (ADS)

    Lexow, B.; Bückle, A.; Wickert, M.; Hiermaier, S.

    2015-09-01

    Hypervelocity launchers are used to accelerate projectiles that simulate impacting meteoroids or asteroids. The XLLGG (eXtra Large Light Gas Gun) at the EMI (Ernst-Mach-Institute) was used within the MEMIN program.

  14. Ejecta Dynamics during Hypervelocity Impacts into Dry and Wet Sandstone

    NASA Astrophysics Data System (ADS)

    Hoerth, T.; Schäfer, F.; Thoma, K.; Poelchau, M.; Kenkmann, T.; Deutsch, A.

    2011-03-01

    Hypervelocity impact experiments into dry and water saturated porous Seeberger sandstone were conducted at the two-stage light gas accelerator at the Ernst-Mach-Institute (EMI) and the ejecta dynamics were analyzed.

  15. Crater and cavity depth in hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Kadono, T.; Fujiwara, A.

    2003-04-01

    Hypervelocity impact experiments with low-density mediums (e.g., foams) have been so far carried out to develop the instruments for intact capture of interplanetary dust particles. The results show that the impact leads a "cavity", a cylindrical or carrot (spindle) shaped vestige. Its shape depends on the condition of projectiles; when impact velocity is so low that projectiles are intact, the depth increases with impact velocity, while it decreases or is constant with impact velocity when the impact velocity is so high that projectiles are broken (e.g., Kadono, Planet. Space Sci. 47, 305--318, 1999). On the other hand, as described by Summers (NASA TN D-94, 1959), crater shape with high density targets (comparable to projectile density) also changes with impact velocity. At low velocities, the strength of projectile's materials is greater than the dynamic impact pressure and the projectile penetrates the target intact. The crater produced is deep and narrow. With increase in impact velocity, a point is reached at which the impact pressure is sufficient to cause the projectile to fragment into a few large pieces at impact. Then as the impact velocity is increased further, the projectile shatters into numerous small pieces and the penetration actually decreases. Finally a velocity is reached at which the typical fluid impact occurs, the crater formed is nearly hemispherical in shape. It appears that the situation in cavity formation with low density targets is quite similar to that in cratering with high density targets at low impact velocity. This similarity allows us to discuss cavity formation and cratering in a unified view. As described above, the previous experiments clearly suggest that the condition of projectiles plays important roles in both cratering and cavity formation. Hence here, by introducing a parameter that characterizes the condition of projectiles at the instance of impact, cratering processes such as projectile penetration and shock wave

  16. Capacitors Would Help Protect Against Hypervelocity Impacts

    NASA Technical Reports Server (NTRS)

    Edwards, David; Hubbs, Whitney; Hovater, Mary

    2007-01-01

    A proposal investigates alternatives to the present bumper method of protecting spacecraft against impacts of meteoroids and orbital debris. The proposed method is based on a British high-voltage-capacitance technique for protecting armored vehicles against shaped-charge warheads. A shield, according to the proposal, would include a bare metal outer layer separated by a gap from an inner metal layer covered with an electrically insulating material. The metal layers would constitute electrodes of a capacitor. A bias potential would be applied between the metal layers. A particle impinging at hypervelocity on the outer metal layer would break apart into a debris cloud that would penetrate the electrical insulation on the inner metal layer. The cloud would form a path along which electric current could flow between the metal layers, thereby causing the capacitor to discharge. With proper design, the discharge current would be large enough to vaporize the particles in the debris cloud to prevent penetration of the spacecraft. The shield design can be mass optimized to be competitive with existing bumper designs. Parametric studies were proposed to determine optimum correction between bias voltage, impacting particle velocity, gap space, and insulating material required to prevent spacecraft penetration.

  17. Searching for momentum enhancement in hypervelocity impacts

    SciTech Connect

    Stradling, G.L.; Idzorek, G.C.; Keaton, P.W.; Studebaker, J.K. ); Blossom, A.A.H. ); Collopy, M.T.; Curling, H.L. Jr. ); Bergeson, S.D. )

    1990-01-01

    In conjunction with the Los Alamos National Laboratory hypervelocity microparticle impact (HMI) team effort to produce higher impact velocities and to understand the physics of crater formation and momentum transfer, the authors have implemented a low noise microphone as a momentum detector on both the 6 MV Van de Graaff and 85 KV test stand' particle accelerators. Calculations are presented showing that the impulse response of a circular membrane. When used as a momentum impulse detector, the microphone theoretically may detect impulses as small as 8.8 {times} 10{sup {minus}15} N s. Sensitivity of the microphone in this application is limited by the noise threshold of the electronic amplifiers and the ambient microphinic vibration of the system. Calculations lead the authors to anticipate detection of particles over the full range of the Van de Graaff acceleration capability and up to 7 km/s on the test stand. They present momentum enhancement data in the velocity range between 10 km/s and 20 km/s. Preliminary work is presented on momentum impulse calibration of the microphone using laser-pulse photon momentum as an impulse source.

  18. Melt Production in Oblique Impacts

    NASA Astrophysics Data System (ADS)

    Pierazzo, E.; Melosh, H. J.

    2000-05-01

    Hydrocode modeling is a fundamental tool for the study of melt production in planetary impact events. Until recently, however, numerical modeling of impacts for melt production studies has been limited to vertical impacts. We present the first results of the investigation of melt production in oblique impacts. Simulations were carried out using Sandia's three-dimensional hydrocode CTH, coupled to the SESAME equation of state. While keeping other impact parameters constant, the calculations span impact angles (measured from the surface) from 90° (vertical impact) to 15°. The results show that impact angle affects the strength and distribution of the shock wave generated in the impact. As a result, both the isobaric core and the regions of melting in the target appear asymmetric and concentrated in the downrange, shallower portion of the target. The use of a pressure-decay power law (which describes pressure as function of linear distance from the impact point) to reconstruct the region of melting and vaporization is therefore complicated by the asymmetry of the shock wave. As an analog to the pressure decay versus distance from the impact point, we used a "volumetric pressure decay," where the pressure decay is modeled as a function of volume of target material shocked at or above the given shock pressure. We find that the volumetric pressure decay exponent is almost constant for impact angles from 90° to 30°, dropping by about a factor of two for a 15° impact. In the range of shock pressures at which most materials of geologic interest melt or begin to vaporize, we find that the volume of impact melt decreases by at most 20% for impacts from 90° down to 45°. Below 45°, however, the amount of melt in the target decreases rapidly with impact angle. Compared to the vertical case, the reduction in volume of melt is about 50% for impacts at 30° and more than 90% for a 15° impact. These estimates do not include possible melting due to shear heating, which can

  19. Hypervelocity Impact Initiation of Explosive Transfer Lines

    NASA Technical Reports Server (NTRS)

    Bjorkman, Michael D.; Christiansen, Eric L.

    2012-01-01

    The Gemini, Apollo and Space Shuttle spacecraft utilized explosive transfer lines (ETL) in a number of applications. In each case the ETL was located behind substantial structure and the risk of impact initiation by micrometeoroids and orbital debris was negligible. A current NASA program is considering an ETL to synchronize the actuation of pyrobolts to release 12 capture latches in a contingency. The space constraints require placing the ETL 50 mm below the 1 mm thick 2024-T72 Whipple shield. The proximity of the ETL to the thin shield prompted analysts at NASA to perform a scoping analysis with a finite-difference hydrocode to calculate impact parameters that would initiate the ETL. The results suggest testing is required and a 12 shot test program with surplused Shuttle ETL is scheduled for February 2012 at the NASA White Sands Test Facility. Explosive initiation models are essential to the analysis and one exists in the CTH library for HNS I, but not the HNS II used in the Shuttle 2.5 gr/ft rigid shielded mild detonating cord (SMDC). HNS II is less sensitive than HNS I so it is anticipated that these results using the HNS I model are conservative. Until the hypervelocity impact test results are available, the only check on the analysis was comparison with the Shuttle qualification test result that a 22 long bullet would not initiate the SMDC. This result was reproduced by the hydrocode simulation. Simulations of the direct impact of a 7 km/s aluminum ball, impacting at 0 degree angle of incidence, onto the SMDC resulted in a 1.5 mm diameter ball initiating the SMDC and 1.0 mm ball failing to initiate it. Where one 1.0 mm ball could not initiate the SMDC, a cluster of six 1.0 mm diameter aluminum balls striking simultaneously could. Thus the impact parameters that will result in initiating SMDC located behind a Whipple shield will depend on how well the shield fragments the projectile and spreads the fragments. An end-to-end simulation of the impact of an

  20. Oxidation of Reinforced Carbon-Carbon Subjected to Hypervelocity Impact

    NASA Technical Reports Server (NTRS)

    Curry, Donald M.; Pham, Vuong T.; Norman, Ignacio; Chao, Dennis C.; Nicholson, Leonard S. (Technical Monitor)

    1999-01-01

    Results of arc-jet tests conducted at the NASA Johnson Space Center (JSC) on Reinforced Carbon-Carbon (RCC) samples subjected to hypervelocity impact are presented. The RCC test specimens are representative of RCC component used on the Space Shuttle Orbiter. The objective of the arc jet testing was to establish the oxidation characteristics of RCC when hypervelocity projectiles, simulating meteoroid/orbital debris (MOD), impact the RCC material. In addition, analytical modeling of the increased material oxidation in the impacted area, using measured hole growth data, to develop correlations for use in trajectory simulations is also discussed.

  1. The Chicxulub Impact Crater and Oblique Impact

    NASA Astrophysics Data System (ADS)

    McDonald, M.; Gulick, S.; Melosh, H.; Christeson, G.

    2007-05-01

    Determining whether or not the Chicxulub impact was oblique (<45 degrees) will aid in our understanding of the environmental consequences 65 Ma. Planetary impact events, and impact simulations in the laboratory, show that oblique impacts have clear asymmetric ejecta distributions. However, the subsurface structures of the resultant craters are not well understood. In 2005, we acquired 1822 km of seismic reflection data onboard the R/V Maurice Ewing imaging the massive (200+ km) Chicxulub impact crater. The seismic profiles show that pre- crater stratigraphy outside the central basin of the Chicxulub impact crater is offset downward into the crater marking the post-impact slumping and formation of the terrace zone. The inward collapse of the Chicxulub terrace zone coincides with the outward collapse of the central uplift to form the peak ring. Chicxulub's peak ring is offset to the southeast, away from the deepest terrace zone mapped in the seismic data, suggesting that its peak ring was offset toward a more gradual wall of the transient cavity. Peak ring offsets, relative to crater center, of Venusian craters from radar images in the Magellan data set allow us to determine whether there are systematic variations in peak ring offset due to oblique impact. Ten pristine Venusian peak ring craters formed by oblique impact show that peak rings are offset both uprange and downrange, suggesting that peak ring position, and related subsurface asymmetries in the terrace zone, do not provide information about impact obliquity. This analysis supports the idea that Chicxulub's peak ring offset is a consequence of target properties and pre-impact structure and independent of impact trajectory.

  2. Morphology correlation of craters formed by hypervelocity impacts

    NASA Technical Reports Server (NTRS)

    Crawford, Gary D.; Rose, M. Frank; Zee, Ralph H.

    1993-01-01

    Dust-sized olivine particles were fired at a copper plate using the Space Power Institute hypervelocity facility, simulating micrometeoroid damage from natural debris to spacecraft in low-Earth orbit (LEO). Techniques were developed for measuring crater volume, particle volume, and particle velocity, with the particle velocities ranging from 5.6 to 8.7 km/s. A roughly linear correlation was found between crater volume and particle energy which suggested that micrometeoroids follow standard hypervelocity relationships. The residual debris analysis showed that for olivine impacts of up to 8.7 km/s, particle residue is found in the crater. By using the Space Power Institute hypervelocity facility, micrometeoroid damage to satellites can be accurately modeled.

  3. Analysis of hypervelocity impact test data

    SciTech Connect

    Canavan, G.H.

    1998-01-01

    Experiments conducted by the Department of Defense provide an adequate basis for the determination of the fragment distribution and number from hypervelocity collisions. Models trained on only a portion of the data are shown to bias samples too far from the population to be useful for averaging over debris distributions or estimating fragment production rates. The average fragment production exponent is more appropriate for those purposes.

  4. Hypervelocity impact tests on Space Shuttle Orbiter thermal protection material

    NASA Technical Reports Server (NTRS)

    Humes, D. H.

    1977-01-01

    Hypervelocity impact tests were conducted to simulate the damage that meteoroids will produce in the Shuttle Orbiter leading edge structural subsystem material. The nature and extent of the damage is reported and the probability of encountering meteoroids with sufficient energy to produce such damage is discussed.

  5. Structural Damage Prediction and Analysis for Hypervelocity Impact: Consulting

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A portion of the contract NAS8-38856, 'Structural Damage Prediction and Analysis for Hypervelocity Impacts,' from NASA Marshall Space Flight Center (MSFC), included consulting which was to be documented in the final report. This attachment to the final report contains memos produced as part of that consulting.

  6. Hypervelocity Impact Evaluation of Metal Foam Core Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Yasensky, John; Christiansen, Eric L.

    2007-01-01

    A series of hypervelocity impact (HVI) tests were conducted by the NASA Johnson Space Center (JSC) Hypervelocity Impact Technology Facility (HITF) [1], building 267 (Houston, Texas) between January 2003 and December 2005 to test the HVI performance of metal foams, as compared to the metal honeycomb panels currently in service. The HITF testing was conducted at the NASA JSC White Sands Testing Facility (WSTF) at Las Cruces, New Mexico. Eric L. Christiansen, Ph.D., and NASA Lead for Micro-Meteoroid Orbital Debris (MMOD) Protection requested these hypervelocity impact tests as part of shielding research conducted for the JSC Center Director Discretionary Fund (CDDF) project. The structure tested is a metal foam sandwich structure; a metal foam core between two metal facesheets. Aluminum and Titanium metals were tested for foam sandwich and honeycomb sandwich structures. Aluminum honeycomb core material is currently used in Orbiter Vehicle (OV) radiator panels and in other places in space structures. It has many desirable characteristics and performs well by many measures, especially when normalized by density. Aluminum honeycomb does not perform well in Hypervelocity Impact (HVI) Testing. This is a concern, as honeycomb panels are often exposed to space environments, and take on the role of Micrometeoroid / Orbital Debris (MMOD) shielding. Therefore, information on possible replacement core materials which perform adequately in all necessary functions of the material would be useful. In this report, HVI data is gathered for these two core materials in certain configurations and compared to gain understanding of the metal foam HVI performance.

  7. Analysis and Simulation of Hypervelocity Gouging Impacts

    DTIC Science & Technology

    2006-06-01

    Hypervelocity Gouging Test . . 8 -11 8.2.4 Further Results from the Comparison of CTH Simulations to the 1-D Penetration Theory . . . 8 - 13 8.2.5...more plasticity and gouge depth is generated and the temperature profile is correspondingly more significant. 8 - 13 Figure 8.14: Comparison of CTH...19a. NAME OF RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (include area code) Standard Form 298 (Rev. 8 –98) Prescribed by ANSI Std. Z39.18 13 –06–2006

  8. Survey of the hypervelocity impact technology and applications.

    SciTech Connect

    Chhabildas, Lalit Chandra; Orphal, Dennis L.

    2006-05-01

    HVIS 2005 was a clear success. The Symposium brought together nearly two hundred active researchers and students from thirteen countries around the world. The 84 papers presented at HVIS 2005 constitute an ''update'' on current research and the state-of-the-art of hypervelocity science. Combined with the over 7000 pages of technical papers from the eight previous Symposia, beginning in 1986, all published in the International Journal of Impact Engineering, the papers from HVIS 2005 add to the growing body of knowledge and the progressing state-of-the-art of hypervelocity science. It is encouraging to report that even with the limited funding resources compared to two decades ago, creativity and ingenuity in hypervelocity science are alive and well. There is considerable overlap in different disciplines that allows researchers to leverage. Experimentally, higher velocities are now available in the laboratory and are ideally suited for space applications that can be tied to both civilian (NASA) and DoD military applications. Computationally, there is considerable advancement both in computer and modeling technologies. Higher computing speeds and techniques such as parallel processing allow system level type applications to be addressed directly today, much in contrast to the situation only a few years ago. Needless to say, both experimentally and computationally, the ultimate utility will depend on the curiosity and the probing questions that will be incumbent upon the individual researcher. It is quite satisfying that over two dozen students attended the symposium. Hopefully this is indicative of a good pool of future researchers that will be needed both in the government and civilian industries. It is also gratifying to note that novel thrust areas exploring different and new material phenomenology relevant to hypervelocity impact, but a number of other applications as well, are being pursued. In conclusion, considerable progress is still being made that is

  9. Oxidation of Reinforced Carbon-Carbon Subjected to Hypervelocity Impact

    NASA Technical Reports Server (NTRS)

    Curry, Donald M.; Pham, Vuong T.; Norman, Ignacio; Chao, Dennis C.

    2000-01-01

    This paper presents results from arc jet tests conducted at the NASA Johnson Space Center on reinforced carbon-carbon (RCC) samples subjected to hypervelocity impact. The RCC test specimens are representative of RCC components used on the Space Shuttle Orbiter. The arc jet testing established the oxidation characteristics of RCC when hypervelocity projectiles, simulating meteoroid/orbital debris, impact the RCC material. In addition to developing correlations for use in trajectory simulations, we discuss analytical modeling of the increased material oxidation in the impacted area using measured hole growth data. Entry flight simulations are useful in assessing the increased Space Shuttle RCC component degradation as a result of impact damage and the hot gas flow through an enlarging hole into the wing leading-edge cavity.

  10. Analysis of the NASA Shuttle Hypervelocity Impact Database

    DTIC Science & Technology

    2003-09-01

    A statistical analysis of the NASA Space Shuttle Hypervelocity Impact Database to find correlations between meteoroid and orbital debris (M/OD...Flexible Reusable Surface Insulation (FRSI) data, In an effort to characterize and evaluate the meteoroid and orbital debris (M/OD) environment in low...determines whether the impactor was a naturally occurring meteoroid or man-made orbital debris , as well as the impactor’s size and impact velocity, From

  11. Experimental hypervelocity impact effects on simulated planetesimal materials

    SciTech Connect

    Tedeschi, W.J.; Schulze, J.F.; Remo, J.L.; Young, R.P. Jr

    1994-08-01

    Experimental results are presented from a series of hypervelocity impact tests on simulated comet and asteroid materials for the purpose of characterizing their response to hypervelocity kinetic energy impacts. Nine tests were conducted at the Air Force Arnold Engineering Development Center (AEDC) S1 Range Facility on ice, rock, and iron target samples using a spherical 2.39 mm diameter aluminum impactor (0.0192 gm) at impact velocities of from 7.6 to 8.4 km/sec. The test objectives were to collect target response phenomenology data on cratering, momentum deposition and enhancement, target fragmentation, and material response under hypervelocity impact loading conditions. A carefully designed ballistic pendulum was used to measure momentum deposition into the targets. Observations and measurements of the impacted samples provide important insights into the response of these materials to kinetic energy impacts, especially in regards to unexpectedly large measured values of momentum enhancement to some of the targets. Such information is required to allow us to successfully deflect or fragment comets or asteroids which might someday be detected on collision trajectories with Earth.

  12. Flash characteristics of plasma induced by hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Long, Renrong; Zhang, Qingming; Xue, Yijiang; Ju, Yuanyuan

    2016-08-01

    Using a two-stage light gas gun, a series of hypervelocity impact experiments was conducted in which 6.4-mm-diameter spherical 2024-aluminum projectiles impact 23-mm-thick targets made of the same material at velocities of 5.0, 5.6, and 6.3 km/s. Both an optical pyrometer composed of six photomultiplier tubes and a spectrograph were used to measure the flash of the plasma during hypervelocity impact. Experimental results show that, at a projectile velocity of 6.3 km/s, the strong flash lasted about 10 μs and reached a temperature of 4300 K. Based on the known emission lines of AL I, spectral methods can provide the plasma electron temperature. An electron-temperature comparison between experiment and theoretical calculation indicates that single ionization and secondary ionization are the two main ionizing modes at velocities 5.0-6.3 km/s.

  13. Impact sensor network for detection of hypervelocity impacts on spacecraft

    NASA Astrophysics Data System (ADS)

    Schäfer, Frank; Janovsky, Rolf

    2007-11-01

    With regard to hypervelocity impact detection, a sensor network that can be applied on typical spacecraft structures is under development at Fraunhofer EMI (Ernst-Mach-Institut), supported by OHB-System. For impact detection, acoustic transducers are used. The structure types investigated are a 2 mm thick plate from aluminium alloy and a 49 mm thick sandwich panel with aluminium face-sheets and aluminium honeycomb core. One impact test was performed on each of the panels, which were instrumented with 6 ultrasonic transducers. The signals recorded at the various sensor locations varied with regard to peak amplitude and elapse time of the signal. Using this information and combining it with a localization algorithm, the impact location could be successfully determined. A description of the impact sensor network and the mathematical model to determine the impact location is provided. The impact tests on the spacecraft structure, the response of the sensor network and the analysis performed to determine the impact location are described.

  14. Hypervelocity impact response of aluminum multi-wall structures

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Bean, Alan J.

    1991-01-01

    The results of an investigation in which the perforation resistance of aluminum multiwall structures is analyzed under a variety of hypervelocity impact loading conditions are presented. A comparative analysis of the impact damage in structural systems with two or more bumpers and the damage in single-bumper systems of similar weight is performed to determine the advantages and disadvantages of employing more than one bumper in structural wall systems for long-duration spacecraft. A significant increase in protection against perforation by hypervelocity projectiles can be achieved if a single bumper is replaced by two bumpers of similar weight while the total wall spacing is kept constant. It is found that increasing the number of bumpers beyond two while keeping the total stand-off distance constant does not result in a substantial increase in protection over that offered by two bumpers of similar weight.

  15. Theoretical and numerical predictions of hypervelocity impact-generated plasma

    NASA Astrophysics Data System (ADS)

    Li, Jianqiao; Song, Weidong; Ning, Jianguo

    2014-08-01

    The hypervelocity impact generated plasmas (HVIGP) in thermodynamic non-equilibrium state were theoretically analyzed, and a physical model was presented to explore the relationship between plasma ionization degree and internal energy of the system by a group of equations including a chemical reaction equilibrium equation, a chemical reaction rate equation, and an energy conservation equation. A series of AUTODYN 3D (a widely used software in dynamic numerical simulations and developed by Century Dynamic Inc.) numerical simulations of the impacts of hypervelocity Al projectile on its targets at different incident angles were performed. The internal energy and the material density obtained from the numerical simulations were then used to calculate the ionization degree and the electron temperature. Based on a self-developed 2D smooth particle hydrodynamic (SPH) code and the theoretical model, the plasmas generated by 6 hypervelocity impacts were directly simulated and their total charges were calculated. The numerical results are in good agreements with the experimental results as well as the empirical formulas, demonstrating that the theoretical model is justified by the AUTODYN 3D and self-developed 2D SPH simulations and applicable to predict HVIGPs. The study is of significance for astrophysical and cosmonautic researches and safety.

  16. Theoretical and numerical predictions of hypervelocity impact-generated plasma

    SciTech Connect

    Li, Jianqiao; Song, Weidong Ning, Jianguo

    2014-08-15

    The hypervelocity impact generated plasmas (HVIGP) in thermodynamic non-equilibrium state were theoretically analyzed, and a physical model was presented to explore the relationship between plasma ionization degree and internal energy of the system by a group of equations including a chemical reaction equilibrium equation, a chemical reaction rate equation, and an energy conservation equation. A series of AUTODYN 3D (a widely used software in dynamic numerical simulations and developed by Century Dynamic Inc.) numerical simulations of the impacts of hypervelocity Al projectile on its targets at different incident angles were performed. The internal energy and the material density obtained from the numerical simulations were then used to calculate the ionization degree and the electron temperature. Based on a self-developed 2D smooth particle hydrodynamic (SPH) code and the theoretical model, the plasmas generated by 6 hypervelocity impacts were directly simulated and their total charges were calculated. The numerical results are in good agreements with the experimental results as well as the empirical formulas, demonstrating that the theoretical model is justified by the AUTODYN 3D and self-developed 2D SPH simulations and applicable to predict HVIGPs. The study is of significance for astrophysical and cosmonautic researches and safety.

  17. Orbiter Window Hypervelocity Impact Strength Evaluation

    NASA Technical Reports Server (NTRS)

    Estes, Lynda R.

    2011-01-01

    When the Space Shuttle Orbiter incurs damage on its windowpane during flight from particles traveling at hypervelocity speeds, it produces a distinctive damage that reduces the overall strength of the pane. This damage has the potential to increase the risk associated with a safe return to Earth. Engineers at Boeing and NASA/JSC are called to Mission Control to evaluate the damage and provide an assessment on the risk to the crew. Historically, damages like these were categorized as "accepted risk" associated with manned spaceflight, and as long as the glass was intact, engineers gave a "go ahead" for entry for the Orbiter. Since the Columbia accident, managers have given more scrutiny to these assessments, and this has caused the Orbiter window engineers to capitalize on new methods of assessments for these damages. This presentation will describe the original methodology that was used to asses the damages, and introduce a philosophy new to the Shuttle program for assessing structural damage, reliability/risk-based engineering. The presentation will also present a new, recently adopted method for assessing the damage and providing management with a reasonable assessment on the realities of the risk to the crew and vehicle for return.

  18. Axial focusing of energy from a hypervelocity impact on earth

    SciTech Connect

    Boslough, M.B.; Chael, E.P.; Trucano, T.G.; Crawford, D.A.

    1994-12-01

    We have performed computational simulations to determine how energy from a large hypervelocity impact on the Earth`s surface would couple to its interior. Because of the first-order axial symmetry of both the impact energy source and the stress-wave velocity structure of the Earth, a disproportionate amount of energy is dissipated along the axis defined by the impact point and its antipode (point opposite the impact). For a symmetric and homogeneous Earth model, all the impact energy that is radiated as seismic waves into the Earth at a given takeoff angle (ray parameter), independent of azimuthal direction, is refocused (minus attenuation) on the axis of symmetry, regardless of the number of reflections and refractions it has experienced. Material on or near the axis of symmetry experiences more strain cycles with much greater amplitude than elsewhere, and therefore experiences more irreversible heating. The focusing is most intense in the upper mantle, within the asthenosphere, where seismic energy is most effectively converted to heat. For a sufficiently energetic impact, this mechanism might generate enough local heating to create an isostatic instability leading to uplift, possibly resulting in rifting, volcanism, or other rearrangement of the interior dynamics of the planet. These simulations demonstrate how hypervelocity impact energy can be transported to the Earth`s interior, supporting the possibility of a causal link between large impacts on Earth and major internally-driven geophysical processes.

  19. Hypervelocity Impact on Interfaces: A Molecular-Dynamics Simulations Study

    NASA Astrophysics Data System (ADS)

    Bachlechner, Martina E.; Owens, Eli T.; Leonard, Robert H.; Cockburn, Bronwyn C.

    2008-03-01

    Silicon/silicon nitride interfaces are found in micro electronics and solar cells. In either application the mechanical integrity of the interface is of great importance. Molecular-dynamics simulations are performed to study the failure of interface materials under the influence of hypervelocity impact. Silicon nitride plates impacting on silicon/silicon nitride interface targets of different thicknesses result in structural phase transformation and delamination at the interface. Detailed analyses of atomic velocities, bond lengths, and bond angles are used to qualitatively examine the respective failure mechanisms.

  20. Survivability of bacteria ejected from icy surfaces after hypervelocity impact.

    PubMed

    Burchell, Mark J; Galloway, James A; Bunch, Alan W; Brandão, Pedro F B

    2003-02-01

    Both the Saturnian and Jovian systems contain satellites with icy surfaces. If life exists on any of these icy bodies (in putative subsurface oceans for example) then the possibility exists for transfer of life from icy body to icy body. This is an application of the idea of Panspermia, wherein life migrates naturally through space. A possible mechanism would be that life, here taken as bacteria, could become frozen in the icy surface of one body. If a high-speed impact occurred on that surface, ejecta containing the bacteria could be thrown into space. It could then migrate around the local region of space until it arrived at a second icy body in another high-speed impact. In this paper we consider some of the necessary steps for such a process to occur, concentrating on the ejection of ice bearing bacteria in the initial impact, and on what happens when bacteria laden projectiles hit an icy surface. Laboratory experiments using high-speed impacts with a light gas gun show that obtaining icy ejecta with viable bacterial loads is straightforward. In addition to demonstrating the viability of the bacteria carried on the ejecta, we have also measured the angular and size distribution of the ejecta produced in hypervelocity impacts on ice. We have however been unsuccessful at transferring viable bacteria to icy surfaces from bacteria laden projectiles impacting at hypervelocities.

  1. PVDF gauge characterization of hypervelocity-impact-generated debris clouds

    SciTech Connect

    Boslough, M.B.; Chhabildas, L.C.; Reinhart, W.D.; Hall, C.A.; Miller, J.M.; Hickman, R.; Mullin, S.A.; Littlefield, D.L.

    1993-08-01

    We have used PVDF gauges to determine time-resolved stresses resulting from interaction between hypervelocity-impact-generated debris clouds and various target gauge blocks. Debris clouds were generated from three different impact configurations: (1) steel spheres impacting steel bumper sheets at 4.5 to 6.0 km/s, (2) aluminum inhibited shaped-charge jets impacting aluminum bumper sheets at 11.4 km/s, and (3) titanium disks impacting titanium bumper sheets at 7.6 to 10.1 km/s. Additional data were collected from the various experiments using flash X-ray radiography, pulsed laser photography, impact flash measurements, time-resolved strain gauge measurements, and velocity interferometry (VISAR). Data from these various techniques are in general agreement with one another and with hydrocode predictions, and provide a quantitative and comprehensive picture of impact-generated debris clouds.

  2. Survival of fossils under extreme shocks induced by hypervelocity impacts

    PubMed Central

    Burchell, M. J.; McDermott, K. H.; Price, M. C.; Yolland, L. J.

    2014-01-01

    Experimental data are shown for survival of fossilized diatoms undergoing shocks in the GPa range. The results were obtained from hypervelocity impact experiments which fired fossilized diatoms frozen in ice into water targets. After the shots, the material recovered from the target water was inspected for diatom fossils. Nine shots were carried out, at speeds from 0.388 to 5.34 km s−1, corresponding to mean peak pressures of 0.2–19 GPa. In all cases, fragmented fossilized diatoms were recovered, but both the mean and the maximum fragment size decreased with increasing impact speed and hence peak pressure. Examples of intact diatoms were found after the impacts, even in some of the higher speed shots, but their frequency and size decreased significantly at the higher speeds. This is the first demonstration that fossils can survive and be transferred from projectile to target in hypervelocity impacts, implying that it is possible that, as suggested by other authors, terrestrial rocks ejected from the Earth by giant impacts from space, and which then strike the Moon, may successfully transfer terrestrial fossils to the Moon. PMID:25071234

  3. Survival of fossils under extreme shocks induced by hypervelocity impacts.

    PubMed

    Burchell, M J; McDermott, K H; Price, M C; Yolland, L J

    2014-08-28

    Experimental data are shown for survival of fossilized diatoms undergoing shocks in the GPa range. The results were obtained from hypervelocity impact experiments which fired fossilized diatoms frozen in ice into water targets. After the shots, the material recovered from the target water was inspected for diatom fossils. Nine shots were carried out, at speeds from 0.388 to 5.34 km s(-1), corresponding to mean peak pressures of 0.2-19 GPa. In all cases, fragmented fossilized diatoms were recovered, but both the mean and the maximum fragment size decreased with increasing impact speed and hence peak pressure. Examples of intact diatoms were found after the impacts, even in some of the higher speed shots, but their frequency and size decreased significantly at the higher speeds. This is the first demonstration that fossils can survive and be transferred from projectile to target in hypervelocity impacts, implying that it is possible that, as suggested by other authors, terrestrial rocks ejected from the Earth by giant impacts from space, and which then strike the Moon, may successfully transfer terrestrial fossils to the Moon.

  4. Hypervelocity Impact Test Results for a Metallic Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Karr, Katherine L.; Poteet, Carl C.; Blosser, Max L.

    2003-01-01

    Hypervelocity impact tests have been performed on specimens representing metallic thermal protection systems (TPS) developed at NASA Langley Research Center for use on next-generation reusable launch vehicles (RLV). The majority of the specimens tested consists of a foil gauge exterior honeycomb panel, composed of either Inconel 617 or Ti-6Al-4V, backed with 2.0 in. of fibrous insulation and a final Ti-6Al-4V foil layer. Other tested specimens include titanium multi-wall sandwich coupons as well as TPS using a second honeycomb sandwich in place of the foil backing. Hypervelocity impact tests were performed at the NASA Marshall Space Flight Center Orbital Debris Simulation Facility. An improved test fixture was designed and fabricated to hold specimens firmly in place during impact. Projectile diameter, honeycomb sandwich material, honeycomb sandwich facesheet thickness, and honeycomb core cell size were examined to determine the influence of TPS configuration on the level of protection provided to the substructure (crew, cabin, fuel tank, etc.) against micrometeoroid or orbit debris impacts. Pictures and descriptions of the damage to each specimen are included.

  5. Subsurface Deformation of Experimental Hypervelocity Impacts in Non-Porous Targets

    NASA Astrophysics Data System (ADS)

    Winkler, R.; Poelchau, M. H.; Schäfer, F.; Kenkmann, T.

    2016-08-01

    Experimental hypervelocity impacts in quartzite and marble targets under similar impact conditions reveal great differences in impact induced deformation mechanisms, due to the dynamic mechanical properties of the main rock-forming minerals.

  6. Hypervelocity Impact Testing of Nickel Hydrogen Battery Cells

    NASA Technical Reports Server (NTRS)

    Frate, David T.; Nahra, Henry K.

    1996-01-01

    Nickel-Hydrogen (Ni/H2) battery cells have been used on several satellites and are planned for use on the International Space Station. In January 1992, the NASA Lewis Research Center (LeRC) conducted hypervelocity impact testing on Ni/H2 cells to characterize their failure modes. The cell's outer construction was a 24 mil-thick Inconel 718 pressure vessel. A sheet of 1.27 cm thick honeycomb was placed in front of the battery cells during testing to simulate the on-orbit box enclosure. Testing was conducted at the NASA White Sands Test Facility (WSTF). The hypervelocity gun used was a 7.6 mm (0.30 caliber) two-stage light gas gun. Test were performed at speeds of 3, 6, and 7 km/sec using aluminum 2017 spherical particles of either 4.8 or 6.4 mm diameter as the projectile. The battery cells were electrically charged to about 75 percent of capacity, then back-filled with hydrogen gas to 900 psi simulating the full charge condition. High speed film at 10,000 frames/sec was taken of the impacts. Impacts in the dome area (top) and the electrode area (middle) of the battery cells were investigated. Five tests on battery cells were performed. The results revealed that in all of the test conditions investigated, the battery cells simply vented their hydrogen gas and some electrolyte, but did not burst or generate any large debris fragments.

  7. An Imaging System for Satellite Hypervelocity Impact Debris Characterization

    NASA Technical Reports Server (NTRS)

    Moraguez, Matthew; Patankar, Kunal; Fitz-Coy, Norman; Liou, J.-C.; Cowardin, Heather

    2015-01-01

    This paper discusses the design of an automated imaging system for size characterization of debris produced by the DebriSat hypervelocity impact test. The goal of the DebriSat project is to update satellite breakup models. A representative LEO satellite, DebriSat, was constructed and subjected to a hypervelocity impact test. The impact produced an estimated 85,000 debris fragments. The size distribution of these fragments is required to update the current satellite breakup models. An automated imaging system was developed for the size characterization of the debris fragments. The system uses images taken from various azimuth and elevation angles around the object to produce a 3D representation of the fragment via a space carving algorithm. The system consists of N point-and-shoot cameras attached to a rigid support structure that defines the elevation angle for each camera. The debris fragment is placed on a turntable that is incrementally rotated to desired azimuth angles. The number of images acquired can be varied based on the desired resolution. Appropriate background and lighting is used for ease of object detection. The system calibration and image acquisition process are automated to result in push-button operations. However, for quality assurance reasons, the system is semi-autonomous by design to ensure operator involvement. This paper describes the imaging system setup, calibration procedure, repeatability analysis, and the results of the debris characterization.

  8. Investigation on plasma generated during hypervelocity impact at different impact velocities and angles

    SciTech Connect

    Song, Weidong Lv, Yangtao; Wang, Cheng; Li, Jianqiao

    2015-12-15

    A 3D Smoothed Particle Hydrodynamics code was developed to investigate plasma generation by considering a chemical reaction process in hypervelocity impacts of an aluminum projectile on an aluminum target. The chemical reaction process was described by the reaction rate based on the Arrhenius equation and used to calculate the plasma generation during the impact simulation. The predicted result was verified by empirical formulas and a new empirical formula was proposed based on the comparisons and analyses. The influence of the impact angle was discussed for different impact velocities. Then, the application of both the new and original empirical formulas for protection design from plasma generated by hypervelocity impact was discussed, which demonstrated that the code and model were useful in the prediction of hypervelocity impacts on spacecraft.

  9. Characteristic temperatures of hypervelocity dust impact plasmas

    NASA Astrophysics Data System (ADS)

    Collette, A.; Malaspina, D. M.; Sternovsky, Z.

    2016-09-01

    The effective ion and electron temperatures of dust impact generated plasma clouds are measured experimentally as a function of impact speed in the range of 4-20 km/s. The measurements are performed in an experimental setup that resembles the detection of dust particles by electric field or plasma wave antennas on spacecraft. The spacecraft is modeled as a conductive plate and a cylindrical antenna connected to voltage follower electronics is used to measure the collected charge. The setup is bombarded with dust particles using the University of Colorado IMPACT dust accelerator facility. The effective ion and electron temperatures are determined from the variation of the impact signals with an applied bias voltage. The results show that the temperatures of the electrons remain at around or below 5 eV over the investigated impact speed range. The characteristic ion temperature is about 5 eV at 4 km/s; however, it increases with increasing impact speed to > 10 eV at 20 km/s. Given that the floating potentials of spacecraft and antennas are on the order of a few volts, the findings suggest that any model for the interpretation of dust impact signals should take into account the effects of a finite temperatures.

  10. Study of the Phenomena of Hypervelocity Impact

    DTIC Science & Technology

    1963-06-01

    4.4 Fig. 4A. 3 Multiple-Sheet Target Impacted by 3/16-In. Aluminum Sphere at 5. 4 km/sec ......................... 4.6 Fig. 4A. 4 X - Ray ...mentioned previ- ously. Shadowgraph stations, velocity screens, and high-speed framing cameras have recorded projectile velocities. Flash X - ray units...4 which shows a series of flash X - ray pictures of impacts under various conditions. The thin target, or shield, has effectively fragmented the

  11. Hypervelocity Impact (HVI). Volume 7; WLE High Fidelity Specimen RCC16R

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Target RCC16R was to study hypervelocity impacts through the reinforced carbon-carbon (RCC) panels of the Wing Leading Edge. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.

  12. Hypervelocity Impact (HVI). Volume 5; WLE High Fidelity Specimen Fg(RCC)-1

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Target Fg(RCC)-1 was to study hypervelocity impacts through the reinforced carbon-carbon (RCC) panels of the Wing Leading Edge. Fiberglass was used in place of RCC in the initial tests. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.

  13. Hypervelocity Impact (HVI). Volume 6; WLE High Fidelity Specimen Fg(RCC)-2

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Target Fg(RCC)-2 was to study hypervelocity impacts through the reinforced carbon-carbon (RCC) panels of the Wing Leading Edge. Fiberglass was used in place of RCC in the initial tests. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.

  14. Hypervelocity Impact (HVI). Volume 3; WLE Small-Scale Fiberglass Panel Flat Target C-1

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Target C-1 was to study hypervelocity impacts on the reinforced carbon-carbon (RCC) panels of the Wing Leading Edge. Fiberglass was used in place of RCC in the initial tests. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.

  15. Investigation of Energy Partitioning in Hypervelocity Impacts

    DTIC Science & Technology

    1996-09-01

    Cassini / Huygens Cosmic Dust Analyser (Ratciff et al 1992). The experiment configuration is shown in Figure 2.1 The target assembly was mounted in the...on the Cassini / Huygens of these ports, and the particles allowed to mission’°), was available in high purity, and impact on the target. The target

  16. Hypervelocity impact response of honeycomb sandwich panels

    NASA Astrophysics Data System (ADS)

    Schonberg, William; Schäfer, Frank; Putzar, Robin

    2010-02-01

    Man-made orbital poses a serious threat to spacecraft that are launched to operate in Earth orbit because it can strike such spacecraft at very high velocities and consequently damage mission-critical systems. This paper describes the findings of a study whose objective was to develop a system of empirical equations that can be used to predict the trajectories and spread of the debris clouds that exit the rear facesheet following a high speed perforating impact of a honeycomb sandwich panel (HC/SP). These equations are based on a database containing the results of nearly 400 tests from 13 previously published papers and reports. Overall the correlation coefficient values for the various regression equations obtained are fairly reasonable, and range from near 60% to well above 90%. This indicates that the chosen forms of the equations are a good fit to the data, and that they are capable of picking up most of the variations in the data that result from changes in test conditions. These equations can now be used to estimate the amount of mass in a debris cloud if an HC/SP is perforated by a high speed impact, where this mass will travel, and what spacecraft components will be impacted by it. This information can then be fed into a risk assessment code to calculate the probability of spacecraft failure under a prescribed set of impact conditions.

  17. Hypervelocity impact effects on solar cells

    NASA Technical Reports Server (NTRS)

    Rose, M. Frank

    1993-01-01

    One of the space hazards of concern is the problem of natural matter and space debris impacting spacecraft. This phenomena has been studied since the early sixties and a methodology has been established to determine the relative abundance of meteoroids as a function of mass. As the mass decreases, the probability of suffering collisions increases, resulting in a constant bombardment from particles in the sub-micron range. The composition of this 'cosmic dust' is primarily Fe, Ni, Al, Mg, Na, Ca, Cr, H, O, and Mn. In addition to mechanical damage, impact velocities greater than 5 k m/sec can produce shock induced ionization effects with resultant surface charging and complex chemical interactions. The upper limit of the velocity distribution for these particles is on the order of 70 km/sec. The purpose of this work was to subject samples from solar power arrays to debris flux typical of what would be encountered in space, and measure the degradation of the panels after impact.

  18. Hypervelocity impact effects on solar cells

    NASA Technical Reports Server (NTRS)

    Rose, M. Frank

    1992-01-01

    One of the space hazards of concern is the problem of natural matter and space debris impacting spacecraft. In addition to mechanical damage, impact velocities greater than 5 km/sec can produce shock induced ionization effects with resultant surface charging and complex chemical interactions. The upper limit of the velocity distribution for these particles is on the order of 70 km/sec. The second source of particulate matter is due to the presence of man and the machinery needed to place satellites in orbit. This 'man made' component of the space debris consists of waste, rocket exhaust, and debris caused by satellite break-up. Most of the particles are small. However as the size increases, debris purposefully thrown overboard such as garbage and human waste, combined with paint chips, plastic, wire fragments, bolts, etc., become formidable hazards which completely dominate the distribution function for some orbits. These larger fragments can produce penetration and spalling of the thick metallic structures associated with spacecraft. The particles most often encountered are aluminum oxide, associated with fuel residue, and paint chips. These debris types can have a wide range of particle sizes. It has been stated that the design of spacecraft will have to take the debris evolution into account and provide additional suitable armor for key components in the near future. The purpose of this work was to subject samples from solar power arrays, one of the key components of any spacecraft, to a debris flux typical of what might be found in space, and measure the degradation of the power panels after impact.

  19. Hypervelocity impact effects on solar cells

    NASA Astrophysics Data System (ADS)

    Rose, M. Frank

    1992-09-01

    One of the space hazards of concern is the problem of natural matter and space debris impacting spacecraft. In addition to mechanical damage, impact velocities greater than 5 km/sec can produce shock induced ionization effects with resultant surface charging and complex chemical interactions. The upper limit of the velocity distribution for these particles is on the order of 70 km/sec. The second source of particulate matter is due to the presence of man and the machinery needed to place satellites in orbit. This 'man made' component of the space debris consists of waste, rocket exhaust, and debris caused by satellite break-up. Most of the particles are small. However as the size increases, debris purposefully thrown overboard such as garbage and human waste, combined with paint chips, plastic, wire fragments, bolts, etc., become formidable hazards which completely dominate the distribution function for some orbits. These larger fragments can produce penetration and spalling of the thick metallic structures associated with spacecraft. The particles most often encountered are aluminum oxide, associated with fuel residue, and paint chips. These debris types can have a wide range of particle sizes. It has been stated that the design of spacecraft will have to take the debris evolution into account and provide additional suitable armor for key components in the near future. The purpose of this work was to subject samples from solar power arrays, one of the key components of any spacecraft, to a debris flux typical of what might be found in space, and measure the degradation of the power panels after impact.

  20. Physics of debris clouds from hypervelocity impacts

    NASA Technical Reports Server (NTRS)

    Zee, Ralph

    1993-01-01

    The protection scheme developed for long duration space platforms relies primarily upon placing thin metal plates or 'bumpers' around flight critical components. The effectiveness of this system is highly dependent upon its ability to break up and redistribute the momentum of any particle which might otherwise strike the outer surface of the spacecraft. Therefore it is of critical importance to design the bumpers such that maximum dispersion of momentum is achieved. This report is devoted to an in-depth study into the design and development of a laboratory instrument which would permit the in-situ monitoring of the momentum distribution as the impact event occurs. A series of four designs were developed, constructed and tested culminating with the working instrument which is currently in use. Each design was individually tested using the Space Environmental Effects Facility (SEEF) at the Marshall Space Flight Center in Huntsville, Alabama. Along with the development of the device, an experimental procedure was developed to assist in the investigation of various bumper materials and designs at the SEEF. Preliminary results were used to compute data which otherwise were not experimentally obtainable. These results were shown to be in relative agreement with previously obtained values derived through other methods. The results of this investigation indicated that momentum distribution could in fact be measured in-situ as the impact event occurred thus giving a more accurate determination of the effects of experimental parameters on the momentum spread. Data produced by the instrument indicated a Gaussian-type momentum distribution. A second apparatus was developed and it was placed before the shield in the line of travel utilized a plate to collect impact debris scattered backwards. This plate had a passage hole in the center to allow the particle to travel through it and impact the proposed shield material. Applying the law of conservation of angular momentum a

  1. Subsurface damage from oblique impacts into low-impedance layers

    NASA Astrophysics Data System (ADS)

    Stickle, A. M.; Schultz, P. H.

    2012-07-01

    Layered planetary surfaces occur ubiquitously in the solar system, where sedimentary sequences or icy layers overlay crystalline bedrock. Previous experimental studies investigated how the presence of weak layer overlying a strong basement affects crater morphology, subsurface damage and soft-sediment compression. Numerical studies generally focus on the final morphology as a function of thicknesses and burial depths of weak layers. In field studies of impact craters, the shock state of minerals is a key metric. Here, we evaluate the effect of a surficial low-impedance layer on peak pressure magnitudes and consequent damage extent in the competent substrate. Laboratory experiments coupled with 3D CTH models of oblique (30° from horizontal) hypervelocity impacts at laboratory and planetary scales show that surface layers with a thickness on the order of the projectile diameter shield the underlying surface and absorb/scatter ˜70% of the impact energy. Numerical simulations reveal that surficial layers reduce peak pressure magnitudes within the subsurface by ˜60-70%, while damage in the substrate is due to shear failure. Sedimentary layers are more efficient shields than icy layers, but both reduce the extent of subsurface damage and the resulting shock levels recorded by minerals. These results indicate that a thin surficial low impedance layer mitigates the expression of shocked minerals in the substrate even when a structural response is still observed.

  2. Thermodynamics analysis of aluminum plasma transition induced by hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Liu, Zhixiang; Zhang, Qingming; Ju, Yuanyuan

    2016-02-01

    The production of plasmas during hypervelocity meteoroid and space debris impact has been proposed to explain the presence of paleomagnetic fields on the lunar surface, and also the electromagnetic damage to spacecraft electronic devices. Based on Gibbs' ensemble theory, we deduce Saha equation of state and figure out the ionization degree; further, by using the derivation of Clausius-Clapeyron equation, we obtain the entropy increase and latent heat of plasma transition after vaporization; finally, we analyze the conversion efficiency of kinetic energy into internal energy, present two key contradictions, and revise them with the entropy increase, latent heat, and conversion efficiency. We analyze the aluminum plasma transition from multiple perspectives of the equation of state, latent heat of phase transition, and conversion efficiency and propose the internal energy and impact velocity criterion, based on the laws of thermodynamics.

  3. Laboratory investigations of the survivability of bacteria in hypervelocity impacts.

    PubMed

    Burchell, M J; Shrine, N R; Mann, J; Bunch, A W; Brandao, P; Zarnecki, J C; Galloway, J A

    2001-01-01

    It is now well established that material naturally moves around the Solar System, even from planetary surface to planetary surface. Accordingly, the idea that life is distributed throughout space and did not necessarily originate on the Earth but migrated here from elsewhere (Panspermia) is increasingly deemed worthy of consideration. If life arrived at the Earth from space, its relative speed will typically be of order many km s-1, and the resulting collision with the Earth and its atmosphere will be in the hypervelocity regime. A mechanism for the bacteria to survive such an impact is required. Therefore a programme of hypervelocity impacts in the laboratory at (4.5 +/- 0.6) km s-1 was carried out using bacteria (Rhodococcus) laden projectiles. After impacts on a variety of target materials (rock, glass and metal) attempts were made to culture Rhodococcus from the surface of the resulting craters and also from the target material ejected during crater formation. Control shots with clean projectiles yielded no evidence for Rhodococcus growth from any crater surface or ejecta. When projectiles doped with Rhodococcus were used no impact crater surface yielded colonies of Rhodococcus. However, for four shots of bacteria into rock (two on chalk and two on granite) the ejecta was afterwards found to give colonies of Rhodococcus. This was not true for shots onto glass. In addition, shots into aerogel (density 96 kg m-3) were also carried out (two with clean projectiles and two with projectiles with Rhodococcus). This crudely simulated aero-capture in a planetary atmosphere. No evidence for Rhodococcus growth was found from the projectiles captured in the aerogel from any of the four shots.

  4. An Exponential Luminous Efficiency Model for Hypervelocity Impact into Regolith

    NASA Technical Reports Server (NTRS)

    Swift, W. R.; Moser, D. E.; Suggs, R. M.; Cooke, W. J.

    2011-01-01

    The flash of thermal radiation produced as part of the impact-crater forming process can be used to determine the energy of the impact if the luminous efficiency is known. From this energy the mass and, ultimately, the mass flux of similar impactors can be deduced. The luminous efficiency, eta, is a unique function of velocity with an extremely large variation in the laboratory range of under 6 km/s but a necessarily small variation with velocity in the meteoric range of 20 to 70 km/s. Impacts into granular or powdery regolith, such as that on the moon, differ from impacts into solid materials in that the energy is deposited via a serial impact process which affects the rate of deposition of internal (thermal) energy. An exponential model of the process is developed which differs from the usual polynomial models of crater formation. The model is valid for the early time portion of the process and focuses on the deposition of internal energy into the regolith. The model is successfully compared with experimental luminous efficiency data from both laboratory impacts and from lunar impact observations. Further work is proposed to clarify the effects of mass and density upon the luminous efficiency scaling factors. Keywords hypervelocity impact impact flash luminous efficiency lunar impact meteoroid 1

  5. Oblique Impact and Its Ejecta: Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Artemieva, N.; Pierazzo, E.

    2003-01-01

    It is well known that impact events strike planetary surfaces at an angle from the surface. Assuming an isotropic flux of projectiles, probability theory indicates that the most likely angle of impact is 45 regardless of the body's gravitational field. While crater rims appear circular down to low impact angles, the distribution of ejecta around the crater is sensitive to the angle of impact and currently serves as the best guide to obliquity of impacts. A fair amount of numerical modeling of vertical impacts has been carried out from the early 60-s to the present time and references herein]. In vertical impacts, the axial symmetry of the process allows the simplification of the model to two dimensions (2D). Oblique impact modeling requires 3D hydro-codes and, hence, much more powerful computers. The first documented detailed oblique impact studies were carried out at Sandia National Labs' supercomputers less than 10 years ago to describe the 1994 collision of comet SL9 with Jupiter. Since then, substantial progress in computer science has made 3D modeling a reachable objective for the scientific community.

  6. Hypervelocity impact on silicon wafers with metallic and polymeric coatings

    NASA Astrophysics Data System (ADS)

    Taylor, E. A.; Scott, H. J.; Abraham, M.; Kearsley, A. T.

    2001-10-01

    Current and near future developments in microsystem technologies (MST, also known as MEMS) are defining a new trend towards lower mass, smaller volume spacecraft, without loss of functionality. The MST spacecraft components are etched onto silicon wafers coated with different metallic or polymeric material layers (typically 1-2 microns in thickness). These silicon wafers are then integrated to provide the spacecraft structure subsystem. For the majority of spacecraft, small debris and meteoroid impacts are not often able to cause large satellite platform failures, due to the shielding provided by existing structural and thermal materials and the high percentage of 'empty volume' contained within a typical spacecraft structure. Smaller satellites incorporating MST and based on silicon wafers, whilst presenting a smaller surface area, are expected to be vulnerable to impacts as the lower subsystem mass defines a less substantial structure, providing significantly less protection against impact. This paper presents results of a BNSC-funded study aimed at identifying the vulnerability of MST technologies based on silicon wafers to space debris and meteoroid impact. Hypervelocity impact tests were carried out on silicon wafers coated with five different types of deposited material. Multiple glass spheres were fired simultaneously at velocities in the range of 6 km/s. The impact results identify the hypervelocity impact response of the silicon wafers. The impacted targets showed a brittle material damage morphology (defined by fracture) and linked to the crystalline structure of the silicon wafer. As predicted from the mechanical properties, it was found that the silicon tended to fracture along the 111 planes. Cross-sectioned craters also showed the crystalline structure of the silicon, with the onset of fracture-driven spall on the rear surface. The metal and polymeric coatings produced diverse damage morphologies, with delamination zones being up to twice the diameter

  7. Hypervelocity Impact Testing of Space Station Freedom Solar Cells

    NASA Technical Reports Server (NTRS)

    Christie, Robert J.; Best, Steve R.; Myhre, Craig A.

    1994-01-01

    Solar array coupons designed for the Space Station Freedom electrical power system were subjected to hypervelocity impacts using the HYPER facility in the Space Power Institute at Auburn University and the Meteoroid/Orbital Debris Simulation Facility in the Materials and Processes Laboratory at the NASA Marshall Space Flight Center. At Auburn, the solar cells and array blanket materials received several hundred impacts from particles in the micron to 100 micron range with velocities typically ranging from 4.5 to 10.5 km/s. This fluence of particles greatly exceeds what the actual components will experience in low earth orbit. These impacts damaged less than one percent of total area of the solar cells and most of the damage was limited to the cover glass. There was no measurable loss of electrical performance. Impacts on the array blanket materials produced even less damage and the blanket materials proved to be an effective shield for the back surface of the solar cells. Using the light gas gun at MSFC, one cell of a four cell coupon was impacted by a 1/4 inch spherical aluminum projectile with a velocity of about 7 km/s. The impact created a neat hole about 3/8 inch in diameter. The cell and coupon were still functional after impact.

  8. Hypervelocity Impact Test Facility: A gun for hire

    NASA Technical Reports Server (NTRS)

    Johnson, Calvin R.; Rose, M. F.; Hill, D. C.; Best, S.; Chaloupka, T.; Crawford, G.; Crumpler, M.; Stephens, B.

    1994-01-01

    An affordable technique has been developed to duplicate the types of impacts observed on spacecraft, including the Shuttle, by use of a certified Hypervelocity Impact Facility (HIF) which propels particulates using capacitor driven electric gun techniques. The fully operational facility provides a flux of particles in the 10-100 micron diameter range with a velocity distribution covering the space debris and interplanetary dust particle environment. HIF measurements of particle size, composition, impact angle and velocity distribution indicate that such parameters can be controlled in a specified, tailored test designed for or by the user. Unique diagnostics enable researchers to fully describe the impact for evaluating the 'targets' under full power or load. Users regularly evaluate space hardware, including solar cells, coatings, and materials, exposing selected portions of space-qualified items to a wide range of impact events and environmental conditions. Benefits include corroboration of data obtained from impact events, flight simulation of designs, accelerated aging of systems, and development of manufacturing techniques.

  9. Hypervelocity Impact Test Facility: A gun for hire

    NASA Astrophysics Data System (ADS)

    Johnson, Calvin R.; Rose, M. F.; Hill, D. C.; Best, S.; Chaloupka, T.; Crawford, G.; Crumpler, M.; Stephens, B.

    An affordable technique has been developed to duplicate the types of impacts observed on spacecraft, including the Shuttle, by use of a certified Hypervelocity Impact Facility (HIF) which propels particulates using capacitor driven electric gun techniques. The fully operational facility provides a flux of particles in the 10-100 micron diameter range with a velocity distribution covering the space debris and interplanetary dust particle environment. HIF measurements of particle size, composition, impact angle and velocity distribution indicate that such parameters can be controlled in a specified, tailored test designed for or by the user. Unique diagnostics enable researchers to fully describe the impact for evaluating the 'targets' under full power or load. Users regularly evaluate space hardware, including solar cells, coatings, and materials, exposing selected portions of space-qualified items to a wide range of impact events and environmental conditions. Benefits include corroboration of data obtained from impact events, flight simulation of designs, accelerated aging of systems, and development of manufacturing techniques.

  10. Jet ejecta mass upon oblique impact

    NASA Technical Reports Server (NTRS)

    Yang, W.; Ahrens, T. J.; Miller, G. H.; Petach, M. B.

    1991-01-01

    Theoretical models in the jetting regime for symmetric and asymmetric impact of thin plates predict the mass and velocity of jetted material upon oblique impact. However, experimental constraints on the amount of material which form jets upon oblique impact are not known. A series of preliminary experiments were conducted in which tungsten (W) flyer plates at speeds of 1.5 to 2.0 km/s were obliquely impacted into carbon targets at 30 deg in the regime of jetting, yielding radiation temperatures in the about 3200 K range. Both framing-camera and flash X-ray imaging were conducted. Broad cm-sized craters induced by jet ejecta on 2024 Al witness plates were used to infer jet mass. We infer, from measured witness plate crater volumes, that jet masses in the range of 0.01 to 0.06 g are produced by a 32 mm diameter, 6 mm thick W impactor. This is about one to two orders of magnitude less than those calculated from present theoretical models. In contrast, in refractory material experiments, the mass of gabbro ejecta trapped in styrofoam is 0.52 g, which is similar to that calculated.

  11. Study of hypervelocity projectile impact on thick metal plates

    DOE PAGES

    Roy, Shawoon K.; Trabia, Mohamed; O’Toole, Brendan; ...

    2016-01-01

    Hypervelocity impacts generate extreme pressure and shock waves in impacted targets that undergo severe localized deformation within a few microseconds. These impact experiments pose unique challenges in terms of obtaining accurate measurements. Similarly, simulating these experiments is not straightforward. This paper proposed an approach to experimentally measure the velocity of the back surface of an A36 steel plate impacted by a projectile. All experiments used a combination of a two-stage light-gas gun and the photonic Doppler velocimetry (PDV) technique. The experimental data were used to benchmark and verify computational studies. Two different finite-element methods were used to simulate the experiments:more » Lagrangian-based smooth particle hydrodynamics (SPH) and Eulerian-based hydrocode. Both codes used the Johnson-Cook material model and the Mie-Grüneisen equation of state. Experiments and simulations were compared based on the physical damage area and the back surface velocity. Finally, the results of this study showed that the proposed simulation approaches could be used to reduce the need for expensive experiments.« less

  12. Study of hypervelocity projectile impact on thick metal plates

    SciTech Connect

    Roy, Shawoon K.; Trabia, Mohamed; O’Toole, Brendan; Hixson, Robert S.; Becker, Steven; Pena, Michael T.; Jennings, Richard; Somasoundaram, Deepak; Matthes, Melissa; Daykin, Edward P.; Machorro, Eric

    2016-01-01

    Hypervelocity impacts generate extreme pressure and shock waves in impacted targets that undergo severe localized deformation within a few microseconds. These impact experiments pose unique challenges in terms of obtaining accurate measurements. Similarly, simulating these experiments is not straightforward. This paper proposed an approach to experimentally measure the velocity of the back surface of an A36 steel plate impacted by a projectile. All experiments used a combination of a two-stage light-gas gun and the photonic Doppler velocimetry (PDV) technique. The experimental data were used to benchmark and verify computational studies. Two different finite-element methods were used to simulate the experiments: Lagrangian-based smooth particle hydrodynamics (SPH) and Eulerian-based hydrocode. Both codes used the Johnson-Cook material model and the Mie-Grüneisen equation of state. Experiments and simulations were compared based on the physical damage area and the back surface velocity. Finally, the results of this study showed that the proposed simulation approaches could be used to reduce the need for expensive experiments.

  13. Oblique impacts: Catastrophic vs. protracted effects

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.

    1988-01-01

    Proposed impacts as the cause of biologic catastrophes at the end of the Cretaceous and Eocene face several enigmas: protracted extinctions, even prior to the stratigraphic cosmogenic signature; widespread but non-uniform dispersal of the meteoritic component; absence of a crater of sufficient size; and evidence for massive intensive fires. Various hypotheses provide reasonable mechanisms for mass mortalities: global cooling by continental impact sites; global warming by oceanic impact sites; contrasting effects of asteroidal, cometary, and even multiple impacts; and stress on an already fragile global environment. Yet not every known large impact is associated with a major biologic catastrophe. An alternative is expanded: the consequences of an oblique impact. The most probable angle of impact is 45 deg with the probability for an impact at smaller angles decreasing: A vertical impact is as rare as a tangential impact with a 5 deg impact angle or less occurring only 8 percent of the time. Consequently a low-angle impact is a rare but probable event. Laboratory experiments at the NASA-Ames Vertical Gun Range reveal important information about cratering efficiency, impact vaporization, projectile dispersal, and phenomenology, thereby providing perspective for possible consequences of such an impact on both the Earth and Moon. Oblique impacts are rare but certain events through geologic time: A 5 deg impact by a 2 km-diameter impactor on the Earth would occur only once in about 18 my with a 10 km-diameter once in about 450 my. Major life extinctions beginning prior to the stratigraphic cosmogenic signature or protracted extinctions seemingly too long after the proposed event may not be evidence against an impact as a cause but evidence for a more complex but probable sequence of events.

  14. Hypervelocity impact survivability experiments for carbonaceous impactors, part 2

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.; Paque, Julie M.; Becker, Luann; Vedder, James F.; Erlichman, Jozef

    1995-01-01

    Hypervelocity impact experiments were performed to further test the survivability of carbonaceous impactors and to determine potential products that may have been synthesized during impact. Diamonds were launched by the Ames two-stage light gas gun into Al plate at velocities of 2.75 and 3.1 km sec(exp -1). FESEM imagery confirms that diamond fragments survived in both experiments. Earlier experiments found that diamonds were destroyed on impact above 4.3 km sec(exp -1). Thus, the upper stability limit for diamond on impact into Al, as determined from our experimental conditions, is between 3.1 and 4.3 km sec(exp -1). Particles of the carbonaceous chondrite Nogoya were also launched into Al at a velocity of 6.2 km sec (exp -1). Laser desorption (L (exp 2) MS) analyses of the impactor residues indicate that the lowest and highest mass polycyclic aromatic hydrocarbons (PAH's) were largely destroyed on impact; those of intermediate mass (202-220 amu) remained at the same level or increased in abundance. In addition, alkyl-substituted homologs of the most abundant pre-impacted PAH's were synthesized during impact. These results suggest that an unknown fraction of some organic compounds can survive low to moderate impact velocities and that synthesized products can be expected to form up to velocities of, at least, 6.5 km sec(exp -1). We also present examples of craters formed by a unique microparticle accelerator that could launch micron-sized particles of almost any coherent material at velocities up to approximately 15 km sec(exp -1). Many of the experiments have a direct bearing on the interpretation of LDEF craters.

  15. Hypervelocity impact survivability experiments for carbonaceous impactors, part 2

    SciTech Connect

    Bunch, T.E.; Paque, J.M.; Becker, L.; Vedder, J.F.; Erlichman, J. ||

    1995-02-01

    Hypervelocity impact experiments were performed to further test the survivability of carbonaceous impactors and to determine potential products that may have been synthesized during impact. Diamonds were launched by the Ames two-stage light gas gun into Al plate at velocities of 2.75 and 3.1 km sec(exp -1). FESEM imagery confirms that diamond fragments survived in both experiments. Earlier experiments found that diamonds were destroyed on impact above 4.3 km sec(exp -1). Thus, the upper stability limit for diamond on impact into Al, as determined from our experimental conditions, is between 3.1 and 4.3 km sec(exp -1). Particles of the carbonaceous chondrite Nogoya were also launched into Al at a velocity of 6.2 km sec (exp -1). Laser desorption (L (exp 2) MS) analyses of the impactor residues indicate that the lowest and highest mass polycyclic aromatic hydrocarbons (PAH`s) were largely destroyed on impact; those of intermediate mass (202-220 amu) remained at the same level or increased in abundance. In addition, alkyl-substituted homologs of the most abundant pre-impacted PAH`s were synthesized during impact. These results suggest that an unknown fraction of some organic compounds can survive low to moderate impact velocities and that synthesized products can be expected to form up to velocities of, at least, 6.5 km sec(exp -1). The authors also present examples of craters formed by a unique microparticle accelerator that could launch micron-sized particles of almost any coherent material at velocities up to approximately 15 km sec(exp -1). Many of the experiments have a direct bearing on the interpretation of LDEF craters.

  16. Detection of meteoroid hypervelocity impacts on the Cluster spacecraft

    NASA Astrophysics Data System (ADS)

    Vaverka, Jakub; Mann, Ingrid; Kero, Johan; De Spiegeleer, Alexandre; Hamrin, Maria; Norberg, Carol; Pitkanen, Timo; Pellinen-Wannberg, Asta

    2016-07-01

    There are several methods to measure the cosmic dust entering the Earth's atmosphere such as space-born dust detectors, meteor and HPLA radars, and optical imaging. One complementary method could be to use electric field instruments initially designed to measure electric waves. A plasma cloud generated by a hypervelocity dust impact on a spacecraft body can be detected by the electric field instruments commonly operated on the spacecraft. Since Earth-orbiting missions are generally not equipped with conventional dust detectors, the electric field instruments offer an alternative method to measure the Earth's dust environment. We present the first detection of dust impacts on one of the Earth-orbiting Cluster satellites recorded by the Wide-Band Data (WBD) instrument. We describe the concept of dust impact detection focused on specifics of the Cluster spacecraft and the WBD instrument and their influence on dust impact detection. The detected pulses are compared with theoretical shape based on the model of the recollection of plasma clouds electrons. The estimation of the size and the velocity of the impinging dust grains from the amplitude of the Cluster voltage pulses shown that such impacts can be generated by grains of radius of r = 0.1 μm impacting with the velocity v ˜100 km/s or by grains of radius r = 1 μm impacting with the velocity v ˜10 km/s. We discuss the sensitivity of this method for dust grain detection showing that grains of radius r = 0.01 μm can be detected when impacting with velocity v ˜300 km/s and grains of radius r = 10 μm with velocity v ˜1 km/s if the WBD instrument operates in the high gain level (75 dB).

  17. Data report of hypervelocity micro-particle impact light flash data and MOS impact detector output

    NASA Astrophysics Data System (ADS)

    Serna, Patrick J.

    1995-06-01

    A series of hypervelocity impact tests were conducted at the Max-Plank Institut fur Kernphysik, Heidelberg, Germany using the Institut's 2 MV Van De Graaff micro-particle accelerator. The purpose of this experimental effort was to collect impact flash data resulting from hypervelocity impact events. The results of these test experiments are to be correlated with actual waveforms obtained from on-orbit systems. Furthermore, these experimental results will supplement ongoing theoretical predictions being conducted within the Phillips Laboratory by the Space Kinetic Impact/Debris Branch (pLJWSCD). This report only describes the instrumentation configuration and presents data collected from light flash measurements and a MOS micro-particle impact detector. An analysis of the acquired light flash data is contained in a separate report authored by Allahdadi, Medina, Serna, and Long. Iron particles in the mass range of 1 x 10(exp -15) to 8 x 10(exp -18) kg were accelerated to velocities between 7 and 38 km/sec. Three targets were used for these impact test: spacecraft optical lens, spacecraft optical sunshade, and MOS spacecraft micro-particle impact detector. The hypervelocity particle impacted the lens and micro-particle impact detector targets normal to the target surface. The sunshade was impacted at a 25 degree angle measured from the particle direction of flight.

  18. Hypervelocity Impact (HVI). Volume 4; WLE Small-Scale Fiberglass Panel Flat Target C-2

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Target C-2 was to study impacts through the reinforced carboncarbon (RCC) panels of the Wing Leading Edge. Fiberglass was used in place of RCC in the initial tests. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.

  19. Atomistic Modeling of the Hypervelocity Impact of Electrosprayed Nanodroplets

    NASA Astrophysics Data System (ADS)

    Saiz Poyatos, Fernan

    Uniform beams of nanodroplets can be electrosprayed in a vacuum by applying strong electric fields at the tip of an emitter fed with an ionic liquid. These projectiles can be electrostatically accelerated up to velocities of several kilometers per second, and directed towards the surface of a crystalline solid to produce a hypervelocity impact. The phenomenology of these nanodroplet impacts is diverse: for example, it has been observed that the associated sputtering yield is of order one; and that at high enough projectile velocity the bombardment amorphizes the surface of silicon. However there is no detailed understanding of the physical mechanisms behind these observations. The goal of this doctoral research is to correct this situation. Molecular Dynamics (MD) are employed to simulate a number of nanodroplet impacts, which in turn yields accurate thermodynamic and structural information of the target. This information reveals that the amorphization is caused by the fast cooling of the liquid layer produced on the impact face, and the sputtering is caused by the evaporation of the melt. A collection of sensitivity analysis gauges how both phenomena are influenced by the silicon interaction potential, and the projectile's velocity, size, angle of incidence, dose, and composition. The projectile's velocity plays the most significant role. The thickness of the melt becomes comparable to the droplet's diameter at around 3 km/s, as reported by the experiments. Sputtering is first observed approximately at 3 km/s in agreement with the evaporation mechanism. The projectile's composition plays a major role. By using droplets with molecules of larger size and weight, the temperatures and sputtering near the impact interface increase considerably.

  20. Hypervelocity impacts into porous graphite: experiments and simulations

    NASA Astrophysics Data System (ADS)

    Hébert, D.; Seisson, G.; Rullier, J.-L.; Bertron, I.; Hallo, L.; Chevalier, J.-M.; Thessieux, C.; Guillet, F.; Boustie, M.; Berthe, L.

    2017-01-01

    We present experiments and numerical simulations of hypervelocity impacts of 0.5 mm steel spheres into graphite, for velocities ranging between 1100 and 4500 m s-1. Experiments have evidenced that, after a particular striking velocity, depth of penetration no longer increases but decreases. Moreover, the projectile is observed to be trapped below the crater surface. Using numerical simulations, we show how this experimental result can be related to both materials, yield strength. A Johnson-Cook model is developed for the steel projectile, based on the literature data. A simple model is proposed for the graphite yield strength, including a piecewise pressure dependence of the Drucker-Prager form, which coefficients have been chosen to reproduce the projectile penetration depth. Comparisons between experiments and simulations are presented and discussed. The damage properties of both materials are also considered, by using a threshold on the first principal stress as a tensile failure criterion. An additional compressive failure model is also used for graphite when the equivalent strain reaches a maximum value. We show that the experimental crater diameter is directly related to the graphite spall strength. Uncertainties on the target yield stress and failure strength are estimated. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  1. Induction Heating of Hypervelocity Impact Samples to 2500 Degrees Centigrade

    NASA Technical Reports Server (NTRS)

    Simmons, Joshua; Pardo, Art; Henderson, Don; Rodriguez, Karen

    2014-01-01

    The Remote Hypervelocity Test Laboratory (RHTL) at White Sands Test Facility (WSTF) was asked to heat samples up to 2500 degrees Centigrade (4532 degrees Fahrenheit) to simulate reentry scenarios of crafts where heated shields are impacted with single small particles ranging from 0.2 to 1.0 millimeters (.008 to.039 inches) of various materials. The team decided an electromagnetic induction (induction heater) was the best method to achieve and control the temperatures in a rapid manner. The samples consisted of three-dimensional carbon-carbon and two-dimensional carbon-phenolic, which are both electrically conductive. After several attempts the team was able to achieve over 2500 degrees Centigrade (4532 degrees Fahrenheit) in ambient atmosphere. When the system was moved to the target chamber and the vacuum system evacuated down to 250 millitorr, arcing occurred between the bus bars and tank, the feedthrough fittings that carried the coolant and current, and between the target sample and coil. To overcome this arcing, conformal coatings, room temperature vulcanization (RTV) silicone, and other non-conductive materials were used to isolate the electromagnetic fields.

  2. Material characteristics for an analytic hypervelocity impact performance model

    NASA Astrophysics Data System (ADS)

    Miller, Joshua; Ryan, Shannon

    2015-06-01

    A performance model has recently been developed to describe the evolution of a hypervelocity impact of a threat with a dual-wall, Whipple shield. The Whipple shield uses an initial sacrificial wall to initiate threat fragmentation and melt before the debris expands over a void and is subsequently arrested by the second wall in front of a critical component. As such, understanding the initial interaction of the threat particle and the sacrificial wall is crucial to modeling the overall shield performance. Among the key material parameters that must be defined for the threat particle and sacrificial wall are the equilibrium shock wave states and tensile response to vacuum exposure. This paper documents the work performed to obtain the necessary material characteristics and a description of the fragmentation of the threat needed for the performance model. The results from the use of these quantities within the model are compared here with hydrodynamic simulations and available experimental records that have sought to characterize these parameters.

  3. Structural Damage Prediction and Analysis for Hypervelocity Impact

    NASA Technical Reports Server (NTRS)

    Elfer, Norman

    1995-01-01

    It is necessary to integrate a wide variety of technical disciplines to provide an analysis of structural damage to a spacecraft due to hypervelocity impact. There are many uncertainties, and more detailed investigation is warranted, in each technical discipline. However, a total picture of the debris and meteoroid hazard is required to support manned spaceflight in general, and the international Space Station in particular. In the performance of this contract, besides producing a handbook, research and development was conducted in several different areas. The contract was broken into six separate tasks. Each task objectives and accomplishments will be reviewed in the following sections. The Handbook and separate task reports are contained as attachments to the final report. The final section summarizes all of the recommendations coming out of this study. The analyses and comments are general design guidelines and not necessarily applicable to final Space Station designs since several configuration and detailed design changes were being made during the course of this contract. Rather, the analyses and comments may indicate either a point-in-time concept analysis, available test data, or desirable protection goals, not hindered by the design and operation constraints faced by Space Station designers.

  4. Oblique and lateral impact response of the PMHS thorax.

    PubMed

    Shaw, Joshua M; Herriott, Rodney G; McFadden, Joseph D; Donnelly, Bruce R; Bolte, John H

    2006-11-01

    This study characterizes the PMHS thoracic response to blunt impact in oblique and lateral directions. A significant amount of data has been collected from lateral impacts conducted on human cadavers. Substantially less data has been collected from impacts that are anterior of lateral in an oblique direction. In the past, data collected from the handful of oblique impact studies were considered to be similar enough to the data from purely lateral impacts such that the oblique data were combined with data from lateral impacts. Defining the biomechanical response of the PMHS thorax to oblique impact is of great importance in side impact vehicle crashes where the loading is often anterior-oblique in direction. Data in this study was obtained from a chestband placed on the thorax at the level of impact to measure thoracic deflection. Two low energy impacts were conducted on each of seven subjects at 2.5 m/s, with one lateral impact and one oblique impact to opposite sides of each PMHS. Data was normalized using the Mertz-Viano method for a two mass system to allow for inter-subject comparisons. Force versus deflection response corridors were generated for the two impact types using an objective mathematical approach and compared to one another. Results were also compared to existing data for oblique and lateral thoracic impacts. The oblique thoracic response in low speed pendulum impacts was found to be different than the lateral thoracic response, in terms of force and deflection. Specifically, the lateral force was greater than the oblique force, and oblique deflection greater than lateral deflection for equal energy impacts.

  5. Hellas basin, Mars: Formation by oblique impact

    NASA Technical Reports Server (NTRS)

    Leonard, Gregory J.; Tanaka, Kenneth L.

    1993-01-01

    Hellas, a 2,000-km-diameter, roughly circular multiring impact basin in the southern highlands of Mars, has a pronounced southeastern lobe of rim material that extends for some 1,500 km. This lobe and a system of ridges concentric to the southern part of the basin (including part of the lobe) were interpreted to be formed by an oblique impact that was inclined in the direction of the lobe. Our preliminary geologic mapping of the Hellas region (lat -20 to -65 deg, long 250 to 320 deg) at 1:5,000,000 scale gives this hypothesis additional supporting evidence, including a symmetric distribution of basin ejecta and volcanic centers across the inferred trend of the impact. Furthermore, measurements of relief indicate that the downrange ejecta may be about twice as thick as they are elsewhere around the rim.

  6. Determining orbital particle parameters of impacts into germanium using morphology analysis and calibration data from hypervelocity impact experiments in the laboratory

    NASA Technical Reports Server (NTRS)

    Paul, Klaus G.

    1995-01-01

    This paper describes the work that is done at the Lehrstuhl fur Raumfahrttechnik (lrt) at the Technische Universitat Munchen to examine particle impacts into germanium surfaces which were flown on board the LDEF satellite. Besides the description of the processing of the samples, a brief overview of the particle launchers at our institute is given together with descriptions of impact morphology of high- and hypervelocity particles into germanium. Since germanium is a brittle, almost glass-like material, the impact morphology may also be interesting for anyone dealing with materials such as optics and solar cells. The main focus of our investigations is to learn about the impacting particle's properties, for example mass, velocity and direction. This is done by examining the morphology, various geometry parameters, crater obliqueness and crater volume.

  7. Measurement of Oblique Impact-generated Shear Waves

    NASA Technical Reports Server (NTRS)

    Dahl, J. M.; Schultz, P. H.

    2001-01-01

    Experimental strain measurements reveal that oblique impacts can generate shear waves with displacements as large as those in the P-wave. Large oblique impacts may thus be more efficient sources of surface disruption than vertical impacts. Additional information is contained in the original extended abstract.

  8. Improving Metallic Thermal Protection System Hypervelocity Impact Resistance Through Design of Experiments Approach

    NASA Technical Reports Server (NTRS)

    Poteet, Carl C.; Blosser, Max L.

    2001-01-01

    A design of experiments approach has been implemented using computational hypervelocity impact simulations to determine the most effective place to add mass to an existing metallic Thermal Protection System (TPS) to improve hypervelocity impact protection. Simulations were performed using axisymmetric models in CTH, a shock-physics code developed by Sandia National Laboratories, and validated by comparison with existing test data. The axisymmetric models were then used in a statistical sensitivity analysis to determine the influence of five design parameters on degree of hypervelocity particle dispersion. Several damage metrics were identified and evaluated. Damage metrics related to the extent of substructure damage were seen to produce misleading results, however damage metrics related to the degree of dispersion of the hypervelocity particle produced results that corresponded to physical intuition. Based on analysis of variance results it was concluded that the most effective way to increase hypervelocity impact resistance is to increase the thickness of the outer foil layer. Increasing the spacing between the outer surface and the substructure is also very effective at increasing dispersion.

  9. Hypervelocity impact induced arcing and Kapton pyrolization in a plasma environment

    NASA Technical Reports Server (NTRS)

    Christie, Robert J.; Best, Steve R.; Myhre, Craig A.

    1994-01-01

    Tests were performed on the Space Station Freedom (SSF) solar array flat conductor circuit (FCC) to determine if hypervelocity impacts could induce pyrolization of Kapton and/or cross-conductor arcing. A sample piece of FCC was placed in a plasma environment and biased to +200 V relative to the plasma potential. The FCC was then impacted with particles in the 100 micron size range with hypervelocities of about 7 km/s. These tests were unable to induce Kapton pyrolization, cross-conductor arcing, or any other plasma interaction.

  10. Computational modeling of electrostatic charge and fields produced by hypervelocity impact

    SciTech Connect

    Crawford, David A.

    2015-05-19

    Following prior experimental evidence of electrostatic charge separation, electric and magnetic fields produced by hypervelocity impact, we have developed a model of electrostatic charge separation based on plasma sheath theory and implemented it into the CTH shock physics code. Preliminary assessment of the model shows good qualitative and quantitative agreement between the model and prior experiments at least in the hypervelocity regime for the porous carbonate material tested. The model agrees with the scaling analysis of experimental data performed in the prior work, suggesting that electric charge separation and the resulting electric and magnetic fields can be a substantial effect at larger scales, higher impact velocities, or both.

  11. Hypervelocity Impact (HVI). Volume 8; Tile Small Targets A-1, Ag-1, B-1, and Bg-1

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Targets A-1, Ag-1, B-1, and Bg-1 was to study hypervelocity impacts on the reinforced Shuttle Heat Shield Tiles of the Wing. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.

  12. Response of Organic Materials to Hypervelocity Impacts (up to 11.2 km/sec)

    NASA Astrophysics Data System (ADS)

    Bass, D. S.; Murphy, W. M.; Miller, G. P.; Grosch, D. J.; Walker, J. D.; Mullin, A.; Waite, J. H.

    1998-09-01

    It is speculated that organic-rich planetesimals played a role in the origin of life on Earth. However, the mechanism by which organics could have been delivered from space to a planetary surface is difficult to determine. Particularly problematic is the question of the stability of organic material under hypervelocity impact conditions. Although some evidence suggests organic molecules cannot survive impacts from projectile velocities greater than about 10 km/sec [1], other investigators have found that impacts create a favorable environment for post-shock recombination of organic molecules in the plume phase [2, 3]. Understanding the mechanisms involved in delivering organics to a planetary surface remains difficult to assess due to the lack of experimental results of hypervelocity impacts, particularly in the velocity range of tens of km/sec. Organic material preservation and destruction from impact shocks, the synthesis of organics in the post-impact plume environment, and implications of these processes for Earth and Mars can be investigated by launching an inorganic projectile into an analog planetesimal-and-bolide organic-rich target. We explored the pressure and temperature ranges of hypervelocity impacts (11.2 km/sec) through simulations with CTH impact physics computer code. Using an inhibited shaped-charge launcher, we also experimentally determined the response of organic material to hypervelocity impacts. Initial work focused on saturating well-characterized zeolitic tuff with an aqueous solution containing dissolved naphthalene, a common polycyclic aromatic hydrocarbon (PAH). Porosity measurements, thin section, and x-ray diffraction analyses were performed to determine that the tuff is primarily fine-grained clinoptilolite. In order to distinguish between contaminants and compounds generated or destroyed in the impact, we tagged the aqueous component of our target with deuterium. Experimental tests revealed that to first order, naphthalene survived

  13. Hypervelocity impact study: The effect of impact angle on crater morphology

    NASA Technical Reports Server (NTRS)

    Crawford, Gary; Hill, David; Rose, Frank E.; Zee, Ralph; Best, Steve; Crumpler, Mike

    1993-01-01

    The Space Power Institute (SPI) of Auburn University has conducted preliminary tests on the effects of impact angle on crater morphology for hypervelocity impacts. Copper target plates were set at angles of 30 deg and 60 deg from the particle flight path. For the 30 deg impact, the craters looked almost identical to earlier normal incidence impacts. The only difference found was in the apparent distribution of particle residue within the crater, and further research is needed to verify this. The 60 deg impacts showed marked differences in crater symmetry, crater lip shape, and particle residue distribution. Further research on angle effects is planned, because the particle velocities for these shots were relatively slow (7 km/s or less).

  14. Hypervelocity impact on brittle materials of semi-infinite thickness: fracture morphology related to projectile diameter

    NASA Astrophysics Data System (ADS)

    Taylor, Emma A.; Kay, Laurie; Shrine, Nick R. G.

    Hypervelocity impact on brittle materials produces features not observed on ductile targets. Low fracture toughness and high yield strength produce a range of fracture morphologies including cracking, spallation and shatter. For sub-mm diameter projectiles, impact features are characterised by petaloid spallation separated by radial cracks. The conchoidal or spallation diameter is a parameter in current cratering equations. An alternative method for interpreting hypervelocity impacts on glass targets of semi-infinite thickness is tested against impact data produced using the Light Gas Gun (LGG) facility at the University of Kent at Canterbury (UKC), U.K. Spherical projectiles of glass and other materials with diameters 30-300 μm were fired at ~5 km s^-1 at a glass target of semi-infinite thickness. The data is used to test a power law relationship between projectile diameter and crack length. The results of this work are compared with published cratering/spallation equations for brittle materials.

  15. Time-frequency Analysis for Acoustic Emission Signals of Hypervelocity Impact

    NASA Astrophysics Data System (ADS)

    Liu, W. G.; Pang, B. J.; Zhang, W.; Sun, F.; Guan, G. S.

    The risk of collision of man-made orbital debris with spacecraft in near Earth orbits continues to increase A major of the space debris between 1mm and 10mm can t be well tracked in Earth orbits Damage from these un-tracked debris impacts is a serious hazard to aircraft and spacecraft These on-orbit collisions occur at velocities exceeding 10km s and at these velocities even very small particles can create significant damage The development of in-situ impact detecting system is indispensable for protecting the spacecraft from tragedy malfunction by the debris Acoustic Emission AE detecting technique has been recognized as an important technology for non-destructive detecting due to the AE signals offering a potentially useful additional means of non-invasively gathering concerning the state of spacecrafts Also Acoustic emission health monitoring is able to detect locate and assess impact damage when the spacecrafts is impacted by hypervelocity space debris and micrometeoroids This information can help operators and designers at the ground station take effective measures to maintain the function of spacecraft In this article Acoustic emission AE is used for characterization and location for hypervelocity Impacts Two different Acoustic Emission AE sensors were used to detect the arrival time and signals of the hits Hypervelocity Impacts were generated with a two-stage light-gas gun firing small Aluminum ball projectiles 4mm 6 4mm In the impact studies the signals were recorded with Disp AEwin PAC instruments by the conventional crossing

  16. Effect of oblique impact on impact strength of planetesimals

    NASA Astrophysics Data System (ADS)

    Yasui, Minami; Yoshida, Yusaku; Matsue, Kazuma; Takano, Shota; Arakawa, Masahiko; Ogawa, Kazunori; Okamoto, Chisato

    2016-10-01

    Collisional processes among planetesimals have played an important role for the formation and the evolution of the bodies in the solar system. Some researchers conducted impact experiments to examine the effects of target material, impact velocity, etc., on the impact strength. Planetesimals could collide with each other at various impact angles. Therefore, the effect of impact angle on the impact strength should be examined, but there are only a few studies about oblique impact experiments. In this study, we conducted oblique impact experiments of porous gypsum and glass spheres simulating planetesimals and examined the effect of the impact angle on the impact strength.We used a porous gypsum sphere and a glass sphere as a target. We carried out impact experiments by using two-stage H2 gas gun at Kobe University. A polycarbonate spherical projectile was accelerated at 2 to 7 km/s. The impact angle, θ, changed from 10° to 90° (90° at a head-on impact). The impact phenomena were observed by a high-speed camera to measure the fragment velocities.The impact strength Q* is defined as an energy density Q, which is the kinetic energy of impactor normalized by the target mass, when the largest fragment mass is half of the original target mass. In both cases of porous gypsum and glass targets, the Q* became larger as the θ decreased. We reanalyzed our results by using the effective energy density, Qc*, defined as Qsin2θ and we found that the results of oblique impacts matched with those of a head-on impact. Furthermore, the relationship between the Qc and the normalized largest fragment mass, ml/Mt, could be fitted by ml/Mt=A×Qc-p and the parameters, A and p, were 82.2 and 0.72 for a porous gypsum target and 1.1×106 and 2.12 for a glass target, respectively. We defined the impact strength Qc* by using the Qc, and the Qc* was about 1000 J/kg for both targets. The power p for a glass target was about 3 times larger than that for a porous gypsum target. This means

  17. Hypervelocity Impact Analysis of International Space Station Whipple and Enhanced Stuffed Whipple Shields

    DTIC Science & Technology

    2004-12-01

    The International Space Station (ISS) must be able to withstand the hypervelocity impacts of micrometeoroids and orbital debris that strike its many... orbital debris and micrometeoroid environment. Based upon this environment, special multi-stage shields called Whipple and Enhanced Stuffed Whipple Shields...thesis is to provide the Department of Defense a background in satellite shield theory and design in order to improve protection against micrometeoroid and orbital debris impacts on future space-based national systems.

  18. First-Order Simulation of Strewn Debris Fields Accompanying Exoatmospheric Re-entry Vehicle Fragmentation by Hypervelocity Impact

    DTIC Science & Technology

    1994-09-01

    1961). 21. Passey, Quinn R., H.J. Melosh , Effects of Atmospheric Breakup on Crater Field Formation, Icarus 42, 211-253 (1980). 22. CRC Handbook...ORDER SIMULATION OF STREWN DEBRIS FIELDS ACCO:MPANYING EXOATMOSPHERIC RE-ENTRY VEillCLE FRAGMENTATION BY HYPERVELOCITY IMPACT by Dr. Gregory W...STREWN DEBRIS FIELDS ACCOMPANYING EXOATMOSPHERIC RE-ENTRY VEHICLE FRAGMENTATION BY HYPERVELOCITY IMPACT by Dr. Gregory W. Frank Recommended By

  19. Stochastic modeling of hypervelocity impacts in attitude propagation of space debris

    NASA Astrophysics Data System (ADS)

    Sagnières, Luc B. M.; Sharf, Inna

    2017-02-01

    Bombardment of orbital debris and micrometeoroids on active and inoperative satellites is becoming an increasing threat to space operations and has significant consequences on space missions. Concerns with orbital debris have led agencies to start developing debris removal missions and knowing a target's rotational parameters ahead of time is crucial to the eventual success of such a mission. A new method is proposed, enabling the inclusion of hypervelocity impacts into spacecraft attitude propagation models by considering the transfer of angular momentum from collisions as a stochastic jump process. Furthermore, the additional momentum transfer due to ejecta created during these hypervelocity impacts, an effect known as momentum enhancement, is considered. In order to assess the importance of collisions on attitude propagation, the developed model is applied to two pieces of space debris by using impact fluxes from ESA's Meteoroid and Space Debris Terrestrial Environment Reference (MASTER) model.

  20. Detection of hypervelocity impact radio frequency pulses through prior constrained source separation

    NASA Astrophysics Data System (ADS)

    Nuttall, Andrew; Kochenderfer, Mykel; Close, Sigrid

    2016-10-01

    Hypervelocity dust impacts produce electromagnetic pulses in the radio frequency (RF) spectrum that scales with impactor mass and velocity. Due to the mass acceleration limitations of ground-based facilities, detecting emissions from impacts in a laboratory setup is difficult due to their low output power. This paper presents a general probabilistic technique to perform signal excision, which was applied to synthetic and hypervelocity impact data sets. The task of excising multiple signals from a single observation of their mixtures is referred to as underdetermined blind source separation (BSS). This paper introduces a framework for solving underdetermined BSS problems when there is only one observation signal by leveraging often overlooked prior information. The most probable solutions for the source signals are computed by solving an iterative constrained optimization problem that seeks to maximize the posterior probability of the system model. In the hypervelocity impact data set, the goal was to reduce the noise floor on an RF antenna by modeling and extracting exterior sources of noise. It was found that the algorithm described in this paper was able to model signals in the observation and subtract them while still maintaining the spectral and temporal content of the remaining signals. Through the use of this methodology, previously hidden impact emissions were able to be isolated and identified for further characterization.

  1. Oblique drop impact onto a deep liquid pool

    NASA Astrophysics Data System (ADS)

    Gielen, Marise V.; Sleutel, Pascal; Benschop, Jos; Riepen, Michel; Voronina, Victoria; Lohse, Detlef; Snoeijer, Jacco H.; Versluis, Michel; Gelderblom, Hanneke

    2016-11-01

    While perpendicular drop impact onto a deep liquid pool is widely studied, the dynamics after oblique drop impact remain to be quantified. Here we study, for the first time, oblique drop impact experiments onto a deep liquid pool using ultrafast imaging. We quantify the splashing behavior and derive a model to describe the splashing threshold based on the impact angle and Weber number of the impacting drop. In addition, we study the cavity formation below the water surface and quantify the cavity depth and displacement. Based on the asymmetric cavity dynamics, we develop a method to predict the direction in which a jetted droplet can escape the cavity.

  2. Test study on the performance of shielding configuration with stuffed layer under hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Ke, Fa-wei; Huang, Jie; Wen, Xue-zhong; Ma, Zhao-xia; Liu, Sen

    2016-10-01

    In order to study the cracking and intercepting mechanism of stuffed layer configuration on the debris cloud and to develop stuffed layer configuration with better performance, the hypervelocity impact tests on shielding configurations with stuffed layer were carried out. Firstly, the hypervelocity impact tests on the shielding configuration with stuffed layer of 3 layer ceramic fibre and 3 layer aramid fibre were finished, the study results showed that the debris cloud generated by the aluminum sphere impacting bumper at the velocity of about 6.2 km/s would be racked and intercepted by the stuffed layer configuration efficiently when the ceramic fibre layers and aramid fibre layers were jointed together, however, the shielding performance would be declined when the ceramic fibre layers and aramid fibre layers were divided by some distance. The mechanism of stuffed layer racking and intercepting the debris cloud was analyzed according to the above test results. Secondly, based on the mechanism of the stuffed layer cracking and intercepint debirs cloud the hypervelocity impact tests on the following three stuffed layer structures with the equivalent areal density to the 1 mm-thick aluminum plate were also carried out to compare their performance of cracking and intercepting debris cloud. The mechanisms of stuffed layer racking and intercepting the debris cloud were validated by the test result. Thirdly, the influence of the stuffed layer position on the shielding performance was studied by the test, too. The test results would provide reference for the design of better performance shielding configuration with stuffed layer.

  3. Computational modeling of electrostatic charge and fields produced by hypervelocity impact

    DOE PAGES

    Crawford, David A.

    2015-05-19

    Following prior experimental evidence of electrostatic charge separation, electric and magnetic fields produced by hypervelocity impact, we have developed a model of electrostatic charge separation based on plasma sheath theory and implemented it into the CTH shock physics code. Preliminary assessment of the model shows good qualitative and quantitative agreement between the model and prior experiments at least in the hypervelocity regime for the porous carbonate material tested. The model agrees with the scaling analysis of experimental data performed in the prior work, suggesting that electric charge separation and the resulting electric and magnetic fields can be a substantial effectmore » at larger scales, higher impact velocities, or both.« less

  4. Damage Characteristics of the Logical Chip Module Due to Plasma Created by Hypervelocity Impacts

    NASA Astrophysics Data System (ADS)

    Tang, Enling; Wu, Jin; Wang, Meng; Zhang, Lijiao; Xiang, Shenghai; Xia, Jin; Liu, Shuhua; He, Liping; Han, Yafei; Xu, Mingyang; Zhang, Shuang; Yuan, Jianfei

    2016-04-01

    To researching the damage characteristics of typical logical chip modules in spacecraft due to plasma generated by hypervelocity impacts, we have established a triple Langmuir probe diagnostic system and a logical chips measurement system, which were used to diagnose plasma characteristic parameters and the logical chip module's logical state changes due to the plasma created by a 7075 aluminum projectile hypervelocity impact on the 2A12 aluminum target. Three sets of experiments were performed with the collision speeds of 2.85 km/s, 3.1 km/s and 2.20 km/s, at the same incident angles of 30 degrees and logical chip module's positions by using a two-stage light gas gun loading system, a plasma characteristic parameters diagnostic system and a logical chip module's logical state measurement system, respectively. Electron temperature and density were measured at given position and azimuth, and damage estimation was performed for the logical chip module by using the data acquisition system. Experimental results showed that temporary damage could be induced on logical chip modules in spacecraft by plasma generated by hypervelocity impacts under the given experimental conditions and the sensors' position and azimuth. supported by National Natural Science Foundation of China (Nos. 10972145, 11272218, 11472178), Program for Liaoning Excellent Talents in University of China (No. LR2013008), Open Foundation of Key Laboratory of Liaoning Weapon Science and Technology, Liaoning Province Talents Engineering Projects of China (No. 2012921044)

  5. Oblique impact: Projectile richochet, concomitant ejecta and momentum transfer

    NASA Technical Reports Server (NTRS)

    Gault, Donald E.; Schultz, Peter H.

    1987-01-01

    Experimental studies of oblique impact indicate that projectile richochet occurs for trajectory angles less than 30 deg and that the richocheted projectile, accompanied by some target material, are ejected at velocities that are a large fraction of the impact velocity. Because the probability of occurrence of oblique impact less than 30 deg on a planetary body is about one out of every four impact events, oblique impacts would seem to be a potential mechanism to provide a source of meteorites from even the largest atmosphere-free planetary bodies. Because the amount of richocheted target material cannot be determined from previous results, additional experiments in the Ames Vertical Gun laboratory were undertaken toward that purpose using pendulums; one to measure momentum of the richocheted projectile and concomitant target ejecta, and a second to measure the momentum transferred from projectile to target. These experiments are briefly discussed.

  6. Predicting multi-wall structural response to hypervelocity impact using the hull code

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.

    1993-01-01

    Previously, multi-wall structures have been analyzed extensively, primarily through experiment, as a means of increasing the meteoroid/space debris impact protection of spacecraft. As structural configurations become more varied, the number of tests required to characterize their response increases dramatically. As an alternative to experimental testing, numerical modeling of high-speed impact phenomena is often being used to predict the response of a variety of structural systems under different impact loading conditions. The results of comparing experimental tests to Hull Hydrodynamic Computer Code predictions are reported. Also, the results of a numerical parametric study of multi-wall structural response to hypervelocity cylindrical projectile impact are presented.

  7. Chemical fractionation resulting from the hypervelocity impact process on metallic targets

    NASA Astrophysics Data System (ADS)

    Libourel, Guy; Ganino, Clément; Michel, Patrick; Nakamura, Akiko

    2016-10-01

    In a regime of hypervelocity impact cratering, the internal energy deposited in target + projectile region is large enough to melt and/or vaporize part of the material involved, which expands rapidly away from the impact site. Fast and energetic impact processes have therefore important chemical consequences on the projectile and target rock transformations during major impact events. Several physical and chemical processes occurred indeed in the short duration of the impact, e.g., melting, coating, mixing, condensation, crystallization, redox reactions, quenching, etc., all concurring to alter both projectile and target composition on the irreversible way.In order to document such hypervelocity impact chemical fractionation, we have started a program of impact experiments by shooting doped (27 trace elements) millimeter-sized basalt projectiles on metallic target using a two stages light gas gun. With impact velocity in the range from 0.25 to 7 km.s-1, these experiments are aimed i) to characterize chemically and texturally all the post-mortem materials (e.g., target, crater, impact melt, condensates, and ejectas), in order ii) to make a chemical mass balance budget of the process, and iii) to relate it to the kinetic energy involved in the hypervelocity impacts for scaling law purpose. Irrespective of the incident velocities, our preliminary results show the importance of redox processes, the significant changes in the ejecta composition (e.g., iron enrichment) and the systematic coating of the crater by the impact melt [1]. On the target side, characterizations of the microstructure of the shocked iron alloys to better constrain the shielding processes. We also show how these results have great implications in our understanding on the current surface properties of small bodies, and chiefly in the case of M-type asteroids. [1] Ganino C, Libourel G, Nakamura AM & Michel P (2015) Goldschmidt Abstracts, 2015 990.

  8. Theory and experiments characterizing hypervelocity impact plasmas on biased spacecraft materials

    SciTech Connect

    Lee, Nicolas; Close, Sigrid; Goel, Ashish; Johnson, Theresa; Lauben, David; Linscott, Ivan; Strauss, David; Bugiel, Sebastian; Mocker, Anna; Srama, Ralf

    2013-03-15

    Space weather including solar activity and background plasma sets up spacecraft conditions that can magnify the threat from hypervelocity impacts. Hypervelocity impactors include both meteoroids, traveling between 11 and 72 km/s, and orbital debris, with typical impact speeds of 10 km/s. When an impactor encounters a spacecraft, its kinetic energy is converted over a very short timescale into energy of vaporization and ionization, resulting in a small, dense plasma. This plasma can produce radio frequency (RF) emission, causing electrical anomalies within the spacecraft. In order to study this phenomenon, we conducted ground-based experiments to study hypervelocity impact plasmas using a Van de Graaff dust accelerator. Iron projectiles ranging from 10{sup -16} g to 10{sup -11} g were fired at speeds of up to 70 km/s into a variety of target materials under a range of surface charging conditions representative of space weather effects. Impact plasmas associated with bare metal targets as well as spacecraft materials were studied. Plasma expansion models were developed to determine the composition and temperature of the impact plasma, shedding light on the plasma dynamics that can lead to spacecraft electrical anomalies. The dependence of these plasma properties on target material, impact speed, and surface charge was analyzed. Our work includes three major results. First, the initial temperature of the impact plasma is at least an order of magnitude lower than previously reported, providing conditions more favorable for sustained RF emission. Second, the composition of impact plasmas from glass targets, unlike that of impact plasmas from tungsten, has low dependence on impact speed, indicating a charge production mechanism that is significant down to orbital debris speeds. Finally, negative ion formation has a strong dependence on target material. These new results can inform the design and operation of spacecraft in order to mitigate future impact-related space

  9. Burst Pressure Failure of Titanium Tanks Damaged by Secondary Plumes from Hypervelocity Impacts on Aluminum Shields

    NASA Technical Reports Server (NTRS)

    Nahra, Henry; Ghosn, Louis; Christiansen, Eric; Davis, B. Alan; Keddy, Chris; Rodriquez, Karen; Miller, Joshua; Bohl, William

    2011-01-01

    Metallic pressure tanks used in space missions are inherently vulnerable to hypervelocity impacts from micrometeoroids and orbital debris; thereby knowledge of impact damage and its effect on the tank integrity is crucial to a spacecraft risk assessment. This paper describes tests that have been performed to assess the effects of hypervelocity impact (HVI) damage on Titanium alloy (Ti-6Al-4V) pressure vessels burst pressure and characteristics. The tests consisted of a pair of HVI impact tests on water-filled Ti-6Al-4V tanks (water being used as a surrogate to the actual propellant) and subsequent burst tests as well as a burst test on an undamaged control tank. The tanks were placed behind Aluminum (Al) shields and then each was impacted with a 7 km/s projectile. The resulting impact debris plumes partially penetrated the Ti-6Al-4V tank surfaces resulting in a distribution of craters. During the burst tests, the tank that failed at a lower burst pressure did appear to have the failure initiating at a crater site with observed spall cracks. A fracture mechanics analysis showed that the tanks failure at the impact location may have been due to a spall crack that formed upon impact of a fragmentation on the Titanium surface. This result was corroborated with a finite element analysis from calculated Von-Mises and hoop stresses.

  10. Determine ISS Soyuz Orbital Module Ballistic Limits for Steel Projectiles Hypervelocity Impact Testing

    NASA Technical Reports Server (NTRS)

    Lyons, Frankel

    2013-01-01

    A new orbital debris environment model (ORDEM 3.0) defines the density distribution of the debris environment in terms of the fraction of debris that are low-density (plastic), medium-density (aluminum) or high-density (steel) particles. This hypervelocity impact (HVI) program focused on assessing ballistic limits (BLs) for steel projectiles impacting the enhanced Soyuz Orbital Module (OM) micrometeoroid and orbital debris (MMOD) shield configuration. The ballistic limit was defined as the projectile size on the threshold of failure of the OM pressure shell as a function of impact speeds and angle. The enhanced OM shield configuration was first introduced with Soyuz 30S (launched in May 2012) to improve the MMOD protection of Soyuz vehicles docked to the International Space Station (ISS). This test program provides HVI data on U.S. materials similar in composition and density to the Russian materials for the enhanced Soyuz OM shield configuration of the vehicle. Data from this test program was used to update ballistic limit equations used in Soyuz OM penetration risk assessments. The objective of this hypervelocity impact test program was to determine the ballistic limit particle size for 440C stainless steel spherical projectiles on the Soyuz OM shielding at several impact conditions (velocity and angle combinations). This test report was prepared by NASA-JSC/ HVIT, upon completion of tests.

  11. Simulation of Hypervelocity Impact Effects on Reinforced Carbon-Carbon. Chapter 6

    NASA Technical Reports Server (NTRS)

    Park, Young-Keun; Fahrenthold, Eric P.

    2004-01-01

    Spacecraft operating in low earth orbit face a significant orbital debris impact hazard. Of particular concern, in the case of the Space Shuttle, are impacts on critical components of the thermal protection system. Recent research has formulated a new material model of reinforced carbon-carbon, for use in the analysis of hypervelocity impact effects on the Space Shuttle wing leading edge. The material model has been validated in simulations of published impact experiments and applied to model orbital debris impacts at velocities beyond the range of current experimental methods. The results suggest that momentum scaling may be used to extrapolate the available experimental data base, in order to predict the size of wing leading edge perforations at impact velocities as high as 13 km/s.

  12. Numerical Simulation of Debris Cloud Propagation inside Gas-Filled Pressure Vessels under Hypervelocity Impact

    NASA Astrophysics Data System (ADS)

    Gai, F. F.; Pang, B. J.; Guan, G. S.

    2009-03-01

    In the paper SPH methods in AUTODYN-2D is used to investigate the characteristics of debris clouds propagation inside the gas-filled pressure vessels for hypervelocity impact on the pressure vessels. The effect of equation of state on debris cloud has been investigated. The numerical simulation performed to analyze the effect of the gas pressure and the impact condition on the propagation of the debris clouds. The result shows that the increase of gas pressure can reduce the damage of the debris clouds' impact on the back wall of vessels when the pressure value is in a certain range. The smaller projectile lead the axial velocity of the debris cloud to stronger deceleration and the debris cloud deceleration is increasing with increased impact velocity. The time of venting begins to occur is related to the "vacuum column" at the direction of impact-axial. The paper studied the effect of impact velocities on gas shock wave.

  13. Analysis of energy dissipation and deposition in elastic bodies impacting at hypervelocities

    NASA Technical Reports Server (NTRS)

    Medina, David F.; Allahdadi, Firooz A.

    1992-01-01

    A series of impact problems were analyzed using the Eulerian hydrocode CTH. The objective was to quantify the amount of energy dissipated locally by a projectile-infinite plate impact. A series of six impact problems were formulated such that the mass and speed of each projectile were varied in order to allow for increasing speed with constant kinetic energy. The properties and dimensions of the plate were the same for each projectile impact. The resulting response of the plate was analyzed for global Kinetic Energy, global momentum, and local maximum shear stress. The percentage of energy dissipated by the various hypervelocity impact phenomena appears as a relative change of shear stress at a point away from the impact in the plate.

  14. The effect of impact angle on craters formed by hypervelocity particles

    NASA Technical Reports Server (NTRS)

    Hill, David C.; Rose, M. Frank; Best, Steve R.; Crumpler, Michael S.; Crawford, Gary D.; Zee, Ralph H.-C.; Bozack, Michael J.

    1995-01-01

    The Space Power Institute (SPI) at Auburn University has conducted experiments on the effects of impact angle on crater morphology and impactor residue retention for hypervelocity impacts. Copper target plates were set at angles of 30 deg, 45 deg, 60 deg, and 75 deg from the particle flight path. For the 30 deg and 45 deg impacts, in the velocity regime greater than 8 km s(exp -1) the resultant craters are almost identical to normal incidence impacts. The only difference found was in the apparent distribution of particle residue within the crater, and further research is needed to verify this. The 60 deg and 75 deg impacts showed marked differences in crater symmetry, crater lip shape, and particle residue distribution in the same velocity regime. Impactor residue shock fractionation effects have been quantified in first-order. It is concluded that a combination of analysis techniques can yield further information on impact velocity, direction, and angle of incidence.

  15. An Ellipsoidal Particle-Finite Element Method for Hypervelocity Impact Simulation. Chapter 1

    NASA Technical Reports Server (NTRS)

    Shivarama, Ravishankar; Fahrenthold, Eric P.

    2004-01-01

    A number of coupled particle-element and hybrid particle-element methods have been developed for the simulation of hypervelocity impact problems, to avoid certain disadvantages associated with the use of pure continuum based or pure particle based methods. To date these methods have employed spherical particles. In recent work a hybrid formulation has been extended to the ellipsoidal particle case. A model formulation approach based on Lagrange's equations, with particles entropies serving as generalized coordinates, avoids the angular momentum conservation problems which have been reported with ellipsoidal smooth particle hydrodynamics models.

  16. Microfractures produced by a laboratory scale hypervelocity impact into granite. [for lunar sample crack spectra interpretation

    NASA Technical Reports Server (NTRS)

    Siegfried, R. W., II; Simmons, G.; Richter, D.; Hoerz, F.

    1977-01-01

    Differential strain analysis and scanning electron microscopy are employed to study the microcracks produced in a granite block by shock waves from a hypervelocity impact. The anisotropy of the pre-shock cracks appears to control the orientations of the microcracks. Over the range 2 to 20 kbar, total crack porosity proves to be linearly related to shock pressure. The effect of the peak shock pressure on the width and median closure pressure of the crack spectra is also investigated. The results of the microcrack study may be useful in interpreting lunar samples.

  17. A Kernel-Free Particle-Finite Element Method for Hypervelocity Impact Simulation. Chapter 4

    NASA Technical Reports Server (NTRS)

    Park, Young-Keun; Fahrenthold, Eric P.

    2004-01-01

    An improved hybrid particle-finite element method has been developed for the simulation of hypervelocity impact problems. Unlike alternative methods, the revised formulation computes the density without reference to any kernel or interpolation functions, for either the density or the rate of dilatation. This simplifies the state space model and leads to a significant reduction in computational cost. The improved method introduces internal energy variables as generalized coordinates in a new formulation of the thermomechanical Lagrange equations. Example problems show good agreement with exact solutions in one dimension and good agreement with experimental data in a three dimensional simulation.

  18. The Production of Contamination on Spacecraft Surfaces by Hypervelocity Debris Impacts

    DTIC Science & Technology

    2000-10-01

    temperatures in the range of 5,000K and pressures of 7.5km/sec and other components of the several megabars when they strike a surface. Low Earth ...glass can be increased so that they can withstand the rigors of ground handling and launch and Spacecraft placed in low- Earth orbit (LEO) are deployment...stresses. exposed to a large flux of hypervelocity impacts by small particles which originate from micro- meteorites and man generated debris"𔃼’ 3. At

  19. Hypervelocity dust impact craters on photovoltaic devices imaged by ion beam induced charge

    NASA Astrophysics Data System (ADS)

    Yang, Changyi; Wu, Yiyong; Lv, Gang; Rubanov, Sergey; Jamieson, David N.

    2015-04-01

    Hypervelocity dust has a speed of greater than 5 km/s and is a significant problem for equipment deployed in space such as satellites because of impacts that damage vulnerable components. Photovoltaic (PV) arrays are especially vulnerable because of their large surface area and the performance can be degraded owing to the disruption of the structure of the junction in the cells making up the array. Satellite PV arrays returned to Earth after service in orbit reveal a large number of craters larger than 5 μm in diameter arising from hypervelocity dust impacts. Extensive prior work has been done on the analysis of the morphology of craters in PV cells to understand the origin of the micrometeoroid that caused the crater and to study the corresponding mechanical damage to the structure of the cell. Generally, about half the craters arise from natural micrometeoroids, about one third from artificial Al-rich debris, probably from solid rocket exhausts, and the remainder from miscellaneous sources both known and unknown. However to date there has not been a microscopic study of the degradation of the electrical characteristics of PV cells exposed to hypervelocity dust impacts. Here we present an ion beam induced charge (IBIC) pilot study by a 2 MeV He microbeam of craters induced on a Hamamatsu PIN diode exposed to artificial hypervelocity Al dust from a dust accelerator. Numerous 5-30 μm diameter craters were identified and the charge collection efficiency of the crater and surrounds mapped with IBIC with bias voltages between 0 and 20 V. At highest bias, it was found the efficiency of the crater had been degraded by about 20% compared to the surrounding material. The speed distribution achieved in the Al dust accelerator was peaked at about 4 km/s compared to 11-68 km/s for dust encountered in low Earth orbit. We are able to extrapolate the charge collection efficiency degradation rate of unbiased cells in space based on our current measurements and the differences

  20. Hypervelocity Impact Testing of IM7/977-3 with Micro-Sized Particles

    NASA Technical Reports Server (NTRS)

    Smith, J. G.; Jegley, D. C.; Siochi, E. J.; Wells, B. K.

    2010-01-01

    Ground-based hypervelocity imapct testing was conducted on IM7/977-3 quasi-isotropic flat panels at normal incidence using micron-sized particles (i.e. less than or equal to 100 microns) of soda lime glass and olivine. Testing was performed at room temperature (RT) and 175 C with results from the 175 C test compared to those obtained at RT. Between 10 and 30 particles with velocities ranging from 5 to 13 km/s impacted each panel surface for each test temperature. Panels were ultrasonically scanned prior to and after impact testing to assess internal damage. Post-impact analysis included microscopic examination of the surface, determination of particle speed and location, and photomicroscopy for microcrack assessment. Internal damage was observed by ultrasonic inspection on panels impacted at 175 C, whereas damage for the RT impacted panels was confined to surface divets/craters as determined by microscopic analysis.

  1. Composition of Plasma Formed from Hypervelocity Dust Impacts

    NASA Astrophysics Data System (ADS)

    Lee, N.; Close, S.; Rymer, A. M.; Mocker, A.

    2012-12-01

    Dust impacts can occur on all solar system bodies but are especially prevalent in the case of the Saturnian moons that are near or within the dust torus produced by Enceladus's plumes. Depending on the mass and charge on these plume particles, they will be influenced by both gravitational and electrodynamic forces, resulting in a range of possible impact speeds on the moons. The plasma formed upon impact can have very different characteristics depending on impact speed and on the electric field due to surface charging at the impact point. Through recent tests conducted at the Max Planck Institute for Nuclear Physics using a Van de Graaff dust accelerator, iron dust particles were electrostatically accelerated to speeds of 3-65 km/s and impacted on a variety of target materials including metallic and glassy surfaces. The target surfaces were connected to a biasing supply to represent surface charging effects. Because of the high specific kinetic energy of the dust particles, upon impact they vaporize along with part of the target surface and a fraction of this material is ionized forming a dense plasma. The impacts produced both positive and negative ions. We made measurements of the net current imparted by this expanding plasma at a distance of several centimeters from the impact point. By setting the bias of the target, we impose an electric field on the charge population, allowing a measurement of plasma composition through time of flight analysis. The figure shows representative measurements of the net current measured by a retarding potential analyzer (RPA) from separate 18 and 19 km/s impacts of 7 fg particles on a glassy surface that was negatively and positively biased, respectively. This target was an optical solar reflector donated by J. Likar of Lockheed Martin for these experiments. These results show that ions of both positive and negative charge can be formed through the mechanism of dust impacts, and has implications on the surface plasma environment

  2. Hypervelocity impact testing above 10 km/s of advanced orbital debris shields

    SciTech Connect

    Christiansen, E.L.; Crews, J.L.; Kerr, J.H.; Chhabildas, L.C.

    1996-05-01

    NASA has developed enhanced performance shields to improve the protection of spacecraft from orbital debris and meteoroid impacts. One of these enhanced shields includes a blanket of Nextel{trademark} ceramic fabric and Kevlar{trademark} high strength fabric that is positioned midway between an aluminum bumper and the spacecraft pressure wall. As part of the evaluation of this new shielding technology, impact data above 10 km/sec has been obtained by NASA Johnson Space Center (JSC) from the Sandia National Laboratories HVL ({open_quotes}hypervelocity launcher{close_quotes}) and the Southwest Research Institute inhibited shaped charge launcher (ISCL). The HVL launches flyer-plates in the velocity range of 10 to 15 km/s while the ISCL launches hollow cylinders at {approximately}11.5km/s. The {gt}10km/s experiments are complemented by hydrocode analysis and light-gas gun testing at the JSC Hypervelocity Impact Test Facility (HIT-F) to assess the effects of projectile shape on shield performance. Results from the testing and analysis indicate that the Nextel{trademark}/Kevlar{trademark} shield provides superior protection performance compared to an all-aluminum shield alternative. {copyright} {ital 1996 American Institute of Physics.}

  3. Design and testing of miniaturized plasma sensor for measuring hypervelocity impact plasmas.

    PubMed

    Goel, A; Tarantino, P M; Lauben, D S; Close, S

    2015-04-01

    An increasingly notable component of the space environment pertains to the impact of meteoroids and orbital debris on spacecraft and the resulting mechanical and electrical damages. Traveling at speeds of tens of km/s, when these particles, collectively referred to as hypervelocity particles, impact a satellite, they vaporize, ionize, and produce a radially expanding plasma that can generate electrically harmful radio frequency emission or serve as a trigger for electrostatic discharge. In order to measure the flux, composition, energy distribution, and temperature of ions and electrons in this plasma, a miniaturized plasma sensor has been developed for carrying out in-situ measurements in space. The sensor comprises an array of electrostatic analyzer wells split into 16 different channels, catering to different species and energy ranges in the plasma. We present results from numerical simulation based optimization of sensor geometry. A novel approach of fabricating the sensor using printed circuit boards is implemented. We also describe the test setup used for calibrating the sensor and show results demonstrating the energy band pass characteristics of the sensor. In addition to the hypervelocity impact plasmas, the plasma sensor developed can also be used to carry out measurements of ionospheric plasma, diagnostics of plasma propulsion systems, and in other space physics experiments.

  4. Design and testing of miniaturized plasma sensor for measuring hypervelocity impact plasmas

    SciTech Connect

    Goel, A. Tarantino, P. M.; Lauben, D. S.; Close, S.

    2015-04-15

    An increasingly notable component of the space environment pertains to the impact of meteoroids and orbital debris on spacecraft and the resulting mechanical and electrical damages. Traveling at speeds of tens of km/s, when these particles, collectively referred to as hypervelocity particles, impact a satellite, they vaporize, ionize, and produce a radially expanding plasma that can generate electrically harmful radio frequency emission or serve as a trigger for electrostatic discharge. In order to measure the flux, composition, energy distribution, and temperature of ions and electrons in this plasma, a miniaturized plasma sensor has been developed for carrying out in-situ measurements in space. The sensor comprises an array of electrostatic analyzer wells split into 16 different channels, catering to different species and energy ranges in the plasma. We present results from numerical simulation based optimization of sensor geometry. A novel approach of fabricating the sensor using printed circuit boards is implemented. We also describe the test setup used for calibrating the sensor and show results demonstrating the energy band pass characteristics of the sensor. In addition to the hypervelocity impact plasmas, the plasma sensor developed can also be used to carry out measurements of ionospheric plasma, diagnostics of plasma propulsion systems, and in other space physics experiments.

  5. Design and testing of miniaturized plasma sensor for measuring hypervelocity impact plasmas

    NASA Astrophysics Data System (ADS)

    Goel, A.; Tarantino, P. M.; Lauben, D. S.; Close, S.

    2015-04-01

    An increasingly notable component of the space environment pertains to the impact of meteoroids and orbital debris on spacecraft and the resulting mechanical and electrical damages. Traveling at speeds of tens of km/s, when these particles, collectively referred to as hypervelocity particles, impact a satellite, they vaporize, ionize, and produce a radially expanding plasma that can generate electrically harmful radio frequency emission or serve as a trigger for electrostatic discharge. In order to measure the flux, composition, energy distribution, and temperature of ions and electrons in this plasma, a miniaturized plasma sensor has been developed for carrying out in-situ measurements in space. The sensor comprises an array of electrostatic analyzer wells split into 16 different channels, catering to different species and energy ranges in the plasma. We present results from numerical simulation based optimization of sensor geometry. A novel approach of fabricating the sensor using printed circuit boards is implemented. We also describe the test setup used for calibrating the sensor and show results demonstrating the energy band pass characteristics of the sensor. In addition to the hypervelocity impact plasmas, the plasma sensor developed can also be used to carry out measurements of ionospheric plasma, diagnostics of plasma propulsion systems, and in other space physics experiments.

  6. Hypervelocity impact testing above 10 km/s of advanced orbital debris shields

    NASA Astrophysics Data System (ADS)

    Christiansen, Eric L.; Crews, Jeanne Lee; Kerr, Justin H.; Chhabildas, Lalit C.

    1996-05-01

    NASA has developed enhanced performance shields to improve the protection of spacecraft from orbital debris and meteoroid impacts. One of these enhanced shields includes a blanket of Nextel™ ceramic fabric and Kevlar™ high strength fabric that is positioned midway between an aluminum bumper and the spacecraft pressure wall. As part of the evaluation of this new shielding technology, impact data above 10 km/sec has been obtained by NASA Johnson Space Center (JSC) from the Sandia National Laboratories HVL ("hypervelocity launcher") and the Southwest Research Institute inhibited shaped charge launcher (ISCL). The HVL launches flyer-plates in the velocity range of 10 to 15 km/s while the ISCL launches hollow cylinders at ˜11.5 km/s. The >10 km/s experiments are complemented by hydrocode analysis and light-gas gun testing at the JSC Hypervelocity Impact Test Facility (HIT-F) to assess the effects of projectile shape on shield performance. Results from the testing and analysis indicate that the Nextel™/Kevlar™ shield provides superior protection performance compared to an all-aluminum shield alternative.

  7. An Exponential Luminous Efficiency Model for Hypervelocity Impact into Regolith

    NASA Technical Reports Server (NTRS)

    Swift, Wesley R.; Moser, D.E.; Suggs, Robb M.; Cooke, W.J.

    2010-01-01

    The flash of thermal radiation produced as part of the impact-crater forming process can be used to determine the energy of the impact if the luminous efficiency is known. From this energy the mass and, ultimately, the mass flux of similar impactors can be deduced. The luminous efficiency, Eta is a unique function of velocity with an extremely large variation in the laboratory range of under 8 km/s but a necessarily small variation with velocity in the meteoric range of 20 to 70 km/s. Impacts into granular or powdery regolith, such as that on the moon, differ from impacts into solid materials in that the energy is deposited via a serial impact process which affects the rate of deposition of internal (thermal) energy. An exponential model of the process is developed which differs from the usual polynomial models of crater formation. The model is valid for the early time portion of the process and focuses on the deposition of internal energy into the regolith. The model is successfully compared with experimental luminous efficiency data from laboratory impacts and from astronomical determinations and scaling factors are estimated. Further work is proposed to clarify the effects of mass and density upon the luminous efficiency scaling factors

  8. Hypervelocity Impact (HVI). Volume 2; WLE Small-Scale Fiberglass Panel Flat Multi-Layer Targets A-1, A-2, and B-1

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Targets A-1, A-2, and B-2 was to study hypervelocity impacts through multi-layered panels simulating Whipple shields on spacecraft. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.

  9. Time Resolved Temperature Measurement of Hypervelocity Impact Generated Plasma Using a Global Optimization Method

    NASA Astrophysics Data System (ADS)

    Hew, Y. M.; Linscott, I.; Close, S.

    2015-12-01

    Meteoroids and orbital debris, collectively referred to as hypervelocity impactors, travel between 7 and 72 km/s in free space. Upon their impact onto the spacecraft, the energy conversion from kinetic to ionization/vaporization occurs within a very brief timescale and results in a small and dense expanding plasma with a very strong optical flash. The radio frequency (RF) emission produced by this plasma can potentially lead to electrical anomalies within the spacecraft. In addition, space weather, such as solar activity and background plasma, can establish spacecraft conditions which can exaggerate the damages done by these impacts. During the impact, a very strong impact flash will be generated. Through the studying of this emission spectrum of the impact, we hope to study the impact generated gas cloud/plasma properties. The impact flash emitted from a ground-based hypervelocity impact test is long expected by many scientists to contain the characteristics of the impact generated plasma, such as plasma temperature and density. This paper presents a method for the time-resolved plasma temperature estimation using three-color visible band photometry data with a global pattern search optimization method. The equilibrium temperature of the plasma can be estimated using an optical model which accounts for both the line emission and continuum emission from the plasma. Using a global pattern search based optimizer, the model can isolate the contribution of the continuum emission versus the line emission from the plasma. The plasma temperature can thus be estimated. Prior to the optimization step, a Gaussian process is also applied to extract the optical emission signal out of the noisy background. The resultant temperature and line-to-continuum emission weighting factor are consistent with the spectrum of the impactor material and current literature.

  10. Simulation of Hypervelocity Impact on Aluminum-Nextel-Kevlar Orbital Debris Shields

    NASA Technical Reports Server (NTRS)

    Fahrenthold, Eric P.

    2000-01-01

    An improved hybrid particle-finite element method has been developed for hypervelocity impact simulation. The method combines the general contact-impact capabilities of particle codes with the true Lagrangian kinematics of large strain finite element formulations. Unlike some alternative schemes which couple Lagrangian finite element models with smooth particle hydrodynamics, the present formulation makes no use of slidelines or penalty forces. The method has been implemented in a parallel, three dimensional computer code. Simulations of three dimensional orbital debris impact problems using this parallel hybrid particle-finite element code, show good agreement with experiment and good speedup in parallel computation. The simulations included single and multi-plate shields as well as aluminum and composite shielding materials. at an impact velocity of eleven kilometers per second.

  11. Hypervelocity impacts on HST solar arrays and the debris population

    NASA Astrophysics Data System (ADS)

    Drolshagen, G.; McDonnell, J. A. M.; Mandeville, J.-C.; Moussi, A.; Ludwig, H.

    Accurate debris and meteoroid flux models are crucial for the design of manned and unmanned space missions. For the most abundant particle sizes smaller than a few millimetres, knowledge on the populations can only be gained by in-situ detectors or the analysis of retrieved space hardware. The impact flux information, which can be obtained from exposed surfaces, increases with surface area and exposure time. A Post-Flight Impact Investigation was initiated by ESA to record and analyze the impact fluxes and any potential resulting damage on the two flexible solar arrays of the Hubble Space Telescope. They were deployed during the first HST servicing mission in December 1993 and retrieved in March 2002. They have a total exposed surface area of roughly 120 m2, including 41 m2 covered with solar cells. The HST post-flight impact study follows a similar activity undertaken after the retrieval of one of the first HST solar arrays. That analysis has been very successful and already resulted in a validation of certain flux model regimes. For the first time exposed surfaces from more then 600 km altitude could be analysed and impacts from particles larger than 1 mm could be observed. The second set of HST solar arrays provide 4 times the area x time product of the first array and extend the measurements to the largest particle sizes ever recorded. The retrieved HST solar array wings exhibit thousands of craters, which are visible to the naked eye. A few hundred impacts have completely penetrated the 0.7 mm thick array. The largest impact features are about 7-8 mm in diameter. Measured fluxes of craters larger than 10 microns and 1 mm are in the order of 3 x 10-5 m-2 s-1 and 1.3 x 10-7 m-2 s-1, respectively. First results of the impact survey are presented here and compared to model predictions. Flux predictions are based on the latest meteoroid and debris (e.g. MASTER 2001) models and on crater size equations derived specifically for the HST solar arrays. A second paper

  12. Correlation of new hypervelocity impact data by threshold penetration relations

    NASA Technical Reports Server (NTRS)

    Hayduk, R. J.; Gough, P. S.; Alfaro-Bou, E.

    1973-01-01

    Threshold penetration data are established by impacting spherical projectiles onto 2024 aluminum single-wall targets. Nylon and cadmium projectiles were used at impacting velocities from 3.0 to 6.8 km/s and 7.9 to 8.5 km/s respectively. These data are combined with existing data and compared with three threshold relations to assess their respective validities over a wide range of projectile densities. Two of these relations were validated over the extended range of projectile densities.

  13. Numerical Simulation on the Damage Characteristics of Ice Targets by Projectile Hypervelocity Impact

    NASA Astrophysics Data System (ADS)

    Wei, Zhang; Gang, Wei; Zhong-Cheng, Mu; Chang, Liu

    2009-12-01

    Interpretation of cratering records on planetary surfaces including the Earth has primarily been concerned with rocky surfaces, most notably the lunar surface and more recently Mars and Venus. Recently, the survey of craters on icy surfaces in the Solar System has been augmented by data from spacecraft close encounters, such as the Galileo mission to the Jovian system. To fully understand these cratering records, the physics of hypervelocity impacts needs to be understood. The numerical simulation on the damage characteristics of ice targets by projectile normal hypervelocity impact has been performed using the hydro-code AUTODYN. The 1 mm spherical projectile is aluminum 2017 alloy. The targets are water ice. The simulation velocities were in the range of 1 km/s-10 km/s. The damage characteristics include peak ejection angle, maximum crater depth and diameter etc. The simulation results are given and compared with the experimental results of Shrine et al. 2002. The simulation results are consistent with the experimental results.

  14. Numerical Simulation on the Damage Characteristics of Ice Targets by Projectile Hypervelocity Impact

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Wei, Gang; Mu, Zhong-Cheng

    2009-06-01

    Interpretation of cratering records on planetary surfaces including the Earth has primarily been concerned with rocky surfaces, most notably the lunar surface and more recently Mars and Venus. Recently, the survey of craters on icy surfaces in the Solar System has been augmented by data from spacecraft close encounters, such as the Galileo mission to the jovian system. To fully understand these cratering records, the physics of hypervelocity impacts needs to be understood. The numerical simulation on the damage characteristics of ice targets by projectile normally hypervelocity impact has been performed using the hydro-code AUTODYN. The 1mm spherical projectile is aluminum 2017 alloy. The targets are water ice. The simulation velocities were in the range of 1km/s-10km/s. The material models are consisted of Tillotson and Polynomial equation of state, Mohr-Coulomb and Johnson-Holmqiust strength model and Johnson-Holmqiust and principle stress failure model. The damage characteristics include peak ejection angle, peak temperature and pressure, maximum crater depth and diameter etc. The simulation results are given and compared with the experimental results of Burchell 2002. The simulation results are consistent very well with the experimental results.

  15. Macroscopic electric charge separation during hypervelocity impacts: Potential implications for planetary paleomagnetism

    NASA Technical Reports Server (NTRS)

    Crawford, D. A.; Schultz, P. H.

    1993-01-01

    The production of transient magnetic fields by hypervelocity meteoroid impact has been proposed to possibly explain the presence of paleomagnetic fields in certain lunar samples as well as across broader areas of the lunar surface. In an effort to understand the lunar magnetic record, continued experiments at the NASA Ames Vertical Gun Range allow characterizing magnetic fields produced by the 5 km/s impacts of 0.32-0.64 cm projectiles over a broad range of impact angles and projectile/target compositions. From such studies, another phenomenon has emerged, macroscopic electric charge separation, that may have importance for the magnetic state of solid-body surfaces. This phenomenon was observed during explosive cratering experiments, but the magnetic consequences of macroscopic electric charge separation (as opposed to plasma production) during explosion and impact cratering have not, to our knowledge, been explored before now. It is straightforward to show that magnetic field production due to this process may scale as a weakly increasing function of impactor kinetic energy, although more work is needed to precisely assess the scaling dependence. The original intent of our experiments was to assess the character of purely electrostatic signals for comparison with inferred electrostatic noise signals acquired by shielded magnetic sensors buried within particulate dolomite targets. The results demonstrated that electrostatic noise does affect the magnetic sensors but only at relatively short distances (less than 4 cm) from the impact point (our magnetic studies are generally performed at distances greater than approximately 5.5 cm). However, to assess models for magnetic field generation during impact, measurements are needed of the magnetic field as close to the impact point as possible; hence, work with an improved magnetic sensor design is in progress. In this paper, we focus on electric charge separation during hypervelocity impacts as a potential transient

  16. Giant Impacts and the Distribution of Planetary Obliquities

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Rivera, E. J.; Duncan, M. J.; Levison, H. F.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    We have conducted a set of approximately 200 numerical experiments to test the hypothesis that a giant impact leading to the formation of Earth's Moon could have occurred tens of millions of years after most of the small debris in the inner Solar System had been incorporated into terrestrial planets or been removed from the region. More than half of these simulations ended with a giant impact between two of the five terrestrial planets that were initially present. Neglecting any rotational angular momentum prior to the collision, the merged planet typically has a rotation period of less than five hours. The mean planetary obliquity is 91.7 degrees, and the median is 87.9 degrees; thus, there is no statistically significant difference between the number of bodies with prograde rotation and the number with retrograde rotation. There is a paucity of planets with obliquity close to 90 degrees, but the total number of impacts was too small for this result to be of much significance. Several encounters leading to collisions are dominated by three-body effects, with the velocity at impact being slightly less than the free-space escape velocity of the two bodies; the obliquity distribution produced by these impacts appears to be random.

  17. Methodology of design and analysis of external walls of space station for hypervelocity impacts by meteoroids and space debris

    NASA Technical Reports Server (NTRS)

    Batla, F. A.

    1986-01-01

    The development of criteria and methodology for the design and analysis of Space Station wall elements for collisions with meteoroids and space debris at hypervelocities is discussed. These collisions will occur at velocities of 10 km/s or more and can be damaging to the external wall elements of the Space Station. The wall elements need to be designed to protect the pressurized modules of the Space Station from functional or structural failure due to these collisions at hypervelocities for a given environment and population of meteoroids and space debris. The design and analysis approach and the associated computer program presented is to achieve this objective, including the optimization of the design for a required overall probability of no penetration. The approach is based on the presently available experimental and actual data on meteoroids and space debris flux and damage assessments and the empirical relationships resulting from the hypervelocity impact studies in laboratories.

  18. The Technology of Modeling Debris Cloud Produced by Hypervelocity Impact

    NASA Astrophysics Data System (ADS)

    Ma, Zhaoxia; Huang, Jie; Liang, Shichang; Zhou, Zhixuan; Ren, Leisheng; Liu, Sen

    2013-08-01

    Because of the large amount of debris in a debris cloud, it is hard to achieve a complete description of all the debris by a simple function. One workable approach is to use a group of complete distribution functions and MonteCarlo method to simplify the debris cloud simulation. Enough debris samples are produced by SPH simulation and debris identification program firstly. According to the distribution functions of debris mass, velocity and space angles determined by statistical analysis, the engineering model of debris cloud is set up. Combining the engineering model and MonteCarlo method, the fast simulation of debris cloud produced by an aluminum projectile impacting an aluminum plate is realized. An application example of the debris cloud engineering model to predict satellite damage caused by space debris impact is given at the end.

  19. Elemental analyses of hypervelocity micro-particle impact sites on interplanetary dust experiment sensor surfaces

    NASA Technical Reports Server (NTRS)

    Simon, Charles G.; Hunter, J. L.; Griffis, D. P.; Misra, V.; Ricks, D. R.; Wortman, Jim J.

    1992-01-01

    The Interplanetary Dust Experiment (IDE) had over 450 electrically active ultra-high purity metal-oxide-silicon impact detectors located on the six primary sides of the Long Duration Exposure Facility (LDEF). Hypervelocity micro-particles that struck the active sensors with enough energy to breakdown the 0.4 to 1.0 micron thick SiO2 insulator layer separating the silicon base (the negative electrode), and the 1000 A thick surface layer of aluminum (the positive electrode) caused electrical discharges that were recorded for the first year of orbit. These discharge features, which include 50 micron diameter areas where the aluminum top layer has been vaporized, facilitate the location of the impacts. The high purity Al-SiO2-Si substrates allow detection of trace (ppm) amounts of hypervelocity impactor residues. After sputtering through a layer of surface contamination, secondary ion mass spectrometry (SIMS) is used to create two-dimensional elemental ion intensity maps of micro-particle impact sites on the IDE sensors. The element intensities in the central craters of the impacts are corrected for relative ion yields and instrumental conditions and then normalized to silicon. The results are used to classify the particles' origins as 'manmade', 'natural' or 'indeterminate'. The last classification results from the presence of too little impactor residue (a frequent occurrence on leading edge impacts), analytical interference from high background contamination, the lack of information on silicon residue, the limited usefulness of data on aluminum in the central craters, or a combination of these circumstances. Several analytical 'blank' discharges were induced on flight sensors by pressing down on the sensor surface with a pure silicon shard. Analyses of these blank discharges showed that the discharge energy blasts away the layer of surface contamination. Only Si and Al were detected inside the discharge zones, including the central craters, of these features. A

  20. Hypervelocity impact of tungsten cubes on spaced armour

    NASA Astrophysics Data System (ADS)

    Chandel, Pradeep S.; Sood, Dharmanshu; Kumar, Rajeev; Sharma, Prince; Sewak, Bhupinder; Bhardwaj, Vikas; Athwal, Manoj; Mangla, Vikas; Biswas, Ipsita; Singh, Manjit

    2012-07-01

    The paper summarizes the experimental observations and simulation studies of damage potential of tungsten alloy cubes on relatively thin mild steel spaced armour target plates in the velocity regime 1300 - 4000 ms-1 using Two Stage Light Gas Gun technique. The cubes of size 9.5 mm and 12 mm having mass 15 g and 30 g respectively were made to impact normally on three target plates of size 300 mm × 300 mm of thickness 4, 4 and 10 mm at 100 mm distance apart. Flash radiography has been used to image the projectile-target interaction in the nitrogen environment at 300 mbar vacuum at room temperature. The results reveal clear perforation by 9.5 mm cube in all the three target plates up to impact velocity of about 2000 m/s. While 12 mm cube can perforate the spaced armour upto impact velocity of 4000 m/s. This shows that 9.5mm tungsten alloy cube is not effective beyond 2000 m/s while 12 mm tungsten alloy cube can defeat the spaced armour upto 4000 m/s. The simulation studies have been carried out using Autodyn 3D nonlinear code using Lagrange solver at velocities 1200 - 4000 m/s. The simulation results are in good agreement with the experimental findings.

  1. Vulnerability analysis of a pressurized aluminum composite vessel against hypervelocity impacts

    NASA Astrophysics Data System (ADS)

    Hereil, Pierre-Louis; Plassard, Fabien; Mespoulet, Jérôme

    2015-09-01

    Vulnerability of high pressure vessels subjected to high velocity impact of space debris is analyzed with the response of pressurized vessels to hypervelocity impact of aluminum sphere. Investigated tanks are CFRP (carbon fiber reinforced plastics) overwrapped Al vessels. Explored internal pressure of nitrogen ranges from 1 bar to 300 bar and impact velocity are around 4400 m/s. Data obtained from Xrays radiographies and particle velocity measurements show the evolution of debris cloud and shock wave propagation in pressurized nitrogen. Observation of recovered vessels leads to the damage pattern and to its evolution as a function of the internal pressure. It is shown that the rupture mode is not a bursting mode but rather a catastrophic damage of the external carbon composite part of the vessel.

  2. Hypervelocity impact tests on Space Shuttle Orbiter RCC thermal protection material. [Reinforced Carbon-Carbon laminate

    NASA Technical Reports Server (NTRS)

    Humes, D. H.

    1978-01-01

    It is noted that the Shuttle Orbiter will be more subject to meteoroid impact than previous spacecraft, due to its greater surface area and longer cumulative time in space. The Orbiter structural material, RCC, a reinforced carbon-carbon laminate with a diffused silicon carbide coating, is evaluated in terms of its resistance to hypervelocity impact. It was found that the specimens (disks with a mass of 34 g and a thickness of 5.0 mm) were cratered only on the front surface when the impact energy was 3 J or less. At 3 J, a trace of the black carbon interior was exposed. The specimens were completely penetrated when the energy was 34 J or greater.

  3. Evaluation of Chest Injury Mechanisms in Nearside Oblique Frontal Impacts

    PubMed Central

    Iraeus, Johan; Lindquist, Mats; Wistrand, Sofie; Sibgård, Elin; Pipkorn, Bengt

    2013-01-01

    Despite the use of seat belts and modern safety systems, many automobile occupants are still seriously injured or killed in car crashes. Common configurations in these crashes are oblique and small overlap frontal impacts that often lead to chest injuries. To evaluate the injury mechanism in these oblique impacts, an investigation was carried out using mathematical human body model simulations. A model of a simplified vehicle interior was developed and validated by means of mechanical sled tests with the Hybrid III dummy. The interior model was then combined with the human body model THUMS and validated by means of mechanical PMHS sled tests. Occupant kinematics as well as rib fracture patterns were predicted with reasonable accuracy. The final model was updated to conform to modern cars and a simulation matrix was run. In this matrix the boundary conditions, ΔV and PDOF, were varied and rib fracture risk as a function of the boundary conditions was evaluated using a statistical framework. In oblique frontal impacts, two injury producing mechanisms were found; (i) diagonal belt load and (ii) side structure impact. The second injury mechanism was found for PDOFs of 25°–35°, depending on ΔV. This means that for larger PDOFs, less ΔV is needed to cause a serious chest injury. PMID:24406957

  4. Evaluation of chest injury mechanisms in nearside oblique frontal impacts.

    PubMed

    Iraeus, Johan; Lindquist, Mats; Wistrand, Sofie; Sibgård, Elin; Pipkorn, Bengt

    2013-01-01

    Despite the use of seat belts and modern safety systems, many automobile occupants are still seriously injured or killed in car crashes. Common configurations in these crashes are oblique and small overlap frontal impacts that often lead to chest injuries.To evaluate the injury mechanism in these oblique impacts, an investigation was carried out using mathematical human body model simulations. A model of a simplified vehicle interior was developed and validated by means of mechanical sled tests with the Hybrid III dummy. The interior model was then combined with the human body model THUMS and validated by means of mechanical PMHS sled tests. Occupant kinematics as well as rib fracture patterns were predicted with reasonable accuracy.The final model was updated to conform to modern cars and a simulation matrix was run. In this matrix the boundary conditions, ΔV and PDOF, were varied and rib fracture risk as a function of the boundary conditions was evaluated using a statistical framework.In oblique frontal impacts, two injury producing mechanisms were found; (i) diagonal belt load and (ii) side structure impact. The second injury mechanism was found for PDOFs of 25°-35°, depending on ΔV. This means that for larger PDOFs, less ΔV is needed to cause a serious chest injury.

  5. Hypervelocity Dust Impacts in Space and the Laboratory

    NASA Astrophysics Data System (ADS)

    Horanyi, Mihaly; Colorado CenterLunar Dust; Atmospheric Studies (CCLDAS) Team

    2013-10-01

    Interplanetary dust particles continually bombard all objects in the solar system, leading to the excavation of material from the target surfaces, the production of secondary ejecta particles, plasma, neutral gas, and electromagnetic radiation. These processes are of interest to basic plasma science, planetary and space physics, and engineering to protect humans and instruments against impact damages. The Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) has recently completed a 3 MV dust accelerator, and this talk will summarize our initial science results. The 3 MV Pelletron contains a dust source, feeding positively charged micron and sub-micron sized particles into the accelerator. We will present the technical details of the facility and its capabilities, as well as the results of our initial experiments for damage assessment of optical devices, and penetration studies of thin films. We will also report on the completion of our dust impact detector, the Lunar Dust Experiment (LDEX), is expected to be flying onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission by the time of this presentation. LDEX was tested, and calibrated at our dust accelerator. We will close by offering the opportunity to use this facility by the planetary, space and plasma physics communities.

  6. Microanalysis of Hypervelocity Impact Residues of Possible Interstellar Origin

    NASA Technical Reports Server (NTRS)

    Stroud, Rhonda M.; Achilles, Cheri; Allen, Carlton; Anasari, Asna; Bajt, Sasa; Bassim, Nabil; Bastien, Ron S.; Bechtel, H. A.; Borg, Janet; Brenker, Frank E.; Bridges, John; Brownlee, Donald E.; Burchell, Mark; Burghammer, Manfred; Butterworth, Anna L.; Changela, Hitesh; Cloetens, Peter; Davis, Andrew M.; Doll, Ryan; Floss, Christine; Flynn, George; Fougeray, Patrick; Frank, David; Sandford, Scott A.; Zolensky, Michael E.

    2012-01-01

    The NASA Stardust spacecraft deployed two collector trays, one dedicated to the collection of dust from Comet Wild 2, and the other for the capture of interstellar dust (ISD). The samples were returned successfully to Earth in 2006, and now provide an unprecedented opportunity for laboratory-based microanalysis of materials from the outer solar system and beyond. Results from the cometary sample studies have demonstrated that Wild 2 contains much more refractory condensate material and much less pristine extra-solar material than expected, which further indicates that there was significant transport of inner solar system materials to the Kuiper Belt in the early solar system [1]. The analysis of the interstellar samples is still in the preliminary examination (PE) phase, due to the level of difficulty in the definitive identification of the ISD features, the overall low abundance, and its irreplaceable nature, which necessitates minimally invasive measurements [2]. We present here coordinated microanalysis of the impact features on the Al foils, which have led to the identification of four impacts that are possibly attributable to interstellar dust. Results from the study of four ISD candidates captured in aerogel are presented elsewhere [2].

  7. Momentum distribution in debris cloud during hypervelocity impact

    NASA Technical Reports Server (NTRS)

    Lemaster, P.; Mount, A.; Zee, R. H.

    1992-01-01

    The long term operation of the Space Station Freedom requires a scheme to protect it from high velocity impacts by both man-made particles and micrometeor fragments. One such scheme is the use of metal plates to serve as shields against such orbital debris. These 'bumper' plates, as they are referred to, serve to break up any incident particle and redistribute its momentum over a larger area. It is therefore necessary to determine the momentum distribution within the debris cloud produced by such collisions in order to evaluate a materials effectiveness at accomplishing this task. This paper details the design and development of an innovative device which has made this possible. Momentum profiles were obtained for a series of test conditions. Total momentum values in the debris cloud were then calculated from these profiles. These results indicated that a momentum amplification exists with a multiplication factor of between 2 and 3. Thus the role of the bumper to serve as a means for momentum redistribution and not reduction was verified.

  8. Empirical predictions of hypervelocity impact damage to the space station

    NASA Technical Reports Server (NTRS)

    Rule, W. K.; Hayashida, K. B.

    1991-01-01

    A family of user-friendly, DOS PC based, Microsoft BASIC programs written to provide spacecraft designers with empirical predictions of space debris damage to orbiting spacecraft is described. The spacecraft wall configuration is assumed to consist of multilayer insulation (MLI) placed between a Whipple style bumper and the pressure wall. Predictions are based on data sets of experimental results obtained from simulating debris impacts on spacecraft using light gas guns on Earth. A module of the program facilitates the creation of the data base of experimental results that are used by the damage prediction modules of the code. The user has the choice of three different prediction modules to predict damage to the bumper, the MLI, and the pressure wall. One prediction module is based on fitting low order polynomials through subsets of the experimental data. Another prediction module fits functions based on nondimensional parameters through the data. The last prediction technique is a unique approach that is based on weighting the experimental data according to the distance from the design point.

  9. Threshold for plasma phase transition of aluminum single crystal induced by hypervelocity impact

    SciTech Connect

    Ju, Yuanyuan; Zhang, Qingming

    2015-12-15

    Molecular dynamics method is used to study the threshold for plasma phase transition of aluminum single crystal induced by hypervelocity impact. Two effective simulation methods, piston-driven method and multi-scale shock technique, are used to simulate the shock wave. The simulation results from the two methods agree well with the experimental data, indicating that the shock wave velocity is linearly dependent on the particle velocity. The atom is considered to be ionized if the increase of its internal energy is larger than the first ionization energy. The critical impact velocity for plasma phase transition is about 13.0 km/s, corresponding to the threshold of pressure and temperature which is about 220 GPa and 11.0 × 10{sup 3 }K on the shock Hugoniot, respectively.

  10. Magnetic field amplification and generation in hypervelocity meteoroid impacts with application to lunar paleomagnetism

    SciTech Connect

    Hood, L.L.; Vickery, A.

    1984-11-15

    A one-dimensional numerical model for the expansion of impact-produced vapor clouds is used to investigate magnetic field generation mechanisms in events such as meteor collisions with the moon. The resulting cloud properties, such as ionization fraction, electrical conductivity, radial expansion velocity, mass density, and energy density are estimated. The model is initiated with the peak shock states and pressure thresholds for incipient and complete vaporization of anorthosite lunar surface materials by iron and GA composition meteorites. The expansion of the spherical gas cloud into a vacuum was traced with a one-dimensional explicit lagrangian hydrodynamic code. The hypervelocity impact plasmas produced are found to be significant in the amplitudes and orientations of the magnetic fields generated. An ambient magnetic field could have been provided by the core dynamo, which would have interacted with the expanding plasmas and formed induced paleomagnetic fields. Several other field-contribution mechanisms are discussed and discarded as potential remanent magnetism contributors.

  11. Finite element analysis of hypervelocity impact behaviour of CFRP-Al/HC sandwich panel

    NASA Astrophysics Data System (ADS)

    Phadnis, Vaibhav A.; Silberschmidt, Vadim V.

    2015-09-01

    The mechanical response of CFRP-Al/HC (carbon fibre-reinforced/epoxy composite face sheets with Al honeycomb core) sandwich panels to hyper-velocity impact (up to 1 km/s) is studied using a finite-element model developed in ABAQUS/Explicit. The intraply damage of CFRP face sheets is analysed by mean of a user-defined material model (VUMAT) employing a combination of Hashin and Puck criteria, delamination modelled using cohesive-zone elements. The damaged Al/HC core is assessed on the basis of a Johnson Cook dynamic failure model while its hydrodynamic response is captured using the Mie-Gruneisen equation of state. The results obtained with the developed finite-element model showed a reasonable correlation to experimental damage patterns. The surface peeling of both face sheets was evident, with a significant delamination around the impact location accompanied by crushing HC core.

  12. Hypervelocity Impact Behaviour of CFRP-A1/HC Sandwich Panel: Finite-Element Studies

    NASA Astrophysics Data System (ADS)

    Phadnis, Vaibhav A.; Roy, Anish; Silberschmidt, Vadim V.

    2014-06-01

    The mechanical response of CFRP-Al/HC (carbon fibre- reinforced/epoxy composite face sheets with Al honeycomb core) sandwich panels to hyper-velocity impact ( 1 km/s) is studied using a finite-element model developed in ABAQUS/Explicit. The intraply damage of CFRP face sheets is analysed by the means of a user-defined material model (VUMAT) employing a combination of Hashin and Puck criteria and delamination is modelled using cohesive-zone elements. The damage of Al/HC core is assessed on the basis of a Johnson-Cook dynamic failure model while its hydrodynamic response is captured using the Mie- Gruneisen equation of state. The results obtained with the developed finite-element model showed a reasonable correlation to experimental damage patterns. The surface peeling of both face sheets was evident, with a significant delamination around the impact location accompanied by crushing of HC core.

  13. Hypervelocity Impact Experiments on Epoxy/Ultra-High Molecular Weight Polyethylene Composite Panels Reinforced with Nanotubes

    NASA Technical Reports Server (NTRS)

    Khatiwada, Suman; Laughman, Jay W.; Armada, Carlos A.; Christiansen, Eric L.; Barrera, Enrique V.

    2012-01-01

    Advanced composites with multi-functional capabilities are of great interest to the designers of aerospace structures. Polymer matrix composites (PMCs) reinforced with high strength fibers provide a lightweight and high strength alternative to metals and metal alloys conventionally used in aerospace architectures. Novel reinforcements such as nanofillers offer potential to improve the mechanical properties and add multi-functionality such as radiation resistance and sensing capabilities to the PMCs. This paper reports the hypervelocity impact (HVI) test results on ultra-high molecular weight polyethylene (UHMWPE) fiber composites reinforced with single-walled carbon nanotubes (SWCNT) and boron nitride nanotubes (BNNT). Woven UHMWPE fabrics, in addition to providing excellent impact properties and high strength, also offer radiation resistance due to inherent high hydrogen content. SWCNT have exceptional mechanical and electrical properties. BNNT (figure 1) have high neutron cross section and good mechanical properties that add multi-functionality to this system. In this project, epoxy based UHMWPE composites containing SWCNT and BNNT are assessed for their use as bumper shields and as intermediate plates in a Whipple Shield for HVI resistance. Three composite systems are prepared to compare against one another: (I) Epoxy/UHMWPE, (II) Epoxy/UHMWPE/SWCNT and (III) Epoxy/UHMWPE/SWCNT/BNNT. Each composite is a 10.0 by 10.0 by 0.11 cm3 panel, consisting of 4 layers of fabrics arranged in cross-ply orientation. Both SWCNT and BNNT are 0.5 weight % of the fabric preform. Hypervelocity impact tests are performed using a two-stage light gas gun at Rice University

  14. Determining the Onset of Amorphization of Crystalline Silicon due to Hypervelocity Impact

    NASA Astrophysics Data System (ADS)

    Poletti, C. Shane; Bachlechner, Martina E.

    2009-03-01

    Atomistic simulations were performed to study a hypervelocity impactor striking a silicon/silicon nitride interface with varying silicon substrate thicknesses. Visualization indicates that the crystalline silicon amorphizes upon impact. The objective of the present study is to determine where the boundary between amorphous and crystalline silicon occurrs. In the analysis, the silicon substrate is separated into sixty layers and for each layer the average z displacement is determined. Our results show that the boundary between amorphous and crystalline silicon occurs between layers 20 and 22 for an impactor traveling at 5 km/s. This corresponds to a depth of approximately 32 Angstroms into the silicon. More detailed analyses reveals that the z displacement is noticeably larger for the layers that do not have a silicon atom bonded beneath them compared to the ones that do.

  15. Numerical Simulation of Oblique Impacts: Impact Melt and Transient Cavity Size

    NASA Technical Reports Server (NTRS)

    Artemieva, N. A.; Ivanov, B. A.

    2001-01-01

    We present 3D hydrocode numerical modeling for oblique impacts (i) to estimate the melt production and (ii) to trace the evolution of the transient cavity shape till the crater collapse. Additional information is contained in the original extended abstract.

  16. Plasma and collision processes of hypervelocity meteorite impact in the prehistory of life

    NASA Astrophysics Data System (ADS)

    Managadze, G.

    2010-07-01

    A new concept is proposed, according to which the plasma and collision processes accompanying hypervelocity impacts of meteorites can contribute to the arising of the conditions on early Earth, which are necessary for the appearance of primary forms of living matter. It was shown that the processes necessary for the emergence of living matter could have started in a plasma torch of meteorite impact and have continued in an impact crater in the case of the arising of the simplest life form. It is generally accepted that planets are the optimal place for the origin and evolution of life. In the process of forming the planetary systems the meteorites, space bodies feeding planet growth, appear around stars. In the process of Earth's formation, meteorite sizes ranged from hundreds and thousands of kilometres. These space bodies consisted mostly of the planetesimals and comet nucleus. During acceleration in Earth's gravitational field they reached hypervelocity and, hitting the surface of planet, generated powerful blowouts of hot plasma in the form of a torch. They also created giant-size craters and dense dust clouds. These bodies were composed of all elements needed for the synthesis of organic compounds, with the content of carbon being up to 5%-15%. A new idea of possible synthesis of the complex organic compounds in the hypervelocity impact-generated plasma torch was proposed and experimentally confirmed. A previously unknown and experimentally corroborated feature of the impact-generated plasma torch allowed a new concept of the prehistory of life to be developed. According to this concept the intensive synthesis of complex organic compounds arose during meteoritic bombardment in the first 0.5 billion years at the stage of the planet's formation. This most powerful and destructive action in Earth's history could have played a key role and prepared conditions for the origin of life. In the interstellar gas-dust clouds, the synthesis of simple organic matter could

  17. Extension and Validation of a Hybrid Particle-Finite Element Method for Hypervelocity Impact Simulation. Chapter 2

    NASA Technical Reports Server (NTRS)

    Fahrenthold, Eric P.; Shivarama, Ravishankar

    2004-01-01

    The hybrid particle-finite element method of Fahrenthold and Horban, developed for the simulation of hypervelocity impact problems, has been extended to include new formulations of the particle-element kinematics, additional constitutive models, and an improved numerical implementation. The extended formulation has been validated in three dimensional simulations of published impact experiments. The test cases demonstrate good agreement with experiment, good parallel speedup, and numerical convergence of the simulation results.

  18. Panspermia Survival Scenarios for Organisms that Survive Typical Hypervelocity Solar System Impact Events.

    NASA Astrophysics Data System (ADS)

    Pasini, D.

    2014-04-01

    Previous experimental studies have demonstrated the survivability of living cells during hypervelocity impact events, testing the panspermia and litho-panspermia hypotheses [1]. It has been demonstrated by the authors that Nannochloropsis Oculata Phytoplankton, a eukaryotic photosynthesizing autotroph found in the 'euphotic zone' (sunlit surface layers of oceans [2]), survive impacts up to 6.93 km s-1 (approx. shock pressure 40 GPa) [3, 4]. Also shown to survive impacts up to 5.49 km s-1 is the tardigrade species Hypsibius dujardini (a complex micro-animal consisting of 40,000 cells) [5, 6]. It has also been shown that they can survive sustained pressures up to 600 MPa using a water filled pressure capsule [7]. Additionally bacteria can survive impacts up to 5.4 km s-1 (~30 GPa) - albeit with a low probability of survival [1], and the survivability of yeast spores in impacts up to 7.4 km s-1 (~30 GPa) has also recently been demonstrated [8]. Other groups have also reported that the lichen Xanthoria elegans is able to survive shocks in similar pressure ranges (~40 GPa) [9]. Here we present various simulated impact regimes to show which scenarios are condusive to the panspermia hypothesis of the natural transfer of life (via an icy body) through space to an extraterrestrial environment.

  19. Failure mechanism of monolayer graphene under hypervelocity impact of spherical projectile

    NASA Astrophysics Data System (ADS)

    Xia, Kang; Zhan, Haifei; Hu, De’An; Gu, Yuantong

    2016-09-01

    The excellent mechanical properties of graphene have enabled it as appealing candidate in the field of impact protection or protective shield. By considering a monolayer graphene membrane, in this work, we assessed its deformation mechanisms under hypervelocity impact (from 2 to 6 km/s), based on a serial of in silico studies. It is found that the cracks are formed preferentially in the zigzag directions which are consistent with that observed from tensile deformation. Specifically, the boundary condition is found to exert an obvious influence on the stress distribution and transmission during the impact process, which eventually influences the penetration energy and crack growth. For similar sample size, the circular shape graphene possesses the best impact resistance, followed by hexagonal graphene membrane. Moreover, it is found the failure shape of graphene membrane has a strong relationship with the initial kinetic energy of the projectile. The higher kinetic energy, the more number the cracks. This study provides a fundamental understanding of the deformation mechanisms of monolayer graphene under impact, which is crucial in order to facilitate their emerging future applications for impact protection, such as protective shield from orbital debris for spacecraft.

  20. Failure mechanism of monolayer graphene under hypervelocity impact of spherical projectile.

    PubMed

    Xia, Kang; Zhan, Haifei; Hu, De'an; Gu, Yuantong

    2016-09-13

    The excellent mechanical properties of graphene have enabled it as appealing candidate in the field of impact protection or protective shield. By considering a monolayer graphene membrane, in this work, we assessed its deformation mechanisms under hypervelocity impact (from 2 to 6 km/s), based on a serial of in silico studies. It is found that the cracks are formed preferentially in the zigzag directions which are consistent with that observed from tensile deformation. Specifically, the boundary condition is found to exert an obvious influence on the stress distribution and transmission during the impact process, which eventually influences the penetration energy and crack growth. For similar sample size, the circular shape graphene possesses the best impact resistance, followed by hexagonal graphene membrane. Moreover, it is found the failure shape of graphene membrane has a strong relationship with the initial kinetic energy of the projectile. The higher kinetic energy, the more number the cracks. This study provides a fundamental understanding of the deformation mechanisms of monolayer graphene under impact, which is crucial in order to facilitate their emerging future applications for impact protection, such as protective shield from orbital debris for spacecraft.

  1. Failure mechanism of monolayer graphene under hypervelocity impact of spherical projectile

    PubMed Central

    Xia, Kang; Zhan, Haifei; Hu, De’an; Gu, Yuantong

    2016-01-01

    The excellent mechanical properties of graphene have enabled it as appealing candidate in the field of impact protection or protective shield. By considering a monolayer graphene membrane, in this work, we assessed its deformation mechanisms under hypervelocity impact (from 2 to 6 km/s), based on a serial of in silico studies. It is found that the cracks are formed preferentially in the zigzag directions which are consistent with that observed from tensile deformation. Specifically, the boundary condition is found to exert an obvious influence on the stress distribution and transmission during the impact process, which eventually influences the penetration energy and crack growth. For similar sample size, the circular shape graphene possesses the best impact resistance, followed by hexagonal graphene membrane. Moreover, it is found the failure shape of graphene membrane has a strong relationship with the initial kinetic energy of the projectile. The higher kinetic energy, the more number the cracks. This study provides a fundamental understanding of the deformation mechanisms of monolayer graphene under impact, which is crucial in order to facilitate their emerging future applications for impact protection, such as protective shield from orbital debris for spacecraft. PMID:27618989

  2. Elemental analyses of hypervelocity microparticle impact sites on Interplanetary Dust Experiment sensor surfaces

    NASA Technical Reports Server (NTRS)

    Simon, Charles G.; Hunter, J. L.; Griffis, D. P.; Misra, V.; Ricks, D. A.; Wortman, Jim J.; Brownlee, D. E.

    1993-01-01

    The Interplanetary Dust Experiment (IDE) had over 450 electrically active ultra-high purity metal-oxide-silicon impact detectors located on the six primary sides of the Long Duration Exposure Facility (LDEF). Hypervelocity microparticles (approximately 0.2 to approximately 100 micron diameter) that struck the active sensors with enough energy to break down the 0.4 or 1.0 micron thick SIO2 insulator layer separating the silicon base (the negative electrode), and the 1000 A thick surface layer of aluminum (the positive electrode) caused electrical discharges that were recorded for the first year of orbit. The high purity Al-SiO2-Si substrates allowed detection of trace (ppm) amounts of hypervelocity impactor residues. After sputtering through a layer of surface contamination, secondary ion mass spectrometry (SIMS) was used to create two-dimensional elemental ion intensity maps of microparticle impact sites on the IDE sensors. The element intensities in the central craters of the impacts were corrected for relative ion yields and instrumental conditions and then normalized to silicon. The results were used to classify the particles' origins as 'manmade,' 'natural,' or 'indeterminate.' The last classification resulted from the presence of too little impactor residue, analytical interference from high background contamination, the lack of information on silicon and aluminum residues, or a combination of these circumstances. Several analytical 'blank' discharges were induced on flight sensors by pressing down on the sensor surface with a pure silicon shard. Analyses of these blank discharges showed that the discharge energy blasts away the layer of surface contamination. Only Si and Al were detected inside the discharge zones, including the central craters of these features. Thus far a total of 79 randomly selected microparticle impact sites from the six primary sides of the LDEF have been analyzed: 36 from tray C-9 (Leading (ram), or East, side), 18 from tray C-3

  3. Elemental analyses of hypervelocity microparticle impact sites on Interplanetary Dust Experiment sensor surfaces

    NASA Astrophysics Data System (ADS)

    Simon, Charles G.; Hunter, J. L.; Griffis, D. P.; Misra, V.; Ricks, D. A.; Wortman, Jim J.; Brownlee, D. E.

    1993-04-01

    The Interplanetary Dust Experiment (IDE) had over 450 electrically active ultra-high purity metal-oxide-silicon impact detectors located on the six primary sides of the Long Duration Exposure Facility (LDEF). Hypervelocity microparticles (approximately 0.2 to approximately 100 micron diameter) that struck the active sensors with enough energy to break down the 0.4 or 1.0 micron thick SIO2 insulator layer separating the silicon base (the negative electrode), and the 1000 A thick surface layer of aluminum (the positive electrode) caused electrical discharges that were recorded for the first year of orbit. The high purity Al-SiO2-Si substrates allowed detection of trace (ppm) amounts of hypervelocity impactor residues. After sputtering through a layer of surface contamination, secondary ion mass spectrometry (SIMS) was used to create two-dimensional elemental ion intensity maps of microparticle impact sites on the IDE sensors. The element intensities in the central craters of the impacts were corrected for relative ion yields and instrumental conditions and then normalized to silicon. The results were used to classify the particles' origins as 'manmade,' 'natural,' or 'indeterminate.' The last classification resulted from the presence of too little impactor residue, analytical interference from high background contamination, the lack of information on silicon and aluminum residues, or a combination of these circumstances. Several analytical 'blank' discharges were induced on flight sensors by pressing down on the sensor surface with a pure silicon shard. Analyses of these blank discharges showed that the discharge energy blasts away the layer of surface contamination. Only Si and Al were detected inside the discharge zones, including the central craters of these features. Thus far a total of 79 randomly selected microparticle impact sites from the six primary sides of the LDEF have been analyzed: 36 from tray C-9 (Leading (ram), or East, side), 18 from tray C-3

  4. Screening Tests for Enhanced Shielding Against Hypervelocity Particle Impacts for Future Unmanned Spacecraft

    NASA Astrophysics Data System (ADS)

    Putzar, Robin; Hupfer, Jan; Aridon, Gwenaelle; Gergonne, Bernard; David, Matthieu; Bourke, Paul; Cougnet, Claude

    2013-08-01

    Protection of components of unmanned spacecraft against particle impacts is typically provided by the spacecraft's structure together with the intrinsic protection capabilities of the components themselves. Thus to increase the survivability of future spacecraft, one option is to enhance the protection already provided using enhanced materials and additional shielding. As part of the EU funded FP7 research project ReVuS ("Reducing the Vulnerability of Space systems"), the configurations of equipment typically found on board unmanned spacecraft were identified. For each of those configurations, potential solutions have been identified which enhance the robustness against particle impacts. The solutions are broken down into a number of shielding components that include e.g. additional protective layers made from aluminum, Kevlar, Nextel, stainless steel mesh and ceramics. To evaluate the characteristics and performances of these shielding components, a number of screening hypervelocity impact tests were performed. During these tests, representative configurations have been subjected to impacts of aluminum spheres of 3 mm and 5 mm diameter at a nominal impact velocity of 7 km/s. This paper describes the targets and presents and compares the results.

  5. Elemental Analyses of Hypervelocity Microparticle Impact Sites on Interplanetary Dust Experiment Sensor Surfaces

    NASA Technical Reports Server (NTRS)

    Simon, C. G.; Hunter, J. L.; Griffis, D. P.; Misra, V.; Ricks, D. A.; Wortman, J. J.; Brownlee, D. E.

    1992-01-01

    The Interplanetary Dust Experiment (IDE) had over 450 electrically active ultra-high purity metal-oxide-silicon impact detectors located on the six primary sides of the Long Duration Exposure Facility (LDEF). Hypervelocity microparticles (approximately 0.2 to approximately 100 micron diameter) that struck the active sensors with enough energy to breakdown the 0.4 or 1.0 micron thick SiO2 insulator layer separating the silicon base (the negative electrode), and the 1000 A thick surface layer of aluminum (the positive electrode) caused electrical discharges that were recorded for the first year of orbit. The high purity Al-SiO2-Si substrates allowed detection of trace (ppm) amounts of hypervelocity impactor residues. After sputtering through a layer of surface contamination, secondary ion mass spectrometry (SIMS) was used to create two-dimensional elemental ion intensity maps of microparticle sites on the IDE sensors. The element intensities in the central craters of the impacts were corrected for relative ion yields and instrumental conditions and then normalized to silicon. The results classification resulted from the particles' origins as 'manmade', 'natural', or 'indeterminate'. The last classification resulted from the presence of too little impactor residue, analytical interference from high background contamination, the lack of information on silicon and aluminum residues, or a combination of these circumstances. Several analytical 'blank' discharges were induced on flight sensors by pressing down on the sensor surface with a pure silicon shard. Analyses of these blank discharges showed that the discharge energy blasts away the layer of surface contamination. Only Si and Al were detected inside the discharge zones, including the central craters, of these features. Thus far, a total of 79 randomly selected microparticle impact sites from the six primary sides of the LDEF were analyzed: 36 from tray C-9 (Leading (ram), or east, side), 18 from tray C-3 (Trailing

  6. Hypervelocity Impact Performance of Open Cell Foam Core Sandwich Panel Structures

    NASA Technical Reports Server (NTRS)

    Ryan, Shannon; Christiansen, Eric; Lear, Dana

    2009-01-01

    Metallic foams are a relatively new class of materials with low density and novel physical, mechanical, thermal, electrical and acoustic properties. Although incompletely characterized, they offer comparable mechanical performance to traditional spacecraft structural materials (i.e. honeycomb sandwich panels) without detrimental through-thickness channeling cells. There are two competing types of metallic foams: open cell and closed cell. Open cell foams are considered the more promising technology due to their lower weight and higher degree of homogeneity. Leading micrometeoroid and orbital debris shields (MMOD) incorporate thin plates separated by a void space (i.e. Whipple shield). Inclusion of intermediate fabric layers, or multiple bumper plates have led to significant performance enhancements, yet these shields require additional non-ballistic mass for installation (fasteners, supports, etc.) that can consume up to 35% of the total shield weight [1]. Structural panels, such as open cell foam core sandwich panels, that are also capable of providing sufficient MMOD protection, represent a significant potential for increased efficiency in hypervelocity impact shielding from a systems perspective through a reduction in required non-ballistic mass. In this paper, the results of an extensive impact test program on aluminum foam core sandwich panels are reported. The effect of pore density, and core thickness on shielding performance have been evaluated over impact velocities ranging from 2.2 - 9.3 km/s at various angles. A number of additional tests on alternate sandwich panel configurations of comparable-weight have also been performed, including aluminum honeycomb sandwich panels (see Figure 1), Nomex honeycomb core sandwich panels, and 3D aluminum honeycomb sandwich panels. A total of 70 hypervelocity impact tests are reported, from which an empirical ballistic limit equation (BLE) has been derived. The BLE is in the standard form suitable for implementation in

  7. Hypervelocity impact testing of advanced materials and structures for micrometeoroid and orbital debris shielding

    NASA Astrophysics Data System (ADS)

    Ryan, Shannon; Christiansen, Eric L.

    2013-02-01

    A series of 66 hypervelocity impact experiments have been performed to assess the potential of various materials (aluminium, titanium, copper, stainless steel, nickel, nickel/chromium, reticulated vitreous carbon, silver, ceramic, aramid, ceramic glass, and carbon fibre) and structures (monolithic plates, open-cell foam, flexible fabrics, rigid meshes) for micrometeoroid and orbital debris (MMOD) shielding. Arranged in various single-, double-, and triple-bumper configurations, screening tests were performed with 0.3175 cm diameter Al2017-T4 spherical projectiles at nominally 6.8 km/s and normal incidence. The top performing shields were identified through target damage assessments and their respective weight. The top performing candidate shield at the screening test condition was found to be a double-bumper configuration with a 0.25 mm thick Al3003 outer bumper, 6.35 mm thick 40 PPI aluminium foam inner bumper, and 1.016 mm thick Al2024-T3 rear wall (equal spacing between bumpers and rear wall). In general, double-bumper candidates with aluminium plate outer bumpers and foam inner bumpers were consistently found to be amongst the top performers. For this impact condition, potential weight savings of at least 47% over conventional all-aluminium Whipple shields are possible by utilizing the investigated materials and structures. The results of this study identify materials and structures of interest for further, more in-depth, impact investigations.

  8. Hypervelocity Impact Performance of Open Cell Foam Core Sandwich Panel Structures

    NASA Technical Reports Server (NTRS)

    Ryan, S.; Ordonez, E.; Christiansen, E. L.; Lear, D. M.

    2010-01-01

    Open cell metallic foam core sandwich panel structures are of interest for application in spacecraft micrometeoroid and orbital debris shields due to their novel form and advantageous structural and thermal performance. Repeated shocking as a result of secondary impacts upon individual foam ligaments during the penetration process acts to raise the thermal state of impacting projectiles ; resulting in fragmentation, melting, and vaporization at lower velocities than with traditional shielding configurations (e.g. Whipple shield). In order to characterize the protective capability of these structures, an extensive experimental campaign was performed by the Johnson Space Center Hypervelocity Impact Technology Facility, the results of which are reported in this paper. Although not capable of competing against the protection levels achievable with leading heavy shields in use on modern high-risk vehicles (i.e. International Space Station modules), metallic foam core sandwich panels are shown to provide a substantial improvement over comparable structural panels and traditional low weight shielding alternatives such as honeycomb sandwich panels and metallic Whipple shields. A ballistic limit equation, generalized in terms of panel geometry, is derived and presented in a form suitable for application in risk assessment codes.

  9. Study on microwave emission mechanisms on the basis of hypervelocity impact experiments on various target plates

    NASA Astrophysics Data System (ADS)

    Ohnishi, H.; Chiba, S.; Soma, E.; Ishii, K.; Maki, K.; Takano, T.; Hasegawa, S.

    2007-06-01

    It was formerly confirmed by experiment that hypervelocity impacts on aluminum plates cause microwave emission. In this study, we have carried out experiments in order to clarify the mechanism of the emission. The microwave is detected by heterodyne detection scheme at 22 and 2 GHz with an intermediate frequency bandwidth of 500 and 120 MHz, respectively. A nylon projectile is accelerated using a light-gas gun to impact a target. First, aluminum plates with ten different thicknesses ranging from 1 to 40 mm were used as a target, and microwave signals were detected. The experimental results are statistically analyzed assuming a Gaussian distribution of the emitted power. The standard deviation of pulse voltage is calculated to show the existence of two kinds of signals: sharp pulse and thermal noise. It is shown that the emitted energy and the dispersion have a relation with the extent of the target destruction. Next, nylon projectiles are impacted on different metals such as aluminum, iron, and copper. These results suggest that microcracks are essential to microwave emission. Finally, in order to clarify the mechanism of charging and discharging across the microcracks, the experimental results are compared with this model for the following factors: (1) the thermally excited electrons and the emitted power, and (2) the bond dissociation energy of target material and emitted power. The analytical results suggest that electrons are excited thermally and by transition from a crystalline state to an atomic state.

  10. Processing and Synthesis of Pre-Biotic Chemicals in Hypervelocity Impacts

    NASA Technical Reports Server (NTRS)

    Brickerhoff, W. B.; Managadze, G. G.; Chumikov, A. E.; Managadze, N. G.

    2005-01-01

    Hypervelocity impacts (HVIs) may have played a significant role in establishing the initial organic inventory for pre-biotic chemistry on the Earth and other planetary bodies. In addition to the delivery of organic compounds intact to planetary surfaces, generally at velocities below approx.20 km/s, HVIs also enable synthesis of new molecules. The cooling post-impact plasma plumes of HVIs in the interstellar medium (ISM), the protosolar nebula (PSN), and the early solar system comprise pervasive conditions for organic synthesis. Such plasma synthesis (PS) can operate over many length scales (from nm-scale dust to planets) and energy scales (from molecular rearrangement to atomization and recondensation). HVI experiments with the flexibility to probe the highest velocities and distinguish synthetic routes are a high priority to understand the relevance of PS to exobiology. We describe here recent studies of PS at small spatial scales and extremely high velocities with pulsed laser ablation (PLA). PLA can simulate the extreme plasma conditions generated in impacts of dust particles at speeds of up to 100 km/s or more. When applied to carbonaceous solids, new and pre-biotically relevant molecular species are formed with high efficiency [1,2].

  11. Scaling of sub-surface deformation in hypervelocity impact experiments on porous sandstone

    NASA Astrophysics Data System (ADS)

    Buhl, Elmar; Poelchau, Michael; Dresen, Georg; Kenkmann, Thomas

    2014-11-01

    Two hypervelocity impact experiments into dry sandstone (Seeberger Sandstein, ~ 23% porosity), performed under similar impact conditions but with different projectile sizes, have been analyzed to investigate the size scaling of impact damage. For one experiment a 2.5 mm steel projectile was impacted at 4.8 km s- 1 onto a sandstone cube of 20 cm side length. For the other experiment a 10 mm iron meteorite projectile was impacted at 4.6 km s- 1 onto a sandstone cube of 50 cm side length. The resulting kinetic impact energies of 773 and 42,627 J led to crater cavities of 7600 and 612,000 mm3. Investigation of thin sections along cross-sections through both craters revealed that the same deformation microstructures are present in both experiments. The occurrence of different microstructural patterns was mapped and zones of characteristic deformation were defined. This mapping was used to calculate the volumes of material deformed by specific mechanisms. Comparing the results, normalized to the size of the projectile, showed that the sub-surface damage is very similar in size, volume and geometry for both experiments. Analysis of deformation bands found in both experiments regarding their long axes orientation showed that these features are developed under shear deformation. Particle size distributions (PSD), expressed as power-law fits, were measured to quantify the impact damage. Comparison showed that the decay of the power-law exponents with increasing distance from the impact point source is similar for both experiments. Reconstruction of the loading path allowed to infer the stresses under which distinct deformation microstructures are developed.

  12. Hypervelocity impact testing of the Space Station utility distribution system carrier

    NASA Technical Reports Server (NTRS)

    Lazaroff, Scott

    1993-01-01

    A two-phase, joint JSC and McDonnell Douglas Aerospace-Huntington Beach hypervelocity impact (HVI) test program was initiated to develop an improved understanding of how meteoroid and orbital debris (M/OD) impacts affect the Space Station Freedom (SSF) avionic and fluid lines routed in the Utility Distribution System (UDS) carrier. This report documents the first phase of the test program which covers nonpowered avionic line segment and pressurized fluid line segment HVI testing. From these tests, a better estimation of avionic line failures is approximately 15 failures per year and could very well drop to around 1 or 2 avionic line failures per year (depending upon the results of the second phase testing of the powered avionic line at White Sands). For the fluid lines, the initial McDonnell Douglas analysis calculated 1 to 2 line failures over a 30 year period. The data obtained from these tests indicate the number of predicted fluid line failures increased slightly to as many as 3 in the first 10 years and up to 15 for the entire 30 year life of SSF.

  13. Differential melt scaling for oblique impacts on terrestrial planets

    NASA Astrophysics Data System (ADS)

    Abramov, Oleg; Wong, Stephanie M.; Kring, David A.

    2012-04-01

    Analytical estimates of melt volumes produced by a given projectile and contained in a given impact crater are derived as a function of impact velocity, impact angle, planetary gravity, target and projectile densities, and specific internal energy of melting. Applications to impact events and impact craters on the Earth, Moon, and Mars are demonstrated and discussed. The most probable oblique impact (45°) produces ˜1.6 times less melt volume than a vertical impact, and ˜1.6 and 3.7 times more melt volume than impacts with 30° and 15° trajectories, respectively. The melt volume for a particular crater diameter increases with planetary gravity, so a crater on Earth should have more melt than similar-size craters on Mars and the Moon. The melt volume for a particular projectile diameter does not depend on gravity, but has a strong dependence on impact velocity, so the melt generated by a given projectile on the Moon is significantly larger than on Mars. Higher surface temperatures and geothermal gradients increase melt production, as do lower energies of melting. Collectively, the results imply thinner central melt sheets and a smaller proportion of melt particles in impact breccias on the Moon and Mars than on Earth. These effects are illustrated in a comparison of the Chicxulub crater on Earth, linked to the Cretaceous-Tertiary mass extinction, Gusev crater on Mars, where the Mars Exploration Rover Spirit landed, and Tsiolkovsky crater on the Moon. The results are comparable to those obtained from field and spacecraft observations, other analytical expressions, and hydrocode simulations.

  14. Differential Melt Scaling for Oblique Impacts on Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Abramov, O.; Wong, S. M.; Kring, D. A.

    2011-12-01

    Analytical estimates of melt volumes produced by a given projectile and contained in a given impact crater are derived as a function of impact velocity, impact angle, planetary gravity, target and projectile densities, and specific internal heat of melting. Applications to impact events and impact craters on the Earth, Moon, and Mars are demonstrated and discussed. The most probable oblique impact (45°) produces ~1.6 times less melt volume than a vertical impact, and ~1.6 and 3.7 times more melt volume than impacts with 30° and 15° trajectories, respectively. The melt volume for a particular crater diameter increases with planetary gravity, so a crater on Earth should have more melt than similar-size craters on Mars and the Moon. The melt volume for a particular projectile diameter does not depend on gravity, but has a strong dependence on impact velocity, so the melt generated by a given projectile on the Moon is significantly larger than on Mars. Higher surface temperatures and geothermal gradients increase melt production, as do lower energies of melting. Collectively, the results imply thinner central melt sheets and a smaller proportion of melt particles in impact breccias on the Moon and Mars than on Earth. These effects are illustrated in a comparison of the Chicxulub crater on Earth, linked to the Cretaceous-Tertiary mass extinction, Gusev crater on Mars, where the Mars Exploration Rover Spirit landed, and Tsiolkovsky crater on the Moon. The results are comparable to those obtained from field and spacecraft observations, other analytical expressions, and hydrocode simulations.

  15. Hypervelocity Impact Test Fragment Modeling: Modifications to the Fragment Rotation Analysis and Lightcurve Code

    NASA Technical Reports Server (NTRS)

    Gouge, Michael F.

    2011-01-01

    Hypervelocity impact tests on test satellites are performed by members of the orbital debris scientific community in order to understand and typify the on-orbit collision breakup process. By analysis of these test satellite fragments, the fragment size and mass distributions are derived and incorporated into various orbital debris models. These same fragments are currently being put to new use using emerging technologies. Digital models of these fragments are created using a laser scanner. A group of computer programs referred to as the Fragment Rotation Analysis and Lightcurve code uses these digital representations in a multitude of ways that describe, measure, and model on-orbit fragments and fragment behavior. The Dynamic Rotation subroutine generates all of the possible reflected intensities from a scanned fragment as if it were observed to rotate dynamically while in orbit about the Earth. This calls an additional subroutine that graphically displays the intensities and the resulting frequency of those intensities as a range of solar phase angles in a Probability Density Function plot. This document reports the additions and modifications to the subset of the Fragment Rotation Analysis and Lightcurve concerned with the Dynamic Rotation and Probability Density Function plotting subroutines.

  16. Equation of State Measurements of Liquid Deuterium Subject to Magnetically Driven Hypervelocity Plate Impact

    NASA Astrophysics Data System (ADS)

    Knudson, Marcus; Hanson, David; Bailey, Jim; Hall, Clint; Asay, Jim; Lemke, Ray; Oliver, Bryan

    2000-10-01

    Recently a new capability has been developed at Sandia National Laboratories to isentropically compress materials to high pressures using magnetic pressure produced by the Sandia Z accelerator. Along with this new capability comes the ability of using this technique to launch relatively large flyer plates (9-12 mm in diameter by 200-300 micron thickness) to velocities in excess of conventional gas gun and HVL technologies. This technique for performing shock wave experiments using the Z accelerator is particularly attractive for several reasons. First, the experiments are plate impact experiments, and thus produce a well defined pressure loading of the sample, with a finite duration of constant pressure and no pre-conditioning of the sample prior to shock arrival. Second, the relatively large flyer plates allow for large sample diameters (several mm) and thicknesses (on the order of 1 mm), thus increasing the accuracy of the measurements. Finally, the geometry of the experiment allows for up to 8 flyer plates to be launched in a single firing of the Z accelerator allowing for multiple experiments and redundant measurements to be made. Initial shock wave experiments using this magnetically driven hypervelocity flyer plate technique have been performed on liquid deuterium using an impedance matching technique. Results of initial experiments will be discussed. The possibility of using the flyer pate technique for generating warm, dense matter and well defined plasma states will also be discussed.

  17. DebriSat: The New Hypervelocity Impact Test for Satellite Breakup Fragment Characterization

    NASA Technical Reports Server (NTRS)

    Cowardin, Heather

    2015-01-01

    To replicate a hyper-velocity fragmentation event using modern-day spacecraft materials and construction techniques to better improve the existing DoD and NASA breakup models: DebriSat is intended to be representative of modern LEO satellites. Major design decisions were reviewed and approved by Aerospace subject matter experts from different disciplines. DebriSat includes 7 major subsystems. Attitude determination and control system (ADCS), command and data handling (C&DH), electrical power system (EPS), payload, propulsion, telemetry tracking and command (TT&C), and thermal management. To reduce cost, most components are emulated based on existing design of flight hardware and fabricated with the same materials. center dotA key laboratory-based test, Satellite Orbital debris Characterization Impact Test (SOCIT), supporting the development of the DoD and NASA satellite breakup models was conducted at AEDC in 1992. Breakup models based on SOCIT have supported many applications and matched on-orbit events reasonably well over the years.

  18. Geochemical processes between steel projectiles and silica-rich targets in hypervelocity impact experiments

    NASA Astrophysics Data System (ADS)

    Ebert, Matthias; Hecht, Lutz; Deutsch, Alexander; Kenkmann, Thomas; Wirth, Richard; Berndt, Jasper

    2014-05-01

    The possibility of fractionation processes between projectile and target matter is critical with regard to the classification of the impactor type from geochemical analysis of impactites from natural craters. Here we present results of five hypervelocity MEMIN impact experiments (Poelchau et al., 2013) using the Cr-V-Co-Mo-W-rich steel D290-1 as projectile and two different silica-rich lithologies (Seeberger sandstone and Taunus quartzite) as target materials. Our study is focused on geochemical target-projectile interaction occurring in highly shocked and projectile-rich ejecta fragments. In all of the investigated impact experiments, whether sandstone or quartzite targets, the ejecta fragments show (i) shock-metamorphic features e.g., planar-deformation features (PDF) and the formation of silica glasses, (ii) partially melting of projectile and target, and (iii) significant mechanical and chemical mixing of the target rock with projectile material. The silica-rich target melts are strongly enriched in the "projectile tracer elements" Cr, V, and Fe, but have just minor enrichments of Co, W, and Mo. Inter-element ratios of these tracer elements within the contaminated target melts differ strongly from the original ratios in the steel. The fractionation results from differences in the reactivity of the respective elements with oxygen during interaction of the metal melt with silicate melt. Our results indicate that the principles of projectile-target interaction and associated fractionation do not depend on impact energies (at least for the selected experimental conditions) and water-saturation of the target. Partitioning of projectile tracer elements into the silicate target melt is much more enhanced in experiments with a non-porous quartzite target compared with the porous sandstone target. This is mainly the result of higher impact pressures, consequently higher temperatures and longer reaction times at high temperatures in the experiments with quartzite as

  19. A comparative study between experimental results and numerical predictions of multi-wall structural response to hypervelocity impact

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Peck, Jeffrey A.

    1992-01-01

    Over the last three decades, multiwall structures have been analyzed extensively, primarily through experiment, as a means of increasing the protection afforded to spacecraft structure. However, as structural configurations become more varied, the number of tests required to characterize their response increases dramatically. As an alternative, numerical modeling of high-speed impact phenomena is often being used to predict the response of a variety of structural systems under impact loading conditions. This paper presents the results of a preliminary numerical/experimental investigation of the hypervelocity impact response of multiwall structures. The results of experimental high-speed impact tests are compared against the predictions of the HULL hydrodynamic computer code. It is shown that the hypervelocity impact response characteristics of a specific system cannot be accurately predicted from a limited number of HULL code impact simulations. However, if a wide range of impact loadings conditions are considered, then the ballistic limit curve of the system based on the entire series of numerical simulations can be used as a relatively accurate indication of actual system response.

  20. Effects of Hypervelocity Impacts on Silicone Elastomer Seals and Mating Aluminum Surfaces

    NASA Technical Reports Server (NTRS)

    deGroh, Henry C., III; Steinetz, Bruce M.

    2009-01-01

    While in space silicone based elastomer seals planned for use on NASA's Crew Exploration Vehicle (CEV) are exposed to threats from micrometeoroids and orbital debris (MMOD). An understanding of these threats is required to assess risks to the crew, the CEV orbiter, and missions. An Earth based campaign of hypervelocity impacts on small scale seal rings has been done to help estimate MMOD threats to the primary docking seal being developed for the Low Impact Docking System (LIDS). LIDS is being developed to enable the CEV to dock to the ISS (International Space Station) or to Altair (NASA's next lunar lander). The silicone seal on LIDS seals against aluminum alloy flanges on ISS or Altair. Since the integrity of a seal depends on both sealing surfaces, aluminum targets were also impacted. The variables considered in this study included projectile mass, density, speed, incidence angle, seal materials, and target surface treatments and coatings. Most of the impacts used a velocity near 8 km/s and spherical aluminum projectiles (density = 2.7 g/cubic centimeter), however, a few tests were done near 5.6 km/s. Tests were also performed using projectile densities of 7.7, 2.79, 2.5 or 1.14 g/cubic centimeter. Projectile incidence angles examined included 0 degrees, 45 degrees , and 60 degrees from normal to the plane of the target. Elastomer compounds impacted include Parker's S0383-70 and Esterline's ELA-SA-401 in the as received condition, or after an atomic oxygen treatment. Bare, anodized and nickel coated aluminum targets were tested simulating the candidate mating seal surface materials. After impact, seals and aluminum plates were leak tested: damaged seals were tested against an undamaged aluminum plate; and undamaged seals were placed at various locations over craters in aluminum plates. It has been shown that silicone elastomer seals can withstand an impressive level of damage before leaking beyond allowable limits. In general on the tests performed to date, the

  1. Effects of Hypervelocity Impacts on Silicone Elastomer Seals and Mating Aluminum Surfaces

    NASA Technical Reports Server (NTRS)

    deGroh, Henry C., III; Steinetz, Bruce M.

    2009-01-01

    While in space silicone based elastomer seals planned for use on NASA's Crew Exploration Vehicle (CEV) are exposed to threats from micrometeoroids and orbital debris (MMOD). An understanding of these threats is required to assess risks to the crew, the CEV orbiter, and missions. An Earth based campaign of hypervelocity impacts on small scale seal rings has been done to help estimate MMOD threats to the primary docking seal being developed for the Low Impact Docking System (LIDS). LIDS is being developed to enable the CEV to dock to the ISS (International Space Station) or to Altair (NASA's next lunar lander). The silicone seal on LIDS seals against aluminum alloy flanges on ISS or Altair. Since the integrity of a seal depends on both sealing surfaces, aluminum targets were also impacted. The variables considered in this study included projectile mass, density, speed, incidence angle, seal materials, and target surface treatments and coatings. Most of the impacts used a velocity near 8 km/s and spherical aluminum projectiles (density = 2.7 g/cubic cm), however, a few tests were done near 5.6 km/s. Tests were also performed using projectile densities of 7.7, 2.79, 2.5 or 1.14 g/cubic cm. Projectile incidence angles examined included 0 deg, 45 deg, and 60 deg from normal to the plane of the target. Elastomer compounds impacted include Parker's S0383-70 and Esterline's ELA-SA-401 in the as received condition, or after an atomic oxygen treatment. Bare, anodized and nickel coated aluminum targets were tested simulating the candidate mating seal surface materials. After impact, seals and aluminum plates were leak tested: damaged seals were tested against an undamaged aluminum plate; and undamaged seals were placed at various locations over craters in aluminum plates. It has been shown that silicone elastomer seals can withstand an impressive level of damage before leaking beyond allowable limits. In general on the tests performed to date, the diameter of the crater in

  2. Response of PMHS to high- and low-speed oblique and lateral pneumatic ram impacts.

    PubMed

    Rhule, Heather; Suntay, Brian; Herriott, Rodney; Amenson, Tara; Stricklin, Jim; Bolte, John H

    2011-11-01

    In ISO Technical Report 9790 (1999) normalized lateral and oblique thoracic force-time responses of PMHS subjected to blunt pendulum impacts at 4.3 m/s were deemed sufficiently similar to be grouped together in a single biomechanical response corridor. Shaw et al. (2006) presented results of paired oblique and lateral thoracic pneumatic ram impact tests to opposite sides of seven PMHS at sub-injurious speed (2.5 m/s). Normalized responses showed that oblique impacts resulted in more deflection and less force, whereas lateral impacts resulted in less deflection and more force. This study presents results of oblique and lateral thoracic impacts to PMHS at higher speeds (4.5 and 5.5 m/s) to assess whether lateral relative to oblique responses are different as observed by Shaw et al. or similar as observed by ISO. Twelve PMHS were impacted by a 23 kg pneumatic ram with a 152.4 mmx304.8 mm rectangular face plate at the level of the xyphoid process in either the pure lateral or 30° anterior-to-lateral oblique direction. Because these tests were potentially injurious, only one test per subject was conducted. Normalized responses demonstrate similar characteristics for both lateral and oblique impacts, indicating that it may be reasonable to combine lateral and oblique responses together at these higher speeds to define characteristic PMHS response as was done by ISO. The small number of tests conducted indicates that less chest compression may be required to obtain serious thoracic injury in oblique impacts as compared to lateral impacts at speeds of 4.5 or 5.5 m/s.

  3. Tektite origin by hypervelocity asteroidal or cometary impact: The quest for the source craters

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian

    1992-01-01

    Tektites are natural glasses that are chemically homogeneous, often spherically symmetrical objects several centimeters in size, and occur in four known strewn fields on the surface of the Earth: the North American, moldavite (or Central European), Ivory Coast, and Australasian strewn fields. Tektites found within such strewn fields are related to each other with respect to their petrological, physical, and chemical properties as well as their age. A theory of tektite origin needs to explain the similarity of tektites in respect to age and certain aspects of isotopic and chemical composition within one strewn field, as well as the variety of tektite materials present in each strewn field. In addition to tektites on land, microtektites (which are generally less than 1 mm in diameter) have been found in deep-sea cores. Tektites are classified into three groups: (1) normal or splash-form tektites, (2) aerodynamically shaped tektites, and (3) Muong Nong-type tektites (sometimes also called layered tektites). The aerodynamic ablation results from partial remelting of glass during atmospheric passage after it was ejected outside the terrestrial atmosphere and quenched from a hot liquid. Aerodynamically shaped tektites are known mainly from the Australasian strewn field where they occur as flanged-button australites. The shapes of splash-form tektites (spheres, droplets, teardrops, dumbbells, etc., or fragments thereof) are the result of the solidification of rotating liquids in the air or vacuum. Mainly due to chemical studies, it is now commonly accepted that tektites are the product of melting and quenching of terrestrial rocks during hypervelocity impact on the Earth. The chemistry of tektites is in many respects identical to the composition of upper crustal material.

  4. New Evidence from Silica Debris Exo-Systems for Planet Building Hypervelocity Impacts

    NASA Astrophysics Data System (ADS)

    Lisse, Carey

    2010-05-01

    There is abundant inferential evidence for massive collisions in the early solar system [1]: Mercury's high density; Venus' retrograde spin; Earth's Moon; Mars' North/South hemispherical cratering anisotropy; Vesta's igneous origin [2]; brecciation in meteorites [3]; and Uranus' spin axis located near the plane of the ecliptic. Recent work [4] analyzing Spitzer mid-IR spectra has demonstrated the presence of large amounts of amorphous silica and SiO gas produced by a recent (within 103 - 104 yrs) large (MExcess > MPluto) hypervelocity impact collision around the young (~12 Myr old) nearby star HD172555, at the right age to form rocky planets. Many questions still remain concerning the location, lifetime, and source of the detected silica/SiO gas, which should not be stable in orbit at the estimated 5.8 AU from the HD172555 A5V primary for more than a few decades, yet it is also highly unlikely that we are fortuitously observing these systems immediately after silica formation A tabulation of the amount counts in the fine silica dust is decidedly Fe and Mg-atom poor compared to solar [4]. Three possible origins for the observed silica/SiO gas seem currently plausible : (1) A single hyperevelocity impact (>10km/s in order to produce silica and vaporize SiO at impact) creating an optically thick circumplanetary debris ring which is overflowing or releasing silica-rich material from its Hill sphere. Like terrestrial tektites, the Fe/Mg poor amorphous silica rubble is formed from quick-quenched molten/vaporized rock created during the impact. The amount of dust detected in the HD172555 system is easily enough to fill and overflow the Hill sphere radius of 0.03 AU for a Pluto-sized body at 5.8 AU from an A5 star, unless it is optically thick (> 1 cm in physical depth). Such a disk would provide a substantial fraction of the observed IR flux, and will be dense enough to self-shield its SiO gas, greatly extending its photolytic lifetime. The lifetime for such a system

  5. Hypervelocity impact damage response and characterization of thin plate targets at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Corbett, Brooke Myers

    The performance of a typical International Space Station (ISS) shield against the meteoroid and orbital debris (M/OD) impact threat is generally modeled by damage equations for the outer shield and the rear pressure wall. In their current forms, these damage equations neglect the on-orbit temperature extremes witnessed by the ISS. To address IF and HOW temperature extremes affect the performance of the ISS' typical M/OD shield, a comprehensive study was undertaken that investigated hole diameters in .063" thick 6061-T6 aluminum targets impacted at velocities from ˜2-7 km/s at 20°C, 110°C, and 210°C. Robust graphical and analytical analyses confirmed the existence of a statistically significant temperature effect, i.e., hole diameters in heated targets were larger than those in room temperature targets. A new temperature-dependent model was found via multivariable regression analysis that incorporates a linear velocity term and a temperature term based on a form of the cumulative distribution function. Numerical modeling of hypervelocity impacts (HVI) into elevated temperature targets was also performed to determine whether or not currently available material and failure models can adequately simulate the differences observed between room and elevated temperature target hole diameters. Statistical analyses showed that AUTODYN simulated the heated data almost as well as the room temperature data. However, the slightly worse Goodness of Fit (GOF) values between the heated empirical vs. simulated comparisons suggest that the simulations do not completely account for the observed temperature effect. A series of materials tests and observations were carried out on the post-impacted target plates to help explain the empirical data results with respect to material variability and deformation features. Rockwell B and K macro-hardness tests revealed that the hardness values for the targets impacted at 110°C were statistically significantly higher compared to those

  6. Hypervelocity impact effect of molecules from Enceladus' plume and Titan's upper atmosphere on NASA's Cassini spectrometer from reactive dynamics simulation.

    PubMed

    Jaramillo-Botero, Andres; An, Qi; Cheng, Mu-Jeng; Goddard, William A; Beegle, Luther W; Hodyss, Robert

    2012-11-21

    The NASA/ESA Cassini probe of Saturn analyzed the molecular composition of plumes emanating from one of its moons, Enceladus, and the upper atmosphere of another, Titan. However, interpretation of this data is complicated by the hypervelocity (HV) flybys of up to ~18 km/sec that cause substantial molecular fragmentation. To interpret this data we use quantum mechanical based reactive force fields to simulate the HV impact of various molecular species and ice clathrates on oxidized titanium surfaces mimicking those in Cassini's neutral and ion mass spectrometer (INMS). The predicted velocity dependent fragmentation patterns and composition mixing ratios agree with INMS data providing the means for identifying the molecules in the plume. We used our simulations to predict the surface damage from the HV impacts on the INMS interior walls, which we suggest acts as a titanium sublimation pump that could alter the instrument's readings. These results show how the theory can identify chemical events from hypervelocity impacts in space plumes and atmospheres, providing in turn clues to the internal structure of the corresponding sources (e.g., Enceladus). This may be valuable in steering modifications in future missions.

  7. Intact capture of hypervelocity particles

    NASA Technical Reports Server (NTRS)

    Tsou, P.; Brownlee, D. E.; Albee, A. L.

    1986-01-01

    Knowledge of the phase, structure, and crystallography of cosmic particles, as well as their elemental and isotopic compositions, would be very valuable information toward understanding the nature of our solar system. This information can be obtained from the intact capture of large mineral grains of cosmic particles from hypervelocity impacts. Hypervelocity experiments of intact capture in underdense media have indicated realistic potential in this endeaver. The recovery of the thermal blankets and louvers from the Solar Max spacecraft have independently verified this potential in the unintended capture of cosmic materials from hypervelocity impacts. Passive underdense media will permit relatively simple and inexpensive missions to capture cosmic particles intact, either by going to a planetary body or by waiting for the particles to come to the Shuttle or the Space Station. Experiments to explore the potential of using various underdense media for an intact comet sample capture up to 6.7 km/s were performed at NASA Ames Research Center Vertical Gun Range. Explorative hypervelocity experiments up to 7.9 km/s were also made at the Ernst Mach Institute. These experiments have proven that capturing intact particles at hypervelocity impacts is definitely possible. Further research is being conducted to achieve higher capture ratios at even higher hypervelocities for even smaller projectiles.

  8. Intact capture of hypervelocity particles

    NASA Astrophysics Data System (ADS)

    Tsou, P.; Brownlee, D. E.; Albee, A. L.

    Knowledge of the phase, structure, and crystallography of cosmic particles, as well as their elemental and isotopic compositions, would be very valuable information toward understanding the nature of our solar system. This information can be obtained from the intact capture of large mineral grains of cosmic particles from hypervelocity impacts. Hypervelocity experiments of intact capture in underdense media have indicated realistic potential in this endeaver. The recovery of the thermal blankets and louvers from the Solar Max spacecraft have independently verified this potential in the unintended capture of cosmic materials from hypervelocity impacts. Passive underdense media will permit relatively simple and inexpensive missions to capture cosmic particles intact, either by going to a planetary body or by waiting for the particles to come to the Shuttle or the Space Station. Experiments to explore the potential of using various underdense media for an intact comet sample capture up to 6.7 km/s were performed at NASA Ames Research Center Vertical Gun Range. Explorative hypervelocity experiments up to 7.9 km/s were also made at the Ernst Mach Institute. These experiments have proven that capturing intact particles at hypervelocity impacts is definitely possible. Further research is being conducted to achieve higher capture ratios at even higher hypervelocities for even smaller projectiles.

  9. Radio-wave emission due to hypervelocity impacts and its correlation with optical observations

    NASA Astrophysics Data System (ADS)

    Takano, T.; Maki, K.; Yamori, A.

    This paper describes the most interesting phenomena of radio-wave emission due to hypervelocity impacts. A projectile of polycarbonate with 1.1 g weight was accelerated by a rail gun to 3.8 km/sec, and hit two targets which are a 2 mm thick aluminum plate upstream and a 45 mm diameter aluminum column downstream, respectively. The projectile first breaks wires to give a triggering signal to a data recorder, then penetrates the aluminum plate, and finally hit the column, The emitted radio-waves propagate through the chamber window, and are received by antennas at each frequency band. The receivers in 22 GHz- and 2 GHz-bands consist of a low noise amplifier, a mixer, a local oscillator and an IF amplifier , respectively. The receiver in 1 MHz-band is a simple RF amplifier. The outputs of all receivers are fed to a data recorder which is actually a high-speed digital oscilloscope with a large amount of memory. The radio-waves were successfully recorded in 22 GHz-band with 500 MHz bandwidth, in 2 GHz-band with 300 MHz bandwidth, and in 1MHz-band. The waveforms in 22 GHz- and 2 GHz-bands coincide well each other, and are composed of two groups of sharp impulses with a separation of about 20 micro seconds. The width of an impulse is less than 2 n sec. which is the resolution limit of the data recorder. We carried out optical observations using an ultra-high speed camera simultaneously through another window of the chamber. The time interval between scenes is 2 micro sec. We can see a faint light of the projectile before the first impact to the plate, and then a brilliant gas exploding backward from the plate and forward to the column. After hitting the column target, the brilliant gas flows to the chamber wall and is reflected back to make a mixture with dark gas in the chamber. Excellent correlation between radio-wave emission and the observed optical phenomena was obtained in the experiment. It is easily conceived that the radio-waves consist of quite a wide frequency

  10. Migration of the Cratering Flow-Field Center with Implications for Scaling Oblique Impacts

    NASA Technical Reports Server (NTRS)

    Anderson, J. L. B.; Schultz, P. H.; Heineck, J. T.

    2004-01-01

    Crater-scaling relationships are used to predict many cratering phenomena such as final crater diameter and ejection speeds. Such nondimensional relationships are commonly determined from experimental impact and explosion data. Almost without exception, these crater-scaling relationships have used data from vertical impacts (90 deg. to the horizontal). The majority of impact craters, however, form by impacts at angles near 45 deg. to the horizontal. While even low impact angles result in relatively circular craters in sand targets, the effects of impact angle have been shown to extend well into the excavation stage of crater growth. Thus, the scaling of oblique impacts needs to be investigated more thoroughly in order to quantify fully how impact angle affects ejection speed and angle. In this study, ejection parameters from vertical (90 deg.) and 30 deg. oblique impacts are measured using three-dimensional particle image velocimetry (3D PIV) at the NASA Ames Vertical Gun Range (AVGR). The primary goal is to determine the horizontal migration of the cratering flow-field center (FFC). The location of the FFC at the time of ejection controls the scaling of oblique impacts. For vertical impacts the FFC coincides with the impact point (IP) and the crater center (CC). Oblique impacts reflect a more complex, horizontally migrating flow-field. A single, stationary point-source model cannot be used accurately to describe the evolution of the ejection angles from oblique impacts. The ejection speeds for oblique impacts also do not follow standard scaling relationships. The migration of the FFC needs to be understood and incorporated into any revised scaling relationships.

  11. Characteristics of hypervelocity impact craters on LDEF experiment S1003 and implications of small particle impacts on reflective surfaces

    NASA Technical Reports Server (NTRS)

    Mirtich, Michael J.; Rutledge, Sharon K.; Banks, Bruce A.; Devries, Christopher; Merrow, James E.

    1993-01-01

    The Ion Beam textured and coated surfaces EXperiment (IBEX), designated S1003, was flown on LDEF at a location 98 deg in a north facing direction relative to the ram direction. Thirty-six diverse materials were exposed to the micrometeoroid (and some debris) environment for 5.8 years. Optical property measurements indicated no changes for almost all of the materials except S-13G, Kapton, and Kapton-coated surfaces, and these changes can be explained by other environmental effects. From the predicted micrometeoroid flux of NASA SP-8013, no significant changes in optical properties of the surfaces due to micrometeoroids were expected. There were hypervelocity impacts on the various diverse materials flown on IBEX, and the characteristics of these craters were documented using scanning electron microscopy (SEM). The S1003 alumigold-coated aluminum cover tray was sectioned into 2 cm x 2 cm pieces for crater documentation. The flux curve generated from this crater data fits well between the 1969 micrometeoroid model and the Kessler debris model for particles less than 10(exp -9) gm which were corrected for the S1003 positions (98 deg to ram). As the particle mass increases, the S1003 impact data is greater than that predicted by even the debris model. This, however, is consistent with data taken on intercostal F07 by the Micrometeoroid/Debris Special Investigating Group (M/D SIG). The mirrored surface micrometeoroid detector flown on IBEX showed no change in solar reflectance and corroborated the S1003 flux curve, as well as results of this surface flown on SERT 2 and OSO 3 for as long as 21 years.

  12. Hypervelocity microparticle characterization

    SciTech Connect

    Idzorek, G.C.

    1996-11-01

    To protect spacecraft from orbital debris requires a basic understanding of the processes involved in hypervelocity impacts and characterization of detectors to measure the space environment. Both require a source of well characterized hypervelocity particles. Electrostatic acceleration of charged microspheres provides such a source. Techniques refined at the Los Alamos National Laboratory provided information on hypervelocity impacts of particles of known mass and velocity ranging from 20-1000 nm diameter and 1-100 km/s. A Van De Graaff generator operating at 6 million volts was used to accelerate individual carbonyl iron microspheres produced by a specially designed particle source. Standard electrostatic lenses and steering were used to control the particles flight path. Charge sensitive pickoff tubes measured the particle charge and velocity in- flight without disturbing the particle. This information coupled with the measured Van De Graaff terminal voltage allowed calculation of the particle energy, mass, momenta and (using an assumed density) the size. Particles with the desired parameters were then electrostatically directed to a target chamber. Targets used in our experiments included cratering and foil puncture targets, microphone momentum enhancement detectors, triboluminescent detectors, and ``splash`` charge detectors. In addition the system has been used to rapidly characterize size distributions of conductive plastic particles and potentially provide a method of easily sorting microscopic particles by size.

  13. Hypervelocity High Speed Projectile Imagery and Video

    NASA Technical Reports Server (NTRS)

    Henderson, Donald J.

    2009-01-01

    This DVD contains video showing the results of hypervelocity impact. One is showing a projectile impact on a Kevlar wrapped Aluminum bottle containing 3000 psi gaseous oxygen. One video show animations of a two stage light gas gun.

  14. Development of a Numerical Model of Hypervelocity Impact into a Pressurized Composite Overwrapped Pressure Vessel

    NASA Technical Reports Server (NTRS)

    Garcia, M. A.; Davis, B. A.; Miller, J. E.

    2017-01-01

    considered a catastrophic failure. This assumption is conservative and made due to lack of knowledge on the level of allow-able damage to the composite overwrap that can be sustained and still allow successful completion of the mission. To quantify the allowable damage level to the composite overwrap involves assessing stress redistribution following damage as well as evaluating possible time-dependent mechanisms involved in the COPV response to an impact event. Limited published work in this subject has shown that COPV can withstand at least some level of damage due to high energy impacts. These observations have been confirmed and expanded upon in recent experimental research performed by NASA. This research has demonstrated that there is not only robustness in a COPV to compensate for CFRP damage, but has also identified two significant failure modes for pressurized COPV. The lowest threshold failure mode involves the perforation of the vessel, and the highest threshold failure mode is the catastrophic rupture. While both of these failure modes mean a loss of the COPV, system robustness affords some tolerance to the venting as opposed to the more catastrophic rupture. As a consequence, it is necessary to understand the conditions that result in the transition between these failure modes. The aforementioned experimental research has been performed in both the unpressurized and pressurized condition to identify the damage level that triggered the failure thresh-old. This COPV test program was sponsored by the NASA Engineering and Safety Center (NESC), and tests were performed at NASA White Sands Test Facility (WSTF). Planning and coordination were provided by NASA JSC Hypervelocity Impact Technology (HVIT) group, and the COPVs were provided by the ISS Program. Unpressurized testing has been conducted at the pressure of the vacuum test chamber, while, the pressurized testing has been conducted at 290 +/- 10 bar (4,200 ? 100 psi) using nitrogen as the pressurizing gas, which

  15. Hypervelocity impact facility for simulating materials exposure to impact by space debris

    NASA Astrophysics Data System (ADS)

    Rose, M. Frank; Best, S. G.; Chaloupka, T.; Stephens, B.

    1992-06-01

    The Space Power Institute at Auburn University has constructed an electromagnetically driven particle accelerator for simulating the effects of space debris on the materials for use in advanced spacecraft. The facility consists of a capacitively driven accelerator section, a drift tube and a specimen impact chamber. The drift tube is sufficiently long that all electrical activity has ceased prior to impact in the specimen chamber. The impact chamber is large enough to allow a wide range of specimen geometries, ranging from small coupons to active portions of advanced spacecraft. The electric drive for the accelerator consists of a 67 kJ, 50 k capacitor bank arranged in a low inductance configuration. The bank is discharged through an aluminum armature/plastic ablator plate/projectile load in roughly 1.2 microsec. The evaporation of the ablaitor plate produces an expanding gas slug, mostly H2, traveling at a velocity of some 60 km/sec. Because of the pressure and local density, the expanding gas cloud accelerates projectiles due to plasma drag. To date, we have utilized projectiles consisting of 100 micron SiC, 100 and 400 micron Al2O3, 100 and 145 micron olivines. Since many particles are accelerated in a given experiment, there is a range of velocities for each shot as well as some particle breakup. Advanced diagnostics techniques allow determination of impact coordinates, velocity, and approximate size for as many as 50 individual impacts in a given experiment. We routinely measure velocities in the range 1-15 km/sec. We have used this facility to study a variety of impact generated phenomena on coated surfaces, both paint and plastic, thermal blanket material, solar cell arrays, and optical materials such as glass and quartz lenses. The operating characteristics of the gun, the advanced diagnostic scheme, and the results of studies of crater morphology are described in detail. Projectile residue analysis, as a function of impact velocity for the materials listed

  16. Hypervelocity impact facility for simulating materials exposure to impact by space debris

    NASA Technical Reports Server (NTRS)

    Rose, M. Frank; Best, S. G.; Chaloupka, T.; Stephens, B.

    1992-01-01

    The Space Power Institute at Auburn University has constructed an electromagnetically driven particle accelerator for simulating the effects of space debris on the materials for use in advanced spacecraft. The facility consists of a capacitively driven accelerator section, a drift tube and a specimen impact chamber. The drift tube is sufficiently long that all electrical activity has ceased prior to impact in the specimen chamber. The impact chamber is large enough to allow a wide range of specimen geometries, ranging from small coupons to active portions of advanced spacecraft. The electric drive for the accelerator consists of a 67 kJ, 50 k capacitor bank arranged in a low inductance configuration. The bank is discharged through an aluminum armature/plastic ablator plate/projectile load in roughly 1.2 microsec. The evaporation of the ablaitor plate produces an expanding gas slug, mostly H2, traveling at a velocity of some 60 km/sec. Because of the pressure and local density, the expanding gas cloud accelerates projectiles due to plasma drag. To date, we have utilized projectiles consisting of 100 micron SiC, 100 and 400 micron Al2O3, 100 and 145 micron olivines. Since many particles are accelerated in a given experiment, there is a range of velocities for each shot as well as some particle breakup. Advanced diagnostics techniques allow determination of impact coordinates, velocity, and approximate size for as many as 50 individual impacts in a given experiment. We routinely measure velocities in the range 1-15 km/sec. We have used this facility to study a variety of impact generated phenomena on coated surfaces, both paint and plastic, thermal blanket material, solar cell arrays, and optical materials such as glass and quartz lenses. The operating characteristics of the gun, the advanced diagnostic scheme, and the results of studies of crater morphology are described in detail. Projectile residue analysis, as a function of impact velocity for the materials listed

  17. Sunspot: A program to model the behavior of hypervelocity impact damaged multilayer insulation in the Sunspot thermal vacuum chamber of Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Rule, W. K.; Hayashida, K. B.

    1992-01-01

    The development of a computer program to predict the degradation of the insulating capabilities of the multilayer insulation (MLI) blanket of Space Station Freedom due to a hypervelocity impact with a space debris particle is described. A finite difference scheme is used for the calculations. The computer program was written in Microsoft BASIC. Also described is a test program that was undertaken to validate the numerical model. Twelve MLI specimens were impacted at hypervelocities with simulated debris particles using a light gas gun at Marshall Space Flight Center. The impact-damaged MLI specimens were then tested for insulating capability in the space environment of the Sunspot thermal vacuum chamber at MSFC. Two undamaged MLI specimens were also tested for comparison with the test results of the damaged specimens. The numerical model was found to adequately predict behavior of the MLI specimens in the Sunspot chamber. A parameter, called diameter ratio, was developed to relate the nominal MLI impact damage to the apparent (for thermal analysis purposes) impact damage based on the hypervelocity impact conditions of a specimen.

  18. Survivability of copper projectiles during hypervelocity impacts in porous ice: A laboratory investigation of the survivability of projectiles impacting comets or other bodies

    NASA Astrophysics Data System (ADS)

    McDermott, K. H.; Price, M. C.; Cole, M.; Burchell, M. J.

    2016-04-01

    During hypervelocity impact (>a few km s-1) the resulting cratering and/or disruption of the target body often outweighs interest on the outcome of the projectile material, with the majority of projectiles assumed to be vaporised. However, on Earth, fragments, often metallic, have been recovered from impact sites, meaning that metallic projectile fragments may survive a hypervelocity impact and still exist within the wall, floor and/or ejecta of the impact crater post-impact. The discovery of the remnant impactor composition within the craters of asteroids, planets and comets could provide further information regarding the impact history of a body. Accordingly, we study in the laboratory the survivability of 1 and 2 mm diameter copper projectiles fired onto ice at speeds between 1.00 and 7.05 km s-1. The projectile was recovered intact at speeds up to 1.50 km s-1, with no ductile deformation, but some surface pitting was observed. At 2.39 km s-1, the projectile showed increasing ductile deformation and broke into two parts. Above velocities of 2.60 km s-1 increasing numbers of projectile fragments were identified post impact, with the mean size of the fragments decreasing with increasing impact velocity. The decrease in size also corresponds with an increase in the number of projectile fragments recovered, as with increasing shock pressure the projectile material is more intensely disrupted, producing smaller and more numerous fragments. The damage to the projectile is divided into four classes with increasing speed and shock pressure: (1) minimal damage, (2) ductile deformation, start of break up, (3) increasing fragmentation, and (4) complete fragmentation. The implications of such behaviour is considered for specific examples of impacts of metallic impactors onto Solar System bodies, including LCROSS impacting the Moon, iron meteorites onto Mars and NASA's ;Deep Impact; mission where a spacecraft impacted a comet.

  19. Numerical investigations on pressurized AL-composite vessel response to hypervelocity impacts: Comparison between experimental works and a numerical code

    NASA Astrophysics Data System (ADS)

    Mespoulet, Jérôme; Plassard, Fabien; Hereil, Pierre-Louis

    2015-09-01

    Response of pressurized composite-Al vessels to hypervelocity impact of aluminum spheres have been numerically investigated to evaluate the influence of initial pressure on the vulnerability of these vessels. Investigated tanks are carbon-fiber overwrapped prestressed Al vessels. Explored internal air pressure ranges from 1 bar to 300 bar and impact velocity are around 4400 m/s. Data obtained from experiments (Xray radiographies, particle velocity measurement and post-mortem vessels) have been compared to numerical results given from LS-DYNA ALE-Lagrange-SPH full coupling models. Simulations exhibit an under estimation in term of debris cloud evolution and shock wave propagation in pressurized air but main modes of damage/rupture on the vessels given by simulations are coherent with post-mortem recovered vessels from experiments. First results of this numerical work are promising and further simulation investigations with additional experimental data will be done to increase the reliability of the simulation model. The final aim of this crossed work is to numerically explore a wide range of impact conditions (impact angle, projectile weight, impact velocity, initial pressure) that cannot be explore experimentally. Those whole results will define a rule of thumbs for the definition of a vulnerability analytical model for a given pressurized vessel.

  20. Results of Two-Stage Light-Gas Gun Development Efforts and Hypervelocity Impact Tests of Advanced Thermal Protection Materials

    NASA Technical Reports Server (NTRS)

    Cornelison, C. J.; Watts, Eric T.

    1998-01-01

    Gun development efforts to increase the launching capabilities of the NASA Ames 0.5-inch two-stage light-gas gun have been investigated. A gun performance simulation code was used to guide initial parametric variations and hardware modifications, in order to increase the projectile impact velocity capability to 8 km/s, while maintaining acceptable levels of gun barrel erosion and gun component stresses. Concurrent with this facility development effort, a hypervelocity impact testing series in support of the X-33/RLV program was performed in collaboration with Rockwell International. Specifically, advanced thermal protection system materials were impacted with aluminum spheres to simulate impacts with on-orbit space debris. Materials tested included AETB-8, AETB-12, AETB-20, and SIRCA-25 tiles, tailorable advanced blanket insulation (TABI), and high temperature AFRSI (HTA). The ballistic limit for several Thermal Protection System (TPS) configurations was investigated to determine particle sizes which cause threshold TPS/structure penetration. Crater depth in tiles was measured as a function of impact particle size. The relationship between coating type and crater morphology was also explored. Data obtained during this test series was used to perform a preliminary analysis of the risks to a typical orbital vehicle from the meteoroid and space debris environment.

  1. Survival of Nannochloropsis Phytoplankton in Hypervelocity Impact Events up to Velocities of 6.07 km/s

    NASA Astrophysics Data System (ADS)

    Pasini, D. L. S.; Price, M. C.; Burchell, M. J.; Cole, M. J.

    2013-09-01

    Studies have previously been conducted to verify the survivability of living cells during hypervelocity impact events to test the panspermia and lithopanspermia hypothesis [1], [2]. It has been demonstrated that bacteria survive impacts up to 5.4 km s-1 (approx. shock pressure 30 GPa) - albeit with a low probability of survival [1] whilst larger more complex objects (such as seeds) break up at ~1 km s-1 [2]. The survivability of yeast spores in impacts up to 7.4 km s-1 has also recently been shown [3]. We demonstrate here the survivability of Nannochloropsis Phytoplankton, a eukaryotic photosynthesizing autotroph found in the 'euphotic zone'(sunlit surface layers of oceans) [4] at impact velocities up to 6.07 km s-1. Phytoplankton from a culture sample was frozen and then fired into water (to simulate oceanic impacts, as described in [5]) using a light gas gun (LGG) [6]. The water was then retrieved and placed into a sealed culture vessel and left under a constant light source to check the viability of any remnant organisms.

  2. Hypervelocity impact facility for simulating materials exposure to impact by space debris

    NASA Technical Reports Server (NTRS)

    Rose, M. F.; Best, S.; Chaloupka, T.; Stephens, B.; Crawford, G.

    1993-01-01

    As a result of man's venturing into space, the local debris contributed by his presence exceeds, at some orbital altitudes, that of the natural component. Man's contribution ranges from fuel residue to large derelect satellites that weigh many kilograms. Current debris models are able to predict the growth of the problem and suggest that spacecraft must employ armor or bumper shields for some orbital altitudes now, and that, the problem will become worse as a function of time. The practical upper limit to the velocity distribution is on the order of 40 km/s and is associated with the natural environment. The maximum velocity of the man-made component is in the 14-16 km/s range. The Long Duration Exposure Facility (LDEF) has verified that the 'high probability of impact' particles are in the microgram to milligram range. These particles can have significant effects on coatings, insulators, and thin metallic layers. The surface of thick materials becomes pitted and the local debris component is enhanced by ejecta from the debris spectrum in a controlled environment. The facility capability is discussed in terms of drive geometry, energetics, velocity distribution, diagnostics, and projectile/debris loading. The facility is currently being used to study impact phenomena on Space Station Freedom's solar array structure, other solar array materials, potential structural materials for use in the station, electrical breakdown in the space environment, and as a means of clarifying or duplicating the impact phenomena on the LDEF surfaces. The results of these experiments are described in terms of the mass/velocity distribution incident on selected samples, crater dynamics, and sample geometry.

  3. Active removal of orbital debris by induced hypervelocity impact of injected dust grains

    NASA Astrophysics Data System (ADS)

    Ganguli, G.; Crabtree, C.; Velikovich, A.; Rudakov, L.; Chappie, S.

    2014-02-01

    Collisions of an active satellite with a small (1mm - cm) untrackable orbital debris can be mission ending. It has been recently established that we are at the tipping point for collisional cascade of larger objects to exponential growth of small orbital debris. This will make access to near-Earth space hazardous without first clearing the existing debris from this region. We present a concept for elimination of small debris by deploying micron scale dust to artificially enhance the drag on the debris. The key physics that makes this technique viable is the possibility of large momentum boost realized through hypervelocity dust/debris collision. By deploying high mass density micron scale dust in a narrow altitude band temporarily it is possible to artificially enhance drag on debris spread over a very large volume and force rapid reentry. The injected dust will also reenter the atmosphere leaving no permanent residue in space.

  4. Survival of yeast spores in hypervelocity impact events up to velocities of 7.4 km s-1

    NASA Astrophysics Data System (ADS)

    Price, M. C.; Solscheid, C.; Burchell, M. J.; Josse, L.; Adamek, N.; Cole, M. J.

    2013-01-01

    We report on the survivability in hypervelocity impacts of yeast in spore form, and as mature cultures, at impact velocities from 1 to 7.4 km s-1, corresponding to an estimated peak shock pressure of ˜43 GPa. Spores from a yeast strain (BY4743), deficient in an enzyme required for uracil production, were fired into water (to simulate oceanic impact from space) using a light gas gun. The water was then retrieved and filtered and the resulting retentate and filtrate cultured to determine viability and survival rates of remnant spores. Yeast growth (confirmed as coming from the original sample as it had the same enzyme deficiency) was found in recovered samples at all impact speeds, albeit in smaller quantities at the higher speeds. The survival probabilities were measured as ˜50% at 1 km s-1, falling to ˜10-3% at 7.4 km s-1. This follows the pattern observed in previous work on survival of microbial life and spores exposed to extreme shock loading, where there is reasonable survival at low peak shock pressures with more severe lethality above a critical shock pressure at the GPa scale (here between 2 and 10 GPa). These results are explained in the context of a general model for survival against extreme shock and are relevant to the hypotheses of panspermia and litho-panspermia, showing that extreme shocks during transfer across space are not necessarily sterilising.

  5. Experimental Hypervelocity Dust Impact in Olivine: FIB/TEM Characterization of Micron-Scale Craters with Comparison to Natural and Laser-Simulated Small-Scale Impact Effects

    NASA Technical Reports Server (NTRS)

    Christoffersen, R.; Loeffler, M. J.; Rahman, Z.; Dukes, C.; IMPACT Team

    2017-01-01

    The space weathering of regoliths on airless bodies and the formation of their exospheres is driven to a large extent by hypervelocity impacts from the high relative flux of micron to sub-micron meteoroids that comprise approximately 90 percent of the solar system meteoroid population. Laboratory hypervelocity impact experiments are crucial for quantifying how these small impact events drive space weathering through target shock, melting and vaporization. Simulating these small scale impacts experimentally is challenging because the natural impactors are both very small and many have velocities above the approximately 8 kilometers-per-second limit attainable by conventional chemical/light gas accelerator technology. Electrostatic "dust" accelerators, such as the one recently developed at the Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS), allow the experimental velocity regime to be extended up to tens of kilometers-per-second. Even at these velocities the region of latent target damage created by each impact, in the form of microcraters or pits, is still only about 0.1 to 10 micrometers in size. Both field-emission analytical scanning electron microscopy (FE-SEM) and advanced field-emission scanning transmission electron microscopy (FE-STEM) are uniquely suited for characterizing the individual dust impact sites in these experiments. In this study, we have used both techniques, along with focused ion beam (FIB) sample preparation, to characterize the micrometer to nanometer scale effects created by accelerated dust impacts into olivine single crystals. To our knowledge this work presents the first TEM-scale characterization of dust impacts into a key solar system silicate mineral using the CCLDAS facility. Our overarching goal for this work is to establish a basis to compare with our previous results on natural dust-impacted lunar olivine and laser-irradiated olivine.

  6. Tomography Study of Shock-Induced Damage Beneath Craters by Normal and Oblique Impacts

    NASA Astrophysics Data System (ADS)

    Ai, H.; Ahrens, T.

    2004-12-01

    Comparisons of laboratory impact craters produced in rock and planetary-scale impact structures, indicate that the observed reductions in elastic wave velocities by shock-induced damage of rock beneath impact craters can be used to constrain the impact history. A series of small-scale normal and oblique impact experiments were conducted on 20x20x15 cm samples of San Marcos granite by a 1.2 km/s, 2 kJ impactor. The resulting largely circular (8 cm in diameter) crater dimensions agrees closely with previous data. By conducting a multiple source-receiver ultrasonic survey of the shocked rock beneath laboratory craters (sampled by 290 ray paths beneath the crater) we have tomographically mapped the in-situ P-wave velocity beneath craters and find measurable damage, as defined by > 0.1 km/s velocity reduction, are induced to depths of 7 cm beneath the crater for normal impacts. However, oblique impacts produce shallower damage zone ( ˜ 3 cm deep) that are asymmetric along the plane containing the impact trajectory. The downrange shows more damage than the uprange. Since the extent of the shock-damage region depends on impact velocity and impact energy, the extent of damage in our laboratory impact structures , and we presume also planetary scale impact structures, carries both impact velocity and direction of impact information not previously recognized or sought. Hence damage zone dimensions are expected to constrain planetary impacts parameters. Oblique impacts, where the tracjectory is ≥ 15° relative to the impacted surface, yields approximately circular craters, can in principle, provide information on impactor trajectory. For planetary impacts, the damage profile, as measured by seismic velocity deficit, beneath craters allow some statistical constraint on impacts produced by low-inclination orbit objects (asteroids and Jupiter-family comets), versus, high-inclination orbit objects (long-period and new comets).

  7. Peculiarities in the formation of complex organic compounds in a nitrogen-methane atmosphere during hypervelocity impacts

    NASA Astrophysics Data System (ADS)

    Zaitsev, M. A.; Gerasimov, M. V.; Safonova, E. N.; Vasiljeva, A. S.

    2016-03-01

    Results of the experiments on model impact vaporization of peridotite, a mineral analogue of stony asteroids, in a nitrogen-methane atmosphere are presented. Nd-glass laser (γ = 1.06 µm) was used for simulation. Pulse energy was ~600-700 J, pulse duration ~10-3 s, vaporization tempereature ~4000-5000 K. The gaseous medium (96% vol. of N2 and 4% vol. of CH4, P = 1 atm) was a possible analogue of early atmospheres of terrestrial planets and corresponded to the present-day atmosphere composition of Titan, a satellite of Saturn. By means of pyrolytic gas chromatography/mass spectrometry, it is shown that solid condensates obtained in laser experiments contain relatively complex lowand high-molecular weight (kerogen-like) organic compounds. The main products of condensate pyrolysis were benzene and alkyl benzenes (including long-chain ones), unbranched aliphatic hydrocarbons, and various nitrogen-containing compounds (aliphatic and aromatic nitriles and pyrrol). It is shown that the nitrogen-methane atmosphere favors the formation of complex organic compounds upon hypervelocity impacts with the participation of stony bodies even with a small methane content in it. In this process, falling bodies may not contain carbon, hydrogen, and other chemical elements necessary for the formation of the organic matter. In such conditions, a noticeable contribution to the impact-induced synthesis of complex organic substances is probably made by heterogeneous catalytic reactions, in particular, Fischer-Tropsch type reactions.

  8. The scaling and dynamics of a projectile obliquely impacting a granular medium.

    PubMed

    Wang, Dengming; Ye, Xiaoyan; Zheng, Xiaojing

    2012-01-01

    In this paper, the dynamics of a spherical projectile obliquely impacting into a two-dimensional granular bed is numerically investigated using the discrete element method. The influences of projectile's initial velocities and impacting angles are mainly considered. Numerical results show that the relationship between the final penetration depth and the initial impact velocity is very similar to that in the vertical-impact case. However, the dependence of the stopping time on the impact velocity of the projectile exhibits critical characteristics at different impact angles: the stopping time approximately increases linearly with the impact velocity for small impact angles but decreases in an exponential form for larger impact angles, which demonstrates the existence of two different regimes at low and high impact angles. When the impact angle is regarded as a parametric variable, a phenomenological force model at large impact angles is eventually proposed based on the simulation results, which can accurately describe the nature of the resistance force exerted on the projectile by the granular medium at different impact angels during the whole oblique-impact process. The degenerate model agrees well with the existing experimental results in the vertical-impact cases.

  9. Measuring the internal energies of species emitted from hypervelocity nanoprojectile impacts on surfaces using recalibrated benzylpyridinium probe ions

    NASA Astrophysics Data System (ADS)

    DeBord, J. Daniel; Verkhoturov, Stanislav V.; Perez, Lisa M.; North, Simon W.; Hall, Michael B.; Schweikert, Emile A.

    2013-06-01

    We present herein a framework for measuring the internal energy distributions of vibrationally excited molecular ions emitted from hypervelocity nanoprojectile impacts on organic surfaces. The experimental portion of this framework is based on the measurement of lifetime distributions of "thermometer" benzylpyridinium ions dissociated within a time of flight mass spectrometer. The theoretical component comprises re-evaluation of the fragmentation energetics of benzylpyridinium ions at the coupled-cluster singles and doubles with perturbative triples level. Vibrational frequencies for the ground and transition states of select molecules are reported, allowing for a full description of vibrational excitations of these molecules via Rice-Ramsperger-Kassel-Marcus unimolecular fragmentation theory. Ultimately, this approach is used to evaluate the internal energy distributions from the measured lifetime distributions. The average internal energies of benzylpyridinium ions measured from 440 keV Au400+4 impacts are found to be relatively low (˜0.24 eV/atom) when compared with keV atomic bombardment of surfaces (1-2 eV/atom).

  10. Survival of the Tardigrade Hypsibius Dujardini during Hypervelocity Impact Events up to 5.49 km s-1

    NASA Astrophysics Data System (ADS)

    Pasini, D.

    2014-04-01

    Studies have previously been conducted to verify the survivability of living cells during hypervelocity impact events to test the panspermia and lithopanspermia hypotheses [1, 2]. It has been demonstrated that bacteria survive impacts up to 5.4 km s-1 (approx. shock pressure 30 GPa) - albeit with a low probability of survival [1], whilst larger, more complex, objects (such as seeds) break up at ~1 km s-1 [2]. The survivability of yeast spores in impacts up to 7.4 km s-1 has also recently been shown [3]. Previous work by the authors demonstrated the survivability of Nannochloropsis Oculata Phytoplankton, a eukaryotic photosynthesizing autotroph found in the 'euphotic zone' (sunlit surface layers of oceans [4]), at impact velocities up to 6.07 km s-1 [5]. Other groups have also reported that lichens are able to survive shocks in similar pressure ranges [6]. However, whilst many simple single celled organisms have now been shown to survive such impacts (and the associated pressures) as those encountered during the migration of material from one planet to another [1, 3, 5], complex multicellular organisms have either largely not been tested or, those that have been, have not survived the process [2]. Hypsibius dujardini, like most species of tardigrade, are complex organisms composed of approximately 40,000 cells [7]. When humidity decreases they enter a highly dehydrated state known as a 'tun' and can survive extreme temperatures (as low as - 253°C or as high as 151°C), as well as exposure to Xrays and the vacuum of space [7]. Here we test the shock survivability of Hypsibius dujardini by firing a nylon projectile onto a frozen sample of water containing frozen tardigrades using a light gas gun (LGG) [8]. The recovered ice and water were then analysed under an optical microscope to check the viability of any remnant organisms that may have survived impact, and the pressures generated.

  11. Crater features diagnostic of oblique impacts: The size and position of the central peak

    NASA Astrophysics Data System (ADS)

    Ekholm, Andreas G.; Melosh, H. Jay

    Using Magellan data, we investigated two crater characteristics that have been cited as diagnostic of oblique impacts: an uprange offset of the central peak in complex craters, and an increasing central peak diameter relative to crater diameter with decreasing impact angle. We find that the offset distribution is random and very similar to that for high-angle impacts, and that there is no correlation between central peak diameter and impact angle. Accordingly, these two crater characteristics cannot be used to infer the impact angle or direction.

  12. First Principles Based Reactive Atomistic Simulations to Understand the Effects of Molecular Hypervelocity Impact on Cassini's Ion and Neutral Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Jaramillo-Botero, A.; Cheng, M-J; Cvicek, V.; Beegle, Luther W.; Hodyss, R.; Goddard, W. A., III

    2011-01-01

    We report here on the predicted impact of species such as ice-water, CO2, CH4, and NH3, on oxidized titanium, as well as HC species on diamond surfaces. These simulations provide the dynamics of product distributions during and after a hypervelocity impact event, ionization fractions, and dissociation probabilities for the various species of interest as a function of impact velocity (energy). We are using these results to determine the relevance of the fragmentation process to Cassini INMS results, and to quantify its effects on the observed spectra.

  13. A numerical analysis of empty and foam-filled aluminium conical tubes under oblique impact loading

    NASA Astrophysics Data System (ADS)

    Mat, Fauziah; Ismail, Khairul Azwan; Yaacob, Sazali

    2015-05-01

    In real impact applications, an energy absorber rarely sustains dynamic loading either axial or oblique but a combination of both. Established studies have proved that thin-walled tube is an excellent energy absorber under dynamic loading. Furthermore, the introduction of foam filling successfully enhanced the energy absorption capacity of thin-walled tube. However, the understanding of its response under oblique loading has yet been fully explored. Moreover, emerging in automotive industry has lead to increase interests on lightweight materials such as aluminium alloy. As such, this paper presents the crushing behaviour of empty and foam-filled aluminium alloy (AA6061-T6) conical tubes under oblique impact loading using a validated nonlinear finite element (FE) code, LS-DYNA. The study aims to assess the effect of foam filling on the energy absorption of AA6061-T6 tubes for variations in filler density. In fact, to the best of our knowledge, this study is the first attempt to evaluate a response of empty and foam-filled aluminum conical tube by using an experimentally validated model under oblique dynamic loading conditions. Good correlations between the numerical and experimental results were observed. The study show that initial peak force and the energy absorption increase with increasing filler density under axial and oblique loading. On the other hand, the effect of foam filling (0.534 g/cm3 aluminium foam filler) is less pronounced for the initial peak force under axial impact loading. Furthermore, the initial peak force and dynamic force of empty and foam-filled AA6061-T6 conical tubes decrease as the load angle increases from 0 deg to 20 deg hence reduces the energy absorption capacity.

  14. Oblique lateral impact biofidelity deflection corridors from Post Mortem Human Surrogates.

    PubMed

    Yoganandan, Narayan; Humm, John R; Arun, Mike W J W J; Pintar, Frank A

    2013-11-01

    The objective of the study was to determine the thorax and abdomen deflection-time corridors in oblique side impacts. Data were analyzed from Post Mortem Human Surrogate (PMHS) sled tests, certain aspects of which were previously published. A modular and scalable anthropometry-specific segmented load-wall system was fixed to the platform of the sled. Region-specific forces were recorded from load cells attached to the load-wall plates. The thorax and abdomen regions were instrumented with chestbands, and deflection contours were obtained. Biomechanical responses were processed using the impulse-momentum normalization method and scaled to the mid-size male mass, 76-kg. The individual effective masses of the thorax and abdomen were used to determine the scale factors in each sled test, thus using the response from each experiment. The maximum deflections and their times of attainments were obtained, and mean and plus minus one standard deviation corridors were derived. Test-by-test thorax and abdomen force-time histories are given. Deflection-time histories for each specimen for the two body regions and corridors are presented. The mean maximum deflections for the thorax and abdomen body regions were 68.41 ± 16.1 and 68.98 ± 12.69 mm, respectively. Deflections were greater in oblique than pure lateral loading tests for both body regions, indicating the increased sensitivity of oblique side impact vector to the human response. The mean and one standard deviation responses of the thorax and abdomen serve as biofidelity corridors under oblique loading. Because modern instrumentation techniques can accommodate deflection sensors in the thorax and abdomen in devices such as WorldSID, and computer finite element models are flexible enough to extract regional and local deformation fields, the present data can be used to evaluate dummy biofidelity and validate and verify numerical models. They can be used to advance injury assessment reference values in oblique impacts.

  15. Experimental study on impact disruption of porous asteroids: Effects of oblique impact and multiple collisions on impact strength

    NASA Astrophysics Data System (ADS)

    Yasui, Minami; Takano, Shota; Matsue, Kazuma; Arakawa, Masahiko

    2015-08-01

    Most of asteroids would have pores and a plenty of pre-cracks in their interiors, and the pre-cracks could be formed by multiple impacts at various impact angles. Porosity and pre-cracks are important physical properties controlling the impact strength. Okamoto and Arakawa (2009) did impact experiments of porous gypsum spheres to obtain the impact strength of porous asteroids, but they carried out only single impact experiments on the same target at head-on. In this study, we conducted oblique impact and multiple impacts on porous gypsum and examined the effects of impact angle and pre-cracks on the impact strength.We carried out impact experiments by using the one-stage He gas gun and the two-stage H2 gas gun at Kobe University. The impact velocities were <200 m/s (low-vi) and >3 km/s (high-vi). Targets were porous gypsum spheres with the porosity of 55% and the diameters of 7 or 12 cm. The projectiles were a porous gypsum sphere with the diameter of 2.5 cm at low-vi or a polycarbonate sphere with the diameter of 4.7 cm at high-vi. The impact angle changed from 15° to 90°, and the projectile was impacted on the same target for 2-15 times. The impact phenomena were observed by a high-speed digital video camera to measure the fragment velocities.The oblique impact experiments showed that the impact strength did not depend on the impact angle θ between 45° and 90°, and obtained to be ~2000 J/kg, while it drastically changed at the θ from 15° to 30°. We reanalyzed our results by using the effective energy density defined as Qsin2θ, where Q is the energy density, and found that most of the results were consistent with the results of head-on impacts. The multiple impacts showed that the impact strength of pre-impacted targets was larger than that of intact targets in the case of low-vi. This might be caused by the compaction of the target surface. In the case of high-vi, the impact strength of pre-impacted targets was smaller than that of intact targets. This

  16. Identification of minerals and meteoritic materials via Raman techniques after capture in hypervelocity impacts on aerogel

    SciTech Connect

    Burchell, M J; Mann, J; Creighton, J A; Kearsley, A; Graham, G A; Esposito, A P; Franchi, I A; Westphal, A J; Snead, C

    2004-10-04

    For this study, an extensive suite of mineral particles analogous to components of cosmic dust were tested to determine if their Raman signatures can be recognized after hypervelocity capture in aerogel. The mineral particles were mainly of greater than 20 micrometers in size and were accelerated onto the silica aerogel by light gas gun shots. It was found that all the individual minerals captured in aerogel could be subsequently identified using Raman (or fluorescent) spectra. The beam spot size used for the laser illumination was of the order of 5 micrometers, and in some cases the captured particles were of a similar small size. In some samples fired into aerogel there was observed a shift in the wavenumbers of some of the Raman bands, a result of the trapped particles being at quite high temperatures due to heating by the laser. Temperatures of samples under laser illumination were estimated from the relative intensities of Stokes and anti-Stokes Raman bands, or, in the case of ruby particles, from the wavenumber of fluorescence bands excited by the laser. It was found that the temperature of particles in aerogel varied greatly, dependent upon laser power and the nature of the particle. In the worst case, some particles were shown to have temperatures in the 500-700 C range at a laser power of about 3 mW at the sample. However most of the mineral particles examined at this laser power had temperatures below 200 C. This is sufficiently low a temperature not to damage most materials expected to be found captured in aerogel in space. In addition, selected meteorite samples were examined to obtain Raman signatures of their constituent minerals and were then shot into aerogel. It was possible to find several Raman signatures after capture in aerogel and obtain a Raman map of a whole grain in situ in the aerogel. Finally, a Raman analysis was carried out of a particle captured in aerogel in space and carbonaceous material identified. In general therefore it is

  17. Dynamics of oblique impact in a 2D photoelastic granular medium

    NASA Astrophysics Data System (ADS)

    Cox, Noah; Wu, Xinyu; Stevens Bester, Cacey; Behringer, Robert

    2016-11-01

    Penetration of a solid projectile into dry granular matter is studied via two-dimensional impact experiments with bidisperse photoelastic grains. The drag force acting on the projectile is determined by high-speed imaging of the projectile's dynamics combined with the local granular response of the photoelastic grains. This force was previously shown using vertical impact to be the sum of a static, depth-dependent drag and a velocity-dependent inertial drag. Here the impact occurs obliquely, invoking a significant horizontal drag force that has not been fully explored. Accordingly we study the drag force model for oblique impact. We consider the influence of the projectile's impact speed and initial impact angle on its resultant trajectory. The path of the projectile changes drastically with impact angle. We therefore connect the effect of the impact angle to the nature of the drag force exerted on the projectile by the granular medium. supported by Duke University Provost's Postdoctoral Program, NASA Grant NNX15AD38G, and NSF-DMR-1206351.

  18. Examining the temporal evolution of hypervelocity impact phenomena via high-speed imaging and ultraviolet-visible emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Tandy, J. D.; Mihaly, J. M.; Adams, M. A.; Rosakis, A. J.

    2014-07-01

    The temporal evolution of a previously observed hypervelocity impact-induced vapor cloud [Mihaly et al., Int. J. Impact Eng. 62, 13 (2013)] was measured by simultaneously recording several full-field, near-IR images of the resulting emission using an OMA-V high-speed camera. A two-stage light-gas gun was used to accelerate 5 mg Nylon 6/6 right-cylinders to speeds between 5 km/s and 7 km/s to impact 1.5 mm thick 6061-T6 aluminum target plates. Complementary laser-side-lighting [Mihaly et al., Int. J. Impact Eng. 62, 13 (2013); Proc. Eng. 58, 363 (2013)] and front-of-target (without laser illumination) images were also captured using a Cordin ultra-high-speed camera. The rapid expansion of the vapor cloud was observed to contain a bright, emitting exterior, and a darker, optically thick interior. The shape of this phenomenon was also observed to vary considerably between experiments due to extremely high-rate (>250 000 rpm) of tumbling of the cylindrical projectiles. Additionally, UV-vis emission spectra were simultaneously recorded to investigate the temporal evolution of the atomic and molecular composition of the up-range, impact-induced vapor plume. A PI-MAX3 high-speed camera coupled to an Acton spectrograph was utilized to capture the UV-vis spectra, which shows an overall peak in emission intensity between approximately 6-10 μs after impact trigger, corresponding to an increased quantity of emitting vapor/plasma passing through the spectrometer slit during this time period. The relative intensity of the numerous spectral bands was also observed to vary according to the exposure delay of the camera, indicating that the different atomic/molecular species exhibit a varied temporal evolution during the vapor cloud expansion. Higher resolution spectra yielded additional emission lines/bands that provide further evidence of interaction between fragmented projectile material and the 1 mmHg atmosphere inside the target chamber. A comparison of the data to down

  19. Examining the temporal evolution of hypervelocity impact phenomena via high-speed imaging and ultraviolet-visible emission spectroscopy

    SciTech Connect

    Tandy, J. D.; Mihaly, J. M.; Adams, M. A.; Rosakis, A. J.

    2014-07-21

    The temporal evolution of a previously observed hypervelocity impact-induced vapor cloud [Mihaly et al., Int. J. Impact Eng. 62, 13 (2013)] was measured by simultaneously recording several full-field, near-IR images of the resulting emission using an OMA-V high-speed camera. A two-stage light-gas gun was used to accelerate 5 mg Nylon 6/6 right-cylinders to speeds between 5 km/s and 7 km/s to impact 1.5 mm thick 6061-T6 aluminum target plates. Complementary laser-side-lighting [Mihaly et al., Int. J. Impact Eng. 62, 13 (2013); Proc. Eng. 58, 363 (2013)] and front-of-target (without laser illumination) images were also captured using a Cordin ultra-high-speed camera. The rapid expansion of the vapor cloud was observed to contain a bright, emitting exterior, and a darker, optically thick interior. The shape of this phenomenon was also observed to vary considerably between experiments due to extremely high-rate (>250 000 rpm) of tumbling of the cylindrical projectiles. Additionally, UV-vis emission spectra were simultaneously recorded to investigate the temporal evolution of the atomic and molecular composition of the up-range, impact-induced vapor plume. A PI-MAX3 high-speed camera coupled to an Acton spectrograph was utilized to capture the UV-vis spectra, which shows an overall peak in emission intensity between approximately 6–10 μs after impact trigger, corresponding to an increased quantity of emitting vapor/plasma passing through the spectrometer slit during this time period. The relative intensity of the numerous spectral bands was also observed to vary according to the exposure delay of the camera, indicating that the different atomic/molecular species exhibit a varied temporal evolution during the vapor cloud expansion. Higher resolution spectra yielded additional emission lines/bands that provide further evidence of interaction between fragmented projectile material and the 1 mmHg atmosphere inside the target chamber. A comparison of the

  20. Oblique impact cratering experiments in brittle targets: Implications for elliptical craters on the Moon

    NASA Astrophysics Data System (ADS)

    Michikami, Tatsuhiro; Hagermann, Axel; Morota, Tomokatsu; Haruyama, Junichi; Hasegawa, Sunao

    2017-01-01

    Most impact craters observed on planetary bodies are the results of oblique impacts of meteoroids. To date, however, there have only been very few laboratory oblique impact experiments for analogue targets relevant to the surfaces of extraterrestrial bodies. In particular, there is a lack of laboratory oblique impact experiments into brittle targets with a material strength on the order of 1 MPa, with the exception of ice. A strength on the order of 1 MPa is considered to be the corresponding material strength for the formation of craters in the 100 m size range on the Moon. Impact craters are elliptical if the meteoroid's trajectory is below a certain threshold angle of incidence, and it is known that the threshold angle depends largely on the material strength. Therefore, we examined the threshold angle required to produce elliptical craters in laboratory impact experiments into brittle targets. This work aims to constrain current interpretations of lunar elliptical craters and pit craters with sizes below a hundred meters. We produced mortar targets with compressive strength of 3.2 MPa. A spherical nylon projectile (diameter 7.14 mm) was shot into the target surface at a nominal velocity of 2.3 km/s, with an impact angle of 5°-90° from horizontal. The threshold angle of this experiment ranges from 15° to 20°. We confirmed that our experimental data agree with previous empirical equations in terms of the cratering efficiency and the threshold impact angle. In addition, in order to simulate the relatively large lunar pit craters related to underground cavities, we conducted a second series of experiments under similar impact conditions using targets with an underground rectangular cavity. Size and outline of craters that created a hole are similar to those of craters without a hole. Moreover, when observed from an oblique angle, a crater with a hole has a topography that resembles the lunar pit craters. The relation between the impact velocity of meteoroids on

  1. A Self-consistent Model of the Circumstellar Debris Created by a Giant Hypervelocity Impact in the HD 172555 System

    NASA Astrophysics Data System (ADS)

    Johnson, B. C.; Lisse, C. M.; Chen, C. H.; Melosh, H. J.; Wyatt, M. C.; Thebault, P.; Henning, W. G.; Gaidos, E.; Elkins-Tanton, L. T.; Bridges, J. C.; Morlok, A.

    2012-12-01

    Spectral modeling of the large infrared excess in the Spitzer IRS spectra of HD 172555 suggests that there is more than 1019 kg of submicron dust in the system. Using physical arguments and constraints from observations, we rule out the possibility of the infrared excess being created by a magma ocean planet or a circumplanetary disk or torus. We show that the infrared excess is consistent with a circumstellar debris disk or torus, located at ~6 AU, that was created by a planetary scale hypervelocity impact. We find that radiation pressure should remove submicron dust from the debris disk in less than one year. However, the system's mid-infrared photometric flux, dominated by submicron grains, has been stable within 4% over the last 27 years, from the Infrared Astronomical Satellite (1983) to WISE (2010). Our new spectral modeling work and calculations of the radiation pressure on fine dust in HD 172555 provide a self-consistent explanation for this apparent contradiction. We also explore the unconfirmed claim that ~1047 molecules of SiO vapor are needed to explain an emission feature at ~8 μm in the Spitzer IRS spectrum of HD 172555. We find that unless there are ~1048 atoms or 0.05 M ⊕ of atomic Si and O vapor in the system, SiO vapor should be destroyed by photo-dissociation in less than 0.2 years. We argue that a second plausible explanation for the ~8 μm feature can be emission from solid SiO, which naturally occurs in submicron silicate "smokes" created by quickly condensing vaporized silicate.

  2. Limits on methane release and generation via hypervelocity impact of Martian analogue materials

    NASA Astrophysics Data System (ADS)

    Price, M. C.; Ramkissoon, N. K.; McMahon, S.; Miljković, K.; Parnell, J.; Wozniakiewicz, P. J.; Kearsley, A. T.; Blamey, N. J. F.; Cole, M. J.; Burchell, M. J.

    2014-04-01

    The quantity of methane in Mars' atmosphere, and the potential mechanism(s) responsible for its production, are still unknown. In order to test viable, abiotic, methangenic processes, we experimentally investigated two possible impact mechanisms for generating methane. In the first suite of experiments, basaltic rocks were impacted at 5 km s-1 and the quantity of gases (CH4, H2, He, N2, O2, Ar and CO2) released by the impacts was measured. In the second suite of experiments, a mixture of water ice, CO2 ice and anhydrous olivine grains was impacted to see if the shock induced rapid serpentinization of the olivine, and thus production of methane. The results of both suites of experiments demonstrate that impacts (at scales achievable in the laboratory) do not give rise to detectably enhanced quantities of methane release above background levels. Supporting hydrocode modelling was also performed to gain insight into the pressures and temperatures occurring during the impact events.

  3. Excess of L-alanine in amino acids synthesized in a plasma torch generated by a hypervelocity meteorite impact reproduced in the laboratory

    NASA Astrophysics Data System (ADS)

    Managadze, George G.; Engel, Michael H.; Getty, Stephanie; Wurz, Peter; Brinckerhoff, William B.; Shokolov, Anatoly G.; Sholin, Gennady V.; Terent'ev, Sergey A.; Chumikov, Alexander E.; Skalkin, Alexander S.; Blank, Vladimir D.; Prokhorov, Vyacheslav M.; Managadze, Nina G.; Luchnikov, Konstantin A.

    2016-10-01

    We present a laboratory reproduction of hypervelocity impacts of a carbon containing meteorite on a mineral substance representative of planetary surfaces. The physical conditions of the resulting impact plasma torch provide favorable conditions for abiogenic synthesis of protein amino acids: We identified glycine and alanine, and in smaller quantities serine, in the produced material. Moreover, we observe breaking of alanine mirror symmetry with L excess, which coincides with the bioorganic world. Therefore the selection of L-amino acids for the formation of proteins for living matter could have been the result from plasma processes occurring during the impact meteorites on the surface. This indicates that the plasma torch from meteorite impacts could play an important role in the formation of biomolecular homochirality. Thus, meteorite impacts possibly were the initial stage of this process and promoted conditions for the emergence of a living matter.

  4. Simulating hypervelocity impact effects on structures using the smoothed particle hydrodynamics code MAGI

    NASA Technical Reports Server (NTRS)

    Libersky, Larry; Allahdadi, Firooz A.; Carney, Theodore C.

    1992-01-01

    Analysis of interaction occurring between space debris and orbiting structures is of great interest to the planning and survivability of space assets. Computer simulation of the impact events using hydrodynamic codes can provide some understanding of the processes but the problems involved with this fundamental approach are formidable. First, any realistic simulation is necessarily three-dimensional, e.g., the impact and breakup of a satellite. Second, the thickness of important components such as satellite skins or bumper shields are small with respect to the dimension of the structure as a whole, presenting severe zoning problems for codes. Thirdly, the debris cloud produced by the primary impact will yield many secondary impacts which will contribute to the damage and possible breakup of the structure. The problem was approached by choosing a relatively new computational technique that has virtues peculiar to space impacts. The method is called Smoothed Particle Hydrodynamics.

  5. Oblique impact: A process for providing meteorite samples of other planets

    NASA Technical Reports Server (NTRS)

    Okeefe, J. D.; Ahrens, T. J.

    1986-01-01

    Cratering flow calculations for a series of oblique to normal impacts of silicate projectiles onto a silicate halfspace were carried out to determine whether the gas produced upon shock vaporizing both projectile and planetary material could entrain and accelerate surface rocks and thus provide a mechanism for propelling SNC meteorites from the Martian surface. The difficult constraints that the impact origin hypothesis for SNC meteorites has to satisfy are that these meteorites are lightly to moderately shocked and yet were accelerated to speeds in excess of the Martian escape velocity. Two dimensional finite difference calculations demonstrate that at highly probable impact velocities, vapor plume jets are produced at oblique impact angles of 25 deg to 60 deg and have speeds as great as 20 km/sec. These plumes flow nearly parallel to the planetary surface. It is shown that upon impact of projectiles having radii of 0.1 to 1 km, the resulting vapor jets have densities of 0.1 to 1 g/cu.cm. These jets can entrain Martian surface rocks and accelerate them to velocities 5 km/sec. It is suggested that this mechanism launches SNC meteorites to Earth.

  6. A planetary ultra hypervelocity impact mechanics and shock wave science facility

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.

    1987-01-01

    Using the concept of intercepting orbits from a pair of Space Station serviced free flyers, a class of impact and shock wave experiments pertinent to planetary science can be performed. One proposed free flying vehicle is an impactor dispensor, and the second is the impact laboratory. How collision is achieved by utilizing essentially twice orbital velocity is demonstrated. The impactor dispensor contains a series of small flyer plates or other projectiles which are launched into the trajectory of the impactor laboratory at appropriate positions. The impactor laboratory is a large impact tank similar to those in terrestrial gun laboratories, except that it contains a supply of targets and instrumentation such as high speed cameras, flash X-ray apparatus, and digital recorders. Shock and isentropic pressures of up to 20 Mbar are achievable with such a system which provides 15 km/sec impact velocities for precisely oriented projectiles.

  7. Fiber optic interrogation systems for hypervelocity and low velocity impact studies

    NASA Astrophysics Data System (ADS)

    Jackson, D. A.; Cole, M. J.

    2012-03-01

    The aim of this project was to develop non-contact fiber optic based displacement sensors to operate in the harsh environment of a "light gas gun" (LGG), which can "fire" small particles at velocities ranging from 1 km/s-8.4 km/s. The LGG is used extensively for research in aerospace to analyze the effects of high speed impacts on materials. Ideally the measurement should be made close to the center of the impact to minimize corruption of the data from edge effects and survive the impact. We chose to develop a non-contact "pseudo" confocal intensity sensor, which demonstrated resolution comparable with conventional polyvinylidene fluoride (PVDF) sensors combined with high survivability and low cost. A second sensor was developed based on "fiber Bragg gratings" (FBG) to enable a more detailed analysis of the effects of the impact, although requiring contact with the target the low weight and very small contact area of the FBG had minimal effect on the dynamics of the target. The FBG was mounted either on the surface of the target or tangentially between a fixed location. The output signals from the FBG were interrogated in time by a new method. Measurements were made on carbon fiber composite plates in the LGG and on low velocity impact tests. The particle momentum for the low velocity impact tests was chosen to be similar to that of the particles used in the LGG.

  8. The shapes of fragments in hypervelocity impact experiments ranging from cratering to catastrophic disruption

    NASA Astrophysics Data System (ADS)

    Michikami, T.; Hagermann, A.; Kadokawa, T.; Yoshida, A.; Shimada, A.; Hasegawa, S.; Tsuchiyama, A.

    2015-12-01

    Laboratory impact experiments have found that the shapes of impact fragments as defined by axes a, b and c, these being the maximum dimensions of the fragment in three mutually orthogonal planes (a ≥ b ≥ c) are distributed around mean values of the axial ratios b/a ~0.7 and c/a ~0.5, i.e., corresponding to a : b: c in the simple proportion 2: √2: 1. The shape distributions of some boulders on asteroid Eros, the small- and fast-rotating asteroids (diameter < 200 m and rotation period < 1 h), and asteroids in young families, are similar to those of laboratory fragments in catastrophic disruption. However, the shapes of laboratory fragments were obtained from the experiments that resulted in catastrophic disruption, a process that is different from impact cratering. In order to systematically investigate the shapes of fragments in the range from impact cratering to catastrophic disruption, impact experiments for basalt targets 5 to 15 cm in size were performed. A total of 28 impact experiments were carried out by a spherical nylon projectile (diameter 7.14 mm) perpendicularly into the target surface at velocities of 1.6 to 7.0 km/s. More than 13,000 fragments with b ≥ 4 mm generated in the impact experiments were measured. In the experiments, the mean value of c/a in each impact decreases with decreasing impact energy per unit target mass. For instance, the mean value of c/a in an impact cratering event is nearly 0.2, which is less than that c/a in a catastrophic disruption (~0.5). To apply the experimental results to real collisions on asteroids, we investigated the shapes of 21 arbitrarily selected boulders (> 8 m) on asteroid Itokawa. The mean value of c/a of these boulders is 0.46, which is similar to the value for catastrophic disruption. This implies that the parent body of Itokawa could have experienced a catastrophic disruption.

  9. Hypervelocity Impact of Unstressed and Stressed Titanium in a Whipple Configuration in Support of the Orion Crew Exploration Vehicle Service Module Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Christiansen, Eric; Piekutowski, Andrew; Lyons, Frankel; Keddy, Christopher; Salem, Jonathan; Miller, Joshua; Bohl, William; Poormon, Kevin; Greene, Nathanel; Rodriquez, Karen

    2010-01-01

    Hypervelocity impacts were performed on six unstressed and six stressed titanium coupons with aluminium shielding in order to assess the effects of the partial penetration damage on the post impact micromechanical properties of titanium and on the residual strength after impact. This work is performed in support of the definition of the penetration criteria of the propellant tanks surfaces for the service module of the crew exploration vehicle where such a criterion is based on testing and analyses rather than on historical precedence. The objective of this work is to assess the effects of applied biaxial stress on the damage dynamics and morphology. The crater statistics revealed minute differences between stressed and unstressed coupon damage. The post impact residual stress analyses showed that the titanium strength properties were generally unchanged for the unstressed coupons when compared with undamaged titanium. However, high localized strains were shown near the craters during the tensile tests.

  10. Hypervelocity Impact of Unstressed and Stressed Titanium in a Whipple Configuration in Support of the Orion Crew Exploration Vehicle Service Module Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Christiansen, Eric; Piekutowski, Andrew; Lyons, Frankel; Keddy, Christopher; Salem, Jonathan; Poormon, Kevin; Bohl, William; Miller, Joshua; Greene, Nathanael; Rodriquez, Karen

    2010-01-01

    Hypervelocity impacts were performed on six unstressed and six stressed titanium coupons with aluminium: shielding in order to assess the effects of the partial penetration damage on the post impact micromechanical properties of titanium and on the residual strength after impact. This work is performed in support of the defInition of the penetration criteria of the propellant and oxidizer tanks dome surfaces for the service module of the crew exploration vehicle where such a criterion is based on testing and analyses rather than on historical precedence. The objective of this work is to assess the effects of applied biaxial stress on the damage dynamics and morphology. The crater statistics revealed minute differences between stressed and unstressed coupon damage. The post impact residual stress analyses showed that the titanium strength properties were generally unchanged for the unstressed coupons when compared with undamaged titanium. However, high localized strains were shown near the craters during the tensile tests.

  11. Hypervelocity impacts on HST solar arrays and the debris and meteoroids population

    NASA Astrophysics Data System (ADS)

    Moussi, A.; Drolshagen, G.; McDonnell, J. A. M.; Mandeville, J.-C.; Kearsley, A. T.; Ludwig, H.

    Accurate debris and meteoroid flux models are crucial for the design of manned and unmanned space missions. For the most abundant particle sizes smaller than a few millimetres, knowledge of the populations can only be gained from in situ detectors or the analysis of retrieved space hardware. The measurement of impact flux from exposed surfaces improves with increased surface area and exposure time. A post-flight impact investigation was initiated by the European Space Agency to record and analyse the impact fluxes and any potential resulting damage on the two flexible solar arrays of the Hubble Space Telescope. The arrays were deployed during the first Hubble Space Telescope servicing mission in December 1993 and retrieved in March 2002. They have a total exposed surface area of roughly 120 m 2, including 42 m 2 covered with solar cells. This new Hubble post-flight impact study follows a similar activity undertaken after the retrieval of one of the first solar arrays, in 1993. The earlier study provided the first opportunity for a numerical survey of damage to exposed surfaces from more than 600 km altitude, and of impacts from particles larger than 1 mm. The results have proven very valuable in validation of important flux model regimes. The second set of Hubble solar arrays has again provided an unrivalled opportunity to measure the meteoroid and debris environment, now sampled during a long interval in low Earth orbit, and to identify changes in the space debris environment since the previous survey. The retrieved solar array wings exhibit thousands of craters, many of which are visible to the naked eye. A few hundred impacts have completely penetrated the 0.7 mm thick array. The largest impact features are about 7-8 mm in diameter. The cover glass of the solar cells is particularly well suited to the recognition of small impact features by optical and electron microscopy. In this paper, we present the first results of the impact survey. Data upon the abundance

  12. Hypervelocity impact tests and simulations of single Whipple bumper shield concepts at 10 km/s

    SciTech Connect

    Chhabildas, L.C.; Hertel, E.S.; Hill, S.A.

    1992-12-01

    A series of experiments has been performed to evaluate the effectiveness of a Whipple bumper shield to orbital space debris at impact velocities of {approximately} 10 km/s. Upon impact by a 19 mm (0.87 nun thick, L/D {approximately}0.5) flier plate, the thin aluminum bumper shield disintegrates into a debris cloud. The debris cloud front propagates axially at velocities of {approximately}14 km/s and expands radially at a velocity of {approximately}7 km/s. Subsequent loading by the debris on a 3.2 mm thick aluminum substructure placed 114 mm from the bumper penetrates the substructure completely. However, when the diameter of the flier plate is reduced to 12.7 mm, the substructure, although damaged, is not perforated over the duration of the experiment. Numerical simulations performed using the multi-dimensional hydrodynamics code CTH also predict complete perforation of the substructure by the subsequent debris cloud for the larger flier plate. The numerical simulation for a 12.7 mm flier plate, however, shows a strong dependence on assumed impact geometry, i.e., a spherical projectile impact geometry does not result in perforation of the substructure by the subsequent debris cloud, while the flat plate impact geometry results in perforation.

  13. Hypervelocity impact tests and simulations of single Whipple bumper shield concepts at 10 km/s

    SciTech Connect

    Chhabildas, L.C.; Hertel, E.S. ); Hill, S.A. )

    1992-01-01

    A series of experiments has been performed to evaluate the effectiveness of a Whipple bumper shield to orbital space debris at impact velocities of [approximately] 10 km/s. Upon impact by a 19 mm (0.87 nun thick, L/D [approximately]0.5) flier plate, the thin aluminum bumper shield disintegrates into a debris cloud. The debris cloud front propagates axially at velocities of [approximately]14 km/s and expands radially at a velocity of [approximately]7 km/s. Subsequent loading by the debris on a 3.2 mm thick aluminum substructure placed 114 mm from the bumper penetrates the substructure completely. However, when the diameter of the flier plate is reduced to 12.7 mm, the substructure, although damaged, is not perforated over the duration of the experiment. Numerical simulations performed using the multi-dimensional hydrodynamics code CTH also predict complete perforation of the substructure by the subsequent debris cloud for the larger flier plate. The numerical simulation for a 12.7 mm flier plate, however, shows a strong dependence on assumed impact geometry, i.e., a spherical projectile impact geometry does not result in perforation of the substructure by the subsequent debris cloud, while the flat plate impact geometry results in perforation.

  14. Modeling the fragmentation of hypervelocity impacts on a two wall shield

    NASA Astrophysics Data System (ADS)

    Miller, Joshua; Christiansen, Eric

    2013-06-01

    Two wall spacecraft shields are a mass efficient method for countering the risk of solid particle environments for systems operating in space. In this approach the threat encounters the first of two walls and shock wave compresses upon impact. The compression heats the materials so that upon subsequent release the materials spread out over a much larger region than the initial threat making it much more likely that a subsequent wall can arrest the impact energy. It is of great importance in system survivability assessments to accurately model this process and to develop models that reasonably describe a broad range of materials and impact conditions. To this end an experimental effort with spherical projectiles of a range of materials has been conducted to greater than 10 km/s and augmented to a much broader range of impact conditions by impact simulations. From this effort a modeling approach has been developed that captures this process for use in survivability assessments. The model and its anchoring data are discussed here.

  15. Reconstruction of hypervelocity impact crater progenitors utilising experimental data and hydrocode modelling at micron-scales

    NASA Astrophysics Data System (ADS)

    Price, Mark C.; Kearsley, Anton T.; Burchell, Mark J.

    2009-06-01

    We have used the Ansys Inc. AUTODYN software to hydrodynamically model small particle impacts into aluminium foil under the conditions of the Stardust encounter with comet 81P/Wild 2 (i.e., normal incidence, 6.1 km s-1). We compare results of impact models, based on carefully defined particle structures inferred from experimental data, with three-dimensional crater shapes reported from Stardust. This allows us to assess the extent to which the particle's structure (and composition) is reflected in the resulting impact feature. Our aim is to improve interpretation of comet Wild 2's dust characteristics, especially sub-grain dimensions, internal porosity and overall grain density. Here we present a simulation of the formation of a complex crater seen on Stardust foil C029W,1 and demonstrate that a reasonably simple model for the impactor results in a simulated crater morphology very consistent with the measured morphology.

  16. Experimental hypervelocity impact into quartz sand. II - Effects of gravitational acceleration

    NASA Technical Reports Server (NTRS)

    Gault, D. E.; Wedekind, J. A.

    1977-01-01

    Experimental results for craters formed by aluminum spheres impacting at normal incidence against quartz sand targets in gravitational acceleration environments ranging from 0.073 to 1.0 g (g = 980 cm/sq sec) are reported. Impact velocities varied from 0.4 to 8.0 km/sec. Crater dimensions and formation times are compared with results from a simplified dimensional analysis of the cratering processes. Although the comparison indicates a dominant role of gravity relative to the target strength for craters formed in sand, the results serve primarily to emphasize that both gravity and strength are variables of fundamental significance to cratering processes.

  17. Shock wave properties of anorthosite and gabbro. [to model hypervelocity impact cratering on planetary surfaces

    NASA Technical Reports Server (NTRS)

    Boslough, M. B.; Ahrens, T. J.

    1985-01-01

    Huyoniot data on San Gabriel anorthosite and San Marcos gabbro to 11 GPA are presented. Release paths in the stress-density plane and sound velocities are reported as determined from partial velocity data. Electrical interference effects precluded the determination of accurate release paths for the gabbro. Because of the loss of shear strength in the shocked state, the plastic behavior exhibited by anorthosite indicates that calculations of energy partitioning due to impact onto planetary surfaces based on elastic-plastic models may underestimate the amount of internal energy deposited in the impacted surface material.

  18. Hypervelocity impact studies using a rotating mirror framing laser shadowgraph camera

    NASA Technical Reports Server (NTRS)

    Parker, Vance C.; Crews, Jeanne Lee

    1988-01-01

    The need to study the effects of the impact of micrometeorites and orbital debris on various space-based systems has brought together the technologies of several companies and individuals in order to provide a successful instrumentation package. A light gas gun was employed to accelerate small projectiles to speeds in excess of 7 km/sec. Their impact on various targets is being studied with the help of a specially designed continuous-access rotating-mirror framing camera. The camera provides 80 frames of data at up to 1 x 10 to the 6th frames/sec with exposure times of 20 nsec.

  19. DebrisLV Hypervelocity Impact Post-Shot Physical Results Summary

    DTIC Science & Technology

    2015-02-27

    fracture   toughness)  and  impact  physics  (e.g...give  rise  to  very  large  numbers  of  micro-­‐  and   nano -­‐parFcles  via  condensaFon  and/or   homogeneous  nucleaFon...conOnued)   Impact Fragment Counting and Estimation Local Impulse Transfer Condensed Metal Micro- and Nano -spheres − Metal

  20. Hypervelocity impacts and magnetization of small bodies in the Solar System

    NASA Technical Reports Server (NTRS)

    Chen, Guangqing; Ahrens, Thomas J.; Hide, Raymond

    1995-01-01

    The observed magnetism of asteroids such as Gaspra and Ida (and other small bodies in the solar system including the Moon and meteorites) may have resulted from an impact-induced shock wave producing a thermodynamic state in which iron-nickel alloy, dispersed in a silicate matrix, is driven from the usual low-temperature, low-pressure, alpha, kaemacite, phase to the paramagnetic, epsilon (hcp), phase. The magnetization was acquired upon rarefaction and reentry into the ferromagnetic, alpha, structure. The degree of remagnetization depends on the strength of the ambient field, which may have been associated with a Solar-System-wide magnetic field. A transient field induced by the impact event itself may have resulted in a significant, or possibly, even a dominant contribution, as well. The scaling law of Housen et al. (Housen, K. R., R. M. Schmidt, and K. A. Holsapple 1991) for catastrophic asteroid impact disaggregation imposes a constraint on the degree to which small planetary bodies may be magnetized and yet survive fragmentation by the same event. Our modeling results show it is possible that Ida was magnetized when a large impact fractured a 125 +/- 22-km-radius protoasteroid to form the Koronis family. Similarly, we calculate that Gaspra could be a magnetized fragment of a 45 +/- 15 km-radius protoasteroid.

  1. A preliminary investigation of projectile shape effects in hypervelocity impact of a double-sheet structure

    NASA Technical Reports Server (NTRS)

    Morrison, R. H.

    1972-01-01

    Impact tests of a sphere and several cylinders of various masses and fineness ratios, all of aluminum, fired into an aluminum double-sheet structure at velocities near 7 km/sec, show that a cylinder, impacting in the direction of its axis, is considerably more effective as a penetrator than a sphere. Impacts of three cylinders of equal mass, but different fineness ratios, produced holes through the structures' rear sheet, whereas impact of a sphere of the same mass did not. Moreover, it was found that to prevent rear-sheet penetration, the mass of the 1/2-fineness-ratio cylinder had to be reduced by a factor greater than three. Further tests wherein the cylinder diameter was held constant while the cylinder length was systematically reduced showed that a cylinder with a fineness ratio of 0.07 and a mass of only 1/7 that of the sphere was still capable of producing a hole in the rear sheet.

  2. Numerical Simulations of Hypervelocity Impact Experiments Involving Single Whipple Bumper Shields

    DTIC Science & Technology

    1993-10-01

    laser photographs and high -speed X-ray photography. Computational results of both hydrocodes were compared to each other. * 14. SUBJECT TERMS 15...data to test the predictive capability of the hydrocodes and to compare the results of one code to the other. High -speed photographs of some of the...numerically sinmulating the impacts with high fidelity hydrocode calculations that incorporate the appropriate material equations of state and material models

  3. Experimental hypervelocity impact into quartz sand - Distribution and shock metamorphism of ejecta

    NASA Technical Reports Server (NTRS)

    Stoeffler, D.; Gault, D. E.; Wedekind, J.; Polkowski, G.

    1975-01-01

    Results are presented for vertical impacts of 0.3-g cylindrical plastic projectiles into noncohesive quartz sand in which vertical and horizontal reference strate were employed by using layers of colored sand. The impacts were performed at velocities of 5.9-6.9 km/sec with a vertical gun ballistic range. The craters, 30-33 cm in diameter, reveal a radial decay of the ejecta mass per unit area with a power of -2.8 to -3.5. Material displaced from the upper 15% of the crater depth d is represented within the whole ejecta blanked, material from deeper than 28% of d is deposited inside 2 crater radii, and no material from deeper than 33% of d was ejected beyond the crater rim. Shock-metamorphosed particles (glassy agglutinates, cataclastic breccias, and comminuted quartz) amount to some 4% of the total displaced mass and indicate progressive zones of decay of shock intensity from a peak pressure of 300 kbar. The shock-metamorphosed particles and the shock-induced change in the grain size distribution of ejected samples have close analogies to the basic characteristics of the lunar regolith. Possible applications to regolith formation and to ejecta formations of large-scale impact craters are discussed.

  4. Analysis of Regolith Simulant Ejecta Distributions from Normal Incident Hypervelocity Impact

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Cooke, William; Suggs, Rob; Moser, Danielle E.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) has established the Constellation Program. The Constellation Program has defined one of its many goals as long-term lunar habitation. Critical to the design of a lunar habitat is an understanding of the lunar surface environment; of specific importance is the primary meteoroid and subsequent ejecta environment. The document, NASA SP-8013 'Meteoroid Environment Model Near Earth to Lunar Surface', was developed for the Apollo program in 1969 and contains the latest definition of the lunar ejecta environment. There is concern that NASA SP-8013 may over-estimate the lunar ejecta environment. NASA's Meteoroid Environment Office (MEO) has initiated several tasks to improve the accuracy of our understanding of the lunar surface ejecta environment. This paper reports the results of experiments on projectile impact into powdered pumice and unconsolidated JSC-1A Lunar Mare Regolith simulant targets. Projectiles were accelerated to velocities between 2.45 and 5.18 km/s at normal incidence using the Ames Vertical Gun Range (AVGR). The ejected particles were detected by thin aluminum foil targets strategically placed around the impact site and angular ejecta distributions were determined. Assumptions were made to support the analysis which include; assuming ejecta spherical symmetry resulting from normal impact and all ejecta particles were of mean target particle size. This analysis produces a hemispherical flux density distribution of ejecta with sufficient velocity to penetrate the aluminum foil detectors.

  5. Comparison of Ejecta Distributions from Normal Incident Hypervelocity Impact on Lunar Regolith Simulant

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Cooke, William; Scruggs, Rob; Moser, Danielle E.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) is progressing toward long-term lunar habitation. Critical to the design of a lunar habitat is an understanding of the lunar surface environment; of specific importance is the primary meteoroid and subsequent ejecta environment. The document, NASA SP-8013, was developed for the Apollo program and is the latest definition of the ejecta environment. There is concern that NASA SP-8013 may over-estimate the lunar ejecta environment. NASA's Meteoroid Environment Office (MEO) has initiated several tasks to improve the accuracy of our understanding of the lunar surface ejecta environment. This paper reports the results of experiments on projectile impact into powered pumice and unconsolidated JSC-1A Lunar Mare Regolith stimulant (JSC-1A) targets. The Ames Vertical Gun Range (AVGR) was used to accelerate projectiles to velocities in excess of 5 km/s and impact the targets at normal incidence. The ejected particles were detected by thin aluminum foil targets placed around the impact site and angular distributions were determined for ejecta. Comparison of ejecta angular distribution with previous works will be presented. A simplistic technique to characterize the ejected particles was formulated and improvements to this technique will be discussed for implementation in future tests.

  6. Hypervelocity impact flash for missile-defense kill assessment and engagement analysis : experiments on Z.

    SciTech Connect

    Thornhill, Tom Finley, III; Reinhart, William Dodd; Lawrence, Raymond Jeffery Jr.; Chhabildas, Lalit Chandra; Kelly, Daniel P.

    2005-07-01

    Kill assessment continues to be a major problem for the nation's missile defense program. A potential approach for addressing this issue involves spectral and temporal analysis of the short-time impact flash that occurs when a kill vehicle intercepts and engages a target missile. This can provide identification of the materials involved in the impact event, which will, in turn, yield the data necessary for target identification, engagement analysis, and kill assessment. This report describes the first phases of a project under which we are providing laboratory demonstrations of the feasibility and effectiveness of this approach. We are using two major Sandia facilities, the Z-Pinch accelerator, and the two- and three-stage gas guns at the Shock Thermodynamics and Applied Research (STAR) facility. We have looked at the spectral content of impact flash at velocities up to 25 km/s on the Z-Pinch machine to establish the capability for spectroscopy for these types of events, and are looking at similar experiments at velocities from 6 to 11 km/s on the gas guns to demonstrate a similar capability for a variety of research-oriented and applied materials. The present report describes only the work performed on the Z machine.

  7. Fibre optic sensors for high speed hypervelocity impact studies and low velocity drop tests

    NASA Astrophysics Data System (ADS)

    Jackson, D. A.; Cole, M. J.; Burchell, M. J.; Webb, D. J.

    2011-05-01

    The initial aim of this project was to develop a non-contact fibre optic based displacement sensor to operate in the harsh environment of a 'Light Gas Gun' (LGG), which can 'fire' small particles at velocities ranging from 1-8.4 km/s. The LGG is used extensively for research in aerospace to analyze the effects of high speed impacts on materials. Ideally the measurement should be made close to the centre of the impact to minimise corruption of the data from edge effects and survive the impact. A further requirement is that it should operate at a stand-off distance of ~ 8cm. For these reasons we chose to develop a pseudo con-focal intensity sensor, which demonstrated resolution comparable with conventional PVDF sensors combined with high survivability and low cost. A second sensor was developed based on 'Fibre Bragg Gratings' (FBG) which although requiring contact with the target the low weight and very small contact area had minimal effect on the dynamics of the target. The FBG was mounted either on the surface of the target or tangentially between a fixed location. The output signals from the FBG were interrogated in time by a new method. Measurements were made on composite and aluminium plates in the LGG and on low speed drop tests. The particle momentum for the drop tests was chosen to be similar to that of the particles used in the LGG.

  8. Impact of Flight Enthalpy, Fuel Simulant, and Chemical Reactions on the Mixing Characteristics of Several Injectors at Hypervelocity Flow Conditions

    NASA Technical Reports Server (NTRS)

    Drozda, Tomasz G.; Baurle, Robert A.; Drummond, J. Philip

    2016-01-01

    conditions. The mixing parameters of interest, such as mixing efficiency and total pressure recovery, are then computed and compared to the values obtained from RAS under the true enthalpy conditions and using helium and hydrogen. Finally, the impact of combustion on mixing, often deemed small enough to neglect at hypervelocity conditions, is assessed by comparing the results obtained from the hydrogen-fueled reacting and non-reacting RAS. For reacting flows, in addition to mixing efficiency and total pressure recovery, the combustion efficiency and thrust potential are also considered. In all of the simulations, the incoming air Mach number and the fuel-to-air ratio are the same, while the total pressure, total enthalpy, and the fuel simulant vary depending on the case considered. It is found that under some conditions the "cold" flow experiments are a good approximation of the flight.

  9. Two-stage light-gas magnetoplasma accelerator for hypervelocity impact simulation

    NASA Astrophysics Data System (ADS)

    Khramtsov, P. P.; Vasetskij, V. A.; Makhnach, A. I.; Grishenko, V. M.; Chernik, M. Yu; Shikh, I. A.; Doroshko, M. V.

    2016-11-01

    The development of macroparticles acceleration methods for high-speed impact simulation in a laboratory is an actual problem due to increasing of space flights duration and necessity of providing adequate spacecraft protection against micrometeoroid and space debris impacts. This paper presents results of experimental study of a two-stage light- gas magnetoplasma launcher for acceleration of a macroparticle, in which a coaxial plasma accelerator creates a shock wave in a high-pressure channel filled with light gas. Graphite and steel spheres with diameter of 2.5-4 mm were used as a projectile and were accelerated to the speed of 0.8-4.8 km/s. A launching of particle occurred in vacuum. For projectile velocity control the speed measuring method was developed. The error of this metod does not exceed 5%. The process of projectile flight from the barrel and the process of a particle collision with a target were registered by use of high-speed camera. The results of projectile collision with elements of meteoroid shielding are presented. In order to increase the projectile velocity, the high-pressure channel should be filled with hydrogen. However, we used helium in our experiments for safety reasons. Therefore, we can expect that the range of mass and velocity of the accelerated particles can be extended by use of hydrogen as an accelerating gas.

  10. Measurement of Primary Ejecta From Normal Incident Hypervelocity Impact on Lunar Regolith Simulant

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Cooke, William; Moser, Danielle; Swift, Wesley

    2007-01-01

    The National Aeronautics and Space Administration (NASA) continues to make progress toward long-term lunar habitation. Critical to the design of a lunar habitat is an understanding of the lunar surface environment. A subject for further definition is the lunar primary ejecta environment. The document NASA SP-8013 was developed for the Apollo program and is the latest definition of the primary ejecta environment. There is concern that NASA SP-8013 may over-estimate the lunar primary ejecta environment. NASA's Meteoroid Environment Office (MEO) has initiated several tasks to improve the accuracy of our understanding of the lunar surface primary ejecta environment. This paper reports the results of experiments on projectile impact into pumice targets, simulating lunar regolith. The Ames Vertical Gun Range (AVGR) was used to accelerate spherical Pyrex projectiles of 0.29g to velocities ranging between 2.5 km/s and 5.18 km/s. Impact on the pumice target occurred at normal incidence. The ejected particles were detected by thin aluminum foil targets placed around the pumice target in a 0.5 Torr vacuum. A simplistic technique to characterize the ejected particles was formulated. Improvements to this technique will be discussed for implementation in future tests.

  11. MLIBlast: A program to empirically predict hypervelocity impact damage to the Space Station

    NASA Technical Reports Server (NTRS)

    Rule, William K.

    1991-01-01

    MLIBlast is described, which consists of a number of DOC PC based MIcrosoft BASIC program modules written to provide spacecraft designers with empirical predictions of space debris damage to orbiting spacecraft. The Spacecraft wall configuration is assumed to consist of multilayer insulation (MLI) placed between a Whipple style bumper and a pressure wall. Predictions are based on data sets of experimental results obtained from simulating debris impact on spacecraft. One module of MLIBlast facilitates creation of the data base of experimental results that is used by the damage prediction modules of the code. The user has a choice of three different prediction modules to predict damage to the bumper, the MLI, and the pressure wall.

  12. Aerogel Keystones: Extraction Of Complete Hypervelocity Impact Events From Aerogel Collectors

    SciTech Connect

    Westphal, A J; Snead, C; Butterworth, A; Graham, G A; Bradley, J; Bajt, S; Grant, P G; Bench, G; Brennan, S; Piannetta, P

    2003-11-07

    In January 2006, the Stardust mission will return the first samples from a solid solar-system body since Apollo, and the first samples of contemporary interstellar dust ever collected. Although sophisticated laboratory instruments exist for the analysis of Stardust samples, techniques for the recovery of particles and particle residues from aerogel collectors remain primitive. Here we describe our recent progress in developing techniques for extracting small volumes of aerogel, which we have called ''keystones,'' which completely contain particle impacts but minimize the damage to the surrounding aerogel collector. These keystones can be fixed to custom-designed micromachined silicon fixtures (so-called ''microforklifts''). In this configuration the samples are self-supporting, which can be advantageous in situations in which interference from a supporting substrate is undesirable. The keystones may also be extracted and placed onto a substrate without a fixture. We have also demonstrated the capability of homologously crushing these unmounted keystones for analysis techniques which demand flat samples.

  13. A ballistic limit equation for hypervelocity impacts on composite honeycomb sandwich panel satellite structures

    NASA Astrophysics Data System (ADS)

    Ryan, S.; Schaefer, F.; Destefanis, R.; Lambert, M.

    During a recent experimental test campaign performed in the framework of ESA Contract 16721, the ballistic performance of multiple satellite-representative Carbon Fibre Reinforced Plastic (CFRP)/Aluminium honeycomb sandwich panel structural configurations (GOCE, Radarsat-2, Herschel/Planck, BeppoSax) was investigated using the two-stage light-gas guns at EMI. The experimental results were used to develop and validate a new empirical Ballistic Limit Equation (BLE), which was derived from an existing Whipple-shield BLE. This new BLE provided a good level of accuracy in predicting the ballistic performance of stand-alone sandwich panel structures. Additionally, the equation is capable of predicting the ballistic limit of a thin Al plate located at a standoff behind the sandwich panel structure. This thin plate is the representative of internal satellite systems, e.g. an Al electronic box cover, a wall of a metallic vessel, etc. Good agreement was achieved with both the experimental test campaign results and additional test data from the literature for the vast majority of set-ups investigated. For some experiments, the ballistic limit was conservatively predicted, a result attributed to shortcomings in correctly accounting for the presence of high surface density multi-layer insulation on the outer facesheet. Four existing BLEs commonly applied for application with stand-alone sandwich panels were reviewed using the new impact test data. It was found that a number of these common approaches provided non-conservative predictions for sandwich panels with CFRP facesheets.

  14. Focused Ion Beam Recovery of Hypervelocity Impact Residue in Experimental Craters on Metallic Foils.

    SciTech Connect

    Graham, G A; Teslich, N; Dai, Z R; Bradley, J P; Kearsley, A T; Horz, F

    2005-11-04

    The Stardust sample return capsule will return to Earth in January 2006 with primitive debris collected from Comet 81P/Wild-2 during the fly-by encounter in 2004. In addition to the cometary particles embedded in low-density silica aerogel, there will be microcraters preserved in the Al foils (1100 series; 100 {micro}m thick) that are wrapped around the sample tray assembly. Soda lime spheres ({approx}49 {micro}m in diameter) have been accelerated with a Light Gas Gun into flight-grade Al foils at 6.35 km s{sup -1} to simulate the capture of cometary debris. The experimental craters have been analyzed using scanning electron microscopy (SEM) and x-ray energy dispersive spectroscopy (EDX) to locate and characterize remnants of the projectile material remaining within the craters. In addition, ion beam induced secondary electron imaging has proven particularly useful in identifying areas within the craters that contain residue material. Finally, high-precision focused ion beam (FIB) milling has been used to isolate and then extract an individual melt residue droplet from the interior wall of an impact. This enabled further detailed elemental characterization, free from the background contamination of the Al foil substrate. The ability to recover ''pure'' melt residues using FIB will significantly extend the interpretations of the residue chemistry preserved in the Al foils returned by Stardust.

  15. Focused Ion Beam Recovery of Hypervelocity Impact Residue in Experimental Craters on Metallic Foils

    NASA Technical Reports Server (NTRS)

    Graham, G. A.; Teslich, N.; Dai, Z. R.; Bradley, J. P.; Kearsley, A. T.; Horz, F.

    2006-01-01

    The Stardust sample return capsule will return to Earth in January 2006 with primitive debris collected from Comet 81P/Wild-2 during the fly-by encounter in 2004. In addition to the cometary particles embedded in low-density silica aerogel, there will be microcraters preserved in the Al foils (1100 series; 100 micrometers thick) that are wrapped around the sample tray assembly. Soda lime spheres (approximately 49 m in diameter) have been accelerated with a light-gas-gun into flight-grade Al foils at 6.35 km s(sup -1) to simulate the potential capture of cometary debris. The preserved crater penetrations have been analyzed using scanning electron microscopy (SEM) and x-ray energy dispersive spectroscopy (EDX) to locate and characterize remnants of the projectile material remaining within the craters. In addition, ion beam induced secondary electron imaging has proven particularly useful in identifying areas within the craters that contain residue material. Finally, high-precision focused ion beam (FIB) milling has been used to isolate and then extract an individual melt residue droplet from the interior wall of an impact penetration. This enabled further detailed elemental characterization, free from the background contamination of the Al foil substrate. The ability to recover pure melt residues using FIB will significantly extend the interpretations of the residue chemistry preserved in the Al foils returned by Stardust.

  16. Single microparticle launching method using two-stage light-gas gun for simulating hypervelocity impacts of micrometeoroids and space debris.

    PubMed

    Kawai, Nobuaki; Tsurui, Kenji; Hasegawa, Sunao; Sato, Eiichi

    2010-11-01

    A single microparticle launching method is described to simulate the hypervelocity impacts of micrometeoroids and microdebris on space structures at the Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency. A microparticle placed in a sabot with slits is accelerated using a rifled two-stage light-gas gun. The centrifugal force provided by the rifling in the launch tube separates the sabot. The sabot-separation distance and the impact-point deviation are strongly affected by the combination of the sabot diameter and the bore diameter, and by the projectile diameter. Using this method, spherical projectiles of 1.0-0.1 mm diameter were launched at up to 7 km/s.

  17. Response of the Human Torso to Lateral and Oblique Constant-Velocity Impacts

    PubMed Central

    Subit, Damien; Duprey, Sonia; Lau, Sabrina; Guillemot, Herve; Lessley, David; Kent, Richard

    2010-01-01

    The objective of this study was to provide new biomechanical response data for the thorax with lateral and oblique loading, so as to support the development of safety systems for side impact protection that would offer the level of protection that has been achieved in frontal impact. Three male human cadavers were successively impacted by an impactor system delivering a constant velocity impact from the left and the right sides at three levels (shoulder, upper chest and mid-chest). Different impact directions were also chosen for each side: lateral, +15° posterolateral, −15° anterolateral. One subject was impacted at 1, 3 and 6 m/s whereas the other two subjects were impacted at 3 m/s only. A total of nineteen tests was performed. The impact force and the chest lateral deflection were measured using respectively a standard data acquisition system and also an optoelectronic stereophotogrammetric system (OSS). After each test, attempts were made to detect rib fractures by palpation, and a necropsy of the torso was performed after the tests series to document the injuries produced by all the tests. Overall, the peak impact force increased from the lowest impact level (mid-chest) to the highest (shoulder) and was found to be rate-sensitive. The force-deflection relationship was non linear for the shoulder impacts (stiffness increased with increasing deflection) whereas stiffness was nearly constant for the mid- and upper-chest impacts. The anterolateral impacts to the mid- and upper-chest generated more rib fractures than the other impact directions. PMID:21050589

  18. Deflections from two types of human surrogates in oblique side impacts.

    PubMed

    Yoganandan, Narayan; Pintar, Frank A

    2008-10-01

    The objective of the study was to obtain time-dependent thoracic and abdominal deflections of an anthropomorphic test device, the WorldSID dummy, in oblique impact using sled tests, and compare with post mortem human subject (PMHS) data. To simulate the oblique loading vector, the load wall was configured such that the thorax and abdominal plates were offset by twenty or thirty degrees. Deflections were obtained from a chestband placed at the middle thoracic level and five internal deflection transducers. Data were compared from the chestband and the transducer located at the same level of the thorax. In addition, data were compared with deflections from similar PMHS tests obtained using chestbands placed at the level of the axilla, xyphoid process, and tenth rib, representing the upper thorax, middle thorax, and abdominal region of the biological specimen. Peak deflections ranged from 30 to 85 mm in the dummy tests. Peak deflections ranged from 60 to 115 mm in PMHS. Under both obliquities, dummy deflection-time histories at the location along the chestband in close proximity to the internal deflection transducer demonstrated similar profiles. However, the peak deflection magnitudes from the chestband were approximately 20 mm greater than those from the internal transducer. Acknowledging that the chestband measures external deflections in contrast to the transducer which records internal ribcage deformations, peak deflections match from the two sensors. Deflection time histories were also similar between the dummy and PMHS in terms of morphology, although thoracic deflection magnitudes from the dummy matched more closely with PMHS than abdominal deflection magnitudes. The dummy deformed in such a way that peak deflections occurred along the lateral vector. This was in contrast to PMHS tests wherein maximum deflections occurred along the antero-lateral direction, suggesting differing deformation responses in the two models. In addition, peak deflections occurred

  19. Angular momentum transfer in low velocity oblique impacts - Implications for asteroids

    NASA Technical Reports Server (NTRS)

    Yanagisawa, Masahisa; Eluszkiewicz, Janusz; Ahrens, Thomas J.

    1991-01-01

    An experimental study has been conducted for the low-velocity oblique impact efficiency of angular momentum transfer, which is defined as that fraction of incident angular momentum that is transferred to the rotation of a target. The results obtained suggest that more energetic impacts are able to transfer angular momentum more efficiently. In the cases of ricochetted projectiles, the fraction of angular momentum carried off by the ejecta was noted to be less than 30 percent. It is suggested that, if asteroid spin rates are due to mutual noncatastrophic collisions and the taxonomic classes are indicative of bulk properties, the differences between corresponding spin rates will be smaller than expected from a consideration of relative strength and density alone.

  20. Space Debris Surfaces (Computer Code): Probability of No Penetration Versus Impact Velocity and Obliquity

    NASA Technical Reports Server (NTRS)

    Elfer, N.; Meibaum, R.; Olsen, G.

    1995-01-01

    A unique collection of computer codes, Space Debris Surfaces (SD_SURF), have been developed to assist in the design and analysis of space debris protection systems. SD_SURF calculates and summarizes a vehicle's vulnerability to space debris as a function of impact velocity and obliquity. An SD_SURF analysis will show which velocities and obliquities are the most probable to cause a penetration. This determination can help the analyst select a shield design that is best suited to the predominant penetration mechanism. The analysis also suggests the most suitable parameters for development or verification testing. The SD_SURF programs offer the option of either FORTRAN programs or Microsoft-EXCEL spreadsheets and macros. The FORTRAN programs work with BUMPERII. The EXCEL spreadsheets and macros can be used independently or with selected output from the SD_SURF FORTRAN programs. Examples will be presented of the interaction between space vehicle geometry, the space debris environment, and the penetration and critical damage ballistic limit surfaces of the shield under consideration.

  1. Demonstration of Hazardous Hypervelocity Test Capability

    NASA Technical Reports Server (NTRS)

    Rodriquez, Karen M.

    1991-01-01

    NASA Johnson Space Center (JSC) White Sands Test Facility (WSTF) participated in a joint test program with NASA JSC Hypervelocity Impact Research Laboratory (HIRL) to determine if JSC was capable of performing hypervelocity impact tests on hazardous targets. Seven pressurized vessels were evaluated under hypervelocity impact conditions. The vessels were tested with various combinations of liquids and gasses at various pressures. Results from the evaluation showed that vessels containing 100-percent pressurized gas sustained more severe damage and had a higher potential for damaging nearby equipment, than vessels containing 75-percent liquid, 25-percent inert pressurized gas. Two water-filled test vessels, one of which was placed behind an aluminum shield, failed by bulging and splitting open at the impact point; pressure was relieved without the vessel fragmenting or sustaining internal damage. An additional water-filled test vessel, placed a greater distance behind an aluminum shield, sustained damage that resembled a shotgun blast, but did not bulge or split open; again, pressure was relieved without the vessel fragmenting. Two test vessels containing volatile liquids (nitro methane and hydrazine) also failed by bulging and splitting open; neither liquid detonated under hypervelocity test conditions. A test vessel containing nitrogen gas failed by relieving pressure through a circular entry hole; multiple small penetrations opposite the point of entry provided high velocity target debris to surrounding objects. A high-pressure oxygen test vessel fragmented upon impact; the ensuing fire and high velocity fragments caused secondary damage to surrounding objects. The results from the evaluation of the pressurized vessels indicated that JSC is capable of performing hypervelocity impact tests on hazardous targets.

  2. Investigation of Pelvic Injuries on Eighteen Post Mortem Human Subjects Submitted to Oblique Lateral Impacts.

    PubMed

    Lebarbé, Matthieu; Baudrit, Pascal; Potier, Pascal; Petit, Philippe; Trosseille, Xavier; Compigne, Sabine; Masuda, Mitsutoshi; Fujii, Takumi; Douard, Richard

    2016-11-01

    The aim of this study was to investigate the sacroiliac joint injury mechanism. Two test configurations were selected from full scale car crashes conducted with the WorldSID 50(th) dummy resulting in high sacroiliac joint loads and low pubic symphysis force, i.e. severe conditions for the sacroiliac joint. The two test conditions were reproduced in laboratory using a 150-155 kg guided probe propelled respectively at 8 m/s and 7.5 m/s and with different shapes and orientations for the plate impacting the pelvis. Nine Post Mortem Human Subject (PMHS) were tested in each of the two configurations (eighteen PMHS in total). In order to get information on the time of fracture, eleven strain gauges were glued on the pelvic bone of each PMHS. Results - In the first configuration, five PMHS out of nine sustained AIS2+ pelvic injuries. All five presented sacroiliac joint injuries associated with pubic area injuries. In the second configuration, four specimens out of nine sustained AIS2+ pelvic injuries. Two of them presented sacroiliac joint fractures associated with pubic area injuries. The other two presented injuries at the pubic area and acetabulum only. The strain gauges signals suggested that the pubic fractures occurred before the sacroiliac joint fractures in the great majority of the cases (five cases out of seven). Conclusions - Even in the oblique impact conditions of the present study, the pubic symphysis area was observed to be the weakest zone of the pelvis and its failure the predominant cause of sacroiliac joint injuries. It was hypothesized that the failure of the pubic rami allowed the hemi-pelvis to rotate inward, and that this closing-book motion induced the failure of the sacroiliac joint.

  3. Impact and Penetration of Thin Aluminum 2024 Flat Panels at Oblique Angles of Incidence

    NASA Technical Reports Server (NTRS)

    Ruggeri, Charles R.; Revilock, Duane M.; Pereira, J. Michael; Emmerling, William; Queitzsch, Gilbert K., Jr.

    2015-01-01

    under more extreme conditions, using a projectile with a more complex shape and sharp contacts, impacting flat panels at oblique angles of incidence.

  4. The radiological assessment of pelvic obliquity in cerebral palsy and the impact on hip development.

    PubMed

    Heidt, C; Hollander, K; Wawrzuta, J; Molesworth, C; Willoughby, K; Thomason, P; Khot, A; Graham, H K

    2015-10-01

    Pelvic obliquity is a common finding in adolescents with cerebral palsy, however, there is little agreement on its measurement or relationship with hip development at different gross motor function classification system (GMFCS) levels. The purpose of this investigation was to study these issues in a large, population-based cohort of adolescents with cerebral palsy at transition into adult services. The cohort were a subset of a three year birth cohort (n = 98, 65M: 33F, with a mean age of 18.8 years (14.8 to 23.63) at their last radiological review) with the common features of a migration percentage greater than 30% and a history of adductor release surgery. Different radiological methods of measuring pelvic obliquity were investigated in 40 patients and the angle between the acetabular tear drops (ITDL) and the horizontal reference frame of the radiograph was found to be reliable, with good face validity. This was selected for further study in all 98 patients. The median pelvic obliquity was 4° (interquartile range 2° to 8°). There was a strong correlation between hip morphology and the presence of pelvic obliquity (effect of ITDL on Sharpe's angle in the higher hip; rho 7.20 (5% confidence interval 5.59 to 8.81, p < 0.001). This was particularly true in non-ambulant adolescents (GMFCS IV and V) with severe pelvic obliquity, but was also easily detectable and clinically relevant in ambulant adolescents with mild pelvic obliquity. The identification of pelvic obliquity and its management deserves closer scrutiny in children and adolescents with cerebral palsy.

  5. On propagation of shock waves generated under hypervelocity impact (HVI) and application to characterizing orbital debris-induced damage in space vehicles

    NASA Astrophysics Data System (ADS)

    Liu, Menglong; Su, Zhongqing

    2015-03-01

    The propagation characteristics of shock waves generated under hypervelocity impact (HVI) (an impact velocity leading to the case that inertial forces outweigh the material strength, usually on the order over 1 km/s) and guided by plate-like structures were interrogated. A hybrid numerical modeling approach, based on the Smoothed-Particle Hydrodynamics (SPH) and Finite Element Method, was developed, to scrutinize HVI scenarios in which a series of aluminum plates, 1.5- mm, 3-mm and 5-mm in thickness, was considered to be impacted by an aluminum sphere, 3.2-mm in diameter, at an initial velocity of 3100 m/s, 3050 m/s and 2490 m/s, respectively. The meshless nature of SPH algorithm circumvented the inefficiency and inaccuracy in simulating large structural distortion associated with HVI when traditional finite element methods used. The particle density was particularly intensified in order to acquire wave components of higher frequencies. With the developed modeling approach, shock waves generated under concerned HVI scenarios were captured at representative gauging points, and the signals were examined in both time and frequency domains. The simulation results resembled those from earlier experiment, demonstrating a capability of the developed modeling approach in canvassing shock waves under HVI. It has been concluded that in the regions near the impact point, the shock waves propagate with higher velocities than bulk waves; as propagation distance increases, the waves slow down and can be described as fundamental and higher-order symmetric and anti-symmetric plate-guided wave modes, propagating at distinct velocities in different frequency bands. The results will facilitate detection of orbital debris-induced damage in space vehicles.

  6. Cosmology with hypervelocity stars

    SciTech Connect

    Loeb, Abraham

    2011-04-01

    In the standard cosmological model, the merger remnant of the Milky Way and Andromeda (Milkomeda) will be the only galaxy remaining within our event horizon once the Universe has aged by another factor of ten, ∼ 10{sup 11} years after the Big Bang. After that time, the only extragalactic sources of light in the observable cosmic volume will be hypervelocity stars being ejected continuously from Milkomeda. Spectroscopic detection of the velocity-distance relation or the evolution in the Doppler shifts of these stars will allow a precise measurement of the vacuum mass density as well as the local matter distribution. Already in the near future, the next generation of large telescopes will allow photometric detection of individual stars out to the edge of the Local Group, and may target the ∼ 10{sup 5±1} hypervelocity stars that originated in it as cosmological tracers.

  7. Impulsive control for hypervelocity missiles

    NASA Astrophysics Data System (ADS)

    Magness, R. W.

    1981-05-01

    A hypervelocity agile interceptor/quickshot is being developed for defense of ballistic missile launch sites. A guidance and control system is required to achieve the missile guidance accuracy necessary for direct target impact. Attitude control systems evaluated for the agile interceptor included aerodynamic controls, thrust vector controls and impulsive motor controls. The solid squib impulsive control motion was selected because of high response rate, low weight and low volume. A baseline motor configuration was designed and a solid propellant squib was developed for use in the control system. Ballistic pendulum and bench tests were conducted with a test impulsive control motor to measure nominal performance, establish the standard deviation of performance, and define requirements to prevent sympathetic ignition. A dynamic control wind tunnel test was also conducted to determine the impulse augmentation due to the impulsive motor jet interaction with the missile boundary layer. The degree and direction of augmentation was measured for variations in Mach number and angle of attack.

  8. Oblique discord

    NASA Astrophysics Data System (ADS)

    Xu, Jianwei

    2017-01-01

    Discord and entanglement characterize two kinds of quantum correlations, and discord captures more correlation than entanglement in the sense that even separable states may have nonzero discord. In this paper, we propose a new kind of quantum correlation that we call as oblique discord. A zero-discord state corresponds to an orthonormal basis, while a zero-oblique-discord state corresponds to a basis which is not necessarily orthogonal. Under this definition, the set of zero-discord states is properly contained inside the set of zero-oblique-discord states, and the set of zero-oblique-discord states is properly contained inside the set of separable states. We give a characterization of zero-oblique-discord states via quantum mapping, provide a geometric measure for oblique discord, and raise a conjecture, which if it holds, then we can define an information-theoretic measure for oblique discord. Also, we point out that the definition of oblique discord can be properly extended to some different versions just as the case of quantum discord.

  9. Oblique impact sensitivity of explosives: The skid test the snatch friction sensitivity test. Quarterly report, April--June 1964

    SciTech Connect

    Akst, I.B.; Washburn, B.M.; Rigdon, J.K.

    1997-09-01

    The oblique impact sensitivity of UK-UK-simulated HMX in 85 to 90% formulation with Viton is not enough lower, if any, to encourage richer formulations or change to Bridgewater processes for this reason alone. Fifty-pound cyclotol 75/25 hemispheres gave moderate reactions (No. 4) as low as 3.5 foot (14{degrees}); lower tests have not been performed yet. {open_quotes}Reduced-H.E.{close_quotes} pieces of PBX 9404, 2, 3, 4, and 5 inches thick, respectively, were tested at 1.75 foot (14{degrees}) resulting in a 6 reaction for the 5 inches thick piece while the remaining three pieces gave 0 reactions.

  10. Hypervelocity Orbital Intercept Guidance

    DTIC Science & Technology

    1988-04-14

    Professor Charles E. Fosha, Jr. Terminal guidance of a hypervelocity exo-atmospheric orbital interceptor with free end-time is examined. The pursuer is...stochastic nonlinear systems with free end-time was developed by Tse and 29 Bar-Shalom [5]. This method differs from the optimal control formulation...Vol. AC-18, No. 2, April 1973, pp. 98-108. 5. Tse, E., and Y. Bar-Shalom, "Adaptive Dual Control For Stochastic Nonlinear Systems with Free End- Time

  11. The impact of precession and obliquity on the Late-Devonian greenhouse climate

    NASA Astrophysics Data System (ADS)

    De Vleeschouwer, D.; Crucifix, M.; Bounceur, N.; Claeys, P. F.

    2012-12-01

    To date, only few general circulation model (GCM) have been used to simulate the extremely warm greenhouse climate of the Late-Devonian (~370 Ma). As a consequence, the current knowledge on Devonian climate dynamics comes almost exclusively from geological proxy data. Given the fragmentary nature of these data sources, the understanding of the Devonian climate is rather limited. Nonetheless, the Late-Devonian is a key-period in the evolution of life on Earth: the continents were no longer bare but were invaded by land plants, the first forests appeared, soils were formed, fish evolved to amphibians and 70-80% of all animal species were wiped out during the Late Devonian extinction (~376 Ma). In order to better understand the functioning of the climate system during this highly important period in Earth's history, we applied the HadSM3 climate model to the Devonian period under different astronomical configurations. This approach provides insight into the response of Late-Devonian climate to astronomical forcing due to precession and obliquity. Moreover, the assessment of the sensitivity of the Late-Devonian climate to astronomical forcing, presented here, will allow cyclostratigraphers to make better and more detailed interpretations of recurring patterns often observed in Late-Devonian sections. We simulated Late-Devonian climates by prescribing palaeogeography, vegetation distribution and pCO2 concentration (2180 ppm). Different experiments were carried out under 31 different astronomical configurations: three levels for obliquity (ɛ = 22°; 23.5° and 24.5°) and eccentricity (e = 0; 0.03 and 0.07) were chosen. For precession, 8 levels were considered (longitude of the perihelion= 0°; 45°; 90°; 135°; 180°; 235°; 270°). First results suggest that the intensity of precipitation on the tropical Euramerican continent (also known as Laurussia) is highly dependent on changes in precession: During precession maxima (= maximal insolation in SH during winter

  12. Survival of Organic Materials in Hypervelocity Impacts of Ice on Sand, Ice, and Water in the Laboratory

    PubMed Central

    Bowden, Stephen A.; Cole, Michael; Parnell, John

    2014-01-01

    Abstract The survival of organic molecules in shock impact events has been investigated in the laboratory. A frozen mixture of anthracene and stearic acid, solvated in dimethylsulfoxide (DMSO), was fired in a two-stage light gas gun at speeds of ∼2 and ∼4 km s−1 at targets that included water ice, water, and sand. This involved shock pressures in the range of 2–12 GPa. It was found that the projectile materials were present in elevated quantities in the targets after impact and in some cases in the crater ejecta as well. For DMSO impacting water at 1.9 km s−1 and 45° incidence, we quantify the surviving fraction after impact as 0.44±0.05. This demonstrates successful transfer of organic compounds from projectile to target in high-speed impacts. The range of impact speeds used covers that involved in impacts of terrestrial meteorites on the Moon, as well as impacts in the outer Solar System on icy bodies such as Pluto. The results provide laboratory evidence that suggests that exogenous delivery of complex organic molecules from icy impactors is a viable source of such material on target bodies. Key Words: Organic—Hypervelocity—Shock—Biomarkers. Astrobiology 14, 473–485. PMID:24901745

  13. Luminous Efficiency of Hypervelocity Meteoroid Impacts on the Moon Derived from the 2006 Geminids, 2007 Lyrids, and 2008 Taurids

    NASA Technical Reports Server (NTRS)

    Moser, D. E.; Suggs, R. M.; Swift, W. R.; Suggs, R. J.; Cooke, W. J.; Diekmann, A. M.; Koehler, H. M.

    2011-01-01

    Since early 2006, NASA s Marshall Space Flight Center has been routinely monitoring the Moon for impact flashes produced by meteoroids striking the lunar surface. During this time, several meteor showers have produced multiple impact flashes on the Moon. The 2006 Geminids, 2007 Lyrids, and 2008 Taurids were observed with average rates of 5.5, 1.2, and 1.5 meteors/hr, respectively, for a total of 12 Geminid, 12 Lyrid, and 12 Taurid lunar impacts. These showers produced a sufficient, albeit small sample of impact flashes with which to perform a luminous efficiency analysis similar to that outlined in Bellot Rubio et al. (2000a, b) for the 1999 Leonids. An analysis of the Geminid, Lyrid, and Taurid lunar impacts is carried out herein in order to determine the luminous efficiency in the 400-800 nm wavelength range for each shower. Using the luminous efficiency, the kinetic energies and masses of these lunar impactors can be calculated from the observed flash intensity.

  14. Luminous Efficiency of Hypervelocity Meteoroid Impacts on the Moon Derived from the 2006 Geminids, 2007 Lyrids, and 2008 Taurids

    NASA Technical Reports Server (NTRS)

    Moser, D. E.; Suggs, R. M.; Swift, W. R.; Suggs, R. J.; Cooke, W. J.; Diekmann, A. M.; McNamara, H.

    2010-01-01

    Since early 2006 the Meteoroid Environment Office at NASA's Marshall Space Flight Center has been consistently monitoring the Moon for impact flashes produced by meteoroids striking the lunar surface. During this time, several meteor showers have produced multiple impact flashes on the Moon. The 2006 Geminids, 2007 Lyrids, and 2008 Taurids were observed with average rates of 5.5, 1.2, and 1.5 meteors/hr, respectively, for a total of 12 Geminid, 11 Lyrid, and 12 Taurid lunar impacts. These showers produced a sufficient, albeit small sample of impact flashes with which to perform a luminous efficiency analysis similar to that outlined in Bellot Rubio et al. for the 1999 Leonids. An analysis of the Geminid, Lyrid, and Taurid lunar impacts is carried out herein in order to determine the luminous efficiency in the 400-900 nm wavelength range for each shower. Using the luminous efficiency, the kinetic energies and masses of these lunar impactors can be calculated.

  15. Luminous Efficiency of Hypervelocity Meteoroid Impacts on the Moon Derived from the 2006 Geminids, 2007 Lyrids, and 2008 Taurids

    NASA Technical Reports Server (NTRS)

    Moser, D. E.; Suggs, R. M.; Swift, W. R.; Suggs, R. J.; Cooke, W. J.; Diekmann, A. M.; Koehler, H. M.

    2010-01-01

    Since early 2006 the Meteoroid Environment Office (MEO) at NASA s Marshall Space Flight Center has been consistently monitoring the Moon for impact flashes produced by meteoroids striking the lunar surface. During this time, several meteor showers have produced multiple impact flashes on the Moon. The 2006 Geminids, 2007 Lyrids, and 2008 Taurids were observed with average rates of 5.5, 1.2, and 1.5 meteors/hr, respectively, for a total of 12 Geminid, 12 Lyrid, and 12 Taurid lunar impacts. These showers produced a sufficient, albeit small sample of impact flashes with which to perform a luminous efficiency analysis similar to that outlined in Bellot Rubio et al. (2000) for the 1999 Leonids. An analysis of the Geminid, Lyrid, and Taurid lunar impacts is carried out herein in order to determine the luminous efficiency in the 400-800 nm wavelength range for each shower. Using the luminous efficiency, the kinetic energies and masses of these lunar impactors can be calculated.

  16. MLITemp: A computer program to predict the thermal effects associated with hypervelocity impact damage to space station MLI

    NASA Technical Reports Server (NTRS)

    Rule, W. K.; Giridharan, V.

    1991-01-01

    A family of user-friendly, DOS PC based, Microsoft BASIC programs written to provide spacecraft designers with empirical predictions of space debris damage to orbiting spacecraft are described. Spacecraft wall temperatures and condensate formation is also predicted. The spacecraft wall configuration is assumed to consist of multilayered insulation (MLI) placed between a Whipple style bumper and the pressure wall. Impact damage predictions are based on data sets of experimental results obtained from simulating debris impacts on spacecraft using light gas guns on earth. A module of the program facilitates the creation of the database of experimental results that is used by the damage prediction modules to predict damage to the bumper, the MLI, and the pressure wall. A finite difference technique is used to predict temperature distributions in the pressure wall, the MLI, and the bumper. Condensate layer thickness is predicted for the case where the pressure wall temperature drops below the dew point temperature of the spacecraft atmosphere.

  17. Debris Cloud Material Characterization for Hypervelocity Impacts of Single- and Multi-Material Projectiles on Thin Target Plates

    DTIC Science & Technology

    1994-05-01

    FATEPEN2 [3-6], PEN-4 [7,8], and KAPP-II [10-12] are discrete particle lethality assessment models which can be modified to include the effects of non ...target materials are heated adiabatically and non -isentropically. The release of the shber,- pressures occurs isentropically through the action of...affected by the impact. For the projectile and target geometries con - sidered in this study, the shock waves can be considered to be initially planar. This

  18. Study of rib fracture mechanisms based on the rib strain profiles in side and forward oblique impact.

    PubMed

    Leport, Tiphaine; Baudrit, Pascal; Potier, Pascal; Trosseille, Xavier; Lecuyer, Erwan; Vallancien, Guy

    2011-11-01

    Rib fractures constitute a good indication of severity as there are the most frequent type of AIS3+ chest injuries. In 2008, Trosseille et al. showed a promising methodology to exhibit the rib fracture mechanisms, using strain gauges glued on the ribs of Post-Mortem Human Subjects (PMHS) and developing a specific signal analysis. In 2009, they published the results of static airbag tests performed on 50th percentile male PMHS at different distances and angles (pure lateral and 30 degrees forward oblique direction). To complete these already published data, a set of 8 PMHS lateral and oblique impactor tests were performed with the same methodology. The rib cages were instrumented with more than 100 strain gauges on the ribs, cartilage and sternum. A 23.4 kg impactor was propelled at 4.3 or 6.7 m/s. The forces applied onto the PMHS at 4.3 m/s ranged from 1.6 kN to 1.9 kN and the injuries varied from 4 to 13 rib fractures. At 6.7 m/s, the forces applied onto the PMHS ranged from 2.6 kN to 4 kN and the injuries varied from 9 to 16 rib fractures. The results of 24 tests from Trosseille et al. 2008 and 2009 and from the current study were processed in the same way and analyzed together. The time and location of the fractures were determined for each test and a ribcage fracture scenario was defined for each configuration. Strain profile corridors were built for pure lateral and forward oblique impacts, in the case of a rigid impact (impactor) or for an airbag loading. They can be used to assess the human body model biofidelity and the validation of rib fracture mechanisms in these models. Based on these corridors, the effects of the severity, the impact angle and the loading system on rib strain profiles were analyzed and are presented in this paper.

  19. Hypervelocity Impact: Proceedings of the 1992 Symposium Held in Austin, Texas on 17-19 November 1992

    DTIC Science & Technology

    1993-10-01

    fer Associated with Impact into Thin Aluminum Targets. National Aeronautics and Space Administration, NASA TN-D-5492. Schonberg, W.P. (U. of Alabama...re- ferred to the original configuration of the rod, but is extended over the deformed configuration in the equation of motion by means of the mean...densite d’un jet de charge creuse en cuivre par radiographie-eclair" - R101/76 - Institute St. Louis, 1976. 22. R.R.Karpp, "Direct Dynamic Measurement

  20. Further analyses of Rio Cuarto impact glass

    NASA Technical Reports Server (NTRS)

    Schultz, Peter H.; Bunch, T. E.; Koeberl, C.; Collins, W.

    1993-01-01

    Initial analyses of the geologic setting, petrology, and geochemistry of glasses recovered from within and around the elongate Rio Cuarto (RC) craters in Argentina focused on selected samples in order to document the general similarity with impactites around other terrestrial impact craters and to establish their origin. Continued analysis has surveyed the diversity in compositions for a range of samples, examined further evidence for temperature and pressure history, and compared the results with experimentally fused loess from oblique hypervelocity impacts. These new results not only firmly establish their impact origin but provide new insight on the impact process.

  1. Microbial rock inhabitants survive hypervelocity impacts on Mars-like host planets: first phase of lithopanspermia experimentally tested.

    PubMed

    Horneck, Gerda; Stöffler, Dieter; Ott, Sieglinde; Hornemann, Ulrich; Cockell, Charles S; Moeller, Ralf; Meyer, Cornelia; de Vera, Jean-Pierre; Fritz, Jörg; Schade, Sara; Artemieva, Natalia A

    2008-02-01

    The scenario of lithopanspermia describes the viable transport of microorganisms via meteorites. To test the first step of lithopanspermia, i.e., the impact ejection from a planet, systematic shock recovery experiments within a pressure range observed in martian meteorites (5-50 GPa) were performed with dry layers of microorganisms (spores of Bacillus subtilis, cells of the endolithic cyanobacterium Chroococcidiopsis, and thalli and ascocarps of the lichen Xanthoria elegans) sandwiched between gabbro discs (martian analogue rock). Actual shock pressures were determined by refractive index measurements and Raman spectroscopy, and shock temperature profiles were calculated. Pressure-effect curves were constructed for survival of B. subtilis spores and Chroococcidiopsis cells from the number of colony-forming units, and for vitality of the photobiont and mycobiont of Xanthoria elegans from confocal laser scanning microscopy after live/dead staining (FUN-I). A vital launch window for the transport of rock-colonizing microorganisms from a Mars-like planet was inferred, which encompasses shock pressures in the range of 5 to about 40 GPa for the bacterial endospores and the lichens, and a more limited shock pressure range for the cyanobacterium (from 5-10 GPa). The results support concepts of viable impact ejections from Mars-like planets and the possibility of reseeding early Earth after asteroid cataclysms.

  2. Space Weathering of airless bodies in the Solar System - Combining hypervelocity dust impacts with energetic irradiation experiments

    NASA Astrophysics Data System (ADS)

    Fiege, K.; Bennett, C.; Guglielmino, M.; Orlando, T. M.; Trieloff, M.; Srama, R.

    2015-12-01

    The chemical and mineralogical characterization of meteorites and their parent asteroids provides us with information about the processes and conditions during the formation of the inner Solar System. However, linking meteorites to their parent bodies is problematic. Astronomical observations aim to reconstruct the surface properties of these bodies primarily by visible and infrared spectra, but space weathering severely modifies the optical, compositional and physical properties of thin surface layers and thus precludes proper identification of chemistry and mineralogy. The effects of space weathering have been experimentally studied mainly with respect to ion bombardment and sputtering. Other studies aimed to simulate the influence of micrometeoroid bombardment by using laser ablation techniques. However, there is sufficient evidence that laser ablation does not realistically lead to the same effects as produced during real micrometeorite impacts. We performed micrometeorite bombardment using a 2MV dust accelerator at the Institute for Space Systems at University of Stuttgart, Germany, capable of generating impact speeds up to 100 km s-1. These results are combined with energetic irradiation experiments at the Electron and Photon Induced Chemistry on Surfaces (EPICS) laboratory at Georgia Institute of Technology, USA. By simulating highly realistic irradiation conditions, we are able to investigate the processes of particle and solar wind irradiation on solid planetary surfaces and study the formation of e.g., nanophase iron in minerals, the effects on hydrous minerals regarding their volatile budgets, or possible OH-formation in nominally anhydrous minerals and relate these to their optical properties. Using a variety of minerals, this work aims to contribute to a better understanding of the general alteration mechanisms in space environments in dependence of weathering agent and available material. We here present the results of initial comparison analysis and

  3. Hypervelocity impact testing of cables

    NASA Technical Reports Server (NTRS)

    Jex, D. W.; Adkinson, A. B.; English, J. E.; Linebaugh, C. E.

    1973-01-01

    The physics and electrical results obtained from simulated micrometeoroid testing of certain Skylab cables are presented. The test procedure, electrical circuits, test equipment, and cable types utilized are also explained.

  4. Numerical and experimental investigations of splat geometric characteristics during oblique impact of plasma spraying

    NASA Astrophysics Data System (ADS)

    Kang, Chang-Wei; Tan, Jiak Kwang; Pan, Lunsheng; Low, Cheng Yee; Jaffar, Ahmed

    2011-10-01

    Splats are obtained on the substrates inclined at different angles (0°, 20°, 40° and 60°) by plasma spraying process and characterized by SEM and WYKO ® optical surface profiler. Numerical model is developed using CFD software FLOW-3D ® to simulate the process of droplet impact, spreading and solidification onto the substrates. Splat characteristics such as spread factor, aspect ratio and fractional factor are defined and compared between simulation and experiment. Fair agreements are obtained. In addition, the impacting behavior including spreading and solidification are analyzed in details from the simulation results. The rates of reduction in droplet kinetic energy during impact, spreading and solidification are also compared between different inclination angles.

  5. An analytical elastic plastic contact model with strain hardening and frictional effects for normal and oblique impacts

    SciTech Connect

    Brake, M. R. W.

    2015-02-17

    Impact between metallic surfaces is a phenomenon that is ubiquitous in the design and analysis of mechanical systems. We found that to model this phenomenon, a new formulation for frictional elastic–plastic contact between two surfaces is developed. The formulation is developed to consider both frictional, oblique contact (of which normal, frictionless contact is a limiting case) and strain hardening effects. The constitutive model for normal contact is developed as two contiguous loading domains: the elastic regime and a transitionary region in which the plastic response of the materials develops and the elastic response abates. For unloading, the constitutive model is based on an elastic process. Moreover, the normal contact model is assumed to only couple one-way with the frictional/tangential contact model, which results in the normal contact model being independent of the frictional effects. Frictional, tangential contact is modeled using a microslip model that is developed to consider the pressure distribution that develops from the elastic–plastic normal contact. This model is validated through comparisons with experimental results reported in the literature, and is demonstrated to be significantly more accurate than 10 other normal contact models and three other tangential contact models found in the literature.

  6. An analytical elastic plastic contact model with strain hardening and frictional effects for normal and oblique impacts

    DOE PAGES

    Brake, M. R. W.

    2015-02-17

    Impact between metallic surfaces is a phenomenon that is ubiquitous in the design and analysis of mechanical systems. We found that to model this phenomenon, a new formulation for frictional elastic–plastic contact between two surfaces is developed. The formulation is developed to consider both frictional, oblique contact (of which normal, frictionless contact is a limiting case) and strain hardening effects. The constitutive model for normal contact is developed as two contiguous loading domains: the elastic regime and a transitionary region in which the plastic response of the materials develops and the elastic response abates. For unloading, the constitutive model ismore » based on an elastic process. Moreover, the normal contact model is assumed to only couple one-way with the frictional/tangential contact model, which results in the normal contact model being independent of the frictional effects. Frictional, tangential contact is modeled using a microslip model that is developed to consider the pressure distribution that develops from the elastic–plastic normal contact. This model is validated through comparisons with experimental results reported in the literature, and is demonstrated to be significantly more accurate than 10 other normal contact models and three other tangential contact models found in the literature.« less

  7. Experimental hypervelocity impacts: Implication for the analysis of material retrieved after exposure to space environment. Part I. Impacts on aluminium targets

    NASA Astrophysics Data System (ADS)

    Mandeville, Jean-Claude; Perrin, Jean-Marie; Vidal, Loïc

    2012-12-01

    During the last three decades a wide variety of surfaces have been brought back to Earth after being exposed to space environment. The impact features found on these surfaces are used to evaluate the damages caused to spacecraft and can give clues to the characteristics of the orbital debris and meteoroids that created them. In order to derive more precisely the particle parameters and to improve the analysis of projectile remnants, we have performed an extensive analysis of craters caused by the impact of high velocity particles on thick ductile targets, using a micro-particle accelerator. We show that from the geometry of the craters and from the analysis of the remnants it is possible to derive the main characteristics of the projectiles. In particular, using up-to-date instrumentation, scanning electron microscope (SEM) and Energy Dispersive X-ray (EDX) spectrometer, we found that even small residues inside craters can be identified. However, this study shows that a velocity resolution better than 1 km/s would be appropriate to obtain a fair calibration of the impact processes on a ductile target. This would allow to decipher with precision impact features on ductile surfaces exposed to space environment.

  8. Characterization of Debris from the DebriSat Hypervelocity Test

    NASA Technical Reports Server (NTRS)

    Rivero, M.; Kleespies, J.; Patankar, K.; Fitz-Coy, N.; Liou, J.-C.; Sorge, M.; Huynh, T.; Opiela, J.; Krisko, P.; Cowardin, H.

    2015-01-01

    The DebriSat project is an effort by NASA and the DoD to update the standard break-up model for objects in orbit. The DebriSat object, a 56 kg representative LEO satellite, was subjected to a hypervelocity impact in April 2014. For the hypervelocity test, the representative satellite was suspended within a "soft-catch" arena formed by polyurethane foam panels to minimize the interactions between the debris generated from the hypervelocity impact and the metallic walls of the test chamber. After the impact, the foam panels and debris not caught by the panels were collected and shipped to the University of Florida where the project has now advanced to the debris characterization stage. The characterization effort has been divided into debris collection, measurement, and cataloguing. Debris collection and cataloguing involves the retrieval of debris from the foam panels and cataloguing the debris in a database. Debris collection is a three-step process: removal of loose debris fragments from the surface of the foam panels; X-ray imaging to identify/locate debris fragments embedded within the foam panel; extraction of the embedded debris fragments identified during the X-ray imaging process. As debris fragments are collected, they are catalogued into a database specifically designed for this project. Measurement involves determination of size, mass, shape, material, and other physical properties and well as images of the fragment. Cataloguing involves a assigning a unique identifier for each fragment along with the characterization information.

  9. Calorimetric Aerogel Collectors/Detectors of Hypervelocity Dust Grains

    NASA Astrophysics Data System (ADS)

    Dominguez, G.; Westphal, A. J.; Phillips, M. L. F.; Jones, S. M.

    Distinguishing between lower velocity (<8 km/s) orbital debris impacts and higher velocity extraterrestrial particles collected in aerogels was the primary driver behind our development of calorimetric aerogels. While low-density aerogels have been shown to be superior at maximizing the survival of captured hypervelocity projectiles, reconstructing the impact velocity has not been possible. We have previously demonstrated that the shock heating experienced by Gd:Tb doped alumina aerogels results in the production of permanently fluorescent impact cavities. In addition, we have shown that the amount of induced (with UV illumination) fluorescence correlates with the kinetic energy of the captured projectile. Improvements in our production capabilities have recently allowed us to measure, using a Ti-doped Si/Al aerogel, the intrinsic resolution of using this technique to reconstruct the velocity of captured hypervelocity projectiles. We are currently exploring composition space in order to optimize the sensitivity and mechanical properties of these collector/detectors. We report on the results from our latest round of hypervelocity tests as well as the expected collection statistics of deploying a 3 square meter array of calorimetric aerogels in low-Earth-orbit (LEO).

  10. Region-specific deflection responses of WorldSID and ES2-re devices in pure lateral and oblique side impacts.

    PubMed

    Yoganandan, Narayan; Humm, John R; Pintar, Frank A; Brasel, Karen

    2011-11-01

    The objective of this study was to determine region-specific deflection responses of the WorldSID and ES2 -re devices under pure lateral and oblique side impact loading. A modular, anthropometry-specific load wall was used. It consisted of the Shoulder, Thorax, Abdomen, superior Pelvis, and inferior Pelvis plates, termed the STAPP load wall design. The two devices were positioned upright on the platform of a bench seat, and sled tests were conducted at 3.4, 6.7, and 7.5 m/s. Two chestbands were used on each dummy at the thoracic and abdominal regions. Internal sensors were also used. Effective peak deflections were obtained from the chestband contours. Based on the preselected lateral-most point/location on the pretest contour, "internal sensor-type" peak deflections were also obtained using chestband contours. In addition, peak deflection data were obtained from internal sensor records. In oblique tests, the mean "IR-TRACC-type" peak deflections in the WorldSID device were 40 to 80% of effective peak deflections, whereas the mean "potentiometer-type" peak deflections in the ES2-device were 7 to 50%. The WorldSID device appears to better mimic region -specific responses to oblique loading than the ES2-re device, likely due to the differences in its des ign of the thoracic and abdominal regions. While the lateral -most point corresponding to the current 1D IR-TRACC location was found to replicate the pure lateral response, it was found to be less than optimal to track oblique loading. Although a laterally positioned sensor provides lower peak deflections in oblique loading, the addition of an angle-measuring sensor should allow modulating the translational metric for this mode. From this perspective, it may be worthwhile to use a 2D IR-TRACC or an optical sensor to verify these findings without chestband measures. Such an analysis has the potential to modify thoracic and abdominal injury criteria to account for obliqueness.

  11. Non-silica aerogels as hypervelocity particle capture materials

    NASA Astrophysics Data System (ADS)

    Jones, Steven M.

    2010-01-01

    The Stardust sample return mission to the comet Wild 2 used silica aerogel as the principal cometary and interstellar particle capture and return medium. However, since both cometary dust and interstellar grains are composed largely of silica, using a silica collector complicates the science that can be accomplished with these particles. The use of non-silica aerogel in future extra-terrestrial particle capture and return missions would expand the scientific value of these missions. Alumina, titania, germania, zirconia, tin oxide, and resorcinol/formaldehyde aerogels were produced and impact tested with 20, 50, and 100μm glass microspheres to determine the suitability of different non-silica aerogels as hypervelocity particle capture mediums. It was found that non-silica aerogels do perform as efficient hypervelocity capture mediums, with alumina, zirconia, and resorcinol/formaldehyde aerogels proving to be the best of the materials tested.

  12. Chunk projectile launch using the Sandia Hypervelocity Launcher Facility

    SciTech Connect

    Chhabildas, L.C.; Trucano, T.G.; Reinhart, W.D.; Hall, C.A.

    1994-07-01

    An experimental technique is described to launch an intact ``chunk,`` i.e. a 0.3 cm thick by 0.6 cm diameter cylindrical titanium alloy (Ti-6Al-4V) flyer, to 10.2 km/s. The ability to launch fragments having such an aspect ratio is important for hypervelocity impact phenomenology studies. The experimental techniques used to accomplish this launch were similar but not identical to techniques developed for the Sandia HyperVelocity Launcher (HVL). A confined barrel impact is crucial in preventing the two-dimensional effects from dominating the loading response of the projectile chunk. The length to diameter ratio of the metallic chunk that is launched to 10.2 km/s is 0.5 and is an order of magnitude larger than those accomplished using the conventional hypervelocity launcher. The multi-dimensional, finite-difference (finite-volume), hydrodynamic code CTH was used to evaluate and assess the acceleration characteristics i.e., the in-bore ballistics of the chunky projectile launch. A critical analysis of the CTH calculational results led to the final design and the experimental conditions that were used in this study. However, the predicted velocity of the projectile chunk based on CTH calculations was {approximately} 6% lower than the measured velocity of {approximately}10.2 km/S.

  13. Hypervelocity cutting machine and method

    DOEpatents

    Powell, James R.; Reich, Morris

    1996-11-12

    A method and machine 14 are provided for cutting a workpiece 12 such as concrete. A gun barrel 16 is provided for repetitively loading projectiles 22 therein and is supplied with a pressurized propellant from a storage tank 28. A thermal storage tank 32,32A is disposed between the propellant storage tank 28 and the gun barrel 16 for repetitively receiving and heating propellant charges which are released in the gun barrel 16 for repetitively firing projectiles 22 therefrom toward the workpiece 12. In a preferred embodiment, hypervelocity of the projectiles 22 is obtained for cutting the concrete workpiece 12 by fracturing thereof.

  14. Hypervelocity cutting machine and method

    DOEpatents

    Powell, J.R.; Reich, M.

    1996-11-12

    A method and machine are provided for cutting a workpiece such as concrete. A gun barrel is provided for repetitively loading projectiles therein and is supplied with a pressurized propellant from a storage tank. A thermal storage tank is disposed between the propellant storage tank and the gun barrel for repetitively receiving and heating propellant charges which are released in the gun barrel for repetitively firing projectiles therefrom toward the workpiece. In a preferred embodiment, hypervelocity of the projectiles is obtained for cutting the concrete workpiece by fracturing thereof. 10 figs.

  15. The NASA Ames Hypervelocity Free Flight Aerodynamic Facility: Experimental Simulation of the Atmospheric Break-Up of Meteors

    NASA Technical Reports Server (NTRS)

    Wilder, M. C.; Bogdanoff, D. W.

    2015-01-01

    The Hypervelocity Free Flight Aerodynamic Facility at NASA Ames Research Center provides a potential platform for the experimental simulation of meteor breakup at conditions that closely match full-scale entry condition for select parameters. The poster describes the entry environment simulation capabilities of the Hypervelocity Free Flight Aerodynamic Facility (HFFAF) at NASA Ames Research Center and provides example images of the fragmentation of a hypersonic projectile for which break-up was initiated by mechanical forces (impact with a thin polymer diaphragm).

  16. Ablative shielding for hypervelocity projectiles

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A. (Inventor)

    1993-01-01

    A hypervelocity projectile shield which includes a hollow semi-flexible housing fabricated from a plastic like, or otherwise transparent membrane which is filled with a fluid (gas or liquid) is presented. The housing has a inlet valve, similar to that on a tire or basketball, to introduce an ablating fluid into the housing. The housing is attached by a Velcro mount or double-sided adhesive tape to the outside surface of a structure to be protected. The housings are arrayed in a side-by-side relationship for complete coverage of the surface to be protected. In use, when a hypervelocity projectile penetrates the outer wall of a housing it is broken up and then the projectile is ablated as it travels through the fluid, much like a meteorite 'burns up' as it enters the earth's atmosphere, and the housing is deflated. The deflated housing can be easily spotted for replacement, even from a distance. Replacement is then accomplished by simply pulling a deflated housing off the structure and installing a new housing.

  17. Multi-shock assembly for protecting a spacecraft surface from hypervelocity impactors

    NASA Technical Reports Server (NTRS)

    Dvorak, Bruce D. (Inventor)

    2001-01-01

    A hypervelocity impact shield assembly for protecting a spacecraft surface from hypervelocity impactors. The shield assembly includes at least one sacrificial impactor disrupting/shocking layer of hypervelocity impactor disrupting/shocking material. A primary spacing element, including space-rated open cell foam material, is positioned between the at least one sacrificial impactor disrupting/shocking layer and a spacecraft surface. A cover member is arranged and disposed relative to the sacrificial impactor disrupting/shocking layer and the primary spacing element to maintain the integrity of the hypervelocity impact shield assembly. In the event of exposure to a hypervelocity impactor, the sacrificial impactor disrupting/shocking layer is perforated while shocking the impactor breaking it into fragments, and/or melting it, and/or vaporizing it, thus providing a dispersion in the form of an expanding debris cloud/plume which spreads the impact energy of the impactor over a volume formed by the primary spacing element between the sacrificial impactor disrupting/shocking layer and the spacecraft surface. This significantly reduces impact lethality at the spacecraft surface. The space-rated open cell foam material provides an extremely lightweight, low-cost, efficient means of spacing and supporting the at least one sacrificial impactor disrupting/shocking layer before, during, and after launch. In a preferred embodiment, the invention is in the form of a multi-shock assembly including a plurality of sacrificial impactor disrupting/shocking layers. In such instance, the hypervelocity impact shield assembly includes a plurality of secondary spacing elements. Each secondary spacing element is positioned adjacent an associated sacrificial impactor disrupting/shocking layer to form a multi-shock subassembly. Thus, a plurality of multi-shock subassemblies are provided which include alternating layers of sacrificial impactor disrupting/shocking layers and secondary spacing

  18. Fragmentation of hypervelocity aluminum projectiles on fabrics

    NASA Astrophysics Data System (ADS)

    Rudolph, Martin; Schäfer, Frank; Destefanis, Roberto; Faraud, Moreno; Lambert, Michel

    2012-07-01

    This paper presents work performed for a study investigating the ability of different flexible materials to induce fragmentation of a hypervelocity projectile. Samples were chosen to represent a wide range of industrially available types of flexible materials like ceramic, aramid and carbon fabrics as well as a thin metallic mesh. Impact conditions and areal density were kept constant for all targets. Betacloth and multi-layer insulation (B-MLI) are mounted onto the targets to account for thermal system engineering requirements. All tests were performed using the Space light-gas gun facility (SLGG) of the Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institut, EMI. Projectiles were aluminum spheres with 5 mm diameter impacting at approximately 6.3 km/s. Fragmentation was evaluated using a witness plate behind the target. An aramid and a ceramic fabric lead the ranking of fabrics with the best projectile fragmentation and debris cloud dispersion performance. A comparison with an equal-density rigid aluminum plate is presented. The work presented can be applied to optimize the micrometeoroid and space debris (MM/SD) shielding structure of inflatable modules.

  19. Intact capture of hypervelocity projectiles

    NASA Technical Reports Server (NTRS)

    Tsou, P.

    1990-01-01

    The ability to capture projectiles intact at hypervelocities opens new applications in science and technology that would either not be possible or would be very costly by other means. This capability has been demonstrated in the laboratory for aluminum projectiles of 1.6 mm diameter, captured at 6 km/s, in one unmelted piece, and retaining up to 95% of the original mass. Furthermore, capture was accomplished passively using microcellular underdense polymer foam. Another advantage of capturing projectiles in an underdense medium is the ability of such a medium to preserve a record of the projectile's original velocity components of speed and direction. A survey of these experimental results is described in terms of a dozen parameters which characterize the amount of capture and the effect on the projectile due to different capture media.

  20. Turbulent spots in hypervelocity flow

    NASA Astrophysics Data System (ADS)

    Jewell, Joseph S.; Leyva, Ivett A.; Shepherd, Joseph E.

    2017-04-01

    The turbulent spot propagation process in boundary layer flows of air, nitrogen, carbon dioxide, and air/carbon dioxide mixtures in thermochemical nonequilibrium at high enthalpy is investigated. Experiments are performed in a hypervelocity reflected shock tunnel with a 5-degree half-angle axisymmetric cone instrumented with flush-mounted fast-response coaxial thermocouples. Time-resolved and spatially demarcated heat transfer traces are used to track the propagation of turbulent bursts within the mean flow, and convection rates at approximately 91, 74, and 63% of the boundary layer edge velocity, respectively, are observed for the leading edge, peak, and trailing edge of the spots. A simple model constructed with these spot propagation parameters is used to infer spot generation rates from observed transition onset to completion distance. Spot generation rates in air and nitrogen are estimated to be approximately twice the spot generation rates in air/carbon dioxide mixtures.

  1. Intact capture of hypervelocity projectiles.

    PubMed

    Tsou, P

    1990-01-01

    The ability to capture projectiles intact at hypervelocities opens new applications in science and technology that would either not be possible or would be very costly by other means. This capability has been demonstrated in the laboratory for aluminum projectiles of 1.6 mm diameter, captured at 6 km/s, in one unmelted piece, and retaining up to 95% of the original mass. Furthermore, capture was accomplished passively using microcellular underdense polymer foam. Another advantage of capturing projectiles in an underdense medium is the ability of such a medium to preserve a record of the projectile's original velocity components of speed and direction. A survey of these experimental results is described in terms of a dozen parameters which characterize the amount of capture and the effect on the projectile due to different capture media.

  2. Advanced Hypervelocity Aerophysics Facility Workshop

    NASA Technical Reports Server (NTRS)

    Witcofski, Robert D. (Compiler); Scallion, William I. (Compiler)

    1989-01-01

    The primary objective of the workshop was to obtain a critical assessment of a concept for a large, advanced hypervelocity ballistic range test facility powered by an electromagnetic launcher, which was proposed by the Langley Research Center. It was concluded that the subject large-scale facility was feasible and would provide the required ground-based capability for performing tests at entry flight conditions (velocity and density) on large, complex, instrumented models. It was also concluded that advances in remote measurement techniques and particularly onboard model instrumentation, light-weight model construction techniques, and model electromagnetic launcher (EML) systems must be made before any commitment for the construction of such a facility can be made.

  3. Calculations supporting HyperVelocity Launcher development

    SciTech Connect

    Trucano, T.G.; Chhabildas, L.C.

    1993-08-01

    Sandia National Laboratories has developed a HyperVelocity Launcher (also referred to as HVL) in which a thin flier plate (nominally 1 mm thick) is launched to velocities in excess of 12 km/s. The length to diameter ratio of these launched flier plates varies from 0.02 to 0.06. The launch technique is based upon using structured, time-dependant, high-pressure, high-acceleration pulses to drive the flier plates. Such pulses are achieved by using a graded-density material to impact a stationary flier. A computational and experimental program at Sandia seeks to extend this technique to allow launching thick plates whose length-to-diameter ratio is 10 to 20 times larger than thin plates. Hydrodynamic codes are used to design modifications to the basic technique. The authors have controlled and used these effects to successfully launch a chunk-flier, consisting of 0.33 gm of titanium alloy, 0.3 cm thick by 0.6 cm in diameter, to a velocity of 10.2 km/s. This is the largest chunky size ever launched at this velocity from a gas gun configuration.

  4. Langley proposed advanced hypervelocity aerophysics facility - A status report

    NASA Technical Reports Server (NTRS)

    Witcofski, Robert D.; Scallion, William I.

    1989-01-01

    A ground-based facility capable of performing flight tests on relatively large highly instrumented models and scaled vehicle components at velocities and densities representative of a hypervelocity flight in earth and planetary atmospheres is reviewed. This facility proposed by the Langley Research Center is based on a launcher, a test chamber, and a model impact/deceleration chamber. It would initially utilize existing light-gas gun launcher technology scaled to 4 times present launcher size. It is planned to enhance its velocity and model size capability either by an electromagnetic launcher or a ram accelerator.

  5. Aluminum 2219-T87 and 5456-H116 - A comparative study of spacecraft wall materials in dual-wall structures under hypervelocity impact

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.

    1992-01-01

    All earth-orbiting spacecraft are susceptible to high-speed impacts by pieces of orbital debris. To prevent mission failure and possibly loss of life, protection against perforation by high-speed orbital debris particles must be included in the spacecraft design. Although any number of materials can be used to manufacture perforation-resistant structures, aluminum is often used in such systems because of its relatively high strength-to-weight ratio. This paper presents the results of a study in which the high speed impact response characteristics of dual-wall structures made from two different aluminum alloys were analyzed to determine which alloy would be more suitable for use in a perforation-resistant dual-wall structural system that is to be exposed to the orbital debris environment. Impact response characteristics were obtained numerically and experimentally. At impact speeds below 7 km/s, it was found that the two aluminum alloys considered contributed similar levels of perforation resistance; at speeds in excess of 7 km/s, aluminum 2219-T87 was superior to aluminum 5546-H116 in preventing perforation of dual-wall structural systems.

  6. A study of the observed shift in the peak position of olivine Raman spectra as a result of shock induced by hypervelocity impacts

    NASA Astrophysics Data System (ADS)

    Harriss, Kathryn H.; Burchell, M. J.

    2016-07-01

    Kuebler et al. (2006) identified variations in olivine Raman spectra based on the composition of individual olivine grains, leading to identification of olivine composition from Raman spectra alone. However, shock on a crystal lattice has since been shown to result in a structural change to the original material, which produces a shift in the Raman spectra of olivine grains compared with the original unshocked olivine (Foster et al. 2013). This suggests that the use of the compositional calculations from the Raman spectra, reported in Kuebler et al. (2006), may provide an incorrect compositional value for material that has experienced shock. Here, we have investigated the effect of impact speed (and hence peak shock pressure) on the shift in the Raman spectra for San Carlos olivine (Fo91) impacting Al foil. Powdered San Carlos olivine (grain size 1-10 μm) was fired at a range of impact speeds from 0.6 to 6.1 km s-1 (peak shock pressures 5-86 GPa) at Al foil to simulate capture over a wide range of peak shock pressures. A permanent change in the Raman spectra was found to be observed only for impact speeds greater than ~5 km s-1. The process that causes the shift is most likely linked to an increase in the peak pressure produced by the impact, but only after a minimum shock pressure associated with the speed at which the effect is first observed (here 65-86 GPa). At speeds around 6 km s-1 (peak shock pressures ~86 GPa), the shift in Raman peak positions is in a similar direction (red shift) to that observed by Foster et al. (2013) but of twice the magnitude.

  7. Explosively driven hypervelocity launcher: Second-stage augmentation techniques

    NASA Technical Reports Server (NTRS)

    Baum, D. W.

    1973-01-01

    The results are described of a continuing study aimed at developing a two-stage explosively driven hypervelocity launcher capable of achieving projectile velocities between 15 and 20 km/sec. The testing and evaluation of a new cylindrical impact technique for collapsing the barrel of two-stage launcher are reported. Previous two-stage launchers have been limited in ultimate performance by incomplete barrel collapse behind the projectile. The cylindrical impact technique explosively collapses a steel tube concentric with and surrounding the barrel of the launcher. The impact of the tube on the barrel produces extremely high stresses which cause the barrel to collapse. The collapse rate can be adjusted by appropriate variation of the explosive charge and tubing parameters. Launcher experiments demonstrated that the technique did achieve complete barrel collapse and form a second-stage piston. However, jetting occurred in the barrel collapse process and was responsible for severe projectile damage.

  8. Modeling and simulation of the post-impact trajectories of particles in oblique precision shot-peening

    NASA Astrophysics Data System (ADS)

    Zohdi, T. I.

    2016-11-01

    The use of targeted particulate jets for surface modification in advanced manufacturing processes such as shot-peening are now becoming widespread. The degree of precision now demanded, in tightly confined workspaces, dictates that these processes undergo deeper scrutiny, refinement and optimization, in particular to avoid unintended excessive normal and tangential impact forces and re-impact from the rebounding jet on secondary surfaces. This work focuses on the building block of a particulate jet, namely the inelastic impact of a particle with a surface. The governing equations for a general three-dimensional inelastic impact with unilateral stick-slip conditions are derived, with the objective being to extract the particle and target characteristics which control the forces induced on impact and the resulting post-impact trajectories. Quantitative and qualitative analyses are performed for different types of surfaces and allows analysts to make informed decisions on the choices of parameters in jets, in order to reduce trial and error procedures.

  9. Obliquity along plate boundaries

    NASA Astrophysics Data System (ADS)

    Philippon, Mélody; Corti, Giacomo

    2016-12-01

    Most of the plate boundaries are activated obliquely with respect to the direction of far field stresses, as roughly only 8% of the plate boundaries total length shows a very low obliquity (ranging from 0 to 10°, sub-orthogonal to the plate displacement). The obliquity along plate boundaries is controlled by (i) lateral rheological variations within the lithosphere and (ii) consistency with the global plate circuit. Indeed, plate tectonics and magmatism drive rheological changes within the lithosphere and consequently influence strain localization. Geodynamical evolution controls large-scale mantle convection and plate formation, consumption, and re-organization, thus triggering plate kinematics variations, and the adjustment and re-orientation of far field stresses. These geological processes may thus result in plate boundaries that are not perpendicular but oblique to the direction of far field stresses. This paper reviews the global patterns of obliquity along plate boundaries. Using GPlate, we provide a statistical analysis of present-day obliquity along plate boundaries. Within this framework, by comparing natural examples and geological models, we discuss deformation patterns and kinematics recorded along oblique plate boundaries.

  10. SU-E-T-596: Axillary Nodes Radiotherapy Boost Field Dosimetric Impact Study: Oblique Field and Field Optimization in 3D Conventional Breast Cancer Radiation Treatment

    SciTech Connect

    Su, M; Sura, S

    2014-06-01

    Purpose: To evaluate dosimetric impact of two axillary nodes (AX) boost techniques: (1) posterior-oblique optimized field boost (POB), (2) traditional posterior-anterior boost (PAB) with field optimization (O-PAB), for a postmastectomy breast patient with positive axillary lymph nodes. Methods: Five patients, 3 left and 2 right chest walls, were included in this study. All patients were simulated in 5mm CT slice thickness. Supraclavicular (SC) and level I/II/III AX were contoured based on the RTOG atlas guideline. Five treatment plans, (1) tangential chest wall, (2) oblique SC including AX, (3) PAB, O-PAB and POB, were created for each patient. Three plan sums (PS) were generated by sum one of (3) plan with plan (1) and (2). The field optimization was done through PS dose distribution, which included a field adjustment, a fractional dose, a calculation location and a gantry angle selection for POB. A dosimetric impact was evaluated by comparing a SC and AX coverage, a PS maximum dose, an irradiated area percentage volume received dose over 105% prescription dose (V105), an ipsi-laterial mean lung dose (MLD), an ipsi-laterial mean humeral head dose (MHHD), a mean heart dose (MHD) (for left case only) and their DVH amount these three technique. Results: O-PAB, POB and PAB dosimetric results showed that there was no significant different on SC and AX coverage (p>0.43) and MHD (p>0.16). The benefit of sparing lung irradiation from PAB to O-PAB to POB was significant (p<0.004). PAB showed a highest PS maximum dose (p<0.005), V105 (p<0.023) and MLD (compared with OPAB, p=0.055). MHHD showed very sensitive to the patient arm positioning and anatomy. O-PAB convinced a lower MHHD than PAB (p=0.03). Conclusion: 3D CT contouring plays main role in accuracy radiotherapy. Dosimetric advantage of POB and O-PAB was observed for a better normal tissue irradiation sparing.

  11. Evolution of Mercury's Obliquity

    NASA Astrophysics Data System (ADS)

    Yseboodt, M.; Margot, J. L.

    2005-05-01

    Mercury has a near-zero obliquity, i.e. its spin axis is nearly perpendicular to its orbital plane. In order to constrain the size of the planet's core with the framework suggested by Peale (1976), the obliquity must be known precisely. Rambaux and Bois (2004) have suggested that Mercury's obliquity varies on thousand-year timescales due to planetary perturbations, potentially ruining the feasibility of Peale's experiment. We use a Hamiltonian approach (free of energy dissipation) to study the spin-orbit evolution of Mercury subject to planetary perturbations. We can reproduce an obliquity evolution similar to that of Rambaux and Bois (2004) if we introduce the planetary perturbations abruptly, i.e. by a step function. But if we introduce the planetary effects smoothly starting from an equilibrium position corresponding to the Cassini state (where the spin axis, the normal to the invariable plane and the normal to the orbital plane are aligned), the thousand-year oscillations in the obliquity do not appear. We find an equilibrium value for the obliquity of ˜1.6 arcmin for (B-A)/C = 1.2 10-4 and (C-A)/C = 2.4 10-4, which are combinations of the moments of inertia corresponding to the Mariner 10 gravity data. Our results indicate that planetary perturbations do not force short-period oscillations in Mercury's obliquity, even though such oscillations may appear in numerical integrations involving artificial departures from the Cassini state or the sudden onset of perturbations. Peale (2004) has shown that the periods of damping of the free motions (free precession or free libration) are short compared to the age of the solar system, such that oscillations in obliquity are expected to decay. In the absence of excitation processes, Mercury's obliquity will remain constant, suggesting that one of the important conditions for the success of Peale's experiment is realized.

  12. Study of the Transformation of Meteoritic Organics during Hypervelocity Impacts in Support of Characterisation of Exogenous Organic Matter on the Surface of Icy Satellites

    NASA Astrophysics Data System (ADS)

    Zaitsev, Maxim; Gerasimov, Mikhail; Ivanova, Marina; Lorenz, Cyril; Aseev, Sergey; Korochantsev, Alexander

    The main goal of the planned missions to Jupiter's Galilean satellites Ganymede or Europa is the search for extraterrestrial life which can be reviled by characterization of surface organics at the landing site. Planets and satellites are exposed for steady meteoritic and cometary bombardment which delivers exogenous organic species. The exogenous organic matter on the satellites surfaces can be represented by both unaltered organic matter of meteorites and comets, and by organic matter which is synthesized from organic and/or mineral components of falling bodies during the impacts. Adequate interpretation of volatile organic compounds (VOCs) on the surface of Ganymede or Europa must take into account the presence of exogenous organic matter described above. The quantitative composition of exogenous organics is difficult to predict because it depends on the frequency of meteoritic/cometary bombardment, conditions and efficiency of organic synthesis in water mantle below the ice crust, speed of the ice crust renovation, and other factors. However, the qualitative composition of exogenous organics can be described through the study of organic matter in different classes of meteorites and products of their shock-evaporative transformation. We have carried out comparative studies of VOCs - products of pyrolysis of carbonaceous chondrites and condensed products of their high-temperature transformation in simulated shock-induced evaporation by pulse laser. We have investigated VOCs in samples of carbonaceous CM2 and CO3 chondrites (Murchison and Kainsaz respectively) and in condensed products of their high-temperature evaporation in neutral (helium) atmosphere using pyrolytic gas chromatography coupled with mass spectrometry (Pyr-GC/MS) [1, 2]. Condensates contained the same hydrocarbons that we extracted at 460(°) C from the bulk samples of meteorites (aliphatic, alicyclic and aromatic hydrocarbons) but sufficiently larger amount of nitrogen-containing compounds

  13. A research program in magnetogasdynamics utilizing hypervelocity coaxial plasma generators

    NASA Technical Reports Server (NTRS)

    Spight, C.

    1976-01-01

    A broadly-gauged research program in magnetogasdynamics utilizing hypervelocity coaxial plasma generators is presented. A complete hypervelocity coaxial plasma generator facility was assembled and tested. Significant progress was made in the direction of understanding the important processes in the interaction of hypervelocity MGD flow with transverse applied fields. It is now proposed to utilize the accumulated experimental capability and theoretical analysis in application to the analysis and design parameterization of pulsed magnetogasdynamic direct energy convertor configurations.

  14. Towards Efficiency of Oblique Images Orientation

    NASA Astrophysics Data System (ADS)

    Ostrowski, W.; Bakuła, K.

    2016-03-01

    Many papers on both theoretical aspects of bundle adjustment of oblique images and new operators for detecting tie points on oblique images have been written. However, only a few achievements presented in the literature were practically implemented in commercial software. In consequence often aerial triangulation is performed either for nadir images obtained simultaneously with oblique photos or bundle adjustment for separate images captured in different directions. The aim of this study was to investigate how the orientation of oblique images can be carried out effectively in commercial software based on the structure from motion technology. The main objective of the research was to evaluate the impact of the orientation strategy on both duration of the process and accuracy of photogrammetric 3D products. Two, very popular software: Pix4D and Agisoft Photoscan were tested and two approaches for image blocks were considered. The first approach based only on oblique images collected in four directions and the second approach included nadir images. In this study, blocks for three test areas were analysed. Oblique images were collected with medium-format cameras in maltan cross configuration with registration of GNSS and INS data. As a reference both check points and digital surface models from airborne laser scanning were used.

  15. Debris Production in Hypervelocity Impact ASAT Engagements

    DTIC Science & Technology

    1990-12-01

    collisions and asteroid collisions and asserts, "When normalized by the total ejected mass, as in Equa- tion 6, the distribution of fragments from...in asteroids ), Kessler derives an equation for the number of fragments re- sulting from a collision between earth-orbiting objects (15:2640). The...34 into space). Another possible method to negate satellites without creating orbiting debris is to develop a co-orbital hunter- killer which could

  16. Hypervelocity, minimum-radii, coordinated turns

    NASA Technical Reports Server (NTRS)

    Tauber, Michael E.

    1990-01-01

    An analytic solution is presented for the most basic powered-flight maneuver, consisting of a constant-altitude coordinated turn and expressions for minimum-turn radii; associated flight conditions are derived. It is shown that the formulation for hypervelocity turns differs from that for subsonic and hypersonic speeds. Illustrative calculations using approximate aerodynamics based on Newtonian theory are presented, and these demonstrate the differences of hypersonic flight conditions and their associated turning radii from those at lower speeds.

  17. The oblique electron lens.

    NASA Technical Reports Server (NTRS)

    Johnson, C. B.; Hallam, K. L.

    1973-01-01

    An oblique electron lens is described that is especially applicable to image converters and camera tubes employing flat opaque photocathodes. The use of optical lenses, corrector plates, and/or mirrors (often employed in other electron lenses designed for use with opaque photocathodes) are eliminated. The oblique electron lens is well suited to ultraviolet and vacuum ultraviolet image converters, and to image converters employing opaque negative electron affinity photocathodes. It is also possible to use this oblique electron lens for electronography. Measurements on an experimental tube show that a limiting resolution of 50 line pairs/mm is possible, but the intrinsic lens quality is believed to approach that of a conventional electromagnetic lens having uniform and colinear electric and magnetic fields.

  18. Mars Obliquity Cycle Illustration

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The tilt of Mars' spin axis (obliquity) varies cyclically over hundreds of thousands of years, and affects the sunlight falling on the poles. Because the landing site of NASA's Phoenix Mars Lander is so near the north pole, higher sun and warmer temperatures during high obliquity lead to warmer, more humid surface environments, and perhaps thicker, more liquid-like films of water in soil.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  19. The intact capture of hypervelocity dust particles using underdense foams

    NASA Technical Reports Server (NTRS)

    Maag, Carl R.; Borg, J.; Tanner, William G.; Stevenson, T. J.; Bibring, J.-P.

    1994-01-01

    The impact of a hypervelocity projectile (greater than 3 km/s) is a process that subjects both the impactor and the impacted material to a large transient pressure distribution. The resultant stresses cause a large degree of fragmentation, melting, vaporization, and ionization (for normal densities). The pressure regime magnitude, however, is directly related to the density relationship between the projectile and target materials. As a consequence, a high-density impactor on a low-density target will experience the lowest level of damage. Historically, there have been three different approaches toward achieving the lowest possible target density. The first employs a projectile impinging on a foil or film of moderate density, but whose thickness is much less than the particle diameter. This results in the particle experiencing a pressure transient with both a short duration and a greatly reduced destructive effect. A succession of these films, spaced to allow nondestructive energy dissipation between impacts, will reduce the impactor's kinetic energy without allowing its internal energy to rise to the point where destruction of the projectile mass will occur. An added advantage to this method is that it yields the possibility of regions within the captured particle where a minimum of thermal modification has taken place. Polymer foams have been employed as the primary method of capturing particles with minimum degradation. The manufacture of extremely low bulk density materials is usually achieved by the introduction of voids into the material base. It must be noted, however, that a foam structure only has a true bulk density of the mixture at sizes much larger than the cell size, since for impact processes this is of paramount importance. The scale at which the bulk density must still be close to that of the mixture is approximately equal to the impactor. When this density criterion is met, shock pressures during impact are minimized, which in turn maximizes the

  20. The intact capture of hypervelocity dust particles using underdense foams

    NASA Astrophysics Data System (ADS)

    Maag, Carl R.; Borg, J.; Tanner, William G.; Stevenson, T. J.; Bibring, J.-P.

    The impact of a hypervelocity projectile (greater than 3 km/s) is a process that subjects both the impactor and the impacted material to a large transient pressure distribution. The resultant stresses cause a large degree of fragmentation, melting, vaporization, and ionization (for normal densities). The pressure regime magnitude, however, is directly related to the density relationship between the projectile and target materials. As a consequence, a high-density impactor on a low-density target will experience the lowest level of damage. Historically, there have been three different approaches toward achieving the lowest possible target density. The first employs a projectile impinging on a foil or film of moderate density, but whose thickness is much less than the particle diameter. This results in the particle experiencing a pressure transient with both a short duration and a greatly reduced destructive effect. A succession of these films, spaced to allow nondestructive energy dissipation between impacts, will reduce the impactor's kinetic energy without allowing its internal energy to rise to the point where destruction of the projectile mass will occur. An added advantage to this method is that it yields the possibility of regions within the captured particle where a minimum of thermal modification has taken place. Polymer foams have been employed as the primary method of capturing particles with minimum degradation. The manufacture of extremely low bulk density materials is usually achieved by the introduction of voids into the material base. It must be noted, however, that a foam structure only has a true bulk density of the mixture at sizes much larger than the cell size, since for impact processes this is of paramount importance. The scale at which the bulk density must still be close to that of the mixture is approximately equal to the impactor. When this density criterion is met, shock pressures during impact are minimized, which in turn maximizes the

  1. The obliquity of Pluto

    NASA Technical Reports Server (NTRS)

    Dobrovolskis, A. R.; Harris, A. W.

    1983-01-01

    Pluto's obliquity (the angle between its spin axis and orbit normal) varies between 102 and 126 deg over a period of about 3 million years. These oscillations are nearly sinusoidal and quite stable, leading to only modest changes in the insolation regime. Thus, Pluto's rotation has been slightly retrograde ever since its current orbit and rotation rate were established.

  2. The Theory of Wedge Penetration at Oblique Incidence and its Application to the Calculation of Forces on a Yawed Shot Impacting on Armour Plate at Any Angle

    DTIC Science & Technology

    1946-03-01

    at any angle of incidence and any angle of yaw, are calculated by a method of approximation based on the solution of the associated plastic problem of...solution of the associated plastic problem of oblique penetration by a wedge and take into account the formation of a coronet or lip. For a wedge of

  3. Hypervelocity Plasmas with Strong MHD (Magnetohydrodynamic) Interactions.

    DTIC Science & Technology

    1984-12-01

    ARD-Ai5S 867 HYPERVELOCITY PLASMAS WITH STRONG NHD j/j (MAGNETOHYDRODYNANIC) INTERRCTIONS(U) STD RESEARCH CORP ARCADIA CA S T DEMETRIADES FT AL DEC...MIRCP RSLTO-TS HR NAINLBUEUO SADRS-16- -ArO’ mi -T7- (7 % STD RESEARCH CORPORATION POST OFFICE OX ’C’ ARC ADIA, CALIFORNIA 91006 LTf.LEPHONE! (213...Covered: 1 June 1983 -31 May 1984 December 1984 STD Research Corporation P.O. Box "’C" Arcadia, California 91006 Appi-u ’, 2 I~t or1 ’Pub I rege

  4. Climates of Oblique Exoplanets

    NASA Astrophysics Data System (ADS)

    Dobrovolskis, A. R.

    2008-12-01

    A previous paper (Dobrovolskis 2007; Icarus 192, 1-23) showed that eccentricity can have profound effects on the climate, habitability, and detectability of extrasolar planets. This complementary study shows that obliquity can have comparable effects. The known exoplanets exhibit a wide range of orbital eccentricities, but those within several million km of their suns are generally in near-circular orbits. This fact is widely attributed to the dissipation of tides in the planets, which is particularly effective for solid/liquid bodies like "Super-Earths". Along with friction between a solid mantle and a liquid core, tides also are expected to despin a planet until it is captured in the synchronous resonance, so that its rotation period is identical to its orbital period. The canonical example of synchronous spin is the way that our Moon always keeps nearly the same hemisphere facing the Earth. Tides also tend to reduce the planet's obliquity (the angle between its spin and orbital angular velocities). However, orbit precession can cause the rotation to become locked in a "Cassini state", where it retains a nearly constant non-zero obliquity. For example, our Moon maintains an obliquity of about 6.7° with respect to its orbit about the Earth. For comparison, stable Cassini states can exist for practically any obliquity up to 180° for planets of binary stars, or in multi-planet systems with high mutual inclinations, such as are produced by scattering or by the Kozai mechanism. This work considers planets in synchronous rotation with circular orbits. For obliquities greater than 90°, the ground track of the sub-solar point wraps around all longitudes on the surface of such a planet. For smaller obliquities, the sub-solar track takes the figure-8 shape of an analemma. This can be visualized as the intersection of the planet's spherical surface with a right circular cylinder, parallel to the spin axis and tangent to the equator from the inside. The excursion of the

  5. Transit probabilities around hypervelocity and runaway stars

    NASA Astrophysics Data System (ADS)

    Fragione, G.; Ginsburg, I.

    2017-04-01

    In the blooming field of exoplanetary science, NASA's Kepler Space Telescope has revolutionized our understanding of exoplanets. Kepler's very precise and long-duration photometry is ideal for detecting planetary transits around Sun-like stars. The forthcoming Transiting Exoplanet Survey Satellite (TESS) is expected to continue Kepler's legacy. Along with transits, the Doppler technique remains an invaluable tool for discovering planets. The next generation of spectrographs, such as G-CLEF, promise precision radial velocity measurements. In this paper, we explore the possibility of detecting planets around hypervelocity and runaway stars, which should host a very compact system as consequence of their turbulent origin. We find that the probability of a multiplanetary transit is 10-3 ≲ P ≲ 10-1. We therefore need to observe ∼10-1000 high-velocity stars to spot a transit. However, even if transits are rare around runaway and hypervelocity stars, the chances of detecting such planets using radial velocity surveys is high. We predict that the European Gaia satellite, along with TESS and the new-generation spectrographs G-CLEF and ESPRESSO, will spot planetary systems orbiting high-velocity stars.

  6. NASA White Sands Test Facility Remote Hypervelocity Test Laboratory

    NASA Video Gallery

    Tour the NASA White Sands Test Facility's Remote Hypervelocity Test Laboratory in Las Cruces, New Mexico. To learn more about White Sands Test Facility, go to http://www.nasa.gov/centers/wstf/home/...

  7. An approximate Riemann solver for hypervelocity flows

    NASA Technical Reports Server (NTRS)

    Jacobs, Peter A.

    1991-01-01

    We describe an approximate Riemann solver for the computation of hypervelocity flows in which there are strong shocks and viscous interactions. The scheme has three stages, the first of which computes the intermediate states assuming isentropic waves. A second stage, based on the strong shock relations, may then be invoked if the pressure jump across either wave is large. The third stage interpolates the interface state from the two initial states and the intermediate states. The solver is used as part of a finite-volume code and is demonstrated on two test cases. The first is a high Mach number flow over a sphere while the second is a flow over a slender cone with an adiabatic boundary layer. In both cases the solver performs well.

  8. Three-phase hypervelocity projectile launcher

    DOEpatents

    Fugelso, L. Erik; Langner, Gerald C.; Burns, Kerry L.; Albright, James N.

    1994-01-01

    A hypervelocity projectile launcher for use in perforating borehole casings provides improved penetration into the surrounding rock structure. The launcher includes a first cylinder of explosive material that defines an axial air-filled cavity, a second cylinder of explosive material defining an axial frustum-shaped cavity abutting and axially aligned with the first cylinder. A pliant washer is located between and axially aligned with the first and second cylinders. The frustum shaped cavity is lined with a metal liner effective to form a projectile when the first and second cylinders are detonated. The washer forms a unique intermediate projectile in advance of the liner projectile and enables the liner projectile to further penetrate into and fracture the adjacent rock structure.

  9. A test facility for hypervelocity rarefied flows

    NASA Astrophysics Data System (ADS)

    Macrossan, M. N.; Chiu, H.-H.; Mee, D. J.

    2001-08-01

    This paper describes a rarefied hypervelocity test facility producing gas speeds greater than 7 km/s. The X1 expansion tube at The University of Queensland has been used to produce nitrogen flows at 8.9 and 9.5 km/s with test flow durations of 50 and 40 μs respectively. Rarefied flow is indicated by values of the freestream breakdown parameter >0.1 (Cheng's rarefaction parameter <10) and freestream Knudsen numbers up to 0.038, based on a model size of 9 mm. To achieve this, the test gas is expanded from the end of the acceleration tube into a dump tank. Nominal conditions in the expansion are derived from CFD predictions. Measured bar gauge (Pitot) pressures show that the flow is radially uniform when the Pitot pressure has decreased by a factor ten. The measured bar gauge pressures are an increasing fraction of the expected Pitot pressure as the rarefaction parameters increase.

  10. Hypervelocity atmospheric flight: Real gas flow fields

    NASA Technical Reports Server (NTRS)

    Howe, John T.

    1989-01-01

    Flight in the atmosphere is examined from the viewpoint of including real gas phenomena in the flow field about a vehicle flying at hypervelocity. That is to say, the flow field is subject not only to compressible phenomena, but is dominated by energetic phenomena. There are several significant features of such a flow field. Spatially, its composition can vary by both chemical and elemental species. The equations which describe the flow field include equations of state and mass, species, elemental, and electric charge continuity; momentum; and energy equations. These are nonlinear, coupled, partial differential equations that have been reduced to a relatively compact set of equations in a self-consistent manner (which allows mass addition at the surface at a rate comparable to the free-stream mass flux). The equations and their inputs allow for transport of these quantities relative to the mass-average behavior of the flow field. Thus transport of mass by chemical, thermal, pressure, and forced diffusion; transport of momentum by viscosity; and transport of energy by conduction, chemical considerations, viscosity, and radiative transfer are included. The last of these complicate the set of equations by making the energy equations a partial integrodifferential equation. Each phenomenon is considered and represented mathematically by one or more developments. The coefficients which pertain are both thermodynamically and chemically dependent. Solutions of the equations are presented and discussed in considerable detail, with emphasis on severe energetic flow fields. Hypervelocity flight in low-density environments where gaseous reactions proceed at finite rates chemical nonequilibrium is considered, and some illustrations are presented. Finally, flight where the flow field may be out of equilibrium, both chemically and thermodynamically, is presented briefly.

  11. Hypervelocity atmospheric flight: Real gas flow fields

    NASA Technical Reports Server (NTRS)

    Howe, John T.

    1990-01-01

    Flight in the atmosphere is examined from the viewpoint of including real gas phenomena in the flow field about a vehicle flying at hypervelocity. That is to say, the flow field is subject not only to compressible phenomena, but is dominated by energetic phenomena. There are several significant features of such a flow field. Spatially, its composition can vary by both chemical and elemental species. The equations which describe the flow field include equations of state and mass, species, elemental, and electric charge continuity; momentum; and energy equations. These are nonlinear, coupled, partial differential equations that were reduced to a relatively compact set of equations of a self-consistent manner (which allows mass addition at the surface at a rate comparable to the free-stream mass flux). The equations and their inputs allow for transport of these quantities relative to the mass-averaged behavior of the flow field. Thus transport of mass by chemical, thermal, pressure, and forced diffusion; transport of momentum by viscosity; and transport of energy by conduction, chemical considerations, viscosity, and radiative transfer are included. The last of these complicate the set of equations by making the energy equation a partial integrodifferential equation. Each phenomenon is considered and represented mathematically by one or more developments. The coefficients which pertain are both thermodynamically and chemically dependent. Solutions of the equations are presented and discussed in considerable detail, with emphasis on severe energetic flow fields. For hypervelocity flight in low-density environments where gaseous reactions proceed at finite rates, chemical nonequilibrium is considered and some illustrations are presented. Finally, flight where the flow field may be out of equilibrium, both chemically and thermodynamically, is presented briefly.

  12. Theory and Observations of Hypervelocity Stars

    NASA Astrophysics Data System (ADS)

    Ginsburg, Idan; Loeb, A.; Wegner, G. A.; Brown, W. R.; Perets, H.

    2013-01-01

    Since first discovered in 2005, stars ejected from the Milky Way, so-called hypervelocity stars (HVSs), have greatly increased our understanding of the kinematics and dynamics at the Galactic Center (GC). Using N-body simulations we show that an encounter between a binary star-system and the massive black hole (MBH) at the GC can result in the production of a HVS for one component of the binary, while the companion star remains in a tight orbit around the MBH. Such an encounter can also result in the coalescence of both stars in a highly-eccentric orbit around the MBH. These mechanisms may explain the suprising appearance of massive stars within 1'' of the GC. Continuing with our simulations, we find that the disruption of a triple system by the MBH can produce hypervelocity binaries. Such binaries may evolve into massive blue stragglers, while binaries captured by the MBH may be rejuvenated stars. Our simulations also predict that planets can be ejected from the GC at velocities approaching 5 percent the speed of light. Furthermore, HVSs can house planets that should be detectable as transits. The discovery of such a transit has important consequences for understanding planetary formation and evolution at the GC. We will also present photometry from 11 HVSs, taken February and May 2012, at the WIYN 3.5-meter and Hiltner 2.4-meter telescopes. Our photometry shows that many of the observed HVSs are likely slowly pulsating B stars, which constrains their nature and distance. Ongoing surveys for HVSs, including collaboration with the Australian Sky Mapper survey, as well as Hubble Space Telescope proper motion measurements promise to continue expanding our understanding of HVSs and consequently the dynamics within our galaxy.

  13. Assessment of high-enthalpy air chemistry models for hypervelocity ground-based experiments

    NASA Astrophysics Data System (ADS)

    Kulakhmetov, Marat; Bondar, Yevgeniy A.; Ivanov, Mikhail S.; Alexeenko, Alina A.

    2012-11-01

    Hypersonic vehicles re-entering Earth's atmosphere with orbital velocities generate gas flows with significant thermo-chemical non-equilibrium. Detailed kinetics of chemical reactions at such conditions is still not well understood but it may affect vehicle's thermal loads, aerodynamic moments and thermal radiation. This work assesses the Total Collision Energy (TCE) and the Kuznetsov-based state specific (KSS) chemical reaction models at pressures between 1 and 50 torr and velocities between 4 and 10 km/s in order to identify best test conditions for validating the models. Hypersonic flows at such conditions can be studied at the hypervelocity impact range facilities.

  14. Experimental technique to launch flier-plates representing orbital debris to hypervelocities

    NASA Astrophysics Data System (ADS)

    Chhabildas, Lalit C.; Boslough, Mark B.

    1993-09-01

    Very high driving pressures (tens or hundreds of GPa), are required to accelerate flier plates to hypervelocities. This loading pressure pulse on the flier plates must be nearly shockless to prevent the plate from melting or vaporizing. This is accomplished by using graded-density impactors referred to as 'pillows'. When this graded-density material is used to impact a flier- plate in a modified two-stage light gas gun, nearly shockless megabar pressures are introduced into the flier plate. The pressure pulses must also be tailored to prevent spallation of the flier- plate. This technique has been used to launch nominally 1-mm-thick aluminum, magnesium and titanium (gram-size) intact plates to 10.4 km/s, and 0.5-mm-thick aluminum and titanium (half-gram size) intact plates to 12.2 km/s. This is the highest mass-velocity capability attained with laboratory launchers to date, and should open up new regimes of impact physics and lethality studies related to space sciences for laboratory investigations. In particular, the mass- velocity capability of this newly developed hypervelocity launcher meets the average specifications of the space debris environment, and is therefore expected to be a useful tool to evaluate the effects of debris impact on space structures and debris shields.

  15. Experimental technique to launch flier-plates representing orbital debris to hypervelocities

    SciTech Connect

    Chhabildas, L.C.; Boslough, M.B.

    1992-12-31

    Very high driving pressures (tens or hundreds of GPa), are required to accelerate flier plates to hypervelocities. This loading pressure pulse on the flier plates must be nearly shockless to prevent the plate from melting or vaporizing. This is accomplished by using graded-density impactors referred to as ``pillows.`` When this graded-density material is used to impact a flier-plate in a modified two-stage light gas gun, nearly shockless megabar pressures are introduced into the flier plate. The pressure pulses must also be tailored to prevent spallation of the flier-plate. This technique has been used to launch nominally 1-mm-thick aluminum, magnesium and titanium (gram-size) intact plates to 10.4 km/s, and 0.5-mm-thick aluminum and titanium (half-gram size) intact plates to 12.2 km/s. This is the highest mass-velocity capability attained with laboratory launchers to date, and should open up new regimes of impact physics and lethality studies related to space sciences for laboratory investigations. In particular, the mass-velocity capability of this newly developed hypervelocity launcher meets the average specifications of the space debris environment, and is therefore expected to be a useful tool to evaluate the effects of debris impact on space structures and debris shields.

  16. Experimental technique to launch flier-plates representing orbital debris to hypervelocities

    SciTech Connect

    Chhabildas, L.C.; Boslough, M.B.

    1992-01-01

    Very high driving pressures (tens or hundreds of GPa), are required to accelerate flier plates to hypervelocities. This loading pressure pulse on the flier plates must be nearly shockless to prevent the plate from melting or vaporizing. This is accomplished by using graded-density impactors referred to as pillows.'' When this graded-density material is used to impact a flier-plate in a modified two-stage light gas gun, nearly shockless megabar pressures are introduced into the flier plate. The pressure pulses must also be tailored to prevent spallation of the flier-plate. This technique has been used to launch nominally 1-mm-thick aluminum, magnesium and titanium (gram-size) intact plates to 10.4 km/s, and 0.5-mm-thick aluminum and titanium (half-gram size) intact plates to 12.2 km/s. This is the highest mass-velocity capability attained with laboratory launchers to date, and should open up new regimes of impact physics and lethality studies related to space sciences for laboratory investigations. In particular, the mass-velocity capability of this newly developed hypervelocity launcher meets the average specifications of the space debris environment, and is therefore expected to be a useful tool to evaluate the effects of debris impact on space structures and debris shields.

  17. On the Origin of Hypervelocity Stars

    NASA Astrophysics Data System (ADS)

    Yu, Q.; Lu, Y.

    2011-05-01

    Hypervelocity stars (HVSs) moving in the Galactic halo are mainly B-type stars with origin of their progenitors unknown. OB stars are also populated in the Galactic Center (GC), with many being hosted in a clockwise rotating young stellar (CWS) disk within half a parsec from the central massive black hole (MBH) and their formation remaining puzzles. We find that the majority of the detected HVSs are spatially correlated with the plane of the stellar disk. By demonstrating that HVSs can well memorize the injecting direction of their progenitors, we conclude that most of the HVSs probably originate from the CWS disk. Our results not only confirm the GC origin of HVSs but also imply that the central disk should persist or be frequently rejuvenated over the past 200 Myr, which adds a new challenge to the stellar disk formation and provides insights to the longstanding problem of gas fueling into MBHs. A future survey of HVSs in the southern hemisphere will provide a check for the origin of HVSs.

  18. The True Origin of Hypervelocity Stars

    NASA Astrophysics Data System (ADS)

    Gnedin, Oleg

    2011-10-01

    We propose to obtain WFC3 images of 4 hypervelocity stars in the Galactic halo, in order to conclusively establish their origin. This will be a final epoch of a long-term program to measure precise proper motions in an absolute inertial frame. The origin of these unique stars with extremely large positive radial velocities, in excess of the escape speed from the Galaxy, is consistent only with being ejected by the massive black hole at the Galactic center. Reconstructing the full three-dimensional space motion of these stars, through astrometric proper motions, provides a unique opportunity to measure the shape of the triaxial dark matter halo, at larger distances than is afforded by tidal streams. In Cycles 15 and 17 our team obtained two epochs of observations for these stars with ACS. The accuracy of the proper motion measurement was affected by the CTE degradation in ACS and the unexpected change in the PSF after SM4. The CTE error of HVS3 was unfortunately amplified by the need to use different guide stars and take the second-epoch observations at a 180 degree different orientation. We request third-epoch observations for 4 targets with WFC3 to double the proper motion baseline to 5-6 years and to reduce the systematic error using our newly-developed CTE correction. The new measurement will conclusively confirm or reject the Galactocentric origin of HVSs.

  19. The Obliquities of the Giant Planets

    NASA Astrophysics Data System (ADS)

    Hamilton, D. P.; Ward, Wm. R.

    2002-09-01

    Jupiter has by far the smallest obliquity ( ~ 3o) of the planets (not counting tidally de-spun Mercury and Venus) which may be reflective of its formation by hydrodynamic gas flow rather than stochastic impacts. Saturn's obliquity ( ~ 26o), however, seems to belie this simple formation picture. But since the spin angular momentum of any planet is much smaller than its orbital angular momentum, post-formation obliquity can be strongly modified by passing through secular spin-orbit resonances, i.e., when the spin axis precession rate of the planet matches one of the frequencies describing the precession of the orbit plane. Spin axis precession is due to the solar torque on both the oblate figure of the planet and any orbiting satellites. In the case of Jupiter, the torque on the Galilean satellites is the principal cause of its 4.5*105 year precession; Saturn's precession of 1.8*106 years is dominated by Titan. In the past, the planetary spin axis precession rates should have been much faster due to the massive circumplanetary disks from which the current satellites condensed. The regression of the orbital node of a planet is due to the gravitational perturbations of the other planets. Nodal regression is not uniform, but is instead a composite of the planetary system's normal modes. For Jupiter and Saturn, the principal frequency is the nu16, with a period of ~ 49,000 years; the amplitude of this term is I ~ 0o.36 for Jupiter and I ~ 0o.90 for Saturn. In spite of the small amplitudes, slow adiabatic passages through this resonance (due to circumplanetary disk dispersal) could increase planetary obliquities from near zero to ~ [tan1/3 I] ~ 10o. We will discuss scenarios in which giant planet obliquities are affected by this and other resonances, and will use Jupiter's low obliquity to constrain the mass and duration of a satellite precursor disk. DPH acknowledges support from NSF Career Grant AST 9733789 and WRW is grateful to the NASA OSS and PGG programs.

  20. In-flight detection of small hypervelocity particles.

    NASA Technical Reports Server (NTRS)

    Robinson, D. M.; Goad, J. H.; Chu, W. P.

    1973-01-01

    A technique is described in which small (25-micron) hypervelocity (10-km/sec) in-flight particles can be detected in the presence of high background noise. The system is based on a spatial filtering principle whereby spurious noise effects are reduced by use of a beam stop in the entrance aperture of the system and a bandpass filter in the transform plane. A theoretical analysis of the system is presented, and some experimental results are obtained by detecting in-flight hypervelocity particles generated by an exploding lithium wire electrothermal accelerator.

  1. Oblique dust density waves

    NASA Astrophysics Data System (ADS)

    Piel, Alexander; Arp, Oliver; Menzel, Kristoffer; Klindworth, Markus

    2007-11-01

    We report on experimental observations of dust density waves in a complex (dusty) plasma under microgravity. The plasma is produced in a radio-frequency parallel-plate discharge (argon, p=15Pa, U=65Vpp). Different sizes of dust particles were used (3.4 μm and 6.4μm diameter). The low-frequency (f 11Hz) dust density waves are naturally unstable modes, which are driven by the ion flow in the plasma. Surprisingly, the wave propagation direction is aligned with the ion flow direction in the bulk plasma but becomes oblique at the boundary of the dust cloud with an inclination of 60^o with respect to the plasma boundary. The experimental results are compared with a kinetic model in the electrostatic approximation [1] and a fluid model [2]. Moreover, the role of dust surface waves is discussed. [1] M. Rosenberg, J. Vac. Sci. Technol. A 14, 631 (1996) [2] A. Piel et al, Phys. Rev. Lett. 97, 205009 (2006)

  2. Obliquity Tides in Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Peale, S. J.

    Tidal dissipation in HD209458b while it has a very high obliquity has been proposed as a means of inflating the planet to its observed oversize (Winn and Holman, 2005). The high obliquity is maintained by the planet's being trapped into Cassini state 2 at an obliquity near 90° while the planet maintains a rotation rate synchronous with its orbital mean motion. In a Cassini state the spin axis and orbit normal remain coplanar with the normal to the Laplace plane as they precess around the latter, where the orbit has a significant inclination to the Laplace plane. The orbit of HD209458b is inclined to equatorial plane of the star by about 4°. If the stellar equator plane is coincident with the plane of the initially massive nebula, that plane is the Laplace plane on which the orbit is precessing. A planet can evolve to Cassini state 2 by tidal dissipation on a time scale comparable with that of the retardation of the spin rate. The latter time scale can become relatively short as the planet migrates toward the star. While the nebula is there, the orbital precession rate is rapid, Cassini state 2 has a small obliquity, and tidal friction will drive the planet to that state. That evolution may not occur for cases where the obliquity of state 2 is relatively large. As the nebula is dispersed, the orbital precession slows with the result that the Cassini state obliquity increases. The spin follows the Cassini state to high obliquity because the solid angle traced by the spin as it precesses about the Cassini state position is an adiabatic invariant. With no nebula, only the quadrupole moment of the star is left to cause the orbit to precess. At the slow precession rate thus induced, the obliquity of the Cassini state is nearly 90°, which if maintained while the spin remains synchronous with the orbital motion, causes the dissipation inferred by Winn and Holman. Implicit in this scenario is the assumption that the synchronous rotation is somehow maintained. Authors of

  3. Effects of Extreme Obliquity Variations on the Habitability of Exoplanets

    PubMed Central

    Barnes, R.; Domagal-Goldman, S.; Breiner, J.; Quinn, T.R.; Meadows, V.S.

    2014-01-01

    Abstract We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We show that large-amplitude, high-frequency obliquity oscillations on Earth-like exoplanets can suppress the ice-albedo feedback, increasing the outer edge of the habitable zone. We restricted our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We verified that these systems are stable for 108 years with N-body simulations and calculated the obliquity variations induced by the orbital evolution of the Earth-mass planet and a torque from the host star. We ran a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface, and we calculated differences in the outer edge of the habitable zone for planets with rapid obliquity variations. For each hypothetical system, we calculated the outer edge of habitability for two conditions: (1) the full evolution of the planetary spin and orbit and (2) the eccentricity and obliquity fixed at their average values. We recovered previous results that higher values of fixed obliquity and eccentricity expand the habitable zone, but we also found that obliquity oscillations further expand habitable orbits in all cases. Terrestrial planets near the outer edge of the habitable zone may be more likely to support life in systems that induce rapid obliquity oscillations as opposed to fixed-spin planets. Such planets may be the easiest to directly characterize with space-borne telescopes. Key Words: Exoplanets—Habitable zone—Energy balance models. Astrobiology 14, 277–291. PMID:24611714

  4. Effects of extreme obliquity variations on the habitability of exoplanets.

    PubMed

    Armstrong, J C; Barnes, R; Domagal-Goldman, S; Breiner, J; Quinn, T R; Meadows, V S

    2014-04-01

    We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We show that large-amplitude, high-frequency obliquity oscillations on Earth-like exoplanets can suppress the ice-albedo feedback, increasing the outer edge of the habitable zone. We restricted our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We verified that these systems are stable for 10(8) years with N-body simulations and calculated the obliquity variations induced by the orbital evolution of the Earth-mass planet and a torque from the host star. We ran a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface, and we calculated differences in the outer edge of the habitable zone for planets with rapid obliquity variations. For each hypothetical system, we calculated the outer edge of habitability for two conditions: (1) the full evolution of the planetary spin and orbit and (2) the eccentricity and obliquity fixed at their average values. We recovered previous results that higher values of fixed obliquity and eccentricity expand the habitable zone, but we also found that obliquity oscillations further expand habitable orbits in all cases. Terrestrial planets near the outer edge of the habitable zone may be more likely to support life in systems that induce rapid obliquity oscillations as opposed to fixed-spin planets. Such planets may be the easiest to directly characterize with space-borne telescopes.

  5. Effects of Extreme Obliquity Variations on the Habitability of Exoplanets

    NASA Technical Reports Server (NTRS)

    Armstrong, J. C.; Barnes, R.; Domagal-Goldman, S.; Breiner, J.; Quinn, T. R.; Meadows, V. S.

    2014-01-01

    We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We show that large-amplitude, high-frequency obliquity oscillations on Earth-like exoplanets can suppress the ice-albedo feedback, increasing the outer edge of the habitable zone. We restricted our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We verified that these systems are stable for 108 years with N-body simulations and calculated the obliquity variations induced by the orbital evolution of the Earth-mass planet and a torque from the host star. We ran a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface, and we calculated differences in the outer edge of the habitable zone for planets with rapid obliquity variations. For each hypothetical system, we calculated the outer edge of habitability for two conditions: (1) the full evolution of the planetary spin and orbit and (2) the eccentricity and obliquity fixed at their average values. We recovered previous results that higher values of fixed obliquity and eccentricity expand the habitable zone, but we also found that obliquity oscillations further expand habitable orbits in all cases. Terrestrial planets near the outer edge of the habitable zone may be more likely to support life in systems that induce rapid obliquity oscillations as opposed to fixed-spin planets. Such planets may be the easiest to directly characterize with space-borne telescopes.

  6. The velocity distribution of hypervelocity stars

    SciTech Connect

    Rossi, Elena M.; Kobayashi, Shiho; Sari, Re'em

    2014-11-10

    We consider the process of stellar binaries tidally disrupted by a supermassive black hole (BH). For highly eccentric orbits, as one star is ejected from the three-body system, the companion remains bound to the BH. Hypervelocity stars (HVSs) observed in the Galactic halo and S-stars observed orbiting the central BH may originate from such mechanism. In this paper, we predict the velocity distribution of the ejected stars of a given mass, after they have traveled out of the Galactic potential. We use both analytical methods and Monte Carlo simulations. We find that each part of the velocity distribution encodes different information. At low velocities <800 km s{sup –1}, the Galactic potential universally shapes the observed distribution, which rises toward a peak, related to the Galactic escape velocity. Beyond the peak, the velocity distribution depends on binary mass and separation distributions. Finally, the finite star life introduces a break related to their mass. A qualitative comparison of our models with current observations shows the great potential of HVSs to constrain bulge and Galactic properties. Standard choices for parameter distributions predict velocities below and above ∼800 km s{sup –1} with equal probability, while none are observed beyond ∼700 km s{sup –1} and the current detections are more clustered at low velocities 300-400 km s{sup –1}. These features may indicate that the separation distribution of binaries that reach the tidal sphere is not flat in logarithmic space, as observed in more local massive binaries, but has more power toward larger separations, enhancing smaller velocities. In addition, the binary formation/evolution process or the injection mechanism might also induce a cut-off a {sub min} ∼ 10 R {sub ☉} in the separation distribution.

  7. Habitable planets with high obliquities.

    PubMed

    Williams, D M; Kasting, J F

    1997-01-01

    Earth's obliquity would vary chaotically from 0 degrees to 85 degrees were it not for the presence of the Moon (J. Laskar, F. Joutel, and P. Robutel, 1993, Nature 361, 615-617). The Moon itself is thought to be an accident of accretion, formed by a glancing blow from a Mars-sized planetesimal. Hence, planets with similar moons and stable obliquities may be extremely rare. This has lead Laskar and colleagues to suggest that the number of Earth-like planets with high obliquities and temperate, life-supporting climates may be small. To test this proposition, we have used an energy-balance climate model to simulate Earth's climate at obliquities up to 90 degrees. We show that Earth's climate would become regionally severe in such circumstances, with large seasonal cycles and accompanying temperature extremes on middle- and high-latitude continents which might be damaging to many forms of life. The response of other, hypothetical, Earth-like planets to large obliquity fluctuations depends on their land-sea distribution and on their position within the habitable zone (HZ) around their star. Planets with several modest-sized continents or equatorial supercontinents are more climatically stable than those with polar supercontinents. Planets farther out in the HZ are less affected by high obliquities because their atmospheres should accumulate CO2 in response to the carbonate-silicate cycle. Dense, CO2-rich atmospheres transport heat very effectively and therefore limit the magnitude of both seasonal cycles and latitudinal temperature gradients. We conclude that a significant fraction of extrasolar Earth-like planets may still be habitable, even if they are subject to large obliquity fluctuations.

  8. Habitable planets with high obliquities

    NASA Technical Reports Server (NTRS)

    Williams, D. M.; Kasting, J. F.

    1997-01-01

    Earth's obliquity would vary chaotically from 0 degrees to 85 degrees were it not for the presence of the Moon (J. Laskar, F. Joutel, and P. Robutel, 1993, Nature 361, 615-617). The Moon itself is thought to be an accident of accretion, formed by a glancing blow from a Mars-sized planetesimal. Hence, planets with similar moons and stable obliquities may be extremely rare. This has lead Laskar and colleagues to suggest that the number of Earth-like planets with high obliquities and temperate, life-supporting climates may be small. To test this proposition, we have used an energy-balance climate model to simulate Earth's climate at obliquities up to 90 degrees. We show that Earth's climate would become regionally severe in such circumstances, with large seasonal cycles and accompanying temperature extremes on middle- and high-latitude continents which might be damaging to many forms of life. The response of other, hypothetical, Earth-like planets to large obliquity fluctuations depends on their land-sea distribution and on their position within the habitable zone (HZ) around their star. Planets with several modest-sized continents or equatorial supercontinents are more climatically stable than those with polar supercontinents. Planets farther out in the HZ are less affected by high obliquities because their atmospheres should accumulate CO2 in response to the carbonate-silicate cycle. Dense, CO2-rich atmospheres transport heat very effectively and therefore limit the magnitude of both seasonal cycles and latitudinal temperature gradients. We conclude that a significant fraction of extrasolar Earth-like planets may still be habitable, even if they are subject to large obliquity fluctuations.

  9. The techniques of metallic foil electrically exploding driving hypervelocity flyer to more than 10 km/s for shock wave physics experiments

    NASA Astrophysics Data System (ADS)

    Wang, Guiji; He, Jia; Zhao, Jianheng; Tan, Fuli; Sun, Chengwei; Mo, Jianjun; Xong, Xin; Wu, Gang

    2011-09-01

    Electrical explosion of metallic foil or wire is widely used to the fields of material science (preparation of nao-meter materials), dynamics of materials, and high energy density physics. In this paper, the techniques of gaining hypervelocity flyer driven by electrical explosion of metallic foil were researched, which are used to study dynamics of materials and hypervelocity impact modeling of space debris. Based on low inductance technologies of pulsed storage energy capacitor, detonator switch and parallel plate transmission lines with solid films insulation, two sets of experimental apparatuses with storage energy of 14.4 kJ and 40 kJ were developed for launching hypervelocity flyer. By means of the diagnostic technologies of velocity interferometer system for any reflectors and fibre-optic pins, the hypervelocity polyester (Mylar) flyers were gained. For the apparatus of 14.4 kJ, flyer of diameter ϕ6 ˜ ϕ10 mm and thickness of 0.1 ˜ 0.2 mm was accelerated to the hypervelocity of 10 ˜ 14 km/s. And for the apparatus of 40 kJ, flyer of diameter ϕ20 ˜ 30 mm and thickness of 0.2 mm was launched to the velocity of 5 ˜ 8 km/s. The flatness of the flyer is not more than 34 ns for the flyer with diameter of 20 mm, and less than 22 ns for the flyer with diameter of 10 mm. Based on the Lagrange hydrodynamic code, one dimensional simulation was done by introducing database of equation of states, discharging circuit equation and Joule heat equation, and modifying energy equation. The simulation results are well agreed with the experimental results in accelerating processing. The simulation results can provide good advices in designing new experiments and developing new experimental devices. Finally, some experiments of materials dynamics and hypervelocity impact of space debris were done by using the apparatus above. The results show that the apparatus of metallic foil electrically exploding driving hypervelocity flyer is a good and versatile tool for shock dynamics.

  10. The techniques of metallic foil electrically exploding driving hypervelocity flyer to more than 10 km/s for shock wave physics experiments.

    PubMed

    Wang, Guiji; He, Jia; Zhao, Jianheng; Tan, Fuli; Sun, Chengwei; Mo, Jianjun; Xong, Xin; Wu, Gang

    2011-09-01

    Electrical explosion of metallic foil or wire is widely used to the fields of material science (preparation of nao-meter materials), dynamics of materials, and high energy density physics. In this paper, the techniques of gaining hypervelocity flyer driven by electrical explosion of metallic foil were researched, which are used to study dynamics of materials and hypervelocity impact modeling of space debris. Based on low inductance technologies of pulsed storage energy capacitor, detonator switch and parallel plate transmission lines with solid films insulation, two sets of experimental apparatuses with storage energy of 14.4 kJ and 40 kJ were developed for launching hypervelocity flyer. By means of the diagnostic technologies of velocity interferometer system for any reflectors and fibre-optic pins, the hypervelocity polyester (Mylar) flyers were gained. For the apparatus of 14.4 kJ, flyer of diameter φ6 ~ φ10 mm and thickness of 0.1 ~ 0.2 mm was accelerated to the hypervelocity of 10 ~ 14 km/s. And for the apparatus of 40 kJ, flyer of diameter φ20 ~ 30 mm and thickness of 0.2 mm was launched to the velocity of 5 ~ 8 km/s. The flatness of the flyer is not more than 34 ns for the flyer with diameter of 20 mm, and less than 22 ns for the flyer with diameter of 10 mm. Based on the Lagrange hydrodynamic code, one dimensional simulation was done by introducing database of equation of states, discharging circuit equation and Joule heat equation, and modifying energy equation. The simulation results are well agreed with the experimental results in accelerating processing. The simulation results can provide good advices in designing new experiments and developing new experimental devices. Finally, some experiments of materials dynamics and hypervelocity impact of space debris were done by using the apparatus above. The results show that the apparatus of metallic foil electrically exploding driving hypervelocity flyer is a good and versatile tool for shock dynamics.

  11. A Hypervelocity Experimental Research Database (HERD): Support for the Wright Laboratory Armament Directorate Code Validation Program (COVAL)

    SciTech Connect

    Mullin, S.A.; Anderson, C.E. Jr.; Hertel, E.S. Jr.; Hunt, R.D.

    1994-10-01

    The Hypervelocity Experimental Research Database (HERD) described in this paper was developed to aid researchers with code validation for impacts that occur at velocities faster than the testable regime. Codes of concern include both hydrocodes and fast-running analytical or semi-empirical models used to predict the impact phenomenology and damage that results to projectiles and targets. There are several well documented experimental programs that can serve as benchmarks for code validation; these are identified and described. Recommendations for further experimentation (a canonical problem) to provide validation data are also discussed.

  12. A Hypervelocity Experimental Research Database (HERD): Support for the Wright Laboratory Armament Directorate Code Validation Program (COVAL)

    NASA Astrophysics Data System (ADS)

    Mullin, Scott A.; Anderson, Charles E., Jr.; Hertel, Eugene S., Jr.; Hunt, Ronald D.

    The Hypervelocity Experimental Research Database (HERD) described in this paper was developed to aid researchers with code validation for impacts that occur at velocities faster than the testable regime. Codes of concern include both hydrocodes and fast-running analytical or semi-empirical models used to predict the impact phenomenology and damage that results to projectiles and targets. There are several well documented experimental programs that can serve as benchmarks for code validation; these are identified and described. Recommendations for further experimentation (a canonical problem) to provide validation data are also discussed.

  13. Secular obliquity variations for Ceres

    NASA Astrophysics Data System (ADS)

    Bills, Bruce; Scott, Bryan R.; Nimmo, Francis

    2016-10-01

    We have constructed secular variation models for the orbit and spin poles of the asteroid (1) Ceres, and used them to examine how the obliquity, or angular separation between spin and orbit poles, varies over a time span of several million years. The current obliquity is 4.3 degrees, which means that there are some regions near the poles which do not receive any direct Sunlight. The Dawn mission has provided an improved estimate of the spin pole orientation, and of the low degree gravity field. That allows us to estimate the rate at which the spin pole precesses about the instantaneous orbit pole.The orbit of Ceres is secularly perturbed by the planets, with Jupiter's influence dominating. The current inclination of the orbit plane, relative to the ecliptic, is 10.6 degrees. However, it varies between 7.27 and 11.78 degrees, with dominant periods of 22.1 and 39.6 kyr. The spin pole precession rate parameter has a period of 205 kyr, with current uncertainty of 3%, dominated by uncertainty in the mean moment of inertia of Ceres.The obliquity varies, with a dominant period of 24.5 kyr, with maximum values near 26 degrees, and minimum values somewhat less than the present value. Ceres is currently near to a minimum of its secular obliquity variations.The near-surface thermal environment thus has at least 3 important time scales: diurnal (9.07 hours), annual (4.60 years), and obliquity cycle (24.5 kyr). The annual thermal wave likely only penetrates a few meters, but the much long thermal wave associated with the obliquity cycle has a skin depth larger by a factor of 70 or so, depending upon thermal properties in the subsurface.

  14. Hyper Velocity Impact of a Non-pressurized Target

    NASA Video Gallery

    NASA White Sands Test Facility's Remote Hypervelocity Test Laboratory specializes in hyper velocity impact testing. This cylinder was impacted by an 3.17mm aluminum projectile traveling at 7.03 kil...

  15. The Survival of Meteorite Organic Compounds with Increasing Impact Pressure

    NASA Technical Reports Server (NTRS)

    Cooper, George; Horz, Friedrich; Oleary, Alanna; Chang, Sherwood; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The majority of carbonaceous meteorites studied today are thought to originate in the asteroid belt. Impacts among asteroidal objects generate heat and pressure that may have altered or destroyed pre-existing organic matter in both targets and projectiles to a greater or lesser degree depending upon impact velocities. Very little is known about the shock related chemical evolution of organic matter relevant to this stage of the cosmic history of biogenic elements and compounds. The present work continues our study of the effects of shock impacts on selected classes of organic compounds utilizing laboratory shock facilities. Our approach was to subject mixtures of organic compounds, embedded in a matrix of the Murchison meteorite, to a simulated hypervelocity impact. The molecular compositions of products were then analyzed to determine the degree of survival of the original compounds. Insofar as results associated with velocities < 8 km/sec may be relevant to impacts on planetary surfaces (e.g., oblique impacts, impacts on small outer planet satellites) or grain-grain collisions in the interstellar medium, then our experiments will be applicable to these environments as well.

  16. Analytical Modeling of Pressure Wall Hole Size and Maximum Tip-to-Tip Crack Length for Perforating Normal and Oblique Orbital Debris Impacts

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Mohamed, Essam

    1997-01-01

    This report presents the results of a study whose objective was to develop first-principles-based models of hole size and maximum tip-to-tip crack length for a spacecraft module pressure wall that has been perforated in an orbital debris particle impact. The hole size and crack length models are developed by sequentially characterizing the phenomena comprising the orbital debris impact event, including the initial impact, the creation and motion of a debris cloud within the dual-wall system, the impact of the debris cloud on the pressure wall, the deformation of the pressure wall due to debris cloud impact loading prior to crack formation, pressure wall crack initiation, propagation, and arrest, and finally pressure wall deformation following crack initiation and growth. The model development has been accomplished through the application of elementary shock physics and thermodynamic theory, as well as the principles of mass, momentum, and energy conservation. The predictions of the model developed herein are compared against the predictions of empirically-based equations for hole diameters and maximum tip-to-tip crack length for three International Space Station wall configurations. The ISS wall systems considered are the baseline U.S. Lab Cylinder, the enhanced U.S. Lab Cylinder, and the U.S. Lab Endcone. The empirical predictor equations were derived from experimentally obtained hole diameters and crack length data. The original model predictions did not compare favorably with the experimental data, especially for cases in which pressure wall petalling did not occur. Several modifications were made to the original model to bring its predictions closer in line with the experimental results. Following the adjustment of several empirical constants, the predictions of the modified analytical model were in much closer agreement with the experimental results.

  17. Hypervelocity stars from young stellar clusters in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Fragione, G.; Capuzzo-Dolcetta, R.; Kroupa, P.

    2017-01-01

    The enormous velocities of the so called hypervelocity stars (HVSs) derive, likely, from close interactions with massive black holes, binary stars encounters or supernova explosions. In this paper, we investigate the origin of hypervelocity stars as consequence of the close interaction between the Milky Way central massive black hole and a passing-by young stellar cluster. We found that both single and binary HVSs may be generated in a burst-like event, as the cluster passes near the orbital pericentre. High velocity stars will move close to the initial cluster orbital plane and in the direction of the cluster orbital motion at the pericentre. The binary fraction of these HVS jets depends on the primordial binary fraction in the young cluster. The level of initial mass segregation determines the value of the average mass of the ejected stars. Some binary stars will merge, continuing their travel across and out of the Galaxy as blue stragglers.

  18. Hypervelocity launch capabilities to over 10 km/s

    SciTech Connect

    Chhabildas, L.C.

    1991-01-01

    Very high pressure and acceleration is necessary to launch flier plates to hypervelocities. In addition, the high pressure loading must be uniform, structured, and shockless, i.e., time-dependent to prevent the flier plate from either fracturing or melting. In this paper, a novel technique is described which allows the use of megabar level loading pressures, and 10{sup 9} g acceleration to launch intact flier plates to velocities of 12.2 km/s. 32 refs., 2 figs.

  19. Distributed energy store powered railguns for hypervelocity launch

    NASA Astrophysics Data System (ADS)

    Maas, Brian L.; Bauer, David P.; Marshall, Richard A.

    1993-01-01

    Highly distributed power supplies are proposed as a basis for current difficulties with hypervelocity railgun power-supply compactness. This distributed power supply configuration reduces rail-to-rail voltage behind the main armature, thereby reducing the tendency for secondary armature current formation; secondary current elimination is essential for achieving the efficiencies associated with muzzle velocity above 6 km/sec. Attention is given to analytical and experimental results for two distributed energy storage schemes.

  20. Venus - Oblique View of Crater Riley

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This Magellan full resolution radar mosaic centered at 14 degrees north latitude, 72 degrees east longitude, shows an oblique view of the impact crater Riley, named for Margaretta Riley, a 19th Century botanist. This view was prepared from two left-looking Magellan radar images acquired with different incidence angles. Because the relief displacements of the two images are different, depths from the crater rim to the crater floor and heights of the crater rim and flanks above the surrounding plains can be measured. The crater is 25 kilometers (15.5 miles) in diameter. The floor of the crater is 580 meters (1,914 feet) below the plains surrounding the crater. The crater's rim rises 620 meters (2,046 feet) above the plains and 1,200 meters (3,960 feet) above the crater floor. The crater's central peak is 536 meters (1,769 feet) high. The crater's diameter is 40 times the depth resulting in a relatively shallow appearance. The topography is exaggerated by 22 times to emphasize the crater's features. This oblique view was produced from two left-looking radar stereo image mosaics utilizing photogrammetric software developed by the Solar System Visualization Project and the Digital Image Animation Laboratory at JPL's Multimission Image Processing Laboratory.

  1. SILICATE DUST SIZE DISTRIBUTION FROM HYPERVELOCITY COLLISIONS: IMPLICATIONS FOR DUST PRODUCTION IN DEBRIS DISKS

    SciTech Connect

    Takasawa, S.; Nakamura, A. M.; Arakawa, M.; Seto, Y.; Sangen, K.; Setoh, M.; Machii, N.; Kadono, T.; Shigemori, K.; Hironaka, Y.; Fujioka, S.; Sano, T.; Watari, T.; Dohi, K.; Ohno, S.; Maeda, M.; Sakaiya, T.; Otani, K.; Takeuchi, T.

    2011-06-01

    Fragments generated by high-velocity collisions between solid planetary bodies are one of the main sources of new interplanetary dust particles. However, only limited ranges of collision velocity, ejecta size, and target materials have been studied in previous laboratory experiments, and the collision condition that enables the production of dust-sized particles remains unclear. We conducted hypervelocity impact experiments on silicate rocks at relative velocities of 9 to 61 km s{sup -1}, which is beyond the upper limit of previous laboratory studies. Sub-millimeter-diameter aluminum and gold spheres were accelerated by laser ablation and were shot into dunite and basalt targets. We analyzed the surfaces of aerogel blocks deployed near the targets using an electron probe micro analyzer and counted the number of particles that contained the target material. The size distributions of ejecta ranged from five to tens of microns in diameter. The total cross-sectional area of dust-sized ejecta monotonically increased with the projectile kinetic energy, independent of impact velocity, projectile diameter, and projectile and target material compositions. The slopes of the cumulative ejecta-size distributions ranged from -2 to -5. Most of the slopes were steeper than the -2.5 or -2.7 that is expected for a collisional equilibrium distribution in a collision cascade with mass-independent or mass-dependent catastrophic disruption thresholds, respectively. This suggests that the steep dust size-distribution proposed for the debris disk around HD172555 (an A5V star) could be due to a hypervelocity collision.

  2. Survival of the impactor during hypervelocity collisions - I. An analogue for low porosity targets

    NASA Astrophysics Data System (ADS)

    Avdellidou, C.; Price, M. C.; Delbo, M.; Ioannidis, P.; Cole, M. J.

    2016-03-01

    Recent observations of asteroidal surfaces indicate the presence of materials that do not match the bulk lithology of the body. A possible explanation for the presence of these exogenous materials is that they are products of interasteroid impacts in the Main Belt, and thus interest has increased in understanding the fate of the projectile during hypervelocity impacts. In order to gain insight into the fate of impactor, we have carried out a laboratory programme, covering the velocity range of 0.38-3.50 km s-1, devoted to measuring the survivability, fragmentation and final state of the impactor. Forsterite olivine and synthetic basalt projectiles were fired on to low porosity (<10 per cent) pure water-ice targets using the University of Kent's Light Gas Gun (LGG). We developed a novel method to identify impactor fragments which were found in ejecta and implanted into the target. We applied astronomical photometry techniques, using the SOURCE EXTRACTOR software, to automatically measure the dimensions of thousands of fragments. This procedure enabled us to estimate the implanted mass on the target body, which was found to be a few per cent of the initial mass of the impactor. We calculated an order of magnitude difference in the energy density of catastrophic disruption, Q*, between peridot and basalt projectiles. However, we found very similar behaviour of the size frequency distributions for the hypervelocity shots (>1 km s-1). After each shot, we examined the largest peridot fragments with Raman spectroscopy and no melt or alteration in the final state of the projectile was observed.

  3. New experimental capability to investigate the hypervelocity micrometeoroid bombardment of cryogenic surfaces.

    PubMed

    Nelson, Andrew Oakleigh; Dee, Richard; Gudipati, Murthy S; Horányi, Mihály; James, David; Kempf, Sascha; Munsat, Tobin; Sternovsky, Zoltán; Ulibarri, Zach

    2016-02-01

    Ice is prevalent throughout the solar system and beyond. Though the evolution of many of these icy surfaces is highly dependent on associated micrometeoroid impact phenomena, experimental investigation of these impacts has been extremely limited, especially at the impactor speeds encountered in space. The dust accelerator facility at the Institute for Modeling Plasmas, Atmospheres, and Cosmic Dust (IMPACT) of NASA's Solar System Exploration Research Virtual Institute has developed a novel cryogenic system that will facilitate future study of hypervelocity impacts into ice and icy regolith. The target consists of a copper block, cooled by liquid nitrogen, upon which layers of vapor-deposited ice, pre-frozen ice, or icy regolith can be built in a controlled and quantifiable environment. This ice can be grown from a variety of materials, including H2O, CH3OH, NH3, and slurries containing nanophase iron. Ice temperatures can be varied between 96 K and 150 K and ice thickness greater than 150 nm can be accurately measured. Importantly, the composition of ion plumes created during micrometeoroid impacts onto these icy layers can be measured even in trace amounts by in situ time-of-flight mass spectroscopy. In this paper, we present the fundamental design components of the cryogenic target chamber at IMPACT and proof-of-concept results from target development and from first impacts into thick layers of water ice.

  4. New experimental capability to investigate the hypervelocity micrometeoroid bombardment of cryogenic surfaces

    NASA Astrophysics Data System (ADS)

    Nelson, Andrew Oakleigh; Dee, Richard; Gudipati, Murthy S.; Horányi, Mihály; James, David; Kempf, Sascha; Munsat, Tobin; Sternovsky, Zoltán; Ulibarri, Zach

    2016-02-01

    Ice is prevalent throughout the solar system and beyond. Though the evolution of many of these icy surfaces is highly dependent on associated micrometeoroid impact phenomena, experimental investigation of these impacts has been extremely limited, especially at the impactor speeds encountered in space. The dust accelerator facility at the Institute for Modeling Plasmas, Atmospheres, and Cosmic Dust (IMPACT) of NASA's Solar System Exploration Research Virtual Institute has developed a novel cryogenic system that will facilitate future study of hypervelocity impacts into ice and icy regolith. The target consists of a copper block, cooled by liquid nitrogen, upon which layers of vapor-deposited ice, pre-frozen ice, or icy regolith can be built in a controlled and quantifiable environment. This ice can be grown from a variety of materials, including H2O, CH3OH, NH3, and slurries containing nanophase iron. Ice temperatures can be varied between 96 K and 150 K and ice thickness greater than 150 nm can be accurately measured. Importantly, the composition of ion plumes created during micrometeoroid impacts onto these icy layers can be measured even in trace amounts by in situ time-of-flight mass spectroscopy. In this paper, we present the fundamental design components of the cryogenic target chamber at IMPACT and proof-of-concept results from target development and from first impacts into thick layers of water ice.

  5. Hybrid Particle-Element Simulation of Impact on Composite Orbital Debris Shields

    NASA Technical Reports Server (NTRS)

    Fahrenthold, Eric P.

    2004-01-01

    This report describes the development of new numerical methods and new constitutive models for the simulation of hypervelocity impact effects on spacecraft. The research has included parallel implementation of the numerical methods and material models developed under the project. Validation work has included both one dimensional simulations, for comparison with exact solutions, and three dimensional simulations of published hypervelocity impact experiments. The validated formulations have been applied to simulate impact effects in a velocity and kinetic energy regime outside the capabilities of current experimental methods. The research results presented here allow for the expanded use of numerical simulation, as a complement to experimental work, in future design of spacecraft for hypervelocity impact effects.

  6. Hypervelocity-Impact Shock-Induced Damage to Steel Armor

    DTIC Science & Technology

    1976-04-01

    21310 1 Director Ballistics Research Laboratory ATTN: Dr. Robert Eichelberger Tech Dir Aberdeen Proving Ground, MD 21005 1 Clint Frank ...University of Missouri-Columbia College of Engineering, Rm. 2007 Columbia, MO 65201 1 Professor Ray Kinslow Box 5002 Tennessee Technological

  7. FTIR Analyses of Hypervelocity Impact Deposits: DebriSat Tests

    DTIC Science & Technology

    2015-03-27

    fractured quartz window Exposed surfaces are covered with a matte gray coating and fine debris Multi layer insulation 21 Top Whipple Plate Exoscan...004 ~ 0 .003 ~ 0 .002 ~ 0.001 ~ 0.000 ’ ’ 4000 2000 Wavenumbers (cm-1) Aluminum Oxide Spectra 49 EDS in the SEM and TEM indicate nano ...Plasma Chemistry, Bochum, 2009. Similar “not fully recognized” feature near 850 cm-1 attributed to Al-O stretching vibrations in Al/AlxOy nano clusters

  8. A Plasma Drag Hypervelocity Particle Accelerator (HYPER)

    NASA Technical Reports Server (NTRS)

    Best, Steve R.; Rose, M. Frank

    1998-01-01

    Current debris models are able to predict the growth of the space debris problem and suggest that spacecraft must employ armor or bumper shields for some orbital altitudes now and that the problem will become worse as a function of time. The practical upper limit to the velocity distribution is on the order of 40 km/s and is associated with the natural environment. The velocity distribution of the man-made component peaks at 9-10 km/s with maximum velocity in the 14-16 km/s range. Experience in space has verified that the "high probability of impact" particles are in the microgram to milligram range. These particles can have very significant effects on coatings, insulators, and thin metallic layers. The surface of thick materials becomes pitted and the local debris component is enhanced by ejecta from the impact events. In this paper, the HYPER facility is described which produces a reasonable simulation of the man-made space debris spectrum in a controlled environment. The facility capability is discussed in terms of drive geometry, energetics, velocity distribution, diagnostics, and projectile/debris loading. The facility has been used to study impact phenomena on Space Station Freedom's solar array structure, the calibration of space debris collectors, other solar array materials, potential structural materials for use in space, electrical breakdown in the space environment, and as a means of clarifying or duplicating the impact phenomena on surfaces which have been exposed in space.

  9. Obliquity Variations of Extrasolar Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Chambers, John E.

    2004-01-01

    A planet's obliquity, which is the angle between its orbital angular momentum and its rotational angular momentum, is an important factor in determining its climate and habitability. For small obliquities, as well as obliquities close to 180 degrees, the planet receives more radiant energy from its star at equatorial latitudes than near its poles, whereas the poles are heated the most for obliquities near 90 degrees. Jacques Laskar has analyzed possible obliquity variations of the planets in our Solar System. His study also considers the same planets with different rotational periods, and the Earth without the Moon. He finds, using frequency map analysis, that the obliquity of the Earth is stabilized by the Moon, and can vary by at most a few degrees. In contrast, the obliquity of Mars can range from 0 to 60 degrees, and a hypothetical moonless Earth's axial tilt could be close to 0 degrees or as large as 85 degrees. Numerical integrations by Laskar and others have shown that Mars' obliquity indeed varies over most of its permitted range on time scales of tens of millions of years. In contrast, our analysis shows that the obliquity of a moonless Earth appears to be confined to the range of approximately 12 - 38 degrees over time scales of 100 million years. Results of ongoing longer integrations will be presented, and their implications discussed.

  10. Effects of oxygen dissociation on hypervelocity combustion experiments

    NASA Technical Reports Server (NTRS)

    Bakos, R. J.; Morgan, R. G.; Tamagno, J.

    1992-01-01

    Results are presented of a comparative experimental study conducted to measure the effects of the test gas oxygen dissociation produced in reflected shock tunnels on hypervelocity combustion. An identical combustor model was tested in a reflected shock tunnel with test gas containing about 50 pct by mass of oxygen in dissociated form, as either nitric oxide or atomic oxygen, and in an expansion tube with test gas having negligible dissociated oxygen. Comparisons are made at two test conditions that are energy equivalent to flight conditions at Mach 13.5 and 17.

  11. Hypervelocity accelerators with electro-thermo-chemical reaction

    NASA Astrophysics Data System (ADS)

    Ikuta, Kazunari

    1991-08-01

    A novel kind of electro-thermo-chemical (ETC) launcher for the acceleration of multikilogram-size projectiles to hypervelocity is proposed. The novel launcher concept utilizes the hot hydrogen gas generated by the chemical interaction between water and aluminum in order to accelerate the projectiles to a thermal velocity close to that of the light gas. This interaction is triggered by the Joule heating of the aluminum wire in water. Two possible designs for the accelerator concept are considered in detail. Further acceleration of the projectile near the muzzle is also discussed.

  12. Status Report for the Hypervelocity Free-Flight Aerodynamic Facility

    NASA Technical Reports Server (NTRS)

    Cornelison, Charles J.; Arnold, James O. (Technical Monitor)

    1997-01-01

    The Hypervelocity Free-Flight Aerodynamic Facility, located at Ames Research Center, is NASA's only aeroballistic facility. During 1997, its model imaging and time history recording systems were the focus of a major refurbishment effort. Specifically the model detection, spark gap (light source); Kerr cell (high speed shuttering); and interval timer sub-systems were inspected, repaired, modified or replaced as required. These refurbishment efforts have fully restored the HFFAF's capabilities to a much better condition, comparable to what it was 15 years ago. Details of this refurbishment effort along with a brief discussion of future upgrade plans are presented.

  13. Document segmentation via oblique cuts

    NASA Astrophysics Data System (ADS)

    Svendsen, Jeremy; Branzan-Albu, Alexandra

    2013-01-01

    This paper presents a novel solution for the layout segmentation of graphical elements in Business Intelligence documents. We propose a generalization of the recursive X-Y cut algorithm, which allows for cutting along arbitrary oblique directions. An intermediate processing step consisting of line and solid region removal is also necessary due to presence of decorative elements. The output of the proposed segmentation is a hierarchical structure which allows for the identification of primitives in pie and bar charts. The algorithm was tested on a database composed of charts from business documents. Results are very promising.

  14. The chaotic obliquity of Mars

    NASA Technical Reports Server (NTRS)

    Touma, Jihad; Wisdom, Jack

    1993-01-01

    The discovery (by Laskar, 1989, 1990) that the evolution of the solar system is chaotic, made in a numerical integration of the averaged secular approximation of the equations of motions for the planets, was confirmed by Sussman and Wisdom (1992) by direct numerical integration of the whole solar system. This paper presents results of direct integrations of the rotation of Mars in the chaotically evolved planetary system, made using the same model as that used by Sussman and Wisdom. The numerical integration shows that the obliquity of Mars undergoes large chaotic variations, which occur as the system evolves in the chaotic zone associated with a secular spin-orbit resonance.

  15. Hybrid Guidance Control for a Hypervelocity Small Size Asteroid Interceptor Vehicle

    NASA Technical Reports Server (NTRS)

    Zebenay, Melak M.; Lyzhoft, Joshua R.; Barbee, Brent W.

    2017-01-01

    Near-Earth Objects (NEOs) are comets and/or asteroids that have orbits in proximity with Earth's own orbit. NEOs have collided with the Earth in the past, which can be seen at such places as Chicxulub crater, Barringer crater, and Manson crater, and will continue in the future with potentially significant and devastating results. Fortunately such NEO collisions with Earth are infrequent, but can happen at any time. Therefore it is necessary to develop and validate techniques as well as technologies necessary to prevent them. One approach to mitigate future NEO impacts is the concept of high-speed interceptor. This concept is to alter the NEO's trajectory via momentum exchange by using kinetic impactors as well as nuclear penetration devices. The interceptor has to hit a target NEO at relative velocity which imparts a sufficient change in NEO velocity. NASA's Deep Impact mission has demonstrated this scenario by intercepting Comet Temple 1, 5 km in diameter, with an impact relative speed of approximately 10 km/s. This paper focuses on the development of hybrid guidance navigation and control (GNC) algorithms for precision hypervelocity intercept of small sized NEOs. The spacecraft's hypervelocity and the NEO's small size are critical challenges for a successful mission as the NEO will not fill the field of view until a few seconds before intercept. The investigation needs to consider the error sources modeled in the navigation simulation such as spacecraft initial state uncertainties in position and velocity. Furthermore, the paper presents three selected spacecraft guidance algorithms for asteroid intercept and rendezvous missions. The selected algorithms are classical Proportional Navigation (PN) based guidance that use a first order difference to compute the derivatives, Three Plane Proportional Navigation (TPPN), and the Kinematic Impulse (KI). A manipulated Bennu orbit that has been changed to impact Earth will be used as a demonstrative example to compare the

  16. Experimental study on oblique water entry of projectiles

    NASA Astrophysics Data System (ADS)

    Zhao, Chenggong; Wang, Cong; Wei, Yingjie; Zhang, Xiaoshi; Sun, Tiezhi

    2016-10-01

    An experimental study of oblique water entry of projectiles with different noses has been conducted using high-speed photography technology. The images of the initial water entry impact, cavity evolution, and the closure and shedding of vortices of cavity are presented in the paper. The results reveal that for high-speed oblique water entry (the initial impact velocity >50 m/s), the cavity attached to the projectile is symmetrical and free from the influence of gravity. The shedding of the water-vapor-air mixture in the tail of the cavity produces vortices which disappear in the rear of the projectile trajectory. Particular attention is given to the velocity attenuation of the projectile after water entry. The results show that there is a transition point at the time corresponding to the surface seal of the cavity during the velocity attenuation after oblique water entry, and the rates of velocity attenuation are different before and after this transition point. Additionally, the chronophotography of the cavity evolution shows that the time when the surface seal of the cavity occurs decreases with the increase of the initial impact velocity of the projectile.

  17. Plasma jet acceleration of dust particles to hypervelocities

    SciTech Connect

    Ticos, C. M.; Wang, Zhehui; Wurden, G. A.; Kline, J. L.; Montgomery, D. S.

    2008-10-15

    A convenient method to accelerate simultaneously hundreds of micron-size dust particles to a few km/s over a distance of about 1 m is based on plasma drag. Plasma jets which can deliver sufficient momentum to the dust particles need to have speeds of at least several tens of km/s, densities of the order of 10{sup 22} m{sup -3} or higher, and low temperature {approx}1 eV, in order to prevent dust destruction. An experimental demonstration of dust particles acceleration to hypervelocities by plasma produced in a coaxial gun is presented here. The plasma flow speed is deduced from photodiode signals while the plasma density is measured by streaked spectroscopy. As a result of the interaction with the plasma jet, the dust grains are also heated to high temperatures and emit visible light. A hypervelocity dust shower is imaged in situ with a high speed video camera at some distance from the coaxial gun, where light emission from the plasma flow is less intense. The bright traces of the flying microparticles are used to infer their speed and acceleration by employing the time-of-flight technique. A simple model for plasma drag which accounts for ion collection on the grain surface gives predictions for dust accelerations which are in good agreement with the experimental observations.

  18. Evaluation of the oblique detonation wave ramjet

    NASA Technical Reports Server (NTRS)

    Morrison, R. B.

    1978-01-01

    The potential performance of oblique detonation wave ramjets is analyzed in terms of multishock diffusion, oblique detonation waves, and heat release. Results are presented in terms of thrust coefficients and specific impulses for a range of flight Mach numbers of 6 to 16.

  19. The obliquity of Mars and 'climate friction'

    NASA Technical Reports Server (NTRS)

    Rubincam, David P.

    1993-01-01

    A mathematical theory is presented which explains the increase of the mean obliquity of Mars over geologic time due to the so called 'climate friction' (i.e., the climatic changes associated with obliquity oscillations of Mars). The theory is compared with a 10 m.y. numerical integration of the equations performed for a hypothetically large amount of climate friction for two cases of the obliquity oscillations: (1) a single sinusoid and (2) a sum of three sinusoids. The theory and numerics agree for both cases within about 12 percent on the size of the secular increase in obliquity. One possible mechanism of climate friction investigated is 'postglacial rebound' on Mars. According to this theory, giant polar caps form when the obliquity is low, and slowly squeeze out an equatorial bulge. When the obliquity is high, the caps disappear, but the bulge takes some time to collapse, due to mantle viscosity, causing it to oscillate out of phase with the obliquity oscillations. This causes a secular increase in the average obliquity.

  20. Analyzing RCD30 Oblique Performance in a Production Environment

    NASA Astrophysics Data System (ADS)

    Soler, M. E.; Kornus, W.; Magariños, A.; Pla, M.

    2016-06-01

    In 2014 the Institut Cartogràfic i Geològic de Catalunya (ICGC) decided to incorporate digital oblique imagery in its portfolio in response to the growing demand for this product. The reason can be attributed to its useful applications in a wide variety of fields and, most recently, to an increasing interest in 3d modeling. The selection phase for a digital oblique camera led to the purchase of the Leica RCD30 Oblique system, an 80MPixel multispectral medium-format camera which consists of one Nadir camera and four oblique viewing cameras acquiring images at an off-Nadir angle of 35º. The system also has a multi-directional motion compensation on-board system to deliver the highest image quality. The emergence of airborne oblique cameras has run in parallel to the inclusion of computer vision algorithms into the traditional photogrammetric workflows. Such algorithms rely on having multiple views of the same area of interest and take advantage of the image redundancy for automatic feature extraction. The multiview capability is highly fostered by the use of oblique systems which capture simultaneously different points of view for each camera shot. Different companies and NMAs have started pilot projects to assess the capabilities of the 3D mesh that can be obtained using correlation techniques. Beyond a software prototyping phase, and taking into account the currently immature state of several components of the oblique imagery workflow, the ICGC has focused on deploying a real production environment with special interest on matching the performance and quality of the existing production lines based on classical Nadir images. This paper introduces different test scenarios and layouts to analyze the impact of different variables on the geometric and radiometric performance. Different variables such as flight altitude, side and forward overlap and ground control point measurements and location have been considered for the evaluation of aerial triangulation and

  1. Microwave Imaging under Oblique Illumination

    PubMed Central

    Meng, Qingyang; Xu, Kuiwen; Shen, Fazhong; Zhang, Bin; Ye, Dexin; Huangfu, Jiangtao; Li, Changzhi; Ran, Lixin

    2016-01-01

    Microwave imaging based on inverse scattering problem has been attracting many interests in the microwave society. Among some major technical challenges, the ill-posed, multi-dimensional inversion algorithm and the complicated measurement setup are critical ones that prevent it from practical applications. In this paper, we experimentally investigate the performance of the subspace-based optimization method (SOM) for two-dimensional objects when it was applied to a setup designed for oblique incidence. Analytical, simulation, and experimental results show that, for 2D objects, neglecting the cross-polarization scattering will not cause a notable loss of information. Our method can be potentially used in practical imaging applications for 2D-like objects, such as human limbs. PMID:27399706

  2. Characterization of Orbital Debris via Hyper-Velocity Ground-Based Tests

    NASA Technical Reports Server (NTRS)

    Cowardin, Heather

    2016-01-01

    The purpose of the DebriSat project is to replicate a hyper-velocity fragmentation event using modern-day spacecraft materials and construction techniques to better improve the existing DoDand NASA breakup models.

  3. Transition Delay in Hypervelocity Boundary Layers By Means of CO2/Acoustic Instability Interaction

    DTIC Science & Technology

    2014-12-16

    AFRL-OSR-VA-TR-2015-0040 TRANSITION DELAY IN HYPERVELOCITY BOUNDARY LAYERS BY MEANS OF CO2 /ACOUSTIC INSTA Joseph Shepherd CALIFORNIA INSTITUTE OF...Delay in Hypervelocity Boundary Layers By Means of CO2 /Acoustic Instability Interaction FA9550-10-1-0491 Shepherd, Joseph E. California Institute of...investigated using the concept of damping Mack’s second mode disturbances by vibrational relaxation of carbon dioxide ( CO2 ) within the boundary layer

  4. Shock detachment process on cones in hypervelocity flows

    NASA Astrophysics Data System (ADS)

    Leyva, Ivett Alejandra

    1999-11-01

    The shock detachment process on cones in hypervelocity flows is one of the most sensitive flows to relaxation effects. The critical angle for shock detachment under frozen conditions can be very different from the critical angle under chemical and thermal equilibrium. The rate of increase of the detachment distance with cone angle is also affected by the relaxation rate. The purpose of this study is to explain the effects of nonequilibrium on the shock detachment distance and its growth rate on cones in hypervelocity flows. The study consists of an experimental and a computational program. The experimental part has been carried out at Caltech's hypervelocity reflected shock tunnel. Six free-stream conditions were chosen, using both N2 and CO2 as test gases. The experimental data obtained are holographic interferograms, surface temperature, and pressure measurements. The code employed for the numerical simulations is a Navier-Stokes solver that can account for thermal and chemical nonequilibrium in axisymmetric flows. The data obtained for the shock detachment distance confirms a previous theoretical model that predicts the detachment distance will grow more slowly for relaxing flows than for frozen or equilibrium flows. This difference is due to the behavior of the sonic line inside the shock layer. Different growth rates result when the detachment distance is controlled by the diameter of the cone (frozen and equilibrium cases) than when it is controlled by the relaxation length (nonequilibrium flows). The behavior of the detachment distance from the frozen to equilibrium limits for a given cone half-angle and free-stream condition has also been studied. It was confirmed that the ratio of the detachment distance to the cone diameter is constant in the two extremes and rapidly switches from one value to the other for cone diameters of about 2 cm to 16 cm. The experimental interferograms are also compared with numerical ones in terms of the detachment distance, the

  5. A new HyperVelocity Launcher (HVL) for space science application

    SciTech Connect

    Chhabildas, L.C.

    1991-12-31

    Very high driving pressures (tens or hundreds of GPa), are required to accelerate flier plats to hypervelocities. This loading pressure pulse on the fiber plates must be nearly shockless to prevent the plate from melting or vaporizing. This is accomplished by using graded-density impactors referred to as ``pillows.`` When this graded-density material is used to impact a flier-plate in a modified two-stage light gas gun, nearly shockless megabar pressures are introduced into the flier plate. The pressure pulses must also be tailored to prevent spallation of the flier-plate. This technique has been used to launch nominally 1-mm-thick aluminum, magnesium and titanium (gram-size) intact plates to 10.4 km/s, and 0.5-mm-thick aluminum and titanium (half-gram size) intact plates to 12.2 km/s. This is the highest mass-velocity capability attained with laboratory launchers to data, and should open up new regimes of impact physics and lethality studies related to space sciences for laboratory investigations. 14 refs.

  6. A new HyperVelocity Launcher (HVL) for space science application

    SciTech Connect

    Chhabildas, L.C.

    1991-01-01

    Very high driving pressures (tens or hundreds of GPa), are required to accelerate flier plats to hypervelocities. This loading pressure pulse on the fiber plates must be nearly shockless to prevent the plate from melting or vaporizing. This is accomplished by using graded-density impactors referred to as pillows.'' When this graded-density material is used to impact a flier-plate in a modified two-stage light gas gun, nearly shockless megabar pressures are introduced into the flier plate. The pressure pulses must also be tailored to prevent spallation of the flier-plate. This technique has been used to launch nominally 1-mm-thick aluminum, magnesium and titanium (gram-size) intact plates to 10.4 km/s, and 0.5-mm-thick aluminum and titanium (half-gram size) intact plates to 12.2 km/s. This is the highest mass-velocity capability attained with laboratory launchers to data, and should open up new regimes of impact physics and lethality studies related to space sciences for laboratory investigations. 14 refs.

  7. Characterization of Orbital Debris via Hyper-Velocity Laboratory-Based Tests

    NASA Technical Reports Server (NTRS)

    Cowardin, Heather; Liou, J.-C.; Krisko, Paula; Opiela, John; Fitz-Coy, Norman; Sorge, Marlon; Huynh, Tom

    2017-01-01

    Existing DoD and NASA satellite breakup models are based on a key laboratory test, Satellite Orbital debris Characterization Impact Test (SOCIT), which has supported many applications and matched on-orbit events involving older satellite designs reasonably well over the years. In order to update and improve these models, the NASA Orbital Debris Program Office, in collaboration with the Air Force Space and Missile Systems Center, The Aerospace Corporation, and the University of Florida, replicated a hypervelocity impact using a mock-up satellite, DebriSat, in controlled laboratory conditions. DebriSat is representative of present-day LEO satellites, built with modern spacecraft materials and construction techniques. Fragments down to 2 mm in size will be characterized by their physical and derived properties. A subset of fragments will be further analyzed in laboratory radar and optical facilities to update the existing radar-based NASA Size Estimation Model (SEM) and develop a comparable optical-based SEM. A historical overview of the project, status of the characterization process, and plans for integrating the data into various models will be discussed herein.

  8. Characterization of Orbital Debris via Hyper-Velocity Laboratory-Based Tests

    NASA Technical Reports Server (NTRS)

    Cowardin, Heather; Liou, J.-C.; Anz-Meador, Phillip; Sorge, Marlon; Opiela, John; Fitz-Coy, Norman; Huynh, Tom; Krisko, Paula

    2017-01-01

    Existing DOD and NASA satellite breakup models are based on a key laboratory test, Satellite Orbital debris Characterization Impact Test (SOCIT), which has supported many applications and matched on-orbit events involving older satellite designs reasonably well over the years. In order to update and improve these models, the NASA Orbital Debris Program Office, in collaboration with the Air Force Space and Missile Systems Center, The Aerospace Corporation, and the University of Florida, replicated a hypervelocity impact using a mock-up satellite, DebriSat, in controlled laboratory conditions. DebriSat is representative of present-day LEO satellites, built with modern spacecraft materials and construction techniques. Fragments down to 2 mm in size will be characterized by their physical and derived properties. A subset of fragments will be further analyzed in laboratory radar and optical facilities to update the existing radar-based NASA Size Estimation Model (SEM) and develop a comparable optical-based SEM. A historical overview of the project, status of the characterization process, and plans for integrating the data into various models will be discussed herein.

  9. A simple approach for the design and optimization of stand-off hypervelocity particle shields

    SciTech Connect

    Lawrence, R.J.

    1992-01-01

    We describe a simple engineering model applicable to stand-off Whipple bumper'' shields, which are used to protect space-based assets from impacts by orbital debris particles. The model provides a framework for analyzing: (1) the parameter limits governing the penetration and breakup or decomposition of the hypervelocity debris particle; (2) the behavior of the induced debris cloud, including its velocity and divergence; and (3) the design and optimization of the stand-off shield for a specific threat and level of protection required. The model is normalized to actual stand-off debris shield experiments and multi-dimensional numerical simulations at impact velocities of {approximately} km/s. The subsequent analysis of a current space station shield design suggests that: (1) for acceptable levels of protection, stand-off shields can be significantly thinner than previously thought; and (2) with the proper balance between shield thickness and stand-off distance, the total shield mass can be reduced substantially. 16 refs.

  10. A simple approach for the design and optimization of stand-off hypervelocity particle shields

    SciTech Connect

    Lawrence, R.J.

    1992-05-01

    We describe a simple engineering model applicable to stand-off ``Whipple bumper`` shields, which are used to protect space-based assets from impacts by orbital debris particles. The model provides a framework for analyzing: (1) the parameter limits governing the penetration and breakup or decomposition of the hypervelocity debris particle; (2) the behavior of the induced debris cloud, including its velocity and divergence; and (3) the design and optimization of the stand-off shield for a specific threat and level of protection required. The model is normalized to actual stand-off debris shield experiments and multi-dimensional numerical simulations at impact velocities of {approximately} km/s. The subsequent analysis of a current space station shield design suggests that: (1) for acceptable levels of protection, stand-off shields can be significantly thinner than previously thought; and (2) with the proper balance between shield thickness and stand-off distance, the total shield mass can be reduced substantially. 16 refs.

  11. Subsurface deformation in hypervelocity cratering experiments into high-porosity tuffs

    NASA Astrophysics Data System (ADS)

    Winkler, Rebecca; Poelchau, Michael H.; Moser, Stefan; Kenkmann, Thomas

    2016-10-01

    Hypervelocity impact experiments on porous tuff targets were carried out to determine the effect of porosity on deformation mechanisms in the crater's subsurface. Blocks of Weibern Tuff with about 43% porosity were impacted by 2.5 mm and 12.0 mm diameter steel spheres with velocities between 4.8 km s-1 and 5.6 km s-1. The postimpact subsurface damage was quantified with computer tomography as well as with meso- and microscale analyses of the bisected crater subsurface. The intensity and style of deformation in mineral clasts and the tuff matrix were mapped and their decay with subsurface depth was determined. Subsurface deformation styles include pore space compaction, clast rotation, as well as microfracture formation. Evaluation of the deformation indicates near-surface energy coupling at a calculated depth of burial of 2 projectile diameters (dp), which is in conflict with the crater shape, which displays a deep, central penetration tube. Subsurface damage extends to 2 dp beneath the crater floor in the experiments with 2.5 mm projectiles and increases to 3 dp for 12 mm projectiles. Based on overprinting relationships and the geometrical orientation of deformation features, a sequence of subsurface deformation events was derived (1) matrix compaction, (2) intragranular crack formation in clasts, (3) deformation band formation in the compacted matrix, (4) tensile fracturing.

  12. Plasmadynamic hypervelocity dust injector for the National Spherical Torus Experiment

    SciTech Connect

    Ticos, Catalin M.; Wang Zhehui; Dorf, Leonid A.; Wurden, Glen A.

    2006-10-15

    The design and construction of a plasmadynamic device to accelerate dust to hypervelocities is presented. High speed dust will be used to measure magnetic field lines in the National Spherical Torus Experiment. The plasma gun produces a high density (n{sub e}{approx_equal}10{sup 18} cm{sup -3}) and low temperature (a few eV) deuterium plasma, ejected by JxB forces which provide drag on the dust particles in its path. The dust will be entrained by the plasma to velocities of 1-30 km/s, depending on the dust mass. Carbon dust particles will be used, with diameters from 1 to 50 {mu}m. The key components of the plasmadynamic accelerator are a coaxial plasma gun operated at 10 kV (with an estimated discharge current of 200 kA), a dust dispenser activated by a piezoelectric transducer, and power and remote-control systems.

  13. Applications of the ram accelerator to hypervelocity aerothermodynamic testing

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Knowlen, C.; Hertzberg, A.

    1992-01-01

    A ram accelerator used as a hypervelocity launcher for large-scale aeroballistic range applications in hypersonics and aerodynamics research is presented. It is an in-bore ramjet device in which a projectile shaped like the centerbody of a supersonic ramjet is propelled down a stationary tube filled with a tailored combustible gas mixture. Ram accelerator operation has been demonstrated at 39 mm and 90 mm bores, supporting the proposition that this launcher concept can be scaled up to very large bore diameters of the order of 30-60 cm. It is concluded that high quality data obtained from the tube wall and projectile during the aceleration process itself are very useful for understanding aerothermodynamics of hypersonic flow in general, and for providing important CFD validation benchmarks.

  14. Ionospheric profile inversion using oblique-incidence ionograms

    NASA Technical Reports Server (NTRS)

    Nielson, D. L.; Watt, T. M.

    1972-01-01

    Some of the elementary methods used in deriving true-height profiles from oblique-incidence ionograms are reviewed. The two principal methods presented are oblique-to-vertical transformation and direct inversion of the oblique-incidence ionogram. Limitations in oblique-incidence inversion due to magnetic-field effects, horizontal gradients, and absolute time delay are discussed.

  15. Investigation of Orbital Debris Impacts on Shuttle Radiator Panels

    NASA Technical Reports Server (NTRS)

    Hyde, James L.; Christiansen, Eric L.; Lear, Dana M.; Kerr, Justin H.; Lyons, Frankel; Herrin, Jason H.; Ryan, Shannon J.

    2009-01-01

    This paper documents the data collected from two hypervelocity micro-meteoroid orbital debris (MMOD) impact events where the shuttle payload bay door radiator sandwich panel was completely perforated. Scanning Electron Microscope/Energy-Dispersive x-ray Spectroscopy (SEM/EDS) analysis of impact residue provided evidence to identify the source of each impact. Impact site features that indicate projectile directionality are discussed, along with hypervelocity impact testing on representative samples conducted to simulate the impact event. The paper provides results of a study of impact risks for the size of particles that caused the MMOD damage and the regions of the orbiter vehicle that would be vulnerable to an equivalent projectile

  16. Graduated recession of the superior oblique muscle.

    PubMed Central

    Caldeira, J A

    1975-01-01

    Recession of the superior oblique was performed bilaterally in 12 patients with the A phenomenon and unilaterally in four patients with vertical imbalance. The results are discussed. Images PMID:1191613

  17. Oblique shear fractures of the lunate.

    PubMed

    Freeland, Alan E; Ahmad, Nawaiz

    2003-08-01

    Traumatic fractures of the lunate are rare. This article presents two patients who had displaced oblique lunate fractures and distal radius fractures. Both fractures achieved union; however, transient avascular necrosis occurred in the proximal healing of one patient.

  18. Oblique Wing Research Aircraft on ramp

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This 1976 photograph of the Oblique Wing Research Aircraft was taken in front of the NASA Flight Research Center hangar, located at Edwards Air Force Base, California. In the photograph the noseboom, pitot-static probe, and angles-of-attack and sideslip flow vanes(covered-up) are attached to the front of the vehicle. The clear nose dome for the television camera, and the shrouded propellor for the 90 horsepower engine are clearly seen. The Oblique Wing Research Aircraft was a small, remotely piloted, research craft designed and flight tested to look at the aerodynamic characteristics of an oblique wing and the control laws necessary to achieve acceptable handling qualities. NASA Dryden Flight Research Center and the NASA Ames Research Center conducted research with this aircraft in the mid-1970s to investigate the feasibility of flying an oblique wing aircraft.

  19. Oblique orthographic projections and contour plots

    NASA Technical Reports Server (NTRS)

    Giles, G. L.

    1977-01-01

    Oblique orthographic projections allow model to be viewed in any selected orientation specified by Euler-angle transformation. This transformation resolves coordinate system of model to principal plane on which display is to be plotted.

  20. Obliquity Variations of a Rapidly Rotating Venus

    NASA Astrophysics Data System (ADS)

    Quarles, Billy L.; Barnes, Jason W.; Lissauer, Jack J.; Chambers, John E.; Hedman, Matthew M.

    2016-05-01

    Venus clearly differs from Earth in terms of its spin and atmospheric composition, where the former is controlled by solid-body and atmospheric thermal tides. However, this may have been different during earlier stages of planetary evolution, when the Sun was fainter and the Venusian atmosphere was less massive. We investigate how the axial tilt, or obliquity, would have varied during this epoch considering a rapidly rotating Venus. Through numerical simulation of an ensemble of hypothetical Early Venuses, we find the obliquity variation to be simpler than a Moonless Earth (Lissauer et al., 2012). Most low-obliquity Venuses show very low total obliquity variability comparable to that of the real Moon-influenced Earth.

  1. Red Shifts with Obliquely Approaching Light Sources.

    ERIC Educational Resources Information Center

    Head, C. E.; Moore-Head, M. E.

    1988-01-01

    Refutes the Doppler effect as the explanation of large red shifts in the spectra of distant galaxies and explains the relativistic effects in which the light sources approach the observer obliquely. Provides several diagrams and graphs. (YP)

  2. Oblique interactions of dust density waves

    SciTech Connect

    Li Yangfang; Wang Zhehui; Hou Lujing; Jiang Ke; Thomas, Hubertus M.; Morfill, Gregor E.; Wu Dejin

    2010-06-16

    Self-excited dust density waves (DDWs) are studied in a striped electrode device. In addition to the usual perpendicularly (with respect to the electrode) propagating DDWs, which have been frequently observed in dusty plasma experiments on the ground, a low-frequency oblique mode is also observed. This low-frequency oblique DDW has a frequency much lower than the dust plasma frequency and its spontaneous excitation is observed even with a very low dust density. It is found that the low-frequency oblique mode can exist either separately or together with the usual perpendicular mode. In the latter case, a new mode arises as a result of the interactions between the perpendicular and the oblique modes. The experiments show that these three modes satisfy the wave coupling conditions in both the frequencies and the wave-vectors.

  3. Oblique interactions of dust density waves

    SciTech Connect

    Wang, Zhelchui; Li, Yang - Fang; Hou, Lujing; Jiang, Ke; Wu, De - Jin; Thomas, Hubertus M; Morfill, Gregor E

    2010-01-01

    Self-excited dust density waves (DDWs) are studied in a striped electrode device. In addition to the usual perpendicularly (with respect to the electrode) propagating DDWs, which have been frequently observed in dusty plasma experiments on the ground, a low-frequency oblique mode is also observed. This low-frequency oblique DDW has a frequency much lower than the dust plasma frequency and its spontaneous excitation is observed even with a very low dust density. It is found that the low-frequency oblique mode can exist either separately or together with the usual perpendicular mode. In the latter case, a new mode arises as a result of the interactions between the perpendicular and the oblique modes. The experiments show that these three modes satisfy the wave coupling conditions in both the frequencies and the wave-vectors.

  4. Proton Acceleration at Oblique Shocks

    NASA Astrophysics Data System (ADS)

    Galinsky, V. L.; Shevchenko, V. I.

    2011-06-01

    Acceleration at the shock waves propagating oblique to the magnetic field is studied using a recently developed theoretical/numerical model. The model assumes that resonant hydromagnetic wave-particle interaction is the most important physical mechanism relevant to motion and acceleration of particles as well as to excitation and damping of waves. The treatment of plasma and waves is self-consistent and time dependent. The model uses conservation laws and resonance conditions to find where waves will be generated or damped, and hence particles will be pitch-angle-scattered. The total distribution is included in the model and neither introduction of separate population of seed particles nor some ad hoc escape rate of accelerated particles is needed. Results of the study show agreement with diffusive shock acceleration models in the prediction of power spectra for accelerated particles in the upstream region. However, they also reveal the presence of spectral break in the high-energy part of the spectra. The role of the second-order Fermi-like acceleration at the initial stage of the acceleration is discussed. The test case used in the paper is based on ISEE-3 data collected for the shock of 1978 November 12.

  5. PROTON ACCELERATION AT OBLIQUE SHOCKS

    SciTech Connect

    Galinsky, V. L.; Shevchenko, V. I.

    2011-06-20

    Acceleration at the shock waves propagating oblique to the magnetic field is studied using a recently developed theoretical/numerical model. The model assumes that resonant hydromagnetic wave-particle interaction is the most important physical mechanism relevant to motion and acceleration of particles as well as to excitation and damping of waves. The treatment of plasma and waves is self-consistent and time dependent. The model uses conservation laws and resonance conditions to find where waves will be generated or damped, and hence particles will be pitch-angle-scattered. The total distribution is included in the model and neither introduction of separate population of seed particles nor some ad hoc escape rate of accelerated particles is needed. Results of the study show agreement with diffusive shock acceleration models in the prediction of power spectra for accelerated particles in the upstream region. However, they also reveal the presence of spectral break in the high-energy part of the spectra. The role of the second-order Fermi-like acceleration at the initial stage of the acceleration is discussed. The test case used in the paper is based on ISEE-3 data collected for the shock of 1978 November 12.

  6. The Formation of Asteroid Satellites in Catastrophic Impacts: Results from Numerical Simulations

    NASA Technical Reports Server (NTRS)

    Durda, D. D.; Bottke, W. F., Jr.; Enke, B. L.; Asphaug, E.; Richardson, D. C.; Leinhardt, Z. M.

    2003-01-01

    We have performed new simulations of the formation of asteroid satellites by collisions, using a combination of hydrodynamical and gravitational dynamical codes. This initial work shows that both small satellites and ejected, co-orbiting pairs are produced most favorably by moderate-energy collisions at more direct, rather than oblique, impact angles. Simulations so far seem to be able to produce systems qualitatively similar to known binaries. Asteroid satellites provide vital clues that can help us understand the physics of hypervelocity impacts, the dominant geologic process affecting large main belt asteroids. Moreover, models of satellite formation may provide constraints on the internal structures of asteroids beyond those possible from observations of satellite orbital properties alone. It is probable that most observed main-belt asteroid satellites are by-products of cratering and/or catastrophic disruption events. Several possible formation mechanisms related to collisions have been identified: (i) mutual capture following catastrophic disruption, (ii) rotational fission due to glancing impact and spin-up, and (iii) re-accretion in orbit of ejecta from large, non-catastrophic impacts. Here we present results from a systematic investigation directed toward mapping out the parameter space of the first and third of these three collisional mechanisms.

  7. Modal control of an oblique wing aircraft

    NASA Technical Reports Server (NTRS)

    Phillips, James D.

    1989-01-01

    A linear modal control algorithm is applied to the NASA Oblique Wing Research Aircraft (OWRA). The control law is evaluated using a detailed nonlinear flight simulation. It is shown that the modal control law attenuates the coupling and nonlinear aerodynamics of the oblique wing and remains stable during control saturation caused by large command inputs or large external disturbances. The technique controls each natural mode independently allowing single-input/single-output techniques to be applied to multiple-input/multiple-output systems.

  8. Orbital Dynamics and Habitability II: Obliquity Forcing and Suppression of the Ice-Albedo Feedback

    NASA Astrophysics Data System (ADS)

    Barnes, Rory; Armstrong, J. C.; Domagal-Goldman, S. D.; Breiner, J.; Meadows, V. S.

    2012-05-01

    We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We restrict our study to systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 giant planets. We verify that these systems are stable for 100 million years with N-body simulations. We then calculate the obliquity variations induced by the orbital architecture on the Earth-mass planets. We find that in some cases the spin axes can precess through over 100 degrees per thousand years. Next, we run energy balance models (EBM) on the terrestrial planets to assess surface temperature and ice coverage on the planets' oceans. Finally, we explore differences in the outer edge of the habitable zone for planets with rapid obliquity variations compared to fixed obliquity. We run EBM simulations for a range of values for the semi-major axis and find that planets undergoing extreme axial perturbations may be habitable at larger distances than those with static obliquity. This extension arises because the obliquity variations suppress the build-up of ice sheets at the poles, reducing the effectiveness of the ice-albedo-temperature feedback. The dynamical evolution of planetary systems may be a crucial feature in the distribution of life in the galaxy.

  9. The effect of polar caps on obliquity

    NASA Technical Reports Server (NTRS)

    Lindner, B. L.

    1993-01-01

    Rubincam has shown that the Martian obliquity is dependent on the seasonal polar caps. In particular, Rubincam analytically derived this dependence and showed that the change in obliquity is directly proportional to the seasonal polar cap mass. Rubincam concludes that seasonal friction does not appear to have changed Mars' climate significantly. Using a computer model for the evolution of the Martian atmosphere, Haberle et al. have made a convincing case for the possibility of huge polar caps, about 10 times the mass of the current polar caps, that exist for a significant fraction of the planet's history. Since Rubincam showed that the effect of seasonal friction on obliquity is directly proportional to polar cap mass, a scenario with a ten-fold increase in polar cap mass over a significant fraction of the planet's history would result in a secular increase in Mars' obliquity of perhaps 10 degrees. Hence, the Rubincam conclusion of an insignificant contribution to Mars' climate by seasonal friction may be incorrect. Furthermore, if seasonal friction is an important consideration in the obliquity of Mars, this would significantly alter the predictions of past obliquity.

  10. Tectonics of oblique plate boundary systems

    NASA Astrophysics Data System (ADS)

    Díaz-Azpiroz, Manuel; Brune, Sascha; Leever, Karen A.; Fernández, Carlos; Czeck, Dyanna M.

    2016-12-01

    The relative displacement between lithospheric plates normally results in obliquely deforming plate boundaries. This is simply caused by the fact that, on plate tectonics basis, irregularly shaped plate boundaries are rarely perpendicular or parallel to small-circle rotation paths, which describe plate motion on a sphere (Fig. 1a). Global current relative plate motions estimated from geological data (DeMets et al., 2010; Argus et al., 2011) and GPS measurements (e.g., Kreemer et al., 2003; Argus et al., 2010) provide insight to the prevalent degrees of obliquity on Earth's surface. Based on these global data sets, Philippon and Corti (2016), statistically show that current orthogonal boundaries (obliquity angle smaller than 10°) represent around 8% of the total boundary length whereas strike-slip boundaries (obliquity angle larger than 80°) are encountered in < 10% of the total boundary length. Therefore, around 80% of active plate boundaries present oblique relative motions. Furthermore, changes in plate kinematics leading to migration or jumps in the rotation poles necessarily cause obliquity along former pure strike-slip or convergent/divergent boundaries (Fig. 1b).

  11. Conceptual Design of a Flight Validation Mission for a Hypervelocity Asteroid Intercept Vehicle

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.; Wie, Bong; Steiner, Mark; Getzandanner, Kenneth

    2013-01-01

    Near-Earth Objects (NEOs) are asteroids and comets whose orbits approach or cross Earth s orbit. NEOs have collided with our planet in the past, sometimes to devastating effect, and continue to do so today. Collisions with NEOs large enough to do significant damage to the ground are fortunately infrequent, but such events can occur at any time and we therefore need to develop and validate the techniques and technologies necessary to prevent the Earth impact of an incoming NEO. In this paper we provide background on the hazard posed to Earth by NEOs and present the results of a recent study performed by the NASA/Goddard Space Flight Center s Mission Design Lab (MDL) in collaboration with Iowa State University s Asteroid Deflection Research Center (ADRC) to design a flight validation mission for a Hypervelocity Asteroid Intercept Vehicle (HAIV) as part of a Phase 2 NASA Innovative Advanced Concepts (NIAC) research project. The HAIV is a two-body vehicle consisting of a leading kinetic impactor and trailing follower carrying a Nuclear Explosive Device (NED) payload. The HAIV detonates the NED inside the crater in the NEO s surface created by the lead kinetic impactor portion of the vehicle, effecting a powerful subsurface detonation to disrupt the NEO. For the flight validation mission, only a simple mass proxy for the NED is carried in the HAIV. Ongoing and future research topics are discussed following the presentation of the detailed flight validation mission design results produced in the MDL.

  12. Hypervelocity launching of flyers at the SG-III prototype laser facility

    SciTech Connect

    Shui, Min; Chu, Genbai; Zhu, Bin; He, Weihua; Xi, Tao; Fan, Wei; Xin, Jianting; Gu, Yuqiu

    2016-01-21

    Experiments of laser-driven hypervelocity flyers have been conducted at the SG-III prototype laser facility. Using the continuum phase plate technique, four laser beams each with a 3-ns quadratic profile are configured to produce relatively uniform irradiated spots of diameter size either 500 μm or 2000 μm. With the former, specifically designed multi-layered flyers (polyimide/copper) were accelerated by shock impedance and reverberation techniques via direct laser ablation to a super-high averaged velocity of 55 km/s, much faster than recently reported results. Light-emission signals of shock breakout and flyer impact on flat or stepped windows were obtained that indicated good planarity and integrity for the flyer. In the latter, single-layered aluminum flyers were gradually accelerated to a terminal velocity of 11 km/s, as measured by optical velocimetry, without melting and vaporization. The results suggest that the SG-III prototype laser facility has the capability to launch high-speed flyers to create extreme conditions for investigating the science of shock compression and its equation of state.

  13. Conceptual design of a flight validation mission for a Hypervelocity Asteroid Intercept Vehicle

    NASA Astrophysics Data System (ADS)

    Barbee, Brent W.; Wie, Bong; Steiner, Mark; Getzandanner, Kenneth

    2015-01-01

    Near-Earth Objects (NEOs) are asteroids and comets whose orbits approach or cross Earth's orbit. NEOs have collided with our planet in the past, sometimes to devastating effect, and continue to do so today. Collisions with NEOs large enough to do significant damage to the ground are fortunately infrequent, but such events can occur at any time and we therefore need to develop and validate the techniques and technologies necessary to prevent the Earth impact of an incoming NEO. In this paper we provide background on the hazard posed to Earth by NEOs and present the results of a recent study performed by the NASA/Goddard Space Flight Center's Mission Design Lab (MDL) in collaboration with Iowa State University's Asteroid Deflection Research Center (ADRC) to design a flight validation mission for a Hypervelocity Asteroid Intercept Vehicle (HAIV) as part of a Phase 2 NASA Innovative Advanced Concepts (NIAC) research project. The HAIV is a two-body vehicle consisting of a leading kinetic impactor and trailing follower carrying a Nuclear Explosive Device (NED) payload. The HAIV detonates the NED inside the crater in the NEO's surface created by the lead kinetic impactor portion of the vehicle, effecting a powerful subsurface detonation to disrupt the NEO. For the flight validation mission, only a simple mass proxy for the NED is carried in the HAIV. Ongoing and future research topics are discussed following the presentation of the detailed flight validation mission design results produced in the MDL.

  14. Characterization of Orbital Debris Via Hyper-Velocity Ground-Based Tests

    NASA Technical Reports Server (NTRS)

    Cowardin, Heather

    2015-01-01

    To replicate a hyper-velocity fragmentation event using modern-day spacecraft materials and construction techniques to better improve the existing DoD and NASA breakup models. DebriSat is intended to be representative of modern LEO satellites.Major design decisions were reviewed and approved by Aerospace subject matter experts from different disciplines. DebriSat includes 7 major subsystems. Attitude determination and control system (ADCS), command and data handling (C&DH), electrical power system (EPS), payload, propulsion, telemetry tracking and command (TT&C), and thermal management. To reduce cost, most components are emulated based on existing design of flight hardware and fabricated with the same materials. A key laboratory-based test, Satellite Orbital debris Characterization Impact Test (SOCIT), supporting the development of the DoD and NASA satellite breakup models was conducted at AEDC in 1992 .Breakup models based on SOCIT have supported many applications and matched on-orbit events reasonably well over the years.

  15. Bacterial spores in granite survive hypervelocity launch by spallation: implications for lithopanspermia.

    PubMed

    Fajardo-Cavazos, Patricia; Langenhorst, Falko; Melosh, H Jay; Nicholson, Wayne L

    2009-09-01

    Bacterial spores are considered good candidates for endolithic life-forms that could survive interplanetary transport by natural impact processes, i.e., lithopanspermia. Organisms within rock can only embark on an interplanetary journey if they survive ejection from the surface of the donor planet and the associated extremes of compressional shock, heating, and acceleration. Previous simulation experiments have measured each of these three stresses more or less in isolation of one another, and results to date indicate that spores of the model organism Bacillus subtilis can survive each stress applied singly. Few simulations, however, have combined all three stresses simultaneously. Because considerable experimental and theoretical evidence supports a spallation mechanism for launch, we devised an experimental simulation of launch by spallation using the Ames Vertical Gun Range (AVGR). B. subtilis spores were applied to the surface of a granite target that was impacted from above by an aluminum projectile fired at 5.4 km/s. Granite spall fragments were captured in a foam recovery fixture and then recovered and assayed for shock damage by transmission electron microscopy and for spore survival by viability assays. Peak shock pressure at the impact site was calculated to be 57.1 GPa, though recovered spall fragments were only very lightly shocked at pressures of 5-7 GPa. Spore survival was calculated to be on the order of 10(-5), which is in agreement with results of previous static compressional shock experiments. These results demonstrate that endolithic spores can survive launch by spallation from a hypervelocity impact, which lends further evidence in favor of lithopanspermia theory.

  16. Shock detachment process on cones in hypervelocity flows

    NASA Astrophysics Data System (ADS)

    Leyva, Ivett A.

    1999-11-01

    The shock detachment process on cones in hypervelocity flows is one of the most sensitive flows to relaxation effects. The critical angle for shock detachment under frozen conditions can be very different from the critical angle under chemical and thermal equilibrium. The rate of increase of the detachment distance with cone angle is also affected by the relaxation rate. The purpose of this study is to explain the effects of nonequilibrium on the shock detachment distance and its growth rate on cones in hypervelocity flows. The study consists of an experimental and a computational program. The experimental part has been carried out at Caltech's hypervelocity reflected shock tunnel (T5). Six different free-stream conditions have been chosen, four using N2 as the test gas and two using CO2. About 170 shots were performed on 24 cones. The cones range in diameter from 2 cm to 16 cm with half-angles varying from 55° to 75°. The experimental data obtained are holographic interferograms of every shot, and surface temperature and pressure measurements for the bigger cones. Extensive numerical simulations were made for the N2 flows and some were also made for the CO2 flows. The code employed is a Navier-Stokes solver that can account for thermal and chemical nonequilibrium in axisymmetric flows. The experimental and computational data obtained for the shock detachment distance confirms a previous theoretical model that predicts the detachment distance will grow more slowly for relaxing flows than for frozen or equilibrium flows. This difference is explained in terms of the behavior of the sonic line inside the shock layer. Different growth rates result when the detachment distance is controlled by the diameter of the cone (frozen and equilibrium cases) than when it is controlled by the extent of the relaxation zone inside the shock layer (nonequilibrium flows). The experimental data are also complemented with computational data to observe the behavior of the detachment

  17. SHARP OBLIQUE PERSPECTIVE OF DECK AND APPROACH SPANS ALONG WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SHARP OBLIQUE PERSPECTIVE OF DECK AND APPROACH SPANS ALONG WITH PRINCIPLE CANTILEVER SPAN SHARP OBLIQUE PERSPECTIVE OF DECK AND APPROACH SPANS ALONG WITH PRINCIPLE CANTILEVER SPAN SHARP OBLIQUE PERSPECTIVE OF DECK AND APPROACH SPANS ALONG WITH PRINCIPLE CANTILEVER SPAN SHARP OBLIQUE PERSPECTIVE OF DECK AND APPROACH SPANS ALONG WITH PRINCIPLE CANTILEVER SPAN SHARP OBLIQUE PERSPECTIVE OF DECK AND APPROACH SPANS ALONG WITH PRINCIPLE CANTILEVER SPAN SHARP OBLIQUE PERSPECTIVE OF DECK AND APPROACH SPANS ALONG WITH PRINCIPLE CANTILEVER SPAN vSHARP OBLIQUE PERSPECTIVE OF DECK AND APPROACH SPANS ALONG WITH PRINCIPLE CANTILEVER SPAN SHARP OBLIQUE PERSPECTIVE OF DECK AND APPROACH SPANS ALONG WITH PRINCIPLE CANTILEVER SPAN SHARP OBLIQUE PERSPECTIVE OF DECK AND APPROACH SPANS ALONG WITH PRINCIPLE CANTILEVER SPAN - Snake River Bridge at Lyons' Ferry, State Route 261 spanning Snake River, Starbuck, Columbia County, WA

  18. Imaging system for hypervelocity dust injection diagnostic on NSTX

    SciTech Connect

    Dorf, L. A.; Roquemore, A. L.; Wurden, G. A.; Ticos, C. M.; Wang Zhehui

    2006-10-15

    The novel hypervelocity dust injection diagnostic will facilitate our understanding of basic aspects of dust-plasma interaction and magnetic field topology in fusion plasma devices, by observing 'comet tails' associated with the injected micron-size dust particles. A single projection of the tail onto an image plane will not provide sufficient information; therefore, we plan to use two views, with intensified DiCam-Pro cameras on two NSTX ports. Each camera can furnish up to five overlaying sequential images with gate times greater than 3 ns and 1280x1024 pixel resolution. A coherent fiber bundle with 1500x1200 fibers will relay the image from an imaging lens installed directly on the port to the camera optics. The lens receives light from the outer portion of the NSTX cross section and focuses a 1 cm tail onto at least 60 fibers for adequate resolution. The estimated number of photons received by the camera indicates signal-to-noise ratios of 10{sup 2}-10{sup 4}, with the use of a 10 nm bandwidth filter. The imaging system with one camera was successfully tested on NSTX in 2005. Photographing lithium pellets yielded bright and distinctive pictures of the tails nearly aligned with B lines. We also observed that the bright 'filaments' - plasma cords with high density and temperature - are present in both top and bottom portions of the machine.

  19. Numerical investigation of combustion field of hypervelocity scramjet engine

    NASA Astrophysics Data System (ADS)

    Zhang, Shikong; Li, Jiang; Qin, Fei; Huang, Zhiwei; Xue, Rui

    2016-12-01

    A numerical study of the ground testing of a hydrogen-fueled scramjet engine was undertaken using the commercial computational-fluid-dynamics code CFD++. The simulated Mach number was 12. A 7-species, 9-reaction-step hydrogen-air chemistry kinetics system was adopted for the Reynolds-averaged Navier-Stokes simulation. The two-equation SST turbulence model, which takes into account the wall functions, was used to handle the turbulence-chemistry interactions. The results were validated by experimentally measuring the wall pressure distribution, and the values obtained proved to be in good agreement. The flow pattern at non-reaction/reaction is presented, as are the results of analyzing the supersonic premix/non-premix flame structure, the reaction heat release distribution in different modes, and the change in the equivalence ratio. In this study, we realize the working mode of a hypervelocity engine and provide some suggestions for the combustion organization of the engine as well as offer insight into the potential for exploiting the processes of combustion and flow.

  20. MMT hypervelocity star survey. III. The complete survey

    SciTech Connect

    Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J. E-mail: mgeller@cfa.harvard.edu

    2014-05-20

    We describe our completed spectroscopic survey for unbound hypervelocity stars (HVSs) ejected from the Milky Way. Three new discoveries bring the total number of unbound late B-type stars to 21. We place new constraints on the nature of the stars and on their distances using moderate resolution MMT spectroscopy. Half of the stars are fast rotators; they are certain 2.5-4 M {sub ☉} main sequence stars at 50-120 kpc distances. Correcting for stellar lifetime, our survey implies that unbound 2.5-4 M {sub ☉} stars are ejected from the Milky Way at a rate of 1.5 × 10{sup –6} yr{sup –1}. These unbound HVSs are likely ejected continuously over the past 200 Myr and do not share a common flight time. The anisotropic spatial distribution of HVSs on the sky remains puzzling. Southern hemisphere surveys like SkyMapper will soon allow us to map the all-sky distribution of HVSs. Future proper motion measurements with Hubble Space Telescope and Gaia will provide strong constraints on origin. Existing observations are all consistent with HVS ejections from encounters with the massive black hole in the Galactic center.

  1. Theory of an Electromagnetic Mass Accelerator for Achieving Hypervelocities

    NASA Technical Reports Server (NTRS)

    Thom, Karlheinz; Norwood, Joseph., Jr.

    1961-01-01

    It is shown that for any electromagnetic accelerator which employs an electromagnetic force for driving the projectile and uses the projectile as the heat sink for the energy dissipated in it by ohmic heating, the maximum velocity attainable without melting is a function of the mass of the projectile. Therefore, for hypervelocities a large projectile mass is required and thus a power supply of very large capacity is necessary. It is shown that the only means for reducing the power requirement is maximizing the gradient of the mutual inductance. In the scheme of the sliding-coil accelerator investigated herein, the gradient of the mutual inductance is continuously maintained at a high value. It is also shown that for minimum length of the accelerator, the current must be kept constant despite the rise in induced voltage during acceleration. The use of a capacitor bank as an energy source with the condition that the current be kept constant is investigated. Experiments at low velocities are described.

  2. Passive hypervelocity boundary layer control using an ultrasonically absorptive surface

    NASA Astrophysics Data System (ADS)

    Rasheed, Adam

    A series of exploratory boundary layer transition experiments was performed on a sharp 5.06 degree half-angle round cone at zero angle-of-attack in the T5 Hypervelocity Shock Tunnel in order to test a novel hypersonic boundary layer control scheme. Recently performed linear stability analyses suggested that transition could be delayed in hypersonic boundary layers by using an ultrasonically absorptive surface that would damp the second mode (Mack mode). The cone used in the experiments was constructed with a smooth surface on half the cone (to serve as a control) and an acoustically absorptive porous surface on the other half. It was instrumented with flush-mounted thermocouples to detect the transition location. Test gases investigated included nitrogen and carbon dioxide at Mach 5 with specific reservoir enthalpy ranging from 1.3 MJ/kg to 13.0 MJ/kg and reservoir pressure ranging from 9.0 MPa to 50.0 MPa. Detailed comparisons were performed to insure that previous results obtained in similar boundary layer transition experiments (on a regular smooth surface) were reproduced and the results were extended to examine the effects of the porous surface. These experiments indicated that the porous surface was highly effective in delaying transition provided that the hole size was significantly smaller than the viscous length scale.

  3. Passive hypervelocity boundary layer control using an acoustically absortive surface

    NASA Astrophysics Data System (ADS)

    Rasheed, Adam

    A series of exploratory boundary layer transition experiments was performed on a sharp 5.06 degree half-angle round cone at zero angle-of-attack in the T5 Hypervelocity Shock Tunnel in order to test a novel hypersonic boundary layer control scheme. Recently performed linear stability analyses suggested that transition could be delayed in hypersonic boundary layers by using an ultrasonically absorptive surface that would damp the second mode (Mack mode). The cone used in the experiments was constructed with a smooth surface on half the cone (to serve as a control) and an acoustically absorptive porous surface on the other half. It was instrumented with flush-mounted thermocouples to detect the transition location. Test gases investigated included nitrogen and carbon dioxide at M = 5 with specific reservoir enthalpy ranging from 1.3 MJ/kg to 13.0 MJ/kg and reservoir pressure ranging from 9.0 MPa to 50.0 MPa. Detailed comparisons were performed to insure that previous results obtained in similar boundary layer transition experiments (on a regular smooth surface) were reproduced and the results were extended to examine the effects of the porous surface. These experiments indicated that the porous surface was highly effective in delaying transition provided that the hole size was significantly smaller than the viscous length scale.

  4. Solar Obliquity Induced by Planet Nine

    NASA Astrophysics Data System (ADS)

    Bailey, Elizabeth; Batygin, Konstantin; Brown, Michael E.

    2016-10-01

    The six-degree obliquity of the sun suggests that either an asymmetry was present in the solar system's formation environment, or an external torque has misaligned the angular momentum vectors of the sun and the planets. However, the exact origin of this obliquity remains an open question. Batygin and Brown (2016) have recently shown that the physical alignment of distant Kuiper Belt orbits can be explained by a m9 = 10-20 mEarth planet on a distant, eccentric, and inclined orbit, with an approximate perihelion distance of q9 ˜ 250 AU. Using an analytic model for secular interactions between Planet Nine and the remaining giant planets, here we show that a planet with similar parameters can naturally generate the observed obliquity as well as the specific pole position of the sun's spin axis. Thus, Planet Nine offers a testable explanation for the otherwise mysterious spin-orbit misalignment of the solar system.

  5. Solar Obliquity Induced by Planet Nine

    NASA Astrophysics Data System (ADS)

    Bailey, Elizabeth; Batygin, Konstantin; Brown, Michael E.

    2016-11-01

    The six-degree obliquity of the Sun suggests that either an asymmetry was present in the solar system’s formation environment, or an external torque has misaligned the angular momentum vectors of the Sun and the planets. However, the exact origin of this obliquity remains an open question. Batygin & Brown have recently shown that the physical alignment of distant Kuiper Belt orbits can be explained by a 5{--}20 {m}\\oplus planet on a distant, eccentric, and inclined orbit, with an approximate perihelion distance of ˜250 au. Using an analytic model for secular interactions between Planet Nine and the remaining giant planets, here, we show that a planet with similar parameters can naturally generate the observed obliquity as well as the specific pole position of the Sun’s spin axis, from a nearly aligned initial state. Thus, Planet Nine offers a testable explanation for the otherwise mysterious spin-orbit misalignment of the solar system.

  6. Obliquity Evolution of an Early Venus

    NASA Astrophysics Data System (ADS)

    Quarles, Billy L.; Barnes, Jason; Lissauer, Jack J.; Chambers, John

    2014-11-01

    Stark differences in both atmospheric mass and rotation are apparent between the present-day Earth and neighboring Venus. These planets may have been more similar 4 Gyr ago when most of the carbon within Venus may have been in solid form, implying a low-mass atmosphere. As a result, Venus's rotation rate could have been much faster than at present due to the smaller cumulative effects of solid-body and atmospheric tides. We investigate how the obliquity of a hypothetical rapidly-rotating Early Venus would have evolved as compared to a Moonless Earth. As with our previous investigation [Lissauer, Barnes, & Chambers 2012], slow prograde rotation of our hypothesized Early Venus generally leads to larger variations in obliquity than does retrograde rotation. However, the variability of obliquity for retrograde rotations differs from the Moonless Earth and can change with the initial spin period. The implications for early habitability of extrasolar Venus analogs will also be discussed.

  7. 3 MV hypervelocity dust accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies.

    PubMed

    Shu, Anthony; Collette, Andrew; Drake, Keith; Grün, Eberhard; Horányi, Mihály; Kempf, Sascha; Mocker, Anna; Munsat, Tobin; Northway, Paige; Srama, Ralf; Sternovsky, Zoltán; Thomas, Evan

    2012-07-01

    A hypervelocity dust accelerator for studying micrometeorite impacts has been constructed at the Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) at the University of Colorado. Based on the Max-Planck-Institüt für Kernphysik (MPI-K) accelerator, this accelerator is capable of emitting single particles of a specific mass and velocity selected by the user. The accelerator consists of a 3 MV Pelletron generator with a dust source, four image charge pickup detectors, and two interchangeable target chambers: a large high-vacuum test bed and an ultra-high vacuum impact study chamber. The large test bed is a 1.2 m diameter, 1.5 m long cylindrical vacuum chamber capable of pressures as low as 10(-7) torr while the ultra-high vacuum chamber is a 0.75 m diameter, 1.1 m long chamber capable of pressures as low as 10(-10) torr. Using iron dust of up to 2 microns in diameter, final velocities have been measured up to 52 km/s. The spread of the dust particles and the effect of electrostatic focusing have been measured using a long exposure CCD and a quartz target. Furthermore, a new technique of particle selection is being developed using real time digital filtering techniques. Signals are digitized and then cross-correlated with a shaped filter, resulting in a suppressed noise floor. Improvements over the MPI-K design, which include a higher operating voltage and digital filtering for detection, increase the available parameter space of dust emitted by the accelerator. The CCLDAS dust facility is a user facility open to the scientific community to assist with instrument calibrations and experiments.

  8. 3 MV hypervelocity dust accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies

    SciTech Connect

    Shu, Anthony; Horanyi, Mihaly; Kempf, Sascha; Thomas, Evan; Collette, Andrew; Drake, Keith; Northway, Paige; Gruen, Eberhard; Mocker, Anna; Munsat, Tobin; Srama, Ralf; and others

    2012-07-15

    A hypervelocity dust accelerator for studying micrometeorite impacts has been constructed at the Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) at the University of Colorado. Based on the Max-Planck-Instituet fuer Kernphysik (MPI-K) accelerator, this accelerator is capable of emitting single particles of a specific mass and velocity selected by the user. The accelerator consists of a 3 MV Pelletron generator with a dust source, four image charge pickup detectors, and two interchangeable target chambers: a large high-vacuum test bed and an ultra-high vacuum impact study chamber. The large test bed is a 1.2 m diameter, 1.5 m long cylindrical vacuum chamber capable of pressures as low as 10{sup -7} torr while the ultra-high vacuum chamber is a 0.75 m diameter, 1.1 m long chamber capable of pressures as low as 10{sup -10} torr. Using iron dust of up to 2 microns in diameter, final velocities have been measured up to 52 km/s. The spread of the dust particles and the effect of electrostatic focusing have been measured using a long exposure CCD and a quartz target. Furthermore, a new technique of particle selection is being developed using real time digital filtering techniques. Signals are digitized and then cross-correlated with a shaped filter, resulting in a suppressed noise floor. Improvements over the MPI-K design, which include a higher operating voltage and digital filtering for detection, increase the available parameter space of dust emitted by the accelerator. The CCLDAS dust facility is a user facility open to the scientific community to assist with instrument calibrations and experiments.

  9. Characterization of Oribtal Debris via Hyper-Velocity Ground-Based Tests

    NASA Technical Reports Server (NTRS)

    Cowardin, H.

    2015-01-01

    Existing DoD and NASA satellite breakup models are based on a key laboratory-based test, Satellite Orbital debris Characterization Impact Test (SOCIT), which has supported many applications and matched on-orbit events involving older satellite designs reasonably well over the years. In order to update and improve the break-up models and the NASA Size Estimation Model (SEM) for events involving more modern satellite designs, the NASA Orbital Debris Program Office has worked in collaboration with the University of Florida to replicate a hypervelocity impact using a satellite built with modern-day spacecraft materials and construction techniques. The spacecraft, called DebriSat, was intended to be a representative of modern LEO satellites and all major designs decisions were reviewed and approved by subject matter experts at Aerospace Corporation. DebriSat is composed of 7 major subsystems including attitude determination and control system (ADCS), command and data handling (C&DH), electrical power system (EPS), payload, propulsion, telemetry tracking and command (TT&C), and thermal management. To reduce cost, most components are emulated based on existing design of flight hardware and fabricated with the same materials. All fragments down to 2 mm is size will be characterized via material, size, shape, bulk density, and the associated data will be stored in a database for multiple users to access. Laboratory radar and optical measurements will be performed on a subset of fragments to provide a better understanding of the data products from orbital debris acquired from ground-based radars and telescopes. The resulting data analysis from DebriSat will be used to update break-up models and develop the first optical SEM in conjunction with updates into the current NASA SEM. The characterization of the fragmentation will be discussed in the subsequent presentation.

  10. Comparison of AIS 1990 update 98 versus AIS 2005 for describing PMHS injuries in lateral and oblique sled tests.

    PubMed

    Yoganandan, Narayan; Pintar, Frank A; Humm, John R; Stadter, Gregory W; Curry, William H; Brasel, Karen J

    2013-01-01

    This study analyzed skeletal and organ injuries in pure lateral and oblique impacts from 20 intact post mortem human surrogate (PMHS) sled tests at 6.7 m/s. Injuries to the shoulder, thorax, abdomen, pelvis and spine were scored using AIS 1990-1998 update and 2005. The Injury Severity Scores (ISS) were extracted for both loadings from both versions. Mean age, stature, total body mass and body mass index for pure lateral and oblique tests: 58 and 55 years, 1.7 and 1.8 m, 69 and 66 kg, and 24 and 21 kg/m(2). Skeletal injuries (ribs, sternum) occurred in both impacts. However, oblique impacts resulted in more injuries. Pure lateral and oblique impacts ISS: 0 to 16 and 0 to 24, representing a greater potential for injury-related consequences in real-world situations in oblique impacts. Internal organs were more involved in oblique impacts. ISS decreased in AIS 2005, reflecting changes to scoring and drawing attention to potential effects for pre-hospital care/medical aspects. Mean AIS scores for the two load vectors and two AIS coding schemes are included. From automotive crashworthiness perspectives, decreases in injury severities might alter injury risk functions with a shift to lower metrics for the same risk level than current risk estimations. This finding influences dummy-based injury criteria and occupant safety as risk functions are used for countermeasure effectiveness and cost-benefit analyses by regulatory bodies. Increase in organ injuries in oblique loading indicate the importance of this vector as current dummies and injury criteria used in regulations are based on pure lateral impact data.

  11. Comparison of AIS 1990 update 98 versus AIS 2005 for describing PMHS injuries in lateral and oblique sled tests

    PubMed Central

    Yoganandan, Narayan; Pintar, Frank A.; Humm, John R.; Stadter, Gregory W.; Curry, William H.; Brasel, Karen J.

    2013-01-01

    This study analyzed skeletal and organ injuries in pure lateral and oblique impacts from 20 intact post mortem human surrogate (PMHS) sled tests at 6.7 m/s. Injuries to the shoulder, thorax, abdomen, pelvis and spine were scored using AIS 1990–1998 update and 2005. The Injury Severity Scores (ISS) were extracted for both loadings from both versions. Mean age, stature, total body mass and body mass index for pure lateral and oblique tests: 58 and 55 years, 1.7 and 1.8 m, 69 and 66 kg, and 24 and 21 kg/m2. Skeletal injuries (ribs, sternum) occurred in both impacts. However, oblique impacts resulted in more injuries. Pure lateral and oblique impacts ISS: 0 to 16 and 0 to 24, representing a greater potential for injury-related consequences in real-world situations in oblique impacts. Internal organs were more involved in oblique impacts. ISS decreased in AIS 2005, reflecting changes to scoring and drawing attention to potential effects for pre-hospital care/medical aspects. Mean AIS scores for the two load vectors and two AIS coding schemes are included. From automotive crashworthiness perspectives, decreases in injury severities might alter injury risk functions with a shift to lower metrics for the same risk level than current risk estimations. This finding influences dummy-based injury criteria and occupant safety as risk functions are used for countermeasure effectiveness and cost-benefit analyses by regulatory bodies. Increase in organ injuries in oblique loading indicate the importance of this vector as current dummies and injury criteria used in regulations are based on pure lateral impact data. PMID:24406958

  12. F-8 oblique wing structural feasibility study

    NASA Technical Reports Server (NTRS)

    Koltko, E.; Katz, A.; Bell, M. A.; Smith, W. D.; Lauridia, R.; Overstreet, C. T.; Klapprott, C.; Orr, T. F.; Jobe, C. L.; Wyatt, F. G.

    1975-01-01

    The feasibility of fitting a rotating oblique wing on an F-8 aircraft to produce a full scale manned prototype capable of operating in the transonic and supersonic speed range was investigated. The strength, aeroelasticity, and fatigue life of such a prototype are analyzed. Concepts are developed for a new wing, a pivot, a skewing mechanism, control systems that operate through the pivot, and a wing support assembly that attaches in the F-8 wing cavity. The modification of the two-place NTF-8A aircraft to the oblique wing configuration is discussed.

  13. Aeroelastic tailoring for oblique wing lateral trim

    NASA Technical Reports Server (NTRS)

    Bohlmann, Jonathan D.; Weisshaar, Terrence A.; Eckstrom, Clinton V.

    1988-01-01

    Composite material aeroelastic tailoring is presently explored as a means for the correction of the roll trim imbalance of oblique-wing aircraft configurations. The concept is demonstrated through the analysis of a realistic oblique wing by a static aeroelastic computational procedure encompassing the full potential transonic aerodynamic code FLO22 and a Ritz structural plate program that models the stiffness due to symmetrical-but-unbalanced composite wing skins. Results indicate that asymetric composite tailoring reduces the aileron deflection needed for roll equilibrium, and reduces control surface hinge moment and drag. Wing skin stresses are, however, very high.

  14. A Study of Premixed, Shock-Induced Combustion With Application to Hypervelocity Flight

    NASA Technical Reports Server (NTRS)

    Axdahl, Erik L.

    2013-01-01

    One of the current goals of research in hypersonic, airbreathing propulsion is access to higher Mach numbers. A strong driver of this goal is the desire to integrate a scramjet engine into a transatmospheric vehicle airframe in order to improve performance to low Earth orbit (LEO) or the performance of a semiglobal transport. An engine concept designed to access hypervelocity speeds in excess of Mach 10 is the shock-induced combustion ramjet (i.e. shcramjet). This dissertation presents numerical studies simulating the physics of a shcramjet vehicle traveling at hypervelocity speeds with the goal of understanding the physics of fuel injection, wall autoignition mitigation, and combustion instability in this flow regime.

  15. Effects of Extreme Obliquity Change on the Habitability of Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Armstrong, John C.; Barnes, R.; Domagal-Goldman, S.; Planetary Laboratory, Virtual

    2014-01-01

    We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination and demonstrate that the system architecture can dramatically affect the limits of the habitable zone. We restrict our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 giant planets. We verify that these systems are stable for 100 million years with N-body simulations, and calculate the obliquity variations induced by the orbital evolution of the Earth-mass planet. Next, we run a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface. Finally, we explore differences in the outer edge of the habitable zone for planets with rapid obliquity variations. We run climate simulations for a range of values for the semi-major axis, assuming that the obliquity variations of the nominal system (terrestrial planet at 1 AU) are typical for each orbital architecture. We find that planets undergoing extreme axial perturbations may be habitable at distances up to 93 % larger than our Earth standard model. Additionally, up to 100 % of this enhancement can be traced to the variability in the orbital properties. This extension arises because the obliquity variations suppress the build-up of ice sheets at the poles, reducing the effectiveness of the ice-albedo feedback.

  16. Phased array ultrasonic inspection method for homogeneous tube inspection over a wide oblique angle range

    NASA Astrophysics Data System (ADS)

    Lepage, Benoit; Painchaud-April, Guillaume

    2017-02-01

    As seamless tube manufacturers push quality requirements for their products, automated phased array Rotating Tube Inspection Systems (RTIS) are now required to provide continuous NDE detection performances over a wide angular range of oblique flaws. One major impact of this new reality is a paradigm shift for the calibration method use. This change is driven by the requirement to meet homogeneous detection over broad oblique flaw angle intervals, whereas standard practice only requires calibration at specific discrete angles. This paper presents an innovative method specifically designed to obtain high productivity and homogeneous inspection measurements over an oblique flaw range extending from -45 to 45 degrees. Experimental results from the application of the method on various tubes presenting multiple artificial flaws support the quantitative performance evaluation.

  17. Magnetohydrodynamic Jump Conditions for Oblique Relativistic Shocks with Gyrotropic Pressure

    NASA Technical Reports Server (NTRS)

    Double, Glen P.; Baring, Matthew G.; Jones, Frank C.; Ellison, Donald C.

    2003-01-01

    Shock jump conditions, i.e., the specification of the downstream parameters of the gas in terms of the upstream parameters, are obtained for steady-state, plane shocks with oblique magnetic fields and arbitrary flow speeds. This is done by combining the continuity of particle number flux and the electromagnetic boundary conditions at the shock with the magnetohydrodynamic conservation laws derived from the stress-energy tensor. For ultrarelativistic and nonrelativistic shocks, the jump conditions may be solved analytically. For mildly relativistic shocks, analytic solutions are obtained for isotropic pressure using an approximation for the adiabatic index that is valid in high sonic Mach number cases. Examples assuming isotropic pressure illustrate how the shock compression ratio depends on the shock speed and obliquity. In the more general case of gyrotropic pressure, the jump conditions cannot be solved analytically with- out additional assumptions, and the effects of gyrotropic pressure are investigated by parameterizing the distribution of pressure parallel and perpendicular to the magnetic field. Our numerical solutions reveal that relatively small departures from isotropy (e.g., approximately 20%) produce significant changes in the shock compression ratio, r , at all shock Lorentz factors, including ultrarelativistic ones, where an analytic solution with gyrotropic pressure is obtained. In particular, either dynamically important fields or significant pressure anisotropies can incur marked departures from the canonical gas dynamic value of r = 3 for a shocked ultrarelativistic flow and this may impact models of particle acceleration in gamma-ray bursts and other environments where relativistic shocks are inferred. The jump conditions presented apply directly to test-particle acceleration, and will facilitate future self-consistent numerical modeling of particle acceleration at oblique, relativistic shocks; such models include the modification of the fluid

  18. Oblique patterned etching of vertical silicon sidewalls

    SciTech Connect

    Burckel, D. Bruce; Finnegan, Patrick S.; Henry, M. David; Resnick, Paul J.; Jarecki, Jr., Robert L.

    2016-04-05

    A method for patterning on vertical silicon surfaces in high aspect ratio silicontopography is presented. A Faraday cage is used to direct energetic reactive ions obliquely through a patterned suspended membrane positioned over the topography. The technique is capable of forming high-fidelity pattern (100 nm) features, adding an additional fabrication capability to standard top-down fabrication approaches.

  19. Obliquity Modulation of the Incoming Solar Radiation

    NASA Technical Reports Server (NTRS)

    Liu, Han-Shou; Smith, David E. (Technical Monitor)

    2001-01-01

    Based on a basic principle of orbital resonance, we have identified a huge deficit of solar radiation induced by the combined amplitude and frequency modulation of the Earth's obliquity as possibly the causal mechanism for ice age glaciation. Including this modulation effect on solar radiation, we have performed model simulations of climate change for the past 2 million years. Simulation results show that: (1) For the past 1 million years, temperature fluctuation cycles were dominated by a 100-Kyr period due to amplitude-frequency resonance effect of the obliquity; (2) From 2 to 1 million years ago, the amplitude-frequency interactions. of the obliquity were so weak that they were not able to stimulate a resonance effect on solar radiation; (3) Amplitude and frequency modulation analysis on solar radiation provides a series of resonance in the incoming solar radiation which may shift the glaciation cycles from 41-Kyr to 100-Kyr about 0.9 million years ago. These results are in good agreement with the marine and continental paleoclimate records. Thus, the proposed climate response to the combined amplitude and frequency modulation of the Earth's obliquity may be the key to understanding the glaciation puzzles in paleoclimatology.

  20. Orientation Strategies for Aerial Oblique Images

    NASA Astrophysics Data System (ADS)

    Wiedemann, A.; Moré, J.

    2012-07-01

    Oblique aerial images become more and more distributed to fill the gap between vertical aerial images and mobile mapping systems. Different systems are on the market. For some applications, like texture mapping, precise orientation data are required. One point is the stable interior orientation, which can be achieved by stable camera systems, the other a precise exterior orientation. A sufficient exterior orientation can be achieved by a large effort in direct sensor orientation, whereas minor errors in the angles have a larger effect than in vertical imagery. The more appropriate approach is by determine the precise orientation parameters by photogrammetric methods using an adapted aerial triangulation. Due to the different points of view towards the object the traditional aerotriangulation matching tools fail, as they produce a bunch of blunders and require a lot of manual work to achieve a sufficient solution. In this paper some approaches are discussed and results are presented for the most promising approaches. We describe a single step approach with an aerotriangulation using all available images; a two step approach with an aerotriangulation only of the vertical images plus a mathematical transformation of the oblique images using the oblique cameras excentricity; and finally the extended functional model for a bundle block adjustment considering the mechanical connection between vertical and oblique images. Beside accuracy also other aspects like efficiency and required manual work have to be considered.

  1. Oblique and Head-On Elastic Collisions

    ERIC Educational Resources Information Center

    Ng, Chiu-king

    2008-01-01

    When a moving ball collides elastically with an identical, initially stationary ball, the incident ball will either come to rest (head-on collision; see Fig. 1) or will acquire a velocity that is perpendicular to that acquired by the target ball (oblique collision; see Fig. 2). These two possible outcomes are related in an interesting way, which…

  2. Oblique patterned etching of vertical silicon sidewalls

    NASA Astrophysics Data System (ADS)

    Bruce Burckel, D.; Finnegan, Patrick S.; David Henry, M.; Resnick, Paul J.; Jarecki, Robert L.

    2016-04-01

    A method for patterning on vertical silicon surfaces in high aspect ratio silicon topography is presented. A Faraday cage is used to direct energetic reactive ions obliquely through a patterned suspended membrane positioned over the topography. The technique is capable of forming high-fidelity pattern (100 nm) features, adding an additional fabrication capability to standard top-down fabrication approaches.

  3. Insolation patterns on synchronous exoplanets with obliquity

    NASA Astrophysics Data System (ADS)

    Dobrovolskis, Anthony R.

    2009-11-01

    A previous paper [Dobrovolskis, A.R., 2007. Icarus 192, 1-23] showed that eccentricity can have profound effects on the climate, habitability, and detectability of extrasolar planets. This complementary study shows that obliquity can have comparable effects. The known exoplanets exhibit a wide range of orbital eccentricities, but those within several million kilometers of their suns are generally in near-circular orbits. This fact is widely attributed to the dissipation of tides in the planets. Tides in a planet affect its spin even more than its orbit, and such tidally evolved planets often are assumed to be in synchronous rotation, so that their rotation periods are identical to their orbital periods. The canonical example of synchronous spin is the way that our Moon always keeps nearly the same hemisphere facing the Earth. Tides also tend to reduce the planet's obliquity (the angle between its spin and orbital angular velocities). However, orbit precession can cause the rotation to become locked in a "Cassini state", where it retains a nearly constant non-zero obliquity. For example, our Moon maintains an obliquity of about 6.7° with respect to its orbit about the Earth. In comparison, stable Cassini states can exist for practically any obliquity up to ˜90° or more for planets of binary stars, or in multi-planet systems with high mutual inclinations, such as are produced by scattering or by the Kozai mechanism. This work considers planets in synchronous rotation with circular orbits, but arbitrary obliquity β; this affects the distribution of insolation over the planet's surface, particularly near its poles. For β=0, one hemisphere bakes in perpetual sunshine, while the opposite hemisphere experiences eternal darkness. As β increases, the region of permanent daylight and the antipodal realm of endless night both shrink, while a more temperate area of alternating day and night spreads in longitude, and especially in latitude. The regions of permanent day or

  4. On The Spatial Distribution and the Origin of Hypervelocity Stars

    NASA Astrophysics Data System (ADS)

    Lu, Youjun; Zhang, Fupeng; Yu, Qingjuan

    2010-02-01

    Hypervelocity stars (HVSs) escaping away from the Galactic halo are dynamical products of interactions of stars with the massive black hole(s) (MBH) in the Galactic Center (GC). They are mainly B-type stars with their progenitors unknown. OB stars are also populated in the GC, with many being hosted in a clockwise-rotating young stellar (CWS) disk within half a parsec from the MBH and their formation remaining puzzles. In this paper, we demonstrate that HVSs can well memorize the injecting directions of their progenitors using both analytical arguments and numerical simulations, i.e., the ejecting direction of an HVS is almost anti-parallel to the injecting direction of its progenitor. Therefore, the spatial distribution of HVSs maps the spatial distribution of the parent population of their progenitors directly. We also find that almost all the discovered HVSs are spatially consistent with being located on two thin disk planes. The orientation of one plane is consistent with that of the (inner) CWS disk, which suggests that most of the HVSs originate from the CWS disk or a previously existed disk-like stellar structure with an orientation similar to it. The rest of HVSs may be correlated with the plane of the northern arm of the mini-spiral in the GC or the plane defined by the outer warped part of the CWS disk. Our results not only support the GC origin of HVSs but also imply that the central disk (or the disk structure with a similar orientation) should persist or be frequently rejuvenated over the past 200 Myr, which adds a new challenge to the stellar disk formation and provides insights to the longstanding problem of gas fueling into MBHs.

  5. Thrust Enhancement in Hypervelocity Nozzles by Chemical Catalysis

    NASA Technical Reports Server (NTRS)

    Singh, D. J.; Carpenter, Mark H.; Drummond, J. P.

    1997-01-01

    In the hypersonic flight regime, the air-breathing supersonic combustion ramjet (scramjet) has been shown to be a viable propulsion system. The current designs of scramjet engines provide performance benefits only up to a Mach number of 14. Performance losses increase rapidly as the Mach number increases. To extend the applicability of scram'jets beyond Mach 14, research is being conducted in the area of inlet and wave drag reduction, skin-friction and heat-transfer reduction, nozzle loss minimization, low-loss mixing, and combustion enhancement. For high Mach number applications, hydrogen is the obvious fuel choice because of its high energy content per unit mass in comparison with conventional fuels. These flight conditions require engines to operate at supersonic internal velocities, high combustor temperatures, and low static pressures. The high static temperature condition enhances the production of radicals such as H and OH, and the low-pressure condition slows the reaction rates, particularly the recombination reactions. High-temperature and low-pressure constraints, in combination with a small residence time, result in a radical-rich exhaust gas mixture exiting the combustor. At high Mach number conditions (due to low residence time), H and OH do not have enough time to recombine ; thus, a significant amount of energy is lost as these high-energy free radical are exhausted. The objective of the present study is to conduct a flowfield analysis for a typical nozzle geometry for NASP-type vehicle to assess for thrust enhancement in hypervelocity nozzles by substituting small amount of phosphine for hydrogen.

  6. Effects of impact angle and target structure on seismic efficiency

    NASA Astrophysics Data System (ADS)

    Stickle, A. M.; Schultz, P. H.

    2010-12-01

    the porous regolith will act to significantly reduce or scatter the energy coupled to the subsurface. This reduces the total amount of seismic energy transmitted into the planet. Further, oblique impacts direct most of the seismic energy downrange, which, in turn, affects inferences about the flux rates and scattering functions. Consequently, a planetary seismic network will require multiple stations in order to deconvolve the effects of impact direction and near-surface layering on any observed signal. References: Dahl J. M., and P. H. Schultz (2001), Measurement of stress wave asymmetries in hypervelocity projectile impact experiments, Int. J. of Impact Eng., 26(1-10), 145-155 Latham G.V., McDonald W.V., and H.J. Moore (1970). Missile impacts as sources of seismic energy on the Moon. Science 168, 242-245 McGarr A., Latham G.V. and D.E. Gault (1969). Meteroid impacts as sources of seismicity on the Moon. J. Geophys. Res. 74, 5981-5994 Stickle, A.M., and P.H. Schultz (2010), Exploring the role of shear in oblique impacts: a comparison of experimental and numerical results for planar targets. Proc. 11th HVIS, submitted

  7. High-resolution imaging of hypervelocity metal jets using advanced high-speed photographic techniques

    SciTech Connect

    Shaw, L.L.; Muelder, S.A.

    1995-08-29

    It is now possible to obtain high resolution sequential photographs of the initial formation and evolution of hypervelocity metal jets formed by shaped charge devices fired in air. Researchers have been frustrated by the high velocity of the jet material and the luminous sheath of hot gases cloaking the jet that made detailed observation of the jet body extremely difficult. The camera system that provides the photographs is a large format multi-frame electro-optic camera, referred to as an IC camera (IC stands for image converter), that utilizes electro-optic shuttering, monochromatic pulsed laser illumination and bandpass filtering to provide sequential pictures (in 3D if desired) with minimal degradation due to luminous air shocks or motion blur. The large format (75mm image plane), short exposure (15 ns minimum), ruby laser illumination and bandpass filtering (monochromatic illumination while excluding extraneous light) produces clear, sharp, images of the detailed surface structure of a metal shaped charge jet during early jet formation, elongation of the jet body, jet tip evolution and subsequent particulation (breakup) of the jet body. By utilizing the new camera system in conjunction with the more traditional rotating mirror high speed cameras, pulsed radiography, and electrical sensors, a maximum amount of, often unique, data can be extracted from a single experiment. This paper was intended primarily as an oral presentation. For purposes of continuity and simplicity in these proceedings, the authors have chosen to concentrate on the development of the IC camera system and its impact on the photography of high speed shaped chargejets.

  8. LOW STELLAR OBLIQUITIES IN COMPACT MULTIPLANET SYSTEMS

    SciTech Connect

    Albrecht, Simon; Winn, Joshua N.; Marcy, Geoffrey W.; Isaacson, Howard; Howard, Andrew W.; Johnson, John A.

    2013-07-01

    We measure the sky-projected stellar obliquities ({lambda}) in the multiple-transiting planetary systems KOI-94 and Kepler-25, using the Rossiter-McLaughlin effect. In both cases, the host stars are well aligned with the orbital planes of the planets. For KOI-94 we find {lambda} = -11 Degree-Sign {+-} 11 Degree-Sign , confirming a recent result by Hirano and coworkers. Kepler-25 was a more challenging case, because the transit depth is unusually small (0.13%). To obtain the obliquity, it was necessary to use prior knowledge of the star's projected rotation rate and apply two different analysis methods to independent wavelength regions of the spectra. The two methods gave consistent results, {lambda} = 7 Degree-Sign {+-} 8 Degree-Sign and -0. Degree-Sign 5 {+-} 5. Degree-Sign 7. There are now a total of five obliquity measurements for host stars of systems of multiple-transiting planets, all of which are consistent with spin-orbit alignment. This alignment is unlikely to be the result of tidal interactions because of the relatively large orbital distances and low planetary masses in the systems. In this respect, the multiplanet host stars differ from hot-Jupiter host stars, which commonly have large spin-orbit misalignments whenever tidal interactions are weak. In particular, the weak-tide subset of hot-Jupiter hosts has obliquities consistent with an isotropic distribution (p = 0.6), but the multiplanet hosts are incompatible with such a distribution (p {approx} 10{sup -6}). This suggests that high obliquities are confined to hot-Jupiter systems, and provides further evidence that hot-Jupiter formation involves processes that tilt the planetary orbit.

  9. Side oblique real-time orthophotography with the 9Kx9K digital framing camera

    NASA Astrophysics Data System (ADS)

    Gorin, Brian A.

    2003-08-01

    BAE SYSTEMS has reported on a new framing camera incorporating an ultra high resolution CCD detector array comprised of 9,216 x 9,216 pixels fabricated on one silicon wafer. The detector array features a 1:2 frame-per-second readout capable of stereo imagery with Nyquist resolution of 57 lp/mm from high velocity, low altitude (V/H) airborne platforms. Flight tests demonstrated the capability of the focal plane electronics for differential image motion compensation (IMC) with Nyquist performance utilizing a focal plane shutter (FPS) to enable both nadir and significant side and forward oblique imaging angles. The impact of FPS for differential image motion compensation is evaluated with the exterior orientation calibration parameters, which include the existing shutter velocity and flight dynamics from sample mapping applications. System requirements for GPS/INS are included with the effect of vertical error and side oblique angle impact of the digital elevation map (DEM) required to create the orthophoto. Results from the differentiated "collinearity equations" which relate the image coordinates to elements of interior and exterior orientation are combined with the DEM impact to provide useful guidelines for side oblique applications. The application of real-time orthophotography is described with the implications for system requirements for side oblique orthophoto capability.

  10. Measuring the Shape and Orientation of the Galactic Dark-Matter Halo using Hypervelocity Stars

    NASA Astrophysics Data System (ADS)

    Gnedin, Oleg

    2009-07-01

    We propose to obtain high-resolution images of five hypervelocity stars in the Galactic halo in order to establish the first-epoch astrometric frame for them, as a part of a long-term program to measure precise proper motions. The origin of these recently discovered stars, all with positive radial velocities above 540 km/s, is consistent only with being ejected from the deep potential well of the massive black hole at the Galactic center. The deviations of their space motions from purely radial trajectories probe the departures from spherical symmetry of the Galactic potential, mainly due to the triaxiality of the dark-matter halo. Reconstructing the full three-dimensional space motion of the hypervelocity stars, through astrometric proper motions, provides a unique opportunity to measure the shape and orientation of the dark halo. The hypervelocity stars allow measurement of the potential up to 75 kpc from the center, independently of and at larger distances than are afforded by tidal streams of satellite galaxies such as the Sagittarius dSph galaxy. HVS3 may be associated with the LMC, rather then the Galactic center, and would therefore present a case for a supermassive black hole at the center of the LMC. We request one orbit with ACS/WFC for each of the five hypervelocity stars to establish their current positions relative to background galaxies. We will request a repeated observation of these stars in Cycle 17, which will conclusively measure the astrometric proper motions.

  11. Measuring the Shape and Orientation of the Galactic Dark-Matter Halo using Hypervelocity Stars

    NASA Astrophysics Data System (ADS)

    Gnedin, Oleg

    2006-07-01

    We propose to obtain high-resolution images of five hypervelocity stars in the Galactic halo in order to establish the first-epoch astrometric frame for them, as a part of a long-term program to measure precise proper motions. The origin of these recently discovered stars, all with positive radial velocities above 540 km/s, is consistent only with being ejected from the deep potential well of the massive black hole at the Galactic center. The deviations of their space motions from purely radial trajectories probe the departures from spherical symmetry of the Galactic potential, mainly due to the triaxiality of the dark-matter halo. Reconstructing the full three-dimensional space motion of the hypervelocity stars, through astrometric proper motions, provides a unique opportunity to measure the shape and orientation of the dark halo. The hypervelocity stars allow measurement of the potential up to 75 kpc from the center, independently of and at larger distances than are afforded by tidal streams of satellite galaxies such as the Sagittarius dSph galaxy. HVS3 may be associated with the LMC, rather then the Galactic center, and would therefore present a case for a supermassive black hole at the center of the LMC. We request one orbit with ACS/WFC for each of the five hypervelocity stars to establish their current positions relative to background galaxies. We will request a repeated observation of these stars in Cycle 17, which will conclusively measure the astrometric proper motions.

  12. Variation of axial and oblique astigmatism with accommodation across the visual field

    PubMed Central

    Liu, Tao; Thibos, Larry N.

    2017-01-01

    In this study we investigated the impact of accommodation on axial and oblique astigmatism along 12 meridians of the central 30° of visual field and explored the compensation of corneal first-surface astigmatism by the remainder of the eye's optical system. Our experimental evidence revealed no systematic effect of accommodation on either axial or oblique astigmatism for two adult populations (myopic and emmetropic eyes). Although a few subjects exhibited systematic changes in axial astigmatism during accommodation, the dioptric value of these changes was much smaller than the amount of accommodation. For most subjects, axial and oblique astigmatism of the whole eye are both less than for the cornea alone, which indicates a compensatory role for internal optics at all accommodative states in both central and peripheral vision. A new method for determining the eye's optical axis based on visual field maps of oblique astigmatism revealed that, on average, the optical axis is 4.8° temporal and 0.39° superior to the foveal line-of-sight in object space, which agrees with previous results obtained by different methodologies and implies that foveal astigmatism includes a small amount of oblique astigmatism (0.06 D on average). Customized optical models of each eye revealed that oblique astigmatism of the corneal first surface is negligible along the pupillary axis for emmetropic and myopic eyes. Individual variation in the eye's optical axis is due in part to misalignment of the corneal and internal components that is consistent with tilting of the crystalline lens relative to the pupillary axis. PMID:28362902

  13. Proton beam generation of oblique whistler waves

    NASA Technical Reports Server (NTRS)

    Wong, H. K.; Goldstein, M. L.

    1988-01-01

    It is known that ion beams are capable of generating whistler waves that propagate parallel to the mean magnetic field. Such waves may have been observed both upstream of the earth's bow shock and in the vicinity of comets. Previous analyses are extended to include propagation oblique to the mean magnetic field. The instability is generated by the perpendicular component of free energy in the ions, which can arise either via a temperature anisotropy or via a gyrating distribution. In the former case, the generation of whistler waves is confined to a fairly narrow cone of propagation directions centered about parallel propagation; in the latter case, the maximum growth of the instability can occur at fairly large obliquities (theta equal to about 50 deg).

  14. Oblique wing transonic transport configuration development

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Studies of transport aircraft designed for boom-free supersonic flight show the variable sweep oblique wing to be the most efficient configuration for flight at low supersonic speeds. Use of this concept leads to a configuration that is lighter, quieter, and more fuel efficient than symmetric aircraft designed for the same mission. Aerodynamic structural, weight, aeroelastic and flight control studies show the oblique wing concept to be technically feasible. Investigations are reported for wing planform and thickness, pivot design and weight estimation, engine cycle (bypass ratio), and climb, descent and reserve fuel. Results are incorporated into a final configuration. Performance, weight, and balance characteristics are evaluated. Flight control requirements are reviewed, and areas in which further research is needed are identified.

  15. Ionospheric true height profiles from oblique ionograms

    SciTech Connect

    Reilly, M.H.

    1985-06-01

    An improved direct technique in which HF oblique ionograms are reduced to ionospheric true height profiles is introduced. The benefits of this method result principally from the use of a more accurate Breit-Tuve relation to curved earth and ionosphere geometries. By comparing the results of calculations on known cases, the extent of improvement with this technique relative to the techniques by Gething and Maliphant (1967), George (1970), and Smith (1970), is demonstrated. 14 references.

  16. Resolution of superior oblique myokymia with memantine.

    PubMed

    Jain, Saurabh; Farooq, Shegufta J; Gottlob, Irene

    2008-02-01

    We describe a novel treatment of superior oblique myokymia. A 40-year-old woman was treated with gabapentin for this disorder with partial success and reported significant side effects including loss of libido and weight gain. After a drug holiday, memantine therapy was initiated resulting in a substantial improvement in her symptoms with far fewer side effects and stability on long-term maintenance therapy.

  17. Truncation correction for oblique filtering lines

    SciTech Connect

    Hoppe, Stefan; Hornegger, Joachim; Lauritsch, Guenter; Dennerlein, Frank; Noo, Frederic

    2008-12-15

    State-of-the-art filtered backprojection (FBP) algorithms often define the filtering operation to be performed along oblique filtering lines in the detector. A limited scan field of view leads to the truncation of those filtering lines, which causes artifacts in the final reconstructed volume. In contrast to the case where filtering is performed solely along the detector rows, no methods are available for the case of oblique filtering lines. In this work, the authors present two novel truncation correction methods which effectively handle data truncation in this case. Method 1 (basic approach) handles data truncation in two successive preprocessing steps by applying a hybrid data extrapolation method, which is a combination of a water cylinder extrapolation and a Gaussian extrapolation. It is independent of any specific reconstruction algorithm. Method 2 (kink approach) uses similar concepts for data extrapolation as the basic approach but needs to be integrated into the reconstruction algorithm. Experiments are presented from simulated data of the FORBILD head phantom, acquired along a partial-circle-plus-arc trajectory. The theoretically exact M-line algorithm is used for reconstruction. Although the discussion is focused on theoretically exact algorithms, the proposed truncation correction methods can be applied to any FBP algorithm that exposes oblique filtering lines.

  18. Truncation correction for oblique filtering lines.

    PubMed

    Hoppe, Stefan; Hornegger, Joachim; Lauritsch, Günter; Dennerlein, Frank; Noo, Frédéric

    2008-12-01

    State-of-the-art filtered backprojection (FBP) algorithms often define the filtering operation to be performed along oblique filtering lines in the detector. A limited scan field of view leads to the truncation of those filtering lines, which causes artifacts in the final reconstructed volume. In contrast to the case where filtering is performed solely along the detector rows, no methods are available for the case of oblique filtering lines. In this work, the authors present two novel truncation correction methods which effectively handle data truncation in this case. Method 1 (basic approach) handles data truncation in two successive preprocessing steps by applying a hybrid data extrapolation method, which is a combination of a water cylinder extrapolation and a Gaussian extrapolation. It is independent of any specific reconstruction algorithm. Method 2 (kink approach) uses similar concepts for data extrapolation as the basic approach but needs to be integrated into the reconstruction algorithm. Experiments are presented from simulated data of the FORBILD head phantom, acquired along a partial-circle-plus-arc trajectory. The theoretically exact M-line algorithm is used for reconstruction. Although the discussion is focused on theoretically exact algorithms, the proposed truncation correction methods can be applied to any FBP algorithm that exposes oblique filtering lines.

  19. DYNAMICAL INSTABILITIES IN HIGH-OBLIQUITY SYSTEMS

    SciTech Connect

    Tamayo, D.; Nicholson, P. D.; Burns, J. A.; Hamilton, D. P.

    2013-03-01

    High-inclination circumplanetary orbits that are gravitationally perturbed by the central star can undergo Kozai oscillations-large-amplitude, coupled variations in the orbital eccentricity and inclination. We first study how this effect is modified by incorporating perturbations from the planetary oblateness. Tremaine et al. found that, for planets with obliquities >68. Degree-Sign 875, orbits in the equilibrium local Laplace plane are unstable to eccentricity perturbations over a finite radial range and execute large-amplitude chaotic oscillations in eccentricity and inclination. In the hope of making that treatment more easily understandable, we analyze the problem using orbital elements, confirming this threshold obliquity. Furthermore, we find that orbits inclined to the Laplace plane will be unstable over a broader radial range, and that such orbits can go unstable for obliquities less than 68. Degree-Sign 875. Finally, we analyze the added effects of radiation pressure, which are important for dust grains and provide a natural mechanism for particle semimajor axes to sweep via Poynting-Robertson drag through any unstable range. For low-eccentricity orbits in the equilibrium Laplace plane, we find that generally the effect persists; however, the unstable radial range is shifted and small retrograde particles can avoid the instability altogether. We argue that this occurs because radiation pressure modifies the equilibrium Laplace plane.

  20. Secondary electron emission from a charged dielectric in the presence of normal and oblique electric fields

    NASA Astrophysics Data System (ADS)

    Javidi, B.

    1982-02-01

    The secondary electron emission coefficient was obtained for a FEP-Teflon dielectric charged with monoenergetic electrons normally incident upon the surface of the specimen. Measurements of secondary emission coefficient were done for normal and oblique incidence with different primary beam energies in the presence of normal and oblique electric fields. A collimated probing beam was directed to different points on the surface of the specimen and the released or accumulated charge was monitored using an electrometer. The measured data for different probing beam energies, different impact points and different angles of incidence were plotted vs. impact energy and impact point. Data analyzed by computer simulations to find the potential distribution on the surface of the specimen and the electric field around it, is presented and discussed.

  1. Electromagnetic diagnostic techniques for hypervelocity projectile detection, velocity measurement, and size characterization: Theoretical concept and first experimental test

    SciTech Connect

    Uhlig, W. Casey; Heine, Andreas

    2015-11-14

    A new measurement technique is suggested to augment the characterization and understanding of hypervelocity projectiles before impact. The electromagnetic technique utilizes magnetic diffusion principles to detect particles, measure velocity, and indicate relative particle dimensions. It is particularly suited for detection of small particles that may be difficult to track utilizing current characterization methods, such as high-speed video or flash radiography but can be readily used for large particle detection, where particle spacing or location is not practical for other measurement systems. In this work, particles down to 2 mm in diameter have been characterized while focusing on confining the detection signal to enable multi-particle characterization with limited particle-to-particle spacing. The focus of the paper is on the theoretical concept and the analysis of its applicability based on analytical and numerical calculation. First proof-of-principle experimental tests serve to further validate the method. Some potential applications are the characterization of particles from a shaped-charge jet after its break-up and investigating debris in impact experiments to test theoretical models for the distribution of particles size, number, and velocity.

  2. Response of the intermediate complexity Mars Climate Simulator to different obliquity angles

    NASA Astrophysics Data System (ADS)

    Segschneider, J.; Grieger, B.; Keller, H. U.; Lunkeit, F.; Kirk, E.; Fraedrich, K.; Rodin, A.; Greve, R.

    2005-05-01

    A climate model of intermediate complexity, named the Mars Climate Simulator, has been developed based on the Portable University Model of the Atmosphere (PUMA). The main goal of this new development is to simulate the climate variations on Mars resulting from the changes in orbital parameters and their impact on the layered polar terrains (also known as permanent polar ice caps). As a first step towards transient simulations over several obliquity cycles, the model is applied to simulate the dynamical and thermodynamical response of the Martian climate system to different but fixed obliquity angles. The model is forced by the annual and daily cycle of solar insolation. Experiments have been performed for obliquities of φ=15∘ (minimum), φ=25.2∘ (present), and φ=35∘ (maximum). The resulting changes in solar insolation mainly in the polar regions impact strongly on the cross-equatorial circulation which is driven by the meridional temperature gradient and steered by the Martian topography. At high obliquity, the cross-equatorial near surface flow from the winter to the summer hemisphere is strongly enhanced compared to low obliquity periods. The summer ground temperature ranges from 200 K (φ=15∘) to 250 K (φ=35∘) at 80∘N in northern summer, and from 220 K (φ=15∘) to 270 K (φ=35∘) at 80∘S in southern summer. In the atmosphere at 1 km above ground, the respective range is 195-225 K in northern summer, and 210-250 K in southern summer.

  3. Occupant kinematics and shoulder belt retention in far-side lateral and oblique collisions: a parametric study.

    PubMed

    Forman, Jason L; Lopez-Valdes, Francisco; Lessley, David J; Riley, Patrick; Sochor, Mark; Heltzel, Sara; Ash, Joseph; Perz, Rafal; Kent, Richard W; Seacrist, Thomas; Arbogast, Kristy B; Tanji, Hiromasa; Higuchi, Kazuo

    2013-11-01

    In far-side impacts, head contact with interior components is a key injury mechanism. Restraint characteristics have a pronounced influence on head motion and injury risk. This study performed a parametric examination of restraint, positioning, and collision factors affecting shoulder belt retention and occupant kinematics in far-side lateral and oblique sled tests with post mortem human subjects (PMHS). Seven PMHS were subjected to repeated tests varying the D-ring position, arm position, pelvis restraint, pre-tensioning, and impact severity. Each PMHS was subjected to four low-severity tests (6.6 g sled acceleration pulse) in which the restraint or position parameters were varied and then a single higher-severity test (14 g) with a chosen restraint configuration (total of 36 tests). Three PMHS were tested in a purely lateral (90° from frontal) impact direction; 4 were tested in an oblique impact (60° from frontal). All subjects were restrained by a 3-point seatbelt. Occupant motion was tracked with a 3D optoelectric high speed motion capture system. For all restraint configurations, the 60° oblique impact angle was associated with greater lateral head excursion than the 90° impact angle. This unexpected result reflects the increased axial rotation of the torso in the oblique impacts, which allowed the shoulder to displace more relative to the shoulder belt and thus the head to displace more relative to the sled buck. Restraint engagement of the torso and shoulder was actually greater in the purely lateral impacts than in the oblique impacts. Pretensioning significantly reduced lateral head excursion (175 mm average in the low-severity tests across all restraint configurations).

  4. Tidal evolution of the Moon from a high-obliquity, high-angular-momentum Earth.

    PubMed

    Ćuk, Matija; Hamilton, Douglas P; Lock, Simon J; Stewart, Sarah T

    2016-11-17

    In the giant-impact hypothesis for lunar origin, the Moon accreted from an equatorial circum-terrestrial disk; however, the current lunar orbital inclination of five degrees requires a subsequent dynamical process that is still unclear. In addition, the giant-impact theory has been challenged by the Moon's unexpectedly Earth-like isotopic composition. Here we show that tidal dissipation due to lunar obliquity was an important effect during the Moon's tidal evolution, and the lunar inclination in the past must have been very large, defying theoretical explanations. We present a tidal evolution model starting with the Moon in an equatorial orbit around an initially fast-spinning, high-obliquity Earth, which is a probable outcome of giant impacts. Using numerical modelling, we show that the solar perturbations on the Moon's orbit naturally induce a large lunar inclination and remove angular momentum from the Earth-Moon system. Our tidal evolution model supports recent high-angular-momentum, giant-impact scenarios to explain the Moon's isotopic composition and provides a new pathway to reach Earth's climatically favourable low obliquity.

  5. Impact modeling with Smooth Particle Hydrodynamics

    SciTech Connect

    Stellingwerf, R.F.; Wingate, C.A.

    1992-01-01

    Smooth Particle Hydrodynamics (SPH) is a new computational technique uniquely suited to computation of hypervelocity impact phenomena. This paper reviews the characteristics, philosophy, and a bit of the derivation of the method. As illustrations of the technique, several test case computations and several application computations are shown.

  6. Impact modeling with Smooth Particle Hydrodynamics

    SciTech Connect

    Stellingwerf, R.F.; Wingate, C.A.

    1992-09-01

    Smooth Particle Hydrodynamics (SPH) is a new computational technique uniquely suited to computation of hypervelocity impact phenomena. This paper reviews the characteristics, philosophy, and a bit of the derivation of the method. As illustrations of the technique, several test case computations and several application computations are shown.

  7. Influence of geophysical factors on oblique-sounder ionospheric characteristics

    SciTech Connect

    Baranets, A.N.; Blagoveshchenskaya, N.F.; Borisova, T.D.; Bubnov, V.A.

    1988-10-01

    The purpose of this paper is to study the influence of geophysical factors, including magnetoionospheric disturbances, on decameter wave propagation over extended paths using oblique sounding (OS) data, and also to compare experimental and calculated OS ionograms for various conditions of radio waver propagation (season, time of day). Variations of oblique-sounder ionospheric characteristics along a 9000 km long subauroral path for various geophysical conditions are considered. A comparison is made of experimental and calculated ionograms of oblique sounding.

  8. Hypervelocity Capability of the HYPULSE Shock-Expansion Tunnel for Scramjet Testing

    NASA Technical Reports Server (NTRS)

    Foelsche, Robert O.; Rogers, R. Clayton; Tsai, Ching-Yi; Bakos, Robert J.; Shih, Ann T.

    2001-01-01

    New hypervelocity capabilities for scramjet testing have recently been demonstrated in the HYPULSE Shock-Expansion Tunnel (SET). With NASA's continuing interests in scramjet testing at hypervelocity conditions (Mach 12 and above), a SET nozzle was designed and added to the HYPULSE facility. Results of tests conducted to establish SET operational conditions and facility nozzle calibration are presented and discussed for a Mach 15 (M15) flight enthalpy. The measurements and detailed computational fluid dynamics calculations (CFD) show the nozzle delivers a test gas with sufficiently wide core size to be suitable for free-jet testing of scramjet engine models of similar scale as, those tested in conventional low Mach number blow-down test facilities.

  9. Application of a flux-split algorithm to chemically relaxing, hypervelocity blunt-body flows

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A.

    1987-01-01

    Viscous, nonequilibrium, hypervelocity flow fields over two axisymmetric configurations are numerically simulated using a factored, implicit, flux-split algorithm. The governing gas-dynamic and species-continuity equations for laminar flow are presented. The gas-dynamics/nonequilibrium-chemistry coupling procedure is developed as part of the solution procedure and is described in detail. Numerical solutions are presented for hypervelocity flows over a hemisphere and over an axisymmetric aeroassisted orbital transfer vehicle using three different chemistry models. The gas models considered are those for an ideal gas, for a frozen gas, and for chemically relaxing air consisting of five species. The calculated results are compared with existing numerical solutions in the literature along the stagnation line of the hemisphere. The effects of free-stream Reynolds number on the nonequilibrium flow field are discussed.

  10. Appraisal of UTIAS implosion-driven hypervelocity launchers and shock tubes.

    NASA Technical Reports Server (NTRS)

    Glass, I. I.

    1972-01-01

    A critical appraisal is made of the design, research, development, and operation of the novel UTIAS implosion-driven hypervelocity launchers and shock tubes. Explosively driven (PbN6-lead azide, PETN-pentaerythritetetranitrate) implosions in detonating stoichiometric hydrogen-oxygen mixtures have been successfully developed as drivers for hypervelocity launchers and shock tubes in a safe and reusable facility. Intense loadings at very high calculated pressures, densities, and temperatures, at the implosion center, cause severe problems with projectile integrity. Misalignment of the focal point can occur and add to the difficulty in using small caliber projectiles. In addition, the extreme driving conditions cause barrel expansion, erosion, and possible gas leakage from the base to the head of the projectile which cut the predicted muzzle velocities to half or a third of the lossless calculated values. However, in the case of a shock-tube operation these difficulties are minimized or eliminated and the possibilities of approaching Jovian reentry velocities are encouraging.

  11. Conceptual Design of a Hypervelocity Asteroid Intercept Vehicle (HAIV) Flight Validation Mission

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.; Wie, Bong; Steiner, Mark; Getzandanner, Kenneth

    2013-01-01

    In this paper we present a detailed overview of the MDL study results and subsequent advances in the design of GNC algorithms for accurate terminal guidance during hypervelocity NEO intercept. The MDL study produced a conceptual con guration of the two-body HAIV and its subsystems; a mission scenario and trajectory design for a notional flight validation mission to a selected candidate target NEO; GNC results regarding the ability of the HAIV to reliably intercept small (50 m) NEOs at hypervelocity (typically greater than 10 km/s); candidate launch vehicle selection; a notional operations concept and cost estimate for the flight validation mission; and a list of topics to address during the remainder of our NIAC Phase II study.

  12. Oblique Photogrammetry and Usage on Land Administration

    NASA Astrophysics Data System (ADS)

    Kisa, A.; Ozmus, L.; Erkek, B.; Ates, H. B.; Bakici, S.

    2013-08-01

    Projects based on Geographic Information Systems (GIS) have started within the body of the General Directorate of Land Registry and Cadastre (GDLRC) by the Land Registry and Cadastre Information System (LRCIS) in the beginning of 2000s. LRCIS was followed by other projects which are Turkish National Geographic Information System (TNGIS), Continuously Operating GPS Reference Stations (CORS-TR), Geo Metadata Portal (GMP), Orthophoto Web Services, Completion of Initial Cadastre, Cadastre Renovation Project (CRP), 2B and Land Registry Achieve Information System (LRAIS). When examining the projects generated by GDLRC, it is realized that they include basic functions of land administration required for sustainable development. Sustainable development is obtained through effective land administration as is known. Nowadays, land use becomes more intense as a result of rapid population increase. The importance of land ownership has increased accordingly. At this point, the necessity of cadastre appears. In Turkey, cadastral registration is carried out by the detection of parcels. In other words, it is obtained through the division of land surface into 2D boundaries and mapping of them. However, existing land administration systems have begun to lose their efficiency while coping with rights, restrictions and responsibilities (RRRs) belonging to land which become more complicated day by day. Overlapping and interlocking constructions appear particularly in urban areas with dense housing and consequently, the problem of how to project these structures onto the surface in 2D cadastral systems has arisen. Herein, the necessity of 3D cadastre concept and 3D property data is confronted. In recent years, oblique photogrammetry, whose applications are gradually spreading, is used as an effective method for producing 3D data. In this study, applications of oblique photogrammetry and usability of oblique images as base for 3D Cadastre and Land Administration projects are examined.

  13. Simulated orbital impact of multi-wall composite structures

    NASA Technical Reports Server (NTRS)

    Walker, Eve J.; Schonberg, William P.

    1992-01-01

    This paper presents the results of an experimental investigation in which several different composite materials were tested for their ability to prevent the perforation of multiwall systems under hypervelocity projectile impact. The damage in the composite specimens is compared to the damage in aluminum specimens of similar geometry and weight caused by hypervelocity projectiles with similar impact energies. The analysis shows that using composite materials in combination with metallic materials in multiwall structures can increase the protection afforded a spacecraft against perforation by orbital debris over that provided by traditional, purely metallic multiwall structures.

  14. Oblique view of southeast corner; camera facing northwest. Mare ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Oblique view of southeast corner; camera facing northwest. - Mare Island Naval Shipyard, Defense Electronics Equipment Operating Center, I Street, terminus west of Cedar Avenue, Vallejo, Solano County, CA

  15. Insolation on exoplanets with eccentricity and obliquity

    NASA Astrophysics Data System (ADS)

    Dobrovolskis, Anthony R.

    2013-09-01

    The pattern of insolation on an extrasolar planet has profound implications for its climate and habitability. A planet’s insolation regime depends on its orbital eccentricity, the obliquity of its spin axis, its rotation rate, and its longitude of vernal equinox. For example, although a planet receives the same time-averaged insolation at both poles, the peak insolation at its poles can differ by a factor up to 27, depending on its eccentricity and equinox. This is of particular interest for planets with polar icecaps (or lakes and seas), like Mercury, Earth, and Mars (or Titan). The nearly 600 exoplanets now with known eccentricities span a wide range of eccentricity from essentially zero up to near unity; but their obliquities are still unknown, and also may range widely. Including both non-zero eccentricity and obliquity together vastly broadens the variety of global insolation patterns on extrasolar planets. This applies especially to planets in synchronous rotation, or in other spin-orbit resonances (like Mercury), which can exhibit quite complicated and unusual insolation patterns. For example, regions of eternal daylight and endless night occur only on synchronous exoplanets, whose rotation periods equal their orbital periods; but the peak and time-averaged insolation can vary by factors of at least 32 and 88, respectively, over a planet with a rotation period of half its orbital period, an eccentricity of 0.20, and an obliquity of 60°. Patterns of both mean and peak insolation display various symmetries with respect to latitude and longitude on the planet’s surface. Most of these are relatively simple and easily understood; for example, a resonant planet whose orbital period is half of an odd multiple of its rotation period (as in Mercury’s 3/2 resonance) experiences identical insolation patterns at longitudes 180° apart. However, such half-odd resonances also exhibit a totally unexpected symmetry of the time-averaged insolation with respect to the

  16. Distal oblique osteotomy for tailor's bunion.

    PubMed

    Zvijac, J E; Janecki, C J; Freeling, R M

    1991-12-01

    Thirty-six patients with a total of 50 symptomatic tailor's bunions were evaluated clinically, radiographically, and subjectively, both before and after a distal oblique osteotomy procedure was performed. Thirty-four of 36 patients were satisfied with pain relief. Radiographic measurements derived from this study were consistent with those of other studies. Avascular necrosis, nonunions, or neuroma formation were not encountered in this study. The significant advantages of this procedure are its simplicity, safety, and predictability. The procedure does not require internal fixation or postoperative immobilization.

  17. Experimental Demonstration of Plasma-Drag Acceleration of a Dust Cloud to Hypervelocities

    SciTech Connect

    Ticos, C. M.; Wang Zhehui; Wurden, G. A.; Kline, J. L.; Montgomery, D. S.; Dorf, L. A.; Shukla, P. K.

    2008-04-18

    Simultaneous acceleration of hundreds of dust particles to hypervelocities by collimated plasma flows ejected from a coaxial gun is demonstrated. Graphite and diamond grains with radii between 5 and 30 {mu}m, and flying at speeds up to 3.7 km/s, have been recorded with a high-speed camera. The observations agree well with a model for plasma-drag acceleration of microparticles much larger than the plasma screening length.

  18. Navy Lasers, Railgun, and Hypervelocity Projectile: Background and Issues for Congress

    DTIC Science & Technology

    2017-03-17

    enhancements to current and future gun systems. A hypervelocity projectile for multiple systems will allow for future technology growth while...fits within the power structure of other existing platforms. “Those are not 600-ton margin ships,” he said [meaning ships with 600 tons of growth ...Research Service 30 has grown exponentially each fiscal year. For example, the fiscal year 2017 budget request is nearly double the request for

  19. Holographic and PLIF measurements of free-flight hypervelocity flows in the AEDC Range G facility

    NASA Astrophysics Data System (ADS)

    Havener, George; Smith, Michael S.

    1992-07-01

    A laser diagnostics approach to investigating hypervelocity flows is presented which is based on pulsed laser holography (PLH) and planar laser-induced fluorescence (PLIF). PLH is used to visualize projectiles and near-wake flow fields, and holographic interferometry provides optical phase maps that are reducible to flow density. PLIF is used to visualize the distribtion of nitric oxide and to quantify number densities in planes across the wake.

  20. Experimental demonstration of plasma-drag acceleration of a dust cloud to hypervelocities.

    PubMed

    Ticoş, C M; Wang, Zhehui; Wurden, G A; Kline, J L; Montgomery, D S; Dorf, L A; Shukla, P K

    2008-04-18

    Simultaneous acceleration of hundreds of dust particles to hypervelocities by collimated plasma flows ejected from a coaxial gun is demonstrated. Graphite and diamond grains with radii between 5 and 30 microm, and flying at speeds up to 3.7 km/s, have been recorded with a high-speed camera. The observations agree well with a model for plasma-drag acceleration of microparticles much larger than the plasma screening length.