Sample records for oblique wing supersonic

  1. Oblique wing transonic transport configuration development

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Studies of transport aircraft designed for boom-free supersonic flight show the variable sweep oblique wing to be the most efficient configuration for flight at low supersonic speeds. Use of this concept leads to a configuration that is lighter, quieter, and more fuel efficient than symmetric aircraft designed for the same mission. Aerodynamic structural, weight, aeroelastic and flight control studies show the oblique wing concept to be technically feasible. Investigations are reported for wing planform and thickness, pivot design and weight estimation, engine cycle (bypass ratio), and climb, descent and reserve fuel. Results are incorporated into a final configuration. Performance, weight, and balance characteristics are evaluated. Flight control requirements are reviewed, and areas in which further research is needed are identified.

  2. Design and testing of an oblique all-wing supersonic transport

    NASA Technical Reports Server (NTRS)

    Lee, Christopher A.

    1994-01-01

    This report describes the preliminary design of an Oblique All-Wing (OAW) supersonic transport and a corresponding wind-tunnel model that was tested in the NASA Ames 9- by 7-Foot supersonic wind tunnel. The main goal was the determination of the cruise performance (lift/drag ratio) of a realistically configured OAW. To achieve an acceptable level of realism, it was necessary to consider many issues of design practicality such as the need for a viable propulsion system, adequate control surfaces, landing gear, provisions for 450 passengers, and fuel to fly 5,000 nautical miles. The aircraft had to be stable, structurally sound, and needed to fit into airports across the world. Support was directed primarily towards integration of the propulsion system, however, there were notable contributions to many aspects of the configuration design, wind tunnel model, and wind tunnel test.

  3. Large capacity oblique all-wing transport aircraft

    NASA Technical Reports Server (NTRS)

    Galloway, Thomas L.; Phillips, James A.; Kennelly, Robert A., Jr.; Waters, Mark H.

    1996-01-01

    Dr. R. T. Jones first developed the theory for oblique wing aircraft in 1952, and in subsequent years numerous analytical and experimental projects conducted at NASA Ames and elsewhere have established that the Jones' oblique wing theory is correct. Until the late 1980's all proposed oblique wing configurations were wing/body aircraft with the wing mounted on a pivot. With the emerging requirement for commercial transports with very large payloads, 450-800 passengers, Jones proposed a supersonic oblique flying wing in 1988. For such an aircraft all payload, fuel, and systems are carried within the wing, and the wing is designed with a variable sweep to maintain a fixed subsonic normal Mach number. Engines and vertical tails are mounted on pivots supported from the primary structure of the wing. The oblique flying wing transport has come to be known as the Oblique All-Wing (OAW) transport. This presentation gives the highlights of the OAW project that was to study the total concept of the OAW as a commercial transport.

  4. F-8 oblique wing structural feasibility study

    NASA Technical Reports Server (NTRS)

    Koltko, E.; Katz, A.; Bell, M. A.; Smith, W. D.; Lauridia, R.; Overstreet, C. T.; Klapprott, C.; Orr, T. F.; Jobe, C. L.; Wyatt, F. G.

    1975-01-01

    The feasibility of fitting a rotating oblique wing on an F-8 aircraft to produce a full scale manned prototype capable of operating in the transonic and supersonic speed range was investigated. The strength, aeroelasticity, and fatigue life of such a prototype are analyzed. Concepts are developed for a new wing, a pivot, a skewing mechanism, control systems that operate through the pivot, and a wing support assembly that attaches in the F-8 wing cavity. The modification of the two-place NTF-8A aircraft to the oblique wing configuration is discussed.

  5. RTJ-303: Variable geometry, oblique wing supersonic aircraft

    NASA Technical Reports Server (NTRS)

    Antaran, Albert; Belete, Hailu; Dryzmkowski, Mark; Higgins, James; Klenk, Alan; Rienecker, Lisa

    1992-01-01

    This document is a preliminary design of a High Speed Civil Transport (HSCT) named the RTJ-303. It is a 300 passenger, Mach 1.6 transport with a range of 5000 nautical miles. It features four mixed-flow turbofan engines, variable geometry oblique wing, with conventional tail-aft control surfaces. The preliminary cost analysis for a production of 300 aircraft shows that flyaway cost would be 183 million dollars (1992) per aircraft. The aircraft uses standard jet fuel and requires no special materials to handle aerodynamic heating in flight because the stagnation temperatures are approximately 130 degrees Fahrenheit in the supersonic cruise condition. It should be stressed that this aircraft could be built with today's technology and does not rely on vague and uncertain assumptions of technology advances. Included in this report are sections discussing the details of the preliminary design sequence including the mission to be performed, operational and performance constraints, the aircraft configuration and the tradeoffs of the final choice, wing design, a detailed fuselage design, empennage design, sizing of tail geometry, and selection of control surfaces, a discussion on propulsion system/inlet choice and their position on the aircraft, landing gear design including a look at tire selection, tip-over criterion, pavement loading, and retraction kinematics, structures design including load determination, and materials selection, aircraft performance, a look at stability and handling qualities, systems layout including location of key components, operations requirements maintenance characteristics, a preliminary cost analysis, and conclusions made regarding the design, and recommendations for further study.

  6. The conceptual design of a Mach 2 Oblique Flying Wing supersonic transport

    NASA Technical Reports Server (NTRS)

    Vandervelden, Alexander J. M.

    1989-01-01

    This paper is based on a performance and economics study of a Mach two oblique flying wing transport aircraft that is to replace the B747B. In order to fairly compare our configuration with the B747B an equal structural technology level is assumed. It will be shown that the oblique flying wing configuration will equal or outperform the B747 in speed, economy and comfort while a modern stability and control system will balance the aircraft and smooth out gusts. The aircraft is designed to comply with the FAR25 airworthiness requirements and FAR36 stage 3 noise regulations. Geometry, aerodynamics, stability and control parameters of the oblique flying wing transport are discussed.

  7. Oblique Wing Flights

    NASA Image and Video Library

    2018-05-09

    Flown in the mid 70's, this Oblique Wing was a large-scale R/C experimental aircraft to demonstrate the ability to pivot its wing to an oblique angle, allowing for a reduced drag penalty at transonic speeds.

  8. Pressure-sensitive paint measurements on a supersonic high-sweep oblique wing model. [conducted in the NASA Ames 9- by 7-ft Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    McLachlan, B. G.; Bell, J. H.; Park, H.; Kennelly, R. A.; Schreiner, J. A.; Smith, S. C.; Strong, J. M.; Gallery, J.; Gouterman, M.

    1995-01-01

    The pressure-sensitive paint method was used in the test of a high-sweep oblique wing model, conducted in the NASA Ames 9- by 7-ft Supersonic Wind Tunnel. Surface pressure data was acquired from both the luminescent paint and conventional pressure taps at Mach numbers between M = 1.6 and 2.0. In addition, schlieren photographs of the outer flow were used to determine the location of shock waves impinging on the model. The results show that the luminescent pressure-sensitive paint can capture both global and fine features of the static surface pressure field. Comparison with conventional pressure tap data shows good agreement between the two techniques, and that the luminescent paint data can be used to make quantitative measurements of the pressure changes over the model surface. The experiment also demonstrates the practical considerations and limitations that arise in the application of this technique under supersonic flow conditions in large-scale facilities, as well as the directions in which future research is necessary in order to make this technique a more practical wind-tunnel testing tool.

  9. Preliminary performance estimates of an oblique, all-wing, remotely piloted vehicle for air-to-air combat

    NASA Technical Reports Server (NTRS)

    Nelms, W. P., Jr.; Bailey, R. O.

    1974-01-01

    A computerized aircraft synthesis program has been used to assess the effects of various vehicle and mission parameters on the performance of an oblique, all-wing, remotely piloted vehicle (RPV) for the highly maneuverable, air-to-air combat role. The study mission consists of an outbound cruise, an acceleration phase, a series of subsonic and supersonic turns, and a return cruise. The results are presented in terms of both the required vehicle weight to accomplish this mission and the combat effectiveness as measured by turning and acceleration capability. This report describes the synthesis program, the mission, the vehicle, and results from sensitivity studies. An optimization process has been used to establish the nominal RPV configuration of the oblique, all-wing concept for the specified mission. In comparison to a previously studied conventional wing-body canard design for the same mission, this oblique, all-wing nominal vehicle is lighter in weight and has higher performance.

  10. Thin oblique airfoils at supersonic speed

    NASA Technical Reports Server (NTRS)

    Jone, Robert T

    1946-01-01

    The well-known methods of thin-airfoil theory have been extended to oblique or sweptback airfoils of finite aspect ratio moving at supersonic speeds. The cases considered thus far are symmetrical airfoils at zero lift having plan forms bounded by straight lines. Because of the conical form of the elementary flow fields, the results are comparable in simplicity to the results of the two-dimensional thin-airfoil theory for subsonic speeds. In the case of untapered airfoils swept back behind the Mach cone the pressure distribution at the center section is similar to that given by the Ackeret theory for a straight airfoil. With increasing distance from the center section the distribution approaches the form given by the subsonic-flow theory. The pressure drag is concentrated chiefly at the center section and for long wings a slight negative drag may appear on outboard sections. (author)

  11. Oblique Wing Research Aircraft on ramp

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This 1976 photograph of the Oblique Wing Research Aircraft was taken in front of the NASA Flight Research Center hangar, located at Edwards Air Force Base, California. In the photograph the noseboom, pitot-static probe, and angles-of-attack and sideslip flow vanes(covered-up) are attached to the front of the vehicle. The clear nose dome for the television camera, and the shrouded propellor for the 90 horsepower engine are clearly seen. The Oblique Wing Research Aircraft was a small, remotely piloted, research craft designed and flight tested to look at the aerodynamic characteristics of an oblique wing and the control laws necessary to achieve acceptable handling qualities. NASA Dryden Flight Research Center and the NASA Ames Research Center conducted research with this aircraft in the mid-1970s to investigate the feasibility of flying an oblique wing aircraft.

  12. Integrated Aerodynamic and Control System Design of Oblique Wing Aircraft. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Morris, Stephen James

    1990-01-01

    An efficient high speed aircraft design must achieve a high lift to drag ratio at transonic and supersonic speeds. In 1952 Dr. R. T. Jones proved that for any flight Mach number minimum drag at a fixed lift is achieved by an elliptic wing planform with an appropriate oblique sweep angle. Since then, wind tunnel tests and numerical flow models have confirmed that the compressibility drag of oblique wing aircraft is lower than similar symmetrical sweep designs. At oblique sweep angles above thirty degrees the highly asymmetric planform gives rise to aerodynamic and inertia couplings which affect stability and degrade the aircraft's handling qualities. In the case of the NASA-Rockwell Oblique Wing Research Aircraft, attempts to improve the handling qualities by implementing a stability augmentation system have produced unsatisfactory results because of an inherent lack of controllability in the proposed design. The present work focuses on improving the handling qualities of oblique wing aircraft by including aerodynamic configuration parameters as variables in the control system synthesis to provide additional degrees of freedom with which to further decouple the aircraft's response. Handling qualities are measured using a quadratic cost function identical to that considered in optimal control problems, but the controller architecture is not restricted to full state feedback. An optimization procedure is used to simultaneously solve for the aircraft configuration and control gains which maximize a handling qualities measure, while meeting imposed constraints on trim. In some designs wing flexibility is also modeled and reduced order controllers are implemented. Oblique wing aircraft synthesized by this integrated design method show significant improvement in handling qualities when compared to the originally proposed closed loop aircraft. The integrated design synthesis method is then extended to show how handling qualities may be traded for other types of mission

  13. Measurements of Supersonic Wing Tip Vortices

    NASA Technical Reports Server (NTRS)

    Smart, Michael K.; Kalkhoran, Iraj M.; Benston, James

    1994-01-01

    An experimental survey of supersonic wing tip vortices has been conducted at Mach 2.5 using small performed 2.25 chords down-stream of a semi-span rectangular wing at angle of attack of 5 and 10 degrees. The main objective of the experiments was to determine the Mach number, flow angularity and total pressure distribution in the core region of supersonic wing tip vortices. A secondary aim was to demonstrate the feasibility of using cone probes calibrated with a numerical flow solver to measure flow characteristics at supersonic speeds. Results showed that the numerically generated calibration curves can be used for 4-hole cone probes, but were not sufficiently accurate for conventional 5-hole probes due to nose bluntness effects. Combination of 4-hole cone probe measurements with independent pitot pressure measurements indicated a significant Mach number and total pressure deficit in the core regions of supersonic wing tip vortices, combined with an asymmetric 'Burger like' swirl distribution.

  14. Design and testing of low sonic boom configurations and an oblique all-wing supersonic transport

    NASA Technical Reports Server (NTRS)

    Lee, Christopher A.

    1995-01-01

    From December 1991 to June 1992, applied aerodynamic research support was given to the team working on Low Sonic Boom configurations in the RAC branch at NASA Ames Research Center. This team developed two different configurations: a conventional wing-tail and a canard wing, in an effort to reduce the overpressure of shock waves and the accompanying noise which are projected to the ground from supersonic civil transport aircraft. A generic description of this sensitive technology is given.

  15. Oblique-wing research airplane motion simulation with decoupling control laws

    NASA Technical Reports Server (NTRS)

    Kempel, Robert W.; Mc Neill, Walter E.; Maine, Trindel A.

    1988-01-01

    A large piloted vertical motion simulator was used to assess the performance of a preliminary decoupling control law for an early version of the F-8 oblique wing research demonstrator airplane. Evaluations were performed for five discrete flight conditions, ranging from low-altitude subsonic Mach numbers to moderate-altitude supersonic Mach numbers. Asymmetric sideforce as a function of angle of attack was found to be the primary cause of both the lateral acceleration noted in pitch and the tendency to roll into left turns and out of right turns. The flight control system was shown to be effective in generally decoupling the airplane and reducing the lateral acceleration in pitch maneuvers.

  16. Supersonic aerodynamics of delta wings

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.

    1988-01-01

    Through the empirical correlation of experimental data and theoretical analysis, a set of graphs has been developed which summarize the inviscid aerodynamics of delta wings at supersonic speeds. The various graphs which detail the aerodynamic performance of delta wings at both zero-lift and lifting conditions were then employed to define a preliminary wing design approach in which both the low-lift and high-lift design criteria were combined to define a feasible design space.

  17. Modal control of an oblique wing aircraft

    NASA Technical Reports Server (NTRS)

    Phillips, James D.

    1989-01-01

    A linear modal control algorithm is applied to the NASA Oblique Wing Research Aircraft (OWRA). The control law is evaluated using a detailed nonlinear flight simulation. It is shown that the modal control law attenuates the coupling and nonlinear aerodynamics of the oblique wing and remains stable during control saturation caused by large command inputs or large external disturbances. The technique controls each natural mode independently allowing single-input/single-output techniques to be applied to multiple-input/multiple-output systems.

  18. Effect of wing flexibility on the experimental aerodynamic characteristics of an oblique wing

    NASA Technical Reports Server (NTRS)

    Hopkins, E. J.; Yee, S. C.

    1977-01-01

    A solid-aluminum oblique wing was designed to deflect considerably under load so as to relieve the asymmetric spanwise stalling that is characteristic of this type of wing by creating washout on the trailing wing panel and washin on the leading wing panel. Experimental forces, and pitching, rolling and yawing moments were measured with the wing mounted on a body of revolution. In order to vary the dynamic pressure, measurements were made at several unit Reynolds numbers, and at Mach numbers. The wing was investigated when unswept (at subsonic Mach numbers only) and when swept 45 deg, 50 deg, and 60 deg. The wing was straight tapered in planform, had an aspect ratio of 7.9 (based on the unswept span), and a profile with a maximum thickness of 4 percent chord. The results substantiate the concept that an oblique wing designed with the proper amount of flexibility self relieves itself of asymmetric spanwise stalling and the associated nonlinear moment curves.

  19. Conceptual Final Paper on the Preliminary Design of an Oblique Flying Wing SST

    NASA Technical Reports Server (NTRS)

    Van der Velden, Alexander J. M.

    1987-01-01

    A conceptual Oblique Flying Wing Supersonic Transport Aircraft (OFW, or surfplane because of its shape) was first proposed in 1957. It was reintroduced in 1987 in view of the emerging technology of artificial stabilization. This paper is based on the performance and economics study of an M2 B747-100B replacement aircraft. In order to make a fair comparison of this configuration with the B747, an end-sixties structural technology level is assumed. It is shown that a modern stability and control system can balance the aircraft and smooth out gusts, and that the OFW configuration equals or outperforms the B747 in speed, economy and comfort.

  20. An Analytical Study for Subsonic Oblique Wing Transport Concept

    NASA Technical Reports Server (NTRS)

    Bradley, E. S.; Honrath, J.; Tomlin, K. H.; Swift, G.; Shumpert, P.; Warnock, W.

    1976-01-01

    The oblique wing concept has been investigated for subsonic transport application for a cruise Mach number of 0.95. Three different mission applications were considered and the concept analyzed against the selected mission requirements. Configuration studies determined the best area of applicability to be a commercial passenger transport mission. The critical parameter for the oblique wing concept was found to be aspect ratio which was limited to a value of 6.0 due to aeroelastic divergence. Comparison of the concept final configuration was made with fixed winged configurations designed to cruise at Mach 0.85 and 0.95. The crossover Mach number for the oblique wing concept was found to be Mach 0.91 for takeoff gross weight and direct operating cost. Benefits include reduced takeoff distance, installed thrust and mission block fuel and improved community noise characteristics. The variable geometry feature enables the final configuration to increase range by 10% at Mach 0.712 and to increase endurance by as much as 44%.

  1. Supersonic wing and wing-body shape optimization using an adjoint formulation

    NASA Technical Reports Server (NTRS)

    Reuther, James; Jameson, Antony

    1995-01-01

    This paper describes the implementation of optimization techniques based on control theory for wing and wing-body design of supersonic configurations. The work represents an extension of our earlier research in which control theory is used to devise a design procedure that significantly reduces the computational cost by employing an adjoint equation. In previous studies it was shown that control theory could be used toeviseransonic design methods for airfoils and wings in which the shape and the surrounding body-fitted mesh are both generated analytically, and the control is the mapping function. The method has also been implemented for both transonic potential flows and transonic flows governed by the Euler equations using an alternative formulation which employs numerically generated grids, so that it can treat more general configurations. Here results are presented for three-dimensional design cases subject to supersonic flows governed by the Euler equation.

  2. A lift-cancellation technique in linearized supersonic-wing theory

    NASA Technical Reports Server (NTRS)

    Mirels, Harold

    1951-01-01

    A lift-cancellation technique is presented for determining load distributions on thin wings at supersonic speeds. The loading on a wing having a prescribed plan form is expressed as the loading of a known related wing (such as a two-dimensional or triangular wing) minus the loading of an appropriate cancellation wing. The lift-cancellation technique can be used to find the loading on a large variety of wings. Applications to swept wings having curvilinear plan forms and to wings having reentrant side edges are indicated.

  3. A piloted evaluation of an oblique-wing research aircraft motion simulation with decoupling control laws

    NASA Technical Reports Server (NTRS)

    Kempel, Robert W.; Mcneill, Walter E.; Gilyard, Glenn B.; Maine, Trindel A.

    1988-01-01

    The NASA Ames Research Center developed an oblique-wing research plane from NASA's digital fly-by-wire airplane. Oblique-wing airplanes show large cross-coupling in control and dynamic behavior which is not present on conventional symmetric airplanes and must be compensated for to obtain acceptable handling qualities. The large vertical motion simulator at NASA Ames-Moffett was used in the piloted evaluation of a proposed flight control system designed to provide decoupled handling qualities. Five discrete flight conditions were evaluated ranging from low altitude subsonic Mach numbers to moderate altitude supersonic Mach numbers. The flight control system was effective in generally decoupling the airplane. However, all participating pilots objected to the high levels of lateral acceleration encountered in pitch maneuvers. In addition, the pilots were more critical of left turns (in the direction of the trailing wingtip when skewed) than they were of right turns due to the tendency to be rolled into the left turns and out of the right turns. Asymmetric side force as a function of angle of attack was the primary cause of lateral acceleration in pitch. Along with the lateral acceleration in pitch, variation of rolling and yawing moments as functions of angle of attack caused the tendency to roll into left turns and out of right turns.

  4. The calculation of downwash behind supersonic wings with an application to triangular plan forms

    NASA Technical Reports Server (NTRS)

    Lomax, Harvard; Sluder, Loma; Heaslet, Max A

    1950-01-01

    A method is developed consistent with the assumptions of small perturbation theory which provides a means of determining the downwash behind a wing in supersonic flow for a known load distribution. The analysis is based upon the use of supersonic doublets which are distributed over the plan form and wake of the wing in a manner determined from the wing loading. The equivalence in subsonic and supersonic flow of the downwash at infinity corresponding to a given load distribution is proved.

  5. Propulsive-lift concepts for improved low-speed performance of supersonic cruise arrow-wing configurations

    NASA Technical Reports Server (NTRS)

    Coe, P. L., Jr.

    1976-01-01

    Low-aspect-ratio highly swept arrow-wing supersonic aircraft possess high levels of aerodynamic efficiency at supersonic cruising speeds, however, their inherently poor low-speed lift characteristics require design constraints that compromise supersonic performance. The data discussed in this paper were obtained in wind tunnel tests with supersonic crusing configurations, in which propulsive-lift concepts were used to improve low-speed performance. The data show that the increased low-speed lift provided by propulsive-lift permits reduction of both wing size and installed thrust. This yields a batter engine/airframe match for improved supersonic cruise efficiency and range, while still providing acceptable take-off field lengths.

  6. Aeroelastic passive control optimization of supersonic composite wing with external stores

    NASA Astrophysics Data System (ADS)

    Sulaeman, E.; Abdullah, N. A.; Kashif, S. M.

    2017-03-01

    This paper provides a study on passive aeroelastic control optimization, by means of aeroelastic tailoring, of a composite supersonic wing equipped with external stores. The objective of the optimization is to minimize wing weight by considering the aeroelastic flutter and divergence instability speeds as constraints at several flight altitudes. The optimization variables are the composite ply angle and skin thickness of the wing box, wing rib and its control surfaces. The aeroelastic instability speed is set as constraint such that it should be higher than the flutter speed of a metallic base line model of supersonic wing having previously published. A finite element analysis is applied to determine the stiffness and mass matric of the wing and its multi stores. The boundary element method in the form of doublet lattice method is used to model the unsteady aerodynamic load. The results indicate that, for the present wing configuration, the high modulus Graphite/Epoxy composite provides a desired higher flutter speed and lower wing weight compare to that of Kevlar/Epoxy composite as well as the base line metallic wing materials. The aeroelastic boundary thus can be enlarged to higher speed zone and in the same time reduce the structural weight which is important for a further optimization process.

  7. Three-dimensional aerodynamic shape optimization of supersonic delta wings

    NASA Technical Reports Server (NTRS)

    Burgreen, Greg W.; Baysal, Oktay

    1994-01-01

    A recently developed three-dimensional aerodynamic shape optimization procedure AeSOP(sub 3D) is described. This procedure incorporates some of the most promising concepts from the area of computational aerodynamic analysis and design, specifically, discrete sensitivity analysis, a fully implicit 3D Computational Fluid Dynamics (CFD) methodology, and 3D Bezier-Bernstein surface parameterizations. The new procedure is demonstrated in the preliminary design of supersonic delta wings. Starting from a symmetric clipped delta wing geometry, a Mach 1.62 asymmetric delta wing and two Mach 1. 5 cranked delta wings were designed subject to various aerodynamic and geometric constraints.

  8. Leeward flow over delta wings at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Szodruch, J. G.

    1980-01-01

    A survey was made of the parameters affecting the development of the leeward symmetric separated flow over slender delta wings immersed in a supersonic stream. The parameters included Mach number, Reynolds number, angle of attack, leading-edge sweep angle, and body cross-sectional shape, such that subsonic and supersonic leading-edge flows are encountered. It was seen that the boundaries between the various flow regimes existing about the leeward surface may conveniently be represented on a diagram with the components of angle of attack and Mach number normal to the leading edge as governing parameters.

  9. Generalized indical forces on deforming rectangular wings in supersonic flight

    NASA Technical Reports Server (NTRS)

    Lomax, Harvard; Fuller, Franklyn B; Sluder, Loma

    1955-01-01

    A method is presented for determining the time-dependent flow over a rectangular wing moving with a supersonic forward speed and undergoing small vertical distortions expressible as polynomials involving spanwise and chordwise distances. The solution for the velocity potential is presented in a form analogous to that for steady supersonic flow having the familiar "reflected area" concept discovered by Evvard. Particular attention is paid to indicial-type motions and results are expressed in terms of generalized indicial forces. Numerical results for Mach numbers equal to 1.1 and 1.2 are given for polynomials of the first and fifth degree in the chordwise and spanwise directions, respectively, on a wing having an aspect ratio of 4.

  10. Oblique Wing Research Aircraft on ramp

    NASA Image and Video Library

    1976-08-02

    This 1976 photograph of the Oblique Wing Research Aircraft was taken in front of the NASA Flight Research Center hangar, located at Edwards Air Force Base, California. In the photograph the noseboom, pitot-static probe, and angles-of-attack and sideslip flow vanes(covered-up) are attached to the front of the vehicle. The clear nose dome for the television camera, and the shrouded propellor for the 90 horsepower engine are clearly seen.

  11. Experimental Aerodynamic Characteristics of an Oblique Wing for the F-8 OWRA

    NASA Technical Reports Server (NTRS)

    Kennelly, Robert A., Jr.; Carmichael, Ralph L.; Smith, Stephen C.; Strong, James M.; Kroo, Ilan M.

    1999-01-01

    An experimental investigation was conducted during June-July 1987 in the NASA Ames 11-Foot Transonic Wind Tunnel to study the aerodynamic performance and stability and control characteristics of a 0.087-scale model of an F-8 airplane fitted with an oblique wing. This effort was part of the Oblique Wing Research Aircraft (OWRA) program performed in conjunction with Rockwell International. The Ames-designed, aspect ratio 10.47, tapered wing used specially designed supercritical airfoils with 0.14 thickness/chord ratio at the root and 0.12 at the 85% span location. The wing was tested at two different mounting heights above the fuselage. Performance and longitudinal stability data were obtained at sweep angles of 0deg, 30deg, 45deg, 60deg, and 65deg at Mach numbers ranging from 0.30 to 1.40. Reynolds number varied from 3.1 x 10(exp 6)to 5.2 x 10(exp 6), based on the reference chord length. Angle of attack was varied from -5deg to 18deg. The performance of this wing is compared with that of another oblique wing, designed by Rockwell International, which was tested as part of the same development program. Lateral-directional stability data were obtained for a limited combination of sweep angles and Mach numbers. Sideslip angle was varied from -5deg to +5deg. Landing flap performance was studied, as were the effects of cruise flap deflections to achieve roll trim and tailor wing camber for various flight conditions. Roll-control authority of the flaps and ailerons was measured. A novel, deflected wing tip was evaluated for roll-control authority at high sweep angles.

  12. FACILITY 814, COURTYARD AND SOUTHEAST WING, OBLIQUE VIEW FACING SOUTH. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 814, COURTYARD AND SOUTHEAST WING, OBLIQUE VIEW FACING SOUTH. - Schofield Barracks Military Reservation, Bachelor Officers' Quarters Type, Between Grimes & Tidball Streets near Ayres Avenue, Wahiawa, Honolulu County, HI

  13. Study of supersonic wings employing the attainable leading-edge thrust concept

    NASA Technical Reports Server (NTRS)

    Middleton, W. D.

    1982-01-01

    A theoretical study was made of supersonic wing geometries at Mach 1.8, using the attainable leading-edge thrust concept. The attainable thrust method offers a powerful means to improve overall aerodynamic efficiency by identifying wing leading-edge geometries that promote attached flow and by defining a local angle-of-attack range over which attached flow may be obtained. The concept applies to flat and to cambered wings, which leads to the consideration of drooped-wing leading edges for attached flow at high lift coefficients.

  14. Theoretical characteristics in supersonic flow of two types of control surfaces on triangular wings

    NASA Technical Reports Server (NTRS)

    Tucker, Warren A; Nelson, Robert L

    1949-01-01

    Methods based on the linearized theory for supersonic flow were used to find the characteristics of two types of control surfaces on thin triangular wings. The first type, the constant-chord partial-span flap, was considered to extend either outboard from the center of the wing or inboard from the wing tip. The second type, the full-triangular-tip flap, was treated only for the case in which the Mach number component normal to the leading edge is supersonic. For each type, expressions were found for the lift, rolling-moment, pitching-moment, and hinge-moment characteristics.

  15. FACILITY 846, TOILET AND SHOWER WINGS, QUADRANGLE J, OBLIQUE VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 846, TOILET AND SHOWER WINGS, QUADRANGLE J, OBLIQUE VIEW FACING WEST. - Schofield Barracks Military Reservation, Quadrangles I & J Barracks Type, Between Wright-Smith & Capron Avenues near Williston Avenue, Wahiawa, Honolulu County, HI

  16. Subsonic and supersonic aerodynamic characteristics of a supersonic cruise fighter model with a twisted and cambered wing with 74 deg sweep

    NASA Technical Reports Server (NTRS)

    Morris, O. A.

    1977-01-01

    A wind tunnel investigation has been conducted to determine the longitudinal and lateral aerodynamic characteristics of a model of a supersonic cruise fighter configuration with a design Mach number of 2.60. The configuration is characterized by a highly swept arrow wing twisted and cambered to minimize supersonic drag due to lift, twin wing mounted vertical tails, and an aft mounted integral underslung duel-engine pod. The investigation also included tests of the configuration with larger outboard vertical tails and with small nose strakes.

  17. Effect of wing bend on the experimental force and moment characteristics of an oblique wing

    NASA Technical Reports Server (NTRS)

    Hopkins, E. J.; Nelson, E. R.

    1976-01-01

    Static longitudinal and lateral/directional force and moment characteristics are presented for an elliptical oblique wing mounted on top of a Sears-Haack body of revolution. The wing had an aspect ratio of 6 (based on the unswept span) and was tested at various sweep angles relative to the body axis ranging from 0 to 60 deg. In an attempt to create more symmetrical spanwise wing stalling characteristics, both wing panels were bent upward to produce washout on the trailing wing panel and washing on the leading wing panel. Small fluorescent tufts were attached to the wing surface to indicate the stall progression on the wing. The tests were conducted throughout a Mach number range from 0.6 to 1.4 at a constant unit Reynolds number of 8.2 x 10 per meter. The test results indicate that upward bending of the wing panels had only a small effect on the linearity of the moment curves and would require an impractical wing-pivot location at low lift to eliminate the rolling moment resulting from this bending.

  18. Transonic wind tunnel test of a 14 percent thick oblique wing

    NASA Technical Reports Server (NTRS)

    Kennelly, Robert A., Jr.; Kroo, Ilan M.; Strong, James M.; Carmichael, Ralph L.

    1990-01-01

    An experimental investigation was conducted at the ARC 11- by 11-Foot Transonic Wind Tunnel as part of the Oblique Wing Research Aircraft Program to study the aerodynamic performance and stability characteristics of a 0.087-scale model of an F-8 airplane fitted with an oblique wing designed by Rockwell International. The 10.3 aspect ratio, straight-tapered wing of 0.14 thickness/chord ratio was tested at two different mounting heights above the fuselage. Additional tests were conducted to assess low-speed behavior with and without flaps, aileron effectiveness at representative flight conditions, and transonic drag divergence with 0 degree wing sweep. Longitudinal stability data were obtained at sweep angles of 0, 30, 45, 60, and 65 degrees, at Mach numbers ranging from 0.25 to 1.40. Test Reynolds numbers varied from 3.2 to 6.6 x 10 exp 6/ft. and angle of attack ranged from -5 to +18 degrees. Most data were taken at zero sideslip, but a few runs were at sideslip angles of +/- 5 degrees. The raised wing position proved detrimental overall, although side force and yawing moment were reduced at some conditions. Maximum lift coefficient with the flaps deflected was found to fall short of the value predicted in the preliminary design document. The performance and trim characteristics of the present wing are generally inferior to those obtained for a previously tested wing designed at ARC.

  19. Winglet effectiveness on low aspect ratio wings at supersonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Keenan, J. A.; Kuhlman, J. M.

    1991-01-01

    A computational study has been conducted on two wings of aspect ratios 1.244 and 1.865, each having 65-deg leading edge sweep angles, to determine the effects of nonplanar winglets at supersonic Mach numbers. A design Mach number of 1.62 was selected. The winglets studied were parametrically varied in alignment, length, sweep, camber, and thickness to determine the effects of winglet geometry on predicted performance. For the computational analysis, an existing Euler code that employed a marching technique was used. The results indicated that the possibility existed for wing-winglet geometries to equal the performance of wing-alone bodies in supersonic flows with both bodies having the same semispan length. The performance parameters of main interest were the lift-to-pressure drag ratio and the pressure drag coefficient as functions of lift coefficient. The lift coefficient range for this study was from -0.20 to 0.70 with emphasis on the range of 0.10 to 0.22.

  20. Slot Nozzle Effects for Reduced Sonic Boom on a Generic Supersonic Wing Section

    NASA Technical Reports Server (NTRS)

    Caster, Raymond S.

    2010-01-01

    NASA has conducted research programs to reduce or eliminate the operational restrictions of supersonic aircraft over populated areas. Restrictions are due to the disturbance from the sonic boom, caused by the coalescence of shock waves formed off the aircraft. Results from two-dimensional computational fluid dynamic (CFD) analyses (performed on a baseline Mach 2.0 nozzle in a simulated Mach 2.2 flow) indicate that over-expanded and under-expanded operation of the nozzle has an effect on the N-wave boom signature. Analyses demonstrate the feasibility of reducing the magnitude of the sonic boom N-wave by controlling the nozzle plume interaction with the nozzle boat tail shock structure. This work was extended to study the impact of integrating a high aspect ratio exhaust nozzle or long slot nozzle on the trailing edge of a supersonic wing. The nozzle is operated in a highly under-expanded condition, creating a large exhaust plume and a shock at the trailing edge of the wing. This shock interacts with and suppresses the expansion wave caused by the wing, a major contributor to the sonic boom signature. The goal was to reduce the near field pressures caused by the expansion using a slot nozzle located at the wing trailing edge. Results from CFD analysis on a simulated wing cross-section and a slot nozzle indicate potential reductions in sonic boom signature compared to a baseline wing with no propulsion or trailing edge exhaust. Future studies could investigate if this effect could be useful on a supersonic aircraft for main propulsion, auxiliary propulsion, or flow control.

  1. Supersonic Wing Optimization Using SpaRibs

    NASA Technical Reports Server (NTRS)

    Locatelli, David; Mulani, Sameer B.; Liu, Qiang; Tamijani, Ali Y.; Kapania, Rakesh K.

    2014-01-01

    This research investigates the advantages of using curvilinear spars and ribs, termed SpaRibs, to design a supersonic aircraft wing-box in comparison to the use of classic design concepts that employ straight spars and ribs. The objective is to achieve a more efficient load-bearing mechanism and to passively control the deformation of the structure under the flight loads. Moreover, the use of SpaRibs broadens the design space and allows for natural frequencies and natural mode shape tailoring. The SpaRibs concept is implemented in a new optimization MATLAB-based framework referred to as EBF3SSWingOpt. This optimization scheme performs both the sizing and the shaping of the internal structural elements, connecting the optimizer with the analysis software. The shape of the SpaRibs is parametrically defined using the so called Linked Shape method. Each set of SpaRibs is placed in a one by one square domain of the natural space. The set of curves is subsequently transformed in the physical space for creating the wing structure geometry layout. The shape of each curve of each set is unique; however, mathematical relations link the curvature in an effort to reduce the number of design variables. The internal structure of a High Speed Commercial Transport aircraft concept developed by Boeing is optimized subjected to stress, subsonic flutter and supersonic flutter constraints. The results show that the use of the SpaRibs allows for the reduction of the aircraft's primary structure weight without violating the constraints. A weight reduction of about 15 percent is observed.

  2. Evaluation of structural design concepts for an arrow-wing supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Davis, G. W.

    1977-01-01

    An analytical study was performed to determine the best structural approach for design of primary wing and fuselage structure of a Mach 2.7 arrow wing supersonic cruise aircraft. Concepts were evaluated considering near term start of design. Emphasis was placed on the complex interactions between thermal stress, static aeroelasticity, flutter, fatigue and fail safe design, static and dynamic loads, and the effects of variations in structural arrangements, concepts and materials on these interactions. Results indicate that a hybrid wing structure incorporating low profile convex beaded and honeycomb sandwich surface panels of titanium alloy 6Al-4V were the most efficient. The substructure includes titanium alloy spar caps reinforced with boron polyimide composites. The fuselage shell consists of hat stiffened skin and frame construction of titanium alloy 6Al-4V. A summary of the study effort is presented, and a discussion of the overall logic, design philosophy and interaction between the analytical methods for supersonic cruise aircraft design are included.

  3. Wing planform effects at supersonic speeds for an advanced fighter configuration

    NASA Technical Reports Server (NTRS)

    Wood, R. M.; Miller, D. S.

    1984-01-01

    Four advanced fighter configurations, which differed in wing planform and airfoil shape, were investigated in the Langley Unitary Plan Wind Tunnel at Mach numbers of 1.60, 1.80, 2.00, and 2.16. Supersonic data were obtained on the four uncambered wings, which were each attached to a single fighter fuselage. The fuselage geometry varied in cross-sectional shape and had two side-mounted, flow-through, half-axisymmetric inlets. Twin vertical tails were attached to the fuselage. The four planforms tested were a 65 deg delta wing, a combination of a 20 deg trapezoidal wing and a 45 deg horizontal tail, a 70 deg/30 deg cranked wing, and a 70 deg/66 deg crank wing, where the angle values refer to the leading-edge sweep angle of the lifting-surface planform. Planform effects on a single fuselage representative of an advanced fighter aircraft were studied. Results show that the highly swept cranked wings exceeded the aerodynamic performance levels, at low lift coefficients, of the 65 deg delta wing and the 20 deg trapezoidal wing at trimmed and untrimmed conditions.

  4. Exploiting Formation Flying for Fuel Saving Supersonic Oblique Wing Aircraft

    DTIC Science & Technology

    2007-07-01

    used and developed during recent wing / winglet / morphing design programmes (Refs.13-14). By exploiting this method, we have assessed the aerodynamics...with winglets ”, AIAA-2006-3460. 25th Applied Aero Conference, San Francisco, June 2006. 15. NANGIA, R.K., PALMER, M.E., “Formation Flying of Commercial

  5. Nonlinear interaction between a pair of oblique modes in a supersonic mixing layer: Long-wave limit

    NASA Technical Reports Server (NTRS)

    Balsa, Thomas F.; Gartside, James

    1995-01-01

    The nonlinear interaction between a pair of symmetric, oblique, and spatial instability modes is studied in the long-wave limit using asymptotic methods. The base flow is taken to be a supersonic mixing layer whose Mach number is such that the corresponding vortex sheet is marginally stable according to Miles' criterion. It is shown that the amplitude of the mode obeys a nonlinear integro-differential equation. Numerical solutions of this equation show that, when the obliqueness angle is less than pi/4, the effect of the nonlinearity is to enhance the growth rate of the instability. The solution terminates in a singularity at a finite streamwise location. This result is reminiscent of that obtained in the vicinity of the neutral point by other authors in several different types of flows. On the other hand, when the obliqueness angle is more than pi/4, the streamwise development of the amplitude is characterized by a series of modulations. This arises from the fact that the nonlinear term in the amplitude equation may be either stabilizing or destabilizing, depending on the value of the streamwise coordinate. However, even in this case the amplitude of the disturbance increases, though not as rapidly as in the case for which the angle is less than pi/4. Quite generally then, the nonlinear interaction between two oblique modes in a supersonic mixing layer enhances the growth of the disturbance.

  6. OBLIQUE VIEW OF SECOND STORY PORTION OF SOUTHWEST WING OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE VIEW OF SECOND STORY PORTION OF SOUTHWEST WING OF RECREATION CENTER WITH GRADUATED SCALE IN 1' INCREMENTS. NOTE THE STEPS UP FROM THE ENTRANCE TERRACE TO THE LANDING AND DOORWAY TO THE SECOND FLOOR (RIGHT). VIEW FACING NORTH - U.S. Naval Base, Pearl Harbor, Bloch Recreation Center & Arena, Between Center Drive & North Road near Nimitz Gate, Pearl City, Honolulu County, HI

  7. Steady/unsteady aerodynamic analysis of wings at subsonic, sonic and supersonic Mach numbers using a 3D panel method

    NASA Astrophysics Data System (ADS)

    Cho, Jeonghyun; Han, Cheolheui; Cho, Leesang; Cho, Jinsoo

    2003-08-01

    This paper treats the kernel function of an integral equation that relates a known or prescribed upwash distribution to an unknown lift distribution for a finite wing. The pressure kernel functions of the singular integral equation are summarized for all speed range in the Laplace transform domain. The sonic kernel function has been reduced to a form, which can be conveniently evaluated as a finite limit from both the subsonic and supersonic sides when the Mach number tends to one. Several examples are solved including rectangular wings, swept wings, a supersonic transport wing and a harmonically oscillating wing. Present results are given with other numerical data, showing continuous results through the unit Mach number. Computed results are in good agreement with other numerical results.

  8. Estimation of wing nonlinear aerodynamic characteristics at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Carlson, H. W.; Mack, R. J.

    1980-01-01

    A computational system for estimation of nonlinear aerodynamic characteristics of wings at supersonic speeds was developed and was incorporated in a computer program. This corrected linearized theory method accounts for nonlinearities in the variation of basic pressure loadings with local surface slopes, predicts the degree of attainment of theoretical leading edge thrust, and provides an estimate of detached leading edge vortex loadings that result when the theoretical thrust forces are not fully realized.

  9. Development of the triplet singularity for the analysis of wings and bodies in supersonic flow

    NASA Technical Reports Server (NTRS)

    Woodward, F. A.

    1981-01-01

    A supersonic triplet singularity was developed which eliminates internal waves generated by panels having supersonic edges. The triplet is a linear combination of source and vortex distributions which gives directional properties to the perturbation flow field surrounding the panel. The theoretical development of the triplet singularity is described together with its application to the calculation of surface pressures on wings and bodies. Examples are presented comparing the results of the new method with other supersonic methods and with experimental data.

  10. Wing-section optimization for supersonic viscous flow

    NASA Technical Reports Server (NTRS)

    Item, Cem C.; Baysal, Oktay (Editor)

    1995-01-01

    To improve the shape of a supersonic wing, an automated method that also includes higher fidelity to the flow physics is desirable. With this impetus, an aerodynamic optimization methodology incorporating thin-layer Navier-Stokes equations and sensitivity analysis had been previously developed. Prior to embarking upon the wind design task, the present investigation concentrated on testing the feasibility of the methodology, and the identification of adequate problem formulations, by defining two-dimensional, cost-effective test cases. Starting with two distinctly different initial airfoils, two independent shape optimizations resulted in shapes with similar features: slightly cambered, parabolic profiles with sharp leading- and trailing-edges. Secondly, the normal section to the subsonic portion of the leading edge, which had a high normal angle-of-attack, was considered. The optimization resulted in a shape with twist and camber which eliminated the adverse pressure gradient, hence, exploiting the leading-edge thrust. The wing section shapes obtained in all the test cases had the features predicted by previous studies. Therefore, it was concluded that the flowfield analyses and sensitivity coefficients were computed and fed to the present gradient-based optimizer correctly. Also, as a result of the present two-dimensional study, suggestions were made for the problem formulations which should contribute to an effective wing shape optimization.

  11. The influence of flow parameters on the transition to turbulence in supersonic boundary layer on swept wing

    NASA Astrophysics Data System (ADS)

    Semionov, N. V.; Yermolaev, Yu. G.; Kosinov, A. D.; Dryasov, A. D.; Semenov, A. N.; Yatskikh, A. A.

    2016-10-01

    The paper is devoted to an experimental study of laminar-turbulent transition in a three-dimensional supersonic boundary layer. The experiments were conducted at the low nose supersonic wind tunnel T-325 of ITAM at Mach numbers M=2 - 4. Model is a symmetrical wing with a 45° sweep angle, a 3 percent-thick circular-arc airfoil. The influence of flow parameters, such as the Mach number, unit Reynolds number, angle of attack, level of perturbations on the transitions to turbulence are on the consideration. Transition Reynolds numbers are obtained. Analysis of all obtained data allow to determine reliable value of Retr of swept wing supersonic boundary layer, that especially important at consideration of experiments fulfilled at different flow conditions in different wind tunnels.

  12. Effect of leading-edge load constraints on the design and performance of supersonic wings

    NASA Technical Reports Server (NTRS)

    Darden, C. M.

    1985-01-01

    A theoretical and experimental investigation was conducted to assess the effect of leading-edge load constraints on supersonic wing design and performance. In the effort to delay flow separation and the formation of leading-edge vortices, two constrained, linear-theory optimization approaches were used to limit the loadings on the leading edge of a variable-sweep planform design. Experimental force and moment tests were made on two constrained camber wings, a flat uncambered wing, and an optimum design with no constraints. Results indicate that vortex strength and separation regions were mildest on the severely and moderately constrained wings.

  13. An overview of the fundamental aerodynamics branch's research activities in wing leading-edge vortex flows at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Miller, D. S.; Wood, R. M.; Covell, P. F.

    1986-01-01

    For the past 3 years, a research program pertaining to the study of wing leading edge vortices at supersonic speeds has been conducted in the Fundamental Aerodynamics Branch of the High-Speed Aerodynamics Division at the Langley Research Center. The purpose of the research is to provide an understanding of the factors governing the formation and the control of wing leading-edge vortices and to evaluate the use of these vortices for improving supersonic aerodynamic performance. The studies include both experimental and theoretical investigations and focus primarily on planform, thickness and camber effects for delta wings. An overview of this research activity is presented.

  14. Supersonic airplane study and design

    NASA Technical Reports Server (NTRS)

    Cheung, Samson

    1993-01-01

    A supersonic airplane creates shocks which coalesce and form a classical N-wave on the ground, forming a double bang noise termed sonic boom. A recent supersonic commercial transport (the Concorde) has a loud sonic boom (over 100 PLdB) and low aerodynamic performance (cruise lift-drag ratio 7). To enhance the U.S. market share in supersonic transport, an airframer's market risk for a low-boom airplane has to be reduced. Computational fluid dynamics (CFD) is used to design airplanes to meet the dual constraints of low sonic boom and high aerodynamic performance. During the past year, a research effort was focused on three main topics. The first was to use the existing design tools, developed in past years, to design one of the low-boom wind-tunnel configurations (Ames Model 3) for testing at Ames Research Center in April 1993. The second was to use a Navier-Stokes code (Overflow) to support the Oblique-All-Wing (OAW) study at Ames. The third was to study an optimization technique applied on a Haack-Adams body to reduce aerodynamic drag.

  15. Aerodynamic Interaction between Delta Wing and Hemisphere-Cylinder in Supersonic Flow

    NASA Astrophysics Data System (ADS)

    Nishino, Atsuhiro; Ishikawa, Takahumi; Nakamura, Yoshiaki

    As future space vehicles, Reusable Launch Vehicle (RLV) needs to be developed, where there are two kinds of RLV: Single Stage To Orbit (SSTO) and Two Stage To Orbit (TSTO). In the latter case, the shock/shock interaction and shock/boundary layer interaction play a key role. In the present study, we focus on the supersonic flow field with aerodynamic interaction between a delta wing and a hemisphere-cylinder, which imitate a TSTO, where the clearance, h, between the delta wing and hemisphere-cylinder is a key parameter. As a result, complicated flow patterns were made clear, including separation bubbles.

  16. Experimental study of supersonic viscous leeside flow over a slender delta wing

    NASA Technical Reports Server (NTRS)

    Szodruch, J.

    1980-01-01

    An investigation was conducted to study in detail the vortical flow over the leeward side of a 70 deg swept delta wing having subsonic and supersonic leading edges. Two types of flow were encountered and studied, namely leading edge separation and separation with a shock. Especially for the latter type, Reynolds number plays an important role and unexpected strong streamwise vortices were observed. An optical method is described to obtain a first aproximation of shear stress values in the streamwise direction across the wing span.

  17. Some Examples of the Applications of the Transonic and Supersonic Area Rules to the Prediction of Wave Drag

    NASA Technical Reports Server (NTRS)

    Nelson, Robert L.; Welsh, Clement J.

    1960-01-01

    The experimental wave drags of bodies and wing-body combinations over a wide range of Mach numbers are compared with the computed drags utilizing a 24-term Fourier series application of the supersonic area rule and with the results of equivalent-body tests. The results indicate that the equivalent-body technique provides a good method for predicting the wave drag of certain wing-body combinations at and below a Mach number of 1. At Mach numbers greater than 1, the equivalent-body wave drags can be misleading. The wave drags computed using the supersonic area rule are shown to be in best agreement with the experimental results for configurations employing the thinnest wings. The wave drags for the bodies of revolution presented in this report are predicted to a greater degree of accuracy by using the frontal projections of oblique areas than by using normal areas. A rapid method of computing wing area distributions and area-distribution slopes is given in an appendix.

  18. Lift and center of pressure of wing-body-tail combinations at subsonic, transonic, and supersonic speeds

    NASA Technical Reports Server (NTRS)

    Pitts, William C; Nielsen, Jack N; Kaattari, George E

    1957-01-01

    A method is presented for calculating the lift and centers of pressure of wing-body and wing-body-tail combinations at subsonic, transonic, and supersonic speeds. A set of design charts and a computing table are presented which reduce the computations to routine operations. Comparison between the estimated and experimental characteristics for a number of wing-body and wing-body-tail combinations shows correlation to within + or - 10 percent on lift and to within about + or - 0.02 of the body length on center of pressure.

  19. Simulation of crossflow instability on a supersonic highly swept wing

    NASA Technical Reports Server (NTRS)

    Pruett, C. David

    1995-01-01

    A direct numerical simulation (DNS) algorithm has been developed and validated for use in the investigation of crossflow instability on supersonic swept wings, an application of potential relevance to the design of the High-Speed Civil Transport (HSCT). The algorithm is applied to the investigation of stationary crossflow instability on an infinitely long 77-degree swept wing in Mach 3.5 flow. The results of the DNS are compared with the predictions of linear parabolized stability equation (PSE) methodology. In-general, the DNS and PSE results agree closely in terms of modal growth rate, structure, and orientation angle. Although further validation is needed for large-amplitude (nonlinear) disturbances, the close agreement between independently derived methods offers preliminary validation of both DNS and PSE approaches.

  20. A summary of lateral-stability derivatives calculated for wing plan forms in supersonic flow

    NASA Technical Reports Server (NTRS)

    Jones, Arthur L; Alksne, Alberta

    1951-01-01

    A compilation of theoretical values of the lateral-stability derivatives for wings at supersonic speeds is presented in the form of design charts. The wing plan forms for which this compilation has been prepared include a rectangular, two trapezoidal, two triangular, a fully-tapered swept-back, a sweptback hexagonal, an unswept hexagonal, and a notched triangular plan form. A full set of results, that is, values for all nine of the lateral-stability derivatives for wings, was available for the first six of these plan forms only. The reasons for the incompleteness of the results available for other plan forms are discussed.

  1. Flight-determined aerodynamic derivatives of the AD-1 oblique-wing research airplane

    NASA Technical Reports Server (NTRS)

    Sim, A. G.; Curry, R. E.

    1984-01-01

    The AD-1 is a variable-sweep oblique-wing research airplane that exhibits unconventional stability and control characteristics. In this report, flight-determined and predicted stability and control derivatives for the AD-1 airplane are compared. The predictions are based on both wind tunnel and computational results. A final best estimate of derivatives is presented.

  2. Drag Minimization for Wings and Bodies in Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Heaslet, Max A; Fuller, Franklyn B

    1958-01-01

    The minimization of inviscid fluid drag is studied for aerodynamic shapes satisfying the conditions of linearized theory, and subject to imposed constraints on lift, pitching moment, base area, or volume. The problem is transformed to one of determining two-dimensional potential flows satisfying either Laplace's or Poisson's equations with boundary values fixed by the imposed conditions. A general method for determining integral relations between perturbation velocity components is developed. This analysis is not restricted in application to optimum cases; it may be used for any supersonic wing problem.

  3. Theoretical investigations, and correlative studies for NLF, HLFC, and LFC swept wings at subsonic, transonic and supersonic speeds

    NASA Technical Reports Server (NTRS)

    Goradia, S. H.; Bobbitt, P. J.; Ferris, J. C.; Harvey, W. D.

    1987-01-01

    Attention is given to the results of theory/experiment-correlation studies for natural laminar flow, LFC, and hybrid-LFC airfoils at subsonic and supersonic Mach numbers. The method of characteristics, integral compressible boundary layer methods for infinitely swept wings, and a method for prediction of separating turbulent boundary layer characteristics. The integral boundary layer methods are found to be successful at predicting both transonic and supersonic transition phenomena. Computations for wings with 0-50 deg sweep angle, Reynolds number range of 1-30 million, and with and without LFC, are in good agreement with experimental data.

  4. Vortical structures of supersonic flow over a delta-wing on a flat plate

    NASA Astrophysics Data System (ADS)

    Wang, D. P.; Xia, Z. X.; Zhao, Y. X.; Wang, Q. H.; Liu, B.

    2013-02-01

    Employing the nanoparticle-based planar laser scattering (NPLS), supersonic flow over a delta-winged vortex generator on a flat plate was experimentally investigated in a supersonic quiet wind tunnel at Ma = 2.68. The fine structures of the flow field, shock waves, separation vortices, wake, and boundary layer transition were observed in the NPLS images. According to the time-correlation of the NPLS images and the measurement results of particle image velocimetry, the structural model of the flow field was improved further, and coherent wake structures were observed, which is of significance theoretically and in engineering application.

  5. Experimental Investigation of Aeroelastic Deformation of Slender Wings at Supersonic Speeds Using a Video Model Deformation Measurement Technique

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2013-01-01

    A video-based photogrammetric model deformation system was established as a dedicated optical measurement technique at supersonic speeds in the NASA Langley Research Center Unitary Plan Wind Tunnel. This system was used to measure the wing twist due to aerodynamic loads of two supersonic commercial transport airplane models with identical outer mold lines but different aeroelastic properties. One model featured wings with deflectable leading- and trailing-edge flaps and internal channels to accommodate static pressure tube instrumentation. The wings of the second model were of single-piece construction without flaps or internal channels. The testing was performed at Mach numbers from 1.6 to 2.7, unit Reynolds numbers of 1.0 million to 5.0 million, and angles of attack from -4 degrees to +10 degrees. The video model deformation system quantified the wing aeroelastic response to changes in the Mach number, Reynolds number concurrent with dynamic pressure, and angle of attack and effectively captured the differences in the wing twist characteristics between the two test articles.

  6. A comparison of arrow, trapezoidal and M wing concepts using a Mach 2 supersonic cruise transport mission

    NASA Technical Reports Server (NTRS)

    Martin, Glenn L.; Tice, David C.; Marcum, Don C., Jr.; Seidel, Jonathan A.

    1991-01-01

    The present analytic study of the potential performance of SST configurations radically differing from arrow-winged designs in lifting surface planform geometry gives attention to trapezoidal-wing and M-wing configurations; the trapezoidal wing is used as the baseline in the performance comparisons. The design mission was all-supersonic (Mach 2), carrying 248 passengers over a 5500 nautical-mile range. Design constraints encompassed approach speed, TO&L field length, and engine-out second-segment climb and missed-approach performance. Techniques for improving these configurations are discussed.

  7. Numerical calculation of flow fields about rectangular wings of finite thickness in supersonic flow. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Vogel, J. M.

    1973-01-01

    The calculation of the outer inviscid flow about a rectangular wing moving at supersonic speeds is reported. The inviscid equations of motion governing the flow generated by the wing form a set of hyperbolic differential equations. The flow field about the rectangular wing is separated into three regions consisting of the forebody, the afterbody, and the wing wake. Solutions for the forebody are obtained using conical flow techniques while the afterbody and the wing wake regions are treated as initial value problems. The numerical solutions are compared in the two dimensional regions with known exact solutions.

  8. Theoretical study of air forces on an oscillating or steady thin wing in a supersonic main stream

    NASA Technical Reports Server (NTRS)

    Garrick, I E; Rubinow, S I

    1947-01-01

    A theoretical study, based on the linearized equations of motion for small disturbance, is made of the air forces on wings of general plan forms moving forward at a constant supersonic speed. The boundary problem is set up for both the harmonically oscillating and the steady conditions. Two types of boundary conditions are distinguished, which are designated "purely supersonic" and "mixed supersonic." the method is illustrated by applications to a number of examples for both the steady and the oscillating conditions. The purely supersonic case involves independence of action of the upper and lower surfaces of the airfoil and present analysis is mainly concerned with this case. A discussion is first given of the fundamental or elementary solution corresponding to a moving source. The solutions for the velocity potential are then synthesized by means of integration of the fundamental solution for the moving source. The method is illustrated by applications to a number of examples for both the steady and the oscillating cases and for various plan forms, including swept wings and rectangular and triangular plan forms. The special results of a number of authors are shown to be included in the analysis.

  9. The effects of winglets on low aspect ratio wings at supersonic Mach numbers. M.S. Thesis Report Feb. 1989 - Apr. 1991

    NASA Technical Reports Server (NTRS)

    Keenan, James A.; Kuhlman, John M.

    1991-01-01

    A computational study was conducted on two wings, of aspect ratios 1.244 and 1.865, each having 65 degree leading edge sweep angles, to determine the effects of nonplanar winglets at supersonic Mach numbers. A Mach number of 1.62 was selected as the design value. The winglets studied were parametrically varied in alignment, length, sweep, camber, thickness, and dihedral angle to determine which geometry had the best predicted performance. For the computational analysis, an available Euler marching technique was used. The results indicated that the possibility existed for wing-winglet geometries to equal the performance of wing-alone bodies in supersonic flows with both bodies having the same semispan. The first wing with winglet used NACA 1402 airfoils for the base wing and was shown to have lift-to-pressure drag ratios within 0.136 percent to 0.360 percent of the NACA 1402 wing-alone. The other base wing was a natural flow wing which was previously designed specifically for a Mach number of 1.62. The results obtained showed that the natural wing-alone had a slightly higher lift-to-pressure drag than the natural wing with winglets.

  10. Meeting Unmanned Air Vehicle Platform Challenges Using Oblique Wing Aircraft

    DTIC Science & Technology

    2007-11-01

    effects need to be assessed with fully relaxed wakes (Section 5). 4.2 Oblique Flying Wing with 75o Folded Tip / Winglet , Mach 0.8, CL = 0.3 Fig.9 (a...e) refers to an OFW flying at 30o sweep with 75o folded tip or winglet , Ref.14. This also acts as a vertical fin or as a control (deflection...design problem. The resultant Cp-x distributions (e) at the design condition are well behaved. The distributions on the winglet are slightly more

  11. Predicted Static Aeroelastic Effects on Wings with Supersonic Leading Edges and Streamwise Tips

    NASA Technical Reports Server (NTRS)

    Brown, Stuart C.

    1959-01-01

    A method is presented for calculation of static aeroelastic effects on wings with supersonic leading edges and streamwise tips. Both chord-wise and spanwise deflections are taken into account. Aerodynamic and structural forces are introduced in influence coefficient form; the former are developed from linearized supersonic wing theory and the latter are assumed to be known from load-deflection tests or theory. The predicted effects of flexibility on lateral-control effectiveness, damping in roll, and lift-curve slope are shown for a low-aspect-ratio wing at Mach numbers of 1.25 and 2.60. The control effectiveness is shown for a trailing-edge aileron, a tip aileron, and a slot-deflector spoiler located along the 0.70 chord line. The calculations indicate that the tip aileron is particularly attractive from an aeroelastic standpoint, because the changes in effectiveness with dynamic pressure are small compared to the changes in effectiveness of the trailing-edge aileron and slot-deflector spoiler. The effects of making several simplifying assumptions in the example calculations are shown. The use of a modified strip theory to determine the aerodynamic influence coefficients gave adequate results only for the high Mach number case. Elimination of chordwise bending in the structural influence coefficients exaggerated the aeroelastic effects on rolling-moment and lift coefficients for both Mach numbers.

  12. Lee-side flow over delta wings at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Miller, D. S.; Wood, R. M.

    1985-01-01

    An experimental investigation of the lee-side flow on sharp leading-edge delta wings at supersonic speeds has been conducted. Pressure data were obtained at Mach numbers from 1.5 to 2.8, and three types of flow-visualization data (oil-flow, tuft, and vapor-screen) were obtained at Mach numbers from 1.7 to 2.8 for wing leading-edge sweep angles from 52.5 deg to 75 deg. From the flow-visualization data, the lee-side flows were classified into seven distinct types and a chart was developed that defines the flow mechanism as a function of the conditions normal to the wing leading edge, specifically, angle of attack and Mach number. Pressure data obtained experimentally and by a semiempirical prediction method were employed to investigate the effects of angle of attack, leading-edge sweep, and Mach number on vortex strength and vortex position. In general, the predicted and measured values of vortex-induced normal force and vortex position obtained from experimental data have the same trends with angle of attack, Mach number, and leading-edge sweep; however, the vortex-induced normal force is underpredicted by 15 to 30 percent, and the vortex spanwise location is overpredicted by approximately 15 percent.

  13. Wind tunnel investigation of the interaction and breakdown characteristics of slender wing vortices at subsonic, transonic, and supersonic speeds

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    1991-01-01

    The vortex dominated aerodynamic characteristics of a generic 65 degree cropped delta wing model were studied in a wind tunnel at subsonic through supersonic speeds. The lee-side flow fields over the wing-alone configuration and the wing with leading edge extension (LEX) added were observed at M (infinity) equals 0.40 to 1.60 using a laser vapor screen technique. These results were correlated with surface streamline patterns, upper surface static pressure distributions, and six-component forces and moments. The wing-alone exhibited vortex breakdown and asymmetry of the breakdown location at the subsonic and transonic speeds. An earlier onset of vortex breakdown over the wing occurred at transonic speeds due to the interaction of the leading edge vortex with the normal shock wave. The development of a shock wave between the vortex and wing surface caused an early separation of the secondary boundary layer. With the LEX installed, wing vortex breakdown asymmetry did not occur up to the maximum angle of attack in the present test of 24 degrees. The favorable interaction of the LEX vortex with the wing flow field reduced the effects of shock waves on the wing primary and secondary vortical flows. The direct interaction of the wing and LEX vortex cores diminished with increasing Mach number. The maximum attainable vortex-induced pressure signatures were constrained by the vacuum pressure limit at the transonic and supersonic speeds.

  14. Supersonic flow visualization of a nacelle in close proximity to a simulated wing

    NASA Technical Reports Server (NTRS)

    Biber, Kasim; Ellis, David R.

    1993-01-01

    A flow visualization study was made in the 9 x 9 inch supersonic wind tunnel at Wichita State University to examine shock and boundary layer flow interaction for a nacelle in close proximity to the lower surface of a simulated wing. The test matrix included variations of angle of attack from -2 degrees to +4 degrees, nacelle-wing gap from 0.5 to 3-nacelle inlet diameter (0.12 inch), and Reynolds number based on nacelle length (1.164 inch) from 1.16 x 10(exp 6) to 1.45 x 10(exp 6) at a nominal Mach number of 2. Schlieren pictures of wing and nacelle flowfield were recorded by a video camera during each tunnel run. Results show that the nacelle inlet shock wave remains attached to the inlet lip and its impingement does not significantly affect the wing boundary layer. At the nacelle trailing edge location, the wing boundary layer thickness is approximately one nacelle inlet diameter at alpha = 0 degrees and it decreases with increase of angle of attack.

  15. Use of source distributions for evaluating theoretical aerodynamics of thin finite wings at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Evvard, John C

    1950-01-01

    A series of publications on the source-distribution methods for evaluating the aerodynamics of thin wings at supersonic speeds is summarized, extended, and unified. Included in the first part are the deviations of: (a) the linearized partial-differential equation for unsteady flow at a substantially constant Mach number. b) The source-distribution solution for the perturbation-velocity potential that satisfies the boundary conditions of tangential flow at the surface and in the plane of the wing; and (c) the integral equation for determining the strength and the location of sources to describe the interaction effects (as represented by upwash) of the bottom and top wing surfaces through the region between the finite wing boundary and the foremost Mach wave. The second part deals with steady-state thin-wing problems. The third part of the report approximates the integral equation for unsteady upwash and includes a solution of approximate equation. Expressions are then derived to evaluate the load distributions for time-dependent finite-wing motions.

  16. The COREL and W12SC3 computer programs for supersonic wing design and analysis

    NASA Technical Reports Server (NTRS)

    Mason, W. H.; Rosen, B. S.

    1983-01-01

    Two computer codes useful in the supersonic aerodynamic design of wings, including the supersonic maneuver case are described. The nonlinear full potential equation COREL code performs an analysis of a spanwise section of the wing in the crossflow plane by assuming conical flow over the section. A subsequent approximate correction to the solution can be made in order to account for nonconical effects. In COREL, the flow-field is assumed to be irrotional (Mach numbers normal to shock waves less than about 1.3) and the full potential equation is solved to obtain detailed results for the leading edge expansion, supercritical crossflow, and any crossflow shockwaves. W12SC3 is a linear theory panel method which combines and extends elements of several of Woodward's codes, with emphasis on fighter applications. After a brief review of the aerodynamic theory used by each method, the use of the codes is illustrated with several examples, detailed input instructions and a sample case.

  17. Experimental evidence for collisional shock formation via two obliquely merging supersonic plasma jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merritt, Elizabeth C., E-mail: emerritt@lanl.gov; Adams, Colin S.; University of New Mexico, Albuquerque, New Mexico 87131

    We report spatially resolved measurements of the oblique merging of two supersonic laboratory plasma jets. The jets are formed and launched by pulsed-power-driven railguns using injected argon, and have electron density ∼10{sup 14} cm{sup −3}, electron temperature ≈1.4 eV, ionization fraction near unity, and velocity ≈40 km/s just prior to merging. The jet merging produces a few-cm-thick stagnation layer, as observed in both fast-framing camera images and multi-chord interferometer data, consistent with collisional shock formation [E. C. Merritt et al., Phys. Rev. Lett. 111, 085003 (2013)].

  18. In-flight total forces, moments and static aeroelastic characteristics of an oblique-wing research airplane

    NASA Technical Reports Server (NTRS)

    Curry, R. E.; Sim, A. G.

    1984-01-01

    A low-speed flight investigation has provided total force and moment coefficients and aeroelastic effects for the AD-1 oblique-wing research airplane. The results were interpreted and compared with predictions that were based on wind tunnel data. An assessment has been made of the aeroelastic wing bending design criteria. Lateral-directional trim requirements caused by asymmetry were determined. At angles of attack near stall, flow visualization indicated viscous flow separation and spanwise vortex flow. These effects were also apparent in the force and moment data.

  19. Arrow-wing supersonic cruise aircraft structural design concepts evaluation. Volume 3: Sections 12 through 14

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Davis, G. W.

    1975-01-01

    The design of an economically viable supersonic cruise aircraft requires the lowest attainable structural-mass fraction commensurate with the selected near-term structural material technology. To achieve this goal of minimum structural-mass fraction, various combinations of promising wing and fuselage primary structure were analyzed for the load-temperature environment applicable to the arrow wing configuration. This analysis was conducted in accordance with the design criteria specified and included extensive use of computer-aided analytical methods to screen the candidate concepts and select the most promising concepts for the in-depth structural analysis.

  20. A Method of Determining Aerodynamic-Influence Coefficients from Wind-Tunnel Data for Wings at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Gainer, Patrick A.

    1961-01-01

    A method is described for determining aerodynamic-influence coefficients from wind-tunnel data for calculating the steady-state load distribution on a wing with arbitrary angle-of-attack distribution at supersonic speeds. The method combines linearized theory with empirical adjustments in order to give accurate results over a wide range of angles of attack. The experimented data required are pressure distributions measured on a flat wing of the desired planform at the desired Mach number and over the desired range of angles of attack. The method has been tested by applying it to wind-tunnel data measured at Mach numbers of 1.61 and 2.01 on wings of the same planform but of different surface shapes. Influence coefficients adjusted to fit the flat wing gave good predictions of the spanwise and chord-wise distributions of loadings measured on twisted and cambered wings.

  1. Influence of airfoil geometry on delta wing leading-edge vortices and vortex-induced aerodynamics at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Byrd, James E.; Wesselmann, Gary F.

    1992-01-01

    An assessment of the influence of airfoil geometry on delta wing leading edge vortex flow and vortex induced aerodynamics at supersonic speeds is discussed. A series of delta wing wind tunnel models were tested over a Mach number range from 1.7 to 2.0. The model geometric variables included leading edge sweep and airfoil shape. Surface pressure data, vapor screen, and oil flow photograph data were taken to evaluate the complex structure of the vortices and shocks on the family of wings tested. The data show that airfoil shape has a significant impact on the wing upper surface flow structure and pressure distribution, but has a minimal impact on the integrated upper surface pressure increments.

  2. Automated design optimization of supersonic airplane wing structures under dynamic constraints

    NASA Technical Reports Server (NTRS)

    Fox, R. L.; Miura, H.; Rao, S. S.

    1972-01-01

    The problems of the preliminary and first level detail design of supersonic aircraft wings are stated as mathematical programs and solved using automated optimum design techniques. The problem is approached in two phases: the first is a simplified equivalent plate model in which the envelope, planform and structural parameters are varied to produce a design, the second is a finite element model with fixed configuration in which the material distribution is varied. Constraints include flutter, aeroelastically computed stresses and deflections, natural frequency and a variety of geometric limitations.

  3. Linearized Lifting-Surface and Lifting-line Evaluations of Sidewash Behind Rolling Triangular Wings at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Bobbitt, Percy J

    1957-01-01

    The lifting-surface sidewash behind rolling triangular wings has been derived for a range of supersonic Mach numbers for which the wing leading edges remain swept behind the mark cone emanating from the wing apex. Variations of the sidewash with longitudinal distance in the vertical plane of symmetry are presented in graphical form. An approximate expression for the sidewash has been developed by means of an approach using a horseshoe-vortex approximate-lifting-line theory. By use of this approximate expression, sidewash may be computed for wings of arbitrary plan form and span loading. A comparison of the sidewash computed by lifting-surface and lifting-line expressions for the triangular wing showed good agreement except in the vicinity of the trailing edge when the leading edge approached the sonic condition. An illustrative calculation has been made of the force induced by the wing sidewash on a vertical tail located in various longitudinal positions.

  4. Effect of wing-tip dihedral on the longitudinal and lateral aerodynamic characteristics of a supersonic cruise configuration at subsonic speeds

    NASA Technical Reports Server (NTRS)

    Washburn, K. E.; Gloss, B. B.

    1976-01-01

    Force and moment data studies were conducted to determine the effect of wing-tip dihedral on the longitudinal and lateral aerodynamic characteristics of a supersonic cruise fighter configuration. Oil flow studies were also performed to investigate the model surface flow. Three models were tested: a flat (0 deg dihedral) wing tip, a dihedral, and an anhedral wing tip. The tests were conducted at the NASA Langley high-speed 7- by 10-foot wind tunnel.

  5. Comparisons of two-dimensional shock-expansion theory with experimental aerodynamic data for delta-planform wings at high supersonic speeds

    NASA Technical Reports Server (NTRS)

    Jernell, L. S.

    1974-01-01

    An investigation has been conducted to explore the potential for optimizing airfoil shape at high supersonic speeds by utilizing the two-dimensional shock-expansion method. Theoretical and experimental force and moment coefficients are compared for four delta-planform semispan wings having a leading-edge sweep angle of 65 deg and incorporating modified diamond airfoils with a thickness-chord ratio of 0.06. The wings differ only in airfoil maximum-thickness position and camber. The experimental data are obtained at Mach numbers of 3.95 and 4.63 and at a Reynolds number of 9.84 million per meter. A relatively simple method is developed for predicting, in terms of lift-drag ratio, the optimum modified diamond airfoil at high supersonic and hypersonic speeds.

  6. Arrow-wing supersonic cruise aircraft structural design concepts evaluation. Volume 4: Sections 15 through 21

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Davis, G. W.

    1975-01-01

    The analyses performed to provide structural mass estimates for the arrow wing supersonic cruise aircraft are presented. To realize the full potential for structural mass reduction, a spectrum of approaches for the wing and fuselage primary structure design were investigated. The objective was: (1) to assess the relative merits of various structural arrangements, concepts, and materials; (2) to select the structural approach best suited for the Mach 2.7 environment; and (3) to provide construction details and structural mass estimates based on in-depth structural design studies. Production costs, propulsion-airframe integration, and advanced technology assessment are included.

  7. Variable Geometry Aircraft Wing Supported by Struts And/Or Trusses

    NASA Technical Reports Server (NTRS)

    Melton, John E. (Inventor); Dudley, Michael R. (Inventor)

    2016-01-01

    The present invention provides an aircraft having variable airframe geometry for accommodating efficient flight. The aircraft includes an elongated fuselage, an oblique wing pivotally connected with said fuselage, a wing pivoting mechanism connected with said oblique wing and said fuselage, and a brace operably connected between said oblique wing and said fuselage. The present invention also provides an aircraft having an elongated fuselage, an oblique wing pivotally connected with said fuselage, a wing pivoting mechanism connected with said oblique wing and said fuselage, a propulsion system pivotally connected with said oblique wing, and a brace operably connected between said propulsion system and said fuselage.

  8. Effect of leading- and trailing-edge flaps on clipped delta wings with and without wing camber at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Hernandez, Gloria; Wood, Richard M.; Covell, Peter F.

    1994-01-01

    An experimental investigation of the aerodynamic characteristics of thin, moderately swept fighter wings has been conducted to evaluate the effect of camber and twist on the effectiveness of leading- and trailing-edge flaps at supersonic speeds in the Langley Unitary Plan Wind Tunnel. The study geometry consisted of a generic fuselage with camber typical of advanced fighter designs without inlets, canopy, or vertical tail. The model was tested with two wing configurations an uncambered (flat) wing and a cambered and twisted wing. Each wing had an identical clipped delta planform with an inboard leading edge swept back 65 deg and an outboard leading edge swept back 50 deg. The trailing edge was swept forward 25 deg. The leading-edge flaps were deflected 4 deg to 15 deg, and the trailing-edge flaps were deflected from -30 deg to 10 deg. Longitudinal force and moment data were obtained at Mach numbers of 1.60, 1.80, 2.00, and 2.16 for an angle-of-attack range 4 deg to 20 deg at a Reynolds number of 2.16 x 10(exp 6) per foot and for an angle-of-attack range 4 deg to 20 deg at a Reynolds number of 2.0 x 10(exp 6) per foot. Vapor screen, tuft, and oil flow visualization data are also included.

  9. Effect of drooped-nose flaps on the experimental force and moment characteristics of an oblique wing

    NASA Technical Reports Server (NTRS)

    Hopkins, E. J.; Lovette, G. H.

    1976-01-01

    Six-component experimental force and moment data are presented for a low aspect ratio, oblique wing equipped with drooped-nose flaps and mounted on top of a body of revolution. These flaps were investigated on the downstream wing panel with the nose drooped 5 deg, 10 deg, 20 deg, and 30 deg, and on both wing panels with the nose drooped 30 deg. It was to determine if such flaps would make the moment curves more linear by controlling the flow separation on the downstream wing panel at high lift coefficients. The wing was elliptical in planform and had an aspect ratio of 6.0 (based on the unswept wing span). The wing was tested at sweep angles of 45 deg and 50 deg throughout the Mach number range from 0.25 to 0.95. The drooped-nose flaps alone were not effective in making the moment curves more linear; however, a previous study showed that Kruger nose flaps improved the linearity of the moment curves when the Kruger flaps were used on only the downstream wing panel equipped with drooped-nose flaps deflected 5 deg.

  10. Supersonic compressor

    DOEpatents

    Lawlor, Shawn P [Bellevue, WA; Novaresi, Mark A [San Diego, CA; Cornelius, Charles C [Kirkland, WA

    2008-02-26

    A gas compressor based on the use of a driven rotor having an axially oriented compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which forms a supersonic shockwave axially, between adjacent strakes. In using this method to compress inlet gas, the supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdyanamic flow path formed between the gas compression ramp on a strake, the shock capture lip on the adjacent strake, and captures the resultant pressure within the stationary external housing while providing a diffuser downstream of the compression ramp.

  11. Performance of a Supersonic Over-Wing Inlet with Application to a Low-Sonic-Boom Aircraft

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.; Hirt, Stefanie M.; Anderson, Bernhard H.; Fink, Lawrence E.; Magee, Todd E.

    2014-01-01

    Development of commercial supersonic aircraft has been hindered by many related factors including fuel-efficiency, economics, and sonic-boom signatures that have prevented over-land flight. Materials, propulsion, and flight control technologies have developed to the point where, if over-land flight were made possible, a commercial supersonic transport could be economically viable. Computational fluid dynamics, and modern optimization techniques enable designers to reduce the boom signature of candidate aircraft configurations to acceptable levels. However, propulsion systems must be carefully integrated with these low-boom configurations in order that the signatures remain acceptable. One technique to minimize the downward propagation of waves is to mount the propulsion systems above the wing, such that the wing provides shielding from shock waves generated by the inlet and nacelle. This topmounted approach introduces a number of issues with inlet design and performance especially with the highly-swept wing configurations common to low-boom designs. A 1.79%-scale aircraft model was built and tested at the NASA Glenn Research Center's 8-by 6-Foot Supersonic Wind Tunnel (8x6 SWT) to validate the configuration's sonic boom signature. In order to evaluate performance of the top-mounted inlets, the starboard flow-through nacelle on the aerodynamic model was replaced by a 2.3%-scale operational inlet model. This integrated configuration was tested at the 8x6 SWT from Mach 0.25 to 1.8 over a wide range of angles-of-attack and yaw. The inlet was also tested in an isolated configuration over a smaller range of angles-of-attack and yaw. A number of boundary-layer bleed configurations were investigated and found to provide a substantial positive impact on pressure recovery and distortion. Installed inlet performance in terms of mass capture, pressure recovery, and distortion over the Mach number range at the design angle-of-attack of 4-degrees is presented herein and compared

  12. A new unified approach to analyze wing-body-tail configurations with control surfaces in steady, oscillatory and fully unsteady, subsonic and supersonic flows

    NASA Technical Reports Server (NTRS)

    Tseng, K.; Morino, L.

    1975-01-01

    A general formulation for the analysis of steady and unsteady, subsonic and supersonic potential aerodynamics for arbitrary complex geometries is presented. The theoretical formulation, the numerical procedure, and numerical results are included. In particular, generalized forces for fully unsteady (complex frequency) aerodynamics for an AGARD coplanar wing-tail interfering configuration in both subsonic and supersonic flows are considered.

  13. On the Kernel function of the integral equation relating lift and downwash distributions of oscillating wings in supersonic flow

    NASA Technical Reports Server (NTRS)

    Watkins, Charles E; Berman, Julian H

    1956-01-01

    This report treats the Kernel function of the integral equation that relates a known or prescribed downwash distribution to an unknown lift distribution for harmonically oscillating wings in supersonic flow. The treatment is essentially an extension to supersonic flow of the treatment given in NACA report 1234 for subsonic flow. For the supersonic case the Kernel function is derived by use of a suitable form of acoustic doublet potential which employs a cutoff or Heaviside unit function. The Kernel functions are reduced to forms that can be accurately evaluated by considering the functions in two parts: a part in which the singularities are isolated and analytically expressed, and a nonsingular part which can be tabulated.

  14. Low-speed aerodynamic characteristics from wind-tunnel tests of a large-scale advanced arrow-wing supersonic-cruise transport concept

    NASA Technical Reports Server (NTRS)

    Smith, P. M.

    1978-01-01

    Tests have been conducted to extend the existing low speed aerodynamic data base of advanced supersonic-cruise arrow wing configurations. Principle configuration variables included wing leading-edge flap deflection, wing trailing-edge flap deflection, horizontal tail effectiveness, and fuselage forebody strakes. A limited investigation was also conducted to determine the low speed aerodynamic effects due to slotted training-edge flaps. Results of this investigation demonstrate that deflecting the wing leading-edge flaps downward to suppress the wing apex vortices provides improved static longitudinal stability; however, it also results in significantly reduced static directional stability. The use of a selected fuselage forebody strakes is found to be effective in increasing the level of positive static directional stability. Drooping the fuselage nose, which is required for low-speed pilot vision, significantly improves the later-directional trim characteristics.

  15. Effect of Krueger nose flaps on the experimental force and moment characteristics of an oblique wing

    NASA Technical Reports Server (NTRS)

    Hopkins, E. J.; Lovette, G. H.

    1976-01-01

    Experimental force and moment data are presented for an oblique wing mounted on a body of revolution and equipped with Krueger type nose flaps. The effectiveness of these flaps in making the moment curves more linear by controlling the flow separation on the downstream wing panel at high lift coefficients was determined. The investigation of the effects of the Krueger flaps covered two cases: (1) use of the flaps on the downstream wing panel only and (2) use of the flaps on both wing panels. For part of the tests, the Krueger flaps were mounted on nose flaps that were drooped either 5 deg or 10 deg. The wing was elliptical in planform, had an aspect ratio of 6.0 (based on the unswept span) and was tested at sweep angles of 0, 45 deg, and 50 deg. The Mach-number range covered was from 0.25 to 0.95. It was found that the most effective arrangement of the Krueger flaps for making the pitching-, rolling-, and yawing-moment curves more linear at high lift coefficients was having the Krueger flaps mounted on the nose flaps drooped 5 deg and only on the downstream wing panel.

  16. Supersonic Aerodynamic Design Improvements of an Arrow-Wing HSCT Configuration Using Nonlinear Point Design Methods

    NASA Technical Reports Server (NTRS)

    Unger, Eric R.; Hager, James O.; Agrawal, Shreekant

    1999-01-01

    This paper is a discussion of the supersonic nonlinear point design optimization efforts at McDonnell Douglas Aerospace under the High-Speed Research (HSR) program. The baseline for these optimization efforts has been the M2.4-7A configuration which represents an arrow-wing technology for the High-Speed Civil Transport (HSCT). Optimization work on this configuration began in early 1994 and continued into 1996. Initial work focused on optimization of the wing camber and twist on a wing/body configuration and reductions of 3.5 drag counts (Euler) were realized. The next phase of the optimization effort included fuselage camber along with the wing and a drag reduction of 5.0 counts was achieved. Including the effects of the nacelles and diverters into the optimization problem became the next focus where a reduction of 6.6 counts (Euler W/B/N/D) was eventually realized. The final two phases of the effort included a large set of constraints designed to make the final optimized configuration more realistic and they were successful albeit with a loss of performance.

  17. Comparative study of MacCormack and TVD MacCormack schemes for three-dimensional separation at wing/body junctions in supersonic flows

    NASA Technical Reports Server (NTRS)

    Lakshmanan, Balakrishnan; Tiwari, Surendra N.

    1992-01-01

    A robust, discontinuity-resolving TVD MacCormack scheme containing no dependent parameters requiring adjustment is presently used to investigate the 3D separation of wing/body junction flows at supersonic speeds. Many production codes employing MacCormack schemes can be adapted to use this method. A numerical simulation of laminar supersonic junction flow is found to yield improved separation location predictions, as well as the axial velocity profiles in the separated flow region.

  18. Transonic wind-tunnel tests of an F-8 airplane model equipped with 12 and 14-percent thick oblique wings

    NASA Technical Reports Server (NTRS)

    Smith, R. C.; Jones, R. T.; Summers, J. L.

    1975-01-01

    An experimental investigation was conducted in the Ames 14-foot transonic wind tunnel to study the aerodynamic performance and stability characteristics of a 0.087-scale model of an F-8 airplane fitted with an oblique wing. Two elliptical planform (axis ratio = 8:1) wings, each having a maximum thickness of 12 and 14 percent, were tested. Longitudinal stability data were obtained with no wing and with each of the two wings set at sweep angles of 0, 45, and 60 deg. Lateral directional stability data were obtained for the 12 percent wing only. Test Mach numbers ranged from 0.6 to 1.2 in the unit Reynolds number range from 11.2 to 13.1 million per meter. Angles of attack were between -6 and 22 deg at zero sideslip. Angles of sideslip were between -6 and +6 deg for two angles of attack, depending upon the wing configuration.

  19. Apparatus and process for the separation of gases using supersonic expansion and oblique wave compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VanOsdol, John G.

    The disclosure provides an apparatus and method for gas separation through the supersonic expansion and subsequent deceleration of a gaseous stream. The gaseous constituent changes phase from the gaseous state by desublimation or condensation during the acceleration producing a collectible constituent, and an oblique shock diffuser decelerates the gaseous stream to a subsonic velocity while maintain the collectible constituent in the non-gaseous state. Following deceleration, the carrier gas and the collectible constituent at the subsonic velocity are separated by a separation means, such as a centrifugal, electrostatic, or impingement separator. In an embodiment, the gaseous stream issues from a combustionmore » process and is comprised of N.sub.2 and CO.sub.2.« less

  20. An integrated study of structures, aerodynamics and controls on the forward swept wing X-29A and the oblique wing research aircraft

    NASA Technical Reports Server (NTRS)

    Dawson, Kenneth S.; Fortin, Paul E.

    1987-01-01

    The results of an integrated study of structures, aerodynamics, and controls using the STARS program on two advanced airplane configurations are presented. Results for the X-29A include finite element modeling, free vibration analyses, unsteady aerodynamic calculations, flutter/divergence analyses, and an aeroservoelastic controls analysis. Good correlation is shown between STARS results and various other verified results. The tasks performed on the Oblique Wing Research Aircraft include finite element modeling and free vibration analyses.

  1. Numerical computation of viscous flow around bodies and wings moving at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Tannehill, J. C.

    1984-01-01

    Research in aerodynamics is discussed. The development of equilibrium air curve fits; computation of hypersonic rarefield leading edge flows; computation of 2-D and 3-D blunt body laminar flows with an impinging shock; development of a two-dimensional or axisymmetric real gas blunt body code; a study of an over-relaxation procedure forthe MacCormack finite-difference scheme; computation of 2-D blunt body turbulent flows with an impinging shock; computation of supersonic viscous flow over delta wings at high angles of attack; and computation of the Space Shuttle Orbiter flowfield are discussed.

  2. An experimental investigation of an oblique-wing and body combination at Mach numbers between 0.60 and 1.40

    NASA Technical Reports Server (NTRS)

    Graham, L. A.; Jones, R. T.; Boltz, F. W.

    1972-01-01

    An experimental investigation was conducted in an 11- by 11-foot wind tunnel to determine the aerodynamic characteristics of an oblique high aspect ratio wing in combination with a high fineness-ratio Sears-Haack body. Longitudinal and lateral-directional stability data were obtained at wing yaw angles from 0 deg to 60 deg over a test Mach number range from 0.6 to 1.4 for angles of attack between minus 6 deg and 9 deg. The effects of changes in Reynolds number, dihedral, and trailing-edge angle were studied along with the effects of a roughness strip on the upper and lower surfaces of the wing. Flow-visualization studies were made to determine the nature of the flow on the wing surfaces.

  3. Low-speed wind-tunnel investigation of a large scale advanced arrow-wing supersonic transport configuration with engines mounted above wing for upper-surface blowing

    NASA Technical Reports Server (NTRS)

    Shivers, J. P.; Mclemore, H. C.; Coe, P. L., Jr.

    1976-01-01

    Tests have been conducted in a full scale tunnel to determine the low speed aerodynamic characteristics of a large scale advanced arrow wing supersonic transport configuration with engines mounted above the wing for upper surface blowing. Tests were made over an angle of attack range of -10 deg to 32 deg, sideslip angles of + or - 5 deg, and a Reynolds number range of 3,530,000 to 7,330,000. Configuration variables included trailing edge flap deflection, engine jet nozzle angle, engine thrust coefficient, engine out operation, and asymmetrical trailing edge boundary layer control for providing roll trim. Downwash measurements at the tail were obtained for different thrust coefficients, tail heights, and at two fuselage stations.

  4. Method and apparatus for starting supersonic compressors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawlor, Shawn P

    A supersonic gas compressor with bleed gas collectors, and a method of starting the compressor. The compressor includes aerodynamic duct(s) situated for rotary movement in a casing. The aerodynamic duct(s) generate a plurality of oblique shock waves for efficiently compressing a gas at supersonic conditions. A convergent inlet is provided adjacent to a bleed gas collector, and during startup of the compressor, bypass gas is removed from the convergent inlet via the bleed gas collector, to enable supersonic shock stabilization. Once the oblique shocks are stabilized at a selected inlet relative Mach number and pressure ratio, the bleed of bypassmore » gas from the convergent inlet via the bypass gas collectors is effectively eliminated.« less

  5. Tables for the Rapid Estimation of Downwash and Sidewash Behind Wings Performing Various Motions at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Bobbitt, Percy J.

    1959-01-01

    Equations for the downwash and sidewash due to supersonic yawed and unswept horseshoe vortices have been utilized in formulating tables and charts to permit a rapid estimation of the flow velocities behind wings performing various steady motions. Tabulations are presented of the downwash and sidewash in the wing vertical plane of symmetry due to a unit-strength yawed horseshoe vortex located at 20 equally spaced spanwise positions along lifting lines of various sweeps. (The bound portion of the yawed vortex is coincident with the lifting line.) Charts are presented for the purpose of estimating the spanwise variations of the flow-field velocities and give longitudinal variations of the downwash and sidewash at a nuMber of vertical and spanwise locations due to a unit-strength unswept horseshoe vortex. Use of the tables and charts to calculate wing downwash or sidewash requires a knowledge of the wing spanwise distribution of circulation. Sample computations for the rolling sidewash and angle-of-attack downwash behind a typical swept wing are presented to demonstrate the use of the tables and charts.

  6. Flight Tests of a Supersonic Natural Laminar Flow Airfoil

    NASA Technical Reports Server (NTRS)

    Frederick, Mike; Banks, Dan; Garzon, Andres; Matisheck, Jason

    2014-01-01

    IR thermography was used to characterize the transition front on a S-NLF test article at chord Reynolds numbers in excess of 30 million Changes in transition due to Mach number, Reynolds number, and surface roughness were investigated - Regions of laminar flow in excess of 80% chord at chord Reynolds numbers greater than 14 million IR thermography clearly showed the transition front and other flow features such as shock waves impinging upon the surface A series of parallel oblique shocks, of yet unknown origin, were found to cause premature transition at higher Reynolds numbers. NASA has a current goal to eliminate barriers to the development of practical supersonic transport aircraft Drag reduction through the use of supersonic natural laminar flow (S-NLF) is currently being explored as a means of increasing aerodynamic efficiency - Tradeoffs work best for business jet class at M<2 Conventional high-speed designs minimize inviscid drag at the expense of viscous drag - Existence of strong spanwise pressure gradient leads to crossflow (CF) while adverse chordwise pressure gradients amplifies and Tollmien-Schlichting (TS) instabilities Aerion Corporation has patented a S-NLF wing design (US Patent No. 5322242) - Low sweep to control CF - dp/dx < 0 on both wing surfaces to stabilize TS - Thin wing with sharp leading edge to minimize wave drag increase due to reduction in sweep NASA and Aerion have partnered to study S-NLF since 1999 Series of S-NLF experiments flown on the NASA F-15B research test bed airplane Infrared (IR) thermography used to characterize transition - Non-intrusive, global, good spatial resolution - Captures significant flow features well

  7. Experimental investigation of wing installation effects on a two-dimensional mixer/ejector nozzle for supersonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Lambert, Heather H.; Mizukami, Masashi

    1992-01-01

    Experimental results from a wind tunnel test conducted to investigate propulsion/airframe integration (PAI) effects are presented. The objectives of the test were to examine rough order-of-magnitude changes in the acoustic characteristics of a mixer/ejector nozzle due to the presence of a wing and to obtain limited wing and nozzle flow-field measurements. A simple representative supersonic transport wing planform, with deflecting flaps, was installed above a two-dimensional mixer/ejector nozzle that was supplied with high-pressure heated air. Various configurations and wing positions with respect to the nozzle were studied. Because of hardware problems, no acoustics and only a limited set of flow-field data were obtained. For most hardware configurations tested, no significant propulsion/airframe integration effects were identified. Significant effects were seen for extreme flap deflections. The combination of the exploratory nature of the test and the limited flow-field instrumentation made it impossible to identify definitive propulsion/airframe integration effects.

  8. High supersonic aerodynamic characteristics of five irregular planform wings with systematically varying wing fillet geometry tested in the NASA/LaRC 4-foot UPWT (LEG 2) (LA45A/B)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An experimental and analytical aerodynamic program to develop predesign guides for irregular planform wings is reported. The benefits are linearization of subsonic lift curve slope to high angles of attack and avoidance of subsonic pitch instabilities at high lift by proper tailoring of the planform fillet wing combination while providing the desired hypersonic trim angle and stability. The two prime areas of concern are to optimize shuttle orbiter landing and entry characteristics. Basic longitudinal aerodynamic characteristics at high supersonic speeds are developed.

  9. A special method for finding body distortions that reduce the wave drag of wing and body combinations at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Lomax, Harvard; Heaslet, Max A

    1956-01-01

    For a given wing and supersonic Mach number, the problem of shaping an adjoining fuselage so that the combination will have a low wave drag is considered. Only fuselages that can be simulated by singularities (multipoles) distributed along the body axis are studied. However, the optimum variations of such singularities are completely specified in terms of the given wing geometry. An application is made to an elliptic wing having a biconvex section, a thickness-chord ratio equal to 0.05 at the root, and an aspect ratio equal to 3. A comparison of the theoretical results with a wind-tunnel experiment is also presented.

  10. Supercritical wing sections 2, volume 108

    NASA Technical Reports Server (NTRS)

    Bauer, F.; Garabedian, P.; Korn, D.; Jameson, A.; Beckmann, M. (Editor); Kuenzi, H. P. (Editor)

    1975-01-01

    A mathematical theory for the design and analysis of supercritical wing sections was previously presented. Examples and computer programs showing how this method works were included. The work on transonics is presented in a more definitive form. For design, a better model of the trailing edge is introduced which should eliminate a loss of fifteen or twenty percent in lift experienced with previous heavily aft loaded models, which is attributed to boundary layer separation. How drag creep can be reduced at off-design conditions is indicated. A rotated finite difference scheme is presented that enables the application of Murman's method of analysis in more or less arbitrary curvilinear coordinate systems. This allows the use of supersonic as well as subsonic free stream Mach numbers and to capture shock waves as far back on an airfoil as desired. Moreover, it leads to an effective three dimensional program for the computation of transonic flow past an oblique wing. In the case of two dimensional flow, the method is extended to take into account the displacement thickness computed by a semi-empirical turbulent boundary layer correction.

  11. Supersonic Wave Interference Affecting Stability

    NASA Technical Reports Server (NTRS)

    Love, Eugene S.

    1958-01-01

    Some of the significant interference fields that may affect stability of aircraft at supersonic speeds are briefly summarized. Illustrations and calculations are presented to indicate the importance of interference fields created by wings, bodies, wing-body combinations, jets, and nacelles.

  12. Analysis and testing of stability augmentation systems. [for supersonic transport aircraft wing and B-52 aircraft control system

    NASA Technical Reports Server (NTRS)

    Sevart, F. D.; Patel, S. M.; Wattman, W. J.

    1972-01-01

    Testing and evaluation of stability augmentation systems for aircraft flight control were conducted. The flutter suppression system analysis of a scale supersonic transport wing model is described. Mechanization of the flutter suppression system is reported. The ride control synthesis for the B-52 aeroelastic model is discussed. Model analyses were conducted using equations of motion generated from generalized mass and stiffness data.

  13. Supersonic nonlinear potential analysis

    NASA Technical Reports Server (NTRS)

    Siclari, M. J.

    1984-01-01

    The NCOREL computer code was established to compute supersonic flow fields of wings and bodies. The method encompasses an implicit finite difference transonic relaxation method to solve the full potential equation in a spherical coordinate system. Two basic topic to broaden the applicability and usefulness of the present method which is encompassed within the computer code NCOREL for the treatment of supersonic flow problems were studied. The first topic is that of computing efficiency. Accelerated schemes are in use for transonic flow problems. One such scheme is the approximate factorization (AF) method and an AF scheme to the supersonic flow problem is developed. The second topic is the computation of wake flows. The proper modeling of wake flows is important for multicomponent configurations such as wing-body and multiple lifting surfaces where the wake of one lifting surface has a pronounced effect on a downstream body or other lifting surfaces.

  14. Arrow-wing supersonic cruise aircraft structural design concepts evaluation. Volume 1: Sections 1 through 6

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Davis, G. W.

    1975-01-01

    The structural approach best suited for the design of a Mach 2.7 arrow-wing supersonic cruise aircraft was investigated. Results, procedures, and principal justification of results are presented. Detailed substantiation data are given. In general, each major analysis is presented sequentially in separate sections to provide continuity in the flow of the design concepts analysis effort. In addition to the design concepts evaluation and the detailed engineering design analyses, supporting tasks encompassing: (1) the controls system development; (2) the propulsion-airframe integration study; and (3) the advanced technology assessment are presented.

  15. Survey and analysis of research on supersonic drag-due-to-lift minimization with recommendations for wing design

    NASA Technical Reports Server (NTRS)

    Carlson, Harry W.; Mann, Michael J.

    1992-01-01

    A survey of research on drag-due-to-lift minimization at supersonic speeds, including a study of the effectiveness of current design and analysis methods was conducted. The results show that a linearized theory analysis with estimated attainable thrust and vortex force effects can predict with reasonable accuracy the lifting efficiency of flat wings. Significantly better wing performance can be achieved through the use of twist and camber. Although linearized theory methods tend to overestimate the amount of twist and camber required for a given application and provide an overly optimistic performance prediction, these deficiencies can be overcome by implementation of recently developed empirical corrections. Numerous examples of the correlation of experiment and theory are presented to demonstrate the applicability and limitations of linearized theory methods with and without empirical corrections. The use of an Euler code for the estimation of aerodynamic characteristics of a twisted and cambered wing and its application to design by iteration are discussed.

  16. Pressure data for four analytically defined arrow wings in supersonic flow. [Langley Unitary Plan Wind Tunnel tests

    NASA Technical Reports Server (NTRS)

    Townsend, J. C.

    1980-01-01

    In order to provide experimental data for comparison with newly developed finite difference methods for computing supersonic flows over aircraft configurations, wind tunnel tests were conducted on four arrow wing models. The models were machined under numeric control to precisely duplicate analytically defined shapes. They were heavily instrumented with pressure orifices at several cross sections ahead of and in the region where there is a gap between the body and the wing trailing edge. The test Mach numbers were 2.36, 2.96, and 4.63. Tabulated pressure data for the complete test series are presented along with selected oil flow photographs. Comparisons of some preliminary numerical results at zero angle of attack show good to excellent agreement with the experimental pressure distributions.

  17. Study of advanced composite structural design concepts for an arrow wing supersonic cruise configuration, task 3

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A structural design study was conducted to assess the relative merits of structural concepts using advanced composite materials for an advanced supersonic aircraft cruising at Mach 2.7. The configuration and structural arrangement developed during Task I and II of the study, was used as the baseline configuration. Allowable stresses and strains were established for boron and advanced graphite fibers based on projected fiber properties available in the next decade. Structural concepts were designed and analyzed using graphite polyimide and boron polyimide, applied to stiffened panels and conventional sandwich panels. The conventional sandwich panels were selected as the structural concept to be used on the wing structure. The upper and lower surface panels of the Task I arrow wing were redesigned using high-strength graphite polyimide sandwich panels over the titanium spars and ribs. The ATLAS computer system was used as the basis for stress analysis and resizing the surface panels using the loads from the Task II study, without adjustment for change in aeroelastic deformation. The flutter analysis indicated a decrease in the flutter speed compared to the baseline titanium wing design. The flutter analysis indicated a decrease in the flutter speed compared to the baseline titanium wing design. The flutter speed was increased to that of the titanium wing, with a weight penalty less than that of the metallic airplane.

  18. Parametric study on laminar flow for finite wings at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Garcia, Joseph Avila

    1994-01-01

    Laminar flow control has been identified as a key element in the development of the next generation of High Speed Transports. Extending the amount of laminar flow over an aircraft will increase range, payload, and altitude capabilities as well as lower fuel requirements, skin temperature, and therefore the overall cost. A parametric study to predict the extent of laminar flow for finite wings at supersonic speeds was conducted using a computational fluid dynamics (CFD) code coupled with a boundary layer stability code. The parameters investigated in this study were Reynolds number, angle of attack, and sweep. The results showed that an increase in angle of attack for specific Reynolds numbers can actually delay transition. Therefore, higher lift capability, caused by the increased angle of attack, as well as a reduction in viscous drag, due to the delay in transition, can be expected simultaneously. This results in larger payload and range.

  19. Flutter analysis of low aspect ratio wings

    NASA Technical Reports Server (NTRS)

    Parnell, L. A.

    1986-01-01

    Several very low aspect ratio flat plate wing configurations are analyzed for their aerodynamic instability (flutter) characteristics. All of the wings investigated are delta planforms with clipped tips, made of aluminum alloy plate and cantilevered from the supporting vehicle body. Results of both subsonic and supersonic NASTRAN aeroelastic analyses as well as those from another version of the program implementing the supersonic linearized aerodynamic theory are presented. Results are selectively compared with the experimental data; however, supersonic predictions of the Mach Box method in NASTRAN are found to be erratic and erroneous, requiring the use of a separate program.

  20. Aerodynamic characteristics of three slender sharp-edge 74 degrees swept wings at subsonic, transonic, and supersonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Davenport, E. E.

    1974-01-01

    Slender sharp-edge wings having leading-edge sweep angles of 74 deg have been studied at Mach numbers from 0.60 to 2.80, at angles of attack from about minus 4 deg to 22 deg, and at angles of sideslip from 0 deg to 5 deg. The wings had delta, arrow, and diamond planforms. The experimental tests were made in the Langley 8-foot transonic pressure tunnel and the Langley Unitary Plan wind tunnel test section number 1. The theoretical predictions were made using the theories of NASA TN D-3767 and NASA TN D-6243. The results of the study indicated that the lift and drag characteristics as affected by planform and Mach number could be reasonably well predicted for the delta wing in the subsonic and transonic Mach number range. In the supersonic range, the delta and diamond wings were about equally good in the degree of agreement between experiment and theory. In making drag-due-to-lift predictions the vortex lift effects must be taken into account if reasonable results are to be obtained at moderate or high lift coefficients.

  1. Application of modern control design methodology to oblique wing research aircraft

    NASA Technical Reports Server (NTRS)

    Vincent, James H.

    1991-01-01

    A Linear Quadratic Regulator synthesis technique was used to design an explicit model following control system for the Oblique Wing Research Aircraft (OWRA). The forward path model (Maneuver Command Generator) was designed to incorporate the desired flying qualities and response decoupling. The LQR synthesis was based on the use of generalized controls, and it was structured to provide a proportional/integral error regulator with feedforward compensation. An unexpected consequence of this design approach was the ability to decouple the control synthesis into separate longitudinal and lateral directional designs. Longitudinal and lateral directional control laws were generated for each of the nine design flight conditions, and gain scheduling requirements were addressed. A fully coupled 6 degree of freedom open loop model of the OWRA along with the longitudinal and lateral directional control laws was used to assess the closed loop performance of the design. Evaluations were performed for each of the nine design flight conditions.

  2. Fabrication methods for YF-12 wing panels for the Supersonic Cruise Aircraft Research Program

    NASA Technical Reports Server (NTRS)

    Hoffman, E. L.; Payne, L.; Carter, A. L.

    1975-01-01

    Advanced fabrication and joining processes for titanium and composite materials are being investigated by NASA to develop technology for the Supersonic Cruise Aircraft Research (SCAR) Program. With Lockheed-ADP as the prime contractor, full-scale structural panels are being designed and fabricated to replace an existing integrally stiffened shear panel on the upper wing surface of the NASA YF-12 aircraft. The program involves ground testing and Mach 3 flight testing of full-scale structural panels and laboratory testing of representative structural element specimens. Fabrication methods and test results for weldbrazed and Rohrbond titanium panels are discussed. The fabrication methods being developed for boron/aluminum, Borsic/aluminum, and graphite/polyimide panels are also presented.

  3. Aerodynamic design and analysis of the AST-204, AST-205, and AST-206 blended wing-fuse large supersonic transport configuration concepts

    NASA Technical Reports Server (NTRS)

    Martin, G. L.; Walkley, K. B.

    1980-01-01

    The aerodynamic design and analysis of three blended wing-fuselage supersonic cruise configurations providing four, five, and six abreast seating was conducted using a previously designed supersonic cruise configuration as the baseline. The five abreast configuration was optimized for wave drag at a Mach number of 2.7. The four and six abreast configurations were also optimized at Mach 2.7, but with the added constraint that the majority of their structure be common with the five abreast configuration. Analysis of the three configurations indicated an improvement of 6.0, 7.5, and 7.7 percent in cruise lift-to-drag ratio over the baseline configuration for the four, five, and six abreast configurations, respectively.

  4. Real-time testing of titanium sheet and extrusion coupon specimens subjected to Mach 2.7 supersonic cruise aircraft wing stresses and temperatures

    NASA Technical Reports Server (NTRS)

    Lunde, T.

    1977-01-01

    The accuracy of three accelerated flight-by-flight test methods for material selection, and fatigue substantiation of supersonic cruise aircraft structure was studied. The real time stresses and temperatures applied to the specimens were representative of the service conditions in the lower surface of a Mach 2.7 supersonic cruise aircraft wing root structure. Each real time flight lasted about 65 minutes, including about one hour at (500 F) in the cruise condition. Center notched coupon specimens from six titanium materials were tested: mill-annealed, duplex-annealed, and triplex-annealed Ti-8Al-1Mo-1V sheets; mill-annealed Ti-8Al-1Mo-1V extrusion; mill-annealed Ti-6Al-4V sheet; and solution-treated and aged Ti-6Al-4V extrusion. For duplex-annealed Ti-8Al-1Mo-1V sheet, specimens with single spotweld were also tested. The test results were studied in conjunction with other related data from the literature for: material selection, structural fabrication, fatigue resistance of supersonic cruise aircraft structure, and fatigue test acceleration procedures for supersonic cruise aircraft.

  5. Vortex Flows at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Wilcox, Floyd J., Jr.; Bauer, Steven X. S.; Allen, Jerry M.

    2003-01-01

    A review of research conducted at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) into high-speed vortex flows during the 1970s, 1980s, and 1990s is presented. The data are for flat plates, cavities, bodies, missiles, wings, and aircraft with Mach numbers of 1.5 to 4.6. Data are presented to show the types of vortex structures that occur at supersonic speeds and the impact of these flow structures on vehicle performance and control. The data show the presence of both small- and large-scale vortex structures for a variety of vehicles, from missiles to transports. For cavities, the data show very complex multiple vortex structures exist at all combinations of cavity depth to length ratios and Mach number. The data for missiles show the existence of very strong interference effects between body and/or fin vortices. Data are shown that highlight the effect of leading-edge sweep, leading-edge bluntness, wing thickness, location of maximum thickness, and camber on the aerodynamics of and flow over delta wings. Finally, a discussion of a design approach for wings that use vortex flows for improved aerodynamic performance at supersonic speeds is presented.

  6. Aerodynamic characteristics of a fixed arrow-wing supersonic cruise aircraft at Mach numbers of 2.30, 2.70, and 2.95. [Langley Unitary Plan wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Morris, O. A.; Fuller, D. E.; Watson, C. B.

    1978-01-01

    Tests were conducted in the Langley Unitary Plan wind tunnel at Mach numbers of 2.30. 2.70, and 2.95 to determine the performance, static stability, and control characteristics of a model of a fixed-wing supersonic cruise aircraft with a design Mach Number of 2.70 (SCAT 15-F-9898). The configuration had a 74 deg swept warped wing with a reflexed trailing edge and four engine nacelles mounted below the reflexed portion of the wing. A number of variations in the basic configuration were investigated; they included the effect of wing leading edge radius, the effect of various model components, and the effect of model control deflections.

  7. Computer program for calculating supersonic flow on the windward side conical delta wings by the method of lines

    NASA Technical Reports Server (NTRS)

    Klunker, E. B.; South, J. C., Jr.; Davis, R. M.

    1972-01-01

    A user's manual is presented for a program that calculates the supersonic flow on the windward side of conical delta wings with shock attached at the sharp leading edge by the method of lines. The program also has a limited capability for computing the flow about circular and elliptic cones at incidence. It provides information including the shock shape, flow field, isentropic surface-flow properties, and force coefficients. A description of the program operation, a sample computation, and a FORTRAN 4 program listing are included.

  8. Two-dimensional unsteady lift problems in supersonic flight

    NASA Technical Reports Server (NTRS)

    Heaslet, Max A; Lomax, Harvard

    1949-01-01

    The variation of pressure distribution is calculated for a two-dimensional supersonic airfoil either experiencing a sudden angle-of-attack change or entering a sharp-edge gust. From these pressure distributions the indicial lift functions applicable to unsteady lift problems are determined for two cases. Results are presented which permit the determination of maximum increment in lift coefficient attained by an unrestrained airfoil during its flight through a gust. As an application of these results, the minimum altitude for safe flight through a specific gust is calculated for a particular supersonic wing of given strength and wing loading.

  9. Method for Estimating the Sonic-Boom Characteristics of Lifting Canard-Wing Aircraft Concepts

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    2005-01-01

    A method for estimating the sonic-boom overpressures from a conceptual aircraft where the lift is carried by both a canard and a wing during supersonic cruise is presented and discussed. Computer codes used for the prediction of the aerodynamic performance of the wing, the canard-wing interference, the nacelle-wing interference, and the sonic-boom overpressures are identified and discussed as the procedures in the method are discussed. A canard-wing supersonic-cruise concept was used as an example to demonstrate the application of the method.

  10. Supersonic Cruise/Transonic Maneuver Wing Section Development Study.

    DTIC Science & Technology

    1980-06-01

    duct. The inlet is contoured to fit the blended forebody and results in a high-aspect-ratio, minimum height duct which facilitates clearance of the...following. Most of the changes were directed toward reducing the supersonic wave drag. The winglet was removed to reduce supersonic volume and camber...drag and skin friction drag. The primary function of the winglet was to provide directional stability at high angles of attack. Analysis of the HiMAT

  11. A study of altitude-constrained supersonic cruise transport concepts

    NASA Technical Reports Server (NTRS)

    Tice, David C.; Martin, Glenn L.

    1992-01-01

    The effect of restricting maximum cruise altitude on the mission performance of two supersonic transport concepts across a selection of cruise Mach numbers is studied. Results indicate that a trapezoidal wing concept can be competitive with an arrow wing depending on the altitude and Mach number constraints imposed. The higher wing loading of trapezoidal wing configurations gives them an appreciably lower average cruise altitude than the lower wing loading of the arrow wing configurations, and this advantage increases as the maximum allowable cruise altitude is reduced.

  12. Supersonic, nonlinear, attached-flow wing design for high lift with experimental validation

    NASA Technical Reports Server (NTRS)

    Pittman, J. L.; Miller, D. S.; Mason, W. H.

    1984-01-01

    Results of the experimental validation are presented for the three dimensional cambered wing which was designed to achieve attached supercritical cross flow for lifting conditions typical of supersonic maneuver. The design point was a lift coefficient of 0.4 at Mach 1.62 and 12 deg angle of attack. Results from the nonlinear full potential method are presented to show the validity of the design process along with results from linear theory codes. Longitudinal force and moment data and static pressure data were obtained in the Langley Unitary Plan Wind Tunnel at Mach numbers of 1.58, 1.62, 1.66, 1.70, and 2.00 over an angle of attack range of 0 to 14 deg at a Reynolds number of 2.0 x 10 to the 6th power per foot. Oil flow photographs of the upper surface were obtained at M = 1.62 for alpha approx. = 8, 10, 12, and 14 deg.

  13. Subsonic and Supersonic Flutter Analysis of a Highly Tapered Swept-Wing Planform, Including Effects of Density Variation and Finite Wing Thickness, and Comparison with Experiments

    NASA Technical Reports Server (NTRS)

    Yates, Carson, Jr.

    1967-01-01

    The flutter characteristics of several wings with an aspect-ratio of 4.0, a taper ratio of 0.2, and a quarter-chord sweepback of 45 deg. have been investigated analytically for Mach numbers up to 2.0. The calculations were based on the modified-strip-analysis method, the subsonic-kernel-function method, piston theory, and quasi-steady second-order theory. Results of t h e analysis and comparisons with experiment indicated that: (1) Flutter speeds were accurately predicted by the modified strip analysis, although accuracy at t h e highest Mach numbers required the use of nonlinear aerodynamic theory (which accounts for effects of wing thickness) for the calculation of the aerodynamic parameters. (2) An abrupt increase of flutter-speed coefficient with increasing Mach number, observed experimentally in the transonic range, was also indicated by the modified strip analysis. (3) In the low supersonic range for some densities, a discontinuous variation of flutter frequency with Mach number was indicated by the modified strip analysis. An abrupt change of frequency appeared experimentally in the transonic range. (4) Differences in flutter-speed-coefficient levels obtained from tests at low supersonic Mach numbers in two wind tunnels were also predicted by the modified strip analysis and were shown to be caused primarily by differences in mass ratio. (5) Flutter speeds calculated by the subsonic-kernel-function method were in good agreement with experiment and with the results of the modified strip analysis. (6) Flutter speed obtained from piston theory and from quasi-steady second-order theory were higher than experimental values by at least 38 percent.

  14. Supersonic civil airplane study and design: Performance and sonic boom

    NASA Technical Reports Server (NTRS)

    Cheung, Samson

    1995-01-01

    Since aircraft configuration plays an important role in aerodynamic performance and sonic boom shape, the configuration of the next generation supersonic civil transport has to be tailored to meet high aerodynamic performance and low sonic boom requirements. Computational fluid dynamics (CFD) can be used to design airplanes to meet these dual objectives. The work and results in this report are used to support NASA's High Speed Research Program (HSRP). CFD tools and techniques have been developed for general usages of sonic boom propagation study and aerodynamic design. Parallel to the research effort on sonic boom extrapolation, CFD flow solvers have been coupled with a numeric optimization tool to form a design package for aircraft configuration. This CFD optimization package has been applied to configuration design on a low-boom concept and an oblique all-wing concept. A nonlinear unconstrained optimizer for Parallel Virtual Machine has been developed for aerodynamic design and study.

  15. General purpose computer program for interacting supersonic configurations: Programmer's manual

    NASA Technical Reports Server (NTRS)

    Crill, W.; Dale, B.

    1977-01-01

    The program ISCON (Interacting Supersonic Configuration) is described. The program is in support of the problem to generate a numerical procedure for determining the unsteady dynamic forces on interacting wings and tails in supersonic flow. Subroutines are presented along with the complete FORTRAN source listing.

  16. Navier-Stokes and Euler solutions for lee-side flows over supersonic delta wings. A correlation with experiment

    NASA Technical Reports Server (NTRS)

    Mcmillin, S. Naomi; Thomas, James L.; Murman, Earll M.

    1990-01-01

    An Euler flow solver and a thin layer Navier-Stokes flow solver were used to numerically simulate the supersonic leeside flow fields over delta wings which were observed experimentally. Three delta wings with 75, 67.5, and 60 deg leading edge sweeps were computed over an angle-of-attack range of 4 to 20 deg at a Mach number 2.8. The Euler code and Navier-Stokes code predict equally well the primary flow structure where the flow is expected to be separated or attached at the leading edge based on the Stanbrook-Squire boundary. The Navier-Stokes code is capable of predicting both the primary and the secondary flow features for the parameter range investigated. For those flow conditions where the Euler code did not predict the correct type of primary flow structure, the Navier-Stokes code illustrated that the flow structure is sensitive to boundary layer model. In general, the laminar Navier-Stokes solutions agreed better with the experimental data, especially for the lower sweep delta wings. The computational results and a detailed re-examination of the experimental data resulted in a refinement of the flow classifications. This refinement in the flow classification results in the separation bubble with the shock flow type as the intermediate flow pattern between separated and attached flows.

  17. Two-Dimensional, Supersonic, Linearized Flow with Heat Addition

    NASA Technical Reports Server (NTRS)

    Lomax, Harvard

    1959-01-01

    Calculations are presented for the forces on a thin supersonic wing underneath which the air is heated. The analysis is limited principally to linearized theory but nonlinear effects are considered. It is shown that significant advantages to external heating would exist if the heat were added well below and ahead of the wing.

  18. Analysis and testing of aeroelastic model stability augmentation systems. [for supersonic transport aircraft wing and B-52 aircraft control system

    NASA Technical Reports Server (NTRS)

    Sevart, F. D.; Patel, S. M.

    1973-01-01

    Testing and evaluation of a stability augmentation system for aircraft flight control were performed. The flutter suppression system and synthesis conducted on a scale model of a supersonic wing for a transport aircraft are discussed. Mechanization and testing of the leading and trailing edge surface actuation systems are described. The ride control system analyses for a 375,000 pound gross weight B-52E aircraft are presented. Analyses of the B-52E aircraft maneuver load control system are included.

  19. Feasibility and benefits of laminar flow control on supersonic cruise airplanes

    NASA Technical Reports Server (NTRS)

    Powell, A. G.; Agrawal, S.; Lacey, T. R.

    1989-01-01

    An evaluation was made of the applicability and benefits of laminar flow control (LFC) technology to supersonic cruise airplanes. Ancillary objectives were to identify the technical issues critical to supersonic LFC application, and to determine how those issues can be addressed through flight and wind-tunnel testing. Vehicle types studied include a Mach 2.2 supersonic transport configuration, a Mach 4.0 transport, and two Mach 2-class fighter concepts. Laminar flow control methodologies developed for subsonic and transonic wing laminarization were extended and applied. No intractible aerodynamic problems were found in applying LFC to airplanes of the Mach 2 class, even ones of large size. Improvements of 12 to 17 percent in lift-drag ratios were found. Several key technical issues, such as contamination avoidance and excresence criteria were identified. Recommendations are made for their resolution. A need for an inverse supersonic wing design methodology is indicated.

  20. Transonic and Supersonic Wind-Tunnel Tests of Wing-Body Combinations Designed for High Efficiency at a Mach Number of 1.41

    NASA Technical Reports Server (NTRS)

    Grant, Frederick C.; Sevier, John R., Jr.

    1960-01-01

    Wind-tunnel force tests of a number of wing-body combinations designed for high lift-drag ratio at a Mach number of 1.41 are reported. Five wings and six bodies were used in making up the various wing-body combinations investigated. All the wings had the same highly swept dis- continuously tapered plan form with NACA 65A-series airfoil sections 4 percent thick at the root tapering linearly to 3 percent thick at the tip. The bodies were based on the area distribution of a Sears-Haack body of revolution for minimum drag with a given length and volume. These wings and bodies were used to determine the effects of wing twist., wing twist and camber, wing leading-edge droop, a change from circular to elliptical body cross-sectional shape, and body indentation by the area-rule and streamline methods. The supersonic test Mach numbers were 1.41 and 2.01. The transonic test Mach number range was from 0.6 to 1.2. For the transition-fixed condition and at a Reynolds number of 2.7 x 10(exp 6) based on the mean aerodynamic chord, the maximum value of lift- drag ratio at a Mach number of 1.41 was 9.6 for a combination with a twisted wing and an indented body of elliptical cross section. The tests indicated that the transonic rise in minimum drag was low and did not change appreciably up to the highest test Mach number of 2.01. The lower values of lift-drag ratio obtained at a Mach number of 2.01 can be attributed to the increase of drag due to lift with Mach number.

  1. Flight Tests of a Supersonic Natural Laminar Flow Airfoil

    NASA Technical Reports Server (NTRS)

    Frederick, M. A.; Banks, D. W.; Garzon, G. A.; Matisheck, J. R.

    2014-01-01

    A flight test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80-inch (203 cm) chord and 40-inch (102 cm) span article mounted on the centerline store location of an F-15B airplane. The wing was designed with a leading edge sweep of effectively 0 deg to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2-D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, were similar to that of subsonic natural laminar flow wings.

  2. Supersonic wings with significant leading-edge thrust at cruise

    NASA Technical Reports Server (NTRS)

    Robins, A. W.; Carlson, H. W.; Mack, R. J.

    1980-01-01

    Experimental/theoretical correlations are presented which show that significant levels of leading edge thrust are possible at supersonic speeds for certain planforms which match the theoretical thrust distribution potential with the supporting airfoil geometry. The analytical process employed spanwise distribution of both it and/or that component of full theoretical thrust which acts as vortex lift. Significantly improved aerodynamic performance in the moderate supersonic speed regime is indicated.

  3. About the Effect of Control on Flutter and Post-Flutter of a Supersonic/Hypersonic Cross-Sectional Wing

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Librescu, Liviu; Marzocca, Piergiovanni

    2001-01-01

    The control of the flutter instability and the conversion of the dangerous character of the flutter instability boundary into the undangerous one of a cross-sectional wing in a supersonic/hypersonic flow field is presented. The objective of this paper is twofold: i) to analyze the implications of nonlinear unsteady aerodynamics and physical nonlinearities on the character of the instability boundary in the presence of a control capability, and ii) to outline the effects played in the same respect by some important parameters of the aeroelastic system. As a by-product of this analysis, the implications of the active control on the linearized flutter behavior of the system are captured and emphasized. The bifurcation behavior of the open/closed loop aeroelastic system in the vicinity of the flutter boundary is studied via the use of a new methodology based on the Liapunov First Quantity. The expected outcome of this study is: a) to greatly enhance the scope and reliability of the aeroelastic analysis and design criteria of advanced supersonic/hypersonic flight vehicles and, b) provide a theoretical basis for the analysis of more complex nonlinear aeroelastic systems.

  4. About the Effect of Control on Flutter and Post-Flutter of a Supersonic/Hypersonic Cross-Sectional Wing

    NASA Technical Reports Server (NTRS)

    Marzocca, Piergiovanni; Librescu, Liviu; Silva, Walter A.

    2000-01-01

    The control of the flutter instability and the conversion of the dangerous character of the flutter instability boundary into the undangerous one of a cross-sectional wing in a supersonic/hypersonic flow field is presented. The objective of this paper is twofold: i) to analyze the implications of nonlinear unsteady aerodynamics and physical nonlinearities on the character of the instability boundary in the presence of a control capability, and ii) to outline the effects played in the same respect by some important parameters of the aeroelastic system. As a by-product of this analysis, the implications of the active control on the linearized flutter behavior of the system are captured and emphasized. The bifurcation behavior of the open/closed loop aeroelastic system in the vicinity of the flutter boundary is studied via the use of a new methodology based on the Liapunov First Quantity. The expected outcome of this study is: a) to greatly enhance the scope and reliability of the aeroelastic analysis and design criteria of advanced supersonic/hypersonic flight vehicles and, b) provide a theoretical basis for the analysis of more complex nonlinear aeroelastic systems.

  5. Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.

    1995-01-01

    Low-disturbance or 'quiet' wind tunnels are now considered an essential part of meaningful boundary layer transition research. Advances in Supersonic Laminar Flow Control (SLFC) technology for swept wings depends on a better understanding of the receptivity of the transition phenomena to attachment-line contamination and cross-flows. This need has provided the impetus for building the Laminar Flow Supersonic Wind Tunnel (LFSWT) at NASA-Ames, as part of the NASA High Speed Research Program (HSRP). The LFSWT was designed to provide NASA with an unequaled capability for transition research at low supersonic Mach numbers (<2.5). The following are the objectives in support of the new Fluid Mechanic Laboratory (FML) quiet supersonic wind tunnel: (I) Develop a unique injector drive system using the existing FML indraft compressor; (2) Develop an FML instrumentation capability for quiet supersonic wind tunnel evaluation and transition studies at NASA-Ames; (3) Determine the State of the Art in quiet supersonic wind tunnel design; (4) Build and commission the LFSWT; (5) Make detailed flow quality measurements in the LFSWT; (6) Perform tests of swept wing models in the LFSWT in support of the NASA HSR program; and (7) Provide documentation of research progress.

  6. Aerodynamic Characteristics and Flying Qualities of a Tailless Triangular-wing Airplane Configuration as Obtained from Flights of Rocket-propelled Models at Transonic and Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Mitcham, Grady L; Stevens, Joseph E; Norris, Harry P

    1956-01-01

    A flight investigation of rocket-powered models of a tailless triangular-wing airplane configuration was made through the transonic and low supersonic speed range at the Langley Pilotless Aircraft Research Station at Wallops Island, Va. An analysis of the aerodynamic coefficients, stability derivatives, and flying qualities based on the results obtained from the successful flight tests of three models is presented.

  7. Supersonic wings with significant leading-edge thrust at cruise

    NASA Technical Reports Server (NTRS)

    Robins, A. W.; Carlson, H. W.; Mack, R. J.

    1980-01-01

    Experimental/theoretical correlations are presented which show that significant levels of leading-edge thrust are possible at supersonic speeds for certain planforms having the geometry to support the theoretical thrust-distribution potential. The new analytical process employed provides not only the level of leading-edge thrust attainable but also the spanwise distribution of both it and that component of full theoretical thrust which acts as vortex lift. Significantly improved aerodynamic performance in the moderate supersonic speed regime is indicated.

  8. Experimental investigation of leading-edge thrust at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Wood, R. M.; Miller, D. S.

    1983-01-01

    Wings, designed for leading edge thrust at supersonic speeds, were investigated in the Unitary Plan Wind Tunnel at Mach numbers of 1.60, 1.80, 2.00, 2.16, and 2.36. Experimental data were obtained on a uncambered wing which had three interchangeable leading edges that varied from sharp to blunt. The leading edge thrust concept was evaluated. Results from the investigation showed that leading edge flow separation characteristics of all wings tested agree well with theoretical predictions. The experimental data showed that significant changes in wing leading edge bluntness did not affect the zero lift drag of the uncambered wings.

  9. Wind-Tunnel Investigation at Subsonic and Supersonic Speeds of a Fighter Model Employing a Low-Aspect-Ratio Unswept Wing and a Horizontal Tail Mounted Well Above the Wing Plane - Longitudinal Stability and Control

    NASA Technical Reports Server (NTRS)

    Smith, Williard G.

    1954-01-01

    Experimental results showing the static longitudinal-stability and control characteristics of a model of a fighter airplane employing a low-aspect-ratio unswept wing and an all-movable horizontal tail are presented. The investigation was made over a Mach number range from 0.60 to 0.90 and from 1.35 to 1.90 at a constant Reynolds number of 2.40 million, based on the wing mean aerodynamic chord. Because of the location of the horizontal tail at the tip of the vertical tail, interference was noted between the vertical tail and the horizontal tail and between the wing and the horizontal tail. This interference produced a positive pitching-moment coefficient at zero lift throughout the Mach number range of the tests, reduced the change in stability with increasing lift coefficient of the wing at moderate lift coefficients in the subsonic speed range, and reduced the stability at low lift coefficients at high supersonic speeds. The lift and pitching-moment effectiveness of the all movable tail was unaffected by the interference effects and was constant throughout the lift-coefficient range of the tests at each Mach number except 1.90.

  10. Heat, mass and force flows in supersonic shockwave interaction

    NASA Astrophysics Data System (ADS)

    Dixon, John Michael

    There is no cost effective way to deliver a payload to space and, with rising fuel prices, currently the price to travel commercially is also becoming more prohibitive to the public. During supersonic flight, compressive shock waves form around the craft which could be harnessed to deliver an additional lift on the craft. Using a series of hanging plates below a lifting wing design, the total lift generated can be increased above conventional values, while still maintaining a similar lift-to-drag ratio. Here, we study some of the flows involved in supersonic shockwave interaction. This analysis uses ANSYS Fluent Computational Fluid Dynamics package as the modeler. Our findings conclude an increase of up to 30% lift on the modeled craft while maintaining the lift-to-drag profile of the unmodified lifting wing. The increase in lift when utilizing the shockwave interaction could increase transport weight and reduce fuel cost for space and commercial flight, as well as mitigating negative effects associated with supersonic travel.

  11. High performance forward swept wing aircraft

    NASA Technical Reports Server (NTRS)

    Koenig, David G. (Inventor); Aoyagi, Kiyoshi (Inventor); Dudley, Michael R. (Inventor); Schmidt, Susan B. (Inventor)

    1988-01-01

    A high performance aircraft capable of subsonic, transonic and supersonic speeds employs a forward swept wing planform and at least one first and second solution ejector located on the inboard section of the wing. A high degree of flow control on the inboard sections of the wing is achieved along with improved maneuverability and control of pitch, roll and yaw. Lift loss is delayed to higher angles of attack than in conventional aircraft. In one embodiment the ejectors may be advantageously positioned spanwise on the wing while the ductwork is kept to a minimum.

  12. NASA F-16XL supersonic laminar flow control program overview

    NASA Technical Reports Server (NTRS)

    Fischer, Michael C.

    1992-01-01

    The viewgraphs and discussion of the NASA supersonic laminar flow control program are provided. Successful application of laminar flow control to a High Speed Civil Transport (HSCT) offers significant benefits in reductions of take-off gross weight, mission fuel burn, cruise drag, structural temperatures, engine size, emissions, and sonic boom. The ultimate economic success of the proposed HSCT may depend on the successful adaption of laminar flow control, which offers the single most significant potential improvements in lift drag ratio (L/D) of all the aerodynamic technologies under consideration. The F-16XL Supersonic Laminar Flow Control (SLFC) Experiment was conceived based on the encouraging results of in-house and NASA supported industry studies to determine if laminar flow control is feasible for the HSCT. The primary objective is to achieve extensive laminar flow (50-60 percent chord) on a highly swept supersonic wing. Data obtained from the flight test will be used to validate existing Euler and Navier Stokes aerodynamic codes and transition prediction boundary layer stability codes. These validated codes and developed design methodology will be delivered to industry for their use in designing supersonic laminar flow control wings. Results from this experiment will establish preliminary suction system design criteria enabling industry to better size the suction system and develop improved estimates of system weight, fuel volume loss due to wing ducting, turbocompressor power requirements, etc. so that benefits and penalties can be more accurately assessed.

  13. An aerodynamic assessment of various supersonic fighter airplanes based on Soviet design concepts

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1983-01-01

    The aerodynamic, stability, and control characteristics of several supersonic fighter airplane concepts were assessed. The configurations include fixed-wing airplanes having delta wings, swept wings, and trapezoidal wings, and variable wing-sweep airplanes. Each concept employs aft tail controls. The concepts vary from lightweight, single engine, air superiority, point interceptor, or ground attack types to larger twin-engine interceptor and reconnaissance designs. Results indicate that careful application of the transonic or supersonic area rule can provide nearly optimum shaping for minimum drag for a specified Mach number requirement. Through the proper location of components and the exploitation of interference flow fields, the concepts provide linear pitching moment characteristics, high control effectiveness, and reasonably small variations in aerodynamic center location with a resulting high potential for maneuvering capability. By careful attention to component shaping and location and through the exploitation of local flow fields, favorable roll-to-yaw ratios may result and a high degree of directional stability can be achieved.

  14. Nonlinear aerodynamic wing design

    NASA Technical Reports Server (NTRS)

    Bonner, Ellwood

    1985-01-01

    The applicability of new nonlinear theoretical techniques is demonstrated for supersonic wing design. The new technology was utilized to define outboard panels for an existing advanced tactical fighter model. Mach 1.6 maneuver point design and multi-operating point compromise surfaces were developed and tested. High aerodynamic efficiency was achieved at the design conditions. A corollary result was that only modest supersonic penalties were incurred to meet multiple aerodynamic requirements. The nonlinear potential analysis of a practical configuration arrangement correlated well with experimental data.

  15. Computer program analyzes and designs supersonic wing-body combinations

    NASA Technical Reports Server (NTRS)

    Woodward, F. A.

    1968-01-01

    Computer program formulates geometric description of the wing body configuration, optimizes wing camber shape, determines wing shape for a given pressure distribution, and calculates pressures, forces, and moments on a given configuration. The program consists of geometry definition, transformation, and paneling, and aerodynamics, and flow visualization.

  16. Economy of flight at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1976-01-01

    Prandtl's theory is used to determine the airflow over bodies and wings adapted to supersonic flight. By making use of these results, and by incorporating in them an allowance for the probable skin friction, some estimates of expected lift-drag ratios are made for various flight speeds with the best configuration. At each speed a slender body and wings having the best angle of sweepback are considered. For the range of supersonic speeds shown an airplane of normal density and loading would be required to operate at an altitude of the order of 60,000 feet. The limiting value of 1-1/2 times the speed of sound corresponds to a flight speed of 1000 miles per hour. At this speed about 1.5 miles per gallon of fuel are expected. It is interesting to note that this value corresponds to a value of more than 15 miles per gallon when the weight is reduced to correspond to that of an ordinary automobile.

  17. Three-Dimensional Boundary-Layer program (BL3D) for swept subsonic or supersonic wings with application to laminar flow control

    NASA Technical Reports Server (NTRS)

    Iyer, Venkit

    1993-01-01

    The theory, formulation, and solution of three-dimensional, compressible attached laminar flows, applied to swept wings in subsonic or supersonic flow are discussed. Several new features and modifications to an earlier general procedure described in NASA CR 4269, Jan. 1990 are incorporated. Details of interfacing the boundary-layer computation with solution of the inviscid Euler equations are discussed. A description of the computer program, complete with user's manual and example cases, is also included. Comparison of solutions with Navier-Stokes computations with or without boundary-layer suction is given. Output of solution profiles and derivatives required in boundary-layer stability analysis is provided.

  18. Integrals and integral equations in linearized wing theory

    NASA Technical Reports Server (NTRS)

    Lomax, Harvard; Heaslet, Max A; Fuller, Franklyn B

    1951-01-01

    The formulas of subsonic and supersonic wing theory for source, doublet, and vortex distributions are reviewed and a systematic presentation is provided which relates these distributions to the pressure and to the vertical induced velocity in the plane of the wing. It is shown that care must be used in treating the singularities involved in the analysis and that the order of integration is not always reversible. Concepts suggested by the irreversibility of order of integration are shown to be useful in the inversion of singular integral equations when operational techniques are used. A number of examples are given to illustrate the methods presented, attention being directed to supersonic flight speed.

  19. Transonic and supersonic ground effect aerodynamics

    NASA Astrophysics Data System (ADS)

    Doig, G.

    2014-08-01

    A review of recent and historical work in the field of transonic and supersonic ground effect aerodynamics has been conducted, focussing on applied research on wings and aircraft, present and future ground transportation, projectiles, rocket sleds and other related bodies which travel in close ground proximity in the compressible regime. Methods for ground testing are described and evaluated, noting that wind tunnel testing is best performed with a symmetry model in the absence of a moving ground; sled or rail testing is ultimately preferable, though considerably more expensive. Findings are reported on shock-related ground influence on aerodynamic forces and moments in and accelerating through the transonic regime - where force reversals and the early onset of local supersonic flow is prevalent - as well as more predictable behaviours in fully supersonic to hypersonic ground effect flows.

  20. The Use of Source-Sink and Doublet Distributions Extended to the Solution of Boundary-Value Problems in Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Heaslet, Max A; Lomax, Harvard

    1948-01-01

    A direct analogy is established between the use of source-sink and doublet distributions in the solution of specific boundary-value problems in subsonic wing theory and the corresponding problems in supersonic theory. The correct concept of the "finite part" of an integral is introduced and used in the calculation of the improper integrals associated with supersonic doublet distributions. The general equations developed are shown to include several previously published results and particular examples are given for the loading on rolling and pitching triangular wings with supersonic leading edges.

  1. Advanced Noise Abatement Procedures for a Supersonic Business Jet

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.; Jones, Scott M.; Seidel, Jonathan A.; Huff, Dennis L.

    2017-01-01

    Supersonic civil aircraft present a unique noise certification challenge. High specific thrust required for supersonic cruise results in high engine exhaust velocity and high levels of jet noise during takeoff. Aerodynamics of thin, low-aspect-ratio wings equipped with relatively simple flap systems deepen the challenge. Advanced noise abatement procedures have been proposed for supersonic aircraft. These procedures promise to reduce airport noise, but they may require departures from normal reference procedures defined in noise regulations. The subject of this report is a takeoff performance and noise assessment of a notional supersonic business jet. Analytical models of an airframe and a supersonic engine derived from a contemporary subsonic turbofan core are developed. These models are used to predict takeoff trajectories and noise. Results indicate advanced noise abatement takeoff procedures are helpful in reducing noise along lateral sidelines.

  2. The Edge supersonic transport

    NASA Technical Reports Server (NTRS)

    Agosta, Roxana; Bilbija, Dushan; Deutsch, Marc; Gallant, David; Rose, Don; Shreve, Gene; Smario, David; Suffredini, Brian

    1992-01-01

    As intercontinental business and tourism volumes continue their rapid expansion, the need to reduce travel times becomes increasingly acute. The Edge Supersonic Transport Aircraft is designed to meet this demand by the year 2015. With a maximum range of 5750 nm, a payload of 294 passengers and a cruising speed of M = 2.4, The Edge will cut current international flight durations in half, while maintaining competitive first class, business class, and economy class comfort levels. Moreover, this transport will render a minimal impact upon the environment, and will meet all Federal Aviation Administration Part 36, Stage III noise requirements. The cornerstone of The Edge's superior flight performance is its aerodynamically efficient, dual-configuration design incorporating variable-geometry wingtips. This arrangement combines the benefits of a high aspect ratio wing at takeoff and low cruising speeds with the high performance of an arrow-wing in supersonic cruise. And while the structural weight concerns relating to swinging wingtips are substantial, The Edge looks to ever-advancing material technologies to further increase its viability. Heeding well the lessons of the past, The Edge design holds economic feasibility as its primary focus. Therefore, in addition to its inherently superior aerodynamic performance, The Edge uses a lightweight, largely windowless configuration, relying on a synthetic vision system for outside viewing by both pilot and passengers. Additionally, a fly-by-light flight control system is incorporated to address aircraft supersonic cruise instability. The Edge will be produced at an estimated volume of 400 aircraft and will be offered to airlines in 2015 at $167 million per transport (1992 dollars).

  3. Calculation of vortex lift effect for cambered wings by the suction analogy

    NASA Technical Reports Server (NTRS)

    Lan, C. E.; Chang, J. F.

    1981-01-01

    An improved version of Woodward's chord plane aerodynamic panel method for subsonic and supersonic flow is developed for cambered wings exhibiting edge separated vortex flow, including those with leading edge vortex flaps. The exact relation between leading edge thrust and suction force in potential flow is derived. Instead of assuming the rotated suction force to be normal to wing surface at the leading edge, new orientation for the rotated suction force is determined through consideration of the momentum principle. The supersonic suction analogy method is improved by using an effective angle of attack defined through a semi-empirical method. Comparisons of predicted results with available data in subsonic and supersonic flow are presented.

  4. Stability and performance characteristics of a fixed arrow wing supersonic transport configuration (SCAT 15F-9898) at Mach numbers from 0.60 to 1.20

    NASA Technical Reports Server (NTRS)

    Decker, J. P.; Jacobs, P. F.

    1978-01-01

    Tests on a 0.015 scale model of a supersonic transport were conducted at Mach numbers from 0.60 to 1.20. Tests of the complete model with three wing planforms, two different leading-edge radii, and various combinations of component parts, including both leading- and trailing-edge flaps, were made over an angle-of-attack range from about -6 deg to 13 deg and at sideslip angles of 0 deg and 2 deg.

  5. Verification Assessment of Flow Boundary Conditions for CFD Analysis of Supersonic Inlet Flows

    NASA Technical Reports Server (NTRS)

    Slater, John W.

    2002-01-01

    Boundary conditions for subsonic inflow, bleed, and subsonic outflow as implemented into the WIND CFD code are assessed with respect to verification for steady and unsteady flows associated with supersonic inlets. Verification procedures include grid convergence studies and comparisons to analytical data. The objective is to examine errors, limitations, capabilities, and behavior of the boundary conditions. Computational studies were performed on configurations derived from a "parameterized" supersonic inlet. These include steady supersonic flows with normal and oblique shocks, steady subsonic flow in a diffuser, and unsteady flow with the propagation and reflection of an acoustic disturbance.

  6. Aerodynamic Design Opportunities for Future Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.; Flamm, Jeffrey D.

    2002-01-01

    A discussion of a diverse set of aerodynamic opportunities to improve the aerodynamic performance of future supersonic aircraft has been presented and discussed. These ideas are offered to the community in a hope that future supersonic vehicle development activities will not be hindered by past efforts. A number of nonlinear flow based drag reduction technologies are presented and discussed. The subject technologies are related to the areas of interference flows, vehicle concepts, vortex flows, wing design, advanced control effectors, and planform design. The authors also discussed the importance of improving the aerodynamic design environment to allow creativity and knowledge greater influence. A review of all of the data presented show that pressure drag reductions on the order of 50 to 60 counts are achievable, compared to a conventional supersonic cruise vehicle, with the application of several of the discussed technologies. These drag reductions would correlate to a 30 to 40% increase in cruise L/D (lift-to-drag ratio) for a commercial supersonic transport.

  7. Exact and approximate solutions to the oblique shock equations for real-time applications

    NASA Technical Reports Server (NTRS)

    Hartley, T. T.; Brandis, R.; Mossayebi, F.

    1991-01-01

    The derivation of exact solutions for determining the characteristics of an oblique shock wave in a supersonic flow is investigated. Specifically, an explicit expression for the oblique shock angle in terms of the free stream Mach number, the centerbody deflection angle, and the ratio of the specific heats, is derived. A simpler approximate solution is obtained and compared to the exact solution. The primary objectives of obtaining these solutions is to provide a fast algorithm that can run in a real time environment.

  8. Transonic Aerodynamic Characteristics of a Wing-Body Combination having a 52.5 deg Sweptback Wing of Aspect Ratio 3 with Conical Camber and Designed for a Mach Number of the Square Root of 2

    NASA Technical Reports Server (NTRS)

    Igoe, William B.; Re, Richard J.; Cassetti, Marlowe

    1961-01-01

    An investigation has been made of the effects of conical wing camber and supersonic body indentation on the aerodynamic characteristics of a wing-body configuration at transonic speeds. Wing aspect ratio was 3.0, taper ratio was 0.1, and quarter-chord line sweepback was 52.5 deg with airfoil sections of 0.03 thickness ratio. The tests were conducted in the Langley 16-foot transonic tunnel at various Mach numbers from 0.80 to 1.05 at angles of attack from -4 deg to 14 deg. The cambered-wing configuration achieved higher lift-drag ratios than a similar plane-wing configuration. The camber also reduced the effects of wing-tip flow separation on the aerodynamic characteristics. In general, no stability or trim changes below wing-tip flow separation resulted from the use of camber. The use of supersonic body indentation improved the lift-drag ratios at Mach numbers from 0.96 to 1.05.

  9. A higher order panel method for linearized supersonic flow

    NASA Technical Reports Server (NTRS)

    Ehlers, F. E.; Epton, M. A.; Johnson, F. T.; Magnus, A. E.; Rubbert, P. E.

    1979-01-01

    The basic integral equations of linearized supersonic theory for an advanced supersonic panel method are derived. Methods using only linear varying source strength over each panel or only quadratic doublet strength over each panel gave good agreement with analytic solutions over cones and zero thickness cambered wings. For three dimensional bodies and wings of general shape, combined source and doublet panels with interior boundary conditions to eliminate the internal perturbations lead to a stable method providing good agreement experiment. A panel system with all edges contiguous resulted from dividing the basic four point non-planar panel into eight triangular subpanels, and the doublet strength was made continuous at all edges by a quadratic distribution over each subpanel. Superinclined panels were developed and tested on s simple nacelle and on an airplane model having engine inlets, with excellent results.

  10. MULTISHOCKED,THREE-DIMENSIONAL SUPERSONIC FLOWFIELDS WITH REAL GAS EFFECTS

    NASA Technical Reports Server (NTRS)

    Kutler, P.

    1994-01-01

    This program determines the supersonic flowfield surrounding three-dimensional wing-body configurations of a delta wing. It was designed to provide the numerical computation of three dimensional inviscid, flowfields of either perfect or real gases about supersonic or hypersonic airplanes. The governing equations in conservation law form are solved by a finite difference method using a second order noncentered algorithm between the body and the outermost shock wave, which is treated as a sharp discontinuity. Secondary shocks which form between these boundaries are captured automatically. The flowfield between the body and outermost shock is treated in a shock capturing fashion and therefore allows for the correct formation of secondary internal shocks . The program operates in batch mode, is in CDC update format, has been implemented on the CDC 7600, and requires more than 140K (octal) word locations.

  11. A first-order Green's function approach to supersonic oscillatory flow: A mixed analytic and numeric treatment

    NASA Technical Reports Server (NTRS)

    Freedman, M. I.; Sipcic, S.; Tseng, K.

    1985-01-01

    A frequency domain Green's Function Method for unsteady supersonic potential flow around complex aircraft configurations is presented. The focus is on the supersonic range wherein the linear potential flow assumption is valid. In this range the effects of the nonlinear terms in the unsteady supersonic compressible velocity potential equation are negligible and therefore these terms will be omitted. The Green's function method is employed in order to convert the potential flow differential equation into an integral one. This integral equation is then discretized, through standard finite element technique, to yield a linear algebraic system of equations relating the unknown potential to its prescribed co-normalwash (boundary condition) on the surface of the aircraft. The arbitrary complex aircraft configuration (e.g., finite-thickness wing, wing-body-tail) is discretized into hyperboloidal (twisted quadrilateral) panels. The potential and co-normalwash are assumed to vary linearly within each panel. The long range goal is to develop a comprehensive theory for unsteady supersonic potential aerodynamic which is capable of yielding accurate results even in the low supersonic (i.e., high transonic) range.

  12. Supersonic Injection of Aerated Liquid Jet

    NASA Astrophysics Data System (ADS)

    Choudhari, Abhijit; Sallam, Khaled

    2016-11-01

    A computational study of the exit flow of an aerated two-dimensional jet from an under-expanded supersonic nozzle is presented. The liquid sheet is operating within the annular flow regime and the study is motivated by the application of supersonic nozzles in air-breathing propulsion systems, e.g. scramjet engines, ramjet engines and afterburners. The simulation was conducted using VOF model and SST k- ω turbulence model. The test conditions included: jet exit of 1 mm and mass flow rate of 1.8 kg/s. The results show that air reaches transonic condition at the injector exit due to the Fanno flow effects in the injector passage. The aerated liquid jet is alternately expanded by Prandtl-Meyer expansion fan and compressed by oblique shock waves due to the difference between the back (chamber) pressure and the flow pressure. The process then repeats itself and shock (Mach) diamonds are formed at downstream of injector exit similar to those typical of exhaust plumes of propulsion system. The present results, however, indicate that the flow field of supersonic aerated liquid jet is different from supersonic gas jets due to the effects of water evaporation from the liquid sheet. The contours of the Mach number, static pressure of both cases are compared to the theory of gas dynamics.

  13. Exhaust Plume Effects on Sonic Boom for a Delta Wing and a Swept Wing-Body Model

    NASA Technical Reports Server (NTRS)

    Castner, Raymond; Lake, Troy

    2012-01-01

    Supersonic travel is not allowed over populated areas due to the disturbance caused by the sonic boom. Research has been performed on sonic boom reduction and has included the contribution of the exhaust nozzle plume. Plume effect on sonic boom has progressed from the study of isolated nozzles to a study with four exhaust plumes integrated with a wing-body vehicle. This report provides a baseline analysis of the generic wing-body vehicle to demonstrate the effect of the nozzle exhaust on the near-field pressure profile. Reductions occurred in the peak-to-peak magnitude of the pressure profile for a swept wing-body vehicle. The exhaust plumes also had a favorable effect as the nozzles were moved outward along the wing-span.

  14. Properties of Supersonic Evershed Downflows

    NASA Astrophysics Data System (ADS)

    Esteban Pozuelo, S.; Bellot Rubio, L. R.; de la Cruz Rodríguez, J.

    2016-12-01

    We study supersonic Evershed downflows in a sunspot penumbra by means of high spatial resolution spectropolarimetric data acquired in the Fe I 617.3 nm line with the CRISP instrument at the Swedish 1 m Solar Telescope. Physical observables, such as Dopplergrams calculated from line bisectors and Stokes V zero-crossing wavelengths, and Stokes V maps in the far red-wing, are used to find regions where supersonic Evershed downflows may exist. We retrieve the line-of-sight velocity and the magnetic field vector in these regions using two-component inversions of the observed Stokes profiles with the help of the SIR code. We follow these regions during their lifetime to study their temporal behavior. Finally, we carry out a statistical analysis of the detected supersonic downflows to characterize their physical properties. Supersonic downflows are contained in compact patches moving outward, which are located in the mid- and outer penumbra. They are observed as bright, roundish structures at the outer end of penumbral filaments that resemble penumbral grains. The patches may undergo fragmentations and mergings during their lifetime; some of them are recurrent. Supersonic downflows are associated with strong and rather vertical magnetic fields with a reversed polarity compared to that of the sunspot. Our results suggest that downflows returning back to the solar surface with supersonic velocities are abruptly stopped in dense deep layers and produce a shock. Consequently, this shock enhances the temperature and is detected as a bright grain in the continuum filtergrams, which could explain the existence of outward-moving grains in the mid- and outer penumbra.

  15. Fully unsteady subsonic and supersonic potential aerodynamics for complex aircraft configurations with applications to flutter

    NASA Technical Reports Server (NTRS)

    Tseng, K.; Morino, L.

    1975-01-01

    A general formulation is presented for the analysis of steady and unsteady, subsonic and supersonic aerodynamics for complex aircraft configurations. The theoretical formulation, the numerical procedure, the description of the program SOUSSA (steady, oscillatory and unsteady, subsonic and supersonic aerodynamics) and numerical results are included. In particular, generalized forces for fully unsteady (complex frequency) aerodynamics for a wing-body configuration, AGARD wing-tail interference in both subsonic and supersonic flows as well as flutter analysis results are included. The theoretical formulation is based upon an integral equation, which includes completely arbitrary motion. Steady and oscillatory aerodynamic flows are considered. Here small-amplitude, fully transient response in the time domain is considered. This yields the aerodynamic transfer function (Laplace transform of the fully unsteady operator) for frequency domain analysis. This is particularly convenient for the linear systems analysis of the whole aircraft.

  16. Convair XF-102 Model in the 8- by 6-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1953-08-21

    A .10-scale model of Convair’s XF-102 in the 8- by 6-Foot Supersonic Wind Tunnel at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory for jet exit studies. The XF-102 was a prototype of the F-102 Delta Dagger. The F-102 served as an interceptor against long range bombers from the Soviet Union. The aircraft was powered by a Pratt and Whitney J57 turbojet. The first prototype crashed two weeks after is first flight on October 24, 1953, just months after this photograph. Engineers then incorporated the fixed-wing design to reduce drag at supersonic speeds. The production model F-102 became the first delta-wing supersonic aircraft in operation. The 8- by 6-Foot Supersonic Wind Tunnel is used to study propulsion systems, including inlets and exit nozzles, combustion fuel injectors, flame holders, exit nozzles, and controls on ramjet and turbojet engines. Flexible sidewalls alter the tunnel’s nozzle shape to vary the Mach number during operation. A seven-stage axial compressor, driven by three electric motors that yield a total of 87,000 horsepower, generates air speeds from Mach 0.36 to 2.0.

  17. Recent Loads Calibration Experience With a Delta Wing Airplane

    NASA Technical Reports Server (NTRS)

    Jenkins, Jerald M.; Kuhl, Albert E.

    1977-01-01

    Aircraft which are designed for supersonic and hypersonic flight are evolving with delta wing configurations. An integral part of the evolution of all new aircraft is the flight test phase. Included in the flight test phase is an effort to identify and evaluate the loads environment of the aircraft. The most effective way of examining the loads environment is to utilize calibrated strain gages to provide load magnitudes. Using strain gage data to accomplish this has turned out to be anything but a straightforward task. The delta wing configuration has turned out to be a very difficult type of wing structure to calibrate. Elevated structural temperatures result in thermal effects which contaminate strain gage data being used to deduce flight loads. The concept of thermally calibrating a strain gage system is an approach to solving this problem. This paper will address how these problems were approached on a program directed toward measuring loads on the wing of a large, flexible supersonic aircraft. Structural configurations typical of high-speed delta wing aircraft will be examined. The temperature environment will be examined to see how it induces thermal stresses which subsequently cause errors in loads equations used to deduce the flight loads.

  18. Oscillatory supersonic kernel function method for interfering surfaces

    NASA Technical Reports Server (NTRS)

    Cunningham, A. M., Jr.

    1974-01-01

    In the method presented in this paper, a collocation technique is used with the nonplanar supersonic kernel function to solve multiple lifting surface problems with interference in steady or oscillatory flow. The pressure functions used are based on conical flow theory solutions and provide faster solution convergence than is possible with conventional functions. In the application of the nonplanar supersonic kernel function, an improper integral of a 3/2 power singularity along the Mach hyperbola is described and treated. The method is compared with other theories and experiment for two wing-tail configurations in steady and oscillatory flow.

  19. Some Effects of Leading-Edge Sweep on Boundary-Layer Transition at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Chapman, Gray T.

    1961-01-01

    The effects of crossflow and shock strength on transition of the laminar boundary layer behind a swept leading edge have been investigated analytically and with the aid of available experimental data. An approximate method of determining the crossflow Reynolds number on a leading edge of circular cross section at supersonic speeds is presented. The applicability of the critical crossflow criterion described by Owen and Randall for transition on swept wings in subsonic flow was examined for the case of supersonic flow over swept circular cylinders. A wide range of applicability of the subsonic critical values is indicated. The corresponding magnitude of crossflow velocity necessary to cause instability on the surface of a swept wing at supersonic speeds was also calculated and found to be small. The effects of shock strength on transition caused by Tollmien-Schlichting type of instability are discussed briefly. Changes in local Reynolds number, due to shock strength, were found analytically to have considerably more effect on transition caused by Tollmien-Schlichting instability than on transition caused by crossflow instability. Changes in the mechanism controlling transition from Tollmien-Schlichting instability to crossflow instability were found to be possible as a wing is swept back and to result in large reductions in the length of laminar flow.

  20. Gas turbine power plant with supersonic shock compression ramps

    DOEpatents

    Lawlor, Shawn P [Bellevue, WA; Novaresi, Mark A [San Diego, CA; Cornelius, Charles C [Kirkland, WA

    2008-10-14

    A gas turbine engine. The engine is based on the use of a gas turbine driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. The supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdynamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by use of a lean pre-mix system, a pre-swirl compressor, and a bypass stream to bleed a portion of the gas after passing through the pre-swirl compressor to the combustion gas outlet. Use of a stationary low NOx combustor provides excellent emissions results.

  1. PROPERTIES OF SUPERSONIC EVERSHED DOWNFLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pozuelo, S. Esteban; Rubio, L. R. Bellot; Rodríguez, J. de la Cruz, E-mail: sara.esteban@astro.su.se

    We study supersonic Evershed downflows in a sunspot penumbra by means of high spatial resolution spectropolarimetric data acquired in the Fe i 617.3 nm line with the CRISP instrument at the Swedish 1 m Solar Telescope. Physical observables, such as Dopplergrams calculated from line bisectors and Stokes  V zero-crossing wavelengths, and Stokes  V maps in the far red-wing, are used to find regions where supersonic Evershed downflows may exist. We retrieve the line-of-sight velocity and the magnetic field vector in these regions using two-component inversions of the observed Stokes profiles with the help of the SIR code. We follow these regionsmore » during their lifetime to study their temporal behavior. Finally, we carry out a statistical analysis of the detected supersonic downflows to characterize their physical properties. Supersonic downflows are contained in compact patches moving outward, which are located in the mid- and outer penumbra. They are observed as bright, roundish structures at the outer end of penumbral filaments that resemble penumbral grains. The patches may undergo fragmentations and mergings during their lifetime; some of them are recurrent. Supersonic downflows are associated with strong and rather vertical magnetic fields with a reversed polarity compared to that of the sunspot. Our results suggest that downflows returning back to the solar surface with supersonic velocities are abruptly stopped in dense deep layers and produce a shock. Consequently, this shock enhances the temperature and is detected as a bright grain in the continuum filtergrams, which could explain the existence of outward-moving grains in the mid- and outer penumbra.« less

  2. Wind Tunnel Investigation of the Effects of Surface Porosity and Vertical Tail Placement on Slender Wing Vortex Flow Aerodynamics at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2007-01-01

    A wind tunnel experiment was conducted in the NASA Langley Research Center (LaRC) Unitary Plan Wind Tunnel (UPWT) to determine the effects of passive surface porosity and vertical tail placement on vortex flow development and interactions about a general research fighter configuration at supersonic speeds. Optical flow measurement and flow visualization techniques were used that featured pressure sensitive paint (PSP), laser vapor screen (LVS), and schlieren, These techniques were combined with conventional electronically-scanned pressure (ESP) and six-component force and moment measurements to quantify and to visualize the effects of flow-through porosity applied to a wing leading edge extension (LEX) and the placement of centerline and twin vertical tails on the vortex-dominated flow field of a 65 cropped delta wing model. Test results were obtained at free-stream Mach numbers of 1.6, 1.8, and 2.1 and a Reynolds number per foot of 2.0 million. LEX porosity promoted a wing vortex-dominated flow field as a result of a diffusion and weakening of the LEX vortex. The redistribution of the vortex-induced suction pressures contributed to large nose-down pitching moment increments but did not significantly affect the vortex-induced lift. The trends associated with LEX porosity were unaffected by vertical tail placement. The centerline tail configuration generally provided more stable rolling moments and yawing moments compared to the twin wing-mounted vertical tails. The strength of a complex system of shock waves between the twin tails was reduced by LEX porosity.

  3. Evaluation of the constant pressure panel method (CPM) for unsteady air loads prediction

    NASA Technical Reports Server (NTRS)

    Appa, Kari; Smith, Michael J. C.

    1988-01-01

    This paper evaluates the capability of the constant pressure panel method (CPM) code to predict unsteady aerodynamic pressures, lift and moment distributions, and generalized forces for general wing-body configurations in supersonic flow. Stability derivatives are computed and correlated for the X-29 and an Oblique Wing Research Aircraft, and a flutter analysis is carried out for a wing wind tunnel test example. Most results are shown to correlate well with test or published data. Although the emphasis of this paper is on evaluation, an improvement in the CPM code's handling of intersecting lifting surfaces is briefly discussed. An attractive feature of the CPM code is that it shares the basic data requirements and computational arrangements of the doublet lattice method. A unified code to predict unsteady subsonic or supersonic airloads is therefore possible.

  4. A quantitative comparison of leading-edge vortices in incompressible and supersonic flows

    DOT National Transportation Integrated Search

    2002-01-14

    When requiring quantitative data on delta-wing vortices for design purposes, low-speed results have often been extrapolated to configurations intended for supersonic operation. This practice stems from a lack of database owing to difficulties that pl...

  5. Longitudinal Stability and Drag Characteristics at Mach Numbers from 0.70 to 1.37 of Rocket-propelled Models Having a Modified Triangular Wing

    NASA Technical Reports Server (NTRS)

    Chapman, Rowe, Jr; Morrow, John D

    1952-01-01

    A modified triangular wing of aspect ratio 2.53 having an airfoil section 3.7 percent thick at the root and 5.98 percent thick at the tip was designed in an attempt to improve the lift and drag characteristics of triangular wings. Free-flight drag and stability tests were made using rocket-propelled models equipped with the modified wing. The Mach number range of the test was from 0.70 to 1.37. Test results indicated the following: The lift-curve slope of wing plus fuselage approaches the theoretical value of wing alone at supersonic Mach numbers. The drag coefficient, based on total wing area, for wing plus interference was approximately 0.0035 at subsonic Mach numbers and 0.0080 at supersonic Mach numbers. The maximum shift in aerodynamic center for the complete configuration was 14 percent in the rearward direction from the forward position of 51.5 percent of mean aerodynamic chord at subsonic Mach numbers. The variation of lift and moment with angle of attack was linear at supersonic Mach numbers for the range of coefficients covered in the test. The high value of lift-curve slope was considered to be a significant result attributable to the wing modifications.

  6. Efficient solutions to the Euler equations for supersonic flow with embedded subsonic regions

    NASA Technical Reports Server (NTRS)

    Walters, Robert W.; Dwoyer, Douglas L.

    1987-01-01

    A line Gauss-Seidel (LGS) relaxation algorithm in conjunction with a one-parameter family of upwind discretizations of the Euler equations in two dimensions is described. Convergence of the basic algorithm to the steady state is quadratic for fully supersonic flows and is linear for other flows. This is in contrast to the block alternating direction implicit methods (either central or upwind differenced) and the upwind biased relaxation schemes, all of which converge linearly, independent of the flow regime. Moreover, the algorithm presented herein is easily coupled with methods to detect regions of subsonic flow embedded in supersonic flow. This allows marching by lines in the supersonic regions, converging each line quadratically, and iterating in the subsonic regions, and yields a very efficient iteration strategy. Numerical results are presented for two-dimensional supersonic and transonic flows containing oblique and normal shock waves which confirm the efficiency of the iteration strategy.

  7. Computational Analysis of a Low-Boom Supersonic Inlet

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.

    2011-01-01

    A low-boom supersonic inlet was designed for use on a conceptual small supersonic aircraft that would cruise with an over-wing Mach number of 1.7. The inlet was designed to minimize external overpressures, and used a novel bypass duct to divert the highest shock losses around the engine. The Wind-US CFD code was used to predict the effects of capture ratio, struts, bypass design, and angles of attack on inlet performance. The inlet was tested in the 8-ft by 6-ft Supersonic Wind Tunnel at NASA Glenn Research Center. Test results showed that the inlet had excellent performance, with capture ratios near one, a peak core total pressure recovery of 96 percent, and a stable operating range much larger than that of an engine. Predictions generally compared very well with the experimental data, and were used to help interpret some of the experimental results.

  8. Estimation of Supersonic Stage Separation Aerodynamics of Winged-Body Launch Vehicles Using Response Surface Methods

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2010-01-01

    Response surface methodology was used to estimate the longitudinal stage separation aerodynamic characteristics of a generic, bimese, winged multi-stage launch vehicle configuration at supersonic speeds in the NASA LaRC Unitary Plan Wind Tunnel. The Mach 3 staging was dominated by shock wave interactions between the orbiter and booster vehicles throughout the relative spatial locations of interest. The inference space was partitioned into several contiguous regions within which the separation aerodynamics were presumed to be well-behaved and estimable using central composite designs capable of fitting full second-order response functions. The underlying aerodynamic response surfaces of the booster vehicle in belly-to-belly proximity to the orbiter vehicle were estimated using piecewise-continuous lower-order polynomial functions. The quality of fit and prediction capabilities of the empirical models were assessed in detail, and the issue of subspace boundary discontinuities was addressed. Augmenting the central composite designs to full third-order using computer-generated D-optimality criteria was evaluated. The usefulness of central composite designs, the subspace sizing, and the practicality of fitting lower-order response functions over a partitioned inference space dominated by highly nonlinear and possibly discontinuous shock-induced aerodynamics are discussed.

  9. OBLIQUE VIEW OF ONE AND TWO STORY SECTIONS OF SOUTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE VIEW OF ONE AND TWO STORY SECTIONS OF SOUTHWEST WING OF THE RECREATION CENTER WITH GRADUATED SCALE IN 1' INCREMENTS. VIEW FACING NORTHEAST - U.S. Naval Base, Pearl Harbor, Bloch Recreation Center & Arena, Between Center Drive & North Road near Nimitz Gate, Pearl City, Honolulu County, HI

  10. Spatially Developing Secondary Instabilities and Attachment Line Instability in Supersonic Boundary Layers

    NASA Technical Reports Server (NTRS)

    Li, Fei; Choudhari, Meelan M.

    2008-01-01

    This paper reports on progress towards developing a spatial stability code for compressible shear flows with two inhomogeneous directions, such as crossflow dominated swept-wing boundary layers and attachment line flows. Certain unique aspects of formulating a spatial, two-dimensional eigenvalue problem for the secondary instability of finite amplitude crossflow vortices are discussed. A primary test case used for parameter study corresponds to the low-speed, NLF-0415(b) airfoil configuration as tested in the ASU Unsteady Wind Tunnel, wherein a spanwise periodic array of roughness elements was placed near the leading edge in order to excite stationary crossflow modes with a specified fundamental wavelength. The two classes of flow conditions selected for this analysis include those for which the roughness array spacing corresponds to either the naturally dominant crossflow wavelength, or a subcritical wavelength that serves to reduce the growth of the naturally excited dominant crossflow modes. Numerical predictions are compared with the measured database, both as indirect validation for the spatial instability analysis and to provide a basis for comparison with a higher Reynolds number, supersonic swept-wing configuration. Application of the eigenvalue analysis to the supersonic configuration reveals that a broad spectrum of stationary crossflow modes can sustain sufficiently strong secondary instabilities as to potentially cause transition over this configuration. Implications of this finding for transition control in swept wing boundary layers are examined. Finally, extension of the spatial stability analysis to supersonic attachment line flows is also considered.

  11. Aerodynamic shape optimization directed toward a supersonic transport using sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay

    1995-01-01

    This investigation was conducted from March 1994 to August 1995, primarily, to extend and implement the previously developed aerodynamic design optimization methodologies for the problems related to a supersonic transport design. These methods had demonstrated promise to improve the designs (more specifically, the shape) of aerodynamic surfaces, by coupling optimization algorithms (OA) with Computational Fluid Dynamics (CFD) algorithms via sensitivity analyses (SA) with surface definition methods from Computer Aided Design (CAD). The present extensions of this method and their supersonic implementations have produced wing section designs, delta wing designs, cranked-delta wing designs, and nacelle designs, all of which have been reported in the open literature. Despite the fact that these configurations were highly simplified to be of any practical or commercial use, they served the algorithmic and proof-of-concept objectives of the study very well. The primary cause for the configurational simplifications, other than the usual simplify-to-study the fundamentals reason, were the premature closing of the project. Only after the first of the originally intended three-year term, both the funds and the computer resources supporting the project were abruptly cut due to their severe shortages at the funding agency. Nonetheless, it was shown that the extended methodologies could be viable options in optimizing the design of not only an isolated single-component configuration, but also a multiple-component configuration in supersonic and viscous flow. This allowed designing with the mutual interference of the components being one of the constraints all along the evolution of the shapes.

  12. Study of active cooling for supersonic transports

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Morris, R. E.

    1975-01-01

    The potential benefits of using the fuel heat sink of hydrogen fueled supersonic transports for cooling large portions of the aircraft wing and fuselage are examined. The heat transfer would be accomplished by using an intermediate fluid such as an ethylene glycol-water solution. Some of the advantages of the system are: (1) reduced costs by using aluminum in place of titanium, (2) reduced cabin heat loads, and (3) more favorable environmental conditions for the aircraft systems. A liquid hydrogen fueled, Mach 2.7 supersonic transport aircraft design was used for the reference uncooled vehicle. The cooled aircraft designs were analyzed to determine their heat sink capability, the extent and location of feasible cooled surfaces, and the coolant passage size and spacing.

  13. Estimation of Directional Stability Derivatives at Moderate Angles and Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Kaattari, George E.

    1959-01-01

    A study of some of the important aerodynamic factors affecting the directional stability of supersonic airplanes is presented. The mutual interference fields between the body, the lifting surfaces, and the stabilizing surfaces are analyzed in detail. Evaluation of these interference fields on an approximate theoretical basis leads to a method for predicting directional stability of supersonic airplanes. Body shape, wing position and plan form, vertical tail position and plan form, and ventral fins are taken into account. Estimates of the effects of these factors are in fair agreement with experiment.

  14. Joined-wing research airplane feasibility study

    NASA Technical Reports Server (NTRS)

    Wolkovitch, J.

    1984-01-01

    The joined wing is a new type of aircraft configuration which employs tandem wings arranged to form diamond shapes in plan view and front view. Wind-tunnel tests and finite-element structural analyses have shown that the joined wing provides the following advantages over a comparable wing-plus-tail system; lighter weight and higher stiffness, higher span-efficiency factor, higher trimmed maximum lift coefficient, lower wave drag, plus built-in direct lift and direct sideforce control capability. To verify these advantages at full scale a manned research airplane is required. A study has therefore been performed of the feasibility of constructing such an airplane, using the fuselage and engines of the existing NAA AD-1 oblique-wing airplane. Cost and schedule constraints favored converting the AD-1 rather than constructing a totally new airframe. By removing the outboard wing panels the configuration can simulate wings joined at 60, 80, or 100 percent of span. For maximum versatility the aircraft has alternative control surfaces (such as ailerons and elevators on the front and/or rear wings), and a removeable canard to explore canard/joined-wing interactions at high-lift conditions. Design, performance, and flying qualities are discussed.

  15. F-16XL Ship #2 during last flight showing titanium laminar flow glove on left wing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The perforated titanium overlay mounted on the upper surface of the left wing is clearly evident on this view of NASA 848, a highly modified F-16XL aircraft flown by NASA's Dryden Flight Research Center in the Supersonic Laminar Flow Control (SLFC) research program. The two-seat, single-engine craft, one of only two 'XL' F-16s built, recently concluded the SLFC project with its 45th data collection mission. The project demonstrated that laminar--or smooth--airflow could be achieved over a major portion of a wing at supersonic speeds by use of a suction system. The system drew a small part of the boundary-layer air through millions of tiny laser-drilled holes in the 'glove' fitted to the upper left wing.

  16. Supersonic second order analysis and optimization program user's manual

    NASA Technical Reports Server (NTRS)

    Clever, W. C.

    1984-01-01

    Approximate nonlinear inviscid theoretical techniques for predicting aerodynamic characteristics and surface pressures for relatively slender vehicles at supersonic and moderate hypersonic speeds were developed. Emphasis was placed on approaches that would be responsive to conceptual configuration design level of effort. Second order small disturbance theory was utilized to meet this objective. Numerical codes were developed for analysis and design of relatively general three dimensional geometries. Results from the computations indicate good agreement with experimental results for a variety of wing, body, and wing-body shapes. Case computational time of one minute on a CDC 176 are typical for practical aircraft arrangement.

  17. 3. Oblique view of the south front and west side ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Oblique view of the south front and west side of the chapel, facing northeast. Postal building and roof line of 366th wing headquarters are visible to the left of the chapel - Mountain Home Air Force Base, Base Chapel, 350 Willow Street, Cantonment Area, Mountain Home, Elmore County, ID

  18. An investigation of several factors involved in a finite difference procedure for analyzing the transonic flow about harmonically oscillating airfoils and wings

    NASA Technical Reports Server (NTRS)

    Ehlers, F. E.; Sebastian, J. D.; Weatherill, W. H.

    1979-01-01

    Analytical and empirical studies of a finite difference method for the solution of the transonic flow about harmonically oscillating wings and airfoils are presented. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady equations for small disturbances. Since sinusoidal motion is assumed, the unsteady equation is independent of time. Three finite difference investigations are discussed including a new operator for mesh points with supersonic flow, the effects on relaxation solution convergence of adding a viscosity term to the original differential equation, and an alternate and relatively simple downstream boundary condition. A method is developed which uses a finite difference procedure over a limited inner region and an approximate analytical procedure for the remaining outer region. Two investigations concerned with three-dimensional flow are presented. The first is the development of an oblique coordinate system for swept and tapered wings. The second derives the additional terms required to make row relaxation solutions converge when mixed flow is present. A finite span flutter analysis procedure is described using the two-dimensional unsteady transonic program with a full three-dimensional steady velocity potential.

  19. Application of slender wing benefits to military aircraft

    NASA Technical Reports Server (NTRS)

    Polhamus, E. C.

    1983-01-01

    A review is provided of aerodynamic research conducted at the Langley Research Center with respect to the application of slender wing benefits in the design of high-speed military aircraft, taking into account the supersonic performance and leading-edge vortex flow associated with very highly sweptback wings. The beginning of the development of modern classical swept wing jet aircraft is related to the German Me 262 project during World War II. In the U.S., a theoretical study conducted by Jones (1945) pointed out the advantages of the sweptback wing concept. Developments with respect to variable sweep wings are discussed, taking into account early research in 1946, a joint program of the U.S. with the United Kingdom, the tactical aircraft concept, and the important part which the Langley variable-sweep research program played in the development of the F-111, F-14, and B-1. Attention is also given to hybrid wings, vortex flow theory development, and examples of flow design technology.

  20. Effect of particle momentum transfer on an oblique-shock-wave/laminar-boundary-layer interaction

    NASA Astrophysics Data System (ADS)

    Teh, E.-J.; Johansen, C. T.

    2016-11-01

    Numerical simulations of solid particles seeded into a supersonic flow containing an oblique shock wave reflection were performed. The momentum transfer mechanism between solid and gas phases in the shock-wave/boundary-layer interaction was studied by varying the particle size and mass loading. It was discovered that solid particles were capable of significant modulation of the flow field, including suppression of flow separation. The particle size controlled the rate of momentum transfer while the particle mass loading controlled the magnitude of momentum transfer. The seeding of micro- and nano-sized particles upstream of a supersonic/hypersonic air-breathing propulsion system is proposed as a flow control concept.

  1. Environmental Impact Analysis Process. Final Environmental Impact Statement. Supersonic Flight Operations in the Reserve Military Operations Area, Holloman, New Mexico

    DTIC Science & Technology

    1983-01-01

    SUPERSONIC FLIGHT OPERATIONS ’• I • IN THE RESERVE MILITARY OPERATIONS AREA . HOLLOMAN AFB, NE MEXICO ~~DEPARTMENT OF THE AIR FORCE I Environme nta IImpac...Force (b) Proposed Action: Supersonic Flight Operations in the Reserve Mill ary Operations Area in Catron County, New Mexico . (c) Responsible...Abstract: The 49th Tactical Fighter Wing (TFW) at Holloman AFB, New Mexico , proposes to fly approximately 200 supersonic sorties per month in the Reserve

  2. NASA Examines Technology To Fold Aircraft Wings In Flight

    NASA Image and Video Library

    2018-01-17

    NASA conducts a flight test series to investigate the ability of an innovative technology to fold the outer portions of wings in flight as part of the Spanwise Adaptive Wing project, or SAW. Flight tests took place at NASA Armstrong Flight Research Center in California, using a subscale UAV called Prototype Technology-Evaluation Research Aircraft, or PTERA, provided by Area-I. NASA Glenn Research Center in Cleveland developed the alloy material, and worked with Boeing Research & Technology to integrate the material into an actuator. The alloy is triggered by temperature to move the outer portions of wings up or down in flight. The ability to fold wings to the ideal position of various flight conditions may produce several aerodynamic benefits for both subsonic and supersonic aircraft.

  3. OBLIQUE VIEW OF ONE AND TWO STORY SECTIONS OF NORTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE VIEW OF ONE AND TWO STORY SECTIONS OF NORTHEAST WING OF RECREATION CENTER WITH GRADUATED SCALE IN 1' INCREMENTS. NOTE THE CANOPY OVER THE SECOND STORY WINDOWS. VIEW FACING WEST - U.S. Naval Base, Pearl Harbor, Bloch Recreation Center & Arena, Between Center Drive & North Road near Nimitz Gate, Pearl City, Honolulu County, HI

  4. Supersonic shock wave/vortex interaction

    NASA Technical Reports Server (NTRS)

    Settles, G. S.; Cattafesta, L.

    1993-01-01

    Although shock wave/vortex interaction is a basic and important fluid dynamics problem, very little research has been conducted on this topic. Therefore, a detailed experimental study of the interaction between a supersonic streamwise turbulent vortex and a shock wave was carried out at the Penn State Gas Dynamics Laboratory. A vortex is produced by replaceable swirl vanes located upstream of the throat of various converging-diverging nozzles. The supersonic vortex is then injected into either a coflowing supersonic stream or ambient air. The structure of the isolated vortex is investigated in a supersonic wind tunnel using miniature, fast-response, five-hole and total temperature probes and in a free jet using laser Doppler velocimetry. The cases tested have unit Reynolds numbers in excess of 25 million per meter, axial Mach numbers ranging from 2.5 to 4.0, and peak tangential Mach numbers from 0 (i.e., a pure jet) to about 0.7. The results show that the typical supersonic wake-like vortex consists of a non-isentropic, rotational core, where the reduced circulation distribution is self similar, and an outer isentropic, irrotational region. The vortex core is also a region of significant turbulent fluctuations. Radial profiles of turbulent kinetic energy and axial-tangential Reynolds stress are presented. The interactions between the vortex and both oblique and normal shock waves are investigated using nonintrusive optical diagnostics (i.e. schlieren, planar laser scattering, and laser Doppler velocimetry). Of the various types, two Mach 2.5 overexpanded-nozzle Mach disc interactions are examined in detail. Below a certain vortex strength, a 'weak' interaction exists in which the normal shock is perturbed locally into an unsteady 'bubble' shock near the vortex axis, but vortex breakdown (i.e., a stagnation point) does not occur. For stronger vortices, a random unsteady 'strong' interaction results that causes vortex breakdown. The vortex core reforms downstream of

  5. Investigation at Mach Numbers of 0.20 to 3.50 of Blended Wing-Body Combinations of Sonic Design with Diamond, Delta, and Arrow Plan Forms

    NASA Technical Reports Server (NTRS)

    Holdaway, George H.; Mellenthin, Jack A.

    1960-01-01

    The models had aspect-ratio-2 diamond, delta, and arrow wings with the leading edges swept 45.00 deg, 59.04 deg, and 70.82 deg, respectively. The wing sections were computed by varying the section shape along with the body radii (blending process) to match the prescribed area distribution and wing plan form. The wing sections had an average value of maximum thickness ratio of about 4 percent of the local chords in a streamwise direction. The models were tested with transition fixed at Reynolds numbers of about 4,000,000 to 9,000,0000, based on the mean aerodynamic chord of the wings. The effect of varying Reynolds number was checked at both subsonic and supersonic speeds. The diamond model was superior to the other plan forms at transonic speeds ((L/D)max = 11.00 to 9.52) because of its higher lift-curve slope and near optimum wave drag due to the blending process. For the wing thickness tested with the diamond model, the marked body and wing contouring required for transonic conditions resulted in a large wave-drag penalty at the higher supersonic Mach numbers where the leading and trailing edges of the wing were supersonic. Because of the low sweep of the trailing edge of the delta model, this configuration was less adaptable to the blending process. Removing a body bump prescribed by the Mach number 1.00 design resulted in a good supersonic design. This delta model with 10 percent less volume was superior to the other plan forms at Mach numbers of 1.55 to 2.35 ((L/D)max = 8.65 to 7.24), but it and the arrow model were equally good at Mach numbers of 2.50 to 3.50 ((L/D)max - 6.85 to O.39). At transonic speeds the arrow model was inferior because of the reduced lift-curve slope associated with its increased sweep and also because of the wing base drag. The wing base-drag coefficients of the arrow model based on the wing planform area decreased from a peak value of 0.0029 at Mach number 1.55 to 0.0003 at Mach number 3.50. Linear supersonic theory was satisfactory

  6. FACILITY 814, SOUTHEAST SIDE AND REAR, SHOWING COURTYARD BETWEEN WINGS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 814, SOUTHEAST SIDE AND REAR, SHOWING COURTYARD BETWEEN WINGS, OBLIQUE VIEW FACING WEST. - Schofield Barracks Military Reservation, Bachelor Officers' Quarters Type, Between Grimes & Tidball Streets near Ayres Avenue, Wahiawa, Honolulu County, HI

  7. Mixing enhancement of reacting parallel fuel jets in a supersonic combustor

    NASA Technical Reports Server (NTRS)

    Drummond, J. P.

    1991-01-01

    Pursuant to a NASA-Langley development program for a scramjet HST propulsion system entailing the optimization of the scramjet combustor's fuel-air mixing and reaction characteristics, a numerical study has been conducted of the candidate parallel fuel injectors. Attention is given to a method for flow mixing-process and combustion-efficiency enhancement in which a supersonic circular hydrogen jet coflows with a supersonic air stream. When enhanced by a planar oblique shock, the injector configuration exhibited a substantial degree of induced vorticity in the fuel stream which increased mixing and chemical reaction rates, relative to the unshocked configuration. The resulting heat release was effective in breaking down the stable hydrogen vortex pair that had inhibited more extensive fuel-air mixing.

  8. Development of Doppler Global Velocimetry as a Flow Diagnostics Tool

    NASA Technical Reports Server (NTRS)

    Meyers, James F.

    1995-01-01

    The development of Doppler global velocimetry is described from its inception to its use as a flow diagnostics tool. Its evolution is traced from an elementary one-component laboratory prototype, to a full three-component configuration operating in a wind tunnel at focal distances exceeding 15 m. As part of the developmental process, several wind tunnel flow field investigations were conducted. These included supersonic flow measurements about an oblique shock, subsonic and supersonic measurements of the vortex flow above a delta wing, and three-component measurements of a high-speed jet.

  9. The NCOREL computer program for 3D nonlinear supersonic potential flow computations

    NASA Technical Reports Server (NTRS)

    Siclari, M. J.

    1983-01-01

    An innovative computational technique (NCOREL) was established for the treatment of three dimensional supersonic flows. The method is nonlinear in that it solves the nonconservative finite difference analog of the full potential equation and can predict the formation of supercritical cross flow regions, embedded and bow shocks. The method implicitly computes a conical flow at the apex (R = 0) of a spherical coordinate system and uses a fully implicit marching technique to obtain three dimensional cross flow solutions. This implies that the radial Mach number must remain supersonic. The cross flow solutions are obtained by using type dependent transonic relaxation techniques with the type dependency linked to the character of the cross flow velocity (i.e., subsonic/supersonic). The spherical coordinate system and marching on spherical surfaces is ideally suited to the computation of wing flows at low supersonic Mach numbers due to the elimination of the subsonic axial Mach number problems that exist in other marching codes that utilize Cartesian transverse marching planes.

  10. Seeding for laser velocimetry in confined supersonic flows with shocks

    NASA Technical Reports Server (NTRS)

    Lepicovsky, J.; Bruckner, R. J.

    1996-01-01

    There is a lack of firm conclusions or recommendations in the open literature to guide laser velocimeter (LV) users in minimizing the uncertainty of LV data acquired in confined supersonic flows with steep velocity gradients. This fact led the NASA Lewis Research Center (LeRC) in Cleveland (Ohio, USA), and the Institute of Propulsion Technology of DLR in Cologne (Germany) to a joint research effort to improve reliability of LV measurements in supersonic flows. Over the years, NASA and DLR have developed different expertise in laser velocimetry, using different LV systems: Doppler and two-spot (L2F). The goal of the joint program is to improve the reliability of LV measurements by comparing results from experiments in confined supersonic flows performed under identical test conditions but using two different LV systems and several seed particle generators. Initial experiments conducted at the NASA LERC are reported in this paper. The experiments were performed in a narrow channel with Mach number 2.5 flow containing an oblique shock wave generated by an immersed 25-dg wedge.

  11. Lift and moment coefficients expanded to the seventh power of frequency for oscillating rectangular wings in supersonic flow and applied to a specific flutter problem

    NASA Technical Reports Server (NTRS)

    Nelson, Herbert C; Rainey, Ruby A; Watkins, Charles E

    1954-01-01

    Linearized theory for compressible unsteady flow is used to derive the velocity potential and lift and moment coefficients in the form of oscillating rectangular wing moving at a constant supersonic speed. Closed expressions for the velocity potential and lift and moment coefficients associated with pitching and translation are given to seventh power of the frequency. These expressions extend the range of usefulness of NACA report 1028 in which similar expressions were derived to the third power of the frequency of oscillation. For example, at a Mach number of 10/9 the expansion of the potential to the third power is an accurate representation of the potential for values of the reduced frequency only up to about 0.08; whereas the expansion of the potential to the seventh power is an accurate representation for values of the reduced frequency up to about 0.2. The section and total lift and moment coefficients are discussed with the aid of several figures. In addition, flutter speeds obtained in the Mach number range from 10/9 to 10/6 for a rectangular wing of aspect ratio 4.53 by using section coefficients derived on the basis of three-dimensional flow are compared with flutter speeds for this wing obtained by using coefficients derived on the basis of two-dimensional flow.

  12. F-16XL Ship #2 during last flight viewed from below showing shock fence on left wing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A special 'shock fence' installed beneath the leading edge of the left wing is visible in this underside aerial view of NASA's F-16XL #2 research aircraft. The small structure assisted researchers in NASA's Supersonic Laminar Flow Control (SLFC) program in controlling the shock wave coming off the F-16XL's engine air inlet when the craft flew at speeds above Mach 1, or the speed of sound. The two-seat F-16XL, one of two 'XLs' flown by NASA's Drdyen Flight Research Center, Edwards, California, flew 45 missions comprising over 90 flight hours during the SLFC project, much of it at supersonic speeds up to Mach 2 and altitudes up to 55,000 feet. The project demonstrated that laminar -- or smooth -- airflow could be achieved over a major portion of a wing at supersonic speeds by use of a suction system. Data acquired during the program will be used to develop a design code calibration database which could assist designers in reducing aerodynamic drag of a proposed second-generation supersonic transport.

  13. A Supersonic Tunnel for Laser and Flow-Seeding Techniques

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.; Lepicovsky, Jan

    1994-01-01

    A supersonic wind tunnel with flow conditions of 3 lbm/s (1.5 kg/s) at a free-stream Mach number of 2.5 was designed and tested to provide an arena for future development work on laser measurement and flow-seeding techniques. The hybrid supersonic nozzle design that was used incorporated the rapid expansion method of propulsive nozzles while it maintained the uniform, disturbance-free flow required in supersonic wind tunnels. A viscous analysis was performed on the tunnel to determine the boundary layer growth characteristics along the flowpath. Appropriate corrections were then made to the contour of the nozzle. Axial pressure distributions were measured and Mach number distributions were calculated based on three independent data reduction methods. A complete uncertainty analysis was performed on the precision error of each method. Complex shock-wave patterns were generated in the flow field by wedges mounted near the roof and floor of the tunnel. The most stable shock structure was determined experimentally by the use of a focusing schlieren system and a novel, laser based dynamic shock position sensor. Three potential measurement regions for future laser and flow-seeding studies were created in the shock structure: deceleration through an oblique shock wave of 50 degrees, strong deceleration through a normal shock wave, and acceleration through a supersonic expansion fan containing 25 degrees of flow turning.

  14. Effect of planform and body on supersonic aerodynamics of multibody configurations

    NASA Technical Reports Server (NTRS)

    Mcmillin, S. Naomi; Bauer, Steven X. S.; Howell, Dorothy T.

    1992-01-01

    An experimental and theoretical investigation of the effect of the wing planform and bodies on the supersonic aerodynamics of a low-fineness-ratio, multibody configuration has been conducted in the Langley Unitary Plan Wind Tunnel at Mach numbers of 1.60, 1.80, 2.00, and 2.16. Force and moment data, flow-visualization data, and surface-pressure data were obtained on eight low-fineness-ratio, twin-body configurations. These configurations varied in inboard wing planform shape, outboard wing planform shape, outboard wing planform size, and presence of the bodies. The force and moment data showed that increasing the ratio of outboard wing area to total wing area or increasing the leading-edge sweep of the inboard wing influenced the aerodynamic characteristics. The flow-visualization data showed a complex flow-field system of shocks, shock-induced separation, and body vortex systems occurring between the side bodies. This flow field was substantially affected by the inboard wing planform shape but minimally affected by the outboard wing planform shape. The flow-visualization and surface-pressure data showed that flow over the outboard wing developed as expected with changes in angle of attack and Mach number and was affected by the leading-edge sweep of the inboard wing and the presence of the bodies. Evaluation of the linear-theory prediction methods revealed their general inability to consistently predict the characteristics of these multibody configurations.

  15. A preliminary study of the performance and characteristics of a supersonic executive aircraft

    NASA Technical Reports Server (NTRS)

    Mascitti, V. R.

    1977-01-01

    The impact of advanced supersonic technologies on the performance and characteristics of a supersonic executive aircraft was studied in four configurations with different engine locations and wing/body blending and an advanced nonafterburning turbojet or variable cycle engine. An M 2.2 design Douglas scaled arrow-wing was used with Learjet 35 accommodations. All four configurations with turbojet engines meet the performance goals of 5926 km (3200 n.mi.) range, 1981 meters (6500 feet) takeoff field length, and 77 meters per second (150 knots) approach speed. The noise levels of of turbojet configurations studied are excessive. However, a turbojet with mechanical suppressor was not studied. The variable cycle engine configuration is deficient in range by 555 km (300 n.mi) but nearly meets subsonic noise rules (FAR 36 1977 edition), if coannular noise relief is assumed. All configurations are in the 33566 to 36287 kg (74,000 to 80,000 lbm) takeoff gross weight class when incorporating current titanium manufacturing technology.

  16. An experimental study of planar heterogeneous supersonic confined jets

    NASA Astrophysics Data System (ADS)

    Tanis, Frederick J., Jr.

    1994-12-01

    The effects of varying the exit pressure of a supersonic helium jet exhausting coaxially with two parallel supersonic air streams into a constant area duct were investigated. The method used to evaluate the mass entrainment rate was to measure helium molar concentration profiles and mass flux across the duct using a binary gas probe then calculate the mass entrainment into the helium jet. In order to conduct this study a novel binary gas probe was developed which allowed helium concentration and mass flux data to be obtained during continuous traverses across the supersonic flowfield. High exit pressure ratio (EPR) led to improved overall mixing compared to the baseline case with an EPR near unity. The high EPR caused low mass entrainment along the jet shear layers due to high convective Mach numbers and velocity ratios, but the high EPR caused oblique shocks to form which reflected off the duct walls and intersected with the helium jet several times causing significant mass entrainment due to numerous shock-shear layer interactions (SSLI's). A correlation between the vorticity generated during a SSLI and the mass entrainment into the jet was developed.

  17. Program LRCDM2: Improved aerodynamic prediction program for supersonic canard-tail missiles with axisymmetric bodies

    NASA Technical Reports Server (NTRS)

    Dillenius, Marnix F. E.

    1985-01-01

    Program LRCDM2 was developed for supersonic missiles with axisymmetric bodies and up to two finned sections. Predicted are pressure distributions and loads acting on a complete configuration including effects of body separated flow vorticity and fin-edge vortices. The computer program is based on supersonic panelling and line singularity methods coupled with vortex tracking theory. Effects of afterbody shed vorticity on the afterbody and tail-fin pressure distributions can be optionally treated by companion program BDYSHD. Preliminary versions of combined shock expansion/linear theory and Newtonian/linear theory have been implemented as optional pressure calculation methods to extend the Mach number and angle-of-attack ranges of applicability into the nonlinear supersonic flow regime. Comparisons between program results and experimental data are given for a triform tail-finned configuration and for a canard controlled configuration with a long afterbody for Mach numbers up to 2.5. Initial tests of the nonlinear/linear theory approaches show good agreement for pressures acting on a rectangular wing and a delta wing with attached shocks for Mach numbers up to 4.6 and angles of attack up to 20 degrees.

  18. Flight Tests of a Supersonic Natural Laminar Flow Airfoil

    NASA Technical Reports Server (NTRS)

    Frederick, Michael A.; Banks, Daniel W.; Garzon, G. A.; Matisheck, J. R.

    2015-01-01

    A flight-test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80-inch (203 cm) chord and 40-inch (102 cm) span article mounted on the centerline store location of an F-15B airplane (McDonnell Douglas Corporation, now The Boeing Company, Chicago, Illinois). The test article was designed with a leading edge sweep of effectively 0 deg to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2-D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, were similar to that of subsonic natural laminar flow wings.

  19. A linearized theory method of constrained optimization for supersonic cruise wing design

    NASA Technical Reports Server (NTRS)

    Miller, D. S.; Carlson, H. W.; Middleton, W. D.

    1976-01-01

    A linearized theory wing design and optimization procedure which allows physical realism and practical considerations to be imposed as constraints on the optimum (least drag due to lift) solution is discussed and examples of application are presented. In addition to the usual constraints on lift and pitching moment, constraints are imposed on wing surface ordinates and wing upper surface pressure levels and gradients. The design procedure also provides the capability of including directly in the optimization process the effects of other aircraft components such as a fuselage, canards, and nacelles.

  20. Power Burst Facility (PBF), PER620, contextual and oblique view. Camera ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Power Burst Facility (PBF), PER-620, contextual and oblique view. Camera facing northwest. South and east facade. The 1980 west-wing expansion is left of center bay. Concrete structure at right is PER-730. Date: March 2004. INEEL negative no. HD-41-2-3 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  1. The effect of small angle of attack on the laminar-turbulent transition in boundary layer on swept wing at Mach number M=2

    NASA Astrophysics Data System (ADS)

    Semionov, N. V.; Yermolaev, Yu. G.; Kosinov, A. D.; Semenov, A. N.; Smorodsky, B. V.; Yatskikh, A. A.

    2017-10-01

    The paper is devoted to an experimental and theoretical study of effect of small angle of attack on disturbances evolution and laminar-turbulent transition in a supersonic boundary layer on swept wing at Mach number M=2. The experiments are conducted at the low nose supersonic wind tunnel T-325 of ITAM. Model is a symmetrical wing with a 45° sweep angle, a 3 percent-thick circular-arc airfoil. The transition location is determined using a hot-wire anemometer. Confirmed monotonous growth of the transition Reynolds numbers with increasing of angle of attack from -2° to 2.5°. The experimental data on the influence of the angle of attack on the disturbances evolution in the supersonic boundary layer on the swept wing model are obtained. Calculations on the effect of small angles of attack on the development of perturbations are made in the framework of the linear theory of stability. A good qualitative correspondence of theoretical and experimental data are obtained.

  2. F-16XL Ship #2 during last flight showing titanium laminar flow glove on left wing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Dryden research pilot Dana Purifoy bends NASA F-16 XL #848 away from the tanker on the 44th flight in the Supersonic Laminar Flow Control program recently. The flight test portion of the program ended with the 45th and last data collection flight from NASA's Dryden Flight Research Center, Edwards, California, on Nov. 26, 1996. The project demonstrated that laminar--or smooth--airflow could be achieved over a major portion of a wing at supersonic speeds. The flight tests at Dryden involved use of a suction system which drew boundary-layer air through millions of tiny laser-drilled holes in a titanium 'glove' that was fitted to the upper surface of the F-16XL's left wing.

  3. Expanding the Natural Laminar Flow Boundary for Supersonic Transports

    NASA Technical Reports Server (NTRS)

    Lynde, Michelle N.; Campbell, Richard L.

    2016-01-01

    A computational design and analysis methodology is being developed to design a vehicle that can support significant regions of natural laminar flow (NLF) at supersonic flight conditions. The methodology is built in the CDISC design module to be used in this paper with the flow solvers Cart3D and USM3D, and the transition prediction modules BLSTA3D and LASTRAC. The NLF design technique prescribes a target pressure distribution for an existing geometry based on relationships between modal instability wave growth and pressure gradients. The modal instability wave growths (both on- and off-axes crossflow and Tollmien-Schlichting) are balanced to produce a pressure distribution that will have a theoretical maximum NLF region for a given streamwise wing station. An example application is presented showing the methodology on a generic supersonic transport wingbody configuration. The configuration has been successfully redesigned to support significant regions of NLF (approximately 40% of the wing upper surface by surface area). Computational analysis predicts NLF with transition Reynolds numbers (ReT) as high as 36 million with 72 degrees of leading-edge sweep (?LE), significantly expanding the current boundary of ReT - ?LE combinations for NLF. This NLF geometry provides a total drag savings of 4.3 counts compared to the baseline wing-body configuration (approximately 5% of total drag). Off-design evaluations at near-cruise and low-speed, high-lift conditions are discussed, as well as attachment line contamination/transition concerns. This computational NLF design effort is a part of an ongoing cooperative agreement between NASA and JAXA researchers.

  4. Lift developed on unrestrained rectangular wings entering gusts at subsonic and supersonic speeds

    NASA Technical Reports Server (NTRS)

    Lomax, Harvard

    1954-01-01

    The object of this report is to provide an estimate, based on theoretical calculations, of the forces induced on a wing that is flying at a constant forward speed and suddenly enters a vertical gust. The calculations illustrate the effects of Mach number (from 0 to 2) and aspect ratio (2 to infinity), and solutions are given by means of which the response to gusts having arbitrary distributions of velocity can be calculated. The effects of pitching and wing bending are neglected and only wings of rectangular plan form are considered. Specific results are presented for sharp-edged and triangular gusts and various wing-air density ratios.

  5. Application of ``POLIS'' PIV system for measurement of velocity fields in a supersonic flow of the wind tunnels

    NASA Astrophysics Data System (ADS)

    Akhmetbekov, Y. K.; Bilsky, A. V.; Markovich, D. M.; Maslov, A. A.; Polivanov, P. A.; Tsyryul'Nikov, I. S.; Yaroslavtsev, M. I.

    2009-09-01

    Measurement results on the mean velocity fields and fields of velocity pulsations in the supersonic flows obtained by means of the PIV measurement set “POLIS” are presented. Experiments were carried out in the supersonic blow-down and stationary wind tunnels at the Mach numbers of 4.85 and 6. The method of flow velocity estimate in the test section of the blow-down wind tunnel was grounded by direct measurements of stagnation pressure in the setup settling chamber. The size of tracer particles introduced into the supersonic flow by a mist generator was determined; data on the structure of pulsating velocity in a track of an oblique-cut gas-dynamic whistle were obtained under the conditions of self-oscillations.

  6. A Quantitative Comparison of Leading-edge Vortices in Incompressible and Supersonic Flows

    NASA Technical Reports Server (NTRS)

    Wang, F. Y.; Milanovic, I. M.; Zaman, K. B. M. Q.

    2002-01-01

    When requiring quantitative data on delta-wing vortices for design purposes, low-speed results have often been extrapolated to configurations intended for supersonic operation. This practice stems from a lack of database owing to difficulties that plague measurement techniques in high-speed flows. In the present paper an attempt is made to examine this practice by comparing quantitative data on the nearwake properties of such vortices in incompressible and supersonic flows. The incompressible flow data are obtained in experiments conducted in a low-speed wind tunnel. Detailed flow-field properties, including vorticity and turbulence characteristics, obtained by hot-wire and pressure probe surveys are documented. These data are compared, wherever possible, with available data from a past work for a Mach 2.49 flow for the same wing geometry and angles-of-attack. The results indicate that quantitative similarities exist in the distributions of total pressure and swirl velocity. However, the streamwise velocity of the core exhibits different trends. The axial flow characteristics of the vortices in the two regimes are examined, and a candidate theory is discussed.

  7. Fundamental aerodynamic characteristics of delta wings with leading-edge vortex flows

    NASA Technical Reports Server (NTRS)

    Wood, R. M.; Miller, D. S.

    1985-01-01

    An investigation of the aerodynamics of sharp leading-edge delta wings at supersonic speeds has been conducted. The supporting experimental data for this investigation were taken from published force, pressure, and flow-visualization data in which the Mach number normal to the wing leading edge is always less than 1.0. The individual upper- and lower-surface nonlinear characteristics for uncambered delta wings are determined and presented in three charts. The upper-surface data show that both the normal-force coefficient and minimum pressure coefficient increase nonlinearly with a decreasing slope with increasing angle of attack. The lower-surface normal-force coefficient was shown to be independent of Mach number and to increase nonlinearly, with an increasing slope, with increasing angle of attack. These charts are then used to define a wing-design space for sharp leading-edge delta wings.

  8. Flight Research and Validation Formerly Experimental Capabilities Supersonic Project

    NASA Technical Reports Server (NTRS)

    Banks, Daniel

    2009-01-01

    This slide presentation reviews the work of the Experimental Capabilities Supersonic project, that is being reorganized into Flight Research and Validation. The work of Experimental Capabilities Project in FY '09 is reviewed, and the specific centers that is assigned to do the work is given. The portfolio of the newly formed Flight Research and Validation (FRV) group is also reviewed. The various projects for FY '10 for the FRV are detailed. These projects include: Eagle Probe, Channeled Centerbody Inlet Experiment (CCIE), Supersonic Boundary layer Transition test (SBLT), Aero-elastic Test Wing-2 (ATW-2), G-V External Vision Systems (G5 XVS), Air-to-Air Schlieren (A2A), In Flight Background Oriented Schlieren (BOS), Dynamic Inertia Measurement Technique (DIM), and Advanced In-Flight IR Thermography (AIR-T).

  9. Study of lee-side flows over conically cambered Delta wings at supersonic speeds, part 2

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Watson, Carolyn B.

    1987-01-01

    An experimental investigation was performed in which surface pressure data, flow visualization data, and force and moment data were obtained on four conical delta wing models which differed in leading edge camber only. Wing leading edge camber was achieved through a deflection of the outboard 30% of the local wing semispan of a reference 75 deg swept flat delta wing. The four wing models have leading edge deflection angles delta sub F of 0, 5, 10, and 15 deg measured streamwise. Data for the wings with delta sub F = 10 and 15 deg showed that hinge line separation dominated the lee-side wing loading and prohibited the development of leading edge separation on the deflected portion of wing leading edge. However, data for the wing with delta sub F = 5 deg showed that at an angle of attack of 5 deg, a vortex was positioned on the deflected leading edge with reattachment at the hinge line. Flow visualization results were presented which detail the influence of Mach number, angle of attack, and camber on the lee-side flow characteristics of conically cambered delta wings. Analysis of photographic data identified the existence of 12 distinctive lee-side flow types.

  10. The calculation of pressure on slender airplanes in subsonic and supersonic flow

    NASA Technical Reports Server (NTRS)

    Heaslet, Max A; Lomas, Harvard

    1954-01-01

    Under the assumption that a wing, body, or wing-body combination is slender or flying at near sonic velocity, expressions are given which permit the calculation of pressure in the immediate vicinity of the configuration. The disturbance field, in both subsonic and supersonic flight, is shown to consist of two-dimensional disturbance fields extending laterally and a longitudinal field that depends on the streamwise growth of cross-sectional area. A discussion is also given of couplings, between lifting and thickness effects, that necessarily arise as a result of the quadratic dependence of pressure on the induced velocity components. (author)

  11. Transonic Aerodynamic Loading Characteristics of a Wing-Body-Tail Combination Having a 52.5 deg. Sweptback Wing of Aspect Ratio 3 With Conical Wing Camber and Body Indentation for a Design Mach Number of Square Root of 2

    NASA Technical Reports Server (NTRS)

    Cassetti, Marlowe D.; Re, Richard J.; Igoe, William B.

    1961-01-01

    An investigation has been made of the effects of conical wing camber and body indentation according to the supersonic area rule on the aerodynamic wing loading characteristics of a wing-body-tail configuration at transonic speeds. The wing aspect ratio was 3, taper ratio was 0.1, and quarter-chord-line sweepback was 52.5 deg. with 3-percent-thick airfoil sections. The tests were conducted in the Langley 16-foot transonic tunnel at Mach numbers from 0.80 to 1.05 and at angles of attack from 0 deg. to 14 deg., with Reynolds numbers based on mean aerodynamic chord varying from 7 x 10(exp 6) to 8 x 10(exp 6). Conical camber delayed wing-tip stall and reduced the severity of the accompanying longitudinal instability but did not appreciably affect the spanwise load distribution at angles of attack below tip stall. Body indentation reduced the transonic chordwise center-of-pressure travel from about 8 percent to 5 percent of the mean aerodynamic chord.

  12. Effects of Passive Porosity on Interacting Vortex Flows At Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2000-01-01

    A wind tunnel experiment was conducted in the NASA Langley Research Center (LaRC) Unitary Plan Wind Tunnel (UPWT) to determine the effects of passive surface porosity on vortex flow interaction about a general research fighter configuration at supersonic speeds. Optical flow measurement and flow visualization techniques were used and included pressure-sensitive paint (PSP), schlieren, and laser vapor screen (LVS) These techniques were combined with force and moment and conventional electronically-scanned pressure (ESP) measurements to quantify and to visualize the effects of flow-through porosity applied to a wing leading-edge extension (LEX) mounted to a 65 deg cropped delta wing model.

  13. DETAIL OF WING WALL ON OUTLET SIDE OF CULVERT. NOTE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF WING WALL ON OUTLET SIDE OF CULVERT. NOTE THE INCLUSIONS IN THE CONCRETE. OBLIQUE VIEW TO THE SOUTH-SOUTHWEST. 21 - Burlington Northern Santa Fe Railroad, Cajon Subdivision, Structure 58.1X, Between Cajon Summit and Keenbrook, Devore, San Bernardino County, CA

  14. Preliminary Sizing and Performance Evaluation of Supersonic Cruise Aircraft

    NASA Technical Reports Server (NTRS)

    Fetterman, D. E., Jr.

    1976-01-01

    The basic processes of a method that performs sizing operations on a baseline aircraft and determines their subsequent effects on aerodynamics, propulsion, weights, and mission performance are described. The input requirements of the associated computer program are defined and its output listings explained. Results obtained by applying the method to an advanced supersonic technology concept are discussed. These results include the effects of wing loading, thrust-to-weight ratio, and technology improvements on range performance, and possible gains in both range and payload capability that become available through growth versions of the baseline aircraft. The results from an in depth contractual study that confirm the range gain predicted for a particular wing loading, thrust-to-weight ratio combination are also included.

  15. WINGDES2 - WING DESIGN AND ANALYSIS CODE

    NASA Technical Reports Server (NTRS)

    Carlson, H. W.

    1994-01-01

    This program provides a wing design algorithm based on modified linear theory which takes into account the effects of attainable leading-edge thrust. A primary objective of the WINGDES2 approach is the generation of a camber surface as mild as possible to produce drag levels comparable to those attainable with full theoretical leading-edge thrust. WINGDES2 provides both an analysis and a design capability and is applicable to both subsonic and supersonic flow. The optimization can be carried out for designated wing portions such as leading and trailing edge areas for the design of mission-adaptive surfaces, or for an entire planform such as a supersonic transport wing. This program replaces an earlier wing design code, LAR-13315, designated WINGDES. WINGDES2 incorporates modifications to improve numerical accuracy and provides additional capabilities. A means of accounting for the presence of interference pressure fields from airplane components other than the wing and a direct process for selection of flap surfaces to approach the performance levels of the optimized wing surfaces are included. An increased storage capacity allows better numerical representation of those configurations that have small chord leading-edge or trailing-edge design areas. WINGDES2 determines an optimum combination of a series of candidate surfaces rather than the more commonly used candidate loadings. The objective of the design is the recovery of unrealized theoretical leading-edge thrust of the input flat surface by shaping of the design surface to create a distributed thrust and thus minimize drag. The input consists of airfoil section thickness data, leading and trailing edge planform geometry, and operational parameters such as Mach number, Reynolds number, and design lift coefficient. Output includes optimized camber surface ordinates, pressure coefficient distributions, and theoretical aerodynamic characteristics. WINGDES2 is written in FORTRAN V for batch execution and has been

  16. The design of supercritical wings by the use of three-dimensional transonic theory

    NASA Technical Reports Server (NTRS)

    Mann, M. J.

    1979-01-01

    A procedure was developed for the design of transonic wings by the iterative use of three dimensional, inviscid, transonic analysis methods. The procedure was based on simple principles of supersonic flow and provided the designer with a set of guidelines for the systematic alteration of wing profile shapes to achieve some desired pressure distribution. The method was generally applicable to wing design at conditions involving a large region of supercriterical flow. To illustrate the method, it was applied to the design of a wing for a supercritical maneuvering fighter that operates at high lift and transonic Mach number. The wing profiles were altered to produce a large region of supercritical flow which was terminated by a weak shock wave. The spanwise variation of drag of this wing and some principles for selecting the streamwise pressure distribution are also discussed.

  17. Estimation of Supersonic Stage Separation Aerodynamics of Winged-Body Launch Vehicles Using Response Surface Methods

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Deloach, Richard

    2008-01-01

    A collection of statistical and mathematical techniques referred to as response surface methodology was used to estimate the longitudinal stage separation aerodynamic characteristics of a generic, bimese, winged multi-stage launch vehicle configuration using data obtained on small-scale models at supersonic speeds in the NASA Langley Research Center Unitary Plan Wind Tunnel. The simulated Mach 3 staging was dominated by multiple shock wave interactions between the orbiter and booster vehicles throughout the relative spatial locations of interest. This motivated a partitioning of the overall inference space into several contiguous regions within which the separation aerodynamics were presumed to be well-behaved and estimable using cuboidal and spherical central composite designs capable of fitting full second-order response functions. The primary goal was to approximate the underlying overall aerodynamic response surfaces of the booster vehicle in belly-to-belly proximity to the orbiter vehicle using relatively simple, lower-order polynomial functions that were piecewise-continuous across the full independent variable ranges of interest. The quality of fit and prediction capabilities of the empirical models were assessed in detail, and the issue of subspace boundary discontinuities was addressed. The potential benefits of augmenting the central composite designs to full third order using computer-generated D-optimality criteria were also evaluated. The usefulness of central composite designs, the subspace sizing, and the practicality of fitting low-order response functions over a partitioned inference space dominated by highly nonlinear and possibly discontinuous shock-induced aerodynamics are discussed.

  18. Quasi-cylindrical theory of wing-body interference at supersonic speeds and comparison with experiment

    NASA Technical Reports Server (NTRS)

    Nielsen, Jack N

    1955-01-01

    A theoretical method is presented for calculating the flow field about wing-body combinations employing bodies deviating only slightly in shape from a circular cylinder. The method is applied to the calculation of the pressure field acting between a circular cylindrical body and a rectangular wing. The case of zero body angle of attack and variable wing incidence is considered as well as the case of zero wing incidence and variable body angle of attack. An experiment was performed especially for the purpose of checking the calculative examples.

  19. User's manual: Subsonic/supersonic advanced panel pilot code

    NASA Technical Reports Server (NTRS)

    Moran, J.; Tinoco, E. N.; Johnson, F. T.

    1978-01-01

    Sufficient instructions for running the subsonic/supersonic advanced panel pilot code were developed. This software was developed as a vehicle for numerical experimentation and it should not be construed to represent a finished production program. The pilot code is based on a higher order panel method using linearly varying source and quadratically varying doublet distributions for computing both linearized supersonic and subsonic flow over arbitrary wings and bodies. This user's manual contains complete input and output descriptions. A brief description of the method is given as well as practical instructions for proper configurations modeling. Computed results are also included to demonstrate some of the capabilities of the pilot code. The computer program is written in FORTRAN IV for the SCOPE 3.4.4 operations system of the Ames CDC 7600 computer. The program uses overlay structure and thirteen disk files, and it requires approximately 132000 (Octal) central memory words.

  20. Surface pressure data for a supersonic-cruise airplane configuration at Mach numbers of 2.30, 2.96, 3.30

    NASA Technical Reports Server (NTRS)

    Shrout, B. L.; Corlett, W. A.; Collins, I. K.

    1979-01-01

    The tabulated results of surface pressure tests conducted on the wing and fuselage of an airplane model in the Langley Unitary Plan wind tunnel are presented without analysis. The model tested was that of a supersonic-cruise airplane with a highly swept arrow-wing planform, two engine nacelles mounted beneath the wing, and outboard vertical tails. Data were obtained at Mach numbers of 2.30, 2.96, and 3.30 for angles of attack from -4 deg to 12 deg. The Reynolds number for these tests was 6,560,000 per meter.

  1. Development and analysis of a STOL supersonic cruise fighter concept

    NASA Technical Reports Server (NTRS)

    Dollyhigh, S. M.; Foss, W. E., Jr.; Morris, S. J., Jr.; Walkley, K. B.; Swanson, E. E.; Robins, A. W.

    1984-01-01

    The application of advanced and emerging technologies to a fighter aircraft concept is described. The twin-boom fighter (TBF-1) relies on a two dimensional vectoring/reversing nozzle to provide STOL performance while also achieving efficient long range supersonic cruise. A key feature is that the propulsion package is placed so that the nozzle hinge line is near the aircraft center-of-gravity to allow large vector angles and, thus, provide large values of direct lift while minimizing the moments to be trimmed. The configurations name is derived from the long twin booms extending aft of the engine to the twin vertical tails which have a single horizontal tail mounted atop and between them. Technologies utilized were an advanced engine (1985 state-of-the-art), superplastic formed/diffusion bonded titanium structure, advanced controls/avionics/displays, supersonic wing design, and conformal weapons carriage. The integration of advanced technologies into this concept indicate that large gains in takeoff and landing performance, maneuver, acceleration, supersonic cruise speed, and range can be acieved relative to current fighter concepts.

  2. Lee side flow for slender delta wings of finite thickness

    NASA Technical Reports Server (NTRS)

    Szodruch, J. G.

    1980-01-01

    An experimental and theoretical investigation carried out to determine the lee side flow field over delta wings at supersonic speeds is presented. A theoretical method to described the flow field is described, where boundary conditions as a result of the experimental study are needed. The computed flow field with shock induced separation is satisfactory.

  3. VORCAM: A computer program for calculating vortex lift effect of cambered wings by the suction analogy

    NASA Technical Reports Server (NTRS)

    Lan, C. E.; Chang, J. F.

    1981-01-01

    A user's guide to an improved version of Woodward's chord plane aerodynamic panel computer code is presumed. The guide can be applied to cambered wings exhibiting edge separated flow, including those with leading edge vortex flow at subsonic and supersonic speeds. New orientations for the rotated suction force are employed based on the momentum principal. The supersonic suction analogy method is improved by using an effective angle of attack defined through a semiempirical method.

  4. Calculation of the lateral control of swept and unswept flexible wings of arbitrary stiffness

    NASA Technical Reports Server (NTRS)

    Diederich, Franklin W

    1951-01-01

    A method similar to that of NACA rep. 1000 is presented for calculating the effectiveness and the reversal speed of lateral-control devices on swept and unswept wings of arbitrary stiffness. Provision is made for using either stiffness curves and root-rotation constants or structural influence coefficients in the analysis. Computing forms and an illustrative example are included to facilitate calculations by means of the method. The effectiveness of conventional aileron configurations and the margin against aileron reversal are shown to be relatively low for swept wings at all speeds and for all wing plan forms at supersonic speeds.

  5. Close up oblique view aft, port side of the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close up oblique view aft, port side of the Orbiter Discovery in the Vehicle Assembly Building at NASA's Kennedy Space Center. This view shows a close up of the elevons and underside of the port wing. On the aft fuselage in the approximate center rift of the image is the T-0 umbilical panels. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  6. Numerical solution to the glancing sidewall oblique shock wave/turbulent boundary layer interaction in three dimension

    NASA Technical Reports Server (NTRS)

    Anderson, B. H.; Benson, T. J.

    1983-01-01

    A supersonic three-dimensional viscous forward-marching computer design code called PEPSIS is used to obtain a numerical solution of the three-dimensional problem of the interaction of a glancing sidewall oblique shock wave and a turbulent boundary layer. Very good results are obtained for a test case that was run to investigate the use of the wall-function boundary-condition approximation for a highly complex three-dimensional shock-boundary layer interaction. Two additional test cases (coarse mesh and medium mesh) are run to examine the question of near-wall resolution when no-slip boundary conditions are applied. A comparison with experimental data shows that the PEPSIS code gives excellent results in general and is practical for three-dimensional supersonic inlet calculations.

  7. Numerical solution to the glancing sidewall oblique shock wave/turbulent boundary layer interaction in three-dimension

    NASA Technical Reports Server (NTRS)

    Anderson, B. H.; Benson, T. J.

    1983-01-01

    A supersonic three-dimensional viscous forward-marching computer design code called PEPSIS is used to obtain a numerical solution of the three-dimensional problem of the interaction of a glancing sidewall oblique shock wave and a turbulent boundary layer. Very good results are obtained for a test case that was run to investigate the use of the wall-function boundary-condition approximation for a highly complex three-dimensional shock-boundary layer interaction. Two additional test cases (coarse mesh and medium mesh) are run to examine the question of near-wall resolution when no-slip boundary conditions are applied. A comparison with experimental data shows that the PEPSIS code gives excellent results in general and is practical for three-dimensional supersonic inlet calculations.

  8. Development of an aerodyanmic theory capable of predicting surface loads on slender wings with vortex flow

    NASA Technical Reports Server (NTRS)

    Gloss, B. B.; Johnson, F. T.

    1976-01-01

    The Boeing Commercial Airplane Company developed an inviscid three-dimensional lifting surface method that shows promise in being able to accurately predict loads, subsonic and supersonic, on wings with leading-edge separation and reattachment.

  9. Detailed Comparison of DNS to PSE for Oblique Breakdown at Mach 3

    NASA Technical Reports Server (NTRS)

    Mayer, Christian S. J.; Fasel, Hermann F.; Choudhari, Meelan; Chang, Chau-Lyan

    2010-01-01

    A pair of oblique waves at low amplitudes is introduced in a supersonic flat-plate boundary layer. Their downstream development and the concomitant process of laminar to turbulent transition is then investigated numerically using Direct Numerical Simulations (DNS) and Parabolized Stability Equations (PSE). This abstract is the last part of an extensive study of the complete transition process initiated by oblique breakdown at Mach 3. In contrast to the previous simulations, the symmetry condition in the spanwise direction is removed for the simulation presented in this abstract. By removing the symmetry condition, we are able to confirm that the flow is indeed symmetric over the entire computational domain. Asymmetric modes grow in the streamwise direction but reach only small amplitude values at the outflow. Furthermore, this abstract discusses new time-averaged data from our previous simulation CASE 3 and compares PSE data obtained from NASA's LASTRAC code to DNS results.

  10. Computational fluid dynamics of airfoils and wings

    NASA Technical Reports Server (NTRS)

    Garabedian, P.; Mcfadden, G.

    1982-01-01

    It is pointed out that transonic flow is one of the fields where computational fluid dynamics turns out to be most effective. Codes for the design and analysis of supercritical airfoils and wings have become standard tools of the aircraft industry. The present investigation is concerned with mathematical models and theorems which account for some of the progress that has been made. The most successful aerodynamics codes are those for the analysis of flow at off-design conditions where weak shock waves appear. A major breakthrough was achieved by Murman and Cole (1971), who conceived of a retarded difference scheme which incorporates artificial viscosity to capture shocks in the supersonic zone. This concept has been used to develop codes for the analysis of transonic flow past a swept wing. Attention is given to the trailing edge and the boundary layer, entropy inequalities and wave drag, shockless airfoils, and the inverse swept wing code.

  11. WINDOWAC (Wing Design Optimization With Aeroelastic Constraints): Program manual

    NASA Technical Reports Server (NTRS)

    Haftka, R. T.; Starnes, J. H., Jr.

    1974-01-01

    User and programer documentation for the WIDOWAC programs is given. WIDOWAC may be used for the design of minimum mass wing structures subjected to flutter, strength, and minimum gage constraints. The wing structure is modeled by finite elements, flutter conditions may be both subsonic and supersonic, and mathematical programing methods are used for the optimization procedure. The user documentation gives general directions on how the programs may be used and describes their limitations; in addition, program input and output are described, and example problems are presented. A discussion of computational algorithms and flow charts of the WIDOWAC programs and major subroutines is also given.

  12. Quasi One-Dimensional Unsteady Modeling of External Compression Supersonic Inlets

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Kratz, Jonathan

    2012-01-01

    The AeroServoElasticity task under the NASA Supersonics Project is developing dynamic models of the propulsion system and the vehicle in order to conduct research for integrated vehicle dynamic performance. As part of this effort, a nonlinear quasi 1-dimensional model of an axisymmetric external compression supersonic inlet is being developed. The model utilizes compressible flow computational fluid dynamics to model the internal inlet segment as well as the external inlet portion between the cowl lip and normal shock, and compressible flow relations with flow propagation delay to model the oblique shocks upstream of the normal shock. The external compression portion between the cowl-lip and the normal shock is also modeled with leaking fluxes crossing the sonic boundary, with a moving CFD domain at the normal shock boundary. This model has been verified in steady state against tunnel inlet test data and it s a first attempt towards developing a more comprehensive model for inlet dynamics.

  13. Voltera's Solution of the Wave Equation as Applied to Three-Dimensional Supersonic Airfoil Problems

    NASA Technical Reports Server (NTRS)

    Heslet, Max A; Lomax, Harvard; Jones, Arthur L

    1947-01-01

    A surface integral is developed which yields solutions of the linearized partial differential equation for supersonic flow. These solutions satisfy boundary conditions arising in wing theory. Particular applications of this general method are made, using acceleration potentials, to flat surfaces and to uniformly loaded lifting surfaces. Rectangular and trapezoidal plan forms are considered along with triangular forms adaptable to swept-forward and swept-back wings. The case of the triangular plan form in sideslip is also included. Emphasis is placed on the systematic application of the method to the lifting surfaces considered and on the possibility of further application.

  14. Measurement of attachment-line location in a wind-tunnel and in supersonic flight

    NASA Technical Reports Server (NTRS)

    Agarwal, Naval K.; Miley, Stan J.; Fisher, Michael C.; Anderson, Bianca T.; Geenen, Robert J.

    1992-01-01

    For the supersonic laminar flow control research program, tests are being conducted to measure the attachment-line flow characteristics and its location on a highly swept aircraft wing. Subsonic wind tunnel experiments were conducted on 2D models to develop sensors and techniques for the flight application. Representative attachment-line data are discussed and results from the wind tunnel investigation are presented.

  15. Investigation of a supersonic cruise fighter model flow field

    NASA Technical Reports Server (NTRS)

    Reubush, D. E.; Bare, E. A.

    1985-01-01

    An investigation was conducted in the Langley 16-Foot Transonic Tunnel to survey the flow field around a model of a supersonic cruise fighter configuration. Local values of angle of attack, side flow, Mach number, and total pressure ratio were measured with a single multi-holed probe in three survey areas on a model previously used for nacelle/nozzle integration investigations. The investigation was conducted at Mach numbers of 0.6, 0.9, and 1.2, and at angles of attack from 0 deg to 10 deg. The purpose of the investigation was to provide a base of experimental data with which theoretically determined data can be compared. To that end the data are presented in tables as well as graphically, and a complete description of the model geometry is included as fuselage cross sections and wing span stations. Measured local angles of attack were generally greater than free stream angle of attack above the wing and generally smaller below. There were large spanwise local angle-of-attack and side flow gradients above the wing at the higher free stream angles of attack.

  16. Flight Test of the F/A-18 Active Aeroelastic Wing Airplane

    NASA Technical Reports Server (NTRS)

    Clarke, Robert; Allen, Michael J.; Dibley, Ryan P.; Gera, Joseph; Hodgkinson, John

    2005-01-01

    Successful flight-testing of the Active Aeroelastic Wing airplane was completed in March 2005. This program, which started in 1996, was a joint activity sponsored by NASA, Air Force Research Laboratory, and industry contractors. The test program contained two flight test phases conducted in early 2003 and early 2005. During the first phase of flight test, aerodynamic models and load models of the wing control surfaces and wing structure were developed. Design teams built new research control laws for the Active Aeroelastic Wing airplane using these flight-validated models; and throughout the final phase of flight test, these new control laws were demonstrated. The control laws were designed to optimize strategies for moving the wing control surfaces to maximize roll rates in the transonic and supersonic flight regimes. Control surface hinge moments and wing loads were constrained to remain within hydraulic and load limits. This paper describes briefly the flight control system architecture as well as the design approach used by Active Aeroelastic Wing project engineers to develop flight control system gains. Additionally, this paper presents flight test techniques and comparison between flight test results and predictions.

  17. Flight Test of the F/A-18 Active Aeroelastic Wing Airplane

    NASA Technical Reports Server (NTRS)

    Voracek, David

    2007-01-01

    A viewgraph presentation of flight tests performed on the F/A active aeroelastic wing airplane is shown. The topics include: 1) F/A-18 AAW Airplane; 2) F/A-18 AAW Control Surfaces; 3) Flight Test Background; 4) Roll Control Effectiveness Regions; 5) AAW Design Test Points; 6) AAW Phase I Test Maneuvers; 7) OBES Pitch Doublets; 8) OBES Roll Doublets; 9) AAW Aileron Flexibility; 10) Phase I - Lessons Learned; 11) Control Law Development and Verification & Validation Testing; 12) AAW Phase II RFCS Envelopes; 13) AAW 1-g Phase II Flight Test; 14) Region I - Subsonic 1-g Rolls; 15) Region I - Subsonic 1-g 360 Roll; 16) Region II - Supersonic 1-g Rolls; 17) Region II - Supersonic 1-g 360 Roll; 18) Region III - Subsonic 1-g Rolls; 19) Roll Axis HOS/LOS Comparison Region II - Supersonic (open-loop); 20) Roll Axis HOS/LOS Comparison Region II - Supersonic (closed-loop); 21) AAW Phase II Elevated-g Flight Test; 22) Region I - Subsonic 4-g RPO; and 23) Phase II - Lessons Learned

  18. Quiet Supersonic Wind Tunnel Development

    NASA Technical Reports Server (NTRS)

    King, Lyndell S.; Kutler, Paul (Technical Monitor)

    1994-01-01

    The ability to control the extent of laminar flow on swept wings at supersonic speeds may be a critical element in developing the enabling technology for a High Speed Civil Transport (HSCT). Laminar boundary layers are less resistive to forward flight than their turbulent counterparts, thus the farther downstream that transition from laminar to turbulent flow in the wing boundary layer is extended can be of significant economic impact. Due to the complex processes involved experimental studies of boundary layer stability and transition are needed, and these are performed in "quiet" wind tunnels capable of simulating the low-disturbance environment of free flight. At Ames, a wind tunnel has been built to operate at flow conditions which match those of the HSCT laminar flow flight demonstration 'aircraft, the F-16XL, i.e. at a Mach number of 1.6 and a Reynolds number range of 1 to 3 million per foot. This will allow detailed studies of the attachment line and crossflow on the leading edge area of the highly swept wing. Also, use of suction as a means of control of transition due to crossflow and attachment line instabilities can be studied. Topics covered include: test operating conditions required; design requirements to efficiently make use of the existing infrastructure; development of an injector drive system using a small pilot facility; plenum chamber design; use of computational tools for tunnel and model design; and early operational results.

  19. Supersonic pressure measurements and comparison of theory to experiment for an arrow-wing configuration

    NASA Technical Reports Server (NTRS)

    Manro, M. E.

    1976-01-01

    A wind tunnel test of an arrow-wing-body configuration consisting of flat and twisted wings, as well as leading- and trailing-edge control surface deflections, was conducted at Mach numbers from 1.54 to 2.50 to provide an experimental pressure data base for comparison with theoretical methods. Theory-to-experiment comparisons of detailed pressure distributions were made using a state-of-the-art inviscid flow, constant-pressure-panel method. Emphasis was on conditions under which this theory is valid for both flat and twisted wings.

  20. Relating a Jet-Surface Interaction Experiment to a Commercial Supersonic Transport Aircraft Using Numerical Simulations

    NASA Technical Reports Server (NTRS)

    Dippold, Vance F., III; Friedlander, David

    2017-01-01

    NASA and industry partners desire to reintroduce commercial supersonic airliners to the air transportation system. There are a number of technical challenges that must be overcome by future commercial supersonic airliners to make them viable solutions in society. NASA is specifically concerned with the challenges of reducing boom during supersonic cruise, maximizing range, and reducing airport community noise to acceptable levels. Concepts for commercial supersonic transports, such as the concept aircraft by Lockheed Martin pictured in Figure 1, place the engine nozzles in close proximity to wing and tail surfaces. However, the effects of noise shielding and noise radiation are not fully understood for installed propulsion systems. A series of acoustic tests were conducted on the NASA Glenn Research Centers Nozzle Acoustic Test Rig (NATR) to address the challenge of reducing airport community noise, which is often dominated by jet noise. To best represent the conceptual aircraft in the acoustic tests, noise measurements were taken of the jet in close proximity of simulated aerodynamic surfaces, not simply of an isolated jet.

  1. Quasi 1D Modeling of Mixed Compression Supersonic Inlets

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Woolwine, Kyle J.

    2012-01-01

    The AeroServoElasticity task under the NASA Supersonics Project is developing dynamic models of the propulsion system and the vehicle in order to conduct research for integrated vehicle dynamic performance. As part of this effort, a nonlinear quasi 1-dimensional model of the 2-dimensional bifurcated mixed compression supersonic inlet is being developed. The model utilizes computational fluid dynamics for both the supersonic and subsonic diffusers. The oblique shocks are modeled utilizing compressible flow equations. This model also implements variable geometry required to control the normal shock position. The model is flexible and can also be utilized to simulate other mixed compression supersonic inlet designs. The model was validated both in time and in the frequency domain against the legacy LArge Perturbation INlet code, which has been previously verified using test data. This legacy code written in FORTRAN is quite extensive and complex in terms of the amount of software and number of subroutines. Further, the legacy code is not suitable for closed loop feedback controls design, and the simulation environment is not amenable to systems integration. Therefore, a solution is to develop an innovative, more simplified, mixed compression inlet model with the same steady state and dynamic performance as the legacy code that also can be used for controls design. The new nonlinear dynamic model is implemented in MATLAB Simulink. This environment allows easier development of linear models for controls design for shock positioning. The new model is also well suited for integration with a propulsion system model to study inlet/propulsion system performance, and integration with an aero-servo-elastic system model to study integrated vehicle ride quality, vehicle stability, and efficiency.

  2. Experimental Investigation of the Application of Microramp Flow Control to an Oblique Shock Interaction

    NASA Technical Reports Server (NTRS)

    Hirt, Stefanie M.; Anderson, Bernhard H.

    2009-01-01

    The effectiveness of microramp flow control devices in controlling an oblique shock interaction was tested in the 15- by 15-Centimeter Supersonic Wind Tunnel at NASA Glenn Research Center. Fifteen microramp geometries were tested varying the height, chord length, and spacing between ramps. Measurements of the boundary layer properties downstream of the shock reflection were analyzed using design of experiments methods. Results from main effects, D-optimal, full factorial, and central composite designs were compared. The designs provided consistent results for a single variable optimization.

  3. Flutter, Postflutter, and Control of a Supersonic Wing Section

    NASA Technical Reports Server (NTRS)

    Marzocca, Piergiovanni; Librescu, Liviu; Silva, Walter A.

    2002-01-01

    A number of issues related to the flutter and postflutter of two-dimensional supersonic lifting surfaces are addressed. Among them there are the 1) investigation of the implications of the nonlinear unsteady aerodynamics and structural nonlinearities on the stable/unstable character of the limit cycle and 2) study of the implications of the incorporation of a control capability on both the flutter boundary and the postflutter behavior. To this end, a powerful methodology based on the Lyapunov first quantity is implemented. Such a treatment of the problem enables one to get a better understanding of the various factors involved in the nonlinear aeroelastic problem, including the stable and unstable limit cycle. In addition, it constitutes a first step toward a more general investigation of nonlinear aeroelastic phenomena of three-dimensional lifting surfaces.

  4. A Numerical Comparison of Symmetric and Asymmetric Supersonic Wind Tunnels

    NASA Astrophysics Data System (ADS)

    Clark, Kylen D.

    Supersonic wind tunnels are a vital aspect to the aerospace industry. Both the design and testing processes of different aerospace components often include and depend upon utilization of supersonic test facilities. Engine inlets, wing shapes, and body aerodynamics, to name a few, are aspects of aircraft that are frequently subjected to supersonic conditions in use, and thus often require supersonic wind tunnel testing. There is a need for reliable and repeatable supersonic test facilities in order to help create these vital components. The option of building and using asymmetric supersonic converging-diverging nozzles may be appealing due in part to lower construction costs. There is a need, however, to investigate the differences, if any, in the flow characteristics and performance of asymmetric type supersonic wind tunnels in comparison to symmetric due to the fact that asymmetric configurations of CD nozzle are not as common. A computational fluid dynamics (CFD) study has been conducted on an existing University of Michigan (UM) asymmetric supersonic wind tunnel geometry in order to study the effects of asymmetry on supersonic wind tunnel performance. Simulations were made on both the existing asymmetrical tunnel geometry and two axisymmetric reflections (of differing aspect ratio) of that original tunnel geometry. The Reynolds Averaged Navier Stokes equations are solved via NASAs OVERFLOW code to model flow through these configurations. In this way, information has been gleaned on the effects of asymmetry on supersonic wind tunnel performance. Shock boundary layer interactions are paid particular attention since the test section integrity is greatly dependent upon these interactions. Boundary layer and overall flow characteristics are studied. The RANS study presented in this document shows that the UM asymmetric wind tunnel/nozzle configuration is not as well suited to producing uniform test section flow as that of a symmetric configuration, specifically one

  5. Flutter and oscillating air-force calculations for an airfoil in two-dimensional supersonic flow

    NASA Technical Reports Server (NTRS)

    Garrick, I E; Rubinow, S I

    1946-01-01

    A connected account is given of the Possio theory of non-stationary flow for small disturbances in a two-dimensional supersonic flow and of its application to the determination of the aerodynamic forces on an oscillating airfoil. Further application is made to the problem of wing flutter in the degrees of freedom - torsion, bending, and aileron rotations. Numerical tables for flutter calculations are provided for various values of the Mach number greater than unity. Results for bending-torsion wing flutter are shown in figures and are discussed. The static instabilities of divergence and aileron reversal are examined as is a one-degree-of-freedom case of torsional oscillatory instability.

  6. Computational and Experimental Study of Supersonic Nozzle Flow and Aft-Deck Interactions

    NASA Technical Reports Server (NTRS)

    Bruce, Walter E., IV; Carter, Melissa B.; Elmiligui, Alaa A.; Winski, Courtney S.; Nayani, Sudheer N.; Castner, Raymond S.

    2016-01-01

    NASA has been conducting research into reducing sonic boom and changing FAA regulations to allow for supersonic commercial transport over land in the United States. This particular study looks at a plume passing through a shock generated from an aft deck on a nacelle; the aft deck is meant to represent the trailing edge of a wing. NASA Langley Research Center USM3D CFD code results are compared to the experimental data taken at the NASA Glenn Research Center 1-foot by 1-foot Supersonic Wind Tunnel. This study included examining two turbulence models along with different volume sourcing methods for grid generation. The results show that using the k-epsilon turbulence model within USM3D produced shock signatures that closely follow the experimental data at a variety of nozzle pressure ratio settings.

  7. Experimental investigation on the characteristics of supersonic fuel spray and configurations of induced shock waves.

    PubMed

    Wang, Yong; Yu, Yu-Song; Li, Guo-Xiu; Jia, Tao-Ming

    2017-01-05

    The macro characteristics and configurations of induced shock waves of the supersonic sprays are investigated by experimental methods. Visualization study of spray shape is carried out with the high-speed camera. The macro characteristics including spray tip penetration, velocity of spray tip and spray angle are analyzed. The configurations of shock waves are investigated by Schlieren technique. For supersonic sprays, the concept of spray front angle is presented. Effects of Mach number of spray on the spray front angle are investigated. The results show that the shape of spray tip is similar to blunt body when fuel spray is at transonic region. If spray entered the supersonic region, the oblique shock waves are induced instead of normal shock wave. With the velocity of spray increasing, the spray front angle and shock wave angle are increased. The tip region of the supersonic fuel spray is commonly formed a cone. Mean droplet diameter of fuel spray is measured using Malvern's Spraytec. Then the mean droplet diameter results are compared with three popular empirical models (Hiroyasu's, Varde's and Merrigton's model). It is found that the Merrigton's model shows a relative good correlation between models and experimental results. Finally, exponent of injection velocity in the Merrigton's model is fitted with experimental results.

  8. Aeroacoustic theory for noncompact wing-gust interaction

    NASA Technical Reports Server (NTRS)

    Martinez, R.; Widnall, S. E.

    1981-01-01

    Three aeroacoustic models for noncompact wing-gust interaction were developed for subsonic flow. The first is that for a two dimensional (infinite span) wing passing through an oblique gust. The unsteady pressure field was obtained by the Wiener-Hopf technique; the airfoil loading and the associated acoustic field were calculated, respectively, by allowing the field point down on the airfoil surface, or by letting it go to infinity. The second model is a simple spanwise superposition of two dimensional solutions to account for three dimensional acoustic effects of wing rotation (for a helicopter blade, or some other rotating planform) and of finiteness of wing span. A three dimensional theory for a single gust was applied to calculate the acoustic signature in closed form due to blade vortex interaction in helicopters. The third model is that of a quarter infinite plate with side edge through a gust at high subsonic speed. An approximate solution for the three dimensional loading and the associated three dimensional acoustic field in closed form was obtained. The results reflected the acoustic effect of satisfying the correct loading condition at the side edge.

  9. Advanced Jet Noise Exhaust Concepts in NASA's N+2 Supersonics Validation Study and the Environmentally Responsible Aviation Project's Upcoming Hybrid Wing Body Acoustics Test

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda S.; Doty, Mike

    2012-01-01

    Acoustic and flow-field experiments were conducted on exhaust concepts for the next generation supersonic, commercial aircraft. The concepts were developed by Lockheed Martin (LM), Rolls-Royce Liberty Works (RRLW), and General Electric Global Research (GEGR) as part of an N+2 (next generation forward) aircraft system study initiated by the Supersonics Project in NASA s Fundamental Aeronautics Program. The experiments were conducted in the Aero-Acoustic Propulsion Laboratory at the NASA Glenn Research Center. The exhaust concepts presented here utilized lobed-mixers and ejectors. A powered third-stream was implemented to improve ejector acoustic performance. One concept was found to produce stagnant flow within the ejector and the other produced discrete-frequency tones (due to flow separations within the model) that degraded the acoustic performance of the exhaust concept. NASA's Environmentally Responsible Aviation (ERA) Project has been investigating a Hybrid Wing Body (HWB) aircraft as a possible configuration for meeting N+2 system level goals for noise, emissions, and fuel burn. A recently completed NRA led by Boeing Research and Technology resulted in a full-scale aircraft design and wind tunnel model. This model will be tested acoustically in NASA Langley's 14-by 22-Foot Subsonic Tunnel and will include dual jet engine simulators and broadband engine noise simulators as part of the test campaign. The objectives of the test are to characterize the system level noise, quantify the effects of shielding, and generate a valuable database for prediction method development. Further details of the test and various component preparations are described.

  10. Low-speed static and dynamic force tests of a generic supersonic cruise fighter configuration

    NASA Technical Reports Server (NTRS)

    Hahne, David E.

    1989-01-01

    Static and dynamic force tests of a generic fighter configuration designed for sustained supersonic flight were conducted in the Langley 30- by 60-foot tunnel. The baseline configuration had a 65 deg arrow wing, twin wing mounted vertical tails and a canard. Results showed that control was available up to C sub L,max (maximum lift coefficient) from aerodynamic controls about all axes but control in the pitch and yaw axes decreased rapidly in the post-stall angle-of-attack region. The baseline configuration showed stable lateral-directional characteristics at low angles of attack but directional stability occurred near alpha = 25 deg as the wing shielded the vertical tails. The configuration showed positive effective dihedral throughout the test angle-of-attack range. Forced oscillation tests indicated that the baseline configuration had stable damping characteristics about the lateral-directional axes.

  11. Conceptual design of high speed supersonic aircraft: A brief review on SR-71 (Blackbird) aircraft

    NASA Astrophysics Data System (ADS)

    Xue, Hui; Khawaja, H.; Moatamedi, M.

    2014-12-01

    The paper presents the conceptual design of high-speed supersonic aircraft. The study focuses on SR-71 (Blackbird) aircraft. The input to the conceptual design is a mission profile. Mission profile is a flight profile of the aircraft defined by the customer. This paper gives the SR-71 aircraft mission profile specified by US air force. Mission profile helps in defining the attributes the aircraft such as wing profile, vertical tail configuration, propulsion system, etc. Wing profile and vertical tail configurations have direct impact on lift, drag, stability, performance and maneuverability of the aircraft. A propulsion system directly influences the performance of the aircraft. By combining the wing profile and the propulsion system, two important parameters, known as wing loading and thrust to weight ratio can be calculated. In this work, conceptual design procedure given by D. P. Raymer (AIAA Educational Series) is applied to calculate wing loading and thrust to weight ratio. The calculated values are compared against the actual values of the SR-71 aircraft. Results indicates that the values are in agreement with the trend of developments in aviation.

  12. Influence of numerical dissipation in computing supersonic vortex-dominated flows

    NASA Technical Reports Server (NTRS)

    Kandil, O. A.; Chuang, A.

    1986-01-01

    Steady supersonic vortex-dominated flows are solved using the unsteady Euler equations for conical and three-dimensional flows around sharp- and round-edged delta wings. The computational method is a finite-volume scheme which uses a four-stage Runge-Kutta time stepping with explicit second- and fourth-order dissipation terms. The grid is generated by a modified Joukowski transformation. The steady flow solution is obtained through time-stepping with initial conditions corresponding to the freestream conditions, and the bow shock is captured as a part of the solution. The scheme is applied to flat-plate and elliptic-section wings with a leading edge sweep of 70 deg at an angle of attack of 10 deg and a freestream Mach number of 2.0. Three grid sizes of 29 x 39, 65 x 65 and 100 x 100 have been used. The results for sharp-edged wings show that they are consistent with all grid sizes and variation of the artificial viscosity coefficients. The results for round-edged wings show that separated and attached flow solutions can be obtained by varying the artificial viscosity coefficients. They also show that the solutions are independent of the way time stepping is done. Local time-stepping and global minimum time-steeping produce same solutions.

  13. A Wind Tunnel Investigation of Joined Wing Scissor Morphing

    DTIC Science & Technology

    2006-06-01

    would use the low sweep for carrier landing and subsonic cruise, and use the high sweep for 12 supersonic flight [13]. According to Raymer [19...Wright-Patterson AFB, Ohio: Air Force Institute of Technology, 2005. 12. Katz, Joseph, Shaun Byrne, and Robert Hahl. "Stall Resistance Features of...Lifting-Body Airplane Configurations." Journal of Aircraft 2nd ser. 36 (1999): 471-474. 13. Kress, Robert W. "Variable Sweep Wing Design." AIAA 83

  14. On the application of transonic similarity rules to wings of finite span

    NASA Technical Reports Server (NTRS)

    Spreiter, John R

    1953-01-01

    The transonic aerodynamic characteristics of wings of finite span are discussed from the point of view of a unified small perturbation theory for subsonic, transonic, and supersonic flows about thin wings. This approach avoids certain ambiguities which appear if one studies transonic flows by means of equations derived under the more restrictive assumption that the local velocities are everywhere close to sonic velocity. The relation between the two methods of analysis of transonic flow is examined, the similarity rules and known solutions of transonic flow theory are reviewed, and the asymptotic behavior of the lift, drag, and pitching-moment characteristics of wings of large and small aspect ratio is discussed. It is shown that certain methods of data presentation are advantageous for the effective display of these characteristics.

  15. Flight assessment of a large supersonic drone aircraft for research use

    NASA Technical Reports Server (NTRS)

    Eckstrom, C. V.; Peele, E. L.

    1974-01-01

    An assessment is made of the capabilities of the BQM-34E supersonic drone aircraft as a test bed research vehicle. This assessment is made based on a flight conducted for the purpose of obtaining flight test measurements of wing loads at various maneuver flight conditions. Flight plan preparation, flight simulation, and conduct of the flight test are discussed along with a presentation of the test data obtained and an evaluation of how closely the flight test followed the test plan.

  16. Tesseract supersonic business transport

    NASA Technical Reports Server (NTRS)

    Reshotko, Eli; Garbinski, Gary; Fellenstein, James; Botting, Mary; Hooper, Joan; Ryan, Michael; Struk, Peter; Taggart, Ben; Taillon, Maggie; Warzynski, Gary

    1992-01-01

    This year, the senior level Aerospace Design class at Case Western Reserve University developed a conceptual design of a supersonic business transport. Due to the growing trade between Asia and the United States, a transpacific range was chosen for the aircraft. A Mach number of 2.2 was chosen, too, because it provides reasonable block times and allows the use of a large range of materials without a need for active cooling. A payload of 2,500 lbs. was assumed corresponding to a complement of nine passengers and crew, plus some light cargo. With these general requirements set, the class was broken down into three groups. The aerodynamics of the aircraft were the responsibility of the first group. The second developed the propulsion system. The efforts of both the aerodynamics and propulsion groups were monitored and reviewed for weight considerations and structural feasibility by the third group. Integration of the design required considerable interaction between the groups in the final stages. The fuselage length of the final conceptual design was 107.0 ft, while the diameter of the fuselage was 7.6 ft. The delta wing design consisted of an aspect ratio of 1.9 with a wing span of 47.75 ft and mid-chord length of 61.0 ft. A SNECMA MCV 99 variable-cycle engine design was chosen for this aircraft.

  17. Tesseract: Supersonic business transport

    NASA Technical Reports Server (NTRS)

    Reshotko, Eli; Garbinski, Gary

    1992-01-01

    This year, the senior level Aerospace Design class at Case Western Reserve University developed a conceptual design of a supersonic business transport. Due to the growing trade between Asia and the United States, a transpacific range has been chosen for the aircraft. A Mach number of 2.2 was chosen too because it provides reasonable block times and allows the use of a large range of materials without a need for active cooling. A payload of 2500 lbs. has been assumed corresponding to a complement of nine (passengers and crew) plus some light cargo. With these general requirements set, the class was broken down into three groups. The aerodynamics of the aircraft were the responsibility of the first group. The second developed the propulsion system. The efforts of both the aerodynamics and propulsion groups were monitored and reviewed for weight considerations and structural feasibility by the third group. Integration of the design required considerable interaction between the groups in the final stages. The fuselage length of the final conceptual design was 107.0 ft. while the diameter of the fuselage was 7.6 ft. The delta wing design consisted of an aspect ratio of 1.9 with a wing span of 47.75 ft and midcord length of 61.0 ft. A SNEMCA MCV 99 variable-cycle engine design was chosen for this aircraft.

  18. Calculations on the forces and moments for an oscillating wing-aileron combination in two-dimensional potential flow at sonic speed

    NASA Technical Reports Server (NTRS)

    Nelson, Herbert C; Berman, Julian H

    1953-01-01

    The linearized theory for compressible unsteady flow is used, as suggested in recent contributions to the subject, to obtain the velocity potential and the lift and moment for a thin harmonically oscillating, two-dimensional wing-aileron combination moving at sonic speed. The velocity potential is derived by considering the sonic case as the limit of the linearized supersonic theory. From the velocity potential explicit expressions for the lift and moment are developed for vertical translation and pitching of the wing and rotation of the aileron. The sonic results are compared and found to be consistent with previously obtained subsonic and supersonic results. Several figures are presented showing the variation of lift and moment with reduced frequency and Mach number and the influence of Mach number on some cases of bending-torsion flutter.

  19. High transonic speed transport aircraft study. [aerodynamic characteristics of single-fuselage, yawed-wing configuration

    NASA Technical Reports Server (NTRS)

    Kulfan, R. M.; Neumann, F. D.; Nisbet, J. W.; Mulally, A. R.; Murakami, J. K.; Noble, E. C.; Mcbarron, J. P.; Stalter, J. L.; Gimmestad, D. W.; Sussman, M. B.

    1973-01-01

    An initial design study of high-transonic-speed transport aircraft has been completed. Five different design concepts were developed. These included fixed swept wing, variable-sweep wing, delta wing, double-fuselage yawed-wing, and single-fuselage yawed-wing aircraft. The boomless supersonic design objectives of range=5560 Km (3000 nmi), payload-18 143 kg (40 000lb), Mach=1.2, and FAR Part 36 aircraft noise levels were achieved by the single-fuselage yawed-wing configuration with a gross weight of 211 828 Kg (467 000 lb). A noise level of 15 EPNdB below FAR Part 36 requirements was obtained with a gross weight increase to 226 796 Kg (500 000 lb). Although wing aeroelastic divergence was a primary design consideration for the yawed-wing concepts, the graphite-epoxy wings of this study were designed by critical gust and maneuver loads rather than by divergence requirements. The transonic nacelle drag is shown to be very sensitive to the nacelle installation. A six-degree-of-freedom dynamic stability analysis indicated that the control coordination and stability augmentation system would require more development than for a symmetrical airplane but is entirely feasible. A three-phase development plan is recommended to establish the full potential of the yawed-wing concept.

  20. Evaluation of Blended Wing-Body Combinations with Curved Plan Forms at Mach Numbers Up to 3.50

    NASA Technical Reports Server (NTRS)

    Holdaway, George H.; Mellenthin, Jack A.

    1960-01-01

    This investigation is a continuation of the experimental and theoretical evaluation of the effects of wing plan-form variations on the aerodynamic performance characteristics of blended wing-body combinations. The present report compares previously tested straight-edged delta and arrow models which have leading-edge sweeps of 59.04 and 70-82 deg., respectively, with related models which have plan forms with curved leading and trailing edges designed to result in the same average sweeps in each case. All the models were symmetrical, without camber, and were generally similar having the same span, length, and aspect ratios. The wing sections had an average value of maximum thickness ratio of about 4 percent of the local wing chords in a streamwise direction. The wing sections were computed by varying their shapes along with the body radii (blending process) to match the selected area distribution and the given plan form. The models were tested with transition fixed at Reynolds numbers of roughly 4,000,000 to 9,000,000, based on the mean aerodynamic chord of the wing. The characteristic effect of the wing curvature of the delta and arrow models was an increase at subsonic and transonic speeds in the lift-curve slopes which was partially reflected in increased maximum lift-drag ratios. Curved edges were not evaluated on a diamond plan form because a preliminary investigation indicated that the curvature considered would increase the supersonic zero-lift wave drag. However, after the test program was completed, a suitable modification for the diamond plan form was discovered. The analysis presented in the appendix indicates that large reductions in the zero-lift wave drag would be obtained at supersonic Mach numbers if the leading- and trailing-edge sweeps are made to differ by indenting the trailing edge and extending the root of the leading edge.

  1. Application of the CAP-TSD unsteady transonic small disturbance program to wing flutter. [Computational Aeroelasticity Program

    NASA Technical Reports Server (NTRS)

    Bennett, Robert M.; Batina, John T.

    1989-01-01

    The application and assessment of a computer program called CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) for flutter predictions are described. Flutter calculations are presented for two thin swept-and-tapered wing planforms with well-defined modal properties. One planform is a series of 45-degree swept wings and the other planform is a clipped delta wing. Comparisons are made between the results of CAP-TSD using the linear equation and no airfoil thickness and the results obtained from a subsonic kernel function analysis. The calculations cover a Mach number range from low subsonic to low supersonic values, including the transonic range, and are compared with subsonic linear theory and experimental data. It is noted that since both wings have very thin airfoil sections, the effects of thickness are minimal.

  2. Investigation of Downwash, Sidewash, and Mach Number Distribution Behind a Rectangular Wing at a Mach Number of 2.41

    NASA Technical Reports Server (NTRS)

    Adamson, David; Boatright, William B

    1957-01-01

    An investigation of the nature of the flow field behind a rectangular wing of circular arc cross section has been conducted in the Langley 9-inch supersonic tunnel. Pitot- and static-pressure surveys covering a region of flow behind the wing have been made together with detailed pitot surveys throughout the region of the wake. In addition, the flow direction has been measured by means of a weathercocking vane. Theoretical calculations have been made to obtain the variation of both downwash and sidewash with angle of attack by using the superposition method of Lagerstrom, Graham, and Grosslight. In addition, the effect of wing thickness on the sidewash with the wing at 0 degree angle of attack has been evaluated.

  3. General theory of conical flows and its application to supersonic aerodynamics

    NASA Technical Reports Server (NTRS)

    Germain, Paul

    1955-01-01

    Points treated in this report are: homogeneous flows, the general study of conical flows with infinitesimal cone angles, the numerical or analogous methods for the study of flows flattened in one direction, and a certain number of results. A thorough consideration of the applications on conical flows and demonstration of how one may solve within the scope of linear theory, by combinations of conical flows, the general problems of the supersonic wing, taking into account dihedral and sweepback, and also fuselage and control surface effects.

  4. Experimental investigation on the characteristics of supersonic fuel spray and configurations of induced shock waves

    PubMed Central

    Wang, Yong; Yu, Yu-song; Li, Guo-xiu; Jia, Tao-ming

    2017-01-01

    The macro characteristics and configurations of induced shock waves of the supersonic sprays are investigated by experimental methods. Visualization study of spray shape is carried out with the high-speed camera. The macro characteristics including spray tip penetration, velocity of spray tip and spray angle are analyzed. The configurations of shock waves are investigated by Schlieren technique. For supersonic sprays, the concept of spray front angle is presented. Effects of Mach number of spray on the spray front angle are investigated. The results show that the shape of spray tip is similar to blunt body when fuel spray is at transonic region. If spray entered the supersonic region, the oblique shock waves are induced instead of normal shock wave. With the velocity of spray increasing, the spray front angle and shock wave angle are increased. The tip region of the supersonic fuel spray is commonly formed a cone. Mean droplet diameter of fuel spray is measured using Malvern’s Spraytec. Then the mean droplet diameter results are compared with three popular empirical models (Hiroyasu’s, Varde’s and Merrigton’s model). It is found that the Merrigton’s model shows a relative good correlation between models and experimental results. Finally, exponent of injection velocity in the Merrigton’s model is fitted with experimental results. PMID:28054555

  5. Numerical simulation of the tip vortex off a low-aspect-ratio wing at transonic speed

    NASA Technical Reports Server (NTRS)

    Mansour, N. N.

    1984-01-01

    The viscous transonic flow around a low aspect ratio wing was computed by an implicit, three dimensional, thin-layer Navier-Stokes solver. The grid around the geometry of interest is obtained numerically as a solution to a Dirichlet problem for the cube. A low aspect ratio wing with large sweep, twist, taper, and camber is the chosen geometry. The topology chosen to wrap the mesh around the wing with good tip resolution is a C-O type mesh. The flow around the wing was computed for a free stream Mach number of 0.82 at an angle of attack of 5 deg. At this Mach number, an oblique shock forms on the upper surface of the wing, and a tip vortex and three dimensional flow separation off the wind surface are observed. Particle path lines indicate that the three dimensional flow separation on the wing surface is part of the roots of the tip vortex formation. The lifting of the tip vortex before the wing trailing edge is observed by following the trajectory of particles release around the wing tip.

  6. Analytical investigation of aerodynamic characteristics of highly swept wings with separated flow

    NASA Technical Reports Server (NTRS)

    Reddy, C. S.

    1980-01-01

    Many modern aircraft designed for supersonic speeds employ highly swept-back and low-aspect-ratio wings with sharp or thin edges. Flow separation occurs near the leading and tip edges of such wings at moderate to high angles of attack. Attempts have been made over the years to develop analytical methods for predicting the aerodynamic characteristics of such aircraft. Before any method can really be useful, it must be tested against a standard set of data to determine its capabilities and limitations. The present work undertakes such an investigation. Three methods are considered: the free-vortex-sheet method (Weber et al., 1975), the vortex-lattice method with suction analogy (Lamar and Gloss, 1975), and the quasi-vortex lattice method of Mehrotra (1977). Both flat and cambered wings of different configurations, for which experimental data are available, are studied and comparisons made.

  7. The Application of the NFW Design Philosophy to the HSR Arrow Wing Configuration

    NASA Technical Reports Server (NTRS)

    Bauer, Steven X. S.; Krist, Steven E.

    1999-01-01

    The Natural Flow Wing design philosophy was developed for improving performance characteristics of highly-swept fighter aircraft at cruise and maneuvering conditions across the Mach number range (from Subsonic through Supersonic). The basic philosophy recognizes the flow characteristics that develop on highly swept wings and contours the surface to take advantage of those flow characteristics (e.g., forward facing surfaces in low pressure regions and aft facing surfaces in higher pressure regions for low drag). Because the wing leading edge and trailing edge have multiple sweep angles and because of shocks generated on nacelles and diverters, a viscous code was required to accurately define the surface pressure distributions on the wing. A method of generating the surface geometry to take advantage of those surface pressures (as well as not violating any structural constraints) was developed and the resulting geometries were analyzed and compared to a baseline configuration. This paper will include discussions of the basic Natural Flow Wing design philosophy, the application of the philosophy to an HSCT vehicle, and preliminary wind-tunnel assessment of the NFW HSCT vehicle.

  8. Application of laminar flow control to supersonic transport configurations

    NASA Technical Reports Server (NTRS)

    Parikh, P. G.; Nagel, A. L.

    1990-01-01

    The feasibility and impact of implementing a laminar flow control system on a supersonic transport configuration were investigated. A hybrid laminar flow control scheme consisting of suction controlled and natural laminar flow was developed for a double-delta type wing planform. The required suction flow rates were determined from boundary layer stability analyses using representative wing pressure distributions. A preliminary design of structural modifications needed to accommodate suction through a perforated titanium skin was carried out together with the ducting and systems needed to collect, compress and discharge the suction air. The benefits of reduced aerodynamic drag were weighed against the weight, volume and power requirement penalties of suction system installation in a mission performance and sizing program to assess the net benefits. The study showed a feasibility of achieving significant laminarization of the wing surface by use of a hybrid scheme, leading to an 8.2 percent reduction in the cruise drag. This resulted in an 8.5 percent reduction in the maximum takeoff weight and a 12 percent reduction in the fuel burn after the inclusion of the LFC system installation penalties. Several research needs were identified for a resolution of aerodynamics, structural and systems issues before these potential benefits could be realized in a practical system.

  9. Generation of Parametric Equivalent-Area Targets for Design of Low-Boom Supersonic Concepts

    NASA Technical Reports Server (NTRS)

    Li, Wu; Shields, Elwood

    2011-01-01

    A tool with an Excel visual interface is developed to generate equivalent-area (A(sub e)) targets that satisfy the volume constraints for a low-boom supersonic configuration. The new parametric Ae target explorer allows users to interactively study the tradeoffs between the aircraft volume constraints and the low-boom characteristics (e.g., loudness) of the ground signature. Moreover, numerical optimization can be used to generate the optimal A(sub e) target for given A(sub e) volume constraints. A case study is used to demonstrate how a generated low-boom Ae target can be matched by a supersonic configuration that includes a fuselage, wing, nacelle, pylon, aft pod, horizontal tail, and vertical tail. The low-boom configuration is verified by sonic-boom analysis with an off-body pressure distribution at three body lengths below the configuration

  10. Investigations at Supersonic Speeds of 22 Triangular Wings Representing Two Airfoil Sections for Each of 11 Apex Angles

    NASA Technical Reports Server (NTRS)

    Love, Eugene S

    1955-01-01

    The results of tests of 22 triangular wings, representing two leading-edge shapes for each of 11 apex angles, at Mach numbers 1.62, 1.92, and 1.40 are presented and compared with theory. All wings have a common thickness ratio of 8 percent and a common maximum-thickness point at 18 percent chord. Lift, drag, and pitching moment are given for all wings at each Mach number. The relation of transition in the boundary layer, shocks on the wing surfaces, and characteristics of the pressure distributions is discussed for several wings.

  11. Supersonic aerodynamic characteristics of the North American Rockwell ATP shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Ware, G. M.; Pencer, B., Jr.; Founier, R. H.

    1973-01-01

    A wind tunnel study to determine the supersonic aerodynamic characteristics of a 0.01925-scale model of the space shuttle orbiter configuration is reported. The model consisted of a low-finess-ratio body with a blended 50 swept delta wing forming an ogee planform and a center-line-mounted vertical tail. Tests were made at Mach numbers from 1.90 to 4.63, at angles of attack from -6 to 30, at angles of sideslip of 0 and 3, and at a Reynolds number, based on body length, of 5.3x 1 million.

  12. Flutter of a Low-Aspect-Ratio Rectangular Wing

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R.

    1989-01-01

    A flutter test of a low-aspect-ratio rectangular wing was conducted in the Langley Transonic Dynamics Tunnel (TDT). The model used in this flutter test consisted of a rigid wing mounted to the wind-tunnel wall by a flexible, rectangular beam. The flexible support shaft was connected to the wing root and was cantilever mounted to the wind-tunnel wall. The wing had an aspect ratio of 1.5 based on the wing semispan and an NACA 64A010 airfoil shape. The flutter boundary of the model was determined for a Mach number range of 0.5 to 0.97. The shape of the transonic flutter boundary was determined. Actual flutter points were obtained on both the subsonic and supersonic sides of the flutter bucket. The model exhibited a deep transonic flutter bucket over a narrow range of Mach number. At some Mach numbers, the flutter conditions were extrapolated using a subcritical response technique. In addition to the basic configuration, modifications were made to the model structure such that the first bending frequency was changed without significantly affecting the first torsion frequency. The experiment showed that increasing the bending stiffness of the model support shaft through these modifications lowered the flutter dynamic pressure. Flutter analysis was conducted for the basic model as a comparison with the experimental results. This flutter analysis was conducted with subsonic lifting-surface (kernel function) aerodynamics using the k method for the flutter solution.

  13. An analysis of the impact of cabin floor angle restrictions on L/D for a typical supersonic transport

    NASA Technical Reports Server (NTRS)

    Radkey, R. L.

    1974-01-01

    High floor angles at cruise have been identified as a significant problem facing airline and public acceptance of a supersonic transport. In order to explore the relationship between cruise performances and floor angle, four related wing-fuselage design and integration studies have been conducted. The studies were: (1) a fuselage camber study in which perturbations in the fuselage camber distribution were examined with a baseline wing, (2) a wing optimization study in which wings were optimized for minimum drag at C sub L's less than the design C sub L. These wings were optimized as wing planform camber surfaces alone and evaluated with a baseline fuselage, (3) a second wing optimization study in which wings were optimized for minimum drag at C sub L's less than the design C sub L but for this study the wings were optimized in the presence of the baseline fuselage, and (4) a third wing optimization study in which wings were optimized for minmum drag subject to C sub M constraints designed to produce more positive C sub MO's, thereby reducing trim drag. The studies indicated that it was not possible to both improve the aircraft cruise L/D and substantially reduce the cruise floor angle. The studies did indicate that the cruise floor angle could be reduced by reducing the fuselage incidence relative to the wing, but the reduction in floor angle was accompanied by a substantial reduction in L/D.

  14. Study of advanced composite structural design concepts for an arrow wing supersonic cruise configuration

    NASA Technical Reports Server (NTRS)

    Turner, M. J.; Grande, D. L.

    1978-01-01

    Based on estimated graphite and boron fiber properties, allowable stresses and strains were established for advanced composite materials. Stiffened panel and conventional sandwich panel concepts were designed and analyzed, using graphite/polyimide and boron/polyimide materials. The conventional sandwich panel was elected as the structural concept for the modified wing structure. Upper and lower surface panels of the arrow wing structure were then redesigned, using high strength graphite/polyimide sandwich panels, retaining the titanium spars and ribs from the prior study. The ATLAS integrated analysis and design system was used for stress analysis and automated resizing of surface panels. Flutter analysis of the hybrid structure showed a significant decrease in flutter speed relative to the titanium wing design. The flutter speed was increased to that of the titanium design by selective increase in laminate thickness and by using graphite fibers with properties intermediate between high strength and high modulus values.

  15. Plume and Shock Interaction Effects on Sonic Boom in the 1-foot by 1-foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Castner, Raymond; Elmiligui, Alaa; Cliff, Susan; Winski, Courtney

    2015-01-01

    The desire to reduce or eliminate the operational restrictions of supersonic aircraft over populated areas has led to extensive research at NASA. Restrictions are due to the disturbance of the sonic boom, caused by the coalescence of shock waves formed by the aircraft. A study has been performed focused on reducing the magnitude of the sonic boom N-wave generated by airplane components with a focus on shock waves caused by the exhaust nozzle plume. Testing was completed in the 1-foot by 1-foot supersonic wind tunnel to study the effects of an exhaust nozzle plume and shock wave interaction. The plume and shock interaction study was developed to collect data for computational fluid dynamics (CFD) validation of a nozzle plume passing through the shock generated from the wing or tail of a supersonic vehicle. The wing or tail was simulated with a wedgeshaped shock generator. This test entry was the first of two phases to collect schlieren images and off-body static pressure profiles. Three wedge configurations were tested consisting of strut-mounted wedges of 2.5- degrees and 5-degrees. Three propulsion configurations were tested simulating the propulsion pod and aft deck from a low boom vehicle concept, which also provided a trailing edge shock and plume interaction. Findings include how the interaction of the jet plume caused a thickening of the shock generated by the wedge (or aft deck) and demonstrate how the shock location moved with increasing nozzle pressure ratio.

  16. A Comparison of the Experimental and Theoretical Loading over Triangular Wings in Sideslip at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Boyd, John W

    1951-01-01

    The results of an experimental investigation of the load distribution over two triangular wings in sideslip at Mach numbers from 1.20 to 1.79 are presented and compared with theory. The two wings tested have identical plan form, 45 degrees sweepback of the leading edge, and an aspect ratio of 4.0. One model was composed of round-nose airfoil sections and the other of sharp-nose, biconvex sections. For both wings the maximum thickness of streamwise sections was 6 percent and was located at the 30-percent chord.

  17. Constructing Gloved wings for aerodynamic studies

    NASA Technical Reports Server (NTRS)

    Bohn-Meyer, Marta R.

    1988-01-01

    Recently, two aircraft from the Dryden Flight Research Facility were used in the general study of natural laminar flow (NLF). The first, an F-14A aircraft on short-term loan from the Navy, was used to investigate transonic natural laminar flow. The second, an F-15A aircraft on long-term loan from the Air Force, was used to examine supersonic NLF. These tests were follow-on experiments to the NASA F-111 NLF experiment conducted in 1979. Both wings of the F-14A were gloved, in a two-phased experiment, with full-span(upper surface only) airfoil shapes constructed primarily of fiberglass, foam, and resin. A small section of the F-15A right wing was gloved in a similar manner. Each glove incorporated provisions for instrumentation to measure surface pressure distributions. The F-14A gloves also had provisions for instrumentation to measure boundary layer profiles, acoustic environments, and surface pitot pressures. Discussions of the techniques used to construct the gloves and to incorporate the required instrumentation are presented.

  18. Aerodynamic characteristics of wings designed with a combined-theory method to cruise at a Mach number of 4.5

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    1988-01-01

    A wind-tunnel study was conducted to determine the capability of a method combining linear theory and shock-expansion theory to design optimum camber surfaces for wings that will fly at high-supersonic/low-hypersonic speeds. Three force models (a flat-plate reference wing and two cambered and twisted wings) were used to obtain aerodynamic lift, drag, and pitching-moment data. A fourth pressure-orifice model was used to obtain surface-pressure data. All four wing models had the same planform, airfoil section, and centerbody area distribution. The design Mach number was 4.5, but data were also obtained at Mach numbers of 3.5 and 4.0. Results of these tests indicated that the use of airfoil thickness as a theoretical optimum, camber-surface design constraint did not improve the aerodynamic efficiency or performance of a wing as compared with a wing that was designed with a zero-thickness airfoil (linear-theory) constraint.

  19. Nanofabrication and coloration study of artificial Morpho butterfly wings with aligned lamellae layers.

    PubMed

    Zhang, Sichao; Chen, Yifang

    2015-11-18

    The bright and iridescent blue color from Morpho butterfly wings has attracted worldwide attentions to explore its mysterious nature for long time. Although the physics of structural color by the nanophotonic structures built on the wing scales has been well established, replications of the wing structure by standard top-down lithography still remains a challenge. This paper reports a technical breakthrough to mimic the blue color of Morpho butterfly wings, by developing a novel nanofabrication process, based on electron beam lithography combined with alternate PMMA/LOR development/dissolution, for photonic structures with aligned lamellae multilayers in colorless polymers. The relationship between the coloration and geometric dimensions as well as shapes is systematically analyzed by solving Maxwell's Equations with a finite domain time difference simulator. Careful characterization of the mimicked blue by spectral measurements under both normal and oblique angles are carried out. Structural color in blue reflected by the fabricated wing scales, is demonstrated and further extended to green as an application exercise of the new technique. The effects of the regularity in the replicas on coloration are analyzed. In principle, this approach establishes a starting point for mimicking structural colors beyond the blue in Morpho butterfly wings.

  20. Nanofabrication and coloration study of artificial Morpho butterfly wings with aligned lamellae layers

    NASA Astrophysics Data System (ADS)

    Zhang, Sichao; Chen, Yifang

    2015-11-01

    The bright and iridescent blue color from Morpho butterfly wings has attracted worldwide attentions to explore its mysterious nature for long time. Although the physics of structural color by the nanophotonic structures built on the wing scales has been well established, replications of the wing structure by standard top-down lithography still remains a challenge. This paper reports a technical breakthrough to mimic the blue color of Morpho butterfly wings, by developing a novel nanofabrication process, based on electron beam lithography combined with alternate PMMA/LOR development/dissolution, for photonic structures with aligned lamellae multilayers in colorless polymers. The relationship between the coloration and geometric dimensions as well as shapes is systematically analyzed by solving Maxwell’s Equations with a finite domain time difference simulator. Careful characterization of the mimicked blue by spectral measurements under both normal and oblique angles are carried out. Structural color in blue reflected by the fabricated wing scales, is demonstrated and further extended to green as an application exercise of the new technique. The effects of the regularity in the replicas on coloration are analyzed. In principle, this approach establishes a starting point for mimicking structural colors beyond the blue in Morpho butterfly wings.

  1. Active Control of Supersonic Impinging Jets Using Supersonic Microjets

    DTIC Science & Technology

    2005-01-01

    Impinging Jets using Supersonic Microjets 5b. GRANT NUMBER F49620-03-1-0017 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Farrukh Alvi 5e. TASK...investigation on the use of microjets for the control of supersonic impinging jets was conducted under this research program. Supersonic impinging...aircraft structures and the landing surfaces. Prior research has shown that microjets , placed around the main jet periphery, are very effective in

  2. Experimental studies of collisional plasma shocks and plasma interpenetration via merging supersonic plasma jets

    NASA Astrophysics Data System (ADS)

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.; Adams, C. S.

    2015-11-01

    Over the past 4 years on the Plasma Liner Experiment (PLX) at LANL, we have studied obliquely and head-on-merging supersonic plasma jets of an argon/impurity or hydrogen/impurity mixture. The jets are formed/launched by pulsed-power-driven railguns. In successive experimental campaigns, we characterized the (a) evolution of plasma parameters of a single plasma jet as it propagated up to ~ 1 m away from the railgun nozzle, (b) density profiles and 2D morphology of the stagnation layer and oblique shocks that formed between obliquely merging jets, and (c) collisionless interpenetration transitioning to collisional stagnation between head-on-merging jets. Key plasma diagnostics included a fast-framing CCD camera, an 8-chord visible interferometer, a survey spectrometer, and a photodiode array. This talk summarizes the primary results mentioned above, and highlights analyses of inferred post-shock temperatures based on observations of density gradients that we attribute to shock-layer thickness. We also briefly describe more recent PLX experiments on Rayleigh-Taylor-instability evolution with magnetic and viscous effects, and potential future collisionless shock experiments enabled by low-impurity, higher-velocity plasma jets formed by contoured-gap coaxial guns. Supported by DOE Fusion Energy Sciences and LANL LDRD.

  3. Advanced Technology Transport Model in the 8- by 6-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1973-06-21

    A researcher examines an Advanced Technology Transport model installed in the 8- by 6-Foot Supersonic Wind Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The Advanced Technology Transport concept was a 200-person supersonic transport aircraft that could cruise at Mach 0.9 to 0.98 with low noise and pollution outputs. General Electric and Pratt and Whitney responded to NASA Lewis’ call to design a propulsion system for the aircraft. The integration of the propulsion system with the airframe was one of the greatest challenges facing the designers of supersonic aircraft. The aircraft’s flow patterns and engine nacelles could significantly affect the performance of the engines. NASA Lewis researchers undertook a study of this 0.30-scale model of the Advanced Technology Transport in the 8- by 6-foot tunnel. The flow-through nacelles were located near the rear of the fuselage during the initial tests, seen here, and then moved under the wings for ensuing runs. Different engine cowl shapes were also analyzed. The researchers determined that nacelles mounted at the rear of the aircraft produced more efficient airflow patterns during cruising conditions at the desired velocities. The concept of the Advanced Technology Transport, nor any other US supersonic transport, has ever come to fruition. The energy crisis, environmental concerns, and inadequate turbofan technology of the 1970s were among the most significant reasons.

  4. Integrating aerodynamics and structures in the minimum weight design of a supersonic transport wing

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M.; Wrenn, Gregory A.; Dovi, Augustine R.; Coen, Peter G.; Hall, Laura E.

    1992-01-01

    An approach is presented for determining the minimum weight design of aircraft wing models which takes into consideration aerodynamics-structure coupling when calculating both zeroth order information needed for analysis and first order information needed for optimization. When performing sensitivity analysis, coupling is accounted for by using a generalized sensitivity formulation. The results presented show that the aeroelastic effects are calculated properly and noticeably reduce constraint approximation errors. However, for the particular example selected, the error introduced by ignoring aeroelastic effects are not sufficient to significantly affect the convergence of the optimization process. Trade studies are reported that consider different structural materials, internal spar layouts, and panel buckling lengths. For the formulation, model and materials used in this study, an advanced aluminum material produced the lightest design while satisfying the problem constraints. Also, shorter panel buckling lengths resulted in lower weights by permitting smaller panel thicknesses and generally, by unloading the wing skins and loading the spar caps. Finally, straight spars required slightly lower wing weights than angled spars.

  5. Investigation of leading-edge flap performance on delta and double-delta wings at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Covell, Peter F.; Wood, Richard M.; Miller, David S.

    1987-01-01

    An investigation of the aerodynamic performance of leading-edge flaps on three clipped delta and three clipped double-delta wing planforms with aspect ratios of 1.75, 2.11, and 2.50 was conducted in the Langley Unitary Plan Wind Tunnel at Mach numbers of 1.60, 1.90, and 2.16. A primary set of fullspan leading-edge flaps with similar root and tip chords were investigated on each wing, and several alternate flap planforms were investigated on the aspect-ratio-1.75 wings. All leading-edge flap geometries were effective in reducing the drag at lifting conditions over the range of wing aspect ratios and Mach numbers tested. Application of a primary flap resulted in better flap performance with the double-delta planform than with the delta planform. The primary flap geometry generally yielded better performance than the alternate flap geometries tested. Trim drag due to flap-induced pitching moments was found to reduce the leading-edge flap performance more for the delta planform than for the double-delta planform. Flow-visualization techniques showed that leading-edge flap deflection reduces crossflow shock-induced separation effects. Finally, it was found that modified linear theory consistently predicts only the effects of leading-edge flap deflection as related to pitching moment and lift trends.

  6. Supersonic aerodynamic characteristics of an advanced F-16 derivative aircraft configuration

    NASA Technical Reports Server (NTRS)

    Fox, Mike C.; Forrest, Dana K.

    1993-01-01

    A supersonic wind tunnel investigation was conducted in the NASA Langley Unitary Plan Wind Tunnel on an advanced derivative configuration of the United States Air Force F-16 fighter. Longitudinal and lateral directional force and moment data were obtained at Mach numbers of 1.60 to 2.16 to evaluate basic performance parameters and control effectiveness. The aerodynamic characteristics for the F-16 derivative model were compared with the data obtained for the F-16C model and also with a previously tested generic wing model that features an identical plan form shape and similar twist distribution.

  7. The Effects of Streamwise-Deflected Wing Tips on the Aerodynamic Characteristics of an Aspect Ratio-2 Triangular Wing, Body, and Tail Combination

    NASA Technical Reports Server (NTRS)

    Peterson, Victor L.

    1959-01-01

    An investigation has been conducted on a triangular wing and body combination to determine the effects on the aerodynamic characteristics resulting from deflecting portions of the wing near the tips 900 to the wing surface about streamwise hinge lines. Experimental data were obtained for Mach numbers of 0.70, 1.30, 1.70, and 2.22 and for angles of attack ranging from -5 deg to +18 deg at sideslip angles of 0 deg and 5 deg. The results showed that the aerodynamic center shift experienced by the triangular wing and body combination as the Mach number was increased from subsonic to supersonic could be reduced by about 40 percent by deflecting the outboard 4 percent of the total area of each wing panel. Deflection about the same hinge line of additional inboard surfaces consisting of 2 percent of the total area of each wing panel resulted in a further reduction of the aerodynamic center travel of 10 percent. The resulting reductions in the stability were accompanied by increases in the drag due to lift and, for the case of the configuration with all surfaces deflected, in the minimum drag. The combined effects of reduced stability and increased drag of the untrimmed configuration on the trimmed lift-drag ratios were estimated from an analysis of the cases in which the wing-body combination with or without tips deflected was assumed to be controlled by a canard. The configurations with deflected surfaces had higher trimmed lift-drag ratios than the model with undeflected surfaces at Mach numbers up to about 1.70. Deflecting either the outboard surfaces or all of the surfaces caused the directional stability to be increased by increments that were approximately constant with increasing angle of attack at each Mach number. The effective dihedral was decreased at all angles of attack and Mach numbers when the surfaces were deflected.

  8. Vortex leading edge flap assembly for supersonic airplanes

    NASA Technical Reports Server (NTRS)

    Rudolph, Peter K. C. (Inventor)

    1997-01-01

    A leading edge flap (16) for supersonic transport airplanes is disclosed. In its stowed position, the leading edge flap forms the lower surface of the wing leading edge up to the horizontal center of the leading edge radius. For low speed operation, the vortex leading edge flap moves forward and rotates down. The upward curve of the flap leading edge triggers flow separation on the flap and rotational flow on the upper surface of the flap (vortex). The rounded shape of the upper fixed leading edge provides the conditions for a controlled reattachment of the flow on the upper wing surface and therefore a stable vortex. The vortex generates lift and a nose-up pitching moment. This improves maximum lift at low speed, reduces attitude for a given lift coefficient and improves lift to drag ratio. The mechanism (27) to move the vortex flap consists of two spanwise supports (24) with two diverging straight tracks (64 and 68) each and a screw drive mechanism (62) in the center of the flap panel (29). The flap motion is essentially normal to the airloads and therefore requires only low actuation forces.

  9. Numerical Investigation of the Influence of the Configuration Parameters of a Supersonic Passenger Aircraft on the Intensity of Sonic Boom

    NASA Astrophysics Data System (ADS)

    Volkov, V. F.; Mazhul', I. I.

    2018-01-01

    Results of calculations of the sonic boom produced by a supersonic passenger aircraft in a cruising regime of flight at the Mach number M = 2.03 are presented. Consideration is given to the influence of the lateral dihedral of the wings and the angle of their setting, and also of different locations of the aircraft engine nacelles on the wing. An analysis of parametric calculations has shown that the intensities of sonic boom generated by a configuration with a dihedral rear wing and by a configuration with set wings remain constant, in practice, and correspond to the intensity level created by the optimum configuration. Comparative assessments of sonic boom for tandem configurations with different locations of the engine nacelles on the wing surface have shown that the intensity of sonic boom generated by the configuration with an engine nacelle on the windward side can be reduced by 14% compared to the configuration without engine nacelles. In the case of the configuration with engine nacelles on the leeward size of the wing, the profile of the sonic-boom wave degenerates into an N-wave, in which the intensity of the bow shock is significantly reduced.

  10. In-Flight Wing Pressure Distributions for the NASA F/A-18A High Alpha Research Vehicle

    NASA Technical Reports Server (NTRS)

    Davis, Mark C.; Saltzman, John A.

    2000-01-01

    Pressure distributions on the wings of the F/A-18A High Alpha Research Vehicle (HARV) were obtained using both flush-mounted pressure orifices and surface-mounted pressure tubing. During quasi-stabilized 1-g flight, data were gathered at ranges for angle of attack from 5 deg to 70 deg, for angle of sideslip from -12 deg to +12 deg, and for Mach from 0.23 to 0.64, at various engine settings, and with and without the leading edge extension fence installed. Angle of attack strongly influenced the wing pressure distribution, as demonstrated by a distinct flow separation pattern that occurred between the range from 15 deg to 30 deg. Influence by the leading edge extension fence was evident on the inboard wing pressure distribution, but little influence was seen on the outboard portion of the wing. Angle-of-sideslip influence on wing pressure distribution was strongest at low angle of attack. Influence of Mach number was observed in the regions of local supersonic flow, diminishing as angle of attack was increased. Engine throttle setting had little influence on the wing pressure distribution.

  11. Comparison between prediction and experiment for all-movable wing and body combinations at supersonic speeds : lift, pitching moment, and hinge moment

    NASA Technical Reports Server (NTRS)

    Nielsen, Jack N; Kaattari, George E; Drake, William C

    1952-01-01

    A simple method is presented for estimating lift, pitching-moment, and hinge-moment characteristics of all-movable wings in the presence of a body as well as the characteristics of wing-body combinations employing such wings. In general, good agreement between the method and experiment was obtained for the lift and pitching moment of the entire wing-body combination and for the lift of the wing in the presence of the body. The method is valid for moderate angles of attack, wing deflection angles, and width of gap between wing and body. The method of estimating hinge moment was not considered sufficiently accurate for triangular all-movable wings. An alternate procedure is proposed based on the experimental moment characteristics of the wing alone. Further theoretical and experimental work is required to substantiate fully the proposed procedure.

  12. Flutter suppression and stability analysis for a variable-span wing via morphing technology

    NASA Astrophysics Data System (ADS)

    Li, Wencheng; Jin, Dongping

    2018-01-01

    A morphing wing can enhance aerodynamic characteristics and control authority as an alternative to using ailerons. To use morphing technology for flutter suppression, the dynamical behavior and stability of a variable-span wing subjected to the supersonic aerodynamic loads are investigated numerically in this paper. An axially moving cantilever plate is employed to model the variable-span wing, in which the governing equations of motion are established via the Kane method and piston theory. A morphing strategy based on axially moving rates is proposed to suppress the flutter that occurs beyond the critical span length, and the flutter stability is verified by Floquet theory. Furthermore, the transient stability during the morphing motion is analyzed and the upper bound of the morphing rate is obtained. The simulation results indicate that the proposed morphing law, which is varying periodically with a proper amplitude, could accomplish the flutter suppression. Further, the upper bound of the morphing speed decreases rapidly once the span length is close to its critical span length.

  13. Tabulated Data From a Pressure-Distribution Investigation at Mach Number 2.01 of a 45 Deg Sweptback-Wing Airplane Model at Combined Angles of Attack and Sideslip

    NASA Technical Reports Server (NTRS)

    Gapcynski, John P.; Landrum, Emma Jean

    1958-01-01

    A pressure-distribution investigation of a wing-body combination has been conducted in the Langley 4- by 4-foot supersonic pressure tunnel at a Mach number of 2.01. The model configuration consisted of an ogive-circular-cylinder body (fineness ratio of approximately ii) and a wing with 45 deg of sweepback at the quarter-chord line, an aspect ratio of 4, and a taper ratio of 0.2. Data were obtained on high-, mid-, and low-wing configurations and for the body and wing alone for a range of angles of attack and yaw from 0 deg to 15 deg. The tabulated pressure coefficients are presented in this report.

  14. Nanofabrication and coloration study of artificial Morpho butterfly wings with aligned lamellae layers

    PubMed Central

    Zhang, Sichao; Chen, Yifang

    2015-01-01

    The bright and iridescent blue color from Morpho butterfly wings has attracted worldwide attentions to explore its mysterious nature for long time. Although the physics of structural color by the nanophotonic structures built on the wing scales has been well established, replications of the wing structure by standard top-down lithography still remains a challenge. This paper reports a technical breakthrough to mimic the blue color of Morpho butterfly wings, by developing a novel nanofabrication process, based on electron beam lithography combined with alternate PMMA/LOR development/dissolution, for photonic structures with aligned lamellae multilayers in colorless polymers. The relationship between the coloration and geometric dimensions as well as shapes is systematically analyzed by solving Maxwell’s Equations with a finite domain time difference simulator. Careful characterization of the mimicked blue by spectral measurements under both normal and oblique angles are carried out. Structural color in blue reflected by the fabricated wing scales, is demonstrated and further extended to green as an application exercise of the new technique. The effects of the regularity in the replicas on coloration are analyzed. In principle, this approach establishes a starting point for mimicking structural colors beyond the blue in Morpho butterfly wings. PMID:26577813

  15. The aerodynamics of supersonic parachutes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, C.W.

    1987-06-01

    A discussion of the aerodynamics and performance of parachutes flying at supersonic speeds is the focus of this paper. Typical performance requirements for supersonic parachute systems are presented, followed by a review of the literature on supersonic parachute configurations and their drag characteristics. Data from a recent supersonic wind tunnel test series is summarized. The value and limitations of supersonic wind tunnel data on hemisflo and 20-degree conical ribbon parachutes behind several forebody shapes and diameters are discussed. Test techniques were derived which avoided many of the opportunities to obtain erroneous supersonic parachute drag data in wind tunnels. Preliminary correlationsmore » of supersonic parachute drag with Mach number, forebody shape and diameter, canopy porosity, inflated canopy diameter and stability are presented. Supersonic parachute design considerations are discussed and applied to a M = 2 parachute system designed and tested at Sandia. It is shown that the performance of parachutes in supersonic flows is a strong function of parachute design parameters and their interactions with the payload wake.« less

  16. Investigations for Supersonic Transports at Transonic and Supersonic Conditions

    NASA Technical Reports Server (NTRS)

    Rivers, S. Melissa B.; Owens, Lewis R.; Wahls, Richard A.

    2007-01-01

    Several computational studies were conducted as part of NASA s High Speed Research Program. Results of turbulence model comparisons from two studies on supersonic transport configurations performed during the NASA High-Speed Research program are given. The effects of grid topology and the representation of the actual wind tunnel model geometry are also investigated. Results are presented for both transonic conditions at Mach 0.90 and supersonic conditions at Mach 2.48. A feature of these two studies was the availability of higher Reynolds number wind tunnel data with which to compare the computational results. The transonic wind tunnel data was obtained in the National Transonic Facility at NASA Langley, and the supersonic data was obtained in the Boeing Polysonic Wind Tunnel. The computational data was acquired using a state of the art Navier-Stokes flow solver with a wide range of turbulence models implemented. The results show that the computed forces compare reasonably well with the experimental data, with the Baldwin-Lomax with Degani-Schiff modifications and the Baldwin-Barth models showing the best agreement for the transonic conditions and the Spalart-Allmaras model showing the best agreement for the supersonic conditions. The transonic results were more sensitive to the choice of turbulence model than were the supersonic results.

  17. High speed flow past wings

    NASA Technical Reports Server (NTRS)

    Norstrud, H.

    1973-01-01

    The analytical solution to the transonic small perturbation equation which describes steady compressible flow past finite wings at subsonic speeds can be expressed as a nonlinear integral equation with the perturbation velocity potential as the unknown function. This known formulation is substituted by a system of nonlinear algebraic equations to which various methods are applicable for its solution. Due to the presence of mathematical discontinuities in the flow solutions, however, a main computational difficulty was to ensure uniqueness of the solutions when local velocities on the wing exceeded the speed of sound. For continuous solutions this was achieved by embedding the algebraic system in an one-parameter operator homotopy in order to apply the method of parametric differentiation. The solution to the initial system of equations appears then as a solution to a Cauchy problem where the initial condition is related to the accompanying incompressible flow solution. In using this technique, however, a continuous dependence of the solution development on the initial data is lost when the solution reaches the minimum bifurcation point. A steepest descent iteration technique was therefore, added to the computational scheme for the calculation of discontinuous flow solutions. Results for purely subsonic flows and supersonic flows with and without compression shocks are given and compared with other available theoretical solutions.

  18. A study to determine the feasibility of a low sonic boom supersonic transport

    NASA Technical Reports Server (NTRS)

    Kane, E. J.

    1973-01-01

    A study was made to determine the feasibility of supersonic transport configurations designed to produce a goal sonic boom signature with low overpressure. The results indicate that, in principle, such a concept represents a potentially realistic design approach assuming technology of the 1985 time period. Two sonic boom goals were selected which included: (1) A high speed design that would produce shock waves no stronger than 48 Newtons per square meter (1.0 psf); and an intermediate Mach number (mid-Mach) design that would produce shock waves no stronger than 24 Newtons per square meter. The high speed airplane design was a Mach 2.7 blended arrow wing configuration which was capable of carrying 183 passengers a distance of 7000 km (3780 nmi) while meeting the signature goal. The mid-Mach airplane designed was a Mach 1.5 low arrow wing configuration with a horizontal tail which could carry 180 passengers a distance of 5960 km (3220 nmi).

  19. Turbulence Model Comparisons for Supersonic Transports at Transonic and Supersonic Conditions

    NASA Technical Reports Server (NTRS)

    Rivers, S. M. B.; Wahls, R. A.

    2003-01-01

    Results of turbulence model comparisons from two studies on supersonic transport configurations performed during the NASA High-speed Research program are given. Results are presented for both transonic conditions at Mach 0.90 and supersonic conditions at Mach 2.48. A feature of these two studies was the availability of higher Reynolds number wind tunnel data with which to compare the computational results. The transonic wind tunnel data was obtained in the National Transonic Facility at NASA Langley, and the supersonic data was obtained in the Boeing Polysonic Wind Tunnel. The computational data was acquired using a state of the art Navier-Stokes flow solver with a wide range of turbulence models implemented. The results show that the computed forces compare reasonably well with the experimental data, with the Baldwin- Lomax with Degani-Schiff modifications and the Baldwin-Barth models showing the best agreement for the transonic conditions and the Spalart-Allmaras model showing the best agreement for the supersonic conditions. The transonic results were more sensitive to the choice of turbulence model than were the supersonic results.

  20. Supersonic laminar flow control research

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.

    1994-01-01

    The objective of the research is to understand supersonic laminar flow stability, transition, and active control. Some prediction techniques will be developed or modified to analyze laminar flow stability. The effects of supersonic laminar flow with distributed heating and cooling on active control will be studied. The primary tasks of the research applying to the NASA/Ames Proof of Concept (POC) Supersonic Wind Tunnel and Laminar Flow Supersonic Wind Tunnel (LFSWT) nozzle design with laminar flow control are as follows: (1) predictions of supersonic laminar boundary layer stability and transition, (2) effects of wall heating and cooling for supersonic laminar flow control, and (3) performance evaluation of POC and LFSWT nozzles design with wall heating and cooling effects applying at different locations and various length.

  1. Commercial winged booster to launch satellites from B-52

    NASA Astrophysics Data System (ADS)

    Covault, Craig

    1988-06-01

    A newly developed commercial winged space booster, the Pegasus, which will launch satellites from a B-52, is described. The booster will be able to launch a 600 lb, 72 in long craft into a 250 nm equatorial orbit. The Pegasus is 49.2 ft long with a 22 ft wing span and a weight of 40,000 lb. The winged design allows for an angle of attack of 20 degrees and a supersonic lift over drag ratio of 4:1. It operates with three solid rocket motors and will be launched from a B-52 at an altitude of 40,000 ft. The first motor provides an average of 112,000 lbs of thrust for about 82 seconds; burnout occurs at 208,000 ft and Mach 8.7. The third stage provides 9,000 lbs of thrust for 65 seconds, accelerating the vehicle into 25,000 fps orbital velocity. The first launch will be a 400 lb relay satellite targeted for July 1989 over the Pacific Ocean. Future launches will be possible from any site and will cost 10 million dollars. The Pegasus can also carry a 1500 payload at high altitude Mach cruise flights that do not achieve orbit, providing data to validate spaceplane conceptual fluid dynamic codes generated by computer.

  2. Uncertainty Quantification and Certification Prediction of Low-Boom Supersonic Aircraft Configurations

    NASA Technical Reports Server (NTRS)

    West, Thomas K., IV; Reuter, Bryan W.; Walker, Eric L.; Kleb, Bil; Park, Michael A.

    2014-01-01

    The primary objective of this work was to develop and demonstrate a process for accurate and efficient uncertainty quantification and certification prediction of low-boom, supersonic, transport aircraft. High-fidelity computational fluid dynamics models of multiple low-boom configurations were investigated including the Lockheed Martin SEEB-ALR body of revolution, the NASA 69 Delta Wing, and the Lockheed Martin 1021-01 configuration. A nonintrusive polynomial chaos surrogate modeling approach was used for reduced computational cost of propagating mixed, inherent (aleatory) and model-form (epistemic) uncertainty from both the computation fluid dynamics model and the near-field to ground level propagation model. A methodology has also been introduced to quantify the plausibility of a design to pass a certification under uncertainty. Results of this study include the analysis of each of the three configurations of interest under inviscid and fully turbulent flow assumptions. A comparison of the uncertainty outputs and sensitivity analyses between the configurations is also given. The results of this study illustrate the flexibility and robustness of the developed framework as a tool for uncertainty quantification and certification prediction of low-boom, supersonic aircraft.

  3. Supersonic Cruise Technology

    NASA Technical Reports Server (NTRS)

    Mclean, F. Edward

    1985-01-01

    The history and status of supersonic cruise research is covered. The early research efforts of the National Advisory Committee for Aeronautics and efforts during the B-70 and SST phase are included. Technological progress made during the NASA Supersonic Cruise Research and Variable Cycle Engine programs are presented. While emphasis is on NASA's contributions to supersonic cruise research in the U.S., also noted are developments in England, France, and Russia. Written in nontechnical language, this book presents the most critical technology issues and research findings.

  4. An analytical design procedure for the determination of effective leading edge extensions on thick delta wings

    NASA Technical Reports Server (NTRS)

    Ghaffari, F.; Chaturvedi, S. K.

    1984-01-01

    An analytical design procedure for leading edge extensions (LEE) was developed for thick delta wings. This LEE device is designed to be mounted to a wing along the pseudo-stagnation stream surface associated with the attached flow design lift coefficient of greater than zero. The intended purpose of this device is to improve the aerodynamic performance of high subsonic and low supersonic aircraft at incidences above that of attached flow design lift coefficient, by using a vortex system emanating along the leading edges of the device. The low pressure associated with these vortices would act on the LEE upper surface and the forward facing area at the wing leading edges, providing an additional lift and effective leading edge thrust recovery. The first application of this technique was to a thick, round edged, twisted and cambered wing of approximately triangular planform having a sweep of 58 deg and aspect ratio of 2.30. The panel aerodynamics and vortex lattice method with suction analogy computer codes were employed to determine the pseudo-stagnation stream surface and an optimized LEE planform shape.

  5. Axisymmetric Calculations of a Low-Boom Inlet in a Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.; Hirt, Stefanie M.; Reger, Robert

    2011-01-01

    This paper describes axisymmetric CFD predictions made of a supersonic low-boom inlet with a facility diffuser, cold pipe, and mass flow plug within wind tunnel walls, and compares the CFD calculations with the experimental data. The inlet was designed for use on a small supersonic aircraft that would cruise at Mach 1.6, with a Mach number over the wing of 1.7. The inlet was tested in the 8-ft by 6-ft Supersonic Wind Tunnel at NASA Glenn Research Center in the fall of 2010 to demonstrate the performance and stability of a practical flight design that included a novel bypass duct. The inlet design is discussed here briefly. Prior to the test, CFD calculations were made to predict the performance of the inlet and its associated wind tunnel hardware, and to estimate flow areas needed to throttle the inlet. The calculations were done with the Wind-US CFD code and are described in detail. After the test, comparisons were made between computed and measured shock patterns, total pressure recoveries, and centerline pressures. The results showed that the dual-stream inlet had excellent performance, with capture ratios near one, a peak core total pressure recovery of 96 percent, and a large stable operating range. Predicted core recovery agreed well with the experiment but predicted bypass recovery and maximum capture ratio were high. Calculations of offdesign performance of the inlet along a flight profile agreed well with measurements and previous calculations.

  6. Scientific Transactions No. 11 of the Institute of Mechanics, Moscow State University. [supersonic and hypersonic gas flow and the movement of gas with exothermic reactions

    NASA Technical Reports Server (NTRS)

    Gonor, A. L. (Editor)

    1982-01-01

    The results of flow around wings, the determination of the optimal form, and the interaction of the wake with the accompanying flow at supersonic and hypersonic speeds of the free-stream flow are given. Methods of numerical and analytical calculation of one dimensional unsteady and two dimensional steady motions of fuel-gas mixtures with exothermic reactions are also considered.

  7. Supersonic through-flow fan assessment

    NASA Technical Reports Server (NTRS)

    Kepler, C. E.; Champagne, G. A.

    1988-01-01

    A study was conducted to assess the performance potential of a supersonic through-flow fan engine for supersonic cruise aircraft. It included a mean-line analysis of fans designed to operate with in-flow velocities ranging from subsonic to high supersonic speeds. The fan performance generated was used to estimate the performance of supersonic fan engines designed for four applications: a Mach 2.3 supersonic transport, a Mach 2.5 fighter, a Mach 3.5 cruise missile, and a Mach 5.0 cruise vehicle. For each application an engine was conceptualized, fan performance and engine performance calculated, weight estimates made, engine installed in a hypothetical vehicle, and mission analysis was conducted.

  8. Advanced vehicle concepts systems and design analysis studies

    NASA Technical Reports Server (NTRS)

    Waters, Mark H.; Huynh, Loc C.

    1994-01-01

    The work conducted by the ELORET Institute under this Cooperative Agreement includes the modeling of hypersonic propulsion systems and the evaluation of hypersonic vehicles in general and most recently hypersonic waverider vehicles. This work in hypersonics was applied to the design of a two-stage to orbit launch vehicle which was included in the NASA Access to Space Project. Additional research regarded the Oblique All-Wing (OAW) Project at NASA ARC and included detailed configuration studies of OAW transport aircraft. Finally, work on the modeling of subsonic and supersonic turbofan engines was conducted under this research program.

  9. Aerodynamic Shape Optimization of Supersonic Aircraft Configurations via an Adjoint Formulation on Parallel Computers

    NASA Technical Reports Server (NTRS)

    Reuther, James; Alonso, Juan Jose; Rimlinger, Mark J.; Jameson, Antony

    1996-01-01

    This work describes the application of a control theory-based aerodynamic shape optimization method to the problem of supersonic aircraft design. The design process is greatly accelerated through the use of both control theory and a parallel implementation on distributed memory computers. Control theory is employed to derive the adjoint differential equations whose solution allows for the evaluation of design gradient information at a fraction of the computational cost required by previous design methods. The resulting problem is then implemented on parallel distributed memory architectures using a domain decomposition approach, an optimized communication schedule, and the MPI (Message Passing Interface) Standard for portability and efficiency. The final result achieves very rapid aerodynamic design based on higher order computational fluid dynamics methods (CFD). In our earlier studies, the serial implementation of this design method was shown to be effective for the optimization of airfoils, wings, wing-bodies, and complex aircraft configurations using both the potential equation and the Euler equations. In our most recent paper, the Euler method was extended to treat complete aircraft configurations via a new multiblock implementation. Furthermore, during the same conference, we also presented preliminary results demonstrating that this basic methodology could be ported to distributed memory parallel computing architectures. In this paper, our concern will be to demonstrate that the combined power of these new technologies can be used routinely in an industrial design environment by applying it to the case study of the design of typical supersonic transport configurations. A particular difficulty of this test case is posed by the propulsion/airframe integration.

  10. Nacelle Integration to Reduce the Sonic Boom of Aircraft Designed to Cruise at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    1999-01-01

    An empirical method for integrating the engine nacelles on a wing-fuselage-fin(s) configuration has been described. This method is based on Whitham theory and Seebass and George sonic-boom minimization theory, With it, both reduced sonic-boom as well as high aerodynamic efficiency methods can be applied to the conceptual design of a supersonic-cruise aircraft. Two high-speed civil transport concepts were used as examples to illustrate the application of this engine-nacelle integration methodology: (1) a concept with engine nacelles mounted on the aft-fuselage, the HSCT-1OB; and (2) a concept with engine nacelles mounted under an extended-wing center section, the HSCT-11E. In both cases, the key to a significant reduction in the sonic-boom contribution from the engine nacelles was to use the F-function shape of the concept as a guide to move the nacelles further aft on the configuration.

  11. Skin Friction and Transition Location Measurement on Supersonic Transport Models

    NASA Technical Reports Server (NTRS)

    Kennelly, Robert A., Jr.; Goodsell, Aga M.; Olsen, Lawrence E. (Technical Monitor)

    2000-01-01

    Flow visualization techniques were used to obtain both qualitative and quantitative skin friction and transition location data in wind tunnel tests performed on two supersonic transport models at Mach 2.40. Oil-film interferometry was useful for verifying boundary layer transition, but careful monitoring of model surface temperatures and systematic examination of the effects of tunnel start-up and shutdown transients will be required to achieve high levels of accuracy for skin friction measurements. A more common technique, use of a subliming solid to reveal transition location, was employed to correct drag measurements to a standard condition of all-turbulent flow on the wing. These corrected data were then analyzed to determine the additional correction required to account for the effect of the boundary layer trip devices.

  12. Theoretical Calculations of Supersonic Wave Drag at Zero Lift for a Particular Store Arrangement

    NASA Technical Reports Server (NTRS)

    Margolis, Kenneth; Malvestuto, Frank S , Jr; Maxie, Peter J , Jr

    1958-01-01

    An analysis, based on the linearized thin-airfoil theory for supersonic speeds, of the wave drag at zero lift has been carried out for a simple two-body arrangement consisting of two wedgelike surfaces, each with a rhombic lateral cross section and emanating from a common apex. Such an arrangement could be used as two stores, either embedded within or mounted below a wing, or as auxiliary bodies wherein the upper halves could be used as stores and the lower halves for bomb or missile purposes. The complete range of supersonic Mach numbers has been considered and it was found that by orienting the axes of the bodies relative to each other a given volume may be redistributed in a manner which enables the wave drag to be reduced within the lower supersonic speed range (where the leading edge is substantially subsonic). At the higher Mach numbers, the wave drag is always increased. If, in addition to a constant volume, a given maximum thickness-chord ratio is imposed, then canting the two surfaces results in higher wave drag at all Mach numbers. For purposes of comparison, analogous drag calculations for the case of two parallel winglike bodies with the same cross-sectional shapes as the canted configuration have been included. Consideration is also given to the favorable (dragwise) interference pressures acting on the blunt bases of both arrangements.

  13. A supersonic fan equipped variable cycle engine for a Mach 2.7 supersonic transport

    NASA Technical Reports Server (NTRS)

    Tavares, T. S.

    1985-01-01

    The concept of a variable cycle turbofan engine with an axially supersonic fan stage as powerplant for a Mach 2.7 supersonic transport was evaluated. Quantitative cycle analysis was used to assess the effects of the fan inlet and blading efficiencies on engine performance. Thrust levels predicted by cycle analysis are shown to match the thrust requirements of a representative aircraft. Fan inlet geometry is discussed and it is shown that a fixed geometry conical spike will provide sufficient airflow throughout the operating regime. The supersonic fan considered consists of a single stage comprising a rotor and stator. The concept is similar in principle to a supersonic compressor, but differs by having a stator which removes swirl from the flow without producing a net rise in static pressure. Operating conditions peculiar to the axially supersonic fan are discussed. Geometry of rotor and stator cascades are presented which utilize a supersonic vortex flow distribution. Results of a 2-D CFD flow analysis of these cascades are presented. A simple estimate of passage losses was made using empirical methods.

  14. Flow field analysis of aircraft configurations using a numerical solution to the three-dimensional unified supersonic/hypersonic small disturbance equations, part 1

    NASA Technical Reports Server (NTRS)

    Gunness, R. C., Jr.; Knight, C. J.; Dsylva, E.

    1972-01-01

    The unified small disturbance equations are numerically solved using the well-known Lax-Wendroff finite difference technique. The method allows complete determination of the inviscid flow field and surface properties as long as the flow remains supersonic. Shock waves and other discontinuities are accounted for implicity in the numerical method. This technique was programed for general application to the three-dimensional case. The validity of the method is demonstrated by calculations on cones, axisymmetric bodies, lifting bodies, delta wings, and a conical wing/body combination. Part 1 contains the discussion of problem development and results of the study. Part 2 contains flow charts, subroutine descriptions, and a listing of the computer program.

  15. Arrow-wing supersonic cruise aircraft structural design concepts evaluation. Volume 2: Sections 7 through 11

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Davis, G. W.

    1975-01-01

    The materials and advanced producibility methods that offer potential structural mass savings in the design of the primary structure for a supersonic cruise aircraft are identified and reported. A summary of the materials and fabrication techniques selected for this analytical effort is presented. Both metallic and composite material systems were selected for application to a near-term start-of-design technology aircraft. Selective reinforcement of the basic metallic structure was considered as the appropriate level of composite application for the near-term design.

  16. Top-mounted inlet system feasibility for transonic-supersonic fighter aircraft. [V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Williams, T. L.; Hunt, B. L.; Smeltzer, D. B.; Nelms, W. P.

    1981-01-01

    The more salient findings are presented of recent top inlet performance evaluations aimed at assessing the feasibility of top-mounted inlet systems for transonic-supersonic fighter aircraft applications. Top inlet flow field and engine-inlet performance test data show the influence of key aircraft configuration variables-inlet longitudinal position, wing leading-edge extension planform area, canopy-dorsal integration, and variable incidence canards-on top inlet performance over the Mach range of 0.6 to 2.0. Top inlet performance data are compared with those or more conventional inlet/airframe integrations in an effort to assess the viability of top-mounted inlet systems relative to conventional inlet installations.

  17. Fabrication and evaluation of advanced titanium structural panels for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Payne, L.

    1977-01-01

    Flightworthy primary structural panels were designed, fabricated, and tested to investigate two advanced fabrication methods for titanium alloys. Skin-stringer panels fabricated using the weldbraze process, and honeycomb-core sandwich panels fabricated using a diffusion bonding process, were designed to replace an existing integrally stiffened shear panel on the upper wing surface of the NASA YF-12 research aircraft. The investigation included ground testing and Mach 3 flight testing of full-scale panels, and laboratory testing of representative structural element specimens. Test results obtained on full-scale panels and structural element specimens indicate that both of the fabrication methods investigated are suitable for primary structural applications on future civil and military supersonic cruise aircraft.

  18. Investigations at supersonic speeds of 22 triangular wings representing two airfoil sections for each of 11 apex angles

    NASA Technical Reports Server (NTRS)

    Love, Eugene S

    1949-01-01

    Data obtained from wind tunnel investigations of two series of 11 triangular wings conducted at Mach numbers of 1.62, 1.92, and 1.40 to determine the effect of leading-edge shape and to compare actual test values with the nonviscous linear theory are presented. The two series of wings had identical plan forms, a constant thickness ratio of 8 percent, a constant location of maximum-thickness point of 18 percent, and a range of apex half-angles from 10 degrees to forty-five degrees. The first series has an elliptical leading edge and the second series a wedge leading edge. Measurements were made of lift, drag, pitching moment, and pressure distribution, the latter being confined to three wings at one Mach number.

  19. Minimum Wave Drag for Arbitrary Arrangements of Wings and Bodies

    NASA Technical Reports Server (NTRS)

    Jones, Robert T

    1957-01-01

    Studies of various arrangements of wings and bodies designed to provide favorable wave interference at supersonic speeds lead to the problem of determining the minimum possible valve of the wave resistance obtainable by any disposition of the elements of an aircraft within a definitely prescribed region. Under the assumptions that the total lift and the total volume of the aircraft are given, conditions that must be satisfied if the drag is to be a minimum are found. The report concludes with a discussion of recent developments of the theory which lead to an improved understanding of the drag associated with the production of lift.

  20. Computational analysis of blunt, thin airfoil sections at supersonic and subsonic speeds

    NASA Astrophysics Data System (ADS)

    Goodsell, Aga Myung

    The past decade has brought renewed interest in commercial supersonic aircraft design. Recent wing designs have included regions of low sweep resulting in supersonic leading edges at cruise. Thin biconvex sections are used in those regions to minimize wave drag and skin-friction drag. However, airfoil sections with sharp leading edges exhibit poor aerodynamic behavior at subsonic flight conditions. Blunt leading edges may improve performance by delaying the onset of separation at subsonic and transonic speeds. Their disadvantage is that they increase both wave drag, due to the formation of a detached bow wave, and skin-friction drag, from a loss of laminar flow. The effect of adding bluntness to a 4%-thick biconvex section was investigated using computational analysis tools. The aerodynamic performance of biconvex sections with circular leading edges was computed at supersonic, transonic, and takeoff conditions. At supersonic cruise, the increase in wave drag due to bluntness is a function of Mach number and leading-edge diameter. Some of the drag penalty is offset by the suction created downstream of the circular leading edge. The possibility of further drag reduction was explored with the development of a semi-analytical method to design blunt airfoil shapes which minimize wave drag. The effect on the transition location was evaluated using linear stability analyses of laminar boundary-layer profiles and the eN method. The analysis showed that laminar boundary layers on blunt airfoil sections are considerably less stable to Tollmien-Schlichting waves than that on a sharp biconvex. At transonic speeds, the results suggest a possible improvement in the lift-to-drag ratio over a limited range of angles of attack. At the takeoff condition, slight blunting of the leading edge does improve the lift-to-drag ratio at low angles of attack, but has little effect on maximum lift. It is concluded that the benefit of a blunt leading edge at off-design conditions is not

  1. Lessons in the Design and Characterization Testing of the Semi-Span Super-Sonic Transport (S4T) Wind-Tunnel Model

    NASA Technical Reports Server (NTRS)

    2012-01-01

    This paper focuses on some of the more challenging design processes and characterization tests of the Semi-Span Super-Sonic Transport (S4T)-Active Controls Testbed (ACT). The model was successfully tested in four entries in the National Aeronautics and Space Administration Langley Transonic Dynamics Tunnel to satisfy the goals and objectives of the Fundamental Aeronautics Program Supersonic Project Aero-Propulso-Servo-Elastic effort. Due to the complexity of the S4T-ACT, only a small sample of the technical challenges for designing and characterizing the model will be presented. Specifically, the challenges encountered in designing the model include scaling the Technology Concept Airplane to model scale, designing the model fuselage, aileron actuator, and engine pylons. Characterization tests included full model ground vibration tests, wing stiffness measurements, geometry measurements, proof load testing, and measurement of fuselage static and dynamic properties.

  2. Aerodynamic Shape Optimization of Supersonic Aircraft Configurations via an Adjoint Formulation on Parallel Computers

    NASA Technical Reports Server (NTRS)

    Reuther, James; Alonso, Juan Jose; Rimlinger, Mark J.; Jameson, Antony

    1996-01-01

    This work describes the application of a control theory-based aerodynamic shape optimization method to the problem of supersonic aircraft design. The design process is greatly accelerated through the use of both control theory and a parallel implementation on distributed memory computers. Control theory is employed to derive the adjoint differential equations whose solution allows for the evaluation of design gradient information at a fraction of the computational cost required by previous design methods (13, 12, 44, 38). The resulting problem is then implemented on parallel distributed memory architectures using a domain decomposition approach, an optimized communication schedule, and the MPI (Message Passing Interface) Standard for portability and efficiency. The final result achieves very rapid aerodynamic design based on higher order computational fluid dynamics methods (CFD). In our earlier studies, the serial implementation of this design method (19, 20, 21, 23, 39, 25, 40, 41, 42, 43, 9) was shown to be effective for the optimization of airfoils, wings, wing-bodies, and complex aircraft configurations using both the potential equation and the Euler equations (39, 25). In our most recent paper, the Euler method was extended to treat complete aircraft configurations via a new multiblock implementation. Furthermore, during the same conference, we also presented preliminary results demonstrating that the basic methodology could be ported to distributed memory parallel computing architectures [241. In this paper, our concem will be to demonstrate that the combined power of these new technologies can be used routinely in an industrial design environment by applying it to the case study of the design of typical supersonic transport configurations. A particular difficulty of this test case is posed by the propulsion/airframe integration.

  3. ON THE TIDAL DISSIPATION OF OBLIQUITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, T. M.; Lin, D. N. C., E-mail: tami@lpl.arizona.edu, E-mail: lin@ucolick.org

    2013-05-20

    We investigate tidal dissipation of obliquity in hot Jupiters. Assuming an initial random orientation of obliquity and parameters relevant to the observed population, the obliquity of hot Jupiters does not evolve to purely aligned systems. In fact, the obliquity evolves to either prograde, retrograde, or 90 Degree-Sign orbits where the torque due to tidal perturbations vanishes. This distribution is incompatible with observations which show that hot Jupiters around cool stars are generally aligned. This calls into question the viability of tidal dissipation as the mechanism for obliquity alignment of hot Jupiters around cool stars.

  4. Boundary-Layer Transition Results from the F-16XL-2 Supersonic Laminar Flow Control Experiment

    NASA Technical Reports Server (NTRS)

    Marshall, Laurie A.

    1999-01-01

    A variable-porosity suction glove has been flown on the F-16XL-2 aircraft to demonstrate the feasibility of this technology for the proposed High-Speed Civil Transport (HSCT). Boundary-layer transition data have been obtained on the titanium glove primarily at Mach 2.0 and altitudes of 53,000-55,000 ft. The objectives of this supersonic laminar flow control flight experiment have been to achieve 50- to 60-percent-chord laminar flow on a highly swept wing at supersonic speeds and to provide data to validate codes and suction design. The most successful laminar flow results have not been obtained at the glove design point (Mach 1.9 at an altitude of 50,000 ft). At Mach 2.0 and an altitude of 53,000 ft, which corresponds to a Reynolds number of 22.7 X 10(exp 6), optimum suction levels have allowed long runs of a minimum of 46-percent-chord laminar flow to be achieved. This paper discusses research variables that directly impact the ability to obtain laminar flow and techniques to correct for these variables.

  5. Supersonic reacting internal flowfields

    NASA Astrophysics Data System (ADS)

    Drummond, J. P.

    The national program to develop a trans-atmospheric vehicle has kindled a renewed interest in the modeling of supersonic reacting flows. A supersonic combustion ramjet, or scramjet, has been proposed to provide the propulsion system for this vehicle. The development of computational techniques for modeling supersonic reacting flowfields, and the application of these techniques to an increasingly difficult set of combustion problems are studied. Since the scramjet problem has been largely responsible for motivating this computational work, a brief history is given of hypersonic vehicles and their propulsion systems. A discussion is also given of some early modeling efforts applied to high speed reacting flows. Current activities to develop accurate and efficient algorithms and improved physical models for modeling supersonic combustion is then discussed. Some new problems where computer codes based on these algorithms and models are being applied are described.

  6. A finite difference method for the solution of the transonic flow around harmonically oscillating wings

    NASA Technical Reports Server (NTRS)

    Ehlers, E. F.

    1974-01-01

    A finite difference method for the solution of the transonic flow about a harmonically oscillating wing is presented. The partial differential equation for the unsteady transonic flow was linearized by dividing the flow into separate steady and unsteady perturbation velocity potentials and by assuming small amplitudes of harmonic oscillation. The resulting linear differential equation is of mixed type, being elliptic or hyperbolic whereever the steady flow equation is elliptic or hyperbolic. Central differences were used for all derivatives except at supersonic points where backward differencing was used for the streamwise direction. Detailed formulas and procedures are described in sufficient detail for programming on high speed computers. To test the method, the problem of the oscillating flap on a NACA 64A006 airfoil was programmed. The numerical procedure was found to be stable and convergent even in regions of local supersonic flow with shocks.

  7. Subsonic and supersonic longitudinal stability and control characteristics of an aft-tail fighter configuration with cambered and uncambered wings and cambered fuselage

    NASA Technical Reports Server (NTRS)

    Dollyhigh, S. M.

    1977-01-01

    The longitudinal aerodynamic characteristics of a fighter airplane concept has been determined through an investigation over a Mach number range from 0.50 to 2.16. The configuration incorporates a cambered fuselage with a single external compression horizontal ramp inlet, a clipped arrow wing, twin horizontal tails, and a single vertical tail. The wing camber surface was optimized in drag due to lift and was designed to be self trimming at Mach 1.40 and at a lift coefficient of 0.20. The fuselage was cambered to preserve the design wing loadings on the part of the theoretical wing enclosed by the fuselage. An uncambered of flat wing of the same planform and thickness ratio distribution was also tested.

  8. Supersonic Elliptical Ramp Inlet

    NASA Technical Reports Server (NTRS)

    Adamson, Eric E. (Inventor); Fink, Lawrence E. (Inventor); Fugal, Spencer R. (Inventor)

    2016-01-01

    A supersonic inlet includes a supersonic section including a cowl which is at least partially elliptical, a ramp disposed within the cowl, and a flow inlet disposed between the cowl and the ramp. The ramp may also be at least partially elliptical.

  9. Supersonic aerodynamic characteristics of conformal carriage monoplanar circular missile configurations with low-profile quadriform tail fins

    NASA Technical Reports Server (NTRS)

    Blair, A. B., Jr.

    1990-01-01

    Wind tunnel tests were conducted on monoplanar circular missile configurations with low-profile quadriform tail fins to provide an aerodynamic data base to study and evaluate air-launched missile candidates for efficient conformal carriage on supersonic-cruise-type aircraft. The tests were conducted at Mach numbers from 1.70 to 2.86 for a constant Reynolds number per foot of 2,000,000. Selected test results are presented to show the effects of tail-fin dihedral angle, wing longitudinal and vertical location, and nose-body strakes on the static longitudinal and lateral-directional aerodynamic stability and control characteristics.

  10. Interactive Inverse Design Optimization of Fuselage Shape for Low-Boom Supersonic Concepts

    NASA Technical Reports Server (NTRS)

    Li, Wu; Shields, Elwood; Le, Daniel

    2008-01-01

    This paper introduces a tool called BOSS (Boom Optimization using Smoothest Shape modifications). BOSS utilizes interactive inverse design optimization to develop a fuselage shape that yields a low-boom aircraft configuration. A fundamental reason for developing BOSS is the need to generate feasible low-boom conceptual designs that are appropriate for further refinement using computational fluid dynamics (CFD) based preliminary design methods. BOSS was not developed to provide a numerical solution to the inverse design problem. Instead, BOSS was intended to help designers find the right configuration among an infinite number of possible configurations that are equally good using any numerical figure of merit. BOSS uses the smoothest shape modification strategy for modifying the fuselage radius distribution at 100 or more longitudinal locations to find a smooth fuselage shape that reduces the discrepancies between the design and target equivalent area distributions over any specified range of effective distance. For any given supersonic concept (with wing, fuselage, nacelles, tails, and/or canards), a designer can examine the differences between the design and target equivalent areas, decide which part of the design equivalent area curve needs to be modified, choose a desirable rate for the reduction of the discrepancies over the specified range, and select a parameter for smoothness control of the fuselage shape. BOSS will then generate a fuselage shape based on the designer's inputs in a matter of seconds. Using BOSS, within a few hours, a designer can either generate a realistic fuselage shape that yields a supersonic configuration with a low-boom ground signature or quickly eliminate any configuration that cannot achieve low-boom characteristics with fuselage shaping alone. A conceptual design case study is documented to demonstrate how BOSS can be used to develop a low-boom supersonic concept from a low-drag supersonic concept. The paper also contains a study

  11. Two-dimensional supersonic nonlinear Schrödinger flow past an extended obstacle

    NASA Astrophysics Data System (ADS)

    El, G. A.; Kamchatnov, A. M.; Khodorovskii, V. V.; Annibale, E. S.; Gammal, A.

    2009-10-01

    Supersonic flow of a superfluid past a slender impenetrable macroscopic obstacle is studied in the framework of the two-dimensional (2D) defocusing nonlinear Schrödinger (NLS) equation. This problem is of fundamental importance as a dispersive analog of the corresponding classical gas-dynamics problem. Assuming the oncoming flow speed is sufficiently high, we asymptotically reduce the original boundary-value problem for a steady flow past a slender body to the one-dimensional dispersive piston problem described by the nonstationary NLS equation, in which the role of time is played by the stretched x coordinate and the piston motion curve is defined by the spatial body profile. Two steady oblique spatial dispersive shock waves (DSWs) spreading from the pointed ends of the body are generated in both half planes. These are described analytically by constructing appropriate exact solutions of the Whitham modulation equations for the front DSW and by using a generalized Bohr-Sommerfeld quantization rule for the oblique dark soliton fan in the rear DSW. We propose an extension of the traditional modulation description of DSWs to include the linear “ship-wave” pattern forming outside the nonlinear modulation region of the front DSW. Our analytic results are supported by direct 2D unsteady numerical simulations and are relevant to recent experiments on Bose-Einstein condensates freely expanding past obstacles.

  12. An edge-based solution-adaptive method applied to the AIRPLANE code

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Thomas, Scott D.; Cliff, Susan E.

    1995-01-01

    Computational methods to solve large-scale realistic problems in fluid flow can be made more efficient and cost effective by using them in conjunction with dynamic mesh adaption procedures that perform simultaneous coarsening and refinement to capture flow features of interest. This work couples the tetrahedral mesh adaption scheme, 3D_TAG, with the AIRPLANE code to solve complete aircraft configuration problems in transonic and supersonic flow regimes. Results indicate that the near-field sonic boom pressure signature of a cone-cylinder is improved, the oblique and normal shocks are better resolved on a transonic wing, and the bow shock ahead of an unstarted inlet is better defined.

  13. Doppler Global Velocimetry Measurements for Supersonic Flow Fields

    NASA Technical Reports Server (NTRS)

    Meyers, James F.

    2005-01-01

    The application of Doppler Global Velocimetry (DGV) to high-speed flows has its origins in the original development of the technology by Komine et al (1991). Komine used a small shop-air driven nozzle to generate a 200 m/s flow. This flow velocity was chosen since it produced a fairly large Doppler shift in the scattered light, resulting in a significant transmission loss as the light passed through the Iodine vapor. This proof-of-concept investigation showed that the technology was capable of measuring flow velocity within a measurement plane defined by a single-frequency laser light sheet. The effort also proved that velocity measurements could be made without resolving individual seed particles as required by other techniques such as Fringe- Type Laser Velocimetry and Particle Image Velocimetry. The promise of making planar velocity measurements with the possibility of using 0.1-micron condensation particles for seeding, Dibble et al (1989), resulted in the investigation of supersonic jet flow fields, Elliott et al (1993) and Smith and Northam (1995) - Mach 2.0 and 1.9 respectively. Meyers (1993) conducted a wind tunnel investigation above an inclined flat plate at Mach 2.5 and above a delta wing at Mach 2.8 and 4.6. Although these measurements were crude from an accuracy viewpoint, they did prove that the technology could be used to study supersonic flows using condensation as the scattering medium. Since then several research groups have studied the technology and developed solutions and methodologies to overcome most of the measurement accuracy limitations:

  14. Formation mechanisms and characteristics of transition patterns in oblique detonations

    NASA Astrophysics Data System (ADS)

    Miao, Shikun; Zhou, Jin; Liu, Shijie; Cai, Xiaodong

    2018-01-01

    The transition structures of wedge-induced oblique detonation waves (ODWs) in high-enthalpy supersonic combustible mixtures are studied with two-dimensional reactive Euler simulations based on the open-source program AMROC (Adaptive Mesh Refinement in Object-oriented C++). The formation mechanisms of different transition patterns are investigated through theoretical analysis and numerical simulations. Results show that transition patterns of ODWs depend on the pressure ratio Pd/Ps, (Pd, Ps are the pressure behind the ODW and the pressure behind the induced shock, respectively). When Pd/Ps > 1.3, an abrupt transition occurs, while when Pd/Ps < 1.3, a smooth transition appears. A parameter ε is introduced to describe the transition patterns quantitatively. Besides, a criterion based on the velocity ratio Φ=U0/UCJ is proposed to predict the transition patterns based on the inflow conditions. It is concluded that an abrupt transition appears when Φ < 0.98Φ*, while a smooth transition occurs when Φ > 1.02Φ∗ (Φ∗ is the critical velocity ratio calculated with an empirical formula).

  15. Supersonic propulsion technology. [variable cycle engines

    NASA Technical Reports Server (NTRS)

    Powers, A. G.; Coltrin, R. E.; Stitt, L. E.; Weber, R. J.; Whitlow, J. B., Jr.

    1979-01-01

    Propulsion concepts for commercial supersonic transports are discussed. It is concluded that variable cycle engines, together with advanced supersonic inlets and low noise coannular nozzles, provide good operating performance for both supersonic and subsonic flight. In addition, they are reasonably quiet during takeoff and landing and have acceptable exhaust emissions.

  16. The obturator oblique and iliac oblique/outlet views predict most accurately the adequate position of an anterior column acetabular screw.

    PubMed

    Guimarães, João Antonio Matheus; Martin, Murphy P; da Silva, Flávio Ribeiro; Duarte, Maria Eugenia Leite; Cavalcanti, Amanda Dos Santos; Machado, Jamila Alessandra Perini; Mauffrey, Cyril; Rojas, David

    2018-06-08

    Percutaneous fixation of the acetabulum is a treatment option for select acetabular fractures. Intra-operative fluoroscopy is required, and despite various described imaging strategies, it is debatable as to which combination of fluoroscopic views provides the most accurate and reliable assessment of screw position. Using five synthetic pelvic models, an experimental setup was created in which the anterior acetabular columns were instrumented with screws in five distinct trajectories. Five fluoroscopic images were obtained of each model (Pelvic Inlet, Obturator Oblique, Iliac Oblique, Obturator Oblique/Outlet, and Iliac Oblique/Outlet). The images were presented to 32 pelvic and acetabular orthopaedic surgeons, who were asked to draw two conclusions regarding screw position: (1) whether the screw was intra-articular and (2) whether the screw was intraosseous in its distal course through the bony corridor. In the assessment of screw position relative to the hip joint, accuracy of surgeon's response ranged from 52% (iliac oblique/outlet) to 88% (obturator oblique), with surgeon confidence in the interpretation ranging from 60% (pelvic inlet) to 93% (obturator oblique) (P < 0.0001). In the assessment of intraosseous position of the screw, accuracy of surgeon's response ranged from 40% (obturator oblique/outlet) to 79% (iliac oblique/outlet), with surgeon confidence in the interpretation ranging from 66% (iliac oblique) to 88% (pelvic inlet) (P < 0.0001). The obturator oblique and obturator oblique/outlet views afforded the most accurate and reliable assessment of penetration into the hip joint, and intraosseous position of the screw was most accurately assessed with pelvic inlet and iliac oblique/outlet views. Clinical Question.

  17. Surface-Pressure and Flow-Visualization Data at Mach Number of 1.60 for Three 65 deg Delta Wings Varying in Leading-Edge Radius and Camber

    NASA Technical Reports Server (NTRS)

    McMillin, S. Naomi; Bryd, James E.; Parmar, Devendra S.; Bezos-OConnor, Gaudy M.; Forrest, Dana K.; Bowen, Susan

    1996-01-01

    An experimental investigation of the effect of leading-edge radius, camber, Reynolds number, and boundary-layer state on the incipient separation of a delta wing at supersonic speeds was conducted at the Langley Unitary Plan Wind Tunnel at Mach number of 1.60 over a free-stream Reynolds number range of 1 x 106 to 5 x 106 ft-1. The three delta wing models examined had a 65 deg swept leading edge and varied in cross-sectional shape: a sharp wedge, a 20:1 ellipse, and a 20:1 ellipse with a -9.750 circular camber imposed across the span. The wings were tested with and without transition grit applied. Surface-pressure coefficient data and flow-visualization data indicated that by rounding the wing leading edge or cambering the wing in the spanwise direction, the onset of leading-edge separation on a delta wing can be raised to a higher angle of attack than that observed on a sharp-edged delta wing. The data also showed that the onset of leading-edge separation can be raised to a higher angle of attack by forcing boundary-layer transition to occur closer to the wing leading edge by the application of grit or the increase in free-stream Reynolds number.

  18. Subsonic and supersonic longitudinal stability and control characteristics of an aft tail fighter configuration with cambered and uncambered wings and uncambered fuselage

    NASA Technical Reports Server (NTRS)

    Dollyhigh, S. M.

    1974-01-01

    An investigation has been made in the Mach number range from 0.20 to 2.16 to determine the longitudinal aerodynamic characteristics of a fighter airplane concept. The configuration concept employs a single fixed geometry inlet, a 50 deg leading-edge-angle clipped-arrow wing, a single large vertical tail, and low horizontal tails. The wing camber surface was optimized in drag due to lift and was designed to be self-trimming at Mach 1.40 and at a lift coefficient of 0.20. An uncambered or flat wing of the same planform and thickness ratio was also tested. However, for the present investigation, the fuselage was not cambered. Further tests should be made on a cambered fuselage version, which attempts to preserve the optimum wing loading on that part of the theoretical wing enclosed by the fuselage.

  19. Economic benefits of supersonic overland operation

    NASA Technical Reports Server (NTRS)

    Metwally, Munir

    1992-01-01

    Environmental concerns are likely to impose some restrictions on the next generation of supersonic commercial transport. There is a global concern over the effects of engine emissions on the ozone layer which protects life on Earth from ultraviolet radiation. There is also some concern over community noise. The High Speed Civil Transport (HSCT) must meet at least the current subsonic noise certification standards to be compatible with the future subsonic fleet. Concerns over sonic boom represent another environmental and marketing challenge to the HSCT program. The most attractive feature of the supersonic transport is speed, which offers the traveling public significant time-savings on long range routes. The sonic boom issue represents a major environmental and economic challenge as well. Supersonic operation overland produces the most desirable economic results. However, unacceptable overland sonic boom raise levels may force HSCT to use subsonic speeds overland. These environmental and economic challenges are likely to impose some restrictions on supersonic operation, thus introducing major changes to existing route structures and future supersonic network composition. The current subsonic route structure may have to be altered for supersonic transports to avoid sensitive areas in the stratosphere or to minimize overland flight tracks. It is important to examine the alternative route structure and the impact of these restrictions on the economic viability of the overall supersonic operation. Future market potential for HSCT fleets must be large enough to enable engine and airframe manufacturers to build the plane at a cost that provides them with an attractive return on investment and to sell it at a price that allows the airlines to operate with a reasonable margin of profit. Subsonic overland operation of a supersonic aircraft hinders its economic viability. Ways to increase the market potential of supersonic operation are described.

  20. The Supersonic Axial-Flow Compressor

    NASA Technical Reports Server (NTRS)

    Kantrowitz, Arthur

    1950-01-01

    An investigation has been made to explore the possibilities of axial-flow compressors operating with supersonic velocities into the blade rows. Preliminary calculations showed that very high pressure ratios across a stage, together with somewhat increased mass flows, were apparently possible with compressors which decelerated air through the speed of sound in their blading. The first phase of the investigation was the development of efficient supersonic diffusers to decelerate air through the speed of sound. The present report is largely a general discussion of some of the essential aerodynamics of single-stage supersonic axial-flow compressors. As an approach to the study of supersonic compressors, three possible velocity diagrams are discussed briefly. Because of the encouraging results of this study, an experimental single-stage supersonic compressor has been constructed and tested in Freon-12. In this compressor, air decelerates through the speed of sound in the rotor blading and enters the stators at subsonic speeds. A pressure ratio of about 1.8 at an efficiency of about 80 percent has been obtained.

  1. An investigation of wing buffeting response at subsonic and transonic speeds. Phase 2: F-111A flight data analysis. Volume 1: Summary of technical approach, results and conclusions

    NASA Technical Reports Server (NTRS)

    Benepe, D. B.; Cunningham, A. M., Jr.; Traylor, S., Jr.; Dunmyer, W. D.

    1978-01-01

    A detailed investigation of the flight buffeting response of the F-111A was performed in two phases. In Phase 1 stochastic analysis techniques were applied to wing and fuselage responses for maneuvers flown at subsonic speeds and wing leading edge sweep of 26 degrees. Power spectra and rms values were obtained. This report gives results of Phase 2 where the analyses were extended to include maneuvers flown at wing leading edge sweep values of 50 and 75.5 degrees at subsonic and supersonic speeds and the responses examined were expanded to include vertical shear, bending moment, and hingeline torque of the left and right horizontal tails. Power spectra, response time histories, variations of rms response with angle of attack and effects of wing sweep and Mach number are presented and discussed. Some Phase 1 results are given for comparison purposes.

  2. Supersonic aerodynamic characteristics of a low-aspect-ratio missile model with wing and tail controls and with tails in line and interdigitated

    NASA Technical Reports Server (NTRS)

    Graves, E. B.

    1972-01-01

    A study has been made to determine the aerodynamic characteristics of a low-aspect ratio cruciform missile model with all-movable wings and tails. The configuration was tested at Mach numbers from 1.50 to 4.63 with the wings in the vertical and horizontal planes and with the wings in a 45 deg roll plane with tails in line and interdigitated.

  3. Design features of a low-disturbance supersonic wind tunnel for transition research at low supersonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.; Laub, James A.; King, Lyndell S.; Reda, Daniel C.

    1992-01-01

    A unique, low-disturbance supersonic wind tunnel is being developed at NASA-Ames to support supersonic laminar flow control research at cruise Mach numbers of the High Speed Civil Transport (HSCT). The distinctive design features of this new quiet tunnel are a low-disturbance settling chamber, laminar boundary layers along the nozzle/test section walls, and steady supersonic diffuser flow. This paper discusses these important aspects of our quiet tunnel design and the studies necessary to support this design. Experimental results from an 1/8th-scale pilot supersonic wind tunnel are presented and discussed in association with theoretical predictions. Natural laminar flow on the test section walls is demonstrated and both settling chamber and supersonic diffuser performance is examined. The full-scale wind tunnel should be commissioned by the end of 1993.

  4. Study of metallic structural design concepts for an arrow wing supersonic cruise configuration

    NASA Technical Reports Server (NTRS)

    Turner, M. J.; Grande, D. L.

    1977-01-01

    A structural design study was made, to assess the relative merits of various metallic structural concepts and materials for an advanced supersonic aircraft cruising at Mach 2.7. Preliminary studies were made to ensure compliance of the configuration with general design criteria, integrate the propulsion system with the airframe, select structural concepts and materials, and define an efficient structural arrangement. An advanced computerized structural design system was used, in conjunction with a relatively large, complex finite element model, for detailed analysis and sizing of structural members to satisfy strength and flutter criteria. A baseline aircraft design was developed for assessment of current technology. Criteria, analysis methods, and results are presented. The effect on design methods of using the computerized structural design system was appraised, and recommendations are presented concerning further development of design tools, development of materials and structural concepts, and research on basic technology.

  5. A corporate supersonic transport

    NASA Technical Reports Server (NTRS)

    Greene, Randall; Seebass, Richard

    1996-01-01

    This talk address the market and technology for a corporate supersonic transport. It describes a candidate configuration. There seems to be a sufficient market for such an aircraft, even if restricted to supersonic operation over water. The candidate configuration's sonic boom overpressure may be small enough to allow overland operation as well.

  6. Active control of Boundary Layer Separation & Flow Distortion in Adverse Pressure Gradient Flows via Supersonic Microjets

    NASA Technical Reports Server (NTRS)

    Alvi, Farrukh S.; Gorton, Susan (Technical Monitor)

    2005-01-01

    Inlets to aircraft propulsion systems must supply flow to the compressor with minimal pressure loss, flow distortion or unsteadiness. Flow separation in internal flows such as inlets and ducts in aircraft propulsion systems and external flows such as over aircraft wings, is undesirable as it reduces the overall system performance. The aim of this research has been to understand the nature of separation and more importantly, to explore techniques to actively control this flow separation. In particular, the use of supersonic microjets as a means of controlling boundary layer separation was explored. The geometry used for the early part of this study was a simple diverging Stratford ramp, equipped with arrays of supersonic microjets. Initial results, based on the mean surface pressure distribution, surface flow visualization and Planar Laser Scattering (PLS) indicated a reverse flow region. We implemented supersonic microjets to control this separation and flow visualization results appeared to suggest that microjets have a favorable effect, at least to a certain extent. However, the details of the separated flow field were difficult to determine based on surface pressure distribution, surface flow patterns and PLS alone. It was also difficult to clearly determine the exact influence of the supersonic microjets on this flow. In the latter part of this study, the properties of this flow-field and the effect of supersonic microjets on its behavior were investigated in further detail using 2-component (planar) Particle Image Velocimetry (PIV). The results clearly show that the activation of microjets eliminated flow separation and resulted in a significant increase in the momentum of the fluid near the ramp surface. Also notable is the fact that the gain in momentum due to the elimination of flow separation is at least an order of magnitude larger (two orders of magnitude larger in most cases) than the momentum injected by the microjets and is accomplished with very

  7. Comparative study of unilateral versus bilateral inferior oblique recession/anteriorization in unilateral inferior oblique overaction.

    PubMed

    Mostafa, Attiat M; Kassem, Rehab R

    2018-05-01

    To compare the effect of, and the rate of subsequent development of iatrogenic antielevation syndrome after, unilateral versus bilateral inferior oblique graded recession-anteriorization to treat unilateral inferior oblique overaction. Thirty-four patients with unilateral inferior oblique overaction were included in a randomized prospective study. Patients were equally divided into 2 groups. Group UNI underwent unilateral, group BI bilateral, inferior oblique graded recession-anteriorization. A successful outcome was defined as orthotropia, or within 2 ∆ of a residual hypertropia, in the absence of signs of antielevation syndrome, residual inferior oblique overaction, V-pattern, dissociated vertical deviation, or ocular torticollis. A successful outcome was achieved in 11 (64.7%) and 13 (76.5%) patients in groups UNI and BI, respectively (p = 0.452). Antielevation syndrome was diagnosed as the cause of surgical failure in 6 (35.3%) and 2 (11.8%) patients, in groups UNI and BI, respectively (p = 0.106). The cause of surgical failure in the other 2 patients in group BI was due to persistence of ocular torticollis and hypertropia in a patient with superior oblique palsy and a residual V-pattern and hypertropia in the other patient. The differences between unilateral and bilateral inferior oblique graded recession-anteriorization are insignificant. Unilateral surgery has a higher tendency for the subsequent development of antielevation syndrome. Bilateral surgery may still become complicated by antielevation syndrome, although at a lower rate. In addition, bilateral surgery had a higher rate of undercorrection. Further studies on a larger sample are encouraged.

  8. Historical development of worldwide supersonic aircraft

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1979-01-01

    Aerodynamic problems in the development of supersonic aircraft, their solutions, and innovative design features are presented. Studies of compressibility, introduction of jets, supersonic phenomena, transonic drag and lift, longitudinal and directional stability, dynamic pressure fields, and advent of the supersonic fighter are discussed. The flight research aircraft such as the Bell X-1 and the Douglas-558, the century series models, reconnaissance aircraft, the multimission tactical fighter, and the current generation fighters such as F-16 and F-18 are described. The SCAT program is considered, along with supersonic developments in Great Britain, France, and USSR. It is concluded that the sonic boom still appears to be an inherent problem of supersonic flight that particularly affects overland commercial flight, and efforts continue for increased efficiency for economic and performance gains and increased safety for military and civilian aircraft.

  9. Climates of Oblique Exoplanets

    NASA Astrophysics Data System (ADS)

    Dobrovolskis, A. R.

    2008-12-01

    A previous paper (Dobrovolskis 2007; Icarus 192, 1-23) showed that eccentricity can have profound effects on the climate, habitability, and detectability of extrasolar planets. This complementary study shows that obliquity can have comparable effects. The known exoplanets exhibit a wide range of orbital eccentricities, but those within several million km of their suns are generally in near-circular orbits. This fact is widely attributed to the dissipation of tides in the planets, which is particularly effective for solid/liquid bodies like "Super-Earths". Along with friction between a solid mantle and a liquid core, tides also are expected to despin a planet until it is captured in the synchronous resonance, so that its rotation period is identical to its orbital period. The canonical example of synchronous spin is the way that our Moon always keeps nearly the same hemisphere facing the Earth. Tides also tend to reduce the planet's obliquity (the angle between its spin and orbital angular velocities). However, orbit precession can cause the rotation to become locked in a "Cassini state", where it retains a nearly constant non-zero obliquity. For example, our Moon maintains an obliquity of about 6.7° with respect to its orbit about the Earth. For comparison, stable Cassini states can exist for practically any obliquity up to 180° for planets of binary stars, or in multi-planet systems with high mutual inclinations, such as are produced by scattering or by the Kozai mechanism. This work considers planets in synchronous rotation with circular orbits. For obliquities greater than 90°, the ground track of the sub-solar point wraps around all longitudes on the surface of such a planet. For smaller obliquities, the sub-solar track takes the figure-8 shape of an analemma. This can be visualized as the intersection of the planet's spherical surface with a right circular cylinder, parallel to the spin axis and tangent to the equator from the inside. The excursion of the

  10. Some effects of wing and body geometry on the aerodynamic characteristics of configurations designed for high supersonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.; Tice, David C.; Braswell, Dorothy O.

    1992-01-01

    Experimental and theoretical results are presented for a family of aerodynamic configurations for flight Mach numbers as high as Mach 8. All of these generic configurations involved 70-deg sweep delta planform wings of three different areas and three fuselage shapes with circular-to-elliptical cross sections. It is noted that fuselage ellipticity enhances lift-curve slope and maximum L/D, while decreasing static longitudinal stability (especially with smaller wing areas).

  11. Surface electromyography activity of the rectus abdominis, internal oblique, and external oblique muscles during forced expiration in healthy adults.

    PubMed

    Ito, Kenichi; Nonaka, Koji; Ogaya, Shinya; Ogi, Atsushi; Matsunaka, Chiaki; Horie, Jun

    2016-06-01

    We aimed to characterize rectus abdominis, internal oblique, and external oblique muscle activity in healthy adults under expiratory resistance using surface electromyography. We randomly assigned 42 healthy adult subjects to 3 groups: 30%, 20%, and 10% maximal expiratory intraoral pressure (PEmax). After measuring 100% PEmax and muscle activity during 100% PEmax, the activity and maximum voluntary contraction of each muscle during the assigned experimental condition were measured. At 100% PEmax, the external oblique (p<0.01) and internal oblique (p<0.01) showed significantly elevated activity compared with the rectus abdominis muscle. Furthermore, at 20% and 30% PEmax, the external oblique (p<0.05 and<0.01, respectively) and the internal oblique (p<0.05 and<0.01, respectively) showed significantly elevated activity compared with the rectus abdominis muscle. At 10% PEmax, no significant differences were observed in muscle activity. Although we observed no significant difference between 10% and 20% PEmax, activity during 30% PEmax was significantly greater than during 20% PEmax (external oblique: p<0.05; internal oblique: p<0.01). The abdominal oblique muscles are the most active during forced expiration. Moreover, 30% PEmax is the minimum intensity required to achieve significant, albeit very slight, muscle activity during expiratory resistance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Supersonic coal water slurry fuel atomizer

    DOEpatents

    Becker, Frederick E.; Smolensky, Leo A.; Balsavich, John

    1991-01-01

    A supersonic coal water slurry atomizer utilizing supersonic gas velocities to atomize coal water slurry is provided wherein atomization occurs externally of the atomizer. The atomizer has a central tube defining a coal water slurry passageway surrounded by an annular sleeve defining an annular passageway for gas. A converging/diverging section is provided for accelerating gas in the annular passageway to supersonic velocities.

  13. Habitable planets with high obliquities

    NASA Technical Reports Server (NTRS)

    Williams, D. M.; Kasting, J. F.

    1997-01-01

    Earth's obliquity would vary chaotically from 0 degrees to 85 degrees were it not for the presence of the Moon (J. Laskar, F. Joutel, and P. Robutel, 1993, Nature 361, 615-617). The Moon itself is thought to be an accident of accretion, formed by a glancing blow from a Mars-sized planetesimal. Hence, planets with similar moons and stable obliquities may be extremely rare. This has lead Laskar and colleagues to suggest that the number of Earth-like planets with high obliquities and temperate, life-supporting climates may be small. To test this proposition, we have used an energy-balance climate model to simulate Earth's climate at obliquities up to 90 degrees. We show that Earth's climate would become regionally severe in such circumstances, with large seasonal cycles and accompanying temperature extremes on middle- and high-latitude continents which might be damaging to many forms of life. The response of other, hypothetical, Earth-like planets to large obliquity fluctuations depends on their land-sea distribution and on their position within the habitable zone (HZ) around their star. Planets with several modest-sized continents or equatorial supercontinents are more climatically stable than those with polar supercontinents. Planets farther out in the HZ are less affected by high obliquities because their atmospheres should accumulate CO2 in response to the carbonate-silicate cycle. Dense, CO2-rich atmospheres transport heat very effectively and therefore limit the magnitude of both seasonal cycles and latitudinal temperature gradients. We conclude that a significant fraction of extrasolar Earth-like planets may still be habitable, even if they are subject to large obliquity fluctuations.

  14. Investigating the Interaction of a Supersonic Single Expansion Ramp Nozzle and Sonic Wall Jet

    NASA Astrophysics Data System (ADS)

    Berry, Matthew G.

    For nearly 80 years, the jet engine has set the pace for aviation technology around the world. Complexity of design has compounded upon each iteration of nozzle development, while the rate of fundamental fluids knowledge struggles to keep up. The increase in velocities associated with supersonic jets, have exacerbated the need for flow physics research. Supersonic flight remains the standard for military aircraft and is being rediscovered for commercial use. With the addition of multiple streams, complex nozzle geometries, and airframe integration in modern aircraft, the flow physics rapidly become more difficult. As performance capabilities increase, so do the noise producing mechanisms and unsteady dynamics. This has prompted an experimental investigation into the flow field and turbulence quantities of a modern jet nozzle configuration. A rectangular supersonic multi-stream nozzle with aft deck is characterized using time-resolved schlieren imaging, stereo PIV measurements, deck mounted pressure transducers, and far-field microphones. These experiments are performed at the Skytop Turbulence Laboratory at Syracuse University. LES data by The Ohio State University are paired with these experiments and give valuable insight into regions of the flow unable to be probed. By decomposing this complex flow field into two canonical flows, a supersonic rectangular nozzle and a sonic wall jet, a fundamental approach is taken to observe how these two jets interact. Thorough investigations of the highly turbulent flow field are being performed. Current analytical techniques employed are statistical quantities, turbulence properties, and low-dimensional models. Results show a dominant high frequency structure that propagates through the entire field and is observable in all experimental methods. The structures emanate from the interaction point of the supersonic jet and sonic wall jet. Additionally, the propagation paths are directionally dependent. Further, spanwise PIV

  15. Experimental Investigation of a Point Design Optimized Arrow Wing HSCT Configuration

    NASA Technical Reports Server (NTRS)

    Narducci, Robert P.; Sundaram, P.; Agrawal, Shreekant; Cheung, S.; Arslan, A. E.; Martin, G. L.

    1999-01-01

    The M2.4-7A Arrow Wing HSCT configuration was optimized for straight and level cruise at a Mach number of 2.4 and a lift coefficient of 0.10. A quasi-Newton optimization scheme maximized the lift-to-drag ratio (by minimizing drag-to-lift) using Euler solutions from FL067 to estimate the lift and drag forces. A 1.675% wind-tunnel model of the Opt5 HSCT configuration was built to validate the design methodology. Experimental data gathered at the NASA Langley Unitary Plan Wind Tunnel (UPWT) section #2 facility verified CFL3D Euler and Navier-Stokes predictions of the Opt5 performance at the design point. In turn, CFL3D confirmed the improvement in the lift-to-drag ratio obtained during the optimization, thus validating the design procedure. A data base at off-design conditions was obtained during three wind-tunnel tests. The entry into NASA Langley UPWT section #2 obtained data at a free stream Mach number, M(sub infinity), of 2.55 as well as the design Mach number, M(sub infinity)=2.4. Data from a Mach number range of 1.8 to 2.4 was taken at UPWT section #1. Transonic and low supersonic Mach numbers, M(sub infinity)=0.6 to 1.2, was gathered at the NASA Langley 16 ft. Transonic Wind Tunnel (TWT). In addition to good agreement between CFD and experimental data, highlights from the wind-tunnel tests include a trip dot study suggesting a linear relationship between trip dot drag and Mach number, an aeroelastic study that measured the outboard wing deflection and twist, and a flap scheduling study that identifies the possibility of only one leading-edge and trailing-edge flap setting for transonic cruise and another for low supersonic acceleration.

  16. Supersonic throughflow fans for high-speed aircraft

    NASA Technical Reports Server (NTRS)

    Ball, Calvin L.; Moore, Royce D.

    1990-01-01

    A brief overview is provided of past supersonic throughflow fan activities; technology needs are discussed; the design is described of a supersonic throughflow fan stage, a facility inlet, and a downstream diffuser; and the results are presented from the analysis codes used in executing the design. Also presented is a unique engine concept intended to permit establishing supersonic throughflow within the fan on the runway and maintaining the supersonic throughflow condition within the fan throughout the flight envelope.

  17. Micro-Ramp Flow Control for Oblique Shock Interactions: Comparisons of Computational and Experimental Data

    NASA Technical Reports Server (NTRS)

    Hirt, Stefanie M.; Reich, David B.; O'Connor, Michael B.

    2010-01-01

    Computational fluid dynamics was used to study the effectiveness of micro-ramp vortex generators to control oblique shock boundary layer interactions. Simulations were based on experiments previously conducted in the 15 x 15 cm supersonic wind tunnel at NASA Glenn Research Center. Four micro-ramp geometries were tested at Mach 2.0 varying the height, chord length, and spanwise spacing between micro-ramps. The overall flow field was examined. Additionally, key parameters such as boundary-layer displacement thickness, momentum thickness and incompressible shape factor were also examined. The computational results predicted the effects of the micro-ramps well, including the trends for the impact that the devices had on the shock boundary layer interaction. However, computing the shock boundary layer interaction itself proved to be problematic since the calculations predicted more pronounced adverse effects on the boundary layer due to the shock than were seen in the experiment.

  18. Micro-Ramp Flow Control for Oblique Shock Interactions: Comparisons of Computational and Experimental Data

    NASA Technical Reports Server (NTRS)

    Hirt, Stephanie M.; Reich, David B.; O'Connor, Michael B.

    2012-01-01

    Computational fluid dynamics was used to study the effectiveness of micro-ramp vortex generators to control oblique shock boundary layer interactions. Simulations were based on experiments previously conducted in the 15- by 15-cm supersonic wind tunnel at the NASA Glenn Research Center. Four micro-ramp geometries were tested at Mach 2.0 varying the height, chord length, and spanwise spacing between micro-ramps. The overall flow field was examined. Additionally, key parameters such as boundary-layer displacement thickness, momentum thickness and incompressible shape factor were also examined. The computational results predicted the effects of the microramps well, including the trends for the impact that the devices had on the shock boundary layer interaction. However, computing the shock boundary layer interaction itself proved to be problematic since the calculations predicted more pronounced adverse effects on the boundary layer due to the shock than were seen in the experiment.

  19. Supersonic reacting internal flow fields

    NASA Technical Reports Server (NTRS)

    Drummond, J. Philip

    1989-01-01

    The national program to develop a trans-atmospheric vehicle has kindled a renewed interest in the modeling of supersonic reacting flows. A supersonic combustion ramjet, or scramjet, has been proposed to provide the propulsion system for this vehicle. The development of computational techniques for modeling supersonic reacting flow fields, and the application of these techniques to an increasingly difficult set of combustion problems are studied. Since the scramjet problem has been largely responsible for motivating this computational work, a brief history is given of hypersonic vehicles and their propulsion systems. A discussion is also given of some early modeling efforts applied to high speed reacting flows. Current activities to develop accurate and efficient algorithms and improved physical models for modeling supersonic combustion is then discussed. Some new problems where computer codes based on these algorithms and models are being applied are described.

  20. Summary of Transition Results From the F-16XL-2 Supersonic Laminar Flow Control Experiment

    NASA Technical Reports Server (NTRS)

    Marshall, Laurie A.

    2000-01-01

    A variable-porosity suction glove has been flown on the F-16XL-2 aircraft to demonstrate the feasibility of this technology for the proposed High-Speed Civil Transport. Boundary-layer transition data on the titanium glove primarily have been obtained at speeds of Mach 2.0 and altitudes of 15,240-16,764 m (50,000-55,000 ft). The objectives of this flight experiment have been to achieve 0.50-0.60 chord laminar flow on a highly swept wing at supersonic speeds and to provide data to validate codes and suction design. The most successful laminar flow results have not been obtained at the glove design point, a speed of Mach 1.9 at an altitude of 15,240 m (50,000 ft); but rather at a speed of Mach 2.0 and an altitude of 16,154 m (53,000 ft). Laminar flow has been obtained to more than 0.46 wing chord at a Reynolds number of 22.7 x 10(exp 6). A turbulence diverter has been used to initially obtain a laminar boundary layer at the attachment line. A lower-surface shock fence was required to block an inlet shock from the wing leading edge. This paper discusses research variables that directly impact the ability to obtain laminar flow and techniques to correct for these variables.

  1. Lunar Obliquity History Revisited

    NASA Astrophysics Data System (ADS)

    Siegler, M.; Bills, B.; Paige, D.

    2007-12-01

    In preparation for a LRO (Lunar Reconnaissance Orbiter) related study of possible lunar polar volatiles, we re- examined the lunar orbital and rotational history, with primary focus on the obliquity history of the Moon. Though broad models have been made of lunar obliquity, a cohesive obliquity history was not found. We report on a new model of lunar obliquity including secular changes in inclination of the lunar orbit, tidal dissipation, lunar moments of inertia, and details for periods outside of the stable configurations known as Cassini states. For planets, the obliquity, or angle between the spin and orbit poles, is the dominant control on incident solar radiation. For planetary satellites, the radiation pattern can be more complex, as it depends on the mutual inclinations of three poles; the satellite spin and orbit poles, and the planetary heliocentric orbit pole. Presently, the lunar spin pole and orbit pole co-precess about the ecliptic pole, in a stable situation known as a Cassini state. As a result, permanently shadowed regions near the poles are expected to exist and act as cold traps, retaining water or other volatiles delivered to the surface by comets, solar wind, or via outgassing of the lunar interior. However, tidally driven secular changes in the lunar semimajor axis cause changes in precession rates of the spin and orbit poles, and thereby alter or destabilize the Cassini states. Only one prograde Cassini state exists at present (state 2). In the standard Cassini state model of Ward [1975], two other such states would have existed in the past (states 1 and 4) with the Moon starting in the low obliquity state 1, and remaining there until states 1 and 4 merged and disappear, at roughly half the present Earth-Moon distance. At that point, the Moon transitioned into the currently occupied state 2, and briefly attained very high obliquity values during the transition, and then stayed in state 2 until the present. If correct, this model implies that

  2. Repair of Corrosion in Air Supply Piping at the NASA Glenn Research Center's 1 by 1 Foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Henry, Michael

    2000-01-01

    During a test at the NASA Glenn Research Center's 1 x 1 Supersonic Wing Tunnel, it was discovered that particles entrained in the air flow were damaging the pressure sensitive paint on a test article. An investigation found the source of the entrained particles to be rust on the internal surfaces of the air supply piping. To remedy the situation, the air supply line components made from carbon steel were either refurbished or replaced with new stainless steel components. The refurbishment process included various combinations of chemical cleaning, bead blasting, painting and plating.

  3. Noise and economic characteristics of an advanced blended supersonic transport concept

    NASA Technical Reports Server (NTRS)

    Molloy, J. K.; Grantham, W. D.; Neubauer, M. J., Jr.

    1982-01-01

    Noise and economic characteristics were obtained for an advanced supersonic transport concept that utilized wing body blending, a double bypass variable cycle engine, superplastically formed and diffusion bonded titanium in both the primary and secondary structures, and an alternative interior arrangement that provides increased seating capacity. The configuration has a cruise Mach number of 2.62, provisions for 290 passengers, a mission range of 8.19 Mm (4423 n.mi.), and an average operating cruise lift drag ratio of 9.23. Advanced operating procedures, which have the potential to reduce airport community noise, were explored by using a simulator. Traded jet noise levels of 105.7 and 103.4 EPNdB were obtained by using standard and advanced takeoff operational procedures, respectively. A new method for predicting lateral attenuation was utilized in obtaining these jet noise levels.

  4. A low speed wind tunnel investigation of Reynolds number effects on a 60-deg swept wing configuration with leading and trailing edge flaps

    NASA Technical Reports Server (NTRS)

    Rao, Dhanvada M.; Hoffler, Keith D.

    1988-01-01

    A low-speed wind tunnel test was performed to investigate Reynolds number effects on the aerodynamic characteristics of a supersonic cruise wing concept model with a 60-deg swept wing incorporating leading-edge and trailing-edge flap deflections. The Reynolds number ranged from 0.3 to 1.6 x 10 to the 6th, and corresponding Mach numbers from .05 to 0.3. The objective was to define a threshold Reynolds number above which the flap aerodynamics basically remained unchanged, and also to generate a data base useful for validating theoretical predictions for the Reynolds number effects on flap performance. This report documents the test procedures used and the basic data acquired in the investigation.

  5. Supersonic fan engines for military aircraft

    NASA Technical Reports Server (NTRS)

    Franciscus, L. C.

    1983-01-01

    Engine performance and mission studies were performed for turbofan engines with supersonic through-flow fans. A Mach 2.4 CTOL aircraft was used in the study. Two missions were considered: a long range penetrator mission and a long range intercept mission. The supersonic fan engine is compared with an augmented mixed flow turbofan in terms of mission radius for a fixed takeoff gross weight of 75,000 lbm. The mission radius of aircraft powered by supersonic fan engines could be 15 percent longer than aircraft powered with conventional turbofan engines at moderate thrust to gross weight ratios. The climb and acceleration performance of the supersonic fan engines is better than that of the conventional turbofan engines.

  6. Conditions for supersonic bent Marshak waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Qiang, E-mail: xuqiangxu@pku.edu.cn; Ren, Xiao-dong; Li, Jing

    Supersonic radiation diffusion approximation is an useful method to study the radiation transportation. Considering the 2-d Marshak theory, and an invariable source temperature, conditions for supersonic radiation diffusion are proved to be coincident with that for radiant flux domination in the early time when √(ε)x{sub f}/L≪1. However, they are even tighter than conditions for radiant flux domination in the late time when √(ε)x{sub f}/L≫1, and can be expressed as M>4(1+ε/3)/3 and τ>1. A large Mach number requires the high temperature, while the large optical depth requires the low temperature. Only when the source temperature is in a proper region themore » supersonic diffusion conditions can be satisfied. Assuming a power-low (in temperature and density) opacity and internal energy, for a given density, the supersonic diffusion regions are given theoretically. The 2-d Marshak theory is proved to be able to bound the supersonic diffusion conditions in both high and low temperature regions, however, the 1-d theory only bounds it in low temperature region. Taking SiO{sub 2} and the Au, for example, these supersonic regions are shown numerically.« less

  7. Climate at high obliquity

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Ferreira, D.; O'Gorman, P. A.; Seager, S.

    2011-12-01

    One method of studying earth-like exoplanets is to view earth as an exoplanet and consider how its climate might change if, for example, its obliquity were ranged from 0 to 90 degrees. High values of obliquity challenge our understanding of climate dynamics because if obliquity exceeds 54 degrees, then polar latitudes receive more energy per unit area than do equatorial latitudes. Thus the pole will become warmer than the equator and we are led to consider a world in which the meridional temperature gradients, and associated prevailing zonal wind, have the opposite sign to the present earth. The problem becomes even richer when one considers the dynamics of an ocean, should one exist below. A central question for the ocean circulation is: what is the pattern of surface winds at high obliquities?, for it is the winds that drive the ocean currents and thermohaline circulation. How do atmospheric weather systems growing in the easterly sheared middle latitude jets determine the surface wind pattern? Should one expect middle latitude easterly winds? Finally, a key aspect with regard to habitability is to understand how the atmosphere and ocean of this high obliquity planet work cooperatively together to transport energy meridionally, mediating the warmth of the poles and the coldness of the equator. How extreme are seasonal temperature fluctuations? Should one expect to find ice around the equator? Possible answers to some of these questions have been sought by experimentation with a coupled atmosphere, ocean and sea-ice General Circulation Model of an earth-like aquaplanet: i.e. a planet like our own but on which there is only an ocean but no land. The coupled climate is studied across a range of obliquities (23.5, 54 and 90). We present some of the descriptive climatology of our solutions and how they shed light on the deeper questions of coupled climate dynamics that motivate them. We also review what they tell us about habitability on such planets.

  8. Multifidelity Analysis and Optimization for Supersonic Design

    NASA Technical Reports Server (NTRS)

    Kroo, Ilan; Willcox, Karen; March, Andrew; Haas, Alex; Rajnarayan, Dev; Kays, Cory

    2010-01-01

    Supersonic aircraft design is a computationally expensive optimization problem and multifidelity approaches over a significant opportunity to reduce design time and computational cost. This report presents tools developed to improve supersonic aircraft design capabilities including: aerodynamic tools for supersonic aircraft configurations; a systematic way to manage model uncertainty; and multifidelity model management concepts that incorporate uncertainty. The aerodynamic analysis tools developed are appropriate for use in a multifidelity optimization framework, and include four analysis routines to estimate the lift and drag of a supersonic airfoil, a multifidelity supersonic drag code that estimates the drag of aircraft configurations with three different methods: an area rule method, a panel method, and an Euler solver. In addition, five multifidelity optimization methods are developed, which include local and global methods as well as gradient-based and gradient-free techniques.

  9. A Preliminary Analysis of the Flying Qualities of the Consolidated Vultee MX-813 Delta-Wing Airplane Configuration at Transonic and Low Supersonic Speeds as Determined from Flights of Rocket-Powered Models

    NASA Technical Reports Server (NTRS)

    Mitcham, Grady L.

    1949-01-01

    A preliminary analysis of the flying qualities of the Consolidated Vultee MX-813 delta-wing airplane configuration has been made based on the results obtained from the first two 1/8 scale models flown at the NACA Pilotless Aircraft Research Station, Wallop's Island, VA. The Mach number range covered in the tests was from 0.9 to 1.2. The analysis indicates adequate elevator control for trim in level flight over the speed range investigated. Through the transonic range there is a mild trim change with a slight tucking-under tendency. The elevator control effectiveness in the supersonic range is reduced to about one-half the subsonic value although sufficient control for maneuvering is available as indicated by the fact that 10 deg elevator deflection produced 5g acceleration at Mach number of 1.2 at 40,000 feet.The elevator control forces are high and indicate the power required of the boost system. The damping. of the short-period oscillation is adequate at sea-level but is reduced at 40,000 feet. The directional stability appears adequate for the speed range and angles of attack covered.

  10. Treatment of inferior oblique paresis with superior oblique silicone tendon expander.

    PubMed

    Greenberg, Marc F; Pollard, Zane F

    2005-08-01

    Patients with inferior oblique eye muscle paresis may show hypotropia and apparent superior oblique muscle overaction on the side of the presumed weak inferior oblique (IO) muscle. We report 8 such patients successfully treated using unilateral silicone superior oblique (SO) tendon expanders. Eight consecutive cases over the course of 6 years from the authors' private practice are described. None had a history of head trauma or a significant neurologic event. All patients showed IO paresis by 3-step test, with incyclotorsion and SO overacton of the hypotropic (paretic) eye. Forced ductions of the hypotropic eye were normal in all cases, and the vertical strabismus was treated with placement of a 7- mm silicone SO tendon expander in the hypotropic (paretic) eye. Mean preoperative primary position hypotropia was 6.5 prism diopters (PD); mean postoperative was 0.5 PD. Seven of 8 patients had resolution of primary position hypotropia, whereas the eighth was reduced. Mean preoperative SO overaction was 3+; all patients had postoperative resolution of SO overaction. Of 4 patients with preoperative ocular torticollis, mean preoperative head tilt was 9.3 degrees; mean postoperative tilt was 2.9 degrees. Two patients' head tilts had resolved, the other 2 showed improvement. All patients showed preoperative incylclotorsion of the hypotropic (paretic) eye; inclyclotorsion resolved in all patients after the placement of a SO tendon expander. The silicone SO tendon expander effectively restores ocular alignment in IO paresis with apparent SO overaction. Associated ocular torticollis can also be improved.

  11. Supersonic fan engines for military aircraft

    NASA Technical Reports Server (NTRS)

    Franciscus, L. C.

    1983-01-01

    Engine performance and mission studies were performed for turbofan engines with supersonic through-flow fans. A Mach 2.4 CTOL aircraft was used in the study. Two missions were considered: a long range penetrator mission and a long range intercept mission. The supersonic fan engine is compared with an augmented mixed flow turbofan in terms of mission radius for a fixed takeoff gross weight of 75,000 lbm. The mission radius of aircraft powered by supersonic fan engines could be 15 percent longer than aircraft powered with conventional turbofan engines at moderate thrust to gross weight ratios. The climb and acceleration performance of the supersonic fan engines is better than that of the conventional turbofan engines. Previously announced in STAR as N83-34947

  12. Streamline curvature in supersonic shear layers

    NASA Technical Reports Server (NTRS)

    Kibens, V.

    1992-01-01

    Results of an experimental investigation in which a curved shear layer was generated between supersonic flow from a rectangular converging/diverging nozzle and the freestream in a series of open channels with varying radii of curvature are reported. The shear layers exhibit unsteady large-scale activity at supersonic pressure ratios, indicating increased mixing efficiency. This effect contrasts with supersonic flow in a straight channel, for which no large-scale vortical structure development occurs. Curvature must exceed a minimum level before it begins to affect the dynamics of the supersonic shear layer appreciably. The curved channel flows are compared with reference flows consisting of a free jet, a straight channel, and wall jets without sidewalls on a flat and a curved plate.

  13. Flow-around modes for a rhomboid wing with a stall vortex in the shock layer

    NASA Astrophysics Data System (ADS)

    Zubin, M. A.; Maximov, F. A.; Ostapenko, N. A.

    2017-12-01

    The results of theoretical and experimental investigation of an asymmetrical hypersonic flow around a V-shaped wing with the opening angle larger than π on the modes with attached shockwaves on forward edges, when the stall flow is implemented on the leeward wing cantilever behind the kink point of the cross contour. In this case, a vortex of nonviscous nature is formed in which the velocities on the sphere exceeding the speed of sound and resulting in the occurrence of pressure shocks with an intensity sufficient for the separation of the turbulent boundary layer take place in the reverse flow according to the calculations within the framework of the ideal gas. It is experimentally established that a separation boundary layer can exist in the reverse flow, and its structure is subject to the laws inherent to the reverse flow in the separation region of the turbulent boundary layer arising in the supersonic conic flow under the action of a shockwave incident to the boundary layer.

  14. Influence of the Configuration Elements of a Model of a Supersonic Passenger Aircraft on the Parameters of Sonic Boom

    NASA Astrophysics Data System (ADS)

    Volkov, V. F.

    2017-03-01

    The author gives results of parametric calculations of shock-boom levels in the case of flow with a free-stream Mach number of 2.03 past configurations of a supersonic aircraft. The calculations are aimed at investigating the influence of the relative position of basic elements and their geometric shape on the aerodynamic quality of the configuration and on the parameters of shock boom at great distances from the perturbation source. The geometric models of the configurations were formed by combining and joining component elements: the body, the front wing, and the rear tapered wing with root dogtooth extension. From an analysis of all the considered models of tandem configurations with account of the resolvability of shock waves in a perturbed profile compared to the monoplane configuration, the optimum configuration has been singled out that ensures a reduction of 24% in the intensity level of shock boom with an increase of 0.24% in its aerodynamic quality.

  15. Advanced supersonic propulsion study, phase 3

    NASA Technical Reports Server (NTRS)

    Howlett, R. A.; Johnson, J.; Sabatella, J.; Sewall, T.

    1976-01-01

    The variable stream control engine is determined to be the most promising propulsion system concept for advanced supersonic cruise aircraft. This concept uses variable geometry components and a unique throttle schedule for independent control of two flow streams to provide low jet noise at takeoff and high performance at both subsonic and supersonic cruise. The advanced technology offers a 25% improvement in airplane range and an 8 decibel reduction in takeoff noise, relative to first generation supersonic turbojet engines.

  16. Low-latitude glaciation and rapid changes in the Earth's obliquity explained by obliquity-oblateness feedback

    NASA Astrophysics Data System (ADS)

    Williams, Darren M.; Kasting, James F.; Frakes, Lawrence A.

    1998-12-01

    Palaeomagnetic data suggest that the Earth was glaciated at low latitudes during the Palaeoproterozoic, (about 2.4-2.2Gyr ago) and Neoproterozoic (about 820-550Myr ago) eras, although some of the Neoproterozoic data are disputed,. If the Earth's magnetic field was aligned more or less with its spin axis, as it is today, then either the polar ice caps must have extended well down into the tropics - the `snowball Earth' hypothesis - or the present zonation of climate with respect to latitude must have been reversed. Williams has suggested that the Earth's obliquity may have been greater than 54° during most of its history, which would have made the Equator the coldest part of the planet. But this would require a mechanism to bring the obliquity down to its present value of 23.5°. Here we propose that obliquity-oblateness feedback could have reduced the Earth's obliquity by tens of degrees in less than 100Myr if the continents were situated so as to promote the formation of large polar ice sheets. A high obliquity for the early Earth may also provide a natural explanation for the present inclination of the lunar orbit with respect to the ecliptic (5°), which is otherwise difficult to explain.

  17. Low-latitude glaciation and rapid changes in the Earth's obliquity explained by obliquity-oblateness feedback.

    PubMed

    Williams, D M; Kasting, J F; Frakes, L A

    1998-12-03

    Palaeomagnetic data suggest that the Earth was glaciated at low latitudes during the Palaeoproterozoic (about 2.4-2.2 Gyr ago) and Neoproterozoic (about 820-550 Myr ago) eras, although some of the Neoproterozoic data are disputed. If the Earth's magnetic field was aligned more or less with its spin axis, as it is today, then either the polar ice caps must have extended well down into the tropics-the 'snowball Earth' hypothesis-or the present zonation of climate with respect to latitude must have been reversed. Williams has suggested that the Earth's obliquity may have been greater than 54 degrees during most of its history, which would have made the Equator the coldest part of the planet. But this would require a mechanism to bring the obliquity down to its present value of 23.5 degrees. Here we propose that obliquity-oblateness feedback could have reduced the Earth's obliquity by tens of degrees in less than 100 Myr if the continents were situated so as to promote the formation of large polar ice sheets. A high obliquity for the early Earth may also provide a natural explanation for the present inclination of the lunar orbit with respect to the ecliptic (5 degrees), which is otherwise difficult to explain.

  18. Nonplanar wing load-line and slender wing theory

    NASA Technical Reports Server (NTRS)

    Deyoung, J.

    1977-01-01

    Nonplanar load line, slender wing, elliptic wing, and infinite aspect ratio limit loading theories are developed. These are quasi two dimensional theories but satisfy wing boundary conditions at all points along the nonplanar spanwise extent of the wing. These methods are applicable for generalized configurations such as the laterally nonplanar wing, multiple nonplanar wings, or wing with multiple winglets of arbitrary shape. Two dimensional theory infers simplicity which is practical when analyzing complicated configurations. The lateral spanwise distribution of angle of attack can be that due to winglet or control surface deflection, wing twist, or induced angles due to multiwings, multiwinglets, ground, walls, jet or fuselage. In quasi two dimensional theory the induced angles due to these extra conditions are likewise determined for two dimensional flow. Equations are developed for the normal to surface induced velocity due to a nonplanar trailing vorticity distribution. Application examples are made using these methods.

  19. Supersonic Research Display for Tour

    NASA Image and Video Library

    1946-03-21

    On March 22, 1946, 250 members of the Institute of Aeronautical Science toured the NACA’s Aircraft Engine Research Laboratory. NACA Chairman Jerome Hunsaker and Secretary John Victory were on hand to brief the attendees in the Administration Building before the visited the lab’s test facilities. At each of the twelve stops, researchers provided brief presentations on their work. Topics included axial flow combustors, materials for turbine blades, engine cooling, icing prevention, and supersonic flight. The laboratory reorganized itself in October 1945 as World War II came to an end to address newly emerging technologies such as the jet engine, rockets, and high-speed flight. While design work began on what would eventually become the 8- by 6-Foot Supersonic Wind Tunnel, NACA Lewis quickly built several small supersonic tunnels. These small facilities utilized the Altitude Wind Tunnel’s massive air handling equipment to generate high-speed airflow. The display seen in this photograph was set up in the building that housed the first of these wind tunnels. Eventually the building would contain three small supersonic tunnels, referred to as the “stack tunnels” because of the vertical alignment. The two other tunnels were added to this structure in 1949 and 1951. The small tunnels were used until the early 1960s to study the aerodynamic characteristics of supersonic inlets and exits.

  20. Aerodynamic Loads on an External Store Adjacent to a 45 Degree Sweptback Wing at Mach Numbers from 0.70 to 1.96, Including an Evaluation of Techniques Used

    NASA Technical Reports Server (NTRS)

    Guy, Lawrence D; Hadaway, William M

    1955-01-01

    Aerodynamic forces and moments have been obtained in the Langley 9- by 12-inch blowdown tunnel on an external store and on a 45 degree swept-back wing-body combination measured separately at Mach numbers from 0.70 to 1.96. The wing was cantilevered and had an aspect ratio of 4.0; the store was independently sting-mounted and had a Douglas Aircraft Co. (DAC) store shape. The angle of attack range was from -3 degrees to 12 degrees and the Reynolds number (based on wing mean aerodynamic chord) varied from 1.2 x10(6) to 1.7 x 10(6). Wing-body transonic forces and moments have been compared with data of a geometrically similar full-scale model tested in the Langley 16-foot and 8-foot transonic tunnels in order to aid in the evaluation of transonic-tunnel interference. The principal effect of the store, for the position tested, was that of delaying the wing-fuselage pitch-up tendency to higher angles of attack at Mach numbers from 0.70 to 0.90 in a manner similar to that of a wing chord extension. The most critical loading condition on the store was that due to side force, not only because the loads were of large magnitude but also because they were in the direction of least structural strength of the supporting pylon. These side loads were greatest at high angles of attack in the supersonic speed range. Removal of the supporting pylon (or increasing the gap between the store and wing) reduced the values of the variation of side-force coefficientwith angle of attack by about 50 percent at all test Mach numbers, indicating that important reductions in store side force may be realized by proper design or location of the necessary supporting pylon. A change of the store skew angle (nose inboard) was found to relieve the excessive store side loads throughout the Mach number range. It was also determined that the relative position of the fuselage nose to the store can appreciably affect the store side forces at supersonic speeds.

  1. View east, showing Northwest Wing (Wing 5), west wall of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View east, showing Northwest Wing (Wing 5), west wall of the North Wing (Wing 2) and rear elevations of the facade and its flanking wings (Wings 1 and 2) - Hospital for Sick Children, 1731 Bunker Hill Road, Northeast, Washington, District of Columbia, DC

  2. Digital Oblique Remote Ionospheric Sensing (DORIS) Program Development

    DTIC Science & Technology

    1992-04-01

    waveforms. A new with the ARTIST software (Reinisch and Iluang. autoscaling technique for oblique ionograms 1983, Gamache et al., 1985) which is...development and performance of a complete oblique ionogram autoscaling and inversion algorithm is presented. The inver.i-,n algorithm uses a three...OTIH radar. 14. SUBJECT TERMS 15. NUMBER OF PAGES Oblique Propagation; Oblique lonogram Autoscaling ; i Electron Density Profile Inversion; Simulated 16

  3. Titanium and advanced composite structures for a supersonic cruise arrow wing configuration

    NASA Technical Reports Server (NTRS)

    Turner, M. J.; Hoy, J. M.

    1976-01-01

    Structural design studies were made, based on current technology and on an estimate of technology to be available in the mid 1980's, to assess the relative merits of structural concepts and materials for an advanced arrow wing configuration cruising at Mach 2.7. Preliminary studies were made to insure compliance of the configuration with general design criteria, integrate the propulsion system with the airframe, and define an efficient structural arrangement. Material and concept selection, detailed structural analysis, structural design and airplane mass analysis were completed based on current technology. Based on estimated future technology, structural sizing for strength and a preliminary assessment of the flutter of a strength designed composite structure were completed. An advanced computerized structural design system was used, in conjunction with a relatively complex finite element model, for detailed analysis and sizing of structural members.

  4. Insect Wing Membrane Topography Is Determined by the Dorsal Wing Epithelium

    PubMed Central

    Belalcazar, Andrea D.; Doyle, Kristy; Hogan, Justin; Neff, David; Collier, Simon

    2013-01-01

    The Drosophila wing consists of a transparent wing membrane supported by a network of wing veins. Previously, we have shown that the wing membrane cuticle is not flat but is organized into ridges that are the equivalent of one wing epithelial cell in width and multiple cells in length. These cuticle ridges have an anteroposterior orientation in the anterior wing and a proximodistal orientation in the posterior wing. The precise topography of the wing membrane is remarkable because it is a fusion of two independent cuticle contributions from the dorsal and ventral wing epithelia. Here, through morphological and genetic studies, we show that it is the dorsal wing epithelium that determines wing membrane topography. Specifically, we find that wing hair location and membrane topography are coordinated on the dorsal, but not ventral, surface of the wing. In addition, we find that altering Frizzled Planar Cell Polarity (i.e., Fz PCP) signaling in the dorsal wing epithelium alone changes the membrane topography of both dorsal and ventral wing surfaces. We also examined the wing morphology of two model Hymenopterans, the honeybee Apis mellifera and the parasitic wasp Nasonia vitripennis. In both cases, wing hair location and wing membrane topography are coordinated on the dorsal, but not ventral, wing surface, suggesting that the dorsal wing epithelium also controls wing topography in these species. Because phylogenomic studies have identified the Hymenotera as basal within the Endopterygota family tree, these findings suggest that this is a primitive insect character. PMID:23316434

  5. Wing-wake interaction reduces power consumption in insect tandem wings

    NASA Astrophysics Data System (ADS)

    Lehmann, Fritz-Olaf

    Insects are capable of a remarkable diversity of flight techniques. Dragonflies, in particular, are notable for their powerful aerial manoeuvres and endurance during prey catching or territory flights. While most insects such as flies, bees and wasps either reduced their hinds wings or mechanically coupled fore and hind wings, dragonflies have maintained two independent-controlled pairs of wings throughout their evolution. An extraordinary feature of dragonfly wing kinematics is wing phasing, the shift in flapping phase between the fore and hind wing periods. Wing phasing has previously been associated with an increase in thrust production, readiness for manoeuvrability and hunting performance. Recent studies have shown that wing phasing in tandem wings produces a twofold modulation in hind wing lift, but slightly reduces the maximum combined lift of fore and hind wings, compared to two wings flapping in isolation. Despite this disadvantage, however, wing phasing is effective in improving aerodynamic efficiency during flight by the removal of kinetic energy from the wake. Computational analyses demonstrate that this increase in flight efficiency may save up to 22% aerodynamic power expenditure compared to insects flapping only two wings. In terms of engineering, energetic benefits in four-wing flapping are of substantial interest in the field of biomimetic aircraft design, because the performance of man-made air vehicles is often limited by high-power expenditure rather than by lift production. This manuscript provides a summary on power expenditures and aerodynamic efficiency in flapping tandem wings by investigating wing phasing in a dynamically scaled robotic model of a hovering dragonfly.

  6. Wing-wake interaction reduces power consumption in insect tandem wings

    NASA Astrophysics Data System (ADS)

    Lehmann, Fritz-Olaf

    2009-05-01

    Insects are capable of a remarkable diversity of flight techniques. Dragonflies, in particular, are notable for their powerful aerial manoeuvres and endurance during prey catching or territory flights. While most insects such as flies, bees and wasps either reduced their hinds wings or mechanically coupled fore and hind wings, dragonflies have maintained two independent-controlled pairs of wings throughout their evolution. An extraordinary feature of dragonfly wing kinematics is wing phasing, the shift in flapping phase between the fore and hind wing periods. Wing phasing has previously been associated with an increase in thrust production, readiness for manoeuvrability and hunting performance. Recent studies have shown that wing phasing in tandem wings produces a twofold modulation in hind wing lift, but slightly reduces the maximum combined lift of fore and hind wings, compared to two wings flapping in isolation. Despite this disadvantage, however, wing phasing is effective in improving aerodynamic efficiency during flight by the removal of kinetic energy from the wake. Computational analyses demonstrate that this increase in flight efficiency may save up to 22% aerodynamic power expenditure compared to insects flapping only two wings. In terms of engineering, energetic benefits in four-wing flapping are of substantial interest in the field of biomimetic aircraft design, because the performance of man-made air vehicles is often limited by high-power expenditure rather than by lift production. This manuscript provides a summary on power expenditures and aerodynamic efficiency in flapping tandem wings by investigating wing phasing in a dynamically scaled robotic model of a hovering dragonfly.

  7. Supersonics Project - Airport Noise Tech Challenge

    NASA Technical Reports Server (NTRS)

    Bridges, James

    2010-01-01

    The Airport Noise Tech Challenge research effort under the Supersonics Project is reviewed. While the goal of "Improved supersonic jet noise models validated on innovative nozzle concepts" remains the same, the success of the research effort has caused the thrust of the research to be modified going forward in time. The main activities from FY06-10 focused on development and validation of jet noise prediction codes. This required innovative diagnostic techniques to be developed and deployed, extensive jet noise and flow databases to be created, and computational tools to be developed and validated. Furthermore, in FY09-10 systems studies commissioned by the Supersonics Project showed that viable supersonic aircraft were within reach using variable cycle engine architectures if exhaust nozzle technology could provide 3-5dB of suppression. The Project then began to focus on integrating the technologies being developed in its Tech Challenge areas to bring about successful system designs. Consequently, the Airport Noise Tech Challenge area has shifted efforts from developing jet noise prediction codes to using them to develop low-noise nozzle concepts for integration into supersonic aircraft. The new plan of research is briefly presented by technology and timelines.

  8. Obliquity dependence of the tangential YORP

    NASA Astrophysics Data System (ADS)

    Ševeček, P.; Golubov, O.; Scheeres, D. J.; Krugly, Yu. N.

    2016-08-01

    Context. The tangential Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect is a thermophysical effect that can alter the rotation rate of asteroids and is distinct from the so-called normal YORP effect, but to date has only been studied for asteroids with zero obliquity. Aims: We aim to study the tangential YORP force produced by spherical boulders on the surface of an asteroid with an arbitrary obliquity. Methods: A finite element method is used to simulate heat conductivity inside a boulder, to find the recoil force experienced by it. Then an ellipsoidal asteroid uniformly covered by these types of boulders is considered and the torque is numerically integrated over its surface. Results: Tangential YORP is found to operate on non-zero obliquities and decreases by a factor of two for increasing obliquity.

  9. Artificial insect wings with biomimetic wing morphology and mechanical properties.

    PubMed

    Liu, Zhiwei; Yan, Xiaojun; Qi, Mingjing; Zhu, Yangsheng; Huang, Dawei; Zhang, Xiaoyong; Lin, Liwei

    2017-09-26

    The pursuit of a high lift force for insect-scale flapping-wing micro aerial vehicles (FMAVs) requires that their artificial wings possess biomimetic wing features which are close to those of their natural counterpart. In this work, we present both fabrication and testing methods for artificial insect wings with biomimetic wing morphology and mechanical properties. The artificial cicada (Hyalessa maculaticollis) wing is fabricated through a high precision laser cutting technique and a bonding process of multilayer materials. Through controlling the shape of the wing venation, the fabrication method can achieve three-dimensional wing architecture, including cambers or corrugations. Besides the artificial cicada wing, the proposed fabrication method also shows a promising versatility for diverse wing types. Considering the artificial cicada wing's characteristics of small size and light weight, special mechanical testing systems are designed to investigate its mechanical properties. Flexural stiffness, maximum deformation rate and natural frequency are measured and compared with those of its natural counterpart. Test results reveal that the mechanical properties of the artificial cicada wing depend strongly on its vein thickness, which can be used to optimize an artificial cicada wing's mechanical properties in the future. As such, this work provides a new form of artificial insect wings which can be used in the field of insect-scale FMAVs.

  10. Secular obliquity variations for Ceres

    NASA Astrophysics Data System (ADS)

    Bills, Bruce; Scott, Bryan R.; Nimmo, Francis

    2016-10-01

    We have constructed secular variation models for the orbit and spin poles of the asteroid (1) Ceres, and used them to examine how the obliquity, or angular separation between spin and orbit poles, varies over a time span of several million years. The current obliquity is 4.3 degrees, which means that there are some regions near the poles which do not receive any direct Sunlight. The Dawn mission has provided an improved estimate of the spin pole orientation, and of the low degree gravity field. That allows us to estimate the rate at which the spin pole precesses about the instantaneous orbit pole.The orbit of Ceres is secularly perturbed by the planets, with Jupiter's influence dominating. The current inclination of the orbit plane, relative to the ecliptic, is 10.6 degrees. However, it varies between 7.27 and 11.78 degrees, with dominant periods of 22.1 and 39.6 kyr. The spin pole precession rate parameter has a period of 205 kyr, with current uncertainty of 3%, dominated by uncertainty in the mean moment of inertia of Ceres.The obliquity varies, with a dominant period of 24.5 kyr, with maximum values near 26 degrees, and minimum values somewhat less than the present value. Ceres is currently near to a minimum of its secular obliquity variations.The near-surface thermal environment thus has at least 3 important time scales: diurnal (9.07 hours), annual (4.60 years), and obliquity cycle (24.5 kyr). The annual thermal wave likely only penetrates a few meters, but the much long thermal wave associated with the obliquity cycle has a skin depth larger by a factor of 70 or so, depending upon thermal properties in the subsurface.

  11. Computational Test Cases for a Clipped Delta Wing with Pitching and Trailing-Edge Control Surface Oscillations

    NASA Technical Reports Server (NTRS)

    Bennett, Robert M.; Walker, Charlotte E.

    1999-01-01

    Computational test cases have been selected from the data set for a clipped delta wing with a six-percent-thick circular-arc airfoil section that was tested in the NASA Langley Transonic Dynamics Tunnel. The test cases include parametric variation of static angle of attack, pitching oscillation frequency, trailing-edge control surface oscillation frequency, and Mach numbers from subsonic to low supersonic values. Tables and plots of the measured pressures are presented for each case. This report provides an early release of test cases that have been proposed for a document that supplements the cases presented in AGARD Report 702.

  12. Supersonic compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, II, William Byron; Lawlor, Shawn P.; Breidenthal, Robert E.

    A supersonic compressor including a rotor to deliver a gas at supersonic conditions to a diffuser. The diffuser includes a plurality of aerodynamic ducts that have converging and diverging portions, for deceleration of gas to subsonic conditions and then for expansion of subsonic gas, to change kinetic energy of the gas to static pressure. The aerodynamic ducts include vortex generating structures for controlling boundary layer, and structures for changing the effective contraction ratio to enable starting even when the aerodynamic ducts are designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are providedmore » having an aspect ratio of in excess of two to one, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.« less

  13. Types of flow on the lee side of delta wings

    NASA Astrophysics Data System (ADS)

    Narayan, K. Yegna; Seshadri, S. N.

    1997-03-01

    Delta wings have found wide application in a variety of aerospace vehicles including high performance combat aircraft, supersonic civil aircraft, (proposed) hypersonic aircraft and the space shuttle orbiter. A considerable amount of research work has been carried out over the past three decades and an extensive body of literature is available. The present review focuses attention on the nine possible types of flow that can occur on the lee side of delta wings in a Mach number range which extends from subsonic to hypersonic. The dependence of the flow types on geometrical and freestream parameters has been discussed in detail. The extensive experimental data available has made it possible to obtain a broad physical understanding of the mechanisms underlying the different flow types. However much more work needs to be done to determine the effects of Reynolds number, particularly when either the state of the boundary layer is transitional or when the type of flow is changing from leading edge attached to separated. Computational methods have made spectacular advances in recent years. In particular, solutions of Reynolds averaged Navier-Stokes equations at fairly high Reynolds number have become possible and these computations have captured eight of the nine experimentally observed flow types, including those involving cross flow shock waves and shock-induced separation.

  14. A model for 3-D sonic/supersonic transverse fuel injection into a supersonic air stream

    NASA Technical Reports Server (NTRS)

    Bussing, Thomas R. A.; Lidstone, Gary L.

    1989-01-01

    A model for sonic/supersonic transverse fuel injection into a supersonic airstream is proposed. The model replaces the hydrogen jet up to the Mach disk plane and the elliptic parts of the air flow field around the jet by an equivalent body. The main features of the model were validated on the basis of experimental data.

  15. Avian Wings

    NASA Technical Reports Server (NTRS)

    Liu, Tianshu; Kuykendoll, K.; Rhew, R.; Jones, S.

    2004-01-01

    This paper describes the avian wing geometry (Seagull, Merganser, Teal and Owl) extracted from non-contact surface measurements using a three-dimensional laser scanner. The geometric quantities, including the camber line and thickness distribution of airfoil, wing planform, chord distribution, and twist distribution, are given in convenient analytical expressions. Thus, the avian wing surfaces can be generated and the wing kinematics can be simulated. The aerodynamic characteristics of avian airfoils in steady inviscid flows are briefly discussed. The avian wing kinematics is recovered from videos of three level-flying birds (Crane, Seagull and Goose) based on a two-jointed arm model. A flapping seagull wing in the 3D physical space is re-constructed from the extracted wing geometry and kinematics.

  16. The effect of polar caps on obliquity

    NASA Technical Reports Server (NTRS)

    Lindner, B. L.

    1993-01-01

    Rubincam has shown that the Martian obliquity is dependent on the seasonal polar caps. In particular, Rubincam analytically derived this dependence and showed that the change in obliquity is directly proportional to the seasonal polar cap mass. Rubincam concludes that seasonal friction does not appear to have changed Mars' climate significantly. Using a computer model for the evolution of the Martian atmosphere, Haberle et al. have made a convincing case for the possibility of huge polar caps, about 10 times the mass of the current polar caps, that exist for a significant fraction of the planet's history. Since Rubincam showed that the effect of seasonal friction on obliquity is directly proportional to polar cap mass, a scenario with a ten-fold increase in polar cap mass over a significant fraction of the planet's history would result in a secular increase in Mars' obliquity of perhaps 10 degrees. Hence, the Rubincam conclusion of an insignificant contribution to Mars' climate by seasonal friction may be incorrect. Furthermore, if seasonal friction is an important consideration in the obliquity of Mars, this would significantly alter the predictions of past obliquity.

  17. Ceres' obliquity history: implications for permanently shadowed regions

    NASA Astrophysics Data System (ADS)

    Ermakov, A.; Mazarico, E.; Schroeder, S.; Carsenty, U.; Schorghofer, N.; Raymond, C. A.; Zuber, M. T.; Smith, D. E.; Russell, C. T.

    2016-12-01

    The Dawn spacecraft's Framing Camera (FC) images and radio-tracking data have allowed precise determination of Ceres' rotational pole and obliquity. Presently, the obliquity (ɛ) of Ceres is ≈4°. Because of the low obliquity, permanently shadowed regions (PSRs) can exist on Ceres, and have been identified using both images and shape models (Schorghofer et al., 2016). These observations make Ceres only the third body in the solar system with recognized PSRs after the Moon (Zuber et al., 1997) and Mercury (Chabot et al., 2012). Some craters in Ceres' polar regions possess bright crater floor deposits (BCFD). These crater floors are typically in shadow. However, they receive light scattered from the surrounding sunlit crater walls and therefore can be seen by FC. These bright deposits are hypothesized to be water ice accumulated in PSR cold traps, analogous to the Moon (Watson et al., 1961). The existence of the PSRs critically depends on the body's obliquity. The goal of this work is to study the history of Ceres' obliquity. Knowing past obliquity variations can shed light on the history of PSRs, and can help constrain the water-ice deposition time scales. We integrate the obliquity of Ceres over the last 3 My for the range of C/MR2vol constrained by the Dawn gravity measurements (Park et al., 2016, Ermakov et al., 2016) using methods described in Wisdom & Holman (1991) and Touma & Wisdom (1994). The obliquity history for C/MR2vol=0.392 is shown in Fig. 1. The integrations show that the obliquity of Ceres undergoes large oscillations with the main period of T=25 ky and a maximum of 19.7°. The obliquity oscillations are driven by the periodic change of Ceres' orbit inclination (T=22 ky) and the pole precession (T=210 ky). Ceres passed a local obliquity minimum 1327 years ago when (ɛmin=2.4°). The most recent maximum was 13895 years ago (ɛmax=18.5°). At such high obliquity, most of the present-day PSRs receive direct sunlight. We find a correlation between

  18. Initiation characteristics of wedge-induced oblique detonation waves in turbulence flows

    NASA Astrophysics Data System (ADS)

    Yu, Moyao; Miao, Shikun

    2018-06-01

    The initiation features of wedge-induced oblique detonation waves (ODWs) in supersonic turbulence flows are studied with numerical simulations based on the SST k-ω model. The results show that the ignition delays are smaller in turbulence flows which results in a decrease in the initiation lengths of ODWs, and the initiation length decreases with the increase of the turbulence intensity. The effects of turbulence on the initiation limits of ODWs are analyzed with the energetic limit and the kinetic limit. It is shown that the initiation limit is not affected by the energetic limit, but affected by the kinetic limit. Because the ignition delay decreases in a turbulence flow, the kinetic limit is more easily to be fulfilled. Therefore, the initiation limit decreases with the increase of the turbulence intensity, that is to say, ODWs in strongly turbulent flows are more easily to be initiated. Besides, the transition structures of ODWs are investigated and the results show that for the same inflow condition, transition structures of ODWs in strongly turbulent flows are smooth while it is abrupt in an inviscid or slightly turbulent flow, and the reasons are discussed.

  19. Dual wing, swept forward swept rearward wing, and single wing design optimization for high performance business airplanes

    NASA Technical Reports Server (NTRS)

    Rhodes, M. D.; Selberg, B. P.

    1982-01-01

    An investigation was performed to compare closely coupled dual wing and swept forward swept rearward wing aircraft to corresponding single wing 'baseline' designs to judge the advantages offered by aircraft designed with multiple wing systems. The optimum multiple wing geometry used on the multiple wing designs was determined in an analytic study which investigated the two- and three-dimensional aerodynamic behavior of a wide range of multiple wing configurations in order to find the wing geometry that created the minimum cruise drag. This analysis used a multi-element inviscid vortex panel program coupled to a momentum integral boundary layer analysis program to account for the aerodynamic coupling between the wings and to provide the two-dimensional aerodynamic data, which was then used as input for a three-dimensional vortex lattice program, which calculated the three-dimensional aerodynamic data. The low drag of the multiple wing configurations is due to a combination of two dimensional drag reductions, tailoring the three dimensional drag for the swept forward swept rearward design, and the structural advantages of the two wings that because of the structural connections permitted higher aspect ratios.

  20. Nonlifting wing-body combinations with certain geometric restraints having minimum wave drag at low supersonic speeds

    NASA Technical Reports Server (NTRS)

    Lomax, Harvard

    1957-01-01

    Several variational problems involving optimum wing and body combinations having minimum wave drag for different kinds of geometrical restraints are analyzed. Particular attention is paid to the effect on the wave drag of shortening the fuselage and, for slender axially symmetric bodies, the effect of fixing the fuselage diameter at several points or even of fixing whole portions of its shape.

  1. Supersonic jet shock noise reduction

    NASA Technical Reports Server (NTRS)

    Stone, J. R.

    1984-01-01

    Shock-cell noise is identified to be a potentially significant problem for advanced supersonic aircraft at takeoff. Therefore NASA conducted fundamental studies of the phenomena involved and model-scale experiments aimed at developing means of noise reduction. The results of a series of studies conducted to determine means by which supersonic jet shock noise can be reduced to acceptable levels for advanced supersonic cruise aircraft are reviewed. Theoretical studies were conducted on the shock associated noise of supersonic jets from convergent-divergent (C-D) nozzles. Laboratory studies were conducted on the influence of narrowband shock screech on broadband noise and on means of screech reduction. The usefulness of C-D nozzle passages was investigated at model scale for single-stream and dual-stream nozzles. The effect of off-design pressure ratio was determined under static and simulated flight conditions for jet temperatures up to 960 K. Annular and coannular flow passages with center plugs and multi-element suppressor nozzles were evaluated, and the effect of plug tip geometry was established. In addition to the far-field acoustic data, mean and turbulent velocity distributions were measured with a laser velocimeter, and shadowgraph images of the flow field were obtained.

  2. Review and prospect of supersonic business jet design

    NASA Astrophysics Data System (ADS)

    Sun, Yicheng; Smith, Howard

    2017-04-01

    This paper reviews the environmental issues and challenges appropriate to the design of supersonic business jets (SSBJs). There has been a renewed, worldwide interest in developing an environmentally friendly, economically viable and technologically feasible supersonic transport aircraft. A historical overview indicates that the SSBJ will be the pioneer for the next generation of supersonic airliners. As a high-end product itself, the SSBJ will likely take a market share in the future. The mission profile appropriate to this vehicle is explored considering the rigorous environmental constraints. Mitigation of the sonic boom and improvements aerodynamic efficiency in flight are the most challenging features of civil supersonic transport. Technical issues and challenges associated with this type of aircraft are identified, and methodologies for the SSBJ design are discussed. Due to the tightly coupled issues, a multidisciplinary design, analysis and optimization environment is regarded as the essential approach to the creation of a low-boom low-drag supersonic aircraft. Industrial and academic organizations have an interest in this type of vehicle are presented. Their investments in SSBJ design will hopefully get civil supersonic transport back soon.

  3. Inlet flowfield investigation. Part 2: Computation of the flow about a supercruise forebody at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Paynter, G. C.; Salemann, V.; Strom, E. E. I.

    1984-01-01

    A numerical procedure which solves the parabolized Navier-Stokes (PNS) equations on a body fitted mesh was used to compute the flow about the forebody of an advanced tactical supercruise fighter configuration in an effort to explore the use of a PNS method for design of supersonic cruise forebody geometries. Forebody flow fields were computed at Mach numbers of 1.5, 2.0, and 2.5, and at angles-of-attack of 0 deg, 4 deg, and 8 deg. at each Mach number. Computed results are presented at several body stations and include contour plots of Mach number, total pressure, upwash angle, sidewash angle and cross-plane velocity. The computational analysis procedure was found reliable for evaluating forebody flow fields of advanced aircraft configurations for flight conditions where the vortex shed from the wing leading edge is not a dominant flow phenomenon. Static pressure distributions and boundary layer profiles on the forebody and wing were surveyed in a wind tunnel test, and the analytical results are compared to the data. The current status of the parabolized flow flow field code is described along with desirable improvements in the code.

  4. Supersonic through-flow fan engine and aircraft mission performance

    NASA Technical Reports Server (NTRS)

    Franciscus, Leo C.; Maldonado, Jaime J.

    1989-01-01

    A study was made to evaluate potential improvement to a commercial supersonic transport by powering it with supersonic through-flow fan turbofan engines. A Mach 3.2 mission was considered. The three supersonic fan engines considered were designed to operate at bypass ratios of 0.25, 0.5, and 0.75 at supersonic cruise. For comparison a turbine bypass turbojet was included in the study. The engines were evaluated on the basis of aircraft takeoff gross weight with a payload of 250 passengers for a fixed range of 5000 N.MI. The installed specific fuel consumption of the supersonic fan engines was 7 to 8 percent lower than that of the turbine bypass engine. The aircraft powered by the supersonic fan engines had takeoff gross weights 9 to 13 percent lower than aircraft powered by turbine bypass engines.

  5. Summary of the First High-Altitude, Supersonic Flight Dynamics Test for the Low-Density Supersonic Decelerator Project

    NASA Technical Reports Server (NTRS)

    Clark, Ian G.; Adler, Mark; Manning, Rob

    2015-01-01

    NASA's Low-Density Supersonic Decelerator Project is developing and testing the next generation of supersonic aerodynamic decelerators for planetary entry. A key element of that development is the testing of full-scale articles in conditions relevant to their intended use, primarily the tenuous Mars atmosphere. To achieve this testing, the LDSD project developed a test architecture similar to that used by the Viking Project in the early 1970's for the qualification of their supersonic parachute. A large, helium filled scientific balloon is used to hoist a 4.7 m blunt body test vehicle to an altitude of approximately 32 kilometers. The test vehicle is released from the balloon, spun up for gyroscopic stability, and accelerated to over four times the speed of sound and an altitude of 50 kilometers using a large solid rocket motor. Once at those conditions, the vehicle is despun and the test period begins. The first flight of this architecture occurred on June 28th of 2014. Though primarily a shake out flight of the new test system, the flight was also able to achieve an early test of two of the LDSD technologies, a large 6 m diameter Supersonic Inflatable Aerodynamic Decelerator (SIAD) and a large, 30.5 m nominal diameter supersonic parachute. This paper summarizes this first flight.

  6. Takeoff certification considerations for large subsonic and supersonic transport airplanes using the Ames flight simulator for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Snyder, C. T.; Drinkwater, F. J., III; Fry, E. B.; Forrest, R. D.

    1973-01-01

    Data for use in development of takeoff airworthiness standards for new aircraft designs such as the supersonic transport (SST) and the large wide-body subsonic jet transport are provided. An advanced motion simulator was used to compare the performance and handling characteristics of three representative large jet transports during specific flight certification tasks. Existing regulatory constraints and methods for determining rotation speed were reviewed, and the effects on takeoff performance of variations in rotation speed, pitch attitude, and pitch attitude rate during the rotation maneuver were analyzed. A limited quantity of refused takeoff information was obtained. The aerodynamics, wing loading, and thrust-to-weight ratio of the subject SST resulted in takeoff speeds limited by climb (rather than lift-off) considerations. Take-off speeds based on U.S. subsonic transport requirements were found unacceptable because of the criticality of rotation-abuse effects on one-engine-inoperative climb performance. Adequate safety margin was provided by takeoff speeds based on proposed Anglo-French supersonic transport (TSS) criteria, with the limiting criterion being that takeoff safety speed be at least 1.15 times the one-engine-inoperative zero-rate-of-climb speed. Various observations related to SST certification are presented.

  7. Experiments on free and impinging supersonic microjets

    NASA Astrophysics Data System (ADS)

    Phalnikar, K. A.; Kumar, R.; Alvi, F. S.

    2008-05-01

    The fluid dynamics of microflows has recently commanded considerable attention because of their potential applications. Until now, with a few exceptions, most of the studies have been limited to low speed flows. This experimental study examines supersonic microjets of 100-1,000 μm in size with exit velocities in the range of 300-500 m/s. Such microjets are presently being used to actively control larger supersonic impinging jets, which occur in STOVL (short takeoff and vertical landing) aircraft, cavity flows, and flow separation. Flow properties of free as well as impinging supersonic microjets have been experimentally investigated over a range of geometric and flow parameters. The flowfield is visualized using a micro-schlieren system with a high magnification. These schlieren images clearly show the characteristic shock cell structure typically observed in larger supersonic jets. Quantitative measurements of the jet decay and spreading rates as well as shock cell spacing are obtained using micro-pitot probe surveys. In general, the mean flow features of free microjets are similar to larger supersonic jets operating at higher Reynolds numbers. However, some differences are also observed, most likely due to pronounced viscous effects associated with jets at these small scales. Limited studies of impinging microjets were also conducted. They reveal that, similar to the behavior of free microjets, the flow structure of impinging microjets strongly resembles that of larger supersonic impinging jets.

  8. Low Density Supersonic Decelerator Parachute Decelerator System

    NASA Technical Reports Server (NTRS)

    Gallon, John C.; Clark, Ian G.; Rivellini, Tommaso P.; Adams, Douglas S.; Witkowski, Allen

    2013-01-01

    The Low Density Supersonic Decelerator Project has undertaken the task of developing and testing a large supersonic ringsail parachute. The parachute under development is intended to provide mission planners more options for parachutes larger than the Mars Science Laboratory's 21.5m parachute. During its development, this new parachute will be taken through a series of tests in order to bring the parachute to a TRL-6 readiness level and make the technology available for future Mars missions. This effort is primarily focused on two tests, a subsonic structural verification test done at sea level atmospheric conditions and a supersonic flight behind a blunt body in low-density atmospheric conditions. The preferred method of deploying a parachute behind a decelerating blunt body robotic spacecraft in a supersonic flow-field is via mortar deployment. Due to the configuration constraints in the design of the test vehicle used in the supersonic testing it is not possible to perform a mortar deployment. As a result of this limitation an alternative deployment process using a ballute as a pilot is being developed. The intent in this alternate approach is to preserve the requisite features of a mortar deployment during canopy extraction in a supersonic flow. Doing so will allow future Mars missions to either choose to mortar deploy or pilot deploy the parachute that is being developed.

  9. Oblique nonlinear whistler wave

    NASA Astrophysics Data System (ADS)

    Yoon, Peter H.; Pandey, Vinay S.; Lee, Dong-Hun

    2014-03-01

    Motivated by satellite observation of large-amplitude whistler waves propagating in oblique directions with respect to the ambient magnetic field, a recent letter discusses the physics of large-amplitude whistler waves and relativistic electron acceleration. One of the conclusions of that letter is that oblique whistler waves will eventually undergo nonlinear steepening regardless of the amplitude. The present paper reexamines this claim and finds that the steepening associated with the density perturbation almost never occurs, unless whistler waves have sufficiently high amplitude and propagate sufficiently close to the resonance cone angle.

  10. View east, showing Northwest Wing (Wing 5) and rear elevations ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View east, showing Northwest Wing (Wing 5) and rear elevations of facade and tis flaking wings (Wings 1 and 2) - Hospital for Sick Children, 1731 Bunker Hill Road, Northeast, Washington, District of Columbia, DC

  11. Pdf prediction of supersonic hydrogen flames

    NASA Technical Reports Server (NTRS)

    Eifler, P.; Kollmann, W.

    1993-01-01

    A hybrid method for the prediction of supersonic turbulent flows with combustion is developed consisting of a second order closure for the velocity field and a multi-scalar pdf method for the local thermodynamic state. It is shown that for non-premixed flames and chemical equilibrium mixture fraction, the logarithm of the (dimensionless) density, internal energy per unit mass and the divergence of the velocity have several advantages over other sets of scalars. The closure model is applied to a supersonic non-premixed flame burning hydrogen with air supplied by a supersonic coflow and the results are compared with a limited set of experimental data.

  12. Centrifuge models simulating magma emplacement during oblique rifting

    NASA Astrophysics Data System (ADS)

    Corti, Giacomo; Bonini, Marco; Innocenti, Fabrizio; Manetti, Piero; Mulugeta, Genene

    2001-07-01

    A series of centrifuge analogue experiments have been performed to model the mechanics of continental oblique extension (in the range of 0° to 60°) in the presence of underplated magma at the base of the continental crust. The experiments reproduced the main characteristics of oblique rifting, such as (1) en-echelon arrangement of structures, (2) mean fault trends oblique to the extension vector, (3) strain partitioning between different sets of faults and (4) fault dips higher than in purely normal faults (e.g. Tron, V., Brun, J.-P., 1991. Experiments on oblique rifting in brittle-ductile systems. Tectonophysics 188, 71-84). The model results show that the pattern of deformation is strongly controlled by the angle of obliquity ( α), which determines the ratio between the shearing and stretching components of movement. For α⩽35°, the deformation is partitioned between oblique-slip and normal faults, whereas for α⩾45° a strain partitioning arises between oblique-slip and strike-slip faults. The experimental results show that for α⩽35°, there is a strong coupling between deformation and the underplated magma: the presence of magma determines a strain localisation and a reduced strain partitioning; deformation, in turn, focuses magma emplacement. Magmatic chambers form in the core of lower crust domes with an oblique trend to the initial magma reservoir and, in some cases, an en-echelon arrangement. Typically, intrusions show an elongated shape with a high length/width ratio. In nature, this pattern is expected to result in magmatic and volcanic belts oblique to the rift axis and arranged en-echelon, in agreement with some selected natural examples of continental rifts (i.e. Main Ethiopian Rift) and oceanic ridges (i.e. Mohns and Reykjanes Ridges).

  13. NASA Trapezoidal Wing Simulation Using Stress-w and One- and Two-Equation Turbulence Models

    NASA Technical Reports Server (NTRS)

    Rodio, J. J.; Xiao, X; Hassan, H. A.; Rumsey, C. L.

    2014-01-01

    The Wilcox 2006 stress-omega model (also referred to as WilcoxRSM-w2006) has been implemented in the NASA Langley code CFL3D and used to study a variety of 2-D and 3-D configurations. It predicted a variety of basic cases reasonably well, including secondary flow in a supersonic rectangular duct. One- and two-equation turbulence models that employ the Boussinesq constitutive relation were unable to predict this secondary flow accurately because it is driven by normal turbulent stress differences. For the NASA trapezoidal wing at high angles of attack, the WilcoxRSM-w2006 model predicted lower maximum lift than experiment, similar to results of a two-equation model.

  14. Aerodynamic-structural study of canard wing, dual wing, and conventional wing systems for general aviation applications

    NASA Technical Reports Server (NTRS)

    Selberg, B. P.; Cronin, D. L.

    1985-01-01

    An analytical aerodynamic-structural airplane configuration study was conducted to assess performance gains achievable through advanced design concepts. The mission specification was for 350 mph, range of 1500 st. mi., at altitudes between 30,000 and 40,000 ft. Two payload classes were studied - 1200 lb (6 passengers) and 2400 lb (12 passengers). The configurations analyzed included canard wings, closely coupled dual wings, swept forward - swept rearward wings, joined wings, and conventional wing tail arrangements. The results illustrate substantial performance gains possible with the dual wing configuration. These gains result from weight savings due to predicted structural efficiencies. The need for further studies of structural efficiencies for the various advanced configurations was highlighted.

  15. Supersonic Flight Dynamics Test: Trajectory, Atmosphere, and Aerodynamics Reconstruction

    NASA Technical Reports Server (NTRS)

    Kutty, Prasad; Karlgaard, Christopher D.; Blood, Eric M.; O'Farrell, Clara; Ginn, Jason M.; Shoenenberger, Mark; Dutta, Soumyo

    2015-01-01

    The Supersonic Flight Dynamics Test is a full-scale flight test of a Supersonic Inflatable Aerodynamic Decelerator, which is part of the Low Density Supersonic Decelerator technology development project. The purpose of the project is to develop and mature aerodynamic decelerator technologies for landing large mass payloads on the surface of Mars. The technologies include a Supersonic Inflatable Aerodynamic Decelerator and Supersonic Parachutes. The first Supersonic Flight Dynamics Test occurred on June 28th, 2014 at the Pacific Missile Range Facility. This test was used to validate the test architecture for future missions. The flight was a success and, in addition, was able to acquire data on the aerodynamic performance of the supersonic inflatable decelerator. This paper describes the instrumentation, analysis techniques, and acquired flight test data utilized to reconstruct the vehicle trajectory, atmosphere, and aerodynamics. The results of the reconstruction show significantly higher lofting of the trajectory, which can partially be explained by off-nominal booster motor performance. The reconstructed vehicle force and moment coefficients fall well within pre-flight predictions. A parameter identification analysis indicates that the vehicle displayed greater aerodynamic static stability than seen in pre-flight computational predictions and ballistic range tests.

  16. On the Comparison of the Long Penetration Mode (LPM) Supersonic Counterflowing Jet to the Supersonic Screech Jet

    NASA Technical Reports Server (NTRS)

    Farr, Rebecca A.; Chang, Chau-Lyan; Jones, Jess H.; Dougherty, N. Sam

    2015-01-01

    Classic tonal screech noise created by under-expanded supersonic jets; Long Penetration Mode (LPM) supersonic phenomenon -Under-expanded counter-flowing jet in supersonic free stream -Demonstrated in several wind tunnel tests -Modeled in several computational fluid dynamics (CFD) simulations; Discussion of LPM acoustics feedback and fluid interactions -Analogous to the aero-acoustics interactions seen in screech jets; Lessons Learned: Applying certain methodologies to LPM -Developed and successfully demonstrated in the study of screech jets -Discussion of mechanically induced excitation in fluid oscillators in general; Conclusions -Large body of work done on jet screech, other aero-acoustic phenomenacan have direct application to the study and applications of LPM cold flow jets

  17. Overview of NASA's Supersonic Cruise Efficiency - Propulsion Research

    NASA Technical Reports Server (NTRS)

    DeBonis, James R.

    2009-01-01

    The research in Supersonic Cruise Efficiency Propulsion (SCE-P) Technical Challenge area of NASA's Supersonics project is discussed. The research in SCE-P is being performed to enable efficient supersonic flight over land. Research elements in this area include: Advance Inlet Concepts, High Performance/Wider Operability Fan and Compressor, Advanced Nozzle Concepts, and Intelligent Sensors/Actuators. The research under each of these elements is briefly discussed.

  18. Experimental Study of Fillets to Reduce Corner Effects in an Oblique Shock-Wave/Boundary Layer Interaction

    NASA Technical Reports Server (NTRS)

    Hirt, Stefanie M.

    2015-01-01

    A test was conducted in the 15 cm x 15 cm supersonic wind tunnel at NASA Glenn Research Center that focused on corner effects of an oblique shock-wave/boundary-layer interaction. In an attempt to control the interaction in the corner region, eight corner fillet configurations were tested. Three parameters were considered for the fillet configurations: the radius, the fillet length, and the taper length from the square corner to the fillet radius. Fillets effectively reduced the boundary-layer thickness in the corner; however, there was an associated penalty in the form of increased boundary-layer thickness at the tunnel centerline. Larger fillet radii caused greater reductions in boundary-layer thickness along the corner bisector. To a lesser, but measureable, extent, shorter fillet lengths resulted in thinner corner boundary layers. Overall, of the configurations tested, the largest radius resulted in the best combination of control in the corner, evidenced by a reduction in boundary-layer thickness, coupled with minimal impacts at the tunnel centerline.

  19. Supersonic Flight Dynamics Test 2: Trajectory, Atmosphere, and Aerodynamics Reconstruction

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; O'Farrell, Clara; Ginn, Jason M.; Van Norman, John W.

    2016-01-01

    The Supersonic Flight Dynamics Test is a full-scale flight test of aerodynamic decelerator technologies developed by the Low Density Supersonic Decelerator technology demonstration project. The purpose of the project is to develop and mature aerodynamic decelerator technologies for landing large-mass payloads on the surface of Mars. The technologies include a Supersonic Inflatable Aerodynamic Decelerator and supersonic parachutes. The first Supersonic Flight Dynamics Test occurred on June 28th, 2014 at the Pacific Missile Range Facility. The purpose of this test was to validate the test architecture for future tests. The flight was a success and, in addition, was able to acquire data on the aerodynamic performance of the supersonic inflatable decelerator. The Supersonic Disksail parachute developed a tear during deployment. The second flight test occurred on June 8th, 2015, and incorporated a Supersonic Ringsail parachute which was redesigned based on data from the first flight. Again, the inflatable decelerator functioned as predicted but the parachute was damaged during deployment. This paper describes the instrumentation, analysis techniques, and acquired flight test data utilized to reconstruct the vehicle trajectory, main motor thrust, atmosphere, and aerodynamics.

  20. Bow and Oblique Shock Formation in Soap Film

    NASA Astrophysics Data System (ADS)

    Kim, Ildoo; Mandre, Shreyas; Sane, Aakash

    2015-11-01

    In recent years, soap films have been exploited primarily to approximate two-dimensional flows while their three-dimensional character is relatively unattended. An example of the three-dimensional character of the flow in a soap film is the observed Marangoni shock wave when the flow speed exceeds the wave speed. In this study, we investigated the formation of bow and oblique shocks in soap films generated by wedges with different deflection angles. When the wedge deflection angle is small and the film flows fast, oblique shocks are observed. When the oblique shock cannot exists, bow shock is formed upstream the wedge. We characterized the oblique shock angle as a function of the wedge deflection angle and the flow speed, and we also present the criteria for transition between bow and oblique Marangoni shocks in soap films.

  1. Supersonics/Airport Noise Plan: An Evolutionary Roadmap

    NASA Technical Reports Server (NTRS)

    Bridges, James

    2011-01-01

    This presentation discusses the Plan for the Airport Noise Tech Challenge Area of the Supersonics Project. It is given in the context of strategic planning exercises being done in other Projects to show the strategic aspects of the Airport Noise plan rather than detailed task lists. The essence of this strategic view is the decomposition of the research plan by Concept and by Tools. Tools (computational, experimental) is the description of the plan that resources (such as researchers) most readily identify with, while Concepts (here noise reduction technologies or aircraft configurations) is the aspects that project management and outside reviewers most appreciate as deliverables and milestones. By carefully cross-linking these so that Concepts are addressed sequentially (roughly one after another) by researchers developing/applying their Tools simultaneously (in parallel with one another), the researchers can deliver milestones at a reasonable pace while doing the longer-term development that most Tools in the aeroacoustics science require. An example of this simultaneous application of tools was given for the Concept of High Aspect Ratio Nozzles. The presentation concluded with a few ideas on how this strategic view could be applied to the Subsonic Fixed Wing Project's Quiet Aircraft Tech Challenge Area as it works through its current roadmapping exercise.

  2. Selected Examples of NACA/NASA Supersonic Flight Research

    NASA Technical Reports Server (NTRS)

    Saltzman, Edwin J.; Ayers, Theodore G.

    1995-01-01

    The present Dryden Flight Research Center, a part of the National Aeronautics and Space Administration, has a flight research history that extends back to the mid-1940's. The parent organization was a part of the National Advisory Committee for Aeronautics and was formed in 1946 as the Muroc Flight Test Unit. This document describes 13 selected examples of important supersonic flight research conducted from the Mojave Desert location of the Dryden Flight Research Center over a 4 decade period beginning in 1946. The research described herein was either obtained at supersonic speeds or enabled subsequent aircraft to penetrate or traverse the supersonic region. In some instances there accrued from these research efforts benefits which are also applicable at lower or higher speed regions. A major consideration in the selection of the various research topics was the lasting impact they have had, or will have, on subsequent supersonic flight vehicle design, efficiency, safety, and performance or upon improved supersonic research techniques.

  3. The joined wing - An overview. [aircraft tandem wings in diamond configurations

    NASA Technical Reports Server (NTRS)

    Wolkovitch, J.

    1985-01-01

    The joined wing is a new type of aircraft configuration which employs tandem wings arranged to form diamond shapes in plan view and front view. Wind-tunnel tests and finite-element structural analyses have shown that the joined wing provides the following advantages over a comparable wing-plus-tail system; lighter weight and higher stiffness, higher span-efficiency factor, higher trimmed maximum lift coefficient, lower wave drag, plus built-in direct lift and direct sideforce control capability. A summary is given of research performed on the joined wing. Calculated joined wing weights are correlated with geometric parameters to provide simple weight estimation methods. The results of low-speed and transonic wind-tunnel tests are summarized, and guidelines for design of joined-wing aircraft are given. Some example joined-wing designs are presented and related configurations having connected wings are reviewed.

  4. Unstructured Grid Euler Method Assessment for Longitudinal and Lateral/Directional Aerodynamic Performance Analysis of the HSR Technology Concept Airplane at Supersonic Cruise Speed

    NASA Technical Reports Server (NTRS)

    Ghaffari, Farhad

    1999-01-01

    Unstructured grid Euler computations, performed at supersonic cruise speed, are presented for a High Speed Civil Transport (HSCT) configuration, designated as the Technology Concept Airplane (TCA) within the High Speed Research (HSR) Program. The numerical results are obtained for the complete TCA cruise configuration which includes the wing, fuselage, empennage, diverters, and flow through nacelles at M (sub infinity) = 2.4 for a range of angles-of-attack and sideslip. Although all the present computations are performed for the complete TCA configuration, appropriate assumptions derived from the fundamental supersonic aerodynamic principles have been made to extract aerodynamic predictions to complement the experimental data obtained from a 1.675%-scaled truncated (aft fuselage/empennage components removed) TCA model. The validity of the computational results, derived from the latter assumptions, are thoroughly addressed and discussed in detail. The computed surface and off-surface flow characteristics are analyzed and the pressure coefficient contours on the wing lower surface are shown to correlate reasonably well with the available pressure sensitive paint results, particularly, for the complex flow structures around the nacelles. The predicted longitudinal and lateral/directional performance characteristics for the truncated TCA configuration are shown to correlate very well with the corresponding wind-tunnel data across the examined range of angles-of-attack and sideslip. The complementary computational results for the longitudinal and lateral/directional performance characteristics for the complete TCA configuration are also presented along with the aerodynamic effects due to empennage components. Results are also presented to assess the computational method performance, solution sensitivity to grid refinement, and solution convergence characteristics.

  5. Butterfly wing colours: scale beads make white pierid wings brighter.

    PubMed Central

    Stavenga, D. G.; Stowe, S.; Siebke, K.; Zeil, J.; Arikawa, K.

    2004-01-01

    The wing-scale morphologies of the pierid butterflies Pieris rapae (small white) and Delias nigrina (common jezabel), and the heliconine Heliconius melpomene are compared and related to the wing-reflectance spectra. Light scattering at the wing scales determines the wing reflectance, but when the scales contain an absorbing pigment, reflectance is suppressed in the absorption wavelength range of the pigment. The reflectance of the white wing areas of P. rapae, where the scales are studded with beads, is considerably higher than that of the white wing areas of H. melpomene, which has scales lacking beads. The beads presumably cause the distinct matt-white colour of the wings of pierids and function to increase the reflectance amplitude. This will improve the visual discrimination between conspecific males and females. PMID:15306303

  6. Supersonic Dislocation Bursts in Silicon

    DOE PAGES

    Hahn, E. N.; Zhao, S.; Bringa, E. M.; ...

    2016-06-06

    Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolutionmore » we successfully predict a dislocation density of 1.5 x 10(12) cm(-2) within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon.« less

  7. Supersonic Dislocation Bursts in Silicon

    PubMed Central

    Hahn, E. N.; Zhao, S.; Bringa, E. M.; Meyers, M. A.

    2016-01-01

    Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolution we successfully predict a dislocation density of 1.5 × 1012 cm−2 within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon. PMID:27264746

  8. Supersonic Dislocation Bursts in Silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, E. N.; Zhao, S.; Bringa, E. M.

    Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolutionmore » we successfully predict a dislocation density of 1.5 x 10(12) cm(-2) within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon.« less

  9. Aerodynamic characteristics of a supersonic cruise airplane configuration at Mach numbers of 2.30, 2.96, and 3.30. [Langley Unitary Plan wind tunnel test

    NASA Technical Reports Server (NTRS)

    Shrout, B. L.; Fournier, R. H.

    1979-01-01

    An investigation was made in the Langley Unitary Plan wind tunnel at Mach numbers of 2.30, 2.96, and 3.30 to determine the static longitudinal and lateral aerodynamic characteristics of a model of a supersonic cruise airplane. The configuration, with a design Mach number of 3.0, has a highly swept arrow wing with tip panels of lesser sweep, a fuselage chine, outboard vertical tails, and outboard engines mounted in nacelles beneath the wings. For wind tunnel test conditions, a trimmed value above 6.0 of the maximum lift-drag ratio was obtained at the design Mach number. The configuration was statically stable, both longitudinally and laterally. Data are presented for variations of vertical-tail roll-out and toe-in and for various combinations of components. Some roll control data are shown as are data for the various sand grit sizes used in fixing the boundary layer transition location.

  10. The application of Green's theorem to the solution of boundary-value problems in linearized supersonic wing theory

    NASA Technical Reports Server (NTRS)

    Heaslet, Max A; Lomax, Harvard

    1950-01-01

    Following the introduction of the linearized partial differential equation for nonsteady three-dimensional compressible flow, general methods of solution are given for the two and three-dimensional steady-state and two-dimensional unsteady-state equations. It is also pointed out that, in the absence of thickness effects, linear theory yields solutions consistent with the assumptions made when applied to lifting-surface problems for swept-back plan forms at sonic speeds. The solutions of the particular equations are determined in all cases by means of Green's theorem, and thus depend on the use of Green's equivalent layer of sources, sinks, and doublets. Improper integrals in the supersonic theory are treated by means of Hadamard's "finite part" technique.

  11. F-16XL Ship #2 wing glove close-up, laser cut holes, with dime for scale

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This June 1995 photograph of a test panel similiar to the one attached to the surface of an F-16XL research aircraft's left wing at NASA's Dryden Flight Research Center, Edwards, California, shows the size of the more than 10 million laser-cut holes in the panel, called a glove, as compared with a dime. Below the titanium panel into which holes are cut is a suction system linked to a compressor. During research flights with the modified, delta-winged F-16XL, the suction system pulled a small part of the boundary layer of air through the glove's porous surface to expand the extent of smooth (laminar) flow. Researchers believe that laminar flow conditions can reduce aerodynamic drag (friction) and contribute to reduced operating costs by improving fuel consumption and lowering aircraft weight. This Supersonic Laminar Flow Control (SLFC) experiment represents a collaborative effort between NASA and aerospace industry (specifically Boeing, Rockwell, and McDonnell Douglas), with Boeing assembling the panel and McDonnell Douglas designing the suction system.

  12. Towards an Aero-Propulso-Servo-Elasticity Analysis of a Commercial Supersonic Transport

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Kopasakis, George; Chwalowski, Pawel; Sanetrik, Mark D.; Carlson, Jan-Renee; Silva, Walt A.; McNamara, Jack

    2016-01-01

    This paper covers the development of an aero-propulso-servo-elastic (APSE) model using computational fluid dynamics (CFD) and linear structural deformations. The APSE model provides the integration of the following two previously developed nonlinear dynamic simulations: a variable cycle turbofan engine and an elastic supersonic commercial transport vehicle. The primary focus of this study is to provide a means to include relevant dynamics of a turbomachinery propulsion system into the aeroelastic studies conducted during a vehicle design, which have historically neglected propulsion effects. A high fidelity CFD tool is used here for the integration platform. The elastic vehicle neglecting the propulsion system serves as a comparison of traditional approaches to the APSE results. An overview of the methodology is presented for integrating the propulsion system and elastic vehicle. Static aeroelastic analysis comparisons between the traditional and developed APSE models for a wing tip detection indicate that the propulsion system impact on the vehicle elastic response could increase the detection by approximately ten percent.

  13. The leading-edge vortex of swift wing-shaped delta wings

    NASA Astrophysics Data System (ADS)

    Muir, Rowan Eveline; Arredondo-Galeana, Abel; Viola, Ignazio Maria

    2017-08-01

    Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the leading-edge vortex (LEV) for lift generation in a variety of flight conditions. A well-documented example of an LEV is that generated by aircraft with highly swept, delta-shaped wings. While the wing aerodynamics of a manoeuvring aircraft, a bird gliding and a bird in flapping flight vary significantly, it is believed that this existing knowledge can serve to add understanding to the complex aerodynamics of natural fliers. In this investigation, a model non-slender delta-shaped wing with a sharp leading edge is tested at low Reynolds number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus. The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the unmodified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift wing-shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta-shaped wing.

  14. The leading-edge vortex of swift wing-shaped delta wings

    PubMed Central

    Muir, Rowan Eveline; Arredondo-Galeana, Abel

    2017-01-01

    Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the leading-edge vortex (LEV) for lift generation in a variety of flight conditions. A well-documented example of an LEV is that generated by aircraft with highly swept, delta-shaped wings. While the wing aerodynamics of a manoeuvring aircraft, a bird gliding and a bird in flapping flight vary significantly, it is believed that this existing knowledge can serve to add understanding to the complex aerodynamics of natural fliers. In this investigation, a model non-slender delta-shaped wing with a sharp leading edge is tested at low Reynolds number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus. The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the unmodified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift wing-shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta-shaped wing. PMID:28878968

  15. The leading-edge vortex of swift wing-shaped delta wings.

    PubMed

    Muir, Rowan Eveline; Arredondo-Galeana, Abel; Viola, Ignazio Maria

    2017-08-01

    Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the leading-edge vortex (LEV) for lift generation in a variety of flight conditions. A well-documented example of an LEV is that generated by aircraft with highly swept, delta-shaped wings. While the wing aerodynamics of a manoeuvring aircraft, a bird gliding and a bird in flapping flight vary significantly, it is believed that this existing knowledge can serve to add understanding to the complex aerodynamics of natural fliers. In this investigation, a model non-slender delta-shaped wing with a sharp leading edge is tested at low Reynolds number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus . The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the unmodified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift wing-shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta-shaped wing.

  16. The scaling of oblique plasma double layers

    NASA Technical Reports Server (NTRS)

    Borovsky, J. E.

    1983-01-01

    Strong oblique plasma double layers are investigated using three methods, i.e., electrostatic particle-in-cell simulations, numerical solutions to the Poisson-Vlasov equations, and analytical approximations to the Poisson-Vlasov equations. The solutions to the Poisson-Vlasov equations and numerical simulations show that strong oblique double layers scale in terms of Debye lengths. For very large potential jumps, theory and numerical solutions indicate that all effects of the magnetic field vanish and the oblique double layers follow the same scaling relation as the field-aligned double layers.

  17. DAST in Flight just after Structural Failure of Right Wing

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Two BQM-34 Firebee II drones were modified with supercritical airfoils, called the Aeroelastic Research Wing (ARW), for the Drones for Aerodynamic and Structural Testing (DAST) program, which ran from 1977 to 1983. This photo, taken 12 June 1980, shows the DAST-1 (Serial #72-1557) immediately after it lost its right wing after suffering severe wing flutter. The vehicle crashed near Cuddeback Dry Lake. The Firebee II was selected for the DAST program because its standard wing could be removed and replaced by a supercritical wing. The project's digital flutter suppression system was intended to allow lighter wing structures, which would translate into better fuel economy for airliners. Because the DAST vehicles were flown intentionally at speeds and altitudes that would cause flutter, the program anticipated that crashes might occur. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for

  18. Summary of NACA/NASA Variable-Sweep Research and Development Leading to the F-111 (TFX)

    NASA Technical Reports Server (NTRS)

    1966-01-01

    On November 24, 1962, the United States ushered in a new era of aircraft development when the Department of Defense placed an initial development contract for the world's first supersonic variable-sweep aircraft - the F-111 or so-called TFX (tactical fighter-experimental). The multimission performance potential of this concept is made possible by virtue of the variable-sweep wing - a research development of the NASA and its predecessor, the NACA. With the wing swept forward into the maximum span position, the aircraft configuration is ideal for efficient subsonic flight. This provides long-range combat and ferry mission capability, short-field landing and take-off characteristics, and compatibility with naval aircraft carrier operation. With the wing swept back to about 650 of sweep, the aircraft has optimum supersonic performance to accomplish high-altitude supersonic bombing or interceptor missions. With the wing folded still further back, the aircraft provides low drag and low gust loads during supersonic flight "on the deck" (altitudes under 1000 feet). The concept of wing variable sweep, of course, is not new. Initial studies were conducted at Langley as early as 1945, and two subsonic variable-sweep prototypes (Bell X-5 and Grumman XF-IOF) were flown as early as 1951/52. These were subsonic aircraft, however, and the great advantage of variable sweep in improving supersonic flight efficiency could not be realized. Further the structures of these early aircraft were complicated by the necessity for translating the ing fore and aft to achieve satisfactory longitUdinal stability as the wing sweep was varied. Late in 1958 a research breakthrough at Langley provided the technology for designing a variable-sweep wing having satisfactory stability through a wide sweep angle range without the necessity for fore and aft translation of the wing. In this same period there evolved within the military services an urgent requirement for a versatile fighter-bomber that

  19. Validation of OVERFLOW for Supersonic Retropropulsion

    NASA Technical Reports Server (NTRS)

    Schauerhamer, Guy

    2012-01-01

    The goal is to softly land high mass vehicles (10s of metric tons) on Mars. Supersonic Retropropulsion (SRP) is a potential method of deceleration. Current method of supersonic parachutes does not scale past 1 metric ton. CFD is of increasing importance since flight and experimental data at these conditions is difficult to obtain. CFD must first be validated at these conditions.

  20. Supersonic shear flows in laser driven high-energy-density plasmas created by the Nike laser

    NASA Astrophysics Data System (ADS)

    Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Grosskopf, M. J.; Ditmar, J. R.; Aglitskiy, Y.; Weaver, J. L.; Velikovich, A. L.; Plewa, T.

    2008-11-01

    In high-energy-density (HED) plasmas the Kelvin-Helmholtz (KH) instability plays an important role in the evolution of Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) unstable interfaces, as well as material interfaces that experience the passage one or multiple oblique shocks. Despite the potentially important role of the KH instability few experiments have been carried out to explore its behavior in the high-energy-density regime. We report on the evolution of a supersonic shear flow that is generated by the release of a high velocity (>100 km/s) aluminum plasma onto a CRF foam (ρ = 0.1 g/cc) surface. In order to seed the Kelvin-Helmholtz (KH) instability various two-dimensional sinusoidal perturbations (λ = 100, 200, and 300 μm with peak-to-valley amplitudes of 10, 20, and 30 μm respectively) have been machined into the foam surface. This experiment was performed using the Nike laser at the Naval Research Laboratory.

  1. Aerodynamic Models for the Low Density Supersonic Declerator (LDSD) Supersonic Flight Dynamics Test (SFDT)

    NASA Technical Reports Server (NTRS)

    Van Norman, John W.; Dyakonov, Artem; Schoenenberger, Mark; Davis, Jody; Muppidi, Suman; Tang, Chun; Bose, Deepak; Mobley, Brandon; Clark, Ian

    2015-01-01

    An overview of pre-flight aerodynamic models for the Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) campaign is presented, with comparisons to reconstructed flight data and discussion of model updates. The SFDT campaign objective is to test Supersonic Inflatable Aerodynamic Decelerator (SIAD) and large supersonic parachute technologies at high altitude Earth conditions relevant to entry, descent, and landing (EDL) at Mars. Nominal SIAD test conditions are attained by lifting a test vehicle (TV) to 36 km altitude with a large helium balloon, then accelerating the TV to Mach 4 and and 53 km altitude with a solid rocket motor. The first flight test (SFDT-1) delivered a 6 meter diameter robotic mission class decelerator (SIAD-R) to several seconds of flight on June 28, 2014, and was successful in demonstrating the SFDT flight system concept and SIAD-R. The trajectory was off-nominal, however, lofting to over 8 km higher than predicted in flight simulations. Comparisons between reconstructed flight data and aerodynamic models show that SIAD-R aerodynamic performance was in good agreement with pre-flight predictions. Similar comparisons of powered ascent phase aerodynamics show that the pre-flight model overpredicted TV pitch stability, leading to underprediction of trajectory peak altitude. Comparisons between pre-flight aerodynamic models and reconstructed flight data are shown, and changes to aerodynamic models using improved fidelity and knowledge gained from SFDT-1 are discussed.

  2. Charts and approximate formulas for the estimation of aeroelastic effects of the lateral control of swept and unswept wings

    NASA Technical Reports Server (NTRS)

    Foss, Kenneth A; Diederich, Franklin W

    1953-01-01

    Charts and approximate formulas are presented for the estimation of static aeroelastic effects on the spanwise lift distribution, rolling-moment coefficient, and rate of roll due to the deflection of ailerons on swept and unswept wings at subsonic and supersonic speeds. Some design considerations brought out by the results of this report are discussed. This report treats the lateral-control case in a manner similar to that employed in NACA Report 1140 for the symmetric-flight case, and is intended to be used in conjunction with NACA Report 1140 and the charts and formulas presented therein.

  3. Long-Term Obliquity Variations of a Moonless Earth

    NASA Astrophysics Data System (ADS)

    Barnes, Jason W.; Lissauer, J. J.; Chambers, J. E.

    2012-05-01

    Earth's present-day obliquity varies by +/-1.2 degrees over 100,000-year timescales. Without the Moon's gravity increasing the rotation axis precession rate, prior theory predicted that a moonless Earth's obliquity would be allowed to vary between 0 and 85 degrees -- moreso even than present-day Mars (0 - 60 degrees). We use a modified version of the symplectic orbital integrator `mercury' to numerically investigate the obliquity evolution of hypothetical moonless Earths. Contrary to the large theoretically allowed range, we find that moonless Earths more typically experience obliquity variations of just +/- 10 degrees over Gyr timescales. Some initial conditions for the moonless Earth's rotation rate and obliquity yield slightly greater variations, but the majority have smaller variations. In particular, retrograde rotators are quite stable and should constitute 50% of the population if initial terrestrial planet rotation is isotropic. Our results have important implications for the prospects of long-term habitability of moonless planets in extrasolar systems.

  4. Feasibility of supersonic diode pumped alkali lasers: Model calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barmashenko, B. D.; Rosenwaks, S.

    The feasibility of supersonic operation of diode pumped alkali lasers (DPALs) is studied for Cs and K atoms applying model calculations, based on a semi-analytical model previously used for studying static and subsonic flow DPALs. The operation of supersonic lasers is compared with that measured and modeled in subsonic lasers. The maximum power of supersonic Cs and K lasers is found to be higher than that of subsonic lasers with the same resonator and alkali density at the laser inlet by 25% and 70%, respectively. These results indicate that for scaling-up the power of DPALs, supersonic expansion should be considered.

  5. Evaluation of the oblique detonation wave ramjet

    NASA Technical Reports Server (NTRS)

    Morrison, R. B.

    1978-01-01

    The potential performance of oblique detonation wave ramjets is analyzed in terms of multishock diffusion, oblique detonation waves, and heat release. Results are presented in terms of thrust coefficients and specific impulses for a range of flight Mach numbers of 6 to 16.

  6. An improved version of NCOREL: A computer program for 3-D nonlinear supersonic potential flow computations

    NASA Technical Reports Server (NTRS)

    Siclari, Michael J.

    1988-01-01

    A computer code called NCOREL (for Nonconical Relaxation) has been developed to solve for supersonic full potential flows over complex geometries. The method first solves for the conical at the apex and then marches downstream in a spherical coordinate system. Implicit relaxation techniques are used to numerically solve the full potential equation at each subsequent crossflow plane. Many improvements have been made to the original code including more reliable numerics for computing wing-body flows with multiple embedded shocks, inlet flow through simulation, wake model and entropy corrections. Line relaxation or approximate factorization schemes are optionally available. Improved internal grid generation using analytic conformal mappings, supported by a simple geometric Harris wave drag input that was originally developed for panel methods and internal geometry package are some of the new features.

  7. Supersonic Retropropulsion Flight Test Concepts

    NASA Technical Reports Server (NTRS)

    Post, Ethan A.; Dupzyk, Ian C.; Korzun, Ashley M.; Dyakonov, Artem A.; Tanimoto, Rebekah L.; Edquist, Karl T.

    2011-01-01

    NASA's Exploration Technology Development and Demonstration Program has proposed plans for a series of three sub-scale flight tests at Earth for supersonic retropropulsion, a candidate decelerator technology for future, high-mass Mars missions. The first flight test in this series is intended to be a proof-of-concept test, demonstrating successful initiation and operation of supersonic retropropulsion at conditions that replicate the relevant physics of the aerodynamic-propulsive interactions expected in flight. Five sub-scale flight test article concepts, each designed for launch on sounding rockets, have been developed in consideration of this proof-of-concept flight test. Commercial, off-the-shelf components are utilized as much as possible in each concept. The design merits of the concepts are compared along with their predicted performance for a baseline trajectory. The results of a packaging study and performance-based trade studies indicate that a sounding rocket is a viable launch platform for this proof-of-concept test of supersonic retropropulsion.

  8. Flowfield analysis for successive oblique shock wave-turbulent boundary layer interactions

    NASA Technical Reports Server (NTRS)

    Sun, C. C.; Childs, M. E.

    1976-01-01

    A computation procedure is described for predicting the flowfields which develop when successive interactions between oblique shock waves and a turbulent boundary layer occur. Such interactions may occur, for example, in engine inlets for supersonic aircraft. Computations are carried out for axisymmetric internal flows at M 3.82 and 2.82. The effect of boundary layer bleed is considered for the M 2.82 flow. A control volume analysis is used to predict changes in the flow field across the interactions. Two bleed flow models have been considered. A turbulent boundary layer program is used to compute changes in the boundary layer between the interactions. The results given are for flows with two shock wave interactions and for bleed at the second interaction site. In principle the method described may be extended to account for additional interactions. The predicted results are compared with measured results and are shown to be in good agreement when the bleed flow rate is low (on the order of 3% of the boundary layer mass flow), or when there is no bleed. As the bleed flow rate is increased, differences between the predicted and measured results become larger. Shortcomings of the bleed flow models at higher bleed flow rates are discussed.

  9. The Trojan. [supersonic transport

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Trojan is the culmination of thousands of engineering person-hours by the Cones of Silence Design Team. The goal was to design an economically and technologically viable supersonic transport. The Trojan is the embodiment of the latest engineering tools and technology necessary for such an advanced aircraft. The efficient design of the Trojan allows for supersonic cruise of Mach 2.0 for 5,200 nautical miles, carrying 250 passengers. The per aircraft price is placed at $200 million, making the Trojan a very realistic solution for tomorrows transportation needs. The following is a detailed study of the driving factors that determined the Trojan's super design.

  10. Supersonic laminar-flow control

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.; Malik, Mujeeb R.

    1987-01-01

    Detailed, up to date systems studies of the application of laminar flow control (LFC) to various supersonic missions and/or vehicles, both civilian and military, are not yet available. However, various first order looks at the benefits are summarized. The bottom line is that laminar flow control may allow development of a viable second generation SST. This follows from a combination of reduced fuel, structure, and insulation weight permitting operation at higher altitudes, thereby lowering sonic boom along with improving performance. The long stage lengths associated with the emerging economic importance of the Pacific Basin are creating a serious and renewed requirement for such a vehicle. Supersonic LFC techniques are discussed.

  11. High Altitude Supersonic Decelerator Test Vehicle

    NASA Technical Reports Server (NTRS)

    Cook, Brant T.; Blando, Guillermo; Kennett, Andrew; Von Der Heydt, Max; Wolff, John Luke; Yerdon, Mark

    2013-01-01

    The Low Density Supersonic Decelerator (LDSD) project is tasked by NASA's Office of the Chief Technologist (OCT) to advance the state of the art in Mars entry and descent technology in order to allow for larger payloads to be delivered to Mars at higher altitudes with better accuracy. The project will develop a 33.5 m Do Supersonic Ringsail (SSRS) parachute, 6m attached torus, robotic class Supersonic Inflatable Aerodynamic Decelerator (SIAD-R), and an 8 m attached isotensoid, exploration class Supersonic Inflatable Aerodynamic Decelerator (SIAD-E). The SSRS and SIAD-R should be brought to TRL-6, while the SIAD-E should be brought to TRL-5. As part of the qualification and development program, LDSD must perform a Mach-scaled Supersonic Flight Dynamics Test (SFDT) in order to demonstrate successful free flight dynamic deployments at Mars equivalent altitude, of all three technologies. In order to perform these tests, LDSD must design and build a test vehicle to deliver all technologies to approximately 180,000 ft and Mach 4, deploy a SIAD, free fly to approximately Mach 2, deploy the SSRS, record high-speed and high-resolution imagery of both deployments, as well as record data from an instrumentation suite capable of characterizing the technology induced vehicle dynamics. The vehicle must also be recoverable after splashdown into the ocean under a nominal flight, while guaranteeing forensic data protection in an off nominal catastrophic failure of a test article that could result in a terminal velocity, tumbling water impact.

  12. Construction of the 8- by 6-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1948-06-21

    The 8- by 6-Foot Supersonic Wind Tunnel at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory was the nation’s largest supersonic facility when it began operation in April 1949. The emergence of new propulsion technologies such as turbojets, ramjets, and rockets during World War II forced the NACA and the aircraft industry to develop new research tools. In late 1945 the NACA began design work for new large supersonic wind tunnels at its three laboratories. The result was the 4- by 4-Foot Supersonic Wind Tunnel at Langley Memorial Aeronautical Laboratory, 6- by 6-foot supersonic wind tunnel at Ames Aeronautical Laboratory, and the largest facility, the 8- by 6-Foot Supersonic Wind Tunnel in Cleveland. The two former tunnels were to study aerodynamics, while the 8- by 6 facility was designed for supersonic propulsion. The 8- by 6-Foot Supersonic Wind Tunnel was used to study propulsion systems, including inlets and exit nozzles, combustion fuel injectors, flame holders, exit nozzles, and controls on ramjet and turbojet engines. Flexible sidewalls alter the tunnel’s nozzle shape to vary the Mach number during operation. A seven-stage axial compressor, driven by three electric motors that yield a total of 87,000 horsepower, generates air speeds from Mach 0.36 to 2.0. A section of the tunnel is seen being erected in this photograph.

  13. Supersonic transport vis-a-vis energy savings

    NASA Technical Reports Server (NTRS)

    Cormery, G.

    1979-01-01

    The energy and economic saving modifications in supersonic transportation are studied. Modifications in the propulsion systems and in the aerodynamic configurations of the Concorde aircraft to reduce noise generation and increase fuel efficiency are discussed. The conversion of supersonic aircraft from fuel oils to synthetic fuels is examined.

  14. 10' x 10' Supersonic Wind Tunnel Flexwall

    NASA Image and Video Library

    2015-08-10

    The flexwall section of NASA Glenn’s 10x10 supersonic wind tunnel is made up of two movable flexible steel sidewalls. These powerful hydraulic jacks move the walls in and out to control supersonic air speeds in the test section between Mach 2.0 and 3.5.

  15. Parametric analysis of swept-wing geometry with sheared wing tips

    NASA Technical Reports Server (NTRS)

    Fremaux, C. M.; Vijgen, P. M. H. W.; Van Dam, C. P.

    1990-01-01

    A computational parameter study is presented of potential reductions in induced drag and increases in lateral-directional stability due to sheared wing tips attached to an untwisted wing of moderate sweep and aspect ratio. Sheared tips are swept and tapered wing-tip devices mounted in the plane of the wing. The induced-drag results are obtained using an inviscid, incompressible surface-panel method that models the nonlinear effects due to the deflected and rolled-up wake behind the lifting surface. The induced-drag results with planar sheared tips are compared to straight-tapered tip extensions and nonplanar winglet geometries. The lateral-directional static-stability characteristics of the wing with sheared tips are estimated using a quasi-vortex-lattice method. For certain combinations of sheared-tip sweep and taper, both the induced efficiency of the wing and the relevant static-stability derivatives are predicted to increase compared to the wing with a straight-tapered tip modification.

  16. AD-1 with research pilot Richard E. Gray

    NASA Technical Reports Server (NTRS)

    1982-01-01

    1981/1982. Richard E. Gray was born March 11, 1945 in Newport News, Virginia; he died on November 8, 1982 at Edwards, California, in a T-37 spin accident. The Ames-Dryden-1 (AD-1) aircraft was designed to investigate the concept of an oblique (pivoting) wing. The wing could be rotated on its center pivot, so that it could be set at its most efficient angle for the speed at which the aircraft was flying. NASA Ames Research Center Aeronautical Engineer Robert T. Jones conceived the idea of an oblique wing. His wind tunnel studies at Ames (Moffett Field, CA) indicated that an oblique wing design on a supersonic transport might achieve twice the fuel economy of an aircraft with conventional wings. The oblique wing on the AD-1 pivoted about the fuselage, remaining perpendicular to it during slow flight and rotating to angles of up to 60 degrees as aircraft speed increased. Analytical and wind tunnel studiesthat Jones conducted at Ames indicated that a transport-sized oblique-wing aircraft flying at speeds of up to Mach 1.4 (1.4 times the speed of sound) would have substantially better aerodynamic performance than aircraft with conventional wings. The AD-1 structure allowed the project to complete all of its technical objectives. The type of low-speed, low-cost vehicle - as expected - exhibited aeroelastic and pitch-roll-coupling effects that contributed to poor handling at sweep angles above 45 degrees. The fiberglass structure limited the wing stiffness that would have improved the handling qualities. Thus, after completion of the AD-1 project, there was still a need for a transonic oblique-wing research aircraft to assess the effects of compressibility, evaluate a more representative structure, and analyze flight performance at transonic speeds (those on either side of the speed of sound). The aircraft was delivered to the Dryden Flight Research Center, Edwards, CA, in March 1979 and its first flight was on December 21, 1979. Piloting the aircraft on that flight, as well

  17. Protection of children in forward-facing child restraint systems during oblique side impact sled tests: Intrusion and tether effects.

    PubMed

    Hauschild, Hans W; Humm, John R; Pintar, Frank A; Yoganandan, Narayan; Kaufman, Bruce; Kim, Jinyong; Maltese, Matthew R; Arbogast, Kristy B

    2016-09-01

    Testing was conducted to quantify the kinematics, potential for head impact, and influence on head injury metrics for a center-seated Q3s in a forward-facing child restraint system (FFCRS) in oblique impacts. The influences of a tether and intruded door on these measures were explored. Nine lateral oblique sled tests were conducted on a convertible forward-facing child restraint seat (FFCRS). The FFCRSs were secured to a bench seat from a popular production small SUV at the center seating position utilizing the lower anchor and tether for children (LATCH). The vehicle seat was fixed on the sled carriage at 60° and 80° from full frontal (30° and 10° forward rotation from pure lateral) providing an oblique lateral acceleration to the Q3s and FFCRS. A structure simulating an intruded door was mounted to the near (left) side of vehicle seat. The sled input acceleration was the proposed FMVSS 213 lateral pulse scaled to a 35 km/h delta-V. Tests were conducted with and without the tether attached to the FFCRS. Results indicate the influence of the tether on kinematics and injury measures in oblique side impact crashes for a center- or far-side-seated child occupant. All tests without a tether resulted in head contact with the simulated door, and 2 tests at the less oblique angle (80°) with a tether also resulted in head contact. No head-to-door contact was observed in 2 tests utilizing a tether. High-speed video analysis showed that the head moved beyond the CRS head side wings and made contact with the simulated intruded door. Head injury criterion (HIC) 15 median values were 589 without the tether vs. 332 with the tether attached. Tests utilizing a tether had less lateral head excursion than tests without a tether (median 400 vs. 442 mm). These tests demonstrate the important role of the tether in controlling head excursion for center- or far-side-seated child occupants in oblique side impact crashes and limiting the head injury potential with an intruded door

  18. The effect of wing flexibility on sound generation of flapping wings.

    PubMed

    Geng, Biao; Xue, Qian; Zheng, Xudong; Liu, Geng; Ren, Yan; Dong, Haibo

    2017-12-13

    In this study, the unsteady flow and acoustic characteristics of a three-dimensional (3D) flapping wing model of a Tibicen linnei cicada in forward-flight are numerically investigated. A single cicada wing is modelled as a membrane with a prescribed motion reconstructed from high-speed videos of a live insect. The numerical solution takes a hydrodynamic/acoustic splitting approach: the flow field is solved with an incompressible Navier-Stokes flow solver based on an immersed boundary method, and the acoustic field is solved with linearized perturbed compressible equations. The 3D simulation allows for the examination of both the directivity and frequency compositions of the flapping wing sound in a full space. Along with the flexible wing model, a rigid wing model that is extracted from real motion is also simulated to investigate the effects of wing flexibility. The simulation results show that the flapping sound is directional; the dominant frequency varies around the wing. The first and second frequency harmonics show different radiation patterns in the rigid and flexible wing cases, which are demonstrated to be highly associated with wing kinematics and loadings. Furthermore, the rotation and deformation in the flexible wing is found to help lower the sound strength in all directions.

  19. Characterization of a low pressure supersonic plasma jet

    NASA Astrophysics Data System (ADS)

    Caldirola, S.; Barni, R.; Riccardi, C.

    2014-11-01

    Plasma assisted supersonic jet deposition (PA-SJD) is a technique which combines a inductively coupled plasma (ICP) with a supersonic jet for the fabrication of thin films having a desired morphology. A reactive argon-oxygen plasma is employed to dissociate an organic precursor (titanium tetra-isopropoxide for TiO2 thin films) in a first vacuum chamber which is connected through a nozzle to a lower pressure chamber. The pressure difference produces a supersonic jet, seeded with nanoparticles. Along the jet the nucleation and aggregation of nanoparticles can be controlled to obtain nanostructured depositions. We report here the results of an analysis performed with a quadrupole mass spectrometer (QMS) which was used to sample neutrals and ions from the jet at different positions along the centerline of the supersonic expansion.

  20. The leading-edge vortex of swift-wing shaped delta wings

    NASA Astrophysics Data System (ADS)

    Muir, Rowan; Arredondo-Galeana, Abel; Viola, Ignazio Maria

    2017-11-01

    Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the Leading-Edge Vortex (LEV) for lift generation in a variety of flight conditions. In this investigation, a model non-slender delta shaped wing with a sharp leading-edge is tested at low Reynolds Number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus. The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the un-modified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift-wing shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds Number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta shaped wing. This work received funding from the Engineering and Physical Sciences Research Council [EP/M506515/1] and the Consejo Nacional de Ciencia y Tecnología (CONACYT).

  1. Supersonic combustion engine testbed, heat lightning

    NASA Technical Reports Server (NTRS)

    Hoying, D.; Kelble, C.; Langenbahn, A.; Stahl, M.; Tincher, M.; Walsh, M.; Wisler, S.

    1990-01-01

    The design of a supersonic combustion engine testbed (SCET) aircraft is presented. The hypersonic waverider will utilize both supersonic combustion ramjet (SCRAMjet) and turbofan-ramjet engines. The waverider concept, system integration, electrical power, weight analysis, cockpit, landing skids, and configuration modeling are addressed in the configuration considerations. The subsonic, supersonic and hypersonic aerodynamics are presented along with the aerodynamic stability and landing analysis of the aircraft. The propulsion design considerations include: engine selection, turbofan ramjet inlets, SCRAMjet inlets and the SCRAMjet diffuser. The cooling requirements and system are covered along with the topics of materials and the hydrogen fuel tanks and insulation system. A cost analysis is presented and the appendices include: information about the subsonic wind tunnel test, shock expansion calculations, and an aerodynamic heat flux program.

  2. The oblique impingement of an axisymmetric jet. [flow characteristics of jet flow over flat plates

    NASA Technical Reports Server (NTRS)

    Foss, J. F.; Kleis, S. J.

    1976-01-01

    The mechanics of the oblique impingement of an axisymmetric jet on a plane surface are examined in detail. The stagnation point is discussed. A schematic drawing of the problem and coordinate system used to describe the flow field are given. The kinematic features of the flow above the plate are examined in the context of the conservation of mass, the vorticity of the jet, and the vorticity introduced by the jetplate interaction. The dynamic features of the flow are examined in terms of the surface pressure distribution and the cause-effect relationships which exist between the pressure and velocity/vorticity distributions. Flow calculations performed are given. The investigation is relevant to the flow resulting from the interaction of the propulsion jet with the main airfoil (STOL aircraft), and is appropriate to an over- or under- wing configuration.

  3. Artificial insect wings of diverse morphology for flapping-wing micro air vehicles.

    PubMed

    Shang, J K; Combes, S A; Finio, B M; Wood, R J

    2009-09-01

    The development of flapping-wing micro air vehicles (MAVs) demands a systematic exploration of the available design space to identify ways in which the unsteady mechanisms governing flapping-wing flight can best be utilized for producing optimal thrust or maneuverability. Mimicking the wing kinematics of biological flight requires examining the potential effects of wing morphology on flight performance, as wings may be specially adapted for flapping flight. For example, insect wings passively deform during flight, leading to instantaneous and potentially unpredictable changes in aerodynamic behavior. Previous studies have postulated various explanations for insect wing complexity, but there lacks a systematic approach for experimentally examining the functional significance of components of wing morphology, and for determining whether or not natural design principles can or should be used for MAVs. In this work, a novel fabrication process to create centimeter-scale wings of great complexity is introduced; via this process, a wing can be fabricated with a large range of desired mechanical and geometric characteristics. We demonstrate the versatility of the process through the creation of planar, insect-like wings with biomimetic venation patterns that approximate the mechanical properties of their natural counterparts under static loads. This process will provide a platform for studies investigating the effects of wing morphology on flight dynamics, which may lead to the design of highly maneuverable and efficient MAVs and insight into the functional morphology of natural wings.

  4. Oblique effect in visual area 2 of macaque monkeys

    PubMed Central

    Shen, Guofu; Tao, Xiaofeng; Zhang, Bin; Smith, Earl L.; Chino, Yuzo M.

    2014-01-01

    The neural basis of an oblique effect, a reduced visual sensitivity for obliquely oriented stimuli, has been a matter of considerable debate. We have analyzed the orientation tuning of a relatively large number of neurons in the primary visual cortex (V1) and visual area 2 (V2) of anesthetized and paralyzed macaque monkeys. Neurons in V2 but not V1 of macaque monkeys showed clear oblique effects. This orientation anisotropy in V2 was more robust for those neurons that preferred higher spatial frequencies. We also determined whether V1 and V2 neurons exhibit a similar orientation anisotropy soon after birth. The oblique effect was absent in V1 of 4- and 8-week-old infant monkeys, but their V2 neurons showed a significant oblique effect. This orientation anisotropy in infant V2 was milder than that in adults. The results suggest that the oblique effect emerges in V2 based on the pattern of the connections that are established before birth and enhanced by the prolonged experience-dependent modifications of the neural circuitry in V2. PMID:24511142

  5. The Obliquities of the Giant Planets

    NASA Astrophysics Data System (ADS)

    Hamilton, D. P.; Ward, Wm. R.

    2002-09-01

    Jupiter has by far the smallest obliquity ( ~ 3o) of the planets (not counting tidally de-spun Mercury and Venus) which may be reflective of its formation by hydrodynamic gas flow rather than stochastic impacts. Saturn's obliquity ( ~ 26o), however, seems to belie this simple formation picture. But since the spin angular momentum of any planet is much smaller than its orbital angular momentum, post-formation obliquity can be strongly modified by passing through secular spin-orbit resonances, i.e., when the spin axis precession rate of the planet matches one of the frequencies describing the precession of the orbit plane. Spin axis precession is due to the solar torque on both the oblate figure of the planet and any orbiting satellites. In the case of Jupiter, the torque on the Galilean satellites is the principal cause of its 4.5*105 year precession; Saturn's precession of 1.8*106 years is dominated by Titan. In the past, the planetary spin axis precession rates should have been much faster due to the massive circumplanetary disks from which the current satellites condensed. The regression of the orbital node of a planet is due to the gravitational perturbations of the other planets. Nodal regression is not uniform, but is instead a composite of the planetary system's normal modes. For Jupiter and Saturn, the principal frequency is the nu16, with a period of ~ 49,000 years; the amplitude of this term is I ~ 0o.36 for Jupiter and I ~ 0o.90 for Saturn. In spite of the small amplitudes, slow adiabatic passages through this resonance (due to circumplanetary disk dispersal) could increase planetary obliquities from near zero to ~ [tan1/3 I] ~ 10o. We will discuss scenarios in which giant planet obliquities are affected by this and other resonances, and will use Jupiter's low obliquity to constrain the mass and duration of a satellite precursor disk. DPH acknowledges support from NSF Career Grant AST 9733789 and WRW is grateful to the NASA OSS and PGG programs.

  6. Review of problems in application of supersonic combustion

    NASA Technical Reports Server (NTRS)

    Ferri, A.

    1977-01-01

    The problem of air-breathing engines capable of flying at very high Mach numbers is described briefly. Possible performance of supersonic combustion ramjets is outlined briefly and the supersonic combustion process is described. Two mechanisms of combustion are outlined: one is supersonic combustion controlled by convection process, and the second is controlled by diffusion. The parameters related to the combustion process are discussed in detail. Data and analyses of reaction rates and mixing phenomena are represented; the flame mechanism is discussed, and experimental results are presented.

  7. Analysis of supersonic combustion flow fields with embedded subsonic regions

    NASA Technical Reports Server (NTRS)

    Dash, S.; Delguidice, P.

    1972-01-01

    The viscous characteristic analysis for supersonic chemically reacting flows was extended to include provisions for analyzing embedded subsonic regions. The numerical method developed to analyze this mixed subsonic-supersonic flow fields is described. The boundary conditions are discussed related to the supersonic-subsonic and subsonic-supersonic transition, as well as a heuristic description of several other numerical schemes for analyzing this problem. An analysis of shock waves generated either by pressure mismatch between the injected fluid and surrounding flow or by chemical heat release is also described.

  8. Verification and Validation Testing of the Parachute Decelerator System Prior to the First Supersonic Flight Dynamics Test for the Low Density Supersonic Decelerator Program

    NASA Technical Reports Server (NTRS)

    Gallon, John C.; Witkowski, Allen

    2015-01-01

    The Parachute Decelerator System (PDS) is comprised of all components associated with the supersonic parachute and its associated deployment. During the Supersonic Flight Dynamics Test (SFDT), for the Low Density Supersonic Decelerators Program, the PDS was required to deploy the supersonic parachute in a defined fashion. The PDS hardware includes three major subsystems that must function together. The first subsystem is the Parachute Deployment Device (PDD), which acts as a modified pilot deployment system. It is comprised of a pyrotechnic mortar, a Kevlar ballute, a lanyard actuated pyrotechnic inflation aid, and rigging with its associated thermal protection material (TPS). The second subsystem is the supersonic parachute deployment hardware. This includes all of the parachute specific rigging that includes the parachute stowage can and the rigging including TPS and bridle stiffeners for bridle management during deployment. The third subsystem is the Supersonic Parachute itself, which includes the main parachute and deployment bags. This paper summarizes the verification and validation of the deployment process, from the initialization of the PDS system through parachute bag strip that was done prior to the first SFDT.

  9. Final Report for the Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2030 to 2035 Period, N+3 Supersonic Program

    NASA Technical Reports Server (NTRS)

    Morgenstern, John; Norstrud, Nicole; Stelmack, Marc; Skoch, Craig

    2010-01-01

    The N+3 Final Report documents the work and progress made by Lockheed Martin Aeronautics in response to the NASA sponsored program "N+3 NRA Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2030 to 2035 Period." The key technical objective of this effort was to generate promising supersonic concepts for the 2030 to 2035 timeframe and to develop plans for maturing the technologies required to make those concepts a reality. The N+3 program is aligned with NASA's Supersonic Project and is focused on providing alternative system-level solutions capable of overcoming the efficiency, environmental, and performance barriers to practical supersonic flight

  10. A generalized vortex lattice method for subsonic and supersonic flow applications

    NASA Technical Reports Server (NTRS)

    Miranda, L. R.; Elliot, R. D.; Baker, W. M.

    1977-01-01

    If the discrete vortex lattice is considered as an approximation to the surface-distributed vorticity, then the concept of the generalized principal part of an integral yields a residual term to the vorticity-induced velocity field. The proper incorporation of this term to the velocity field generated by the discrete vortex lines renders the present vortex lattice method valid for supersonic flow. Special techniques for simulating nonzero thickness lifting surfaces and fusiform bodies with vortex lattice elements are included. Thickness effects of wing-like components are simulated by a double (biplanar) vortex lattice layer, and fusiform bodies are represented by a vortex grid arranged on a series of concentrical cylindrical surfaces. The analysis of sideslip effects by the subject method is described. Numerical considerations peculiar to the application of these techniques are also discussed. The method has been implemented in a digital computer code. A users manual is included along with a complete FORTRAN compilation, an executed case, and conversion programs for transforming input for the NASA wave drag program.

  11. Obliquity variation in a Mars climate evolution model

    NASA Technical Reports Server (NTRS)

    Tyler, D.; Haberle, Robert M.

    1993-01-01

    The existence of layered terrain in both polar regions of Mars is strong evidence supporting a cyclic variation in climate. It has been suggested that periods of net deposition have alternated with periods of net erosion in creating the layered structure that is seen today. The cause for this cyclic climatic behavior is variation in the annually averaged latitudinal distribution of solar insolation in response to obliquity cycles. For Mars, obliquity variation leads to major climatological excursion due to the condensation and sublimation of the major atmospheric constituent, CO2. The atmosphere will collapse into the polar caps, or existing caps will rapidly sublimate into the atmosphere, dependent upon the polar surface heat balance and the direction of the change in obliquity. It has been argued that variations in the obliquity of Mars cause substantial departures from the current climatological values of the surface pressure and the amount of CO2 stored in both the planetary regolith and polar caps. In this new work we have modified the Haberle et al. model to incorporate variable obliquity by allowing the polar and equatorial insolation to become functions of obliquity, which we assume to vary sinusoidally in time. As obliquity varies in the model, there can be discontinuities in the time evolution of the model equilibrium values for surface pressure, regolith, and polar cap storage. The time constant, tau r, for the regolith to find equilibrium with the climate is estimated--depending on the depth, thermal conductivity, and porosity of the regolith--between 10(exp 4) and 10(exp 6) yr. Thus, using 2000-yr timesteps to move smoothly through the 0.1250 m.y. obliquity cycles, we have an atmosphere/regolith system that cannot be assumed in equilibrium. We have dealt with this problem by limiting the rate at which CO2, can move between the atmosphere and regolith, mimicking the diffusive nature and effects of the temperature and pressure waves, by setting the time

  12. Motor mechanisms of vertical fusion in individuals with superior oblique paresis.

    PubMed

    Mudgil, Ananth V; Walker, Mark; Steffen, Heimo; Guyton, David L; Zee, David S

    2002-06-01

    We wanted to determine the mechanisms of motor vertical fusion in patients with superior oblique paresis and to correlate these mechanisms with surgical outcomes. Ten patients with superior oblique paresis underwent 3-axis, bilateral, scleral search coil eye movement recordings. Eye movements associated with fusion were analyzed. Six patients had decompensated congenital superior oblique paresis and 4 had acquired superior oblique paresis. All patients with acquired superior oblique paresis relied predominantly on the vertical rectus muscles for motor fusion. Patients with congenital superior oblique paresis were less uniform in their mechanisms for motor fusion: 2 patients used predominantly the oblique muscles, 2 patients used predominantly the vertical recti, and 2 patients used predominantly the superior oblique in the hyperdeviated eye and the superior rectus in the hypodeviated eye. The last 2 patients developed the largest changes in torsional eye alignment relative to changes in vertical eye alignment and were the only patients to develop symptomatic surgical overcorrections. There are 3 different mechanisms for vertical fusion in individuals with superior oblique paresis, with the predominant mechanism being the vertical recti. A subset of patients with superior oblique paresis uses predominantly the superior oblique muscle in the hyperdeviated paretic eye and the superior rectus muscle in the fellow eye for fusion. This results in intorsion of both eyes, causing a large change in torsional alignment. The consequent cyclodisparity, in addition to the existing vertical deviation, may make fusion difficult. The differing patterns of vertical fusional vergence may have implications for surgical treatment.

  13. Computation of multi-dimensional viscous supersonic flow

    NASA Technical Reports Server (NTRS)

    Buggeln, R. C.; Kim, Y. N.; Mcdonald, H.

    1986-01-01

    A method has been developed for two- and three-dimensional computations of viscous supersonic jet flows interacting with an external flow. The approach employs a reduced form of the Navier-Stokes equations which allows solution as an initial-boundary value problem in space, using an efficient noniterative forward marching algorithm. Numerical instability associated with forward marching algorithms for flows with embedded subsonic regions is avoided by approximation of the reduced form of the Navier-Stokes equations in the subsonic regions of the boundary layers. Supersonic and subsonic portions of the flow field are simultaneously calculated by a consistently split linearized block implicit computational algorithm. The results of computations for a series of test cases associated with supersonic jet flow is presented and compared with other calculations for axisymmetric cases. Demonstration calculations indicate that the computational technique has great promise as a tool for calculating a wide range of supersonic flow problems including jet flow. Finally, a User's Manual is presented for the computer code used to perform the calculations.

  14. Flow of supersonic jets across flat plates: Implications for ground-level flow from volcanic blasts

    NASA Astrophysics Data System (ADS)

    Orescanin, Mara M.; Prisco, David; Austin, Joanna M.; Kieffer, Susan W.

    2014-04-01

    We report on laboratory experiments examining the interaction of a jet from an overpressurized reservoir with a canonical ground surface to simulate lateral blasts at volcanoes such as the 1980 blast at Mount St. Helens. These benchmark experiments test the application of supersonic jet models to simulate the flow of volcanic jets over a lateral topography. The internal shock structure of the free jet is modified such that the Mach disk shock is elevated above the surface. In elevation view, the width of the shock is reduced in comparison with a free jet, while in map view the dimensions are comparable. The distance of the Mach disk shock from the vent is in good agreement with free jet data and can be predicted with existing theory. The internal shock structures can interact with and penetrate the boundary layer. In the shock-boundary layer interaction, an oblique shock foot is present in the schlieren images and a distinctive ground signature is evident in surface measurements. The location of the oblique shock foot and the surface demarcation are closely correlated with the Mach disk shock location during reservoir depletion, and therefore, estimates of a ground signature in a zone devastated by a blast can be based on the calculated shock location from free jet theory. These experiments, combined with scaling arguments, suggest that the imprint of the Mach disk shock on the ground should be within the range of 4-9 km at Mount St. Helens depending on assumed reservoir pressure and vent dimensions.

  15. Wing serial homologs and the origin and evolution of the insect wing.

    PubMed

    Ohde, Takahiro; Yaginuma, Toshinobu; Niimi, Teruyuki

    2014-04-01

    The origin and evolution of insect wings has been the subject of extensive debate. The issue has remained controversial largely because of the absence of definitive fossil evidence or direct developmental evidence of homology between wings and a putative wing origin. Recent identification of wing serial homologs (WSHs) has provided researchers with a potential strategy for identifying WSHs in other species. Future comparative developmental analyses between wings and WSHs may clarify the important steps underlying the evolution of insect wings. Copyright © 2013 The Authors. Published by Elsevier GmbH.. All rights reserved.

  16. Strike-Slip Fault Patterns on Europa: Obliquity or Polar Wander?

    NASA Technical Reports Server (NTRS)

    Rhoden, Alyssa Rose; Hurford, Terry A.; Manga, Michael

    2011-01-01

    Variations in diurnal tidal stress due to Europa's eccentric orbit have been considered as the driver of strike-slip motion along pre-existing faults, but obliquity and physical libration have not been taken into account. The first objective of this work is to examine the effects of obliquity on the predicted global pattern of fault slip directions based on a tidal-tectonic formation model. Our second objective is to test the hypothesis that incorporating obliquity can reconcile theory and observations without requiring polar wander, which was previously invoked to explain the mismatch found between the slip directions of 192 faults on Europa and the global pattern predicted using the eccentricity-only model. We compute predictions for individual, observed faults at their current latitude, longitude, and azimuth with four different tidal models: eccentricity only, eccentricity plus obliquity, eccentricity plus physical libration, and a combination of all three effects. We then determine whether longitude migration, presumably due to non-synchronous rotation, is indicated in observed faults by repeating the comparisons with and without obliquity, this time also allowing longitude translation. We find that a tidal model including an obliquity of 1.2?, along with longitude migration, can predict the slip directions of all observed features in the survey. However, all but four faults can be fit with only 1? of obliquity so the value we find may represent the maximum departure from a lower time-averaged obliquity value. Adding physical libration to the obliquity model improves the accuracy of predictions at the current locations of the faults, but fails to predict the slip directions of six faults and requires additional degrees of freedom. The obliquity model with longitude migration is therefore our preferred model. Although the polar wander interpretation cannot be ruled out from these results alone, the obliquity model accounts for all observations with a value

  17. Effect of outer wing separation on lift and thrust generation in a flapping wing system.

    PubMed

    Mahardika, Nanang; Viet, Nguyen Quoc; Park, Hoon Cheol

    2011-09-01

    We explore the implementation of wing feather separation and lead-lagging motion to a flapping wing. A biomimetic flapping wing system with separated outer wings is designed and demonstrated. The artificial wing feather separation is implemented in the biomimetic wing by dividing the wing into inner and outer wings. The features of flapping, lead-lagging, and outer wing separation of the flapping wing system are captured by a high-speed camera for evaluation. The performance of the flapping wing system with separated outer wings is compared to that of a flapping wing system with closed outer wings in terms of forward force and downward force production. For a low flapping frequency ranging from 2.47 to 3.90 Hz, the proposed biomimetic flapping wing system shows a higher thrust and lift generation capability as demonstrated by a series of experiments. For 1.6 V application (lower frequency operation), the flapping wing system with separated wings could generate about 56% higher forward force and about 61% less downward force compared to that with closed wings, which is enough to demonstrate larger thrust and lift production capability of the separated outer wings. The experiments show that the outer parts of the separated wings are able to deform, resulting in a smaller amount of drag production during the upstroke, while still producing relatively greater lift and thrust during the downstroke.

  18. Parachuting with bristled wings

    NASA Astrophysics Data System (ADS)

    Kasoju, Vishwa; Santhanakrishnan, Arvind; Senter, Michael; Armel, Kristen; Miller, Laura

    2017-11-01

    Free takeoff flight recordings of thrips (body length <1 mm) show that they can intermittently cease flapping and instead float passively downwards by spreading their bristled wings. Such drag-based parachuting can lower the speed of falling and aid in long distance dispersal by minimizing energetic demands needed for active flapping flight. However, the role of bristled wings in parachuting remains unclear. In this study, we examine if using bristled wings lowers drag forces in parachuting as compared to solid (non-bristled) wings. Wing angles and settling velocities were obtained from free takeoff flight videos. A solid wing model and bristled wing model with bristle spacing to diameter ratio of 5 performing translational motion were comparatively examined using a dynamically scaled robotic model. We measured force generated under varying wing angle from 45-75 degrees across a Reynolds number (Re) range of 1 to 15. Drag experienced by the wings decreased in both wing models when varying Re from 1 to 15. Leakiness of flow through bristles, visualized using spanwise PIV, and implications for force generation will be presented. Numerical simulations will be used to investigate the stability of free fall using bristled wings.

  19. Theory of wing rock

    NASA Technical Reports Server (NTRS)

    Hsu, C.-H.; Lan, C. E.

    1985-01-01

    Wing rock is one type of lateral-directional instabilities at high angles of attack. To predict wing rock characteristics and to design airplanes to avoid wing rock, parameters affecting wing rock characteristics must be known. A new nonlinear aerodynamic model is developed to investigate the main aerodynamic nonlinearities causing wing rock. In the present theory, the Beecham-Titchener asymptotic method is used to derive expressions for the limit-cycle amplitude and frequency of wing rock from nonlinear flight dynamics equations. The resulting expressions are capable of explaining the existence of wing rock for all types of aircraft. Wing rock is developed by negative or weakly positive roll damping, and sustained by nonlinear aerodynamic roll damping. Good agreement between theoretical and experimental results is obtained.

  20. 76 FR 30231 - Civil Supersonic Aircraft Panel Discussion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    ... Gulfstream Aerospace Corporation (Gulfstream) Supersonic Acoustic Signature Simulator (SASSII) that will be... advances in supersonic technology, and for the FAA, the National Aeronautics and Space Administration (NASA... demonstrate the ``Gulfstream Whisper'', the aerospace company's latest effort to provide a solution to the...