Science.gov

Sample records for observation solar activity

  1. Solar Activity Studies using Microwave Imaging Observations

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.

    2016-01-01

    We report on the status of solar cycle 24 based on polar prominence eruptions (PEs) and microwave brightness enhancement (MBE) information obtained by the Nobeyama radioheliograph. The north polar region of the Sun had near-zero field strength for more than three years (2012-2015) and ended only in September 2015 as indicated by the presence of polar PEs and the lack of MBE. The zero-polar-field condition in the south started only around 2013, but it ended by June 2014. Thus the asymmetry in the times of polarity reversal switched between cycle 23 and 24. The polar MBE is a good proxy for the polar magnetic field strength as indicated by the high degree of correlation between the two. The cross-correlation between the high- and low-latitude MBEs is significant for a lag of approximately 5.5 to 7.3 years, suggesting that the polar field of one cycle indicates the sunspot number of the next cycle in agreement with the Babcock-Leighton mechanism of solar cycles. The extended period of near-zero field in the north-polar region should result in a weak and delayed sunspot activity in the northern hemisphere in cycle 25.

  2. Grand minima and maxima of solar activity: new observational constraints

    NASA Astrophysics Data System (ADS)

    Usoskin, I. G.; Solanki, S. K.; Kovaltsov, G. A.

    2007-08-01

    Aims:Using a reconstruction of sunspot numbers stretching over multiple millennia, we analyze the statistics of the occurrence of grand minima and maxima and set new observational constraints on long-term solar and stellar dynamo models. Methods: We present an updated reconstruction of sunspot number over multiple millennia, from 14C data by means of a physics-based model, using an updated model of the evolution of the solar open magnetic flux. A list of grand minima and maxima of solar activity is presented for the Holocene (since 9500 BC) and the statistics of both the length of individual events as well as the waiting time between them are analyzed. Results: The occurrence of grand minima/maxima is driven not by long-term cyclic variability, but by a stochastic/chaotic process. The waiting time distribution of the occurrence of grand minima/maxima deviates from an exponential distribution, implying that these events tend to cluster together with long event-free periods between the clusters. Two different types of grand minima are observed: short (30-90 years) minima of Maunder type and long (>110 years) minima of Spörer type, implying that a deterministic behaviour of the dynamo during a grand minimum defines its length. The duration of grand maxima follows an exponential distribution, suggesting that the duration of a grand maximum is determined by a random process. Conclusions: These results set new observational constraints upon the long-term behaviour of the solar dynamo.

  3. Multi-wavelength Observations of Solar Active Region NOAA 7154

    NASA Technical Reports Server (NTRS)

    Bruner, M. E.; Nitta, N. V.; Frank. Z. A.; Dame, L.; Suematsu, Y.

    2000-01-01

    We report on observations of a solar active region in May 1992 by the Solar Plasma Diagnostic Experiment (SPDE) in coordination with the Yohkoh satellite (producing soft X-ray images) and ground-based observatories (producing photospheric magnetograms and various filtergrams including those at the CN 3883 A line). The main focus is a study of the physical conditions of hot (T is approximately greater than 3 MK) coronal loops at their foot-points. The coronal part of the loops is fuzzy but what appear to be their footpoints in the transition region down to the photosphere are compact. Despite the morphological similarities, the footpoint emission at 10(exp 5) K is not quantitatively correlated with that at approximately 300 km above the tau (sub 5000) = 1 level, suggesting that the heat transport and therefore magnetic field topology in the intermediate layer is complicated. High resolution imaging observations with continuous temperature coverage are crucially needed.

  4. Magnetic observations during the recent declining phase of solar activity

    NASA Astrophysics Data System (ADS)

    Smith, E. J.

    Changes in the heliospheric magnetic field during the recent declining phase in solar activity are reviewed and compared with observations during past sunspot cycles. The study is based principally on data obtained by IMP-8 and Ulysses. The field magnitude is found to have increased during the declining phase until it reached a maximum value of 11.5nT in approximately 1991.5, approximately two years after sunspot maximum. The field of the sun's south pole became negative after a reversal in early 1990. The sector structure disappeared at Ulysses in April 1993 when the latitude of the spacecraft was -30 deg revealing a low inclination of the heliospheric current sheet. A large outburst of solar activity in March 1991 caused four Coronal Mass Ejections (CMEs) and numerious shocks at the location of Ulysses. Following a delay of more than a year, a series of recurrent high speed streams and Corotating Interaction Regions commenced in July 1992 which were observed by IMP-8, Ulysses and Voyager 2. In all these respects, the behavior of the magnetic field mimics that seen in the two earlier sunspot cycles. The comprehensive data set suggests a correlation between the absolute value of B and sunspot number. The major solar cycle variations in the radial component (and magnitude) of the field have been successfully reproduced by a recent model consisting of a tilted solar dipole, whose strength and tilt undergo characteristic changes over the sunspot cycle, and the heliospheric current sheet. The large outbursts of activity in mid-1972, mid-1982 and the first quarter of 1991 may represent a characteristic last 'gasp' of solar activity before the sun evolves to a different state. The recurrent high speed streams in 1973, 1984 and 1992 accompany the developemnt of large asymetrical polar coronal holes and the growth in intensity of the polar cap fields. After they endure for about one year, the polar coronal holes recede and the high speed streams are replaced by weaker

  5. Summary of solar activity observed in the Mauna Loa Solar Observatory, 1980 - 1983

    NASA Astrophysics Data System (ADS)

    Rock, K.; Fisher, R.; Garcia, C.; Yasukawa, E.

    1983-11-01

    The following technical note summarizes solar activity observed during the first four years operation of the experiment systems of the Coronal Dynamics Project, which are located at the Mauna Loa Solar Observatory. This short report has been produced with the general aim of providing users of Mauna Loa observations with a summary of data for specific events. So that this table might be as useful as possible, a comprehensive review of three sources was performed. The plain language logs, identified as the so-called observer's logs, the now-discontinued activity logs, and the prominence monitor quality control logs were the sources from which the information in the following tables was obtained.

  6. Observations of hysteresis in solar cycle variations among seven solar activity indicators

    NASA Technical Reports Server (NTRS)

    Bachmann, Kurt T.; White, Oran R.

    1994-01-01

    We show that smoothed time series of 7 indices of solar activity exhibit significant solar cycle dependent differences in their relative variations during the past 20 years. In some cases these observed hysteresis patterns start to repeat over more than one solar cycle, giving evidence that this is a normal feature of solar variability. Among the indices we study, we find that the hysteresis effects are approximately simple phase shifts, and we quantify these phase shifts in terms of lag times behind the leading index, the International Sunspot Number. Our measured lag times range from less than one month to greater than four months and can be much larger than lag times estimated from short-term variations of these same activity indices during the emergence and decay of major active regions. We argue that hysteresis represents a real delay in the onset and decline of solar activity and is an important clue in the search for physical processes responsible for changing solar emission at various wavelengths.

  7. Observations of Hysteresis Among Indicators of Solar Activity

    NASA Astrophysics Data System (ADS)

    Bachmann, K. T.; Ranganath, A.

    1999-05-01

    We show that filtered time series of five indicators of solar activity exhibit significant solar-cycle-dependent differences in their relative variations. This study expands upon previous work by including data from recent NASA missions, indicating that the detected hysteresis patterns continue through the decline of solar cycle 22. Among the indicators that we study, we find that the hysteresis effects are approximately simple phase shifts that we present qualitatively via plots similar to Lissajous figures. These phase shifts correspond to time delays of less than three months behind the leading indicator, the International Sunspot Number, and are small compared to the typical eleven-year solar cycle. We believe that hysteresis represents a real delay in the onset and decline for changing solar emission at various wavelengths. Our research is funded by the Research Corporation and by the NASA Joint Venture (JOVE) program.

  8. Solar observations

    NASA Technical Reports Server (NTRS)

    1981-01-01

    High energy processes that take place in the Sun's atmosphere and the relationship of these phenomena to the basic problems of solar activity are discussed. Gamma ray emission exhibits characteristics of the conditions in regions where accelerated high energy particles interact. A number of gamma ray production mechanisms are considered. These include: the Compton effect, magnetobremsstrahlung, pi meson production by proton-proton interaction or by proton-antiproton annihilation, fission and neutral of charged particle radiative capture on inelastic scatter.

  9. Simultaneous Solar Maximum Mission (SMM) and Very Large Array (VLA) observations of solar active regions

    NASA Technical Reports Server (NTRS)

    Willson, Robert F.

    1991-01-01

    Very Large Array observations at 20 cm wavelength can detect the hot coronal plasma previously observed at soft x ray wavelengths. Thermal cyclotron line emission was detected at the apex of coronal loops where the magnetic field strength is relatively constant. Detailed comparison of simultaneous Solar Maximum Mission (SMM) Satellite and VLA data indicate that physical parameters such as electron temperature, electron density, and magnetic field strength can be obtained, but that some coronal loops remain invisible in either spectral domain. The unprecedent spatial resolution of the VLA at 20 cm wavelength showed that the precursor, impulsive, and post-flare components of solar bursts originate in nearby, but separate loops or systems of loops.. In some cases preburst heating and magnetic changes are observed from loops tens of minutes prior to the impulsive phase. Comparisons with soft x ray images and spectra and with hard x ray data specify the magnetic field strength and emission mechanism of flaring coronal loops. At the longer 91 cm wavelength, the VLA detected extensive emission interpreted as a hot 10(exp 5) K interface between cool, dense H alpha filaments and the surrounding hotter, rarefield corona. Observations at 91 cm also provide evidence for time-correlated bursts in active regions on opposite sides of the solar equator; they are attributed to flare triggering by relativistic particles that move along large-scale, otherwise-invisible, magnetic conduits that link active regions in opposite hemispheres of the Sun.

  10. IPS activity observed as a precursor of solar induced terrestrial activity. [solar wind density fluctuations

    NASA Technical Reports Server (NTRS)

    Cronyn, W. M.; Shawhan, S. D.; Rickard, J. J.; Mitchell, D. G.; Roelof, E. C.; Gotwols, B. L.

    1978-01-01

    A radio telescope designed to exploit the interplanetary scintillation (IPS) technique and locate, map, and track solar wind disturbances which result in geomagnetic disturbances, thereby providing a forecast capability, is described. Preliminary results from operation of the telescope include: (1) evidence for a precursor signal in the IPS activity with a 1-2 day lead time with respect to density enhancements which frequently give rise to geomagnetic activity; (2) detection of a spectral broadening signature which also serves as a precursor of geomagnetic activity; (3) out-of-the-ecliptic plasma density enhancements which were not detected by near-Earth, ecliptic plane spacecraft; (4) detection of 12 corotating density enhancements;(5) detection of over 80 sources which give detectable scintillation of which 45 have been used for detailed synoptic analysis and 9 for spectral analysis; and (6) measurement of 0-lag coefficient of 0.56 between density and IPS activity enhancements.

  11. ACTIVITY ANALYSES FOR SOLAR-TYPE STARS OBSERVED WITH KEPLER. I. PROXIES OF MAGNETIC ACTIVITY

    SciTech Connect

    He, Han; Wang, Huaning; Yun, Duo

    2015-11-15

    Light curves of solar-type stars often show gradual fluctuations due to rotational modulation by magnetic features (starspots and faculae) on stellar surfaces. Two quantitative measures of modulated light curves are employed as the proxies of magnetic activity for solar-type stars observed with Kepler telescope. The first is named autocorrelation index i{sub AC}, which describes the degree of periodicity of the light curve; the second is the effective fluctuation range of the light curve R{sub eff}, which reflects the depth of rotational modulation. The two measures are complementary and depict different aspects of magnetic activities on solar-type stars. By using the two proxies i{sub AC} and R{sub eff}, we analyzed activity properties of two carefully selected solar-type stars observed with Kepler (Kepler ID: 9766237 and 10864581), which have distinct rotational periods (14.7 versus 6.0 days). We also applied the two measures to the Sun for a comparative study. The result shows that both the measures can reveal cyclic activity variations (referred to as i{sub AC}-cycle and R{sub eff}-cycle) on the two Kepler stars and the Sun. For the Kepler star with the faster rotation rate, i{sub AC}-cycle and R{sub eff}-cycle are in the same phase, while for the Sun (slower rotator), they are in the opposite phase. By comparing the solar light curve with simultaneous photospheric magnetograms, it is identified that the magnetic feature that causes the periodic light curve during solar minima is the faculae of the enhanced network region, which can also be a candidate of magnetic features that dominate the periodic light curves on the two Kepler stars.

  12. Seismic Study of The Solar Interior: Inferences from SOI/MDI Observations during Solar Activity

    NASA Technical Reports Server (NTRS)

    Korzennik, Sylvain G.

    2003-01-01

    The principal investigator describes several types of solar research conducted during the reporting period and gives a statement of work to be performed in the following year. Research conducted during the reporting period includes: exhaustive analysis of observational and instrumental effects that might cause systematic errors in the characterization of high-degree p-modes; study of the structure, asphericity and dynamics of the solar interior from p-mode frequencies and frequency splittings; characterizing the solar rotation; Time-Distance inversion; and developing and using a new peak-fitting method for very long MDI time series at low degrees.

  13. High Spatial Resolution Fe XII Observations of Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Testa, Paola; De Pontieu, Bart; Hansteen, Viggo

    2016-08-01

    We use UV spectral observations of active regions with the Interface Region Imaging Spectrograph (IRIS) to investigate the properties of the coronal Fe xii 1349.4 Å emission at unprecedented high spatial resolution (˜0.33″). We find that by using appropriate observational strategies (i.e., long exposures, lossless compression), Fe xii emission can be studied with IRIS at high spatial and spectral resolution, at least for high-density plasma (e.g., post-flare loops and active region moss). We find that upper transition region (TR; moss) Fe xii emission shows very small average Doppler redshifts ({v}{{D}} ˜ 3 km s‑1) as well as modest non-thermal velocities (with an average of ˜24 km s‑1 and the peak of the distribution at ˜15 km s‑1). The observed distribution of Doppler shifts appears to be compatible with advanced three-dimensional radiative MHD simulations in which impulsive heating is concentrated at the TR footpoints of a hot corona. While the non-thermal broadening of Fe xii 1349.4 Å peaks at similar values as lower resolution simultaneous Hinode Extreme Ultraviolet Imaging Spectrometer (EIS) measurements of Fe xii 195 Å, IRIS observations show a previously undetected tail of increased non-thermal broadening that might be suggestive of the presence of subarcsecond heating events. We find that IRIS and EIS non-thermal line broadening measurements are affected by instrumental effects that can only be removed through careful analysis. Our results also reveal an unexplained discrepancy between observed 195.1/1349.4 Å Fe xii intensity ratios and those predicted by the CHIANTI atomic database.

  14. High Spatial Resolution Fe XII Observations of Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Testa, Paola; De Pontieu, Bart; Hansteen, Viggo

    2016-08-01

    We use UV spectral observations of active regions with the Interface Region Imaging Spectrograph (IRIS) to investigate the properties of the coronal Fe xii 1349.4 Å emission at unprecedented high spatial resolution (˜0.33″). We find that by using appropriate observational strategies (i.e., long exposures, lossless compression), Fe xii emission can be studied with IRIS at high spatial and spectral resolution, at least for high-density plasma (e.g., post-flare loops and active region moss). We find that upper transition region (TR; moss) Fe xii emission shows very small average Doppler redshifts ({v}{{D}} ˜ 3 km s-1) as well as modest non-thermal velocities (with an average of ˜24 km s-1 and the peak of the distribution at ˜15 km s-1). The observed distribution of Doppler shifts appears to be compatible with advanced three-dimensional radiative MHD simulations in which impulsive heating is concentrated at the TR footpoints of a hot corona. While the non-thermal broadening of Fe xii 1349.4 Å peaks at similar values as lower resolution simultaneous Hinode Extreme Ultraviolet Imaging Spectrometer (EIS) measurements of Fe xii 195 Å, IRIS observations show a previously undetected tail of increased non-thermal broadening that might be suggestive of the presence of subarcsecond heating events. We find that IRIS and EIS non-thermal line broadening measurements are affected by instrumental effects that can only be removed through careful analysis. Our results also reveal an unexplained discrepancy between observed 195.1/1349.4 Å Fe xii intensity ratios and those predicted by the CHIANTI atomic database.

  15. Reconstructing past solar activity using meridian solar observations: The case of the Royal Observatory of the Spanish Navy (1833-1840)

    NASA Astrophysics Data System (ADS)

    Vaquero, J. M.; Gallego, M. C.

    2014-04-01

    Solar meridian observations have been used to evaluate the solar activity of the past. Some important examples are the solar meridian observations made at the Basilica of San Petronio in Bologna by several astronomers and the observations made by Hevelius published in his book Machina Coelestis. However, we do not know whether these observations, which were not aimed to estimate the solar activity, are reliable for evaluating solar activity. In this paper, we present the marginal notes about sunspots that are included in the manuscripts of the meridian solar observations made at the Royal Observatory of the Spanish Navy during the period 1833-1840. We compare these observations with other solar activity indices such as sunspot area and number. Our conclusion is that solar meridian observations should be used with extreme caution to evaluate past solar activity.

  16. Determining the solar wind speed above active regions using remote radio-wave observations

    NASA Technical Reports Server (NTRS)

    Fainberg, J.; Stone, R. G.; Bougeret, J.-L.

    1983-01-01

    A new technique has made it possible to measure the velocity of portions of the solar wind during its flow outward from the sun. This analysis utilizes spacecraft (ISEE-3) observations of radio emission generated in regions of the solar wind associated with solar active regions. By tracking the source of these radio waves over periods of days, it is possible to measure the motion of the emission regions. Evidence of solar wind acceleration during this outward flow, consistent with theoretical models, has also been obtained.

  17. Simultaneous Solar Maximum Mission (SMM) and very large array observations of solar active regions

    NASA Technical Reports Server (NTRS)

    Lang, K. R.

    1986-01-01

    The research deals mainly with Very Large Array and Solar Maximum Mission observations of the ubiquitous coronal loops that dominate the structure of the low corona. As illustrated, the observations of thermal cyclotron lines at microwave wavelengths provide a powerful new method of accurately specifying the coronal magnetic field strength. Processes are delineated that trigger solar eruptions from coronal loops, including preburst heating and the magnetic interaction of coronal loops. Evidence for coherent burst mechanisms is provided for both the Sun and nearby stars, while other observations suggest the presence of currents that may amplify the coronal magnetic field to unexpectedly high levels. The existence is reported of a new class of compact, variable moving sources in regions of apparently weak photospheric field.

  18. Geomagnetic activity during 10 - 11 solar cycles that has been observed by old Russian observatories.

    NASA Astrophysics Data System (ADS)

    Seredyn, Tomasz; Wysokinski, Arkadiusz; Kobylinski, Zbigniew; Bialy, Jerzy

    2016-07-01

    A good knowledge of solar-terrestrial relations during past solar activity cycles could give the appropriate tools for a correct space weather forecast. The paper focuses on the analysis of the historical collections of the ground based magnetic observations and their operational indices from the period of two sunspot solar cycles 10 - 11, period 1856 - 1878 (Bartels rotations 324 - 635). We use hourly observations of H and D geomagnetic field components registered at Russian stations: St. Petersburg - Pavlovsk, Barnaul, Ekaterinburg, Nertshinsk, Sitka, and compare them to the data obtained from the Helsinki observatory. We compare directly these records and also calculated from the data of the every above mentioned station IHV indices introduced by Svalgaard (2003), which have been used for further comparisons in epochs of assumed different polarity of the heliospheric magnetic field. We used also local index C9 derived by Zosimovich (1981) from St. Petersburg - Pavlovsk data. Solar activity is represented by sunspot numbers. The correlative and continuous wavelet analyses are applied for estimation of the correctness of records from different magnetic stations. We have specially regard to magnetic storms in the investigated period and the special Carrington event of 1-2 Sep 1859. Generally studied magnetic time series correctly show variability of the geomagnetic activity. Geomagnetic activity presents some delay in relation to solar one as it is seen especially during descending and minimum phase of the even 11-year cycle. This pattern looks similarly in the case of 16 - 17 solar cycles.

  19. COMPTEL solar flare observations

    NASA Technical Reports Server (NTRS)

    Ryan, J. M.; Aarts, H.; Bennett, K.; Debrunner, H.; Devries, C.; Denherder, J. W.; Eymann, G.; Forrest, D. J.; Diehl, R.; Hermsen, W.

    1992-01-01

    COMPTEL as part of a solar target of opportunity campaign observed the sun during the period of high solar activity from 7-15 Jun. 1991. Major flares were observed on 9 and 11 Jun. Although both flares were large GOES events (greater than or = X10), they were not extraordinary in terms of gamma-ray emission. Only the decay phase of the 15 Jun. flare was observed by COMPTEL. We report the preliminary analysis of data from these flares, including the first spectroscopic measurement of solar flare neutrons. The deuterium formation line at 2.223 MeV was present in both events and for at least the 9 Jun. event, was comparable to the flux in the nuclear line region of 4-8 MeV, consistent with Solar-Maximum Mission (SSM) Observations. A clear neutron signal was present in the flare of 9 Jun. with the spectrum extending up to 80 MeV and consistent in time with the emission of gamma-rays, confirming the utility of COMPTEL in measuring the solar neutron flux at low energies. The neutron flux below 100 MeV appears to be lower than that of the 3 Jun. 1982 flare by more than an order of magnitude. The neutron signal of the 11 Jun. event is under study. Severe dead time effects resulting from the intense thermal x-rays require significant corrections to the measured flux which increase the magnitude of the associated systematic uncertainties.

  20. Results of IPS Observations in the Period Near Solar Activity Minimum

    NASA Astrophysics Data System (ADS)

    Chashei, I. V.; Shishov, V. I.; Tyul'bashev, S. A.; Subaev, I. A.; Oreshko, V. V.

    2013-07-01

    IPS observations with the Big Scanning Array of Lebedev Physical Institute (BSA LPI) radio telescope at the frequency 111 MHz have been monitored since 2006. All the sources, about several hundred daily, with a scintillating flux greater than 0.2 Jy are recorded for 24 hours in the 16 beams of the radio telescope covering a sky strip of 8∘ declination width. We present some results of IPS observations for the recent period of low solar activity considering a statistical ensemble of scintillating radio sources. The dependences of the averaged over ensemble scintillation index on heliocentric distance are considerably weaker than the dependence expected for a spherically symmetric geometry. The difference is especially pronounced in the year 2008 during the very deep solar activity minimum period. These features are explained by the influence of the heliospheric current sheet that is seen as a strong concentration of turbulent solar wind plasma aligned with the solar equatorial plane. A local maximum of the scintillation index is found in the anti-solar direction. Future prospects of IPS observations using BSA LPI are briefly discussed.

  1. Analysis of selected microflares observed by SphinX over the last minimum of solar activity

    NASA Astrophysics Data System (ADS)

    Siarkowski, Marek; Sylwester, Janusz; Sylwester, Barbara; Gryciuk, Magdalena

    The Solar Photometer in X-rays (SphinX) was designed to observe soft X-ray solar emission in the energy range between 1 keV and 15 keV with the resolution better than 0.5 keV. The instrument operated from February until November 2009 aboard CORONAS-Photon satellite, during the phase of exceptionally low minimum of solar activity. Here we use SphinX data for analysis of selected microflare-class events. We selected events of unusual lightcurves or location. Our study involves determination of temporal characteristics (times of start, maximum and end of flares) and analysis of physical conditions in flaring plasma (temperature, emission measure). Dedicated method has been used in order to remove emission not related to flare. Supplementary information about morphology and evolution of investigated events has been derived from the analysis of XRT/Hinode and SECCHI /STEREO images.

  2. Seismic Study of the Solar Interior: Inferences from SOI/MDI Observations During Solar Activity

    NASA Technical Reports Server (NTRS)

    Korzennik, Sylvain G.; Wagner, William J. (Technical Monitor)

    2005-01-01

    Work on the structure, asphericity and dynamics of the solar interior from p-mode frequencies and frequency splittings was carried out primarily in collaboration with Dr. Eff-Darwich (University of La Laguna, Tenerife). This ongoing collaboration produced new results for the inversion of the internal solar rotation rate and further development in inversion methodologies. It also resulted in inferences on the solar stratification. Substantial progress towards the characterization of high-degree p-modes has been achieved. In collaboration with Drs. Rabello-Soares and Schou (Stanford University), we have gained a clear conceptual understanding of the various elements that affect the leakage matrix of the SOI/MDI instrument. This work has precise implications on the properties and the characterization of the HMI instrument being developed for the SDO mission.

  3. Tragaldabas: a muon ground-based detector for the study of the solar activity; first observations

    NASA Astrophysics Data System (ADS)

    José Blanco, Juan

    2016-04-01

    A new RPC-based cosmic ray detector, TRAGALDABAS (acronym of "TRAsGo for the AnaLysis of the nuclear matter Decay, the Atmosphere, the earth's B-field And the Solar activity") has been installed at the Univ. of Santiago de Compostela, Spain (N:42°52'34",W:8°33'37"). The detector, in its present layout, consists of three 1.8 m2 planes of three 1mm-gap glass RPCs. Each plane is readout with 120 pads with grounded guard electrodes between them to minimize the crosstalk noise. The main performances of the detectors are: an arrival time resolution of about ~300 ps, a tracking angular resolution below 3°, a detection efficiency close to 1, and a solid angle acceptance of ~5 srad. TRAGALDABAS will be able to monitor the cosmic ray low energy component strongly modulated by solar activity by mean the observation of secondary muons from the interaction between cosmic rays and atmospheric molecules. Its cadence and its angular resolution will allow to study in detail, small variations in cosmic ray anisotropy. These variations can be a key parameter to understand the effect of solar disturbances on the propagation of cosmic ray in the inner heliosphere and, maybe, provide a new tool for space weather analysis. In this work first TRAGALDABAS observations of solar events are shown

  4. Observing Evolution in the Supergranular Network Length Scale During Periods of Low Solar Activity

    NASA Astrophysics Data System (ADS)

    McIntosh, Scott W.; Leamon, Robert J.; Hock, Rachel A.; Rast, Mark P.; Ulrich, Roger K.

    2011-03-01

    We present the initial results of an observational study into the variation of the dominant length scale of quiet solar emission: supergranulation. The distribution of magnetic elements in the lanes that from the network affects, and reflects, the radiative energy in the plasma of the upper solar chromosphere and transition region at the magnetic network boundaries forming as a result of the relentless interaction of magnetic fields and convective motions of the Suns' interior. We demonstrate that a net difference of ~0.5 Mm in the supergranular emission length scale occurs when comparing observation cycle 22/23 and cycle 23/24 minima. This variation in scale is reproduced in the data sets of multiple space- and ground-based instruments and using different diagnostic measures. By means of extension, we consider the variation of the supergranular length scale over multiple solar minima by analyzing a subset of the Mount Wilson Solar Observatory Ca II K image record. The observations and analysis presented provide a tantalizing look at solar activity in the absence of large-scale flux emergence, offering insight into times of "extreme" solar minimum and general behavior such as the phasing and cross-dependence of different components of the spectral irradiance. Given that the modulation of the supergranular scale imprints itself in variations of the Suns' spectral irradiance, as well as in the mass and energy transport into the entire outer atmosphere, this preliminary investigation is an important step in understanding the impact of the quiet Sun on the heliospheric system.

  5. Seismic Study of the Solar Interior: Inferences from SOI/MDI Observations During Solar Activity

    NASA Technical Reports Server (NTRS)

    Korzennik, Sylvain G.; Wagner, William J. (Technical Monitor)

    2001-01-01

    We have continued in collaboration with Dr. Eff-Darwich (University of La Laguna, Tenerife, Spain) the study of the structure, asphericity and dynamics of the solar interior from p-mode frequencies and frequency splittings. In March 2001, Dr. Eff-Darwich came for 3 weeks visit to CfA. During this visit we completed our work on the inversion of the internal solar rotation rate, and submitted a paper describing this work to the Astrophysical Journal. This paper has been recently revised in response to the referee comments and I expect that it will be accepted for publication very soon. We also have analyzed helioseismic data looking for temporal variations of the solar stratification near the base of the convection zone. We have expanded on the initial work that was presented at the SOHO-10/GONG-2000 meeting (October 2000, Tenerife), and are in the process of writing this up. Substantial progress towards the characterization of high-degree p-modes has been achieved. Indeed, in collaboration Dr. Rabello-Soares (Stanford University), we have gained a clear conceptual understanding of the various elements that affect the leakage matrix of the SOI/MDI instrument. This was presented in an invited talk at the SOHO-10/GONG-2000 meeting (October 2000, Tenerife). Once we will have successfully migrated from a qualitative to a quantitative assessment of these effects, we should be able to generate high-degree p-modes frequencies so crucial in the diagnostic of the layers just below solar surface.

  6. Differences of the Solar Magnetic Activity Signature in Velocity and Intensity Helioseismic Observations

    NASA Astrophysics Data System (ADS)

    Salabert, D.; García, R. A.; Jiménez, A.

    2013-12-01

    The high-quality, full-disk helioseismic observations continuously collected by the spectrophotometer GOLF and the three photometers VIRGO/SPMs onboard the SoHO spacecraft for 17 years now (since April 11, 1996, apart from the SoHO “vacations”) are absolutely unique for the study of the interior of the Sun and its variability with magnetic activity. Here, we look at the differences in the low-degree oscillation p-mode frequencies between radial velocity and intensity measurements taking into account all the known features of the p-mode profiles (e.g., the opposite peak asymmetry), and of the power spectrum (e.g., the presence of the higher degrees ℓ = 4 and 5 in the signal). We show that the intensity frequencies are higher than the velocity frequencies during the solar cycle with a clear temporal dependence. The response between the individual angular degrees is also different. Time delays are observed between the temporal variations in GOLF and VIRGO frequencies. Such analysis is important in order to put new constraints and to better understand the mechanisms responsible for the temporal variations of the oscillation frequencies with the solar magnetic activity as well as their height dependences in the solar atmosphere. It is also important for the study of the stellar magnetic activity using asteroseismic data.

  7. NEW VACUUM SOLAR TELESCOPE OBSERVATIONS OF A FLUX ROPE TRACKED BY A FILAMENT ACTIVATION

    SciTech Connect

    Yang, Shuhong; Zhang, Jun; Liu, Zhong; Xiang, Yongyuan E-mail: zjun@nao.cas.cn

    2014-04-01

    One main goal of the New Vacuum Solar Telescope (NVST) which is located at the Fuxian Solar Observatory is to image the Sun at high resolution. Based on the high spatial and temporal resolution NVST Hα data and combined with the simultaneous observations from the Solar Dynamics Observatory for the first time, we investigate a flux rope tracked by filament activation. The filament material is initially located at one end of the flux rope and fills in a section of the rope; the filament is then activated by magnetic field cancellation. The activated filament rises and flows along helical threads, tracking the twisted flux rope structure. The length of the flux rope is about 75 Mm, the average width of its individual threads is 1.11 Mm, and the estimated twist is 1π. The flux rope appears as a dark structure in Hα images, a partial dark and partial bright structure in 304 Å, and as a bright structure in 171 Å and 131 Å images. During this process, the overlying coronal loops are quite steady since the filament is confined within the flux rope and does not erupt successfully. It seems that, for the event in this study, the filament is located and confined within the flux rope threads, instead of being suspended in the dips of twisted magnetic flux.

  8. Relating Alfvén Wave Heating Model to Observations of a Solar Active Region

    NASA Astrophysics Data System (ADS)

    Yoritomo, J. Y.; Van Ballegooijen, A. A.

    2012-12-01

    We compared images from the Solar Dynamics Observatory's (SDO) Atmospheric Imaging Assembly (AIA) with simulations of propagating and dissipating Alfvén waves from a three-dimensional magnetohydrodynamic (MHD) model (van Ballegooijen et. al 2011; Asgari-Targhi & van Ballegooijen 2012). The goal was to search for observational evidence of Alfvén waves in the solar corona and understand their role in coronal heating. We looked at one particular active region on the 5th of May 2012. Certain distinct loops in the SDO/AIA observations were selected and expanded. Movies were created from these selections in an attempt to discover transverse motions that may be Alfvén waves. Using a magnetogram of that day and the corresponding synoptic map, a potential field model was created for the active region. Three-dimensional MHD models for several loops in different locations in the active region were created. Each model specifies the temperature, pressure, magnetic field strength, average heating rate, and other parameters along the loop. We find that the heating is intermittent in the loops and reflection occurs at the transition region. For loops at larger and larger height, a point is reached where thermal non-equilibrium occurs. In the center this critical height is much higher than in the periphery of the active region. Lastly, we find that the average heating rate and coronal pressure decrease with increasing height in the corona. This research was supported by an NSF grant for the Smithsonian Astrophysical Observatory (SAO) Solar REU program and a SDO/AIA grant for the Smithsonian Astrophysical Observatory.

  9. Space-born and ground-based observations of a solar active region and a flare

    NASA Astrophysics Data System (ADS)

    Chiuderi Drago, F.

    Observational data of the active solar region AR 2490 are discussed with an eye to underlying physical processes. Ground- and spaceborne measurements were made by radio, optical, and XUV instrumentation. A double structure observed at 6 and 20 cm wavelengths was overlying a sunspot group which displayed north polarity. The 6 cm emission was attributed to free-free emission, while the 20 cm feature was thought to be caused by gyroresonance absorption. An analytical formulation was developed which described the thermal component for maximum X ray intensities. A flare observed on June 10, 1980 was detected on H-alpha and C IV spectrographic bands. The origin of the emissions was fixed at the two feet of the X ray loop, with a radio emission coming from the top of the loop.

  10. Coronal Magnetography of Solar Active Regions Using Coordinated SOHO/CDS and VLA Observations

    NASA Technical Reports Server (NTRS)

    Brosius, Jeffrey W.

    1999-01-01

    The purpose of this project is to apply the coronal magnetographic technique to SOHO (Solar Heliospheric Observatory) /CDS (Coronal Diagnostic Spectrometer) EUV (Extreme Ultraviolet Radiation) and coordinated VLA microwave observations of solar active regions to derive the strength and structure of the coronal magnetic field. A CDS observing plan was developed for obtaining spectra needed to derive active region differential emission measures (DEMs) required for coronal magnetography. VLA observations were proposed and obtained. SOHO JOP 100 was developed, tested, approved, and implemented to obtain coordinated CDS (Coronal Diagnostic Spectrometer)/EIT (Ultraviolet Imaging Telescope)/ VLA (Very Large Array)/ TRACE (Transition Region and Coronal Explorer)/ SXT (Solar X Ray Telescope) observations of active regions on April 12, May 9, May 13, and May 23. Analysis of all four data sets began, with heaviest concentration on COS data. It is found that 200-pixel (14 A in NIS1) wavelength windows are appropriate for extracting broadened Gaussian line profile fit parameters for lines including Fe XIV at 334.2, Fe XVI at 335.4, Fe XVI at 360.8, and Mg IX at 368.1 over the 4 arcmin by 4 arcmin CDS field of view. Extensive efforts were focused on learning and applying were focused on learning and applying CDS software, and including it in new IDL procedures to carry out calculations relating to coronal magnetography. An important step is to extract Gaussian profile fits to all the lines needed to derive the DEM in each spatial pixel of any given active region. The standard CDS absolute intensity calibration software was applied to derived intensity images, revealing that ratios between density-insensitive lines like Fe XVI 360.8/335.4 yield good agreement with theory. However, the resulting absolute intensities of those lines are very high, indicating that revisions to the CDS absolute intensity calibrations remain to be included in the CDS software, an essential step to

  11. Observing large-scale solar surface flows with GONG: Investigation of a key element in solar activity buildup

    NASA Technical Reports Server (NTRS)

    Beck, John G.; Simon, George W.; Hathaway, David H.

    1996-01-01

    The Global Oscillation Network Group (GONG) solar telescope network has begun regular operations, and will provide continuous Doppler images of large-scale nearly-steady motions at the solar surface, primarily those due to supergranulation. Not only the Sun's well-known magnetic network, but also flux diffusion, dispersal, and concentration at the surface appear to be controlled by supergranulation. Through such magnetoconvective interactions, magnetic stresses develop, leading to solar activity. We show a Doppler movie made from a 45.5 hr time series obtained 1995 May 9-10 using data from three of the six GONG sites (Learmonth, Tenerife, Tucson), to demonstrate the capability of this system.

  12. Observationally driven 3D magnetohydrodynamics model of the solar corona above an active region

    NASA Astrophysics Data System (ADS)

    Bourdin, Ph.-A.; Bingert, S.; Peter, H.

    2013-07-01

    Context. Aims: The goal is to employ a 3D magnetohydrodynamics (MHD) model including spectral synthesis to model the corona in an observed solar active region. This will allow us to judge the merits of the coronal heating mechanism built into the 3D model. Methods: Photospheric observations of the magnetic field and horizontal velocities in an active region are used to drive our coronal simulation from the bottom. The currents induced by this heat the corona through Ohmic dissipation. Heat conduction redistributes the energy that is lost in the end through optically thin radiation. Based on the MHD model, we synthesized profiles of coronal emission lines which can be directly compared to actual coronal observations of the very same active region. Results: In the synthesized model data we find hot coronal loops which host siphon flows or which expand and lose mass through draining. These synthesized loops are at the same location as and show similar dynamics in terms of Doppler shifts to the observed structures. This match is shown through a comparison with Hinode data as well as with 3D stereoscopic reconstructions of data from STEREO. Conclusions: The considerable match to the actual observations shows that the field-line braiding mechanism leading to the energy input in our corona provides the proper distribution of heat input in space and time. From this we conclude that in an active region the field-line braiding is the dominant heating process, at least at the spatial scales available to current observations. Parameters and simulation log-files are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/555/A123

  13. Evidence for the Impact of Stellar Activity on the Detectability of Solar-like Oscillations Observed by Kepler

    NASA Astrophysics Data System (ADS)

    Chaplin, W. J.; Bedding, T. R.; Bonanno, A.; Broomhall, A.-M.; García, R. A.; Hekker, S.; Huber, D.; Verner, G. A.; Basu, S.; Elsworth, Y.; Houdek, G.; Mathur, S.; Mosser, B.; New, R.; Stevens, I. R.; Appourchaux, T.; Karoff, C.; Metcalfe, T. S.; Molenda-Żakowicz, J.; Monteiro, M. J. P. F. G.; Thompson, M. J.; Christensen-Dalsgaard, J.; Gilliland, R. L.; Kawaler, S. D.; Kjeldsen, H.; Ballot, J.; Benomar, O.; Corsaro, E.; Campante, T. L.; Gaulme, P.; Hale, S. J.; Handberg, R.; Jarvis, E.; Régulo, C.; Roxburgh, I. W.; Salabert, D.; Stello, D.; Mullally, F.; Li, J.; Wohler, W.

    2011-05-01

    We use photometric observations of solar-type stars, made by the NASA Kepler Mission, to conduct a statistical study of the impact of stellar surface activity on the detectability of solar-like oscillations. We find that the number of stars with detected oscillations falls significantly with increasing levels of activity. The results present strong evidence for the impact of magnetic activity on the properties of near-surface convection in the stars, which appears to inhibit the amplitudes of the stochastically excited, intrinsically damped solar-like oscillations.

  14. Pc3 activity at low geomagnetic latitudes - A comparison with solar wind observations

    NASA Technical Reports Server (NTRS)

    Villante, U.; Lepidi, S.; Vellante, M.; Lazarus, A. J.; Lepping, R. P.

    1992-01-01

    On an hourly time-scale the different roles of the solar wind and interplanetary magnetic field (IMF) parameters on ground micropulsation activity can be better investigated than at longer time-scales. A long-term comparison between ground measurements made at L'Aquila and IMP 8 observations confirms the solar wind speed as the key parameter for the onset of pulsations even at low latitudes, although additional control of the energy transfer from the interplanetary medium to the earth's magnetosphere is clearly exerted by the cone angle. Above about 20 mHz the frequency of pulsations is confirmed to be closely related to the IMF magnitude while, in agreement with model predictions, the IMF magnitude is related to the amplitude of the local fundamental resonant mode. We provide an interesting example in which high resolution measurements simultaneously obtained in the foreshock region and on the ground show that external transversal fluctuations do not penetrate deep into the low latitude magnetosphere.

  15. Solar Activity and Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.

    2006-01-01

    Our Sun is a dynamic, ever-changing star. In general, its atmosphere displays major variation on an 11-year cycle. Throughout the cycle, the atmosphere occasionally exhibits large, sudden outbursts of energy. These "solar eruptions" manifest themselves in the form of solar flares, filament eruptions, coronal mass ejections (CMEs), and energetic particle releases. They are of high interest to scientists both because they represent fundamental processes that occur in various astrophysical context, and because, if directed toward Earth, they can disrupt Earth-based systems and satellites. Research over the last few decades has shown that the source of the eruptions is localized regions of energy-storing magnetic field on the Sun that become destabilized, leading to a release of the stored energy. Solar scientists have (probably) unraveled the basic outline of what happens in these eruptions, but many details are still not understood. In recent years we have been studying what triggers these magnetic eruptions, using ground-based and satellite-based solar observations in combination with predictions from various theoretical models. We will present an overview of solar activity and solar eruptions, give results from some of our own research, and discuss questions that remain to be explored.

  16. Solar Eclipses Observed from Antarctica

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.

    2013-01-01

    Aspects of the solar corona are still best observed during totality of solar eclipses, and other high-resolution observations of coronal active regions can be observed with radio telescopes by differentiation of occultation observations, as we did with the Jansky Very Large Array for the annular solar eclipse of 2012 May 20 in the US. Totality crossing Antarctica included the eclipse of 2003 November 23, and will next occur on 2021 December 4; annularity crossing Antarctica included the eclipse of 2008 February 7, and will next occur on 2014 April 29. Partial phases as high as 87% coverage were visible and were imaged in Antarctica on 2011 November 25, and in addition to partial phases of the total and annular eclipses listed above, partial phases were visible in Antarctica on 2001 July 2011, 2002 December 4, 2004 April 19, 2006 September 22, 2007 September 11, and 2009 January 26, and will be visible on 2015 September 13, 2016 September 1, 2017 February 26, 2018 February 15, and 2020 December 14. On behalf of the Working Group on Solar Eclipses of the IAU, the poster showed the solar eclipses visible from Antarctica and this article shows a subset (see www.eclipses.info for the full set). A variety of investigations of the Sun and of the response of the terrestrial atmosphere and ionosphere to the abrupt solar cutoff can be carried out at the future eclipses, making the Antarctic observations scientifically useful.

  17. Skylab ATM/S-056 X-ray event analyzer observations versus solar flare activity: An event compilation. [tables (data)

    NASA Technical Reports Server (NTRS)

    Wilson, R. M.

    1977-01-01

    An event compilation is presented which correlates ATM/S-056 X-ray event analyzer solar observations with solar flare activity. Approximately 1,070 h of pulse height analyzed X-ray proportional counter data were obtained with the X-ray event analyzer during Skylab. During its operation, 449 flares (including 343 flare peaks) were observed. Seventy events of peak X-ray emission or = Cl were simultaneously observed by ground based telescopes, SOLRAD 9 and/or Vela, and the X-ray event analyzer. These events were observed from preflare through flare rise to peak and through flare decline.

  18. Statistical analysis of interplanetary shock waves observed during a complete solar activity cycle

    NASA Technical Reports Server (NTRS)

    Khalisi, E.; Schwenn, R.

    1995-01-01

    During the Helios mission a total of 391 fast forward non-corotating interplanetary shock waves was identified. For most of the 12 years between 1974 and 1986 unique shock detection was possible for more than 80 % of the time. The occurrence rate (in shocks per day) varied from 0.02 at activity minimum in 1976 to 0.17 in 1979 and 0.22 in 1982 with a significant drop to 0.13 in 1980, i.e. right at activity maximum. The average properties of all events as functions of solar distance. phase in the solar cycle, heliographic and -magnetic latitude and others are discussed.

  19. OBSERVATIONAL ASPECTS OF THE THREE-DIMENSIONAL CORONAL STRUCTURE OVER A SOLAR ACTIVITY CYCLE

    SciTech Connect

    Morgan, Huw; Habbal, Shadia Rifai

    2010-02-10

    Solar rotational tomography is applied to almost eleven years of Large Angle Spectrometric Coronagraph C2/Solar and Heliospheric Observatory data, revealing for the first time the behavior of the large-scale coronal density structures, also known as streamers, over almost a full solar activity cycle. This study gives an overview of the main results of this project. (1) Streamers are most often shaped as extended, narrow plasma sheets. The sheets can be extremely narrow at times (<=0.14 x 10{sup 6} km at 4 R{sub sun}). This is over twice their heliocentric angular thickness at 1 AU. (2) At most times outside the height of solar maximum, there are two separate stable large helmet streamer belts extending from mid-latitudes (in both north and south). At solar minimum, the streamers converge and join near the equator, giving the impression of a single large helmet streamer. Outside of solar minimum, the two streamers do not join, forming separate high-density sheets in the extended corona (one in the north, another in the south). At solar maximum, streamers rise radially from their source regions, while during the ascending and descending activity phases, streamers are skewed toward the equator. (3) For most of the activity cycle, streamers share the same latitudinal extent as filaments on the disk, showing that large-scale stable streamers are closely linked to the same large-scale photospheric magnetic configuration, which give rise to large filaments. (4) The poleward footpoints of the streamers are often above crown polar filaments and the equatorial footpoints are above filaments or active regions (or above the photospheric neutral lines which underlie these structures). The high-density structures arising from the equatorial active regions either rise and form the equatorial footpoints of mid-latitude quiescent streamers, or form unstable streamers at the equator, not connected to the quiescent streamer structure at higher latitude (so there are often three

  20. Solar irradiance observed at Summit, Greenland: Possible links to magnetic activity on short timescales

    NASA Astrophysics Data System (ADS)

    Frederick, John E.

    2016-09-01

    Measurements of ground-level visible sunlight (400-600 nm) from Summit, Greenland over the period August 2004 through October 2014 define the attenuation provided by cloudiness, including its dependence on solar elevation and season. The long-term mean cloud-attenuation increases with increasing solar zenith angle, consistent with radiative transfer calculations which treat a cloud as a plane parallel layer with a strong bias toward forward scattering and an albedo for diffuse radiation near 0.1. The ratio of measured irradiance to clear-sky irradiance for solar zenith angles greater than 66° has a small, but statistically significant, positive correlation with the previous day's magnetic activity as measured by the daily Ap index, but no clear relationship exists between the irradiance ratio and daily changes in the ground-level neutron flux measured at Thule over the time frame considered. A high value of Ap on one day tends to be followed by a day whose ground-level solar irradiance is slightly greater than would occur otherwise. In an average sense, the visible irradiance following a day with Ap>16 exceeds that following a day with Ap≤16 by 1.2-1.3% with a 95% confidence range of approximately ±1.0%. The results are broadly compatible with small changes in atmospheric scattering following magnetic disturbances.

  1. AAVSO Solar Observers Worldwide

    NASA Astrophysics Data System (ADS)

    Howe, R.

    2013-06-01

    (Abstract only) For visual solar observers there has been no biological change in the "detector" (human eye) - at century scales (eye + visual cortex) does not change much over time. Our capacity to "integrate" seeing distortions is not just simple averaging! The visual cortex plays an essential role, and until recently only the SDO-HMI (Solar Dynamics Observatory, Helioseismic and Magnetic Imager) has had the capacity to detect the smallest sunspots, called pores. Prior to this the eye was superior to photography and CCD. Imaged data are not directly comparable or substitutable to counts by eye, as the effects of sensor/optical resolution and seeing will have a different influence on the resulting sunspot counts for images when compared to the human eye. Also contributing to the complex task of counting sunspots is differentiating between a sunspot (which is usually defined as having a darker center (umbra) and lighter outer ring (penumbra)) and a pore, made even more complex by the conflicting definitions of the word "pore" in the solar context: "pore" can mean a small spot without penumbra or "pore" can mean a random intergranular blemish that is not a true sunspot. The overall agreement is that the smallest spot size is near 2,000 km or ~3 arc sec, (Loughhead, R. E. and Bray, R. J. 1961, Australian J. Phys., 14, 347). Sunspot size is dictated by granulation dynamics rather than spot size (cancellation of convective motion), and by the lifetime of the pore, which averages from 10 to 30 minutes. There is no specific aperture required for AAVSO observers contributing sunspot observations. However, the detection of the smallest spots is influenced by the resolution of the telescope. Two factors to consider are the theoretical optical resolution (unobstructed aperture), Rayleigh criterion: theta = 138 / D(mm), and Dawes criterion: theta = 116 / D(mm) (http://www.telescope-optics.net/telescope_resolution.htm). However, seeing is variable with time; daytime range will

  2. The solar activity dependence of nonmigrating tides in electron density at low and middle latitudes observed by CHAMP and GRACE

    NASA Astrophysics Data System (ADS)

    Zhou, Yun-Liang; Wang, Li; Xiong, Chao; Lühr, Hermann; Ma, Shu-Ying

    2016-04-01

    In this paper we use more than a decade of in situ electron density observations from CHAMP and GRACE satellites to investigate the solar activity dependence of nonmigrating tides at both low and middle latitudes. The results indicate that the longitudinal patterns of F region electron density vary with season and latitude, which are exhibiting a wavenumber 4 (WN4) pattern around September equinox at low latitudes and WN1/WN2 patterns during local summer at the southern/northern middle latitudes. These wave patterns in the F region ionosphere can clearly be seen during both solar maximum and minimum years. At low latitudes the absolute amplitudes of DE3 (contributing to the WN4 pattern) are found to be highly related to the solar activity, showing larger amplitudes during solar maximum years. Similarly a solar activity dependence can also be found for the absolute amplitudes of D0, DW2 and DE1 (contributing to the WN1 and WN2 pattern) at middle latitudes. The relative amplitudes (normalized by the zonal mean) of these nonmigrating tides at both low and middle altitudes show little dependence on solar activity. We further found a clear modulation by the quasi-biennial oscillation (QBO) of the relative DE3 amplitudes in both satellite observations, which is consistent with the QBO dependence as reported for the E region temperatures and zonal wind. It also supports the strong coupling of the low-latitude nonmigrating tidal activity between the E and F regions. However, the QBO dependence cannot be found for the relative amplitudes of the nonmigrating tides at middle latitudes, which implies that these tides are generated in situ at F region altitudes.

  3. Determination of Differential Emission Measure Distribution of Coronal Structures Observed by SphinX During Recent Minimum of Solar Activity

    NASA Astrophysics Data System (ADS)

    Kepa, Anna; Gburek, Szymon; Siarkowski, Marek; Sylwester, Barbara; Sylwester, Janusz; Kowalinski, Miroslaw

    SphinX is a high-sensitivity soft X-ray spectrophotometer which measures soft X-ray spectra in the energy range between 0.8 keV and 15 keV. From February to November 2009 the instrument has observed unusually quiet solar coronal emission as well as a number of weak solar flares. Based on SphinX spectra it is possible to study the differential emission measure distributions (DEM) in the temperature range roughly between 1 MK and 10 MK. The aim of the present study is to unveil DEM plasma distributions for selected activity conditions and analyze their variability.

  4. Geomagnetic and solar activity dependence of ionospheric upflowing O+: FAST observations

    NASA Astrophysics Data System (ADS)

    Zhao, K.; Jiang, Y.; Chen, K. W.; Huang, L. F.

    2016-09-01

    This paper investigates the dependence of the occurrence frequency of ionospheric upflowing oxygen (O+) ions on the sunspot cycle and geomagnetic activity. We examine the upflows response to the geomagnetic disturbances as well as the influence of the ion energy factor in controlling the magnitude of the occurrence frequency and the net energy flux. We discuss the spatial distribution of the upflow occurrence frequency and construct a regression model as a function of the magnetic latitude. The results show an overall enhancement of the upflow occurrence frequency during magnetically disturbed periods and indicate that the high-occurrence area spreads out from the source regions during magnetically quiet periods. The high-occurrence areas are located at 70° magnetic latitude (mLat) in the dayside auroral oval zone and between 76-80° mLat in the dayside polar cusp region. In the nightside auroral oval zone, these areas are near 60° mLat, penetrating further equatorward to 55° mLat during magnetically disturbed periods. High energy (≥1 keV) upflowing ions are common in the nightside auroral oval zone while low energy (<1 keV) upflowing ions are found escaping from the high latitude dayside cusp region. A Gaussian function is shown to be a good fit to the occurrence frequency over the magnetic latitude. For high energy upflowing O+ ions, the occurrence frequency exhibits a single peak located at about 60° mLat in the nightside auroral oval zone while for low energy upflowing O+ ions, it exhibits two peaks, one near 60° mLat in the auroral oval zone and the other near 78° mLat in the cusp region. We study the solar activity dependence by analyzing the relationship between the upflow occurrence frequency and the sunspot number (RZ). The statistical result shows that the frequency decreases with declining solar activity level, from ˜30 % at solar maximum to ˜5 % at solar minimum. In addition, the correlation coefficient between the occurrence frequency and RZ

  5. FREQUENCY OF MAUNDER MINIMUM EVENTS IN SOLAR-TYPE STARS INFERRED FROM ACTIVITY AND METALLICITY OBSERVATIONS

    SciTech Connect

    Lubin, Dan; Tytler, David; Kirkman, David

    2012-03-10

    We consider the common proposition that the fraction of chromospherically very inactive stars in a solar-type sample is analogous to the fraction of the Sun's main-sequence lifetime spent in a grand minimum state. In a new approach to this proposition, we examine chromospheric activity log R'{sub HK} in a stellar sample having Hipparcos parallax measurements, and having spectroscopically determined metallicity close to solar (-0.1 {<=} [Fe/H] {<=} 0.1). We evaluate height above the Hipparcos main sequence, and estimate age using isochrones, to identify the most Sun-like stars in this sample. As a threshold below which a star is labeled very inactive, we use the peak of the HK activity distribution mapped over the quiet Sun during the 1968 epoch. We estimate the fraction of Maunder Minimum (MM) analog candidates in our sample at 11.1%. Given the 70 yr duration of the historical MM, this suggests that in any given year there is a 1/630 chance of entering a similar grand minimum. There are three important cautions with this type of estimate. First, recent investigation using actual activity and photometric time series has suggested that very low activity may not be a necessary criterion for identifying a non-cycling MM analog candidate. Second, this type of estimate depends very strongly on the choice of very low activity threshold. Third, in instantaneous measurements of log R'{sub HK}, it is not always clear whether a star is a viable MM analog candidate or merely an older star nearing the end of its main-sequence lifetime.

  6. Field-Aligned Current Dynamics and Its Correlation with Solar Wind Conditions and Geomagnetic Activities From Space Technology 5 Observations

    NASA Astrophysics Data System (ADS)

    Wang, Yongli; Boardsen, Scott; Le, Guan; Slavin, James; Strangeway, Robert J.

    Field-aligned currents (FACs) are the currents flowing into and out of the ionosphere which connect to the magnetosphere. They provide an essential linkage between the solar wind - magnetosphere system and the ionosphere, and the understanding of these currents is important for global magnetosphere dynamics and space weather prediction. The three spacecraft ST-5 constellation provides an unprecedented opportunity to study in situ FAC dynamics in time scales (10 sec to 10 min) that can not be achieved previously with single spacecraft studies or large-spaced conjugate spacecraft studies. In this study, we use the magnetic field observations during the whole ST-5 mission to study the dependence of FAC current sheet motion and intensity on solar wind conditions. FAC peak current densities show very good correlations with some solar wind parameters, including IMF Bz, dynamic pressure, Ey, and some IMF angles, but not with other parameters. Instant FAC speeds show generally much weaker dependence on solar wind conditions comparing to FAC peak current densities. This obvious uncorrelation between FAC peak current densities and speeds implies that FAC peak current densities are more consistently controlled by solar wind conditions and geomagnetic activities, while FAC speeds are more oscillatory, sometimes with higher speeds during quieter times and lower speeds during more turbulent times. Detailed examination of FAC current sheet speed during two major storms in the ST-5 mission will also be given to illustrate the temporal evolution of the FAC dynamics with geomagnetic storm.

  7. Constraining hot plasma in a non-flaring solar active region with FOXSI hard X-ray observations

    NASA Astrophysics Data System (ADS)

    Ishikawa, Shin-nosuke; Glesener, Lindsay; Christe, Steven; Ishibashi, Kazunori; Brooks, David H.; Williams, David R.; Shimojo, Masumi; Sako, Nobuharu; Krucker, Säm

    2014-12-01

    We present new constraints on the high-temperature emission measure of a non-flaring solar active region using observations from the recently flown Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket payload. FOXSI has performed the first focused hard X-ray (HXR) observation of the Sun in its first successful flight on 2012 November 2. Focusing optics, combined with small strip detectors, enable high-sensitivity observations with respect to previous indirect imagers. This capability, along with the sensitivity of the HXR regime to high-temperature emission, offers the potential to better characterize high-temperature plasma in the corona as predicted by nanoflare heating models. We present a joint analysis of the differential emission measure (DEM) of active region 11602 using coordinated observations by FOXSI, Hinode/XRT, and Hinode/EIS. The Hinode-derived DEM predicts significant emission measure between 1 MK and 3 MK, with a peak in the DEM predicted at 2.0-2.5 MK. The combined XRT and EIS DEM also shows emission from a smaller population of plasma above 8 MK. This is contradicted by FOXSI observations that significantly constrain emission above 8 MK. This suggests that the Hinode DEM analysis has larger uncertainties at higher temperatures and that > 8 MK plasma above an emission measure of 3 × 1044 cm-3 is excluded in this active region.

  8. The development of solar ultraviolet observation

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan-Ni; Zhang, Chun-Min

    2011-11-01

    Mankind has been eager to know the variation of the atmospheric change processes in which the sun play a most important role, So research the Sun activity is a hot point. Observe and analyze its ultraviolet(UV) spectra is a valid way to know the Sun activity, solar UV radiation flux and upper atmospheric absorption of UV is representative of the sun activity. The solar UV emission lines are generally optically thin, so the detection aroused great attention. This paper provide an overview of the past two decades advances instrumentation for solar UV observation. Emphasis is given to the great mission such as OSO 8(Orbiting Solar Observatory 8), SOHO(Solar and Heliospheric Observatory), TRACE(Transition Region and Coronal Explorer), SDO(Solar Dynamics Observatory) and KuaFu, especially to their UV instrumentation and scientific objective, some outlook is proposed.

  9. Comparing Simulations of Rising Flux Tubes Through the Solar Convection Zone with Observations of Solar Active Regions: Constraining the Dynamo Field Strength

    NASA Astrophysics Data System (ADS)

    Weber, M. A.; Fan, Y.; Miesch, M. S.

    2013-10-01

    We study how active-region-scale flux tubes rise buoyantly from the base of the convection zone to near the solar surface by embedding a thin flux tube model in a rotating spherical shell of solar-like turbulent convection. These toroidal flux tubes that we simulate range in magnetic field strength from 15 kG to 100 kG at initial latitudes of 1∘ to 40∘ in both hemispheres. This article expands upon Weber, Fan, and Miesch ( Astrophys. J. 741, 11, 2011) (Article 1) with the inclusion of tubes with magnetic flux of 1020 Mx and 1021 Mx, and more simulations of the previously investigated case of 1022 Mx, sampling more convective flows than the previous article, greatly improving statistics. Observed properties of active regions are compared to properties of the simulated emerging flux tubes, including: the tilt of active regions in accordance with Joy's Law as in Article 1, and in addition the scatter of tilt angles about the Joy's Law trend, the most commonly occurring tilt angle, the rotation rate of the emerging loops with respect to the surrounding plasma, and the nature of the magnetic field at the flux tube apex. We discuss how these diagnostic properties constrain the initial field strength of the active-region flux tubes at the bottom of the solar convection zone, and suggest that flux tubes of initial magnetic field strengths of ≥ 40 kG are good candidates for the progenitors of large (1021 Mx to 1022 Mx) solar active regions, which agrees with the results from Article 1 for flux tubes of 1022 Mx. With the addition of more magnetic flux values and more simulations, we find that for all magnetic field strengths, the emerging tubes show a positive Joy's Law trend, and that this trend does not show a statistically significant dependence on the magnetic flux.

  10. Origins of Solar Activity

    NASA Astrophysics Data System (ADS)

    Rust, David M.

    1996-05-01

    Work under the subject grant began in August 1992, when Mr. J. J. Blanchette began study and data analysis in the area of solar flare research. Mr. Blanchette passed all requirements toward a Ph.D., except for the thesis. Mr. Blanchette worked with the APL Flare Genesis Experiment team to build a balloon-borne solar vector magnetograph. Other work on the magnetograph was partially supported by AFOSR grant F49620-94-1-0079. Mr. Blanchette assisted the Flare Genesis team prepare the telescope and focal plane optical elements for a test flight. He participated in instrument integ ration and in launch preparations for the flight, which took place on January 23, 1994. Mr. Blanchette was awarded a Masters Degree in Astrophysics by the Johns Hopkins University in recognition of his achievements. Mr. Blanchette indicated a desire to suspend work on the Ph.D. degree, and he left the AASERT program on August 31, 1994. Under the guidance of his advisor at JHU/APL, Dr. David M. Rust, Mr. Blanchette gained enough background in solar physics so that he can contribute to observational, analytical, and presentation efforts in solar research. Beginning in August 1995, Mr. Ashok Kumar was supported by the grant. Mr. Kumar demonstrated remarkable theoretical insight into the problems of solar activity. He developed the concept of intrinsic scale magnetic flux ropes in the solar atmosphere and interplanetary space. His model can explain the heating of interplanetary magnetic clouds. Recently, his idea has been extended to explain solar wind heating. If the idea is confirmed by further comparison with observations, it will be a major breakthrough in space physics and it may lead to an explanation for why the solar corona's temperature is over a million degrees.

  11. Observations of Solar Radio Transients

    NASA Astrophysics Data System (ADS)

    Paige, Giorla

    2011-05-01

    A low frequency radio telescope has been recently been constructed on the campus of the The College of New Jersey (TCNJ) and has begun conducting observations at 20MHz as part of NASA'a Radio Jove program. This instrument is capable of observations of solar radio emission including strong prompt radio emission associated with solar burst events. We will discuss solar observations conducted with this instrument as well as an effort to conduct coincident observations with the Eight-meter-wavelength Transient Array (ETA) and the Long Wavelength Array (LWA).

  12. Seismic sensitivity to sub-surface solar activity from 18 yr of GOLF/SoHO observations

    NASA Astrophysics Data System (ADS)

    Salabert, D.; García, R. A.; Turck-Chièze, S.

    2015-06-01

    Solar activity has significantly changed over the last two Schwabe cycles. After a long and deep minimum at the end of Cycle 23, the weaker activity of Cycle 24 contrasts with the previous cycles. In this work, the response of the solar acoustic oscillations to solar activity is used in order to provide insights into the structural and magnetic changes in the sub-surface layers of the Sun during this on-going unusual period of low activity. We analyze 18 yr of continuous observations of the solar acoustic oscillations collected by the Sun-as-a-star GOLF instrument on board the SoHO spacecraft. From the fitted mode frequencies, the temporal variability of the frequency shifts of the radial, dipolar, and quadrupolar modes are studied for different frequency ranges that are sensitive to different layers in the solar sub-surface interior. The low-frequency modes show nearly unchanged frequency shifts between Cycles 23 and 24, with a time evolving signature of the quasi-biennial oscillation, which is particularly visible for the quadrupole component revealing the presence of a complex magnetic structure. The modes at higher frequencies show frequency shifts that are 30% smaller during Cycle 24, which is in agreement with the decrease observed in the surface activity between Cycles 23 and 24. The analysis of 18 yr of GOLF oscillations indicates that the structural and magnetic changes responsible for the frequency shifts remained comparable between Cycle 23 and Cycle 24 in the deeper sub-surface layers below 1400 km as revealed by the low-frequency modes. The frequency shifts of the higher-frequency modes, sensitive to shallower regions, show that Cycle 24 is magnetically weaker in the upper layers of Sun. Appendices are available in electronic form at http://www.aanda.orgThe following 68 GOLF frequency tables are available and Table A.1 is also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc

  13. Coronal Heating By the Interaction between Emerging Active Regions and the Quiet Sun Observed By the Solar Dynamics Observatory

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Zhang, Bin; Li, Ting; Yang, Shuhong; Zhang, Yuzong; Li, Leping; Chen, Feng; Peter, Hardi

    2015-02-01

    The question of what heats the solar corona remains one of the most important puzzles in solar physics and astrophysics. Here we report Solar Dynamics Observatory Atmospheric Imaging Assembly observations of coronal heating by the interaction between emerging active regions (EARs) and the surrounding quiet Sun (QS). The EARs continuously interact with the surrounding QS, resulting in dark ribbons which appear at the boundary of the EARs and the QS. The dark ribbons visible in extreme-ultraviolet wavelengths propagate away from the EARs with speeds of a few km s-1. The regions swept by the dark ribbons are brightening afterward, with the mean temperature increasing by one quarter. The observational findings demonstrate that uninterrupted magnetic reconnection between EARs and the QS occurs. When the EARs develop, the reconnection continues. The dark ribbons may be the track of the interface between the reconnected magnetic fields and the undisturbed QS’s fields. The propagating speed of the dark ribbons reflects the reconnection rate and is consistent with our numerical simulation. A long-term coronal heating which occurs in turn from nearby the EARs to far away from the EARs is proposed.

  14. Coronal Heating by the Interaction Between Emerging Active Regions and the Quiet Sun Observed by the Solar Dynamics Observatory

    NASA Astrophysics Data System (ADS)

    Zhang, Jun

    2015-08-01

    The question of what heats the solar corona remains one of the most important puzzles in solar physics andastrophysics. Here we report Solar Dynamics Observatory Atmospheric Imaging Assembly observations of coronal heating by the interaction between emerging active regions (EARs) and the surrounding quiet Sun (QS). The EARs continuously interact with the surrounding QS, resulting in dark ribbons which appear at the boundary of the EARs and the QS. The dark ribbons visible in extreme-ultraviolet wavelengths propagate away from the EARs with speeds of a few km/s. The regions swept by the dark ribbons are brightening afterward, with the mean temperature increasing by one quarter. The observational findings demonstrate that uninterrupted magnetic reconnection between EARs and the QS occurs. When the EARs develop, the reconnection continues. The dark ribbons may be the track of the interface between the reconnected magnetic fields and the undisturbed QS’s fields. The propagating speed of the dark ribbons reflects the reconnection rate and is consistent with our numerical simulation. A long-term coronal heating which occurs in turn from nearby the EARs to far away from the EARs is proposed.

  15. CORONAL HEATING BY THE INTERACTION BETWEEN EMERGING ACTIVE REGIONS AND THE QUIET SUN OBSERVED BY THE SOLAR DYNAMICS OBSERVATORY

    SciTech Connect

    Zhang, Jun; Zhang, Bin; Li, Ting; Yang, Shuhong; Zhang, Yuzong; Li, Leping; Chen, Feng; Peter, Hardi E-mail: liting@nao.cas.cn E-mail: yuzong@nao.cas.cn E-mail: chen@mps.mpg.de

    2015-02-01

    The question of what heats the solar corona remains one of the most important puzzles in solar physics and astrophysics. Here we report Solar Dynamics Observatory Atmospheric Imaging Assembly observations of coronal heating by the interaction between emerging active regions (EARs) and the surrounding quiet Sun (QS). The EARs continuously interact with the surrounding QS, resulting in dark ribbons which appear at the boundary of the EARs and the QS. The dark ribbons visible in extreme-ultraviolet wavelengths propagate away from the EARs with speeds of a few km s{sup −1}. The regions swept by the dark ribbons are brightening afterward, with the mean temperature increasing by one quarter. The observational findings demonstrate that uninterrupted magnetic reconnection between EARs and the QS occurs. When the EARs develop, the reconnection continues. The dark ribbons may be the track of the interface between the reconnected magnetic fields and the undisturbed QS’s fields. The propagating speed of the dark ribbons reflects the reconnection rate and is consistent with our numerical simulation. A long-term coronal heating which occurs in turn from nearby the EARs to far away from the EARs is proposed.

  16. THE NAKED EMERGENCE OF SOLAR ACTIVE REGIONS OBSERVED WITH SDO/HMI

    SciTech Connect

    Centeno, Rebecca

    2012-11-01

    We take advantage of the HMI/SDO instrument to study the naked emergence of active regions (ARs) from the first imprints of the magnetic field on the solar surface. To this end, we followed the first 24 hr in the life of two rather isolated ARs that appeared on the surface when they were about to cross the central meridian. We analyze the correlations between Doppler velocities and the orientation of the vector magnetic field, consistent finding that the horizontal fields connecting the main polarities are dragged to the surface by relatively strong upflows and are associated with elongated granulation that is, on average, brighter than its surroundings. The main magnetic footpoints, on the other hand, are dominated by vertical fields and downflowing plasma. The appearance of moving dipolar features (MDFs, of opposite polarity to that of the AR) in between the main footpoints is a rather common occurrence once the AR reaches a certain size. The buoyancy of the fields is insufficient to lift up the magnetic arcade as a whole. Instead, weighted by the plasma that it carries, the field is pinned down to the photosphere at several places in between the main footpoints, giving life to the MDFs and enabling channels of downflowing plasma. MDF poles tend to drift toward each other, merge and disappear. This is likely to be the signature of a reconnection process in the dipped field lines, which relieves some of the weight allowing the magnetic arcade to finally rise beyond the detection layer of the Helioseismic and Magnetic Imager spectral line.

  17. Commission 10: Solar Activity

    NASA Astrophysics Data System (ADS)

    van Driel-Gesztelyi, Lidia; Schrijver, Carolus J.; Klimchuk, James A.; Charbonneau, Paul; Fletcher, Lyndsay; Hasan, S. Sirajul; Hudson, Hugh S.; Kusano, Kanya; Mandrini, Cristina H.; Peter, Hardi; Vršnak, Bojan; Yan, Yihua

    2012-04-01

    Commission 10 of the International Astronomical Union has more than 650 members who study a wide range of activity phenomena produced by our nearest star, the Sun. Solar activity is intrinsically related to solar magnetic fields and encompasses events from the smallest energy releases (nano- or even picoflares) to the largest eruptions in the Solar System, coronal mass ejections (CMEs), which propagate into the Heliosphere reaching the Earth and beyond. Solar activity is manifested in the appearance of sunspot groups or active regions, which are the principal sources of activity phenomena from the emergence of their magnetic flux through their dispersion and decay. The period 2008-2009 saw an unanticipated extended solar cycle minimum and unprecedentedly weak polar-cap and heliospheric field. Associated with that was the 2009 historical maximum in galactic cosmic rays flux since measurements begun in the middle of the 20th Century. Since then Cycle 24 has re-started solar activity producing some spectacular eruptions observed with a fleet of spacecraft and ground-based facilities. In the last triennium major advances in our knowledge and understanding of solar activity were due to continuing success of space missions as SOHO, Hinode, RHESSI and the twin STEREO spacecraft, further enriched by the breathtaking images of the solar atmosphere produced by the Solar Dynamic Observatory (SDO) launched on 11 February 2010 in the framework of NASA's Living with a Star program. In August 2012, at the time of the IAU General Assembly in Beijing when the mandate of this Commission ends, we will be in the unique position to have for the first time a full 3-D view of the Sun and solar activity phenomena provided by the twin STEREO missions about 120 degrees behind and ahead of Earth and other spacecraft around the Earth and ground-based observatories. These new observational insights are continuously posing new questions, inspiring and advancing theoretical analysis and

  18. Pervasive faint Fe XIX emission from a solar active region observed with EUNIS-13: Evidence for nanoflare heating

    SciTech Connect

    Brosius, Jeffrey W.; Daw, Adrian N.; Rabin, D. M.

    2014-08-01

    We present spatially resolved EUV spectroscopic measurements of pervasive, faint Fe XIX 592.2 Å line emission in an active region observed during the 2013 April 23 flight of the Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS-13) sounding rocket instrument. With cooled detectors, high sensitivity, and high spectral resolution, EUNIS-13 resolves the lines of Fe XIX at 592.2 Å (formed at temperature T ≈ 8.9 MK) and Fe XII at 592.6 Å (T ≈ 1.6 MK). The Fe XIX line emission, observed over an area in excess of 4920 arcsec{sup 2} (2.58 × 10{sup 9} km{sup 2}, more than 60% of the active region), provides strong evidence for the nanoflare heating model of the solar corona. No GOES events occurred in the region less than 2 hr before the rocket flight, but a microflare was observed north and east of the region with RHESSI and EUNIS during the flight. The absence of significant upward velocities anywhere in the region, particularly the microflare, indicates that the pervasive Fe XIX emission is not propelled outward from the microflare site, but is most likely attributed to localized heating (not necessarily due to reconnection) consistent with the nanoflare heating model of the solar corona. Assuming ionization equilibrium we estimate Fe XIX/Fe XII emission measure ratios of ∼0.076 just outside the AR core and ∼0.59 in the core.

  19. RECONSTRUCTING THE SUBSURFACE THREE-DIMENSIONAL MAGNETIC STRUCTURE OF A SOLAR ACTIVE REGION USING SDO/HMI OBSERVATIONS

    SciTech Connect

    Chintzoglou, Georgios; Zhang Jie

    2013-02-10

    A solar active region (AR) is a three-dimensional (3D) magnetic structure formed in the convection zone, whose property is fundamentally important for determining the coronal structure and solar activity when emerged. However, our knowledge of the detailed 3D structure prior to its emergence is rather poor, largely limited by the low cadence and sensitivity of previous instruments. Here, using the 45 s high-cadence observations from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, we are able for the first time to reconstruct a 3D data cube and infer the detailed subsurface magnetic structure of NOAA AR 11158, and to characterize its magnetic connectivity and topology. This task is accomplished with the aid of the image-stacking method and advanced 3D visualization. We find that the AR consists of two major bipoles or four major polarities. Each polarity in 3D shows interesting tree-like structure, i.e., while the root of the polarity appears as a single tree-trunk-like tube, the top of the polarity has multiple branches consisting of smaller and thinner flux tubes which connect to the branches of the opposite polarity that is similarly fragmented. The roots of the four polarities align well along a straight line, while the top branches are slightly non-coplanar. Our observations suggest that an active region, even appearing highly complicated on the surface, may originate from a simple straight flux tube that undergoes both horizontal and vertical bifurcation processes during its rise through the convection zone.

  20. Ground-based Solar Observations and Plasma Bubbles in Brazilian Sector During a Period of Extreme Low Solar Activity

    NASA Astrophysics Data System (ADS)

    Tardelli-Coelho, F.; Abalde, J. R.; Tardelli, A.; de Abreu, A. J.

    2016-04-01

    Studies presented on the relation of the Sun-Earth system are currently of great importance. Ionospheric irregularities in the F-region, caused by geomagnetic storms have significant and adverse effects on the Earth. The recent advancement in technological techniques for monitoring space weather has facilitated these studies. The focus of this study was to determine whether a geomagnetic storm interfered with the generation, propagation, and durability of plasma bubbles that occurred over a period of solar minimum in two cities in the Brazilian sector, São José dos Campos - SP, designated SJC, (23.21°S, 45.86°W; dip latitude 17.6°S), low-latitude region and near the south crest of the ionospheric equatorial anomaly; and Palmas - TO, called PAL (10.28°S, 48.33°W; dip latitude 6.7°S), near the magnetic equator, located in the geographical South, tropical region and the hemisphere opposite the magnetic equator. This study was conducted with data analysis of five years (2006-2010) for SJC and four years (2007-2010) for PAL, considering the 24th solar cycle, using an all-sky imaging photometer operating with interference filters in OI 630.0 nm emission resulting from dissociative recombination process that occurs at an altitude of 250-300 km (F-region).

  1. Solar Ca II K Observations

    NASA Astrophysics Data System (ADS)

    Bertello, Luca; Pevtsov, Alexei A.; Tlatov, Andrey; Singh, Jagdev

    2016-07-01

    Some of the most important archives of past and current long-term solar synoptic observations in the resonance line of Ca II K are described here. These observations are very important for understanding the state of the solar magnetism on time scales up to several decades. The first observations of this kind began in 1904 at the Kodaikanal Observatory (India), followed by similar programs at different other locations. Regular full-disk Ca II K monitoring programs started in 1915 at the Mount Wilson Observatory (USA) and in 1917 at the National Solar Observatory of Japan. Beginning in 1919 and in 1926 regular observations were taken also at the Paris-Meudon Observatory (France) and at the "Donati solar tower telescope of the Arcetri Astrophysical Observatory in Italy, respectively. In 1926 the the Astronomical Observatory of the Coimbra University in Portugal started its own program of Ca II K observations. Although some of these programs have been terminated over the years, their data archives constitute a unique resource for studies of solar variability. In the early 1970s, the National Solar Observatory (NSO) at Sacramento Peak (USA) started a new program of daily Sun-as-a-star observations in the Ca II K line. Today the NSO is continuing these observations through its Synoptic Optical Long-term Investigations of the Sun (SOLIS) facility.

  2. Clasp/SJ Observation of Time Variations of Lyman-Alpha Emissions in a Solar Active Region

    NASA Technical Reports Server (NTRS)

    Ishikawa, S.; Kubo, M.; Katsukawa, Y.; Kano, R.; Narukage, N.; Ishikawa, R.; Bando, T.; Winebarger, A.; Kobayashi, K.; Trujillo Bueno, J.; Auchere, F.

    2016-01-01

    The Chromospheric Lyman-alpha SpectroPolarimeter (CLASP) is a sounding rocket experiment launched on September 3, 2015 to investigate the solar chromosphere, and the slit-jaw (SJ) optical system took Lya images with the high time cadence of 0.6 s. By the CLASP/SJ observation, many time variations in the solar chromosphere with the time scale of <1 minute were discovered (see the poster by Kubo et al., Pa-13). We focused on an active region and investigated the short (<30 s) time variations and relation to the coronal structure observed by SDO/AIA. We compared the Ly(alpha) time variations at footpoints of coronal magnetic fields observed by AIA 211 Å (approx.2 MK) and AIA 171 Å (0.6 MK), and non-loop regions. As the result, we found the <30 s Ly(alpha) time variations had more in the footpoint regions. On the other hand, the <30 s time variations had no dependency on the temperature of the loop.

  3. Doppler observations of solar rotation

    NASA Technical Reports Server (NTRS)

    Scherrer, P. H.; Wilcox, J. M.

    1980-01-01

    Daily observations of the photospheric equatorial rotation rate using the Doppler effect are made at the Stanford Solar Observatory. These observations show no variations in the rotation rate that exceed the observational error of about 1%. The average rotation rate is indistinguishable from that of sunspots and large-scale magnetic field structures.

  4. Doppler observations of solar rotation

    NASA Technical Reports Server (NTRS)

    Scherrer, P. H.

    1980-01-01

    Daily observations of the photospheric equatorial rotation rate using the Doppler effect mode at the Sanford Solar Observatory are presented. These observations show no variations in the rotation rate that exceed the observational error of about one percent. The average rotation rate is indistinguishable from that of sunspots and large scale magnetic field structures.

  5. Optical observations of comet 67P/Churyumov-Gerasimenko with the Nordic Optical Telescope. Comet activity before the solar conjunction

    NASA Astrophysics Data System (ADS)

    Zaprudin, B.; Lehto, H. J.; Nilsson, K.; Pursimo, T.; Somero, A.; Snodgrass, C.; Schulz, R.

    2015-11-01

    Context. 67P/Churyumov-Gerasimenko (67P) is a short-period Jupiter-family comet that was chosen as a target for the Rosetta mission by the European Space Agency (ESA). Monitoring of 67P with the Nordic Optical Telescope (NOT; La Palma, Spain) intends to aid this mission by providing ground-based reference information about the overall activity of the target and its astrometric position before the rendezvous. One motivation for our observations was to monitor sudden major increases in activity because they might have affected the Rosetta mission planning. None were observed. Ground-based photometric observations register the global activity of the comet, while the Rosetta spacecraft mostly measures local events. These data combined can lead to new insights into the comet behavior. Aims: The aim of this work is to perform the photometric and the astrometric monitoring of comet 67P with the NOT and to compare the results with the latest predictions for its position and activity. A new method of fitting extended-source components to the target surface brightness distribution was developed and applied to the data to estimate the size and contribution of the coma to the total brightness of the target. Methods: Comet 67P was monitored by the NOT in service mode during the period between 12.5.2013 and 11.11.2014. The very first observations were performed in the V band alone, but in the latest observations, the R band was used as well to estimate the color and nature of activity of the target. We applied a new method for estimating the coma size by deconvolving the point spread function profile from the image, which used Markov chain Monte Carlo and Bayesian statistics. This method will also be used for coma size estimations in further observations after the solar conjunction of 67P. Results: Photometric magnitudes in two colors were monitored during the period of observations. At the end of April 2014, the beginning of activity was observed. In late September 2014, a

  6. Solar System Observations with JWST

    NASA Technical Reports Server (NTRS)

    Norwood, James; Hammel, Heidi; Milam, Stefanie; Stansberry, John; Lunine, Jonathan; Chanover, Nancy; Hines, Dean; Sonneborn, George; Tiscareno, Matthew; Brown, Michael; Ferruit, Pierre

    2014-01-01

    The James Webb Space Telescope will enable a wealth of new scientific investigations in the near- and mid- infrared, with sensitivity and spatial-spectral resolution greatly surpassing its predecessors. In this paper, we focus upon Solar System science facilitated by JWST, discussing the most current information available concerning JWST instrument properties and observing techniques relevant to planetary science. We also present numerous example observing scenarios for a wide variety of Solar System targets to illustrate the potential of JWST science to the Solar System community. This paper updates and supersedes the Solar System white paper published by the JWST Project in 2010 (Lunine et al., 2010). It is based both on that paper and on a workshop held at the annual meeting of the Division for Planetary Sciences in Reno, NV in 2012.

  7. Ionosonde observations of F region parameters over Indian low latitude during different solar activity conditions and comparison with IRI model

    NASA Astrophysics Data System (ADS)

    Peddapati, PavanChaitanya; Patra, Amit

    2016-07-01

    In the equatorial region, the daytime F region exhibits three layers, namely F1, F2 and F3 layers. The detail characteristics of the F2 and F3 layers and their variabilities at different equatorial latitudes, however, have not been well defined. Given the fact that equatorial ionosphere is governed profoundly by dynamical and electro-dynamical forcing, electron density varies remarkably with latitude and altitude. A detailed characterization and study of the equatorial F region, thus, is necessary for improving ionospheric model, such as International Reference Ionosphere (IRI), applicable to the equatorial region. For this purpose, we have analyzed ionosonde observations from the dip equator and low magnetic latitude in the Indian sector to characterize the F2 and F3 layers in different seasons and solar activity conditions. In this paper, we present a detailed comparative analysis on the variabilities of the F2 and F3 layers as a function of local time, season and solar activity conditions. Finally, these results are compared with the IRI model parameters in an effort to evaluate the suitability of the IRI model representing the equatorial ionosphere in the Indian sector.

  8. South Pole all-sky imager observations of dayside aurora activity induced by a solar wind dynamic pressure enhancement

    NASA Astrophysics Data System (ADS)

    Motoba, T.; Kadokura, A.; Ebihara, Y.; Sato, N.

    2008-12-01

    Ground observations of the optical aurora in the dayside cusp region have the distinct advantages of continuity of coverage and sufficient temporal-spatial sensitivity to monitor dayside signatures of solar wind/magnetosphere/ionosphere interaction mechanisms. The South Pole Station (SP, geomagnetic latitude (GMLat) = -74.3 degs, magnetic local time = UT-3.5 h) in Antarctica is a unique place for dayside aurora observations during austral winter season. We present the detailed features of enhancements of dayside aurora activity induced by a sudden increase in the solar wind dynamic pressure (Psw), using a ground-based all-sky imager (ASI) at SP. The interplanetary magnetic field (IMF) was northward during the Psw enhancement. Just after the arrival of the Psw enhancement on the Earth"fs magnetosphere, the 557.7 nm aurora activity on the dayside is suddenly intensified almost in the whole field of view of ASI. Further a few minutes later, the intensity of the auroral emissions shows a maximum, and then decays within about 5 minutes. Even after decay of the transient aurora activity at lower latitudes, the newly formed auroral emissions from the dayside cusp to the polar cap (GMLat -76 to -80 degs) develop during the Psw enhancement lasting about an hour. The polar aurora intensifications seem to be associated with lobe reconnection under the northward IMF conditions as well as the Psw enhancement. In this talk, two cases have been studied and the possible generation mechanisms will be discussed by comparing the ASI data at SP with other instruments.

  9. Observable solar features which provide clues to the state of the solar dynamo

    NASA Technical Reports Server (NTRS)

    Schatten, K. H.

    1980-01-01

    Space experiments are suggested to better monitor the solar dynamo and solar luminosity variations. Polar and other magnetic fields, sunspots, coronal holes, filaments and other observable solar and solar wind phenomena can provide us with important links to test and discover physical mechanisms which relate solar activity to terrestrial weather, climate, and possibly population variations.

  10. Solar Flare Observations at Submm-waves

    NASA Astrophysics Data System (ADS)

    Kaufmann, P.; Raulin, J.-P.; Correia, E.; Costa, J. E. R.; Guillermo, C.; de Castro, Giménez; Silva, A. V. R.; Levato, H.; Rovira, M.; Mandrini, C.; Fernández-Borda, R.; Bauer, O.

    We report on the recent installation of the new Solar Submillimeter Telescope(SST) at the El Leoncito site, located in the Argentinean Andes, and also show first observational results. The instrument consists of a radome-enclosed 1.5-m cassegrain reflector and a system of two radiometers at 405 GHz and four at 212 GHz. The SST observes the quiet Sun and solar bursts simultaneously at both submillimeter-wave frequencies with a sampling rate of 1 millisecond. Since SST has seen the "first light" in May 1999, nearly 45 hours of continuous tracking of solar active regions were collected during short campaigns which produced first evidence for solar activity. The project has been funded by the Brazilian agency FAPESP, receiving support from the Argentinean agency CONICET through their institutes CASLEO and IAFE and from IAP, University of Bern and the Swiss National Science Foundation.

  11. Observation of non-drifting radio emissions associated with the intense solar activity in March 1991

    NASA Technical Reports Server (NTRS)

    Reiner, M. J.; Stone, R. G.; Fainberg, J.

    1992-01-01

    Three very unusual radio bursts, separated in time by 4 hours and 35 minute-intervals were observed on March 28, 1991 by the radio and plasma wave (URAP) experiment on the Ulysses spacecraft. Although they are preceded by drifting type III bursts at high frequencies, they show no frequency drift at frequencies from 52 kHz down to 16 kHz. In addition, they have extraordinary sawtooth-like profiles; they have a very rapid exponential rise of about 20 minutes independent of frequency and a much longer nonexponential decay which increases with decreasing frequency. The bursts are interpreted as due to synchrotron emission, which seems to fit many of their characteristics. This radio emission appears to be associated with an expanding source region. However, the observed intensity may be somewhat higher than expected and the possible role of the precursor type III radio bursts in triggering the low frequency non-drifting remains unanswered.

  12. Ionospheric Response to 2013 SSW under High Solar Activity in Middle Latitude Observed by an Ionosonde Chain in China

    NASA Astrophysics Data System (ADS)

    Wu, C.; Chen, G.

    2015-12-01

    Sudden stratospheric warming (SSW) in 2013 is a major warming event under moderate-high solar activity. Based on the observations of a meridianal chain of ionosondes covering a latitude range from 30.5°N to 42.8°N in China, we find ionospheric response to 2013 SSW is latitude dependent and comparable to that of low-latitude and equatorial region with f0F2 enhancement more than 80% and hmF2 elevation more than 60km. Typical semidiurnal variations are found consistently in all the 8 stations in early and middle January during SSW. However, the expected depressions in afternoon hours are not so impressive and the enhancements after sunset become more frequent and evident, which may be due to the higher F region Pedersen conductivity during high solar activity. Wavelet results show that f0F2 perturbations during SSW exhibit rich oscillations like tidal components especially semidiurnal tides and planetary waves (< 5 days), especially 3-day periodicities maybe associated to 'Ultra-fast' Kelvin waves (UFKW) in lower atmosphere and the average of f0F2 in 8-18LT displays 16-day planetary wave like oscillations, suggesting interaction of tides and planetary waves . Also, diurnal, semidiurnal and termidiurnal tides in f0F2 are amplified during the warming in good agreement with earlier studies. Importantly, the amplitudes of semidiurnal tides in f0F2 exhibit 16-day periodicities, confirming the theory that the modulated semidiurnal tides bring the 16-day planetary wave like oscillations to the F region through electrodynamic effects during the SSW event.

  13. Constraining magnetic-activity modulations in three solar-like stars observed by CoRoT and NARVAL

    NASA Astrophysics Data System (ADS)

    Mathur, S.; García, R. A.; Morgenthaler, A.; Salabert, D.; Petit, P.; Ballot, J.; Régulo, C.; Catala, C.

    2013-02-01

    Context. Stellar activity cycles are the manifestation of dynamo process running in the stellar interiors. They have been observed from years to decades thanks to the measurement of stellar magnetic proxies on the surface of the stars, such as the chromospheric and X-ray emissions, and to the measurement of the magnetic field with spectropolarimetry. However, all of these measurements rely on external features that cannot be visible during, for example, a Maunder-type minimum. With the advent of long observations provided by space asteroseismic missions, it has been possible to penetrate the stars and study their properties. Moreover, the acoustic-mode properties are also perturbed by the presence of these dynamos. Aims: We track the temporal variations of the amplitudes and frequencies of acoustic modes allowing us to search for signature of magnetic activity cycles, as has already been done in the Sun and in the CoRoT target HD 49933. Methods: We used asteroseimic tools and more classical spectroscopic measurements performed with the NARVAL spectropolarimeter to check that there are hints of any activity cycle in three solar-like stars observed continuously for more than 117 days by the CoRoT satellite: HD 49385, HD 181420, and HD 52265. To consider that we have found a hint of magnetic activity in a star we require finding a change in the amplitude of the p modes that should be anti-correlated with a change in their frequency shifts, as well as a change in the spectroscopic observations in the same direction as the asteroseismic data. Results: Our analysis gives very small variation in the seismic parameters preventing us from detecting any magnetic modulation. However, we are able to provide a lower limit of any magnetic-activity change in the three stars that should be longer than 120 days, which is the length of the time series. Moreover we computed the upper limit for the line-of-sight magnetic field component being 1, 3, and 0.6 G for HD 49385, HD 181420

  14. Solar activity over different timescales

    NASA Astrophysics Data System (ADS)

    Obridko, Vladimir; Nagovitsyn, Yuri

    The report deals with the “General History of the Sun” (multi-scale description of the long-term behavior of solar activity): the possibility of reconstruction. Time scales: • 100-150 years - the Solar Service. • 400 - instrumental observations. • 1000-2000 years - indirect data (polar auroras, sunspots seen with the naked eye). • Over-millennial scale (Holocene) -14С (10Be) Overview and comparison of data sets. General approaches to the problem of reconstruction of solar activity indices on a large timescale. North-South asymmetry of the sunspot formation activity. 200-year cycle over the “evolution timescales”.The relative contribution of the large-scale and low-latitude. components of the solar magnetic field to the general geomagnetic activity. “Large-scale” and low-latitude sources of geomagnetic disturbances.

  15. Soft X-ray variability over the present minimum of solar activity as observed by SphinX

    NASA Astrophysics Data System (ADS)

    Gburek, S.; Siarkowski, M.; Kepa, A.; Sylwester, J.; Kowalinski, M.; Bakala, J.; Podgorski, P.; Kordylewski, Z.; Plocieniak, S.; Sylwester, B.; Trzebinski, W.; Kuzin, S.

    2011-04-01

    Solar Photometer in X-rays (SphinX) is an instrument designed to observe the Sun in X-rays in the energy range 0.85-15.00 keV. SphinX is incorporated within the Russian TESIS X and EUV telescope complex aboard the CORONAS-Photon satellite which was launched on January 30, 2009 at 13:30 UT from the Plesetsk Cosmodrome, northern Russia. Since February, 2009 SphinX has been measuring solar X-ray radiation nearly continuously. The principle of SphinX operation and the content of the instrument data archives is studied. Issues related to dissemination of SphinX calibration, data, repository mirrors locations, types of data and metadata are discussed. Variability of soft X-ray solar flux is studied using data collected by SphinX over entire mission duration.

  16. Observations of protons not exceeding 1 MeV/nuc and ions during the September 1974 series of flares. [solar activity events

    NASA Technical Reports Server (NTRS)

    Ipavich, F. M.; Gloeckler, G.; Fan, C. Y.; Hovestadt, D.

    1975-01-01

    Results are presented on observations of energetic particles made during an active solar period in September 1974, concentrating in particular on an ESP (Energetic Storm Particle) event observed in association with an interplanetary shock wave on 21 September. It is shown that the observed variations in the proton to alpha particle ratios and spectral indices can be explained either by pile-up or by acceleration models of ESP events.

  17. Activities for Teaching Solar Energy.

    ERIC Educational Resources Information Center

    Mason, Jack Lee; Cantrell, Joseph S.

    1980-01-01

    Plans and activities are suggested for teaching elementary children about solar energy. Directions are included for constructing a flat plate collector and a solar oven. Activities for a solar field day are given. (SA)

  18. NIMBUS-7 SBUV (Solar Backscatter Ultraviolet) observations of solar UV spectral irradiance variations caused by solar rotation and active-region evolution for the period November 7, 1978 - November 1, 1980

    NASA Technical Reports Server (NTRS)

    Heath, D. F.; Repoff, T. P.; Donnelly, R. F.

    1984-01-01

    Observations of temporal variations of the solar UV spectral irradiance over several days to a few weeks in the 160-400 nm wavelength range are presented. Larger 28-day variations and a second episode of 13-day variations occurred during the second year of measurements. The thirteen day periodicity is not a harmonic of the 28-day periodicity. The 13-day periodicity dominates certain episodes of solar activity while others are dominated by 28-day periods accompanied by a week 14-day harmonic. Techniques for removing noise and long-term trends are described. Time series analysis results are presented for the Si II lines near 182 nm, the Al I continuum in the 190 nm to 205 nm range, the Mg I continuum in the 210 nm to 250 nm range, the MgII H & K lines at 280 nm, the Mg I line at 285 nm, and the Ca II K & H lines at 393 and 397 nm.

  19. Solar gamma rays and neutron observations

    NASA Technical Reports Server (NTRS)

    Chupp, E. L.; Forrest, D. J.; Suri, A. N.

    1972-01-01

    The present status of knowledge concerning the impulsive and the continuous emission of solar gamma rays and neutrons is reviewed in the light of the recent solar activity in early August 1972. The gamma ray spectrometer on OSO-7 has observed the sun continuously for most of the activity period except for occultation by the earth. In association with the 2B flare on 4 August 1972 and the 3B flare on 7 August 1972, the monitor provides evidence for solar gamma ray line emission in the energy range from 300 keV to 10 MeV. A summary of all the results available from preliminary analysis of the data will be given. Significant improvements in future experiments can be made with more sensitive instruments and more extensive time coverage of the sun.

  20. Chromospheric magnetic field of an active region filament using the He I triplet and the primary observation of filaments (prominences) using New Vacuum Solar Tower of China

    NASA Astrophysics Data System (ADS)

    Xu, Zhi; Lagg, A.; Solanki, S.; Liu, Z.; New Vacuum Solar Telescope Observers

    2013-07-01

    There are two parts in my presentation. In the first part I present the magnetic field measurement of an active region filament using the full Stokes profiles of He I 10830 and Si I 10827 band when the filament in its stable phase. This observation was fulfilled using German Vacuum Tower Telescope (VTT). The vector magnetic field and Doppler velocity map both in the photosphere and chromosphere were observed and analyzed co-temporally and co-spatially. The observation findings reveal that we were observing the emergence of a flux rope with a subsequent formation of a filament. In the second part, I would like to exhibit another ground-based observation facility, 1m New Vacuum Solar Telescope (NVST) located in Fu-Xian Lake Solar Observatory of China. After the basic introduction including the location and instrumentations, I give some high lights including granulation, faculae, micro-flares, jets, and filaments or prominence since the first running in 2010, showing our potential ability to do high-resolution solar observation from the ground. Observation proposals from the international solar community are well appreciated in future.

  1. 10Be in ice at high resolution: Solar activity and climate signals observed and GCM-modeled in Law Dome ice cores

    NASA Astrophysics Data System (ADS)

    Pedro, Joel; Heikkilä, Ulla; van Ommen, T. D.; Smith, A. M.

    2010-05-01

    Changes in solar activity modulate the galactic cosmic ray flux, and in turn, the production rate of 10Be in the earth's atmosphere. The best archives of past changes in 10Be production rate are the polar ice cores. Key challenges in interpreting these archives as proxies for past solar activity lie in separating the useful solar activity (or production) signal from the interfering meteorological (or climate) signal, and furthermore, in determining the atmospheric source regions of 10Be deposited to the ice core site. In this study we use a new monthly resolution composite 10Be record, which spans the past decade, and a general circulation model (ECHAM5-HAM), to constrain both the production and climate signals in 10Be concentrations at the Law Dome ice core site, East Antarctica. This study differs from most previous work on 10Be in Antarctica due to the very high sample resolution achieved. This high resolution, through a time period where accurate instrumental measurements of solar activity and climate are available, allows us to examine the response of 10Be concentrations in ice to short-term (monthly to annual) variations in solar activity, and to short-term variations in climate, including seasonality. We find a significant correlation (r2 = 0.56, P < 0.005, n = 92) between observed 10Be concentrations and solar activity (represented by the neutron counting rate). The most pervasive climate influence is a seasonal cycle, which shows maximum concentrations in mid-to-late-summer and minimum concentrations in winter. Model results show reasonable agreement with observations; both a solar activity signal and seasonal cycle in 10Be are captured. However, the modeled snow accumulation rate is too high by approximately 60%. According to the model, the main atmospheric source region of 10Be deposited to Law Dome is the 30-90°S stratosphere (~50%), followed by the 30-90°S troposphere (~30%). An enhancement in the fraction of 10Be arriving to Law Dome from the

  2. Long-term solar-terrestrial observations

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The results of an 18-month study of the requirements for long-term monitoring and archiving of solar-terrestrial data is presented. The value of long-term solar-terrestrial observations is discussed together with parameters, associated measurements, and observational problem areas in each of the solar-terrestrial links (the sun, the interplanetary medium, the magnetosphere, and the thermosphere-ionosphere). Some recommendations are offered for coordinated planning for long-term solar-terrestrial observations.

  3. Study of the effects of solar activities on the ionosphere as observed by VLF signals recorded at TNU station, Vietnam

    NASA Astrophysics Data System (ADS)

    Tan, L. M.

    2015-12-01

    A SuperSID monitor installed at Tay Nguyen University (TNU), Vietnam is used to detect the temporal variations of Very Low Frequency (VLF) signals during 2013 and 2014 to understand the responses of the ionosphere to sunset/sunrise transitions and solar flares. Two VLF station signals are tracked, JJI/22.2 kHz in Japan and NWC/19.8 kHz in Australia. Results show that the effects of sunrise, sunset and solar flares on the NWC signal are more significantly different than those on the JJI signal. Sunset and sunrise spikes only occur on the JJI-TNU path because of longitudinal differences between the receiver and transmitter. Two sunset dips and three sunrise dips appear on the NWC signal during summer season. During intense solar flares, the dips occur after the maximum disturbance of the VLF signals for the North-South path. The appearance of these dips is explained by modal interference patterns. Observing temporal variations of sunrise and sunset dips or spikes of VLF signals during different seasons enhances the understanding of the behavior of the ionosphere.

  4. Psychological Factors in Solar Observing. Final Report.

    ERIC Educational Resources Information Center

    Pickett, Ronald M.

    The report summarizes the aims of a 3-year program of work concerned with psychological factors in solar observing. Part I identifies several psychological factors which may affect solar observing and outlines a program of research. Part II is a report of a program of studies dealing with the application of visual perceptions in solar flare…

  5. Semiannual and solar activity variations of daytime plasma observed by DEMETER in the ionosphere-plasmasphere transition region

    NASA Astrophysics Data System (ADS)

    Li, L. Y.; Cao, J. B.; Yang, J. Y.; Berthelier, J. J.; Lebreton, J.-P.

    2015-12-01

    Using the plasma data of Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) satellite and the NRLMSISE-00 atmospheric model, we examined the semiannual and solar activity variations of the daytime plasma and neutral composition densities in the ionosphere-plasmasphere transition region (~670-710 km). The results demonstrate that the semiannually latitudinal variation of the daytime oxygen ions (O+) is basically controlled by that of neutral atomic oxygen (O), whereas the latitude distributions of the helium and hydrogen ions (He+ and H+) do not fully depend on the neutral atomic helium (He) and hydrogen (H). The summer enhancement of the heavy oxygen ions is consistent with the neutral O enhancement in the summer hemisphere, and the oxygen ion density has significantly the summer-dense and winter-tenuous hemispheric asymmetry with respect to the dip equator. Although the winter enhancements of the lighter He+ and H+ ions are also associated with the neutral He and H enhancements in the winter hemisphere, the high-density light ions (He+ and H+) and electrons (e-) mainly appear at the low and middle magnetic latitudes (|λ| < 50°). The equatorial accumulations of the light plasma species indicate that the light charged particles (He+, H+, and e-) are easily transported by some equatorward forces (e.g., the magnetic mirror force and centrifugal force). The frequent Coulomb collisions between the charged particles probably lead to the particle trappings at different latitudes. Moreover, the neutral composition densities also influence their ion concentrations during different solar activities. From the low-F10.7 year (2007-2008) to the high-F10.7 year (2004-2005), the daytime oxygen ions and electrons increase with the increasing neutral atomic oxygen, whereas the daytime hydrogen ions tend to decrease with the decreasing neutral atomic hydrogen. The helium ion density has no obvious solar activity variation, suggesting that the

  6. Workshop on Solar Activity, Solar Wind, Terrestrial Effects, and Solar Acceleration

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A summary of the proceedings from the workshop are presented. The areas covered were solar activity, solar wind, terrestrial effects, and solar acceleration. Specific topics addressed include: (1) solar cycle manifestations, both large and small scale, as well as long-term and short-term changes, including transients such as flares; (2) sources of solar wind, as identified by interplanetary observations including coronal mass ejections (CME's) or x-ray bright points, and the theory for and evolution of large-scale and small-scale structures; (3) magnetosphere responses, as observed by spacecraft, to variable solar wind and transient energetic particle emissions; and (4) origin and propagation of solar cosmic rays as related to solar activity and terrestrial effects, and solar wind coronal-hole relationships and dynamics.

  7. Solar activity secular cycles

    NASA Astrophysics Data System (ADS)

    Kramynin, A. P.; Mordvinov, A. V.

    2013-12-01

    Long-term variations in solar activity secular cycles have been studied using a method for the expansion of reconstructed sunspot number series Sn( t) for 11400 years in terms of natural orthogonal functions. It has been established that three expansion components describe more than 98% of all Sn( t) variations. In this case, the contribution of the first expansion component is about 92%. The averaged form of the 88year secular cycle has been determined based on the form of the first expansion coordinate function. The quasi-periodicities modulating the secular cycle have been revealed based on the time function conjugate to the first function. The quasi-periodicities modulating the secular cycle coincide with those observed in the Sn( t) series spectrum. A change in the secular cycle form and the time variations in this form are described by the second and third expansion components, the contributions of which are about 4 and 2%, respectively. The variations in the steepness of the secular cycle branches are more pronounced in the 200-year cycle, and the secular cycle amplitude varies more evidently in the 2300-year cycle.

  8. Space-based Observations of the Solar Irradiance

    NASA Astrophysics Data System (ADS)

    Woods, Thomas N.

    2015-08-01

    Solar photon radiation is the dominant energy input to the Earth system, and this energy determines the temperature, structure, and dynamics of the atmosphere, warms the Earth surface, and sustains life. Observations of true solar variability became possible only after attaining access to space, so the observational record of the solar irradiance for sun-climate studies extends back only about 40 years. The total solar irradiance (TSI) and solar spectral irradiance (SSI) observations will be presented along with the discussion of the solar variability during the past four decades. The solar radiation varies on all time scales ranging from minutes to hours for solar eruptive events (flares), days to months for active region evolution and solar rotation (~27 days), and years to decades over the solar activity cycle (~11 years). The amount of solar variability is highly dependent on wavelength and ranges from orders of magnitude for the X-ray to 10-60% for part of the ultraviolet to only 0.1% for the visible and infrared. The accuracy and precision of the solar irradiance measurements have steadily improved with each new generation of instrumentation and with new laboratory (pre-flight) calibration facilities.

  9. Solar Energy Project, Activities: General Solar Topics.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of activities which introduce students to concepts and issues relating to solar energy. Lessons frequently presented in the context of solar energy as it relates to contemporary energy problems. Each unit presents an introduction; objectives; necessary skills and knowledge; materials; method;…

  10. Ion Acceleration in Solar Flares Determined by Solar Neutron Observations

    NASA Astrophysics Data System (ADS)

    Watanabe, K.; Solar Neutron Observation Group

    2013-05-01

    Large amounts of particles can be accelerated to relativistic energy in association with solar flares and/or accompanying phenomena (e.g., CME-driven shocks), and they sometimes reach very near the Earth and penetrate the Earth's atmosphere. These particles are observed by ground-based detectors (e.g., neutron monitors) as Ground Level Enhancements (GLEs). Some of the GLEs originate from high energy solar neutrons which are produced in association with solar flares. These neutrons are also observed by ground-based neutron monitors and solar neutron telescopes. Recently, some of the solar neutron detectors have also been operating in space. By observing these solar neutrons, we can obtain information about ion acceleration in solar flares. Such neutrons were observed in association with some X-class flares in solar cycle 23, and sometimes they were observed by two different types of detectors. For example, on 2005 September 7, large solar neutron signals were observed by the neutron monitor at Mt. Chacaltaya in Bolivia and Mexico City, and by the solar neutron telescopes at Chacaltaya and Mt. Sierra Negra in Mexico in association with an X17.0 flare. The neutron signal continued for more than 20 minutes with high statistical significance. Intense gamma-ray emission was also registered by INTEGRAL, and by RHESSI during the decay phase. We analyzed these data using the solar-flare magnetic-loop transport and interaction model of Hua et al. (2002), and found that the model could successfully fit the data with intermediate values of loop magnetic convergence and pitch angle scattering parameters. These results indicate that solar neutrons were produced at the same time as the gamma-ray line emission and that ions were continuously accelerated at the emission site. In this paper, we introduce some of the solar neutron observations in solar cycle 23, and discuss the tendencies of the physical parameters of solar neutron GLEs, and the energy spectrum and population of the

  11. X-ray emitting hot plasma in solar active regions observed by the SphinX spectrometer

    NASA Astrophysics Data System (ADS)

    Miceli, M.; Reale, F.; Gburek, S.; Terzo, S.; Barbera, M.; Collura, A.; Sylwester, J.; Kowalinski, M.; Podgorski, P.; Gryciuk, M.

    2012-08-01

    Aims: The detection of very hot plasma in the quiescent corona is important for diagnosing heating mechanisms. The presence and the amount of such hot plasma is currently debated. The SphinX instrument on-board the CORONAS-PHOTON mission is sensitive to X-ray emission of energies well above 1 keV and provides the opportunity to detect the hot plasma component. Methods: We analysed the X-ray spectra of the solar corona collected by the SphinX spectrometer in May 2009 (when two active regions were present). We modelled the spectrum extracted from the whole Sun over a time window of 17 days in the 1.34-7 keV energy band by adopting the latest release of the APED database. Results: The SphinX broadband spectrum cannot be modelled by a single isothermal component of optically thin plasma and two components are necessary. In particular, the high statistical significance of the count rates and the accurate calibration of the spectrometer allowed us to detect a very hot component at ~7 million K with an emission measure of ~2.7 × 1044 cm-3. The X-ray emission from the hot plasma dominates the solar X-ray spectrum above 4 keV. We checked that this hot component is invariably present in both the high and low emission regimes, i.e. even excluding resolvable microflares. We also present and discuss the possibility of a non-thermal origin (which would be compatible with a weak contribution from thick-target bremsstrahlung) for this hard emission component. Conclusions: Our results support the nanoflare scenario and might confirm that a minor flaring activity is ever-present in the quiescent corona, as also inferred for the coronae of other stars.

  12. Space observations of comets during solar flares

    NASA Astrophysics Data System (ADS)

    Ibadov, Subhon; Ibodov, Firuz S.

    Problems connected with mechanisms for comet outbursts as well as for gamma-ray bursts remain open. Meantime, calculations show that an irradiation of a certain class of cometary nuclei, having high specific electric resistance, by intense fluxes of energetic protons and posi-tively charged ions with kinetic energies more than 1 MeV/nucleon, ejected from the Sun during strong solar flares, can produce a macroscopic high-voltage electric double layer with positive charge in the subsurface region of the nucleus, during irradiation time of the order of 10-100 hours at heliocentric distances around 1-10 AU. The maximum electric energy accumulated in such layer will be restricted by discharge potential of the layer material. For the comet nuclei with the typical radius of the order of 1-10 km the accumulated energy of such natural electric capacitor is comparable to the energy of large comet outbursts that are estimated on the basis of ground-based optical observations of comets. The impulse X-ray radiation anticipated from the high-voltage electric discharge of the capacitor may serve as an indicator of realization of the processes above considered. Therefore, space observations of comets and pseudo-asteroids of cometary origin, having brightness correlation with solar activity, using space X-ray obser-vatories during strong solar flares are very interesting for the physics of comets as well as for high energy astrophysics.

  13. Active Region Soft X-Ray Spectra as Observed Using Sounding Rocket Measurements from the Solar Aspect Monitor (SAM), - a Modified SDO/EVE Instrument

    NASA Astrophysics Data System (ADS)

    Wieman, S. R.; Didkovsky, L. V.; Woods, T. N.; Jones, A. R.; Caspi, A.; Warren, H. P.

    2015-12-01

    Observations of solar active regions (ARs) in the soft x-ray spectral range (0.5 to 3.0 nm) were made on sounding rocket flight NASA 36.290 using a modified Solar Aspect Monitor (SAM), a pinhole camera on the EUV Variability Experiment (EVE) sounding rocket instrument. The suite of EVE rocket instruments is designed for under-flight calibrations of the orbital EVE on SDO. While the sounding rocket EVE instrument is for the most part a duplicate of the EVE on SDO, the SAM channel on the rocket version was modified in 2012 to include a free-standing transmission grating so that it could provide spectrally resolved images of the solar disk with the best signal to noise ratio for the brightest features on it, such as ARs. Calibrations of the EVE sounding rocket instrument at the National Institute of Standards and Technology Synchrotron Ultraviolet Radiation Facility (NIST SURF) have provided a measurement of the SAM absolute spectral response function and a mapping of wavelength separation in the grating diffraction pattern. For solar observations, this spectral separation is on a similar scale to the spatial size of the AR on the CCD, so dispersed AR images associated with emission lines of similar wavelength tend to overlap. Furthermore, SAM shares a CCD detector with MEGS-A, a separate EVE spectrometer channel, and artifacts of the MEGS-A signal (a set of bright spectral lines) appear in the SAM images. For these reasons some processing and analysis of the solar images obtained by SAM must be performed in order to determine spectra of the observed ARs. We present a method for determining AR spectra from the SAM rocket images and report initial soft X-ray spectra for two of the major active regions (AR11877 and AR11875) observed on flight 36.290 on 21 October 2013 at about 18:30 UT. We also compare our results with concurrent measurements from other solar soft x-ray instrumentation.

  14. Low Latitude Aurora: Index of Solar Activity

    NASA Astrophysics Data System (ADS)

    Bekli, M. R.; Aissani, D.; Chadou, I.

    2010-10-01

    Observations of aurora borealis at low latitudes are rare, and are clearly associated with high solar activity. In this paper, we analyze some details of the solar activity during the years 1769-1792. Moreover, we describe in detail three low latitude auroras. The first event was reported by ash-Shalati and observed in North Africa (1770 AD). The second and third events were reported by l'Abbé Mann and observed in Europe (1770 and 1777 AD).

  15. Solar irradiance measurements - Minimum through maximum solar activity

    NASA Technical Reports Server (NTRS)

    Lee, R. B., III; Gibson, M. A.; Shivakumar, N.; Wilson, R.; Kyle, H. L.; Mecherikunnel, A. T.

    1991-01-01

    The Earth Radiation Budget Satellite (ERBS) and the NOAA-9 spacecraft solar monitors were used to measure the total solar irradiance during the period October 1984 to December 1989. Decreasing trends in the irradiance measurements were observed as sunspot activity decreased to minimum levels in 1986; after 1986, increasing trends were observed as sunspot activity increased. The magnitude of the irradiance variability was found to be approximately 0.1 percent between sunspot minimum and maximum (late 1989). When compared with the 1984 to 1989 indices of solar magnetic activity, the irradiance trends appear to be in phase with the 11-year sunspot cycle. Both irradiance series yielded 1,365/sq Wm as the mean value of the solar irradiance, normalized to the mean earth/sun distance. The monitors are electrical substitution, active-cavity radiometers with estimated measurement precisions and accuracies of less than 0.02 and 0.2 percent, respectively.

  16. Commission 10: Solar Activity

    NASA Astrophysics Data System (ADS)

    Klimchuk, James A.; van Driel-Gesztelyi, Lidia; Schrijver, Carolus J.; Melrose, Donald B.; Fletcher, Lyndsay; Gopalswamy, Natchimuthuk; Harrison, Richard A.; Mandrini, Cristina H.; Peter, Hardi; Tsuneta, Saku; Vršnak, Bojan; Wang, Jing-Xiu

    Commission 10 deals with solar activity in all of its forms, ranging from the smallest nanoflares to the largest coronal mass ejections. This report reviews scientific progress over the roughly two-year period ending in the middle of 2008. This has been an exciting time in solar physics, highlighted by the launches of the Hinode and STEREO missions late in 2006. The report is reasonably comprehensive, though it is far from exhaustive. Limited space prevents the inclusion of many significant results. The report is divided into the following sections: Photosphere and chromosphere; Transition region; Corona and coronal heating; Coronal jets; flares; Coronal mass ejection initiation; Global coronal waves and shocks; Coronal dimming; The link between low coronal CME signatures and magnetic clouds; Coronal mass ejections in the heliosphere; and Coronal mass ejections and space weather. Primary authorship is indicated at the beginning of each section.

  17. The Periodogram Analysis of El Campo Solar Radar Observational Data

    NASA Astrophysics Data System (ADS)

    Ye, L.; Qu, Z. N.; Wang, M.; Gao, G. N.; Lin, J.; Duan, Z. C.

    2015-11-01

    Solar Radar can transmit radar waves to the Sun actively. By analyzing the echoes, we can obtain motions, magnetic field, and other information of solar atmosphere. The El Campo solar radar has done regular observations on solar corona for 8 years from 1961 to 1969, which tracked solar activities during a long time. We analyzed El Campo data with the Lomb-Scargle periodogram algorithm, and found that there are periods of 200~days and~540~days in the variations of the solar radar cross sections. Compared radar cross sections with the Dst indexes, we found that there was no significant relationship between them. Then, the proposal of solar radar in future was made.

  18. Parameters of the turbulence of the interplanetary plasma derived from scintillation observations of the quasar 3C 48 at the solar-activity minimum

    NASA Astrophysics Data System (ADS)

    Glubokova, S. K.; Tyul'bashev, S. A.; Chashei, I. V.; Shishov, V. I.

    2013-08-01

    Temporal spectra of interplanetary scintillations of the strong radio source 3C 48 based on 111 MHz observations on the Large Scanning Antenna of the Lebedev Physical Institute obtained near the solar-activity minimum are analyzed. Measurements of the temporal spectrum of the scintillations are used to estimate the angular size of the source, the velocity of inhomogeneities, and the power-law index for the spatial spectrum of the turbulence in the interplanetary plasma. The mean angular size of the source is θ 0 = 0.326″ ± 0.016″, and the mean index for the three-dimensional turbulence spectrum is n = 3.7 ± 0.2. There is some evidence that n decreases in the transition from the fast, high-speed to the slow, low-latitude solar wind.

  19. Solar Coronal Jets: Observations, Theory, and Modeling

    NASA Astrophysics Data System (ADS)

    Raouafi, N. E.; Patsourakos, S.; Pariat, E.; Young, P. R.; Sterling, A. C.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; DeVore, C. R.; Archontis, V.; Török, T.; Mason, H.; Curdt, W.; Meyer, K.; Dalmasse, K.; Matsui, Y.

    2016-07-01

    Coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of significant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of "nominal" solar flares and coronal mass ejections (CMEs), jets share many common properties with these phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients close or at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broad range of solar-heliospheric problems.

  20. Solar Observations in Pope Sylvester II's Astronomical Observatory in Bukowiec

    NASA Astrophysics Data System (ADS)

    Banyś, T. A. J.; Wieteska, Ł.; Kata, M.; Sigismondi, C.

    2014-05-01

    The activity of the Pope Sylvester II Observatory in Bukowiec (Poland)included solar observations. Among them a large pinhole solar observatory with camera obscura has been realized in the aisles of the school, 70 meters long. These results have been presented to the CAP 2013 IAU congress in Warsaw on October 15-20, 2013.

  1. Gamma ray observations of the solar system

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach; and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed.

  2. Gamma ray observations of the solar system

    SciTech Connect

    Not Available

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed.

  3. DC and Structured Electric Fields Observed on the C/NOFS Satellite and Their Association with Longitude, Plasma Density, and Solar Activity

    NASA Technical Reports Server (NTRS)

    Pfaff, Robert; Freudenreich, H.; Rowland, D.; Klenzing, J.

    2012-01-01

    Observations of DC electric fields and associated E x B plasma drifts gathered by the Vector Electric Field Investigation (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite are presented. We show statistical averages of the vector fields and resulting E x B plasma flows for the first three years of operations as a function of season, longitude, local time, and Fl 0.7 conditions. Magnetic field data from the VEFI science magnetometer are used to compute the plasma flows. Although typically displaying eastward and outward-directed fields during the day and westward and downward-directed fields at night, the data from DC electric field detector often reveal variations from this pattern that depend on longitude, solar activity, and plasma density. Clear "wave-4" tidal effects in both electric field components have been detected and will be presented. Zonal plasma drifts show a marked variation with solar activity and may be used as a proxy for neutral winds at night. Evidence for pre-reversal enhancements in the meridional drifts that depend on solar activity is present for some longitudes, and are corroborated by clear evidence in the plasma density data that the spacecraft journeyed below the F-peak during evenings when the rise in the ionosphere is most pronounced. In addition to DC electric fields, the data reveal considerable electric field structures at large scales (approx 100's of km) that are usually confined to the nightside. Although such electric field structures are typically associated with plasma density depletions and structures, what is surprising is the number of cases in which large amplitude, structured DC electric fields are observed without a significant plasma density counterpart structure, including their appearance at times when the ambient plasma density appears relatively quiescent. We investigate the mapping of structured electric fields along magnetic field lines from distant locations and consider

  4. Open Surface Solar Irradiance Observations - A Challenge

    NASA Astrophysics Data System (ADS)

    Menard, Lionel; Nüst, Daniel; Jirka, Simon; Maso, Joan; Ranchin, Thierry; Wald, Lucien

    2015-04-01

    The newly started project ConnectinGEO funded by the European Commission aims at improving the understanding on which environmental observations are currently available in Europe and subsequently providing an informational basis to close gaps in diverse observation networks. The project complements supporting actions and networking activities with practical challenges to test and improve the procedures and methods for identifying observation data gaps, and to ensure viability in real world scenarios. We present a challenge on future concepts for building a data sharing portal for the solar energy industry as well as the state of the art in the domain. Decision makers and project developers of solar power plants have identified the Surface Solar Irradiance (SSI) and its components as an important factor for their business development. SSI observations are crucial in the process of selecting suitable locations for building new plants. Since in-situ pyranometric stations form a sparse network, the search for locations starts with global satellite data and is followed by the deployment of in-situ sensors in selected areas for at least one year. To form a convincing picture, answers must be sought in the conjunction of these EO systems, and although companies collecting SSI observations are willing to share this information, the means to exchange in-situ measurements across companies and between stakeholders in the market are still missing. We present a solution for interoperable exchange of SSI data comprising in-situ time-series observations as well as sensor descriptions based on practical experiences from other domains. More concretely, we will apply concepts and implementations of the Sensor Web Enablement (SWE) framework of the Open Geospatial Consortium (OGC). The work is based on an existing spatial data infrastructure (SDI), which currently comprises metadata, maps and coverage data, but no in-situ observations yet. This catalogue is already registered in the

  5. The European Grid of Solar Observations (EGSO)

    NASA Astrophysics Data System (ADS)

    Bentley, R. D.; EGSO Team

    2002-05-01

    A major hurdles in the analysis of solar data is finding what data are available and retrieving those that are needed. Planned space- and ground-based instruments will produce huge volumes of data and even taking into account the continuous technical advances, it is clear that a new approach is needed to the way we use these data. The European Grid of Solar Observations (EGSO) is a Grid test-bed that will change the way users analyze solar data. EGSO will federate solar data archives across Europe and beyond, and will create the tools to select, process and retrieve distributed and heterogeneous solar data. It will provide mechanisms to produce standardized observing catalogues for space and ground-based observations, and the tools to create solar feature catalogues that will facilitate the selection of solar data based on features, events and phenomena. In essence, EGSO will provide the fabric of a virtual observatory. EGSO is funded under the IST (Information Society Technologies) thematic programme of European Commission's Fifth Framework Programme (FP5). The project started in March 2002 and will last for 3 years. The EGSO consortium comprises 10 institutes from Europe and the US, and is led by the Mullard Space Science Laboratory (MSSL) of University College London (UCL). EGSO plans to work closely with groups funded under NASA's Virtual Solar Observatory (VSO) initiative, and with the team at Lockheed-Martin who are doing similar work within the ILWS programme.

  6. Gap between active and passive solar heating

    SciTech Connect

    Balcomb, J.D.

    1985-01-01

    The gap between active and passive solar could hardly be wider. The reasons for this are discussed and advantages to narrowing the gap are analyzed. Ten years of experience in both active and passive systems are reviewed, including costs, frequent problems, performance prediction, performance modeling, monitoring, and cooling concerns. Trends are analyzed, both for solar space heating and for service water heating. A tendency for the active and passive technologies to be converging is observed. Several recommendations for narrowing the gap are presented.

  7. An image stabilization system for solar observations

    NASA Astrophysics Data System (ADS)

    Sridharan, R.; Raja Bayanna, A.; Louis, Rohan Eugene; Kumar, Brajesh; Mathew, Shibu K.; Venkatakrishnan, P.

    2007-09-01

    An image stabilization system has been developed and demonstrated for solar observations in the visible wave-length at Udaipur Solar Observatory (USO) with a 15 cm Coudé-refractor. The softwa4re and hardware components of the system are similar to that of the low cost solar adaptive optics system developed for the 1.5 m McMath-Pierce solar telescope at Kitt Peak observatory for solar observations in the infrared. The first results presented. The system has a closed loop correction bandwidth in the range of 70 to 100 Hz. The root mean by a factor of 10 to 20. The software developes and key issues concerning optimum system performance have been addressed.

  8. Introducing Solar Observation to Elementary Students

    NASA Astrophysics Data System (ADS)

    Dyck, G. P.

    2013-06-01

    (Abstract only) I will demonstrate the presentation I have developed for introducing solar observation to elementary students in Dartmouth, Massachusetts, and surrounding public schools. Copies of my program will be available for AAVSO members who would like to use it.

  9. Solar Energetic Particle Events Observed by MAVEN

    NASA Astrophysics Data System (ADS)

    Lee, C. O.; Larson, D. E.; Lillis, R. J.; Luhmann, J. G.; Halekas, J. S.; Brain, D.; Connerney, J. E. P.; Espley, J. R.; Epavier, F.; Thiemann, E.; Zeitlin, C.; Jakosky, B. M.

    2015-12-01

    We present observations of solar energetic particle (SEP) events made by the Mars Atmosphere and Volatile EvolutioN (MAVEN) SEP instrument, which measures energetic ions and electrons impacting the upper Martian atmosphere. Since the arrival of the MAVEN spacecraft at Mars, a large number of solar flares and a few major coronal mass ejections (CMEs) erupted from the Sun. The SEPs are accelerated by the related shock in the solar corona or by the propagating interplanetary shock ahead of the CME ejecta. Mixed in with these SEPs are particles accelerated by the shocks of corotating streams, some of which have recurred for several solar cycles due to the persistent coronal hole sources. The SEP events are analyzed together with the upstream solar wind observations from the MAVEN Solar Wind Ion Analyzer (SWIA) and magnetometer (MAG). The sources of the SEP events are determined from Earth-based solar imagery and the MAVEN Extreme Ultra-violet Monitor (EUVM) together with numerical simulations of the inner heliospheric conditions. A comparison with the radiation dose rate measurements from the Mars Science Laboratory (MSL) Radiation Assessment Detector (RAD) reveals a lack of ground signatures during the onset of the highest energy SEPs for the events observed by MAVEN, indicating that the SEPs fully deposit their energies into the Martian atmosphere. Using measurements made from the ensemble of instruments onboard MAVEN, we investigate the consequences of SEPs at Mars for a number of events observed during the primary science mapping phase of the MAVEN mission.

  10. Forecasting the solar activity cycle: new insights

    NASA Astrophysics Data System (ADS)

    Nandy, Dibyendu; Karak, Bidya Binay

    2013-07-01

    Having advance knowledge of solar activity is important because the Sun's magnetic output governs space weather and impacts technologies reliant on space. However, the irregular nature of the solar cycle makes solar activity predictions a challenging task. This is best achieved through appropriately constrained solar dynamo simulations and as such the first step towards predictions is to understand the underlying physics of the solar dynamo mechanism. In Babcock-Leighton type dynamo models, the poloidal field is generated near the solar surface whereas the toroidal field is generated in the solar interior. Therefore a finite time is necessary for the coupling of the spatially segregated source layers of the dynamo. This time delay introduces a memory in the dynamo mechanism which allows forecasting of future solar activity. Here we discuss how this forecasting ability of the solar cycle is affected by downward turbulent pumping of magnetic flux. With significant turbulent pumping the memory of the dynamo is severely degraded and thus long term prediction of the solar cycle is not possible; only a short term prediction of the next cycle peak may be possible based on observational data assimilation at the previous cycle minimum.

  11. Analysis of peculiar penumbral flows observed in the active region NOAA 10930 during a major solar flare

    NASA Astrophysics Data System (ADS)

    Kumar, Brajesh; Venkatakrishnan, P.; Mathur, Savita; Tiwari, Sanjiv Kumar; García, R. A.

    2011-01-01

    It is believed that the high energetic particles and tremendous amount of energy released during the flares can induce velocity oscillations in the Sun. Using the Dopplergrams obtained by Global Oscillation Network Group (GONG) telescope, we analyze the velocity flows in the active region NOAA 10930 during a major flare (of class X3.4) that occurred on 13 December 2006. We observe peculiar evolution of velocity flows in some localized portions of the penumbra of this active region during the flare. Application of Wavelet transform to these velocity flows reveals that there is major enhancement of velocity oscillations in the high-frequency regime (5-8 mHz), while there is feeble enhancement in the p mode oscillations (2-5 mHz) in the aforementioned location. It has been recently shown that flares can induce high-frequency global oscillations in the Sun. Therefore, it appears that during the flare process there might be a common origin for the excitation of local and global high-frequency oscillations in the Sun.

  12. Dynamical Evolution of the Inner Heliosphere Approaching Solar Activity Maximum: Interpreting Ulysses Observations Using a Global MHD Model. Appendix 1

    NASA Technical Reports Server (NTRS)

    Riley, Pete; Mikic, Z.; Linker, J. A.

    2003-01-01

    In this study we describe a series of MHD simulations covering the time period from 12 January 1999 to 19 September 2001 (Carrington Rotation 1945 to 1980). This interval coincided with: (1) the Sun s approach toward solar maximum; and (2) Ulysses second descent to the southern polar regions, rapid latitude scan, and arrival into the northern polar regions. We focus on the evolution of several key parameters during this time, including the photospheric magnetic field, the computed coronal hole boundaries, the computed velocity profile near the Sun, and the plasma and magnetic field parameters at the location of Ulysses. The model results provide a global context for interpreting the often complex in situ measurements. We also present a heuristic explanation of stream dynamics to describe the morphology of interaction regions at solar maximum and contrast it with the picture that resulted from Ulysses first orbit, which occurred during more quiescent solar conditions. The simulation results described here are available at: http://sun.saic.com.

  13. Coronal Streamers and Solar Activity

    NASA Astrophysics Data System (ADS)

    Delone, A. B.; Porfir'eva, G. A.; Smirnova, O. B.; Yakunina, G. V.

    2013-03-01

    We analyze the structure of the streamer belt and plasma ejection dynamics during the last two solar minima (1996-1997 and 2006-2009) using white light observations by SOHO and STEREO space observatories. We consider the role of activity centers and of the sectorial structure of the Sun's global magnetic field in the streamer belt topology. During the last minimum plasma was ejected from the streamer belt at a velocity several tens of km/s higher than that during the preceding minimum. We have used the data from Internet and papers published in science journals.

  14. Review of observations relevant to solar oscillations

    NASA Technical Reports Server (NTRS)

    Scherrer, P. H.

    1982-01-01

    Recent solar oscillation observations and methods used are described. Integrated or almost integrated sunlight (Sun as a star observation) was observed. The most certain observations are in the 5 minute range. The p-mode and g-mode oscillations are expected from 3 to more than 300 minutes. The possible period ranges are described into the three intervals: (1) the 5 minute range for which the most dramatic and certain results are reported; (2) the 10 to 20 minute range for which solar diameter oscillations are reported; and (3) the 160 minute oscillation found in velocity and several other quantities.

  15. Solar and lunar observation planning for Earth-observing sensor

    NASA Astrophysics Data System (ADS)

    Sun, J.; Xiong, X.

    2011-11-01

    MODIS on-orbit calibration activities include the use of the on-board solar diffuser (SD), SD stability monitor (SDSM) and regularly scheduled lunar observations for the Reflective Solar Bands (RSB) radiometric calibration. Normally, the SD door is closed when there is no SD/SDSM observation to avoid the unnecessary illumination of the sunlight on the SD, which causes the SD degradation. The SD is illuminated over a very short period of time when the spacecraft crosses from the night side to the day side. To implement a SD/SDSM calibration, the SD door needs to be open and the SDSM needs to be turned on during the short period of time when the SD is illuminated. A planning tool is needed to predict the exact times for the opening and closing of SD door and SDSM on/off operations of SDSM for each SD/SDSM calibration. The tool is also needed for MODIS yaw maneuvers implemented for SD bi-direction reflectance factor (BRF) validation and SD screen vignetting function (VF) derivation. MODIS observes the Moon through its space view (SV) port. To increase the opportunity for more lunar observations and to keep the lunar phase angle in a selected narrow range that minimizes the view geometric effect on the observed lunar irradiance, a spacecraft roll maneuver is allowed and implemented for MODIS lunar observations. A lunar observation planning tool is required to predict the time and roll angle needed for each lunar observation in the selected phase angle range. The tool is also needed to determine the phase angle range such that the MODIS can view the Moon in as many months as possible each year with the phase angle in the range. The MODIS Characterization Support Team (MCST) is responsible for MODIS instrument operation and calibration. We have developed a set of tools to address these needs and have successfully applied them to both Terra and Aqua MODIS. In this paper, we describe the design methodologies and the implementation of the tools. The tools have also been

  16. Ultraviolet observations of solar fine structure.

    PubMed

    Dere, K P; Bartoe, J D; Brueckner, G E; Cook, J W; Socker, D G

    1987-11-27

    The High Resolution Telescope and Spectrograph was flown on the Spacelab-2 shuttle mission to perform extended observations of the solar chromosphere and transition zone at high spatial and temporal resolution. Ultraviolet spectroheliograms show the temporal development of macrospicules at the solar limb. The C IV transition zone emission is produced in discrete emission elements that must be composed of exceedingly fine (less than 70 kilometers) subresolution structures. PMID:17744366

  17. Observational and theoretical investigations in solar seismology

    NASA Technical Reports Server (NTRS)

    Noyes, Robert W.

    1992-01-01

    This is the final report on a project to develop a theoretical basis for interpreting solar oscillation data in terms of the interior dynamics and structure of the Sun. The topics covered include the following: (1) studies of the helioseismic signatures of differential rotation and convection in the solar interior; (2) wave generation by turbulent convection; and (3) the study of antipodal sunspot imaging of an active region tomography.

  18. Solar identification of solar-wind disturbances observed at Ulysses

    NASA Astrophysics Data System (ADS)

    Lemen, J. R.; Acton, L. W.; Alexander, D.; Galvin, A. B.; Harvey, K. L.; Hoeksema, J. T.; Zhao, X.; Hudson, H. S.

    1996-07-01

    The Ulysses polar passages are producing a unique set of observations of solar-wind disturbances at high heliographic latitudes. In this paper we use the Yohkoh soft X-ray telescope (SXT) to locate some of these events, as defined by the Ulysses/SWICS data, in the solar corona. Of 8 events, we identify two with flares, three with front-side large arcade events, two with far-side events, and one was not seen in the Ulysses data. The arcade events generally resemble long-duration flares seen in active regions, but are larger, slower, and cooler. We present Yohkoh images of each of these events. In the large arcade events (see Alexander et al., 1996, for a detailed look at one of them) the magnetic morphology at the location of the Yohkoh arcade is generally consistent with the development of a large system of loops. Some of the identifications are ambiguous, and we summarize the reasons for this. From the SWICS data we have obtained ionization temperatures for several events, and find that they have no obvious pattern in relation to the X-ray temperatures; this may be expected on the basis that the interplanetary plasma cloud is physically distinct from the plasma trapped in the corona. Soft X-ray observations of the solar corona show occasional occurrences of large-scale brightenings in the form of arcades of loops. Such structures have been known since Skylab (e.g., Sturrock, 1980), and have a clear relationship with coronal mass ejections (e.g., Kahler, 1977). We now may study this phenomenon statistically with the much more comprehensive Yohkoh observations; with Yohkoh movies we can also begin to extend our knowledge to the three-dimensional development of the structures. At the same time Ulysses has sampled the latitude dependence of the interplanetary effects. With this paper we introduce this subject and provide a preliminary listing of events from the passage of Ulysses through high heliographic latitudes. The starting point of the present survey is a list

  19. An Analysis of Solar Global Activity

    NASA Astrophysics Data System (ADS)

    Mouradian, Zadig

    2013-02-01

    This article proposes a unified observational model of solar activity based on sunspot number and the solar global activity in the rotation of the structures, both per 11-year cycle. The rotation rates show a variation of a half-century period and the same period is also associated to the sunspot amplitude variation. The global solar rotation interweaves with the observed global organisation of solar activity. An important role for this assembly is played by the Grand Cycle formed by the merging of five sunspot cycles: a forgotten discovery by R. Wolf. On the basis of these elements, the nature of the Dalton Minimum, the Maunder Minimum, the Gleissberg Cycle, and the Grand Minima are presented.

  20. Characteristics of solar wind control on Jovian UV auroral activity deciphered by long-term Hisaki EXCEED observations: Evidence of preconditioning of the magnetosphere?

    NASA Astrophysics Data System (ADS)

    Kita, Hajime; Kimura, Tomoki; Tao, Chihiro; Tsuchiya, Fuminori; Misawa, Hiroaki; Sakanoi, Takeshi; Kasaba, Yasumasa; Murakami, Go; Yoshioka, Kazuo; Yamazaki, Atsushi; Yoshikawa, Ichiro; Fujimoto, Masaki

    2016-07-01

    While the Jovian magnetosphere is known to have the internal source for its activity, it is reported to be under the influence of the solar wind as well. Here we report the statistical relationship between the total power of the Jovian ultraviolet aurora and the solar wind properties found from long-term monitoring by the spectrometer EXCEED (Extreme Ultraviolet Spectroscope for Exospheric Dynamics) on board the Hisaki satellite. Superposed epoch analysis indicates that auroral total power increases when an enhanced solar wind dynamic pressure hits the magnetosphere. Furthermore, the auroral total power shows a positive correlation with the duration of a quiescent interval of the solar wind that is present before a rise in the dynamic pressure, more than with the amplitude of dynamic pressure increase. These statistical characteristics define the next step to unveil the physical mechanism of the solar wind control on the Jovian magnetospheric dynamics.

  1. Insights on the solar dynamo from stellar observations

    NASA Astrophysics Data System (ADS)

    Egeland, Ricky; Martens, Petrus C.; Judge, Philip G.

    2014-06-01

    A successful dynamo model should not only explain the broad characteristics of the magnetic field cycle for the Sun (22-year sunspot cycle with polarity reversals, migration of active latitudes toward the poles throughout the cycle, and Joy’s law), but should also be able to explain the cycling behavior observed in Solar-analog stars, which are very close to the Sun in essential characteristics. Our aim is to develop a set of constraints on dynamo models from the observed behavior of solar-analog stars obtained from a number of long-running synoptic surveys of cycling activity (Mount Wilson Observatory HK survey, Lowel Observatory Solar-Stellar Spectrograph, and the Fairborn Observatory Automatic Photoelectric Telescope survey), in conjuncture with stellar rotation and differential rotation data obtained by the Kepler Mission and other sources. By carefully piecing together the best data available today, we will provide an improved understanding of the parameter space in which Solar-like dynamos operate.

  2. Solar activity and the weather

    NASA Technical Reports Server (NTRS)

    Wilcox, J. M.

    1975-01-01

    The attempts during the past century to establish a connection between solar activity and the weather are discussed; some critical remarks about the quality of much of the literature in this field are given. Several recent investigations are summarized. Use of the solar/interplanetary magnetic sector structure in future investigations is suggested to add an element of cohesiveness and interaction to these investigations.

  3. Solar activity and the weather

    NASA Technical Reports Server (NTRS)

    Wilcox, J. M.

    1974-01-01

    The attempts during the past century to establish a connection between solar activity and the weather are discussed. Some critical remarks about the quality of much of the literature in this field are given. Several recent investigations are summarized. Use of the solar interplanetary magnetic sector structure in future investigations is suggested to perhaps add an element of cohesiveness and interaction to these investigations.

  4. Solar activity and the weather

    NASA Technical Reports Server (NTRS)

    Wilcox, J. M.

    1975-01-01

    Attempts during the past century to establish a connection between solar activity and the weather are discussed. Some critical remarks about the quality of much of the literature in this field are given, and several recent investigations are summarized. Use of the solar-interplanetary magnetic sector structure in future investigations may add an element of cohesiveness and interaction to these investigations.

  5. Solar activity and myocardial infarction.

    PubMed

    Szczeklik, E; Mergentaler, J; Kotlarek-Haus, S; Kuliszkiewicz-Janus, M; Kucharczyk, J; Janus, W

    1983-01-01

    The correlation between the incidence of myocardial infarction, sudden cardiac death, the solar activity and geomagnetism in the period 1969-1976 was studied, basing on Wrocław hospitals material registered according to WHO standards; sudden death was assumed when a person died within 24 hours after the onset of the disease. The highest number of infarctions and sudden deaths was detected for 1975, which coincided with the lowest solar activity, and the lowest one for the years 1969-1970 coinciding with the highest solar activity. Such an inverse, statistically significant correlation was not found to exist between the studied biological phenomena and geomagnetism. PMID:6851574

  6. Solar activity and explosive transient eruptions

    NASA Astrophysics Data System (ADS)

    Ambastha, Ashok

    2016-07-01

    We discuss active and explosive behavior of the Sun observable in a wide range of wavelengths (or energies) and spatio-temporal scales that are not possible for any other star. On the longer time scales, the most notable form of solar activity is the well known so called 11-year solar activity cycle. On the other hand, at shorter time scales of a few minutes to several hours, spectacular explosive transient events, such as, solar flares, prominence eruptions, and coronal mass ejections (CMEs) occur in the outer layers of solar atmosphere. These solar activity cycle and explosive phenomena influence and disturb the space between the Sun and planets. The state of the interplanetary medium, including planetary and terrestrial surroundings, or "the space weather", and its forecasting has important practical consequences. The reliable forecasting of space weather lies in continuously observing of the Sun. We present an account of the recent developments in our understanding of these phenomena using both space-borne and ground-based solar observations.

  7. The solar irradiance: observations and modelling

    NASA Astrophysics Data System (ADS)

    Cessateur, Gaël; Schmutz, Werner; Shapiro, Alexander

    2015-04-01

    The knowledge of the solar spectral irradiance (SSI) and its variability is an essential parameter for space weather and space climate studies. Many observations of the SSI have been performed in a recent past, but the level of confidence is rather low when considering long time scales, since space instruments are often suffering from degradation problems. Many SSI models have been also developed, and some of them are excellent inputs for many space climate models. We will then review the different data sets available of the SSI for the short term time-scales as well as for the long term, including both observations and models. We will also emphasize about our new irradiance model, COSIR for Code of Solar Irradiance Reconstruction, which is successful at reproducing the solar rotational modulation as seen in the PREMOS, Virgo and SORCE data.

  8. Solar activity; weather and climate: a review

    NASA Astrophysics Data System (ADS)

    Pudovkin, M. I.

    2003-04-01

    In the proposed review, experimental evidences on a close relationship between the solar activity and the weather are discussed. Solar radiation variations associated with various manifestation of the solar activity on the Sun's surface (sunspots, flocculae) during both the short-term disturbances and 11-year solar cycles are considered. A conclusion is arrived on the intensity of those variations to be insufficient to produce observed disturbances in the lower atmosphere state (Foukal, Lin and others). Changes of the atmosphere transmittance and cloudiness associated with solar flares and geomagnetic disturbances are discussed. There is shown that variations of the solar radiation observed at the Earth's surface during the disturbances mentioned above may explain quantitatively the observed changes in the lower atmosphere state. There is supposed that the observed variations of the cloudiness and atmosphere transparency may be caused by the intensity variations of the cosmic rays flux of the galactic and cosmic origin (Tinsley, Scherrer, Hilis, Deer, Pudovkin, Veretenenko, Friis-Christensen, Svensmark and others). Various mechanisms of the cosmic rays influence on the atmospheric transparency and cloudiness variations are considered. Some numerical models describing the state and dynamics of the lower atmosphere are discussed and the possibility of incorporating in them as input parameters the observed variations of the cloudiness and atmosphere's transparency is analyzed.

  9. The Standard Solar Model versus Experimental Observations

    NASA Astrophysics Data System (ADS)

    Manuel, O.

    2000-12-01

    The standard solar model (ssm) assumes the that Sun formed as a homogeneous body, its interior consists mostly of hydrogen, and its radiant energy comes from H-fusion in its core. Two sets of measurements indicate the ssm is wrong: 1. Analyses of material in the planetary system show that - (a) Fe, O, Ni, Si, Mg, S and Ca have high nuclear stability and comprise 98+% of ordinary meteorites that formed at the birth of the solar system; (b) the cores of inner planets formed in a central region consisting mostly of heavy elements like Fe, Ni and S; (c) the outer planets formed mostly from elements like H, He and C; and (d) isotopic heterogeneities accompanied these chemical gradients in debris of the supernova that exploded here 5 billion years ago to produce the solar system (See Origin of the Elements at http://www.umr.edu/õm/). 2. Analyses of material coming from the Sun show that - (a) there are not enough neutrinos for H-fusion to be its main source of energy; (b) light-weight isotopes (mass =L) of He, Ne, Ar, Kr and Xe in the solar wind are enriched relative to heavy isotopes (mass = H) by a factor, f, where log f = 4.56 log [H/L] -- - Eq. (1); (c) solar flares by-pass 3.4 of these 9-stages of diffusion and deplete the light-weight isotopes of He, Ne, Mg and Ar by a factor, f*, where log f* = -1.7 log [H/L] --- Eq. (2); (d) proton-capture on N-14 increased N-15 in the solar wind over geologic time; and (e) solar flares dredge up nitrogen with less N-15 from this H-fusion reaction. Each observation above is unexplained by ssm. After correcting photospheric abundances for diffusion [Observation 2(b)], the most abundant elements in the bulk sun are Fe, Ni, O, Si, S, Mg and Ca, the same elements that comprise ordinary meteorites [Observation 1(a)]. The probability that Eq. (1) would randomly select these elements from the photosphere, i.e., the likelihood for a meaningless agreement between observations 2(b) and 1(a), is < 2.0E(-33). Thus, ssm does not describe the

  10. Electron energy transport in the solar wind: Ulysses observations

    NASA Technical Reports Server (NTRS)

    Scime, Earl; Gary, S. Peter; Phillips, J. L.; Corniileau-Wehrlin, N.; Solomon, J.

    1995-01-01

    The electron heat flux in the solar wind has been measured by the Ulysses solar wind plasma experiment in the ecliptic from 1 to 5 AU and out of the ecliptic during the recently completed pass over the solar south pole and the ongoing pass over the solar north pole. Although the electron heat flux contains only a fraction of the kinetic energy of the solar wind. the available energy is sufficient to account for the non-adiabatic expansion of the solar wind electrons. The Ulysses measurements indicate that the electron heat flux is actively dissipated in the solar wind. The exact mechanism or mechanisms is unknown. but a model based on the whistler heat flux instability predicts radial gradients for the electron heat flux in good agreement with the data. We will present measurements of the correlation between wave activity measured by the unified radio and plasma experiment (URAP) and the electron heat flux throughout the Ulysses mission. The goal is to determine if whistler waves are a good candidate for the observed electron heat flux dissipation. The latitudinal gradients of the electron heat flux. wave activity. and electron pressure will be discussed in light of the changes in the magnetic field geometry from equator to poles.

  11. Deciphering Solar Magnetic Activity: On Grand Minima in Solar Activity

    NASA Astrophysics Data System (ADS)

    Mcintosh, Scott; Leamon, Robert

    2015-07-01

    The Sun provides the energy necessary to sustain our existence. While the Sun provides for us, it is also capable of taking away. The weather and climatic scales of solar evolution and the Sun-Earth connection are not well understood. There has been tremendous progress in the century since the discovery of solar magnetism - magnetism that ultimately drives the electromagnetic, particulate and eruptive forcing of our planetary system. There is contemporary evidence of a decrease in solar magnetism, perhaps even indicators of a significant downward trend, over recent decades. Are we entering a minimum in solar activity that is deeper and longer than a typical solar minimum, a "grand minimum"? How could we tell if we are? What is a grand minimum and how does the Sun recover? These are very pertinent questions for modern civilization. In this paper we present a hypothetical demonstration of entry and exit from grand minimum conditions based on a recent analysis of solar features over the past 20 years and their possible connection to the origins of the 11(-ish) year solar activity cycle.

  12. Basic results of the CORONAS-F solar observations

    NASA Astrophysics Data System (ADS)

    Kuznetsov, V. D.

    2006-08-01

    142190 Troitsk, Moscow Region, Russia V.D. Kuznetsov N.V.Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Troitsk, Russia The report contains a review of the basic results of the CORONAS-F solar observations during the period of orbital operation of the satellite (from July 31, 2001 to December 6, 2005). Basic results are related with helioseismic observations of the Sun, with localization and study of the morphology of numerous active phenomena in the Sun, including the outstanding events in the declining phase of the solar cycle; with spectroscopic diagnostics of the coronal and flare-generated plasma; with the study of the atomic and nuclear processes in solar flares; with detection of the fluxes of solar cosmic rays, gamma-rays, and neutrons from the major flares reaching the Earth's orbit.

  13. 3D-Stereoscopic Analysis of Solar Active Region Loops: I: SoHo/EIT Observations at Temperatures of 1.0-1.5 MK

    NASA Technical Reports Server (NTRS)

    Aschwanden, Markus J.; Newmark, Jeff; Delaboudiniere, Jean-Pierre; Neupert, Werner M.; Portier-Fozzani, Fabrice; Gary, G. Allen; Zucker, Arik

    1998-01-01

    The three-dimensional (3D) structure of solar active region NOAA 7986 observed on 1996 August 30 with the Extrem-ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SoHO) is analyzed. We develop a new method of Dynamic Stereoscopy to reconstruct the 3D geometry of dynamically changing loops, which allows us to determine the orientation of the loop plane with respect to the line-of-sight, a prerequisite to correct properly for projection effects in 3D loop models. With this method and the filter-ratio technique applied to EIT 171 A and 195 A images we determine the 3D coordinates (x(s), y(s), z(s)), the loop width) w(s), the electron density n(sub e)(s), and the electron temperature T(sub e)(s) as function of the loop length s for 30 loop segments. Fitting the loop densities with an exponential density model n(sub e)(h) we find that the so inferred scale height temperatures, T(sub e)(sup lambda) = 1.22 +/- 0.23 MK, match closely the EIT filter-ratio temperatures, T(sub e)(sup FIT) = 1.21 +/- 0.06 MK. We conclude that these rather large-scale loops (with heights of h approx. equals 50 - 200 Mm) that dominate EIT 171 A images are close to thermal equilibrium. Most of the loops show no significant thickness variation w(s), but many exhibit a trend of increasing temperature (dT/ds greater than 0) above the footpoint.

  14. 11 -year planetary index of solar activity

    NASA Astrophysics Data System (ADS)

    Okhlopkov, Victor

    In papers [1,2] introduced me parameter - the average difference between the heliocentric longitudes of planets ( ADL ) , which was used for comparison with solar activity. The best connection of solar activity ( Wolf numbers used ) was obtained for the three planets - Venus, Earth and Jupiter. In [1,2] has been allocated envelope curve of the minimum values ADL which has a main periodicity for 22 years and describes well the alternating series of solar activity , which also has a major periodicity of 22. It was shown that the minimum values of the envelope curve extremes ADL planets Venus, Earth and Jupiter are well matched with the 11- year solar activity cycle In these extremes observed linear configuration of the planets Venus, Earth and Jupiter both in their location on one side of the Sun ( conjunctions ) and at the location on the opposite side of the Sun ( three configurations ) This work is a continuation of the above-mentioned , and here for minimum ADL ( planets are in conjunction ) , as well as on the minimum deviation of the planets from a line drawn through them and Sun at the location of the planets on opposite sides of the Sun , compiled index (denoted for brevity as JEV ) that uniquely describes the 11- year solar cycle A comparison of the index JEV with solar activity during the time interval from 1000 to 2013 conducted. For the period from 1000 to 1699 used the Schove series of solar activity and the number of Wolf (1700 - 2013 ) During the time interval from 1000 to 2013 and the main periodicity of the solar activity and the index ADL is 11.07 years. 1. Okhlopkov V.P. Cycles of Solar Activity and the Configurations of Planets // Moscow University Physics Bulletin, 2012 , Vol. 67 , No. 4 , pp. 377-383 http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.3103/S0027134912040108. 2 Okhlopkov VP, Relationship of Solar Activity Cycles to Planetary Configurations // Bulletin of the Russian Academy of Sciences. Physics, 2013 , Vol. 77 , No. 5

  15. Sources of solar wind over the solar activity cycle

    PubMed Central

    Poletto, Giannina

    2012-01-01

    Fast solar wind has been recognized, about 40 years ago, to originate in polar coronal holes (CHs), that, since then, have been identified with sources of recurrent high speed wind streams. As of today, however, there is no general consensus about whether there are, within CHs, preferential locations where the solar wind is accelerated. Knowledge of slow wind sources is far from complete as well. Slow wind observed in situ can be traced back to its solar source by backward extrapolation of magnetic fields whose field lines are streamlines of the outflowing plasma. However, this technique often has not the necessary precision for an indisputable identification of the region where wind originates. As the Sun progresses through its activity cycle, different wind sources prevail and contribute to filling the heliosphere. Our present knowledge of different wind sources is here summarized. Also, a Section addresses the problem of wind acceleration in the low corona, as inferred from an analysis of UV data, and illustrates changes between fast and slow wind profiles and possible signatures of changes along the solar cycle. A brief reference to recent work about the deep roots of solar wind and their changes over different solar cycles concludes the review. PMID:25685421

  16. Sources of solar wind over the solar activity cycle.

    PubMed

    Poletto, Giannina

    2013-05-01

    Fast solar wind has been recognized, about 40 years ago, to originate in polar coronal holes (CHs), that, since then, have been identified with sources of recurrent high speed wind streams. As of today, however, there is no general consensus about whether there are, within CHs, preferential locations where the solar wind is accelerated. Knowledge of slow wind sources is far from complete as well. Slow wind observed in situ can be traced back to its solar source by backward extrapolation of magnetic fields whose field lines are streamlines of the outflowing plasma. However, this technique often has not the necessary precision for an indisputable identification of the region where wind originates. As the Sun progresses through its activity cycle, different wind sources prevail and contribute to filling the heliosphere. Our present knowledge of different wind sources is here summarized. Also, a Section addresses the problem of wind acceleration in the low corona, as inferred from an analysis of UV data, and illustrates changes between fast and slow wind profiles and possible signatures of changes along the solar cycle. A brief reference to recent work about the deep roots of solar wind and their changes over different solar cycles concludes the review.

  17. Temporal offsets among solar activity indicators

    NASA Astrophysics Data System (ADS)

    Ramesh, K. B.; Vasantharaju, N.

    2014-04-01

    Temporal offsets between the time series of solar activity indicators provide important clues regarding the physical processes responsible for the cyclic variability in the solar atmosphere. Hysteresis patterns generated between any two indicators were popularly used to study their morphological features and further to understand their inter relationships. We use time series of different solar indicators to understand the possible cause-and-effect criteria between their respective source regions. Sensitivity of the upper atmosphere to the activity underneath might play an important role in introducing different evolutionary patterns in the profiles of solar indicators and in turn cause temporal offsets between them. Limitations in the observations may also cause relative shifts in the time series.

  18. STEREO Observations of Solar Energetic Particles

    NASA Technical Reports Server (NTRS)

    vonRosenvinge, Tycho; Christian, Eric; Cohen, Christina; Leske, Richard; Mewaldt, Richard; Stone, Edward; Wiedenbeck, Mark

    2011-01-01

    We report on observations of Solar Energetic Particle (SEP) events as observed by instruments on the STEREO Ahead and Behind spacecraft and on the ACE spacecraft. We will show observations of an electron event observed by the STEREO Ahead spacecraft on June 12, 2010 located at W74 essentially simultaneously with electrons seen at STEREO Behind at E70. Some similar events observed by Helios were ascribed to fast electron propagation in longitude close to the sun. We will look for independent verification of this possibility. We will also show observations of what appears to be a single proton event with very similar time-history profiles at both of the STEREO spacecraft at a similar wide separation. This is unexpected. We will attempt to understand all of these events in terms of corresponding CME and radio burst observations.

  19. Amateur observations of solar eclipses and derivation of scientific data

    NASA Astrophysics Data System (ADS)

    Stoev, A. D.; Stoeva, P. V.

    2008-12-01

    This work presents the educational approach of using total solar eclipse occurrences as a scientific process learning aid. The work reviews the basic scientific aims and experiments included in the observational programs "Total solar eclipse 1999 and 2006" (Stoev, A., Kiskinova, N., Muglova, P. et al. Complex observational programme of the Yuri Gagarin Public Astronomical Observatory and STIL, BAS, Stara Zagora Department for the August 11, 1999 total solar eclipse, in: Total Solar Eclipse 1999 - Observational Programmes and Coordination, Proceedings, Recol, Haskovo, pp. 133-137, 1999a (in Bulgarian); Stoeva, P.V., Stoev, A.D., Kostadinov, I.N. et al. Solar Corona and Atmospheric Effects during the March 29, 2006 Total Solar Eclipse, in: 11th International Science Conference SOLAR-Terrestrial Influences, Sofia, November 24-25, pp. 69-72, 2005). Results from teaching and training the students in the procedures, methods and equipment necessary for the observation of a total solar eclipse (TSE) at the Yuri Gagarin Public Astronomical Observatory (PAO) in Stara Zagora, Bulgaria, as well as the selection process used in determining participation in the different observational teams are discussed. The final stages reveal the special methodology used to investigate the level of "pretensions", the levels of ambition displayed by the students in achieving each independent goal, and the setting of goals in context with their problem solving capabilities and information gathering abilities in the scientific observation process. Results obtained from the observational experiments are interpreted mainly in the following themes: Investigation of the structure of the white-light solar corona and evolution of separate coronal elements during the total phase of the eclipse; Photometry of the white-light solar corona and specific emission lines; Meteorological, actinometrical and optical atmospheric investigations; Astrometry of the Moon during the phase evolution of the eclipse and

  20. Swedish Solar Telescope - Short summary of instrumentation and observation techniques

    NASA Astrophysics Data System (ADS)

    Scharmer, Goran; Lofdahl, Mats

    A short summary of the design concepts of the Swedish Solar Telescope at La Palma is given along with the most important parts of the instrumentation and observing techniques. The experience from using high-speed read-out CCDs for solar observations is also discussed. The advantages of this data acquisition system are that it allows real-time frame selection for achieving high spatial resolution, that several cameras can be slaved by one seeing monitor, and that bursts of digital images can be recorded for full spatial coverage of small parts of active regions.

  1. Solar Observations as Educational Tools (P8)

    NASA Astrophysics Data System (ADS)

    Shylaja, B. S.

    2006-11-01

    taralaya89@yahoo.co.in Solar observations are very handy tools to expose the students to the joy of research. In this presentation I briefly discuss the various experiments already done here with a small 6" Coude refractor. These include simple experiments like eclipse observations, rotation measurements, variation in the angular size of the sun through the year as well as sun spot size variations, Doppler measurements, identification of elements from solar spectrum (from published high resolution spectrum), limb darkening measurements, deriving the curve of growth (from published data). I also describe the theoretical implications of the experiments and future plans to develop this as a platform for motivating students towards a career in basic science research.

  2. From Solar Dimming to Solar Brightening: Observations, Modeling, Impacts

    NASA Astrophysics Data System (ADS)

    Wild, M.; Ohmura, A.; Feichter, J.; Stier, P.; Robock, A.; Li, H.

    2005-12-01

    Recent evidence suggests that the amount of solar radiation reaching the earth surface is not stable over time but exhibits significant decadal variations. These variations, in addition to the changes in thermal radiation induced by alterations in greenhouse gases, cause changes in radiative forcings which may significantly affect surface climate. Observations from the Global Energy Balanced Archive (GEBA) and Baseline Surface Radiation Network (BSRN) databases at the Swiss Federal Institute of Technology suggest that surface solar radiation, after decades of dimming, reversed into a brightening since the mid 1980s at widespread locations. These changes are in line with a recovery of atmospheric transparency, possibly related to reduced aerosol loadings due to air pollution control and the breakdown of industry in formerly Communist countries. Not many GCMs currently represent aerosol effects with a degree of sophistication to capture such effects, but we used a special version of the Max Planck Institute for Meteorology GCM which includes a detailed aerosol scheme, ECHAM5-HAM, to investigate the observed trends. In addition, we investigate the potential impact of the variations in surface radiation on other elements of the climate system, such as soil moisture, which shows changes in line with the changes in radiation. Reference: Wild, M., Gilgen, H., Roesch, A., Ohmura, A., Long, C., Dutton, E., Forgan, B., Kallis, A., Russak, V., Tsvetkov, A., 2005: From dimming to brightening: Decadal changes in solar radiation at the Earth's surface. Science , 308, 847-850

  3. Effect of line-of-sight inclinations on the observation of solar activity cycle: Lessons for CoRoT & Kepler

    NASA Astrophysics Data System (ADS)

    Vázquez Ramió, H.; Mathur, S.; Régulo, C.; García, R. A.

    2011-01-01

    CoRoT and Kepler missions are collecting data of solar-like oscillating stars of unprecedented quality. Moreover, thanks to the length of the time series, we are able to study their seismic variability. In this work we use numerical simulations based on the last 3 solar cycles to analyze the light curves as a function of the line-of-sight inclination angle. These preliminary results showed that the direct observation of the light curve can induce some bias in the position of the maximum of the cycle.

  4. Explicit characteristics of evolutionary-type plasma bubbles observed from Equatorial Atmosphere Radar during the low to moderate solar activity years 2010-2012

    NASA Astrophysics Data System (ADS)

    Ajith, K. K.; Ram, S. Tulasi; Yamamoto, M.; Yokoyama, T.; Gowtam, V. Sai; Otsuka, Y.; Tsugawa, T.; Niranjan, K.

    2015-02-01

    Using the fan sector backscatter maps of 47 MHz Equatorial Atmosphere Radar (EAR) at Kototabang (0.2°S geographic latitude, 100.3°E geographic longitude, and 10.4°S geomagnetic latitude), Indonesia, the spatial and temporal evolution of equatorial plasma bubbles (EPBs) were examined to classify the evolutionary-type EPBs from those which formed elsewhere and drifted into the field of view of radar. A total of 535 EPBs were observed during the low to moderate solar activity years 2010-2012, out of which about 210 (~39%) are of evolving type and the remaining 325 (~61%) are drifting-in EPBs. In general, both the evolving-type and drifting-in EPBs exhibit predominance during the postsunset hours of equinoxes and December solstices. Interestingly, a large number of EPBs were found to develop even a few minutes prior to the apex sunset during equinoxes. Further, the occurrence of evolving-type EPBs exhibits a clear secondary peak around midnight (2300-0100 LT), primarily, due to higher rate of occurrence during the postmidnight hours of June solstices. A significant number (~33%) of postmidnight EPBs generated during June solstices did not exhibited any clear zonal drift, while about 14% of EPBs drifted westward. Also, the westward drifting EPBs are confined only to June solstices. The responsible mechanisms for the genesis of fresh EPBs during postmidnight hours were discussed in light of equatorward meridional winds in the presence of weak westward electric fields.

  5. 3D-Stereoscopic Analysis of Solar Active Region Loops. 2; SoHo/EIT Observations at Temperatures of 1.5-2.5 MK

    NASA Technical Reports Server (NTRS)

    Aschwanden, Markus J.; Alexander, David; Hurlburt, Neal; Newmark, Jeffrey S.; Neupert, Werner M.; Klimchuk, J. A.; Gary, G. Allen

    1999-01-01

    In this paper we study the three-dimensional (3D) structure of hot (T(sub e) approximately equals 1.5 - 2.5 MK) loops in solar active region NOAA 7986, observed on 1996 August 30 with the Extreme-ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SoHO). This complements a first study on cooler (T(sub e) approximately equals 1.0 - 1.5 MK) loops of the same active region, using the same method of Dynamic Stereoscopy to reconstruct the 3D geometry. We reconstruct the 3D-coordinates x(s), y(s), z(s), the density n(sub e)(s), and temperature profile T(sub e)(s) of 35 individual loop segments (as function of the loop coordinate s) using EIT 195 A and 284 A images. The major findings are: (1) All loops are found to be in hydrostatic equilibrium, in the entire temperature regime of T(sub e) = 1.0 - 2.5 MK; (2) The analyzed loops have a height of 2-3 scale heights, and thus only segments extending over about one vertical scale height have sufficient emission measure contrast for detection; (3) The temperature gradient over the lowest scale height is of order dT/ds is approximately 1 - 4 K/km; (4) The radiative loss rate is found to exceed the conductive loss rate by about two orders or magnitude, making thermal conduction negligible to explain the temperature structure of the loops; (5) A steady-state can only be achieved when the heating rate E(sub H) matches the radiative loss rate in hydrostatic equilibrium, requiring a heat deposition length lambda(sub H) of the half density scale height lambda, predicting a scaling law with the loop base pressure, EH varies as p(sub 0 exp 2). This favors coronal heating mechanisms that operate near the loop footpoints; (6) We find a reciprocal correlation between the loop pressure p(sub 0) and loop length L, i.e. p(sub 0) varies as 1/L, implying a scaling law of the steady-state requirement with loop length, i.e. E(sub H ) varies as 1/L(exp 2). The heating rate shows no correlation with the loop

  6. Integrated Access to Solar Observations With EGSO

    NASA Astrophysics Data System (ADS)

    Csillaghy, A.

    2003-12-01

    {\\b Co-Authors}: J.Aboudarham (2), E.Antonucci (3), R.D.Bentely (4), L.Ciminiera (5), A.Finkelstein (4), J.B.Gurman(6), F.Hill (7), D.Pike (8), I.Scholl (9), V.Zharkova and the EGSO development team {\\b Institutions}: (2) Observatoire de Paris-Meudon (France); (3) INAF - Istituto Nazionale di Astrofisica (Italy); (4) University College London (U.K.); (5) Politecnico di Torino (Italy), (6) NASA Goddard Space Flight Center (USA); (7) National Solar Observatory (USA); (8) Rutherford Appleton Lab. (U.K.); (9) Institut d'Astrophysique Spatial, Universite de Paris-Sud (France) ; (10) University of Bradford (U.K) {\\b Abstract}: The European Grid of Solar Observations is the European contribution to the deployment of a virtual solar observatory. The project is funded under the Information Society Technologies (IST) thematic programme of the European Commission's Fifth Framework. EGSO started in March 2002 and will last until March 2005. The project is categorized as a computer science effort. Evidently, a fair amount of issues it addresses are general to grid projects. Nevertheless, EGSO is also of benefit to the application domains, including solar physics, space weather, climate physics and astrophysics. With EGSO, researchers as well as the general public can access and combine solar data from distributed archives in an integrated virtual solar resource. Users express queries based on various search parameters. The search possibilities of EGSO extend the search possibilities of traditional data access systems. For instance, users can formulate a query to search for simultaneous observations of a specific solar event in a given number of wavelengths. In other words, users can search for observations on the basis of events and phenomena, rather than just time and location. The software architecture consists of three collaborating components: a consumer, a broker and a provider. The first component, the consumer, organizes the end user interaction and controls requests

  7. Observation of solar particle fluxes over extended solar longitudes.

    NASA Technical Reports Server (NTRS)

    Bukata, R. P.; Mccracken, K. G.; Keath, E. P.; Rao, U. R.

    1972-01-01

    Detailed particle observations from various Pioneer spacecraft located at different heliolongitudes during the complex solar flare events of Mar. 30 to Apr. 10, 1969, have been utilized to investigate the energy dependence of azimuthal gradients of cosmic ray particles and its effect on the decay of the flare intensity. For an observer located to the east of the centroid of the population, the azimuthal corotation term and the convection term will be additive, resulting in a short decay time constant. An observer located to the west of the centroid of the population will experience a much longer decay time constant, the corotation term partially or completely compensating the loss of particles due to convection. At very low energies, the azimuthal corotation term may even be more than the convection term, thus resulting in a rise in intensity instead of decay during the later part of the event.

  8. Background solar velocity spectrum at high and low phases of solar activity cycle

    NASA Astrophysics Data System (ADS)

    Régulo, C.; Roca Cortés, T.; Vázquez Ramió, H.

    2002-12-01

    Using GOLF/SOHO data a detailed analysis of the solar background spectrum has been performed at high and low phases of solar activity cycle. The analysis includes not only the non-periodic components of the background power spectrum but also the periodic ones. Apart from the solar activity, other causes produce similar effects in the data, particularly the different depths in the solar atmosphere where the measurements are done, because due to the sun-satellite relative velocity, we are observing at different positions in the line profile. Another effect is that different line wings are used in the observation at two different epochs, before and after SOHO loss and recovery which, unfortunately, coincide with minimum and maximum of solar activity. In this work we have tried to separate all these effects in order to really understand what is being seen in the data and ultimately extract the effects of solar activity on the acoustic background solar spectrum.

  9. JWST Planetary Observations Within the Solar System

    NASA Technical Reports Server (NTRS)

    Lunine, Jonathan; Hammel, Heidi; Schaller, Emily; Sonneborn, George; Orton, Glenn; Rieke, George; Rieke, Marcia

    2010-01-01

    JWST provides capabilities unmatched by other telescopic facilities in the near to mid infrared part of the electromagnetic spectrum. Its combination of broad wavelength range, high sensitivity and near diffraction-limited imaging around two microns wavelength make it a high value facility for a variety of Solar System targets. Beyond Neptune, a class of cold, large bodies that include Pluto, Triton and Eris exhibits surface deposits of nitrogen, methane, and other molecules that are poorly observed from the ground, but for which JWST might provide spectral mapping at high sensitivity and spatial resolution difficult to match with the current generation of ground-based observatories. The observatory will also provide unique sensitivity in a variety of near and mid infrared windows for observing relatively deep into the atmospheres of Uranus and Neptune, searching there for minor species. It will examine the Jovian aurora in a wavelength regime where the background atmosphere is dark. Special provision of a subarray observing strategy may allow observation of Jupiter and Saturn over a larger wavelength range despite their large surface brightnesses, allowing for detailed observation of transient phenomena including large scale storms and impact-generation disturbances. JWST's observations of Saturn's moon Titan will overlap with and go beyond the 2017 end-of-mission for Cassini, providing an important extension to the time-series of meteorological studies for much of northern hemisphere summer. It will overlap with a number of other planetary missions to targets for which JWST can make unique types of observations. JWST provides a platform for linking solar system and extrasolar planet studies through its unique observational capabilities in both arenas.

  10. HEMISPHERIC ASYMMETRIES IN THE POLAR SOLAR WIND OBSERVED BY ULYSSES NEAR THE MINIMA OF SOLAR CYCLES 22 AND 23

    SciTech Connect

    Ebert, R. W.; Dayeh, M. A.; Desai, M. I.; McComas, D. J.; Pogorelov, N. V.

    2013-05-10

    We examined solar wind plasma and interplanetary magnetic field (IMF) observations from Ulysses' first and third orbits to study hemispheric differences in the properties of the solar wind and IMF originating from the Sun's large polar coronal holes (PCHs) during the declining and minimum phase of solar cycles 22 and 23. We identified hemispheric asymmetries in several parameters, most notably {approx}15%-30% south-to-north differences in averages for the solar wind density, mass flux, dynamic pressure, and energy flux and the radial and total IMF magnitudes. These differences were driven by relatively larger, more variable solar wind density and radial IMF between {approx}36 Degree-Sign S-60 Degree-Sign S during the declining phase of solar cycles 22 and 23. These observations indicate either a hemispheric asymmetry in the PCH output during the declining and minimum phase of solar cycles 22 and 23 with the southern hemisphere being more active than its northern counterpart, or a solar cycle effect where the PCH output in both hemispheres is enhanced during periods of higher solar activity. We also report a strong linear correlation between these solar wind and IMF parameters, including the periods of enhanced PCH output, that highlight the connection between the solar wind mass and energy output and the Sun's magnetic field. That these enhancements were not matched by similar sized variations in solar wind speed points to the mass and energy responsible for these increases being added to the solar wind while its flow was subsonic.

  11. Solar active region display system

    NASA Astrophysics Data System (ADS)

    Golightly, M.; Raben, V.; Weyland, M.

    2003-04-01

    The Solar Active Region Display System (SARDS) is a client-server application that automatically collects a wide range of solar data and displays it in a format easy for users to assimilate and interpret. Users can rapidly identify active regions of interest or concern from color-coded indicators that visually summarize each region's size, magnetic configuration, recent growth history, and recent flare and CME production. The active region information can be overlaid onto solar maps, multiple solar images, and solar difference images in orthographic, Mercator or cylindrical equidistant projections. Near real-time graphs display the GOES soft and hard x-ray flux, flare events, and daily F10.7 value as a function of time; color-coded indicators show current trends in soft x-ray flux, flare temperature, daily F10.7 flux, and x-ray flare occurrence. Through a separate window up to 4 real-time or static graphs can simultaneously display values of KP, AP, daily F10.7 flux, GOES soft and hard x-ray flux, GOES >10 and >100 MeV proton flux, and Thule neutron monitor count rate. Climatologic displays use color-valued cells to show F10.7 and AP values as a function of Carrington/Bartel's rotation sequences - this format allows users to detect recurrent patterns in solar and geomagnetic activity as well as variations in activity levels over multiple solar cycles. Users can customize many of the display and graph features; all displays can be printed or copied to the system's clipboard for "pasting" into other applications. The system obtains and stores space weather data and images from sources such as the NOAA Space Environment Center, NOAA National Geophysical Data Center, the joint ESA/NASA SOHO spacecraft, and the Kitt Peak National Solar Observatory, and can be extended to include other data series and image sources. Data and images retrieved from the system's database are converted to XML and transported from a central server using HTTP and SOAP protocols, allowing

  12. Solar Energy Project, Activities: Biology.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of biology experiments. Each unit presents an introduction; objectives; skills and knowledge needed; materials; methods; questions; recommendations for further work; and a teacher information sheet. The teacher information…

  13. Electron energy transport in the solar wind: Ulysses observations

    SciTech Connect

    Scime, E.E.; Gary, S.P.; Phillips, J.L.; Balogh, A.; Lengyel-Frey, D.

    1996-07-01

    Previous analysis suggests that the whistler heat flux instability is responsible for the regulation of the electron heat flux of the solar wind. For an interval of quiescent solar wind during the in-ecliptic phase of the Ulysses mission, the plasma wave data in the whistler frequency regime are compared to the predictions of the whistler heat flux instability model. The data is well constrained by the predicted upper bound on the electron heat flux and a clear correlation between wave activity and electron heat flux dissipation is observed. {copyright} {ital 1996 American Institute of Physics.}

  14. Electron energy transport in the solar wind: Ulysses observations

    SciTech Connect

    Scime, Earl E.; Gary, S. Peter; Phillips, John L.; Balogh, Andre; Lengyel-Frey, Denise

    1996-07-20

    Previous analysis suggests that the whistler heat flux instability is responsible for the regulation of the electron heat flux of the solar wind. For an interval of quiescent solar wind during the in-ecliptic phase of the Ulysses mission, the plasma wave data in the whistler frequency regime are compared to the predictions of the whistler heat flux instability model. The data is well constrained by the predicted upper bound on the electron heat flux and a clear correlation between wave activity and electron heat flux dissipation is observed.

  15. Faraday Rotation Observations of the Solar Corona

    NASA Astrophysics Data System (ADS)

    Mancuso, S.; Spangler, S. R.

    1998-05-01

    Faraday rotation measures the path integral of the product of electron density and line of sight component of the magnetic field from the observer to a source of linearly polarized radio emission. For our observations, the line of sight passes through the solar corona. These observations were made with the NRAO Very Large Array at frequencies of 1465 and 1635 MHz. Observations at two frequencies can confirm the lambda (2) dependence of position angle rotation characteristic of Faraday rotation. We observed the extended radio source 0036+030 (4C+03.01) on March 28, 1997, when the source was 8.6 Rsun from the center of the Sun. Nearly continuous observations were made over an 11 hour period. Our observations measure an average rotation measure (RM) of about +7 radians/m(2) attributable to the corona. The RM showed slow variations during the observing session, with a total change of about 3 radians/m(2) . This variation is attributed to large scale gradients and static plasma structures in the corona, and is the same for two source components separated by 30 arcseconds (22000 km). We have also detected RM variations on time scales of 15 minutes to one hour, which may be coronal Alfven waves. We measure an rms variation of 0.57 radians/m(2) for such fluctuations, which is comparable to previous reports.

  16. A new observational solar irradiance composite

    NASA Astrophysics Data System (ADS)

    Schoell, Micha; Dudok de Wit, Thierry; Haberreiter, Margit; Kretzschmar, Matthieu; Misios, Stergios; Tourpali, Klairie; Schmutz, Werner

    2016-04-01

    Variations of the spectral solar irradiance (SSI) are an important driver for the chemistry, temperature and dynamics of the Earth's atmosphere and ultimately the Earth's climate. Due to the sparce and scattered SSI data sets it is important to establish tools to derive a consistent SSI dataset, including realistic uncertainties. We present the a new SSI composite based on the face values of SSI observations and applying a probabilistic method that takes into account the uncertainty of the data set scale-wise. We will present the data set and discuss its effects on the Earth's atmosphere in relation to SSI reconstruction models.

  17. Solar Observations with the Atacama Large Millimeter/submillimeter Array

    NASA Astrophysics Data System (ADS)

    Wedemeyer, Sven

    2015-08-01

    The interferometric Atacama Large Millimeter/submillimeter Array (ALMA) has already demonstrated its impressive capabilities by observing a large variety of targets ranging from protoplanetary disks to galactic nuclei. ALMA is also capable of observing the Sun and has been used for five solar test campaigns so far. The technically challenging solar observing modes are currently under development and regular observations are expected to begin in late 2016.ALMA consists of 66 antennas located in the Chilean Andes at an altitude of 5000 m and is a true leap forward in terms of spatial resolution at millimeter wavelengths. The resolution of reconstructed interferometric images of the Sun is anticipated to be close to what current optical solar telescopes can achieve. In combination with the high temporal and spectral resolution, these new capabilities open up new parameter spaces for solar millimeter observations.The solar radiation at wavelengths observed by ALMA originates from the chromosphere, where the height of the sampled layer increases with selected wavelength. The continuum intensity is linearly correlated to the local gas temperature in the probed layer, which makes ALMA essentially a linear thermometer. During flares, ALMA can detect additional non-thermal emission contributions. Measurements of the polarization state facilitate the valuable determination of the chromospheric magnetic field. In addition, spectrally resolved observations of radio recombination and molecular lines may yield great diagnostic potential, which has yet to be investigated and developed.Many different scientific applications for a large range of targets from quiet Sun to active regions and prominences are possible, ranging from ultra-high cadence wave studies to flare observations. ALMA, in particular in combination with other ground-based and space-borne instruments, will certainly lead to fascinating new findings, which will advance our understanding of the atmosphere of our Sun

  18. Solar activity and the weather

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.

    1973-01-01

    Some evidence that the weather is influenced by solar activity is reviewed. It appears that the solar magnetic sector structure is related to the circulation of the earth's atmosphere during local winter. About 31/2 days after the passage of a sector boundary the maximum effect is seen: apparently the height of all pressure surfaces increases in high latitudes leading to anticyclogenesis, whereas at midlatitudes the height of the pressure surfaces decreases leading to low pressure systems or to deepening of existing systems. This later effect is clearly seen as an increase in the area of the base of air with absolute vorticity exceeding a given threshold. Since the increase of geomagnetic activity generally is small at a sector boundary, it is speculated that geomagnetic activity as such is not the cause of the response to the sector structure, but that both weather and geomagnetic activity are influenced by the same (unknown) mechanism.

  19. Solar activity and the weather

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.

    1974-01-01

    Some new evidence that the weather is influenced by solar activity is reviewed. It appears that the solar magnetic sector structure is related to the circulation of the earth's atmosphere during local winter. About 3 1/2 days after the passage of a sector boundary the maximum effect is seen; apparently the height of all pressure surfaces increases in high latitudes leading to anticyclogenesis, whereas at midlatitudes the height of the pressure surfaces decreases leading to low pressure systems or to deepening of existing systems. This later effect is clearly seen as an increase in the area of the base of air with absolute vorticity exceeding a given threshold. Since the increase of geomagnetic activity generally is small at a sector boundary it is speculated that geomagnetic activity as such is not the cause of the response to the sector structure but that both weather and geomagnetic activity are influenced by the same (unknown) mechanism.

  20. Observational capabilities of solar satellite "Coronas-Photon"

    NASA Astrophysics Data System (ADS)

    Kotov, Yu.

    Coronas-Photon mission is the third satellite of the Russian Coronas program on solar activity observation The main goal of the Coronas-Photon is the study of solar hard electromagnetic radiation in the wide energy range from UV up to high energy gamma-radiation sim 2000MeV Scientific payload for solar radiation observation consists of three type of instruments 1 monitors Natalya-2M Konus-RF RT-2 Penguin-M BRM Phoka Sphin-X Sokol for spectral and timing measurements of full solar disk radiation with timing in flare burst mode up to one msec Instruments Natalya-2M Konus-RF RT-2 will cover the wide energy range of hard X-rays and soft Gamma rays 15keV to 2000MeV and will together constitute the largest area detectors ever used for solar observations Detectors of gamma-ray monitors are based on structured inorganic scintillators with energy resolution sim 5 for nuclear gamma-line band to 35 for GeV-band PSD analysis is used for gamma neutron separation for solar neutron registration T 30MeV Penguin-M has capability to measure linear polarization of hard X-rays using azimuth are measured by Compton scattering asymmetry in case of polarization of an incident flux For X-ray and EUV monitors the scintillation phoswich detectors gas proportional counter CZT assembly and Filter-covered Si-diodes are used 2 Telescope-spectrometer TESIS for imaging solar spectroscopy in X-rays with angular resolution up to 1 in three spectral lines and RT-2 CZT assembly of CZT

  1. Observed Properties of the Solar Wind

    NASA Astrophysics Data System (ADS)

    Neugebauer, Marcia

    2008-11-01

    The earliest measurements of the solar wind fully supported Gene Parker's theory. The wind was persistent and nearly radial, its speed was hundreds of km/s, the density was as predicted, and, on average, the interplanetary magnetic field was consistent with an Archimedian spiral. The fastest wind, with speed >700 km/s, traced back to Bartel's unipolar M regions rather than to the hotter active regions, and the highest densities could be explained by compression where the fast wind plowed into the slower wind in its path. But, even in the early data, there were mysteries, some of which are not yet completely resolved. Understanding the alpha particles has been a challenge. Their abundance is highly variable, in the fast wind their temperature is generally > 4 times the proton temperature, and, despite their greater mass, they flow away from the Sun faster than the protons. To complicate the picture further, the protons, alphas, and electrons all have complex, anisotropic distribution functions, often with double peaks. The expanding wind cools more slowly than adiabatically, suggesting a zoo of wave-particle interactions probably responsible for marginal stabilities of the particle distributions. The study of interplanetary waves and turbulence is an active field of research. Recent decades have also seen the study of ions heavier than alphas, including particles in the wind that did not originate at the Sun. Fifty years after Parker's landmark paper, solar-wind physics is still an active area of research.

  2. Forecasts of solar and geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Joselyn, Joann

    1987-01-01

    Forecasts of solar and geomagnetic activity are critical since these quantities are such important inputs to the thermospheric density models. At this time in the history of solar science there is no way to make such a forecast from first principles. Physical theory applied to the Sun is developing rapidly, but is still primitive. Techniques used for forecasting depend upon the observations over about 130 years, which is only twelve solar cycles. It has been noted that even-numbered cycles systematically tend to be smaller than the odd-numbered ones by about 20 percent. Another observation is that for the last 12 cycle pairs, an even-numbered sunspot cycle looks rather like the next odd-numbered cycle, but with the top cut off. These observations are examples of approximate periodicities that forecasters try to use to achieve some insight into the nature of an upcoming cycle. Another new and useful forecasting aid is a correlation that has been noted between geomagnetic indices and the size of the next solar cycle. Some best estimates are given concerning both activities.

  3. Observing Solar Eclipses in the Developing World

    NASA Astrophysics Data System (ADS)

    Pasachoff, J. M.

    2006-08-01

    The paths of totality of total solar eclipses cross the world, with each spot receiving such a view about every 300 years. The areas of the world from which partial eclipses are visible are much wider. For the few days prior to a total eclipse, the attention of a given country is often drawn toward the eclipse, providing a teachable moment that we can use to bring astronomy to the public's attention. Also, it is important to describe how to observe the partial phases of the eclipse safely. Further, it is important to describe to those people in the zone of totality that it is not only safe but also interesting to view totality. Those who are misled by false warnings that overstate the hazards of viewing the eclipse, or that fail to distinguish between safe and unsafe times for naked-eye viewing, may well be skeptical when other health warnings--perhaps about AIDS or malaria prevention or polio inoculations--come from the authorities, meaning that the penalties for misunderstanding the astronomical event can be severe. Through the International Astronomical Union's Working Group on Solar Eclipses and through the I.A.U.'s Program Group on Public Education at the Times of Eclipses, part of the Commission on Education and Development, we make available information to national authorities, to colleagues in the relevant countries, and to others, through our Websites at http://www.eclipses.info and http://www.totalsolareclipse.net and through personal communication. Among our successes at the 29 March 2006 total solar eclipse was the distribution through a colleague in Nigeria of 400,000 eye-protection filters.

  4. Seismic Forecasting of Solar Activity

    NASA Technical Reports Server (NTRS)

    Braun, Douglas; Lindsey, Charles

    2001-01-01

    We have developed and improved helioseismic imaging techniques of the far-side of the Sun as part of a synoptic monitor of solar activity. In collaboration with the MIDI team at Stanford University we are routinely applying our analysis to images within 24 hours of their acquisition by SOHO. For the first time, real-time seismic maps of large active regions on the Sun's far surface are publicly available. The synoptic images show examples of active regions persisting for one or more solar rotations, as well as those initially detected forming on the solar far side. Until recently, imaging the far surface of the Sun has been essentially blind to active regions more than about 50 degrees from the antipode of disk center. In a paper recently accepted for publication, we have demonstrated how acoustic travel-time perturbations may be mapped over the entire hemisphere of the Sun facing away from the Earth, including the polar regions. In addition to offering significant improvements to ongoing space weather forecasting efforts, the procedure offers the possibility of local seismic monitoring of both the temporal and spatial variations in the acoustic properties of the Sun over the entire far surface.

  5. New model of iron spectra in the extreme ultraviolet and application to SERTS and EUV observations: A solar active region and capella

    NASA Technical Reports Server (NTRS)

    Brickhouse, N. S.; Raymond, J. C.; Smith, B. W.

    1995-01-01

    We report new predictions for the EUV spectral emission of FeIX-FeXXIV, based on data now available from the Solar EUV Rocket Telescope and Spectrograph (SERTS) and the Extreme Ultraviolet Explorer (EUVE) spectrometers. The iron spectral emission model is the first result of a larger effort to revise the Raymond & Smith model and to update the atomic rates. We present here predicted emissivities for selected densities and temperatures applicable to various astrophysical plasmas. Comparisons of our predicted spectra with two recent observations provide important tests of the atomic data. They also test to some extent some basic assumptions of coronal emission codes: optically thin spectral lines and ionization equilibrium.

  6. Millisecond solar radio spikes observed at 1420 MHz

    NASA Astrophysics Data System (ADS)

    Dabrowski, B. P.; Kus, A. J.

    We present results from observations of narrowband solar millisecond radio spikes at 1420 MHz. Observing data were collected between February 2000 and December 2001 with the 15-m radio telescope at the Centre for Astronomy Nicolaus Copernicus University in Torun, Poland, equipped with a radio spectrograph that covered the 1352-1490 MHz frequency band. The radio spectrograph has 3 MHz frequency resolution and 80 microsecond time resolution. We analyzed the individual radio spike duration, bandwidth and rate of frequency drift. A part of the observed spikes showed well-outlined subtle structures. On dynamic radio spectrograms of the investigated events we notice complex structures formed by numerous individual spikes known as chains of spikes and distinctly different structure of columns. Positions of active regions connected with radio spikes emission were investigated. It turns out that most of them are located near the center of the solar disk, suggesting strong beaming of the spikes emission.

  7. Radius of the sun from observations of the total solar eclipse of July 31, 1981

    NASA Astrophysics Data System (ADS)

    Akimov, L. A.; Belkina, I. L.; Dyatel, N. P.; Marchenko, G. P.

    1993-06-01

    Moments of the local contacts at 24 points on E and W solar limbs are determined from the July 31, 1981 solar eclipse cinematographic observations in the continuum. The r.m.s. value of the solar radius, averaged over limb regions with different activity, is rs = 959.97 +/- 0.04 arcsec. The solar radius estimates made separately for limb active regions and for undisturbed ones demonstrated the significance of the active region effects on the measured solar radius (up to 0.14 arcsec).

  8. Millimeter Observation of Solar Flares with Polarization

    NASA Astrophysics Data System (ADS)

    Silva, D. F.; Valio, A. B. M.

    2016-04-01

    We present the investigation of two solar flares on February 17 and May 13, 2013, studied in radio from 5 to 405 GHz (RSTN, POEMAS, SST), and in X-rays up to 300 keV (FERMI and RHESSI). The objective of this work is to study the evolution and energy distribution of the population of accelerated electrons and the magnetic field configuration. For this we constructed and fit the radio spectrum by a gyro synchrotron model. The optically thin spectral indices from radio observations were compared to that of the hard X-rays, showing that the radio spectral index is harder than the latter by 2. These flares also presented 10-15 % circular polarized emission at 45 and 90 GHz that suggests that the sources are located at different legs of an asymmetric loop.

  9. Observations of particle acceleration in solar flares

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.

    1979-01-01

    Solar flares provide several examples of nonthermal particle acceleration. The paper reviews the information gained about these processes via X-ray and gamma-ray astronomy, which can presently distinguish among three separate particle-acceleration processes at the sun: an impulsive accelerator of more than 20 keV electrons, a gradual accelerator of more than 20 keV electrons, and a gradual accelerator of more than 10 MeV ions. The acceleration energy efficiency (total particle energy divided by total flare energy) of any of these mechanisms cannot be less than about 0.1%, although the gradual acceleration does not occur in every flare. The observational material suggests that both the impulsive and gradual accelerations take place preferentially in closed magnetic-field structures, but that the electrons decay in these traps before they can escape. The ions escape very efficiently.

  10. Observation and Modeling of the Solar Transition Region. 1; Multi-Spectral Solar Telescope Array Observations

    NASA Technical Reports Server (NTRS)

    Oluseyi, Hakeem M.; Walker, A. B. C., II; Porter, Jason; Hoover, Richard B.; Barbee, Troy W., Jr.

    1999-01-01

    We report on observations of the solar atmosphere in several extreme-ultraviolet and far-ultraviolet bandpasses obtained by the Multi-Spectral Solar Telescope Array, a rocket-borne spectroheliograph, on flights in 1987, 1991, and 1994, spanning the last solar maximum. Quiet-Sun emission observed in the 171-175 Angstrom bandpass, which includes lines of O v, O VI, Fe IX, and Fe X, has been analyzed to test models of the temperatures and geometries of the structures responsible for this emission. Analyses of intensity variations above the solar limb reveal scale heights consistent with a quiet-Sun plasma temperature of 500,000 less than or equal to T (sub e) less than or equal to 800,000 K. The structures responsible for the quiet-Sun EUV emission are modeled as small quasi-static loops. We submit our models to several tests. We compare the emission our models would produce in the bandpass of our telescope to the emission we have observed. We find that the emission predicted by loop models with maximum temperatures between 700,000 and 900,000 K are consistent with our observations. We also compare the absolute flux predicted by our models in a typical upper transition region line to the flux measured by previous observers. Finally, we present a preliminary comparison of the predictions of our models with diagnostic spectral line ratios from previous observers. Intensity modulations in the quiet Sun are observed to occur on a scale comparable to the supergranular scale. We discuss the implications that a distribution of loops of the type we model here would have for heating the local network at the loops' footpoints.

  11. Recent advances in satellite observations of solar variability and global atmospheric ozone

    NASA Technical Reports Server (NTRS)

    Heath, D. F.

    1974-01-01

    The launch of Nimbus 4 in April 1974 has made possible simultaneous measurements of the ultraviolet solar irradiance and the global distribution of atmospheric ozone by the monitor of ultraviolet solar energy (MUSE) and backscatter ultraviolet (BUV) experiments respectively. Two long lived ultraviolet active solar regions which are about 180 deg apart in solar longitude were observed to be associated with central meridian passages of solar magnetic sector boundaries. The boundaries may be significant in the evaluation of correlations between solar magnetic sector structure and atmospheric circulation.

  12. Solar Eruptions Initiated in Sigmoidal Active Regions

    NASA Astrophysics Data System (ADS)

    Savcheva, Antonia

    2016-07-01

    active regions that have been shown to possess high probability for eruption. They present a direct evidence of the existence of flux ropes in the corona prior to the impulsive phase of eruptions. In order to gain insight into their eruptive behavior and how they get destabilized we need to know their 3D magnetic field structure. First, we review some recent observations and modeling of sigmoidal active regions as the primary hosts of solar eruptions, which can also be used as useful laboratories for studying these phenomena. Then, we concentrate on the analysis of observations and highly data-constrained non-linear force-free field (NLFFF) models over the lifetime of several sigmoidal active regions, where we have captured their magnetic field structure around the times of major flares. We present the topology analysis of a couple of sigmoidal regions pointing us to the probable sites of reconnection. A scenario for eruption is put forward by this analysis. We demonstrate the use of this topology analysis to reconcile the observed eruption features with the standard flare model. Finally, we show a glimpse of how such a NLFFF model of an erupting region can be used to initiate a CME in a global MHD code in an unprecedented realistic manner. Such simulations can show the effects of solar transients on the near-Earth environment and solar system space weather.

  13. Apparent Relations Between Solar Activity and Solar Tides Caused by the Planets

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    2007-01-01

    A solar storm is a storm of ions and electrons from the Sun. Large solar storms are usually preceded by solar flares, phenomena that can be characterized quantitatively from Earth. Twenty-five of the thirty-eight largest known solar flares were observed to start when one or more tide-producing planets (Mercury, Venus, Earth, and Jupiter) were either nearly above the event positions (less than 10 deg. longitude) or at the opposing side of the Sun. The probability for this to happen at random is 0.039 percent. This supports the hypothesis that the force or momentum balance (between the solar atmospheric pressure, the gravity field, and magnetic field) on plasma in the looping magnetic field lines in solar corona could be disturbed by tides, resulting in magnetic field reconnection, solar flares, and solar storms. Separately, from the daily position data of Venus, Earth, and Jupiter, an 11-year planet alignment cycle is observed to approximately match the sunspot cycle. This observation supports the hypothesis that the resonance and beat between the solar tide cycle and nontidal solar activity cycle influences the sunspot cycle and its varying magnitudes. The above relations between the unpredictable solar flares and the predictable solar tidal effects could be used and further developed to forecast the dangerous space weather and therefore reduce its destructive power against the humans in space and satellites controlling mobile phones and global positioning satellite (GPS) systems.

  14. Solar activity during the deep minimum of 2009

    NASA Astrophysics Data System (ADS)

    Sylwester, Janusz; Siarkowski, Marek; Gburek, Szymon; Gryciuk, Magdalena; Kepa, Anna; Kowaliński, Mirosław; Mrozek, Tomek; Phillips, Kenneth J. H.; Podgórski, Piotr; Sylwester, Barbara

    2014-12-01

    We discuss the character of the unusually deep solar activity minimum of 2009 between Solar Cycles 23 and 24. Levels of solar activity in various parts of the solar atmosphere -- photosphere, chromosphere, transition region, and corona -- were observed to be at their lowest for a century. The soft X-ray emission from the corona (hot outer part of the Sun's atmosphere) was measured throughout most of 2009 with the Polish-built SphinX spectrophotometer. Unlike other X-ray monitoring spacecraft, this sensitive spacecraft-borne instrument was able to continue measurements throughout this extended period of low activity.

  15. Small solar wind transients: Stereo-A observations in 2009

    SciTech Connect

    Yu, W.; Farrugia, C. J.; Galvin, A. B.; Simunac, K. D. C.; Popecki, M. A.; Lugaz, N.; Kilpua, E. K. J.; Moestl, C.; Luhmann, J. G.; Opitz, A.; Sauvaud, J.-A.

    2013-06-13

    Year 2009 was the last year of a long and pronounced solar activity minimum. In this year the solar wind in the inner heliosphere was for 90% of the time slow (< 450 km s{sup -1}) and with a weaker magnetic field strength compared to the previous solar minimum 1995-1996. We choose this year to present the results of a systematic search for small solar wind transients (STs) observed by the STEREO-Ahead (ST-A) probe. The data are from the PLASTIC and IMPACT instrument suites. By 'small' we mean a duration from {approx}1 to 12 hours. The parameters we search for to identify STs are (i) the total field strength, (ii) the rotation of the magnetic field vector, (iii) its smoothness, (iv) proton temperature, (v) proton beta, and (vi) Alfven Mach number. We find 45 examples. The STs have an average duration of {approx}4 hours. Ensemble averages of key quantities are: (i) maximum B = 7.01 nT; (ii) proton {beta}= 0.18; (iii) proton thermal speed = 20.8 km s{sup -1}; and (iv) Alfven Mach number = 6.13. No distinctive feature is found in the pitch angle distributions of suprathermal electrons. Our statistical results are compared with those of STs observed near Earth by Wind during 2009.

  16. Coronal Rotation at Solar Minimum from UV Observations

    NASA Technical Reports Server (NTRS)

    Mancuso, S.

    2008-01-01

    UVCS/SOHO observations have been analyzed to reconstruct intensity time series of the O VI 1032 A and H 11216 A spectral lines at different coronal heliolatitudes from 1.5 to 3.0 solar radii from Sun center. Evidence was found for coronal differential rotation that differs significantly from that of the photospheric plasma. The study of the latitudinal variation shows that the UV corona decelerates toward the photospheric rates from the equator up to the poleward boundary 2 of the midlatitude streamers, reaching a peak of 28.16+/-0.20 days around +30 from the equator at 1.5 solar radii, while a less evident peak is observed in the northern hemisphere. This result suggests a real north-south rotational asymmetry as a consequence of different activity and weak coupling between the magnetic fields of the two hemispheres. The study of the radial rotation profiles shows that the corona is rotating almost rigidly with height.

  17. Sir William Herschel's notebooks - Abstracts of solar observations

    NASA Technical Reports Server (NTRS)

    Hoyt, Douglas V.; Schatten, Kenneth H.

    1992-01-01

    An introduction to the background of Sir William Herschel's notebooks and the historical context within which his observations were made are provided. The observations have relevance in reconstructing solar behavior, as discussed in a separate analysis paper by Hoyt and Schatten (1992), and in understanding active features on the sun such as faculae. The text of Herschel's notebooks with modern terms used throughout forms the body of this paper. The complete text has not previously been published and is not easily accessible to scholars. Herschel used different words for solar features than are used today, and thus, for clarity, his terminology is changed on two occasions. A glossary explains the terminology changed. In the text of the notebooks, several contemporaries are mentioned; a brief description of Herschel's colleagues is provided.

  18. Observations of solar-wind helium

    NASA Technical Reports Server (NTRS)

    Neugebauer, M.

    1981-01-01

    It is pointed out that the concentration of helium in the solar wind relative to hydrogen fluctuates wildly. Under certain circumstances, the helium to hydrogen abundance ratio is strongly enhanced over probable solar values; at other times, the amount of helium in the solar wind is immeasurably small. In spite of the fact that helium is heavier than hydrogen, solar-wind helium often leaves the solar gravitational field with a higher velocity than does the hydrogen. It is thought that the mechanisms responsible for helium behavior may contain clues to unanswered questions concerning the acceleration and energy exchange processes of the entire solar wind. A brief review is given of the principal features and theories of the solar wind as a whole. In addition, measurement techniques are discussed. Emphasis throughout is on the experimental data concerning the dynamics of solar-wind helium. On the basis of coronal temperatures, it is shown that helium in the solar wind is almost always doubly ionized. It is also shown that the average abundance of helium ions in the solar wind is usually in the range of 3 to 6% by number.

  19. Early Observations with the Expanded Owens Valley Solar Array

    NASA Astrophysics Data System (ADS)

    Gary, Dale E.

    2016-05-01

    The Expanded Owens Valley Solar Array (EOVSA) is a newly expanded and upgraded, solar-dedicated radio array consisting of 13 antennas of 2.1 m diameter equipped with receivers designed to cover the 1-18 GHz frequency range. Two large (27-m diameter) dishes are being outfitted with He-cooled receivers for use in calibration of the small dishes. During 2015, the array obtained observations from dozens of flares in total power mode on 8 antennas. Since February 2016, it has begun taking solar data on all 13 small antennas with full interferometric correlations, as well as calibration observations with the first of the two large antennas equipped with its He-cooled receiver. The second He-cooled receiver is nearly complete, and will be available around the time of the meeting. We briefly review the commissioning activities leading up to full operations, including polarization and gain measurements and calibration methods, and resulting measures of array performance. We then present some early imaging observations with the array, emphasizing the remarkable temporal and spectral resolution of the instrument, together with joint RHESSI hard X-ray and SDO EUV observations.

  20. Solar irradiance variations due to active regions

    SciTech Connect

    Oster, L.; Schatten, K.H.; Sofia, S.

    1982-05-15

    We have been able to reproduce the variations of the solar irradiance observed by ACRIM to an accuracy of better than +- 0.4 W m/sup -2/, assuming that during the 6 month observation period in 1980 the solar luminosity was constant. The improvement over previous attempts is primarily due to the inclusion of faculae. The reproduction scheme uses simple geometrical data on spot and facula areas, and conventional parameters for the respective fluxes and angular dependencies. The quality of reproduction is not very sensitive to most of the details of these parameters; nevertheless, there conventional parameters cannot be very different from their actual values in the solar atmosphere. It is interesting that the time average of the integrated excess emission (over directions) of the faculae cancels out the integrated deficit produced by the spots, within an accuracy of about 10%. If this behavior were maintained over longer periods of time, say, on the order of an activity cycle, active regions could be viewed as a kind of lighthouse where the energy deficit near the normal direction, associated with the spots, is primarily reemitted close to the tangential directions by the faculae. The currently available data suggest that energy ''storage'' associated with the redirection of flux near active regions on the Sun is comparable to the lifetime of the faculae.

  1. Observational constraints on solar wind acceleration mechanisms

    NASA Technical Reports Server (NTRS)

    Neugebauer, M.

    1983-01-01

    A complete theoretical understanding of the acceleration of the solar wind must account for at least three types of solar wind flow: high-speed streams associated with coronal holes, low-speed boundary layer flows associated with sector boundaries, and both high- and low-speed flows associated with impulsive ejections from the Sun. The properties of each type of flow are summarized.

  2. Solar Activity Forecasting for use in Orbit Prediction

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth

    2001-01-01

    Orbital prediction for satellites in low Earth orbit (LEO) or low planetary orbit depends strongly on exospheric densities. Solar activity forecasting is important in orbital prediction, as the solar UV and EUV inflate the upper atmospheric layers of the Earth and planets, forming the exosphere in which satellites orbit. Geomagnetic effects also relate to solar activity. Because of the complex and ephemeral nature of solar activity, with different cycles varying in strength by more than 100%, many different forecasting techniques have been utilized. The methods range from purely numerical techniques (essentially curve fitting) to numerous oddball schemes, as well as a small subset, called 'Precursor techniques.' The situation can be puzzling, owing to the numerous methodologies involved, somewhat akin to the numerous ether theories near the turn of the last century. Nevertheless, the Precursor techniques alone have a physical basis, namely dynamo theory, which provides a physical explanation for why this subset seems to work. I discuss this solar cycle's predictions, as well as the Sun's observed activity. I also discuss the SODA (Solar Dynamo Amplitude) index, which provides the user with the ability to track the Sun's hidden, interior dynamo magnetic fields. As a result, one may then update solar activity predictions continuously, by monitoring the solar magnetic fields as they change throughout the solar cycle. This paper ends by providing a glimpse into what the next solar cycle (#24) portends.

  3. Division E Commission 10: Solar Activity

    NASA Astrophysics Data System (ADS)

    Schrijver, Carolus J.; Fletcher, Lyndsay; van Driel-Gesztelyi, Lidia; Asai, Ayumi; Cally, Paul S.; Charbonneau, Paul; Gibson, Sarah E.; Gomez, Daniel; Hasan, Siraj S.; Veronig, Astrid M.; Yan, Yihua

    2016-04-01

    After more than half a century of community support related to the science of ``solar activity'', IAU's Commission 10 was formally discontinued in 2015, to be succeeded by C.E2 with the same area of responsibility. On this occasion, we look back at the growth of the scientific disciplines involved around the world over almost a full century. Solar activity and fields of research looking into the related physics of the heliosphere continue to be vibrant and growing, with currently over 2,000 refereed publications appearing per year from over 4,000 unique authors, publishing in dozens of distinct journals and meeting in dozens of workshops and conferences each year. The size of the rapidly growing community and of the observational and computational data volumes, along with the multitude of connections into other branches of astrophysics, pose significant challenges; aspects of these challenges are beginning to be addressed through, among others, the development of new systems of literature reviews, machine-searchable archives for data and publications, and virtual observatories. As customary in these reports, we highlight some of the research topics that have seen particular interest over the most recent triennium, specifically active-region magnetic fields, coronal thermal structure, coronal seismology, flares and eruptions, and the variability of solar activity on long time scales. We close with a collection of developments, discoveries, and surprises that illustrate the range and dynamics of the discipline.

  4. Satellite Observations of Solar Irradiance and Sun-Climate Impacts

    NASA Technical Reports Server (NTRS)

    Cahalan, R.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Solar activity is now near its maximum, with events such as the 2001 "Bastille Day Event", a Coronal Mass Ejection which merited a full session at AGO'S annual meeting - and two major sunspot groupings earlier this year, with associated variations in TSI (Total Solar Irradiance). We discuss recent satellite measurements of TSI by ACRIM 2 and 3 And Virgo, and new precision observations of TSI and SSI (Solar Spectral Irradiance) expected from the SORCE mission, planned to launch in fall 2002. SSG has been added to TSI as a required EOS and NPOESS measurement because different spectral components provide energy inputs to different components of the climate system - UV into upper atmosphere and ozone, IR into lower atmosphere and clouds, and Visible into the biosphere. Succeeding satellite missions being planned for 2006 and 2010 will continue to monitor both TSI and SSI. We summarize current ideas about the potential impact of solar variability on Earth's climate on time scales from days to decades to centuries.

  5. Satellite Observations of Solar Irradiance and Sun-Climate Impacts

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Solar activity is now near its maximum, with events such as the 2001 "Bastille Day Event", a Coronal Mass Ejection which merited a full session at AGUs annual meeting - and two major sunspot groupings earlier this year, with associated variations in TSI (Total Solar Irradiance). We discuss recent satellite measurements of TSI by ACRIM 2 and 3 and Virgo, and new precision observations of TSI and SSI (Solar Spectral Irradiance) expected from the SORCE mission, planned to launch in fall 2002. SSI has been added to TSI as a required EOS and NPOESS measurement because different spectral components provide energy inputs to different components of the climate system - UV into upper atmosphere and ozone, IR into lower atmosphere and clouds, and Visible into the biosphere. Succeeding satellite missions being planned for 2006 and 2010 will continue to monitor both TSI and SSI. We summarize current ideas about the potential impact of solar variability on Earth's climate on time scales from days to decades to centuries.

  6. A solar observing station for education and research in Peru

    NASA Astrophysics Data System (ADS)

    Kaname, José Iba, Ishitsuka; Ishitsuka, Mutsumi; Trigoso Avilés, Hugo; Takashi, Sakurai; Yohei, Nishino; Miyazaki, Hideaki; Shibata, Kazunari; Ueno, Satoru; Yumoto, Kiyohumi; Maeda, George

    2007-12-01

    Since 1937 Carnegie Institution of Washington made observations of active regions of the Sun with a Hale type spectro-helioscope in Huancayo observatory of the Instituto Geofísico del Perú (IGP). IGP has contributed significantly to geophysical and solar sciences in the last 69 years. Now IGP and the Faculty of Sciences of the Universidad Nacional San Luis Gonzaga de Ica (UNICA) are planning to refurbish the coelostat at the observatory with the support of National Astronomical Observatory of Japan. It is also planned to install a solar Flare Monitor Telescope (FMT) at UNICA, from Hida observatory of Kyoto University. Along with the coelostat, the FMT will be useful to improve scientific research and education.

  7. Radius of the Sun from observations of the total solar eclipse of 31 July 1981.

    NASA Astrophysics Data System (ADS)

    Akimov, L. A.; Belkina, I. L.; Dyatel, N. P.; Marchenko, G. P.

    The moments of local contacts of 24 points on the east and west solar limbs are determined from the cinematographic solar continuum observations during the 31 July 1981 eclipse. The value of the solar radius averaged over limb regions with different activity was found by the least-squares method - rs = 959.97±0.04″ The solar radius estimates made separately for active and quiet limb regions reveal that the effect of active regions on the measured radius value is significant and may be as much as 0.14″

  8. Recurrence of solar activity - Evidence for active longitudes

    NASA Technical Reports Server (NTRS)

    Bogart, R. S.

    1982-01-01

    It is pointed out that the autocorrelation coefficients of the daily Wolf sunspot numbers over a period of 128 years reveal a number of interesting features of the variability of solar activity. Besides establishing periodicities for the solar rotation, solar activity cycle, and, perhaps, the 'Gleissberg Cycle', they suggest that active longitudes do exist, but with much greater strength and persistence in some solar cycles than in others. Evidence is adduced for a variation in the solar rotation period, as measured by sunspot number, of as much as two days between different solar cycles.

  9. The Magnetic Origins of Solar Activity

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.

    2012-01-01

    The defining physical property of the Sun's corona is that the magnetic field dominates the plasma. This property is the genesis for all solar activity ranging from quasi-steady coronal loops to the giant magnetic explosions observed as coronal mass ejections/eruptive flares. The coronal magnetic field is also the fundamental driver of all space weather; consequently, understanding the structure and dynamics of the field, especially its free energy, has long been a central objective in Heliophysics. The main obstacle to achieving this understanding has been the lack of accurate direct measurements of the coronal field. Most attempts to determine the magnetic free energy have relied on extrapolation of photospheric measurements, a notoriously unreliable procedure. In this presentation I will discuss what measurements of the coronal field would be most effective for understanding solar activity. Not surprisingly, the key process for driving solar activity is magnetic reconnection. I will discuss, therefore, how next-generation measurements of the coronal field will allow us to understand not only the origins of space weather, but also one of the most important fundamental processes in cosmic and laboratory plasmas.

  10. Slow Solar Wind: Observations and Modeling

    NASA Astrophysics Data System (ADS)

    Abbo, L.; Ofman, L.; Antiochos, S. K.; Hansteen, V. H.; Harra, L.; Ko, Y.-K.; Lapenta, G.; Li, B.; Riley, P.; Strachan, L.; von Steiger, R.; Wang, Y.-M.

    2016-06-01

    While it is certain that the fast solar wind originates from coronal holes, where and how the slow solar wind (SSW) is formed remains an outstanding question in solar physics even in the post-SOHO era. The quest for the SSW origin forms a major objective for the planned future missions such as the Solar Orbiter and Solar Probe Plus. Nonetheless, results from spacecraft data, combined with theoretical modeling, have helped to investigate many aspects of the SSW. Fundamental physical properties of the coronal plasma have been derived from spectroscopic and imaging remote-sensing data and in situ data, and these results have provided crucial insights for a deeper understanding of the origin and acceleration of the SSW. Advanced models of the SSW in coronal streamers and other structures have been developed using 3D MHD and multi-fluid equations. However, the following questions remain open: What are the source regions and their contributions to the SSW? What is the role of the magnetic topology in the corona for the origin, acceleration and energy deposition of the SSW? What are the possible acceleration and heating mechanisms for the SSW? The aim of this review is to present insights on the SSW origin and formation gathered from the discussions at the International Space Science Institute (ISSI) by the Team entitled "Slow solar wind sources and acceleration mechanisms in the corona" held in Bern (Switzerland) in March 2014 and 2015.

  11. Ionospheric effects of the extreme solar activity of February 1986

    NASA Technical Reports Server (NTRS)

    Boska, J.; Pancheva, D.

    1989-01-01

    During February 1986, near the minimum of the 11 year Solar sunspot cycle, after a long period of totally quiet solar activity (R sub z = 0 on most days in January) a period of a suddenly enhanced solar activity occurred in the minimum between solar cycles 21 and 22. Two proton flares were observed during this period. A few other flares, various phenomena accompanying proton flares, an extremely severe geomagnetic storm and strong disturbances in the Earth's ionosphere were observed in this period of enhanced solar activity. Two active regions appeared on the solar disc. The flares in both active regions were associated with enhancement of solar high energy proton flux which started on 4 February of 0900 UT. Associated with the flares, the magnetic storm with sudden commencement had its onset on 6 February 1312 UT and attained its maximum on 8 February (Kp = 9). The sudden enhancement in solar activity in February 1986 was accompanied by strong disturbances in the Earth's ionosphere, SIDs and ionospheric storm. These events and their effects on the ionosphere are discussed.

  12. Observing Solar Hard X-rays from Heliospheric Orbits

    NASA Astrophysics Data System (ADS)

    Hurford, Gordon J.; Benz, A.; Dennis, B.; Krucker, S.; Limousin, O.; Lin, R.; Vilmer, N.

    2010-05-01

    The coming decade provides two opportunities to acquire a different observational perspective on solar hard x-ray emission. Both ESA's Solar Orbiter and NASA's Solar Probe Plus missions will be in heliocentric orbits with perihelia of 0.28 au and 0.05 au respectively. This poster indicates the unique scientific advantages of hard x-ray imaging/spectroscopy observations from such platforms. These advantages stem from three factors: First, in combination with other payload elements, the hard x-rays provide the ability to observationally link accelerated electrons at the Sun to radio observations of the propagating electrons and to direct observations of in situ electrons. Second, the substantial gain in sensitivity afforded by close-in vantage points enables exploration of the origin of non-flare associated SEP events to be studied and the character of quiescent active-region heating and electron acceleration to be evaluated. Third, the different observational perspectives provided by the heliocentric orbits compared to low-Earth orbits enable improved separation of coronal and footpoint sources as well as measurements of the isotropy of the x-ray emission. Despite the limited payload resources (mass, power, telemetry) afforded by such missions, scientifically effective hard x-ray imaging spectroscopy from 5 keV to 150 keV is still feasible. The Spectrometer/Telescope for Imaging X-rays (STIX), accepted as part of the Solar Orbiter payload, combines high spectral resolution ( 1 keV FWHM at 10 keV) with spatial resolution as good as 1500 km, and can efficiently encode the data for several hundred optimized images per hour within a modest telemetry allocation and 4 kg / 4 watt budget. The X-ray Imaging Spectrometer (XIS) proposed for Solar Probe Plus, views the Sun through its thermal shield. It also features high spectral resolution from 6 to 150 keV and spatial resolution of 1500 km at perihelion. The poster describes the imaging principles and current configurations

  13. OBSERVING CASCADES OF SOLAR BULLETS AT HIGH RESOLUTION. II

    SciTech Connect

    Scullion, E.; Engvold, O.; Lin, Y.; Voort, L. Rouppe van der

    2015-12-01

    High resolution observations from the Swedish 1-m Solar Telescope revealed bright, discrete, blob-like structures (which we refer to as solar bullets) in the Hα 656.28 nm line core that appear to propagate laterally across the solar atmosphere as clusters in active regions (ARs). These small-scale structures appear to be field aligned and many bullets become triggered simultaneously and traverse collectively as a cluster. Here, we conduct a follow-up study on these rapidly evolving structures with coincident observations from the Solar Dynamics Observatory/Atmospheric Imaging Assembly. With the co-aligned data sets, we reveal (a) an evolving multithermal structure in the bullet cluster ranging from chromospheric to at least transition region temperatures, (b) evidence for cascade-like behavior and corresponding bidirectional motions in bullets within the cluster, which indicate that there is a common source of the initial instability leading to bullet formation, and (c) a direct relationship between co-incident bullet velocities observed in Hα and He ii 30.4 nm and an inverse relationship with respect to bullet intensity in these channels. We find evidence supporting that bullets are typically composed of a cooler, higher density core detectable in Hα with a less dense, hotter, and fainter co-moving outer sheath. Bullets unequivocally demonstrate the finely structured nature of the AR corona. We have no clear evidence for bullets being associated with locally heated (or cooled), fast flowing plasma. Fast MHD pulses (such as solitons) could best describe the dynamic properties of bullets whereas the presence of a multithermal structure is new.

  14. Solar Activities and Space Weather Hazards

    NASA Astrophysics Data System (ADS)

    Hady, Ahmed A.

    2013-03-01

    Geomagnetic storms have a good correlation with solar activity and solar radiation variability. Many proton events and geomagnetic storms have occurred during solar cycles21, 22, and 23. The solar activities during the last three cycles, gave us a good indication of the climatic change and its behavior during the 21st century. High energetic eruptive flares were recorded during the decline phase of the last three solar cycles. The appearances of the second peak on the decline phase of solar cycles have been detected. Halloween storms during Nov. 2003 and its effects on the geomagnetic storms have been studied analytically. The data of amplitude and phase of most common indicators of geomagnetic activities during solar cycle 23 have been analyzed.

  15. Testing Fractal Methods on Observed and Simulated Solar Magnetograms

    NASA Technical Reports Server (NTRS)

    Adams, M.; Falconer, D. A.; Lee, J. K.; Jones, C.

    2003-01-01

    The term "magnetic complexity" has not been sufficiently quantified. To accomplish this, we must understand the relationship between the observed magnetic field of solar active regions and fractal dimension measurements. Using data from the Marshall Space Flight Center's vector magnetograph ranging from December 1991 to July 2001, we compare the results of several methods of calculating a fractal dimension, e.g., Hurst coefficient, the Higuchi method, power spectrum, and 2-D Wavelet Packet Analysis. In addition, we apply these methods to synthetic data, beginning with representations of very simple dipole regions, ending with regions that are magnetically complex.

  16. Records of solar eclipse observations in ancient China

    NASA Astrophysics Data System (ADS)

    Han, Yanben; Qiao, Qiyuan

    2009-11-01

    Like ancient people at other places of the world, the ancient Chinese lived in awe of the Sun. As they felt solar eclipses extremely significant events, they closely observed the occurrence of solar eclipse. Ancient astronomers further realized very early that solar eclipses were one of the important astronomical phenomena to revise and improve the ancient calendar. Interestingly, ancient emperors regarded solar eclipses as warnings from heaven that might affect the stability of their throne. Consequently, observing and recording solar eclipses became official, which dated far back to ancient China when numerous relevant descriptions were recorded in historical books. These records contribute substantially to China as an ancient civilization, as well as to the research of the long-term variation of the rotation rate of the Earth during >2000 years before the 17th century. This paper briefly reviews the perception, observations and recording of solar eclipses by ancient Chinese astronomers.

  17. Observations of active chromosphere stars

    NASA Technical Reports Server (NTRS)

    Africano, J. L.; Klimke, A.; Stencel, R. E.; Noah, P. V.; Bopp, B. W.

    1983-01-01

    It is pointed out that spectroscopic signatures of stellar chromospheric activity are readily observable. The present study is concerned with new photometric and spectroscopic observations of active-chromosphere RS CVn, BY Dra, and FK Com stars. Attention is given to the first results of a synoptic monitoring program of many active chromosphere stars. During the time from 1980 to 1982, photometric and spectroscopic observations of 10 known or suspected active-chromosphere objects were made. The results regarding the individual stars are discussed. Seven stars observed with the International Ultraviolet Explorer (IUE) are all spectroscopic binaries.

  18. Recent Development of Solar Observational Facilities in China

    NASA Astrophysics Data System (ADS)

    Fang, Cheng; Yan, Y.; Liu, Z.; Chen, P.

    2013-07-01

    Since 1980’s, a series of solar telescopes in China has been put into observations and got some useful data. After briefly introducing these telescopes, we will mainly describe the development of solar instruments in recent years. They are as follows: A Chinese Spectral Radio Heliograph (CSRH) is constructing at Zheng xiang bai qi, inner Mongolia. The frequency coverage is 0.4 - 15 GHz . The spatial resolution is 1.3" - 50". The temporal resolution is better than 100 ms. CSRH has an array with 40 × 4.5 m plus 60 × 2 m parabolic antennas. The largest base line is 3 km and the field of view is 0.5 - 7 degree. The low frequency part, CSRH-I, already got the first image of the quiet Sun in Jan 2013. The high frequency part, CSRH-II, will be finished in this year. A new 1 m vacuum solar telescope (NVST) has been installed in 2010 at the observational base of YAO near the Fuxian lake, which is 60 km away from Kunming. At present it is the best seeing place in China. NVST aims at observing the sun in the range from 0.3 to 2.5 micron by high resolution imaging device and multi-wave spectrometers combined with polarization analyzer. It has obtained high resolution images at TiO, Hα and other wavelengths, as well as solar spectra in optical and near infrared bands. A new telescope called ONSET (Optical and NIR Solar Eruption Tracer) has been established at the observational base of YAO in 2011. ONSET aims at studying the dynamics of flares and small activities, CME onset and its source regions, coronal structures and evolution, and white light flares. It consists of four tubes: (1) a near-infrared vacuum tube with an aperture of 27.5 cm, working at He I 10830±4.0Å with a FWHM of 0.5 Å (2) a chromospheric vacuum tube with an aperture of 27.5 cm, working at 6562.8±2.5 Å with a FWHM of 0.25 Å (3) a white-light vacuum tube with an aperture of 20 cm, working at the wavelength 3600Å or 4250Å with a FWHM of 15 Å and (4) a guiding tube. ONSET can provide simultaneously

  19. Particle kinematics in solar flares: observations and theory

    NASA Astrophysics Data System (ADS)

    Battaglia, Marina

    2008-12-01

    This thesis is devoted to the study of particle acceleration and propagation processes in solar flares. Solar flares are amongst the most powerful and energetic activity phenomena our Sun exhibits. They release energy of the order of 10(32) erg in seconds to minutes. In the process, electrons and protons are accelerated to relativistic energies, making flares very efficient particle accelerators. The most compelling observational signatures of flares can be found in X-rays and extreme ultra-violet wavelengths. Due to atmospheric absorption, those wavelengths can only be studied from space. Since the beginning of the space age, countless flares have been observed by satellites. The present work is largely based on observations by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI), an X-ray satellite which has been observing the Sun since February 2002. It is a NASA mission with substantial Swiss hardware and software contribution. Using RHESSI observations of flares of different intensity, a deeper understanding of the particle transport and energy transport processes in flare loops, as well as the acceleration site and acceleration mechanism is sought. The time evolution of images and spectra is studied along with the quantitative relations between X-ray sources observed in the corona (coronal sources) and from the chromosphere (footpoints). The spectral relations found between coronal sources and footpoints are compared to the so-called ``intermediate thin-thick target model'', which was based on observations by the satellite Yohkoh. We show that the spectral relations between coronal sources and footpoints observed with RHESSI cannot be explained by the intermediate thin-thick target model. In a next step, return currents in the flare loop were considered. With this extension to the existing model, the spectra of the coronal source and the footpoints, as well as the relations between them can be explained, indicating the importance of return currents in

  20. Solar activity and oscillation frequency splittings

    NASA Technical Reports Server (NTRS)

    Woodard, M. F.; Libbrecht, K. G.

    1993-01-01

    Solar p-mode frequency splittings, parameterized by the coefficients through order N = 12 of a Legendre polynomial expansion of the mode frequencies as a function of m/L, were obtained from an analysis of helioseismology data taken at Big Bear Solar Observatory during the 4 years 1986 and 1988-1990 (approximately solar minimum to maximum). Inversion of the even-index splitting coefficients confirms that there is a significant contribution to the frequency splittings originating near the solar poles. The strength of the polar contribution is anti correlated with the overall level or solar activity in the active latitudes, suggesting a relation to polar faculae. From an analysis of the odd-index splitting coefficients we infer an uppor limit to changes in the solar equatorial near-surface rotatinal velocity of less than 1.9 m/s (3 sigma limit) between solar minimum and maximum.

  1. Preferred longitudes in solar and stellar activity

    NASA Astrophysics Data System (ADS)

    Berdyugina, S. V.

    An analysis of the distribution of starspots on the surfaces of very active stars, such as RS CVn- FK Com-type stars as well as young solar analogs, reveals preferred longitudes of spot formation and their quasi-periodic oscillations, i.e. flip-flop cycles. A non-linear migration of the preferred longitudes suggests the presence of the differential rotation and variations of mean spot latitudes. It enables recovering stellar butterfly diagrams. Such phenomena are found to persist in the sunspot activity as well. A comparison of the observed properties of preferred longitudes on the Sun with those detected on more active stars leads to the conclusion that we can learn fine details of the stellar dynamo by studying the Sun, while its global parameters on the evolutionary time scale are provided by a sample of active stars.

  2. Infrared observations of small solar system bodies

    NASA Technical Reports Server (NTRS)

    Brown, R. H.

    1991-01-01

    Infrared reflectance spectra were measured of dark primitive asteroids in the 2 to 5 micron wavelength region. The search was for organic complexes such and CN, CH, and NH in dark material on small bodies in the solar system. A search and study was made of volatiles such as nitrogen, methane, ammonia, and carbon monoxide, both as free ices and hydrates/clathrates, on icy surfaces in the outer solar system, using high resolution spectra obtained with a multichannel cooled grating, infrared spectrometer. An absorption that can be attributed to X-C (triple bond) N in the matrix of dark materials on the primitive asteroids.

  3. Sustainable Buildings. Using Active Solar Power

    SciTech Connect

    Sharp, M. Keith; Barnett, Russell

    2015-04-20

    The objective of this project is to promote awareness and knowledge of active solar energy technologies by installing and monitoring the following demonstration systems in Kentucky: 1) Pool heating system, Churchill Park School, 2) Water heating and daylighting systems, Middletown and Aiken Road Elementary Schools, 3) Photovoltaic street light comparison, Louisville Metro, 4) up to 25 domestic water heating systems across Kentucky. These tasks will be supported by outreach activities, including a solar energy installer training workshop and a Kentucky Solar Energy Conference.

  4. Dynamo theory prediction of solar activity

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1988-01-01

    The dynamo theory technique to predict decadal time scale solar activity variations is introduced. The technique was developed following puzzling correlations involved with geomagnetic precursors of solar activity. Based upon this, a dynamo theory method was developed to predict solar activity. The method was used successfully in solar cycle 21 by Schatten, Scherrer, Svalgaard, and Wilcox, after testing with 8 prior solar cycles. Schatten and Sofia used the technique to predict an exceptionally large cycle, peaking early (in 1990) with a sunspot value near 170, likely the second largest on record. Sunspot numbers are increasing, suggesting that: (1) a large cycle is developing, and (2) that the cycle may even surpass the largest cycle (19). A Sporer Butterfly method shows that the cycle can now be expected to peak in the latter half of 1989, consistent with an amplitude comparable to the value predicted near the last solar minimum.

  5. Solar energy microclimate as determined from satellite observations

    NASA Technical Reports Server (NTRS)

    Vonder Haar, T. H.; Ellis, J. S.

    1975-01-01

    A method is presented for determining solar insolation at the earth's surface using satellite broadband visible radiance and cloud imagery data, along with conventional in situ measurements. Conventional measurements are used to both tune satellite measurements and to develop empirical relationships between satellite observations and surface solar insolation. Cloudiness is the primary modulator of sunshine. The satellite measurements as applied in this method consider cloudiness both explicitly and implicitly in determining surface solar insolation at space scales smaller than the conventional pyranometer network.

  6. Solar Sources and Geospace Consequences of Interplanetary Magnetic Clouds Observed During Solar Cycle 23

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Akiyama, S.; Yashiro, S.; Michalek, G.; Lepping, R. P.

    2007-01-01

    We present results of a statistical investigation of 99 magnetic clouds (MCs) observed during 1995-2005. The MC-associated coronal mass ejections (CMEs) are faster and wider on the average and originate within +/-30deg from the solar disk center. The solar sources of MCs also followed the butterfly diagram. The correlation between the magnetic field strength and speed of MCs was found to be valid over a much wider range of speeds. The number of south-north (SN) MCs was dominant and decreased with solar cycle, while the number of north-south (NS) MCs increased confirming the odd-cycle behavior. Two-thirds of MCs were geoeffective; the Dst index was highly correlated with speed and magnetic field in MCs as well as their product. Many (55%) fully northward (FN) MCs were geoeffective solely due to their sheaths. The non-geoeffective MCs were slower (average speed approx. 382 km/s), had a weaker southward magnetic field (average approx. -5.2nT), and occurred mostly during the rise phase of the solar activity cycle.

  7. Corongraphic Observations and Analyses of The Ultraviolet Solar Corona

    NASA Technical Reports Server (NTRS)

    Kohl, John L.

    2000-01-01

    The activities supported under NASA Grant NAG5-613 included the following: 1) reduction and scientific analysis of data from three sounding rocket flights of the Rocket Ultraviolet Coronagraph Spectrometer, 2) development of ultraviolet spectroscopic diagnostic techniques to provide a detailed empirical description of the extended solar corona, 3) extensive upgrade of the rocket instrument to become the Ultraviolet Coronal Spectrometer (UVCS) for Spartan 201,4) instrument scientific calibration and characterization, 5) observation planning and mission support for a series of five Spartan 201 missions (fully successful except for STS 87 where the Spartan spacecraft was not successfully deployed and the instruments were not activated), and 6) reduction and scientific analysis of the UVCS/Spartan 201 observational data. The Ultraviolet Coronal Spectrometer for Spartan 201 was one unit of a joint payload and the other unit was a White Light Coronagraph (WLC) provided by the High Altitude Observatory and the Goddard Space Flight Center. The two instruments were used in concert to determine plasma parameters describing structures in the extended solar corona. They provided data that could be used individually or jointly in scientific analyses. The WLC provided electron column densities in high spatial resolution and high time resolution. UVCS/Spartan provided hydrogen velocity distributions, and line of sight hydrogen velocities. The hydrogen intensities from UVCS together with the electron densities from WLC were used to determine hydrogen outflow velocities. The UVCS also provided O VI intensities which were used to develop diagnostics for velocity distributions and outflow velocities of minor ions.

  8. Transient flows of the solar wind associated with small-scale solar activity in solar minimum

    NASA Astrophysics Data System (ADS)

    Slemzin, Vladimir; Veselovsky, Igor; Kuzin, Sergey; Gburek, Szymon; Ulyanov, Artyom; Kirichenko, Alexey; Shugay, Yulia; Goryaev, Farid

    The data obtained by the modern high sensitive EUV-XUV telescopes and photometers such as CORONAS-Photon/TESIS and SPHINX, STEREO/EUVI, PROBA2/SWAP, SDO/AIA provide good possibilities for studying small-scale solar activity (SSA), which is supposed to play an important role in heating of the corona and producing transient flows of the solar wind. During the recent unusually weak solar minimum, a large number of SSA events, such as week solar flares, small CMEs and CME-like flows were observed and recorded in the databases of flares (STEREO, SWAP, SPHINX) and CMEs (LASCO, CACTUS). On the other hand, the solar wind data obtained in this period by ACE, Wind, STEREO contain signatures of transient ICME-like structures which have shorter duration (<10h), weaker magnetic field strength (<10 nT) and lower proton temperature than usual ICMEs. To verify the assumption that ICME-like transients may be associated with the SSA events we investigated the number of weak flares of C-class and lower detected by SPHINX in 2009 and STEREO/EUVI in 2010. The flares were classified on temperature and emission measure using the diagnostic means of SPHINX and Hinode/EIS and were confronted with the parameters of the solar wind (velocity, density, ion composition and temperature, magnetic field, pitch angle distribution of the suprathermal electrons). The outflows of plasma associated with the flares were identified by their coronal signatures - CMEs (only in few cases) and dimmings. It was found that the mean parameters of the solar wind projected to the source surface for the times of the studied flares were typical for the ICME-like transients. The results support the suggestion that weak flares can be indicators of sources of transient plasma flows contributing to the slow solar wind at solar minimum, although these flows may be too weak to be considered as separate CMEs and ICMEs. The research leading to these results has received funding from the European Union’s Seventh Programme

  9. Solar neutrinos, solar flares, solar activity cycle and the proton decay

    NASA Technical Reports Server (NTRS)

    Raychaudhuri, P.

    1985-01-01

    It is shown that there may be a correlation between the galactic cosmic rays and the solar neutrino data, but it appears that the neutrino flux which may be generated during the large solar cosmic ray events cannot in any way effect the solar neutrino data in Davis experiment. Only initial stage of mixing between the solar core and solar outer layers after the sunspot maximum in the solar activity cycle can explain the higher (run number 27 and 71) of solar neutrino data in Davis experiment. But solar flare induced atmospheric neutrino flux may have effect in the nucleon decay detector on the underground. The neutrino flux from solar cosmic rays may be a useful guide to understand the background of nucleon decay, magnetic monopole search, and the detection of neutrino flux in sea water experiment.

  10. Nanoflare activity in the solar chromosphere

    SciTech Connect

    Jess, D. B.; Mathioudakis, M.; Keys, P. H.

    2014-11-10

    We use ground-based images of high spatial and temporal resolution to search for evidence of nanoflare activity in the solar chromosphere. Through close examination of more than 1 × 10{sup 9} pixels in the immediate vicinity of an active region, we show that the distributions of observed intensity fluctuations have subtle asymmetries. A negative excess in the intensity fluctuations indicates that more pixels have fainter-than-average intensities compared with those that appear brighter than average. By employing Monte Carlo simulations, we reveal how the negative excess can be explained by a series of impulsive events, coupled with exponential decays, that are fractionally below the current resolving limits of low-noise equipment on high-resolution ground-based observatories. Importantly, our Monte Carlo simulations provide clear evidence that the intensity asymmetries cannot be explained by photon-counting statistics alone. A comparison to the coronal work of Terzo et al. suggests that nanoflare activity in the chromosphere is more readily occurring, with an impulsive event occurring every ∼360 s in a 10,000 km{sup 2} area of the chromosphere, some 50 times more events than a comparably sized region of the corona. As a result, nanoflare activity in the chromosphere is likely to play an important role in providing heat energy to this layer of the solar atmosphere.

  11. MASC: Magnetic Activity of the Solar Corona

    NASA Astrophysics Data System (ADS)

    Auchere, Frederic; Fineschi, Silvano; Gan, Weiqun; Peter, Hardi; Vial, Jean-Claude; Zhukov, Andrei; Parenti, Susanna; Li, Hui; Romoli, Marco

    We present MASC, an innovative payload designed to explore the magnetic activity of the solar corona. It is composed of three complementary instruments: a Hard-X-ray spectrometer, a UV / EUV imager, and a Visible Light / UV polarimetric coronagraph able to measure the coronal magnetic field. The solar corona is structured in magnetically closed and open structures from which slow and fast solar winds are respectively released. In spite of much progress brought by two decades of almost uninterrupted observations from several space missions, the sources and acceleration mechanisms of both types are still not understood. This continuous expansion of the solar atmosphere is disturbed by sporadic but frequent and violent events. Coronal mass ejections (CMEs) are large-scale massive eruptions of magnetic structures out of the corona, while solar flares trace the sudden heating of coronal plasma and the acceleration of electrons and ions to high, sometimes relativistic, energies. Both phenomena are most probably driven by instabilities of the magnetic field in the corona. The relations between flares and CMEs are still not understood in terms of initiation and energy partition between large-scale motions, small-scale heating and particle acceleration. The initiation is probably related to magnetic reconnection which itself results magnetic topological changes due to e.g. flux emergence, footpoints motions, etc. Acceleration and heating are also strongly coupled since the atmospheric heating is thought to result from the impact of accelerated particles. The measurement of both physical processes and their outputs is consequently of major importance. However, despite its fundamental importance as a driver for the physics of the Sun and of the heliosphere, the magnetic field of our star’s outer atmosphere remains poorly understood. This is due in large part to the fact that the magnetic field is a very difficult quantity to measure. Our knowledge of its strength and

  12. Observational evidence for enhanced magnetic activity of superflare stars.

    PubMed

    Karoff, Christoffer; Knudsen, Mads Faurschou; De Cat, Peter; Bonanno, Alfio; Fogtmann-Schulz, Alexandra; Fu, Jianning; Frasca, Antonio; Inceoglu, Fadil; Olsen, Jesper; Zhang, Yong; Hou, Yonghui; Wang, Yuefei; Shi, Jianrong; Zhang, Wei

    2016-01-01

    Superflares are large explosive events on stellar surfaces one to six orders-of-magnitude larger than the largest flares observed on the Sun throughout the space age. Due to the huge amount of energy released in these superflares, it has been speculated if the underlying mechanism is the same as for solar flares, which are caused by magnetic reconnection in the solar corona. Here, we analyse observations made with the LAMOST telescope of 5,648 solar-like stars, including 48 superflare stars. These observations show that superflare stars are generally characterized by larger chromospheric emissions than other stars, including the Sun. However, superflare stars with activity levels lower than, or comparable to, the Sun do exist, suggesting that solar flares and superflares most likely share the same origin. The very large ensemble of solar-like stars included in this study enables detailed and robust estimates of the relation between chromospheric activity and the occurrence of superflares. PMID:27009381

  13. Observational evidence for enhanced magnetic activity of superflare stars

    PubMed Central

    Karoff, Christoffer; Knudsen, Mads Faurschou; De Cat, Peter; Bonanno, Alfio; Fogtmann-Schulz, Alexandra; Fu, Jianning; Frasca, Antonio; Inceoglu, Fadil; Olsen, Jesper; Zhang, Yong; Hou, Yonghui; Wang, Yuefei; Shi, Jianrong; Zhang, Wei

    2016-01-01

    Superflares are large explosive events on stellar surfaces one to six orders-of-magnitude larger than the largest flares observed on the Sun throughout the space age. Due to the huge amount of energy released in these superflares, it has been speculated if the underlying mechanism is the same as for solar flares, which are caused by magnetic reconnection in the solar corona. Here, we analyse observations made with the LAMOST telescope of 5,648 solar-like stars, including 48 superflare stars. These observations show that superflare stars are generally characterized by larger chromospheric emissions than other stars, including the Sun. However, superflare stars with activity levels lower than, or comparable to, the Sun do exist, suggesting that solar flares and superflares most likely share the same origin. The very large ensemble of solar-like stars included in this study enables detailed and robust estimates of the relation between chromospheric activity and the occurrence of superflares. PMID:27009381

  14. Observational evidence for enhanced magnetic activity of superflare stars.

    PubMed

    Karoff, Christoffer; Knudsen, Mads Faurschou; De Cat, Peter; Bonanno, Alfio; Fogtmann-Schulz, Alexandra; Fu, Jianning; Frasca, Antonio; Inceoglu, Fadil; Olsen, Jesper; Zhang, Yong; Hou, Yonghui; Wang, Yuefei; Shi, Jianrong; Zhang, Wei

    2016-03-24

    Superflares are large explosive events on stellar surfaces one to six orders-of-magnitude larger than the largest flares observed on the Sun throughout the space age. Due to the huge amount of energy released in these superflares, it has been speculated if the underlying mechanism is the same as for solar flares, which are caused by magnetic reconnection in the solar corona. Here, we analyse observations made with the LAMOST telescope of 5,648 solar-like stars, including 48 superflare stars. These observations show that superflare stars are generally characterized by larger chromospheric emissions than other stars, including the Sun. However, superflare stars with activity levels lower than, or comparable to, the Sun do exist, suggesting that solar flares and superflares most likely share the same origin. The very large ensemble of solar-like stars included in this study enables detailed and robust estimates of the relation between chromospheric activity and the occurrence of superflares.

  15. Observational evidence for enhanced magnetic activity of superflare stars

    NASA Astrophysics Data System (ADS)

    Karoff, Christoffer; Knudsen, Mads Faurschou; De Cat, Peter; Bonanno, Alfio; Fogtmann-Schulz, Alexandra; Fu, Jianning; Frasca, Antonio; Inceoglu, Fadil; Olsen, Jesper; Zhang, Yong; Hou, Yonghui; Wang, Yuefei; Shi, Jianrong; Zhang, Wei

    2016-03-01

    Superflares are large explosive events on stellar surfaces one to six orders-of-magnitude larger than the largest flares observed on the Sun throughout the space age. Due to the huge amount of energy released in these superflares, it has been speculated if the underlying mechanism is the same as for solar flares, which are caused by magnetic reconnection in the solar corona. Here, we analyse observations made with the LAMOST telescope of 5,648 solar-like stars, including 48 superflare stars. These observations show that superflare stars are generally characterized by larger chromospheric emissions than other stars, including the Sun. However, superflare stars with activity levels lower than, or comparable to, the Sun do exist, suggesting that solar flares and superflares most likely share the same origin. The very large ensemble of solar-like stars included in this study enables detailed and robust estimates of the relation between chromospheric activity and the occurrence of superflares.

  16. Solar system object observations with Gaia Mission

    NASA Astrophysics Data System (ADS)

    Kudryashova, Maria; Tanga, Paolo; Mignard, Francois; CARRY, Benoit; Christophe, Ordenovic; DAVID, Pedro; Hestroffer, Daniel

    2016-05-01

    After a commissioning period, the astrometric mission Gaia of the European Space Agency (ESA) started its survey in July 2014. Throughout passed two years the Gaia Data Processing and Analysis Consortium (DPAC) has been treating the data. The current schedule anticipates the first Gaia Data Release (Gaia-DR1) toward the end of summer 2016. Nevertheless, it is not planned to include Solar System Objects (SSO) into the first release. This is due to a special treatment required by solar system objects, as well as by other peculiar sources (multiple and extended ones). In this presentation, we address issues and recent achivements in SSO processing, in particular validation of SSO-short term data processing chain, GAIA-SSO alerts, as well as the first runs of SSO-long term pipeline.

  17. UV solar irradiance in observations and the NRLSSI and SATIRE-S models

    NASA Astrophysics Data System (ADS)

    Yeo, K. L.; Ball, W. T.; Krivova, N. A.; Solanki, S. K.; Unruh, Y. C.; Morrill, J.

    2015-08-01

    Total solar irradiance and UV spectral solar irradiance has been monitored since 1978 through a succession of space missions. This is accompanied by the development of models aimed at replicating solar irradiance by relating the variability to solar magnetic activity. The Naval Research Laboratory Solar Spectral Irradiance (NRLSSI) and Spectral And Total Irradiance REconstruction for the Satellite era (SATIRE-S) models provide the most comprehensive reconstructions of total and spectral solar irradiance over the period of satellite observation currently available. There is persistent controversy between the various measurements and models in terms of the wavelength dependence of the variation over the solar cycle, with repercussions on our understanding of the influence of UV solar irradiance variability on the stratosphere. We review the measurement and modeling of UV solar irradiance variability over the period of satellite observation. The SATIRE-S reconstruction is consistent with spectral solar irradiance observations where they are reliable. It is also supported by an independent, empirical reconstruction of UV spectral solar irradiance based on Upper Atmosphere Research Satellite/Solar Ultraviolet Spectral Irradiance Monitor measurements from an earlier study. The weaker solar cycle variability produced by NRLSSI between 300 and 400 nm is not evident in any available record. We show that although the method employed to construct NRLSSI is principally sound, reconstructed solar cycle variability is detrimentally affected by the uncertainty in the SSI observations it draws upon in the derivation. Based on our findings, we recommend, when choosing between the two models, the use of SATIRE-S for climate studies.

  18. RADIO OBSERVATIONS OF WEAK ENERGY RELEASES IN THE SOLAR CORONA

    SciTech Connect

    Ramesh, R.; Kathiravan, C.; Barve, Indrajit V.; Beeharry, G. K.; Rajasekara, G. N.

    2010-08-10

    We report observations of weak, circularly polarized, structureless type III bursts from the solar corona in the absence of H{alpha}/X-ray flares and other related activity, during the minimum between the sunspot cycles 23 and 24. The spectral information about the event obtained with the CALLISTO spectrograph at Mauritius revealed that the drift rate of the burst is {approx}-30 MHz s{sup -1} is in the range 50-120 MHz. Two-dimensional imaging observations of the burst at 77 MHz obtained with the Gauribidanur radioheliograph indicate that the emission region was located at a radial distance of {approx}1.5 R{sub sun} in the solar atmosphere. The estimated peak brightness temperature of the burst at 77 MHz is {approx}10{sup 8} K. We derived the average magnetic field at the aforementioned location of the burst using the one-dimensional (east-west) Gauribidanur radio polarimeter at 77 MHz, and the value is {approx}2.5 {+-} 0.2 G. We also estimated the total energy of the non-thermal electrons responsible for the observed burst as {approx}1.1 x 10{sup 24} erg. This is low compared to the energy of the weakest hard X-ray microflares reported in the literature, which is about {approx}10{sup 26} erg. The present result shows that non-thermal energy releases that correspond to the nanoflare category (energy {approx}10{sup 24} erg) are taking place in the solar corona, and the nature of such small-scale energy releases has not yet been explored.

  19. Fine structure of the solar transition region - Observations and interpretation

    NASA Technical Reports Server (NTRS)

    Cook, J. W.; Brueckner, G. E.

    1991-01-01

    An evaluation is conducted of recent high spatial resolution observations of the solar transition region and temperature minimum, in the form of UV spectra and spectroheliographs from both sounding rockets and the Spacelab 2 flights of the High Resolution Telescope and Spectrograph (HRTS). Attention is given to the solar atmosphere structure implications of the HRST's observational results. The inclusion of fine structure in conjectures concerning the transition region affects the plausibility of 1D average models of the solar atmosphere, as well as the determination of temperature gradients, possible nonradiative-heating mechanisms, and the comparison of transition region structures with corresponding observations of the photosphere and corona.

  20. Solar Wind observations using the Mexican Array Radio Telescope (MEXART)

    NASA Astrophysics Data System (ADS)

    Romero-Hernandez, E.; Gonzalez-Esparza, A.; Villanueva, P.; Aguilar-Rodriguez, E.; Mejia-Ambriz, J. C.; Mexart

    2013-05-01

    The Mexican Array Radiotelescope (MEXART) is an instrument devoted to observations of radio sources to study large-scale structures in the solar wind employing the Interplanetary Scintillation (IPS) technique. We report recent IPS observations, from January to April of 2013, including an analysis of the scintillation index and the estimation of solar wind velocities for a set of radio sources. We track the first ICMEs registered by the MEXART. We are initiating a continuos operation for a complete monitoring of IPS radio sources that will complement solar wind studies based on in-situ observations.

  1. Solar Spots - Activities to Introduce Solar Energy into the K-8 Curricula.

    ERIC Educational Resources Information Center

    Longe, Karen M.; McClelland, Michael J.

    Following an introduction to solar technology which reviews solar heating and cooling, passive solar systems (direct gain systems, thermal storage walls, sun spaces, roof ponds, and convection loops), active solar systems, solar electricity (photovoltaic and solar thermal conversion systems), wind energy, and biomass, activities to introduce solar…

  2. The Importance of Long-Term Synoptic Observations and Data Sets for Solar Physics and Helioseismology

    NASA Astrophysics Data System (ADS)

    Elsworth, Yvonne; Broomhall, Anne-Marie; Gosain, Sanjay; Roth, Markus; Jefferies, Stuart M.; Hill, Frank

    2015-12-01

    A casual single glance at the Sun would not lead an observer to conclude that it varies. The discovery of the 11-year sunspot cycle was only made possible through systematic daily observations of the Sun over 150 years and even today historic sunspot drawings are used to study the behavior of past solar cycles. The origin of solar activity is still poorly understood as shown by the number of different models that give widely different predictions for the strength and timing of future cycles. Our understanding of the rapid transient phenomena related to solar activity, such as flares and coronal mass ejections (CMEs) is also insufficient and making reliable predictions of these events, which can adversely impact technology, remains elusive. There is thus still much to learn about the Sun and its activity that requires observations over many solar cycles. In particular, modern helioseismic observations of the solar interior currently span only 1.5 cycles, which is far too short to adequately sample the characteristics of the plasma flows that govern the dynamo mechanism underlying solar activity. In this paper, we review some of the long-term solar and helioseismic observations and outline some future directions.

  3. Observed ozone response to variations in solar ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Gille, J. C.; Smythe, C. M.; Heath, D. F.

    1984-01-01

    During the winter of 1979, the solar ultraviolet irradiance varied with a period of 13.5 days and an amplitude of 1 percent. The zonal mean ozone values in the tropics varied with the solar irradiance, with an amplitude of 0.25 to 0.60 percent. This observation agrees with earlier calculations, although the response may be overestimated. These results imply changes in ozone at an altitude of 48 kilometers of up to 12 percent over an 11-year solar cycle. Interpretation of ozone changes in the upper stratosphere will require measurements of solar ultraviolet radiation at wavelengths near 200 nanometers.

  4. Solar and Galactic Cosmic Rays Observed by SOHO

    NASA Astrophysics Data System (ADS)

    Fleck, Bernhard; Curdt, Werner; Olive, Jean-Philippe; van Overbeek, Ton

    2015-04-01

    Both the Cosmic Ray Flux (CRF) and Solar Energetic Particles (SEPs) have left an imprint on SOHO technical systems. While the solar array efficiency degraded irreversibly down to 75% of its original level over 1 ½ solar cycles, Single Event Upsets (SEUs) in the solid state recorder (SSR) have been reversed by the memory protection mechanism. We compare the daily CRF observed by the Oulu station with the daily SOHO SEU rate and with the degradation curve of the solar arrays. The Oulu CRF and the SOHO SSR SEU rate are both modulated by the solar cycle and are highly correlated, except for sharp spikes in the SEU rate, caused by isolated SEP events, which also show up as discontinuities in the otherwise slowly decreasing solar ray efficiency. This allows to discriminate between effects with solar and non-solar origin and to compare the relative strength of both. We find that the total number of SSR SEUs with solar origin over the 17 ½ years from January 1996 through June 2013 is of the same order as those generated by cosmic ray hits. 49% of the total solar array degradation during that time can be attributed to proton events, i.e. the effect of a series of short-lived, violent events (SEPs) is comparable to the cycle-integrated damage by cosmic rays.

  5. STEREO Observations of Solar Wind in 2007-2014

    NASA Astrophysics Data System (ADS)

    Jian, Lan; Luhmann, Janet; Russell, Christopher; Blanco-Cano, Xochitl; Kilpua, Emilia; Li, Yan

    2016-04-01

    Since the launch of twin STEREO spacecraft, we have been monitoring the solar wind and providing the Level 3 event lists of large-scale solar wind and particle events to public (http://www-ssc.igpp.ucla.edu/forms/stereo/stereo_level_3.html). The interplanetary coronal mass ejections (ICMEs), stream interaction regions (SIRs), interplanetary shocks, and solar energetic particles (based on high energy telescope data) have been surveyed for 2007-2014 before STEREO A went to the superior solar conjunction and STEREO B was lost in contact. In conjunction with our previous observations of same solar wind structures in 1995-2009 using Wind/ACE data and the same identification criteria, we study the solar cycle variations of these structures, especially compare the same phase of solar cycles 23 and 24. Although the sunspot number at solar maximum 24 is only 60% of the level at last solar maximum, Gopalswamy et al. (2015a, b) found there were more halo CMEs in cycle 24 and the number of magnetic clouds did not decline either. We examine if the two vantage points of STEREO provide a consistent view with the above finding. In addition, because the twin STEREO spacecraft have experienced the full-range longitudinal separation of 0-360 degree, they have provided us numerous opportunities for multipoint observations. We will report the findings on the spatial scope of ICMEs including their driven shocks, and the stability of SIRs from the large event base.

  6. Relationships among solar activity SEP occurrence frequency, and solar energetic particle event distribution function

    NASA Astrophysics Data System (ADS)

    Nymmik, Rikho

    The solar cycle 20-22 direct spacecraft measurement results are used to analyze the occurrence frequency and distribution function of solar energetic particle (SEP) events as dependent on solar activity. The analysis has shown that • the mean occurrence frequency of the SEP events with ≥30 MeV proton fluence sizes exceeding 106 is proportional to sunspot number, • the SEP event proton distribution functions for periods of different solar activity levels can be described to be power-law functions whose spectral form (spectral indices and cutoff values) are the same. The above results permit the following conclusions: a) to within statistical deviations, the total number of SEP events observed during any given time interval is proportional to the sum of mean-yearly sunspot numbers; b) large SEP events can occur to within quite a definite probability even during solar minima.

  7. High resolution reconstruction of solar prominence images observed by the New Vacuum Solar Telescope

    NASA Astrophysics Data System (ADS)

    Xiang, Yong-yuan; Liu, Zhong; Jin, Zhen-yu

    2016-11-01

    A high resolution image showing fine structures is crucial for understanding the nature of solar prominence. In this paper, high resolution imaging of solar prominence on the New Vacuum Solar Telescope (NVST) is introduced, using speckle masking. Each step of the data reduction especially the image alignment is discussed. Accurate alignment of all frames and the non-isoplanatic calibration of each image are the keys for a successful reconstruction. Reconstructed high resolution images from NVST also indicate that under normal seeing condition, it is feasible to carry out high resolution observations of solar prominence by a ground-based solar telescope, even in the absence of adaptive optics.

  8. THE THERMAL PROPERTIES OF SOLAR FLARES OVER THREE SOLAR CYCLES USING GOES X-RAY OBSERVATIONS

    SciTech Connect

    Ryan, Daniel F.; Gallagher, Peter T.; Milligan, Ryan O.; Dennis, Brian R.; Kim Tolbert, A.; Schwartz, Richard A.; Alex Young, C.

    2012-10-15

    Solar flare X-ray emission results from rapidly increasing temperatures and emission measures in flaring active region loops. To date, observations from the X-Ray Sensor (XRS) on board the Geostationary Operational Environmental Satellite (GOES) have been used to derive these properties, but have been limited by a number of factors, including the lack of a consistent background subtraction method capable of being automatically applied to large numbers of flares. In this paper, we describe an automated Temperature and Emission measure-Based Background Subtraction method (TEBBS), that builds on the methods of Bornmann. Our algorithm ensures that the derived temperature is always greater than the instrumental limit and the pre-flare background temperature, and that the temperature and emission measure are increasing during the flare rise phase. Additionally, TEBBS utilizes the improved estimates of GOES temperatures and emission measures from White et al. TEBBS was successfully applied to over 50,000 solar flares occurring over nearly three solar cycles (1980-2007), and used to create an extensive catalog of the solar flare thermal properties. We confirm that the peak emission measure and total radiative losses scale with background subtracted GOES X-ray flux as power laws, while the peak temperature scales logarithmically. As expected, the peak emission measure shows an increasing trend with peak temperature, although the total radiative losses do not. While these results are comparable to previous studies, we find that flares of a given GOES class have lower peak temperatures and higher peak emission measures than previously reported. The TEBBS database of flare thermal plasma properties is publicly available at http://www.SolarMonitor.org/TEBBS/.

  9. High solar cycle spectral variations inconsistent with stratospheric ozone observations

    NASA Astrophysics Data System (ADS)

    Ball, W. T.; Haigh, J. D.; Rozanov, E. V.; Kuchar, A.; Sukhodolov, T.; Tummon, F.; Shapiro, A. V.; Schmutz, W.

    2016-03-01

    Solar variability can influence surface climate, for example by affecting the mid-to-high-latitude surface pressure gradient associated with the North Atlantic Oscillation. One key mechanism behind such an influence is the absorption of solar ultraviolet (UV) radiation by ozone in the tropical stratosphere, a process that modifies temperature and wind patterns and hence wave propagation and atmospheric circulation. The amplitude of UV variability is uncertain, yet it directly affects the magnitude of the climate response: observations from the SOlar Radiation and Climate Experiment (SORCE) satellite show broadband changes up to three times larger than previous measurements. Here we present estimates of the stratospheric ozone variability during the solar cycle. Specifically, we estimate the photolytic response of stratospheric ozone to changes in spectral solar irradiance by calculating the difference between a reference chemistry-climate model simulation of ozone variability driven only by transport (with no changes in solar irradiance) and observations of ozone concentrations. Subtracting the reference from simulations with time-varying irradiance, we can evaluate different data sets of measured and modelled spectral irradiance. We find that at altitudes above pressure levels of 5 hPa, the ozone response to solar variability simulated using the SORCE spectral solar irradiance data are inconsistent with the observations.

  10. He abundance variations in the solar wind: Observations from Ulysses

    SciTech Connect

    Barraclough, B.L.; Gosling, J.T.; Phillips, J.L.; McComas, D.J.; Feldman, W.C.; Goldstein, B.E.

    1995-09-01

    The Ulysses mission is providing the first opportunity to observe variations in solar wind plasma parameters at heliographic latitudes far removed from the ecliptic plane. We present an overview of the solar wind speed and the variability in helium abundance, [He] data on [He] in six high latitude coronal mass ejections (CMEs), and a superposed epoch analysis of [He] variations at the seven heliospheric current sheet (HCS) crossings made during the rapid-latitude-scan portion of the mission. The differences in the variability of the solar wind speed and [He] in high latitude and equatorial regions are quite striking. Solar wind speed is generally low but highly variable near the solar equator, while at higher latitudes the average speed is quite high with little variability. [He] can vary over nearly two decades at low solar latitudes, while at high latitudes it varies only slightly. In contrast to the high [He] that is commonly associated with CMEs observed in the ecliptic, none of the six high-speed CMEs encountered at high southern heliographic latitudes showed any significant variation in helium content. A superposed epoch analysis of the [He] during all seven HCS crossings made as Ulysses passed from the southern to northern solar hemisphere shows the expected [He] minimum near the crossing and a broad region of low [He] around the crossing time. We discuss how our solar wind [He] observations may provide an accurate measure of the helium composition for the entire convective zone of the Sun.

  11. Sky camera geometric calibration using solar observations

    NASA Astrophysics Data System (ADS)

    Urquhart, Bryan; Kurtz, Ben; Kleissl, Jan

    2016-09-01

    A camera model and associated automated calibration procedure for stationary daytime sky imaging cameras is presented. The specific modeling and calibration needs are motivated by remotely deployed cameras used to forecast solar power production where cameras point skyward and use 180° fisheye lenses. Sun position in the sky and on the image plane provides a simple and automated approach to calibration; special equipment or calibration patterns are not required. Sun position in the sky is modeled using a solar position algorithm (requiring latitude, longitude, altitude and time as inputs). Sun position on the image plane is detected using a simple image processing algorithm. The performance evaluation focuses on the calibration of a camera employing a fisheye lens with an equisolid angle projection, but the camera model is general enough to treat most fixed focal length, central, dioptric camera systems with a photo objective lens. Calibration errors scale with the noise level of the sun position measurement in the image plane, but the calibration is robust across a large range of noise in the sun position. Calibration performance on clear days ranged from 0.94 to 1.24 pixels root mean square error.

  12. ISOON: The Improved Solar Observing Optical Network

    NASA Astrophysics Data System (ADS)

    Neidig, D.; Confer, M.; Wiborg, P.; Dunn, R.; Balasubramaniam, K. S.; Frederick, R.; Kutzman, R.; Soli, R.; Keller, C.; Gullixson, C.; Alios, Inter

    1997-05-01

    Efforts are under way to replace the existing SOON system, which was designed in the 1970s, with a new system (ISOON) based on a fully tunable narrow-band filter and CCD detector. ISOON would feature autonomous, rapid-cadence solar imaging and remote operation at four sites, and would transmit solar images in near real time to central facilities at Falcon AFB and Boulder CO, for use in space weather forecasting. The ISOON technical approach is to retain the front end of the existing SOON telescope, but replace the optical bench, birefringent filter, and spectrograph with a dual Fabry-Perot filter system and secondary optics contained in a single pod. ISOON data products will include full-disk H-alpha, continuum, and line-of-sight magnetograms on 1-arcsecond pixels. High- resolution images (limited field, 0.3-arcsecond pixels) would be available via a future upgrade in the secondary optics. ISOON will also be capable of acquiring vector magnetic field images via a software upgrade to be added at a future time.

  13. Ionosphere Transient Response To Solar Flares: Hf Radio Monitoring Observations

    NASA Astrophysics Data System (ADS)

    Lebreton, J.-P.; Telljohann, U.; Witasse, O.; Sanderson, T. R.

    We use a simple and low cost method to monitor the ionospheric reflection of commer- cial HF radio transmissions. It only requires a standard HF radio receiver with Single Side Band capability, a computer with a sound card, and appropriate audio signal spectral analysis software. We tune the radio receiver such that the carrier frequency of the transmission appears as a ~ 1kHz tone at the output of the radio receiver. The output signal of the radio receiver is processed with appropriate software that allows real time recording of high frequency resolution dynamic spectrograms of the audio spectrum in the 0-5 kHz range. Voice modulation is also present in the audio spectrum and appears as both upper and lower side bands but it is not considered in this study. HF radio signals reach the receiving station after being reflected by ionospheric layers. Any change in the ionospheric layers that affects HF wave reflection is detectable. In this paper, we particularly discuss our observations related to the transient response of the ionosphere to solar flare ionizing radiation. Enhanced ionization due to EUV and soft X-rays may produce a transient perturbation of the ionosphere which lasts typically one to few minutes. The signature of the transient response depends upon local time, solar flare intensity and the rise time of the solar flare ionizing radiation. We discuss both a few typical examples and a preliminary analysis of our 1-year sta- tistical analysis of observed events at 17.640 MHz. The method is easily accessible to amateur scientists. Possible use of the method for spaceweather-related research and outreach and educational activities is discussed.

  14. Science Activities in Energy: Solar Energy II.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Included in this science activities energy package are 14 activities related to solar energy for secondary students. Each activity is outlined on a single card and is introduced by a question such as: (1) how much solar heat comes from the sun? or (2) how many times do you have to run water through a flat-plate collector to get a 10 degree rise in…

  15. Solar activity: The Sun as an X-ray star

    NASA Technical Reports Server (NTRS)

    Golub, L.

    1981-01-01

    The existence and constant activity of the Sun's outer atmosphere are thought to be due to the continual emergence of magnetic fields from the Solar interior and the stressing of these fields at or near the surface layers of the Sun. The structure and activity of the corona are thus symptomatic of the underlying magnetic dynamo and the existence of an outer turbulent convective zone on the Sun. A sufficient condition for the existence of coronal activity on other stars would be the existence of a magnetic dynamo and an outer convective zone. The theoretical relationship between magnetic fields and coronal activity can be tested by Solar observations, for which the individual loop structures can be resolved. A number of parameters however, which enter into the alternative theoretical formulations remain fixed in all Solar observations. To determine whether these are truly parameters of the theory observations need to be extended to nearby stars on which suitable conditions may occur.

  16. Large-Scale periodic solar velocities: An observational study

    NASA Technical Reports Server (NTRS)

    Dittmer, P. H.

    1977-01-01

    Observations of large-scale solar velocities were made using the mean field telescope and Babcock magnetograph of the Stanford Solar Observatory. Observations were made in the magnetically insensitive ion line at 5124 A, with light from the center (limb) of the disk right (left) circularly polarized, so that the magnetograph measures the difference in wavelength between center and limb. Computer calculations are made of the wavelength difference produced by global pulsations for spherical harmonics up to second order and of the signal produced by displacing the solar image relative to polarizing optics or diffraction grating.

  17. History and Forecast of Solar Activity

    NASA Astrophysics Data System (ADS)

    Mikushina, O. V.; Klimenko, V. V.; Dovgalyuk, V. V.

    From a new reconstruction of the radiocarbon production rate in the atmosphere we obtain a long history of maximum Wolf sunspot numbers. Based on this reconstruction as well as on the history of other indicators of solar activity (10Be, aurora borealis), we derive a long-period trend which together with the results of spectral analysis of maximum Wolf numbers series (1506-1993) form a basis for prediction of solar activity up to 2100. The resulting trigonometric trend points to an essential decrease in solar activity in the coming decades.

  18. Mapping the coronal hydrogen temperature in view of the forthcoming coronagraph observations by Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Dolei, S.; Spadaro, D.; Ventura, R.

    2016-08-01

    Context. Synergistic visible light and ultraviolet coronagraphic observations are essential to investigate the link of the Sun to the inner heliosphere through the study of the dynamic properties of the solar wind. Aims: We perform spectroscopic mapping of the outer solar corona to constitute a statistically significant database of neutral hydrogen coronal temperatures, which is suitable for overcoming the lack of spectrometric information in observations performed by coronagraphs that are solely equipped for visible light and ultraviolet imaging; these include the forthcoming Metis instrument on board Solar Orbiter. Methods: We systematically analysed neutral hydrogen Lyα line data that was obtained by UVCS/SOHO observations of the extended solar corona relevant to a lot of polar, mid-latitude and equatorial structures at different phases of solar activity, and collected far longer than a whole solar cycle (1996-2012). Results: We created a database consisting in both the neutral hydrogen temperature components, which are perpendicular and parallel to the radially symmetric coronal magnetic field lines, as a function of the heliocentric distance and polar angle and for different phases of the solar activity cycle. We validated the reliability of the constituted neutral hydrogen temperature database, investigating a new set of UVCS Lyα data with the Doppler dimming technique. The solar wind outflow velocities obtained by adopting both the neutral hydrogen temperature distribution directly derived from the observed Lyα profiles and those taken from our database well agree within the uncertainties.

  19. Solar collector manufacturing activity, 1992

    SciTech Connect

    Not Available

    1993-11-09

    This report presents data provided by US-based manufacturers and importers of solar collectors. Summary data on solar thermal collector shipments are presented for the years 1974 through 1992. Summary data on photovoltaic cell and module shipments are presented for the years 1982 through 1992. Detailed information for solar thermal collectors and photovoltaic cells and modules are presented for 1992. Appendix A describes the survey methodology. Appendix B contains the 1992 survey forms and instructions. Appendices C and D list the companies that responded to the 1992 surveys and granted permission for their names and addresses to appear in the report. Appendix E provides selected tables from this report with data shown in the International System of Units (SI) metric units. Appendix F provides an estimate of installed capacity and energy production from solar collectors for 1992.

  20. An Assessment of Magnetic Conditions for Strong Coronal Heating in Solar Active Regions by Comparing Observed Loops with Computed Potential Field Lines

    NASA Technical Reports Server (NTRS)

    Gary, G. A.; Moore, R. L.; Porter, J. G.; Falconer, D. A.

    1999-01-01

    We report further results on the magnetic origins of coronal heating found from registering coronal images with photospheric vector magnetograms. For two complementary active regions, we use computed potential field lines to examine the global non-potentiality of bright extended coronal loops and the three-dimensional structure of the magnetic field at their feet, and assess the role of these magnetic conditions in the strong coronal heating in these loops. The two active regions are complementary, in that one is globally potential and the other is globally nonpotential, while each is predominantly bipolar, and each has an island of included polarity in its trailing polarity domain. We find the following: (1) The brightest main-arch loops of the globally potential active region are brighter than the brightest main- arch loops of the globally strongly nonpotential active region. (2) In each active region, only a few of the mainarch magnetic loops are strongly heated, and these are all rooted near the island. (3) The end of each main-arch bright loop apparently bifurcates above the island, so that it embraces the island and the magnetic null above the island. (4) At any one time, there are other main-arch magnetic loops that embrace the island in the same manner as do the bright loops but that are not selected for strong coronal heating. (5) There is continual microflaring in sheared core fields around the island, but the main-arch bright loops show little response to these microflares. From these observational and modeling results we draw the following conclusions: (1) The heating of the main-arch bright loops arises mainly from conditions at the island end of these loops and not from their global non-potentiality. (2) There is, at most, only a loose coupling between the coronal heating in the bright loops of the main arch and the coronal heating in the sheared core fields at their feet, although in both the heating is driven by conditions/events in and around the

  1. Observer's Interface for Solar System Target Specification

    NASA Astrophysics Data System (ADS)

    Roman, Anthony; Link, Miranda; Moriarty, Christopher; Stansberry, John A.

    2016-10-01

    When observing an asteroid or comet with HST, it has been necessary for the observer to manually enter the target's orbital elements into the Astronomer's Proposal Tool (APT). This allowed possible copy/paste transcription errors from the observer's source of orbital elements data. In order to address this issue, APT has now been improved with the capability to identify targets in and then download orbital elements from JPL Horizons. The observer will first use a target name resolver to choose the intended target from the Horizons database, and then download the orbital elements from Horizons directly into APT. A manual entry option is also still retained if the observer does not wish to use elements from Horizons. This new capability is available for HST observing, and it will also be supported for JWST observing. The poster shows examples of this new interface.

  2. Observer's Interface for Solar System Target Specification

    NASA Astrophysics Data System (ADS)

    Roman, Anthony; Link, Miranda; Moriarty, Christopher; Stansberry, John A.

    2016-01-01

    When observing an asteroid or comet with HST, it has been necessary for the observer to manually enter the target's orbital elements into the Astronomer's Proposal Tool (APT). This allowed possible copy/paste transcription errors from the observer's source of orbital elements data. In order to address this issue, APT has now been improved with the capability to identify targets in and then download orbital elements from JPL Horizons. The observer will first use a target name resolver to choose the intended target from the Horizons database, and then download the orbital elements from Horizons directly into APT. A manual entry option is also still retained if the observer does not wish to use elements from Horizons. This new capability is available for HST observing, and it will also be supported for JWST observing. The poster shows examples of this new interface.

  3. SOLAR-T: terahertz photometers to observe solar flare emission on stratospheric balloon flights

    NASA Astrophysics Data System (ADS)

    Kaufmann, P.; Abrantes, A.; Bortolucci, E. C.; Correia, E.; Diniz, J. A.; Fernandez, G.; Fernandes, L. O. T.; Giménez de Castro, C. G.; Godoy, R.; Hurford, G.; Kudaka, A. S.; Lebedev, M.; Lin, R. P.; Machado, N.; Makhmutov, V. S.; Marcon, R.; Marun, A.; Nicolaev, V. A.; Pereyra, P.; Raulin, J.-P.; da Silva, C. M.; Shih, A.; Stozhkov, Y. I.; Swart, J. W.; Timofeevsky, A. V.; Valio, A.; Villela, T.; Zakia, M. B.

    2012-09-01

    A new solar flare spectral component has been found with intensities increasing for larger sub-THz frequencies, spectrally separated from the well known microwaves component, bringing challenging constraints for interpretation. Higher THz frequencies observations are needed to understand the nature of the mechanisms occurring in flares. A twofrequency THz photometer system was developed to observe outside the terrestrial atmosphere on stratospheric balloons or satellites, or at exceptionally transparent ground stations. 76 mm diameter telescopes were designed to observe the whole solar disk detecting small relative changes in input temperature caused by flares at localized positions at 3 and 7 THz. Golay cell detectors are preceded by low-pass filters to suppress visible and near IR radiation, band-pass filters, and choppers. It can detect temperature variations smaller than 1 K with time resolution of a fraction of a second, corresponding to small burst intensities. The telescopes are being assembled in a thermal controlled box to which a data conditioning and acquisition unit is coupled. While all observations are stored on board, a telemetry system will forward solar activity compact data to the ground station. The experiment is planned to fly on board of long-duration stratospheric balloon flights some time in 2013-2015. One will be coupled to the GRIPS gamma-ray experiment in cooperation with University of California, Berkeley, USA. One engineering flight will be flown in the USA, and a 2 weeks flight is planned over Antarctica in southern hemisphere summer. Another long duration stratospheric balloon flight over Russia (one week) is planned in cooperation with the Lebedev Physics Institute, Moscow, in northern hemisphere summer.

  4. HEROES Observations of a Quiescent Active Region

    NASA Astrophysics Data System (ADS)

    Shih, A. Y.; Christe, S.; Gaskin, J.; Wilson-Hodge, C.

    2014-12-01

    Hard X-ray (HXR) observations of solar flares reveal the signatures of energetic electrons, and HXR images with high dynamic range and high sensitivity can distinguish between where electrons are accelerated and where they stop. Even in the non-flaring corona, high-sensitivity HXR measurements may be able to detect the presence of electron acceleration. The High Energy Replicated Optics to Explore the Sun (HEROES) balloon mission added the capability of solar observations to an existing astrophysics balloon payload, HERO, which used grazing-incidence optics for direct HXR imaging. HEROES measures HXR emission from ~20 to ~75 keV with an angular resolution of 33" HPD. HEROES launched on 2013 September 21 from Fort Sumner, New Mexico, and had a successful one-day flight. We present the detailed analysis of the 7-hour observation of AR 11850, which sets new upper limits on the HXR emission from a quiescent active region, with corresponding constraints on the numbers of tens of keV energetic electrons present. Using the imaging capability of HEROES, HXR upper limits are also obtained for the quiet Sun surrounding the active region. We also discuss what can be achieved with new and improved HXR instrumentation on balloons.

  5. Prominences: The Key to Understanding Solar Activity

    NASA Technical Reports Server (NTRS)

    Karpen, Judy T.

    2011-01-01

    Prominences are spectacular manifestations of both quiescent and eruptive solar activity. The largest examples can be seen with the naked eye during eclipses, making prominences among the first solar features to be described and catalogued. Steady improvements in temporal and spatial resolution from both ground- and space-based instruments have led us to recognize how complex and dynamic these majestic structures really are. Their distinguishing characteristics - cool knots and threads suspended in the hot corona, alignment along inversion lines in the photospheric magnetic field within highly sheared filament channels, and a tendency to disappear through eruption - offer vital clues as to their origin and dynamic evolution. Interpreting these clues has proven to be contentious, however, leading to fundamentally different models that address the basic questions: What is the magnetic structure supporting prominences, and how does so much cool, dense plasma appear in the corona? Despite centuries of increasingly detailed observations, the magnetic and plasma structures in prominences are poorly known. Routine measurements of the vector magnetic field in and around prominences have become possible only recently, while long-term monitoring of the underlying filament-channel formation process also remains scarce. The process responsible for prominence mass is equally difficult to establish, although we have long known that the chromosphere is the only plausible source. As I will discuss, however, the motions and locations of prominence material can be used to trace the coronal field, thus defining the magnetic origins of solar eruptions. A combination of observations, theory, and numerical modeling must be used to determine whether any of the competing theories accurately represents the physics of prominences. I will discuss the criteria for a successful prominence model, compare the leading models, and present in detail one promising, comprehensive scenario for

  6. Observing Solar and Jovian Radio Bursts

    NASA Astrophysics Data System (ADS)

    Grippaldi, Joseph

    2011-05-01

    A recently constructed low frequency radio telescope has been constructed on the campus of the The College of New Jersey (TCNJ) has recently begun conducting observations at 20MHz as part of NASA'a Radio Jove program. This instrument is capable of observations of Jovian radio emission including strong prompt radio emission associated with the Jovian moon Io. We will discuss Jovian observations conducted with this instrument as an effort to conduct coincident observation with the Eight-meter-wavelength Transient Array (ETA) and the Long Wavelength Array (LWA).

  7. Solar activities and Climate change hazards

    NASA Astrophysics Data System (ADS)

    Hady, A. A., II

    2014-12-01

    Throughout the geological history of Earth, climate change is one of the recurrent natural hazards. In recent history, the impact of man brought about additional climatic change. Solar activities have had notable effect on palaeoclimatic changes. Contemporary, both solar activities and building-up of green-house gases effect added to the climatic changes. This paper discusses if the global worming caused by the green-house gases effect will be equal or less than the global cooling resulting from the solar activities. In this respect, we refer to the Modern Dalton Minimum (MDM) which stated that starting from year 2005 for the next 40 years; the earth's surface temperature will become cooler than nowadays. However the degree of cooling, previously mentioned in old Dalton Minimum (c. 210 y ago), will be minimized by building-up of green-house gases effect during MDM period. Regarding to the periodicities of solar activities, it is clear that now we have a new solar cycle of around 210 years. Keywords: Solar activities; solar cycles; palaeoclimatic changes; Global cooling; Modern Dalton Minimum.

  8. Science Activities in Energy: Solar Energy.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Presented is a science activities in energy package which includes 12 activities relating to solar energy. Activities are simple, concrete experiments for fourth, fifth, and sixth grades, which illustrate principles and problems relating to energy. Each activity is outlined on a single card which is introduced by a question. A teacher's supplement…

  9. Radio frequency interference affecting type III solar burst observations

    NASA Astrophysics Data System (ADS)

    Anim, N. M.; Hamidi, Z. S.; Abidin, Z. Z.; Monstein, C.; Rohizat, N. S.

    2013-05-01

    The solar burst extinguish from the Sun's corona atmosphere and it dynamical structure of the magnetic field in radio wavelength are studied. Observation of solar radio burst with Compact Astronomical Low cost Low frequency Instrument for Spectroscopy and Transportable Observatory (CALLISTO) from ETH, Zurich in frequency range of 45 until 870 MHz. Observation done at Pusat Angkasa Negara, Banting, Selangor and successfully detected the solar burst type III on 9th March 2012 from 4:22:00 UT until 4:28:00 UT. The solar burst emission is associated with M6.3 solar flare which occurred at sunspot AR1429 at 03:58UT were observed by NOAA. Frequency ranges chosen as the best ranges for solar monitoring in Malaysia is 150 MHz until 400 MHz. The highest signal amplitude within this frequency ranges is 1.7619 dB at 153.188 MHz (Government Use) have potential to influence the detection of solar radio burst type III within 20 until 400 MHz.

  10. THz photometers for solar flare observations from space

    NASA Astrophysics Data System (ADS)

    Kaufmann, Pierre; Marcon, Rogério; Abrantes, André; Bortolucci, Emilio C.; T. Fernandes, Luis Olavo; Kropotov, Grigory I.; Kudaka, Amauri S.; Machado, Nelson; Marun, Adolfo; Nikolaev, Valery; Silva, Alexandre; da Silva, Claudemir S.; Timofeevsky, Alexander

    2014-11-01

    The search for the still unrevealed spectral shape of the mysterious THz solar flare emissions is one of the current most challenging research issues. The concept, fabrication and performance of a double THz photometer system, named SOLAR-T, is presented. Its innovative optical setup allows observations of the full solar disk and the detection of small burst transients at the same time. The detecting system was constructed to observe solar flare THz emissions on board of stratospheric balloons. The system has been integrated to data acquisition and telemetry modules for this application. SOLAR-T uses two Golay cell detectors preceded by low-pass filters made of rough surface primary mirrors and membranes, 3 and 7 THz band-pass filters, and choppers. Its photometers can detect small solar bursts (tens of solar flux units) with sub second time resolution. Tests have been conducted to confirm the entire system performance, on ambient and low pressure and temperature conditions. An artificial Sun setup was developed to simulate performance on actual observations. The experiment is planned to be on board of two long-duration stratospheric balloon flights over Antarctica and Russia in 2014-2016.

  11. Hinode Captures Images of Solar Active Region

    NASA Video Gallery

    In these images, Hinode's Solar Optical Telescope (SOT) zoomed in on AR 11263 on August 4, 2011, five days before the active region produced the largest flare of this cycle, an X6.9. We show images...

  12. Background solar irradiance spectrum at high and low phases of the solar activity cycle

    NASA Astrophysics Data System (ADS)

    Vázquez Ramió, H.; Roca Cortés, T.; Régulo, C.

    2002-12-01

    Two data series of disk integrated solar irradiance, taken by the Variability of the solar IRradiance and Gravity Oscillations (VIRGO) experiment on board the Solar and Heliospheric Observatory (SoHO) mission, corresponding to epochs of minimum and maximum solar activity have been analysed in order to study the background signal of the associated power spectra. We fit the most apparent convective structures that appear at low frequencies in the spectrum as well as non-periodic components. We aim to compare the results found in the three observed bands (centered in λ=402nm, λ=500nm and λ=862nm) as well as to find dependences of the non-periodic convective structures parameters with the solar cycle.

  13. Relationships between solar activity and climate change

    NASA Technical Reports Server (NTRS)

    Roberts, W. O.

    1975-01-01

    The relationship between recurrent droughts in the High Plains of the United States and the double sunspot cycle is discussed in detail. It is suggested that high solar activity is generally related to an increase in meridional circulation and blocking patterns at high and intermediate latitudes, especially in winter, and the effect is related to the sudden formation of cirrus clouds during strong geomagnetic activity that originates in the solar corpuscular emission.

  14. SMART Observation of Magnetic Helicity in Solar Filaments

    NASA Astrophysics Data System (ADS)

    Hagino, M.; Kitai, R.; Shibata, K.

    2006-08-01

    We examined the magnetic helicity of solar filaments from their structure in the chromosphere and corona. The H-alpha telescope of the Solar Magnetic Activity Research Telescope (SMART) observed 239 intermediate filaments from 2005 July 1 to 2006 May 15. The intermediate filament usually locates between two active regions. Using these images, we identified the filament spine and its barbs, and determined the chromospheric filament helicity from the mean angle between each barbs and a spine. We found that 71% (78 of 110) of intermediate filaments in the northern hemisphere are negative helicity and 67% (87 of 129) of filaments in the southern hemisphere are positive, which agreed with the well-known hemispheric tendency of the magnetic helicity. Additionally, we studied the coronal helicity of intermediate filaments. The coronal filament helicity is defined as the crossing angle of threads formed a filament. The helicity pattern of coronal filaments obtained with EIT/SOHO 171A also shows the helicity hemispheric tendency. Namely, 65% (71 of 110) of coronal filaments in the northern hemisphere exhibit negative helicity and the 65% (84 of 129) of filaments in the southern hemisphere show negative helicity. These data were observed in the same day with the SMART H-alpha data. Moreover, we found 12 filament eruptions in our data. The 7 of 12 filaments show the clear opposite sign of the hemispheric tendency of the magnetic helicity. The helicity seems to be change during temporal evolution. This results suggest that filament instability may be driven by the opposite sign helicity injection from the foot point of the barb.

  15. Solar activity dependence of nightside aurora in winter conditions

    NASA Astrophysics Data System (ADS)

    Zhou, Su; Luan, Xiaoli; Dou, Xiankang

    2016-02-01

    The dependence of the nightside (21:00-03:00 MLT; magnetic local time) auroral energy flux on solar activity was quantitatively studied for winter/dark and geomagnetically quiet conditions. Using data combined from Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics/Global Ultraviolet Imager and Defense Meteorological Satellite Program/Special Sensor Ultraviolet Spectrographic Imager observations, we separated the effects of geomagnetic activity from those of solar flux on the nightside auroral precipitation. The results showed that the nightside auroral power was reduced by ~42% in solar maximum (F10.7 = 200 sfu; solar flux unit 1 sfu = 10-22 W m-2 Hz-1) with respect to that under solar minimum (F10.7 = 70 sfu) for the Kp = 1 condition, and this change rate became less (~21%) for the Kp = 3 condition. In addition, the solar cycle dependence of nightside auroral power was similar with that from both the premidnight (21:00-23:00 MLT) and postmidnight (01:00-03:00 MLT) sectors. These results indicated that as the ionospheric ionization increases with the enhanced auroral and geomagnetic activities, the solar activity dependences of nightside auroral power become weaker, at least under geomagnetically quiet conditions.

  16. Solar Flare Impulsive Phase Observations from SDO and Other Observatories

    NASA Technical Reports Server (NTRS)

    Chamberlin, Phillip C.; Woods, Thomas N.; Schrijver, Karel; Warren, Harry; Milligan, Ryan; Christe, Steven; Brosius, Jeffrey W.

    2010-01-01

    With the start of normal operations of the Solar Dynamics Observatory in May 2010, the Extreme ultraviolet Variability Experiment (EVE) and the Atmospheric Imaging Assembly (AIA) have been returning the most accurate solar XUV and EUV measurements every 10 and 12 seconds, respectively, at almost 100% duty cycle. The focus of the presentation will be the solar flare impulsive phase observations provided by EVE and AIA and what these observations can tell us about the evolution of the initial phase of solar flares. Also emphasized throughout is how simultaneous observations with other instruments, such as RHESSI, SOHO-CDS, and HINODE-EIS, will help provide a more complete characterization of the solar flares and the evolution and energetics during the impulsive phase. These co-temporal observations from the other solar instruments can provide information such as extending the high temperature range spectra and images beyond that provided by the EUV and XUV wavelengths, provide electron density input into the lower atmosphere at the footpoints, and provide plasma flows of chromospheric evaporation, among other characteristics.

  17. Solar Spectral Irradiance Observations from the PICARD/PREMOS Radiometer

    NASA Astrophysics Data System (ADS)

    Cessateur, G.; Schöll, M.; Schmutz, W. K.; Wehrli, C.; Groebner, J.; Haberreiter, M.; Kretzschmar, M.; Shapiro, A.; Thuillier, G. O.; Finsterle, W.; Fox, N.; Hochedez, J. F.; Koller, S.; Meftah, M.; Nyeki, S.; Pfiffner, D.; Roth, H.; Rouze, M.; Spescha, M.; Tagirov, R.; Werner, L.; Wyss, J.

    2015-12-01

    Space weather and space climate studies require accurate Solar Spectral Irradiance (SSI) observations. The PREcision Monitoring Sensor (PREMOS) instrument aboard the PICARD satellite acquired solar irradiance measurements in specific spectral windows in the UV, visible and near infrared from October 2010 to March 2014. This contribution aims at presenting the Level 3 data, corrected for non solar features as well as for degradation. These level 3 data has been tested over different scientific cases, such as observations during the Venus transit and the presence of the p-mode signature within high-cadence data. The PREMOS Level 3 data have also been compared to others data sets, namely the SOLSTICE and SIM instruments aboard SORCE, for nearly 3 and half years. An excellent correlation has been found for the UV spectral ranges. We have also found a rather good correlation for visible and near-infrared observations for short-term variations, for which an error of about 200 ppm has been estimated within PREMOS visible and near-infrared observations. The PREMOS data could also be used to address several scientific topics, i.e. for validating semi-empirical models of the solar irradiance. We will emphasize about our new irradiance model, COSIR for Code of Solar Irradiance Reconstruction, which is successful at reproducing the solar modulation as seen in the PREMOS, SoHO/Virgo and SORCE data.

  18. Forbush Decrease Prediction Based on Remote Solar Observations

    NASA Astrophysics Data System (ADS)

    Dumbović, M.; Vršnak, B.; Čalogović, J.

    2016-01-01

    We employ remote observations of coronal mass ejections (CMEs) and the associated solar flares to forecast the CME-related Forbush decreases, i.e. short-term depressions in the galactic cosmic-ray flux. The relation between the Forbush effect at Earth and remote observations of CMEs and associated solar flares is studied via a statistical analysis. Relations between Forbush decrease magnitude and several CME/flare parameters were found: the initial CME speed, apparent width, source position, associated solar-flare class, and the effect of successive-CME occurrence. Based on the statistical analysis, remote solar observations are employed to forecast a Forbush-decrease. For this purpose, an empirical probabilistic model is constructed that uses selected remote solar observations of the CME and associated solar flare as input and gives the expected Forbush-decrease magnitude range as output. The forecast method is evaluated using several verification measures, indicating that as the forecast tends to be more specific, it is less reliable, which is its main drawback. However, the advantages of the method are that it provides an early prediction and that the input does not necessarily depend on using a spacecraft.

  19. Meteoritic evidence for the Maunder minimum in solar activity

    NASA Technical Reports Server (NTRS)

    Forman, M. A.; Schaeffer, O. A.; Schaeffer, G. A.

    1978-01-01

    Concentrations of argon-39 produced by cosmic rays in the metal in 30 meteorites are remarkably similar, but they are slightly higher than expected for the present solar-cycle-averaged flux of cosmic rays. This supports the idea suggested by Eddy (1976) that there were prolonged minima in solar activity before 1715 which caused the deVries maximum in carbon-14 in earth's atmosphere by reducing the amount of cosmic-ray modulation in interplanetary space. The observations are easily consistent with 180 years of 'sunspot minimum' modulation during the Maunder and Spoerer minima, and possibly with virtually no solar modulation at all during that time. This would indicate that the solar wind then contained very little magnetic turbulence or whatever it is in the solar wind that causes the modulation of galactic cosmic rays.

  20. The SMILES observations of mesospheric ozone during the solar eclipse

    NASA Astrophysics Data System (ADS)

    Imai, Koji; Shiotani, Masato; Suzuki, Makoto; Akiyoshi, Hideharu; Ebisawa, Ken; Takahashi, Kenshi; Yamashita, Yousuke; Imamura, Takashi

    Solar eclipse temporally reduces the amount of solar radiation, providing an opportunity to verify the mesospheric ozone photochemistry under a changing solar radiation. During the annular solar eclipse occurred on 15 January 2010, Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) successfully observed the temporal changes in ozone concentration between at 52 and 76 km. Analysis of the data with an atmospheric chemistry box model showed that, (i) the lower the altitude is, the closer to the normal nighttime average the concentration near the maximum eclipse obscuration becomes, and (ii) even if there were the SMILES observation points under similar degrees of obscuration, the concentrations measured at an altitude differed between the sunlight increasing and decreasing phases.

  1. SMILES observations of mesospheric ozone during the solar eclipse

    NASA Astrophysics Data System (ADS)

    Imai, Koji; Imamura, Takashi; Takahashi, Kenshi; Akiyoshi, Hideharu; Yamashita, Yousuke; Suzuki, Makoto; Ebisawa, Ken; Shiotani, Masato

    2015-05-01

    The Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) successfully observed vertical distributions of ozone (O3) concentration in the middle atmosphere during the annular solar eclipse that occurred on 15 January 2010. In the mesosphere, where the photochemical lifetime of O3 is relatively short (approximately 100 s), altitude-dependent changes in O3 concentration under reduced solar radiation and their temporal variations were clearly observed as a function of the eclipse obscuration. This study reports the vertical distributions of mesospheric O3 during a solar eclipse event and analyzes theoretically the eclipse-induced changes. We show that simple analytical expressions for O3 concentration, which assume that O3 and O are in a photochemically steady state, can be used to describe the O3 concentration under reduced solar radiation. The SMILES data obtained during the eclipse provide a unique opportunity to test our current understanding of mesospheric O3 photochemistry.

  2. Absorption of solar radiation by clouds: observations versus models.

    PubMed

    Cess, R D; Zhang, M H; Minnis, P; Corsetti, L; Dutton, E G; Forgan, B W; Garber, D P; Gates, W L; Hack, J J; Harrison, E F; Jing, X; Kiehi, J T; Long, C N; Morcrette, J J; Potter, G L; Ramanathan, V; Subasilar, B; Whitlock, C H; Young, D F; Zhou, Y

    1995-01-27

    There has been a long history of unexplained anomalous absorption of solar radiation by clouds. Collocated satellite and surface measurements of solar radiation at five geographically diverse locations showed significant solar absorption by clouds, resulting in about 25 watts per square meter more global-mean absorption by the cloudy atmosphere than predicted by theoretical models. It has often been suggested that tropospheric aerosols could increase cloud absorption. But these aerosols are temporally and spatially heterogeneous, whereas the observed cloud absorption is remarkably invariant with respect to season and location. Although its physical cause is unknown, enhanced cloud absorption substantially alters our understanding of the atmosphere's energy budget.

  3. Absorption of Solar Radiation by Clouds: Observations Versus Models

    NASA Technical Reports Server (NTRS)

    Cess, R. D.; Zhang, M. H.; Minnis, P.; Corsetti, L.; Dutton, E. G.; Forgan, B. W.; Garber, D. P.; Gates, W. L.; Hack, J. J.; Harrison, E. F.; Jing, X.; Kiehl, J. T.; Long, C. N.; Morcrette, J.-J.; Potter, G. L.; Ramanathan, V.; Subasilar, B.; Whitlock, C. H.; Young, D. F.; Zhou, Y.

    1995-01-01

    There has been a long history of unexplained anomalous absorption of solar radiation by clouds. Collocated satellite and surface measurements of solar radiation at five geographically diverse locations showed significant solar absorption by clouds, resulting in about 25 watts per square meter more global-mean absorption by the cloudy atmosphere than predicted by theoretical models. It has often been suggested that tropospheric aerosols could increase cloud absorption. But these aerosols are temporally and spatially heterogeneous, whereas the observed cloud absorption is remarkably invariant with respect to season and location. Although its physical cause is unknown, enhanced cloud absorption substantially alters our understanding of the atmosphere's energy budget.

  4. Physical mechanisms of solar activity effects in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Ebel, A.

    1989-01-01

    A great variety of physical mechanisms of possibly solar induced variations in the middle atmosphere has been discussed in the literature during the last decades. The views which have been put forward are often controversial in their physical consequences. The reason may be the complexity and non-linearity of the atmospheric response to comparatively weak forcing resulting from solar activity. Therefore this review focuses on aspects which seem to indicate nonlinear processes in the development of solar induced variations. Results from observations and numerical simulations are discussed.

  5. IS THE CURRENT LACK OF SOLAR ACTIVITY ONLY SKIN DEEP?

    SciTech Connect

    Broomhall, A.-M.; Chaplin, W. J.; Elsworth, Y.; Fletcher, S. T.; New, R. E-mail: wjc@bison.ph.bham.ac.uk E-mail: S.Fletcher@shu.ac.uk

    2009-08-01

    The Sun is a variable star whose magnetic activity and total irradiance vary on a timescale of approximately 11 years. The current activity minimum has attracted considerable interest because of its unusual duration and depth. This raises the question: what might be happening beneath the surface where the magnetic activity ultimately originates? The surface activity can be linked to the conditions in the solar interior by the observation and analysis of the frequencies of the Sun's natural seismic modes of oscillation-the p modes. These seismic frequencies respond to changes in activity and are probes of conditions within the Sun. The Birmingham Solar-Oscillations Network (BiSON) has made measurements of p-mode frequencies over the last three solar activity cycles, and so is in a unique position to explore the current unusual and extended solar minimum. We show that the BiSON data reveal significant variations of the p-mode frequencies during the current minimum. This is in marked contrast to the surface activity observations, which show little variation over the same period. The level of the minimum is significantly deeper in the p-mode frequencies than in the surface observations. We observe a quasi-biennial signal in the p-mode frequencies, which has not previously been observed at mid- and low-activity levels. The stark differences in the behavior of the frequencies and the surface activity measures point to activity-related processes occurring in the solar interior, which are yet to reach the surface, where they may be attenuated.

  6. Cosmic Ray and Solar Energetic Particle Observations In The 3-d Heliosphere Near Solar Maximum

    NASA Astrophysics Data System (ADS)

    McKibben, R. B.; Connell, J. J.; Lopate, C.

    Observations from the COSPIN High Energy Telescope during Ulysses recent fast lat- itude scan have provided the first latitudinal survey of intensities of cosmic rays and solar energetic particles near solar maximum. During the previous fast latitude scan near solar minimum, no significant solar energetic particle events were observed, but the galactic and anomalous component cosmic ray intensities showed small positive latitudinal gradients organized around a southwardly displaced heliospheric current sheet. The small size of the gradients, together with observation near the poles of 26-day intensity variations impressed by near-equatorial CIR-structures, led to the conclusion that latitudinal transport across the mean Parker spiral magnetic fields was much easier than had been expected prior to Ulysses observations. During the recently completed fast latitude scan near solar maximum, galactic cosmic rays could be ob- served only occasionally in the quiet times between frequent solar energetic particle events. When cosmic ray intensities could be observed, no measurable latitude gradi- ents were found, implying that modulation became much more spherically symmetric near solar maximum. From observations of the solar energetic particle intensities, we found that almost all large gradual events produced intensity increases both at Ulysses and at IMP-8 near Earth, regardless of the latitude or longitude of the spacecrafts relative to the initiating event in the corona. Most often the intensities at Ulysses and IMP-8 became comparable a few days after the onset of the event and remained nearly equal for the rest of the decay, which in some cases lasted as much as a full solar rota- tion. Both the cosmic ray and the solar energetic particle observations imply efficient latitudinal and cross-field transport of energetic particles even in the complex inter- planetary magnetic fields of solar maximum. Recent observations suggest that the solar polar coronal holes have

  7. Solar neutron decay proton observations in cycle 21

    NASA Technical Reports Server (NTRS)

    Evenson, Paul; Kroeger, Richard; Meyer, Peter; Reames, Donald

    1990-01-01

    Measurement of the flux and energy spectrum of the protons resulting from the decay of solar flare neutrons gives unique information on the spectrum of neutrons from 5 to 200 MeV. Neutrons from three flares have been observed in this manner during solar cycle 21. The use of the decay protons to determine neutron energy spectra is reviewed, and new and definitive energy spectra are presented for the two large flares on June 3, 1982 and April 25, 1984.

  8. He abundance variations in the solar wind: Observations from Ulysses

    SciTech Connect

    Barraclough, B.L.; Feldman, W.C.; Gosling, J.T.; McComas, D.J.; Phillips, J.L.; Goldstein, B.E.

    1996-07-01

    The Ulysses mission is providing the first opportunity to observe variations in solar wind plasma parameters at heliographic latitudes far removed from the ecliptic plane. We present here an overview of the solar wind speed and the variability in helium abundance, [He], for the entire mission to date, data on [He] in six high-latitude coronal mass ejections (CMEs), and a superposed epoch analysis of [He] variations at the seven heliospheric current sheet (HCS) crossings made during the rapid-latitude-scan portion of the mission. The differences in the variability of the solar wind speed and [He] in high-latitude and equatorial regions are quite striking. Solar wind speed is generally low but highly variable near the solar equator, while at higher latitudes the average speed is quite high (average speed around 760 km/s) with little variability. [He] can vary over nearly two decades at low solar latitudes, while at high latitudes it varies only slightly around an average value of {approximately}4.3{percent}. In contrast to the high [He] that is often associated with CMEs observed near the ecliptic, none of the six high-speed CMEs encountered at high southern heliographic latitudes showed any significant variation in helium content from average values. Reasons for this difference between high and low latitude CME observations are not yet understood. A superposed epoch analysis of the [He] during all seven HCS crossings made as Ulysses passed from the southern to northern solar hemisphere shows the expected [He] minimum near the crossing and a broad ({plus_minus}3day) period of low [He] around the crossing time. We briefly discuss how our solar wind [He] observations may provide an accurate measure of the helium composition for all regions of the sun lying above the helium ionization zone. {copyright} {ital 1996 American Institute of Physics.}

  9. Statistical Properties of Extreme Solar Activity Intervals

    NASA Astrophysics Data System (ADS)

    Lioznova, A. V.; Blinov, A. V.

    2014-01-01

    A study of long-term solar variability reflected in indirect indices of past solar activity leads to stimulating results. We compare the statistics of intervals of very low and very high solar activity derived from two cosmogenic radionuclide records and look for consistency in their timing and physical interpretation. According to the applied criteria, the numbers of minima and of maxima are 61 and 68, respectively, from the 10Be record, and 42 and 46 from the 14C record. The difference between the enhanced and depressed states of solar activity becomes apparent in the difference in their statistical distributions. We find no correlation between the level or type (minimum or maximum) of an extremum and the level or type of the predecessor. The hypothesis of solar activity as a periodic process on the millennial time scale is not supported by the existing proxies. A new homogeneous series of 10Be measurements in polar ice covering the Holocene would be of great value for eliminating the existing discrepancy in the available solar activity reconstructions.

  10. Climatic variables as indicators of solar activity

    NASA Astrophysics Data System (ADS)

    Balybina, A. S.; Karakhanyan, A. A.

    2012-12-01

    Tree-ring analysis is used successfully in studies of solar-terrestrial relations. We consider a linear dependence between the radial increment in conifers in Eastern Siberia and solar activity parameters: the length and amplitude of an 11-year solar cycle in the 20th century. It is shown that the increment in conifers in the region is larger in a longer and lower solar cycle than in a short and high one. A correlation between the increment in the width of annual rings of Pinus sylvestris and Siberian pine and the length of the ascending phase of an 11-year cycle is revealed: the longer the ascending phase, the larger the radial increment in conifers. The dynamics of the annual increment in conifers in the region is inversely related to the cycle amplitude and magnetic disturbances in the main solar cycle.

  11. Solar and Galactic Cosmic Rays Observed by SOHO

    NASA Astrophysics Data System (ADS)

    Curdt, W.; Fleck, B.

    Both the Cosmic Ray Flux (CRF) and Solar Energetic Particles (SEPs) have left an imprint on SOHO technical systems. While the solar array efficiency degraded irreversibly down to ≈77% of its original level over roughly 1 1/2 solar cycles, Single Event Upsets (SEUs) in the solid state recorder (SSR) have been reversed by the memory protection mechanism. We compare the daily CRF observed by the Oulu station with the daily SOHO SEU rate and with the degradation curve of the solar arrays. The Oulu CRF and the SOHO SSR SEU rate are both modulated by the solar cycle and are highly correlated, except for sharp spikes in the SEU rate, caused by isolated SEP events, which also show up as discontinuities in the otherwise slowly decreasing solar ray efficiency. This allows to discriminate between effects with solar and non-solar origin and to compare the relative strength of both. We find that during solar cycle 23 (1996 Apr 1 -- 2008 Aug 31) only 6% of the total number of SSR SEUs were caused by SEPs; the remaining 94% were due to galactic cosmic rays. During the maximum period of cycle 23 (2000 Jan 1 -- 2003 Dec 31), the SEP contribution increased to 22%, and during 2001, the year with the highest SEP rate, to 30%. About 40% of the total solar array degradation during the 17 years from Jan 1996 through Feb 2013 can be attributed to proton events, i.e. the effect of a series of short-lived, violent SEP events is comparable to the cycle-integrated damage by cosmic rays.

  12. RADIO OBSERVATIONS OF THE SOLAR CORONA DURING AN ECLIPSE

    SciTech Connect

    Kathiravan, C.; Ramesh, R.; Barve, Indrajit V.; Rajalingam, M. E-mail: ramesh@iiap.res.in E-mail: rajalingam@iiap.res.in

    2011-04-01

    We carried out radio observations of the solar corona at 170 MHz during the eclipse of 2008 August 1, from the Gauribidanur observatory located about 100 km north of Bangalore in India. The results indicate the presence of a discrete radio source of very small angular dimension ({approx}15'') in the corona from where the observed radiation originated.

  13. Correlations between solar activity and the atmosphere - An unphysical explanation

    NASA Astrophysics Data System (ADS)

    Salby, Murry L.; Shea, Dennis J.

    1991-12-01

    Attention is given to the behavior of atmospheric properties and to a nonphysical explanation of their relationship to solar activity. The relatively short lengths of atmospheric records limit the ability of cross-covariance properties to discriminate to solar activity and hence to distinguish them from other forms of interanual variability. The discrete nature of the cross spectrum with solar activity admits only a few statistical degrees of freedom, which limits the reliability with which correlations can be determined. Coherence and correlation with sea level pressure both decrease with increasing record length and fall beneath the 90-percent level of statistical significance when records are extended back to the turn of the 20th century. The physical significance of such properties is considered in statistics generated from artificial solar variability, which demonstrate that behavior like that observed is not unique to the solar period. Over a wide range of periods, false solar variability leads to correlations and coherences that are as high as or higher than those produced by actual solar variability.

  14. Fourier transform spectrometer observations of solar carbon monoxide. II - Simultaneous cospatial measurements of the fundamental and first-overtone bands, and Ca II K, in quiet and active regions

    NASA Technical Reports Server (NTRS)

    Ayres, T. R.; Testerman, L.; Brault, J. W.

    1986-01-01

    Fourier transform spectrometry has yielded simultaneous cospatial measurements of important diagnostics of thermal structure in the high solar photosphere and low chromosphere. It is noted that the anomalous behavior of the fundamental bands of CO in quiet areas near the limb is accentuated in an active region plage observed close to the limb. The difference between the core temperatures of the CO fundamental bands in a plage and a nearby quiet region at the limb is larger than the corresponding brightness temperature differences in the inner wings of the Ca II line measured in a quiet region and several plages closer to the disk center. Numerical simulations indicate that the disparate behavior of the CO bands with respect to Ca II K cannot be reconciled with existing single component thermal structure models; a two-component atmosphere is required.

  15. Observational Criteria For Small-scale Turbulent Dynamo In The Solar Photosphere

    NASA Astrophysics Data System (ADS)

    Abramenko, Valentyna; Goode, P.; Yurchyshyn, V.

    2012-05-01

    Generation and dispersal of the magnetic field on the Sun is a key mechanism responsible for solar activity on all spatial and temporal scales - from the solar cycle down to the evolution of small-scale magnetic elements in the quiet Sun. The solar dynamo operates as a non-linear dynamical process and is thought to be manifested in two types: as a global dynamo responsible for the solar cycle periodicity, and as a small-scale turbulent dynamo (SSTD) responsible for the formation of magnetic carpet in the quiet Sun. Numerous MHD simulations of the solar turbulence did not yet reach a consensus as to the existence and role of SSTD on the Sun. At the same time, high-resolution observations of the quiet Sun are capable to provide certain criteria to prove or rule out SSTD. We suggest to probe four possible criteria: i) mutual behaviour of the kinetic and magnetic power spectra; ii) intermittency/multifractality of the magnetic field; iii) smallest observed scale of magnetic flux tubes; iv) regime of magnetic diffusivity on smallest observable scales. We analyse magnetic, velocity and solar granulation data as derived from Hinode/SOT, SOHO/MDI, SDO/HMI and the New Solar Telescope (NST) of Big Bear Solar Observatory (BBSO) to explore the possibilities for SSTD in the quiet Sun.

  16. Terahertz photometers to observe solar flares from space (SOLAR-T project)

    NASA Astrophysics Data System (ADS)

    Kaufmann, Pierre; Raulin, Jean-Pierre

    The space experiment SOLAR-T designed to observe solar flares at THz frequencies was completed. We present the concept, fabrication and performance of a double THz photometers system. An innovative optical setup allows observations of the full solar disk and the detection of small burst transients at the same time. It is the first detecting system conceived to observe solar flare THz emissions on board of stratospheric balloons. The system has been integrated to data acquisition and telemetry modules for this application. SOLAR-T uses two Golay cell detectors preceded by low-pass filters made of rough surface primary mirrors and membranes, 3 and 7 THz band-pass filters, and choppers. Its photometers can detect small solar bursts (tens of solar flux units) with sub second time resolution. One artificial Sun setup was developed to simulate actual observations. Tests comprised the whole system performance, on ambient and low pressure and temperature conditions. It is intended to provide data on the still unrevealed spectral shape of the mysterious THz solar flares emissions. The experiment is planned to be on board of two long-duration stratospheric balloon flights over Antarctica and Russia in 2014-2016. The SOLAR-T development, fabrication and tests has been accomplished by engineering and research teams from Mackenzie, Unicamp and Bernard Lyot Solar Observatory; Propertech Ltda.; Neuron Ltda.; and Samsung, Brazil; Tydex LCC, Russia; CONICET, Argentina; the stratospheric balloon missions will be carried in cooperation with teams from University of California, Berkeley, USA (flight over Antarctica), and Lebedev Physical Institute, Moscow, Russia (flight over Russia).

  17. HIGH LATITUDE ULYSSES OBSERVATIONS OF THE H/HE INTENSITY RATIO UNDER SOLAR MINIMUM AND SOLAR MAXIMUM CONDITIONS

    SciTech Connect

    J. GOSLING; D. LARIO; ET AL

    2001-03-01

    We analyze measurements of the 0.5-1.0 MeV/nucleon H/He intensity ratio from the Ulysses spacecraft during its first (1992-94) and second (1999-2000) ascent to southern high latitude regions of the heliosphere. These cover a broad range of heliocentric distances (from 5.2 to 2.0 AU) and out-of-ecliptic latitudes (from 18{degree}S to 80{degree}S). During Ulysses' first southern pass, the HI-SCALE instrument measured a series of enhanced particle fluxes associated with the passage of a recurrent corotating interaction region (CIR). Low values ({approximately}6) of the H/He ratio were observed in these recurrent corotating events, with a clear minimum following the passage of the corotating reverse shock. When Ulysses reached high southern latitudes (>40{degree}S), the H/He ratio always remained below {approximately}10 except during two transient solar events that brought the ratio to high (>20) values. Ulysses' second southern pass was characterized by a higher average value of the H/He ratio. No recurrent pattern was observed in the energetic ion intensity which was dominated by the occurrence of transient events of solar origin. Numerous CIRs, many of which were bounded by forward and reverse shock pairs, were still observed in the solar wind and magnetic field data. The arrival of those CIRs at Ulysses did not always result in a decrease of the H/He ratio; on the contrary, many CIRs showed a higher H/He ratio than some transient events. Within a CIR, however, the H/He ratio usually increased around the forward shock and decreased towards the reverse shock. Throughout the second ascent to southern heliolatitudes, the H/He ratio seldom decreased below {approximately}10 even at high latitudes (>40{degree}S). We interpret these higher values of the H/He ratio in terms of the increasing level of solar activity together with the poor definition and short life that corotating solar wind structures have under solar maximum conditions. The global filling of the heliosphere

  18. The solar activity measurements experiments (SAMEX) for improved scientific understanding of solar activity

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Solar Activity Measurements Experiments (SAMEX) mission is described. It is designed to provide a look at the interactions of magnetic fields and plasmas that create flares and other explosive events on the sun in an effort to understand solar activity and the nature of the solar magnetic field. The need for this mission, the instruments to be used, and the expected benefits of SAMEX are discussed.

  19. Prediciting Solar Activity: Today, Tomorrow, Next Year

    NASA Technical Reports Server (NTRS)

    Pesnell, William Dean

    2008-01-01

    Fleets of satellites circle the Earth collecting science data, protecting astronauts, and relaying information. All of these satellites are sensitive at some level to space weather effects. Predictions of drag on LEO spacecraft are one of the most important. Launching a satellite with less fuel can mean a higher orbit, but unanticipated solar activity and increased drag can make that a Pyrrhic victory. Energetic events at the Sun can produce crippling radiation storms. Predicting those events that will affect our assets in space includes a solar prediction and how the radiation will propagate through the solar system. I will talk our need for solar activity predictions and anticipate how those predictions could be made more accurate in the future.

  20. Solar system plasma Turbulence: Observations, inteRmittency and Multifractals

    NASA Astrophysics Data System (ADS)

    Echim, Marius M.

    2016-04-01

    The FP7 project STORM is funded by the European Commission to "add value to existing data bases through a more comprehensive interpretation". STORM targets plasma and magnetic field databases collected in the solar wind (Ulysses and also some planetary missions), planetary magnetospheres (Venus Express, Cluster, a few orbits from Cassini), cometary magnetosheaths (e.g. Haley from Giotto observations). The project applies the same package of analysis methods on geomagnetic field observations from ground and on derived indices (e.g. AE, AL, AU, SYM-H). The analysis strategy adopted in STORM is built on the principle of increasing complexity, from lower (like, e.g., the Power Spectral Density - PSD) to higher order analyses (the Probability Distribution Functions - PDFs, Structure Functions - SFs, Fractals and Multifractals - MFs). Therefore STORM targets not only the spectral behavior of turbulent fluctuations but also their topology and scale behavior inferred from advanced mathematical algorithms and geometrical-like analogs. STORM started in January 2013 and ended in December 2015. We will report on a selection of scientific and technical achievements and will highlight: (1) the radial evolution of solar wind turbulence and intermittency based on Ulysses data with some contributions from Venus Express and Cluster; (2) comparative study of fast and slow wind turbulence and intermittency at solar minimum; (3) comparative study of the planetary response (Venus and Earth magnetosheaths) to turbulent solar wind; (4) the critical behavior of geomagnetic fluctuations and indices; (5) an integrated library for non-linear analysis of time series that includes all the approaches adopted in STORM to investigate solar system plasma turbulence. STORM delivers an unprecedented volume of analysed data for turbulence. The project made indeed a systematic survey, orbit by orbit, of data available from ESA repositories and Principal Investigators and provides results ordered as a

  1. Recent YOHKOH solar gamma-ray observations

    NASA Astrophysics Data System (ADS)

    Yoshimori, M.; Suga, K.; Nakayama, S.; Ogawa, H.; Share, G. H.; Murphy, R. J.

    2001-08-01

    Yohkoh observed two γ-ray flares in 2000, a X5.7 flare at 10:20 UT on 14 July and a X2.3 flare at 15:08 UT on November 24, with the hard X/γ-ray spectrometers and hard X-ray imager. The two flares emitted several nuclear γ-ray lines and hard X-ray images indicate two sources which are located at both footpoints of the magnetic loop. At the beginning of the peak phase of the July 14 flare, the temporal evolution of the hard X-ray sources suggests that a change in the magnetic loop structure from high-shearing to low-shearing states is associated with magnetic reconnection. Particle accleration is discussed based on the Yohkoh spectroscopic and imaging data.

  2. Modern observations and models of Solar flares

    NASA Astrophysics Data System (ADS)

    Gritsyk, Pavel; Somov, Boris

    As well known, that fast particles propagating along flare loop generate bremsstrahlung hard x-ray emission and gyro-synchrotron microwave emission. We present the self-consistent kinetic description of propagation accelerated particles. The key point of this approach is taking into account the effect of reverse current. In our two-dimensional model the electric field of reverse current has the strong influence to the beam of accelerated particles. It decelerates part of the electrons in the beam and turns back other part of them without significant energy loss. The exact analytical solution for the appropriate kinetic equation with Landau collision integral was found. Using derived distribution function of electrons we’ve calculated evolution of their energy spectrum and plasma heating, coronal microwave emission and characteristics of hard x-ray emission in the corona and in the chromosphere. All results were compared with modern high precision space observations.

  3. Ulysses solar wind plasma observations at high latitudes

    SciTech Connect

    Riley, P.; Bame, S.J.; Barraclough, B.L.

    1996-10-01

    Ulysses reached its peak northerly heliolatitude of 80.2{degrees}N on July 31, 1995, and now is moving towards aphelion at 5.41 AU which it will reach in May, 1998. We summarize measurements from the solar wind plasma experiment, SWOOPS, emphasizing northern hemispheric observations but also providing southern and equatorial results for comparison. The solar wind momentum flux during Ulysses` fast pole-to- pole transit at solar minimum was significantly higher over the poles than at near-equatorial latitudes, suggesting a non-circular cross section for the heliosphere. Furthermore, modest asymmetries in the wind speed, density, and mass flux were observed between the two hemispheres during the fast latitude scan. The solar wind was faster and less dense in the north than in the south. These asymmetries persist in the most recent high- and mid-latitude data but are less pronounced. As of July 1, 1996 the northern fast solar wind has lacked any strong stream interactions or shocks and, although a comprehensive search has not yet been made, no CMEs have yet been identified during this interval. On the other hand, Alfv{acute e}nic, compressional, and pressure balanced features are abundant at high latitudes. The most recent data, at 4 AU and 32{degrees}N, has begun to show the effects of solar rotation modulated features in the form of recurrent compressed regions.

  4. Geomagnetic activity: Dependence on solar wind parameters

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.

    1977-01-01

    Current ideas about the interaction between the solar wind and the earth's magnetosphere are reviewed. The solar wind dynamic pressure as well as the influx of interplanetary magnetic field lines are both important for the generation of geomagnetic activity. The influence of the geometry of the situation as well as the variability of the interplanetary magnetic field are both found to be important factors. Semi-annual and universal time variations are discussed as well as the 22-year cycle in geomagnetic activity. All three are found to be explainable by the varying geometry of the interaction. Long term changes in geomagnetic activity are examined.

  5. Response of Solar Oscillations to Magnetic Activity in Cycle 24

    NASA Astrophysics Data System (ADS)

    Jain, K.; Tripathy, S. C.; Hill, F.

    2015-12-01

    Acoustic mode parameters are generally used to study the variability of the solar interior in response to changing magnetic activity. While oscillation frequencies do vary in phase with the solar activity, the mode amplitudes are anti-correlated. Now, continuous measurements from ground and space allow us study the origin of such variability in detail. Here we use intermediate-dgree mode frequencies computed from a ground-based 6-site network ( GONG), covering almost two solar cycles from the minimum of cycle 23 to the declining phase of cycle 24, to investigate the effect of remarkably low solar activity on the solar oscillations in current cycle and the preceding minimum; is the response of acoustic oscillations to magnetic activity in cycle 24 similar to cycle 23 or there are differences between cycles 23 and 24? In this paper, we analyze results for both solar cycles, and try to understand the origin of similarities/differences between them. We will also compare our findings with the contemporaneous observations from space (SOHO/MDI and SDO/HMI).

  6. Observed Aspects of Reconnection in Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.

    2010-01-01

    ejective eruption in the manner of a miniature CME/flare eruption. The jet is then a combination of a miniature CME and the products of more widely distributed reconnection of the erupting arcade with the open field than in simple jets. Cartoons illustrating the above characteristics are presented along with representative examples of observed CME/flare eruptions and jets. The main point drawn to be drawn from the observations is that, for either a pre-eruption current sheet or a pre-simple-jet current sheet to remain quasi-static and stable against fast reconnection, it must remain much smaller in span than the driving arcade. Conversely, a current sheet comparable in span to the driving arcade can be made only dynamically, by eruption of the driving arcade, and continually undergoes massive fast reconnection.

  7. XMM-Newton Observations of Solar Wind Charge Exchange Emission

    NASA Technical Reports Server (NTRS)

    Snowden, S. L.; Collier, M. R.; Kuntz, K. D.

    2004-01-01

    We present an XMM-Newton spectrum of diffuse X-ray emission from within the solar system. The spectrum is dominated by O VII and O VIII lines at 0.57 keV and 0.65 keV, O VIII (and possibly Fe XVII) lines at approximately 0.8 keV, Ne IX lines at approximately 0.92 keV, and Mg XI lines at approximately 1.35 keV. This spectrum is consistent with what is expected from charge exchange emission between the highly ionized solar wind and either interstellar neutrals in the heliosphere or material from Earth's exosphere. The emission is clearly seen as a low-energy ( E less than 1.5 keV) spectral enhancement in one of a series of observations of the Hubble Deep Field North. The X-ray enhancement is concurrent with an enhancement in the solar wind measured by the ACE satellite. The solar wind enhancement reaches a flux level an order of magnitude more intense than typical fluxes at 1 AU, and has ion ratios with significantly enhanced higher ionization states. Whereas observations of the solar wind plasma made at a single point reflect only local conditions which may only be representative of solar wind properties with spatial scales ranging from less than half of an Earth radii (approximately 10 s) to 100 Earth radii, X-ray observations of solar wind charge exchange are remote sensing measurements which may provide observations which are significantly more global in character. Besides being of interest in its own right for studies of the solar system, this emission can have significant consequences for observations of more cosmological objects. It can provide emission lines at zero redshift which are of particular interest (e.g., O VII and O VIII) in studies of diffuse thermal emission, and which can therefore act as contamination in objects which cover the entire detector field of view. We propose the use of solar wind monitoring data, such as from the ACE and Wind spacecraft, as a diagnostic to screen for such possibilities.

  8. An Airborne Infrared Spectrometer for Solar Eclipse Observations

    NASA Astrophysics Data System (ADS)

    Samra, Jenna; DeLuca, Edward E.; Golub, Leon; Cheimets, Peter; Philip, Judge

    2016-05-01

    The airborne infrared spectrometer (AIR-Spec) is an innovative solar spectrometer that will observe the 2017 solar eclipse from the NSF/NCAR High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER). AIR-Spec will image five infrared coronal emission lines to determine whether they may be useful probes of coronal magnetism.The solar magnetic field provides the free energy that controls coronal heating, structure, and dynamics. Energy stored in coronal magnetic fields is released in flares and coronal mass ejections and ultimately drives space weather. Therefore, direct coronal field measurements have significant potential to enhance understanding of coronal dynamics and improve solar forecasting models. Of particular interest are observations of field lines in the transitional region between closed and open flux systems, providing important information on the origin of the slow solar wind.While current instruments routinely observe only the photospheric and chromospheric magnetic fields, AIR-Spec will take a step toward the direct observation of coronal fields by measuring plasma emission in the infrared at high spatial and spectral resolution. During the total solar eclipse of 2017, AIR-Spec will observe five magnetically sensitive coronal emission lines between 1.4 and 4 µm from the HIAPER Gulfstream V at an altitude above 14.9 km. The instrument will measure emission line intensity, width, and Doppler shift, map the spatial distribution of infrared emitting plasma, and search for waves in the emission line velocities.AIR-Spec consists of an optical system (feed telescope, grating spectrometer, and infrared detector) and an image stabilization system, which uses a fast steering mirror to correct the line-of-sight for platform perturbations. To ensure that the instrument meets its research goals, both systems are undergoing extensive performance modeling and testing. These results are shown with reference to the science requirements.

  9. Normal incidence X-ray telescope power spectra of X-ray emission from solar active regions. I - Observations. II - Theory

    NASA Technical Reports Server (NTRS)

    Gomez, Daniel O.; Martens, Petrus C. H.; Golub, Leon

    1993-01-01

    Fourier analysis is applied to very high resolution image of coronal active regions obtained by the Normal Incidence X-Ray Telescope is used to find a broad isotropic power-law spectrum of the spatial distribution of soft X-ray intensities. Magnetic structures of all sizes are present down to the resolution limit of the instrument. Power spectra for the X-ray intensities of a sample of topologically different active regions are found which fall off with increasing wavenumber as 1/k-cubed. A model is presented that relates the basic features of coronal magnetic fluctuations to the subphotospheric hydrodynamic turbulence that generates them. The model is used to find a theoretical power spectrum for the X-ray intensity which falls off with increasing wavenumber as 1/k-cubed. The implications of a turbulent regime in active regions are discussed.

  10. Statistics of Multi-Wavelength Solar Flare Observations

    NASA Astrophysics Data System (ADS)

    Milligan, Ryan O.

    2016-05-01

    Our current fleet of space-based solar observatories offer us a wealth of opportunities to study solar flares over a range of wavelengths, and the greatest advances in our understanding of flare physics often come from coordinated observations between different instruments. However, despite considerable effort to try and coordinate this armada of instruments over the years (e.g. through the Max Millennium Program of Solar Flare Research), there are frustratingly few solar flares that have been well and truly observed by most or all instruments simultaneously. This is due to a range of factors such as instruments having a limited field of view, satellites in low-Earth orbit going into eclipse, and observing schedules being uploaded days in advance. I shall describe a new technique to retrospectively search archival databases for flares jointly observed by RHESSI, SDO/EVE, Hinode/EIS+SOT, and IRIS. I shall also present a summary of how many flares have been observed by different configurations of these instruments since the launch of SDO.

  11. Terahertz Photometer to Observe Solar Flares in Continuum

    NASA Astrophysics Data System (ADS)

    Marcon, Rogerio; Kaufmann, Pierre; Fernandes, Luis Olavo T.; Godoy, Rodolfo; Marun, Adolfo; Bortolucci, Emilio C.; Zakia, Maria Beny; Diniz, José Alexandre; Kudaka, Amauri S.

    2012-02-01

    Solar observations at sub-THz frequencies detected a new flare spectral component peaking in the THz range, simultaneously with the well known microwaves component, bringing challenging constraints for interpretation. Higher THz frequencies observations are needed to understand the nature of the mechanisms occurring in flares. A THz photometer system was developed to observe outside the terrestrial atmosphere on stratospheric balloons or satellites, or at exceptionally transparent ground stations. The telescope was designed to observe the whole solar disk detecting small relative changes in input temperature caused by flares at localized positions. A Golay cell detector is preceded by low-pass filters to suppress visible and near IR radiation, a band-pass filter, and a chopper. A prototype was assembled to demonstrate the new concept and the system performance. It can detect temperature variations smaller than 1 K for data sampled at a rate of 10/s, smoothed for intervals larger than 4 s. For a 76 mm aperture, this corresponds to small solar burst intensities at THz frequencies. A system with 3 and 7 THz photometers is being built for solar flare observations on board of stratospheric balloon missions.

  12. Investigation of relationships between parameters of solar nano-flares and solar activity

    NASA Astrophysics Data System (ADS)

    Safari, Hossein; Javaherian, Mohsen; Kaki, Bardia

    2016-07-01

    Solar flares are one of the important coronal events which are originated in solar magnetic activity. They release lots of energy during the interstellar medium, right after the trigger. Flare prediction can play main role in avoiding eventual damages on the Earth. Here, to interpret solar large-scale events (e.g., flares), we investigate relationships between small-scale events (nano-flares) and large-scale events (e.g., flares). In our method, by using simulations of nano-flares based on Monte Carlo method, the intensity time series of nano-flares are simulated. Then, the solar full disk images taken at 171 angstrom recorded by SDO/AIA are employed. Some parts of the solar disk (quiet Sun (QS), coronal holes (CHs), and active regions (ARs)) are cropped and the time series of these regions are extracted. To compare the simulated intensity time series of nano-flares with the intensity time series of real data extracted from different parts of the Sun, the artificial neural networks is employed. Therefore, we are able to extract physical parameters of nano-flares like both kick and decay rate lifetime, and the power of their power-law distributions. The procedure of variations in the power value of power-law distributions within QS, CH is similar to AR. Thus, by observing the small part of the Sun, we can follow the procedure of solar activity.

  13. HIGH SPATIAL RESOLUTION OBSERVATIONS OF LOOPS IN THE SOLAR CORONA

    SciTech Connect

    Brooks, David H.; Ugarte-Urra, Ignacio; Warren, Harry P.; Winebarger, Amy R.

    2013-08-01

    Understanding how the solar corona is structured is of fundamental importance to determine how the Sun's upper atmosphere is heated to high temperatures. Recent spectroscopic studies have suggested that an instrument with a spatial resolution of 200 km or better is necessary to resolve coronal loops. The High Resolution Coronal Imager (Hi-C) achieved this performance on a rocket flight in 2012 July. We use Hi-C data to measure the Gaussian widths of 91 loops observed in the solar corona and find a distribution that peaks at about 270 km. We also use Atmospheric Imaging Assembly data for a subset of these loops and find temperature distributions that are generally very narrow. These observations provide further evidence that loops in the solar corona are often structured at a scale of several hundred kilometers, well above the spatial scale of many proposed physical mechanisms.

  14. Solar flare accelerated isotopes of hydrogen and helium. [observed by IMP-4 and IMP-5

    NASA Technical Reports Server (NTRS)

    Anglin, J. D.; Dietrich, W. F.; Simpson, J. A.

    1973-01-01

    Measurements of solar flare hydrogen, deuterium, tritium, helium-3, and helium-4 in the energy range approximately 10 to 50 MeV per nucleon obtained with instrumentation on the IMP-4 and IMP-5 satellites are reported and studies based on these results which place several constraints on theories of solar flare particle acceleration are discussed. A brief review of previous work and the difficulties in studying the rare isotopes of hydrogen and helium is also included. Particular emphasis is placed on the fact that the information to be obtained from the solar flare products of high energy interactions is not available through either solar wind observations where both the acceleration mechanism and the coronal source of the nuclear species are different, or optical measurements of solar active regions.

  15. Emission Patterns of Solar Type III Radio Bursts: Stereoscopic Observations

    NASA Technical Reports Server (NTRS)

    Thejappa, G.; MacDowall, R.; Bergamo, M.

    2012-01-01

    Simultaneous observations of solar type III radio bursts obtained by the STEREO A, B, and WIND spacecraft at low frequencies from different vantage points in the ecliptic plane are used to determine their directivity. The heliolongitudes of the sources of these bursts, estimated at different frequencies by assuming that they are located on the Parker spiral magnetic field lines emerging from the associated active regions into the spherically symmetric solar atmosphere, and the heliolongitudes of the spacecraft are used to estimate the viewing angle, which is the angle between the direction of the magnetic field at the source and the line connecting the source to the spacecraft. The normalized peak intensities at each spacecraft Rj = Ij /[Sigma]Ij (the subscript j corresponds to the spacecraft STEREO A, B, and WIND), which are defined as the directivity factors are determined using the time profiles of the type III bursts. It is shown that the distribution of the viewing angles divides the type III bursts into: (1) bursts emitting into a very narrow cone centered around the tangent to the magnetic field with angular width of approximately 2 deg and (2) bursts emitting into a wider cone with angular width spanning from [approx] -100 deg to approximately 100 deg. The plots of the directivity factors versus the viewing angles of the sources from all three spacecraft indicate that the type III emissions are very intense along the tangent to the spiral magnetic field lines at the source, and steadily fall as the viewing angles increase to higher values. The comparison of these emission patterns with the computed distributions of the ray trajectories indicate that the intense bursts visible in a narrow range of angles around the magnetic field directions probably are emitted in the fundamental mode, whereas the relatively weaker bursts visible to a wide range of angles are probably emitted in the harmonic mode.

  16. An Assessment of Magnetic Conditions for Strong Coronal Heating in Solar Active Regions by Comparing Observed Loops with Computed Potential Field Lines

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Gary, G. A.; Moore, R. L.; Porter, J. G.

    1998-01-01

    We report further results on the magnetic origins of coronal heating found from combining coronal images with photospheric magnetograms. Here, for two complementary active regions, we compare the measured photospheric magnetic roots, extrapolated potential fields, and the distribution of bright coronal loops, to examine the global nonpotentiality of bright extended coronal loops and the three-dimensional structure of the magnetic field at their feet and to assess the role of these magnetic conditions in the strong coronal heating in these loops.

  17. Long-Range Solar Activity Predictions: A Reprieve from Cycle #24's Activity

    NASA Technical Reports Server (NTRS)

    Richon, K.; Schatten, K.

    2003-01-01

    We discuss the field of long-range solar activity predictions and provide an outlook into future solar activity. Orbital predictions for satellites in Low Earth Orbit (LEO) depend strongly on exospheric densities. Solar activity forecasting is important in this regard, as the solar ultra-violet (UV) and extreme ultraviolet (EUV) radiations inflate the upper atmospheric layers of the Earth, forming the exosphere in which satellites orbit. Rather than concentrate on statistical, or numerical methods, we utilize a class of techniques (precursor methods) which is founded in physical theory. The geomagnetic precursor method was originally developed by the Russian geophysicist, Ohl, using geomagnetic observations to predict future solar activity. It was later extended to solar observations, and placed within the context of physical theory, namely the workings of the Sun s Babcock dynamo. We later expanded the prediction methods with a SOlar Dynamo Amplitude (SODA) index. The SODA index is a measure of the buried solar magnetic flux, using toroidal and poloidal field components. It allows one to predict future solar activity during any phase of the solar cycle, whereas previously, one was restricted to making predictions only at solar minimum. We are encouraged that solar cycle #23's behavior fell closely along our predicted curve, peaking near 192, comparable to the Schatten, Myers and Sofia (1996) forecast of 182+/-30. Cycle #23 extends from 1996 through approximately 2006 or 2007, with cycle #24 starting thereafter. We discuss the current forecast of solar cycle #24, (2006-2016), with a predicted smoothed F10.7 radio flux of 142+/-28 (1-sigma errors). This, we believe, represents a reprieve, in terms of reduced fuel costs, etc., for new satellites to be launched or old satellites (requiring reboosting) which have been placed in LEO. By monitoring the Sun s most deeply rooted magnetic fields; long-range solar activity can be predicted. Although a degree of uncertainty

  18. Solar Energy Education. Home economics: student activities. Field test edition

    SciTech Connect

    Not Available

    1981-03-01

    A view of solar energy from the standpoint of home economics is taken in this book of activities. Students are provided information on solar energy resources while performing these classroom activities. Instructions for the construction of a solar food dryer and a solar cooker are provided. Topics for study include window treatments, clothing, the history of solar energy, vitamins from the sun, and how to choose the correct solar home. (BCS)

  19. Forbush Decrease Prediction Based on Remote Solar Observations

    NASA Astrophysics Data System (ADS)

    Dumbovic, Mateja; Vrsnak, Bojan; Calogovic, Jasa

    2016-04-01

    We study the relation between remote observations of coronal mass ejections (CMEs), their associated solar flares and short-term depressions in the galactic cosmic-ray flux (so called Forbush decreases). Statistical relations between Forbush decrease magnitude and several CME/flare parameters are examined. In general we find that Forbush decrease magnitude is larger for faster CMEs with larger apparent width, which is associated with stronger flares that originate close to the center of the solar disk and are (possibly) involved in a CME-CME interaction. The statistical relations are quantified and employed to forecast expected Forbush decrease magnitude range based on the selected remote solar observations of the CME and associated solar flare. Several verification measures are used to evaluate the forecast method. We find that the forecast is most reliable in predicting whether or not a CME will produce a Forbush decrease with a magnitude >3 %. The main advantage of the method is that it provides an early prediction, 1-4 days in advance. Based on the presented research, an online forecast tool was developed (Forbush Decrease Forecast Tool, FDFT) available at Hvar Observatory web page: http://oh.geof.unizg.hr/FDFT/fdft.php. We acknowledge the support of Croatian Science Foundation under the project 6212 „Solar and Stellar Variability" and of European social fond under the project "PoKRet".

  20. Solar Spectral Irradiance, Solar Activity, and the Near-Ultra-Violet

    NASA Astrophysics Data System (ADS)

    Fontenla, J. M.; Stancil, P. C.; Landi, E.

    2015-08-01

    The previous calculations of the Solar Spectral Irradiance (SSI) by the Solar Radiation Physical Modeling, version 2 system, are updated in this work by including new molecular photodissociation cross-sections of important species, and many more levels and lines in its treatment of non-LTE radiative transfer. The current calculations including the new molecular photodissociation opacities produce a reduced over-ionizaton of heavy elements in the lower chromosphere and solve the problems with prior studies of the UV SSI in the wavelength range 160-400 nm and now reproduce the available observations with much greater accuracy. Calculations and observations of the near-UV at 0.1 nm resolution and higher are compared. The current set of physical models includes four quiet-Sun and five active-region components, from which radiance is computed for ten observing angles. These radiances are combined with images of the solar disk to obtain the SSI and Total Solar Irradiance and their variations. The computed SSI is compared with measurements from space at several nm resolution and agreement is found within the accuracy level of these measurements. An important result is that the near-UV SSI increase with solar activity is significant for the photodissociation of ozone in the terrestrial atmosphere because a number of highly variable upper chromospheric lines overlap the ozone Hartley band.

  1. Polarimetry of Solar System Objects: Observations vs. Models

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, P. A.

    2014-04-01

    The overarching goals for the remote sensing and robotic exploration of planetary systems are: (1) understanding the formation of planetary systems and their diversity; and (2) search for habitability. Since all objects have unique polarimetric signatures inclusion of spectrophotopolarimetry as a complementary approach to standard techniques of imaging and spectroscopy, provides insight into the scattering properties of the planetary media. Specifically, linear and circular polarimetric signatures of the object arise from different physical processes and their study proves essential to the characterization of the object. Linear polarization of reflected light by various solar system objects provides insight into the scattering characteristics of atmospheric aerosols and hazes? and surficial properties of atmosphereless bodies. Many optically active materials are anisotropic and so their scattering properties differ with the object's principal axes (such as dichroic or birefringent materials) and are crystalline in structure instead of amorphous, (eg., the presence of olivines and silicates in cometary dust and circumstellar disks? Titan, etc.). Ices (water and other species) are abundant in the system indicated in their near - infrared spectra. Gas giants form outside the frost line (where ices condense), and their satellites and ring systems exhibit signature of water ice? clathrates, nonices (Si, C, Fe) in their NIR spectra and spectral dependence of linear polarization. Additionally, spectral dependence of polarization is important to separate the macroscopic (bulk) properties of the scattering medium from the microscopic (particulate) properties of the scattering medium. Circular polarization, on the other hand, is indicative of magnetic fields and biologically active molecules, necessary for habitability. These applications suffer from lack of detailed observations, instrumentation, dedicated missions and numericalretrieval methods. With recent discoveries and

  2. Common SphinX and RHESSI observations of solar flares

    NASA Astrophysics Data System (ADS)

    Mrozek, T.; Gburek, S.; Siarkowski, M.; Sylwester, B.; Sylwester, J.; Gryciuk, M.

    The Polish X-ray spectrofotometer SphinX has observed a great number of solar flares in the year 2009 - during the most quiet solar minimum almost over the last 100 years. Hundreds of flares have been recorded due to excellent sensitivity of SphinX's detectors. The Si-PIN diodes are about 100 times more sensitive to X-rays than GOES X-ray Monitors. SphinX detectors were absolutely calibrated on Earth with a use of the BESSY synchrotron. In space observations were made in the range 1.2-15~keV with 480~eV energy resolution. SphinX data overlap with the low-energy end of the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) data. RHESSI detectors are quite old (7 years in 2009), but still sensitive enough to provide us with observations of extremely weak solar flares such as those which occurred in 2009. We have selected a group of flares simultaneously observed by RHESSI and SphinX and performed a spectroscopic analysis of the data. Moreover, we compared the physical parameters of these flares plasma. Preliminary results of the comparison show very good agreement between both instruments.

  3. Suzaku Observations of Charge Exchange Emission from Solar System Objects

    NASA Technical Reports Server (NTRS)

    Ezoe, Y.; Fujimoto, R.; Yamasaki, N. Y.; Mitsuda, K.; Ohashi, T.; Ishikawa, K.; Oishi, S.; Miyoshi, Y; Terada, N.; Futaana, Y.; Porter, F. S.; Brown, G. V.

    2012-01-01

    Recent results of charge exchange emission from solar system objects observed with the Japanese Suzaku satellite are reviewed. Suzaku is of great importance to investigate diffuse X-ray emission like the charge exchange from planetary exospheres and comets. The Suzaku studies of Earth's exosphere, Martian exosphere, Jupiter's aurorae, and comets are overviewed.

  4. The solar wind effect on cosmic rays and solar activity

    NASA Technical Reports Server (NTRS)

    Fujimoto, K.; Kojima, H.; Murakami, K.

    1985-01-01

    The relation of cosmic ray intensity to solar wind velocity is investigated, using neutron monitor data from Kiel and Deep River. The analysis shows that the regression coefficient of the average intensity for a time interval to the corresponding average velocity is negative and that the absolute effect increases monotonously with the interval of averaging, tau, that is, from -0.5% per 100km/s for tau = 1 day to -1.1% per 100km/s for tau = 27 days. For tau 27 days the coefficient becomes almost constant independently of the value of tau. The analysis also shows that this tau-dependence of the regression coefficiently is varying with the solar activity.

  5. The birth and evolution of solar active regions

    NASA Astrophysics Data System (ADS)

    Gaizauskas, V.

    1993-09-01

    The growth of solar active regions is a well-observed surface phenomenon with its origins concealed in the solar interior. We review the salient facts about the emergence of active regions and the consequences of their growth on the solar atmosphere. The most powerful flares, the ones which display a range of phenomena that still pose serious challenges for high-energy astrophysics, are associated with regions of high magnetic complexity. How does that degree of complexity arise when the vast majority of active regions are simple bipolar entities? In order to gain some insight into that problem, we compare the emergence of magnetic flux in ordinary regions with an instance when magnetic complexity is apparent from the very first appearance of a new region - clearly a subsurface prefabrication of complexity - and with others wherein a new region interacts with a pre-existing one to create the complexity in plain view.

  6. Correlation of nighttime MF signal strength with solar activity

    NASA Astrophysics Data System (ADS)

    Kohata, Hiroki; Kimura, Iwane; Wakai, Noboru; Ogawa, Tadahiko

    Observations of the signal strength of MF broadcasting signals (774/770 kHz) transmitted from Akita, Japan, on board the Japanese Antarctic ice breaker Fuji, bound from Japan to Syowa station, Antarctica, have revealed an interesting positive correlation between strengths of long distance signals propagating at night and solar activity. It is already known that MF propagation characteristics in North America show a negative correlation with solar activity. The present paper, interprets the results by using the multihop method with full-wave analysis. The difference in correlation with solar activity between the results of Fuji and those in North America can be elucidated if it is assumed that there is a ledge in the electron-density profile around an altitude range of 85 to 90 km and that the density of the ledge is smaller in the North American region than in the equatorial region.

  7. Max '91 Workshop 2: Developments in Observations and Theory for Solar Cycle 22

    NASA Technical Reports Server (NTRS)

    Winglee, Robert M. (Editor); Dennis, Brian R. (Editor)

    1989-01-01

    Papers and observatory reports presented at the second workshop of the Max '91 program are compiled along with discussion group summaries and invited reviews. The four discussion groups addressed the following subjects: high-energy flare physics; coordinated magnetograph observations; flare theory and modeling; and Max '91 communications and coordination. A special session also took place on observations of Active Region 5395 and the associated flares of March 1989. Other topics covered during the workshop include the scientific objectives of solar gamma ray observations, the solar capabilities of each of the four instruments on the Gamma Ray Observatory, and access to Max '91 information.

  8. Titan's haze as seen by VIMS during solar occultation observations

    NASA Astrophysics Data System (ADS)

    Sotin, Christophe; Lawrence, Ken; Xu, Fang; West, Robert; Brown, Robert; Baines, Kevin; Buratti, Bonnie; Clark, Roger; Micholson, Phil

    2016-06-01

    This study describe solar occultation observations of Titan's atmosphere by the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft. These observations include two recent observations made in the last few months. The solar occultation observations have been made at different latitudes and seasons, which allows us to investigate the variability of the density profile of aerosols. We present the line curves in the different atmospheric windows, and the data processing and the inversion method to retrieve vertical density profile. This unique data set provides information on Titan's opacity in the atmospheric windows, which is important to retrieve the surface properties. It also provides information on the cross-subsection of the aerosols as a function of wavelength in the wavelength range 1 to 5 micron.

  9. Solar Wind Characteristics from SOHO-Sun-Ulysses Quadrature Observations

    NASA Technical Reports Server (NTRS)

    Poletto, Giannina; Suess, Steve T.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Over the past few years, we have been running SOHO (Solar and Heliospheric Observatory)-Sun-Ulysses quadrature campaigns, aimed at comparing the plasma properties at coronal altitudes with plasma properties at interplanetary distances. Coronal plasma has been observed by SOHO experiments: mainly, we used LASCO (Large Angle and Spectrometric Coronagraph Experiment) data to understand the overall coronal configuration at the time of quadratures and analyzed SUMER (Solar Ultraviolet Measurements of Emitted Radiation), CDS (Coronal Diagnostic Spectrometer) and UVCS (Ultraviolet Coronagraph Spectrometer) data to derive its physical characteristics. At interplanetary distances, SWICS (Solar Wind Ion Composition Spectrometer) and SWOOPS (Solar Wind Observation over the Poles of the Sun) aboard Ulysses provided us with interplanetary plasma data. Here we report on results from some of the campaigns. We notice that, depending on the geometry of the quadrature, i.e. on whether the radial to Ulysses traverses the corona at high or low latitudes, we are able to study different kinds of solar wind. In particular, a comparison between low-latitude and high-latitude wind, allowed us to provide evidence for differences in the acceleration of polar, fast plasma and equatorial, slow plasma: the latter occurring at higher levels and through a more extended region than fast wind. These properties are shared by both the proton and heavy ions outflows. Quadrature observations may provide useful information also on coronal vs. in situ elemental composition. To this end, we analyzed spectra taken in the corona, at altitudes ranging between approx. 1.02 and 2.2 solar radii, and derived the abundances of a number of ions, including oxygen and iron. Values of the O/Fe ratio, at coronal levels, have been compared with measurements of this ratio made by SWICS at interplanetary distances. Our results are compared with previous findings and predictions from modeling efforts.

  10. A New Challenge to Solar Dynamo Models from Helioseismic Observations: The Latitudinal Dependence of the Progression of the Solar Cycle

    NASA Astrophysics Data System (ADS)

    Simoniello, R.; Tripathy, S. C.; Jain, K.; Hill, F.

    2016-09-01

    The onset of the solar cycle at mid-latitudes, the slowdown in the drift of sunspots toward the equator, the tail-like attachment, and the overlap of successive cycles at the time of minimum activity are delicate issues in models of the αΩ dynamo wave and the flux transport dynamo. Very different parameter values produce similar results, making it difficult to understand the origin of the properties of these solar cycles. We use helioseismic data from the Global Oscillation Network Group to investigate the progression of the solar cycle as observed in intermediate-degree global p-mode frequency shifts at different latitudes and subsurface layers, from the beginning of solar cycle 23 up to the maximum of the current solar cycle. We also analyze those for high-degree modes in each hemisphere obtained through the ring-diagram technique of local helioseismology. The analysis highlights differences in the progression of the cycle below 15° compared to higher latitudes. While the cycle starts at mid-latitudes and then migrates equatorward/poleward, the sunspot eruptions of the old cycle are still ongoing below 15° latitude. This prolonged activity causes a delay in the onset of the cycle and an overlap of successive cycles, whose extent differs in the two hemispheres. Then the activity level rises faster, reaching a maximum characterized by a single-peak structure as opposed to the double peak at higher latitudes. Afterwards the descending phase shows up with a slower decay rate. The latitudinal properties of the progression of the solar cycle highlighted in this study provide useful constraints for discerning among the multitude of solar dynamo models.

  11. A New Ground-Based Network for Synoptic Solar Observations: The Solar Physics Research Integrated Network Group (SPRING)

    NASA Astrophysics Data System (ADS)

    Hill, Frank; Roth, Markus; Thompson, Michael; Gusain, Sanjay

    2014-06-01

    SPRING is a project to develop a geographically distributed network of instrumentation to obtain synoptic solar observations. Building on the demonstrated success of networks to provide nearly-continuous long-term data for helioseismology, SPRING will provide data for a wide range of solar research areas. Scientific objectives include internal solar dynamics and structure; wave transport in the solar atmosphere; the evolution of the magnetic field over the activity cycle; irradiance fluctuations; and space weather origins. Anticipated data products include simultaneous full-disk multi-wavelength Doppler and vector magnetic field images; filtergrams in H-Alpha, CaK, and white light; and PSPT-type irradiance support. The data will be obtained with a duty cycle of around 90% and at a cadence no slower than one minute. The current concept is a multi-instrument platform installed in at least six locations, and which will also provide context information for large-aperture solar telescopes such as EST and the DKIST. There is wide support for the idea within the EU and the US solar research communities. The project is in the early planning stages, and we are open to and looking for participants in the science and instrument definition.

  12. Remote-sensing Observations of the Corona and Solar Wind

    NASA Astrophysics Data System (ADS)

    Sheeley, Neil R., Jr.

    2009-05-01

    On June 25, 1908, George Ellery Hale used the 60-foot Tower Telescope on Mount Wilson to make the first measurements of magnetic fields in sunspots. This began a series of studies that led to Hale's Law of sunspot polarities and established the Mount Wilson Observatory as a leading center of solar magnetic field research. The magnetic aura was still present in 1962 when I began solar research there as a Caltech graduate student. Mount Wilson astronomer Horace Babcock and his father had invented the solar magnetograph, discovered the polar fields of the Sun, and observed their reversal near the 1958 sunspot maximum. Caltech physicist Robert Leighton had added new instrumentation to the Mount Wilson spectroheliograph and obtained high-resolution maps of the magnetic field. Babcock had just published his classic paper on the topology of the field and its 22-year cycle. The paper contained a sketch, illustrating the coronal field-line reconnection, which he thought must occur in response to changes of the photospheric field. Some loops flew away in the yet-to-be-discovered solar wind and other loops collapsed back to the Sun. In this talk, I will present new observations from the SOHO and STEREO spacecraft, which show such coronal changes. Loops stretch out in the expanding corona and tear away from the Sun like drops from a leaky faucet. Simultaneous observations with different perspectives show that the detached loops are really helices in 3-D. Off-pointed heliospheric imagers allow us to track these ejections outward past planets (including Earth) and comets, and to observe their compression into a heliospheric spiral, as a consequence of longitudinal speed gradients on the rotating Sun. And XUV observations of the solar disk show brightness changes associated with reconnections high in the corona, like auroral displays in the magnetosphere.

  13. OBSERVATION OF ULTRAFINE CHANNELS OF SOLAR CORONA HEATING

    SciTech Connect

    Ji, Haisheng; Cao, Wenda; Goode, Philip R.

    2012-05-01

    We report the first direct observations of dynamical events originating in the Sun's photosphere and subsequently lighting up the corona. Continuous small-scale, impulsive events have been tracked from their origin in the photosphere on through to their brightening of the local corona. We achieve this by combining high-resolution ground-based data from the 1.6 m aperture New Solar Telescope (NST) at Big Bear Solar Observatory (BBSO), and satellite data from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). The NST imaging observations in helium I 10830 A reveal unexpected complexes of ultrafine, hot magnetic loops seen to be reaching from the photosphere to the base of the corona. Most of these ultrafine loops are characterized by an apparently constant, but surprisingly narrow diameter of about 100 km all along each loop, and the loops originate on the solar surface from intense, compact magnetic field elements. The NST observations detect the signature of upward injections of hot plasma that excite the ultrafine loops from the photosphere to the base of the corona. The ejecta have their individual footpoints in the intergranular lanes between the Sun's ubiquitous, convectively driven granules. In many cases, AIA/SDO detects cospatial and cotemporal brightenings in the overlying, million degree coronal loops in conjunction with the upward injections along the ultrafine loops. Segments of some of the more intense upward injections are seen as rapid blueshifted events in simultaneous H{alpha} blue wing images observed at BBSO. In sum, the observations unambiguously show impulsive coronal heating events from upward energy flows originating from intergranular lanes on the solar surface accompanied by cospatial mass flows.

  14. The solar observations at Armagh Observatory in 1795-1797

    NASA Astrophysics Data System (ADS)

    Arlt, R.

    2009-04-01

    This article reports on solar observations by J.A. Hamilton and W. Gimingham at Armagh Observatory made in 1795-1797. A number of sunspot positions were obtained from the original observing notes, mostly from micrometer measurements. The period is particularly interesting for the understanding of the onset of the Dalton minimum and a possible minor cycle between the Cycles 4 and 5. For the same period, sunspot positions recorded by Staudacher were measured and published in an earlier paper.

  15. Ion kinetic scale in the solar wind observed.

    PubMed

    Śafránková, Jana; Němeček, Zdeněk; Přech, Lubomír; Zastenker, Georgy N

    2013-01-11

    This Letter shows the first results from the solar wind monitor onboard the Spektr-R spacecraft which measures plasma moments with a time resolution of 31 ms. This high-time resolution allows us to make direct observations of solar wind turbulence below ion kinetic length scales. We present examples of the frequency spectra of the density, velocity, and thermal velocity. Our study reveals that although these parameters exhibit the same behavior at the magnetohydrodynamic scale, their spectra are remarkably different at the kinetic scale.

  16. Common observations of solar X-rays from SPHINX/CORONAS-PHOTON and XRS/MESSENGER

    NASA Astrophysics Data System (ADS)

    Kepa, Anna; Sylwester, Janusz; Sylwester, Barbara; Siarkowski, Marek; Mrozek, Tomasz; Gryciuk, Magdalena; Phillips, Kenneth

    SphinX was a soft X-ray spectrophotometer constructed in the Space Research Centre of Polish Academy of Sciences. The instrument was launched on 30 January 2009 aboard CORONAS-PHOTON satellite as a part of TESIS instrument package. SphinX measured total solar X-ray flux in the energy range from 1 to 15 keV during the period of very low solar activity from 20 February to 29 November 2009. For these times the solar detector (X-ray Spectrometer - XRS) onboard MESSENGER also observed the solar X-rays from a different vantage point. XRS measured the radiation in similar energy range. We present results of the comparison of observations from both instruments and show the preliminary results of physical analysis of spectra for selected flares.

  17. Modeling electron density, temperature distribution in the solar corona based on solar surface magnetic field observations

    NASA Astrophysics Data System (ADS)

    Lago, A.; Rodríguez, J. M.; Vieira, L.; Coelho Stekel, T. R.; Costa, J. E. R.; Pinto, T. S. N.

    2015-12-01

    Magnetic fields constitute a natural link between the Sun, the Earth and the Heliosphere in general. The solar dynamo action maintains and strengthens the magnetic field in the solar interior. The structure of the solar corona is mostly determined by the configuration and evolution of the magnetic field. While open magnetic field lines carry plasma into the heliosphere, closed field lines confine plasma. Additionally, key physical processes that impact the evolution of Earth's atmosphere on time-scale from days to millennia, such as the soft X-ray and EUV emission, are also determined by the solar magnetic field. However, observations of the solar spectral irradiance are restricted to the last few solar cycles and are subject to large uncertainties. Here we present a physics-based model to reconstruct in near-real time the evolution of the solar EUV emission based on the configuration of the magnetic field imprinted on the solar surface and assuming that the emission lines are optically thin. The structure of the coronal magnetic field is estimated employing a potential field source surface extrapolation based on the synoptic charts. The coronal plasma temperature and density are described by a hydrostatic model. The emission is estimated to employ the CHIANTI database. The performance of the model is compared to the emission observed by EVE instrument on board SDO spacecraft. The preliminary results and uncertainties are discussed in details. Furthermore, we examine the possibility of delivery the reconstruction of the solar spectral irradiance in near-real time using the infrastructure provided by the Brazilian Space weather program (EMBRACE/INPE). This work is partially supported by CNPq/Brazil under the grant agreement no. 140779/2015-9.

  18. Solar activity geomagnetic field and terrestrial weather

    NASA Technical Reports Server (NTRS)

    Knight, J. W.; Sturrock, P. A.

    1976-01-01

    Spectral analysis is used as an independent test of the reported association between interplanetary-magnetic-field structure and terrestrial weather. Spectra of the Ap geomagnetic activity index and the vorticity area index for the years from 1964 to 1970 are examined for common features that may be associated with solar-related phenomena, specifically for peaks in the power spectra of both time series with periods near 27.1 days. The spectra are compared in three ways, and the largest peak with the smallest probability estimate is found to occur at a period of 27.49 days. This result is considered to be statistically significant at the 98% level. It is concluded that the period derived from the Ap spectrum is related to solar rotation and that the analysis provides supporting evidence for a connection between the vorticity area index and solar activity.

  19. The Need for Synoptic Solar Observations from the Ground

    NASA Astrophysics Data System (ADS)

    Pevtsov, A. A.

    2016-04-01

    Synoptic observations are indispensable in studies of long-term effects pertinent to variation in solar radiative output, space weather and space climate, as well as for understanding the physics of global processes taking place on our nearest star. Synoptic data also allow putting the Sun in the context of stellar evolution. Historically, the main-stay of such observations has been groundbased although the improving longevity of space-borne instruments puts some space missions into the category of synoptic facilities. Space- and groundbased (synoptic) observations are complementary to each other; neither is inferior or superior to the other. Groundbased facilities can have a long-term (50 years+) operations horizon, and in comparison with their spacebased counterparts, they are less expensive to operate and have fewer restrictions on international collaboration and data access. The instruments can be serviced, upgraded, and cross-calibrated to ensure the continuity and uniformity of long-term data series. New measurements could be added in response to changes in understanding the solar phenomena. Some drawbacks such as day-night cycle and the variable atmospheric seeing can be mitigated e.g., by creating global networks and by employing adaptive optics. Furthermore, the groundbased synoptic observations can serve as a backbone and a back-up to spacebased observations. Here I review some existing groundbased synoptic facilities, describe plans for future networks, and outline the current efforts in strengthening the international collaboration in synoptic solar observations from the ground.

  20. Ulysses solar wind plasma observations at high southerly latitudes.

    PubMed

    Phillips, J L; Bame, S J; Feldman, W C; Gosling, J T; Hammond, C M; McComas, D J; Goldstein, B E; Neugebauer, M; Scime, E E; Suess, S T

    1995-05-19

    Solar wind plasma observations made by the Ulysses spacecraft through -80.2 degrees solar latitude and continuing equatorward to -40.1 degrees are summarized. Recurrent high-speed streams and corotating interaction regions dominated at middle latitudes. The speed of the solar wind was typically 700 to 800 kilometers per second poleward of -35 degrees . Corotating reverse shocks persisted farther south than did forward shocks because of the tilt of the heliomagnetic streamer belt. Sporadic coronal mass ejections were seen as far south as -60.5 degrees . Proton temperature was higher and the electron strahl was broader at higher latitudes. The high-latitude wind contained compressional, pressure-balanced, and Alfvénic structures.

  1. Understanding the Solar Sources of In Situ Observations

    NASA Technical Reports Server (NTRS)

    Riley, Pete; Mikic, Zoran; Linker, Jon; Zurbuchen, Thomas H.

    2002-01-01

    The solar wind can, to a good approximation be described as a two component flow with fast, tenuous, quiescent flow emanating from coronal holes, and slow, dense and variable flow associated with the boundary between open and closed magnetic fields. In spite of its simplicity, this picture naturally produces a range of complex heliospheric phenomena, including the presence, location, and orientation of corotating interaction regions and their associated shocks. In this study, we apply a two-step mapping technique, incorporating a magnetohydrodynamic model of the solar corona, to bring in situ observations h m Ulysses, WIND, and ACE back to the solar surface in an effort to determine some intrinsic properties of the quasi-steady solar wind. In particular, we find that a "layer" of approx. 35,000 h n exists between the Coronal Hole Boundary (CHB) and the fast solar wind, where the wind is slow and variable. We also- derive a velocity gradient within large polar coronal boles (that were present during Ulysses rapid latitude scan) as a function of distance from the CHB. We find that nu = 713 km/s + 3.2 d, where d is the angular distance from the CHB boundary in degrees.

  2. Plasma observations of the solar wind interaction with Mars

    NASA Technical Reports Server (NTRS)

    Vaisberg, O. L.; Luhmann, J. G.; Russell, C. T.

    1990-01-01

    Measurements with the plasma analyzers on the Mars-2, 3 and 5 spacecraft show that Mars deflects a large fraction of the incoming solar wind flow to form a strong bow shock. The bow shock is about 1.41 Rm from the center of the planet at the subsolar point and about 2.40 Rm at the terminator. These distances are similar to those for Venus at times of moderate solar activity. The inferred effective obstacle altitude is about 400-700 km. An ion cushion has been found which is similar in its properties to the Venus magnetic barrier. The formation of this cushion appears to cause the deflection of the solar wind. Inside the cushion but well above the ionosphere is found a region where the ions are at the background, the electrons are cool and the magnetic pressure dominates. This region may resemble a planetary magnetosphere.

  3. Seismic Holography of Solar Activity

    NASA Technical Reports Server (NTRS)

    Lindsey, Charles

    2000-01-01

    The basic goal of the project was to extend holographic seismic imaging techniques developed under a previous NASA contract, and to incorporate phase diagnostics. Phase-sensitive imaging gives us a powerful probe of local thermal and Doppler perturbations in active region subphotospheres, allowing us to map thermal structure and flows associated with "acoustic moats" and "acoustic glories". These remarkable features were discovered during our work, by applying simple acoustic power holography to active regions. Included in the original project statement was an effort to obtain the first seismic images of active regions on the Sun's far surface.

  4. Preparing for and Observing the 2017 Total Solar Eclipse

    NASA Astrophysics Data System (ADS)

    Pasachoff, J.

    2015-11-01

    I discuss ongoing plans and discussions for EPO and scientific observing of the 21 August 2017 total solar eclipse. I discuss aspects of EPO based on my experiences at the 60 solar eclipses I have seen. I share cloud statistics along the eclipse path compiled by Jay Anderson, the foremost eclipse meteorologist. I show some sample observations of composite imagery, of spectra, and of terrestrial temperature changes based on observations of recent eclipses, including 2012 from Australia and 2013 from Gabon. Links to various mapping sites of totality, partial phases, and other eclipse-related information, including that provided by Michael Zeiler, Fred Espenak (retired from NASA) and Xavier Jubier can be found on the website I run for the International Astronomical Union's Working Group on Eclipses at http://www.eclipses.info.

  5. Solar Spicules Near and at the Limb, Observed from Hinode

    NASA Technical Reports Server (NTRS)

    Sterling, A. C.; Moore, R. L.

    2010-01-01

    Solar spicules appear as narrow jets emanating from the chromosphere and extending into the corona. They have been observed for over a hundred years, mainly in chromospheric spectral lines such as H-alpha. Because they are at the limit of visibility of ground-based instruments, their nature has long been a puzzle. In recent years however, vast progress has been made in understanding them both theoretically and observationally, as spicule studies have undergone a revolution because of the superior resolution and time cadence of ground-based and space-based instruments. Even more rapid progress is currently underway, due to the Solar Optical Telescope (SOT) instrument on the Hinode spacecraft. Here we present observations of spicules from Hinode SOT, as seen near the limb with the Ca II filtergraph.

  6. Solar Spicules Near and at the Limb, Observed from Hinode

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald

    2009-01-01

    Solar spicules appear as narrow jets emanating from the chromosphere and extending into the corona. They have been observed for over a hundred years, mainly in chromospheric spectral lines such as H-alpha. Because they are at the limit of visibility of ground-based instruments, their nature has long been a puzzle (Beckers 1968, 1972; Sterling 2000). In recent years however, vast progress has been made in understanding them both theoretically and observationally, as spicule studies have undergone a revolution because of the superior resolution and time cadence of ground-based and space-based instruments (e.g., DePontieu et al. 2004). Even more rapid progress is currently underway, due to the Solar Optical Telescope (SOT) instrument on the Hinode spacecraft (e.g., De Pontieu et al. 2007a, 2007b). Here we present observations of spicules from Hinode SOT, as seen near the limb with the Ca II filtergraph.

  7. Solar Energy Project, Activities: Junior High Science.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of the junior high science curriculum. Each unit presents an introduction; objectives; skills and knowledge needed; materials; methods; questions; recommendations for further work; and a teacher information sheet. The teacher…

  8. Solar Energy Project, Activities: Earth Science.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of earth science experiments. Each unit presents an introduction; objectives; skills and knowledge needed; materials; method; questions; recommendations for further study; and a teacher information sheet. The teacher…

  9. Solar Energy Project, Activities: Chemistry & Physics.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of chemistry and physics experiments. Each unit presents an introduction to the unit; objectives; required skills and knowledge; materials; method; questions; recommendations for further work; and a teacher information sheet.…

  10. A SOLAR CYCLE LOST IN 1793-1800: EARLY SUNSPOT OBSERVATIONS RESOLVE THE OLD MYSTERY

    SciTech Connect

    Usoskin, Ilya G.; Mursula, Kalevi; Arlt, Rainer; Kovaltsov, Gennady A.

    2009-08-01

    Because of the lack of reliable sunspot observations, the quality of the sunspot number series is poor in the late 18th century, leading to the abnormally long solar cycle (1784-1799) before the Dalton minimum. Using the newly recovered solar drawings by the 18-19th century observers Staudacher and Hamilton, we construct the solar butterfly diagram, i.e., the latitudinal distribution of sunspots in the 1790s. The sudden, systematic occurrence of sunspots at high solar latitudes in 1793-1796 unambiguously shows that a new cycle started in 1793, which was lost in the traditional Wolf sunspot series. This finally confirms the existence of the lost cycle that has been proposed earlier, thus resolving an old mystery. This Letter brings the attention of the scientific community to the need of revising the sunspot series in the 18th century. The presence of a new short, asymmetric cycle implies changes and constraints to sunspot cycle statistics, solar activity predictions, and solar dynamo theories, as well as for solar-terrestrial relations.

  11. A Solar Cycle Lost in 1793-1800: Early Sunspot Observations Resolve the Old Mystery

    NASA Astrophysics Data System (ADS)

    Usoskin, Ilya G.; Mursula, Kalevi; Arlt, Rainer; Kovaltsov, Gennady A.

    2009-08-01

    Because of the lack of reliable sunspot observations, the quality of the sunspot number series is poor in the late 18th century, leading to the abnormally long solar cycle (1784-1799) before the Dalton minimum. Using the newly recovered solar drawings by the 18-19th century observers Staudacher and Hamilton, we construct the solar butterfly diagram, i.e., the latitudinal distribution of sunspots in the 1790s. The sudden, systematic occurrence of sunspots at high solar latitudes in 1793-1796 unambiguously shows that a new cycle started in 1793, which was lost in the traditional Wolf sunspot series. This finally confirms the existence of the lost cycle that has been proposed earlier, thus resolving an old mystery. This Letter brings the attention of the scientific community to the need of revising the sunspot series in the 18th century. The presence of a new short, asymmetric cycle implies changes and constraints to sunspot cycle statistics, solar activity predictions, and solar dynamo theories, as well as for solar-terrestrial relations.

  12. The solar wind neon abundance observed with ACE/SWICS and ULYSSES/SWICS

    SciTech Connect

    Shearer, Paul; Raines, Jim M.; Lepri, Susan T.; Thomas, Jonathan W.; Gilbert, Jason A.; Landi, Enrico; Zurbuchen, Thomas H.; Von Steiger, Rudolf

    2014-07-01

    Using in situ ion spectrometry data from ACE/SWICS, we determine the solar wind Ne/O elemental abundance ratio and examine its dependence on wind speed and evolution with the solar cycle. We find that Ne/O is inversely correlated with wind speed, is nearly constant in the fast wind, and correlates strongly with solar activity in the slow wind. In fast wind streams with speeds above 600 km s{sup –1}, we find Ne/O = 0.10 ± 0.02, in good agreement with the extensive polar observations by Ulysses/SWICS. In slow wind streams with speeds below 400 km s{sup –1}, Ne/O ranges from a low of 0.12 ± 0.02 at solar maximum to a high of 0.17 ± 0.03 at solar minimum. These measurements place new and significant empirical constraints on the fractionation mechanisms governing solar wind composition and have implications for the coronal and photospheric abundances of neon and oxygen. The results are made possible by a new data analysis method that robustly identifies rare elements in the measured ion spectra. The method is also applied to Ulysses/SWICS data, which confirms the ACE observations and extends our view of solar wind neon into the three-dimensional heliosphere.

  13. A Solar Station for Education and Research on Solar Activity at a National University in Peru

    NASA Astrophysics Data System (ADS)

    Ishitsuka, J. K.

    2006-11-01

    pepe@geo.igp.gob.pe Beginning in 1937, the Carnegie Institution of Washington made active regional observations with a spectro-helioscope at the Huancayo Observatory. In 1957, during the celebration of the International Geophysical Year Mutsumi Ishitsuka arrived at the Geophysical Institute of Peru and restarted solar observations from the Huancayo Observatory. Almost 69 years have passed and many contributions for the geophysical and solar sciences have been made. Now the Instituto Geofisico del Peru (IGP), in cooperation with the Faculty of Sciences of the Universidad Nacional San Luis Gonzaga de Ica (UNICA), and with the support of the National Astronomical Observatory of Japan, are planning to construct a solar station refurbishing a coelostat that worked for many years at the Huancayo Observatory. A 15 cm refractor telescope is already installed at the university, for the observation of sunspots. A solar Flare Monitor Telescope (FMT) from Hida Observatory of Kyoto University could be sent to Peru and installed at the solar station at UNICA. As the refurbished coelostat, FMT will become a good tool to improve education and research in sciences.

  14. Solar observations with a low frequency radio telescope

    NASA Astrophysics Data System (ADS)

    Myserlis, I.; Seiradakis, J.; Dogramatzidis, M.

    2012-01-01

    We have set up a low frequency radio monitoring station for solar bursts at the Observatory of the Aristotle University in Thessaloniki. The station consists of a dual dipole phased array, a radio receiver and a dedicated computer with the necessary software installed. The constructed radio receiver is based on NASA's Radio Jove project. It operates continuously, since July 2010, at 20.1 MHz (close to the long-wavelength ionospheric cut-off of the radio window) with a narrow bandwidth (~5 kHz). The system is properly calibrated, so that the recorded data are expressed in antenna temperature. Despite the high interference level of an urban region like Thessaloniki (strong broadcasting shortwave radio stations, periodic experimental signals, CBs, etc), we have detected several low frequency solar radio bursts and correlated them with solar flares, X-ray events and other low frequency solar observations. The received signal is monitored in ordinary ASCII format and as audio signal, in order to investigate and exclude man-made radio interference. In order to exclude narrow band interference and calculate the spectral indices of the observed events, a second monitoring station, working at 36 MHz, is under construction at the village of Nikiforos near the town of Drama, about 130 km away of Thessaloniki. Finally, we plan to construct a third monitoring station at 58 MHz, in Thessaloniki. This frequency was revealed to be relatively free of interference, after a thorough investigation of the region.

  15. Catawba Science Center solar activities. Final report

    SciTech Connect

    1983-01-01

    Two demonstration solar water heaters were built. One was to be used at the Science Center and the other with traveling programs. This was completed and both units are being used for these programs which continue. We were able to build a library of 99 solar energy books and booklets that are available to the public for reference. We also conducted programs for 683 students of all ages. The culminating activity was the planned Energy Awareness Festival. This was held on September 26, 1981 and attracted 450 area citizens. We offered free exhibit space and hosted 17 exhibitors.

  16. Observation of Space Charge Dynamics Inside an All Oxide Based Solar Cell.

    PubMed

    Panigrahi, Shrabani; Calmeiro, Tomás; Martins, Rodrigo; Nunes, Daniela; Fortunato, Elvira

    2016-06-28

    The charge transfer dynamics at interfaces are fundamental to know the mechanism of photovoltaic processes. The internal potential in solar cell devices depends on the basic processes of photovoltaic effect such as charge carrier generation, separation, transport, recombination, etc. Here we report the direct observation of the surface potential depth profile over the cross-section of the ZnO nanorods/Cu2O based solar cell for two different layer thicknesses at different wavelengths of light using Kelvin probe force microscopy. The topography and phase images across the cross-section of the solar cell are also observed, where the interfaces are well-defined on the nanoscale. The potential profiling results demonstrate that under white light illumination, the photoinduced electrons in Cu2O inject into ZnO due to the interfacial electric field, which results in the large difference in surface potential between two active layers. However, under a single wavelength illumination, the charge carrier generation, separation, and transport processes between two active layers are limited, which affect the surface potential images and corresponding potential depth profile. Because of changes in the active layer thicknesses, small variations have been observed in the charge carrier transport mechanism inside the device. These results provide the clear idea about the charge carrier distribution inside the solar cell in different conditions and show the perfect illumination condition for large carrier transport in a high performance solar cell.

  17. Observation of Space Charge Dynamics Inside an All Oxide Based Solar Cell.

    PubMed

    Panigrahi, Shrabani; Calmeiro, Tomás; Martins, Rodrigo; Nunes, Daniela; Fortunato, Elvira

    2016-06-28

    The charge transfer dynamics at interfaces are fundamental to know the mechanism of photovoltaic processes. The internal potential in solar cell devices depends on the basic processes of photovoltaic effect such as charge carrier generation, separation, transport, recombination, etc. Here we report the direct observation of the surface potential depth profile over the cross-section of the ZnO nanorods/Cu2O based solar cell for two different layer thicknesses at different wavelengths of light using Kelvin probe force microscopy. The topography and phase images across the cross-section of the solar cell are also observed, where the interfaces are well-defined on the nanoscale. The potential profiling results demonstrate that under white light illumination, the photoinduced electrons in Cu2O inject into ZnO due to the interfacial electric field, which results in the large difference in surface potential between two active layers. However, under a single wavelength illumination, the charge carrier generation, separation, and transport processes between two active layers are limited, which affect the surface potential images and corresponding potential depth profile. Because of changes in the active layer thicknesses, small variations have been observed in the charge carrier transport mechanism inside the device. These results provide the clear idea about the charge carrier distribution inside the solar cell in different conditions and show the perfect illumination condition for large carrier transport in a high performance solar cell. PMID:27244449

  18. Division II: Commission 10: Solar Activity

    NASA Astrophysics Data System (ADS)

    van Driel-Gesztelyi, Lidia; Scrijver, Karel J.; Klimchuk, James A.; Charbonneau, Paul; Fletcher, Lyndsay; Hasan, S. Sirajul; Hudson, Hugh S.; Kusano, Kanya; Mandrini, Cristina H.; Peter, Hardi; Vršnak, Bojan; Yan, Yihua

    2015-08-01

    The Business Meeting of Commission 10 was held as part of the Business Meeting of Division II (Sun and Heliosphere), chaired by Valentin Martínez-Pillet, the President of the Division. The President of Commission 10 (C10; Solar activity), Lidia van Driel-Gesztelyi, took the chair for the business meeting of C10. She summarised the activities of C10 over the triennium and the election of the incoming OC.

  19. Observations of Cosmic Rays and Solar Energetic Particles from the Ulysses COSPIN High Energy Telescope Following Completion of the Solar Maximum Solar Polar Passes.*

    NASA Astrophysics Data System (ADS)

    McKibben, R. B.; Lopate, C.; Connell, J. J.; Posner, A.

    2003-04-01

    At the end of 2002, following its second pass over the Sun's north polar region, Ulysses had reached a radial distance of about 4.5 AU at a heliographic latitude of 24°N. While solar activity remained high, the modulated intensity of cosmic rays observed by Ulysses’ COSPIN High Energy Telescope had increased significantly from the levels observed early in 2001, which most likely represented the maximum modulation for this solar cycle. Despite continuing solar activity, the new qA<0 magnetic polarity of the Sun's dipole field was fully established for both poles since the change in the North Pole polarity in 2000. Although the current sheet tilt was still large (>40° as reported by the Wilcox Solar Observatory) and the solar wind was still frequently disturbed by solar activity, it is worthwhile to examine the recent increase in the quiet-time cosmic ray fluxes for evidence of the change in latitudinal gradients expected upon change of magnetic polarity. A difficulty is the lack of a well-matched 1 AU base-line to help distinguish spatial from temporal variations following the termination of IMP-8 operations in late 2001. We will summarize Ulysses observations of energetic (>~30 MeV/n) protons and helium through the most recent available data, and will discuss available options for determining baseline fluxes at 1 AU for studies of the radial and latitudinal gradients. **This work was supported in part by NASA/JPL Contract 955432, by NASA Grant NASA 5-28516 and by NSF grant ATM 99-12341.

  20. Implications of RHESSI Observations for Solar Flare Models and Energetics

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.

    2006-01-01

    Observations of solar flares in X-rays and gamma-rays provide the most direct information about the hottest plasma and energetic electrons and ions accelerated in flares. The Ramaty High Energy Solar Spectroscopic Imager (RHESSI) has observed over 18000 solar flares in X-rays and gamma-rays since its launch in February of 2002. RHESSI observes the full Sun at photon energies from as low as 3 keV to as high as 17 MeV with a spectral resolution on the order of 1 keV. It also provides images in arbitrary bands within this energy range with spatial resolution as good as 3 seconds of arc. Full images are typically produced every 4 seconds, although higher time resolution is possible. This unprecedented combination of spatial, spectral, and temporal resolution, spectral range and flexibility has led to fundamental advances in our understanding of flares. I will show RHESSI and coordinated observations that confirm coronal magnetic reconnection models for eruptive flares and coronal mass ejections, but also present new puzzles for these models. I will demonstrate how the analysis of RHESSI spectra has led to a better determination of the energy flux and total energy in accelerated electrons, and of the energy in the hot, thermal flare plasma. I will discuss how these energies compare with each other and with the energy contained in other flare-related phenomena such as interplanetary particles and coronal mass ejections.

  1. Resonant Rossby waves and solar activity

    NASA Technical Reports Server (NTRS)

    Krivolutsky, A. A.; Loshkova, O. A.

    1989-01-01

    Large scale transient waves are an essential part of atmospheric dynamics. Some of these waves (like 27 day waves) could have a solar nature. The contribution of the 27 day planetary waves to a total long period spectrum of the atmospheric processes during one solar cycle was investigated. Ivanovsky and Krivolutsky proposed that the 27 day wave has a resonant nature. The real atmospheric processes were investigated. The method of 2-D wave analysis used is described by Krivolutsky. It was concluded that the resonant nature of the 27 day wave is not unicum. There are long periods waves (50 day wave) in stratosphere which belong to the resonant waves, too. It is a very interesting fact for the solar activity-weather problem.

  2. MAGNETIC ENERGY SPECTRA IN SOLAR ACTIVE REGIONS

    SciTech Connect

    Abramenko, Valentyna; Yurchyshyn, Vasyl

    2010-09-01

    Line-of-sight magnetograms for 217 active regions (ARs) with different flare rates observed at the solar disk center from 1997 January until 2006 December are utilized to study the turbulence regime and its relationship to flare productivity. Data from the SOHO/MDI instrument recorded in the high-resolution mode and data from the BBSO magnetograph were used. The turbulence regime was probed via magnetic energy spectra and magnetic dissipation spectra. We found steeper energy spectra for ARs with higher flare productivity. We also report that both the power index, {alpha}, of the energy spectrum, E(k) {approx} k{sup -}{alpha}, and the total spectral energy, W = {integral}E(k)dk, are comparably correlated with the flare index, A, of an AR. The correlations are found to be stronger than those found between the flare index and the total unsigned flux. The flare index for an AR can be estimated based on measurements of {alpha} and W as A = 10{sup b}({alpha}W){sup c}, with b = -7.92 {+-} 0.58 and c = 1.85 {+-} 0.13. We found that the regime of the fully developed turbulence occurs in decaying ARs and in emerging ARs (at the very early stage of emergence). Well-developed ARs display underdeveloped turbulence with strong magnetic dissipation at all scales.

  3. Observations and models of the slow solar wind in coronal streamers during solar minimum

    NASA Astrophysics Data System (ADS)

    Ofman, L.

    2013-05-01

    A quiescent dipolar streamer belt often dominated the coronal streamer structures during past solar minima. Past UV observations with SOHO/UVCS show that the intensity of heavy ion emission lines (such as O VI and Mg X) is dimmer at the cores than at the streamer edges. Three-fluid 2.5D models indicated that the observed emission variability is the signature of slow solar wind outflow regions, where Coulomb coupling between the electron, protons, and heavy ions leads to enhanced emission of heavy ions at the edges of streamers. Recently, Ofman et al (2011, 2012) have modeled in detail the three-fluid interactions and the emission in a quiescent streamer due to Ly α, O 5+, and Mg 9+ ions at solar minimum, and used the model results to synthesize the corresponding line emissions. They found that the model results are in good agreement with observations, provided that the heavy ions experience preferential heating compared to protons. Similar results were found to hold for He++ ions in quiescent streamers. Recently, the 2.5D three-fluid model was extended to full 3D, allowing modeling the ion abundance variations in tilted dipole streamer belt, and eventually in solar maximum streamers. I will discuss the implication of heavy ion emission structure in streamers and the corresponding three-fluid models on the understanding of the slow solar wind sources.

  4. An Airborne Infrared Telescope and Spectrograph for Solar Eclipse Observations

    NASA Astrophysics Data System (ADS)

    DeLuca, Edward E.; Cheimets, Peter; Golub, Leon

    2014-06-01

    The solar infrared spectrum offers great possibilities for direct spatially resolved measurements of the solar coronal magnetic fields, via imaging of the plasma that is constrained to follow the magnetic field direction and via spectro-polarimetry that permits measurement of the field strength in the corona. Energy stored in coronal magnetic fields is released in flares and coronal mass ejections (CME) and provides the ultimate source of energy for space weather. The large scale structure of the coronal field, and the opening up of the field in a transition zone between the closed and open corona determines the speed and structure of the solar wind, providing the background environment through which CMEs propagate. At present our only direct measurements of the solar magnetic fields are in the photosphere and chromosphere. The ability to determine where and why the corona transitions from closed to open, combined with measurements of the field strength via infrared coronal spectro-polarimetry will give us a powerful new tool in our quest to develop the next generation of forecasting models.We describe a first step in achieving this goal: a proposal for a new IR telescope, image stabilization system, and spectrometer, for the NCAR HIPER GV aircraft. The telescope/spectrograph will operate in the 2-6micron wavelength region, during solar eclipses, starting with the trans-north American eclipse in August 2017. The HIAPER aircraft flying at ~35,000 ft will provide an excellent platform for IR observations. Our imaging and spectroscopy experiment will show the distribution and intensity of IR forbidden lines in the solar corona.

  5. Radio interferometer observations of solar wind turbulence from the orbit of Helios to the solar corona

    NASA Technical Reports Server (NTRS)

    Spangler, Steven R.; Sakurai, Takayuki

    1995-01-01

    We report observations of Very Long Baseline Interferometer (VLBI) phase scintillations due to turbulence in the solar wind. The observations were made at 5.00 and 8.42 GHz with the Very Long Baseline Array (VLBA) on three dates in 1991 July and August. We observed the sources 0851 + 202 and 0735 + 178 at solar elongations ranging from 2.66 deg to 13.29 deg; the closest approach of the line of sight to the Sun ranged from 10 to 49.8 solar radii. We have also included previously unpublished 5 GHz VLBI phase scintillation measurements from 1989. These measurements probe solar wind density fluctuations on spatial scales from about 200 km to 2000 km. Our measurements are in quite good agreement with the Coles & Harmon model for the radio phase structure function, which was largely determined from observations on both shorter and larger spatial scales. Departures from the Coles & Harmon functions are attributable to day-to-day variations in the solar wind conditions. Phase scintillations at the greatest solar elongations are in very good agreement with extrapolated estimates from direct measurements made with the Helios spacecraft at slightly larger heliocentric distances. Thus there is a consistency between the in-situ spacecraft and radio sensing measurements of density turbulence. All of the VLBI data are consistent with a Kolmogorov spectrum for the density fluctuations, although at the closest elongations there may be excess power at small spatial scales. An advantage of interferometric techniques over other radio propagation measurements is that they provide a measure of the anisotropy of the irregularities. Our observations at closest approach (10 solar radii) show weak evidence for anisotropic, field-aligned density irregularities with an axial ratio of order 2. This degree of anisotropy would appear to be less than that measured at similar solar elongations but on smaller spatial scales by Armstrong and colleagues. Finally, a combination of the radio

  6. Coordinated Solar Observation and Event Searches using the Heliophysics Events Knowledgebase (HEK)

    NASA Astrophysics Data System (ADS)

    Timmons, R.; Hurlburt, N. E.

    2014-12-01

    We present new capabilities of the HEK allowing for joint searches, returning overlapping data from multiple instruments (IRIS, SOT, XRT, EIS) that also include particular solar features and events (active regions, (large) flares, sunspots, etc.). The new search tools aid the process of finding particular observations from non-synotpic instruments.

  7. The Hadean, Through a Glass Telescopically: Observations of Young Solar Analogs

    NASA Technical Reports Server (NTRS)

    Gaidos, E. J.

    1998-01-01

    Investigations into the Earth's surface environment during the Hadean eon (prior to 3.8 Ga) are hampered by the paucity of the geological and geochemical record and the relative inaccessibility of better-preserved surfaces with possibly similar early histories (i.e., Mars). One approach is to observe nearby, young solar-mass stars as analogs to the Hadean Sun and its environment. A catalog of 38 G and early K stars within 25 pc was constructed based on main-sequence status, bolometric luminosity, lack of known stellar companions within 800 AU, and coronal X-ray luminosities commensurate with the higher activity of solar-mass stars <0.8 b.y. old. Spectroscopic data support the assignment of ages of 0.2 - 0.8 Ga for most of these stars. Observations of these objects will provide insight into external forces that influenced Hadean atmosphere, ocean, and surface evolution (and potential ecosystems), including solar luminosity evolution, the flux and spectrum of solar ultraviolet radiation, the intensity of the solar wind, and the intensity and duration of a late period of heavy bombardment. The standard model of solar evolution predicts a luminosity of 0.75 solar luminosity at the end of the Hadean, implying a terrestrial surface temperature inconsistent with the presence of liquid water and motivating atmospheric greenhouse models. An alternative model fo solar evolution that invokes mass loss, constructed to explain solar Li depletion, attenuates or reverses this luminosity evolution of the atmospheres of Earth and the other terrestrial planets. This model can be tested by Li abundance measurements. The continuum emission from stellar wind plasma during significant mass loss may be detectable at millimeter and radio wavelengths. The Earth (and Moon) experienced a period of intense bombardment prior to 3.8 Ga, long after accretion was completed in the inner solar system and possibly associated with the clearing of residual planetesimals in the outer solar system. Such

  8. OBSERVATIONS OF HIERARCHICAL SOLAR-TYPE MULTIPLE STAR SYSTEMS

    SciTech Connect

    Roberts, Lewis C. Jr.; Tokovinin, Andrei; Mason, Brian D.; Hartkopf, William I.; Riddle, Reed L.

    2015-10-15

    Twenty multiple stellar systems with solar-type primaries were observed at high angular resolution using the PALM-3000 adaptive optics system at the 5 m Hale telescope. The goal was to complement the knowledge of hierarchical multiplicity in the solar neighborhood by confirming recent discoveries by the visible Robo-AO system with new near-infrared observations with PALM-3000. The physical status of most, but not all, of the new pairs is confirmed by photometry in the Ks band and new positional measurements. In addition, we resolved for the first time five close sub-systems: the known astrometric binary in HIP 17129AB, companions to the primaries of HIP 33555, and HIP 118213, and the companions to the secondaries in HIP 25300 and HIP 101430. We place the components on a color–magnitude diagram and discuss each multiple system individually.

  9. Topology analysis of emerging bipole clusters producing violent solar events observed by SDO

    NASA Astrophysics Data System (ADS)

    Schmieder, Brigitte; Demoulin, Pascal; Mandrini, Cristina H.; Guo, Yang

    2012-07-01

    During the rising phase of Solar Cycle 24, tremendous magnetic solar activity occurs on the Sun with fast and compact emergence of magnetic flux leading to burts of flares (C to M and even X class) . We have investigated the violent events occuring in the cluster of two active regions AR 11121 and AR11123 observed in November by SDO. In less than two days the magnetic field increases by a factor of 10 with the emergence of groups of bipoles. A topology analysis demonstrates the formation of multiple separatrices and quasi-separatrix layers explaining possible mechanisms for destabilization of the magnetic structures such as filaments and coronal loops.

  10. Observations of the solar wind speed near the sun

    NASA Astrophysics Data System (ADS)

    Grall, R. R.; Coles, Wm. A.; Klinglesmith, M. T.

    1996-07-01

    Two-antenna scintillation (IPS) observations can provide accurate measurements of the velocity with which electron density fluctuations drift past the line of sight. These fluctuations can be used as tracers for the solar plasma and allow us to estimate the solar wind velocity near the Sun where spacecraft have not yet penetrated. We present recent IPS measurements made with the EISCAT and VLBA arrays. We have found that by using baselines which are several times the scale size of the diffraction pattern we are able to partially deconvolve the line of sight integration which affects remote sensing data. The long baselines allow the fast and slow components of the solar wind to be separated and their velocities estimated individually. In modeling IPS it is important that the scattering be ``weak'' because the model then requires only 1 spatial parameter instead of 3. EISCAT can only operate near 933MHz which limits the observation to outside of 18Rsolar, however the VLBA has higher frequency receivers which allow it to observe inside of 15Rsolar. The density variance δNe2 in the fast wind is a factor of 10-15 less than in the slow (Coles et al., 1995) making it necessary to consider the entire line of sight, particularly when the fast wind occupies the center portion. Using the point of closest approach and the average velocity to characterize the observation can lead to an incorrect interpretation of the data. We have compared our IPS observations with maps made from the Yohkoh soft X ray, HAO's white-light electron density, and Stanford magnetic field measurements as well as with the IMP8 and Ulysses spacecraft data to assist in placing the fast and slow wind. Here we have selected those observation from 1994 which were dominated by the southern coronal hole and have estimated a velocity acceleration profile for the fast solar wind between 7 and 100Rsolar which is presented in Figure 1. The observations suggest that the fast solar wind is fully developed by ~7

  11. Correlated observations of impulsive UV and hard X-ray bursts in solar flares from the solar maximum mission

    NASA Technical Reports Server (NTRS)

    Cheng, C.-C.; Tandberg-Hanssen, E.; Orwig, L. E.

    1984-01-01

    An investigation is conducted of the temporal and spatial structures of UV and hard X-ray bursts in a disk and a limb flare observed with instruments on the Solar Maximum Mission satellite. Attention is given to the transient UV brightening before the flare, the impulsive enhancement of UV continuum emission, the relationship between emission source region and particle acceleration region, and large scale excitations. The most active part of the active region appears to be the most flare-productive region. These regions exhibit high UV activities with numerous UV transient bursts occurring in many small kernels.

  12. The variations of prominence activities during solar cycle

    NASA Astrophysics Data System (ADS)

    Shimojo, Masumi

    The prominence activities (prominence eruption/disappearance) in the solar atmosphere closely relate with the CMEs that cause great influences on heliosphere and magnetosphere. Gopal-swarmy et al. (2003) reported that 72 The Nobeyama Radioheliograph (NoRH) is observing Sun in microwave (17 GHz) since 1992. At a flare, the main component of the microwave from Sun is emitted from non-thermal electrons that are accelerated by flare. On the other hand, the main component of the microwave is thermal emission when Sun is quiet, and a prominence is clearly observed in microwave because there is the prominence on the limb. We developed the automatic prominence activity detection program based on 17 GHz images observed by NoRH, and investigated the variation of the properties of the prominence activities that oc-curred from 1992 to the end of 2009. We found the following results. 1. The variation in the number of prominence activities is similar to that of sunspots during one solar cycle but there are differences between the peak times of prominence activities and sunspots. 2. The frequency distribution as a function of the magnitude of the prominence activities the size of activated prominences at each phase shows a power-law distribution. The power-law index of the distribution does not change except around the solar minimum. 3. The number of promi-nence activities has a dependence on the latitude On the other hand the average magnitude is independent of the latitude. In the paper, we will also discuss the relationship the other properties of prominence eruptions, solar cycle and the photospheric magnetic field.

  13. Antenna system characteristics and solar radio burst observations

    NASA Astrophysics Data System (ADS)

    Li, Sha; Yan, Yi-Hua; Chen, Zhi-Jun; Wang, Wei; Liu, Dong-Hao

    2015-11-01

    The Chinese Spectral Radio Heliograph (CSRH) is an advanced aperture synthesis solar radio heliograph, independently developed by National Astronomical Observatories, Chinese Academy of Sciences. It consists of 100 reflector antennas, which are grouped into two antenna arrays (CSRH-I and CSRH-II) for low and high frequency bands respectively. The frequency band of CSRH-I is 0.4-2 GHz and that for CSRH-II is 2-15 GHz. In the antenna and feed system, CSRH uses eleven feeds to receive signals coming from the Sun. The radiation pattern has a lower side lobe and the back lobe of the feed is well illuminated. The characteristics of gain G and antenna noise temperature T affect the quality of solar radio imaging. For CSRH, the measured G is larger than 60 dBi and T is less than 120 K. After CSRH-I was established, we successfully captured a solar radio burst between 1.2-1.6 GHz on 2010 November 12 using this instrument and this event was confirmed through observations with the Solar Broadband Radio Spectrometer at 2.84 GHz and the Geostationary Operational Environmental Satellite. In addition, an image obtained from CSRH-I clearly revealed the profile of the solar radio burst. The other observational work involved the imaging the Fengyun-2E geosynchronous satellite which is assumed to be a point source. Results indicate that the data processing method applied in this study for deleting errors in a noisy image could be used for processing images from other sources.

  14. Implications of high-energy neutron observations from solar flares

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Murphy, R. J.; Kozlovsky, B.; Lingenfelter, R. E.

    1983-01-01

    The time-dependent flux of high-energy neutrons discovered from the solar flare of 1980 June 21 provides a new technique for determining the total number and energy spectrum of accelerated protons and nuclei at the sun. The implications of these observations on gamma-ray emission, relativistic electron spectrum and number, proton and electron energy contents, and the location of the interaction region are also examined.

  15. Observations of mode coupling in the solar corona and bipolar noise storms

    NASA Technical Reports Server (NTRS)

    White, S. M.; Thejappa, G.; Kundu, M. R.

    1992-01-01

    High-spatial-resolution observations of the sun which reflect on the role of mode coupling in the solar corona, and a number of new observations are presented. It is shown that typically, polarization inversion is seen at 5 GHz in active region sources near the solar limb, but not at 1.5 GHz. Although this is apparently in contradiction to the simplest form of mode coupling theory, it remains consistent with current models for the active region emission. Microwave bursts show no strong evidence for polarization inversion. Bipolar noise storm continuum emission is discussed in some detail, utilizing recent VLA observations at 327 MHz. It is shown that bipolar sources are common at 327 MHz. Further, the trailing component of the bipole is frequently stronger than the leading component, in apparent conflict with the 'leading-spot' hypothesis. The observations indicate that, at 327 MHz, mode coupling is apparently strong at all mode-coupling layers in the solar corona. The 327 MHz observations require a much weaker magnetic field strength in the solar corona to explain this result than did earlier lower-frequency observations: maximum fields are 0.2 G. This is a much weaker field than is consistent with current coronal models.

  16. Solar particle events observed at Mars: dosimetry measurements and model calculations.

    PubMed

    Cleghorn, Timothy F; Saganti, Premkumar B; Zeitlin, Cary J; Cucinotta, Francis A

    2004-01-01

    During the period from March 13, 2002 to mid-September, 2002, six solar particle events (SPE) were observed by the MARIE instrument onboard the Odyssey Spacecraft in Martian Orbit. These events were observed also by the GOES 8 satellite in Earth orbit, and thus represent the first time that the same SPE have been observed at these separate locations. The characteristics of these SPE are examined, given that the active regions of the solar disc from which the event originated can usually be identified. The dose rates at Martian orbit are calculated, both for the galactic and solar components of the ionizing particle radiation environment. The dose rates due to galactic cosmic rays (GCR) agree well with the HZETRN model calculations.

  17. Derivation of Heliophysical Scientific Data from Amateur Observations of Solar Eclipses

    NASA Astrophysics Data System (ADS)

    Stoev, A. D.; Stoeva, P. V.

    2006-03-01

    The basic scientific aims and observational experiments included in the complex observational program - Total Solar Eclipse '99 - are described in the work. Results from teaching and training students of total solar eclipse (TSE) observation in the Public Astronomical Observatory (PAO) in Stara Zagora and their selection for participation in different observational teams are also discussed. During the final stage, a special system of methods for investigation of the level of pretensions (the level of ambition as to what he/she feels capable of achieving in the context of problem solving/observation) of the students is applied. Results obtained from the observational experiments are interpreted mainly in the following themes: Investigation of the structure of the white-light solar corona and evolution of separate coronal elements during the total phase of the eclipse; Photometry of the white-light solar corona and specific emission lines; Meteorological, actinometrical and optical atmospheric investigations; Astrometry of the Moon during the phase evolution of the eclipse; Biological and behavioral reactions of highly organized colonies (ants and bats) during the eclipse. It is also shown that data processing, observational results and their interpretation, presentation and publishing in specialized and amateur editions is a peak in the independent creative activity of students and amateur astronomers. This enables students from the Astronomy schools at Public Astronomical Observatories and Planetariums (PAOP) to develop creative skills, emotional - volitional personal qualities, orientation towards scientific work, observations and experiments, and build an effective scientific style of thinking.

  18. Iron charge states observed in the solar wind

    NASA Technical Reports Server (NTRS)

    Ipavich, F. M.; Galvin, A. B.; Gloeckler, G.; Hovestadt, D.; Klecker, B.; Scholer, M.

    1983-01-01

    Solar wind measurements from the ULECA sensor of the Max-Planck-Institut/University of Maryland experiment on ISEE-3 are reported. The low energy section of approx the ULECA sensor selects particles by their energy per charge (over the range 3.6 keV/Q to 30 keV/Q) and simultaneously measures their total energy with two low-noise solid state detectors. Solar wind Fe charge state measurements from three time periods of high speed solar wind occurring during a post-shock flow and a coronal hole-associated high speed stream are presented. Analysis of the post-shock flow solar wind indicates the charge state distributions for Fe were peaked at approx +16, indicative of an unusually high coronal temperature (3,000,000 K). In contrast, the Fe charge state distribution observed in a coronal hole-associated high speed stream peaks at approx -9, indicating a much lower coronal temperature (1,400,000 K). This constitutes the first reported measurements of iron charge states in a coronal hole-associated high speed stream.

  19. Equatorial F-region electron densities over a solar cycle: Comparisons between observations and numerical models

    NASA Astrophysics Data System (ADS)

    Creamer, Amanda P.

    Incoherent scatter radar observations at Jicamarca, Peru, from 1964 to the present, are used to study the seasonal and solar cycle variations in the daily equatorial ionospheric plasma density profiles for select hours. The peak density, peak layer heights, and layer thickness are dependent on solar activity which is determined by F10.7 cm flux. There are large variations in the daily plasma density profiles for each season and solar flux. The peak plasma densities are largest for December solstice (southern hemisphere summer), and smallest for June solstice (southern hemisphere winter). The changes in the peak height, bottomside density, and topside density are dependent on seasonal and on temporal variations in the equatorial F-region vertical plasma drifts at Jicamarca. Geomagnetic disturbance affects primarily the topside F-region density layer. The average quiet-time seasonal profiles were compared with the International Reference Ionosphere (IRI), the Fully Analytic Ionospheric Model (FAIM), and the Parameterized Real-time Ionospheric Specification Model (PRISM) for similar time, season, and solar activity. The IRI is particularly good at representing the peak density for all seasons and all levels of solar activity; however, the model does not reproduce well the observed variations of the peak heights and layer thickness with season and solar flux. FAIM gives a good estimate of the peak density during winter and equinox, and a rate of increase in peak layer height with flux comparable to the data for all seasons. The FAIM layer thickness fits to the data are better than those of the IRI. However, they do not reproduce the data for high solar activity. PRISM gives a good fit to the data for all parameters except day and evening topside profiles. The layer thickness calculated from this model also gives the best representation of the experiment results.

  20. Mass motion in upper solar chromosphere detected from solar eclipse observation

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Qu, Zhongquan; Yan, Xiaoli; Dun, Guangtao; Chang, Liang

    2016-05-01

    The eclipse-observed emission lines formed in the upper solar atmosphere can be used to diagnose the atmosphere dynamics which provides an insight to the energy balance of the outer atmosphere. In this paper, we analyze the spectra formed in the upper chromospheric region by a new instrument called Fiber Arrayed Solar Optic Telescope (FASOT) around the Gabon total solar eclipse on November 3, 2013. The double Gaussian fits of the observed profiles are adopted to show enhanced emission in line wings, while red-blue (RB) asymmetry analysis informs that the cool line (about 104 K) profiles can be decomposed into two components and the secondary component is revealed to have a relative velocity of about 16-45 km s^{-1}. The other profiles can be reproduced approximately with single Gaussian fits. From these fittings, it is found that the matter in the upper solar chromosphere is highly dynamic. The motion component along the line-of-sight has a pattern asymmetric about the local solar radius. Most materials undergo significant red shift motions while a little matter show blue shift. Despite the discrepancy of the motion in different lines, we find that the width and the Doppler shifts both are function of the wavelength. These results may help us to understand the complex mass cycle between chromosphere and corona.

  1. Solar Spicules near and at The Limb, Observed from Hinode

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.

    2009-01-01

    Solar spicules appear as narrow jets emanating from the chromosphere and extending into the corona. They have been observed for over a hundred years,mainly in chromospheric spectral lines such as H-alpha. Because they are at the limit of visibility of ground-based instruments, their nature has long been a puzzle. In recent years however, vast progress has been made in understanding them both theoretically and observationally. Most recently, spicule studies have undergone revolution because of the superior resolution, time cadence, and atmosphere-free observations from the Solar Optical Telescope (SOT) instrument on the Hinode spacecraft. Here we present observations of spicules from {\\sl Hinode} SOT, and consider how the observations from Hinode compare with historical observations. We include data taken in the blue and red wings of Halpha, where the spicules have widths of a few approx.100 kms, and the longest ones reach about 10(exp 4) km in extent,similar to sizes long reported from ground-based instruments. Their dynamics are not easy to generalize, with many showing the upward movement followed by falling or fading, as traditionally reported, but with others showing more dynamic or even ejective aspects. There is a strong transverse component to their motion, as extensively reported previously from the Hinode data as evidence for Alfven waves.

  2. Major geomagnetic storm due to solar activity (2006-2013).

    NASA Astrophysics Data System (ADS)

    Tiwari, Bhupendra Kumar

    Major geomagnetic storm due to solar activity (2006-2013). Bhupendra Kumar Tiwari Department of Physics, A.P.S.University, Rewa(M.P.) Email: - btiwtari70@yahoo.com mobile 09424981974 Abstract- The geospace environment is dominated by disturbances created by the sun, it is observed that coronal mass ejection (CME) and solar flare events are the causal link to solar activity that produces geomagnetic storm (GMS).CMEs are large scale magneto-plasma structures that erupt from the sun and propagate through the interplanetary medium with speeds ranging from only a few km/s to as large as 4000 km/s. When the interplanetary magnetic field associated with CMEs impinges upon the earth’s magnetosphere and reconnect occur geomagnetic storm. Based on the observation from SOHO/LASCO spacecraft for solar activity and WDC for geomagnetism Kyoto for geomagnetic storm events are characterized by the disturbance storm time (Dst) index during the period 2006-2013. We consider here only intense geomagnetic storm Dst <-100nT, are 12 during 2006-2013.Geomagnetic storm with maximum Dst< -155nT occurred on Dec15, 2006 associated with halo CME with Kp-index 8+ and also verify that halo CME is the main cause to produce large geomagnetic storms.

  3. Dependence of the amplitude of Pc5-band magnetic field variations on the solar wind and solar activity

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazue; Yumoto, Kiyohumi; Claudepierre, Seth G.; Sanchez, Ennio R.; Troshichev, Oleg A.; Janzhura, Alexander S.

    2012-04-01

    We have studied the dependence of the amplitude of magnetic field variations in the Pc5 band (1.6-6.7 mHz) on the solar wind and solar activity. Solar wind parameters considered are the bulk velocity Vsw and the variation of the solar wind dynamic pressure δPsw. The solar activity dependence is examined by contrasting observations made in 2001 (solar activity maximum) and 2006 (solar activity declining phase). We calculated hourly Pc5 amplitude using data from geostationary satellites at L = 6.8 and ground stations covering 1 < L < 9. The amplitude is positively correlated with both Vsw and δPsw, but the degree of correlation varies with L and magnetic local time. As measured by the correlation coefficient, the amplitude dependence on both Vsw and δPsw is stronger on the dayside than on the nightside, and the dependence on Vsw (δPsw) tends to be stronger at higher (lower) L, with the relative importance of the two solar wind parameters switching at L ˜ 5. We attribute the Vsw control to the Kelvin-Helmholtz instability on the magnetopause, occurring both at high and low latitudes, and the δPsw control to buffeting of the magnetosphere by variation of solar wind dynamic pressure. The GOES amplitude is higher at the solar maximum at all local times and the same feature is seen on the ground in the dawn sector at L > 6. A radial shift of the fast mode wave turning point, associated with the solar cycle variation of magnetosphere mass density, is a possible cause of this solar activity dependence.

  4. Acceleration and solar origin of solar energetic particles observed by SREM units

    NASA Astrophysics Data System (ADS)

    Anastasiadis, A.; Georgoulis, M.; Daglis, I.; Sandberg, I.; Nieminen, P.

    2013-09-01

    Within the previous solar cycle 23, SREM units onboard ESA's INTEGRAL and Rosetta spacecraft detected several tens of Solar Energetic Particle Events (SEPEs) and accurately pinpointed their onset, rise, and decay times. We have undertaken a detailed study to determine the solar sources and the subsequent interplanetary coronal mass ejections (ICMEs) that gave rise to these events, as well as the timing of SEPEs with regard to the onset of possible geomagnetic activity triggered by these ICMEs. We find that virtually all SREM SEPEs can be associated with CME-driven shocks. Moreover, for a number of wellstudied INTEGRAL/SREM SEPEs we see an association between the SEPE peak and the shock passage at L1, subject to the heliographic location of the source solar active region. Shortly after the SEPE peak (typically within a few hours), the ICMEdriven modulation of the magnetosphere kicks in, often associated with a dip of the Dst index, indicating storm conditions in geospace. In essence we find that SREM SEPEs can be seamlessly fit into a coherent and consistent heliophysical interpretation of solar eruptions all the way from Sun to Earth. Their contribution to space-weather forecasting may be significant and warrants additional investigation.

  5. Helium abundance variations in the solar wind: Observations from Ulysses

    SciTech Connect

    Barraclough, B.L.; Gosling, J.T.; Mccomas, D.J.; Goldstein, B.E.

    1995-06-01

    The abundance of helium in the solar wind averages approximately 4% but has been observed to vary by more than two orders of magnitude from 0.1 to 30%. Physical processes responsible for this variability are still not clearly understood. Previous work has shown a correlation between low He abundance and coronal streamer plasma and between high He abundance and coronal mass ejections (CMEs). The authors now have out-of-ecliptic data on helium in the solar wind from the plasma experiment aboard Ulysses. Tentative results show that the average high-latitude helium concentration is comparable to the in-ecliptic value for the present phase of the solar cycle, that excursions of the hour-averaged abundance very seldom fall outside the range 2.5 to 6.5%, and that there seems to be very little abundance enhancement associated with CMEs encountered at latitudes greater than 30 deg as opposed to the situation commonly encountered with in-ecliptic CMEs. In addition, preliminary observations of a single CME by both ISEE (in-ecliptic) and Ulysses (out-of-ecliptic) show a considerable He enhancement at ISEE with little or no perturbation of the average value at Ulysses` location. This paper will first present new results from the Ulysses mission up to the time of the meeting on the average abundance of helium in the solar wind as a function of spacecraft position, and will then focus on the out-of-ecliptic results including latitudinal abundance variations and observations of abundance enhancements (or lack thereof) in high-latitude CMEs.

  6. Angular Spread of Solar Energetic Electrons: Multipoint Observations by STEREO, ACE and SOHO (Invited)

    NASA Astrophysics Data System (ADS)

    Gómez-Herrero, R.; Dresing, N.; Malandraki, O.; Klassen, A.; Wiedenbeck, M. E.; Cohen, C. M.; Mason, G. M.; Heber, B.; Wimmer-Schweingruber, R. F.; Müller-Mellin, R.; Kartavykh, Y.; Droege, W.

    2010-12-01

    Particles accelerated in Solar Energetic Particle (SEP) events sometimes exhibit large angular extents. The broadest angular spreads observed in large events are commonly interpreted in terms of extended acceleration in a shock source which intercepts interplanetary magnetic field lines often separated by more than 100 degrees in longitude. By way of contrast, during impulsive flare-associated events the small spatial scale of the source typically leads to modest angular spread of energetic particles. In absence of shocks, the longitudinal spread of the particles has been attributed to lateral transport in the interplanetary medium or in the corona (e.g. Wibberenz and Cane, 2006) or to quickly diverging open magnetic field lines above the source active region (e.g. Klein et al., 2008). Such kind of processes could also operate during large gradual events with a significant flare contribution. After an extended solar minimum a significant increase in the SEP activity starting late in 2009 has been observed. During this period, several events were detected simultaneously by the Solar Electron and Proton Telescope (SEPT) onboard the two STEREO spacecraft when their longitudinal separation was more than 120 degrees. We present a survey of multi-spacecraft observations of 55-425 keV electron events during the early phase of solar cycle 24. With the aim of understanding the physical processes responsible for the large angular spread of the particles, we link the multi-point in-situ observations at 1 AU to the associated solar phenomena. We discuss the importance of these phenomena with respect to the particle observations. Pure impulsive events are identified by the lack of shock signatures and enhanced 3He abundances. The good observational coverage provided by the two STEREO together with SOHO and ACE provides the opportunity to compare time profiles, onset times, anisotropies and spectra observed by different spacecraft, and to study their dependences with angular

  7. An Alternative Measure of Solar Activity from Detailed Sunspot Datasets

    NASA Astrophysics Data System (ADS)

    Muraközy, J.; Baranyi, T.; Ludmány, A.

    2016-05-01

    The sunspot number is analyzed by using detailed sunspot data, including aspects of observability, sunspot sizes, and proper identification of sunspot groups as discrete entities of solar activity. The tests show that in addition to the subjective factors there are also objective causes of the ambiguities in the series of sunspot numbers. To introduce an alternative solar-activity measure, the physical meaning of the sunspot number has to be reconsidered. It contains two components whose numbers are governed by different physical mechanisms and this is one source of the ambiguity. This article suggests an activity index, which is the amount of emerged magnetic flux. The only long-term proxy measure is the detailed sunspot-area dataset with proper calibration to the magnetic flux. The Debrecen sunspot databases provide an appropriate source for the establishment of the suggested activity index.

  8. Impact of Magnetic Activity on Solar and Stellar Environments

    NASA Astrophysics Data System (ADS)

    Nandi, Dibyendu

    2015-08-01

    The variable activity of stars such as the Sun is mediated via stellar magnetic fields, radiative and energetic particle fluxes, stellar winds and magnetic storms. This activity influences planetary atmospheres, climate and habitability. Studies of this intimate relationship between the parent star, its astrosphere (i.e., the equivalent of the heliosphere) and the planets that it hosts have reached a certain level of maturity within our own solar system - fuelled both by advances in theoretical modelling and a host of satellites that observe the Sun-Earth system. Based on this understanding the first attempts are being made to characterize the interactions between stars and planets and their coupled evolution, which have relevance for habitability and the search for habitable planets. In this talk I will review recent findings in this context and highlight the activities of the IAU Inter-Division E-F Woking Group on “Impact of Magnetic Activity on Solar and Stellar Environments”.

  9. Observations of solar flare gamma-rays and protons

    NASA Technical Reports Server (NTRS)

    Yoshimori, M.; Watanabe, H.

    1985-01-01

    Solar flare gamma-rays (4 to 7 MeV) and protons (8 to 500 MeV) were simultaneously observed from six flares on 1 Apr., 4 Apr., 27, Apr. 13, May 1981, 1 Feb. and 6 June 1982 by the Hinotori and GMS satellites. The relationship between 4 to 7 MeV gamma-ray fluences and peak 16 to 34 MeV proton fluxes for these flares are analyzed. It does not reveal an apparent correlation between these two parameters. The present result implies that the protons producing gamma-rays and the protons observed near the Earth do not always belong to the same population.

  10. Radar wind profiler observations of solar semidiurnal atmospheric tides

    SciTech Connect

    Whiteman, C.D.; Bian, X.

    1995-04-15

    Semidiurnal solar tides in the mid-latitude troposhphere are investigated using harmonic analysis of 404 MHz radar profiler wind data obtained from a wide longitude zone in the U.S. The tides are apparent above a 1000-m-deep surface layer and increase in amplitude with height, attaining speeds of 0.5-0.7 m/s at 5-7 km. Observed wind characteristics agree well with tidal characteristics obtained with a dynamical model driven by observed global semidiurnal horizontal pressure gradients. 10 refs., 6 figs., 1 tab.

  11. Data Assimilation Approach for Forecast of Solar Activity Cycles

    NASA Astrophysics Data System (ADS)

    Kitiashvili, Irina N.

    2016-11-01

    Numerous attempts to predict future solar cycles are mostly based on empirical relations derived from observations of previous cycles, and they yield a wide range of predicted strengths and durations of the cycles. Results obtained with current dynamo models also deviate strongly from each other, thus raising questions about criteria to quantify the reliability of such predictions. The primary difficulties in modeling future solar activity are shortcomings of both the dynamo models and observations that do not allow us to determine the current and past states of the global solar magnetic structure and its dynamics. Data assimilation is a relatively new approach to develop physics-based predictions and estimate their uncertainties in situations where the physical properties of a system are not well-known. This paper presents an application of the ensemble Kalman filter method for modeling and prediction of solar cycles through use of a low-order nonlinear dynamo model that includes the essential physics and can describe general properties of the sunspot cycles. Despite the simplicity of this model, the data assimilation approach provides reasonable estimates for the strengths of future solar cycles. In particular, the prediction of Cycle 24 calculated and published in 2008 is so far holding up quite well. In this paper, I will present my first attempt to predict Cycle 25 using the data assimilation approach, and discuss the uncertainties of that prediction.

  12. Geomagnetic responses to the solar wind and the solar activity

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.

    1975-01-01

    Following some historical notes, the formation of the magnetosphere and the magnetospheric tail is discussed. The importance of electric fields is stressed and the magnetospheric convection of plasma and magnetic field lines under the influence of large-scale magnetospheric electric fields is outlined. Ionospheric electric fields and currents are intimately related to electric fields and currents in the magnetosphere and the strong coupling between the two regions is discussed. The energy input of the solar wind to the magnetosphere and upper atmosphere is discussed in terms of the reconnection model where interplanetary magnetic field lines merge or connect with the terrestrial field on the sunward side of the magnetosphere. The merged field lines are then stretched behind earth to form the magnetotail so that kinetic energy from the solar wind is converted into magnetic energy in the field lines in the tail. Localized collapses of the crosstail current, which is driven by the large-scale dawn/dusk electric field in the magnetosphere, divert part of this current along geomagnetic field lines to the ionosphere, causing substorms with auroral activity and magnetic disturbances. The collapses also inject plasma into the radiation belts and build up a ring current. Frequent collapses in rapid succession constitute the geomagnetic storm.

  13. Cosmic rays, solar activity and the climate

    NASA Astrophysics Data System (ADS)

    Sloan, T.; Wolfendale, A. W.

    2013-12-01

    Although it is generally believed that the increase in the mean global surface temperature since industrialization is caused by the increase in green house gases in the atmosphere, some people cite solar activity, either directly or through its effect on cosmic rays, as an underestimated contributor to such global warming. In this letter a simplified version of the standard picture of the role of greenhouse gases in causing the global warming since industrialization is described. The conditions necessary for this picture to be wholly or partially wrong are then introduced. Evidence is presented from which the contributions of either cosmic rays or solar activity to this warming is deduced. The contribution is shown to be less than 10% of the warming seen in the twentieth century.

  14. Solar activities at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Klimas, Paul C.; Hasti, David E.

    The use of renewable energy technologies is typically thought of as an integral part of creating and sustaining an environment that maximizes the overall quality of life of the Earth's present inhabitants and does not leave an undue burden on future generations. Sandia National Laboratories has been a leader in developing and deploying many of these technologies over the last two decades. A common but special aspect of all of these activities is that they are all conducted in cooperation with various types of partners. Some of these partners have an interest in seeing these systems grow in the marketplace, while others are primarily concerned with economic benefits that can come from immediate use of these renewable energy systems. This paper describes solar thermal and photovoltaic technology activities at Sandia that are intended to accelerate the commercialization of these solar systems.

  15. The Little Ice Age and Solar Activity

    NASA Astrophysics Data System (ADS)

    Velasco Herrera, Victor Manuel; Leal Silva, C. M. Carmen; Velasco Herrera, Graciela

    We analyze the ice winter severity index on the Baltic region since 1501-1995. We found that the variability of this index is modulated among other factors by the secular solar activity. The little ice ages that have appeared in the North Hemisphere occurred during periods of low solar activity. Seemingly our star is experiencing a new quiet stage compared with Maunder or Dalton minimum, this is important because it is estimated that even small changes in weather can represent a great impact in ice index. These results are relevant since ice is a very important element in the climate system of the Baltic region and it can affect directly or indirectly many of the oceanographic, climatic, eco-logical, economical and cultural patterns.

  16. A New Solar H-alpha Distributed Observing System

    NASA Astrophysics Data System (ADS)

    Hill, Frank; Harvey, J. W.; Luis, G.; Purdy, T.; Bolding, J.; Eliason, P.; Kroll, R.; Lewis, F.; Berman, L.; Parsons, A.

    2009-05-01

    Space weather forecasts and nowcasts require rapid-cadence, continual, and robust solar observations. A useful strategy to accomplish this is to deploy a network of ground-based observing systems distributed in geographic longitude. The US Air Force Weather Agency (AFWA) has been operating the Solar Optical Observing Network (SOON) for many years, and is now replacing SOON with ISOON, an improved SOON. As a back-up during the development and installation of ISOON, AFWA is supporting the addition of an H-alpha observing system into the existing sites of the Global Oscillation Network Group (GONG) program. GONG comprises six sites in California, Hawaii, Australia, India, Spain, and Chile, and currently provides one per minute continual magnetic field, Doppler, and intensity measurements in the Ni 6768 line. The additional H-alpha capability will comprise a 0.4-A bandpass filter, a 2kX2k CCD, beamsplitter, transfer optics, and a dedicated data acquisition system. The observing cadence will be one per minute at a given site, with the acquisition time shifted between adjacent sites to potentially provide an image every 20 sec. The data will be transmitted back to Tucson, processed, and then transferred to AFWA within one minute of acquisition.

  17. High-Energy Aspects of Solar Flares: Observations and Models

    SciTech Connect

    Liu, Wei; Guo, Fan

    2015-07-21

    The paper begins by describing the structure of the Sun, with emphasis on the corona. The Sun is a unique plasma laboratory, which can be probed by Sun-grazing comets, and is the driver of space weather. Energization and particle acceleration mechanisms in solar flares is presented; magnetic reconnection is key is understanding stochastic acceleration mechanisms. Then coupling between kinetic and fluid aspects is taken up; the next step is feedback of atmospheric response to the acceleration process – rapid quenching of acceleration. Future challenges include applications of stochastic acceleration to solar energetic particles (SEPs), Fermi γ-rays observations, fast-mode magnetosonic wave trains in a funnel-shaped wave guide associated with flare pulsations, and the new SMEX mission IRIS (Interface Region Imaging Spectrograph),

  18. The interaction of active comets with the solar wind

    SciTech Connect

    Neugebauer, M. )

    1990-11-01

    The interaction of the solar wind with active comets is investigated based on observations of cometary plasma processes and studies of comets using telescopes and photographic plates. Data were also collected when a spacecraft flew through the tail of Comet Giacobini-Zinner in 1985 and five spacecraft encountered Comet Halley in 1986. The solar wind is considered to be supersonic (thermal Mach number 2-10) and to carry a magnetic field twisted into an Archimedean spiral by the rotation of the sun. Since the wind can change its properties during the time a spacecraft is inside the ionosphere or magnetosphere of the body being studied, it is difficult to separate spatial from temporal effects. Photoionization results in addition of plasma to the solar wind. Between the outer and inner edges of the cometosheath, the increasing rate of ion pickup causes the flow to slow down until it stagnates, while the plasma density and the magnetic field strength increase.

  19. Full solar rotations observed by the SOLAR payload on the ISS.

    NASA Astrophysics Data System (ADS)

    Muller, Christian

    2014-05-01

    Since March 2008, an optical package measuring the sun spectral irradiance operates in space from the ESA COLUMBUS module of the International Space Station. Three instruments compose this package: a total solar irradiance instrument SOVIM, a UV-visible-infrared spectrometer: SOLSPEC and a far UV instrument: SOL-ACES. SOVIM stopped operations due to an electrical problem six months after launch but the two other instruments are still operating and ESA plans on supporting them until 2017. However, the life of the ISS has now been officially extended to 2020 and if the instruments stay in the current condition, a further extension would be possible. Due to the specificities of the ISS and mechanical limitation of the SOLAR moving platform, continuous operations are not possible and are made in intervals guaranteeing both solar visibility and minimum of contamination. This excludes arrivals of vehicles at the ISS and manoeuvres using chemical propulsion. In December 2012 and June 2013, NASA and the ISS partners approved a specific attitude, called the "SOLAR Attitude", allowing the bridging of two solar viewing opportunities and thus providing quasi-continuous observations during a full solar rotation. This process was repeated in December 2013 but the instruments had to be shut down after 25 days due to a temporary power reduction in the ISS. Normal operations are planned to resume in 2014 and would allow again the space agencies to approve new solar attitudes at the solstices. The completed operations and results already reviewed by the science teams will be presented with a special emphasis on the abnormal minimum of cycle 23. The continuation of these bridging operations and their meaning for space climate studies will also be discussed.

  20. Improved SOT (Hinode mission) high resolution solar imaging observations

    NASA Astrophysics Data System (ADS)

    Goodarzi, H.; Koutchmy, S.; Adjabshirizadeh, A.

    2015-08-01

    We consider the best today available observations of the Sun free of turbulent Earth atmospheric effects, taken with the Solar Optical Telescope (SOT) onboard the Hinode spacecraft. Both the instrumental smearing and the observed stray light are analyzed in order to improve the resolution. The Point Spread Function (PSF) corresponding to the blue continuum Broadband Filter Imager (BFI) near 450 nm is deduced by analyzing (i) the limb of the Sun and (ii) images taken during the transit of the planet Venus in 2012. A combination of Gaussian and Lorentzian functions is selected to construct a PSF in order to remove both smearing due to the instrumental diffraction effects (PSF core) and the large-angle stray light due to the spiders and central obscuration (wings of the PSF) that are responsible for the parasitic stray light. A Max-likelihood deconvolution procedure based on an optimum number of iterations is discussed. It is applied to several solar field images, including the granulation near the limb. The normal non-magnetic granulation is compared to the abnormal granulation which we call magnetic. A new feature appearing for the first time at the extreme- limb of the disk (the last 100 km) is discussed in the context of the definition of the solar edge and of the solar diameter. A single sunspot is considered in order to illustrate how effectively the restoration works on the sunspot core. A set of 125 consecutive deconvolved images is assembled in a 45 min long movie illustrating the complexity of the dynamical behavior inside and around the sunspot.

  1. Evidence of plasma heating in solar microflares during the minimum of solar activity

    NASA Astrophysics Data System (ADS)

    Kirichenko, Alexey; Bogachev, Sergey

    We present a statistical study of 80 solar microflares observed during the deep minimum of solar activity between 23 and 24 solar cycles. Our analysis covers the following characteristics of the flares: thermal energy of flaring plasma, its temperature and its emission measure in soft X-rays. The data were obtained during the period from April to July of 2009, which was favorable for observations of weak events because of very low level of solar activity. The most important part of our analysis was an investigation of extremely weak microflares corresponding to X-ray class below A1.0. We found direct evidence of plasma heating in more than 90% of such events. Temperature of flaring plasma was determined under the isothermal approximation using the data of two solar instruments: imaging spectroheliometer MISH onboard Coronas-Photon spacecraft and X-ray spectrophotometer SphinX operating in energy range 0.8 - 15 keV. The main advantage of MISH is the ability to image high temperature plasma (T above 4 MK) without a low-temperature background. The SphinX data was selected due to its high sensitivity, which makes available the registration of X-ray emission from extremely weak microflares corresponding GOES A0.1 - A0.01 classes. The temperature we obtained lies in the range from 2.6 to 13.6 MK, emission measure, integrated over the range 1 - 8 Å - 2.7times10(43) - 4.9times10(47) cm (-3) , thermal energy of flaring region - 5times10(26) - 1.6times10(29) erg. We compared our results with the data obtained by Feldman et. al. 1996 and Ryan et. al. 2012 for solar flares with X-ray classes above A2.0 and conclude that the relation between X-ray class of solar flare and its temperature is strongly different for ordinary flares (above A2.0) and for weak microflares (A0.01 - A2.0). Our result supports the idea that weak solar events (microflares and nanoflares) may play significant a role in plasma heating in solar corona.

  2. Observations of the White Light Corona from Solar Orbiter and Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Howard, R. A.; Thernisien, A. F.; Vourlidas, A.; Plunkett, S. P.; Korendyke, C. M.; Sheeley, N. R.; Morrill, J. S.; Socker, D. G.; Linton, M. G.; Liewer, P. C.; De Jong, E. M.; Velli, M. M.; Mikic, Z.; Bothmer, V.; Lamy, P. L.

    2011-12-01

    The SoloHI instrument on Solar Orbiter and the WISPR instrument on Solar Probe+ will make white light coronagraphic images of the corona as the two spacecraft orbit the Sun. The minimum perihelia for Solar Orbiter is about 60 Rsun and for SP+ is 9.5 Rsun. The wide field of view of the WISPR instrument (about 105 degrees radially) corresponds to viewing the corona from 2.2 Rsun to 20 Rsun. Thus the entire Thomson hemisphere is contained within the telescope's field and we need to think of the instrument as being a traditional remote sensing instrument and then transitioning to a local in-situ instrument. The local behavior derives from the fact that the maximum Thomson scattering will favor the electron plasma close to the spacecraft - exactly what the in-situ instruments will be sampling. SoloHI and WISPR will also observe scattered light from dust in the inner heliosphere, which will be an entirely new spatial regime for dust observations from a coronagraph, which we assume to arise from dust in the general neighborhood of about half way between the observer and the Sun. As the dust grains approach the Sun, they evaporate and do not contribute to the scattering. A dust free zone has been postulated to exist somewhere inside of 5 Rsun where all dust is evaporated, but this has never been observed. The radial position where the evaporation occurs will depend on the precise molecular composition of the individual grains. The orbital plane of Solar Orbiter will gradually increase up to about 35 degrees, enabling a very different view through the zodiacal dust cloud to test the models generated from in-ecliptic observations. In this paper we will explore some of the issues associated with the observation of the dust and will present a simple model to explore the sensitivity of the instrument to observe such evaporations.

  3. Solar System Observing Capabilities With The James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Sonneborn, George; Milam, S. N.; Hines, D. C.; Stansberry, J. A.; Hammel, H. B.; Lunine, J. I.

    2014-01-01

    The James Webb Space Telescope (JWST) will provide important new capabilities to study our Solar System. JWST is a large aperture, cryogenic, infrared-optimized space observatory under construction by NASA, ESA, and CSA for launch in 2018 into a L2 orbit. Imaging, spectroscopy, and coronography covers 0.6-29 microns. Integral-field spectroscopy is performed with apertures 3 to 7 arcsec square (spatial slices of 0.1 to 0.6 arcsec). JWST is designed to observe Solar System objects having apparent rates of motion up to 0.030 arcseconds/second. This tracking capability includes the planets, satellites, asteroids, Trans-Neptunian Objects, and comets beyond Earth’s orbit. JWST will observe in the solar elongation range of 85 to 135 degrees, and a roll range of +/-5 degrees about the telescope’s optical axis. During an observation of a moving target, the science target is held fixed in the desired science aperture by controlling the guide star to follow the inverse of the target’s trajectory. The pointing control software uses polynomial ephemerides for the target generated using data from JPL’s HORIZON system. The JWST guider field of view (2.2x2.2 arcmin) is located in the telescope focal plane several arcmin from the science apertures. The instrument apertures are fixed with respect to the telescope focal plane. For targets near the ecliptic, those apertures also have a nearly fixed orientation relative to the ecliptic. This results from the fact that the Observatory's sunshield and solar panels must always be between the telescope and the Sun. On-board scripts autonomously control the execution of the JWST science timeline. The event-driven scripts respond to actual slew and on-board command execution, making operations more efficient. Visits are scheduled with overlapping windows to provide execution flexibility and to avoid lost time. An observing plan covering about ten days will be uplinked weekly. Updates could be more frequent if necessary (for example

  4. Solar System Observing Capabilities With The James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Sonneborn, George; Milam, S. N.; Hines, D. C.; Stansberry, J.; Hammel, H. B.; Lunine, J. I.

    2013-10-01

    The James Webb Space Telescope (JWST) will provide breakthrough capabilities to study our Solar System. JWST is a large aperture, cryogenic, infrared-optimized space observatory under construction by NASA, ESA, and CSA for launch in 2018 into a L2 orbit. Imaging, spectroscopy, and coronography covers 0.6-29 microns. JWST is designed to observe Solar System objects having apparent rates of motion up to 0.030 arcseconds/second. This capability includes the planets, satellites, asteroids, Trans-Neptunian Objects, and comets beyond Earth’s orbit. JWST can observe solar elongation of 85 to 135 degrees, and a roll range of +/-5 degrees about the telescope’s optical axis. During the observation of a moving target, the science target is held fixed in the desired science aperture by controlling the guide star to follow the inverse of the target’s trajectory. The pointing control software uses polynomial ephemerides for the target generated using JPL’s HORIZON system. The JWST guider field of view (2.2x2.2 arcmin) is located in the telescope focal plane several arcmin from the science apertures. The instrument apertures are fixed with respect to the telescope focal plane. For targets near the ecliptic, those apertures also have a nearly-fixed orientation relative to the ecliptic. This resultsfrom the fact that the Observatory's sun-shade and solar panels must always be between the telescope and the Sun. On-board scripts autonomously control the execution of the JWST science timeline. The event-driven scripts respond to actual slew and on-board command execution, making operations more efficient. Visits are scheduled with overlapping windows to provide execution flexibility and to avoid lost time. An observing plan covering about ten days will be uplinked weekly. Updates could be more frequent if necessary (for example, to accommodate a Target of Opportunity - TOO). The event-driven operations system supports time-critical observations and TOOs. The minimum response

  5. H-alpha synoptic charts of solar activity during the first year of solar cycle 20, October 1964 - August 1965. [Skylab program

    NASA Technical Reports Server (NTRS)

    Mcintosh, P. S.

    1975-01-01

    Solar activity during the period October 28, 1964 through August 27, 1965 is presented in the form of charts for each solar rotation constructed from observations made with the chromospheric H-alpha spectra line. These H-alpha synoptic charts are identical in format and method of construction to those published for the period of Skylab observations. The sunspot minimum marking the start of Solar Cycle 20 occurred in October, 1964; therefore, charts represent solar activity during the first year of this solar cycle.

  6. Public Education and Outreach for Observing Solar Eclipses and Transits

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.

    2015-08-01

    The general public is often very interested in observing solar eclipses, with widespread attention from newspapers and other sources often available only days before the events. Recently, the 2012 eclipse's partial phases in Australia and the 2015 eclipse's partial phases throughout Europe as well as western Asia and northern Africa, were widely viewed. The 21 August 2017 eclipse, whose totality will sweep across the Continental United States from northwest to southeast, will have partial phases visible throughout the U.S., Canada, Mexico, Central America, and into South America. The 2019 and 2020 partial phases of total eclipses will be visible throughout South America, and partial phases from annular eclipses will be visible from other parts of the world. The 9 May 2016 transit of Mercury will be best visible from the Western Hemisphere, Europe, and Africa. Many myths and misunderstandings exist about the safety of observing partial phases, and it is our responsibility as astronomers and educators to transmit accurate information and to attempt the widest possible distribution of such information. The Working Group on Public Education at Eclipses and Transits, formerly of Commission 46 on Education and Development and now of New Commission 11, tries to coordinate the distribution of information. In collaboration with the Solar Division's Working Group on Solar Eclipses, their website at http://eclipses.info is a one-stop shop for accurate information on how to observe eclipses, why it is interesting to do so, where they will be visible (with links to online maps and weather statistics), and how encouraging students to observe eclipses can be inspirational for them, perhaps even leading them to realize that the Universe can be understood and therefore renewing the strength of their studies. Links to information about transits of Mercury and Venus are also included.

  7. SECCHI Observations of the Solar Wind from Multiple Viewpoints

    NASA Astrophysics Data System (ADS)

    Howard, Russell

    After many years of observing, measuring and interpreting Coronal Mass Ejections (CMEs), streamers and "blobs" from a single near-Earth viewpoint, we have entered an era in which they are being observed from multiple viewpoints. In October, 1996, NASA launched the STEREO mission, which consisted of two nearly-identical spacecraft in orbit about the Sun -one drifting in front of Earth and the other behind. The drift rate of each spacecraft from Earth is about 22.5 degrees per year, so that in Jan, 2010 they will be about 65 and 70 degrees from Earth or about 135 degrees from each other. Since November, 2007, they have been separated by more than 45 degrees, which easily enables mathematical stereo reconstruction of the CME structure. Although the solar cycle has been extraordinarily quiet, a significant number of CMEs have been observed with the SECCHI instrument, mostly slow and not massive. But they have been observed in isolation, without the confusion of several events occurring at around the same time and merging together. This has enabled the determination of the general CME structure. Virtually all of the CME events are consistent with an idealized "flux rope" -a cylindrical shell in which the dense material encases a low-density magnetic region. These CME events occurred all around the Sun, but some could be tracked toward Earth. During this transit, their shape evolved as it "plowed" into the slower solar wind ahead of it or got pushed from behind by a high speed stream. This tracking of CMEs was enabled by very sensitive telescopes on STEREO/SECCHI imaging the inner heliosphere, the region of space between the Sun and Earth. Not only can CMEs and the compression regions ahead of the high speed streams, the co-rotating interaction regions (CIRs) be seen from their formation (about 30 Rsun) and tracked all the way to the orbit of Earth, but the highly variable solar wind is being imaged.

  8. Observing the release of twist by magnetic reconnection in a solar filament eruption.

    PubMed

    Xue, Zhike; Yan, Xiaoli; Cheng, Xin; Yang, Liheng; Su, Yingna; Kliem, Bernhard; Zhang, Jun; Liu, Zhong; Bi, Yi; Xiang, Yongyuan; Yang, Kai; Zhao, Li

    2016-01-01

    Magnetic reconnection is a fundamental process of topology change and energy release, taking place in plasmas on the Sun, in space, in astrophysical objects and in the laboratory. However, observational evidence has been relatively rare and typically only partial. Here we present evidence of fast reconnection in a solar filament eruption using high-resolution H-alpha images from the New Vacuum Solar Telescope, supplemented by extreme ultraviolet observations. The reconnection is seen to occur between a set of ambient chromospheric fibrils and the filament itself. This allows for the relaxation of magnetic tension in the filament by an untwisting motion, demonstrating a flux rope structure. The topology change and untwisting are also found through nonlinear force-free field modelling of the active region in combination with magnetohydrodynamic simulation. These results demonstrate a new role for reconnection in solar eruptions: the release of magnetic twist. PMID:27306479

  9. Observing the release of twist by magnetic reconnection in a solar filament eruption

    NASA Astrophysics Data System (ADS)

    Xue, Zhike; Yan, Xiaoli; Cheng, Xin; Yang, Liheng; Su, Yingna; Kliem, Bernhard; Zhang, Jun; Liu, Zhong; Bi, Yi; Xiang, Yongyuan; Yang, Kai; Zhao, Li

    2016-06-01

    Magnetic reconnection is a fundamental process of topology change and energy release, taking place in plasmas on the Sun, in space, in astrophysical objects and in the laboratory. However, observational evidence has been relatively rare and typically only partial. Here we present evidence of fast reconnection in a solar filament eruption using high-resolution H-alpha images from the New Vacuum Solar Telescope, supplemented by extreme ultraviolet observations. The reconnection is seen to occur between a set of ambient chromospheric fibrils and the filament itself. This allows for the relaxation of magnetic tension in the filament by an untwisting motion, demonstrating a flux rope structure. The topology change and untwisting are also found through nonlinear force-free field modelling of the active region in combination with magnetohydrodynamic simulation. These results demonstrate a new role for reconnection in solar eruptions: the release of magnetic twist.

  10. Observing the release of twist by magnetic reconnection in a solar filament eruption

    PubMed Central

    Xue, Zhike; Yan, Xiaoli; Cheng, Xin; Yang, Liheng; Su, Yingna; Kliem, Bernhard; Zhang, Jun; Liu, Zhong; Bi, Yi; Xiang, Yongyuan; Yang, Kai; Zhao, Li

    2016-01-01

    Magnetic reconnection is a fundamental process of topology change and energy release, taking place in plasmas on the Sun, in space, in astrophysical objects and in the laboratory. However, observational evidence has been relatively rare and typically only partial. Here we present evidence of fast reconnection in a solar filament eruption using high-resolution H-alpha images from the New Vacuum Solar Telescope, supplemented by extreme ultraviolet observations. The reconnection is seen to occur between a set of ambient chromospheric fibrils and the filament itself. This allows for the relaxation of magnetic tension in the filament by an untwisting motion, demonstrating a flux rope structure. The topology change and untwisting are also found through nonlinear force-free field modelling of the active region in combination with magnetohydrodynamic simulation. These results demonstrate a new role for reconnection in solar eruptions: the release of magnetic twist. PMID:27306479

  11. Approaching Solar Maximum 24 with Stereo-Multipoint Observations of Solar Energetic Particle Events

    NASA Technical Reports Server (NTRS)

    Dresing, N.; Cohen, C. M. S.; Gomez-Herrero, R.; Heber, B.; Klassen, A.; Leske, R. A.; Mason, G. M.; Mewaldt, R. A.; von Rosenvinge, T. T.

    2014-01-01

    Since the beginning of the Solar Terrestrial Relations Observatory (STEREO) mission at the end of 2006, the two spacecraft have now separated by more than 130? degrees from the Earth. A 360-degree view of the Sun has been possible since February 2011, providing multipoint in situ and remote sensing observations of unprecedented quality. Combining STEREO observations with near-Earth measurements allows the study of solar energetic particle (SEP) events over a wide longitudinal range with minimal radial gradient effects. This contribution provides an overview of recent results obtained by the STEREO/IMPACT team in combination with observations by the ACE and SOHO spacecraft. We focus especially on multi-spacecraft investigations of SEP events. The large longitudinal spread of electron and 3He-rich events as well as unusual anisotropies will be presented and discussed.

  12. Vector Magnetograph Observations by the Solar Flare Telescope at Boao

    NASA Astrophysics Data System (ADS)

    Park, Y. D.; Moon, Y.-J.

    We report that the vector magnetograph(VMG) observations of the solar photosphere are being carried out by the Solar Flare Telescope(SOFT) in BOAO(Bohyunsan Optical Astronomical Observatory) of Korea Astronomy Observatory. The VMG uses a narrow band Lyot filter (FWHM = 0.125A) for observations of Stokes parameters(I,Q,U,V) to obtain longitudinal and transversal fields. The Stokes images are acquired by Sony XC -77 video CCD cameras which are digitized in 8-bit by an image processor, MVC 150/40 manufactured by ITI(Image Technology Incorporate). The digitized images are saved in 16 bit after integration (up to 256 frames) or in 8-bit multiple frames for analysis. Since the transmission wavelength of Lyot filter is very sensitive to environmental temperature (0.35A/deg), it requires a careful temperature control of the filter interior. For this, we have made a continuous effort to maintain the temperature stability within the accuracy of less than 0.05 deg. with NAIRC (Nanjing Astronomical Instrument Research Center) team. We have obtained clean line profiles of FeI 6302.5 from our VMG by scanning the individual profiles by changing the central wavelength of the Lyot filter. We present some of our observed VMG observations, which are compared with those made with similar vector magnetographs at other observatories.

  13. New Observations of Soft X-ray (0.5-5 keV) Solar Spectra

    NASA Astrophysics Data System (ADS)

    Caspi, A.; Woods, T. N.; Mason, J. P.; Jones, A. R.; Warren, H. P.

    2013-12-01

    The solar corona is the brightest source of X-rays in the solar system, and the X-ray emission is highly variable on many time scales. However, the actual solar soft X-ray (SXR) (0.5-5 keV) spectrum is not well known, particularly during solar quiet periods, as, with few exceptions, this energy range has not been systematically studied in many years. Previous observations include high-resolution but very narrow-band spectra from crystal spectrometers (e.g., Yohkoh/BCS), or integrated broadband irradiances from photometers (e.g., GOES/XRS, TIMED/XPS, etc.) that lack detailed spectral information. In recent years, broadband measurements with moderate energy resolution (~0.5-0.7 keV FWHM) were made by SphinX on CORONAS-Photon and SAX on MESSENGER, although they did not extend to energies below ~1 keV. We present observations of solar SXR emission obtained using new instrumentation flown on recent SDO/EVE calibration rocket underflights. The photon-counting spectrometer, a commercial Amptek X123 with a silicon drift detector and an 8 μm Be window, measures the solar disk-integrated SXR emission from ~0.5 to >10 keV with ~0.15 keV FWHM resolution and 1 s cadence. A novel imager, a pinhole X-ray camera using a cooled frame-transfer CCD (15 μm pixel pitch), Ti/Al/C filter, and 5000 line/mm Au transmission grating, images the full Sun in multiple spectral orders from ~0.1 to ~5 nm with ~10 arcsec/pixel and ~0.01 nm/pixel spatial and spectral detector scales, respectively, and 10 s cadence. These instruments are prototypes for future CubeSat missions currently being developed. We present new results of solar observations on 04 October 2013 (NASA sounding rocket 36.290). We compare with previous results from 23 June 2012 (NASA sounding rocket 36.286), during which solar activity was low and no signal was observed above ~4 keV. We compare our spectral and imaging measurements with spectra and broadband irradiances from other instruments, including SDO/EVE, GOES/XRS, TIMED

  14. Bayesian Analysis Of HMI Solar Image Observables And Comparison To TSI Variations And MWO Image Observables

    NASA Astrophysics Data System (ADS)

    Parker, D. G.; Ulrich, R. K.; Beck, J.

    2014-12-01

    We have previously applied the Bayesian automatic classification system AutoClass to solar magnetogram and intensity images from the 150 Foot Solar Tower at Mount Wilson to identify classes of solar surface features associated with variations in total solar irradiance (TSI) and, using those identifications, modeled TSI time series with improved accuracy (r > 0.96). (Ulrich, et al, 2010) AutoClass identifies classes by a two-step process in which it: (1) finds, without human supervision, a set of class definitions based on specified attributes of a sample of the image data pixels, such as magnetic field and intensity in the case of MWO images, and (2) applies the class definitions thus found to new data sets to identify automatically in them the classes found in the sample set. HMI high resolution images capture four observables-magnetic field, continuum intensity, line depth and line width-in contrast to MWO's two observables-magnetic field and intensity. In this study, we apply AutoClass to the HMI observables for images from May, 2010 to June, 2014 to identify solar surface feature classes. We use contemporaneous TSI measurements to determine whether and how variations in the HMI classes are related to TSI variations and compare the characteristic statistics of the HMI classes to those found from MWO images. We also attempt to derive scale factors between the HMI and MWO magnetic and intensity observables. The ability to categorize automatically surface features in the HMI images holds out the promise of consistent, relatively quick and manageable analysis of the large quantity of data available in these images. Given that the classes found in MWO images using AutoClass have been found to improve modeling of TSI, application of AutoClass to the more complex HMI images should enhance understanding of the physical processes at work in solar surface features and their implications for the solar-terrestrial environment. Ulrich, R.K., Parker, D, Bertello, L. and

  15. Spectrally-resolved Soft X-ray Observations and the Temperature Structure of the Solar Corona

    NASA Astrophysics Data System (ADS)

    Caspi, Amir; Warren, Harry; McTiernan, James; Woods, Thomas N.

    2015-04-01

    Solar X-ray observations provide important diagnostics of plasma heating and particle acceleration, during solar flares and quiescent periods. How the corona is heated to its ~1-3 MK nominal temperature remains one of the fundamental unanswered questions of solar physics; heating of plasma to tens of MK during solar flares -- particularly to the hottest observed temperatures of up to ~50 MK -- is also still poorly understood. Soft X-ray emission (~0.1-10 keV; or ~0.1-10 nm) is particularly sensitive to hot coronal plasma and serves as a probe of the thermal processes driving coronal plasma heating. Spectrally- and temporally-resolved measurements are crucial for understanding these energetic processes, but there have historically been very few such observations. We present new solar soft X-ray spectra from the Amptek X123-SDD, measuring quiescent solar X-ray emission from ~0.5 to ~30 keV with ~0.15 keV FWHM resolution from two SDO/EVE calibration sounding rocket underflights in 2012 and 2013. Combined with observations from RHESSI, GOES/XRS, SDO/EVE, and SDO/AIA, the temperature distribution derived from these data suggest significant hot (5-10 MK) emission from active regions, and the 2013 spectra suggest a low-FIP enhancement of only ~1.6 relative to the photosphere, 40% of the usually-observed value from quiescent coronal plasma. We explore the implications of these findings on coronal heating. We discuss future missions for spectrally-resolved soft X-ray observations using the X123-SDD, including the upcoming MinXSS 3U CubeSat using the X123-SDD and scheduled for deployment in mid-2015, and the CubIXSS 6U CubeSat mission concept.

  16. Initial Venus Express magnetic field observations of the magnetic barrier at solar minimum

    NASA Astrophysics Data System (ADS)

    Zhang, T. L.; Delva, M.; Baumjohann, W.; Volwerk, M.; Russell, C. T.; Barabash, S.; Balikhin, M.; Pope, S.; Glassmeier, K.-H.; Wang, C.; Kudela, K.

    2008-05-01

    Although there is no intrinsic magnetic field at Venus, the convected interplanetary magnetic field piles up to form a magnetic barrier in the dayside inner magnetosheath. In analogy to the Earth's magnetosphere, the magnetic barrier acts as an induced magnetosphere on the dayside and hence as the obstacle to the solar wind. It consists of regions near the planet and its wake for which the magnetic pressure dominates all other pressure contributions. The initial survey performed with the Venus Express magnetic field data indicates a well-defined boundary at the top of the magnetic barrier region. It is clearly identified by a sudden drop in magnetosheath wave activity, and an abrupt and pronounced field draping. It marks the outer boundary of the induced magnetosphere at Venus, and we adopt the name "magnetopause" to address it. The magnitude of the draped field in the inner magnetosheath gradually increases and the magnetopause appears to show no signature in the field strength. This is consistent with PVO observations at solar maximum. A preliminary survey of the 2006 magnetic field data confirms the early PVO radio occultation observations that the ionopause stands at ˜250 km altitude across the entire dayside at solar minimum. The altitude of the magnetopause is much lower than at solar maximum, due to the reduced altitude of the ionopause at large solar zenith angles and the magnetization of the ionosphere. The position of the magnetopause at solar minimum is coincident with the ionopause in the subsolar region. This indicates a sinking of the magnetic barrier into the ionosphere. Nevertheless, it appears that the thickness of the magnetic barrier remains the same at both solar minimum and maximum. We have found that the ionosphere is magnetized ˜95% of the time at solar minimum, compared with 15% at solar maximum. For the 5% when the ionosphere is un-magnetized at solar minimum, the ionopause occurs at a higher location typically only seen during solar

  17. Small is different: RPC observations of a small scale comet interacting with the solar wind

    NASA Astrophysics Data System (ADS)

    Nilsson, Hans; Burch, James L.; Carr, Christopher M.; Eriksson, Anders I.; Glassmeier, Karl-Heinz; Henri, Pierre; Rosetta Plasma Consortium Team

    2016-10-01

    Rosetta followed comet 67P from low activity at more than 3 AU heliocentric distance to peak activity at perihelion and then out again. We study the evolution of the dynamic plasma environment using data from the Rosetta Plasma Consortium (RPC). Observations of cometary plasma began in August 2014, at a distance of 100 km from the comet nucleus and at 3.6 AU from the Sun. As the comet approached the Sun, outgassing from the comet increased, as did the density of the cometary plasma. Measurements showed a highly heterogeneous cold ion environment, permeated by the solar wind. The solar wind was deflected due to the mass loading from newly added cometary plasma, with no discernible slowing down. The magnetic field magnitude increased significantly above the background level, and strong low frequency waves were observed in the magnetic field, a.k.a. the "singing comet". Electron temperatures were high, leading to a frequently strongly negative spacecraft potential. In mid to late April 2015 the solar wind started to disappear from the observation region. This was associated with a solar wind deflection reaching nearly 180°, indicating that mass loading became efficient enough to form a solar wind-free region. Accelerated water ions, moving mainly in the anti-sunward direction, kept being observed also after the solar wind disappearance. Plasma boundaries began to form and a collisionopause was tentatively identified in the ion and electron data. At the time around perihelion, a diamagnetic cavity was also observed, at a surprisingly large distance from the comet. In late 2016 the solar wind re-appeared at the location of Rosetta, allowing for studies of asymmetry of the comet ion environment with respect to perihelion. A nightside excursion allowed us to get a glimpse of the electrodynamics of the innermost part of the plasma tail. Most of these phenomena are dependent on the small-scale physics of comet 67P, since for most of the Rosetta mission the solar wind

  18. Solar Energy Education. Renewable energy activities for earth science

    SciTech Connect

    Not Available

    1980-01-01

    A teaching manual is provided to aid teachers in introducing renewable energy topics to earth science students. The main emphasis is placed on solar energy. Activities for the student include a study of the greenhouse effect, solar gain for home heating, measuring solar radiation, and the construction of a model solar still to obtain fresh water. Instructions for the construction of apparatus to demonstrate a solar still, the greenhouse effect and measurement of the altitude and azimuth of the sun are included. (BCS)

  19. Hinode Observes an Active Sun

    NASA Video Gallery

    The X-ray Telescope on the Japanese/NASA mission Hinode has been observing the full sun, nearly continuously, for an extended period. In this movie significant small-scale dynamic events can be obs...

  20. Dayside Auroral Activity During Solar Maximum and Minimum Periods

    NASA Astrophysics Data System (ADS)

    Rawie, M.; Fasel, G. J.; Flicker, J.; Angelo, A.; Bender, S.; Alyami, M.; Sibeck, D. G.; Sigernes, F.; Lorentzen, D. A.; Green, D.

    2014-12-01

    It is well documented that the dayside auroral oval shifts equatorward when the interplanetary magnetic field (IMF) Bz-component turns southward [Burch, 1973; Akasofu, 1977; Horwitz and Akasofu, 1977; Sandholt et al., 1986, 1988]. During these periods of oval expansion dayside transients are observed to move away from the poleward edge of the auroral oval and drift poleward. These poleward-moving auroral forms are believed to be ionospheric signatures of dayside merging. The dayside auroral oval usually begins to contract when the interplanetary magnetic field turns sharply northward, Bz>0. Eighteen years of meridian scanning photometer (MSP) data from the Kjell Henriksen Observatory in Longyearbyen, Norway are analyzed. During the boreal winter the Sun is several degrees below the horizon. This permits optical observations throughout the daytime period. The MSP Data is selected two hours before and after local noon in Longyearbeyn. Solar wind data (solar wind pressure and speed, along with the IMF Bx, By, Bz components) are collected for each interval and combined with the MSP observations. This data is then separated using solar maximum and minimum periods. Auroral activity (oval expansions and contractions along with the frequency and number of poleward-moving auroral forms) is documented for both solar maximum and minimum periods.

  1. Research on Magnetic Evolution in Solar Active Regions and Related Solar Eruptions

    NASA Astrophysics Data System (ADS)

    Yan, X. L.

    2014-07-01

    Research on sunspot activity and solar eruptions is one of the key and difficult issues in solar physics. The relationship between sunspot formation and its magnetic field evolution, and solar eruptions is not well understood. Magnetic emergence, magnetic cancellation, and sunspot motion can greatly affect the upper solar atmosphere, and even produce flares, coronal mass ejections (CMEs), filament eruptions, surges, and so on. Especially, large solar eruptions toward the earth can exert a huge influence on the Sun-Earth space weather. The observations of the Sun have been developed from those at a single wavelength based on the ground station to those at multi-wavelengths based on both the ground and space stations. In particular, from the launch of rockets in 1940s---1950s to the launch of the current spacecraft, the great achievements have been made based on the multi-wavelength and high resolution observations. This thesis is dedicated to the study of the evolution of active regions and related solar eruptions, especially the exploration on the origin of solar activities by using a great many data obtained by space and ground-based telescopes. Chapter 1 introduces the basic knowledge of sunspots (formation, fine-structure, magnetic field, material flow, and periodicity), filaments (formation, theoretical models, and triggering mechanisms), flares (classification, and theoretical models), and CMEs (structures, and physical models). In chapter 2, we investigate the relationship between magnetic emergence, magnetic cancellation, flares, CMEs, and filament eruptions in active regions by using ground and space observational data. Half of filament eruptions in active regions in our examples are accompanied by CMEs. The occurrence and speed of CMEs have a close relationship with the associated flares accompanied by filament eruptions. The halo CMEs are associated with large flares (≥ M-class flares). Magnetic emergence and cancellation often appear in the active

  2. The biological effects of solar activity.

    PubMed

    Breus, T K; Pimenov, K Yu; Cornélissen, G; Halberg, E; Syutkina, E V; Baevsky, R M; Petrov, V M; Orth-Gómer, K; Akerstedt, T; Otsuka, K; Watanabe, Y; Chibisov, S M

    2002-01-01

    The synchronization of biological circadian and circannual rhythms is broadly viewed as a result of photic solar effects. Evidence for non-photic solar effects on biota is also slowly being recognized. The ultrastructure of cardiomyocytes from rabbits, the time structure of blood pressure and heart rate of neonates, and the heart rate variability of human adults on earth and in space were examined during magnetically disturbed and quiet days, as were morbidity statistics. Alterations in both the about-daily (circadian) and about-weekly (circaseptan) components are observed during disturbed vs. quite days. The about-weekly period of neonatal blood pressure correlates with that of the local geomagnetic disturbance index K. Circaseptans which are seen early in human life and in various other forms of life, including unicells, may provide information about the possible site(s) of life's origins from an integrative as well as adaptive evolutionary perspective. PMID:12653180

  3. Influence of solar activity on Jupiter's atmosphere

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.

    2016-05-01

    The influx of solar energy to different latitudes while Jupiter's orbital motion around the Sun varies significantly. This leads to a change in the optical and physical characteristics of its atmosphere. Analysis of the data for 1850-1991 on determination of the integral magnitude Mj Jupiter in the V filter, and a comparison with the changes of the Wolf numbers W, characterizing the variations of solar activity (SA) - showed that the change of Mj in maxima of the SA - has minima for odd, and maximums - for the even of SA cycles. That is, changing of the Jupiter brightness in visible light is much evident 22.3-year magnetic cycle, and not just about the 11.1-year cycle of solar activity. Analysis of the obtained in 1960-2015 data on the relative distribution of brightness along the central meridian of Jupiter, for which we calculated the ratio of the brightness Aj of northern to the southern part of the tropical and temperate latitudinal zones, allowed to approximate the change of Aj by sinusoid with a period of 11.91±0.07 earth years. Comparison of time variation of Aj from changes in the index of SA R, and the movement of the planet in its orbit - indicates the delay of response of the visible cloud layer in the atmosphere of the Sun's exposure mode for 6 years. This value coincides with the radiative relaxation of the hydrogen-helium atmosphere

  4. Statistical analysis of solar energetic particle events and related solar activity

    NASA Astrophysics Data System (ADS)

    Dierckxsens, Mark; Patsou, Ioanna; Tziotziou, Kostas; Marsh, Michael; Lygeros, Nik; Crosby, Norma; Dalla, Silvia; Malandraki, Olga

    2013-04-01

    The FP7 COMESEP (COronal Mass Ejections and Solar Energetic Particles: forecasting the space weather impact) project is developing tools for forecasting geomagnetic storms and solar energetic particle (SEP) radiation storms. Here we present preliminary results on a statistical analysis of SEP events and their parent solar activity during Solar Cycle 23. The work aims to identify correlations between solar events and SEP events relevant for space weather, as well as to quantify SEP event probabilities for use within the COMESEP alert system. The data sample covers the SOHO era and is based on the SEPEM reference event list [http://dev.sepem.oma.be/]. Events are subdivided if separate enhancements are observed in higher energy channels as defined for the list of Cane et al (2010). Energetic Storm Particle (ESP) enhancements during these events are identified by associating ESP-like increases in the proton channels with shocks detected in ACE and WIND data. Their contribution has been estimated and subtracted from the proton fluxes. Relationships are investigated between solar flare parameters such as X-ray intensity and heliographic location on the one hand, and the probability of occurrence and strength of energetic proton flux increases on the other hand. The same exercise is performed using the velocity and width of coronal mass ejections to examine their SEP productiveness. Relationships between solar event characteristics and SEP event spectral indices and fluences are also studied, as well as enhancements in heavy ion fluxes measured by the SIS instrument on board the ACE spacecraft during the same event periods. This work has received funding from the European Commission FP7 Project COMESEP (263252).

  5. Observations and Modeling of Solar Flare Atmospheric Dynamics

    NASA Astrophysics Data System (ADS)

    Li, Y.

    2015-09-01

    Solar flares are one of the most energetic events in solar atmosphere, which last minutes to tens of minutes. The eruption of a solar flare involves energy release, plasma heating, particle acceleration, mass flows, waves, etc. A solar flare releases a large amount of energy, and its emission spans a wide wavelength range. Solar flares are usually accompanied by coronal mass ejections (CMEs); therefore they could significantly affect the space environments between the Earth and the Sun. At present, we do not fully understand the whole flare process. There are still many important questions to be resolved, such as when and where is the energy released? How long does the energy release last? What are the main ways of energy release? And how does the solar atmosphere respond to the energy release? To address these questions, we study in detail the flare heating and dynamic evolution. We first give a brief review of previous flare studies (Chapter 1), and introduce the observing instruments (Chapter 2) and the modeling method (Chapter 3) related to this thesis work. Then we use spectral data to investigate the chromospheric evaporation (Chapter 4). Based on the results, we further explore the flare heating problem. With observationally inferred heating functions, we model two flare loops, and compare the results with observations (Chapter 5). A consistency is achieved between modeling and observations. In addition, we model two different sets of flare loop systems with quite different heating profiles and dynamic evolutions (Chapter 6). The details are described as below. Firstly, we investigate the chromospheric evaporation in the flare on 2007 January 16 using line profiles observed by the Extreme-ultraviolet (EUV) Imaging Spectrometer (EIS) on board Hinode. Three points with different magnetic polarities at flare ribbons are analyzed in detail. We find that the three points show different patterns of upflows and downflows in the impulsive phase of the flare. The

  6. Grand minima of solar activity during the last millennia

    NASA Astrophysics Data System (ADS)

    Usoskin, Ilya G.; Solanki, Sami K.; Kovaltsov, Gennady A.

    2012-07-01

    In this review we discuss the occurrence and statistical properties of Grand minima based on the available data covering the last millennia. In particular, we consider the historical record of sunspot numbers covering the last 400 years as well as records of cosmogenic isotopes in natural terrestrial archives, used to reconstruct solar activity for up to the last 11.5 millennia, i.e. throughout the Holocene. Using a reconstruction of solar activity from cosmogenic isotope data, we analyze statistics of the occurrence of Grand minima. We find that: the Sun spends about most of the time at moderate activity, 1/6 in a Grand minimum and some time also in a Grand maximum state; Occurrence of Grand minima is not a result of long-term cyclic variations but is defined by stochastic/chaotic processes; There is a tendency for Grand minima to cluster with the recurrence rate of roughly 2000-3000 years, with a weak ~210-yr periodicity existing within the clusters. Grand minima occur of two different types: shorter than 100 years (Maunder-type) and long ~150 years (Spörer-type). It is also discussed that solar cycles (most possibly not sunspots cycle) could exist during the Grand minima, perhaps with stretched length and asymmetric sunspot latitudinal distribution. These results set new observational constraints on long-term solar and stellar dynamo models.

  7. Analysis of Solar Magnetic Activity with the Wavelet Coherence Method

    NASA Astrophysics Data System (ADS)

    Velasco, V. M.; Perez-Peraza, J. A.; Mendoza, B. E.; Valdes-Galicia, J. F.; Sosa, O.; Alvarez-Madrigal, M.

    2007-05-01

    The origin, behavior and evolution of the solar magnetic field is one of the main challenges of observational and theoretical solar physics. Up to now the Dynamo theory gives us the best approach to the problem. However, it is not yet able to predict many features of the solar activity, which seems not to be strictly a periodical phenomenon. Among the indicators of solar magnetic variability there is the 11-years cycle of sunspots, as well as the solar magnetic cycle of 22 years (the Hale cycle). In order to provide more elements to the Dynamo theory that could help it in the predicting task, we analyze here the plausible existence of other periodicities associated with the solar magnetic field. In this preliminary work we use historical data (sunspots and aurora borealis), proxies (Be10 and C14) and modern instrumental data (Coronal Holes, Cosmic Rays, sunspots, flare indexes and solar radio flux at 10.7 cm). To find relationships between different time-frequency series we have employed the t Wavelet Coherence technique: this technique indicates if two time-series of solar activity have the same periodicities in a given time interval. If so, it determines whether such relation is a linear one or not. Such a powerful tool indicates that, if some periodicity at a given frequency has a confidence level below 95%, it appears very lessened or does not appear in the Wavelet Spectral Analysis, such periodicity does not exist . Our results show that the so called Glaisberg cycle of 80-90 years and the periodicity of 205 years (the Suess cycle) do not exist . It can be speculated that such fictitious periodicities hav been the result of using the Fourier transform with series with are not of stationary nature, as it is the case of the Be10 and C14 series. In contrast we confirm the presence of periodicities of 1.3, 1.7, 3.5, 5.5, 7, 60, 120 and 240 years. The concept of a Glaisberg cycle falls between those of 60 and 120 years. We conclude that the periodicity of 120 years

  8. Wind Observations of Anomalous Cosmic Rays from Solar Minimum to Maximum

    NASA Technical Reports Server (NTRS)

    Reames, D. V.; McDonald, F. B.

    2003-01-01

    We report the first observation near Earth of the time behavior of anomalous cosmic-ray N, O, and Ne ions through the period surrounding the maximum of the solar cycle. These observations were made by the Wind spacecraft during the 1995-2002 period spanning times from solar minimum through solar maximum. Comparison of anomalous and galactic cosmic rays provides a powerful tool for the study of the physics of solar modulation throughout the solar cycle.

  9. Observation of lunar neutron albedo along the 24th Solar cycle

    NASA Astrophysics Data System (ADS)

    Sanin, Anton; Mitrofanov, Igor; Litvak, Maxim; Bodnarik, Julia; Boynton, William; Chin, Gordon; Evans, Larry; Golovin, Dmitry; Harshman, Karl; Livengood, Timothy; Malakhov, Alexey; Mokrousov, Maxim; McClanahan, Timothy; Sagdeev, Roald; Starr, Richard; Vostrukhin, Andrey

    2015-04-01

    It is well known that the Sun is not a steady source of radiation and demonstrates quasi-periodic variations of its activity with an average period of 11 years. The variation in solar activity yields a number of important physical effects that impact the entire heliosphere. Some of these effects are important for human life, since variations of the solar wind and the interplanetary magnetic field in the Solar System may produce variations of geomagnetic field and Van Allen radiation belts. Moreover, after strong Solar Coronal Mass Ejection events global geomagnetic storms are possible. Solar variability generates a strong modulation of the Galactic Cosmic Ray (GCR) flux inside the heliosphere and results in a modulation of the neutron albedo of the Moon and other celestial bodies that lack a strong global magnetic field. Observations of the lunar neutron albedo and its variability are quite important for future human missions on the Moon since they provide an understanding of that radiation environment on the surface and in the subsurface. We have used the data of collimated and omnidirectional epithermal neutron detectors of the Lunar Exploration Neutron Detector (LEND) gathered from September 2009 up to present. This period covers the first half of the 24th Solar cycle from period of minimum solar activity with maximum lunar neutron albedo up to high solar activity and less neutron albedo. It was found that for the observed time period, the amplitude of neutron flux drops down by a factor of ~1.7 after a maximal values observed at December 2009. We have compared LEND measurements with ongoing observations of GCR variability by neutron detectors on-board other spacecraft orbiting around Earth (BTN/ISS) and Mars (HEND/Odyssey). All neutron instruments show similar global trends and local variations. It was found that HEND on Martian orbit has detected highest amplitude of neutron flux variations (~1.8 times) and the peak of neutron flux occurred by a couple of

  10. Observations and modeling of plasma flows driven by solar flares

    NASA Astrophysics Data System (ADS)

    Brannon, Sean Robert

    One of the fundamental statements that can be made about the solar atmosphere is that it is structured. This structuring is generally believed to be the result of both the arrangement of the magnetic field in the corona and the distribution of plasma along magnetic loops. The standard model of solar flares involves plasma transported into coronal loops via a process known as chromospheric evaporation, and the resulting evolution of the flare loops is believed to be sensitive to the physical mechanism of energy input into the chromosphere by the flare. We present here the results of three investigations into chromospheric plasma flows driven by solar flare energy release and transport. First, we develop a 1-D hydrodynamic code to simulate the response of a simplified model chromosphere to energy input via thermal conduction from reconnection-driven shocks. We use the results from a set of simulations spanning a parameter space in both shock speed and chromospheric-to-coronal temperature ratio to infer power-law relationships between these quantities and observable evaporation properties. Second, we use imaging and spectral observations of a quasi-periodic oscillation of a flare ribbon to determine the phase relationship between Doppler shifts of the ribbon plasma and the oscillation. The phase difference we find leads us to suggest an origin in a current sheet instability. Finally, we use imaging and spectral data of an on-disk flare event and resulting flare loop plasma flows to generally validate the standard picture of flare loop evolution, including evaporation, cooling time, and draining downflows, and we use a simple free-fall model to produce the first direct comparison between observed and synthetic downflow spectra.

  11. Tsunami related to solar and geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Cataldi, Gabriele; Cataldi, Daniele; Straser, Valentino

    2016-04-01

    The authors of this study wanted to verify the existence of a correlation between earthquakes of high intensity capable of generating tsunami and variations of solar and Earth's geomagnetic activity. To confirming or not the presence of this kind of correlation, the authors analyzed the conditions of Spaceweather "near Earth" and the characteristics of the Earth's geomagnetic field in the hours that preceded the four earthquakes of high intensity that have generated tsunamis: 1) Japan M9 earthquake occurred on March 11, 2011 at 05:46 UTC; 2) Japan M7.1 earthquake occurred on October 25, 2013 at 17:10 UTC; 3) Chile M8.2 earthquake occurred on April 1, 2014 at 23:46 UTC; 4) Chile M8.3 earthquake occurred on September 16, 2015 at 22:54 UTC. The data relating to the four earthquakes were provided by the United States Geological Survey (USGS). The data on ion density used to realize the correlation study are represented by: solar wind ion density variation detected by ACE (Advanced Composition Explorer) Satellite, in orbit near the L1 Lagrange point, at 1.5 million of km from Earth, in direction of the Sun. The instrument used to perform the measurement of the solar wind ion density is the Electron, Proton, and Alpha Monitor (EPAM) instrument, equipped on the ACE Satellite. To conduct the study, the authors have taken in consideration the variation of the solar wind protons density of three different energy fractions: differential proton flux 1060-1900 keV (p/cm^2-sec-ster-MeV); differential proton flux 761-1220 keV (p/cm^2-sec-ster-MeV); differential proton flux 310-580 keV (p/cm^2-sec-ster-MeV). Geomagnetic activity data were provided by Tromsø Geomagnetic Observatory (TGO), Norway; by Scoresbysund Geomagnetic Observatory (SCO), Greenland, Denmark and by Space Weather Prediction Center of Pushkov Institute of terrestrial magnetism, ionosphere and radio wave propagation (IZMIRAN), Troitsk, Moscow Region. The results of the study, in agreement with what already

  12. Solar-A reformatted data files and observing log

    NASA Technical Reports Server (NTRS)

    Morrison, M. D.; Lemen, J. R.; Acton, L. W.; Bentley, R. D.; Kosugi, T.; Tsuneta, S.; Ogawara, Y.; Watanabe, T.

    1991-01-01

    An overview is presented of the Solar-A telemetry data files which are to be created and the format and organization which the files are to use. The organization chosen is to be efficient in space, to facilitate access to the data, and to allow the data to be transportable to different machines. An observing log file is to be created automatically, using the reformatted data files as the input. It will be possible to perform searches with the observing log to list cases where instruments are in certain modes and/or seeing certain signal levels. A user will be able to search the observing log and obtain a list of all cases where a given set of conditions are satisfied. An event log will be created listing the times when the instrument or spacecraft modes change.

  13. Overview of EXCEED/Hisaki observations for solar planets

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Ichiro

    2016-07-01

    The Hisaki satellite with the EUV spectrometer (Extreme Ultraviolet Spectroscope for Exospheric Dynamics: EXCEED) was launched in September 2013 by Epsilon rocket. Now it is orbiting around the Earth (954.05 km x 1156.87 km orbit, the period is 104 minutes) and has performed a broad and varied observation program for more than 2-year. With an effective area of more than 1cm2 and well-calibrated sensitivity in space, the EUV spectrometer produces spectral images (520-1480 A) of the atmospheres/magnetospheres of solar planets (Mercury, Venus, Mars, Jupiter, and Saturn) from the earth-orbit. Continuous measurement for Io plasma torus and aurora of Jupiter was conducted with HST to witness the sporadic and sudden brightening events occurring on one or both regions. For Venus, Fourth Positive system of CO and some unknown emissions of the atmosphere were identified. Exospheres of Mercury, Saturn, and Mars were also observed. Summary of observations will be presented.

  14. Initiation of Solar Eruptions: Recent Observations and Implications for Theories

    NASA Technical Reports Server (NTRS)

    Sterling, A. C.

    2006-01-01

    Solar eruptions involve the violent disruption of a system of magnetic field. Just how the field is destabilized and explodes to produce flares and coronal mass ejections (CMEs) is still being debated in the solar community. Here I discuss recent observational work into these questions by ourselves (me and my colleagues) and others. Our work has concentrated mainly on eruptions that include filaments. We use the filament motion early in the event as a tracer of the motion of the general erupting coronal field in and around the filament, since that field itself is hard to distinguish otherwise. Our main data sources are EUV images from SOHO/EIT and TRACE, soft Xray images from Yohkoh, and magnetograms from SOHO/MDI, supplemented with coronagraph images from SOHO/LASCO, hard X-ray data, and ground-based observations. We consider the observational findings in terms of three proposed eruption-initiation mechanisms: (i) runaway internal tether-cutting reconnection, (ii) slow external tether-cutting reconnection ("breakout"), and (iii) ideal MHD instability.

  15. TOTAL SOLAR ECLIPSE OBSERVATIONS OF HOT PROMINENCE SHROUDS

    SciTech Connect

    Habbal, S. Rifai; Morgan, H.; Scholl, I.; Druckmueller, M.; Rusin, V.; Daw, A.; Johnson, J.; Arndt, M.

    2010-08-20

    Using observations of the corona taken during the total solar eclipses of 2006 March 29 and 2008 August 1 in broadband white light and in narrow bandpass filters centered at Fe X 637.4 nm, Fe XI 789.2 nm, Fe XIII 1074.7 nm, and Fe XIV 530.3 nm, we show that prominences observed off the solar limb are enshrouded in hot plasmas within twisted magnetic structures. These shrouds, which are commonly referred to as cavities in the literature, are clearly distinct from the overlying arch-like structures that form the base of streamers. The existence of these hot shrouds had been predicted by model studies dating back to the early 1970s, with more recent studies implying their association with twisted magnetic flux ropes. The eclipse observations presented here, which cover a temperature range of 0.9 to 2 x10{sup 6} K, are the first to resolve the long-standing ambiguity associated with the temperature and magnetic structure of prominence cavities.

  16. SECONDARY FLARE RIBBONS OBSERVED BY THE SOLAR DYNAMICS OBSERVATORY

    SciTech Connect

    Zhang, Jun; Li, Ting; Yang, Shuhong E-mail: liting@nao.cas.cn

    2014-02-20

    Using the observations from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, we statistically investigate the flare ribbons (FRs) of 19 X-class flares of the 24th solar cycle from 2010 June to 2013 August. Of these 19 flares, the source regions of 16 can be observed by AIA and the FRs of each flare are well detected, and 11 of the 16 display multiple ribbons. Based on the ribbon brightness and the relationship between the ribbons and post-flare loops, we divide the multiple ribbons into two types: normal FRs, which are connected by post-flare loops and have been extensively investigated, and secondary flare ribbons (SFRs), which are weaker than the FRs, not connected by post-flare loops, and always have a short lifetime. Of the 11 SFRs, 10 appear simultaneously with the FRs, and none of them have post-flare loops. The last one, on the other hand, appears 80 minutes later than the FR, lasts almost two hours, and also has no post-flare loops detected. We suggest that the magnetic reconnection associated with this SFR is triggered by the blast wave that results from the main flare. These observations imply that in some flare processes, more than two sets of magnetic loops or more than twice the number of magnetic reconnections are involved.

  17. Martian-Solar Wind Interaction Boundaries as Observed by MAVEN

    NASA Astrophysics Data System (ADS)

    Gruesbeck, J.; Espley, J. R.; Connerney, J. E. P.; DiBraccio, G. A.; Soobiah, Y. I. J.

    2015-12-01

    Lacking a global intrinsic field, the Martian magnetosphere is a product of the interaction of Mars with the interplanetary magnetic field and the supersonic solar wind. Previous analysis has been performed, using Phobos 2 and Mars Global Surveyor, observations to determine the average location of the Martian bow shock and the magnetic pileup boundary (MPB). However, analysis of individual orbits shows that the location of these boundaries can be highly variable in response to the changing heliospheric environment, implying that an average boundary may not be as representative as finite thickness boundary layers. MAVEN has been in orbit and producing science observations since November 2014 providing a large number of orbits, approximately 5 per day, for the spacecraft to cross the induced boundaries during a wide range of heliospheric conditions. Using data from the Particle and Fields Package onboard the MAVEN spacecraft, we are able to determine the location and thickness of the bow shock and the MPB, during each orbit. Additionally, MAVEN's orbit precesses such that we observe boundary crossings over a wide range of latitude and longitudes, important if there is any influence on the variability of the boundaries from the Martian crustal fields. Here we present a new model for the boundaries of the Martian magnetosphere, with a finite thickness to capture the variability of their location due to the changing solar wind environment.

  18. Electron observations in the solar wind and magnetosheath.

    NASA Technical Reports Server (NTRS)

    Scudder, J. D.; Ogilvie, K. W.; Lind, D. L.

    1973-01-01

    Electron temperature measurements taken by a triaxial electron analyzer on Ogo 5 in the solar wind and in the magnetosheath are interpreted. In the interplanetary medium, observations made on the bow shock connected lines of magnetic force have been separated from those made on non-bow-shock connected lines. The dependence of electron thermal properties on the local field geometry is discussed together with features of electron temperature and density discontinuities across the bow shock. The velocity distribution function is characterized together with temperature and density variations in a part of the dawn magnetosheath.

  19. Observations and interpretation of solar decameter type IIIb radio bursts

    NASA Astrophysics Data System (ADS)

    Krishan, V.; Subramanian, K. R.; Sastry, C. V.

    1980-06-01

    Observations on the time structure of short duration, narrow band solar decameter type IIIb radio bursts are presented along with a theoretical model accounting for various features of the bursts. In contrast to the theory of Smith and de la Noe (1976), the electromagnetic modes of the plasma are immersed in the electric and magnetic fields in the presented theory, and the electric field enters at the single particle level and thus is accounted for in a more exact manner. In addition, the direction of propagation of the type IIIb radio burst is more clearly indicated by this theory than by Smith and de la Noe (1976).

  20. Near-Earth Solar Wind Flows and Related Geomagnetic Activity During more than Four Solar Cycles (1963-2011)

    NASA Technical Reports Server (NTRS)

    Richardson, Ian G.; Cane, Hilary V.

    2012-01-01

    In past studies, we classified the near-Earth solar wind into three basic flow types based on inspection of solar wind plasma and magnetic field parameters in the OMNI database and additional data (e.g., geomagnetic indices, energetic particle, and cosmic ray observations). These flow types are: (1) High-speed streams associated with coronal holes at the Sun, (2) Slow, interstream solar wind, and (3) Transient flows originating with coronal mass ejections at the Sun, including interplanetary coronal mass ejections and the associated upstream shocks and post-shock regions. The solar wind classification in these previous studies commenced with observations in 1972. In the present study, as well as updating this classification to the end of 2011, we have extended the classification back to 1963, the beginning of near-Earth solar wind observations, thereby encompassing the complete solar cycles 20 to 23 and the ascending phase of cycle 24. We discuss the cycle-to-cycle variations in near-Earth solar wind structures and l1e related geomagnetic activity over more than four solar cycles, updating some of the results of our earlier studies.

  1. Recent meteor observing activities in Japan

    NASA Astrophysics Data System (ADS)

    Yamamoto, M.

    2005-02-01

    The meteor train observation (METRO) campaign is described as an example of recent meteor observing activity in Japan. Other topics of meteor observing activities in Japan, including Ham-band radio meteor observation, the ``Japan Fireball Network'', the automatic video-capture software ``UFOCapture'', and the Astro-classroom programme are also briefly introduced.

  2. Solar Activity and its Impact on Earth's Climate

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.

    2004-01-01

    The Sun's activity is now approaching an expected 2006 minimum, following the dramatic maximum of Solar Cycle 23, that included events such as the 2001 "Bastille Day" Coronal Mass Ejection, and the record-setting Oct-Nov 2003 solar flares, with their associated sunspots and variations in Total Solar Irradiance, or TSI. On Nov 4,2003 the largest X-ray flare ever detected (X-28) was observed in detail. We discuss recent satellite measurements of TSI by ACRIM 2 and 3 and Virgo, and new precision observations of TSI and SSI (Solar Spectral Irradiance) from the SORCE mission, that launched on January 25,2003. TSI variations recorded during the June 8,2004 transit of Venus show the unprecedented precision of the SORCE Total Irradiance Monitor (TIM) instrument, the first of its kind to employ phase-sensitive detection. The SORCE spectral instruments, XPS, Solstice, and SIM, record the Sun's changes over a wide range of wavelengths, from 1 to more than 2000 nanometers, for the first time covering the peak of the solar spectrum, including spectral components that provide energy inputs to key components of the climate system - ultraviolet (UV) into the upper atmospheric ozone layer, infrared (IR) into the lower atmosphere and clouds, and Visible into the Oceans and biosphere. Succeeding satellite missions are planned to monitor both TSI and SSI through Cycle 24. We summarize current ideas about decadal and longer solar variability, and associated potential impacts on Earth's climate on time scales from decades to centuries, especially highlighting the role of feedbacks in the climate system.

  3. How Large Scale Flows in the Solar Convection Zone may Influence Solar Activity

    NASA Technical Reports Server (NTRS)

    Hathaway, D. H.

    2004-01-01

    Large scale flows within the solar convection zone are the primary drivers of the Sun s magnetic activity cycle. Differential rotation can amplify the magnetic field and convert poloidal fields into toroidal fields. Poleward meridional flow near the surface can carry magnetic flux that reverses the magnetic poles and can convert toroidal fields into poloidal fields. The deeper, equatorward meridional flow can carry magnetic flux toward the equator where it can reconnect with oppositely directed fields in the other hemisphere. These axisymmetric flows are themselves driven by large scale convective motions. The effects of the Sun s rotation on convection produce velocity correlations that can maintain the differential rotation and meridional circulation. These convective motions can influence solar activity themselves by shaping the large-scale magnetic field pattern. While considerable theoretical advances have been made toward understanding these large scale flows, outstanding problems in matching theory to observations still remain.

  4. Evidence of active region imprints on the solar wind structure

    NASA Technical Reports Server (NTRS)

    Hick, P.; Jackson, B. V.

    1995-01-01

    A common descriptive framework for discussing the solar wind structure in the inner heliosphere uses the global magnetic field as a reference: low density, high velocity solar wind emanates from open magnetic fields, with high density, low speed solar wind flowing outward near the current sheet. In this picture, active regions, underlying closed magnetic field structures in the streamer belt, leave little or no imprint on the solar wind. We present evidence from interplanetary scintillation measurements of the 'disturbance factor' g that active regions play a role in modulating the solar wind and possibly contribute to the solar wind mass output. Hence we find that the traditional view of the solar wind, though useful in understanding many features of solar wind structure, is oversimplified and possibly neglects important aspects of solar wind dynamics

  5. The 2016 Transit of Mercury Observed from Major Solar Telescopes and Satellites

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Schneider, Glenn; Gary, Dale; Chen, Bin; Sterling, Alphonse C.; Reardon, Kevin P.; Dantowitz, Ronald; Kopp, Greg A.

    2016-10-01

    We report observations from the ground and space of the 9 May 2016 transit of Mercury. We build on our explanation of the black-drop effect in transits of Venus based on spacecraft observations of the 1999 transit of Mercury (Schneider, Pasachoff, and Golub, Icarus 168, 249, 2004). In 2016, we used the 1.6-m New Solar Telescope at the Big Bear Solar Observatory with active optics to observe Mercury's transit at high spatial resolution. We again saw a small black-drop effect as 3rd contact neared, confirming the data that led to our earlier explanation as a confluence of the point-spread function and the extreme solar limb darkening (Pasachoff, Schneider, and Golub, in IAU Colloq. 196, 2004). We again used IBIS on the Dunn Solar Telescope of the Sacramento Peak Observatory, as A. Potter continued his observations, previously made at the 2006 transit of Mercury, at both telescopes of the sodium exosphere of Mercury (Potter, Killen, Reardon, and Bida, Icarus 226, 172, 2013). We imaged the transit with IBIS as well as with two RED Epic IMAX-quality cameras alongside it, one with a narrow passband. We show animations of our high-resolution ground-based observations along with observations from XRT on JAXA's Hinode and from NASA's Solar Dynamics Observatory. Further, we report on the limit of the transit change in the Total Solar Irradiance, continuing our interest from the transit of Venus TSI (Schneider, Pasachoff, and Willson, ApJ 641, 565, 2006; Pasachoff, Schneider, and Willson, AAS 2005), using NASA's SORCE/TIM and the Air Force's TCTE/TIM. See http://transitofvenus.info and http://nicmosis.as.arizona.edu.Acknowledgments: We were glad for the collaboration at Big Bear of Claude Plymate and his colleagues of the staff of the Big Bear Solar Observatory. We also appreciate the collaboration on the transit studies of Robert Lucas (Sydney, Australia) and Evan Zucker (San Diego, California). JMP appreciates the sabbatical hospitality of the Division of Geosciences and

  6. Quantifying solar superactive regions with vector magnetic field observations

    NASA Astrophysics Data System (ADS)

    Chen, A. Q.; Wang, J. X.

    2012-07-01

    Context. The vector magnetic field characteristics of superactive regions (SARs) hold the key for understanding why SARs are extremely active and provide the guidance in space weather prediction. Aims: We aim to quantify the characteristics of SARs using the vector magnetograms taken by the Solar Magnetic Field Telescope at Huairou Solar Observatory Station. Methods: The vector magnetic field characteristics of 14 SARs in solar cycles 22 and 23 were analyzed using the following four parameters: 1) the magnetic flux imbalance between opposite polarities; 2) the total photospheric free magnetic energy; 3) the length of the magnetic neutral line with its steep horizontal magnetic gradient; and 4) the area with strong magnetic shear. Furthermore, we selected another eight large and inactive active regions (ARs), which are called fallow ARs (FARs), to compare them with the SARs. Results: We found that most of the SARs have a net magnetic flux higher than 7.0 × 1021 Mx, a total photospheric free magnetic energy higher than 1.0 × 1024 erg cm-1, a magnetic neutral line with a steep horizontal magnetic gradient (≥300 G Mm-1) longer than 30 Mm, and an area with strong magnetic shear (shear angle ≥ 80°) greater than 100 Mm2. In contrast, the values of these parameters for the FARs are mostly very low. The Pearson χ2 test was used to examine the significance of the difference between the SARs and FARs, and the results indicate that these two types of ARs can be fairly distinguished by each of these parameters. The significance levels are 99.55%, 99.98%, 99.98%, and 99.96%, respectively. However, no single parameter can distinguish them perfectly. Therefore we propose a composite index based on these parameters, and find that the distinction between the two types of ARs is also significant with a significance level of 99.96%. These results are useful for a better physical understanding of the SAR and FAR.

  7. Early Hinode Observations of a Solar Filament Eruption

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.

    2007-01-01

    We use Hinode X-Ray Telescope (XRT) and Solar Optical Telescope (SOT) filtergraph (FG) Stokes-V magnetogram observations to study the early onset of a solar eruption that includes an erupting filament that we observe in TRACE EUV images; this is one of the first filament eruptions seen with Hinode. The filament undergoes a slow rise for at least 30 min prior to its fast eruption and strong soft X-ray flaring, and the new Hinode data elucidate the physical processes occurring during the slow-rise period: During the slow-rise phase, a soft X-ray (SXR) sigmoid forms from apparent reconnection low in the sheared core field traced by the filament, and there is a low-level intensity peak in both EUV and SXRs during the slow rise. The SOT data show that magnetic flux cancellation occurs along the neutral line of the filament in the hours before eruption, and this likely caused the low-lying reconnection that produced the microflaring and the slow rise leading up to the eruption.

  8. MOTESS Solar System Observations: Implications for the GNAT System

    NASA Astrophysics Data System (ADS)

    Tucker, R. A.

    2002-12-01

    The Global Network of Astronomical Telescopes is developing a geographically distributed network of relatively small-aperture imaging telescopes. Equipped with CCD cameras and operating in scan mode, these instruments will be able to address a wide variety of solar system, stellar and extragalactic research topics. Although the design of the individual telescope emphasizes simplicity and low cost, the network will be able to deliver in aggregate data that would otherwise require more expensive facilities. The array of instruments may be tailored to the particular observing program by the selection of filters the individual instruments are provided and how the telescopes are pointed at the sky. A prototype array of three instruments has been in use since April of 2001, principally obtaining asteroid astrometry and searching for near-earth objects. The experience relating to solar system observations acquired during this period will be presented along with proposed strategies for future work using the full GNAT array of instruments. This work and continuing operation of the MOTESS prototype is supported in part by a Eugene Shoemaker Grant from The Planetary Society.

  9. Multi-spacecraft observations of recurrent {sup 3}He-rich solar energetic particles

    SciTech Connect

    Bučík, R.; Innes, D. E.; Mall, U.; Korth, A.; Mason, G. M.; Gómez-Herrero, R.

    2014-05-01

    We study the origin of {sup 3}He-rich solar energetic particles (<1 MeV nucleon{sup –1}) that are observed consecutively on STEREO-B, Advanced Composition Explorer (ACE), and STEREO-A spacecraft when they are separated in heliolongitude by more than 90°. The {sup 3}He-rich period on STEREO-B and STEREO-A commences on 2011 July 1 and 2011 July 16, respectively. The ACE {sup 3}He-rich period consists of two sub-events starting on 2011 July 7 and 2011 July 9. We associate the STEREO-B July 1 and ACE July 7 {sup 3}He-rich events with the same sizeable active region (AR) producing X-ray flares accompanied by prompt electron events, when it was near the west solar limb as seen from the respective spacecraft. The ACE July 9 and STEREO-A July 16 events were dispersionless with enormous {sup 3}He enrichment, lacking solar energetic electrons and occurring in corotating interaction regions. We associate these events with a small, recently emerged AR near the border of a low-latitude coronal hole that produced numerous jet-like emissions temporally correlated with type III radio bursts. For the first time we present observations of (1) solar regions with long-lasting conditions for {sup 3}He acceleration and (2) solar energetic {sup 3}He that is temporarily confined/re-accelerated in interplanetary space.

  10. Multi-spacecraft Observations of Recurrent 3He-rich Solar Energetic Particles

    NASA Astrophysics Data System (ADS)

    Bučík, R.; Innes, D. E.; Mall, U.; Korth, A.; Mason, G. M.; Gómez-Herrero, R.

    2014-05-01

    We study the origin of 3He-rich solar energetic particles (<1 MeV nucleon-1) that are observed consecutively on STEREO-B, Advanced Composition Explorer (ACE), and STEREO-A spacecraft when they are separated in heliolongitude by more than 90°. The 3He-rich period on STEREO-B and STEREO-A commences on 2011 July 1 and 2011 July 16, respectively. The ACE 3He-rich period consists of two sub-events starting on 2011 July 7 and 2011 July 9. We associate the STEREO-B July 1 and ACE July 7 3He-rich events with the same sizeable active region (AR) producing X-ray flares accompanied by prompt electron events, when it was near the west solar limb as seen from the respective spacecraft. The ACE July 9 and STEREO-A July 16 events were dispersionless with enormous 3He enrichment, lacking solar energetic electrons and occurring in corotating interaction regions. We associate these events with a small, recently emerged AR near the border of a low-latitude coronal hole that produced numerous jet-like emissions temporally correlated with type III radio bursts. For the first time we present observations of (1) solar regions with long-lasting conditions for 3He acceleration and (2) solar energetic 3He that is temporarily confined/re-accelerated in interplanetary space.

  11. A STATISTICAL SURVEY OF DYNAMIC PRESSURE PULSES IN THE SOLAR WIND BASED ON WIND OBSERVATIONS

    SciTech Connect

    Zuo, Pingbing; Feng, Xueshang; Wang, Yi; Xie, Yanqiong; Xu, Xiaojun E-mail: fengx@spaceweather.ac.cn

    2015-07-20

    Solar wind dynamic pressure pulse (DPP) structures, across which the dynamic pressure changes abruptly over timescales from a few seconds to several minutes, are often observed in the near-Earth space environment. The space weather effects of DPPs on the magnetosphere–ionosphere coupling system have been widely investigated in the last two decades. In this study, we perform a statistical survey on the properties of DPPs near 1 AU based on nearly 20 years of observations from the WIND spacecraft. It is found that only a tiny fraction of DPPs (around 4.2%) can be regarded as interplanetary shocks. For most DPPs, the total pressure (the sum of the thermal pressure and magnetic pressure) remains in equilibrium, but there also exists a small fraction of DPPs that are not pressure-balanced. The overwhelming majority of DPPs are associated with solar wind disturbances, including coronal mass ejection-related flows, corotating interaction regions, as well as complex ejecta. The annual variations of the averaged occurrence rate of DPPs are roughly in phase with the solar activity during solar cycle 23, and during the rising phase of solar cycle 24.

  12. Solar Irradiance observation from Fengyun3 meteorological satellites: recent results and future plan

    NASA Astrophysics Data System (ADS)

    Qi, Jin; Zhang, Peng; Qiu, Hong; Fang, Wei

    2016-04-01

    The Solar Irradiance Monitors (SIM) on-board Fengyun3 (FY3) satellites have been observing Total Solar Irradiance since June 2008. With the lessons from the first two satellites, the SIM on FY3C has two significant improvements by adding sun tracing system and temperature control system, which is named after SIM-II. The SIM-II measurements are first really traceable to World Radiometric Reference and building an on-orbit aging model. TSI from FY3C/SIM-II has been evaluated by comparing with SORCE/TIM and RMIB composite data. The result shows a good consistency. Monitoring of strong solar activity during Oct. 2014, FY3C/SIM-II and SORCE/TIM showed the similar result about solar energy change. For the future plan, we would like to have cooperation with RMIB and PMOD on TSI observation from FY3 early-morning orbit satellite which is designed to launch in 2018. We also plan to develop a new ability to capture daily variance in solar spectral irradiance on the early-morning orbit.

  13. 42 Years of Continuous Observations of the Solar Diameter - 1974 to 2015

    NASA Astrophysics Data System (ADS)

    Humberto Andrei, Alexandre; Calderari Boscardin, Sergio; Lousada Penna, Jucira; Vani Leister, Nelson

    2015-08-01

    We present an analysis of 42 years of continuous measurements of the photospheric solar diameter, taken at major national observatories, using the same fundamental method, and similar apparatus. Such a series overlap observations from the Calern Observatory/France (Solar Astrolabe in 1975-2003 to 253 obs/year lead by F. Laclare and C. Delmas; Doraysol in 2000-2005 to 3,070 obs/year lead by C. Delmas and V. Sinceac), from the IAG/USP/Brazil (Solar Astrolabe in 1974-1994 to 95 obs/year lead by N. VaniLeister, P. Benevides and M. Emilio), from the Antalya Observatory/Turkey (CCD Astrolabe in 2000-2007 to 400 obs/year lead by F. Chollet and OI. Golbasi), from the San Fernando Observatory/Spain (Solar Astrolabe in 1972-1975 to 133 obs/year lead by J. Muiños), from Observatório Nacional/Brasil (CCD Astrolabe in 1998-2009 to 1,820 obs/year lead by J. Penna, E. Reis Neto and A.H. Andrei; Heliometer 2010-2015 to 8,509 obs/year lead by S.C. Boscardin, J.L. Penna and A.H. Andrei). The Heliometer is fully automatized in its observations and continues in regular operation with no plan of stopping; it shares with the former instruments the physical/mathematical definition of the limb, and the instruments aperture and focal length. We perform a reconciliation of all these series, using the common stretches. A modulation with the 11 years cycle of solar activity is evident. However when such modulation is removed, both from the solar diameter compound series and from the solar activity series (given by the sunspots count), a very strong anti-correlation surfaces. This suggests a smaller diameter for the forthcoming cycles, in a behavior similar to that on the Minima of Dalton and Maunder. This study stresses the importance of keeping and make available such long, continuous, and uniform series of solar diameter measurements. Maybe even the more by the controversy about its magnitude and origin. This presentation is dedicated to all the teams that developed and sustained the

  14. Automatic Tracking of Active Regions and Detection of Solar Flares in Solar EUV Images

    NASA Astrophysics Data System (ADS)

    Caballero, C.; Aranda, M. C.

    2014-05-01

    Solar catalogs are frequently handmade by experts using a manual approach or semi-automated approach. The appearance of new tools is very useful because the work is automated. Nowadays it is impossible to produce solar catalogs using these methods, because of the emergence of new spacecraft that provide a huge amount of information. In this article an automated system for detecting and tracking active regions and solar flares throughout their evolution using the Extreme UV Imaging Telescope (EIT) on the Solar and Heliospheric Observatory (SOHO) spacecraft is presented. The system is quite complex and consists of different phases: i) acquisition and preprocessing; ii) segmentation of regions of interest; iii) clustering of these regions to form candidate active regions which can become active regions; iv) tracking of active regions; v) detection of solar flares. This article describes all phases, but focuses on the phases of tracking and detection of active regions and solar flares. The system relies on consecutive solar images using a rotation law to track the active regions. Also, graphs of the evolution of a region and solar evolution are presented to detect solar flares. The procedure developed has been tested on 3500 full-disk solar images (corresponding to 35 days) taken from the spacecraft. More than 75 % of the active regions are tracked and more than 85 % of the solar flares are detected.

  15. Models Constraints from Observations of Active Galaxies

    NASA Astrophysics Data System (ADS)

    Riffel, R.; Pastoriza, M. G.; Rodríguez-Ardila, A.; Dametto, N. Z.; Ruschel-Dutra, D.; Riffel, R. A.; Storchi-Bergmann, T.; Martins, L. P.; Mason, R.; Ho, L. C.; Palomar XD Team

    2015-08-01

    Studying the unresolved stellar content of galaxies generally involves disentangling the various components contributing to the spectral energy distribution (SED), and fitting a combination of simple stellar populations (SSPs) to derive information about age, metallicity, and star formation history. In the near-infrared (NIR, 0.85-2.5 μm), the thermally pulsing asymptotic giant branch (TP-AGB) phase - the last stage of the evolution of intermediate-mass (M ≲ 6 M⊙) stars - is a particularly important component of the SSP models. These stars can dominate the emission of stellar populations with ages ˜ 0.2-2 Gyr, being responsible for roughly half of the luminosity in the K band. In addition, when trying to describe the continuum observed in active galactic nuclei, the signatures of the central engine and from the dusty torus cannot be ignored. Over the past several years we have developed a method to disentangle these three components. Our synthesis shows significant differences between Seyfert 1 (Sy 1) and Seyfert 2 (Sy 2) galaxies. The central few hundred parsecs of our galaxy sample contain a substantial fraction of intermediate-age populations with a mean metallicity near solar. Two-dimensional mapping of the near-infrared stellar population of the nuclear region of active galaxies suggests that there is a spatial correlation between the intermediate-age stellar population and a partial ring of low stellar velocity dispersion (σ*). Such an age is consistent with a scenario in which the origin of the low-σ* rings is a past event which triggered an inflow of gas and formed stars which still keep the colder kinematics of the gas from which they have formed. We also discuss the fingerprints of features attributed to TP-AGB stars in the spectra of the nuclear regions of nearby galaxies.

  16. High-sensitivity observations of solar flare decimeter radiation

    NASA Astrophysics Data System (ADS)

    Benz, A. O.; Messmer, P.; Monstein, C.

    2001-01-01

    A new acousto-optic radio spectrometer has observed the 1-2 GHz radio emission of solar flares with unprecedented sensitivity. The number of detected decimeter type III bursts is greatly enhanced compared to observations by conventional spectrometers observing only one frequency at the time. The observations indicate a large number of electron beams propagating in dense plasmas. For the first time, we report weak, reversed drifting type III bursts at frequencies above simultaneous narrowband decimeter spikes. The type III bursts are reliable signatures of electron beams propagating downward in the corona, apparently away from the source of the spikes. The observations contradict the most popular spike model that places the spike sources at the footpoints of loops. Conspicuous also was an apparent bidirectional type U burst forming a fish-like pattern. It occurs simultaneously with an intense U-burst at 600-370 MHz observed in Tremsdorf. We suggest that it intermodulated with strong terrestrial interference(cellular phones) causing a spurious symmetric pattern in the spectrogram at 1.4 GHz. Symmetric features in the 1-2 GHz range, some already reported in the literature, therefore must be considered with utmost caution.

  17. 33 Years of Continuous Solar Radio Flux Observations

    NASA Astrophysics Data System (ADS)

    Monstein, Christian

    2015-10-01

    In 1982, after development and testing of several analog receiver concepts, I started continuous solar radio flux observations at 230 MHz. My instruments for the observations were based on cheap commercial components out of consumer TV electronics. The main components included a TV-tuner (at that time analog), intermediate frequency (IF) amplifier and video-detector taken from used TV sets. The 5.5 MHz wide video signal was fed into an integrating circuit, in fact a low pass filter, followed by dc-offset circuit and dc-amplifier built with four ua741 and CA3140 operational amplifier integrated circuits. At that time the signal was recorded with a Heathkit stripchart recorder and ink pen; an example is shown in figure 1.

  18. Observational evidence for thermal wave fronts in solar flares

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Simnett, G. M.; Smith, D. F.

    1985-01-01

    Images in 3.5-30 keV X-rays obtained during the first few minutes of seven solar flares show rapid motions. In each case X-ray emission first appeared at one end of a magnetic field structure, and then propagated along the field at a velocity between 800 and 1700 km/s. The observed X-ray structures were 45,000-230,000 km long. Simultaneous H-alpha images were available in three cases; they showed brightenings when the fast-moving fronts arrived at the chromosphere. The fast-moving fronts are interpreted as electron thermal conduction fronts since their velocities are consistent with conduction at the observed temperatures of 1-3 x 10 to the 7th K. The inferred conductive heat flux of up to 10-billion ergs/s sq cm accounts for most of the energy released in the flares, implying that the flares were primarily thermal phenomena.

  19. Observations and Modelling of Helium Lines in Solar Flares

    NASA Astrophysics Data System (ADS)

    Simões, P. J. A.; Fletcher, L.; Labrosse, N.; Kerr, G. S.

    2016-04-01

    We explore the response of the He II 304 Å and He I 584 Å line intensities to electron beam heating in solar flares using radiative hydrodynamic simulations. Comparing different electron beams parameters, we found that the intensities of both He lines are very sensitive to the energy flux deposited in the chromosphere, or more specifically to the heating rate, with He II 304 Å being more sensitive to the heating than He I 584 Å. Therefore, the He line ratio increases for larger heating rates in the chromosphere. A similar trend is found in observations, using SDO/EVE He irradiance ratios and estimates of the electron beam energy rate obtained from hard X-ray data. From the simulations, we also found that spectral index of the electrons can affect the He ratio but a similar effect was not found in the observations.

  20. Brazilian Decimetre Array (Phase-1): Initial solar observations

    NASA Astrophysics Data System (ADS)

    Ramesh, R.; Sawant, H. S.; Cecatto, J. R.; Faria, C.; Fernandes, F. C. R.; Kathiravan, C.; Suryanarayana, G. S.

    An East-West one-dimensional radio interferometer array consisting of 5 parabolic dish antennas has been set-up at Cachoeira Paulista, Brazil (Longitude: 45°0'20″W, Latitude: 22°41'19″S) for observations of Sun and some of the strong sidereal sources by the Instituto Nacional de Pesquisas Espaciais (INPE), Brazil. This is Phase-1 of the proposed Brazilian Decimetre Array (BDA) and can be operated at any frequency in the range 1.2-1.7 GHz. The instrument is functional since November 2004 onwards at 1.6 GHz. The angular and temporal resolution at the above frequency range are ˜3' and 100 ms, respectively. We present here the initial solar observations carried out with this array.

  1. Magnetic helicity in emerging solar active regions

    SciTech Connect

    Liu, Y.; Hoeksema, J. T.; Bobra, M.; Hayashi, K.; Sun, X.; Schuck, P. W.

    2014-04-10

    Using vector magnetic field data from the Helioseismic and Magnetic Imager instrument aboard the Solar Dynamics Observatory, we study magnetic helicity injection into the corona in emerging active regions (ARs) and examine the hemispheric helicity rule. In every region studied, photospheric shearing motion contributes most of the helicity accumulated in the corona. In a sample of 28 emerging ARs, 17 follow the hemisphere rule (61% ± 18% at a 95% confidence interval). Magnetic helicity and twist in 25 ARs (89% ± 11%) have the same sign. The maximum magnetic twist, which depends on the size of an AR, is inferred in a sample of 23 emerging ARs with a bipolar magnetic field configuration.

  2. Variability in solar irradiance observed at two contrasting Antarctic sites

    NASA Astrophysics Data System (ADS)

    Petkov, Boyan H.; Láska, Kamil; Vitale, Vito; Lanconelli, Christian; Lupi, Angelo; Mazzola, Mauro; Budíková, Marie

    2016-05-01

    The features of erythemally weighted (EW) and short-wave downwelling (SWD) solar irradiances, observed during the spring-summer months of 2007-2011 at Johann Gregor Mendel (63°48‧S, 57°53‧W, 7 m a.s.l.) and Dome Concordia (75°06‧S, 123°21‧E, 3233 m a.s.l.) stations, placed at the Antarctic coastal region and on the interior plateau respectively, have been analysed and compared to each other. The EW and SWD spectral components have been presented by the corresponding daily integrated values and were examined taking into account the different geographic positions and different environmental conditions at both sites. The results indicate that at Mendel station the surface solar irradiance is strongly affected by the changes in the cloud cover, aerosols and albedo that cause a decrease in EW between 20% and 35%, and from 0% to 50% in SWD component, which contributions are slightly lower than the seasonal SWD variations evaluated to be about 71%. On the contrary, the changes in the cloud cover features at Concordia station produce only a 5% reduction of the solar irradiance, whilst the seasonal oscillations of 94% turn out to be the predominant mode. The present analysis leads to the conclusion that the variations in the ozone column cause an average decrease of about 46% in EW irradiance with respect to the value found in the case of minimum ozone content at each of the stations. In addition, the ratio between EW and SWD spectral components can be used to achieve a realistic assessment of the radiation amplification factor that quantifies the relationship between the atmospheric ozone and the surface UV irradiance.

  3. GLE and the NON-GLE Solar Events Observed by AMS-02 in Solar Cycle 24

    NASA Astrophysics Data System (ADS)

    Bindi, V.; Consolandi, C.; Corti, C.; Whitman, K.

    2014-12-01

    The Alpha Magnetic Spectrometer (AMS-02) is a high energy particle detector installed on the International Space Station (ISS) on May 2011 to study origin and nature of cosmic rays in the energy range from hundreds of MeV to a few TeV. In the first 3 years of operation, AMS-02 measured the highest part of the Solar Energetic Particle (SEP) spectra produced during M-and X-class flares and fast Coronal Mass Ejection. AMS-02 is able to perform precise measurements in a short period of time which is typical of these transient phenomena and to collected enough statistics to fully measure fine structures and time evolution of the spectrum. So far in Solar Cycle 24, one official Ground Level Enhancement (GLE) was observed on May 17, 2012 by Neutron Monitors (NM) while another possible GLE on January 6, 2014 was detected by South Pole NM. Observations by GOES-13, in the high energy proton channels, suggest that there were only 5 SEP events with energies above 500 MeV in this Cycle 24. AMS-02 observations, instead, indicate that since May 2011 there were more than 5 solar events with energies above 500 MeV at Earth. AMS-02 observations, with unprecedented resolution, large acceptance and high statistics, can therefore help the heliophysics community to better understand the true behavior of SEPs at high energies and to constrain models of SEP production. The SEP fluxes of GLE and NON-GLE events observed by AMS-02 will be presented.

  4. Solar minimum Lyman. alpha. sky background observations from Pioneer Venus orbiter ultraviolet spectrometer: Solar wind latitude variation

    SciTech Connect

    Ajello, J.M. )

    1990-09-01

    Measurements of interplanetary H I Lyman {alpha} over a large portion of the celestial sphere were made at the recent solar minimum by the Pioneer Venus orbiter ultraviolet spectrometer. These measurements were performed during a series of spacecraft maneuvers conducted to observe Halley's comet in early 1986. Analysis of these data using a model of the passage of interstellar wind hydrogen through the solar wind system shows that the rate of charge exchange with solar wind protons is 30% less over the solar poles than in the ecliptic. This result is in agreement with a similar experiment performed with Mariner 10 at the previous solar minimum.

  5. Solar Observations with the Atacama Large Millimeter/submillimeter Array (ALMA)

    NASA Astrophysics Data System (ADS)

    Bastian, Timothy S.

    2015-04-01

    The Atacama Large Millimeter/Submillimeter Array (ALMA) is a joint North American, European, and East Asian project that opens the mm-submm wavelength part of the electromagnetic spectrum for general astrophysical exploration, providing high-resolution imaging in frequency bands currently ranging from 84 GHz to 950 GHz (300 microns to 3 mm). Despite being a general purpose instrument, provisions have been made to enable solar observations with ALMA. Radiation emitted at ALMA wavelengths originates mostly from the chromosphere, which plays an important role in the transport of matter and energy, and the in heating the outer layers of the solar atmosphere. Despite decades of research, the solar chromosphere remains a significant challenge: both to observe, owing to the complicated formation mechanisms of currently available diagnostics; and to understand, as a result of the complex nature of the structure and dynamics of the chromosphere. ALMA has the potential to change the scene substantially as it serves as a nearly linear thermometer at high spatial and temporal resolution, enabling us to study the complex interaction of magnetic fields and shock waves and yet-to-be-discovered dynamical processes. Moreover, ALMA will play an important role in the study of energetic emissions associated with solar flares at sub-THz frequencies.In this paper we describe recent efforts to ensure that ALMA can be usefully exploited by the scientific community to address outstanding questions in solar physics. We summarize activities by the ALMA solar development team comprised of scientists from the East Asia, North America, and Europe. These activities include instrument testing, development of calibration and imaging strategies, software requirements development, and science simulations. Opportunities for the wider community to contribute to these efforts will be highlighted.

  6. New information on solar activity, 1779-1818, from Sir William Herschel's unpublished notebooks

    NASA Technical Reports Server (NTRS)

    Hoyt, Douglas V.; Schatten, Kenneth H.

    1992-01-01

    Herschel's observations are analyzed in order to determine the level of solar activity for solar cycle 5. It is concluded that solar cycle 5 may have peaked as early as 1801 based upon the average number of groups with a probable secondary maximum in 1804. Depending on the technique adopted, the peak for solar cycle 5 occurred sometime between 1801 and 1804, rather than 1805.2, as commonly assumed. Instead of a solar cycle of 17 yrs, a cycle length of 14 yrs is found. It is also found that the peak yearly mean sunspot number is only about 38 rather than 45, as deduced by Wolf (1855). A technique for making early solar observations homogeneous with modern sunspot observations is proposed.

  7. Study on the triggering process of solar flares based on Hinode/SOT observations

    SciTech Connect

    Bamba, Y.; Kusano, K.; Yamamoto, T. T.; Okamoto, T. J.

    2013-11-20

    We investigated four major solar flare events that occurred in active regions NOAA 10930 (2006 December 13 and 14) and NOAA 11158 (2011 February 13 and 15) by using data observed by the Solar Optical Telescope on board the Hinode satellite. To reveal the trigger mechanism of solar flares, we analyzed the spatio-temporal correlation between the detailed magnetic field structure and the emission image of the Ca II H line at the central part of flaring regions for several hours prior to the onset of the flares. In all the flare events, we observed that the magnetic shear angle in the flaring regions exceeded 70°, as well as that characteristic magnetic disturbances developed at the centers of flaring regions in the pre-flare phase. These magnetic disturbances can be classified into two groups depending on the structure of their magnetic polarity inversion lines; the so-called opposite-polarity and reversed-shear magnetic field recently proposed by our group, although the magnetic disturbance in one event of the four samples is too subtle to clearly recognize the detailed structure. The result suggests that some major solar flares are triggered by rather small magnetic disturbances. We also show that the critical size of the flare-trigger field varies among flare events and briefly discuss how the flare-trigger process depends on the evolution of active regions.

  8. Coordinated Solar Observation and Event Searches using the Heliophysics Events Knowledgebase (HEK)

    NASA Astrophysics Data System (ADS)

    Timmons, Ryan; Hurlburt, Neal E.; De Pontieu, Bart

    2016-05-01

    We present capabilities of the HEK for joint searches, returning overlapping data from multiple instruments (IRIS, Hinode) that also include particular solar features and events (active regions, (large) flares, sunspots, etc.). The new search tools aid the process of finding observations of particular interest from non-synoptic instruments. They also include new data products: processed cutout cubes of SOT-FG and AIA data co-aligned with IRIS.

  9. Solar neutron observations with ChubuSat-2 satellite

    NASA Astrophysics Data System (ADS)

    Yamaoka, Kazutaka

    2016-07-01

    Solar neutron observation is a key in understanding of ion accerelation mechanism in the Sun surface since neutrons are hardly affected by magnetic field around the Sun and intersteller mediums unlike charged particles. However, there was only a few tenth detections so far since its discovery in 1982. Actually SEDA-AP Fiber detector (FIB) onboard the International Space Station (ISS) was suffered from a high neutron background produced by the ISS itself. ChubuSat is a series of 50-kg class microsatellite jointly depeloped by universities (Nagoya university and Daido university) and aerospace companies at the Chubu area of central Japan. The ChubuSat-2 is the second ChubuSat following the ChubuSat-1 which was launched by Russian DNEPR rocket on November 6, 2014. It was selected as one of four piggyback payloads of the X-ray astronomy satellite ASTRO-H in 2014 summer, and will be launched by the H-IIA launch vehcles from from JAXA Tanegashima Space Center (TNSC) in February 2016. The ChubuSat-2 carries a mission instrument, radiation detector (RD). The main mission of ChubuSat-2 is devoted for monitoring neutrons and gamma-rays which can be background source for ASTRO-H celestrial observations with the RD. The mission also involves a function of solar neutron observations which were originally proposed by graduate students who join the leadership development program for space exploration and research, program for leading graduate schools at Nagoya University. The RD has a similar detection area and efficiency to those of the SEDA-AP FIB, but is expected to have lower backgrounthan the ISS thanks to much smaller mass of the micro-satellite. In this paper, we will describe details of ChubuSat-2 satellite and RD, and in-orbit performance of RD.

  10. First Report on the 2016 March 9 Total Solar Eclipse Observations

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.

    2016-06-01

    Totality swept across Indonesia and into the Pacific on 2016 March 9, lasting up to 2 min 45 s on Ternate in the Spice Islands (Malukus). I provide a first report on our observations. Our scientific goal is to follow changes in the corona over the solar-activity cycle, now past its 2012 and 2014 double peak, and to measure temporal changes in the corona on the scale of minutes or hours by comparing eclipse observations made at several sites along the path. I also discuss the near-simultaneous coronal observations made with SOHO/LASCO, SDO/AIA, STEREO/SECCHI, PROBA2/SWAP, and Hinode XRT.For the forthcoming 2017 eclipse, we acknowledge grants to JMP and Williams College from the Solar Terrestrial Program of the Atmospheric and Geospace Sciences Division of the National Science Foundation and from the Committee for Research and Exploration of the National Geographic Society.

  11. Examining Periodic Solar-Wind Density Structures Observed in the SECCHI Heliospheric Imagers

    NASA Technical Reports Server (NTRS)

    Viall, Nicholeen M.; Spence, Harlan E.; Vourlidas, Angelos; Howard, Russell

    2010-01-01

    We present an analysis of small-scale, periodic, solar-wind density enhancements (length scales as small as approximately equals 1000 Mm) observed in images from the Heliospheric Imager (HI) aboard STEREO-A. We discuss their possible relationship to periodic fluctuations of the proton density that have been identified at 1 AU using in-situ plasma measurements. Specifically, Viall, Kepko, and Spence examined 11 years of in-situ solar-wind density measurements at 1 AU and demonstrated that not only turbulent structures, but also nonturbulent, periodic density structures exist in the solar wind with scale sizes of hundreds to one thousand Mm. In a subsequent paper, Viall, Spence, and Kasper analyzed the alpha-to-proton solar-wind abundance ratio measured during one such event of periodic density structures, demonstrating that the plasma behavior was highly suggestive that either temporally or spatially varying coronal source plasma created those density structures. Large periodic density structures observed at 1 AU, which were generated in the corona, can be observable in coronal and heliospheric white-light images if they possess sufficiently high density contrast. Indeed, we identify such periodic density structures as they enter the HI field of view and follow them as they advect with the solar wind through the images. The smaller, periodic density structures that we identify in the images are comparable in size to the larger structures analyzed in-situ at 1 AU, yielding further evidence that periodic density enhancements are a consequence of coronal activity as the solar wind is formed.

  12. Coronal activity cycles in solar analog stars

    NASA Astrophysics Data System (ADS)

    Favata, Fabio

    2013-10-01

    We propose continuation into AO13 of the ongoing long-term program for the monitoring of coronal cycles in a sample of five solar-type stars in three stellar systems. The targets have been monitored continuously since AO1, yielding the first unambiguous evidence of cyclic behavior in the X-ray emission from the coronae of cool stars. Thanks to the long-term monitoring our program is starting to show evidence of the complex behavior of stellar cycles, with significant cycle-to-cycle variability becoming apparent. The observations requested in AO-13 will allow us to capitalize on our long-term investment of XMM-Newton observing time and to continue assembling a unique long-term data set that is likely to remain unmatched for a long time.

  13. Long-term persistence of solar activity

    NASA Technical Reports Server (NTRS)

    Ruzmaikin, Alexander; Feynman, Joan; Robinson, Paul

    1994-01-01

    We examine the question of whether or not the non-periodic variations in solar activity are caused by a white-noise, random process. The Hurst exponent, which characterizes the persistence of a time series, is evaluated for the series of C-14 data for the time interval from about 6000 BC to 1950 AD. We find a constant Hurst exponent, suggesting that solar activity in the frequency range from 100 to 3000 years includes an important continuum component in addition to the well-known periodic variations. The value we calculate, H approximately 0.8, is significantly larger than the value of 0.5 that would correspond to variations produced by a white-noise process. This value is in good agreement with the results for the monthly sunspot data reported elsewhere, indicating that the physics that produces the continuum is a correlated random process and that it is the same type of process over a wide range of time interval lengths.

  14. Solar System Observations with the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Hammel, Heidi B.; Lunine, J.; Sonneborn, G.; Rieke, G.; Rieke, M.; Stansberry, J.; Schaller, E.; Orton, G.; Isaacs, J.

    2010-10-01

    The James Webb Space Telescope is a large infrared space telescope currently scheduled for launch in 2014. Webb will reside in a elliptical orbit about the semi-stable second Lagrange point (L2). Its 6.5-meter primary mirror is designed to work primarily in the infrared, with some capability in the visible (i.e., from 0.6 to 27 microns). Webb has four science instruments: the Near InfraRed Camera (NIRCam), the Near InfraRed Spectrograph (NIRSpec), the Mid-InfraRed Instrument (MIRI), and the Fine Guidance Sensor Tunable Filter Camera (FGS-TFI). One of Webb's science themes is "Planetary Systems and the Origins of Life" which includes observations of Solar System objects; the telescope will be able to track moving targets with rates up to 0.030 arcseconds per second. Its combination of broad wavelength range, high sensitivity, and near-diffraction limited imaging around 2 microns make it a superb facility for a variety of Solar System programs. In this poster, we present an overview of Webb's scientific capabilities and their relevance to current topics in planetary science.

  15. Multispacecraft Observations of Solar Flare Particles in the Inner Heliosphere

    NASA Technical Reports Server (NTRS)

    Wibberenz, G.; Cane, H. V.

    2007-01-01

    For a number of impulsive solar particle events we examine variations of maximum intensities and times to maximum intensity as a function of longitude, using observations from the two Helios spacecraft and near the Earth. We find that electrons in the MeV range can be detected more than 80 deg. from the flare longitude, corresponding to a considerably wider "well connected" region than that (approx. 20 deg. half width) reported for He-3-rich impulsive solar events. This wide range and the decrease of peak intensities with increasing connection angle revive the concept of some propagation process in the low corona that has a diffusive nature. Delays to the intensity maximum are not systematically correlated with connection angles. We argue that interplanetary scattering parallel to the average interplanetary magnetic field, that varies with position in space, plays an important role in flare particle events. In a specific case variations of the time profiles with radial distance and with particle rigidity are used to quantitatively confirm spatial diffusion. For a few cases near the edges of the well connected region the very long times to maximum intensity might result from interplanetary lateral transport.

  16. Centennial Scale Variations in Lake Productivity Linked to Solar Activity

    NASA Astrophysics Data System (ADS)

    Englebrecht, A.; Bhattacharyya, S.; Guilderson, T. P.; Ingram, L.; Byrne, R.

    2012-12-01

    Solar variations on both decadal and centennial timescales have been associated with climate phenomena (van Loon et al., 2004; Hodell et al., 2001; White et al., 1997). The energy received by the Earth at the peak of the solar cycle increases by <0.1%; so the question has remained of how this could be amplified to produce an observable climate response. Recent modeling shows that the response of the Earth's climate system to the 11-year solar cycle may be amplified through stratosphere and ocean feedbacks and has the potential to impact climate variability on a multidecadal to centennial timescales (Meehl et al., 2009). Here, we report a 1000-year record of changes in the stratigraphy and carbon isotope composition of varved lake sediment from Isla Isabela (22°N, 106°W) in the subtropical northeast Pacific. Stable carbon isotopes and carbonate stratigraphy can be used to infer surface productivity in the lake. Our analysis shows variations in primary productivity on centennial timescales and suggests that solar activity may be an important component of Pacific climate variability. A possible response during solar maxima acts to keep the eastern equatorial Pacific cooler and drier than usual, producing conditions similar to a La Niña event. In the region around Isla Isabela peak solar years were characterized by decreased surface temperatures and suppressed precipitation (Meehl et al., 2009), which enhance productivity at Isabela (Kienel et al. 2011). In the future, we plan to analyze the data using advanced time series analysis techniques like the wavelets together with techniques to handle irregularly spaced time series data. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-571672

  17. Solar Energy Education. Industrial arts: student activities. Field test edition

    SciTech Connect

    Not Available

    1981-02-01

    In this teaching manual several activities are presented to introduce students to information on solar energy through classroom instruction. Wind power is also included. Instructions for constructing demonstration models for passive solar systems, photovoltaic cells, solar collectors and water heaters, and a bicycle wheel wind turbine are provided. (BCS)

  18. Study of Distribution and Asymmetry of Solar Active Prominences during Solar Cycle 23

    NASA Astrophysics Data System (ADS)

    Joshi, Navin Chandra; Bankoti, Neeraj Singh; Pande, Seema; Pande, Bimal; Pandey, Kavita

    2009-12-01

    In this article we present the results of a study of the spatial distribution and asymmetry of solar active prominences (SAP) for the period 1996 through 2007 (solar cycle 23). For more meaningful statistical analysis we analyzed the distribution and asymmetry of SAP in two subdivisions viz. Group1 (ADF, APR, DSF, CRN, CAP) and Group2 (AFS, ASR, BSD, BSL, DSD, SPY, LPS). The North - South (N - S) latitudinal distribution shows that the SAP events are most prolific in the 21° to 30° slice in the Northern and Southern Hemispheres; the East - West (E - W) longitudinal distribution study shows that the SAP events are most prolific (best observable) in the 81° to 90° slice in the Eastern and Western Hemispheres. It was found that the SAP activity during this cycle is low compared to previous solar cycles. The present study indicates that during the rising phase of the cycle the number of SAP events are roughly equal in the Northern and Southern Hemispheres. However, activity in the Southern Hemisphere has been dominant since 1999. Our statistical study shows that the N - S asymmetry is more significant then the E - W asymmetry.

  19. Solar System Observations with Spitzer Space Telescope: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.

    2005-01-01

    The programs of observations of Solar System bodies conducted in the first year of the operation of the Spitzer Space Telescope as part of the Guaranteed Observing Time allocations are described. Initial results include the determination of the albedos of a number of Kuiper Belt objects and Centaurs from observations of their flux densities at 24 and 70 microns, and the detection of emission bands in the spectra of several distant asteroids (Trojans) around 10 and 25 microns. The 10 Kuiper Belt objects observed to date have albedos in the range 0.08 - 0.15, significantly higher than the earlier estimated 0.04. An additional KBO [(55565) 2002 AW(sub l97)] has an albedo of 0.17 plus or minus 0.03. The emission bands in the asteroid spectra are indicative of silicates, but specific minerals have not yet been identified. The Centaur/comet 29P/Schwassmann-Wachmann 1 has a nucleus surface albedo of 0.025 plus or minus 0.01, and its dust production rate was calculated from the properties of the coma. Several other investigations are in progress as the incoming data are processed and analyzed.

  20. On the rates of coronal mass ejections: remote solar and in situ observations

    NASA Astrophysics Data System (ADS)

    Riley, P.; Cane, H.; Richardson, I. G.; Gopalswamy, N.; Linker, J. A.; Mikic, Z.; Lionello, R.

    2006-05-01

    In this study we compare the rates of coronal mass ejections (CMEs) as inferred from remote solar observations and interplanetary CMEs (ICMEs) as inferred from in situ observations at both 1 AU and Ulysses for almost an entire solar cycle (1996 through 2004). We find that, while the rates of CMEs and ICMEs track each other well at solar minimum, they diverge significantly in early 1998, during the ascending phase of the solar cycle, with the remote solar observations yielding approximately 20 times more events than are seen in situ at 1 AU. This divergence persists through 2004. We discuss several possible causes, including: (1) the appearance of mid-latitude active regions; (2) the increased rate of high-latitude CMEs; and (3) the strength of the global solar field. We conclude that the most likely interpretation is that this divergence is due to the birth of mid-latitude active regions, which are the sites of a distinct population of CMEs that are only partially intercepted by Earth. This conclusion is supported by the following points: (1) A similar divergence occurs between ICMEs in which magnetic clouds are observed (MCs), and those that are not; and (2) a number of pronounced enhancements in the CME rate, separated by approximately one year, are also mirrored and in ICME rate, but not obviously in the MC rate. We provide a simple geometric argument that shows that the computed CME and ICME rates are consistent with each other. The origins of the individual peaks can be traced back to unusually strong active regions on the Sun. Taken together, these results suggest that whether one observes a flux rope within an ICME is sensitive to the trajectory of the spacecraft through the ICME, i.e., an observational selection effect. This conclusion is supported by models of CME eruption and evolution, which: (1) are incapable of producing a CME that does not contain an embedded flux rope; and (2) demonstrate that glancing intercepts can produce ICME-like signatures

  1. Solar-terrestrial predictions proceedings. Volume 4: Prediction of terrestrial effects of solar activity

    NASA Technical Reports Server (NTRS)

    Donnelly, R. E. (Editor)

    1980-01-01

    Papers about prediction of ionospheric and radio propagation conditions based primarily on empirical or statistical relations is discussed. Predictions of sporadic E, spread F, and scintillations generally involve statistical or empirical predictions. The correlation between solar-activity and terrestrial seismic activity and the possible relation between solar activity and biological effects is discussed.

  2. A Forecast of Reduced Solar Activity and Its Implications for NASA

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth; Franz, Heather

    2005-01-01

    The "Solar Dynamo" method of solar activity forecasting is reviewed. Known generically as a 'precursor" method, insofar as it uses observations which precede solar activity generation, this method now uses the Solar Dynamo Amplitude (SODA) Index to estimate future long-term solar activity. The peak amplitude of the next solar cycle (#24), is estimated at roughly 124 in terms of smoothed F10.7 Radio Flux and 74 in terms of the older, more traditional smoothed international or Zurich Sunspot number (Ri or Rz). These values are significantly smaller than the amplitudes of recent solar cycles. Levels of activity stay large for about four years near the peak in smoothed activity, which is estimated to occur near the 2012 timeflame. Confidence is added to the prediction of low activity by numerous examinations of the Sun s weakened polar field. Direct measurements are obtained by the Mount Wilson Solar Observatory and the Wilcox Solar Observatory. Further support is obtained by examining the Sun s polar faculae (bright features), the shape of coronal soft X-ray "holes," and the shape of the "source surface" - a calculated coronal feature which maps the large scale structure of the Sun s field. These features do not show the characteristics of well-formed polar coronal holes associated with typical solar minima. They show stunted polar field levels, which are thought to result in stunted levels of solar activity during solar cycle #24. The reduced levels of solar activity would have concomitant effects upon the space environment in which satellites orbit. In particular, the largest influences would affect orbit determination of satellites in LEO (Low Earth Orbit), based upon the altered thermospheric and exospheric densities. A decrease in solar activity would result in smaller satellite decay rates, as well as fewer large solar events that can destroy satellite electronic functions. Other effects of reduced solar activity upon the space environment include enhanced

  3. DISTRIBUTION OF ELECTRIC CURRENTS IN SOLAR ACTIVE REGIONS

    SciTech Connect

    Török, T.; Titov, V. S.; Mikić, Z.; Leake, J. E.; Archontis, V.; Linton, M. G.; Dalmasse, K.; Aulanier, G.; Kliem, B.

    2014-02-10

    There has been a long-standing debate on the question of whether or not electric currents in solar active regions are neutralized. That is, whether or not the main (or direct) coronal currents connecting the active region polarities are surrounded by shielding (or return) currents of equal total value and opposite direction. Both theory and observations are not yet fully conclusive regarding this question, and numerical simulations have, surprisingly, barely been used to address it. Here we quantify the evolution of electric currents during the formation of a bipolar active region by considering a three-dimensional magnetohydrodynamic simulation of the emergence of a sub-photospheric, current-neutralized magnetic flux rope into the solar atmosphere. We find that a strong deviation from current neutralization develops simultaneously with the onset of significant flux emergence into the corona, accompanied by the development of substantial magnetic shear along the active region's polarity inversion line. After the region has formed and flux emergence has ceased, the strong magnetic fields in the region's center are connected solely by direct currents, and the total direct current is several times larger than the total return current. These results suggest that active regions, the main sources of coronal mass ejections and flares, are born with substantial net currents, in agreement with recent observations. Furthermore, they support eruption models that employ pre-eruption magnetic fields containing such currents.

  4. The need for hard X-ray imaging observations at the next solar maximum

    NASA Technical Reports Server (NTRS)

    Emslie, A. Gordon

    1988-01-01

    Canonical models of solar hard X-ray bursts; associated length and time scales; the adequacies and inadequacies of previous observations; theoretical modeling predictions; arcsecond imaging of solar hard X-rays are outlined.

  5. THE ORIGIN OF NET ELECTRIC CURRENTS IN SOLAR ACTIVE REGIONS

    SciTech Connect

    Dalmasse, K.; Kliem, B.; Török, T.

    2015-09-01

    There is a recurring question in solar physics regarding whether or not electric currents are neutralized in active regions (ARs). This question was recently revisited using three-dimensional (3D) magnetohydrodynamic (MHD) numerical simulations of magnetic flux emergence into the solar atmosphere. Such simulations showed that flux emergence can generate a substantial net current in ARs. Other sources of AR currents are photospheric horizontal flows. Our aim is to determine the conditions for the occurrence of net versus neutralized currents with this second mechanism. Using 3D MHD simulations, we systematically impose line-tied, quasi-static, photospheric twisting and shearing motions to a bipolar potential magnetic field. We find that such flows: (1) produce both direct and return currents, (2) induce very weak compression currents—not observed in 2.5D—in the ambient field present in the close vicinity of the current-carrying field, and (3) can generate force-free magnetic fields with a net current. We demonstrate that neutralized currents are in general produced only in the absence of magnetic shear at the photospheric polarity inversion line—a special condition that is rarely observed. We conclude that  photospheric flows, as magnetic flux emergence, can build up net currents in the solar atmosphere, in agreement with recent observations. These results thus provide support for eruption models based on pre-eruption magnetic fields that possess a net coronal current.

  6. Clementine Observes the Moon, Solar Corona, and Venus

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In 1994, during its flight, the Clementine spacecraft returned images of the Moon. In addition to the geologic mapping cameras, the Clementine spacecraft also carried two Star Tracker cameras for navigation. These lightweight (0.3 kg) cameras kept the spacecraft on track by constantly observing the positions of stars, reminiscent of the age-old seafaring tradition of sextant/star navigation. These navigation cameras were also to take some spectacular wide angle images of the Moon.

    In this picture the Moon is seen illuminated solely by light reflected from the Earth--Earthshine! The bright glow on the lunar horizon is caused by light from the solar corona; the sun is just behind the lunar limb. Caught in this image is the planet Venus at the top of the frame.

  7. Shock system of February 2, 1969. [solar wind observations

    NASA Technical Reports Server (NTRS)

    Unti, T.; Neugebauer, M.; Wu, C.-S.

    1973-01-01

    The shock system observed in the solar wind by Pioneer 9 and Ogo 5 on Feb. 2, 1969, consisted of the following major discontinuities: a forward slow shock; a forward fast shock; a tangential discontinuity at which the density dropped sharply and the flow direction changed; a tangential discontinuity at which the magnetic field strength jumped to an unusually high value; two closely spaced tangential discontinuities that bracketed a region of even greater field strength and that fronted a region of very cool, very dense, helium-enriched plasma; a reverse fast shock of low Mach number; and a second reverse fast shock of very low Mach number. The event had aspects of both corotating and flare-induced shock systems; it is suggested that the source of the disturbances was a flare occurring at or near an M region.

  8. Submillimeter and millimeter observations of solar system objects

    NASA Technical Reports Server (NTRS)

    Muhleman, Duane O.

    1988-01-01

    Planetary atmospheres and satellite surfaces are observed with the three element array at Caltech's Owens Valley Radio Observatory, Caltech's submillimeter telescope on Mauna Kea and at the 12-meter telescope at Kitt Peak. Researchers are primarily interested in spectroscopy of the atmospheres of Venus, Mars and Titan and the continuum structure of Saturn Rings, Galilean satellites, Neptune and Uranus. During the last year researchers completed a supersynthesis of the Saturn system at 2.8 mm with spatial resolution of 3 arc sec. They just completed a 4-confuguration synthesis of Venus in the CO absorption line. They hope to recover the wind patterns in the altitude range from 60 to 100 km where winds have never been measured. Two important questions are being investigated: (1) how high in the Venus atmosphere do 4-day winds extend, and (2) can we produce experiment proof (or disproof) of the subsolar-to-anti-solar flow (Dickenson winds) predicted by general circulation models.

  9. Multi-spacecraft observations of solar energetic particles with STEREO

    NASA Astrophysics Data System (ADS)

    Dresing, Nina; Klassen, Andreas; Gomez-Herrero, Raul; Heber, Bernd

    2016-07-01

    The growing longitudinal separation of the two STEREO spacecraft improved the ability to investigate the longitudinal distribution of solar energetic particle (SEP) events and to detect widespread events unambiguously. Focusing on near-relativistic electrons, several of those events show longitudinal SEP distributions of up to all around the Sun. The strongly varying characteristics of those events suggest that there must be various mechanisms, which can contribute to the wide angular particle spreads. Among these mechanisms i) strong cross-field transport in the interplanetary medium and ii) extended injection regions close to the Sun are proposed. It is not clear yet if these extended injection regions at the Sun are formed by coronal transport, shocks, EIT waves or other processes. We will present case studies as well as statistical results of SEP events observed by multiple spacecraft well separated in space.

  10. Observations of ozone depletion associated with solar proton events

    NASA Technical Reports Server (NTRS)

    Mcpeters, R. D.; Jackman, C. H.; Stassinopoulos, E. G.

    1981-01-01

    Ozone profiles from the solar proton events (SPE) of January and September 1971 and August 1972 were obtained after the backscattered ultraviolet (BUV) measured radiances were corrected for the direct effects of protons on the instrument. The SPE of August 1972 produced an ozone depletion of 15% at 42 km that persisted for one month in both northern and southern polar regions. This long recovery time indicates that NO(x) was produced in a quantity sufficient to alter the ozone chemistry. The two SPE in 1971 were of moderate size, but produced ozone depletions of 10-30% at 50 km with a 36 hour recovery time. This rapid recovery is consistent with the assumption that HO(x) is responsible for altering the ozone chemistry (Weeks et al., 1972). The magnitude of the observed depletion, however, exceeds that predicted by the chemical models.

  11. Solar Mesosphere Explorer observations of stratospheric and mesospheric water vapor

    NASA Technical Reports Server (NTRS)

    Jakosky, Bruce M.; Thomas, Gary E.; Rusch, David W.; Barth, Charles A.; Lawrence, George M.; Olivero, John J.; Clancy, R. Todd; Sanders, Ryan W.; Knapp, Barry G.

    1988-01-01

    It is noted that while the SME (Solar Mesosphere Explorer) data is consistent with the earlier LIMS (Limb Infrared Monitor of the Stratosphere) results, its interpretation is complicated by aerosol contamination, particularly at altitudes below 35 km. This contamination arose from several volcanic eruptions, including that of El Chichon. Analyses are reported of a subset of data from the SME satellite, concentrating primarily on the period January through March 1982 so as to avoid contamination from the El Chichon volcanic aerosol. The SME observations of water vapor between 20 and 60 km were inverted for the first three months of 1982 as well as for selected additional periods. Reasonable results are obtained at locations where no contamination by aerosol is suspected.

  12. Instrument Design of the Large Aperture Solar UV Visible and IR Observing Telescope (SUVIT) for the SOLAR-C Mission

    NASA Astrophysics Data System (ADS)

    Suematsu, Y.; Katsukawa, Y.; Shimizu, T.; Ichimoto, K.; Takeyama, N.

    2012-12-01

    We present an instrumental design of one major solar observation payload planned for the SOLAR-C mission: the Solar Ultra-violet Visible and near IR observing Telescope (SUVIT). The SUVIT is designed to provide high-angular-resolution investigation of the lower solar atmosphere, from the photosphere to the uppermost chromosphere, with enhanced spectroscopic and spectro-polarimetric capability in wide wavelength regions from 280 nm (Mg II h&k lines) to 1100 nm (He I 1083 nm line) with 1.5 m class aperture and filtergraphic and spectrographic instruments.

  13. The Revised Sunspot Record in Comparison to Cosmogenic Radionuclide-Based Solar Activity Reconstructions

    NASA Astrophysics Data System (ADS)

    Muscheler, Raimund; Adolphi, Florian; Herbst, Konstantin; Nilsson, Andreas

    2016-09-01

    Recent revisions in the sunspot records illustrate the challenges related to obtaining a 400-year-long observational record of past solar-activity changes. Cosmogenic radionuclides offer the possibility of obtaining an alternative and completely independent record of solar variability. Here, we illustrate that these records offer great potential for quantitative solar-activity reconstructions far back into the past, and we provide updated radionuclide-based solar-activity reconstructions for the past 2000 years. However, cosmogenic-radionuclide records are also influenced by processes independent of solar activity, leading to the need for critical assessment and correction for the non-solar influences. Independent of these uncertainties, we show a very good agreement between the revised sunspot records and the 10Be records from Antarctica and, in particular, the 14C-based solar-activity reconstructions. This comparison offers the potential of identifying remaining non-solar processes in the radionuclide-based solar-activity reconstructions, but it also helps identifying remaining biases in the recently revised sunspot records.

  14. Solar wind turbulence as a driver of geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Ikechukwu Ugwu, Ernest Benjamin; Nneka Okeke, Francisca; Ugonabo, Obiageli Josephine

    2016-07-01

    We carried out simultaneous analyses of interplanetary and geomagnetic datasets for the period of (solar Maunder) least (2009) and maximum (2002) solar activity to determine the nature of solar wind turbulence on geomagnetic activity using AE, ASY-D, and ASY-H indices. We determined the role played by Alfvénic fluctuations in the solar wind so as to find out the nature of the turbulence. Our analyses showed that solar wind turbulence play a role in geomagnetic processes at high latitudes during periods of low and high solaractivity but does not have any effect at mid-low latitudes.

  15. MULTI-FLUID MODEL OF A STREAMER AT SOLAR MINIMUM AND COMPARISON WITH OBSERVATIONS

    SciTech Connect

    Ofman, Leon; Abbo, Lucia; Giordano, Silvio

    2011-06-10

    We present the results of a time-dependent 2.5-dimensional three-fluid magnetohydrodynamic model of the coronal streamer belt, which is compared with the slow solar wind plasma parameters obtained in the extended corona by the UV spectroscopic data from the Ultraviolet Coronagraph Spectrometer (UVCS) on board SOHO during the past minimum of solar activity (Carrington Rotation 1913). Our previous three-fluid streamer model has been improved by considering the solar magnetic field configuration relevant for solar minimum conditions, and preferential heating for O{sup 5+} ions. The model was run until a fully self-consistent streamer solution was obtained in the quasi-steady state. The plasma parameters from the multi-fluid model were used to compute the expected UV observables from H I Ly{alpha} 1216 A and O VI 1032 A spectral lines, and the results were compared in detail with the UVCS measurements. A good agreement between the model and the data was found. The results of the study provide insight into the acceleration and heating of the multi-ion slow solar wind.

  16. NEW SOLAR EXTREME-ULTRAVIOLET IRRADIANCE OBSERVATIONS DURING FLARES

    SciTech Connect

    Woods, Thomas N.; Hock, Rachel; Eparvier, Frank; Jones, Andrew R.; Chamberlin, Phillip C.; Klimchuk, James A.; Didkovsky, Leonid; Judge, Darrell; Mariska, John; Warren, Harry; Schrijver, Carolus J.; Webb, David F.; Bailey, Scott; Tobiska, W. Kent

    2011-10-01

    New solar extreme-ultraviolet (EUV) irradiance observations from the NASA Solar Dynamics Observatory (SDO) EUV Variability Experiment provide full coverage in the EUV range from 0.1 to 106 nm and continuously at a cadence of 10 s for spectra at 0.1 nm resolution and even faster, 0.25 s, for six EUV bands. These observations can be decomposed into four distinct characteristics during flares. First, the emissions that dominate during the flare's impulsive phase are the transition region emissions, such as the He II 30.4 nm. Second, the hot coronal emissions above 5 MK dominate during the gradual phase and are highly correlated with the GOES X-ray. A third flare characteristic in the EUV is coronal dimming, seen best in the cool corona, such as the Fe IX 17.1 nm. As the post-flare loops reconnect and cool, many of the EUV coronal emissions peak a few minutes after the GOES X-ray peak. One interesting variation of the post-eruptive loop reconnection is that warm coronal emissions (e.g., Fe XVI 33.5 nm) sometimes exhibit a second large peak separated from the primary flare event by many minutes to hours, with EUV emission originating not from the original flare site and its immediate vicinity, but rather from a volume of higher loops. We refer to this second peak as the EUV late phase. The characterization of many flares during the SDO mission is provided, including quantification of the spectral irradiance from the EUV late phase that cannot be inferred from GOES X-ray diagnostics.

  17. The solar radio emission during the minimum between the 23-24 cycles of solar activity

    NASA Astrophysics Data System (ADS)

    Mendoza-Torres, J. E.; Palacios-Fonseca, J. S.

    2016-11-01

    We analyze the total intensity (I) and circularly-polarized (V) RATAN-600 radio scans obtained at the 3.3-17.0 GHz range during the 23-24 minimum of solar activity. It is found that, in the 3.37-6.8 GHz range, the circular polarization varies linearly with the EW position. The slope is measured at different frequencies and different times. The value of the slope for a given frequency varies with time indicating a dependence with P and B solar angles. It is not clear what could be the reason of such behavior. A possible interpretation of this dependence could be made in terms of the variation of the magnetic field component along the line of sight, which plays an important role in the polarized flux observed in the case of Bremsstrahlung emission.

  18. How Large Scales Flows May Influence Solar Activity

    NASA Technical Reports Server (NTRS)

    Hathaway, D. H.

    2004-01-01

    Large scale flows within the solar convection zone are the primary drivers of the Sun's magnetic activity cycle and play important roles in shaping the Sun's magnetic field. Differential rotation amplifies the magnetic field through its shearing action and converts poloidal field into toroidal field. Poleward meridional flow near the surface carries magnetic flux that reverses the magnetic poles at about the time of solar maximum. The deeper, equatorward meridional flow can carry magnetic flux back toward the lower latitudes where it erupts through the surface to form tilted active regions that convert toroidal fields into oppositely directed poloidal fields. These axisymmetric flows are themselves driven by large scale convective motions. The effects of the Sun's rotation on convection produce velocity correlations that can maintain both the differential rotation and the meridional circulation. These convective motions can also influence solar activity directly by shaping the magnetic field pattern. While considerable theoretical advances have been made toward understanding these large scale flows, outstanding problems in matching theory to observations still remain.

  19. Exploring our outer solar system - The Giant Planet System Observers

    NASA Astrophysics Data System (ADS)

    Cooper, J. F.; Sittler, E. C., Jr.; Sturner, S. J.; Pitman, J. T.

    As space-faring peoples now work together to plan and implement future missions that robotically prepare for landing humans to explore the Moon, and later Mars, the time is right to develop evolutionary approaches for extending this next generation of exploration beyond Earth's terrestrial planet neighbors to the realm of the giant planets. And while initial fly-by missions have been hugely successful in providing exploratory surveys of what lies beyond Mars, we need to consider now what robotic precursor mission capabilities we need to emplace that prepare us properly, and comprehensively, for long-term robotic exploration, and eventual human habitation, beyond Mars to the outer reaches of our solar system. To develop practical strategies that can establish prioritized capabilities, and then develop a means for achieving those capabilities within realistic budget and technology considerations, and in reasonable timeframes, is our challenge. We suggest one component of such an approach to future outer planets exploration is a series of Giant Planets System Observer (GPSO) missions that provide for long- duration observations, monitoring, and relay functions to help advance our understanding of the outer planets and thereby enable a sound basis for planning their eventual exploration by humans. We envision these missions as being comparable to taking Hubble-class remote-sensing facilities, along with the space physics capabilities of long-lived geospace and heliospheric missions, to the giant planet systems and dedicating long observing lifetimes (HST, 16 yr.; Voyagers, 29 yr.) to the exhaustive study and characterization of those systems. GPSO missions could feature 20-yr+ extended mission lifetimes, direct inject trajectories to maximize useful lifetime on target, placement strategies that take advantage of natural environment shielding (e.g., Ganymede magnetic field) where possible, orbit designs having favorable planetary system viewing geometries, comprehensive

  20. High spectral resolution imager for solar induced fluorescence observation

    NASA Astrophysics Data System (ADS)

    Barducci, A.; Guzzi, D.; Lastri, C.; Marcoionni, P.; Nardino, V.; Pippi, I.; Raimondi, V.; Sandri, P.

    2011-11-01

    The use of high-resolution imagers for determination of solar-induced fluorescence of natural bodies by observing the infilling of Fraunhofer lines has been frequently adopted as a tool for vegetation characterization. The option to perform those measurements from airborne platforms was addressed in the past. In-field observations gave evidence of the main requirements for an imaging spectrometer to be used for Sun-induced fluorescence measurements such as high spectral resolution and fine radiometric accuracy needed to resolve the shape of observed Fraunhofer lines with a high level of accuracy. In this paper, some solutions for the design of a high spectral resolution push-broom imaging spectrometer for Sun-induced fluorescence measurements are analysed. The main constraints for the optical design are a spectral resolution better than 0.01 nm and a wide field of view. Due to the fine instrumental spectral resolution, bidimensional focal plane arrays characterized by high quantum efficiency, low read-out noise, and high sensitivity are requested. The development of a lightweight instrument is a benefit for aerospace implementations of this technology. First results coming from laboratory measurements and optical simulations are presented and discussed taking into account their feasibility.

  1. Interplanetary baseline observations of type III solar radio bursts

    NASA Technical Reports Server (NTRS)

    Weber, R. R.; Fitzenreiter, R. J.; Novaco, J. C.; Fainberg, J.

    1977-01-01

    Simultaneous observations of type III radio bursts from spacecraft separated by 0.43 AU have been made using the solar orbiters Helios-A and Helios-B. The burst beginning at 19:22 UT on March 28, 1976, has been located from the intersection of the source directions measured at each spacecraft and from burst arrival-time differences. The source positions range from 0.03 AU from the sun at 3000 kHz to 0.08 AU at 585 kHz. The electron density along the burst trajectory and the exciter velocity (0.13c) were determined directly without the need to assume a density model, as has been done with single-spacecraft observations. The separation of Helios-A and -B has also provided measurements of burst directivity at low frequencies. For the March 28 burst the intensity observed from near the source longitude (Helios-B) was 3-10dB greater than that from 60 deg west of the source (Helios-A)

  2. Solar flare impulsive phase emission observed with SDO/EVE

    SciTech Connect

    Kennedy, Michael B.; Milligan, Ryan O.; Mathioudakis, Mihalis; Keenan, Francis P.

    2013-12-10

    Differential emission measures (DEMs) during the impulsive phase of solar flares were constructed using observations from the EUV Variability Experiment (EVE) and the Markov-Chain Monte Carlo method. Emission lines from ions formed over the temperature range log T{sub e} = 5.8-7.2 allow the evolution of the DEM to be studied over a wide temperature range at 10 s cadence. The technique was applied to several M- and X-class flares, where impulsive phase EUV emission is observable in the disk-integrated EVE spectra from emission lines formed up to 3-4 MK and we use spatially unresolved EVE observations to infer the thermal structure of the emitting region. For the nine events studied, the DEMs exhibited a two-component distribution during the impulsive phase, a low-temperature component with peak temperature of 1-2 MK, and a broad high-temperature component from 7 to 30 MK. A bimodal high-temperature component is also found for several events, with peaks at 8 and 25 MK during the impulsive phase. The origin of the emission was verified using Atmospheric Imaging Assembly images to be the flare ribbons and footpoints, indicating that the constructed DEMs represent the spatially average thermal structure of the chromospheric flare emission during the impulsive phase.

  3. Flare heating and ionization of the low solar chromosphere. II - Observations of five solar flares

    NASA Technical Reports Server (NTRS)

    Metcalf, Thomas R.; Canfield, Richard C.; Saba, Julia L. R.

    1990-01-01

    Two neutral Mg spectral lines formed in the temperature-minimum region and the low chromosphere, at 4571 and 5173 A, are used to quantify the changes in the atmospheric structure as a function of time during five solar flares. Eight proposed flare heating and ionization mechanisms and predictions of the effects of each on the temperature minimum region are discussed. Two Mg spectral observations made at the National Solar Observatory (Sacramento Peak), along with observations of hard and soft X-rays from the SMM and GOES satellites, are compared to the predictions of the eight proposed mechanisms. The initial effects in all five flares are consistent with backwarming by enhanced Balmer- and Paschen-continuum radiation originating in the upper chromosphere. Extended heating observed in two of the flares is most likely due to UV irradiation. In all cases heating by the dissipation of nonreversed electric currents, collisions with an electron or proton beam, irradiation by soft X-rays, and dissipation of Alfven waves are eliminated.

  4. Solar activity and climate change during the 1750 A.D. solar minimum

    NASA Astrophysics Data System (ADS)

    Bard, Edouard; Baroni, Mélanie; Aster Team

    2015-04-01

    The number of sunspots and other characteristics have been widely used to reconstruct the solar activity beyond the last three decades of accurate satellite measurements. It has also been possible to reconstruct the long-term solar behavior by measuring the abundance on Earth of cosmogenic nuclides such as carbon 14 and beryllium 10. These isotopes are formed by the interaction of galactic cosmic rays with atmospheric molecules. Accelerator mass spectrometry is used to measure the abundance of these isotopes in natural archives such as polar ice (for 10Be), tree rings and corals (for 14C). Over the last millennium, the solar activity has been dominated by alternating active and quiet periods, such as the Maunder Minimum, which occurred between 1645 and 1715 A.D. The climate forcing of this solar variability is the subject of intense research, both because the exact scaling in terms of irradiance is still a matter of debate and because other solar variations may have played a role in amplifying the climatic response. Indeed, the past few decades of accurate solar measurements do not include conditions equivalent to an extended solar minimum. A further difficulty of the analysis lies in the presence of other climate forcings during the last millennium, which are superimposed on the solar variations. Finally, the inherent precision of paleotemperature proxies are close to the signal amplitude retrieved from various paleoclimate archives covering the last millennium. Recent model-data comparisons for the last millennium have led to the conclusion that the solar forcing during this period was minor in comparison to volcanic eruptions and greenhouse gas concentrations (e.g. Schurer et al. 2013 J. Clim., 2014 Nat. Geo.). In order to separate the different forcings, it is useful to focus on a temperature change in phase with a well-documented solar minimum so as to maximize the response to this astronomical forcing. This is the approach followed by Wagner et al. (2005 Clim

  5. Solar ALMA observations - A revolutionizing new view at our host star

    NASA Astrophysics Data System (ADS)

    Wedemeyer, Sven; Brajsa, Roman; Bastian, Timothy S.; Barta, Miroslav; Hales, Antonio; Yagoubov, Pavel; Hudson, Hugh; Loukitcheva, Maria; Fleishman, Gregory

    2015-08-01

    Observations of the Sun with the Atacama Large Millimeter/submillimeter Array (ALMA) have a large potential for revolutionizing our understanding of our host star with far reaching implications for stars in general. The radiation emitted at ALMA wavelengths originates mostly from the chromosphere - a complex and dynamic layer between the photosphere and the corona, which plays an important role in the transport of energy and matter and the heating of the outer layers of the solar atmosphere.Despite decades of intensive research, the chromosphere is still elusive and challenging to observe owing to the complicated formation mechanisms of currently available diagnostics. ALMA will change the scene substantially as it serves as a nearly linear thermometer at high spatial, temporal, and spectral resolution, enabling us to study the complex interaction of magnetic fields and shock waves and yet-to-be-discovered dynamical processes. Furthermore, radio recombination and molecular lines may have great diagnostic potential but need to be investigated first. These unprecedented capabilities promise important new findings for a large range of topics in solar physics including the structure, dynamics and energy balance of quiet Sun regions, active regions and sunspots, flares and prominences. As a part of ongoing development studies, an international network has been initiated, which aims at defining and preparing key solar science with ALMA through simulation studies: SSALMON -- Solar Simulations for the Atacama Large Millimeter Observatory Network (http://ssalmon.uio.no). Here, we give an overview of potential science cases.

  6. Overview of the Temperature Response in the Mesosphere and Lower Thermosphere to Solar Activity

    NASA Technical Reports Server (NTRS)

    Beig, Gufran; Scheer, Juergen; Mlynczak, Martin G.; Keckhut, Philippe

    2008-01-01

    The natural variability in the terrestrial mesosphere needs to be known to correctly quantify global change. The response of the thermal structure to solar activity variations is an important factor. Some of the earlier studies highly overestimated the mesospheric solar response. Modeling of the mesospheric temperature response to solar activity has evolved in recent years, and measurement techniques as well as the amount of data have improved. Recent investigations revealed much smaller solar signatures and in some case no significant solar signal at all. However, not much effort has been made to synthesize the results available so far. This article presents an overview of the energy budget of the mesosphere and lower thermosphere (MLT) and an up-to-date status of solar response in temperature structure based on recently available observational data. An objective evaluation of the data sets is attempted and important factors of uncertainty are discussed.

  7. IPS observations of heliospheric density structures associated with active regions

    NASA Technical Reports Server (NTRS)

    Hick, P.; Jackson, B. V.; Altrock, R.; Woan, G.; Slater, G.

    1996-01-01

    Interplanetary scintillation (IPS) measurements of the 'disturbance factor' g, obtained with the Cambridge (UK) array can be used to explore the heliospheric density structure. We have used these data to construct synoptic (Carrington) maps, representing the large-scale enhancements of the g-factor in the inner heliosphere. These maps emphasize the stable corotating, rather than the transient heliospheric density enhancements. We have compared these maps with Carrington maps of Fe XIV observations National Solar Observatory ((NSO), Sacramento Peak) and maps based on Yohkoh Soft X-Ray Telescope (SXT) X-ray observations. Our results indicate that the regions of enhanced g tend to map to active regions rather than the current sheet. The implication is that act ve regions are the dominant source of the small-scale (approximately equal 200 km) density variations present in the quiet solar wind.

  8. Model ozone photochemistry on the basis of Solar Mesosphere Explorer mesospheric observations

    NASA Technical Reports Server (NTRS)

    Clancy, R. T.; Rusch, D. W.; Thomas, R. J.; Allen, M.; Eckman, R. S.

    1987-01-01

    Morning and afternoon mesospheric ozone profiles (50-90 km) measured by the Solar Mesosphere Explorer (SME) satellite are analyzed with one-dimensional photochemical models. The observed ozone abundances are 40 percent and 100 percent greater than the model ozone abundances at 50 and 80 km, respectively. Diurnal model calculations are compared with SME observations of ozone profiles at about 0400 and 1400 LT for high northern summer latitudes. Analysis of the ratios of these early morning and midafternoon ozone profiles provides the additional constraint that larger odd-oxygen production rates are required if lower odd-hydrogen activity is invoked to increase model O3 abundances. The increase in odd-oxygen production must be solar zenith angle independent in the mesosphere, ruling out significant changes in the Schumann-Runge band O2 opacities from Allen and Frederrick (1982).

  9. Solar Cycle Dependence Of Temperature, Odd-Oxygen, Odd-Hydrogen, And Airglow In The Mesopause Region Observed By SABER

    NASA Astrophysics Data System (ADS)

    Mlynczak, M. G.; Hunt, L. A.; Mertens, C. J.; Marshall, T.; Russell, J. M.; Thompson, R. E.; Gordley, L. L.

    2013-12-01

    We present the first consistent, global set of temperature, pressure, odd-oxygen, odd-hydrogen and airglow measurements in the mesopause region spanning a complete solar cycle. The measurements are derived from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the NASA TIMED satellite. These data clearly indicate the influence of solar variability on the atmosphere structure and composition. In general, the values of most parameters decrease with decreasing solar activity. However, odd-hydrogen is observed to increase with decreasing solar activity. While the data indicate a direct relation between solar activity and atmospheric response, the role of dynamical variability in modulating the direct solar response has not yet been investigated, particularly on regional scales (e.g.,tropical, mid-latitude, or polar). We describe the SABER observations in detail and discuss how they can be used with general circulation models to assess the coupled role of dynamics and solar variability in determining the overall atmospheric response.

  10. BEHAVIOR OF SOLAR CYCLES 23 AND 24 REVEALED BY MICROWAVE OBSERVATIONS

    SciTech Connect

    Gopalswamy, N.; Yashiro, S.; Maekelae, P.; Michalek, G.; Shibasaki, K.; Hathaway, D. H.

    2012-05-10

    Using magnetic and microwave butterfly diagrams, we compare the behavior of solar polar regions to show that (1) the polar magnetic field and the microwave brightness temperature during solar minimum substantially diminished during the cycle 23/24 minimum compared to the 22/23 minimum. (2) The polar microwave brightness temperature (Tb) seems to be a good proxy for the underlying magnetic field strength (B). The analysis indicates a relationship, B = 0.0067Tb - 70, where B is in G and Tb in K. (3) Both the brightness temperature and the magnetic field strength show north-south asymmetry most of the time except for a short period during the maximum phase. (4) The rush-to-the-pole phenomenon observed in the prominence eruption (PE) activity seems to be complete in the northern hemisphere as of 2012 March. (5) The decline of the microwave brightness temperature in the north polar region to the quiet-Sun levels and the sustained PE activity poleward of 60{sup o}N suggest that solar maximum conditions have arrived at the northern hemisphere. The southern hemisphere continues to exhibit conditions corresponding to the rise phase of solar cycle 24.

  11. Behavior of Solar Cycles 23 and 24 Revealed by Microwave Observations

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Yashiro, S.; Maekelae, P.; Michalek, G.; Shibasaki, K.; Hathaway, D. H.

    2012-01-01

    Using magnetic and microwave butterfly diagrams, we compare the behavior of solar polar regions to show that (1) the polar magnetic field and the microwave brightness temperature during solar minimum substantially diminished during the cycle 23/24 minimum compared to the 22/23 minimum. (2) The polar microwave brightness temperature (Tb) seems to be a good proxy for the underlying magnetic field strength (B). The analysis indicates a relationship, B = 0.0067Tb - 70, where B is in G and Tb in K. (3) Both the brightness temperature and the magnetic field strength show north-south asymmetry most of the time except for a short period during the maximum phase. (4) The rush-to-the-pole phenomenon observed in the prominence eruption (PE) activity seems to be complete in the northern hemisphere as of 2012 March. (5) The decline of the microwave brightness temperature in the north polar region to the quiet-Sun levels and the sustained PE activity poleward of 60degN suggest that solar maximum conditions have arrived at the northern hemisphere. The southern hemisphere continues to exhibit conditions corresponding to the rise phase of solar cycle 24. Key words: Sun: chromosphere Sun: coronal mass ejections (CMEs) Sun: filaments, prominences Sun: photosphere Sun: radio radiation Sun: surface magnetism

  12. Prediction of Solar Activity from Solar Background Magnetic Field Variations in Cycles 21-23

    NASA Astrophysics Data System (ADS)

    Shepherd, Simon J.; Zharkov, Sergei I.; Zharkova, Valentina V.

    2014-11-01

    A comprehensive spectral analysis of both the solar background magnetic field (SBMF) in cycles 21-23 and the sunspot magnetic field in cycle 23 reported in our recent paper showed the presence of two principal components (PCs) of SBMF having opposite polarity, e.g., originating in the northern and southern hemispheres, respectively. Over a duration of one solar cycle, both waves are found to travel with an increasing phase shift toward the northern hemisphere in odd cycles 21 and 23 and to the southern hemisphere in even cycle 22. These waves were linked to solar dynamo waves assumed to form in different layers of the solar interior. In this paper, for the first time, the PCs of SBMF in cycles 21-23 are analyzed with the symbolic regression technique using Hamiltonian principles, allowing us to uncover the underlying mathematical laws governing these complex waves in the SBMF presented by PCs and to extrapolate these PCs to cycles 24-26. The PCs predicted for cycle 24 very closely fit (with an accuracy better than 98%) the PCs derived from the SBMF observations in this cycle. This approach also predicts a strong reduction of the SBMF in cycles 25 and 26 and, thus, a reduction of the resulting solar activity. This decrease is accompanied by an increasing phase shift between the two predicted PCs (magnetic waves) in cycle 25 leading to their full separation into the opposite hemispheres in cycle 26. The variations of the modulus summary of the two PCs in SBMF reveals a remarkable resemblance to the average number of sunspots in cycles 21-24 and to predictions of reduced sunspot numbers compared to cycle 24: 80% in cycle 25 and 40% in cycle 26.

  13. Prediction of solar activity from solar background magnetic field variations in cycles 21-23

    SciTech Connect

    Shepherd, Simon J.; Zharkov, Sergei I.; Zharkova, Valentina V. E-mail: s.zharkov@hull.ac.uk

    2014-11-01

    A comprehensive spectral analysis of both the solar background magnetic field (SBMF) in cycles 21-23 and the sunspot magnetic field in cycle 23 reported in our recent paper showed the presence of two principal components (PCs) of SBMF having opposite polarity, e.g., originating in the northern and southern hemispheres, respectively. Over a duration of one solar cycle, both waves are found to travel with an increasing phase shift toward the northern hemisphere in odd cycles 21 and 23 and to the southern hemisphere in even cycle 22. These waves were linked to solar dynamo waves assumed to form in different layers of the solar interior. In this paper, for the first time, the PCs of SBMF in cycles 21-23 are analyzed with the symbolic regression technique using Hamiltonian principles, allowing us to uncover the underlying mathematical laws governing these complex waves in the SBMF presented by PCs and to extrapolate these PCs to cycles 24-26. The PCs predicted for cycle 24 very closely fit (with an accuracy better than 98%) the PCs derived from the SBMF observations in this cycle. This approach also predicts a strong reduction of the SBMF in cycles 25 and 26 and, thus, a reduction of the resulting solar activity. This decrease is accompanied by an increasing phase shift between the two predicted PCs (magnetic waves) in cycle 25 leading to their full separation into the opposite hemispheres in cycle 26. The variations of the modulus summary of the two PCs in SBMF reveals a remarkable resemblance to the average number of sunspots in cycles 21-24 and to predictions of reduced sunspot numbers compared to cycle 24: 80% in cycle 25 and 40% in cycle 26.

  14. Active Vibration Damping of Solar Arrays

    NASA Astrophysics Data System (ADS)

    Reinicke, Gunar; Baier, Horst; Grillebeck, Anton; Scharfeld, Frank; Hunger, Joseph; Abou-El-Ela, A.; Lohberg, Andreas

    2012-07-01

    Current generations of large solar array panels are lightweight and flexible constructions to reduce net masses. They undergo strong vibrations during launch. The active vibration damping is one convenient option to reduce vibration responses and limit stresses in facesheets. In this study, two actuator concepts are used for vibration damping. A stack interface actuator replaces a panel hold down and is decoupled from bending moments and shear forces. Piezoelectric patch actuators are used as an alternative, where the number, position and size of actuators are mainly driven by controllability analyses. Linear Quadratic Gaussian control is used to attenuate vibrations of selected mode shapes with both actuators. Simulations as well as modal and acoustic tests show the feasibility of selected actuator concepts.

  15. Alteration of Atmospheric Solar Absorption by Clouds: Simulation and Observation.

    NASA Astrophysics Data System (ADS)

    Li, Zhanqing; Moreau, Louis

    1996-05-01

    This study investigated theoretically and experimentally two parameters employed in recent attempts to address cloud absorption anomaly. One is the ratio, R, of shortwave cloud radiative forcing (CRF) at the surface to that at the top of the atmosphere (TOA), and another is the slope, s, of the regressional relationship between TOA albedo and atmospheric transmittance. The physics and sensitivities of the two parameters were first examined by means of radiative transfer modeling. Neither R nor s is a direct measure of cloud absorption. However, R can indicate the effect of clouds on the atmospheric absorption of solar radiation, if clear-sky condition remains the same. A value of R > 1 implies clouds warm the atmosphere, while the converse is true for R < 1. Model simulations suggest that both R and s are sensitive to many factors, especially cloud height and surface condition. Nonetheless, modeled R rarely exceeds 1.25, and modeled s is generally less than 0.7, except for bright surfaces. The slope s can be related to R under certain conditions. Observational values of R and s were then determined using four years worth of global satellite and ground-based monthly mean solar flux data from the Earth Radiation Budget Experiment (ERBE) and the Global Surface Energy Balance Archive (GEBA). The ratio R is highly variable with both location and season and also shows strong interannual variability. Low to moderate values of R, attainable by plane-parallel radiative transfer models, tend to occur over relatively clean regions. Large values of R appear to associate with either heavy pollution in the midlatitudes or frequent occurrence of biomass burning in the Tropics. The large values of R in the Tropics are less reliable than the low and moderate R in the midlatitudes. While this study does not rule out cloud absorption anomaly, it does indicate, however, that its magnitude (if it exists) is not as large, and its occurrence not as widespread, as suggested in some recent

  16. Observed variability in the Fraunhofer line spectrum of solar flux, 1975 - 1980

    NASA Technical Reports Server (NTRS)

    Livingston, W.; Holweger, H.; White, O. R.

    1981-01-01

    Over the five years double-pass spectrometer observations of the Sun-as-a-star revealed significant changes in line intensities. The photospheric component weakened linearly with time 0 to 2.3%. From a lack of correlation between these line weakenings and solar activity indicators like sunspots and plage, a global variation of surface properties is inferred. Model-atmosphere analysis suggests a slight reduction in the lower-photospheric temperature gradient corresponding to a 15% increase in the mixing length within the granulation layer. Chromospheric lines such as Ca II H and K, Ca II 8543 and the CN band head weaken synchronously with solar activity. Thus, the behavior of photospheric and chromospheric lines is markedly different, with the possibility of secular change for the former.

  17. Observations with the SMM gamma-ray spectrometer - The impulsive solar flares of 1980 March 29

    NASA Technical Reports Server (NTRS)

    Ryan, J. M.; Forrest, D. J.; Chupp, E. L.; Cherry, M. L.; Reppin, C.; Rieger, E.; Pinkau, K.; Kanbach, G.; Share, G. H.; Kinzer, R. L.

    1981-01-01

    Gamma-ray continuum emission from 0.3 to 1 MeV was observed with the gamma-ray spectrometer on the Solar Maximum Mission satellite during two impulsive solar flares on 1980 March 29, from active region 2363 at 0918 UT and from active region 2357 at 0955 UT. Evidence is presented for a hardening of the spectrum during the impulsive phase of the flares. The photon intensity greater than 100 keV appears to decay at a slower rate than that at lower energies. Time-integrated photon spectra for both flares are incompatible with a single-temperature thermal-bremsstrahlung model. Upper limits for prompt and delayed gamma-ray lines are presented.

  18. Coronal Observations at the Siberian 2008 Total Solar Eclipse

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Babcock, B. A.; Freeman, M. J.; DuPré, K. M.; Demianski, M.; Nesterenko, A.; Nesterenko, I.; Schneider, G.

    2009-12-01

    We successfully observed the 1 August 2008 total solar eclipse from the rooftop observatory of the State University of Novosibirsk in Akademgorodok, Siberia, latitude 55° N at 10:45 UT in clear skies and also from an airplane at 83° N latitude north of Svalbard at 9:43 UT. Our prime experiment in Akademgorodok was a set of high-cadence, 10 Hz, observations in the coronal green line at 530.3 nm from [Fe XIV] to verify and extend our previous findings of excess power in the 0.5 Hz to 1 Hz region as predicted by a subset of coronal-heating theories. We used twin 0.2-m telescopes with narrow-band interference filters and our POETS frame-transfer CCD's on the university's Paramount ME. Additional photography included graded-exposure sets of images meant for post-processing to compare with images taken earlier from the airplane and later from the ground in Mongolia and China to provide time differences of over 90 minutes. We also obtained HD video. Our comparison of the images from the airplane and from Siberia will be used to search for coronal motions.

  19. Active other worlds in the Solar System and beyond

    NASA Astrophysics Data System (ADS)

    Forget, François

    2016-04-01

    Over the past decades, space exploration has moved planetology from the field of astronomy to the disciplines of geosciences. A fleet of spacecrafts have discovered and study tens of worlds in our solar system and beyond. Everywhere, we have been surprised by the diversity and the vigour of the geophysical activity, from volcanic eruptions to plasma waves... Every scientists present at EGU could -and should- be interested in the extraterrestrial processes that are discovered and analyzed elsewhere. In our solar system, a variety of clouds and fluid dynamical phenomena can be studied in six terrestrial atmospheres and on four giant planets. Active glaciers are found on Mars and Pluto. Rivers and lakes have sculpted the surface of Titan and Mars. Sometime, we can even study geophysical activity with no equivalent on our planet: ice caps made of frozen atmosphere that erupt in geysers, hazes formed by organic polymers which can completely shroud a moon, etc. We study these active worlds because we are curious and wish to understand our universe and our origins. However, more than ever, two specific motivations drive solar system geosciences in 2016: Firstly, as we become more and more familiar with the other worlds around us, we can use them to better understand our own planet. Throughout the solar system, we can access to data that are simply not available on the Earth, or study active processes that are subtle on Earth but of greater importance elsewhere, so that we can better understand them. Many geophysical concepts and tools developed for the Earth can also be tested on other planets. For instance the numerical Climate Models used to assess Earth's future climate change are applied to other planets. Much is learned from such experiments. Secondly, the time has come to generalize the fundamental lessons that we have learned from the examples in the solar system (including the Earth) to address the countless scientific questions that are -and will be- raised by

  20. Revisiting the question: Does high-latitude solar activity lead low-latitude solar activity in time phase?

    SciTech Connect

    Kong, D. F.; Qu, Z. N.; Guo, Q. L.

    2014-05-01

    Cross-correlation analysis and wavelet transform methods are used to investigate whether high-latitude solar activity leads low-latitude solar activity in time phase or not, using the data of the Carte Synoptique solar filaments archive from 1919 March to 1989 December. From the cross-correlation analysis, high-latitude solar filaments have a time lead of 12 Carrington solar rotations with respect to low-latitude ones. Both the cross-wavelet transform and wavelet coherence indicate that high-latitude solar filaments lead low-latitude ones in time phase. Furthermore, low-latitude solar activity is better correlated with high-latitude solar activity of the previous cycle than with that of the following cycle, which is statistically significant. Thus, the present study confirms that high-latitude solar activity in the polar regions is indeed better correlated with the low-latitude solar activity of the following cycle than with that of the previous cycle, namely, leading in time phase.