Sample records for observation strongly suggests

  1. Atmospheric CO2 observations and models suggest strong carbon uptake by forests in New Zealand

    NASA Astrophysics Data System (ADS)

    Steinkamp, Kay; Mikaloff Fletcher, Sara E.; Brailsford, Gordon; Smale, Dan; Moore, Stuart; Keller, Elizabeth D.; Baisden, W. Troy; Mukai, Hitoshi; Stephens, Britton B.

    2017-01-01

    A regional atmospheric inversion method has been developed to determine the spatial and temporal distribution of CO2 sinks and sources across New Zealand for 2011-2013. This approach infers net air-sea and air-land CO2 fluxes from measurement records, using back-trajectory simulations from the Numerical Atmospheric dispersion Modelling Environment (NAME) Lagrangian dispersion model, driven by meteorology from the New Zealand Limited Area Model (NZLAM) weather prediction model. The inversion uses in situ measurements from two fixed sites, Baring Head on the southern tip of New Zealand's North Island (41.408° S, 174.871° E) and Lauder from the central South Island (45.038° S, 169.684° E), and ship board data from monthly cruises between Japan, New Zealand, and Australia. A range of scenarios is used to assess the sensitivity of the inversion method to underlying assumptions and to ensure robustness of the results. The results indicate a strong seasonal cycle in terrestrial land fluxes from the South Island of New Zealand, especially in western regions covered by indigenous forest, suggesting higher photosynthetic and respiratory activity than is evident in the current a priori land process model. On the annual scale, the terrestrial biosphere in New Zealand is estimated to be a net CO2 sink, removing 98 (±37) Tg CO2 yr-1 from the atmosphere on average during 2011-2013. This sink is much larger than the reported 27 Tg CO2 yr-1 from the national inventory for the same time period. The difference can be partially reconciled when factors related to forest and agricultural management and exports, fossil fuel emission estimates, hydrologic fluxes, and soil carbon change are considered, but some differences are likely to remain. Baseline uncertainty, model transport uncertainty, and limited sensitivity to the northern half of the North Island are the main contributors to flux uncertainty.

  2. ZINGRS: CO2-1 observations of strong C+ emitters at z~2

    NASA Astrophysics Data System (ADS)

    Scrabeck, Alex; Ferkinhoff, Carl; Brisbin, Drew; Lamarche, Cody; Vishwas, Amit; Nikola, Thomas; Stacey, Gordon J.; Higdon, James L.; Higdon, Sarah; Walter, Fabian; Decarli, Roberto

    2018-06-01

    We present new CO(2-1) line observations from NOEMA of five strong C+ emitting galaxies at high redshift. These galaxies, pulled from the Zeus INvestigated Galaxy Reference Sample (ZINGRS), were observed in their [CII] 158 micron line with the ZEUS instrument showing strong emission, 1 to 2% of their total far-IR luminosity. Our previous work suggests this emission is produced by normal star forming processes in photo-dissociation regions (PDRs), albeit on a galaxy wide scale fueled by cold-flow accretion. However, we could not fully exclude other mechanisms accounting for some or all of the emission. The work presented here, combining the CO emission with the [CII] 158 micron line, is consistent with PDRs being the source of the extreme C+ emission. It is further evidence for the existence of gas-rich galaxies in the early Universe undergoing galaxy-wide starbursts. These systems are not present in the nearby Universe, so represent a unique yet import evolutionary stage at early epochs.

  3. Strong motion observations and recordings from the great Wenchuan Earthquake

    USGS Publications Warehouse

    Li, X.; Zhou, Z.; Yu, H.; Wen, R.; Lu, D.; Huang, M.; Zhou, Y.; Cu, J.

    2008-01-01

    The National Strong Motion Observation Network System (NSMONS) of China is briefly introduced in this paper. The NSMONS consists of permanent free-field stations, special observation arrays, mobile observatories and a network management system. During the Wenchuan Earthquake, over 1,400 components of acceleration records were obtained from 460 permanent free-field stations and three arrays for topographical effect and structural response observation in the network system from the main shock, and over 20,000 components of acceleration records from strong aftershocks occurred before August 1, 2008 were also obtained by permanent free-field stations of the NSMONS and 59 mobile instruments quickly deployed after the main shock. The strong motion recordings from the main shock and strong aftershocks are summarized in this paper. In the ground motion recordings, there are over 560 components with peak ground acceleration (PGA) over 10 Gal, the largest being 957.7 Gal. The largest PGA recorded during the aftershock exceeds 300 Gal. ?? 2008 Institute of Engineering Mechanics, China Earthquake Administration and Springer-Verlag GmbH.

  4. Lecture 3: Some Suggestions and Remarks upon Observing Children

    ERIC Educational Resources Information Center

    Montessori, Maria

    2016-01-01

    These next two lectures succinctly discuss the necessary preparation and methods for observation. Using the naturalist Fabre as an example of scientific training of the faculties for sharp observation, Montessori compares the observer to a researcher and gives many suggestions for conducting thorough yet unobtrusive observation. Self-awareness of…

  5. Observability of atomic line features in strong magnetic fields

    NASA Technical Reports Server (NTRS)

    Wunner, G.; Ruder, H.; Herold, H.; Truemper, J.

    1981-01-01

    The physical properties of atoms in superstrong magnetic fields, characteristic of neutron stars, and the possibility of detecting magnetically strongly shifted atomic lines in the spectra of magnetized X-ray pulsars are discussed. It is suggested that it is recommendable to look for magnetically strongly shifted Fe 26 Lyman lines in rotating neutron stars of not too high luminosity using spectrometers working in the energy range 10 - 20 keV, with sensitivities to minus 4 power photons per sq cm and second, and resolution E/delta E approx. 10-100.

  6. Strong reproductive isolation between humans and Neanderthals inferred from observed patterns of introgression

    PubMed Central

    Currat, Mathias; Excoffier, Laurent

    2011-01-01

    Recent studies have revealed that 2–3% of the genome of non-Africans might come from Neanderthals, suggesting a more complex scenario of modern human evolution than previously anticipated. In this paper, we use a model of admixture during a spatial expansion to study the hybridization of Neanderthals with modern humans during their spread out of Africa. We find that observed low levels of Neanderthal ancestry in Eurasians are compatible with a very low rate of interbreeding (<2%), potentially attributable to a very strong avoidance of interspecific matings, a low fitness of hybrids, or both. These results suggesting the presence of very effective barriers to gene flow between the two species are robust to uncertainties about the exact demography of the Paleolithic populations, and they are also found to be compatible with the observed lack of mtDNA introgression. Our model additionally suggests that similarly low levels of introgression in Europe and Asia may result from distinct admixture events having occurred beyond the Middle East, after the split of Europeans and Asians. This hypothesis could be tested because it predicts that different components of Neanderthal ancestry should be present in Europeans and in Asians. PMID:21911389

  7. Strong reproductive isolation between humans and Neanderthals inferred from observed patterns of introgression.

    PubMed

    Currat, Mathias; Excoffier, Laurent

    2011-09-13

    Recent studies have revealed that 2-3% of the genome of non-Africans might come from Neanderthals, suggesting a more complex scenario of modern human evolution than previously anticipated. In this paper, we use a model of admixture during a spatial expansion to study the hybridization of Neanderthals with modern humans during their spread out of Africa. We find that observed low levels of Neanderthal ancestry in Eurasians are compatible with a very low rate of interbreeding (<2%), potentially attributable to a very strong avoidance of interspecific matings, a low fitness of hybrids, or both. These results suggesting the presence of very effective barriers to gene flow between the two species are robust to uncertainties about the exact demography of the Paleolithic populations, and they are also found to be compatible with the observed lack of mtDNA introgression. Our model additionally suggests that similarly low levels of introgression in Europe and Asia may result from distinct admixture events having occurred beyond the Middle East, after the split of Europeans and Asians. This hypothesis could be tested because it predicts that different components of Neanderthal ancestry should be present in Europeans and in Asians.

  8. TRMM-TMI Satellite Observed Soil Moisture and Vegetation Density (1998-2005) Show Strong Connection with El Nino in Eastern Australia

    NASA Technical Reports Server (NTRS)

    Liu, Yi; van Dijk, Albert I.J.M.; Owe, Manfred

    2007-01-01

    Spatiotemporal patterns in soil moisture and vegetation water content across mainland Australia were investigated from 1998 through 2005, using TRMMITMI passive microwave observations. The Empirical Orthogonal Function technique was used to extract dominant spatial and temporal patterns in retrieved estimates of moisture content for the top 1-cm of soil (theta) and vegetation moisture content (via optical depth tau). The dominant temporal theta and tau patterns were strongly correlated to El Nino/Southern Oscillation (ENSO) in spring (3 = 0.90), and to a progressively lesser extent autumn, summer and winter. The Indian Ocean Dipole (IOD) index also explained part of the variation in spring 8 and z. Cluster analysis suggested that the regions most affected by ENS0 are mainly located in eastern Australia. The results suggest that the drought conditions experienced in eastern Australia since 2000 an clearly expressed in these satellite observations have a strong connection with ENSO patterns.

  9. Simultaneous Multi-angle Observations of Strong Langmuir Turbulence at HAARP

    NASA Astrophysics Data System (ADS)

    Watanabe, Naomi; Golkowski, Mark; Sheerin, James P.; Watkins, Brenton J.

    2015-10-01

    We report results from a recent series of experiments employing the HF transmitter of the High Frequency Active Auroral Research Program (HAARP) to generate and study strong Langmuir turbulence (SLT) in the interaction region of overdense ionospheric plasma. The Modular UHF Ionospheric Radar (MUIR) located at the HAARP facility is used as the primary diagnostic. Short pulse, low duty cycle experiments are used to avoid generation of artificial field-aligned irregularities and isolate ponderomotive plasma turbulence effects. The HF pump frequency is close to the 3rd gyro-harmonic frequency and the HF pointing angle and MUIR look angle are between the HF Spitze angle and Magnetic Zenith angle. Plasma line spectra measured simultaneously in different spots of the interaction region display differences dependent on the aspect angle of the HF pump beam in the boresight direction and the pointing angle of the MUIR diagnostic radar. Outshifted Plasma Lines, cascade, collapse, coexistence, spectra are observed in agreement with existing theory and simulation results of Strong Langmuir Turbulence in ionospheric interaction experiments. It is found that SLT at HAARP is most readily observed at a HF pointing angle of 11° and UHF observation angle of 15°, which is consistent with the magnetic zenith effect as documented in previous works and optimal orientation of the refracted HF electric field vector.

  10. MAVEN Observations of Magnetic Flux Ropes with a Strong Field Amplitude in the Martian Magnetosheath During the ICME Passage on 8 March 2015

    NASA Technical Reports Server (NTRS)

    Hara, Takuya; Luhmann, Janet G.; Halekas, Jasper S.; Espley, Jared R.; Seki, Kanako; Brain, David A.; Hasegawa, Hiroshi; McFadden, James P.; Mitchell, David L.; Mazelle, Christian; hide

    2016-01-01

    We present initial results of strong field amplitude flux ropes observed by Mars Atmosphere and Volatile EvolutioN (MAVEN) mission around Mars during the interplanetary coronal mass ejection (ICME) passage on 8 March 2015. The observed durations were shorter than 5 s and the magnetic field magnitudes peaked above 80 nT, which is a few times stronger than those usually seen in the magnetosheath barrier. These are the first unique observations that MAVEN detected such flux ropes with a strong field at high altitudes (greater than 5000 km). Across these structures, MAVEN coincidentally measured planetary heavy ions with energies higher than a few keV. The spatial properties inferred from the Grad-Shafranov equation suggest that the speed of the structure can be estimated at least an order of magnitude faster than those previously reported quiet-time counterparts. Hence, the space weather event like the ICME passage can be responsible for generating the observed strong field, fast-traveling flux ropes.

  11. The Quake-Catcher Network: Improving Earthquake Strong Motion Observations Through Community Engagement

    NASA Astrophysics Data System (ADS)

    Cochran, E. S.; Lawrence, J. F.; Christensen, C. M.; Chung, A. I.; Neighbors, C.; Saltzman, J.

    2010-12-01

    The Quake-Catcher Network (QCN) involves the community in strong motion data collection by utilizing volunteer computing techniques and low-cost MEMS accelerometers. Volunteer computing provides a mechanism to expand strong-motion seismology with minimal infrastructure costs, while promoting community participation in science. Micro-Electro-Mechanical Systems (MEMS) triaxial accelerometers can be attached to a desktop computer via USB and are internal to many laptops. Preliminary shake table tests show the MEMS accelerometers can record high-quality seismic data with instrument response similar to research-grade strong-motion sensors. QCN began distributing sensors and software to K-12 schools and the general public in April 2008 and has grown to roughly 1500 stations worldwide. We also recently tested whether sensors could be quickly deployed as part of a Rapid Aftershock Mobilization Program (RAMP) following the 2010 M8.8 Maule, Chile earthquake. Volunteers are recruited through media reports, web-based sensor request forms, as well as social networking sites. Using data collected to date, we examine whether a distributed sensing network can provide valuable seismic data for earthquake detection and characterization while promoting community participation in earthquake science. We utilize client-side triggering algorithms to determine when significant ground shaking occurs and this metadata is sent to the main QCN server. On average, trigger metadata are received within 1-10 seconds from the observation of a trigger; the larger data latencies are correlated with greater server-station distances. When triggers are detected, we determine if the triggers correlate to others in the network using spatial and temporal clustering of incoming trigger information. If a minimum number of triggers are detected then a QCN-event is declared and an initial earthquake location and magnitude is estimated. Initial analysis suggests that the estimated locations and magnitudes are

  12. Observation of universal strong orbital-dependent correlation effects in iron chalcogenides

    DOE PAGES

    Yi, M.; Liu, Z. -K.; Zhang, Y.; ...

    2015-07-23

    Establishing the appropriate theoretical framework for unconventional superconductivity in the iron-based materials requires correct understanding of both the electron correlation strength and the role of Fermi surfaces. This fundamental issue becomes especially relevant with the discovery of the iron chalcogenide superconductors. Here, we use angle-resolved photoemission spectroscopy to measure three representative iron chalcogenides, FeTe 0.56Se 0.44, monolayer FeSe grown on SrTiO 3 and K 0.76Fe 1.72Se 2. We show that these superconductors are all strongly correlated, with an orbital-selective strong renormalization in the dxy bands despite having drastically different Fermi surface topologies. Furthermore, raising temperature brings all three compounds frommore » a metallic state to a phase where the dxy orbital loses all spectral weight while other orbitals remain itinerant. As a result, these observations establish that iron chalcogenides display universal orbital-selective strong correlations that are insensitive to the Fermi surface topology, and are close to an orbital-selective Mott phase, hence placing strong constraints for theoretical understanding of iron-based superconductors.« less

  13. Observation of universal strong orbital-dependent correlation effects in iron chalcogenides

    PubMed Central

    Yi, M.; Liu, Z-K; Zhang, Y.; Yu, R.; Zhu, J.-X.; Lee, J.J.; Moore, R.G.; Schmitt, F.T.; Li, W.; Riggs, S.C.; Chu, J.-H.; Lv, B.; Hu, J.; Hashimoto, M.; Mo, S.-K.; Hussain, Z.; Mao, Z.Q.; Chu, C.W.; Fisher, I.R.; Si, Q.; Shen, Z.-X.; Lu, D.H.

    2015-01-01

    Establishing the appropriate theoretical framework for unconventional superconductivity in the iron-based materials requires correct understanding of both the electron correlation strength and the role of Fermi surfaces. This fundamental issue becomes especially relevant with the discovery of the iron chalcogenide superconductors. Here, we use angle-resolved photoemission spectroscopy to measure three representative iron chalcogenides, FeTe0.56Se0.44, monolayer FeSe grown on SrTiO3 and K0.76Fe1.72Se2. We show that these superconductors are all strongly correlated, with an orbital-selective strong renormalization in the dxy bands despite having drastically different Fermi surface topologies. Furthermore, raising temperature brings all three compounds from a metallic state to a phase where the dxy orbital loses all spectral weight while other orbitals remain itinerant. These observations establish that iron chalcogenides display universal orbital-selective strong correlations that are insensitive to the Fermi surface topology, and are close to an orbital-selective Mott phase, hence placing strong constraints for theoretical understanding of iron-based superconductors. PMID:26204461

  14. Renewal of K-NET (National Strong-motion Observation Network of Japan)

    NASA Astrophysics Data System (ADS)

    Kunugi, T.; Fujiwara, H.; Aoi, S.; Adachi, S.

    2004-12-01

    The National Research Institute for Earth Science and Disaster Prevention (NIED) operates K-NET (Kyoshin Network), the national strong-motion observation network, which evenly covers the whole of Japan at intervals of 25 km on average. K-NET was constructed after the Hyogoken-Nambu (Kobe) earthquake in January 1995, and began operation in June 1996. Thus, eight years have passed since K-NET started, and large amounts of strong-motion records have been obtained. As technology has progressed and new technologies have become available, NIED has developed a new K-NET with improved functionality. New seismographs have been installed at 443 observatories mainly in southwestern Japan where there is a risk of strong-motion due to the Nankai and Tonankai earthquakes. The new system went into operation in June 2004, although seismographs have still to be replaced in other areas. The new seismograph (K-NET02) consists of a sensor module, a measurement module and a communication module. A UPS, a GPS antenna and a dial-up router are also installed together with a K-NET02. A triaxial accelerometer, FBA-ES-DECK (Kinemetrics Inc.) is built into the sensor module. The measurement module functions as a conventional strong-motion seismograph for high-precision observation. The communication module can perform sophisticated processes, such as calculation of the Japan Meteorological Agency (JMA) seismic intensity, continuous recording of data and near real-time data transmission. It connects to the Data Management Center (DMC) using an ISDN line. In case of a power failure, the measurement module can control the power supply to the router and the communication module to conserve battery power. One of the main features of K-NET02 is a function for processing JMA seismic intensity. K-NET02 functions as a proper seismic intensity meter that complies with the official requirements of JMA, although the old strong-motion seismograph (K-NET95) does not calculate seismic intensity. Another

  15. Observations of height-dependent pressure-perturbation structure of a strong mesoscale gravity wave

    NASA Technical Reports Server (NTRS)

    Starr, David O'C.; Korb, C. L.; Schwemmer, Geary K.; Weng, Chi Y.

    1992-01-01

    Airborne observations using a downward-looking, dual-frequency, near-infrared, differential absorption lidar system provide the first measurements of the height-dependent pressure-perturbation field associated with a strong mesoscale gravity wave. A pressure-perturbation amplitude of 3.5 mb was measured within the lowest 1.6 km of the atmosphere over a 52-km flight line. Corresponding vertical displacements of 250-500 m were inferred from lidar-observed displacement of aerosol layers. Accounting for probable wave orientation, a horizontal wavelength of about 40 km was estimated. Satellite observations reveal wave structure of a comparable scale in concurrent cirrus cloud fields over an extended area. Smaller-scale waves were also observed. Local meteorological soundings are analyzed to confirm the existence of a suitable wave duct. Potential wave-generation mechanisms are examined and discussed. The large pressure-perturbation wave is attributed to rapid amplification or possible wave breaking of a gravity wave as it propagated offshore and interacted with a very stable marine boundary layer capped by a strong shear layer.

  16. If ionospheric and geomagnetic disturbances observed before strong earthquakes may result from simultaneous impact of space weather on all geospheres including solid earth

    NASA Astrophysics Data System (ADS)

    Khachikyan, Galina

    2016-07-01

    It is revealed in previous decades that ionospheric disturbances precede strong earthquakes, thus, the ionospheric precursors of strong earthquakes are now under developing [Pulinets and Boyarchuk, 2004]. Simultaneously, it is revealed that strong earthquakes may be preceded by geomagnetic disturbances as well, as a result, the geomagnetic variations, for example, in the ULF band, are considered now as precursory signals [Fraser-Smith, 1990, doi/10.1029/GL017i009p01465]. At the same time, there is currently no reliable theory nor for ionospheric or to magnetic precursors of earthquakes. Moreover, several researches have reexamined some of above results and concluded that observed magnetic disturbances before strong earthquakes could be generated by other sources, such as global magnetic activity [e.g. Campbell, 2009, doi/10.1029/2008JA013932], and that ionospheric anomalies can also be an effect of the increase of the global magnetic activity [e. g. Masci and Thomas, 2015, doi:10.1002/2015RS005734]. Taking into account such conclusions, one may suggest that the observed ionospheric and geomagnetic disturbances before strong earthquakes might be due to simultaneous influence of a space weather on the complicated surrounding system including the solid earth. This report presents some statistical results to prove such suggestion. In particular, it is shown [Khachikyan et al., 2012, doi:10.4236/ijg.2012.35109] that maximal possible earthquake magnitude (seismic potential) can be determined, in first approximation, on the base of geomagnetic Z-component measured in the Geocentric Solar Magnetosphere (GSM) coordinate system, in which the space weather impact on the earth's environment, due to reconnection of the solar wind magnetic field with the earth's magnetic field, is more ordered.

  17. Predictions for boson-jet observables and fragmentation function ratios from a hybrid strong/weak coupling model for jet quenching

    DOE PAGES

    Casalderrey-Solana, Jorge; Gulhan, Doga Can; Milhano, José Guilherme; ...

    2016-03-09

    We have previously introduced a hybrid strong/weak coupling model for jet quenching in heavy ion collisions in which we describe the production and fragmentation of jets at weak coupling, using Pythia, and describe the rate at which each parton in the jet shower loses energy as it propagates through the strongly coupled plasma, dE/dx, using an expression computed holographically at strong coupling. The model has a single free parameter that we fit to a single experimental measurement. We then confront our model with experimental data on many other jet observables, focusing in this paper on boson-jet observables, finding that itmore » provides a good description of present jet data. Next, we provide the predictions of our hybrid model for many measurements to come, including those for inclusive jet, dijet, photon-jet and Z-jet observables in heavy ion collisions with energy √s = 5 : 02 ATeV coming soon at the LHC. As the statistical uncertainties on near-future measurements of photon-jet observables are expected to be much smaller than those in present data, with about an order of magnitude more photon-jet events expected, predictions for these observables are particularly important. We find that most of our pre- and post-dictions do not depend sensitively on the form we choose for the rate of energy loss dE/dx of the partons in the shower. This gives our predictions considerable robustness. To better discriminate between possible forms for the rate of energy loss, though, we must turn to intrajet observables. Here, we focus on ratios of fragmentation functions. Finally, we close with a suggestion for a particular ratio, between the fragmentation functions of inclusive and associated jets with the same kinematics in the same collisions, which is particularly sensitive to the x- and E-dependence of dE/dx, and hence may be used to learn which mechanism of parton energy loss best describes the quenching of jets.« less

  18. Observation of dust acoustic shock wave in a strongly coupled dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Sumita K., E-mail: sumita-sharma82@yahoo.com; Boruah, A.; Nakamura, Y.

    2016-05-15

    Dust acoustic shock wave is observed in a strongly coupled laboratory dusty plasma. A supersonic flow of charged microparticles is allowed to perturb a stationary dust fluid to excite dust acoustic shock wave. The evolution process beginning with steepening of initial wave front and then formation of a stable shock structure is similar to the numerical results of the Korteweg-de Vries-Burgers equation. The measured Mach number of the observed shock wave agrees with the theoretical results. Reduction of shock amplitude at large distances is also observed due to the dust neutral collision and viscosity effects. The dispersion relation and themore » spatial damping of a linear dust acoustic wave are also measured and compared with the relevant theory.« less

  19. Strong stellar winds.

    PubMed

    Conti, P S; McCray, R

    1980-04-04

    The hottest and most luminous stars lose a substantial fraction of their mass in strong stellar winds. These winds not only affect the evolution of the star, they also carve huge expanding cavities in the surrounding interstellar medium, possibly affecting star formation. The winds are probably driven by radiation pressure, but uncertainties persist in their theoretical description. Strong x-ray sources associated with a few of these hot stars may be used to probe the stellar winds. The nature of the weak x-ray sources recently observed to be associated with many of these stars is uncertain. It is suggested that roughly 10 percent of the luminous hot stars may have as companions neutron stars or black holes orbiting within the stellar winds.

  20. Collider shot setup for Run 2 observations and suggestions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annala, J.; Joshel, B.

    1996-01-31

    This note is intended to provoke discussion on Collider Run II shot setup. We hope this is a start of activities that will converge on a functional description of what is needed for shot setups in Collider Run II. We will draw on observations of the present shot setup to raise questions and make suggestions for the next Collider run. It is assumed that the reader has some familiarity with the Collider operational issues. Shot setup is defined to be the time between the end of a store and the time the Main Control Room declares colliding beams. This ismore » the time between Tevatron clock events SCE and SCB. This definition does not consider the time experiments use to turn on their detectors. This analysis was suggested by David Finley. The operational scenarios for Run II will require higher levels of reliability and speed for shot setup. See Appendix I and II. For example, we estimate that a loss of 3 pb{sup {minus}1}/week (with 8 hour stores) will occur if shot setups take 90 minutes instead of 30 minutes. In other words: If you do 12 shots for one week and accept an added delay of one minute in each shot, you will loose more than 60 nb{sup {minus}1} for that week alone (based on a normal shot setup of 30 minutes). These demands should lead us to be much more pedantic about all the factors that affect shot setups. Shot setup will be viewed as a distinct process that is composed of several inter- dependent `components`: procedures, hardware, controls, and sociology. These components don`t directly align with the different Accelerator Division departments, but are topical groupings of the needed accelerator functions. Defining these components, and categorizing our suggestions within them, are part of the goal of this document. Of course, some suggestions span several of these components.« less

  1. The Changing Surface of Saturn's Titan: Cassini Observations Suggest Active Cryovolcanism

    NASA Astrophysics Data System (ADS)

    Nelson, R. M.

    2008-12-01

    conclude that the VIMS instrument has found two instances in which selected regions on Titan's surface became unusually reflective and remained reflective on time scales of days to months. In both cases the area of reflectance variability is large (~100000 sq km), larger than either Loki or the Big Island of Hawaii. This is a strong evidence for currently active surface processes on Titan. Pre-Cassini, Titan was thought of as a pre-biotic earth that was frozen in time. Cassini VIMS and SAR observations combined suggest that Titan is the present day is not frozen solid, and is instead an episodically changing or evolving world. References: [1] Nelson R. M. et al, LPSC 2007 , Europlanets 2007, AGU 2007, EGU 2008, Accepted in Icarus 2008. [2] Lopes et al (this meeting), Stofan et al. Icarus 185, 443-456, 2007. Lopes et al. Icarus 186, 395- 412, 2007. Kirk et al., DPS 2007. Acknowledgement: This work done at JPL under contract with NASA

  2. Strong and Long Makes Short: Strong-Pump Strong-Probe Spectroscopy.

    PubMed

    Gelin, Maxim F; Egorova, Dassia; Domcke, Wolfgang

    2011-01-20

    We propose a new time-domain spectroscopic technique that is based on strong pump and probe pulses. The strong-pump strong-probe (SPSP) technique provides temporal resolution that is not limited by the durations of the pump and probe pulses. By numerically exact simulations of SPSP signals for a multilevel vibronic model, we show that the SPSP signals exhibit electronic and vibrational beatings on time scales which are significantly shorter than the pulse durations. This suggests the possible application of SPSP spectroscopy for the real-time investigation of molecular processes that cannot be temporally resolved by pump-probe spectroscopy with weak pump and probe pulses.

  3. Strong motions observed by K-NET and KiK-net during the 2016 Kumamoto earthquake sequence

    NASA Astrophysics Data System (ADS)

    Suzuki, Wataru; Aoi, Shin; Kunugi, Takashi; Kubo, Hisahiko; Morikawa, Nobuyuki; Nakamura, Hiromitsu; Kimura, Takeshi; Fujiwara, Hiroyuki

    2017-01-01

    The nationwide strong-motion seismograph network of K-NET and KiK-net in Japan successfully recorded the strong ground motions of the 2016 Kumamoto earthquake sequence, which show the several notable characteristics. For the first large earthquake with a JMA magnitude of 6.5 (21:26, April 14, 2016, JST), the large strong motions are concentrated near the epicenter and the strong-motion attenuations are well predicted by the empirical relation for crustal earthquakes with a moment magnitude of 6.1. For the largest earthquake of the sequence with a JMA magnitude of 7.3 (01:25, April 16, 2016, JST), the large peak ground accelerations and velocities extend from the epicentral area to the northeast direction. The attenuation feature of peak ground accelerations generally follows the empirical relation, whereas that for velocities deviates from the empirical relation for stations with the epicentral distance of greater than 200 km, which can be attributed to the large Love wave having a dominant period around 10 s. The large accelerations were observed at stations even in Oita region, more than 70 km northeast from the epicenter. They are attributed to the local induced earthquake in Oita region, whose moment magnitude is estimated to be 5.5 by matching the amplitudes of the corresponding phases with the empirical attenuation relation. The real-time strong-motion observation has a potential for contributing to the mitigation of the ongoing earthquake disasters. We test a methodology to forecast the regions to be exposed to the large shaking in real time, which has been developed based on the fact that the neighboring stations are already shaken, for the largest event of the Kumamoto earthquakes, and demonstrate that it is simple but effective to quickly make warning. We also shows that the interpolation of the strong motions in real time is feasible, which will be utilized for the real-time forecast of ground motions based on the observed shakings.[Figure not available

  4. Ergodicity convergence test suggests telomere motion obeys fractional dynamics

    NASA Astrophysics Data System (ADS)

    Kepten, E.; Bronshtein, I.; Garini, Y.

    2011-04-01

    Anomalous diffusion, observed in many biological processes, is a generalized description of a wide variety of processes, all obeying the same law of mean-square displacement. Identifying the basic mechanisms of these observations is important for deducing the nature of the biophysical systems measured. We implement a previously suggested method for distinguishing between fractional Langevin dynamics, fractional Brownian motion, and continuous time random walk based on the ergodic nature of the data. We apply the method together with the recently suggested P-variation test and the displacement correlation to the lately measured dynamics of telomeres in the nucleus of mammalian cells and find strong evidence that the telomeres motion obeys fractional dynamics. The ergodic dynamics are observed experimentally to fit fractional Brownian or Langevin dynamics.

  5. Observational Evidence for Small-Scale Mixture of Weak and Strong Fields in the Quiet Sun

    NASA Astrophysics Data System (ADS)

    Socas-Navarro, H.; Lites, B. W.

    2004-11-01

    Three different maps of the quiet Sun, observed with the Advanced Stokes Polarimeter (ASP) and the Diffraction-Limited Stokes Polarimeter (DLSP), show evidence of strong (~=1700 G) and weak (<500 G) fields coexisting within the resolution element at both network and internetwork locations. The angular resolution of the observations is of 1" (ASP) and 0.6" (DLSP). Even at the higher DLSP resolution, a significant fraction of the network magnetic patches harbor a mixture of strong and weak fields. Internetwork elements that exhibit kG fields when analyzed with a single-component atmosphere are also shown to harbor considerable amounts of weak fields. Only those patches for which a single-component analysis yields weak fields do not show this mixture of field strengths. Finally, there is a larger fractional area of weak fields in the convective upflows than in the downflows.

  6. Chandra and ALMA observations of the nuclear activity in two strongly lensed star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Massardi, M.; Enia, A. F. M.; Negrello, M.; Mancuso, C.; Lapi, A.; Vignali, C.; Gilli, R.; Burkutean, S.; Danese, L.; Zotti, G. De

    2018-02-01

    Aim. According to coevolutionary scenarios, nuclear activity and star formation play relevant roles in the early stages of galaxy formation. We aim at identifying them in high-redshift galaxies by exploiting high-resolution and high-sensitivity X-ray and millimeter-wavelength data to confirm the presence or absence of star formation and nuclear activity and describe their relative roles in shaping the spectral energy distributions and in contributing to the energy budgets of the galaxies. Methods: We present the data, model, and analysis in the X-ray and millimeter (mm) bands for two strongly lensed galaxies, SDP.9 (HATLAS J090740.0-004200) and SDP.11 (HATLAS J091043.1-000322), which we selected in the Herschel-ATLAS catalogs for their excess emission in the mid-IR regime at redshift ≳1.5. This emission suggests nuclear activity in the early stages of galaxy formation. We observed both of them with Chandra ACIS-S in the X-ray regime and analyzed the high-resolution mm data that are available in the ALMA Science Archive for SDP.9. By combining the information available in mm, optical, and X-ray bands, we reconstructed the source morphology. Results: Both targets were detected in the X-ray, which strongly indicates highly obscured nuclear activity. ALMA observations for SDP.9 for the continuum and CO(6-5) spectral line with high resolution (0.02 arcsec corresponding to 65 pc at the distance of the galaxy) allowed us to estimate the lensed galaxy redshift to a better accuracy than pre-ALMA estimates (1.5753 ± 0.0003) and to model the emission of the optical, millimetric, and X-ray band for this galaxy. We demonstrate that the X-ray emission is generated in the nuclear environment, which strongly supports that this object has nuclear activity. On the basis of the X-ray data, we attempt an estimate of the black hole properties in these galaxies. Conclusions: By taking advantage of the lensing magnification, we identify weak nuclear activity associated with high

  7. Observation and Simulation of Daytime Strong Winds on Northern Slopes of Himalayas, near Mount Everest

    NASA Astrophysics Data System (ADS)

    Fanglin, S.; Ma, Y.; Hu, Z.; Tartari, G.; Salerno, F.; Gerken, T.; Bonasoni, P.; Cristofanelli, P.; Vuillermoz, E.

    2017-12-01

    The seasonal variability of strong daytime winds in a northern Himalayan valley, and their relationship with the synoptic circulation was examined using in-situ meteorological data from 2006 and numerical simulations. Meteorological observations were focused on the downwind Rongbuk valley, on the northern side of the Himalayas (4270 m a.s.l.), where a wind profile radar was available. In 2006, strong daytime wind conditions during the non-monsoon and monsoon (May 21 through the earlier October) periods were characterized by strong southwesterly and southeasterly winds, respectively. Numerical simulations were performed to investigate the mechanism causing these daytime strong winds using the Weather Research and Forecast (WRF) model. We found that during the non-monsoon season, the strong winds are produced by downwards momentum transport from the westerly winds aloft, while those during the monsoon season are driven by the inflow into the Arun Valley east of Mt.Everest. The air in the Arun Valley is found colder than the air outside in daytime. This thermal difference between the air in Arun Valley and Repu Valley (including QOMS) can explain the formation of the strong daytime southeasterly wind at QOMS in monsoon season. While in non-monsoon, due to the westerly wind associated with the STJ, the colder air from Arun Valley is confined below the ridge.

  8. VLBA Observations of Strong Anisotripic Radio Scattering Toward the Orion Nebula

    NASA Astrophysics Data System (ADS)

    Kounkel, Marina; Hartmann, Lee; Loinard, Laurent; Mioduszewski, Amy J.; Rodríguez, Luis F.; Ortiz-León, Gisela N.; Johnson, Michael D.; Torres, Rosa M.; Briceño, Cesar

    2018-05-01

    We present observations of VLBA 20, a radio source found toward the edge of the Orion Nebula Cluster (ONC). Nonthermal emission dominates the spectral energy distribution of this object from the radio to mid-infrared regime, suggesting that VLBA 20 is extragalactic. This source is heavily scattered in the radio regime. Very Long Baseline Array observations resolve it to ∼34 × 19 mas at 5 GHz, and the wavelength dependence of the scattering disk is consistent with ν ‑2 at other frequencies. The origin of the scattering is most likely the ionized X-ray emitting gas from the winds of the most massive stars of the ONC. The scattering is highly anisotropic, with the axis ratio of 2:1, higher than what is typically observed toward other sources.

  9. High-latitude dayside electric fields and currents during strong northward interplanetary magnetic field - Observations and model simulation

    NASA Technical Reports Server (NTRS)

    Clauer, C. Robert; Friis-Christensen, Eigil

    1988-01-01

    On July 23, 1983 the IMF turned strongly northward, becoming about 22 nT for several hours. Using a combined data set of ionospheric convection measurements made by the Sondre Stromfjord incoherent scatter radar and convection inferred from Greenland magnetometer measurements, the onset of the reconfiguration of the high-latitude ionospheric currents is found to occur about 3 min after the northward IMF encounters the magnetopause. The large-scale reconfiguration of currents, however, appears to evolve over a period of about 22 min. These observations and the results of numerical simulations indicate that the dayside polar-cap electric field observed during strong northward IMF is produced by a direct electrical current coupling with the solar wind.

  10. Localized surface disruptions observed by InSAR during strong earthquakes in Java and Hawai'i

    USGS Publications Warehouse

    Poland, M.

    2010-01-01

    Interferometric Synthetic Aperture Radar data spanning strong earthquakes on the islands of Java and Hawai‘i in 2006 reveal patches of subsidence and incoherence indicative of localized ground failure. Interferograms spanning the 26 May 2006 Java earthquake suggest an area of about 7.5 km2 of subsidence (~2 cm) and incoherence south of the city of Yogyakarta that correlates with significant damage to housing, high modeled peak ground accelerations, and poorly consolidated geologic deposits. The subsidence and incoherence is inferred to be a result of intense shaking and/or damage. At least five subsidence patches on the west side of the Island of Hawai‘i, ranging 0.3–2.2 km2 in area and 3–8 cm in magnitude, occurred as a result of a pair of strong earthquakes on 15 October 2006. Although no felt reports or seismic data are available from the areas in Hawai‘i, the Java example suggests that the subsidence patches indicate areas of amplified earthquake shaking. Surprisingly, all subsidence areas in Hawai‘i were limited to recent, and supposedly stable, lava flows and may reflect geological conditions not detectable at the surface. In addition, two ‘a‘ā lava flows in Hawai‘i were partially incoherent in interferograms spanning the earthquakes, indicating surface disruption as a result of the earthquake shaking. Coearthquake incoherence of rubbly deposits, like ‘a‘ā flows, should be explored as a potential indicator of earthquake intensity and past strong seismic activity.

  11. Strong population genetic structuring in an annual fish, Nothobranchius furzeri, suggests multiple savannah refugia in southern Mozambique.

    PubMed

    Bartáková, Veronika; Reichard, Martin; Janko, Karel; Polačik, Matej; Blažek, Radim; Reichwald, Kathrin; Cellerino, Alessandro; Bryja, Josef

    2013-09-12

    Intraspecific genetic variation of African fauna has been significantly affected by pronounced climatic fluctuations in Plio-Pleistocene, but, with the exception of large mammals, very limited empirical data on diversity of natural populations are available for savanna-dwelling animals. Nothobranchius furzeri is an annual fish from south-eastern Africa, inhabiting discrete temporary savannah pools outside main river alluvia. Their dispersal is limited and population processes affecting its genetic structure are likely a combination of those affecting terrestrial and aquatic taxa. N. furzeri is a model taxon in ageing research and several populations of known geographical origin are used in laboratory studies. Here, we analysed the genetic structure, diversity, historical demography and temporal patterns of divergence in natural populations of N. furzeri across its entire distribution range. Genetic structure and historical demography of N. furzeri were analysed using a combination of mitochondrial (partial cytochrome b sequences, 687 bp) and nuclear (13 microsatellites) markers in 693 fish from 36 populations. Genetic markers consistently demonstrated strong population structuring and suggested two main genetic groups associated with river basins. The split was dated to the Pliocene (>2 Mya). The northern group inhabits savannah pools across the basin of the intermittent river Chefu in south-western Mozambique and eastern Zimbabwe. The southern group (from southernmost Mozambique) is subdivided, with the River Limpopo forming a barrier (maximum divergence time 1 Mya). A strong habitat fragmentation (isolated temporary pools) is reflected in significant genetic structuring even between adjacent pools, with a major influence of genetic drift and significant isolation-by-distance. Analysis of historical demography revealed that the expansion of both groups is ongoing, supported by frequent founder effects in marginal parts of the range and evidence of secondary

  12. Cognitive-Processing Bias in Chinese Student Teachers with Strong and Weak Professional Identity.

    PubMed

    Wang, Xin-Qiang; Zhu, Jun-Cheng; Liu, Lu; Chen, Xiang-Yu

    2017-01-01

    Professional identity plays an important role in career development. Although many studies have examined professional identity, differences in cognitive-processing biases between Chinese student teachers with strong and weak professional identity are poorly understood. The current study adopted Tversky's social-cognitive experimental paradigm to explore cognitive-processing biases in Chinese student teachers with strong and weak professional identity. Experiment 1 showed that participants with strong professional identity exhibited stronger positive-coding bias toward positive profession-related life events, relative to that observed in those with weak professional identity. Experiment 2 showed that participants with strong professional identity exhibited greater recognition bias for previously read items, relative to that observed in those with weak professional identity. Overall, the results suggested that participants with strong professional identity exhibited greater positive cognitive-processing bias relative to that observed in those with weak professional identity.

  13. Strong RFI observed in protected 21 cm band at Zurich observatory, Switzerland

    NASA Astrophysics Data System (ADS)

    Monstein, C.

    2014-03-01

    While testing a new antenna control software tool, the telescope was moved to the most western azimuth position pointing to our own building. While de-accelerating the telescope, the spectrometer showed strong broadband radio frequency interference (RFI) and two single-frequency carriers around 1412 and 1425 MHz, both of which are in the internationally protected band. After lengthy analysis it was found out, that the Webcam AXIS2000 was the source for both the broadband and single-frequency interference. Switching off the Webcam solved the problem immediately. So, for future observations of 21 cm radiation, all nearby electronics has to be switched off. Not only the Webcam but also all unused PCs, printers, networks, monitors etc.

  14. Strong-motion observations of the M 7.8 Gorkha, Nepal, earthquake sequence and development of the N-shake strong-motion network

    USGS Publications Warehouse

    Dixit, Amod; Ringler, Adam; Sumy, Danielle F.; Cochran, Elizabeth S.; Hough, Susan E.; Martin, Stacey; Gibbons, Steven; Luetgert, James H.; Galetzka, John; Shrestha, Surya; Rajaure, Sudhir; McNamara, Daniel E.

    2015-01-01

    We present and describe strong-motion data observations from the 2015 M 7.8 Gorkha, Nepal, earthquake sequence collected using existing and new Quake-Catcher Network (QCN) and U.S. Geological Survey NetQuakes sensors located in the Kathmandu Valley. A comparison of QCN data with waveforms recorded by a conventional strong-motion (NetQuakes) instrument validates the QCN data. We present preliminary analysis of spectral accelerations, and peak ground acceleration and velocity for earthquakes up to M 7.3 from the QCN stations, as well as preliminary analysis of the mainshock recording from the NetQuakes station. We show that mainshock peak accelerations were lower than expected and conclude the Kathmandu Valley experienced a pervasively nonlinear response during the mainshock. Phase picks from the QCN and NetQuakes data are also used to improve aftershock locations. This study confirms the utility of QCN instruments to contribute to ground-motion investigations and aftershock response in regions where conventional instrumentation and open-access seismic data are limited. Initial pilot installations of QCN instruments in 2014 are now being expanded to create the Nepal–Shaking Hazard Assessment for Kathmandu and its Environment (N-SHAKE) network.

  15. Cognitive-Processing Bias in Chinese Student Teachers with Strong and Weak Professional Identity

    PubMed Central

    Wang, Xin-qiang; Zhu, Jun-cheng; Liu, Lu; Chen, Xiang-yu

    2017-01-01

    Professional identity plays an important role in career development. Although many studies have examined professional identity, differences in cognitive-processing biases between Chinese student teachers with strong and weak professional identity are poorly understood. The current study adopted Tversky’s social-cognitive experimental paradigm to explore cognitive-processing biases in Chinese student teachers with strong and weak professional identity. Experiment 1 showed that participants with strong professional identity exhibited stronger positive-coding bias toward positive profession-related life events, relative to that observed in those with weak professional identity. Experiment 2 showed that participants with strong professional identity exhibited greater recognition bias for previously read items, relative to that observed in those with weak professional identity. Overall, the results suggested that participants with strong professional identity exhibited greater positive cognitive-processing bias relative to that observed in those with weak professional identity. PMID:28555123

  16. Observation of Spin-Polarons in a strongly interacting Fermi liquid

    NASA Astrophysics Data System (ADS)

    Zwierlein, Martin

    2009-03-01

    We have observed spin-polarons in a highly imbalanced mixture of fermionic atoms using tomographic RF spectroscopy. Feshbach resonances allow to freely tune the interactions between the two spin states involved. A single spin down atom immersed in a Fermi sea of spin up atoms can do one of two things: For strong attraction, it can form a molecule with exactly one spin up partner, but for weaker interaction it will spread its attraction and surround itself with a collection of majority atoms. This spin down atom ``dressed'' with a spin up cloud constitutes the spin-polaron. We have observed a striking spectroscopic signature of this quasi-particle for various interaction strengths, a narrow peak in the spin down spectrum that emerges above a broad background. The narrow width signals a long lifetime of the spin-polaron, much longer than the collision rate with spin up atoms, as it must be for a proper quasi-particle. The peak position allows to directly measure the polaron energy. The broad pedestal at high energies reveals physics at short distances and is thus ``molecule-like'': It is exactly matched by the spin up spectra. The comparison with the area under the polaron peak allows to directly obtain the quasi-particle weight Z. We observe a smooth transition from polarons to molecules. At a critical interaction strength of 1/kFa = 0.7, the polaron peak vanishes and spin up and spin down spectra exactly match, signalling the formation of molecules. This is the same critical interaction strength found earlier to separate a normal Fermi mixture from a superfluid molecular Bose-Einstein condensate. The spin-polarons determine the low-temperature phase diagram of imbalanced Fermi mixtures. In principle, polarons can interact with each other and should, at low enough temperatures, form a superfluid of p-wave pairs. We will present a first indication for interactions between polarons.

  17. Observations of Strong Surface Radar Ducts over the Persian Gulf.

    NASA Astrophysics Data System (ADS)

    Brooks, Ian M.; Goroch, Andreas K.; Rogers, David P.

    1999-09-01

    Ducting of microwave radiation is a common phenomenon over the oceans. The height and strength of the duct are controlling factors for radar propagation and must be determined accurately to assess propagation ranges. A surface evaporation duct commonly forms due to the large gradient in specific humidity just above the sea surface; a deeper surface-based or elevated duct frequently is associated with the sudden change in temperature and humidity across the boundary layer inversion.In April 1996 the U.K. Meteorological Office C-130 Hercules research aircraft took part in the U.S. Navy Ship Antisubmarine Warfare Readiness/Effectiveness Measuring exercise (SHAREM-115) in the Persian Gulf by providing meteorological support and making measurements for the study of electromagnetic and electro-optical propagation. The boundary layer structure over the Gulf is influenced strongly by the surrounding desert landmass. Warm dry air flows from the desert over the cooler waters of the Gulf. Heat loss to the surface results in the formation of a stable internal boundary layer. The layer evolves continuously along wind, eventually forming a new marine atmospheric boundary layer. The stable stratification suppresses vertical mixing, trapping moisture within the layer and leading to an increase in refractive index and the formation of a strong boundary layer duct. A surface evaporation duct coexists with the boundary layer duct.In this paper the authors present aircraft- and ship-based observations of both the surface evaporation and boundary layer ducts. A series of sawtooth aircraft profiles map the boundary layer structure and provide spatially distributed estimates of the duct depth. The boundary layer duct is found to have considerable spatial variability in both depth and strength, and to evolve along wind over distances significant to naval operations (100 km). The depth of the evaporation duct is derived from a bulk parameterization based on Monin-Obukhov similarity theory

  18. Tunneling Time and Weak Measurement in Strong Field Ionization.

    PubMed

    Zimmermann, Tomáš; Mishra, Siddhartha; Doran, Brent R; Gordon, Daniel F; Landsman, Alexandra S

    2016-06-10

    Tunneling delays represent a hotly debated topic, with many conflicting definitions and little consensus on when and if such definitions accurately describe the physical observables. Here, we relate these different definitions to distinct experimental observables in strong field ionization, finding that two definitions, Larmor time and Bohmian time, are compatible with the attoclock observable and the resonance lifetime of a bound state, respectively. Both of these definitions are closely connected to the theory of weak measurement, with Larmor time being the weak measurement value of tunneling time and Bohmian trajectory corresponding to the average particle trajectory, which has been recently reconstructed using weak measurement in a two-slit experiment [S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, Science 332, 1170 (2011)]. We demonstrate a big discrepancy in strong field ionization between the Bohmian and weak measurement values of tunneling time, and we suggest this arises because the tunneling time is calculated for a small probability postselected ensemble of electrons. Our results have important implications for the interpretation of experiments in attosecond science, suggesting that tunneling is unlikely to be an instantaneous process.

  19. Influence of regional biomass burning on the highly elevated organic carbon concentrations observed at Gosan, South Korea during a strong Asian dust period.

    PubMed

    Nguyen, Duc Luong; Kim, Jin Young; Ghim, Young Sung; Shim, Shang-Gyoo

    2015-03-01

    PM2.5 carbonaceous particles were measured at Gosan, South Korea during 29 March-11 April 2002 which includes a pollution period (30 March-01 April) when the highest concentrations of major anthropogenic species (nss-SO4 (2-), NO3 (-), and NH4 (+)) were observed and a strong Asian dust (AD) period (08-10 April) when the highest concentrations of mainly dust-originated trace elements (Al, Ca, Mg, and Fe) were seen. The concentrations of elemental carbon (EC) measured in the pollution period were higher than those measured in the strong AD period, whereas an inverse variation in the concentrations of organic carbon (OC) was observed. Based on the OC/EC ratios, the possible source that mainly contributed to the highly elevated OC concentrations measured in the strong AD period was biomass burning. The influence of the long-range transport of smoke plumes emitted from regional biomass burning sources was evaluated by using MODIS (Moderate Resolution Imaging Spectroradiometer) satellite data for fire locations and the potential source contribution function analysis. The most potential source regions of biomass burning were the Primorsky and Amur regions in Far Eastern Russia and southeastern and southwestern Siberia, Russia. Further discussion on the source characteristics suggested that the high OC concentrations measured in the strong AD period were significantly affected by the smoldering phase of biomass burning. In addition to biomass burning, secondary OC (SOC) formed during atmospheric long-range transport should be also considered as an important source of OC concentration measured at Gosan. Although this study dealt with the episodic case of the concurrent increase of dust and biomass burning particles, understanding the characteristics of heterogeneous mixing aerosol is essential in assessing the radiative forcing of aerosol.

  20. On The Constitutive Properties Of Strongly Magnetized Matter Observed In A Class Of Solar Ejecta

    NASA Astrophysics Data System (ADS)

    Berdichevsky, D. B.

    2013-12-01

    Several studies of the transient events known as magnetic clouds at 1 AU suggest that they possess the ';1/2' anomalous value for its adiabatic, polytropic index, i.e., γ= 1/2, which implies that the temperature of the plasma decreases with increased density[1-3]. Coronal mass ejections commonly observed by missions like The Solar Terrestrial Relations Observatory (STEREO) have been successfully modeled previously by Berdichevsky Stenborg and Vourlidas[4] as magnetic flux-ropes which propagate from the Sun with uniform velocity. Building on this existing analytical three-dimensional magnetohydrodynamic (MHD) model of a magnetic flux-rope, we present an interpretation of the anomalous and somewhat counterintuitive dynamic property mentioned above. Using plasma and magnetic field observations by the Wind spacecraft for the magnetic cloud of June 2, 1998, we argue that this anomalous polytropic index is indeed a consequence of thermodynamic processes in this strongly magnetized matter. We show that the derived models of Berdichevsky et al.[5, 6] easily accommodate a familiar thermodynamic explanation of this property. Such an explanation may shed light also on the evolution of other astrophysical observations such as remnants in nebulae of past super-novae, as well other transient interstellar events. This MHD solution may be a good way to go beyond gas-dynamics in the development of a coherent picture of shock and its driver, as they are becoming a current interpretation. 1Osherovich, V.A., 1997, Proc. 31st, ESLAB Symp. Correlated Phenomena at the Sun, in the Heliosphere and in Geospace. 2Sittler, E.C., and L.F., Burlaga, 1998, J. Geophys. Res., 103, 17447. 3Nieves-Chinchilla T., and A., Figueroa-Viñas, 2008, J. Geophys. Res., 113, DOI: 10.1029/2007JA012703 4Berdichevsky, Stenborg, and Vourlidas, 2011, ApJ, 741, 47. 5Berdichevsky, D.B., R.L., Lepping, C.J., Farrugia, 2003, Phys.Rev. E, 67, DOI: 10.1103/PhysRevE036405. 6Berdichevsky, D.B. , 2012, Sol. Phys., 284

  1. Modifications to the Water Vapor Continuum in the Microwave Suggested by Ground-Based 150-GHz Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, D. D.; Cadeddu, M. P.; Lohnert, U.

    2009-10-01

    Abstract—Ground-based observations from two different radiometers are used to evaluate commonly used microwave/ millimeter-wave propagation models at 150 GHz. This frequency has strong sensitivity to changes in precipitable water vapor (PWV) and cloud liquid water. The observations were collected near Hesselbach, Germany, as part of the Atmospheric Radiation Measurement program’s support of the General Observing Period and the Convective and Orographic Precipitation Study. The observations from the two radiometers agree well with each other, with a slope of 0.993 and a mean bias of 0.12 K. The observations demonstrate that the relative sensitivity of the different absorption models to PWVmore » in clear-sky conditions at 150 GHz is significant and that four models differ significantly from the observed brightness temperature. These models were modified to get agreement with the 150-GHz observations, where the PWV ranged from 0.35 to 2.88 cm. The models were modified by adjusting the strength of the foreign- and self-broadened water vapor continuum coefficients, where the magnitude was model dependent. In all cases, the adjustment to the two components of the water vapor continuum was in opposite directions (i.e., increasing the contribution from the foreign-broadened component while decreasing contribution from the self-broadened component or vice versa). While the original models had significant disagreements relative to each other, the resulting modified models show much better agreement relative to each other throughout the microwave spectrum. The modified models were evaluated using independent observations at 31.4 GHz.« less

  2. IUE observations of symbiotic stars

    NASA Technical Reports Server (NTRS)

    Sahade, J.; Brandi, E.

    1981-01-01

    The IUE observations suggest that the symbiotic stars can be placed in two broad groups. One of the groups is characterized by strong, narrow emissions arising from a wide range of excitation energies, while the other one typically shows a strong continuum with absorption lines and very few or no emissions at all. Both broad groups appear to suggest that these are binary systems and that they probably differ in the characteristics and extent of the chromosphere-corona formation that is present in the system.

  3. Strong regional atmospheric 14C signature of respired CO 2 observed from a tall tower over the midwestern United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaFranchi, B. W.; McFarlane, K. J.; Miller, J. B.

    Radiocarbon in CO 2 ( 14CO 2) measurements can aid in discriminating between fast (<1 year) and slower (>5–10 years) cycling of C between the atmosphere and the terrestrial biosphere due to the 14C disequilibrium between atmospheric and terrestrial C. However, 14CO 2 in the atmosphere is typically much more strongly impacted by fossil fuel emissions of CO 2, and, thus, observations often provide little additional constraints on respiratory flux estimates at regional scales. Here we describe a data set of 14CO 2 observations from a tall tower in northern Wisconsin (USA) where fossil fuel influence is far enough removedmore » that during the summer months, the biospheric component of the 14CO 2 budget dominates. We find that the terrestrial biosphere is responsible for a significant contribution to 14CO 2 that is 2–3 times higher than predicted by the Carnegie-Ames-Stanford approach terrestrial ecosystem model for observations made in 2010. This likely includes a substantial contribution from the North American boreal ecoregion, but transported biospheric emissions from outside the model domain cannot be ruled out. The 14CO 2 enhancement also appears somewhat decreased in observations made over subsequent years, suggesting that 2010 may be anomalous. Furthermore, with these caveats acknowledged, we discuss the implications of the observation/model comparison in terms of possible systematic biases in the model versus short-term anomalies in the observations. Going forward, this isotopic signal could be exploited as an important indicator to better constrain both the long-term carbon balance of terrestrial ecosystems and the short-term impact of disturbance-based loss of carbon to the atmosphere.« less

  4. Strong regional atmospheric 14C signature of respired CO 2 observed from a tall tower over the midwestern United States

    DOE PAGES

    LaFranchi, B. W.; McFarlane, K. J.; Miller, J. B.; ...

    2016-08-31

    Radiocarbon in CO 2 ( 14CO 2) measurements can aid in discriminating between fast (<1 year) and slower (>5–10 years) cycling of C between the atmosphere and the terrestrial biosphere due to the 14C disequilibrium between atmospheric and terrestrial C. However, 14CO 2 in the atmosphere is typically much more strongly impacted by fossil fuel emissions of CO 2, and, thus, observations often provide little additional constraints on respiratory flux estimates at regional scales. Here we describe a data set of 14CO 2 observations from a tall tower in northern Wisconsin (USA) where fossil fuel influence is far enough removedmore » that during the summer months, the biospheric component of the 14CO 2 budget dominates. We find that the terrestrial biosphere is responsible for a significant contribution to 14CO 2 that is 2–3 times higher than predicted by the Carnegie-Ames-Stanford approach terrestrial ecosystem model for observations made in 2010. This likely includes a substantial contribution from the North American boreal ecoregion, but transported biospheric emissions from outside the model domain cannot be ruled out. The 14CO 2 enhancement also appears somewhat decreased in observations made over subsequent years, suggesting that 2010 may be anomalous. Furthermore, with these caveats acknowledged, we discuss the implications of the observation/model comparison in terms of possible systematic biases in the model versus short-term anomalies in the observations. Going forward, this isotopic signal could be exploited as an important indicator to better constrain both the long-term carbon balance of terrestrial ecosystems and the short-term impact of disturbance-based loss of carbon to the atmosphere.« less

  5. Strong regional atmospheric 14C signature of respired CO2 observed from a tall tower over the midwestern United States

    NASA Astrophysics Data System (ADS)

    LaFranchi, B. W.; McFarlane, K. J.; Miller, J. B.; Lehman, S. J.; Phillips, C. L.; Andrews, A. E.; Tans, P. P.; Chen, H.; Liu, Z.; Turnbull, J. C.; Xu, X.; Guilderson, T. P.

    2016-08-01

    Radiocarbon in CO2 (14CO2) measurements can aid in discriminating between fast (<1 year) and slower (>5-10 years) cycling of C between the atmosphere and the terrestrial biosphere due to the 14C disequilibrium between atmospheric and terrestrial C. However, 14CO2 in the atmosphere is typically much more strongly impacted by fossil fuel emissions of CO2, and, thus, observations often provide little additional constraints on respiratory flux estimates at regional scales. Here we describe a data set of 14CO2 observations from a tall tower in northern Wisconsin (USA) where fossil fuel influence is far enough removed that during the summer months, the biospheric component of the 14CO2 budget dominates. We find that the terrestrial biosphere is responsible for a significant contribution to 14CO2 that is 2-3 times higher than predicted by the Carnegie-Ames-Stanford approach terrestrial ecosystem model for observations made in 2010. This likely includes a substantial contribution from the North American boreal ecoregion, but transported biospheric emissions from outside the model domain cannot be ruled out. The 14CO2 enhancement also appears somewhat decreased in observations made over subsequent years, suggesting that 2010 may be anomalous. With these caveats acknowledged, we discuss the implications of the observation/model comparison in terms of possible systematic biases in the model versus short-term anomalies in the observations. Going forward, this isotopic signal could be exploited as an important indicator to better constrain both the long-term carbon balance of terrestrial ecosystems and the short-term impact of disturbance-based loss of carbon to the atmosphere.

  6. Observations of strong ion-ion correlations in dense plasmas

    DOE PAGES

    Ma, T.; Fletcher, L.; Pak, A.; ...

    2014-04-24

    Using simultaneous spectrally, angularly, and temporally resolved x-ray scattering, we measure the pronounced ion-ion correlation peak in a strongly coupled plasma. Laser-driven shock-compressed aluminum at ~3× solid density is probed with high-energy photons at 17.9 keV created by molybdenum He-α emission in a laser-driven plasma source. The measured elastic scattering feature shows a well-pronounced correlation peak at a wave vector of k=4Å –1. The magnitude of this correlation peak cannot be described by standard plasma theories employing a linear screened Coulomb potential. Advanced models, including a strong short-range repulsion due to the inner structure of the aluminum ions are howevermore » in good agreement with the scattering data. These studies have demonstrated a new highly accurate diagnostic technique to directly measure the state of compression and the ion-ion correlations. Furthermore, we have since applied this new method in single-shot wave-number resolved S(k) measurements to characterize the physical properties of dense plasmas.« less

  7. Strong tidal dissipation in Io and Jupiter from astrometric observations.

    PubMed

    Lainey, Valéry; Arlot, Jean-Eudes; Karatekin, Ozgür; Van Hoolst, Tim

    2009-06-18

    Io is the volcanically most active body in the Solar System and has a large surface heat flux. The geological activity is thought to be the result of tides raised by Jupiter, but it is not known whether the current tidal heat production is sufficiently high to generate the observed surface heat flow. Io's tidal heat comes from the orbital energy of the Io-Jupiter system (resulting in orbital acceleration), whereas dissipation of energy in Jupiter causes Io's orbital motion to decelerate. Here we report a determination of the tidal dissipation in Io and Jupiter through its effect on the orbital motions of the Galilean moons. Our results show that the rate of internal energy dissipation in Io (k(2)/Q = 0.015 +/- 0.003, where k(2) is the Love number and Q is the quality factor) is in good agreement with the observed surface heat flow, and suggest that Io is close to thermal equilibrium. Dissipation in Jupiter (k(2)/Q = (1.102 +/- 0.203) x 10(-5)) is close to the upper bound of its average value expected from the long-term evolution of the system, and dissipation in extrasolar planets may be higher than presently assumed. The measured secular accelerations indicate that Io is evolving inwards, towards Jupiter, and that the three innermost Galilean moons (Io, Europa and Ganymede) are evolving out of the exact Laplace resonance.

  8. Strong refraction near the Venus surface - Effects observed by descent probes

    NASA Technical Reports Server (NTRS)

    Croft, T. A.

    1982-01-01

    The telemetry signals from Pioneer Venus probes indicated the strong downward refraction of radio waves. As the probes descended, the strength of the direct signal decreased because of absorption and refractive defocusing. During the last 30 km of descent there was a second measured component in addition to the direct signal. Strong atmospheric reaction is important in strengthening echoes that are scattered toward the earth. Such surface-reflected signals are good indicators of horizontal winds.

  9. Clayey Landslide Initiation and Acceleration Strongly Modulated by Soil Swelling

    NASA Astrophysics Data System (ADS)

    Schulz, William H.; Smith, Joel B.; Wang, Gonghui; Jiang, Yao; Roering, Joshua J.

    2018-02-01

    Largely unknown mechanisms restrain motion of clay-rich, slow-moving landslides that are widespread worldwide and rarely accelerate catastrophically. We studied a clayey, slow-moving landslide typical of thousands in Northern California, USA, to decipher hydrologic-mechanical interactions that modulate landslide dynamics. Similar to some other studies, observed pore-water pressures correlated poorly with landslide reactivation and speed. In situ and laboratory measurements strongly suggested that variable pressure along the landslide's lateral shear boundaries resulting from seasonal soil expansion and contraction modulated its reactivation and speed. Slope-stability modeling suggested that the landslide's observed behavior could be predicted by including transient swell pressure as a resistance term, whereas modeling considering only transient hydrologic conditions predicted movement five to six months prior to when it was observed. All clayey soils swell to some degree; hence, our findings suggest that swell pressure likely modulates motion of many landslides and should be considered to improve forecasts of clayey landslide initiation and mobility.

  10. Clayey landslide initiation and acceleration strongly modulated by soil swelling

    USGS Publications Warehouse

    Schulz, William; Smith, Joel B.; Wang, Gonghui; Jiang, Yao; Roering, Joshua J.

    2018-01-01

    Largely unknown mechanisms restrain motion of clay-rich, slow-moving landslides that are widespread worldwide and rarely accelerate catastrophically. We studied a clayey, slow-moving landslide typical of thousands in northern California, USA, to decipher hydrologic-mechanical interactions that modulate landslide dynamics. Similar to some other studies, observed pore-water pressures correlated poorly with landslide reactivation and speed. In situ and laboratory measurements strongly suggested that variable pressure along the landslide's lateral shear boundaries resulting from seasonal soil expansion and contraction modulated its reactivation and speed. Slope-stability modeling suggested that the landslide's observed behavior could be predicted by including transient swell pressure as a resistance term, whereas modeling considering only transient hydrologic conditions predicted movement 5–6 months prior to when it was observed. All clayey soils swell to some degree; hence, our findings suggest that swell pressure likely modulates motion of many landslides and should be considered to improve forecasts of clayey landslide initiation and mobility.

  11. Eighteenth-Century Observations of Algol: The First Suggestion of an Exoplanet?

    NASA Astrophysics Data System (ADS)

    French, Linda M.

    2017-10-01

    In November of 1782, 18-year old John Goodricke of York, England, was amazed to observe the star Algol (Beta Persei) dim by more than one magnitude and then return to full brightness over a period of seven hours. Goodricke and his mentor, Edward Pigott, speculated that the dimming could only have been caused by a "dark body" passing in front of Algol. Over the succeeding months, the two were able to refine the period between what we now know to be eclipses to 2.87 days. They would determine the periods of other variable stars, including the first two Cepheid variables known. Yet in their lifetime, their suggestion that Algol's variation was due to an eclipse was not accepted. Most astronomers believed the variations were due to spots on the surface of a single star. Only a century later, with the advent of astronomical spectroscopy, was Algol's true nature revealed. Goodricke and Pigott's work is one of the first studies of stellar variation; their methods and occasional pitfalls are ones to which modern astronomers can relate.

  12. Observation of strong oscillations of areal mass in an unsupported shock wave produced by a short laser pulse

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J. L.; Kessler, T. J.; Schmitt, A. J.; Obenschain, S. P.; Metzler, N.; Oh, J.

    2011-10-01

    The first experimental study of hydrodynamic perturbation evolution in a strong unsupported shock wave, which is immediately followed by a rarefaction wave, is reported. Our planar solid polystyrene laser-machined targets, 50 to 100 μm thick, rippled from the front side with a single-mode wavelength 30 or 45 μm and peak-to-valley amplitude 4 to 6 μm, were irradiated with a 350 ps long Nike KrF laser pulse at peak intensity of up to 330 TW/cm2. The perturbation evolution in the target was observed using face-on monochromatic x-ray radiography while the pulse lasted and for 3 to 4 ns after it ended. While the driving pulse was on, the areal mass modulation amplitude in the target was observed to grow by a factor of up to ~4 due to the ablative Richtmyer-Meshkov instability. After the end of the pulse, while the strong unsupported shock wave propagated through the unperturbed target, the theoretically predicted large oscillations of the areal mass [A. L. Velikovich et al., Phys. Plasmas 10, 3270 (2003)] were observed. Multiple phase reversals of the areal mass modulation have been detected. Work supported by DOE/NNSA and Office of Naval Research.

  13. Wide energy electron precipitations associated with chorus waves; Initial observations from Arase and ground-based observations

    NASA Astrophysics Data System (ADS)

    Miyoshi, Y.; Kurita, S.; Saito, S.; Shinohara, I.; Kasahara, Y.; Matsuda, S.; Kasaba, Y.; Yagitani, S.; Kojima, H.; Hikishima, M.; Tsuchiya, F.; Kumamoto, A.; Katoh, Y.; Matsuoka, A.; Higashio, N.; Mitani, T.; Takashima, T.; Kasahara, S.; Yokota, S.; Asamura, K.; Kazama, Y.; Wang, S. Y.; Shiokawa, K.; Oyama, S. I.; Ogawa, Y.; Hosokawa, K.; Kataoka, R.; Kero, A.; Hori, T.; Turunen, E. S.; Shoji, M.; Teramoto, M.; Chang, T. F.

    2017-12-01

    The pulsating aurora is caused by intermittent precipitations of a few - 10s keV electrons, and it is expected that the pitch angle scattering by chorus waves at the magnetosphere is a primary process to cause the pulsating aurora. The Arase satellite that was launched in December, 2016 has obtained comprehensive data sets for plasma/particles and fields/waves. In March and April, 2017, a series of campaign observation focused on the chorus-wave particle interactions from conjugate observations from Arase and ground-based observations, and the pulsating aurora as a manifest of chorus-wave particle ineteractions was the important observation subject. During the campaign observations, good conjugate observations were realized between Arase and ground-based observations in Scandinavia. Associated with the pulsating aurora, the EISCAT VHF incoherent scatter radar at Tromso, Norway observed strong ionization in lower ionosphere. During the period, the Arase satellite observed intense chorus waves near the magnetic equator for a few hours, suggesting that strong pitch angle scattering took place. From the conjugate observations from Arase and ground-based observations, we discuss how chorus waves cause strong precipitation of electrons from plasma sheet and radiation belts.

  14. Strong SH-to-Love wave scattering off the Southern California Continental Borderland

    USGS Publications Warehouse

    Yu, Chunquan; Zhan, Zhongwen; Hauksson, Egill; Cochran, Elizabeth S.

    2017-01-01

    Seismic scattering is commonly observed and results from wave propagation in heterogeneous medium. Yet, deterministic characterization of scatterers associated with lateral heterogeneities remains challenging. In this study, we analyze broadband waveforms recorded by the Southern California Seismic Network and observe strongly scattered Love waves following the arrival of teleseismic SH wave. These scattered Love waves travel approximately in the same (azimuthal) direction as the incident SH wave at a dominant period of ~10 s but at an apparent velocity of ~3.6 km/s as compared to the ~11 km/s for the SH wave. Back-projection suggests that this strong scattering is associated with pronounced bathymetric relief in the Southern California Continental Borderland, in particular the Patton Escarpment. Finite-difference simulations using a simplified 2-D bathymetric and crustal model are able to predict the arrival times and amplitudes of major scatterers. The modeling suggests a relatively low shear wave velocity in the Continental Borderland.

  15. Testing the Speed of Gravitational Waves over Cosmological Distances with Strong Gravitational Lensing.

    PubMed

    Collett, Thomas E; Bacon, David

    2017-03-03

    Probing the relative speeds of gravitational waves and light acts as an important test of general relativity and alternative theories of gravity. Measuring the arrival time of gravitational waves (GWs) and electromagnetic (EM) counterparts can be used to measure the relative speeds, but only if the intrinsic time lag between emission of the photons and gravitational waves is well understood. Here we suggest a method that does not make such an assumption, using future strongly lensed GW events and EM counterparts; Biesiada et al. [J. Cosmol. Astropart. Phys.10 (2014) 080JCAPBP1475-751610.1088/1475-7516/2014/10/080] forecast that 50-100 strongly lensed GW events will be observed each year with the Einstein Telescope. A single strongly lensed GW event would produce robust constraints on c_{GW}/c_{γ} at the 10^{-7} level, if a high-energy EM counterpart is observed within the field of view of an observing γ-ray burst monitor.

  16. Analysis tools for discovering strong parity violation at hadron colliders

    NASA Astrophysics Data System (ADS)

    Backović, Mihailo; Ralston, John P.

    2011-07-01

    Several arguments suggest parity violation may be observable in high energy strong interactions. We introduce new analysis tools to describe the azimuthal dependence of multiparticle distributions, or “azimuthal flow.” Analysis uses the representations of the orthogonal group O(2) and dihedral groups DN necessary to define parity completely in two dimensions. Classification finds that collective angles used in event-by-event statistics represent inequivalent tensor observables that cannot generally be represented by a single “reaction plane.” Many new parity-violating observables exist that have never been measured, while many parity-conserving observables formerly lumped together are now distinguished. We use the concept of “event-shape sorting” to suggest separating right- and left-handed events, and we discuss the effects of transverse and longitudinal spin. The analysis tools are statistically robust, and can be applied equally to low or high multiplicity events at the Tevatron, RHIC or RHIC Spin, and the LHC.

  17. Evidence for a glassy state in strongly driven carbon

    DOE PAGES

    Brown, C. R. D.; Gericke, D. O.; Cammarata, M.; ...

    2014-06-09

    Here, we report results of an experiment creating a transient, highly correlated carbon state using a combination of optical and x-ray lasers. Scattered x-rays reveal a highly ordered state with an electrostatic energy significantly exceeding the thermal energy of the ions. Strong Coulomb forces are predicted to induce nucleation into a crystalline ion structure within a few picoseconds. However, we observe no evidence of such phase transition after several tens of picoseconds but strong indications for an over-correlated fluid state. The experiment suggests a much slower nucleation and points to an intermediate glassy state where the ions are frozen closemore » to their original positions in the fluid.« less

  18. Personalized and not general suggestion produces false autobiographical memories and suggestion-consistent behavior.

    PubMed

    Scoboria, Alan; Mazzoni, Giuliana; Jarry, Josée L; Bernstein, Daniel M

    2012-01-01

    Suggesting false childhood events produces false autobiographical beliefs, memories and suggestion-consistent behavior. The mechanisms by which suggestion affects behavior are not understood, and whether false beliefs and memories are necessary for suggestions to impact behavior remains unexplored. We examined the relative effects of providing a personalized suggestion (suggesting that an event occurred to the person in the past), and/or a general suggestion (suggesting that an event happened to others in the past). Participants (N=122) received a personalized suggestion, a general suggestion, both or neither, about childhood illness due to spoiled peach yogurt. The personalized suggestion resulted in false beliefs, false memories, and suggestion-consistent behavioral intentions immediately after the suggestion. One week or one month later participants completed a taste test that involved eating varieties of crackers and yogurts. The personalized suggestion led to reduced consumption of only peach yogurt, and those who reported a false memory showed the most eating suppression. This effect on behavior was equally strong after one week and one month, showing a long lived influence of the personalized suggestion. The general suggestion showed no effects. Suggestions that convey personal information about a past event produce false autobiographical memories, which in turn impact behavior. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Imaging Strong Lateral Heterogeneities with USArray using Body-to-Surface Wave Scattering

    NASA Astrophysics Data System (ADS)

    Yu, C.; Zhan, Z.; Hauksson, E.; Cochran, E. S.

    2017-12-01

    Seismic scattering is commonly observed and results from wave propagation in heterogeneous medium. Yet, deterministic characterization of scatterers remains challenging. In this study, we analyze broadband waveforms recorded by the USArray across the entire conterminous US. With array analysis, we observe strong scattered surface waves following the arrival of teleseismic body waves over several hundreds of kilometers. We use back-projection to locate the body-to-surface scattering sources, and detect strong scatterers both around and within the conterminous US. For the former, strong scattering is associated with pronounced bathymetric relief, such as the Patton Escarpment in the Southern California Continental Borderland. For the latter, scatterers are consistent with sharp lateral heterogeneities, such as near the Yellowstone hotspot and Southern California fault zones. We further model the body-to-surface wave scattering using finite-difference simulations. As an example, in the Southern California Continental Borderland a simplified 2-D bathymetric and crustal model are able to predict the arrival times and amplitudes of major scatterers. The modeling also suggests a relatively low shear wave velocity in the Continental Borderland. These observation of strong body-to-surface wave scattering and waveform modeling not only helps us image sharp heterogeneities but also are useful for assessing seismic hazard, including the calibration and refinement of seismic velocity models used to locate earthquakes and simulate strong ground motions.

  20. Extensive phenotypic plasticity of a Red Sea coral over a strong latitudinal temperature gradient suggests limited acclimatization potential to warming.

    PubMed

    Sawall, Yvonne; Al-Sofyani, Abdulmoshin; Hohn, Sönke; Banguera-Hinestroza, Eulalia; Voolstra, Christian R; Wahl, Martin

    2015-03-10

    Global warming was reported to cause growth reductions in tropical shallow water corals in both, cooler and warmer, regions of the coral species range. This suggests regional adaptation with less heat-tolerant populations in cooler and more thermo-tolerant populations in warmer regions. Here, we investigated seasonal changes in the in situ metabolic performance of the widely distributed hermatypic coral Pocillopora verrucosa along 12° latitudes featuring a steep temperature gradient between the northern (28.5°N, 21-27°C) and southern (16.5°N, 28-33°C) reaches of the Red Sea. Surprisingly, we found little indication for regional adaptation, but strong indications for high phenotypic plasticity: Calcification rates in two seasons (winter, summer) were found to be highest at 28-29°C throughout all populations independent of their geographic location. Mucus release increased with temperature and nutrient supply, both being highest in the south. Genetic characterization of the coral host revealed low inter-regional variation and differences in the Symbiodinium clade composition only at the most northern and most southern region. This suggests variable acclimatization potential to ocean warming of coral populations across the Red Sea: high acclimatization potential in northern populations, but limited ability to cope with ocean warming in southern populations already existing at the upper thermal margin for corals.

  1. Extensive phenotypic plasticity of a Red Sea coral over a strong latitudinal temperature gradient suggests limited acclimatization potential to warming

    PubMed Central

    Sawall, Yvonne; Al-Sofyani, Abdulmoshin; Hohn, Sönke; Banguera-Hinestroza, Eulalia; Voolstra, Christian R.; Wahl, Martin

    2015-01-01

    Global warming was reported to cause growth reductions in tropical shallow water corals in both, cooler and warmer, regions of the coral species range. This suggests regional adaptation with less heat-tolerant populations in cooler and more thermo-tolerant populations in warmer regions. Here, we investigated seasonal changes in the in situ metabolic performance of the widely distributed hermatypic coral Pocillopora verrucosa along 12° latitudes featuring a steep temperature gradient between the northern (28.5°N, 21–27°C) and southern (16.5°N, 28–33°C) reaches of the Red Sea. Surprisingly, we found little indication for regional adaptation, but strong indications for high phenotypic plasticity: Calcification rates in two seasons (winter, summer) were found to be highest at 28–29°C throughout all populations independent of their geographic location. Mucus release increased with temperature and nutrient supply, both being highest in the south. Genetic characterization of the coral host revealed low inter-regional variation and differences in the Symbiodinium clade composition only at the most northern and most southern region. This suggests variable acclimatization potential to ocean warming of coral populations across the Red Sea: high acclimatization potential in northern populations, but limited ability to cope with ocean warming in southern populations already existing at the upper thermal margin for corals. PMID:25754672

  2. A search for cataclysmic binaries containing strongly magnetic white dwarfs

    NASA Technical Reports Server (NTRS)

    Bond, H. E.; Chanmugam, G.

    1982-01-01

    The AM Herculis type binaries which contain accreting white dwarfs with surface magnetic fields of a few times 10 to the seventh power gauss were studied. If white dwarfs in cataclysmic binaries have a range of field strengths similar to that among single white dwarfs. AM Her like systems should exist with fields as high as 3 x 10 to the eighth power gauss. It is suggested that such objects will not have the strong optical polarization of the AM Her variables; however, they exhibit high harmonic cyclotron emission, making them spectacular UV sources. We made IUE observations of seven candidate cataclysmic variables selected for optical similarity to AM Her binaries. Although all seven objects were detected in the UV, none display unusually strong UV continua. It is suggested that the distribution of magnetic field strengths among single white dwarfs may be different from that among binaries.

  3. Strong Cosmic Censorship

    NASA Astrophysics Data System (ADS)

    Isenberg, James

    2017-01-01

    The Hawking-Penrose theorems tell us that solutions of Einstein's equations are generally singular, in the sense of the incompleteness of causal geodesics (the paths of physical observers). These singularities might be marked by the blowup of curvature and therefore crushing tidal forces, or by the breakdown of physical determinism. Penrose has conjectured (in his `Strong Cosmic Censorship Conjecture`) that it is generically unbounded curvature that causes singularities, rather than causal breakdown. The verification that ``AVTD behavior'' (marked by the domination of time derivatives over space derivatives) is generically present in a family of solutions has proven to be a useful tool for studying model versions of Strong Cosmic Censorship in that family. I discuss some of the history of Strong Cosmic Censorship, and then discuss what is known about AVTD behavior and Strong Cosmic Censorship in families of solutions defined by varying degrees of isometry, and discuss recent results which we believe will extend this knowledge and provide new support for Strong Cosmic Censorship. I also comment on some of the recent work on ``Weak Null Singularities'', and how this relates to Strong Cosmic Censorship.

  4. Direct observation of ring-opening dynamics in strong-field ionized selenophene using femtosecond inner-shell absorption spectroscopy

    DOE PAGES

    Lackner, Florian; Chatterley, Adam S.; Pemmaraju, C. D.; ...

    2016-12-21

    Femtosecond extreme ultraviolet transient absorption spectroscopy is used to explore strong-field ionization induced dynamics in selenophene (C 4H 4Se). The dynamics are monitored in real-time from the viewpoint of the Se atom by recording the temporal evolution of element-specific spectral features near the Se 3d inner-shell absorption edge (~58 eV). The interpretation of the experimental results is supported by first-principles time-dependent density functional theory calculations. The experiments simultaneously capture the instantaneous population of stable molecular ions, the emergence and decay of excited cation states, and the appearance of atomic fragments. The experiments reveal, in particular, insight into the strong-field inducedmore » ring-opening dynamics in the selenophene cation, which are traced by the emergence of non-cyclic molecules as well as the liberation of Se + ions within an overall time scale of approximately 170 fs. In this study, we propose that both products may be associated with dynamics on the same electronic surfaces but with different degrees of vibrational excitation. The time-dependent inner-shell absorption features provide direct evidence for a complex relaxation mechanism that may be approximated by a two-step model, whereby the initially prepared, excited cyclic cation decays within τ 1 = 80 ± 30 fs into a transient molecular species, which then gives rise to the emergence of bare Se + and ring-open cations within an additional τ 2 = 80 ± 30 fs. The combined experimental and theoretical results suggest a close relationship between σ* excited cation states and the observed ring-opening reactions. In conclusion, the findings demonstrate that the combination of femtosecond time-resolved core-level spectroscopy with ab initio estimates of spectroscopic signatures provide new insights into complex, ultrafast photochemical reactions such as ring-opening dynamics in organic molecules in real-time and with simultaneous

  5. On observation of local strong heterogeneity in the Earth's inner core below southeastern Asia

    NASA Astrophysics Data System (ADS)

    Krasnoshchekov, D. N.; Kaazik, P. B.; Ovtchinnikov, V. M.

    2016-12-01

    The dimensions and nature of multi-scale structural heterogeneities in the Earth's inner core (IC) provide important constraints on its mineralogy and formation history. Teleseismic body waves with turn points close to the inner core boundary (ICB) provide a unique tool for imaging the fine structure of the upper IC. In this study, we invoke differential travel times and amplitudes of PKPBC and PKPDF waveforms observed in crossing polar and equatorial paths to provide more constraints on the heterogeneity previously located in the quasi-eastern hemisphere of the IC (Kaazik et al., 2015; Krasnoshchekov et al., 2016). A more refined analysis of quasi-polar PKPBC/PKPDF amplitude ratios measured within the heterogeneity indicates that seismic attenuation is both frequency and depth dependent, and its relatively low Q-factor at 1 Hz of approximately 118 tends to grow with depth. Outside the heterogeneity, no pronounced polar-equatorial differences are observed; the estimated Q factor is about twice as large and not directionally dependent. We also analyse new differential travel times of rays that enable sampling of the anomaly at greater depths. The analysis exhibits the polar - equatorial contrasts observed in the heterogeneity terminate at approximately 520 km below the ICB, which we interpret to be its bottom. The earlier interpretation of the heterogeneity in terms of strong anisotropic volume amidst the almost isotropic eastern hemisphere of the IC can be retained, and the lower bound of anisotropy strength within the anomaly is determined to be 2%.

  6. Burden Analysis of Rare Microdeletions Suggests a Strong Impact of Neurodevelopmental Genes in Genetic Generalised Epilepsies

    PubMed Central

    Trucks, Holger; Schulz, Herbert; de Kovel, Carolien G.; Kasteleijn-Nolst Trenité, Dorothée; Sonsma, Anja C. M.; Koeleman, Bobby P.; Lindhout, Dick; Weber, Yvonne G.; Lerche, Holger; Kapser, Claudia; Schankin, Christoph J.; Kunz, Wolfram S.; Surges, Rainer; Elger, Christian E.; Gaus, Verena; Schmitz, Bettina; Helbig, Ingo; Muhle, Hiltrud; Stephani, Ulrich; Klein, Karl M.; Rosenow, Felix; Neubauer, Bernd A.; Reinthaler, Eva M.; Zimprich, Fritz; Feucht, Martha; Møller, Rikke S.; Hjalgrim, Helle; De Jonghe, Peter; Suls, Arvid; Lieb, Wolfgang; Franke, Andre; Strauch, Konstantin; Gieger, Christian; Schurmann, Claudia; Schminke, Ulf; Nürnberg, Peter; Sander, Thomas

    2015-01-01

    Genetic generalised epilepsy (GGE) is the most common form of genetic epilepsy, accounting for 20% of all epilepsies. Genomic copy number variations (CNVs) constitute important genetic risk factors of common GGE syndromes. In our present genome-wide burden analysis, large (≥ 400 kb) and rare (< 1%) autosomal microdeletions with high calling confidence (≥ 200 markers) were assessed by the Affymetrix SNP 6.0 array in European case-control cohorts of 1,366 GGE patients and 5,234 ancestry-matched controls. We aimed to: 1) assess the microdeletion burden in common GGE syndromes, 2) estimate the relative contribution of recurrent microdeletions at genomic rearrangement hotspots and non-recurrent microdeletions, and 3) identify potential candidate genes for GGE. We found a significant excess of microdeletions in 7.3% of GGE patients compared to 4.0% in controls (P = 1.8 x 10-7; OR = 1.9). Recurrent microdeletions at seven known genomic hotspots accounted for 36.9% of all microdeletions identified in the GGE cohort and showed a 7.5-fold increased burden (P = 2.6 x 10-17) relative to controls. Microdeletions affecting either a gene previously implicated in neurodevelopmental disorders (P = 8.0 x 10-18, OR = 4.6) or an evolutionarily conserved brain-expressed gene related to autism spectrum disorder (P = 1.3 x 10-12, OR = 4.1) were significantly enriched in the GGE patients. Microdeletions found only in GGE patients harboured a high proportion of genes previously associated with epilepsy and neuropsychiatric disorders (NRXN1, RBFOX1, PCDH7, KCNA2, EPM2A, RORB, PLCB1). Our results demonstrate that the significantly increased burden of large and rare microdeletions in GGE patients is largely confined to recurrent hotspot microdeletions and microdeletions affecting neurodevelopmental genes, suggesting a strong impact of fundamental neurodevelopmental processes in the pathogenesis of common GGE syndromes. PMID:25950944

  7. LENSED: a code for the forward reconstruction of lenses and sources from strong lensing observations

    NASA Astrophysics Data System (ADS)

    Tessore, Nicolas; Bellagamba, Fabio; Metcalf, R. Benton

    2016-12-01

    Robust modelling of strong lensing systems is fundamental to exploit the information they contain about the distribution of matter in galaxies and clusters. In this work, we present LENSED, a new code which performs forward parametric modelling of strong lenses. LENSED takes advantage of a massively parallel ray-tracing kernel to perform the necessary calculations on a modern graphics processing unit (GPU). This makes the precise rendering of the background lensed sources much faster, and allows the simultaneous optimization of tens of parameters for the selected model. With a single run, the code is able to obtain the full posterior probability distribution for the lens light, the mass distribution and the background source at the same time. LENSED is first tested on mock images which reproduce realistic space-based observations of lensing systems. In this way, we show that it is able to recover unbiased estimates of the lens parameters, even when the sources do not follow exactly the assumed model. Then, we apply it to a subsample of the Sloan Lens ACS Survey lenses, in order to demonstrate its use on real data. The results generally agree with the literature, and highlight the flexibility and robustness of the algorithm.

  8. Displaced rocks, strong motion, and the mechanics of shallow faulting associated with the 1999 Hector Mine, California, earthquake

    USGS Publications Warehouse

    Michael, Andrew J.; Ross, Stephanie L.; Stenner, Heidi D.

    2002-01-01

    The paucity of strong-motion stations near the 1999 Hector Mine earthquake makes it impossible to make instrumental studies of key questions about near-fault strong-motion patterns associated with this event. However, observations of displaced rocks allow a qualitative investigation of these problems. By observing the slope of the desert surface and the frictional coefficient between these rocks and the desert surface, we estimate the minimum horizontal acceleration needed to displace the rocks. Combining this information with observations of how many rocks were displaced in different areas near the fault, we infer the level of shaking. Given current empirical shaking attenuation relationships, the number of rocks that moved is slightly lower than expected; this implies that slightly lower than expected shaking occurred during the Hector Mine earthquake. Perhaps more importantly, stretches of the fault with 4 m of total displacement at the surface displaced few nearby rocks on 15?? slopes, suggesting that the horizontal accelerations were below 0.2g within meters of the fault scarp. This low level of shaking suggests that the shallow parts of this rupture did not produce strong accelerations. Finally, we did not observe an increased incidence of displaced rocks along the fault zone itself. This suggests that, despite observations of fault-zone-trapped waves generated by aftershocks of the Hector Mine earthquake, such waves were not an important factor in controlling peak ground acceleration during the mainshock.

  9. ALMA OBSERVATIONS OF SPT-DISCOVERED, STRONGLY LENSED, DUSTY, STAR-FORMING GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hezaveh, Y. D.; Marrone, D. P.; Spilker, J. S.

    2013-04-20

    We present Atacama Large Millimeter/submillimeter Array (ALMA) 860 {mu}m imaging of four high-redshift (z = 2.8-5.7) dusty sources that were detected using the South Pole Telescope (SPT) at 1.4 mm and are not seen in existing radio to far-infrared catalogs. At 1.''5 resolution, the ALMA data reveal multiple images of each submillimeter source, separated by 1''-3'', consistent with strong lensing by intervening galaxies visible in near-IR imaging of these sources. We describe a gravitational lens modeling procedure that operates on the measured visibilities and incorporates self-calibration-like antenna phase corrections as part of the model optimization, which we use to interpretmore » the source structure. Lens models indicate that SPT0346-52, located at z = 5.7, is one of the most luminous and intensely star-forming sources in the universe with a lensing corrected FIR luminosity of 3.7 Multiplication-Sign 10{sup 13} L{sub Sun} and star formation surface density of 4200 M{sub Sun} yr{sup -1} kpc{sup -2}. We find magnification factors of 5 to 22, with lens Einstein radii of 1.''1-2.''0 and Einstein enclosed masses of 1.6-7.2 Multiplication-Sign 10{sup 11} M{sub Sun }. These observations confirm the lensing origin of these objects, allow us to measure their intrinsic sizes and luminosities, and demonstrate the important role that ALMA will play in the interpretation of lensed submillimeter sources.« less

  10. Observation and confirmation of six strong-lensing systems in the Dark Energy Survey science verification data

    DOE PAGES

    Nord, B.; Buckley-Geer, E.; Lin, H.; ...

    2016-08-05

    We report the observation and confirmation of the first group- and cluster-scale strong gravitational lensing systems found in Dark Energy Survey data. Through visual inspection of data from the Science Verification season, we identified 53 candidate systems. We then obtained spectroscopic follow-up of 21 candidates using the Gemini Multi-object Spectrograph at the Gemini South telescope and the Inamori-Magellan Areal Camera and Spectrograph at the Magellan/Baade telescope. With this follow-up, we confirmed six candidates as gravitational lenses: three of the systems are newly discovered, and the remaining three were previously known. Of the 21 observed candidates, the remaining 15 either weremore » not detected in spectroscopic observations, were observed and did not exhibit continuum emission (or spectral features), or were ruled out as lensing systems. The confirmed sample consists of one group-scale and five galaxy-cluster-scale lenses. The lensed sources range in redshift z ~ 0.80–3.2 and in i-band surface brightness i SB ~ 23–25 mag arcsec –2 (2'' aperture). For each of the six systems, we estimate the Einstein radius θ E and the enclosed mass M enc, which have ranges θ E ~ 5''–9'' and M enc ~ 8 × 10 12 to 6 × 10 13 M ⊙, respectively.« less

  11. Observation and confirmation of six strong-lensing systems in the Dark Energy Survey science verification data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nord, B.; Buckley-Geer, E.; Lin, H.

    We report the observation and confirmation of the first group- and cluster-scale strong gravitational lensing systems found in Dark Energy Survey data. Through visual inspection of data from the Science Verification season, we identified 53 candidate systems. We then obtained spectroscopic follow-up of 21 candidates using the Gemini Multi-object Spectrograph at the Gemini South telescope and the Inamori-Magellan Areal Camera and Spectrograph at the Magellan/Baade telescope. With this follow-up, we confirmed six candidates as gravitational lenses: three of the systems are newly discovered, and the remaining three were previously known. Of the 21 observed candidates, the remaining 15 either weremore » not detected in spectroscopic observations, were observed and did not exhibit continuum emission (or spectral features), or were ruled out as lensing systems. The confirmed sample consists of one group-scale and five galaxy-cluster-scale lenses. The lensed sources range in redshift z ~ 0.80–3.2 and in i-band surface brightness i SB ~ 23–25 mag arcsec –2 (2'' aperture). For each of the six systems, we estimate the Einstein radius θ E and the enclosed mass M enc, which have ranges θ E ~ 5''–9'' and M enc ~ 8 × 10 12 to 6 × 10 13 M ⊙, respectively.« less

  12. Recurring Slope Lineae (RSL) Observations Suggest Widespread Occurrence and Complex Behavior

    NASA Astrophysics Data System (ADS)

    Stillman, D. E.; Grimm, R. E.; Wagstaff, K.; Bue, B. D.; Michaels, T. I.

    2017-12-01

    RSL are described as narrow dark features that incrementally lengthen down steep slopes during warm seasons, fade in cold seasons, and recur annually. HiRISE observations from 5+ Mars years have allowed us to confirm 100 RSL sites and identify more than 600 candidate RSL sites. Detailed analysis of a few RSL sites has been performed using computer assisted analysis. RSL occur in low-albedo (dust-poor) regions with a latitude range of 42.2°N - 53.1°S. They are densely clustered throughout Valles Marineris (VM), in the light-toned layered deposits of Margaritifer and SW Arabia Terrae, Cerberus Fossae, and well-preserved impact craters in Chryse and Acidalia Planitae (CAP). RSL sites are also found at lower densities throughout the low-albedo highland terrains. RSL incrementally lengthen when their slopes are warm, thus the season at which RSL lengthen is dependent on latitude and slope orientation. While RSL occur on all slope orientation there is a large bias to W-facing and equatorial facing slopes. During the RSL activity season, RSL lengthening does not appear to be constant: (1) CAP RSL initially quickly lengthen and slow their lengthening rate by about an order of magnitude as temperatures increase, (2) many VM RSL sites possess RSL that fade at the same time that neighboring RSL on the same slope incrementally lengthen, and (3) some RSL sites in the southern mid-latitudes show at least two pulses of RSL activity - during the southern fall and summer RSL incrementally lengthen, fade, and then start incrementally lengthening again followed by fading as temperatures cool. The correlation of RSL activity to surface temperature, spectrally-derived hydrated salts, and quick fading all point to a wet formation mechanism. However, water sources remain problematic as water budgets suggest a much greater amount of water than could be trapped from the atmosphere. Additionally, some RSL occur in locations where subsurface discharge via an aquifer would be challenging

  13. Outflow structure of the quiet sun corona probed by spacecraft radio scintillations in strong scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imamura, Takeshi; Ando, Hiroki; Toda, Tomoaki

    Radio scintillation observations have been unable to probe flow speeds in the low corona where the scattering of radio waves is exceedingly strong. Here we estimate outflow speeds continuously from the vicinity of the Sun to the outer corona (heliocentric distances of 1.5-20.5 solar radii) by applying the strong scattering theory to radio scintillations for the first time, using the Akatsuki spacecraft as the radio source. Small, nonzero outflow speeds were observed over a wide latitudinal range in the quiet-Sun low corona, suggesting that the supply of plasma from closed loops to the solar wind occurs over an extended area.more » The existence of power-law density fluctuations down to the scale of 100 m was suggested, which is indicative of well-developed turbulence which can play a key role in heating the corona. At higher altitudes, a rapid acceleration typical of radial open fields is observed, and the temperatures derived from the speed profile show a distinct maximum in the outer corona. This study opened up a possibility of observing detailed flow structures near the Sun from a vast amount of existing interplanetary scintillation data.« less

  14. Landform elevation suggests ecohydrologic footprints in subsurface geomorphology

    NASA Astrophysics Data System (ADS)

    Watts, A. C.; Watts, D.; Kaplan, D. A.; Mclaughlin, D. L.; Heffernan, J. B.; Martin, J. B.; Murray, A.; Osborne, T.; Cohen, M. J.; Kobziar, L. N.

    2012-12-01

    Many landscapes exhibit patterns in their arrangement of biota, or in their surface geomorphology as a result of biotic activity. Examples occur around the globe and include northern peatlands, Sahelian savannas, and shallow marine reefs. Such self-organized patterning is strongly suggestive of coupled, reciprocal feedbacks (i.e. locally positive, and distally negative) among biota and their environment. Much research on patterned landscapes has concerned emergent biogeomorphologic surfaces such as those found in peatlands, or the influence of biota on soil formation or transport. Our research concerns ecohydrologic feedbacks hypothesized to produce patterned occurrence of depressions in a subtropical limestone karst landscape. Our findings show strong evidence of self-organized patterning, in the form of overdispersed dissolution basins. Distributions of randomized bedrock elevation measurements on the landscape are bimodal, with means clustered about either higher- or lower-elevation modes. Measurements on the thin mantle of soil overlying this landscape, however, display reduced bimodality and mode separation. These observations indicate abiotic processes in diametric opposition to the biogenic forces which may be responsible for generating landscape pattern. Correlograms show higher spatial autocorrelation among soil measurements compared to bedrock measurements, and measurements of soil-layer thickness show high negative correlation with bedrock elevation. Our results are consistent with predictions of direct ecohydrologic feedbacks that would produce patterned "footprints" directly on bedrock, and of abiotic processes operating to obfuscate this pattern. The study suggests new steps to identify biogeochemical mechanisms for landscape patterning: an "ecological drill" by which plant communities modify geology.

  15. Strong plume fluxes at Mars observed by MAVEN: An important planetary ion escape channel

    NASA Astrophysics Data System (ADS)

    Dong, Y.; Fang, X.; Brain, D. A.; McFadden, J. P.; Halekas, J. S.; Connerney, J. E.; Curry, S. M.; Harada, Y.; Luhmann, J. G.; Jakosky, B. M.

    2015-11-01

    We present observations by the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission of a substantial plume-like distribution of escaping ions from the Martian atmosphere, organized by the upstream solar wind convection electric field. From a case study of MAVEN particle-and-field data during one spacecraft orbit, we identified three escaping planetary ion populations: plume fluxes mainly along the upstream electric field over the north pole region of the Mars-Sun-Electric field (MSE) coordinate system, antisunward ion fluxes in the tail region, and much weaker upstream pickup ion fluxes. A statistical study of O+ fluxes using 3 month MAVEN data shows that the plume is a constant structure with strong fluxes widely distributed in the MSE northern hemisphere, which constitutes an important planetary ion escape channel. The escape rate through the plume is estimated to be ~30% of the tailward escape and ~23% of the total escape for > 25 eV O+ ions.

  16. Sodium Lidar-observed Strong Inertia-gravity Wave Activities in the Mesopause Region over Fort Collins, Colorado (41 deg N, 105 deg W)

    NASA Technical Reports Server (NTRS)

    Li, Tao; She, C. -Y.; Liu, Han-Li; Leblanc, Thierry; McDermid, I. Stuart

    2007-01-01

    In December 2004, the Colorado State University sodium lidar system at Fort Collins, Colorado (41 deg N, 105 deg W), conducted an approximately 80-hour continuous campaign for the simultaneous observations of mesopause region sodium density, temperature, and zonal and meridional winds. This data set reveals the significant inertia-gravity wave activities with a period of approximately 18 hours, which are strong in both wind components since UT day 338 (second day of the campaign), and weak in temperature and sodium density. The considerable variability of wave activities was observed with both wind amplitudes growing up to approximately 40 m/s at 95-100 km in day 339 and then decreasing dramatically in day 340. We also found that the sodium density wave perturbation is correlated in phase with temperature perturbation below 90 km, and approximately 180 deg out of phase above. Applying the linear wave theory, we estimated the wave horizontal propagation direction, horizontal wavelength, and apparent horizontal phase speed to be approximately 25 deg south of west, approximately 1800 +/- 150 km, and approximately 28 +/- 2 m/s, respectively of wave intrinsic period, intrinsic phase speed, and vertical wavelength were also estimated. While the onset of enhanced inertia-gravity wave amplitude in the night of 338 was observed to be in coincidence with short-period gravity wave breaking via convective instability, the decrease of inertia-gravity wave amplitude after noon of day 339 was also observed to coincide with the development of atmospheric dynamical instability layers with downward phase progression clearly correlated with the 18-hour inertia-gravity wave, suggesting likely breaking of this inertia-gravity wave via dynamical (shear) instability.

  17. OBSERVATION AND CONFIRMATION OF SIX STRONG-LENSING SYSTEMS IN THE DARK ENERGY SURVEY SCIENCE VERIFICATION DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nord, B.; Buckley-Geer, E.; Lin, H.

    We report the observation and confirmation of the first group- and cluster-scale strong gravitational lensing systems found in Dark Energy Survey data. Through visual inspection of data from the Science Verification season, we identified 53 candidate systems. We then obtained spectroscopic follow-up of 21 candidates using the Gemini Multi-object Spectrograph at the Gemini South telescope and the Inamori-Magellan Areal Camera and Spectrograph at the Magellan/Baade telescope. With this follow-up, we confirmed six candidates as gravitational lenses: three of the systems are newly discovered, and the remaining three were previously known. Of the 21 observed candidates, the remaining 15 either weremore » not detected in spectroscopic observations, were observed and did not exhibit continuum emission (or spectral features), or were ruled out as lensing systems. The confirmed sample consists of one group-scale and five galaxy-cluster-scale lenses. The lensed sources range in redshift z ∼ 0.80–3.2 and in i -band surface brightness i {sub SB} ∼ 23–25 mag arcsec{sup −2} (2″ aperture). For each of the six systems, we estimate the Einstein radius θ {sub E} and the enclosed mass M {sub enc}, which have ranges θ {sub E} ∼ 5″–9″ and M {sub enc} ∼ 8 × 10{sup 12} to 6 × 10{sup 13} M {sub ⊙}, respectively.« less

  18. Observation and Confirmation of Six Strong-lensing Systems in the Dark Energy Survey Science Verification Data

    NASA Astrophysics Data System (ADS)

    Nord, B.; Buckley-Geer, E.; Lin, H.; Diehl, H. T.; Helsby, J.; Kuropatkin, N.; Amara, A.; Collett, T.; Allam, S.; Caminha, G. B.; De Bom, C.; Desai, S.; Dúmet-Montoya, H.; Pereira, M. Elidaiana da S.; Finley, D. A.; Flaugher, B.; Furlanetto, C.; Gaitsch, H.; Gill, M.; Merritt, K. W.; More, A.; Tucker, D.; Saro, A.; Rykoff, E. S.; Rozo, E.; Birrer, S.; Abdalla, F. B.; Agnello, A.; Auger, M.; Brunner, R. J.; Carrasco Kind, M.; Castander, F. J.; Cunha, C. E.; da Costa, L. N.; Foley, R. J.; Gerdes, D. W.; Glazebrook, K.; Gschwend, J.; Hartley, W.; Kessler, R.; Lagattuta, D.; Lewis, G.; Maia, M. A. G.; Makler, M.; Menanteau, F.; Niernberg, A.; Scolnic, D.; Vieira, J. D.; Gramillano, R.; Abbott, T. M. C.; Banerji, M.; Benoit-Lévy, A.; Brooks, D.; Burke, D. L.; Capozzi, D.; Carnero Rosell, A.; Carretero, J.; D'Andrea, C. B.; Dietrich, J. P.; Doel, P.; Evrard, A. E.; Frieman, J.; Gaztanaga, E.; Gruen, D.; Honscheid, K.; James, D. J.; Kuehn, K.; Li, T. S.; Lima, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Miquel, R.; Neilsen, E.; Nichol, R. C.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Walker, A. R.; Wester, W.; Zhang, Y.; DES Collaboration

    2016-08-01

    We report the observation and confirmation of the first group- and cluster-scale strong gravitational lensing systems found in Dark Energy Survey data. Through visual inspection of data from the Science Verification season, we identified 53 candidate systems. We then obtained spectroscopic follow-up of 21 candidates using the Gemini Multi-object Spectrograph at the Gemini South telescope and the Inamori-Magellan Areal Camera and Spectrograph at the Magellan/Baade telescope. With this follow-up, we confirmed six candidates as gravitational lenses: three of the systems are newly discovered, and the remaining three were previously known. Of the 21 observed candidates, the remaining 15 either were not detected in spectroscopic observations, were observed and did not exhibit continuum emission (or spectral features), or were ruled out as lensing systems. The confirmed sample consists of one group-scale and five galaxy-cluster-scale lenses. The lensed sources range in redshift z ˜ 0.80-3.2 and in I-band surface brightness I SB ˜ 23-25 mag arcsec-2 (2″ aperture). For each of the six systems, we estimate the Einstein radius θ E and the enclosed mass M enc, which have ranges θ E ˜ 5″-9″ and M enc ˜ 8 × 1012 to 6 × 1013 M ⊙, respectively. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  19. Strong correlations in gravity and biophysics

    NASA Astrophysics Data System (ADS)

    Krotov, Dmitry

    The unifying theme of this dissertation is the use of correlations. In the first part (chapter 2), we investigate correlations in quantum field theories in de Sitter space. In the second part (chapters 3,4,5), we use correlations to investigate a theoretical proposal that real (observed in nature) transcriptional networks of biological organisms are operating at a critical point in their phase diagram. In chapter 2 we study the infrared dependence of correlators in various external backgrounds. Using the Schwinger-Keldysh formalism we calculate loop corrections to the correlators in the case of the Poincare patch and the complete de Sitter space. In the case of the Poincare patch, the loop correction modifies the behavior of the correlator at large distances. In the case of the complete de Sitter space, the loop correction has a strong dependence on the infrared cutoff in the past. It grows linearly with time, suggesting that at some point the correlations become strong and break the symmetry of the classical background. In chapter 3 we derive the signatures of critical behavior in a model organism, the embryo of Drosophila melanogaster. They are: strong correlations in the fluctuations of different genes, a slowing of dynamics, long range correlations in space, and departures from a Gaussian distribution of these fluctuations. We argue that these signatures are observed experimentally. In chapter 4 we construct an effective theory for the zero mode in this system. This theory is different from the standard Landau-Ginsburg description. It contains gauge fields (the result of the broken translational symmetry inside the cell), which produce observable contributions to the two-point function of the order parameter. We show that the behavior of the two-point function for the network of N genes is described by the action of a relativistic particle moving on the surface of the N - 1 dimensional sphere. We derive a theoretical bound on the decay of the correlations and

  20. Observations and Numerical Modelling of Strong Meteotsunami of 13 June 2013 on the East Coast of the USA

    NASA Astrophysics Data System (ADS)

    Fine, I.; Sepic, J.; Rabinovich, A.; Thomson, R.

    2014-12-01

    A strong "derecho" (rapidly moving lines of convectively induced intense thunderstorms) was generated over the Midwestern United States on 12-13 June 2013 and propagated across the Appalachian Mountains to the Atlantic Ocean. Three hours after the derecho crossed the Atlantic coast, a ~2-m high meteotsunami wave was reported to have hit the New Jersey coast. Significant tsunami-like oscillations, with wave heights of ~0.6 m, were also recorded by a number of tide-gauges located along the eastern seaboard from Nova Scotia to South Carolina, at Bermuda, and by open-ocean DART 44402. These observations triggered the tsunami-alert mode of the DART station. Intense air pressure disturbances (with pressure change of 3-6 hPa in 20 min) and strong winds were observed at a number of National Oceanic and Atmospheric Administration (NOAA) and Automated Surface Observing System (ASOS) stations to be propagating simultaneously with the derecho system, indicating that the pressure disturbances were the primary cause for the sea level oscillations in Chesapeake and Delaware bays. The air pressure disturbance continued to propagate seaward over the continental shelf, thereby generating long waves via Proudman resonance at those areas of the shelf where the propagation speed of the air pressure disturbance matched the long wave speed. Upon reaching the shelf break, the long-waves were partly transmitted (reaching Bermuda 5 hours later) and partly reflected (returning to the east coast of the US and Canada 3 to 6 hours later). A numerical barotropic ocean model forced with idealized air pressure and wind fields was used successfully to simulate the event. The meteotsunami arrival times and maximum wave heights obtained from the model closely match the measured values and confirm initial assumptions regarding the partitioning between transmitted and reflected meteotsunami waves.

  1. A Numerical Model Study of Nocturnal Drainage Flows with Strong Wind and Temperature Gradients.

    NASA Astrophysics Data System (ADS)

    Yamada, T.; Bunker, S.

    1989-07-01

    A second-moment turbulence-closure model described in Yamada and Bunker is used to simulate nocturnal drainage flows observed during the 1984 ASCOT field expedition in Brush Creek, Colorado. In order to simulate the observed strong wind directional shear and temperature gradients, two modifications are added to the model. The strong wind directional shear was maintained by introducing a `nudging' term in the equation of motion to guide the modeled winds in the layers above the ridge top toward the observed wind direction. The second modification was accomplished by reformulating the conservation equation for the potential temperature in such a way that only the deviation from the horizontally averaged value was prognostically computed.The vegetation distribution used in this study is undoubtedly crude. Nevertheless, the present simulation suggests that tall tree canopy can play an important role in producing inhomogeneous wind distribution, particularly in the levels below the canopy top.

  2. Fundamental parameters of He-weak and He-strong stars

    NASA Astrophysics Data System (ADS)

    Cidale, L. S.; Arias, M. L.; Torres, A. F.; Zorec, J.; Frémat, Y.; Cruzado, A.

    2007-06-01

    we show that larger He/H ratios produce smaller BD which naturally explains the T_eff overestimation. We take advantage of these calculations to introduce a method to estimate the He/H abundance ratio in He-strong stars. The BD of HD 37479 suggests that the T_eff of this star remains fairly constant as the star spectrum undergoes changes in the intensity of H and He absorption lines. Data for the He-strong star HD 66765 are reported for the first time. Observations taken at CASLEO, operating under agreement of CONICET and the Universities of La Plata, Córdoba and San Juan, Argentina. Tables [see full text]-[see full text] and Appendix A are only available in electronic form at http://www.aanda.org

  3. Strong plasma turbulence in the earth's electron foreshock

    NASA Technical Reports Server (NTRS)

    Robinson, P. A.; Newman, D. L.

    1991-01-01

    A quantitative model is developed to account for the distribution in magnitude and location of the intense plasma waves observed in the earth's electron foreshock given the observed rms levels of waves. In this model, nonlinear strong-turbulence effects cause solitonlike coherent wave packets to form and decouple from incoherent background beam-excited weak turbulence, after which they convect downstream with the solar wind while collapsing to scales as short as 100 m and fields as high as 2 V/m. The existence of waves with energy densities above the strong-turbulence wave-collapse threshold is inferred from observations from IMP 6 and ISEE 1 and quantitative agreement is found between the predicted distribution of fields in an ensemble of such wave packets and the actual field distribution observed in situ by IMP 6. Predictions for the polarization of plasma waves and the bandwidth of ion-sound waves are also consistent with the observations. It is shown that strong-turbulence effects must be incorporated in any comprehensive theory of the propagation and evolution of electron beams in the foreshock. Previous arguments against the existence of strong turbulence in the foreshock are refuted.

  4. Strong Sporadic E Occurrence Detected by Ground-Based GNSS

    NASA Astrophysics Data System (ADS)

    Sun, Wenjie; Ning, Baiqi; Yue, Xinan; Li, Guozhu; Hu, Lianhuan; Chang, Shoumin; Lan, Jiaping; Zhu, Zhengping; Zhao, Biqiang; Lin, Jian

    2018-04-01

    The ionospheric sporadic E (Es) layer has significant impact on radio wave propagation. The traditional techniques employed for Es layer observation, for example, ionosondes, are not dense enough to resolve the morphology and dynamics of Es layer in spatial distribution. The ground-based Global Navigation Satellite Systems (GNSS) technique is expected to shed light on the understanding of regional strong Es occurrence, owing to the facts that the critical frequency (foEs) of strong Es structure is usually high enough to cause pulse-like disturbances in GNSS total electron content (TEC), and a large number of GNSS receivers have been deployed all over the world. Based on the Chinese ground-based GNSS networks, including the Crustal Movement Observation Network of China and the Beidou Ionospheric Observation Network, a large-scale strong Es event was observed in the middle latitude of China. The strong Es shown as a band-like structure in the southwest-northeast direction extended more than 1,000 km. By making a comparative analysis of Es occurrences identified from the simultaneous observations by ionosondes and GNSS TEC receivers over China middle latitude statistically, we found that GNSS TEC can be well employed to observe strong Es occurrence with a threshold value of foEs, 14 MHz.

  5. Observations and Modeling of Turbulent Air-Sea Coupling in Coastal and Strongly Forced Condition

    NASA Astrophysics Data System (ADS)

    Ortiz-Suslow, David G.

    The turbulent fluxes of momentum, mass, and energy across the ocean-atmosphere boundary are fundamental to our understanding of a myriad of geophysical processes, such as wind-wave generation, oceanic circulation, and air-sea gas transfer. In order to better understand these fluxes, empirical relationships were developed to quantify the interfacial exchange rates in terms of easily observed parameters (e.g., wind speed). However, mounting evidence suggests that these empirical formulae are only valid over the relatively narrow parametric space, i.e. open ocean conditions in light to moderate winds. Several near-surface processes have been observed to cause significant variance in the air-sea fluxes not predicted by the conventional functions, such as a heterogeneous surfaces, swell waves, and wave breaking. Further study is needed to fully characterize how these types of processes can modulate the interfacial exchange; in order to achieve this, a broad investigation into air-sea coupling was undertaken. The primary focus of this work was to use a combination of field and laboratory observations and numerical modeling, in regimes where conventional theories would be expected to breakdown, namely: the nearshore and in very high winds. These seemingly disparate environments represent the marine atmospheric boundary layer at its physical limit. In the nearshore, the convergence of land, air, and sea in a depth-limited domain marks the transition from a marine to a terrestrial boundary layer. Under extreme winds, the physical nature of the boundary layer remains unknown as an intermediate substrate layer, sea spray, develops between the atmosphere and ocean surface. At these ends of the MABL physical spectrum, direct measurements of the near-surface processes were made and directly related to local sources of variance. Our results suggest that the conventional treatment of air-sea fluxes in terms of empirical relationships developed from a relatively narrow set of

  6. The DES Bright Arcs Survey: Hundreds of Candidate Strongly Lensed Galaxy Systems from the Dark Energy Survey Science Verification and Year 1 Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diehl, H. T.; Buckley-Geer, E. J.; Lindgren, K. A.

    We report the results of our searches for strong gravitational lens systems in the Dark Energy Survey (DES) Science Verication and Year 1 observations. The Science Verication data spans approximately 250 sq. deg. with median i

  7. The DES Bright Arcs Survey: Hundreds of Candidate Strongly Lensed Galaxy Systems from the Dark Energy Survey Science Verification and Year 1 Observations

    DOE PAGES

    Diehl, H. T.; Buckley-Geer, E. J.; Lindgren, K. A.; ...

    2017-09-01

    We report the results of our searches for strong gravitational lens systems in the Dark Energy Survey (DES) Science Verication and Year 1 observations. The Science Verication data spans approximately 250 sq. deg. with median i

  8. Representational constraints on children's suggestibility.

    PubMed

    Ceci, Stephen J; Papierno, Paul B; Kulkofsky, Sarah

    2007-06-01

    In a multistage experiment, twelve 4- and 9-year-old children participated in a triad rating task. Their ratings were mapped with multidimensional scaling, from which euclidean distances were computed to operationalize semantic distance between items in target pairs. These children and age-mates then participated in an experiment that employed these target pairs in a story, which was followed by a misinformation manipulation. Analyses linked individual and developmental differences in suggestibility to children's representations of the target items. Semantic proximity was a strong predictor of differences in suggestibility: The closer a suggested distractor was to the original item's representation, the greater was the distractor's suggestive influence. The triad participants' semantic proximity subsequently served as the basis for correctly predicting memory performance in the larger group. Semantic proximity enabled a priori counterintuitive predictions of reverse age-related trends to be confirmed whenever the distance between representations of items in a target pair was greater for younger than for older children.

  9. Modelling high-resolution ALMA observations of strongly lensed highly star-forming galaxies detected by Herschel

    NASA Astrophysics Data System (ADS)

    Dye, S.; Furlanetto, C.; Dunne, L.; Eales, S. A.; Negrello, M.; Nayyeri, H.; van der Werf, P. P.; Serjeant, S.; Farrah, D.; Michałowski, M. J.; Baes, M.; Marchetti, L.; Cooray, A.; Riechers, D. A.; Amvrosiadis, A.

    2018-06-01

    We have modelled ˜0.1 arcsec resolution Atacama Large Millimetre/submillimeter Array imaging of six strong gravitationally lensed galaxies detected by the Herschel Space Observatory. Our modelling recovers mass properties of the lensing galaxies and, by determining magnification factors, intrinsic properties of the lensed submillimetre sources. We find that the lensed galaxies all have high ratios of star formation rate to dust mass, consistent with or higher than the mean ratio for high-redshift submillimetre galaxies and low-redshift ultra-luminous infrared galaxies. Source reconstruction reveals that most galaxies exhibit disturbed morphologies. Both the cleaned image plane data and the directly observed interferometric visibilities have been modelled, enabling comparison of both approaches. In the majority of cases, the recovered lens models are consistent between methods, all six having mass density profiles that are close to isothermal. However, one system with poor signal to noise shows mildly significant differences.

  10. Strong catalytic activity of iron nanoparticles on the surfaces of reduced olivine

    NASA Astrophysics Data System (ADS)

    Tucker, William C.; Quadery, Abrar H.; Schulte, Alfons; Blair, Richard G.; Kaden, William E.; Schelling, Patrick K.; Britt, Daniel T.

    2018-01-01

    It is demonstrated that olivine powders heated to subsolidus temperatures in reducing conditions can develop significant concentrations of 10-50 nm diameter Fe nanoparticles on grain surfaces and that these display strong catalytic activity not observed in powders without Fe nanoparticles. Reduced surfaces were exposed to NH3, CO, and H2, volatiles that may be present on the surfaces of comet and volatile-rich asteroids. In the case of NH3 exposure, rapid decomposition was observed. When exposed to a mixture of CO and H2, significant coking of the mineral surfaces occurred. Analysis of the mineral grains after reaction indicated primarily the presence of graphene or graphitic carbon. The results demonstrate that strong chemical activity can be expected at powders that contain nanophase Fe particles. This suggests space-weathered mineral surfaces may play an important role in the synthesis and processing of organic species. This processing may be part of the weathering processes of volatile-rich but atmosphereless solar-system bodies.

  11. Solar-induced chlorophyll fluorescence is strongly correlated with terrestrial photosynthesis for a wide variety of biomes: First global analysis based on OCO-2 and flux tower observations.

    PubMed

    Li, Xing; Xiao, Jingfeng; He, Binbin; Arain, M Altaf; Beringer, Jason; Desai, Ankur R; Emmel, Carmen; Hollinger, David Y; Krasnova, Alisa; Mammarella, Ivan; Noe, Steffen M; Serrano Ortiz, Penélope; Rey-Sanchez, Camilo; Rocha, Adrian V; Varlagin, Andrej

    2018-05-07

    Solar-induced chlorophyll fluorescence (SIF) has been increasingly used as a proxy for terrestrial gross primary productivity (GPP). Previous work mainly evaluated the relationship between satellite-observed SIF and gridded GPP products both based on coarse spatial resolutions. Finer-resolution SIF (1.3 km × 2.25 km) measured from the Orbiting Carbon Observatory-2 (OCO-2) provides the first opportunity to examine the SIF-GPP relationship at the ecosystem scale using flux tower GPP data. However, it remains unclear how strong the relationship is for each biome and whether a robust, universal relationship exists across a variety of biomes. Here we conducted the first global analysis of the relationship between OCO-2 SIF and tower GPP for a total of 64 flux sites across the globe encompassing eight major biomes. OCO-2 SIF showed strong correlations with tower GPP at both mid-day and daily timescales, with the strongest relationship observed for daily SIF at the 757 nm (R 2 =0.72, p<0.0001). Strong linear relationships between SIF and GPP were consistently found for all biomes (R 2 =0.57-0.79, p<0.0001) except for evergreen broadleaf forests (R 2 =0.16, p<0.05) at the daily timescale. A higher slope was found for C 4 grasslands and croplands than for C 3 ecosystems. The generally consistent slope of the relationship among biomes suggests a nearly universal rather than biome-specific SIF-GPP relationship, and this finding is an important distinction and simplification compared to previous results. OCO-2 SIF generally had a better performance for predicting GPP than satellite-derived vegetation indices and a light use efficiency model. The universal SIF-GPP relationship can potentially lead to more accurate GPP estimates regionally or globally. Our findings revealed the remarkable ability of finer-resolution SIF observations from OCO-2 and other new or future missions (e.g., TROPOMI, FLEX) for estimating terrestrial photosynthesis across a wide variety of biomes and

  12. On Alfvenic Waves and Stochastic Ion Heating with 1Re Observations of Strong Field-aligned Currents, Electric Fields, and O+ ions

    NASA Technical Reports Server (NTRS)

    Coffey, Victoria; Chandler, Michael; Singh, Nagendra

    2008-01-01

    The role that the cleft/cusp has in ionosphere/magnetosphere coupling makes it a very dynamic region having similar fundamental processes to those within the auroral regions. With Polar passing through the cusp at 1 Re in the Spring of 1996, we observe a strong correlation between ion heating and broadband ELF (BBELF) emissions. This commonly observed relationship led to the study of the coupling of large field-aligned currents, burst electric fields, and the thermal O+ ions. We demonstrate the role of these measurements to Alfvenic waves and stochastic ion heating. Finally we will show the properties of the resulting density cavities.

  13. Using Strong Solar Coronal Emission Lines as Coronal Flux Proxies

    NASA Technical Reports Server (NTRS)

    Falconer, David A.; Jordan, Studart D.; Davila, Joseph M.; Thomas, Roger J.; Andretta, Vincenzo; Brosius, Jeffrey W.; Hara, Hirosha

    1997-01-01

    A comparison of Skylab results with observations of the strong EUV lines of Fe XVI at 335 A and 361 A from the Goddard Solar EUV Rocket Telescope and Spectrograph (SERTS) flight of 1989 suggests that these lines, and perhaps others observed with SERTS, might offer good proxies for estimating the total coronal flux over important wavelength ranges. In this paper, we compare SERTS observations from a later, 1993 flight with simultaneous cospatial Yohkoh soft X-ray observations to test this suggestion over the energy range of the Soft X-ray Telescope (SXT) on Yohkoh. Both polynomial and power-law fits are obtained, and errors are estimated, for the SERTS lines of Fe XVI 335 A and 361 A, Fe XV 284 A and 417 A, and Mg IX 368 A. It is found that the power-law fits best cover the full range of solar conditions from quiet Sun through active region, though not surprisingly the 'cooler' Mg IX 368 A line proves to be a poor proxy. The quadratic polynomial fits yield fair agreement over a large range for all but the Mg IX line, but the linear fits fail conspicuously when extrapolated into the quiet Sun regime. The implications of this work for the He 11 304 A line formation problem are briefly considered. The paper concludes with a discussion of the value of these iron lines observed with SERTS for estimating stellar coronal fluxes, as observed for example with the EUVE satellite.

  14. Extensive molecular analysis suggested the strong genetic heterogeneity of idiopathic chronic pancreatitis.

    PubMed

    Sofia, Valentina Maria; Da Sacco, Letizia; Surace, Cecilia; Tomaiuolo, Anna Cristina; Genovese, Silvia; Grotta, Simona; Gnazzo, Maria; Petrocchi, Stefano; Ciocca, Laura; Alghisi, Federico; Montemitro, Enza; Martemucci, Luigi; Elce, Ausilia; Lucidi, Vincenzina; Castaldo, Giuseppe; Angioni, Adriano

    2016-05-26

    Genetic features of Chronic Pancreatitis (CP) have been extensively investigated mainly testing genes associated to the trypsinogen activation pathway. However, different molecular pathways involving other genes may be implicated in CP pathogenesis. 80 patients with Idiopathic CP were investigated using Next Generation Sequencing approach with a panel of 70 genes related to six different pancreatic pathways: premature activation of trypsinogen; modifier genes of Cystic Fibrosis phenotype; pancreatic secretion and ion homeostasis; Calcium signalling and zymogen granules exocytosis; autophagy; autoimmune pancreatitis related genes. We detected mutations in 34 out of 70 genes examined; 64/80 patients (80.0%) were positive for mutations in one or more genes, 16/80 patients (20.0%) had no mutations. Mutations in CFTR were detected in 32/80 patients (40.0%) and 22 of them exhibited at least one mutation in genes of other pancreatic pathways. Of the remaining 48 patients, 13/80 (16.3%) had mutations in genes involved in premature activation of trypsinogen and 19/80 (23.8%) had mutations only in genes of the other pathways: 38/64 patients positive for mutations showed variants in two or more genes (59.3%). Our data, although to be extended with functional analysis of novel mutations, suggest a high rate of genetic heterogeneity in chronic pancreatitis and that trans-heterozygosity may predispose to the idiopathic CP phenotype.

  15. Strong brightness variations signal cloudy-to-clear transition of brown dwarfs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radigan, Jacqueline; Lafrenière, David; Artigau, Etienne

    2014-10-01

    We report the results of a J-band search for cloud-related variability in the atmospheres of 62 L4-T9 dwarfs using the Du Pont 2.5 m telescope at Las Campanas Observatory and the Canada-France-Hawaii Telescope on Mauna Kea. We find 9 of 57 objects included in our final analysis to be significantly variable with >99% confidence, 5 of which are new discoveries. In our study, strong signals (peak-to-peak amplitudes >2%) are confined to the L/T transition (4/16 objects with L9-T3.5 spectral types and 0/41 objects for all other spectral types). The probability that the observed occurrence rates for strong variability inside andmore » outside the L/T transition originate from the same underlying true occurrence rate is excluded at >99.7% confidence. Based on a careful assessment of our sensitivity to astrophysical signals, we infer that 39{sub −14}{sup +16}% of L9-T3.5 dwarfs are strong variables on rotational timescales. If we consider only L9-T3.5 dwarfs with 0.8 < J – K {sub s} < 1.5, and assume an isotropic distribution of spin axes for our targets, we find that 80{sub −19}{sup +18}% would be strong variables if viewed edge-on; azimuthal symmetry and/or binarity may account for non-variable objects in this group. These observations suggest that the settling of condensate clouds below the photosphere in brown dwarf (BD) atmospheres does not occur in a spatially uniform manner. Rather, the formation and sedimentation of dust grains at the L/T transition is coupled to atmospheric dynamics, resulting in highly contrasting regions of thick and thin clouds and/or clearings. Outside the L/T transition we identify five weak variables (peak-to-peak amplitudes of 0.6%-1.6%). Excluding L9-T3.5 spectral types, we infer that 60{sub −18}{sup +22}% of targets vary with amplitudes of 0.5%-1.6%, suggesting that surface heterogeneities are common among L and T dwarfs. Our survey establishes a significant link between strong variability and L/T transition spectral types

  16. Nike Experiment to Observe Strong Areal Mass Oscillations in a Rippled Target Hit by a Short Laser Pulse

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J. L.; Kessler, T. J.; Schmitt, A. J.; Obenschain, S. P.; Metzler, N.; Oh, J.

    2010-11-01

    When a short (sub-ns) laser pulse deposits finite energy in a target, the shock wave launched into it is immediately followed by a rarefaction wave. If the irradiated surface is rippled, theory and simulations predict strong oscillations of the areal mass perturbation amplitude in the target [A. L. Velikovich et al., Phys. Plasmas 10, 3270 (2003).] The first experiment designed to observe this effect has become possible by adding short-driving-pulse capability to the Nike laser, and has been scheduled for the fall of 2010. Simulations show that while the driving pulse of 0.3 ns is on, the areal mass perturbation amplitude grows by a factor ˜2 due to ablative Richtmyer-Meshkov instability. It then decreases, reverses phase, and reaches another maximum, also about twice its initial value, shortly after the shock breakout at the rear target surface. This signature behavior is observable with the monochromatic x-ray imaging diagnostics fielded on Nike.

  17. Strong water absorption in the dayside emission spectrum of the planet HD 189733b.

    PubMed

    Grillmair, Carl J; Burrows, Adam; Charbonneau, David; Armus, Lee; Stauffer, John; Meadows, Victoria; van Cleve, Jeffrey; von Braun, Kaspar; Levine, Deborah

    2008-12-11

    Recent observations of the extrasolar planet HD 189733b did not reveal the presence of water in the emission spectrum of the planet. Yet models of such 'hot-Jupiter' planets predict an abundance of atmospheric water vapour. Validating and constraining these models is crucial to understanding the physics and chemistry of planetary atmospheres in extreme environments. Indications of the presence of water in the atmosphere of HD 189733b have recently been found in transmission spectra, where the planet's atmosphere selectively absorbs the light of the parent star, and in broadband photometry. Here we report the detection of strong water absorption in a high-signal-to-noise, mid-infrared emission spectrum of the planet itself. We find both a strong downturn in the flux ratio below 10 microm and discrete spectral features that are characteristic of strong absorption by water vapour. The differences between these and previous observations are significant and admit the possibility that predicted planetary-scale dynamical weather structures may alter the emission spectrum over time. Models that match the observed spectrum and the broadband photometry suggest that heat redistribution from the dayside to the nightside is weak. Reconciling this with the high nightside temperature will require a better understanding of atmospheric circulation or possible additional energy sources.

  18. Strong Libraries, Strong Scores

    ERIC Educational Resources Information Center

    Gray, Carlyn

    2006-01-01

    This article talks about the first-ever Texas Conference on School Libraries on April 6, 2005 that was attended by one hundred thirty-five school administrators and trustees. The miniconference, entitled Strong Libraries, Strong Scores, was held at the Austin Hilton, Austin, Texas during the Texas Library Association's Annual Conference and was…

  19. Strongly Enhanced Tunneling at Total Charge Neutrality in Double-Bilayer Graphene-WSe_{2} Heterostructures.

    PubMed

    Burg, G William; Prasad, Nitin; Kim, Kyounghwan; Taniguchi, Takashi; Watanabe, Kenji; MacDonald, Allan H; Register, Leonard F; Tutuc, Emanuel

    2018-04-27

    We report the experimental observation of strongly enhanced tunneling between graphene bilayers through a WSe_{2} barrier when the graphene bilayers are populated with carriers of opposite polarity and equal density. The enhanced tunneling increases sharply in strength with decreasing temperature, and the tunneling current exhibits a vertical onset as a function of interlayer voltage at a temperature of 1.5 K. The strongly enhanced tunneling at overall neutrality departs markedly from single-particle model calculations that otherwise match the measured tunneling current-voltage characteristics well, and suggests the emergence of a many-body state with condensed interbilayer excitons when electrons and holes of equal densities populate the two layers.

  20. Strongly Enhanced Tunneling at Total Charge Neutrality in Double-Bilayer Graphene-WSe2 Heterostructures

    NASA Astrophysics Data System (ADS)

    Burg, G. William; Prasad, Nitin; Kim, Kyounghwan; Taniguchi, Takashi; Watanabe, Kenji; MacDonald, Allan H.; Register, Leonard F.; Tutuc, Emanuel

    2018-04-01

    We report the experimental observation of strongly enhanced tunneling between graphene bilayers through a WSe2 barrier when the graphene bilayers are populated with carriers of opposite polarity and equal density. The enhanced tunneling increases sharply in strength with decreasing temperature, and the tunneling current exhibits a vertical onset as a function of interlayer voltage at a temperature of 1.5 K. The strongly enhanced tunneling at overall neutrality departs markedly from single-particle model calculations that otherwise match the measured tunneling current-voltage characteristics well, and suggests the emergence of a many-body state with condensed interbilayer excitons when electrons and holes of equal densities populate the two layers.

  1. The DES Bright Arcs Survey: Hundreds of Candidate Strongly Lensed Galaxy Systems from the Dark Energy Survey Science Verification and Year 1 Observations

    NASA Astrophysics Data System (ADS)

    Diehl, H. T.; Buckley-Geer, E. J.; Lindgren, K. A.; Nord, B.; Gaitsch, H.; Gaitsch, S.; Lin, H.; Allam, S.; Collett, T. E.; Furlanetto, C.; Gill, M. S. S.; More, A.; Nightingale, J.; Odden, C.; Pellico, A.; Tucker, D. L.; da Costa, L. N.; Fausti Neto, A.; Kuropatkin, N.; Soares-Santos, M.; Welch, B.; Zhang, Y.; Frieman, J. A.; Abdalla, F. B.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; Desai, S.; Dietrich, J. P.; Drlica-Wagner, A.; Evrard, A. E.; Finley, D. A.; Flaugher, B.; García-Bellido, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; James, D. J.; Kuehn, K.; Kuhlmann, S.; Lahav, O.; Li, T. S.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Menanteau, F.; Miquel, R.; Nichol, R. C.; Nugent, P.; Ogando, R. L. C.; Plazas, A. A.; Reil, K.; Romer, A. K.; Sako, M.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Walker, A. R.; DES Collaboration

    2017-09-01

    We report the results of searches for strong gravitational lens systems in the Dark Energy Survey (DES) Science Verification and Year 1 observations. The Science Verification data span approximately 250 sq. deg. with a median I-band limiting magnitude for extended objects (10σ) of 23.0. The Year 1 data span approximately 2000 sq. deg. and have an I-band limiting magnitude for extended objects (10σ) of 22.9. As these data sets are both wide and deep, they are particularly useful for identifying strong gravitational lens candidates. Potential strong gravitational lens candidate systems were initially identified based on a color and magnitude selection in the DES object catalogs or because the system is at the location of a previously identified galaxy cluster. Cutout images of potential candidates were then visually scanned using an object viewer and numerically ranked according to whether or not we judged them to be likely strong gravitational lens systems. Having scanned nearly 400,000 cutouts, we present 374 candidate strong lens systems, of which 348 are identified for the first time. We provide the R.A. and decl., the magnitudes and photometric properties of the lens and source objects, and the distance (radius) of the source(s) from the lens center for each system.

  2. Strongly Coupled Nanotube Electromechanical Resonators.

    PubMed

    Deng, Guang-Wei; Zhu, Dong; Wang, Xin-He; Zou, Chang-Ling; Wang, Jiang-Tao; Li, Hai-Ou; Cao, Gang; Liu, Di; Li, Yan; Xiao, Ming; Guo, Guang-Can; Jiang, Kai-Li; Dai, Xing-Can; Guo, Guo-Ping

    2016-09-14

    Coupling an electromechanical resonator with carbon-nanotube quantum dots is a significant method to control both the electronic charge and the spin quantum states. By exploiting a novel microtransfer technique, we fabricate two separate strongly coupled and electrically tunable mechanical resonators for the first time. The frequency of the two resonators can be individually tuned by the bottom gates, and in each resonator, the electron transport through the quantum dot can be strongly affected by the phonon mode and vice versa. Furthermore, the conductance of either resonator can be nonlocally modulated by the other resonator through phonon-phonon interaction between the two resonators. Strong coupling is observed between the phonon modes of the two resonators, where the coupling strength larger than 200 kHz can be reached. This strongly coupled nanotube electromechanical resonator array provides an experimental platform for future studies of the coherent electron-phonon interaction, the phonon-mediated long-distance electron interaction, and entanglement state generation.

  3. Strong motion instrumentation of an RC building structure

    USGS Publications Warehouse

    Li, H.-J.; Celebi, M.

    2001-01-01

    The strong-motion instrumentation scheme of a reinforced concrete building observed by California Strong-Motion Instrumentation Program (CSMIP) is introduced in this paper. The instrumented building is also described and the recorded responses during 1994 Northridge earthquake are provided.

  4. IUE observations and interpretation of the symbiotic star RW Hya

    NASA Astrophysics Data System (ADS)

    Kafatos, M.; Michalitsianos, A. G.; Hobbs, R. W.

    The IUE observations of the high excitation symbiotic star RW Hya (gM2 + pec) are discussed. Analysis of the intense UV continuum observed between 1100 A to 2000 A suggests this star is a binary system in which the secondary is identified as a hot subdwarf with Teff being approximately 100,000 K. A distance to the system of 1000 pc is deduced. The UV spectrum consists of mainly semiforbidden and allowed transition lines of which the CIV (1548 A, 1550 A) emission lines are particularly strong, and UV continuum at both shorter and longer wavelengths. Strong forbidden lines seem to be absent suggesting the presence of a nebula of high densities. Tidal interaction between the red giant primary and the hot subdwarf is suggested as a likely means to form the observed nebula. RW Hya is suggested as a possible source of soft X-ray emission from material accreting onto the surface of the hot subdwarf. Detection of such emission with HEAO-B would give information if this accretion is taking place via Roche lobe overlow or via capture from a stellar wind emitted by the primary. A general discussion of elemental and ionic abundances in the nebula is also presented.

  5. IUE observations and interpretation of the symbiotic star RW Hya

    NASA Technical Reports Server (NTRS)

    Kafatos, M.; Michalitsianos, A. G.; Hobbs, R. W.

    1981-01-01

    The IUE observations of the high excitation symbiotic star RW Hya (gM2 + pec) are discussed. Analysis of the intense UV continuum observed between 1100 A to 2000 A suggests this star is a binary system in which the secondary is identified as a hot subdwarf with T sub eff being approximately 100,000 K. A distance to the system of 1000 pc is deduced. The UV spectrum consists of mainly semiforbidden and allowed transition lines of which the CIV (1548 A, 1550 A) emission lines are particularly strong, and UV continuum at both shorter and longer wavelengths. Strong forbidden lines seem to be absent suggesting the presence of a nebula of high densities. Tidal interaction between the red giant primary and the hot subdwarf is suggested as a likely means to form the observed nebula. RW Hya is suggested as a possible source of soft X-ray emission from material accreting onto the surface of the hot subdwarf. Detection of such emission with HEAO-B would give information if this accretion is taking place via Roche lobe overlow or via capture from a stellar wind emitted by the primary. A general discussion of elemental and ionic abundances in the nebula is also presented.

  6. Strong magnon-phonon coupling in NaFeAs studied by neutron scattering

    NASA Astrophysics Data System (ADS)

    Li, Yu; Yamani, Zahra; Song, Yu; Zhang, Chenglin; Dai, Pengcheng

    We carried on inelastic neutron scattering experiment on the triple axis spectrometer in CNBC in Chalk River. We measured both the phonon and magnon in NaFeAs single crystals and their temperature dependence. Since structural transition temperature (TS) and the magnetic transition temperature (T N) are well separated in NaFeAs, it provides us an unique chance to exclude the consequence or magnetic order and focus on the so called nematic phase. As the previous paper on BaFe2As2, we observed the strong phonon softening nearby the structural transition temperature at very small q (q<0.1). This makes the phonon in NaFeAs deviate from the classical linear dispersion relationship for acoustic phonons. Besides the phonon softening, we also observe phonon hardening at a larger q range when the temperature goes down. This is accompanied by the stiffening of the magnons which can be represented by the linewidth of the low energy magnetic peaks. Our results suggest that there is strong coupling between the phonons and magnons in NaFeAs.

  7. Energy Spectra of Strongly Stratified and Rotating Turbulence

    NASA Technical Reports Server (NTRS)

    Mahalov, Alex; Nicolaenko, Basil; Zhou, Ye

    1998-01-01

    Turbulence under strong stratification and rotation is usually characterized as quasi-two dimensional turbulence. We develop a "quasi-two dimensional" energy spectrum which changes smoothly between the Kolmogorov -5/3 law (no stratification), the -2 scalings of Zhou for the case of strong rotation, as well as the -2 scalings for the case of strong rotation and stratification. For strongly stratified turbulence, the model may give the -2 scaling predicted by Herring; and the -5/3 scaling indicated by some mesoscale observations.

  8. Photoionization of hydrogen in a strong static electric field

    NASA Astrophysics Data System (ADS)

    Ohgoda, Shun; Tolstikhin, Oleg I.; Morishita, Toru

    2017-04-01

    We analyze photoionization of hydrogen in the presence of a strong static electric field F ˜0.1 a.u. Such a field essentially modifies the spectrum of the unperturbed atom. Even the ground n =1 state acquires a non-negligible width, while the higher field-free bound states become overlapping resonances. At the same time, static-field-induced states (SFISs) found recently [A. V. Gets and O. I. Tolstikhin, Phys. Rev. A 87, 013419 (2013), 10.1103/PhysRevA.87.013419] emerge in the field-free continuum. We formulate the theory of photoionization from a decaying initial state and define appropriate observables—the reduced photoionization rate and transverse momentum distribution of photoelectrons. These observables are calculated for the four initial states with n =1 and 2 in the different polarization cases. The SFISs are shown to manifest themselves as distinct peaks in the observables. Remarkably, even broad SFISs can be seen as narrow well-pronounced peaks at fields where their widths are comparable to that of the initial state. Such a resonance enhancement of the manifestations of SFISs is the main finding of this paper. This finding suggests that SFISs should manifest themselves also in photoelectron momentum distributions produced by photoionization in the presence of a quasistatic field of intense low-frequency laser pulses currently used in strong-field physics.

  9. Model predictions of the results of interferometric observations for stars under conditions of strong gravitational scattering by black holes and wormholes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shatskiy, A. A., E-mail: shatskiy@asc.rssi.ru; Kovalev, Yu. Yu.; Novikov, I. D.

    2015-05-15

    The characteristic and distinctive features of the visibility amplitude of interferometric observations for compact objects like stars in the immediate vicinity of the central black hole in our Galaxy are considered. These features are associated with the specifics of strong gravitational scattering of point sources by black holes, wormholes, or black-white holes. The revealed features will help to determine the most important topological characteristics of the central object in our Galaxy: whether this object possesses the properties of only a black hole or also has characteristics unique to wormholes or black-white holes. These studies can be used to interpret themore » results of optical, infrared, and radio interferometric observations.« less

  10. Ion kinetic dynamics in strongly-shocked plasmas relevant to ICF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinderknecht, H. G.; Amendt, P. A.; Rosenberg, M. J.

    Implosions of thin-shell capsules produce strongly-shocked (M > 10), low-density (ρ ~1 mg/cc -1), high-temperature (T i ~keV) plasmas, comparable to those produced in the strongly-shocked DT-vapor in inertial confinement fusion (ICF) experiments. A series of thin-glass targets filled with mixtures of deuterium and Helium-3 gas ranging from 7% to 100% deuterium was imploded to investigate the impact of multi-species ion kinetic mechanisms in ICF-relevant plasmas over a wide range of Knudsen numbers (N K ≡ λ ii/R). Anomalous trends in nuclear yields and burn-averaged ion temperatures in implosions with N K > 0.5, which have been interpreted as signaturesmore » of ion species separation and ion thermal decoupling, are found not to be consistent with single-species ion kinetic effects alone. Experimentally inferred Knudsen numbers predict an opposite yield trend to those observed, confirming the dominance of multi-species physics in these experiments. In contrast, implosions with N K ~ 0.01 follow the expected yield trend, suggesting single-species kinetic effects are dominant. In conclusion, the impact of the observed kinetic physics mechanisms on the formation of the hotspot in ICF experiments is discussed.« less

  11. Ion kinetic dynamics in strongly-shocked plasmas relevant to ICF

    DOE PAGES

    Rinderknecht, H. G.; Amendt, P. A.; Rosenberg, M. J.; ...

    2017-04-20

    Implosions of thin-shell capsules produce strongly-shocked (M > 10), low-density (ρ ~1 mg/cc -1), high-temperature (T i ~keV) plasmas, comparable to those produced in the strongly-shocked DT-vapor in inertial confinement fusion (ICF) experiments. A series of thin-glass targets filled with mixtures of deuterium and Helium-3 gas ranging from 7% to 100% deuterium was imploded to investigate the impact of multi-species ion kinetic mechanisms in ICF-relevant plasmas over a wide range of Knudsen numbers (N K ≡ λ ii/R). Anomalous trends in nuclear yields and burn-averaged ion temperatures in implosions with N K > 0.5, which have been interpreted as signaturesmore » of ion species separation and ion thermal decoupling, are found not to be consistent with single-species ion kinetic effects alone. Experimentally inferred Knudsen numbers predict an opposite yield trend to those observed, confirming the dominance of multi-species physics in these experiments. In contrast, implosions with N K ~ 0.01 follow the expected yield trend, suggesting single-species kinetic effects are dominant. In conclusion, the impact of the observed kinetic physics mechanisms on the formation of the hotspot in ICF experiments is discussed.« less

  12. Strong Generative Capacity and the Empirical Base of Linguistic Theory

    PubMed Central

    Ott, Dennis

    2017-01-01

    This Perspective traces the evolution of certain central notions in the theory of Generative Grammar (GG). The founding documents of the field suggested a relation between the grammar, construed as recursively enumerating an infinite set of sentences, and the idealized native speaker that was essentially equivalent to the relation between a formal language (a set of well-formed formulas) and an automaton that recognizes strings as belonging to the language or not. But this early view was later abandoned, when the focus of the field shifted to the grammar's strong generative capacity as recursive generation of hierarchically structured objects as opposed to strings. The grammar is now no longer seen as specifying a set of well-formed expressions and in fact necessarily constructs expressions of any degree of intuitive “acceptability.” The field of GG, however, has not sufficiently acknowledged the significance of this shift in perspective, as evidenced by the fact that (informal and experimentally-controlled) observations about string acceptability continue to be treated as bona fide data and generalizations for the theory of GG. The focus on strong generative capacity, it is argued, requires a new discussion of what constitutes valid empirical evidence for GG beyond observations pertaining to weak generation. PMID:28983268

  13. Molecular multiproxy analysis of ancient root systems suggests strong alteration of deep subsoil organic matter by rhizomicrobial activity

    NASA Astrophysics Data System (ADS)

    Gocke, Martina; Huguet, Arnaud; Derenne, Sylvie; Kolb, Steffen; Wiesenberg, Guido L. B.

    2013-04-01

    decreasing contents of archeal GDGTs from rhizolith via rhizosphere towards root-free loess. Furthermore, the bacterial fingerprint revealed - similar to modern root systems - higher taxonomic diversity in rhizosphere compared to rhizoliths and reference loess. This argues for microorganisms benefiting from root deposits and exudates. Highest concentrations of branched GDGTs in rhizoliths suggest that their source organisms feed on root remains. Incorporation of rhizomicrobial remains as represented by RNA and GDGTs usually affected the sediment at maximum to a distance of 2-3 cm from the former root. FA contents in rhizosphere showed strong scatter and were in part depleted compared to reference loess or, especially in deeper transects, enriched. This indicates the presence of degradation products originating from former rhizosphere processes. Especially at larger depth not affected by modern pedogenic processes, portions of mainly microbial derived C16 homologues were higher in rhizosphere loess up to distances of 10 cm, revealing that the possible extension of the rhizosphere was underestimated so far. In Corg poor subsoil, the occurence of diverse rhizosphere microorganisms and degradation processes even in several centimeters distant from roots point to a strong alteration of OM, possibly contributing to carbon mineralisation.

  14. Suppression of cooling by strong magnetic fields in white dwarf stars.

    PubMed

    Valyavin, G; Shulyak, D; Wade, G A; Antonyuk, K; Zharikov, S V; Galazutdinov, G A; Plachinda, S; Bagnulo, S; Machado, L Fox; Alvarez, M; Clark, D M; Lopez, J M; Hiriart, D; Han, Inwoo; Jeon, Young-Beom; Zurita, C; Mujica, R; Burlakova, T; Szeifert, T; Burenkov, A

    2014-11-06

    Isolated cool white dwarf stars more often have strong magnetic fields than young, hotter white dwarfs, which has been a puzzle because magnetic fields are expected to decay with time but a cool surface suggests that the star is old. In addition, some white dwarfs with strong fields vary in brightness as they rotate, which has been variously attributed to surface brightness inhomogeneities similar to sunspots, chemical inhomogeneities and other magneto-optical effects. Here we describe optical observations of the brightness and magnetic field of the cool white dwarf WD 1953-011 taken over about eight years, and the results of an analysis of its surface temperature and magnetic field distribution. We find that the magnetic field suppresses atmospheric convection, leading to dark spots in the most magnetized areas. We also find that strong fields are sufficient to suppress convection over the entire surface in cool magnetic white dwarfs, which inhibits their cooling evolution relative to weakly magnetic and non-magnetic white dwarfs, making them appear younger than they truly are. This explains the long-standing mystery of why magnetic fields are more common amongst cool white dwarfs, and implies that the currently accepted ages of strongly magnetic white dwarfs are systematically too young.

  15. X-Ray generation in strongly nonlinear plasma waves.

    NASA Astrophysics Data System (ADS)

    Kiselev, Sergey; Pukhov, Alexander; Kostyukov, Igor

    2004-11-01

    Using three-dimensional particle-in-cell simulations we show that a strongly nonlinear plasma wave excited by an ultrahigh intensity laser pulse works as a compact high-brightness source of Xray radiation. It has been recently suggested by A. Pukhov and J. Meyer-ter-Vehn, Appl. Phys. B 74, 355 (2002), that in a strongly nonlinear regime the plasma wave transforms to a ``bubble'', which is almost free from background electrons. Inside the bubble, a dense bunch of relativistic electrons is produced. These accelerated electrons make betatron oscillations in the transverse fields of the bubble and emit a bright broadband X-ray radiation with a maximum about 50 keV. The emission is confined to a small angle of about 0.1 rad. In addition, we make simulations of X-ray generation by an external 28.5-GeV electron bunch injected into the bubble. Gamma-quanta with up to GeV energies are observed in the simulation in a good agreement with analytical results. The energy conversion is efficient, leading to a significant stopping of the electron bunch over 5 mm interaction distance.

  16. Strong Selection at MHC in Mexicans since Admixture

    PubMed Central

    Zhou, Quan; Zhao, Liang; Guan, Yongtao

    2016-01-01

    Mexicans are a recent admixture of Amerindians, Europeans, and Africans. We performed local ancestry analysis of Mexican samples from two genome-wide association studies obtained from dbGaP, and discovered that at the MHC region Mexicans have excessive African ancestral alleles compared to the rest of the genome, which is the hallmark of recent selection for admixed samples. The estimated selection coefficients are 0.05 and 0.07 for two datasets, which put our finding among the strongest known selections observed in humans, namely, lactase selection in northern Europeans and sickle-cell trait in Africans. Using inaccurate Amerindian training samples was a major concern for the credibility of previously reported selection signals in Latinos. Taking advantage of the flexibility of our statistical model, we devised a model fitting technique that can learn Amerindian ancestral haplotype from the admixed samples, which allows us to infer local ancestries for Mexicans using only European and African training samples. The strong selection signal at the MHC remains without Amerindian training samples. Finally, we note that medical history studies suggest such a strong selection at MHC is plausible in Mexicans. PMID:26863142

  17. Thermodynamics of strongly coupled repulsive Yukawa particles in ambient neutralizing plasma: Thermodynamic instability and the possibility of observation in fine particle plasmas

    NASA Astrophysics Data System (ADS)

    Totsuji, Hiroo

    2008-07-01

    The thermodynamics is analyzed for a system composed of particles with hard cores, interacting via the repulsive Yukawa potential (Yukawa particulates), and neutralizing ambient (background) plasma. An approximate equation of state is given with proper account of the contribution of ambient plasma and it is shown that there exists a possibility for the total isothermal compressibility of Yukawa particulates and ambient plasma to diverge when the coupling between Yukawa particulates is sufficiently strong. In this case, the system undergoes a transition into separated phases with different densities and we have a critical point for this phase separation. Examples of approximate phase diagrams related to this transition are given. It is emphasized that the critical point can be in the solid phase and we have the possibility to observe a solid-solid phase separation. The applicability of these results to fine particle plasmas is investigated. It is shown that, though the values of the characteristic parameters are semiquantitative due to the effects not described by this model, these phenomena are expected to be observed in fine particle plasmas, when approximately isotropic bulk systems are realized with a very strong coupling between fine particles.

  18. IRAS observations of the Pleiades

    NASA Technical Reports Server (NTRS)

    Cox, P.; he ultraviolet.

    1987-01-01

    The Infrared Astronomy Satellite (IRAS) observations of the Pleiades region are reported. The data show large flux densities at 12 and 25 microns, extended over the optical nebulosity. This strong excess emission, implying temperatures of a few hundred degrees Kelvin, indicates a population of very small grains in the Pleiades. It is suggested that these grains are similar to the small grains needed to explain the surface brightness measurements made in the ultraviolet.

  19. Confidence Judgments in Children's and Adults' Event Recall and Suggestibility.

    ERIC Educational Resources Information Center

    Roebers, Claudia M.

    2002-01-01

    Three studies investigated the role of 8- and 10-year-olds' and adults' metacognitive monitoring and control processes for unbiased event recall tasks and suggestibility. Findings suggested strong tendencies to overestimate confidence regardless of age and question format. Children did not lack principal metacognitive competencies when questions…

  20. Strong Temporal Variation Over One Saturnian Year: From Voyager to Cassini

    NASA Technical Reports Server (NTRS)

    Li, Liming; Achterberg, Richard K.; Conrath, Barney J.; Gierasch, Peter J.; Smith, Mark A.; Simon-Miller, Amy A.; Nixon, Conor A.; Orton, Glenn S.; Flasar, F. Michael; Jiang, Xun; hide

    2013-01-01

    Here we report the combined spacecraft observations of Saturn acquired over one Saturnian year (approximately 29.5 Earth years), from the Voyager encounters (1980-81) to the new Cassini reconnaissance (2009-10). The combined observations reveal a strong temporal increase of tropic temperature (approximately 10 Kelvins) around the tropopause of Saturn (i.e., 50 mbar), which is stronger than the seasonal variability (approximately a few Kelvins). We also provide the first estimate of the zonal winds at 750 mbar, which is close to the zonal winds at 2000 mbar. The quasi-consistency of zonal winds between these two levels provides observational support to a numerical suggestion inferring that the zonal winds at pressures greater than 500 mbar do not vary significantly with depth. Furthermore, the temporal variation of zonal winds decreases its magnitude with depth, implying that the relatively deep zonal winds are stable with time.

  1. Strong Temporal Variation Over One Saturnian Year: From Voyager to Cassini

    PubMed Central

    Li, Liming; Achterberg, Richard K.; Conrath, Barney J.; Gierasch, Peter J.; Smith, Mark A.; Simon-Miller, Amy A.; Nixon, Conor A.; Orton, Glenn S.; Flasar, F. Michael; Jiang, Xun; Baines, Kevin H.; Morales-Juberías, Raúl; Ingersoll, Andrew P.; Vasavada, Ashwin R.; Del Genio, Anthony D.; West, Robert A.; Ewald, Shawn P.

    2013-01-01

    Here we report the combined spacecraft observations of Saturn acquired over one Saturnian year (~29.5 Earth years), from the Voyager encounters (1980–81) to the new Cassini reconnaissance (2009–10). The combined observations reveal a strong temporal increase of tropic temperature (~10 Kelvins) around the tropopause of Saturn (i.e., 50 mbar), which is stronger than the seasonal variability (~a few Kelvins). We also provide the first estimate of the zonal winds at 750 mbar, which is close to the zonal winds at 2000 mbar. The quasi-consistency of zonal winds between these two levels provides observational support to a numerical suggestion inferring that the zonal winds at pressures greater than 500 mbar do not vary significantly with depth. Furthermore, the temporal variation of zonal winds decreases its magnitude with depth, implying that the relatively deep zonal winds are stable with time. PMID:23934437

  2. The DES Bright Arcs Survey: Hundreds of Candidate Strongly Lensed Galaxy Systems from the Dark Energy Survey Science Verification and Year 1 Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diehl, H. T.; Buckley-Geer, E. J.; Lindgren, K. A.

    We report the results of searches for strong gravitational lens systems in the Dark Energy Survey (DES) Science Verification and Year 1 observations. The Science Verification data span approximately 250 sq. deg. with a median i -band limiting magnitude for extended objects (10 σ ) of 23.0. The Year 1 data span approximately 2000 sq. deg. and have an i -band limiting magnitude for extended objects (10 σ ) of 22.9. As these data sets are both wide and deep, they are particularly useful for identifying strong gravitational lens candidates. Potential strong gravitational lens candidate systems were initially identified basedmore » on a color and magnitude selection in the DES object catalogs or because the system is at the location of a previously identified galaxy cluster. Cutout images of potential candidates were then visually scanned using an object viewer and numerically ranked according to whether or not we judged them to be likely strong gravitational lens systems. Having scanned nearly 400,000 cutouts, we present 374 candidate strong lens systems, of which 348 are identified for the first time. We provide the R.A. and decl., the magnitudes and photometric properties of the lens and source objects, and the distance (radius) of the source(s) from the lens center for each system.« less

  3. Stratification of TAD boundaries reveals preferential insulation of super-enhancers by strong boundaries.

    PubMed

    Gong, Yixiao; Lazaris, Charalampos; Sakellaropoulos, Theodore; Lozano, Aurelie; Kambadur, Prabhanjan; Ntziachristos, Panagiotis; Aifantis, Iannis; Tsirigos, Aristotelis

    2018-02-07

    The metazoan genome is compartmentalized in areas of highly interacting chromatin known as topologically associating domains (TADs). TADs are demarcated by boundaries mostly conserved across cell types and even across species. However, a genome-wide characterization of TAD boundary strength in mammals is still lacking. In this study, we first use fused two-dimensional lasso as a machine learning method to improve Hi-C contact matrix reproducibility, and, subsequently, we categorize TAD boundaries based on their insulation score. We demonstrate that higher TAD boundary insulation scores are associated with elevated CTCF levels and that they may differ across cell types. Intriguingly, we observe that super-enhancers are preferentially insulated by strong boundaries. Furthermore, we demonstrate that strong TAD boundaries and super-enhancer elements are frequently co-duplicated in cancer patients. Taken together, our findings suggest that super-enhancers insulated by strong TAD boundaries may be exploited, as a functional unit, by cancer cells to promote oncogenesis.

  4. Electron Dynamics in Nanostructures in Strong Laser Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kling, Matthias

    2014-09-11

    The goal of our research was to gain deeper insight into the collective electron dynamics in nanosystems in strong, ultrashort laser fields. The laser field strengths will be strong enough to extract and accelerate electrons from the nanoparticles and to transiently modify the materials electronic properties. We aimed to observe, with sub-cycle resolution reaching the attosecond time domain, how collective electronic excitations in nanoparticles are formed, how the strong field influences the optical and electrical properties of the nanomaterial, and how the excitations in the presence of strong fields decay.

  5. Geoethical suggestions for reducing risk of next (not only strong) earthquakes

    NASA Astrophysics Data System (ADS)

    Nemec, Vaclav

    2013-04-01

    Three relatively recent examples of earthquakes can be used as a background for suggesting geoethical views into any prediction accompanied by a risk analysis. ĹAquila earthquake (Italy - 2009): ĹAquila was largely destroyed by earthquakes in 1315, 1319, 1452, 1461, 1501, 1646, 1703 (until that time altogether about 3000 victims) and 1786 (about 6000 victims of this event only). The city was rebuilt and remained stable until October 2008, when tremors began again. From January 1 through April 5, 2009, additional 304 tremors were reported. When after measuring increased levels of radon emitted from the ground a local citizen (for many years working for the Italian National Institute of Astrophysics) predicted a major earthquake on Italian television, he was accused of being alarmist. Italy's National Commission for Prediction and Prevention of Major Risks met in L'Aquila for one hour on March 31, 2009, without really evaluating and characterising the risks that were present. On April 6 a 6.3 magnitude earthquake struck Aquila and nearby towns, killing 309 people and injuring more than 1,500. The quake also destroyed roughly 20,000 buildings, temporarily displacing another 65,000 people. In July 2010, prosecutor Fabio Picuti charged the Commission members with manslaughter and negligence for failing to warn the public of the impending risk. Many international organizations joined the chorus of criticism wrongly interpreting the accusation and sentence at the first stage as a problem of impossibility to predict earthquakes. - The Eyjafjallajokull volcano eruption (Iceland - 2010) is a reminder that in our globalized, interconnected world because of the increased sensibility of the new technology even a relatively small natural disaster may cause unexpected range of problems. - Earthquake and tsunami (Japan - 2011) - the most powerful known earthquake ever to have hit Japan on March 11. Whereas the proper earthquake with the magnitude of 9.0 has caused minimum of

  6. Sex difference in attractiveness perceptions of strong and weak male walkers.

    PubMed

    Fink, Bernhard; André, Selina; Mines, Johanna S; Weege, Bettina; Shackelford, Todd K; Butovskaya, Marina L

    2016-11-01

    Men and women accurately assess male physical strength from facial and body morphology cues. Women's assessments of male facial attractiveness, masculinity, and dominance correlate positively with male physical strength. A positive relationship also has been reported between physical strength and attractiveness of men's dance movements. Here, we investigate men's and women's attractiveness, dominance, and strength assessments from brief samples of male gait. Handgrip strength (HGS) was measured in 70 heterosexual men and their gait was motion-captured. Men and women judged 20 precategorized strong (high HGS) and weak (low HGS) walkers on attractiveness, dominance, and strength, and provided a measure of their own HGS. Both men and women judged strong walkers higher on dominance and strength than weak walkers. Women but not men judged strong walkers more attractive than weak walkers. These effects were independent of observers' physical strength. Male physical strength is conveyed not only through facial and body morphology, but also through body movements. We discuss our findings with reference to studies suggesting that physical strength provides information about male quality in contexts of inter- and intrasexual selection. Am. J. Hum. Biol. 28:913-917, 2016. © 2016Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. SPONTANEOUS FORMATION OF SURFACE MAGNETIC STRUCTURE FROM LARGE-SCALE DYNAMO IN STRONGLY STRATIFIED CONVECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masada, Youhei; Sano, Takayoshi, E-mail: ymasada@auecc.aichi-edu.ac.jp, E-mail: sano@ile.osaka-u.ac.jp

    We report the first successful simulation of spontaneous formation of surface magnetic structures from a large-scale dynamo by strongly stratified thermal convection in Cartesian geometry. The large-scale dynamo observed in our strongly stratified model has physical properties similar to those in earlier weakly stratified convective dynamo simulations, indicating that the α {sup 2}-type mechanism is responsible for the dynamo. In addition to the large-scale dynamo, we find that large-scale structures of the vertical magnetic field are spontaneously formed in the convection zone (CZ) surface only in cases with a strongly stratified atmosphere. The organization of the vertical magnetic field proceedsmore » in the upper CZ within tens of convective turnover time and band-like bipolar structures recurrently appear in the dynamo-saturated stage. We consider several candidates to be possibly be the origin of the surface magnetic structure formation, and then suggest the existence of an as-yet-unknown mechanism for the self-organization of the large-scale magnetic structure, which should be inherent in the strongly stratified convective atmosphere.« less

  8. Strong seismic wave scattering beneath Kanto region derived from dense K-NET/KiK-net strong motion network and numerical simulation

    NASA Astrophysics Data System (ADS)

    Takemura, S.; Yoshimoto, K.

    2013-12-01

    Observed seismograms, which consist of the high-frequency body waves through the low-velocity (LV) region at depth of 20-40 km beneath northwestern Chiba in Kanto, show strong peak delay and spindle shape of S waves. By analyzing dense seismic records from K-NET/KiK-net, such spindle-shape S waves are clearly observed in the frequency range of 1-8 Hz. In order to investigate a specific heterogeneous structure to generate such observations, we conduct 3-D finite-difference method (FDM) simulation using realistic heterogeneous models and compare the simulation results with dense strong motion array observations. Our 3-D simulation model is covering the zone 150 km by 64 km in horizontal directions and 75 km in vertical direction, which has been discretized with uniform grid size 0.05 km. We assume a layered background velocity structure, which includes basin structure, crust, mantle and subducting oceanic plate, base on the model proposed by Koketsu et al. (2008). In order to introduce the effect of seismic wave scattering, we assume a stochastic random velocity fluctuation in each layer. Random velocity fluctuations are characterized by exponential-type auto-correlation function (ACF) with correlation distance a = 3 km and rms value of fluctuation e = 0.05 in the upper crust, a = 3 km and e = 0.07 in the lower crust, a = 10 km and e = 0.02 in the mantle. In the subducting oceanic plate, we assume an anisotropic random velocity fluctuation characterized by exponential-type ACF with aH = 10 km in horizontal direction, aZ = 0.5 km in vertical direction and e = 0.02 (e.g., Furumura and Kennett, 2005). In addition, we assume a LV zone at northeastern part of Chiba with depth of 20-40 km (e.g., Matsubara et al., 2004). In the LV zone, random velocity fluctuation characterized by Gaussian-type ACF with a = 1 km and e = 0.07 is superposed on exponential-type ACF with a = 3 km and e = 0.07, in order to modulate the S-wave propagation in the dominant frequency range of

  9. PICS: SIMULATIONS OF STRONG GRAVITATIONAL LENSING IN GALAXY CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Nan; Gladders, Michael D.; Florian, Michael K.

    2016-09-01

    Gravitational lensing has become one of the most powerful tools available for investigating the “dark side” of the universe. Cosmological strong gravitational lensing, in particular, probes the properties of the dense cores of dark matter halos over decades in mass and offers the opportunity to study the distant universe at flux levels and spatial resolutions otherwise unavailable. Studies of strongly lensed variable sources offer even further scientific opportunities. One of the challenges in realizing the potential of strong lensing is to understand the statistical context of both the individual systems that receive extensive follow-up study, as well as that ofmore » the larger samples of strong lenses that are now emerging from survey efforts. Motivated by these challenges, we have developed an image simulation pipeline, Pipeline for Images of Cosmological Strong lensing (PICS), to generate realistic strong gravitational lensing signals from group- and cluster-scale lenses. PICS uses a low-noise and unbiased density estimator based on (resampled) Delaunay Tessellations to calculate the density field; lensed images are produced by ray-tracing images of actual galaxies from deep Hubble Space Telescope observations. Other galaxies, similarly sampled, are added to fill in the light cone. The pipeline further adds cluster member galaxies and foreground stars into the lensed images. The entire image ensemble is then observed using a realistic point-spread function that includes appropriate detector artifacts for bright stars. Noise is further added, including such non-Gaussian elements as noise window-paning from mosaiced observations, residual bad pixels, and cosmic rays. The aim is to produce simulated images that appear identical—to the eye (expert or otherwise)—to real observations in various imaging surveys.« less

  10. PICS: SIMULATIONS OF STRONG GRAVITATIONAL LENSING IN GALAXY CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Nan; Gladders, Michael D.; Rangel, Esteban M.

    2016-08-29

    Gravitational lensing has become one of the most powerful tools available for investigating the “dark side” of the universe. Cosmological strong gravitational lensing, in particular, probes the properties of the dense cores of dark matter halos over decades in mass and offers the opportunity to study the distant universe at flux levels and spatial resolutions otherwise unavailable. Studies of strongly lensed variable sources offer even further scientific opportunities. One of the challenges in realizing the potential of strong lensing is to understand the statistical context of both the individual systems that receive extensive follow-up study, as well as that ofmore » the larger samples of strong lenses that are now emerging from survey efforts. Motivated by these challenges, we have developed an image simulation pipeline, Pipeline for Images of Cosmological Strong lensing (PICS), to generate realistic strong gravitational lensing signals from group- and cluster-scale lenses. PICS uses a low-noise and unbiased density estimator based on (resampled) Delaunay Tessellations to calculate the density field; lensed images are produced by ray-tracing images of actual galaxies from deep Hubble Space Telescope observations. Other galaxies, similarly sampled, are added to fill in the light cone. The pipeline further adds cluster member galaxies and foreground stars into the lensed images. The entire image ensemble is then observed using a realistic point-spread function that includes appropriate detector artifacts for bright stars. Noise is further added, including such non-Gaussian elements as noise window-paning from mosaiced observations, residual bad pixels, and cosmic rays. The aim is to produce simulated images that appear identical—to the eye (expert or otherwise)—to real observations in various imaging surveys.« less

  11. Strong Lg-wave attenuation in the Middle East continental collision orogenic belt

    NASA Astrophysics Data System (ADS)

    Zhao, Lian-Feng; Xie, Xiao-Bi

    2016-04-01

    Using Lg-wave Q tomography, we construct a broadband crustal attenuation model for the Middle East. The QLg images reveal a relationship between attenuation and geological structures. Strong attenuation is found in the continental collision orogenic belt that extends from the Turkish and Iranian plateau to the Pamir plateau. We investigate the frequency dependence of QLg in different geologic formations. The results illustrate that QLg values generally increase with increasing frequency but exhibit complex relationships both with frequency and between regions. An average QLg value between 0.2 and 2.0 Hz, QLg (0.2-2.0 Hz), may be a critical index for crustal attenuation and is used to infer the regional geology. Low-QLg anomalies are present in the eastern Turkish plateau and correlate well with low Pn-velocities and Cenozoic volcanic activity, thus indicating possible partial melting within the crust in this region. Very strong attenuation is also observed in central Iran, the Afghanistan block, and the southern Caspian Sea. This in line with the previously observed high crustal temperature, high-conductivity layers, and thick marine sediments in these areas, suggests the high Lg attenuation is caused by abnormally high tectonic and thermal activities.

  12. Statistical Evidence Suggests that Inattention Drives Hyperactivity/Impulsivity in Attention Deficit-Hyperactivity Disorder

    PubMed Central

    Sokolova, Elena; Groot, Perry; Claassen, Tom; van Hulzen, Kimm J.; Glennon, Jeffrey C.; Franke, Barbara

    2016-01-01

    Background Numerous factor analytic studies consistently support a distinction between two symptom domains of attention-deficit/hyperactivity disorder (ADHD), inattention and hyperactivity/impulsivity. Both dimensions show high internal consistency and moderate to strong correlations with each other. However, it is not clear what drives this strong correlation. The aim of this paper is to address this issue. Method We applied a sophisticated approach for causal discovery on three independent data sets of scores of the two ADHD dimensions in NeuroIMAGE (total N = 675), ADHD-200 (N = 245), and IMpACT (N = 164), assessed by different raters and instruments, and further used information on gender or a genetic risk haplotype. Results In all data sets we found strong statistical evidence for the same pattern: the clear dependence between hyperactivity/impulsivity symptom level and an established genetic factor (either gender or risk haplotype) vanishes when one conditions upon inattention symptom level. Under reasonable assumptions, e.g., that phenotypes do not cause genotypes, a causal model that is consistent with this pattern contains a causal path from inattention to hyperactivity/impulsivity. Conclusions The robust dependency cancellation observed in three different data sets suggests that inattention is a driving factor for hyperactivity/impulsivity. This causal hypothesis can be further validated in intervention studies. Our model suggests that interventions that affect inattention will also have an effect on the level of hyperactivity/impulsivity. On the other hand, interventions that affect hyperactivity/impulsivity would not change the level of inattention. This causal model may explain earlier findings on heritable factors causing ADHD reported in the study of twins with learning difficulties. PMID:27768717

  13. Impact of Langmuir Turbulence on Upper Ocean Response to Hurricane Edouard: Model and Observations

    NASA Astrophysics Data System (ADS)

    Blair, A.; Ginis, I.; Hara, T.; Ulhorn, E.

    2017-12-01

    Tropical cyclone intensity is strongly affected by the air-sea heat flux beneath the storm. When strong storm winds enhance upper ocean turbulent mixing and entrainment of colder water from below the thermocline, the resulting sea surface temperature cooling may reduce the heat flux to the storm and weaken the storm. Recent studies suggest that this upper ocean turbulence is strongly affected by different sea states (Langmuir turbulence), which are highly complex and variable in tropical cyclone conditions. In this study, the upper ocean response under Hurricane Edouard (2014) is investigated using a coupled ocean-wave model with and without an explicit sea state dependent Langmuir turbulence parameterization. The results are compared with in situ observations of sea surface temperature and mixed layer depth from AXBTs, as well as satellite sea surface temperature observations. Overall, the model results of mixed layer deepening and sea surface temperature cooling under and behind the storm are consistent with observations. The model results show that the effects of sea state dependent Langmuir turbulence can be significant, particularly on the mixed layer depth evolution. Although available observations are not sufficient to confirm such effects, some observed trends suggest that the sea state dependent parameterization might be more accurate than the traditional (sea state independent) parameterization.

  14. Curvature from Strong Gravitational Lensing: A Spatially Closed Universe or Systematics?

    NASA Astrophysics Data System (ADS)

    Li, Zhengxiang; Ding, Xuheng; Wang, Guo-Jian; Liao, Kai; Zhu, Zong-Hong

    2018-02-01

    Model-independent constraints on the spatial curvature are not only closely related to important problems, such as the evolution of the universe and properties of dark energy, but also provide a test of the validity of the fundamental Copernican principle. In this paper, with the distance sum rule in the Friedmann–Lemaître–Robertson–Walker metric, we achieve model-independent measurements of the spatial curvature from the latest type Ia supernovae and strong gravitational lensing (SGL) observations. We find that a spatially closed universe is preferred. Moreover, by considering different kinds of velocity dispersion and subsamples, we study possible factors that might affect model-independent estimations for the spatial curvature from SGL observations. It is suggested that the combination of observational data from different surveys might cause a systematic bias, and the tension between the spatially flat universe and SGL observations is alleviated when the subsample only from the Sloan Lens ACS Survey is used or a more complex treatment for the density profile of lenses is considered.

  15. Evaluation of and Suggested Improvements to the WSM6 Microphysics in WRF- ARW Using Synthetic and Observed GOES-13 Imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grasso, Lewis; Lindsey, Daniel T.; Lim, Kyo-Sun

    Synthetic satellite imagery can be employed to evaluate simulated cloud fields. Past studies have revealed that the Weather Research and Forecasting (WRF) WRF Single-Moment 6-class (WSM6) microphysics in WRF-ARW produces less upper level ice clouds within synthetic images compared to observations. Synthetic Geostationary Operational Environmental Satellite (GOES)-13 imagery at 10.7 μm of simulated cloud fields from the 4 km National Severe Storms Laboratory (NSSL) WRF-ARW is compared to observed GOES-13 imagery. Histograms suggest that too few points contain upper level simulated ice clouds. In particular, side-by-side examples are shown of synthetic and observed convective anvils. Such images illustrate the lackmore » of anvil cloud associated with convection produced by the NSSL WRF-ARW. A vertical profile of simulated hydrometeors suggests that too much cloud water mass may be converted into graupel mass, effectively reducing the main source of ice mass in a simulated anvil. Further, excessive accretion of ice by snow removes ice from an anvil by precipitation settling. Idealized sensitivity tests reveal that a 50% reduction of the conversion of cloud water mass to graupel and a 50% reduction of the accretion rate of ice by snow results in a significant increase in anvil ice of a simulated storm. Such results provide guidance as to which conversions could be reformulated, in a more physical manner, to increase simulated ice mass in the upper troposphere.« less

  16. Strongly interacting dynamics beyond the standard model on a space-time lattice.

    PubMed

    Lucini, Biagio

    2010-08-13

    Strong theoretical arguments suggest that the Higgs sector of the standard model of electroweak interactions is an effective low-energy theory, with a more fundamental theory expected to emerge at an energy scale of the order of a teraelectronvolt. One possibility is that the more fundamental theory is strongly interacting and the Higgs sector is given by the low-energy dynamics of the underlying theory. I review recent works aimed at determining observable quantities by numerical simulations of strongly interacting theories proposed in the literature to explain the electroweak symmetry-breaking mechanism. These investigations are based on Monte Carlo simulations of the theory formulated on a space-time lattice. I focus on the so-called minimal walking technicolour scenario, an SU(2) gauge theory with two flavours of fermions in the adjoint representation. The emerging picture is that this theory has an infrared fixed point that dominates the large-distance physics. I shall discuss the first numerical determinations of quantities of phenomenological interest for this theory and analyse future directions of quantitative studies of strongly interacting theories beyond the standard model with lattice techniques. In particular, I report on a finite size scaling determination of the chiral condensate anomalous dimension gamma, for which 0.05 < or = gamma < or = 0.25.

  17. Strongly Magnetized Accretion Disks in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Begelman, Mitchell

    Accretion disks likely provide the conduit for fueling active galactic nuclei (AGN), linking the black hole's immediate surroundings to the host galaxy's nuclear star cluster, and possibly beyond. Yet detailed AGN disk models fail to explain several of the most basic observational features of AGN: How do the outer regions of the disk avoid stalling as a result of wholesale gravitational fragmentation? What regulates the amount of star formation that is inferred to accompany accretion in some AGN? Why is the broad emission line region a ubiquitous feature of luminous AGN? What processes create and maintain the so-called "dusty torus"? Analytic work suggests that vertical pressure support of the disk primarily by a toroidal magnetic field, rather than by gas or radiation pressure, can readily resolve these problems. And recent numerical simulations have indicated that such a strong toroidal field is the inevitable consequence of the magnetorotational instability (MRI) when a disk accumulates a modest amount of net magnetic flux, thus providing a sound theoretical basis for strongly magnetized disks. We propose an analytic and computational study of such disks in the AGN context, focusing on: (1) The basic physical properties of strongly magnetized AGN disks. We will focus on the competition between field generation and buoyancy, improving on previous work by considering realistic equations of state, dissipative processes and radiative losses. We will use global simulations to test the limiting magnetic fields that can be produced by MRIdriven accretion disk dynamos and explore the driving mechanisms of disk winds and the resulting levels of mass, angular momentum and energy loss. (2) Gravitational fragmentation and star formation in strongly magnetized disks. We will determine how a strong field reduces and regulates gravitational fragmentation, by both lowering the disk density and creating a stratified structure in which star formation near the equator can co

  18. A theoretical model of strong and moderate El Niño regimes

    NASA Astrophysics Data System (ADS)

    Takahashi, Ken; Karamperidou, Christina; Dewitte, Boris

    2018-02-01

    The existence of two regimes for El Niño (EN) events, moderate and strong, has been previously shown in the GFDL CM2.1 climate model and also suggested in observations. The two regimes have been proposed to originate from the nonlinearity in the Bjerknes feedback, associated with a threshold in sea surface temperature (T_c ) that needs to be exceeded for deep atmospheric convection to occur in the eastern Pacific. However, although the recent 2015-16 EN event provides a new data point consistent with the sparse strong EN regime, it is not enough to statistically reject the null hypothesis of a unimodal distribution based on observations alone. Nevertheless, we consider the possibility suggestive enough to explore it with a simple theoretical model based on the nonlinear Bjerknes feedback. In this study, we implemented this nonlinear mechanism in the recharge-discharge (RD) ENSO model and show that it is sufficient to produce the two EN regimes, i.e. a bimodal distribution in peak surface temperature (T) during EN events. The only modification introduced to the original RD model is that the net damping is suppressed when T exceeds T_c , resulting in a weak nonlinearity in the system. Due to the damping, the model is globally stable and it requires stochastic forcing to maintain the variability. The sustained low-frequency component of the stochastic forcing plays a key role for the onset of strong EN events (i.e. for T>T_c ), at least as important as the precursor positive heat content anomaly (h). High-frequency forcing helps some EN events to exceed T_c , increasing the number of strong events, but the rectification effect is small and the overall number of EN events is little affected by this forcing. Using the Fokker-Planck equation, we show how the bimodal probability distribution of EN events arises from the nonlinear Bjerknes feedback and also propose that the increase in the net feedback with increasing T is a necessary condition for bimodality in the RD

  19. Detection of a strongly negative surface potential at Saturn's moon Hyperion.

    PubMed

    Nordheim, T A; Jones, G H; Roussos, E; Leisner, J S; Coates, A J; Kurth, W S; Khurana, K K; Krupp, N; Dougherty, M K; Waite, J H

    2014-10-28

    On 26 September 2005, Cassini conducted its only close targeted flyby of Saturn's small, irregularly shaped moon Hyperion. Approximately 6 min before the closest approach, the electron spectrometer (ELS), part of the Cassini Plasma Spectrometer (CAPS) detected a field-aligned electron population originating from the direction of the moon's surface. Plasma wave activity detected by the Radio and Plasma Wave instrument suggests electron beam activity. A dropout in energetic electrons was observed by both CAPS-ELS and the Magnetospheric Imaging Instrument Low-Energy Magnetospheric Measurement System, indicating that the moon and the spacecraft were magnetically connected when the field-aligned electron population was observed. We show that this constitutes a remote detection of a strongly negative (∼ -200 V) surface potential on Hyperion, consistent with the predicted surface potential in regions near the solar terminator.

  20. IUE observations of RW Hydrae /gM2 + pec/

    NASA Astrophysics Data System (ADS)

    Kafatos, M.; Michalitsianos, A. G.; Hobbs, R. W.

    1980-08-01

    Analysis of the intense UV continuum observed between 1100 and 2000 A suggested that observations of the late type star RW Hya is a binary system in which the secondary is the central star of a planetary nebula. The UV spectrum is characterized by semiforbidden and allowed transition lines, of which the C IV doublet is particularly strong. Tidal interaction from the M giant is proposed as a method of forming a nebula with the characteristic densities inferred from the UV line analysis. RW Hya is suggested as a possible source of soft X-ray emission if material is accreting onto the surface of the secondary.

  1. IUE observations of RW Hydrae /gM2 + pec/

    NASA Technical Reports Server (NTRS)

    Kafatos, M.; Michalitsianos, A. G.; Hobbs, R. W.

    1980-01-01

    Analysis of the intense UV continuum observed between 1100 and 2000 A suggested that observations of the late type star RW Hya is a binary system in which the secondary is the central star of a planetary nebula. The UV spectrum is characterized by semiforbidden and allowed transition lines, of which the C IV doublet is particularly strong. Tidal interaction from the M giant is proposed as a method of forming a nebula with the characteristic densities inferred from the UV line analysis. RW Hya is suggested as a possible source of soft X-ray emission if material is accreting onto the surface of the secondary.

  2. Examination Of A Strong Downslope Warming Wind Event Over The Larsen Ice Shelf In Antarctica Through Modeling And Aircraft Observations

    NASA Astrophysics Data System (ADS)

    Grosvenor, D. P.; Choularton, T. W.; Gallagher, M. W.; Lachlan-Cope, T. A.; King, J. C.

    2009-12-01

    The high mountains of the Antarctic Peninsula (AP) provide a climatic barrier between the west and east. The east side is generally blocked from the warmer oceanic air of the west and is consequently usually under the influence of colder continental air. On occasion, however, air from the west can cross the barrier in the form of strong winds travelling down the eastern slopes, which are also very warm and dry due to adiabatic descent. They penetrate onto the Larsen ice shelves where they lead to above zero surface temperatures and are therefore likely to encourage surface melting. Crevasse propagation due to the weight of accumulated meltwater is currently thought to have been the major factor in causing the near total disintegration of the Larsen B ice shelf in 2002. In January 2006 the British Antarctic Survey performed an aircraft flight over the Larsen C ice shelf on the east side of the AP, which sampled a strong downslope wind event. Surface flux measurements over the ice shelf suggest that the sensible heat provided by the warm jets would be likely to be negated by latent heat losses from ice ablation. The main cause of any ice melting was likely to be due to shortwave radiation input. However, the warming from the jets is still likely to be important by acting as an on/off control for melting by keeping air temperatures above zero. In addition, the dryness of the winds is likely to prevent cloud cover and thus maximize exposure of the ice shelf to solar energy input. This case study has been modeled using the WRF mesoscale model. The model reproduces the strong downslope winds seen by the aircraft with good comparisons of wind speed and temperature profiles through the wind jets. Further comparisons to surface station data have allowed progress towards achieving the best set up of the model for this case. The modeling agrees with the results of the aircraft study in suggesting that solar radiation input is likely to provide the largest amount of energy for

  3. Coherent Vortices in Strongly Coupled Liquids

    NASA Astrophysics Data System (ADS)

    Ashwin, J.; Ganesh, R.

    2011-04-01

    Strongly coupled liquids are ubiquitous in both nature and laboratory plasma experiments. They are unique in the sense that their average potential energy per particle dominates over the average kinetic energy. Using “first principles” molecular dynamics (MD) simulations, we report for the first time the emergence of isolated coherent tripolar vortices from the evolution of axisymmetric flows in a prototype two-dimensional (2D) strongly coupled liquid, namely, the Yukawa liquid. Linear growth rates directly obtained from MD simulations are compared with a generalized hydrodynamic model. Our MD simulations reveal that the tripolar vortices persist over several turn over times and hence may be observed in strongly coupled liquids such as complex plasma, liquid metals and astrophysical systems such as white dwarfs and giant planetary interiors, thereby making the phenomenon universal.

  4. The study of key issues about integration of GNSS and strong-motion records for real-time earthquake monitoring

    NASA Astrophysics Data System (ADS)

    Tu, Rui; Zhang, Pengfei; Zhang, Rui; Liu, Jinhai

    2016-08-01

    This paper has studied the key issues about integration of GNSS and strong-motion records for real-time earthquake monitoring. The validations show that the consistence of the coordinate system must be considered firstly to exclude the system bias between GNSS and strong-motion. The GNSS sampling rate is suggested about 1-5 Hz, and we should give the strong-motion's baseline shift with a larger dynamic noise as its variation is very swift. The initialization time of solving the baseline shift is less than one minute, and ambiguity resolution strategy is not greatly improved the solution. The data quality is very important for the solution, we advised to use multi-frequency and multi-system observations. These ideas give an important guide for real-time earthquake monitoring and early warning by the tight integration of GNSS and strong-motion records.

  5. Highly Selective Coupling of Alkenes and Aldehydes Catalyzed by NHC–Ni–P(OPh)3: Synergy Between a Strong σ-Donor and a Strong π-Acceptor**

    PubMed Central

    Ho, Chun-Yu; Jamison, Timothy F.

    2011-01-01

    Both a strong electron donor (IPr) and a strong electron acceptor (P(OPh)3) are necessary for a highly selective, nickel-catalyzed coupling reaction between alkenes, aldehydes, and silyltriflates. Without the phosphite, catalysis is not observed and several side reactions are observed. The phosphite appears to suppress the formation of these byproducts and rescue the catalytic cycle by accelerating reductive elimination from an (IPr–Ni–H)(OTf) complex. PMID:17154217

  6. Quantum Liquid Crystal Phases in Strongly Correlated Fermionic Systems

    ERIC Educational Resources Information Center

    Sun, Kai

    2009-01-01

    This thesis is devoted to the investigation of the quantum liquid crystal phases in strongly correlated electronic systems. Such phases are characterized by their partially broken spatial symmetries and are observed in various strongly correlated systems as being summarized in Chapter 1. Although quantum liquid crystal phases often involve…

  7. Spatial structure of seagrass suggests that size-dependent plant traits have a strong influence on the distribution and maintenance of tropical multispecies meadows.

    PubMed

    Ooi, Jillian L S; Van Niel, Kimberly P; Kendrick, Gary A; Holmes, Karen W

    2014-01-01

    Seagrass species in the tropics occur in multispecies meadows. How these meadows are maintained through species co-existence and what their ecological drivers may be has been an overarching question in seagrass biogeography. In this study, we quantify the spatial structure of four co-existing species and infer potential ecological processes from these structures. Species presence/absence data were collected using underwater towed and dropped video cameras in Pulau Tinggi, Malaysia. The geostatistical method, utilizing semivariograms, was used to describe the spatial structure of Halophila spp, Halodule uninervis, Syringodium isoetifolium and Cymodocea serrulata. Species had spatial patterns that were oriented in the along-shore and across-shore directions, nested with larger species in meadow interiors, and consisted of multiple structures that indicate the influence of 2-3 underlying processes. The Linear Model of Coregionalization (LMC) was used to estimate the amount of variance contributing to the presence of a species at specific spatial scales. These distances were <2.5 m (micro-scale), 2.5-50 m (fine-scale) and >50 m (broad-scale) in the along-shore; and <2.5 m (micro-scale), 2.5-140 m (fine-scale) and >140 m (broad-scale) in the across-shore. The LMC suggests that smaller species (Halophila spp and H. uninervis) were most influenced by broad-scale processes such as hydrodynamics and water depth whereas large, localised species (S. isoetifolium and C. serrulata) were more influenced by finer-scale processes such as sediment burial, seagrass colonization and growth, and physical disturbance. In this study, we provide evidence that spatial structure is distinct even when species occur in well-mixed multispecies meadows, and we suggest that size-dependent plant traits have a strong influence on the distribution and maintenance of tropical marine plant communities. This study offers a contrast from previous spatial models of seagrasses which have largely focused

  8. High-resolution, terrestrial radar velocity observations and model results reveal a strong bed at stable, tidewater Rink Isbræ, West Greenland

    NASA Astrophysics Data System (ADS)

    Bartholomaus, T. C.; Walker, R. T.; Stearns, L. A.; Fahnestock, M. A.; Cassotto, R.; Catania, G. A.; Felikson, D.; Fried, M.; Sutherland, D.; Nash, J. D.; Shroyer, E.

    2015-12-01

    At tidewater Rink Isbræ, on the central west coast of Greenland, satellite observations reveal that glacier velocities and terminus positions have remained stable, while the lowest 25 km have thinned 30 m since 1985. Over this same time period, other tidewater glaciers in central west Greenland have retreated, thinned and accelerated. Here we present field observations and model results to show that the flow of Rink Isbræ is resisted by unusually high basal shear stresses. Terrestrial radar interferometry (TRI) observations over 9 days in summer 2014 demonstrate weak velocity response to 4 km wide, full thickness calving events. Velocities at the terminus change by +/- 10% in response to rising and falling tides within a partial-width, 2.5-km-long floating ice tongue; however these tidal perturbations damp out within 2 km of the grounding line. Inversions for basal shear stress and force balance analyses together show that basal shear stresses in excess of 300 kPa support the majority of the driving stress at thick, steep Rink Isbræ. These observational and modeling results tell a consistent story in which a strong bed may limit the unstable tidewater glacier retreats observed elsewhere. Rink Isbræ has an erosion resistant quartzite bed with low fracture density. We hypothesize that this geology may play a major role in the bed strength.

  9. Net Fluorescein Flux Across Corneal Endothelium Strongly Suggests Fluid Transport is due to Electro-osmosis.

    PubMed

    Sanchez, J M; Cacace, V; Kusnier, C F; Nelson, R; Rubashkin, A A; Iserovich, P; Fischbarg, J

    2016-08-01

    We have presented prior evidence suggesting that fluid transport results from electro-osmosis at the intercellular junctions of the corneal endothelium. Such phenomenon ought to drag other extracellular solutes. We have investigated this using fluorescein-Na2 as an extracellular marker. We measured unidirectional fluxes across layers of cultured human corneal endothelial (HCE) cells. SV-40-transformed HCE layers were grown to confluence on permeable membrane inserts. The medium was DMEM with high glucose and no phenol red. Fluorescein-labeled medium was placed either on the basolateral or the apical side of the inserts; the other side carried unlabeled medium. The inserts were held in a CO2 incubator for 1 h (at 37 °C), after which the entire volume of the unlabeled side was collected. After that, label was placed on the opposite side, and the corresponding paired sample was collected after another hour. Fluorescein counts were determined with a (Photon Technology) DeltaScan fluorometer (excitation 380 nm; emission 550 nm; 2 nm bwth). Samples were read for 60 s. The cells utilized are known to transport fluid from the basolateral to the apical side, just as they do in vivo in several species. We used 4 inserts for influx and efflux (total: 20 1-h periods). We found a net flux of fluorescein from the basolateral to the apical side. The flux ratio was 1.104 ± 0.056. That difference was statistically significant (p = 0.00006, t test, paired samples). The endothelium has a definite restriction at the junctions. Hence, an asymmetry in unidirectional fluxes cannot arise from osmosis, and can only point instead to paracellular solvent drag. We suggest, once more, that such drag is due to electro-osmotic coupling at the paracellular junctions.

  10. Do cancer proteins really interact strongly in the human protein-protein interaction network?

    PubMed Central

    Xia, Junfeng; Sun, Jingchun; Jia, Peilin; Zhao, Zhongming

    2011-01-01

    Protein-protein interaction (PPI) network analysis has been widely applied in the investigation of the mechanisms of diseases, especially cancer. Recent studies revealed that cancer proteins tend to interact more strongly than other categories of proteins, even essential proteins, in the human interactome. However, it remains unclear whether this observation was introduced by the bias towards more cancer studies in humans. Here, we examined this important issue by uniquely comparing network characteristics of cancer proteins with three other sets of proteins in four organisms, three of which (fly, worm, and yeast) whose interactomes are essentially not biased towards cancer or other diseases. We confirmed that cancer proteins had stronger connectivity, shorter distance, and larger betweenness centrality than non-cancer disease proteins, essential proteins, and control proteins. Our statistical evaluation indicated that such observations were overall unlikely attributed to random events. Considering the large size and high quality of the PPI data in the four organisms, the conclusion that cancer proteins interact strongly in the PPI networks is reliable and robust. This conclusion suggests that perturbation of cancer proteins might cause major changes of cellular systems and result in abnormal cell function leading to cancer. PMID:21666777

  11. Strong-lensing analysis of MACS J0717.5+3745 from Hubble Frontier Fields observations: How well can the mass distribution be constrained?

    NASA Astrophysics Data System (ADS)

    Limousin, M.; Richard, J.; Jullo, E.; Jauzac, M.; Ebeling, H.; Bonamigo, M.; Alavi, A.; Clément, B.; Giocoli, C.; Kneib, J.-P.; Verdugo, T.; Natarajan, P.; Siana, B.; Atek, H.; Rexroth, M.

    2016-04-01

    We present a strong-lensing analysis of MACSJ0717.5+3745 (hereafter MACS J0717), based on the full depth of the Hubble Frontier Field (HFF) observations, which brings the number of multiply imaged systems to 61, ten of which have been spectroscopically confirmed. The total number of images comprised in these systems rises to 165, compared to 48 images in 16 systems before the HFF observations. Our analysis uses a parametric mass reconstruction technique, as implemented in the Lenstool software, and the subset of the 132 most secure multiple images to constrain a mass distribution composed of four large-scale mass components (spatially aligned with the four main light concentrations) and a multitude of galaxy-scale perturbers. We find a superposition of cored isothermal mass components to provide a good fit to the observational constraints, resulting in a very shallow mass distribution for the smooth (large-scale) component. Given the implications of such a flat mass profile, we investigate whether a model composed of "peaky" non-cored mass components can also reproduce the observational constraints. We find that such a non-cored mass model reproduces the observational constraints equally well, in the sense that both models give comparable total rms. Although the total (smooth dark matter component plus galaxy-scale perturbers) mass distributions of both models are consistent, as are the integrated two-dimensional mass profiles, we find that the smooth and the galaxy-scale components are very different. We conclude that, even in the HFF era, the generic degeneracy between smooth and galaxy-scale components is not broken, in particular in such a complex galaxy cluster. Consequently, insights into the mass distribution of MACS J0717 remain limited, emphasizing the need for additional probes beyond strong lensing. Our findings also have implications for estimates of the lensing magnification. We show that the amplification difference between the two models is larger

  12. Correlated electron and nuclear dynamics in strong field photoionization of H(2)(+).

    PubMed

    Silva, R E F; Catoire, F; Rivière, P; Bachau, H; Martín, F

    2013-03-15

    We present a theoretical study of H(2)(+) ionization under strong IR femtosecond pulses by using a method designed to extract correlated (2D) photoelectron and proton kinetic energy spectra. The results show two distinct ionization mechanisms-tunnel and multiphoton ionization-in which electrons and nuclei do not share the energy from the field in the same way. Electrons produced in multiphoton ionization share part of their energy with the nuclei, an effect that shows up in the 2D spectra in the form of energy-conservation fringes similar to those observed in weak-field ionization of diatomic molecules. In contrast, tunneling electrons lead to fringes whose position does not depend on the proton kinetic energy. At high intensity, the two processes coexist and the 2D plots show a very rich behavior, suggesting that the correlation between electron and nuclear dynamics in strong field ionization is more complex than one would have anticipated.

  13. PREFACE: Strongly Coupled Coulomb Systems Strongly Coupled Coulomb Systems

    NASA Astrophysics Data System (ADS)

    Neilson, David; Senatore, Gaetano

    2009-05-01

    , condensed matter and ultra-cold plasmas. One hundred and thirty participants came from twenty countries and four continents to participate in the conference. Those giving presentations were asked to contribute to this special issue to make a representative record of an interesting conference. We thank the International Advisory Board and the Programme Committee for their support and suggestions. We thank the Local Organizing Committee (Stefania De Palo, Vittorio Pellegrini, Andrea Perali and Pierbiagio Pieri) for all their efforts. We highlight for special mention the dedication displayed by Andrea Perali, by Rocco di Marco for computer support, and by our tireless conference secretary Fiorella Paino. The knowledgeable guided tour of the historic centre of Camerino given by Fiorella Paino was appreciated by many participants. It is no exaggeration to say that without the extraordinary efforts put in by these three, the conference could not have been the success that it was. For their sustained interest and support we thank Fulvio Esposito, Rector of the University of Camerino, Fabio Beltram, Director of NEST, Scuola Normale Superiore, Pisa, and Daniel Cox, Co-Director of ICAM, University of California at Davis. We thank the Institute of Complex and Adaptive Matter ICAM-I2CAM, USA for providing a video record of the conference on the web (found at http://sccs2008.df.unicam.it/). Finally we thank the conference sponsors for their very generous support: the University of Camerino, the Institute of Complex and Adaptive Matter ICAM-I2CAM, USA, the International Centre for Theoretical Physics ICTP Trieste, and CNR-INFM DEMOCRITOS Modeling Center for Research in Atomistic Simulation, Trieste. Participants at the International Conference on Strongly Coupled Coulomb Systems (SCCS) (University of Camerino, Italy, 29 July-2 August 2008).

  14. Condensation to a strongly correlated dark fluid of two dimensional dipolar excitons

    NASA Astrophysics Data System (ADS)

    Mazuz-Harpaz, Yotam; Cohen, Kobi; Rapaport, Ronen

    2017-08-01

    Recently we reported on the condensation of cold, electrostatically trapped dipolar excitons in GaAs bilayer heterostructure into a new, dense and dark collective phase. Here we analyze and discuss in detail the experimental findings and the emerging evident properties of this collective liquid-like phase. We show that the phase transition is characterized by a sharp increase of the number of non-emitting dipoles, by a clear contraction of the fluid spatial extent into the bottom of the parabolic-like trap, and by spectral narrowing. We extract the total density of the condensed phase which we find to be consistent with the expected density regime of a quantum liquid. We show that there are clear critical temperature and excitation power onsets for the phase transition and that as the power further increases above the critical power, the strong darkening is reduced down until no clear darkening is observed. At this point another transition appears which we interpret as a transition to a strongly repulsive yet correlated e-h plasma. Based on the experimental findings, we suggest that the physical mechanism that may be responsible for the transition is a dynamical final-state stimulation of the dipolar excitons to their dark spin states, which have a long lifetime and thus support the observed sharp increase in density. Further experiments and modeling will hopefully be able to unambiguously identify the physical mechanism behind these recent observations.

  15. Accurate diblock copolymer phase boundaries at strong segregations

    NASA Astrophysics Data System (ADS)

    Matsen, M. W.; Whitmore, M. D.

    1996-12-01

    We examine the lamellar/cylinder and cylinder/sphere phase boundaries for strongly segregated diblock copolymer melts using self-consistent-field theory (SCFT) and the standard Gaussian chain model. Calculations are performed with and without the conventional unit-cell approximation (UCA). We find that for strongly segregated melts, the UCA simply produces a small constant shift in each of the phase boundaries. Furthermore, the boundaries are found to be linear at strong segregations when plotted versus (χN)-1, which allows for accurate extrapolations to χN=∞. Our calculations using the UCA allow direct comparisons to strong-segregation theory (SST), which is accepted as the χN=∞ limit of SCFT. A significant discrepancy between the SST and SCFT results indicate otherwise, suggesting that the present formulation of SST is incomplete.

  16. Early Observations of the Type Ia Supernova iPTF 16abc: A Case of Interaction with Nearby, Unbound Material and/or Strong Ejecta Mixing

    NASA Astrophysics Data System (ADS)

    Miller, A. A.; Cao, Y.; Piro, A. L.; Blagorodnova, N.; Bue, B. D.; Cenko, S. B.; Dhawan, S.; Ferretti, R.; Fox, O. D.; Fremling, C.; Goobar, A.; Howell, D. A.; Hosseinzadeh, G.; Kasliwal, M. M.; Laher, R. R.; Lunnan, R.; Masci, F. J.; McCully, C.; Nugent, P. E.; Sollerman, J.; Taddia, F.; Kulkarni, S. R.

    2018-01-01

    Early observations of Type Ia supernovae (SNe Ia) provide a unique probe of their progenitor systems and explosion physics. Here we report the intermediate Palomar Transient Factory (iPTF) discovery of an extraordinarily young SN Ia, iPTF 16abc. By fitting a power law to our early light curve, we infer that first light for the SN, that is, when the SN could have first been detected by our survey, occurred only 0.15{+/- }0.070.15 days before our first detection. In the ∼24 hr after discovery, iPTF 16abc rose by ∼2 mag, featuring a near-linear rise in flux for ≳ 3 days. Early spectra show strong C II absorption, which disappears after ∼7 days. Unlike the extensively observed Type Ia SN 2011fe, the {(B-V)}0 colors of iPTF 16abc are blue and nearly constant in the days after explosion. We show that our early observations of iPTF 16abc cannot be explained by either SN shock breakout and the associated, subsequent cooling or the SN ejecta colliding with a stellar companion. Instead, we argue that the early characteristics of iPTF 16abc, including (i) the rapid, near-linear rise, (ii) the nonevolving blue colors, and (iii) the strong C II absorption, are the result of either ejecta interaction with nearby, unbound material or vigorous mixing of radioactive 56Ni in the SN ejecta, or a combination of the two. In the next few years, dozens of very young normal SNe Ia will be discovered, and observations similar to those presented here will constrain the white dwarf explosion mechanism.

  17. Observation and quantification of the quantum dynamics of a strong-field excited multi-level system.

    PubMed

    Liu, Zuoye; Wang, Quanjun; Ding, Jingjie; Cavaletto, Stefano M; Pfeifer, Thomas; Hu, Bitao

    2017-01-04

    The quantum dynamics of a V-type three-level system, whose two resonances are first excited by a weak probe pulse and subsequently modified by another strong one, is studied. The quantum dynamics of the multi-level system is closely related to the absorption spectrum of the transmitted probe pulse and its modification manifests itself as a modulation of the absorption line shape. Applying the dipole-control model, the modulation induced by the second strong pulse to the system's dynamics is quantified by eight intensity-dependent parameters, describing the self and inter-state contributions. The present study opens the route to control the quantum dynamics of multi-level systems and to quantify the quantum-control process.

  18. Finding Strong Bridges and Strong Articulation Points in Linear Time

    NASA Astrophysics Data System (ADS)

    Italiano, Giuseppe F.; Laura, Luigi; Santaroni, Federico

    Given a directed graph G, an edge is a strong bridge if its removal increases the number of strongly connected components of G. Similarly, we say that a vertex is a strong articulation point if its removal increases the number of strongly connected components of G. In this paper, we present linear-time algorithms for computing all the strong bridges and all the strong articulation points of directed graphs, solving an open problem posed in [2].

  19. Shape anomaly detection under strong measurement noise: An analytical approach to adaptive thresholding

    NASA Astrophysics Data System (ADS)

    Krasichkov, Alexander S.; Grigoriev, Eugene B.; Bogachev, Mikhail I.; Nifontov, Eugene M.

    2015-10-01

    We suggest an analytical approach to the adaptive thresholding in a shape anomaly detection problem. We find an analytical expression for the distribution of the cosine similarity score between a reference shape and an observational shape hindered by strong measurement noise that depends solely on the noise level and is independent of the particular shape analyzed. The analytical treatment is also confirmed by computer simulations and shows nearly perfect agreement. Using this analytical solution, we suggest an improved shape anomaly detection approach based on adaptive thresholding. We validate the noise robustness of our approach using typical shapes of normal and pathological electrocardiogram cycles hindered by additive white noise. We show explicitly that under high noise levels our approach considerably outperforms the conventional tactic that does not take into account variations in the noise level.

  20. Hypnotic suggestibility predicts the magnitude of the imaginative word blindness suggestion effect in a non-hypnotic context.

    PubMed

    Parris, Benjamin A; Dienes, Zoltan

    2013-09-01

    The present study investigated how the magnitude the word blindness suggestion effect on Stroop interference depended on hypnotic suggestibility when given as an imaginative suggestion (i.e. not post-hypnotic suggestion) and under conditions in which hypnosis was not mentioned. Hypnotic suggestibility is shown to be a significant predictor of the magnitude of the imaginative word blindness suggestion effect under these conditions. This is therefore the first study to show a linear relationship between the imaginative word blindness suggestion effect and hypnotic suggestibility across the whole hypnotizability spectrum. The results replicate previous findings showing that highs respond to the word blindness suggestion to a greater extent than lows but extend previous work by showing that the advantage for those higher on the hypnotizability spectrum occurs even in a non-hypnotic context. Negative attitudes about hypnosis may not explain the failure to observe similar effects of the word blindness suggestion in less hypnotizable individuals. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Population-based familial aggregation of eosinophilic esophagitis suggests a genetic contribution.

    PubMed

    Allen-Brady, Kristina; Firszt, Rafael; Fang, John C; Wong, Jathine; Smith, Ken R; Peterson, Kathryn A

    2017-10-01

    Prior familial clustering studies have observed an increased risk of eosinophilic esophagitis (EoE) mostly among first-degree relatives, suggesting a genetic contribution to EoE, and twin studies have suggested a powerful contribution from environmental factors. This study sought to clarify the contribution of genetic factors to EoE through estimation of familial aggregation and risk of EoE in extended relatives. The Utah Population Database, a population-based genealogy resource linked to electronic medical records for health care systems across the state of Utah, was used to identify EoE cases and age, sex, and birthplace-matched controls at a 5:1 ratio. Logistic regression was used to determine the odds of EoE among relatives of EoE probands compared with the odds of EoE among relatives of controls. There were 4,423 EoE cases and 24,322 controls. The population-attributable risk of EoE was 31% (95% CI, 28% to 34%), suggesting a relatively strong genetic contribution. Risks of EoE were significantly increased among first-degree relatives (odds ratio [OR], 7.19; 95% CI, 5.65-9.14), particularly first-degree relatives of EoE cases diagnosed <18 years of age (OR, 16.3; 95% CI, 9.4-28.3); second-degree relatives (OR, 1.99; 95% CI, 1.49-2.65); and first cousins (OR, 1.35; 95% CI, 1.03-1.77), providing evidence of a genetic contribution. However, spouses of EoE probands were observed to be at increased risk of EoE (OR, 2.86; 95% CI, 1.31-6.25), suggesting either positive assortative mating or a shared environmental contribution to EoE. This study supports a significant genetic contribution to EoE as evidenced by increased risk of EoE in distant relatives. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  2. Simultaneous Observations of Atmospheric Tides from Combined in Situ and Remote Observations at Mars from the MAVEN Spacecraft

    NASA Technical Reports Server (NTRS)

    England, Scott L.; Liu, Guiping; Withers, Paul; Yigit, Erdal; Lo, Daniel; Jain, Sonal; Schneider, Nicholas M. (Inventor); Deighan, Justin; McClintock, William E.; Mahaffy, Paul R.; hide

    2016-01-01

    We report the observations of longitudinal variations in the Martian thermosphere associated with nonmigrating tides. Using the Neutral Gas Ion Mass Spectrometer (NGIMS) and the Imaging Ultraviolet Spectrograph (IUVS) on NASA's Mars Atmosphere and Volatile EvolutioN Mission (MAVEN) spacecraft, this study presents the first combined analysis of in situ and remote observations of atmospheric tides at Mars for overlapping volumes, local times, and overlapping date ranges. From the IUVS observations, we determine the altitude and latitudinal variation of the amplitude of the nonmigrating tidal signatures, which is combined with the NGIMS, providing information on the compositional impact of these waves. Both the observations of airglow from IUVS and the CO2 density observations from NGIMS reveal a strong wave number 2 signature in a fixed local time frame. The IUVS observations reveal a strong latitudinal dependence in the amplitude of the wave number 2 signature. Combining this with the accurate CO2 density observations from NGIMS, this would suggest that the CO2 density variation is as high as 27% at 0-10 deg latitude. The IUVS observations reveal little altitudinal dependence in the amplitude of the wave number 2 signature, varying by only 20% from 160 to 200 km. Observations of five different species with NGIMS show that the amplitude of the wave number 2 signature varies in proportion to the inverse of the species scale height, giving rise to variation in composition as a function of longitude. The analysis and discussion here provide a roadmap for further analysis as additional coincident data from these two instruments become available.

  3. Leakiness of Pinned Neighboring Surface Nanobubbles Induced by Strong Gas–Surface Interaction

    PubMed Central

    2018-01-01

    The stability of two neighboring surface nanobubbles on a chemically heterogeneous surface is studied by molecular dynamics (MD) simulations of binary mixtures consisting of Lennard-Jones (LJ) particles. A diffusion equation-based stability analysis suggests that two nanobubbles sitting next to each other remain stable, provided the contact line is pinned, and that their radii of curvature are equal. However, many experimental observations seem to suggest some long-term kind of ripening or shrinking of the surface nanobubbles. In our MD simulations we find that the growth/dissolution of the nanobubbles can occur due to the transfer of gas particles from one nanobubble to another along the solid substrate. That is, if the interaction between the gas and the solid is strong enough, the solid–liquid interface can allow for the existence of a “tunnel” which connects the liquid–gas interfaces of the two nanobubbles to destabilize the system. The crucial role of the gas–solid interaction energy is a nanoscopic element that hitherto has not been considered in any macroscopic theory of surface nanobubbles and may help to explain experimental observations of the long-term ripening. PMID:29438620

  4. Leakiness of Pinned Neighboring Surface Nanobubbles Induced by Strong Gas-Surface Interaction.

    PubMed

    Maheshwari, Shantanu; van der Hoef, Martin; Rodrı Guez Rodrı Guez, Javier; Lohse, Detlef

    2018-03-27

    The stability of two neighboring surface nanobubbles on a chemically heterogeneous surface is studied by molecular dynamics (MD) simulations of binary mixtures consisting of Lennard-Jones (LJ) particles. A diffusion equation-based stability analysis suggests that two nanobubbles sitting next to each other remain stable, provided the contact line is pinned, and that their radii of curvature are equal. However, many experimental observations seem to suggest some long-term kind of ripening or shrinking of the surface nanobubbles. In our MD simulations we find that the growth/dissolution of the nanobubbles can occur due to the transfer of gas particles from one nanobubble to another along the solid substrate. That is, if the interaction between the gas and the solid is strong enough, the solid-liquid interface can allow for the existence of a "tunnel" which connects the liquid-gas interfaces of the two nanobubbles to destabilize the system. The crucial role of the gas-solid interaction energy is a nanoscopic element that hitherto has not been considered in any macroscopic theory of surface nanobubbles and may help to explain experimental observations of the long-term ripening.

  5. Statistical analysis of MMS observations of energetic electron escape observed at/beyond the dayside magnetopause

    NASA Astrophysics Data System (ADS)

    Cohen, Ian J.; Mauk, Barry H.; Anderson, Brian J.; Westlake, Joseph H.; Sibeck, David G.; Turner, Drew L.; Fennell, Joseph F.; Blake, J. Bern; Jaynes, Allison N.; Leonard, Trevor W.; Baker, Daniel N.; Spence, Harlan E.; Reeves, Geoff D.; Giles, Barbara J.; Strangeway, Robert J.; Torbert, Roy B.; Burch, James L.

    2017-09-01

    Observations from the Energetic Particle Detector (EPD) instrument suite aboard the Magnetospheric Multiscale (MMS) spacecraft show that energetic (greater than tens of keV) magnetospheric particle escape into the magnetosheath occurs commonly across the dayside. This includes the surprisingly frequent observation of magnetospheric electrons in the duskside magnetosheath, an unexpected result given assumptions regarding magnetic drift shadowing. The 238 events identified in the 40 keV electron energy channel during the first MMS dayside season that exhibit strongly anisotropic pitch angle distributions indicating monohemispheric field-aligned streaming away from the magnetopause. A review of the extremely rich literature of energetic electron observations beyond the magnetopause is provided to place these new observations into historical context. Despite the extensive history of such research, these new observations provide a more comprehensive data set that includes unprecedented magnetic local time (MLT) coverage of the dayside equatorial magnetopause/magnetosheath. These data clearly highlight the common escape of energetic electrons along magnetic field lines concluded to have been reconnected across the magnetopause. While these streaming escape events agree with prior studies which show strong correlation with geomagnetic activity (suggesting a magnetotail source) and occur most frequently during periods of southward IMF, the high number of duskside events is unexpected and previously unobserved. Although the lowest electron energy channel was the focus of this study, the events reported here exhibit pitch angle anisotropies indicative of streaming up to 200 keV, which could represent the magnetopause loss of >1 MeV electrons from the outer radiation belt.

  6. Observation of strong amplification at 8.8 nm in the TCE scheme by a table-top pumping system

    NASA Astrophysics Data System (ADS)

    Kawachi, Tetsuya; Tanaka, Momoko; Sasaki, Akira; Kishimoto, Maki; Nishiuchi, Mamiko; Yasuike, Kazuhito; Hasegawa, Noboru; Kilpio, Alexander V.; Lu, Peixiang; Tai, Renzhong

    2002-11-01

    We observed strong amplification of the transition of 4d 4p, J = 0 1 (the transition from (3d3/2, 4d3/2)0 to (3d3/2, 4p1/2)1) of the Ni-like lanthanum (La) ions at a wavelength of 8.8 nm pumped by a compact CPA Nd:Glass laser light at a wavelength of 1.053 mum with a pumping energy of 18 J. The experimental gain coefficient and the achieved gain-length product was 14.5 cm-1 and 7.7, respectively. In this experiment, the pumping laser pulse consisted of a pre-pulse with a duration of 200 ps and a 7ps-duration main pulse, separated by 250 ps. A hydrodynamics simulation coupled with a collisional-radiative model showed that the present experimental condition generated a pre-formed plasma with small volume and made it possible by the main pulse to heat the high density region effectively.

  7. Caviton dynamics in strong Langmuir turbulence

    NASA Astrophysics Data System (ADS)

    Dubois, Don; Rose, Harvey A.; Russell, David

    Recent studies based on long time computer simulations of Langmuir turbulence as described by Zakharov's model will be reviewed. These show that for strong to moderate ion sound samping the turbulent energy is dominantly in nonlinear caviton excitations which are localized in space and time. A local caviton model will be presented which accounts for the nucleation collapse burnout cycles of individual cavitons as well as their space-time correlations. This model is in detailed agreement with many features of the electron density fluctuation spectra in the ionosphere modified by powerful HF waves as measured by incoherent scatter radar. Recently such observations have verified a prediction of the theory that free Langmuir waves are emitted in the caviton collapse process. These observations and theoretical considerations also strongly imply that cavitons in the heated ionosphere, under certain conditions, evolve to states in which they are ordered in space and time. The sensitivity of the high frequency Langmuir field dynamics to the low frequency ion density fluctuations and the related caviton nucleation process will be discussed.

  8. Caviton dynamics in strong Langmuir turbulence

    NASA Astrophysics Data System (ADS)

    DuBois, Don; Rose, Harvey A.; Russell, David

    1990-01-01

    Recent studies based on long time computer simulations of Langmuir turbulence as described by Zakharov's model will be reviewed. These show that for strong to moderate ion sound damping the turbulent energy is dominantly in non-linear "caviton" excitations which are localized in space and time. A local caviton model will be presented which accounts for the nucleation-collapse-burnout cycles of individual cavitons as well as their space-time correlations. This model is in detailed agreement with many features of the electron density fluctuation spectra in the ionosphere modified by powerful HF waves as measured by incoherent scatter radar. Recently such observations have verified a prediction of the theory that "free" Langmuir waves are emitted in the caviton collapse process. These observations and theoretical considerations also strongly imply that cavitons in the heated ionosphere, under certain conditions, evolve to states in which they are ordered in space and time. The sensitivity of the high frequency Langmuir field dynamics to the low frequency ion density fluctuations and the related caviton nucleation process will be discussed.

  9. Strong Neutron Pairing in core+4n Nuclei.

    PubMed

    Revel, A; Marqués, F M; Sorlin, O; Aumann, T; Caesar, C; Holl, M; Panin, V; Vandebrouck, M; Wamers, F; Alvarez-Pol, H; Atar, L; Avdeichikov, V; Beceiro-Novo, S; Bemmerer, D; Benlliure, J; Bertulani, C A; Boillos, J M; Boretzky, K; Borge, M J G; Caamaño, M; Casarejos, E; Catford, W N; Cederkäll, J; Chartier, M; Chulkov, L; Cortina-Gil, D; Cravo, E; Crespo, R; Datta Pramanik, U; Díaz Fernández, P; Dillmann, I; Elekes, Z; Enders, J; Ershova, O; Estradé, A; Farinon, F; Fraile, L M; Freer, M; Galaviz, D; Geissel, H; Gernhäuser, R; Golubev, P; Göbel, K; Hagdahl, J; Heftrich, T; Heil, M; Heine, M; Heinz, A; Henriques, A; Ignatov, A; Johansson, H T; Jonson, B; Kahlbow, J; Kalantar-Nayestanaki, N; Kanungo, R; Kelic-Heil, A; Knyazev, A; Kröll, T; Kurz, N; Labiche, M; Langer, C; Le Bleis, T; Lemmon, R; Lindberg, S; Machado, J; Marganiec, J; Movsesyan, A; Nacher, E; Najafi, M; Nilsson, T; Nociforo, C; Paschalis, S; Perea, A; Petri, M; Pietri, S; Plag, R; Reifarth, R; Ribeiro, G; Rigollet, C; Röder, M; Rossi, D; Savran, D; Scheit, H; Simon, H; Syndikus, I; Taylor, J T; Tengblad, O; Thies, R; Togano, Y; Velho, P; Volkov, V; Wagner, A; Weick, H; Wheldon, C; Wilson, G; Winfield, J S; Woods, P; Yakorev, D; Zhukov, M; Zilges, A; Zuber, K

    2018-04-13

    The emission of neutron pairs from the neutron-rich N=12 isotones ^{18}C and ^{20}O has been studied by high-energy nucleon knockout from ^{19}N and ^{21}O secondary beams, populating unbound states of the two isotones up to 15 MeV above their two-neutron emission thresholds. The analysis of triple fragment-n-n correlations shows that the decay ^{19}N(-1p)^{18}C^{*}→^{16}C+n+n is clearly dominated by direct pair emission. The two-neutron correlation strength, the largest ever observed, suggests the predominance of a ^{14}C core surrounded by four valence neutrons arranged in strongly correlated pairs. On the other hand, a significant competition of a sequential branch is found in the decay ^{21}O(-1n)^{20}O^{*}→^{18}O+n+n, attributed to its formation through the knockout of a deeply bound neutron that breaks the ^{16}O core and reduces the number of pairs.

  10. Strong Neutron Pairing in core+4 n Nuclei

    NASA Astrophysics Data System (ADS)

    Revel, A.; Marqués, F. M.; Sorlin, O.; Aumann, T.; Caesar, C.; Holl, M.; Panin, V.; Vandebrouck, M.; Wamers, F.; Alvarez-Pol, H.; Atar, L.; Avdeichikov, V.; Beceiro-Novo, S.; Bemmerer, D.; Benlliure, J.; Bertulani, C. A.; Boillos, J. M.; Boretzky, K.; Borge, M. J. G.; Caamaño, M.; Casarejos, E.; Catford, W. N.; Cederkäll, J.; Chartier, M.; Chulkov, L.; Cortina-Gil, D.; Cravo, E.; Crespo, R.; Datta Pramanik, U.; Díaz Fernández, P.; Dillmann, I.; Elekes, Z.; Enders, J.; Ershova, O.; Estradé, A.; Farinon, F.; Fraile, L. M.; Freer, M.; Galaviz, D.; Geissel, H.; Gernhäuser, R.; Golubev, P.; Göbel, K.; Hagdahl, J.; Heftrich, T.; Heil, M.; Heine, M.; Heinz, A.; Henriques, A.; Ignatov, A.; Johansson, H. T.; Jonson, B.; Kahlbow, J.; Kalantar-Nayestanaki, N.; Kanungo, R.; Kelic-Heil, A.; Knyazev, A.; Kröll, T.; Kurz, N.; Labiche, M.; Langer, C.; Le Bleis, T.; Lemmon, R.; Lindberg, S.; Machado, J.; Marganiec, J.; Movsesyan, A.; Nacher, E.; Najafi, M.; Nilsson, T.; Nociforo, C.; Paschalis, S.; Perea, A.; Petri, M.; Pietri, S.; Plag, R.; Reifarth, R.; Ribeiro, G.; Rigollet, C.; Röder, M.; Rossi, D.; Savran, D.; Scheit, H.; Simon, H.; Syndikus, I.; Taylor, J. T.; Tengblad, O.; Thies, R.; Togano, Y.; Velho, P.; Volkov, V.; Wagner, A.; Weick, H.; Wheldon, C.; Wilson, G.; Winfield, J. S.; Woods, P.; Yakorev, D.; Zhukov, M.; Zilges, A.; Zuber, K.; R3B Collaboration

    2018-04-01

    The emission of neutron pairs from the neutron-rich N =12 isotones 18C and 20O has been studied by high-energy nucleon knockout from 19N and 21O secondary beams, populating unbound states of the two isotones up to 15 MeV above their two-neutron emission thresholds. The analysis of triple fragment-n -n correlations shows that the decay 19N (-1 p ) 18C* → 16C +n +n is clearly dominated by direct pair emission. The two-neutron correlation strength, the largest ever observed, suggests the predominance of a 14C core surrounded by four valence neutrons arranged in strongly correlated pairs. On the other hand, a significant competition of a sequential branch is found in the decay 21O (-1 n )20O*→18O +n +n , attributed to its formation through the knockout of a deeply bound neutron that breaks the 16O core and reduces the number of pairs.

  11. X-ray microprobe of orbital alignment in strong-field ionized atoms.

    PubMed

    Young, L; Arms, D A; Dufresne, E M; Dunford, R W; Ederer, D L; Höhr, C; Kanter, E P; Krässig, B; Landahl, E C; Peterson, E R; Rudati, J; Santra, R; Southworth, S H

    2006-08-25

    We have developed a synchrotron-based, time-resolved x-ray microprobe to investigate optical strong-field processes at intermediate intensities (10(14) - 10(15) W/cm2). This quantum-state specific probe has enabled the direct observation of orbital alignment in the residual ion produced by strong-field ionization of krypton atoms via resonant, polarized x-ray absorption. We found strong alignment to persist for a period long compared to the spin-orbit coupling time scale (6.2 fs). The observed degree of alignment can be explained by models that incorporate spin-orbit coupling. The methodology is applicable to a wide range of problems.

  12. Suggestion in Oral Performance: A Shadow of an Image.

    ERIC Educational Resources Information Center

    Pearse, James A.

    Oral performance of literature can be compared with film viewing, in that both are strongly based on suggestion, which forces the spectator to participate actively in the creation of images. Film is actually a series of still pictures, but persistence of vision produces the idea of motion in the mind. Likewise, literature in performance involves…

  13. A strong X-ray Flare in 1ES 1959+650

    NASA Astrophysics Data System (ADS)

    Kapanadze, Bidzina

    2016-06-01

    The nearby TeV-detected HBL object 1ES 1959+650 (z=0.047) has been observed by Swift today which revealed a strong X-ray flare in the source. Namely, the observation-binned 0.3-10 keV count rate is 16.49+/-0.15 cts/s that is by a factor 2.45 larger compared to weighted mean count rate from all Swift-XRT pointings to this source, and by 90% larger than the rate recorded during the previous observation (performed on June 4). Note that the higher brightness states were observed only three times in the past (in 2015 September - December; see Kapanadze B. et al. 2016, "A recent strong X-ray flaring activity of 1ES 1959+650 with possibly less efficient stochastic acceleration", MNRASL, in press).

  14. Spatial Structure of Seagrass Suggests That Size-Dependent Plant Traits Have a Strong Influence on the Distribution and Maintenance of Tropical Multispecies Meadows

    PubMed Central

    Ooi, Jillian L. S.; Van Niel, Kimberly P.; Kendrick, Gary A.; Holmes, Karen W.

    2014-01-01

    Background Seagrass species in the tropics occur in multispecies meadows. How these meadows are maintained through species co-existence and what their ecological drivers may be has been an overarching question in seagrass biogeography. In this study, we quantify the spatial structure of four co-existing species and infer potential ecological processes from these structures. Methods and Results Species presence/absence data were collected using underwater towed and dropped video cameras in Pulau Tinggi, Malaysia. The geostatistical method, utilizing semivariograms, was used to describe the spatial structure of Halophila spp, Halodule uninervis, Syringodium isoetifolium and Cymodocea serrulata. Species had spatial patterns that were oriented in the along-shore and across-shore directions, nested with larger species in meadow interiors, and consisted of multiple structures that indicate the influence of 2–3 underlying processes. The Linear Model of Coregionalization (LMC) was used to estimate the amount of variance contributing to the presence of a species at specific spatial scales. These distances were <2.5 m (micro-scale), 2.5–50 m (fine-scale) and >50 m (broad-scale) in the along-shore; and <2.5 m (micro-scale), 2.5–140 m (fine-scale) and >140 m (broad-scale) in the across-shore. The LMC suggests that smaller species (Halophila spp and H. uninervis) were most influenced by broad-scale processes such as hydrodynamics and water depth whereas large, localised species (S. isoetifolium and C. serrulata) were more influenced by finer-scale processes such as sediment burial, seagrass colonization and growth, and physical disturbance. Conclusion In this study, we provide evidence that spatial structure is distinct even when species occur in well-mixed multispecies meadows, and we suggest that size-dependent plant traits have a strong influence on the distribution and maintenance of tropical marine plant communities. This study offers a contrast from previous spatial

  15. Shapes of strong shock fronts in an inhomogeneous solar wind

    NASA Technical Reports Server (NTRS)

    Heinemann, M. A.; Siscoe, G. L.

    1974-01-01

    The shapes expected for solar-flare-produced strong shock fronts in the solar wind have been calculated, large-scale variations in the ambient medium being taken into account. It has been shown that for reasonable ambient solar wind conditions the mean and the standard deviation of the east-west shock normal angle are in agreement with experimental observations including shocks of all strengths. The results further suggest that near a high-speed stream it is difficult to distinguish between corotating shocks and flare-associated shocks on the basis of the shock normal alone. Although the calculated shapes are outside the range of validity of the linear approximation, these results indicate that the variations in the ambient solar wind may account for large deviations of shock normals from the radial direction.

  16. Exceptionally strong hydrogels through self-assembly of an indole-capped dipeptide.

    PubMed

    Martin, Adam D; Robinson, Andrew B; Mason, Alexander F; Wojciechowski, Jonathan P; Thordarson, Pall

    2014-12-21

    The synthesis of a new hydrogelator with an indole capping group, 1, is reported. 1 forms exceptionally strong hydrogels in a variety of environments, with values for the storage modulus G' amongst the highest reported for supramolecular hydrogels. These gels exhibit strong bundling characteristics, which gives the high values for G' observed. Cell viability studies show that at low concentrations, 1 is biocompatible, however upon self-assembly at higher concentrations, cytotoxic effects are observed.

  17. Measuring the power spectrum of dark matter substructure using strong gravitational lensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hezaveh, Yashar; Dalal, Neal; Holder, Gilbert

    2016-11-01

    In recent years, it has become possible to detect individual dark matter subhalos near images of strongly lensed extended background galaxies. Typically, only the most massive subhalos in the strong lensing region may be detected this way. In this work, we show that strong lenses may also be used to constrain the much more numerous population of lower mass subhalos that are too small to be detected individually. In particular, we show that the power spectrum of projected density fluctuations in galaxy halos can be measured using strong gravitational lensing. We develop the mathematical framework of power spectrum estimation, andmore » test our method on mock observations. We use our results to determine the types of observations required to measure the substructure power spectrum with high significance. We predict that deep observations (∼10 hours on a single target) with current facilities can measure this power spectrum at the 3σ level, with no apparent degeneracy with unknown clumpiness in the background source structure or fluctuations from detector noise. Upcoming ALMA measurements of strong lenses are capable of placing strong constraints on the abundance of dark matter subhalos and the underlying particle nature of dark matter.« less

  18. Strong gravitational lensing of gravitational waves from double compact binaries—perspectives for the Einstein Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biesiada, Marek; Ding, Xuheng; Zhu, Zong-Hong

    Gravitational wave (GW) experiments are entering their advanced stage which should soon open a new observational window on the Universe. Looking into this future, the Einstein Telescope (ET) was designed to have a fantastic sensitivity improving significantly over the advanced GW detectors. One of the most important astrophysical GW sources supposed to be detected by the ET in large numbers are double compact objects (DCO) and some of such events should be gravitationally lensed by intervening galaxies. We explore the prospects of observing gravitationally lensed inspiral DCO events in the ET. This analysis is a significant extension of our previousmore » paper [1]. We are using the intrinsic merger rates of the whole class of DCO (NS-NS,BH-NS,BH-BH) located at different redshifts as calculated by [2] by using StarTrack population synthesis evolutionary code. We discuss in details predictions from each evolutionary scenario. Our general conclusion is that ET would register about 50–100 strongly lensed inspiral events per year. Only the scenario in which nascent BHs receive strong kick gives the predictions of a few events per year. Such lensed events would be dominated by the BH-BH merging binary systems. Our results suggest that during a few years of successful operation ET will provide a considerable catalog of strongly lensed events.« less

  19. Do cancer proteins really interact strongly in the human protein-protein interaction network?

    PubMed

    Xia, Junfeng; Sun, Jingchun; Jia, Peilin; Zhao, Zhongming

    2011-06-01

    Protein-protein interaction (PPI) network analysis has been widely applied in the investigation of the mechanisms of diseases, especially cancer. Recent studies revealed that cancer proteins tend to interact more strongly than other categories of proteins, even essential proteins, in the human interactome. However, it remains unclear whether this observation was introduced by the bias towards more cancer studies in humans. Here, we examined this important issue by uniquely comparing network characteristics of cancer proteins with three other sets of proteins in four organisms, three of which (fly, worm, and yeast) whose interactomes are essentially not biased towards cancer or other diseases. We confirmed that cancer proteins had stronger connectivity, shorter distance, and larger betweenness centrality than non-cancer disease proteins, essential proteins, and control proteins. Our statistical evaluation indicated that such observations were overall unlikely attributed to random events. Considering the large size and high quality of the PPI data in the four organisms, the conclusion that cancer proteins interact strongly in the PPI networks is reliable and robust. This conclusion suggests that perturbation of cancer proteins might cause major changes of cellular systems and result in abnormal cell function leading to cancer. © 2011 Elsevier Ltd. All rights reserved.

  20. Hydrodynamics in a Degenerate, Strongly Attractive Fermi Gas

    NASA Technical Reports Server (NTRS)

    Thomas, John E.; Kinast, Joseph; Hemmer, Staci; Turlapov, Andrey; O'Hara, Ken; Gehm, Mike; Granade, Stephen

    2004-01-01

    In summary, we use all-optical methods with evaporative cooling near a Feshbach resonance to produce a strongly interacting degenerate Fermi gas. We observe hydrodynamic behavior in the expansion dynamics. At low temperatures, collisions may not explain the expansion dynamics. We observe hydrodynamics in the trapped gas. Our observations include collisionally-damped excitation spectra at high temperature which were not discussed above. In addition, we observe weakly damped breathing modes at low temperature. The observed temperature dependence of the damping time and hydrodynamic frequency are not consistent with collisional dynamics nor with collisionless mean field interactions. These observations constitute the first evidence for superfluid hydrodynamics in a Fermi gas.

  1. Real-space observation of strong metal-support interaction: state-of-the-art and what's the next.

    PubMed

    Shi, X Y; Zhang, W; Zhang, C; Zheng, W T; Chen, H; Qi, J G

    2016-06-01

    The real-space resolving of the encapsulated overlayer in the well-known model and industry catalysts, ascribed to the advent of dedicated transmission electron microscopy, enables us to probe novel nano/micro architecture chemistry for better application, revisiting our understanding of this key issue in heterogeneous catalysis. In this review, we summarize the latest progress of real-space observation of SMSI in several well-known systems mainly covered from the metal catalysts (mostly Pt) supported by the TiO2 , CeO2 and Fe3 O4 . As a comparison with the model catalyst Pt/Fe3 O4 , the industrial catalyst Cu/ZnO is also listed, followed with the suggested ongoing directions in the field. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  2. Constraints on holographic cosmologies from strong lensing systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cárdenas, Víctor H.; Bonilla, Alexander; Motta, Verónica

    We use strongly gravitationally lensed (SGL) systems to put additional constraints on a set of holographic dark energy models. Data available in the literature (redshift and velocity dispersion) is used to obtain the Einstein radius and compare it with model predictions. We found that the ΛCDM is the best fit to the data. Although a preliminary statistical analysis seems to indicate that two of the holographic models studied show interesting agreement with observations, a stringent test lead us to the result that neither of the holographic models are competitive with the ΛCDM. These results highlight the importance of Strong Lensingmore » measurements to provide additional observational constraints to alternative cosmological models, which are necessary to shed some light into the dark universe.« less

  3. Evolutionary games on cycles with strong selection

    NASA Astrophysics Data System (ADS)

    Altrock, P. M.; Traulsen, A.; Nowak, M. A.

    2017-02-01

    Evolutionary games on graphs describe how strategic interactions and population structure determine evolutionary success, quantified by the probability that a single mutant takes over a population. Graph structures, compared to the well-mixed case, can act as amplifiers or suppressors of selection by increasing or decreasing the fixation probability of a beneficial mutant. Properties of the associated mean fixation times can be more intricate, especially when selection is strong. The intuition is that fixation of a beneficial mutant happens fast in a dominance game, that fixation takes very long in a coexistence game, and that strong selection eliminates demographic noise. Here we show that these intuitions can be misleading in structured populations. We analyze mean fixation times on the cycle graph under strong frequency-dependent selection for two different microscopic evolutionary update rules (death-birth and birth-death). We establish exact analytical results for fixation times under strong selection and show that there are coexistence games in which fixation occurs in time polynomial in population size. Depending on the underlying game, we observe inherence of demographic noise even under strong selection if the process is driven by random death before selection for birth of an offspring (death-birth update). In contrast, if selection for an offspring occurs before random removal (birth-death update), then strong selection can remove demographic noise almost entirely.

  4. Experimental observation of strong coupling effects on the dispersion of dust acoustic waves in a plasma

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, P.; Prasad, G.; Sen, A.; Kaw, P. K.

    2007-09-01

    The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and MnO2 dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of ∂ω/∂k<0 are identified as signatures of dust dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects.

  5. Observations by a university anatomy teacher and a suggestion for curricular change: integrative anatomy for undergraduates.

    PubMed

    Darda, David M

    2010-01-01

    The observation that anatomical course offerings have decreased in undergraduate biology curricula is supported by a survey of undergraduate institutions in the state of Washington. This reduction, due partially to increased emphasis in other areas of the biology curriculum, along with the lack of anatomy prerequisites for admission to most medical and dental schools, has resulted in many biology majors who have little or no exposure to the anatomical sciences. This is a disservice to our students who need to understand organismal form and function to better connect our rapidly expanding knowledge of life at the cell and molecular level to our understanding of the role of organisms in ecosystems and as the primary target of natural selection in evolutionary change. Undergraduate anatomical courses can also serve as an extension of the anatomy curriculum in professional healthcare programs, where anatomical sciences are also experiencing a reduced allocation of instructional time. Given the importance of anatomical knowledge along with the many demands and constraints on biology curricula, what can we do? One suggestion, a course in integrative anatomy for undergraduates, is proposed and discussed. Copyright 2010 American Association of Anatomists.

  6. Prevention of strong earthquakes: Goal or utopia?

    NASA Astrophysics Data System (ADS)

    Mukhamediev, Sh. A.

    2010-11-01

    In the present paper, we consider ideas suggesting various kinds of industrial impact on the close-to-failure block of the Earth’s crust in order to break a pending strong earthquake (PSE) into a number of smaller quakes or aseismic slips. Among the published proposals on the prevention of a forthcoming strong earthquake, methods based on water injection and vibro influence merit greater attention as they are based on field observations and the results of laboratory tests. In spite of this, the cited proofs are, for various reasons, insufficient to acknowledge the proposed techniques as highly substantiated; in addition, the physical essence of these methods has still not been fully understood. First, the key concept of the methods, namely, the release of the accumulated stresses (or excessive elastic energy) in the source region of a forthcoming strong earthquake, is open to objection. If we treat an earthquake as a phenomenon of a loss in stability, then, the heterogeneities of the physicomechanical properties and stresses along the existing fault or its future trajectory, rather than the absolute values of stresses, play the most important role. In the present paper, this statement is illustrated by the classical examples of stable and unstable fractures and by the examples of the calculated stress fields, which were realized in the source regions of the tsunamigenic earthquakes of December 26, 2004 near the Sumatra Island and of September 29, 2009 near the Samoa Island. Here, just before the earthquakes, there were no excessive stresses in the source regions. Quite the opposite, the maximum shear stresses τmax were close to their minimum value, compared to τmax in the adjacent territory. In the present paper, we provide quantitative examples that falsify the theory of the prevention of PSE in its current form. It is shown that the measures for the prevention of PSE, even when successful for an already existing fault, can trigger or accelerate a catastrophic

  7. Non-LTE profiles of strong solar lines

    NASA Technical Reports Server (NTRS)

    Schneeberger, T. J.; Beebe, H. A.

    1976-01-01

    The complete linearization method is applied to the formation of strong lines in the solar atmosphere. Transitions in Na(I), Mg(I), Ca(I), Mg(II), and Ca(II) are computed with a standard atmosphere and microturbulent velocity model. The computed profiles are compared to observations at disk center.

  8. Polytypism and unexpected strong interlayer coupling in two-dimensional layered ReS2

    NASA Astrophysics Data System (ADS)

    Qiao, Xiao-Fen; Wu, Jiang-Bin; Zhou, Linwei; Qiao, Jingsi; Shi, Wei; Chen, Tao; Zhang, Xin; Zhang, Jun; Ji, Wei; Tan, Ping-Heng

    2016-04-01

    Anisotropic two-dimensional (2D) van der Waals (vdW) layered materials, with both scientific interest and application potential, offer one more dimension than isotropic 2D materials to tune their physical properties. Various physical properties of 2D multi-layer materials are modulated by varying their stacking orders owing to significant interlayer vdW coupling. Multilayer rhenium disulfide (ReS2), a representative anisotropic 2D material, was expected to be randomly stacked and lack interlayer coupling. Here, we demonstrate two stable stacking orders, namely isotropic-like (IS) and anisotropic-like (AI) N layer (NL, N > 1) ReS2 are revealed by ultralow- and high-frequency Raman spectroscopy, photoluminescence and first-principles density functional theory calculation. Two interlayer shear modes are observed in AI-NL-ReS2 while only one shear mode appears in IS-NL-ReS2, suggesting anisotropic- and isotropic-like stacking orders in IS- and AI-NL-ReS2, respectively. This explicit difference in the observed frequencies identifies an unexpected strong interlayer coupling in IS- and AI-NL-ReS2. Quantitatively, the force constants of them are found to be around 55-90% of those of multilayer MoS2. The revealed strong interlayer coupling and polytypism in multi-layer ReS2 may stimulate future studies on engineering physical properties of other anisotropic 2D materials by stacking orders.Anisotropic two-dimensional (2D) van der Waals (vdW) layered materials, with both scientific interest and application potential, offer one more dimension than isotropic 2D materials to tune their physical properties. Various physical properties of 2D multi-layer materials are modulated by varying their stacking orders owing to significant interlayer vdW coupling. Multilayer rhenium disulfide (ReS2), a representative anisotropic 2D material, was expected to be randomly stacked and lack interlayer coupling. Here, we demonstrate two stable stacking orders, namely isotropic-like (IS) and

  9. Statistical analysis of MMS observations of energetic electron escape observed at/beyond the dayside magnetopause

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, Ian J.; Mauk, Barry H.; Anderson, Brian J.

    Here, observations from the Energetic Particle Detector (EPD) instrument suite aboard the Magnetospheric Multiscale (MMS) spacecraft show that energetic (greater than tens of keV) magnetospheric particle escape into the magnetosheath occurs commonly across the dayside. This includes the surprisingly frequent observation of magnetospheric electrons in the duskside magnetosheath, an unexpected result given assumptions regarding magnetic drift shadowing. The 238 events identified in the 40 keV electron energy channel during the first MMS dayside season that exhibit strongly anisotropic pitch angle distributions indicating monohemispheric field-aligned streaming away from the magnetopause. A review of the extremely rich literature of energetic electron observationsmore » beyond the magnetopause is provided to place these new observations into historical context. Despite the extensive history of such research, these new observations provide a more comprehensive data set that includes unprecedented magnetic local time (MLT) coverage of the dayside equatorial magnetopause/magnetosheath. These data clearly highlight the common escape of energetic electrons along magnetic field lines concluded to have been reconnected across the magnetopause. While these streaming escape events agree with prior studies which show strong correlation with geomagnetic activity (suggesting a magnetotail source) and occur most frequently during periods of southward IMF, the high number of duskside events is unexpected and previously unobserved. Although the lowest electron energy channel was the focus of this study, the events reported here exhibit pitch angle anisotropies indicative of streaming up to 200 keV, which could represent the magnetopause loss of >1 MeV electrons from the outer radiation belt.« less

  10. Statistical analysis of MMS observations of energetic electron escape observed at/beyond the dayside magnetopause

    DOE PAGES

    Cohen, Ian J.; Mauk, Barry H.; Anderson, Brian J.; ...

    2017-08-01

    Here, observations from the Energetic Particle Detector (EPD) instrument suite aboard the Magnetospheric Multiscale (MMS) spacecraft show that energetic (greater than tens of keV) magnetospheric particle escape into the magnetosheath occurs commonly across the dayside. This includes the surprisingly frequent observation of magnetospheric electrons in the duskside magnetosheath, an unexpected result given assumptions regarding magnetic drift shadowing. The 238 events identified in the 40 keV electron energy channel during the first MMS dayside season that exhibit strongly anisotropic pitch angle distributions indicating monohemispheric field-aligned streaming away from the magnetopause. A review of the extremely rich literature of energetic electron observationsmore » beyond the magnetopause is provided to place these new observations into historical context. Despite the extensive history of such research, these new observations provide a more comprehensive data set that includes unprecedented magnetic local time (MLT) coverage of the dayside equatorial magnetopause/magnetosheath. These data clearly highlight the common escape of energetic electrons along magnetic field lines concluded to have been reconnected across the magnetopause. While these streaming escape events agree with prior studies which show strong correlation with geomagnetic activity (suggesting a magnetotail source) and occur most frequently during periods of southward IMF, the high number of duskside events is unexpected and previously unobserved. Although the lowest electron energy channel was the focus of this study, the events reported here exhibit pitch angle anisotropies indicative of streaming up to 200 keV, which could represent the magnetopause loss of >1 MeV electrons from the outer radiation belt.« less

  11. Interrogative suggestibility in patients with conversion disorders.

    PubMed

    Foong, J; Lucas, P A; Ron, M A

    1997-09-01

    We tested the hypothesis that increased interrogative suggestibility may contribute to the shaping and maintaining of conversions symptoms. Interrogative suggestibility was measured in 12 patients with conversion disorder and 10 control patients with confirmed neurological disease matched for age, premorbid intelligence, and as closely as possible in terms of their neurological symptoms to the patients with conversion disorder. Our observations do not support the contention that individual differences in interrogative suggestibility are of importance in the etiology of conversion disorders.

  12. Application of the ex-Gaussian function to the effect of the word blindness suggestion on Stroop task performance suggests no word blindness

    PubMed Central

    Parris, Benjamin A.; Dienes, Zoltan; Hodgson, Timothy L.

    2013-01-01

    The aim of the present paper was to apply the ex-Gaussian function to data reported by Parris et al. (2012) given its utility in studies involving the Stroop task. Parris et al. showed an effect of the word blindness suggestion when Response-Stimulus Interval (RSI) was 500 ms but not when it was 3500 ms. Analysis revealed that: (1) The effect of the suggestion on interference is observed in μ, supporting converging evidence indicating the suggestion operates over response competition mechanisms; and, (2) Contrary to Parris et al. an effect of the suggestion was observed in μ when RSI was 3500 ms. The reanalysis of the data from Parris et al. (2012) supports the utility of ex-Gaussian analysis in revealing effects that might otherwise be thought of as absent. We suggest that word reading itself is not suppressed by the suggestion but instead that response conflict is dealt with more effectively. PMID:24065947

  13. Application of the ex-Gaussian function to the effect of the word blindness suggestion on Stroop task performance suggests no word blindness.

    PubMed

    Parris, Benjamin A; Dienes, Zoltan; Hodgson, Timothy L

    2013-01-01

    The aim of the present paper was to apply the ex-Gaussian function to data reported by Parris et al. (2012) given its utility in studies involving the Stroop task. Parris et al. showed an effect of the word blindness suggestion when Response-Stimulus Interval (RSI) was 500 ms but not when it was 3500 ms. Analysis revealed that: (1) The effect of the suggestion on interference is observed in μ, supporting converging evidence indicating the suggestion operates over response competition mechanisms; and, (2) Contrary to Parris et al. an effect of the suggestion was observed in μ when RSI was 3500 ms. The reanalysis of the data from Parris et al. (2012) supports the utility of ex-Gaussian analysis in revealing effects that might otherwise be thought of as absent. We suggest that word reading itself is not suppressed by the suggestion but instead that response conflict is dealt with more effectively.

  14. Physics in strong magnetic fields near neutron stars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    1991-01-01

    Electromagnetic phenomena occurring in the strong magnetic fields of neutron stars are currently of great interest in high-energy astrophysics. Observations of rotation rate changes and cyclotron lines in pulsars and gamma-ray bursts indicate that surface magnetic fields of neutron stars often exceed a trillion gauss. In fields this strong, where electrons behave much as if they were in bound atomic states, familiar processes undergo profound changes, and exotic processes become important. Strong magnetic fields affect the physics in several fundamental ways: energies perpendicular to the field are quantized, transverse momentum is not conserved, and electron-positron spin is important. Neutron stars therefore provide a unique laboratory for the study of physics in extremely high fields that cannot be generated on earth.

  15. QUIESCENCE CORRELATES STRONGLY WITH DIRECTLY MEASURED BLACK HOLE MASS IN CENTRAL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terrazas, Bryan A.; Bell, Eric F.; Henriques, Bruno M. B.

    Roughly half of all stars reside in galaxies without significant ongoing star formation. However, galaxy formation models indicate that it is energetically challenging to suppress the cooling of gas and the formation of stars in galaxies that lie at the centers of their dark matter halos. In this Letter, we show that the dependence of quiescence on black hole and stellar mass is a powerful discriminant between differing models for the mechanisms that suppress star formation. Using observations of 91 star-forming and quiescent central galaxies with directly measured black hole masses, we find that quiescent galaxies host more massive blackmore » holes than star-forming galaxies with similar stellar masses. This observational result is in qualitative agreement with models that assume that effective, more-or-less continuous active galactic nucleus feedback suppresses star formation, strongly suggesting the importance of the black hole in producing quiescence in central galaxies.« less

  16. Observational selection biases in time-delay strong lensing and their impact on cosmography

    NASA Astrophysics Data System (ADS)

    Collett, Thomas E.; Cunnington, Steven D.

    2016-11-01

    Inferring cosmological parameters from time-delay strong lenses requires a significant investment of telescope time; it is therefore tempting to focus on the systems with the brightest sources, the highest image multiplicities and the widest image separations. We investigate if this selection bias can influence the properties of the lenses studied and the cosmological parameters inferred. Using an ellipsoidal power-law deflector population, we build a sample of double- and quadruple-image systems. Assuming reasonable thresholds on image separation and flux, based on current lens monitoring campaigns, we find that the typical density profile slopes of monitorable lenses are significantly shallower than the input ensemble. From a sample of quads, we find that this selection function can introduce a 3.5 per cent bias on the inferred time-delay distances if the properties of the input ensemble are (incorrectly) used as priors on the lens model. This bias remains at the 2.4 per cent level when high-resolution imaging of the quasar host is used to precisely infer the properties of individual lenses. We also investigate if the lines of sight for monitorable strong lenses are biased. The expectation value for the line-of-sight convergence is increased by 0.009 (0.004) for quads (doubles) implying a 0.9 per cent (0.4 per cent) bias on H0. We therefore conclude that whilst the properties of typical quasar lenses and their lines of sight do deviate from the global population, the total magnitude of this effect is likely to be a subdominant effect for current analyses, but has the potential to be a major systematic for samples of ˜25 or more lenses.

  17. Crossover from weak to strong localization in quasi-1D = conductors.

    NASA Astrophysics Data System (ADS)

    Gershenson, M. E.; Khavin, Y. B.; Mikhalchuk, A. G.; Bozler, H. M.; Bogdanov, A. L.

    1997-03-01

    A crossover from weak localization (WL) to strong localization (SL) with decreasing temperature has been observed in the resistance of quasi-1D channels in Si delta-doped GaAs structures. The crossover occurs when the phase-breaking length becomes comparable to the localization length. In the SL regime, an activation temperature dependence R(T) is observed. The activation energy is very close to the spacing between the energy levels of the localized electrons within the localization domain. The activation energy decreases by half in strong magnetic fields, as a result, an exponentially strong negative magnetoresistance is developed. All the features of the magnetoresistance in the SL regime are in good agreement with the theory of doubling of the localization length in quasi-1D conductors in strong fields. The magnetoresistance provides a direct measurement of the localization length. Supported by RNFBR, INTAS 943862, and NSF DRM-9623716 (A.G.M. and H.M.B.)

  18. Mitochondrial genomes suggest that hexapods and crustaceans are mutually paraphyletic

    PubMed Central

    Cook, Charles E; Yue, Qiaoyun; Akam, Michael

    2005-01-01

    For over a century the relationships between the four major groups of the phylum Arthropoda (Chelicerata, Crustacea, Hexapoda and Myriapoda) have been debated. Recent molecular evidence has confirmed a close relationship between the Crustacea and the Hexapoda, and has included the suggestion of a paraphyletic Hexapoda. To test this hypothesis we have sequenced the complete or near-complete mitochondrial genomes of three crustaceans (Parhyale hawaiensis, Squilla mantis and Triops longicaudatus), two collembolans (Onychiurus orientalis and Podura aquatica) and the insect Thermobia domestica. We observed rearrangement of transfer RNA genes only in O. orientalis, P. aquatica and P. hawaiensis. Of these, only the rearrangement in O. orientalis, an apparent autapomorphy for the collembolan family Onychiuridae, was phylogenetically informative. We aligned the nuclear and amino acid sequences from the mitochondrial protein-encoding genes of these taxa with their homologues from other arthropod taxa for phylogenetic analysis. Our dataset contains many more Crustacea than previous molecular phylogenetic analyses of the arthropods. Neighbour-joining, maximum-likelihood and Bayesian posterior probabilities all suggest that crustaceans and hexapods are mutually paraphyletic. A crustacean clade of Malacostraca and Branchiopoda emerges as sister to the Insecta sensu stricto and the Collembola group with the maxillopod crustaceans. Some, but not all, analyses strongly support this mutual paraphyly but statistical tests do not reject the null hypotheses of a monophyletic Hexapoda or a monophyletic Crustacea. The dual monophyly of the Hexapoda and Crustacea has rarely been questioned in recent years but the idea of both groups' paraphyly dates back to the nineteenth century. We suggest that the mutual paraphyly of both groups should seriously be considered. PMID:16024395

  19. Mixtures of Strongly Interacting Bosons in Optical Lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buonsante, P.; Penna, V.; Giampaolo, S. M.

    2008-06-20

    We investigate the properties of strongly interacting heteronuclear boson-boson mixtures loaded in realistic optical lattices, with particular emphasis on the physics of interfaces. In particular, we numerically reproduce the recent experimental observation that the addition of a small fraction of {sup 41}K induces a significant loss of coherence in {sup 87}Rb, providing a simple explanation. We then investigate the robustness against the inhomogeneity typical of realistic experimental realizations of the glassy quantum emulsions recently predicted to occur in strongly interacting boson-boson mixtures on ideal homogeneous lattices.

  20. Suggestibility and suggestive modulation of the Stroop effect.

    PubMed

    Kirsch, Irving

    2011-06-01

    Although the induction of a hypnotic state does not seem necessary for suggestive modulation of the Stroop effect, this important phenomenon has seemed to be dependent on the subject's level of hypnotic suggestibility. Raz and Campbell's (2011) study indicates that suggestion can modulate the Stroop effect substantially in very low suggestible subjects, as well as in those who are highly suggestible. This finding casts doubt on the presumed mechanism by which suggestive modulation is brought about. Research aimed at uncovering the means by which low suggestible individuals are able to modulate the Stroop effect would be welcome, as would assessment of this effect in moderately suggestible people. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Tilts in strong ground motion

    USGS Publications Warehouse

    Graizer, V.

    2006-01-01

    Most instruments used in seismological practice to record ground motion are pendulum seismographs, velocigraphs, or accelerographs. In most cases it is assumed that seismic instruments are only sensitive to the translational motion of the instrument's base. In this study the full equation of pendulum motion, including the inputs of rotations and tilts, is considered. It is shown that tilting the accelerograph's base can severely impact its response to the ground motion. The method of tilt evaluation using uncorrected strong-motion accelerograms was first suggested by Graizer (1989), and later tested in several laboratory experiments with different strong-motion instruments. The method is based on the difference in the tilt sensitivity of the horizontal and vertical pendulums. The method was applied to many of the strongest records of the Mw 6.7 Northridge earthquake of 1994. Examples are shown when relatively large tilts of up to a few degrees occurred during strong earthquake ground motion. Residual tilt extracted from the strong-motion record at the Pacoima Dam-Upper Left Abutment reached 3.1?? in N45??E direction, and was a result of local earthquake-induced tilting due to high-amplitude shaking. This value is in agreement with the residual tilt measured by using electronic level a few days after the earthquake. The method was applied to the building records from the Northridge earthquake. According to the estimates, residual tilt reached 2.6?? on the ground floor of the 12-story Hotel in Ventura. Processing of most of the strongest records of the Northridge earthquake shows that tilts, if happened, were within the error of the method, or less than about 0.5??.

  2. Giant pulses of the Crab Nebula pulsar as an indicator of a strong electromagnetic wave

    NASA Astrophysics Data System (ADS)

    Popov, M. V.; Rudnitskii, A. G.; Soglasnov, V. A.

    2017-03-01

    The spectra and visibility functions of giant pulses of the Crab Nebula pulsar derived from VLBI observations carried out through the "RadioAstron" project in 2015 are analyzed. Parameters of the scattering of the pulses in the interstellar medium are measured, namely, the scattering time and decorrelation bandwidth. A comparative analysis of the shapes of the spectra and visibility functions of giant pulses obtained in real observations and via modeling of their scattering is carried out. The results suggest the presence of short bursts ( dt < 30 ns) in the structure of the giant pulses at 1668 MHz, whose brightness temperatures exceed 1038 K. These pulses propagate in the pulsar magnetosphere in a strong electromagneticwave regime, leading to the generation of additional radiation perpendicular to the direction of propagation of the giant pulses. This radiation may be associated with anomalous components of the mean pulse profile observed at frequencies above 4 GHz.

  3. Strong-coupling effects in superfluid He3 in aerogel

    NASA Astrophysics Data System (ADS)

    Aoyama, Kazushi; Ikeda, Ryusuke

    2007-09-01

    Effects of impurity scatterings on the strong-coupling (SC) contribution, stabilizing the ABM (axial) pairing state, to the quartic term of the Ginzburg-Landau free energy of superfluid He3 are theoretically studied to examine recent observations suggestive of an anomalously small SC effect in superfluid He3 in aerogels. To study the SC corrections, two approaches are used. One is based on a perturbation in the short-range repulsive interaction, and the other is a phenomenological approach used previously for the bulk liquid by Sauls and Serene [Phys. Rev. B 24, 183 (1981)]. It is found that the impurity scattering favors the BW pairing state and shrinks the region of the ABM pairing state in the T-P phase diagram. In the phenomenological approach, the resulting shrinkage of the ABM region is especially substantial and, if assuming an anisotropy over a large scale in aerogel, leads to justifying the phase diagrams determined experimentally.

  4. Observational evidence for black holes

    NASA Astrophysics Data System (ADS)

    Hutchings, J. B.

    1985-02-01

    Observational data supporting the existence of black holes are presented graphically and characterized in a general review. Object classes discussed include quasars as galaxy cores, X-ray-emitting binaries (Cyg X-1, LMC X-3, and the apparent miniature quasar SS 433), radio galaxies and quasars with twin jets, and interacting galaxies. This evidence is found to strongly suggest that quasars are accreting black holes of mass about 10 to the 8th solar mass, that they formed more easily in earlier stages of the universe (corresponding to redshifts around 2), and that they are analogous in many ways to the stellar-mass object SS 433.

  5. Detailed observations of the source of terrestrial narrowband electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.

    1982-01-01

    Detailed observations are presented of a region near the terrestrial plasmapause where narrowband electromagnetic radiation (previously called escaping nonthermal continuum radiation) is being generated. These observations show a direct correspondence between the narrowband radio emissions and electron cyclotron harmonic waves near the upper hybrid resonance frequency. In addition, electromagnetic radiation propagating in the Z-mode is observed in the source region which provides an extremely accurate determination of the electron plasma frequency and, hence, density profile of the source region. The data strongly suggest that electrostatic waves and not Cerenkov radiation are the source of the banded radio emissions and define the coupling which must be described by any viable theory.

  6. Early Observations of the Type Ia Supernova iPTF 16abc: A Case of Interaction with Nearby, Unbound Material and/or Strong Ejecta Mixing

    DOE PAGES

    Miller, A. A.; Cao, Y.; Piro, A. L.; ...

    2018-01-11

    Early observations of Type Ia supernovae (SNe Ia) provide a unique probe of their progenitor systems and explosion physics. Here we report the intermediate Palomar Transient Factory (iPTF) discovery of an extraordinarily young SN Ia, iPTF 16abc. By fitting a power law to our early light curve, we infer that first light for the SN, that is when the SN could have first been detected by our survey, occurred onlymore » $$0.15\\pm_{0.07}^{0.15}$$ days before our first detection. In the $$\\sim$$24 hr after discovery, iPTF 16abc rose by $$\\sim$$2 mag, featuring a near-linear rise in flux for $$\\gtrsim$$3 days. Early spectra show strong C II absorption, which disappears after $$\\sim$$7 days. Unlike the extensivelyobserved SN Ia SN 2011fe, the $$(B-V)_0$$ colors of iPTF 16abc are blue and nearly constant in the days after explosion. We show that our early observations of iPTF 16abc cannot be explained by either SN shock breakout and the associated, subsequent cooling or the SN ejecta colliding with a stellar companion. Instead, we argue that the early characteristics of iPTF 16abc, including (i) the rapid, near-linear rise, (ii) the nonevolving blue colors, and (iii) the strong C II absorption, are the result of either ejecta interaction with nearby, unbound material or vigorous mixing of radioactive 56Ni in the SN ejecta, or a combination of the two. Finally, in the next few years, dozens of very young normal SNe Ia will be discovered, and observations similar to those presented here will constrain the white dwarf explosion mechanism.« less

  7. Early Observations of the Type Ia Supernova iPTF 16abc: A Case of Interaction with Nearby, Unbound Material and/or Strong Ejecta Mixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, A. A.; Cao, Y.; Piro, A. L.

    Early observations of Type Ia supernovae (SNe Ia) provide a unique probe of their progenitor systems and explosion physics. Here we report the intermediate Palomar Transient Factory (iPTF) discovery of an extraordinarily young SN Ia, iPTF 16abc. By fitting a power law to our early light curve, we infer that first light for the SN, that is when the SN could have first been detected by our survey, occurred onlymore » $$0.15\\pm_{0.07}^{0.15}$$ days before our first detection. In the $$\\sim$$24 hr after discovery, iPTF 16abc rose by $$\\sim$$2 mag, featuring a near-linear rise in flux for $$\\gtrsim$$3 days. Early spectra show strong C II absorption, which disappears after $$\\sim$$7 days. Unlike the extensivelyobserved SN Ia SN 2011fe, the $$(B-V)_0$$ colors of iPTF 16abc are blue and nearly constant in the days after explosion. We show that our early observations of iPTF 16abc cannot be explained by either SN shock breakout and the associated, subsequent cooling or the SN ejecta colliding with a stellar companion. Instead, we argue that the early characteristics of iPTF 16abc, including (i) the rapid, near-linear rise, (ii) the nonevolving blue colors, and (iii) the strong C II absorption, are the result of either ejecta interaction with nearby, unbound material or vigorous mixing of radioactive 56Ni in the SN ejecta, or a combination of the two. Finally, in the next few years, dozens of very young normal SNe Ia will be discovered, and observations similar to those presented here will constrain the white dwarf explosion mechanism.« less

  8. Constraints on cosmological models from strong gravitational lensing systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Shuo; Pan, Yu; Zhu, Zong-Hong

    Strong lensing has developed into an important astrophysical tool for probing both cosmology and galaxies (their structure, formation, and evolution). Using the gravitational lensing theory and cluster mass distribution model, we try to collect a relatively complete observational data concerning the Hubble constant independent ratio between two angular diameter distances D{sub ds}/D{sub s} from various large systematic gravitational lens surveys and lensing by galaxy clusters combined with X-ray observations, and check the possibility to use it in the future as complementary to other cosmological probes. On one hand, strongly gravitationally lensed quasar-galaxy systems create such a new opportunity by combiningmore » stellar kinematics (central velocity dispersion measurements) with lensing geometry (Einstein radius determination from position of images). We apply such a method to a combined gravitational lens data set including 70 data points from Sloan Lens ACS (SLACS) and Lens Structure and Dynamics survey (LSD). On the other hand, a new sample of 10 lensing galaxy clusters with redshifts ranging from 0.1 to 0.6 carefully selected from strong gravitational lensing systems with both X-ray satellite observations and optical giant luminous arcs, is also used to constrain three dark energy models (ΛCDM, constant w and CPL) under a flat universe assumption. For the full sample (n = 80) and the restricted sample (n = 46) including 36 two-image lenses and 10 strong lensing arcs, we obtain relatively good fitting values of basic cosmological parameters, which generally agree with the results already known in the literature. This results encourages further development of this method and its use on larger samples obtained in the future.« less

  9. Dynamical observation and detailed description of catalysts under strong metal–support interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Shuyi; Plessow, Philipp N.; Willis, Joshua J.

    2016-06-09

    Understanding the structures of catalysts under realistic conditions with atomic precision is crucial to design better materials for challenging transformations. Under reducing conditions, certain reducible supports migrate onto supported metallic particles and create strong metal–support states that drastically change the reactivity of the systems. The details of this process are still unclear and preclude its thorough exploitation. Here, we report an atomic description of a palladium/titania (Pd/TiO 2) system by combining state-of-the-art in situ transmission electron microscopy and density functional theory (DFT) calculations with structurally defined materials, in which we visualize the formation of the overlayers at the atomic scalemore » under atmospheric pressure and high temperature. We show that an amorphous reduced titania layer is formed at low temperatures, and that crystallization of the layer into either mono- or bilayer structures is dictated by the reaction environment and predicted by theory. Moreover, it occurs in combination with a dramatic reshaping of the metallic surface facets.« less

  10. Recent Arecibo Radar Observations of Main-Belt Asteroids.

    NASA Astrophysics Data System (ADS)

    Shepard, Michael K.; Howell, Ellen; Nolan, Michael; Taylor, Patrick; Springmann, Alessondra; Giorgini, Jon; Benner, Lance; Magri, Christopher

    2014-11-01

    We recently observed main-belt asteroids 12 Victoria (Tholen S-class, Bus L-class), 246 Asporina (A-class), and 2035 Stearns with the S-band (12 cm) Arecibo radar. Signal-to-noise ratios for Asporina and Stearns were only strong enough for continuous-wave (CW) analysis. Signal-to-noise ratios for Victoria were high enough for delay-Doppler imaging. Stearns exhibited a high radar polarization ratio of unity, higher than any other main-belt E-class, but similar to near-Earth E-class asteroids [Benner et al. Icarus 198, 294-304, 2008; Shepard et al. Icarus 215, 547-551, 2011]. The A-class asteroids show spectral absorption features consistent with olivine and have been suggested as the source of pallasite meteorites or the rare brachinites [Cruikshank and Hartmann, Science 223, 281-283, 1984]. The radar cross-section measured for Asporina leads to a radar albedo estimate of 0.11, suggesting a low near-surface bulk density, and by inference, a low metal content. This suggests that the brachinites are a better analog for Asporina than the iron-rich pallasites. Victoria has been observed by radar in the past and the continuous-wave echoes suggest it has a large concavity or is a contact binary [Mitchell et al. Icarus 118, 105-131, 1995]. Our new imaging observations should determine which is more likely.

  11. A Strong Merger Shock in Abell 665

    NASA Technical Reports Server (NTRS)

    Dasadia, S.; Sun, M.; Sarazin, C.; Morandi, A.; Markevitch, M.; Wik, D.; Feretti, L.; Giovannini, G.; Govoni, F.

    2016-01-01

    Deep (103 ks) Chandra observations of Abell 665 have revealed rich structures in this merging galaxy cluster, including a strong shock and two cold fronts. The newly discovered shock has a Mach number of M =?3.0 +/- 0.6, propagating in front of a cold disrupted cloud. This makes Abell 665 the second cluster, after the Bullet cluster, where a strong merger shock of M is approximately 3 has been detected. The shock velocity from jump conditions is consistent with (2.7 +/- 0.7) × 10(exp 3) km s(exp -1). The new data also reveal a prominent southern cold front with potentially heated gas ahead of it. Abell 665 also hosts a giant radio halo. There is a hint of diffuse radio emission extending to the shock at the north, which needs to be examined with better radio data. This new strong shock provides a great opportunity to study the reacceleration model with the X-ray and radio data combined.

  12. On the Contribution of Large-Scale Structure to Strong Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Faure, C.; Kneib, J.-P.; Hilbert, S.; Massey, R.; Covone, G.; Finoguenov, A.; Leauthaud, A.; Taylor, J. E.; Pires, S.; Scoville, N.; Koekemoer, Anton M.

    2009-04-01

    We study the correlation between the locations of galaxy-galaxy strong-lensing candidates and tracers of large-scale structure from both weak lensing (WL) or X-ray emission. The Cosmological Evolution Survey (COSMOS) is a unique data set, combining deep, high resolution and contiguous imaging in which strong lenses have been discovered, plus unparalleled multiwavelength coverage. To help interpret the COSMOS data, we have also produced mock COSMOS strong- and WL observations, based on ray-tracing through the Millennium Simulation. In agreement with the simulations, we find that strongly lensed images with the largest angular separations are found in the densest regions of the COSMOS field. This is explained by a prevalence among the lens population in dense environments of elliptical galaxies with high total-to-stellar mass ratios, which can deflect light through larger angles. However, we also find that the overall fraction of elliptical galaxies with strong gravitational lensing is independent of the local mass density; this observation is not true of the simulations, which predict an increasing fraction of strong lenses in dense environments. The discrepancy may be a real effect, but could also be explained by various limitations of our analysis. For example, our visual search of strong lens systems could be incomplete and suffer from selection bias; the luminosity function of elliptical galaxies may differ between our real and simulated data; or the simplifying assumptions and approximations used in our lensing simulations may be inadequate. Work is therefore ongoing. Automated searches for strong lens systems will be particularly important in better constraining the selection function.

  13. Strong variable linear polarization in the cool active star II Peg

    NASA Astrophysics Data System (ADS)

    Rosén, Lisa; Kochukhov, Oleg; Wade, Gregg A.

    2014-08-01

    Magnetic fields of cool active stars are currently studied polarimetrically using only circular polarization observations. This provides limited information about the magnetic field geometry since circular polarization is only sensitive to the line-of-sight component of the magnetic field. Reconstructions of the magnetic field topology will therefore not be completely trustworthy when only circular polarization is used. On the other hand, linear polarization is sensitive to the transverse component of the magnetic field. By including linear polarization in the reconstruction the quality of the reconstructed magnetic map is dramatically improved. For that reason, we wanted to identify cool stars for which linear polarization could be detected at a level sufficient for magnetic imaging. Four active RS CVn binaries, II Peg, HR 1099, IM Peg, and σ Gem were observed with the ESPaDOnS spectropolarimeter at the Canada-France-Hawaii Telescope. Mean polarization profiles in all four Stokes parameters were derived using the multi-line technique of least-squares deconvolution (LSD). Not only was linear polarization successfully detected in all four stars in at least one observation, but also, II Peg showed an extraordinarily strong linear polarization signature throughout all observations. This qualifies II Peg as the first promising target for magnetic Doppler imaging in all four Stokes parameters and, at the same time, suggests that other such targets can possibly be identified.

  14. Copernicus observations of Betelgeuse and Antares

    NASA Technical Reports Server (NTRS)

    Bernat, A. P.; Lambert, D. L.

    1975-01-01

    Copernicus observations of the M-supergiants, alpha Ori and alpha Sco, are presented. The MgII h and k resonance lines are strongly in emission in both stars. The k line is highly asymmetric in both stars but the h line is symmetric. Upper limits for several other resonance lines are given for alpha Ori. The possibility is explored that the k line asymmetry is caused by overlying resonance lines of MnI and FeI formed in the cool circumstellar gas shells around these stars. Observations of the MnI 4030-4033 A lines are used to show that circumstellar shell absorption is too weak to explain the asymmetry. It is suggested that the absorption occurs in a cool turbulent region between the base of the circumstellar shell and the top of the chromosphere.

  15. Spatially: resolved heterogeneous dynamics in a strong colloidal gel

    NASA Astrophysics Data System (ADS)

    Buzzaccaro, Stefano; Alaimo, Matteo David; Secchi, Eleonora; Piazza, Roberto

    2015-05-01

    We re-examine the classical problem of irreversible colloid aggregation, showing that the application of Digital Fourier Imaging (DFI), a class of optical correlation methods that combine the power of light scattering and imaging, allows one to pick out novel useful evidence concerning the restructuring processes taking place in a strong colloidal gel. In particular, the spatially-resolved displacement fields provided by DFI strongly suggest that the temporally-intermittent local rearrangements taking place in the course of gel ageing are characterized by very long-ranged spatial correlations.

  16. STRONG GRAVITATIONAL LENSING BY THE SUPER-MASSIVE cD GALAXY IN ABELL 3827

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrasco, E. R.; Gomez, P. L.; Lee, H.

    2010-06-01

    We have discovered strong gravitational lensing features in the core of the nearby cluster Abell 3827 by analyzing Gemini South GMOS images. The most prominent strong lensing feature is a highly magnified, ring-shaped configuration of four images around the central cD galaxy. GMOS spectroscopic analysis puts this source at z {approx} 0.2. Located {approx}20'' away from the central galaxy is a secondary tangential arc feature which has been identified as a background galaxy with z {approx} 0.4. We have modeled the gravitational potential of the cluster core, taking into account the mass from the cluster, the brightest cluster galaxy (BCG),more » and other galaxies. We derive a total mass of (2.7 {+-} 0.4) x 10{sup 13} M {sub sun} within 37 h {sup -1} kpc. This mass is an order of magnitude larger than that derived from X-ray observations. The total mass derived from lensing data suggests that the BCG in this cluster is perhaps the most massive galaxy in the nearby universe.« less

  17. Semimetallization of dielectrics in strong optical fields

    PubMed Central

    Kwon, Ojoon; Paasch-Colberg, Tim; Apalkov, Vadym; Kim, Bum-Kyu; Kim, Ju-Jin; Stockman, Mark I.; Kim, D.

    2016-01-01

    At the heart of ever growing demands for faster signal processing is ultrafast charge transport and control by electromagnetic fields in semiconductors. Intense optical fields have opened fascinating avenues for new phenomena and applications in solids. Because the period of optical fields is on the order of a femtosecond, the current switching and its control by an optical field may pave a way to petahertz optoelectronic devices. Lately, a reversible semimetallization in fused silica on a femtosecond time scale by using a few-cycle strong field (~1 V/Å) is manifested. The strong Wannier-Stark localization and Zener-type tunneling were expected to drive this ultrafast semimetallization. Wider spread of this technology demands better understanding of whether the strong field behavior is universally similar for different dielectrics. Here we employ a carrier-envelope-phase stabilized, few-cycle strong optical field to drive the semimetallization in sapphire, calcium fluoride and quartz and to compare this phenomenon and show its remarkable similarity between them. The similarity in response of these materials, despite the distinguishable differences in their physical properties, suggests the universality of the physical picture explained by the localization of Wannier-Stark states. Our results may blaze a trail to PHz-rate optoelectronics. PMID:26888147

  18. Semimetallization of dielectrics in strong optical fields

    DOE PAGES

    Kwon, Ojoon; Paasch-Colberg, Tim; Apalkov, Vadym; ...

    2016-02-18

    At the heart of ever growing demands for faster signal processing is ultrafast charge transport and control by electromagnetic fields in semiconductors. Intense optical fields have opened fascinating avenues for new phenomena and applications in solids. Because the period of optical fields is on the order of a femtosecond, the current switching and its control by an optical field may pave a way to petahertz optoelectronic devices. Lately, a reversible semimetallization in fused silica on a femtosecond time scale by using a few-cycle strong field (~1 V/Å) is manifested. The strong Wannier-Stark localization and Zener-type tunneling were expected to drivemore » this ultrafast semimetallization. Wider spread of this technology demands better understanding of whether the strong field behavior is universally similar for different dielectrics. Here we employ a carrier-envelope-phase stabilized, few-cycle strong optical field to drive the semimetallization in sapphire, calcium fluoride and quartz and to compare this phenomenon and show its remarkable similarity between them. The similarity in response of these materials, despite the distinguishable differences in their physical properties, suggests the universality of the physical picture explained by the localization of Wannier-Stark states. Lastly, our results may blaze a trail to PHz-rate optoelectronics.« less

  19. Semimetallization of dielectrics in strong optical fields.

    PubMed

    Kwon, Ojoon; Paasch-Colberg, Tim; Apalkov, Vadym; Kim, Bum-Kyu; Kim, Ju-Jin; Stockman, Mark I; Kim, D

    2016-02-18

    At the heart of ever growing demands for faster signal processing is ultrafast charge transport and control by electromagnetic fields in semiconductors. Intense optical fields have opened fascinating avenues for new phenomena and applications in solids. Because the period of optical fields is on the order of a femtosecond, the current switching and its control by an optical field may pave a way to petahertz optoelectronic devices. Lately, a reversible semimetallization in fused silica on a femtosecond time scale by using a few-cycle strong field (~1 V/Å) is manifested. The strong Wannier-Stark localization and Zener-type tunneling were expected to drive this ultrafast semimetallization. Wider spread of this technology demands better understanding of whether the strong field behavior is universally similar for different dielectrics. Here we employ a carrier-envelope-phase stabilized, few-cycle strong optical field to drive the semimetallization in sapphire, calcium fluoride and quartz and to compare this phenomenon and show its remarkable similarity between them. The similarity in response of these materials, despite the distinguishable differences in their physical properties, suggests the universality of the physical picture explained by the localization of Wannier-Stark states. Our results may blaze a trail to PHz-rate optoelectronics.

  20. A strongly interacting polaritonic quantum dot

    NASA Astrophysics Data System (ADS)

    Jia, Ningyuan; Schine, Nathan; Georgakopoulos, Alexandros; Ryou, Albert; Clark, Logan W.; Sommer, Ariel; Simon, Jonathan

    2018-06-01

    Polaritons are promising constituents of both synthetic quantum matter1 and quantum information processors2, whose properties emerge from their components: from light, polaritons draw fast dynamics and ease of transport; from matter, they inherit the ability to collide with one another. Cavity polaritons are particularly promising as they may be confined and subjected to synthetic magnetic fields controlled by cavity geometry3, and furthermore they benefit from increased robustness due to the cavity enhancement in light-matter coupling. Nonetheless, until now, cavity polaritons have operated only in a weakly interacting mean-field regime4,5. Here we demonstrate strong interactions between individual cavity polaritons enabled by employing highly excited Rydberg atoms as the matter component of the polaritons. We assemble a quantum dot composed of approximately 150 strongly interacting Rydberg-dressed 87Rb atoms in a cavity, and observe blockaded transport of photons through it. We further observe coherent photon tunnelling oscillations, demonstrating that the dot is zero-dimensional. This work establishes the cavity Rydberg polariton as a candidate qubit in a photonic information processor and, by employing multiple resonator modes as the spatial degrees of freedom of a photonic particle, the primary ingredient to form photonic quantum matter6.

  1. An international observational study suggests that artificial intelligence for clinical decision support optimizes anemia management in hemodialysis patients.

    PubMed

    Barbieri, Carlo; Molina, Manuel; Ponce, Pedro; Tothova, Monika; Cattinelli, Isabella; Ion Titapiccolo, Jasmine; Mari, Flavio; Amato, Claudia; Leipold, Frank; Wehmeyer, Wolfgang; Stuard, Stefano; Stopper, Andrea; Canaud, Bernard

    2016-08-01

    Managing anemia in hemodialysis patients can be challenging because of competing therapeutic targets and individual variability. Because therapy recommendations provided by a decision support system can benefit both patients and doctors, we evaluated the impact of an artificial intelligence decision support system, the Anemia Control Model (ACM), on anemia outcomes. Based on patient profiles, the ACM was built to recommend suitable erythropoietic-stimulating agent doses. Our retrospective study consisted of a 12-month control phase (standard anemia care), followed by a 12-month observation phase (ACM-guided care) encompassing 752 patients undergoing hemodialysis therapy in 3 NephroCare clinics located in separate countries. The percentage of hemoglobin values on target, the median darbepoetin dose, and individual hemoglobin fluctuation (estimated from the intrapatient hemoglobin standard deviation) were deemed primary outcomes. In the observation phase, median darbepoetin consumption significantly decreased from 0.63 to 0.46 μg/kg/month, whereas on-target hemoglobin values significantly increased from 70.6% to 76.6%, reaching 83.2% when the ACM suggestions were implemented. Moreover, ACM introduction led to a significant decrease in hemoglobin fluctuation (intrapatient standard deviation decreased from 0.95 g/dl to 0.83 g/dl). Thus, ACM support helped improve anemia outcomes of hemodialysis patients, minimizing erythropoietic-stimulating agent use with the potential to reduce the cost of treatment. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  2. Suzaku Observation of Strong Fluorescent Iron Line Emission from the Young Stellar Object V1647 Ori during Its New X-ray Outburst

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Kenji; Grosso, Nicolas; Kastner, Joel H.; Weintraub, David A.; Richmond, Michael

    2009-01-01

    The Suzaku X-ray satellite observed the young stellar object V1647 Ori on 2008 October 8 during the new mass accretion outburst reported in August 2008. During the 87 ksec observation with a net exposure of 40 ks, V1647 Ori showed a. high level of X-ray emission with a gradual decrease in flux by a factor of 5 and then displayed an abrupt flux increase by an order of magnitude. Such enhanced X-ray variability was also seen in XMM-Newton observations in 2004 and 2005 during the 2003-2005 outburst, but has rarely been observed for other young stellar objects. The spectrum clearly displays emission from Helium-like iron, which is a signature of hot plasma (kT approx.5 keV). It also shows a fluorescent iron Ka line with a remarkably large equivalent width of approx. 600 eV. Such a, large equivalent width indicates that a part of the incident X-ray emission that irradiates the circumstellar material and/or the stellar surface is hidden from our line of sight. XMM-Newton spectra during the 2003-2005 outburst did not show a strong fluorescent iron Ka line ; so that the structure of the circumstellar gas very close to the stellar core that absorbs and re-emits X-ray emission from the central object may have changed in between 2005 and 2008. This phenomenon may be related to changes in the infrared morphology of McNeil's nebula between 2004 and 2008.

  3. The functional anatomy of suggested limb paralysis.

    PubMed

    Deeley, Quinton; Oakley, David A; Toone, Brian; Bell, Vaughan; Walsh, Eamonn; Marquand, Andre F; Giampietro, Vincent; Brammer, Michael J; Williams, Steven C R; Mehta, Mitul A; Halligan, Peter W

    2013-02-01

    Suggestions of limb paralysis in highly hypnotically suggestible subjects have been employed to successfully model conversion disorders, revealing similar patterns of brain activation associated with attempted movement of the affected limb. However, previous studies differ with regard to the executive regions involved during involuntary inhibition of the affected limb. This difference may have arisen as previous studies did not control for differences in hypnosis depth between conditions and/or include subjective measures to explore the experience of suggested paralysis. In the current study we employed functional magnetic resonance imaging (fMRI) to examine the functional anatomy of left and right upper limb movements in eight healthy subjects selected for high hypnotic suggestibility during (i) hypnosis (NORMAL) and (ii) attempted movement following additional left upper limb paralysis suggestions (PARALYSIS). Contrast of left upper limb motor function during NORMAL relative to PARALYSIS conditions revealed greater activation of contralateral M1/S1 and ipsilateral cerebellum, consistent with the engagement of these regions in the completion of movements. By contrast, two significant observations were noted in PARALYSIS relative to NORMAL conditions. In conjunction with reports of attempts to move the paralysed limb, greater supplementary motor area (SMA) activation was observed, a finding consistent with the role of SMA in motor intention and planning. The anterior cingulate cortex (ACC, BA 24) was also significantly more active in PARALYSIS relative to NORMAL conditions - suggesting that ACC (BA 24) may be implicated in involuntary, as well as voluntary inhibition of prepotent motor responses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Strong Coupling of Localized Surface Plasmons to Excitons in Light-Harvesting Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsargorodska, Anna; Cartron, Michaël L.; Vasilev, Cvetelin

    Gold nanostructure arrays exhibit surface plasmon resonances that split after attaching light harvesting complexes 1 and 2 (LH1 and LH2) from purple bacteria. The splitting is attributed to strong coupling between the localized surface plasmon resonances and excitons in the light-harvesting complexes. Wild-type and mutant LH1 and LH2 from Rhodobacter sphaeroides containing different carotenoids yield different splitting energies, demonstrating that the coupling mechanism is sensitive to the electronic states in the light harvesting complexes. Plasmon–exciton coupling models reveal different coupling strengths depending on the molecular organization and the protein coverage, consistent with strong coupling. Strong coupling was also observed formore » self-assembling polypeptide maquettes that contain only chlorins. However, it is not observed for monolayers of bacteriochlorophyll, indicating that strong plasmon–exciton coupling is sensitive to the specific presentation of the pigment molecules.« less

  5. Strong Coupling of Localized Surface Plasmons to Excitons in Light-Harvesting Complexes

    DOE PAGES

    Tsargorodska, Anna; Cartron, Michaël L.; Vasilev, Cvetelin; ...

    2016-09-30

    Gold nanostructure arrays exhibit surface plasmon resonances that split after attaching light harvesting complexes 1 and 2 (LH1 and LH2) from purple bacteria. The splitting is attributed to strong coupling between the localized surface plasmon resonances and excitons in the light-harvesting complexes. Wild-type and mutant LH1 and LH2 from Rhodobacter sphaeroides containing different carotenoids yield different splitting energies, demonstrating that the coupling mechanism is sensitive to the electronic states in the light harvesting complexes. Plasmon–exciton coupling models reveal different coupling strengths depending on the molecular organization and the protein coverage, consistent with strong coupling. Strong coupling was also observed formore » self-assembling polypeptide maquettes that contain only chlorins. However, it is not observed for monolayers of bacteriochlorophyll, indicating that strong plasmon–exciton coupling is sensitive to the specific presentation of the pigment molecules.« less

  6. RADIO DETECTION PROSPECTS FOR A BULGE POPULATION OF MILLISECOND PULSARS AS SUGGESTED BY FERMI-LAT OBSERVATIONS OF THE INNER GALAXY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calore, F.; Weniger, C.; Mauro, M. Di

    The dense stellar environment of the Galactic center has been proposed to host a large population of as-yet undetected millisecond pulsars (MSPs). Recently, this hypothesis has found support in an analysis of gamma-rays detected using the Large Area Telescope onboard the Fermi satellite, which revealed an excess of diffuse GeV photons in the inner 15 deg about the Galactic center. The excess can be interpreted as the collective emission of thousands of MSPs in the Galactic bulge, with a spherical distribution strongly peaked toward the Galactic center. In order to fully establish the MSP interpretation, it is essential to findmore » corroborating evidence in multi-wavelength searches, most notably through the detection of radio pulsations from individual bulge MSPs. Based on globular cluster observations and gamma-ray emission from the inner Galaxy, we investigate the prospects for detecting MSPs in the Galactic bulge. While previous pulsar surveys failed to identify this population, we demonstrate that upcoming large-area surveys of this region should lead to the detection of dozens of bulge MSPs. Additionally, we show that deep targeted searches of unassociated Fermi sources should be able to detect the first few MSPs in the bulge. The prospects for these deep searches are enhanced by a tentative gamma-ray/radio correlation that we infer from high-latitude gamma-ray MSPs. Such detections would constitute the first clear discoveries of field MSPs in the Galactic bulge, with far-reaching implications for gamma-ray observations, the formation history of the central Milky Way, and strategy optimization for future deep radio pulsar surveys.« less

  7. Strong gravitational lensing probes of the particle nature of dark matter

    NASA Astrophysics Data System (ADS)

    Moustakas, Leonidas A.; Abazajian, Kevork; Benson, Andrew; Bolton, Adam S.; Bullock, James S.; Chen, Jacqueline; Cheng, Edward; Coe, Dan; Congdon, Arthur B.; Dalal, Neal; Diemand, Juerg; Dobke, Benjamin M.; Dobler, Greg; Dore, Olivier; Dutton, Aaron; Ellis, Richard; Fassnacht, Chris D.; Ferguson, Henry; Finkbeiner, Douglas; Gavassi, Raphael; High, Fredrick William; Jeltema, Telsa; Jullo, Eric; Kaplinghat, Manoj; Keeton, Charles R.; Kneib, Jean-Paul; Koopmans, Leon V.E.; Koishiappas, Savvas M.; Kuhlen, Michael; Kusenko, Alexander; Lawrence, Charles R.; Loeb, Avi; Madae, Piero; Marshall, Phil; Metcalf, R. Ben; Natarajan, Priya; Primack, Joel R.; Profumo, Stefano; Seiffert, Michael D.; Simon, Josh; Stern, Daniel; Strigari, Louis; Taylor, James E.; Wayth, Randall; Wambsganss, Joachim; Wechsler, Risa; Zentner, Andrew

    There is a vast menagerie of plausible candidates for the constituents of dark matter, both within and beyond extensions of the Standard Model of particle physics. Each of these candidates may have scattering (and other) cross section properties that are consistent with the dark matter abundance, BBN, and the most scales in the matter power spectrum; but which may have vastly different behavior at sub-galactic "cutoff" scales, below which dark matter density fluctuations are smoothed out. The only way to quantitatively measure the power spectrum behavior at sub-galactic scales at distances beyond the local universe, and indeed over cosmic time, is through probes available in multiply imaged strong gravitational lenses. Gravitational potential perturbations by dark matter substructure encode information in the observed relative magnifications, positions, and time delays in a strong lens. Each of these is sensitive to a different moment of the substructure mass function and to different effective mass ranges of the substructure. The time delay perturbations, in particular, are proving to be largely immune to the degeneracies and systematic uncertainties that have impacted exploitation of strong lenses for such studies. There is great potential for a coordinated theoretical and observational effort to enable a sophisticated exploitation of strong gravitational lenses as direct probes of dark matter properties. This opportunity motivates this white paper, and drives the need for: a) strong support of the theoretical work necessary to understand all astrophysical consequences for different dark matter candidates; and b) tailored observational campaigns, and even a fully dedicated mission, to obtain the requisite data.

  8. SPECTROSCOPIC OBSERVATIONS OF AN EVOLVING FLARE RIBBON SUBSTRUCTURE SUGGESTING ORIGIN IN CURRENT SHEET WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brannon, S. R.; Longcope, D. W.; Qiu, J.

    2015-09-01

    We present imaging and spectroscopic observations from the Interface Region Imaging Spectrograph of the evolution of the flare ribbon in the SOL2014-04-18T13:03 M-class flare event, at high spatial resolution and time cadence. These observations reveal small-scale substructure within the ribbon, which manifests as coherent quasi-periodic oscillations in both position and Doppler velocities. We consider various alternative explanations for these oscillations, including modulation of chromospheric evaporation flows. Among these, we find the best support for some form of wave localized to the coronal current sheet, such as a tearing mode or Kelvin–Helmholtz instability.

  9. Highly Resolved Measurements of a Developing Strong Collisional Plasma Shock

    NASA Astrophysics Data System (ADS)

    Rinderknecht, Hans G.; Park, H.-S.; Ross, J. S.; Amendt, P. A.; Higginson, D. P.; Wilks, S. C.; Haberberger, D.; Katz, J.; Froula, D. H.; Hoffman, N. M.; Kagan, G.; Keenan, B. D.; Vold, E. L.

    2018-03-01

    The structure of a strong collisional shock front forming in a plasma is directly probed for the first time in laser-driven gas-jet experiments. Thomson scattering of a 526.5 nm probe beam was used to diagnose temperature and ion velocity distribution in a strong shock (M ˜11 ) propagating through a low-density (ρ ˜0.01 mg /cc ) plasma composed of hydrogen. A forward-streaming population of ions traveling in excess of the shock velocity was observed to heat and slow down on an unmoving, unshocked population of cold protons, until ultimately the populations merge and begin to thermalize. Instabilities are observed during the merging, indicating a uniquely plasma-phase process in shock front formation.

  10. Strong quantum coherence between Fermi liquid Mahan excitons

    DOE PAGES

    Paul, J.; Stevens, C. E.; Liu, C.; ...

    2016-04-14

    In modulation doped quantum wells, the excitons are formed as a result of the interactions of the charged holes with the electrons at the Fermi edge in the conduction band, leading to the so-called “Mahan excitons.” The binding energy of Mahan excitons is expected to be greatly reduced and any quantum coherence destroyed as a result of the screening and electron-electron interactions. Surprisingly, we observe strong quantum coherence between the heavy hole and light hole excitons. Such correlations are revealed by the dominating cross-diagonal peaks in both one-quantum and two-quantum two-dimensional Fourier transform spectra. Theoretical simulations based on the opticalmore » Bloch equations where many-body effects are included phenomenologically reproduce well the experimental spectra. Furthermore, time-dependent density functional theory calculations provide insight into the underlying physics and attribute the observed strong quantum coherence to a significantly reduced screening length and collective excitations of the many-electron system.« less

  11. Strong Quantum Coherence between Fermi Liquid Mahan Excitons

    NASA Astrophysics Data System (ADS)

    Paul, J.; Stevens, C. E.; Liu, C.; Dey, P.; McIntyre, C.; Turkowski, V.; Reno, J. L.; Hilton, D. J.; Karaiskaj, D.

    2016-04-01

    In modulation doped quantum wells, the excitons are formed as a result of the interactions of the charged holes with the electrons at the Fermi edge in the conduction band, leading to the so-called "Mahan excitons." The binding energy of Mahan excitons is expected to be greatly reduced and any quantum coherence destroyed as a result of the screening and electron-electron interactions. Surprisingly, we observe strong quantum coherence between the heavy hole and light hole excitons. Such correlations are revealed by the dominating cross-diagonal peaks in both one-quantum and two-quantum two-dimensional Fourier transform spectra. Theoretical simulations based on the optical Bloch equations where many-body effects are included phenomenologically reproduce well the experimental spectra. Time-dependent density functional theory calculations provide insight into the underlying physics and attribute the observed strong quantum coherence to a significantly reduced screening length and collective excitations of the many-electron system.

  12. Strong Quantum Coherence between Fermi Liquid Mahan Excitons.

    PubMed

    Paul, J; Stevens, C E; Liu, C; Dey, P; McIntyre, C; Turkowski, V; Reno, J L; Hilton, D J; Karaiskaj, D

    2016-04-15

    In modulation doped quantum wells, the excitons are formed as a result of the interactions of the charged holes with the electrons at the Fermi edge in the conduction band, leading to the so-called "Mahan excitons." The binding energy of Mahan excitons is expected to be greatly reduced and any quantum coherence destroyed as a result of the screening and electron-electron interactions. Surprisingly, we observe strong quantum coherence between the heavy hole and light hole excitons. Such correlations are revealed by the dominating cross-diagonal peaks in both one-quantum and two-quantum two-dimensional Fourier transform spectra. Theoretical simulations based on the optical Bloch equations where many-body effects are included phenomenologically reproduce well the experimental spectra. Time-dependent density functional theory calculations provide insight into the underlying physics and attribute the observed strong quantum coherence to a significantly reduced screening length and collective excitations of the many-electron system.

  13. Observation of inhibited electron-ion coupling in strongly heated graphite

    PubMed Central

    White, T. G.; Vorberger, J.; Brown, C. R. D.; Crowley, B. J. B.; Davis, P.; Glenzer, S. H.; Harris, J. W. O.; Hochhaus, D. C.; Le Pape, S.; Ma, T.; Murphy, C. D.; Neumayer, P.; Pattison, L. K.; Richardson, S.; Gericke, D. O.; Gregori, G.

    2012-01-01

    Creating non-equilibrium states of matter with highly unequal electron and lattice temperatures (Tele≠Tion) allows unsurpassed insight into the dynamic coupling between electrons and ions through time-resolved energy relaxation measurements. Recent studies on low-temperature laser-heated graphite suggest a complex energy exchange when compared to other materials. To avoid problems related to surface preparation, crystal quality and poor understanding of the energy deposition and transport mechanisms, we apply a different energy deposition mechanism, via laser-accelerated protons, to isochorically and non-radiatively heat macroscopic graphite samples up to temperatures close to the melting threshold. Using time-resolved x ray diffraction, we show clear evidence of a very small electron-ion energy transfer, yielding approximately three times longer relaxation times than previously reported. This is indicative of the existence of an energy transfer bottleneck in non-equilibrium warm dense matter. PMID:23189238

  14. A strong astrophysical constraint on the violation of special relativity by quantum gravity.

    PubMed

    Jacobson, T; Liberati, S; Mattingly, D

    2003-08-28

    Special relativity asserts that physical phenomena appear the same to all unaccelerated observers. This is called Lorentz symmetry and relates long wavelengths to short ones: if the symmetry is exact it implies that space-time must look the same at all length scales. Several approaches to quantum gravity, however, suggest that there may be a microscopic structure of space-time that leads to a violation of Lorentz symmetry. This might arise because of the discreteness or non-commutivity of space-time, or through the action of extra dimensions. Here we determine a very strong constraint on a type of Lorentz violation that produces a maximum electron speed less than the speed of light. We use the observation of 100-MeV synchrotron radiation from the Crab nebula to improve the previous limit by a factor of 40 million, ruling out this type of Lorentz violation, and thereby providing an important constraint on theories of quantum gravity.

  15. The first detection of neutral hydrogen in emission in a strong spiral lens

    NASA Astrophysics Data System (ADS)

    Lipnicky, Andrew; Chakrabarti, Sukanya; Wright, Melvyn C. H.; Blitz, Leo; Heiles, Carl; Cotton, William; Frayer, David; Blandford, Roger; Shu, Yiping; Bolton, Adam S.

    2018-05-01

    We report H I observations of eight spiral galaxies that are strongly lensing background sources. Our targets were selected from the Sloan WFC (Wide Field Camera) Edge-on Late-type Lens Survey (SWELLS) using the Arecibo, Karl G. Jansky Very Large Array, and Green Bank telescopes. We securely detect J1703+2451 at z = 0.063 with a signal-to-noise ratio of 6.7 and W50 = 79 ± 13 km s-1, obtaining the first detection of H I emission in a strong spiral lens. We measure a mass of M_{H I} = (1.77± 0.06^{+0.35}_{-0.75})× 10^9 M_{⊙} for this source. We find that this lens is a normal spiral, with observable properties that are fairly typical of spiral galaxies. For three other sources, we did not secure a detection; however, we are able to place strong constraints on the H I masses of those galaxies. The observations for four of our sources were rendered unusable due to strong radio frequency interference.

  16. Female Choice Undermines the Emergence of Strong Sexual Isolation between Locally Adapted Populations of Atlantic Mollies (Poecilia mexicana)

    PubMed Central

    Zimmer, Claudia; Bierbach, David; Arias-Rodriguez, Lenin; Plath, Martin

    2018-01-01

    Divergent selection between ecologically dissimilar habitats promotes local adaptation, which can lead to reproductive isolation (RI). Populations in the Poecilia mexicana species complex have independently adapted to toxic hydrogen sulfide and show varying degrees of RI. Here, we examined the variation in the mate choice component of prezygotic RI. Mate choice tests across drainages (with stimulus males from another drainage) suggest that specific features of the males coupled with a general female preference for yellow color patterns explain the observed variation. Analyses of male body coloration identified the intensity of yellow fin coloration as a strong candidate to explain this pattern, and common-garden rearing suggested heritable population differences. Male sexual ornamentation apparently evolved differently across sulfide-adapted populations, for example because of differences in natural counterselection via predation. The ubiquitous preference for yellow color ornaments in poeciliid females likely undermines the emergence of strong RI, as female discrimination in favor of own males becomes weaker when yellow fin coloration in the respective sulfide ecotype increases. Our study illustrates the complexity of the (partly non-parallel) pathways to divergence among replicated ecological gradients. We suggest that future work should identify the genomic loci involved in the pattern reported here, making use of the increasing genomic and transcriptomic datasets available for our study system. PMID:29724050

  17. ALMA and VLA observations of the HD 141569 system

    NASA Astrophysics Data System (ADS)

    White, Jacob Aaron; Boley, A. C.; MacGregor, M. A.; Hughes, A. M.; Wilner, D. J.

    2018-03-01

    We present VLA 9 mm (33 GHz) and archival ALMA 2.9 mm (103 GHz) observations of the HD 141569 system. The VLA observations achieve a resolution of 0.25 arcsec (˜28 au) and a sensitivity of 4.7 μJy beam- 1. We find (1) a 52 ± 5 μJy point source at the location of HD 141569A that shows potential variability, (2) the detected flux is contained within the SED-inferred central clearing of the disc meaning the spectral index of the dust disc is steeper than previously inferred, and (3) the M dwarf companions are also detected and variable. Previous lower resolution VLA observations (semester 14A) found a higher flux density, interpreted as solely dust emission. When combined with ALMA observations, the VLA 14A observations suggested the spectral index, and grain size distribution of HD 141569's disc was shallow and an outlier among debris systems. Using archival ALMA observations of HD 141569 at 0.87 and 2.9 mm, we find a dust spectral index of αmm = 1.81 ± 0.20. The VLA 16A flux corresponds to a brightness temperature of ˜5 × 106 K, suggesting strong non-disc emission is affecting the inferred grain properties. The VLA 16A flux density of the M2V companion HD 141569B is 149 ± 9 μJy, corresponding to a brightness temperature of ˜2 × 108 K and suggesting significant stellar variability when compared to the VLA14A observations, which are smaller by a factor of ˜6.

  18. BONA FIDE, STRONG-VARIABLE GALACTIC LUMINOUS BLUE VARIABLE STARS ARE FAST ROTATORS: DETECTION OF A HIGH ROTATIONAL VELOCITY IN HR CARINAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groh, J. H.; Damineli, A.; Moises, A. P.

    2009-11-01

    We report optical observations of the luminous blue variable (LBV) HR Carinae which show that the star has reached a visual minimum phase in 2009. More importantly, we detected absorptions due to Si IV lambdalambda4088-4116. To match their observed line profiles from 2009 May, a high rotational velocity of v{sub rot} approx = 150 +- 20 km s{sup -1} is needed (assuming an inclination angle of 30 deg.), implying that HR Car rotates at approx =0.88 +- 0.2 of its critical velocity for breakup (v{sub crit}). Our results suggest that fast rotation is typical in all strong-variable, bona fide galacticmore » LBVs, which present S-Dor-type variability. Strong-variable LBVs are located in a well-defined region of the HR diagram during visual minimum (the 'LBV minimum instability strip'). We suggest this region corresponds to where v{sub crit} is reached. To the left of this strip, a forbidden zone with v{sub rot}/v{sub crit}>1 is present, explaining why no LBVs are detected in this zone. Since dormant/ex LBVs like P Cygni and HD 168625 have low v{sub rot}, we propose that LBVs can be separated into two groups: fast-rotating, strong-variable stars showing S-Dor cycles (such as AG Car and HR Car) and slow-rotating stars with much less variability (such as P Cygni and HD 168625). We speculate that supernova (SN) progenitors which had S-Dor cycles before exploding (such as in SN 2001ig, SN 2003bg, and SN 2005gj) could have been fast rotators. We suggest that the potential difficulty of fast-rotating Galactic LBVs to lose angular momentum is additional evidence that such stars could explode during the LBV phase.« less

  19. A bright lensed galaxy at z = 5.4 with strong Lyα emission

    NASA Astrophysics Data System (ADS)

    McGreer, Ian D.; Clément, Benjamin; Mainali, Ramesh; Stark, Daniel P.; Gronke, Max; Dijkstra, Mark; Fan, Xiaohui; Bian, Fuyan; Frye, Brenda; Jiang, Linhua; Kneib, Jean-Paul; Limousin, Marceau; Walth, Gregory

    2018-05-01

    We present a detailed study of a unusually bright, lensed galaxy at z = 5.424 discovered within the CFHTLS imaging survey. With an observed flux of iAB = 23.0, J141446.82+544631.9 is one of the brightest galaxies known at z > 5. It is characterized by strong Lyα emission, reaching a peak in (observed) flux density of >10-16 erg s-1 cm-2 Å-1. A deep optical spectrum from the LBT places strong constraints on N V and C IV emission, disfavouring an AGN source for the emission. However, a detection of the N IV] λ1486 emission line indicates a hard ionizing continuum, possibly from hot, massive stars. Resolved imaging from HST deblends the galaxy from a foreground interloper; these observations include narrowband imaging of the Lyα emission, which is marginally resolved on ˜few kpc scales and has EW0 ˜ 260Å. The Lyα emission extends over ˜2000 km s-1 and is broadly consistent with expanding shell models. SED fitting that includes Spitzer/IRAC photometry suggests a complex star formation history that include both a recent burst and an evolved population. J1414+5446 lies 30″ from the centre of a known lensing cluster in the CFHTLS; combined with the foreground contribution this leads to a highly uncertain estimate for the lensing magnification in the range 5 ≲ μ ≲ 25. Because of its unusual brightness J1414+5446 affords unique opportunities for detailed study of an individual galaxy near the epoch of reionization and a preview of what can be expected from upcoming wide-area surveys that will yield hundreds of similar objects.

  20. Near-source high-rate GPS, strong motion and InSAR observations to image the 2015 Lefkada (Greece) Earthquake rupture history.

    PubMed

    Avallone, Antonio; Cirella, Antonella; Cheloni, Daniele; Tolomei, Cristiano; Theodoulidis, Nikos; Piatanesi, Alessio; Briole, Pierre; Ganas, Athanassios

    2017-09-04

    The 2015/11/17 Lefkada (Greece) earthquake ruptured a segment of the Cephalonia Transform Fault (CTF) where probably the penultimate major event was in 1948. Using near-source strong motion and high sampling rate GPS data and Sentinel-1A SAR images on two tracks, we performed the inversion for the geometry, slip distribution and rupture history of the causative fault with a three-step self-consistent procedure, in which every step provided input parameters for the next one. Our preferred model results in a ~70° ESE-dipping and ~13° N-striking fault plane, with a strike-slip mechanism (rake ~169°) in agreement with the CTF tectonic regime. This model shows a bilateral propagation spanning ~9 s with the activation of three main slip patches, characterized by rise time and peak slip velocity in the ranges 2.5-3.5 s and 1.4-2.4 m/s, respectively, corresponding to 1.2-1.8 m of slip which is mainly concentrated in the shallower (<10 km) southern half of the causative fault. The inferred slip distribution and the resulting seismic moment (M 0  = 1.05 × 10 19 N m) suggest a magnitude of M w 6.6. Our best solution suggests that the occurrence of large (M w  > 6) earthquakes to the northern and to the southern boundaries of the 2015 causative fault cannot be excluded.

  1. Asteroseismology can reveal strong internal magnetic fields in red giant stars.

    PubMed

    Fuller, Jim; Cantiello, Matteo; Stello, Dennis; Garcia, Rafael A; Bildsten, Lars

    2015-10-23

    Internal stellar magnetic fields are inaccessible to direct observations, and little is known about their amplitude, geometry, and evolution. We demonstrate that strong magnetic fields in the cores of red giant stars can be identified with asteroseismology. The fields can manifest themselves via depressed dipole stellar oscillation modes, arising from a magnetic greenhouse effect that scatters and traps oscillation-mode energy within the core of the star. The Kepler satellite has observed a few dozen red giants with depressed dipole modes, which we interpret as stars with strongly magnetized cores. We find that field strengths larger than ~10(5) gauss may produce the observed depression, and in one case we infer a minimum core field strength of ≈10(7) gauss. Copyright © 2015, American Association for the Advancement of Science.

  2. An Assessment of Magnetic Conditions for Strong Coronal Heating in Solar Active Regions by Comparing Observed Loops with Computed Potential Field Lines

    NASA Technical Reports Server (NTRS)

    Gary, G. A.; Moore, R. L.; Porter, J. G.; Falconer, D. A.

    1999-01-01

    We report further results on the magnetic origins of coronal heating found from registering coronal images with photospheric vector magnetograms. For two complementary active regions, we use computed potential field lines to examine the global non-potentiality of bright extended coronal loops and the three-dimensional structure of the magnetic field at their feet, and assess the role of these magnetic conditions in the strong coronal heating in these loops. The two active regions are complementary, in that one is globally potential and the other is globally nonpotential, while each is predominantly bipolar, and each has an island of included polarity in its trailing polarity domain. We find the following: (1) The brightest main-arch loops of the globally potential active region are brighter than the brightest main- arch loops of the globally strongly nonpotential active region. (2) In each active region, only a few of the mainarch magnetic loops are strongly heated, and these are all rooted near the island. (3) The end of each main-arch bright loop apparently bifurcates above the island, so that it embraces the island and the magnetic null above the island. (4) At any one time, there are other main-arch magnetic loops that embrace the island in the same manner as do the bright loops but that are not selected for strong coronal heating. (5) There is continual microflaring in sheared core fields around the island, but the main-arch bright loops show little response to these microflares. From these observational and modeling results we draw the following conclusions: (1) The heating of the main-arch bright loops arises mainly from conditions at the island end of these loops and not from their global non-potentiality. (2) There is, at most, only a loose coupling between the coronal heating in the bright loops of the main arch and the coronal heating in the sheared core fields at their feet, although in both the heating is driven by conditions/events in and around the

  3. Critical behavior in trapped strongly interacting Fermi gases

    NASA Astrophysics Data System (ADS)

    Taylor, E.

    2009-08-01

    We investigate the width of the Ginzburg critical region and experimental signatures of critical behavior in strongly interacting trapped Fermi gases close to unitarity, where the s -wave scattering length diverges. Despite the fact that the width of the critical region is of the order unity, evidence of critical behavior in the bulk thermodynamics of trapped gases is strongly suppressed by their inhomogeneity. The specific heat of a harmonically confined gas, for instance, is linear in the reduced temperature t=(T-Tc)/Tc above Tc . We also discuss the prospects of observing critical behavior in the local compressibility from measurements of the density profile.

  4. Parents' preferences strongly influence their decisions to withhold prescribed opioids when faced with analgesic trade-off dilemmas for children: a prospective observational study.

    PubMed

    Voepel-Lewis, Terri; Zikmund-Fisher, Brian J; Smith, Ellen Lavoie; Zyzanski, Sarah; Tait, Alan R

    2015-08-01

    Despite parents' stated desire to treat pain in their children, recent studies have critiqued their underuse of prescribed analgesics to treat pain in their children after painful procedures. Parents' analgesic preferences, including their perceived importance of providing pain relief or avoiding adverse drug effects may have important implications for their analgesic decisions, yet no studies have evaluated the influence of preferences on decisions to withhold prescribed opioids for children. We prospectively explored how parents' preferences influenced decisions to withhold prescribed opioids when faced with hypothetical dilemmas and after hospital discharge. Prospective Observational Study Design: Phase 1 included hypothetical analgesic decisions and Phase 2, real analgesic decisions after hospital discharge. Large tertiary care pediatric hospital in the Midwest of the United States. Five-hundred seven parents whose children underwent a painful surgical procedure requiring an opioid prescription were included. At baseline, parents completed surveys assessing their pain relief preference (i.e., their rated importance of pain relief relative to adverse drug event avoidance), preferred treatment thresholds (i.e., pain level at which they would give an opioid), adverse drug event understanding, and hypothetical trade-off decisions (i.e., scenarios presenting variable pain and adverse drug event symptoms in a child). After discharge, parents recorded all analgesics they gave their child as well as pain scores at the time of administration. Higher preference to provide pain relief (over avoid analgesic risk) lessened the likelihood that parents would withhold the prescribed opioid when adverse drug event symptoms were present together with high pain scores in the hypothetical scenarios. Additionally, higher preferred treatment thresholds increased the likelihood of parents withholding opioids during their hypothetical decision-making as well as at home. The strong

  5. Patent Foramen Ovale With Atrial Septal Aneurysm Is Strongly Associated With Migraine With Aura: A Large Observational Study.

    PubMed

    Snijder, Roel J R; Luermans, Justin G L M; de Heij, Albert H; Thijs, Vincent; Schonewille, Wouter J; Van De Bruaene, Alexander; Swaans, Martin J; Budts, Werner I H L; Post, Martijn C

    2016-12-01

    A patent foramen ovale (PFO) with atrial septal aneurysm (ASA) has been identified as a risk factor for cryptogenic stroke. Patients with migraine with aura (MA) appear to be at risk for silent brain infarction, which might be related to the presence of a PFO. However, the association between MA and PFO with ASA has never been reported. We examined this association in a large observational study. Patients (>18 years) who underwent an agitated saline transesophageal echocardiography (cTEE) at our outpatient clinics within a timeframe of 4 years were eligible to be included. Before cTEE they received a validated headache questionnaire. Two neurologists diagnosed migraine with or without aura according to the International Headache Criteria. A total of 889 patients (mean age 56.4±14.3 years, 41.7% women) were included. A PFO was present in 23.2%, an isolated ASA in 2.7%, and a PFO with ASA in 6.9%. The occurrence of migraine was 18.9%; the occurrence of MA was 8.1%. The prevalence of PFO with ASA was significantly higher in patients with MA compared to patients without migraine (18.1% vs 6.1%; OR 3.72, 95% CI 1.86-7.44, P<0.001). However, a PFO without ASA was not significantly associated with MA (OR 1.50, 95% CI 0.79-2.82, P=0.21). Interestingly, a PFO with ASA was strongly associated with MA (OR 2.71, 95% CI 1.23-5.95, P=0.01). In this large observational study, PFO with ASA was significantly associated with MA only. PFO closure studies should focus on this specific intra-atrial anomaly. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  6. Angular-momentum-assisted dissociation of CO in strong optical fields

    NASA Astrophysics Data System (ADS)

    Mullin, Amy; Ogden, Hannah; Murray, Matthew; Liu, Qingnan; Toro, Carlos

    2017-04-01

    Filaments are produced in CO gas by intense, chirped laser pulses. Visible emission from C2 is observed as a result of chemical reactions of highly excited CO. At laser intensities greater than 1014 W cm-2, the C2 emission shows a strong dependence on laser polarization. Oppositely chirped pulses of light with ω0 = 800 nm are recombined spatially and temporally to generate angularly accelerating electric fields (up to 30 THz) that either have an instantaneous linear polarization or act as a dynamic polarization grating that oscillates among linear and circular polarizations. The angularly accelerating linear polarization corresponds to an optical centrifuge that concurrently drives molecules into high rotational states (with J 50) and induces strong-field dissociation. Higher order excitation is observed for the time-varying laser polarization configuration that does not induce rotational excitation. The results indicate that the presence of rotational angular momentum lowers the threshold for CO dissociation in strong optical fields by coupling nuclear and electronic degrees of freedom. Support from NSF CHE-1058721 and the University of Maryland.

  7. New strong motion network in Georgia: basis for specifying seismic hazard

    NASA Astrophysics Data System (ADS)

    Kvavadze, N.; Tsereteli, N. S.

    2017-12-01

    Risk created by hazardous natural events is closely related to sustainable development of the society. Global observations have confirmed tendency of growing losses resulting from natural disasters, one of the most dangerous and destructive if which are earthquakes. Georgia is located in seismically active region. So, it is imperative to evaluate probabilistic seismic hazard and seismic risk with proper accuracy. National network of Georgia includes 35 station all of which are seismometers. There are significant gaps in strong motion recordings, which essential for seismic hazard assessment. To gather more accelerometer recordings, we have built a strong motion network distributed on the territory of Georgia. The network includes 6 stations for now, with Basalt 4x datalogger and strong motion sensor Episensor ES-T. For each site, Vs30 and soil resonance frequencies have been measured. Since all but one station (Tabakhmelam near Tbilisi), are located far from power and internet lines special system was created for instrument operation. Solar power is used to supply the system with electricity and GSM/LTE modems for internet access. VPN tunnel was set up using Raspberry pi, for two-way communication with stations. Tabakhmela station is located on grounds of Ionosphere Observatory, TSU and is used as a hub for the network. This location also includes a broadband seismometer and VLF electromagnetic waves observation antenna, for possible earthquake precursor studies. On server, located in Tabakhmela, the continues data is collected from all the stations, for later use. The recordings later will be used in different seismological and engineering problems, namely selecting and creating GMPE model for Caucasus, for probabilistic seismic hazard and seismic risk evaluation. These stations are a start and in the future expansion of strong motion network is planned. Along with this, electromagnetic wave observations will continue and additional antennas will be implemented

  8. Quadratic Fermi node in a 3D strongly correlated semimetal

    PubMed Central

    Kondo, Takeshi; Nakayama, M.; Chen, R.; Ishikawa, J. J.; Moon, E.-G.; Yamamoto, T.; Ota, Y.; Malaeb, W.; Kanai, H.; Nakashima, Y.; Ishida, Y.; Yoshida, R.; Yamamoto, H.; Matsunami, M.; Kimura, S.; Inami, N.; Ono, K.; Kumigashira, H.; Nakatsuji, S.; Balents, L.; Shin, S.

    2015-01-01

    Strong spin–orbit coupling fosters exotic electronic states such as topological insulators and superconductors, but the combination of strong spin–orbit and strong electron–electron interactions is just beginning to be understood. Central to this emerging area are the 5d transition metal iridium oxides. Here, in the pyrochlore iridate Pr2Ir2O7, we identify a non-trivial state with a single-point Fermi node protected by cubic and time-reversal symmetries, using a combination of angle-resolved photoemission spectroscopy and first-principles calculations. Owing to its quadratic dispersion, the unique coincidence of four degenerate states at the Fermi energy, and strong Coulomb interactions, non-Fermi liquid behaviour is predicted, for which we observe some evidence. Our discovery implies that Pr2Ir2O7 is a parent state that can be manipulated to produce other strongly correlated topological phases, such as topological Mott insulator, Weyl semimetal, and quantum spin and anomalous Hall states. PMID:26640114

  9. Quadratic Fermi node in a 3D strongly correlated semimetal

    DOE PAGES

    Kondo, Takeshi; Nakayama, M.; Chen, R.; ...

    2015-12-07

    We report that strong spin–orbit coupling fosters exotic electronic states such as topological insulators and superconductors, but the combination of strong spin–orbit and strong electron–electron interactions is just beginning to be understood. Central to this emerging area are the 5d transition metal iridium oxides. Here, in the pyrochlore iridate Pr 2Ir 2O 7, we identify a non-trivial state with a single-point Fermi node protected by cubic and time-reversal symmetries, using a combination of angle-resolved photoemission spectroscopy and first-principles calculations. Owing to its quadratic dispersion, the unique coincidence of four degenerate states at the Fermi energy, and strong Coulomb interactions, non-Fermimore » liquid behaviour is predicted, for which we observe some evidence. Lastly, our discovery implies that Pr 2Ir 2O 7 is a parent state that can be manipulated to produce other strongly correlated topological phases, such as topological Mott insulator, Weyl semimetal, and quantum spin and anomalous Hall states.« less

  10. Coupling between strong warm ENSO events and the phase of the stratospheric QBO.

    NASA Astrophysics Data System (ADS)

    Christiansen, Bo

    2017-04-01

    Although there in general are no significant long-term correlations between the QBO and the ENSO in observations we find that the QBO and the ENSO were aligned in the 3 to 4 years after the three strong warm ENSO events in 1982, 1997, and 2015. We study this possible connection between the QBO and the ENSO with a new version of the EC-Earth model which includes non-orographic gravity waves and a well modeled QBO. We analyze the modeled QBO in ensembles consisting of 10 AMIP-type experiments with climatological SSTs and 10 experiments with observed daily SSTs. The model experiments cover the period 1982-2013. For the ENSO we use the multivariate index (MEI). As expected the coherence is strong and statistically significant in the equatorial troposphere in the ensemble with observed SSTs. Here the coherence is a measure of the alignment of the ensemble members. In the ensemble with observed SSTs we find a strong and significant alignment of the ensemble members in the equatorial stratospheric winds in the 2 to 4 years after the strong ENSO event in 1997. This alignment also includes the observed QBO. No such alignment is found in the ensemble with climatological SSTs. These results indicate that strong warm ENSO events can directly influence the phase of the QBO. An open and maybe related question is what caused the anomalous QBO in 2016. This behaviour, which is unprecedented in the 50-60 years with data, has been described as a hiccup or a death-spiral. At least it is clear that in the last 18 months the QBO has been stuck in the same corner of the phase-space spanned by its two leading principal components. The possible connection to the ENSO will be investigated.

  11. Strong electron correlation in UO{sub 2}{sup −}: A photoelectron spectroscopy and relativistic quantum chemistry study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei-Li; Jian, Tian; Lopez, Gary V.

    2014-03-07

    The electronic structures of actinide systems are extremely complicated and pose considerable challenges both experimentally and theoretically because of significant electron correlation and relativistic effects. Here we report an investigation of the electronic structure and chemical bonding of uranium dioxides, UO{sub 2}{sup −} and UO{sub 2}, using photoelectron spectroscopy and relativistic quantum chemistry. The electron affinity of UO{sub 2} is measured to be 1.159(20) eV. Intense detachment bands are observed from the UO{sub 2}{sup −} low-lying (7sσ{sub g}){sup 2}(5fϕ{sub u}){sup 1} orbitals and the more deeply bound O2p-based molecular orbitals which are separated by a large energy gap from themore » U-based orbitals. Surprisingly, numerous weak photodetachment transitions are observed in the gap region due to extensive two-electron transitions, suggesting strong electron correlations among the (7sσ{sub g}){sup 2}(5fϕ{sub u}){sup 1} electrons in UO{sub 2}{sup −} and the (7sσ{sub g}){sup 1}(5fϕ{sub u}){sup 1} electrons in UO{sub 2}. These observations are interpreted using multi-reference ab initio calculations with inclusion of spin-orbit coupling. The strong electron correlations and spin-orbit couplings generate orders-of-magnitude more detachment transitions from UO{sub 2}{sup −} than expected on the basis of the Koopmans’ theorem. The current experimental data on UO{sub 2}{sup −} provide a long-sought opportunity to arbitrating various relativistic quantum chemistry methods aimed at handling systems with strong electron correlations.« less

  12. Model Selection with Strong-lensing Systems

    NASA Astrophysics Data System (ADS)

    Leaf, Kyle; Melia, Fulvio

    2018-05-01

    In this paper, we use an unprecedentedly large sample (158) of confirmed strong lens systems for model selection, comparing five well studied Friedmann-Robertson-Walker cosmologies: ΛCDM, wCDM (the standard model with a variable dark-energy equation of state), the Rh = ct universe, the (empty) Milne cosmology, and the classical Einstein-de Sitter (matter dominated) universe. We first use these sources to optimize the parameters in the standard model and show that they are consistent with Planck, though the quality of the best fit is not satisfactory. We demonstrate that this is likely due to under-reported errors, or to errors yet to be included in this kind of analysis. We suggest that the missing dispersion may be due to scatter about a pure single isothermal sphere (SIS) model that is often assumed for the mass distribution in these lenses. We then use the Bayes information criterion, with the inclusion of a suggested SIS dispersion, to calculate the relative likelihoods and ranking of these models, showing that Milne and Einstein-de Sitter are completely ruled out, while Rh = ct is preferred over ΛCDM/wCDM with a relative probability of ˜73% versus ˜24%. The recently reported sample of new strong lens candidates by the Dark Energy Survey, if confirmed, may be able to demonstrate which of these two models is favoured over the other at a level exceeding 3σ.

  13. Observation of strong Kondo like features and co-tunnelling in superparamagnetic GdCl3 filled 1D nanomagnets

    NASA Astrophysics Data System (ADS)

    Ncube, S.; Coleman, C.; de Sousa, A. S.; Nie, C.; Lonchambon, P.; Flahaut, E.; Strydom, A.; Bhattacharyya, S.

    2018-06-01

    Filling of carbon nanotubes has been tailored over years to modify the exceptional properties of the 1-dimensional conductor for magnetic property based applications. Hence, such a system exploits the spin and charge property of the electron, analogous to a quantum conductor coupled to magnetic impurities, which poses an interesting scenario for the study of Kondo physics and related phenomena. We report on the electronic transport properties of MWNTs filled with GdCl3 nanomagnets, which clearly show the co-existence of Kondo correlation and cotunelling within the superparamagnetic limit. The Fermi liquid description of the Kondo effect and the interpolation scheme are fitted to the resistance-temperature dependence yielding the onset of the Kondo scattering temperature and a Kondo temperature for this nanocomposite, respectively. Cotunneling of conduction electrons interfering with a Kondo type interaction has been verified from the exponential decay of the intensity of the fano shaped nonzero bias anomalous conductance peaks, which also show strong resonant features observed only in GdCl3 filled MWNT devices. Hence, these features are explained in terms of magnetic coherence and spin-flip effects along with the competition between the Kondo effect and co-tunneling. This study raises a new possibility of tailoring magnetic interactions for spintronic applications in carbon nanotube systems.

  14. Below-threshold harmonic generation from strong non-uniform fields

    NASA Astrophysics Data System (ADS)

    Yavuz, I.

    2017-10-01

    Strong-field photoemission below the ionization threshold is a rich/complex region where atomic emission and harmonic generation may coexist. We studied the mechanism of below-threshold harmonics (BTH) from spatially non-uniform local fields near the metallic nanostructures. Discrete harmonics are generated due to the broken inversion symmetry, suggesting enriched coherent emission in the vuv frequency range. Through the numerical solution of the time-dependent Schrödinger equation, we investigate wavelength and intensity dependence of BTH. Wavelength dependence identifies counter-regular resonances; individual contributions from the multi-photon emission and channel-closing effects due to quantum path interferences. In order to understand the underlying mechanism of BTH, we devised a generalized semi-classical model, including the influence of Coulomb and non-uniform field interactions. As in uniform fields, Coulomb potential in non-uniform fields is the determinant of BTH; we observed that the generation of BTH are due to returning trajectories with negative energies. Due to large distance effectiveness of the non-uniformity, only long trajectories are noticeably affected.

  15. Sources and characteristics of medium-scale traveling ionospheric disturbances observed by high-frequency radars in the North American sector

    NASA Astrophysics Data System (ADS)

    Frissell, N. A.; Baker, J. B. H.; Ruohoniemi, J. M.; Greenwald, R. A.; Gerrard, A. J.; Miller, E. S.; West, M. L.

    2016-04-01

    Medium-scale traveling ionospheric disturbances (MSTIDs) are wave-like ionospheric perturbations routinely observed by high-frequency radars. We focus on a class of MSTIDs observed during the winter daytime at high latitudes and midlatitudes. The source of these MSTIDs remains uncertain, with the two primary candidates being space weather and lower atmospheric processes. We surveyed observations from four high-latitude and six midlatitude Super Dual Auroral Radar Network radars in the North American sector from November to May 2012 to 2015. The MSTIDs observed have horizontal wavelengths between ˜150 and 650 km and horizontal velocities between ˜75 and 325 m s-1. In local fall and winter seasons the majority of MSTIDs propagated equatorward, with bearings ranging from ˜125° to 225° geographic azimuth. No clear correlation with space weather activity as parameterized by AE and SYM-H could be identified. Rather, MSTID observations were found to have a strong correlation with polar vortex dynamics on two timescales. First, a seasonal timescale follows the annual development and decay of the polar vortex. Second, a shorter 2-4 week timescale again corresponds to synoptic polar vortex variability, including stratospheric warmings. Additionally, statistical analysis shows that MSTIDs are more likely during periods of strong polar vortex. Direct comparison of the MSTID observations with stratospheric zonal winds suggests that a wind filtering mechanism may be responsible for the strong correlation. Collectively, these observations suggest that polar atmospheric processes, rather than space weather activity, are primarily responsible for controlling the occurrence of high-latitude and midlatitude winter daytime MSTIDs.

  16. Sources and Characteristics of Medium Scale Traveling Ionospheric Disturbances Observed by High Frequency Radars in the North American Sector

    NASA Astrophysics Data System (ADS)

    Frissell, N. A.; Baker, J. B.; Ruohoniemi, J. M.; Greenwald, R. A.; Gerrard, A. J.; Miller, E. S.; West, M. L.

    2016-12-01

    Medium-scale traveling ionospheric disturbances (MSTIDs) are wave-like ionospheric perturbations routinely observed by high-frequency radars. We focus on a class of MSTIDs observed during the winter daytime at high latitudes and midlatitudes. The source of these MSTIDs remains uncertain, with the two primary candidates being space weather and lower atmospheric processes. We surveyed observations from four high-latitude and six midlatitude Super Dual Auroral Radar Network radars in the North American sector from November to May 2012 to 2015. The MSTIDs observed have horizontal wavelengths between 150 and 650 km and horizontal velocities between 75 and 325 m/s. In local fall and winter seasons the majority of MSTIDs propagated equatorward, with bearings ranging from 125° to 225° geographic azimuth. No clear correlation with space weather activity as parameterized by AE and SYM-H could be identified. Rather, MSTID observations were found to have a strong correlation with polar vortex dynamics on two timescales. First, a seasonal timescale follows the annual development and decay of the polar vortex. Second, a shorter 2-4 week timescale again corresponds to synoptic polar vortex variability, including stratospheric warmings. Additionally, statistical analysis shows that MSTIDs are more likely during periods of strong polar vortex. Direct comparison of the MSTID observations with stratospheric zonal winds suggests that a wind filtering mechanism may be responsible for the strong correlation. Collectively, these observations suggest that polar atmospheric processes, rather than space weather activity, are primarily responsible for controlling the occurrence of high-latitude and midlatitude winter daytime MSTIDs.

  17. Images of Bottomside Irregularities Observed at Topside Altitudes

    NASA Technical Reports Server (NTRS)

    Burke, William J.; Gentile, Louise C.; Shomo, Shannon R.; Roddy, Patrick A.; Pfaff, Robert F.

    2012-01-01

    We analyzed plasma and field measurements acquired by the Communication/ Navigation Outage Forecasting System (C/NOFS) satellite during an eight-hour period on 13-14 January 2010 when strong to moderate 250 MHz scintillation activity was observed at nearby Scintillation Network Decision Aid (SCINDA) ground stations. C/NOFS consistently detected relatively small-scale density and electric field irregularities embedded within large-scale (approx 100 km) structures at topside altitudes. Significant spectral power measured at the Fresnel (approx 1 km) scale size suggests that C/NOFS was magnetically conjugate to bottomside irregularities similar to those directly responsible for the observed scintillations. Simultaneous ion drift and plasma density measurements indicate three distinct types of large-scale irregularities: (1) upward moving depletions, (2) downward moving depletions, and (3) upward moving density enhancements. The first type has the characteristics of equatorial plasma bubbles; the second and third do not. The data suggest that both downward moving depletions and upward moving density enhancements and the embedded small-scale irregularities may be regarded as Alfvenic images of bottomside irregularities. This interpretation is consistent with predictions of previously reported theoretical modeling and with satellite observations of upward-directed Poynting flux in the low-latitude ionosphere.

  18. Low-energy (< 200 eV) electron acceleration by ULF waves in the plasmaspheric boundary layer: Van Allen Probes observation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Jie; Zong, Q. G.; Miyoshi, Y.

    Here, we report observational evidence of cold plamsmaspheric electron (< 200 eV) acceleration by ultra-low-frequency (ULF) waves in the plasmaspheric boundary layer on 10 September 2015. Strongly enhanced cold electron fluxes in the energy spectrogram were observed along with second harmonic mode waves with a period of about 1 minute which lasted several hours during two consecutive Van Allen Probe B orbits. Cold electron (<200 eV) and energetic proton (10-20 keV) bi-directional pitch angle signatures observed during the event are suggestive of the drift-bounce resonance mechanism. The correlation between enhanced energy fluxes and ULF waves leads to the conclusions thatmore » plasmaspheric dynamics is strongly affected by ULF waves. Van Allen Probe A and B, GOES 13, GOES 15 and MMS 1 observations suggest ULF waves in the event were strongest on the dusk-side magnetosphere. Measurements from MMS 1 contain no evidence of an external wave source during the period when ULF waves and injected energetic protons with a bump-on-tail distribution were detected by Van Allen Probe B. This suggests that the observed ULF waves were probably excited by a localized drift-bounce resonant instability, with the free energy supplied by substorm-injected energetic protons. The observations by Van Allen Probe B suggest that energy transfer between particle species in different energy ranges can take place through the action of ULF waves, demonstrating the important role of these waves in the dynamical processes of the inner magnetosphere.« less

  19. Low-energy (< 200 eV) electron acceleration by ULF waves in the plasmaspheric boundary layer: Van Allen Probes observation

    DOE PAGES

    Ren, Jie; Zong, Q. G.; Miyoshi, Y.; ...

    2017-08-30

    Here, we report observational evidence of cold plamsmaspheric electron (< 200 eV) acceleration by ultra-low-frequency (ULF) waves in the plasmaspheric boundary layer on 10 September 2015. Strongly enhanced cold electron fluxes in the energy spectrogram were observed along with second harmonic mode waves with a period of about 1 minute which lasted several hours during two consecutive Van Allen Probe B orbits. Cold electron (<200 eV) and energetic proton (10-20 keV) bi-directional pitch angle signatures observed during the event are suggestive of the drift-bounce resonance mechanism. The correlation between enhanced energy fluxes and ULF waves leads to the conclusions thatmore » plasmaspheric dynamics is strongly affected by ULF waves. Van Allen Probe A and B, GOES 13, GOES 15 and MMS 1 observations suggest ULF waves in the event were strongest on the dusk-side magnetosphere. Measurements from MMS 1 contain no evidence of an external wave source during the period when ULF waves and injected energetic protons with a bump-on-tail distribution were detected by Van Allen Probe B. This suggests that the observed ULF waves were probably excited by a localized drift-bounce resonant instability, with the free energy supplied by substorm-injected energetic protons. The observations by Van Allen Probe B suggest that energy transfer between particle species in different energy ranges can take place through the action of ULF waves, demonstrating the important role of these waves in the dynamical processes of the inner magnetosphere.« less

  20. Can mobile phones used in strong motion seismology?

    NASA Astrophysics Data System (ADS)

    D'Alessandro, Antonino; D'Anna, Giuseppe

    2013-04-01

    Micro Electro-Mechanical Systems (MEMS) accelerometers are electromechanical devices able to measure static or dynamic accelerations. In the 1990s MEMS accelerometers revolutionized the automotive-airbag system industry and are currently widely used in laptops, game controllers and mobile phones. Nowadays MEMS accelerometers seems provide adequate sensitivity, noise level and dynamic range to be applicable to earthquake strong motion acquisition. The current use of 3 axes MEMS accelerometers in mobile phone maybe provide a new means to easy increase the number of observations when a strong earthquake occurs. However, before utilize the signals recorded by a mobile phone equipped with a 3 axes MEMS accelerometer for any scientific porpoise, it is fundamental to verify that the signal collected provide reliable records of ground motion. For this reason we have investigated the suitability of the iPhone 5 mobile phone (one of the most popular mobile phone in the world) for strong motion acquisition. It is provided by several MEMS devise like a three-axis gyroscope, a three-axis electronic compass and a the LIS331DLH three-axis accelerometer. The LIS331DLH sensor is a low-cost high performance three axes linear accelerometer, with 16 bit digital output, produced by STMicroelectronics Inc. We have tested the LIS331DLH MEMS accelerometer using a vibrating table and the EpiSensor FBA ES-T as reference sensor. In our experiments the reference sensor was rigidly co-mounted with the LIS331DHL MEMS sensor on the vibrating table. We assessment the MEMS accelerometer in the frequency range 0.2-20 Hz, typical range of interesting in strong motion seismology and earthquake engineering. We generate both constant and damped sine waves with central frequency starting from 0.2 Hz until 20 Hz with step of 0.2 Hz. For each frequency analyzed we generate sine waves with mean amplitude 50, 100, 200, 400, 800 and 1600 mg0. For damped sine waves we generate waveforms with initial amplitude

  1. Cavity Quantum Acoustic Device in the Multimode Strong Coupling Regime

    NASA Astrophysics Data System (ADS)

    Moores, Bradley A.; Sletten, Lucas R.; Viennot, Jeremie J.; Lehnert, K. W.

    2018-06-01

    We demonstrate an acoustical analog of a circuit quantum electrodynamics system that leverages acoustic properties to enable strong multimode coupling in the dispersive regime while suppressing spontaneous emission to unconfined modes. Specifically, we fabricate and characterize a device that comprises a flux tunable transmon coupled to a 300 μ m long surface acoustic wave resonator. For some modes, the qubit-cavity coupling reaches 6.5 MHz, exceeding the cavity loss rate (200 kHz), qubit linewidth (1.1 MHz), and the cavity free spectral range (4.8 MHz), placing the device in both the strong coupling and strong multimode regimes. With the qubit detuned from the confined modes of the cavity, we observe that the qubit linewidth strongly depends on its frequency, as expected for spontaneous emission of phonons, and we identify operating frequencies where this emission rate is suppressed.

  2. Observed Thermal Impacts of Wind Farms Over Northern Illinois.

    PubMed

    Slawsky, Lauren M; Zhou, Liming; Baidya Roy, Somnath; Xia, Geng; Vuille, Mathias; Harris, Ronald A

    2015-06-25

    This paper assesses impacts of three wind farms in northern Illinois using land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments onboard the Terra and Aqua satellites for the period 2003-2013. Changes in LST between two periods (before and after construction of the wind turbines) and between wind farm pixels and nearby non-wind-farm pixels are quantified. An areal mean increase in LST by 0.18-0.39 °C is observed at nighttime over the wind farms, with the geographic distribution of this warming effect generally spatially coupled with the layout of the wind turbines (referred to as the spatial coupling), while there is no apparent impact on daytime LST. The nighttime LST warming effect varies with seasons, with the strongest warming in winter months of December-February, and the tightest spatial coupling in summer months of June-August. Analysis of seasonal variations in wind speed and direction from weather balloon sounding data and Automated Surface Observing System hourly observations from nearby stations suggest stronger winds correspond to seasons with greater warming and larger downwind impacts. The early morning soundings in Illinois are representative of the nighttime boundary layer and exhibit strong temperature inversions across all seasons. The strong and relatively shallow inversion in summer leaves warm air readily available to be mixed down and spatially well coupled with the turbine. Although the warming effect is strongest in winter, the spatial coupling is more erratic and spread out than in summer. These results suggest that the observed warming signal at nighttime is likely due to the net downward transport of heat from warmer air aloft to the surface, caused by the turbulent mixing in the wakes of the spinning turbine rotor blades.

  3. Observed Thermal Impacts of Wind Farms Over Northern Illinois

    PubMed Central

    Slawsky, Lauren M.; Zhou, Liming; Baidya Roy, Somnath; Xia, Geng; Vuille, Mathias; Harris, Ronald A.

    2015-01-01

    This paper assesses impacts of three wind farms in northern Illinois using land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments onboard the Terra and Aqua satellites for the period 2003–2013. Changes in LST between two periods (before and after construction of the wind turbines) and between wind farm pixels and nearby non-wind-farm pixels are quantified. An areal mean increase in LST by 0.18–0.39 °C is observed at nighttime over the wind farms, with the geographic distribution of this warming effect generally spatially coupled with the layout of the wind turbines (referred to as the spatial coupling), while there is no apparent impact on daytime LST. The nighttime LST warming effect varies with seasons, with the strongest warming in winter months of December-February, and the tightest spatial coupling in summer months of June-August. Analysis of seasonal variations in wind speed and direction from weather balloon sounding data and Automated Surface Observing System hourly observations from nearby stations suggest stronger winds correspond to seasons with greater warming and larger downwind impacts. The early morning soundings in Illinois are representative of the nighttime boundary layer and exhibit strong temperature inversions across all seasons. The strong and relatively shallow inversion in summer leaves warm air readily available to be mixed down and spatially well coupled with the turbine. Although the warming effect is strongest in winter, the spatial coupling is more erratic and spread out than in summer. These results suggest that the observed warming signal at nighttime is likely due to the net downward transport of heat from warmer air aloft to the surface, caused by the turbulent mixing in the wakes of the spinning turbine rotor blades. PMID:26121613

  4. MULTI-WAVELENGTH OBSERVATIONS OF COMET C/2011 L4 (PAN-STARRS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Bin; Keane, Jacqueline; Meech, Karen

    2014-04-01

    The dynamically new comet C/2011 L4 (Pan-STARRS) is one of the brightest comets observed since the great comet C/1995 O1 (Hale-Bopp). Here, we present our multi-wavelength observations of C/2011 L4 during its in-bound passage to the inner solar system. A strong absorption band of water ice at 2.0 μm was detected in the near-infrared spectra, obtained with the 8 m Gemini-North and 3 m Infrared Telescope Facility Telescopes. The companion 1.5 μm band of water ice, however, was not observed. Spectral modeling shows that the absence of the 1.5 μm feature can be explained by the presence of sub-micron-sized fine ice grains.more » No gas lines (i.e., CN, HCN, or CO) were observed pre-perihelion in either the optical or the submillimeter. We derived 3σ upper limits for the CN and CO production rates. The comet exhibited a very strong continuum in the optical and its slope seemed to become redder as the comet approached the Sun. Our observations suggest that C/2011 L4 is an unusually dust-rich comet with a dust-to-gas mass ratio >4.« less

  5. An optimized absorbing potential for ultrafast, strong-field problems

    NASA Astrophysics Data System (ADS)

    Yu, Youliang; Esry, B. D.

    2018-05-01

    Theoretical treatments of strong-field physics have long relied on the numerical solution of the time-dependent Schrödinger equation. The most effective such treatments utilize a discrete spatial representation—a grid. Since most strong-field observables relate to the continuum portion of the wave function, the boundaries of the grid—which act as hard walls and thus cause reflection—can substantially impact the observables. Special care thus needs to be taken. While there exist a number of attempts to solve this problem—e.g., complex absorbing potentials and masking functions, exterior complex scaling, and coordinate scaling—none of them are completely satisfactory. The first of these is arguably the most popular, but it consumes a substantial fraction of the computing resources in any given calculation. Worse, this fraction grows with the dimensionality of the problem. In addition, no systematic way to design such a potential has been used in the strong-field community. In this work, we address these issues and find a much better solution. By comparing with previous widely used absorbing potentials, we find a factor of 3–4 reduction in the absorption range, given the same level of absorption over a specified energy interval.

  6. Hypnosis, suggestion, and suggestibility: an integrative model.

    PubMed

    Lynn, Steven Jay; Laurence, Jean-Roch; Kirsch, Irving

    2015-01-01

    This article elucidates an integrative model of hypnosis that integrates social, cultural, cognitive, and neurophysiological variables at play both in and out of hypnosis and considers their dynamic interaction as determinants of the multifaceted experience of hypnosis. The roles of these variables are examined in the induction and suggestion stages of hypnosis, including how they are related to the experience of involuntariness, one of the hallmarks of hypnosis. It is suggested that studies of the modification of hypnotic suggestibility; cognitive flexibility; response sets and expectancies; the default-mode network; and the search for the neurophysiological correlates of hypnosis, more broadly, in conjunction with research on social psychological variables, hold much promise to further understanding of hypnosis.

  7. 77 FR 16131 - Establishing a White House Council on Strong Cities, Strong Communities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-20

    ... Order 13602 of March 15, 2012 Establishing a White House Council on Strong Cities, Strong Communities By... inclusive, it is hereby ordered as follows: Section 1. Policy. Cities, towns, and regions across our Nation... collaboration, my Administration established the Strong Cities, Strong Communities (SC2) pilot initiative. By...

  8. Extreme ultraviolet observations from Voyager 1 encounter with Jupiter

    NASA Technical Reports Server (NTRS)

    Broadfoot, A. L.; Belton, M. J. S.; Takacs, P. Z.; Sandel, B. R.; Shemansky, D. E.; Holberg, J. B.; Ajello, J. M.; Atreya, S. K.; Donahue, T. M.; Moos, H. W.

    1979-01-01

    Observations of the optical extreme ultraviolet spectrum of the Jupiter planetary system during the Voyager 1 encounter have revealed previously undetected physical processes of significant proportions. Bright emission lines of S(+2), S(+3), O(+2) indicating an electron temperature of 100,000 K have been identified in preliminary analyses of the Io plasma torus spectrum. Strong auroral atomic and molecular hydrogen emissions have been observed in the polar regions of Jupiter near magnetic field lines that map the torus into the atmosphere of Jupiter. The observed resonance scattering of solar hydrogen Lyman alpha by the atmosphere of Jupiter and the solar occultation experiment suggest a hot thermosphere (greater than or equal to 1000 K) with a large atomic hydrogen abundance. A stellar occultation by Ganymede indicates that its atmosphere is at most an exosphere.

  9. Geomagnetic and strong static magnetic field effects on growth and chlorophyll a fluorescence in Lemna minor.

    PubMed

    Jan, Luka; Fefer, Dušan; Košmelj, Katarina; Gaberščik, Alenka; Jerman, Igor

    2015-04-01

    The geomagnetic field (GMF) varies over Earth's surface and changes over time, but it is generally not considered as a factor that could influence plant growth. The effects of reduced and enhanced GMFs and a strong static magnetic field on growth and chlorophyll a (Chl a) fluorescence of Lemna minor plants were investigated under controlled conditions. A standard 7 day test was conducted in extreme geomagnetic environments of 4 µT and 100 µT as well as in a strong static magnetic field environment of 150 mT. Specific growth rates as well as slow and fast Chl a fluorescence kinetics were measured after 7 days incubation. The results, compared to those of controls, showed that the reduced GMF significantly stimulated growth rate of the total frond area in the magnetically treated plants. However, the enhanced GMF pointed towards inhibition of growth rate in exposed plants in comparison to control, but the difference was not statistically significant. This trend was not observed in the case of treatments with strong static magnetic fields. Our measurements suggest that the efficiency of photosystem II is not affected by variations in GMF. In contrast, the strong static magnetic field seems to have the potential to increase initial Chl a fluorescence and energy dissipation in Lemna minor plants. © 2015 Wiley Periodicals, Inc.

  10. Herschel Extreme Lensing Line Observations: Dynamics of Two Strongly Lensed Star-Forming Galaxies near Redshift z=2*

    NASA Technical Reports Server (NTRS)

    Rhoads, James E.; Rigby, Jane Rebecca; Malhotra, Sangeeta; Allam, Sahar; Carilli, Chris; Combes, Francoise; Finkelstein, Keely; Finkelstein, Steven; Frye, Brenda; Gerin, Maryvonne; hide

    2014-01-01

    We report on two regularly rotating galaxies at redshift z approx. = 2, using high-resolution spectra of the bright [C microns] 158 micrometers emission line from the HIFI instrument on the Herschel Space Observatory. Both SDSS090122.37+181432.3 ("S0901") and SDSSJ120602.09+514229.5 ("the Clone") are strongly lensed and show the double-horned line profile that is typical of rotating gas disks. Using a parametric disk model to fit the emission line profiles, we find that S0901 has a rotation speed of v sin(i) approx. = 120 +/- 7 kms(sup -1) and a gas velocity dispersion of (standard deviation)g < 23 km s(sup -1) (1(standard deviation)). The best-fitting model for the Clone is a rotationally supported disk having v sin(i) approx. = 79 +/- 11 km s(sup -1) and (standard deviation)g 4 kms(sup -1) (1(standard deviation)). However, the Clone is also consistent with a family of dispersion-dominated models having (standard deviation)g = 92 +/- 20 km s(sup -1). Our results showcase the potential of the [C microns] line as a kinematic probe of high-redshift galaxy dynamics: [C microns] is bright, accessible to heterodyne receivers with exquisite velocity resolution, and traces dense star-forming interstellar gas. Future [C microns] line observations with ALMA would offer the further advantage of spatial resolution, allowing a clearer separation between rotation and velocity dispersion.

  11. Line-of-sight structure toward strong lensing galaxy clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayliss, Matthew B.; Johnson, Traci; Sharon, Keren

    2014-03-01

    We present an analysis of the line-of-sight structure toward a sample of 10 strong lensing cluster cores. Structure is traced by groups that are identified spectroscopically in the redshift range, 0.1 ≤ z ≤ 0.9, and we measure the projected angular and comoving separations between each group and the primary strong lensing clusters in each corresponding line of sight. From these data we measure the distribution of projected angular separations between the primary strong lensing clusters and uncorrelated large-scale structure as traced by groups. We then compare the observed distribution of angular separations for our strong lensing selected lines ofmore » sight against the distribution of groups that is predicted for clusters lying along random lines of sight. There is clear evidence for an excess of structure along the line of sight at small angular separations (θ ≤ 6') along the strong lensing selected lines of sight, indicating that uncorrelated structure is a significant systematic that contributes to producing galaxy clusters with large cross sections for strong lensing. The prevalence of line-of-sight structure is one of several biases in strong lensing clusters that can potentially be folded into cosmological measurements using galaxy cluster samples. These results also have implications for current and future studies—such as the Hubble Space Telescope Frontier Fields—that make use of massive galaxy cluster lenses as precision cosmological telescopes; it is essential that the contribution of line-of-sight structure be carefully accounted for in the strong lens modeling of the cluster lenses.« less

  12. Highly Resolved Measurements of a Developing Strong Collisional Plasma Shock

    DOE PAGES

    Rinderknecht, Hans G.; Park, H. -S.; Ross, J. S.; ...

    2018-03-02

    In this paper, the structure of a strong collisional shock front forming in a plasma is directly probed for the first time in laser-driven gas-jet experiments. Thomson scattering of a 526.5 nm probe beam was used to diagnose temperature and ion velocity distribution in a strong shock (more » $$M{\\sim}11$$) propagating through a low-density ($${\\rho}{\\sim}0.01\\text{ }\\text{ }\\mathrm{mg}/\\mathrm{cc}$$) plasma composed of hydrogen. A forward-streaming population of ions traveling in excess of the shock velocity was observed to heat and slow down on an unmoving, unshocked population of cold protons, until ultimately the populations merge and begin to thermalize. Finally, instabilities are observed during the merging, indicating a uniquely plasma-phase process in shock front formation.« less

  13. Highly Resolved Measurements of a Developing Strong Collisional Plasma Shock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinderknecht, Hans G.; Park, H. -S.; Ross, J. S.

    In this paper, the structure of a strong collisional shock front forming in a plasma is directly probed for the first time in laser-driven gas-jet experiments. Thomson scattering of a 526.5 nm probe beam was used to diagnose temperature and ion velocity distribution in a strong shock (more » $$M{\\sim}11$$) propagating through a low-density ($${\\rho}{\\sim}0.01\\text{ }\\text{ }\\mathrm{mg}/\\mathrm{cc}$$) plasma composed of hydrogen. A forward-streaming population of ions traveling in excess of the shock velocity was observed to heat and slow down on an unmoving, unshocked population of cold protons, until ultimately the populations merge and begin to thermalize. Finally, instabilities are observed during the merging, indicating a uniquely plasma-phase process in shock front formation.« less

  14. Chromogravity explains {open_quotes}strong gravity{close_quotes}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ne`eman, Y.; Sijacki, D.

    1993-03-01

    In this paper the authors deal with the question of gravitational type interactions in the case of strong interaction phenomena. They present arguments which indicate that it is not necessary to invoke a gravity type interaction into QCD in order to account for observed phenomena. They argue that the gravitational type phenomena discussed in previous work is a manifestation of a class of Feynmann diagrams. These seem to generate an analog to gravity, a J=2 {open_quotes}chromograviton{close_quotes} or {open_quotes}pseudo-graviton{close_quotes} whose action effectively generates Salam`s {open_quotes}Strong Gravity{close_quotes} or {open_quotes}f-gravity{close_quotes}, withthough having to introduce the theory as an additional input.

  15. Observations of a fast transverse instability in the PSR

    NASA Astrophysics Data System (ADS)

    Neuffer, D.; Colton, E.; Fitzgerald, D.; Hardek, T.; Hutson, R.; Macek, R.; Plum, M.; Thiessen, H.; Wang, T.-S.

    1992-09-01

    A fast instability with beam loss is observed in the Los Alamos Proton Storage Ring (PSR) when the injected beam current exceeds a threshold value, with both bunched and unbunched beams. Large coherent transverse oscillations occur prior to and during beam loss. The threshold depends strongly on rf voltage, beam-pulse shape, beam size, nonlinear fields, and beam environmental. Results of recent observations of the instability are reported; possible causes of the instability are discussed. Recent measurements and calculations indicate that the instability is an "e-p"-type instability, driven by coupled oscillations with electrons trapped within the proton beam. Future experiments toward further understanding of the instability are discussed, and methods of increasing PSR beam storage are suggested.

  16. Of blind men and elephants: suggesting SDM-MASS as a compound measure for shared decision making integrating patient, physician and observer views.

    PubMed

    Geiger, Friedemann; Kasper, Jürgen

    2012-01-01

    Shared decision making (SDM) between patient and physician is an interpersonal process. Most SDM measures use the view of one party (patient, physician or observer) as a proxy to capture this process although these views typically diverge. This study suggests the compound measure SDM(MASS) (SDM Meeting its concept's ASSumptions) integrating these three perspectives in one single index. SDM(MASS) was derived theoretically and compared empirically to unilateral perspectives of patients, physicians and observers by application to a data set of 10 physicians (40 consultations) receiving an SDM training. The constituting parts of SDM(MASS) were highly reliable (Cronbach's alpha .94; interrater reliability .74-.87). Unilateral appraisal of training effects was divergent. SDM(MASS) revealed no effect. SDM(MASS) combines noteworthy information about SDM processes from different viewpoints and thereby delivers plausible assessments. It could overcome immanent shortcomings of unilateral approaches. However, it is a complex measure needing further validation. Copyright © 2012. Published by Elsevier GmbH.

  17. 90 GHz Observations of M87 and Hydra A

    NASA Technical Reports Server (NTRS)

    Cotton, W. D.; Mason, B. S.; Dicker, S. R.; Korngut, P. M.; Devlin, M. J.; Aquirre, J.; Benford, D. J.; Moseley, S. H.; Staguhn, J. G.; Irwin, K. D.; hide

    2009-01-01

    This paper presents new observations of the active galactic nuclei M87 and Hydra A at 90 GHz made with the MUSTANG array on the Green Bank Telescope at 8"5 resolution. A spectral analysis is performed combining this new data and archival VLA 7 data on these objects at longer wavelengths. This analysis can detect variations in spectral index and curvature expected from energy losses in the radiating particles. M87 shows only weak evidence for steepening of the spectrum along the jet suggesting either re-acceleration of the relativistic particles in the jet or insufficient losses to affect the spectrum at 90 GHz. The jets in Hydra A show strong steepening as they move from the nucleus suggesting unbalanced losses of the higher energy relativistic particles. The difference between these two sources may be accounted for by the lengths over which the jets are observable, 2 kpc for M87 and 45 kpc for Hydra A.

  18. Observer Use of Standardized Observation Protocols in Consequential Observation Systems

    ERIC Educational Resources Information Center

    Bell, Courtney A.; Yi, Qi; Jones, Nathan D.; Lewis, Jennifer M.; McLeod, Monica; Liu, Shuangshuang

    2014-01-01

    Evidence from a handful of large-scale studies suggests that although observers can be trained to score reliably using observation protocols, there are concerns related to initial training and calibration activities designed to keep observers scoring accurately over time (e.g., Bell, et al, 2012; BMGF, 2012). Studies offer little insight into how…

  19. Copernicus observations of Nova Cygni 1975

    NASA Technical Reports Server (NTRS)

    Jenkins, E. B.; Snow, T. P.; Upson, W. L.; Anderson, R.; Starrfield, S. G.; Gallagher, J. S.; Friedjung, M.; Linsky, J. L.; Henry, R. C.; Moos, H. W.

    1977-01-01

    Near-ultraviolet radiation from Nova Cygni 1975 was detected by the Copernicus satellite on five occasions from 1975 September 1 to 1975 September 9. The nova was not seen in the UV after this date. The principal result was the observation of a broad emission feature from the Mg II doublet at 2800 A. The absence of strong UV radiation at shorter wavelengths suggests that these lines are produced by collisional excitation in the outer layers of an expanding shell with electron temperature of approximately 4000 K. The absence of observed emission lines from highly ionized species indicates that the amount of material with log T between 4.4 and 5.7 is less than 0.001 times that which produces the Mg II emission. The continuum flux in the near-UV decreased as the nova evolved, showing that the total luminosity decreased as the nova faded in the visible.

  20. Copernicus observations of Betelgeuse and Antares

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernat, A.P.; Lambert, D.L.

    1975-01-01

    Copernicus observations of the M-supergiants, ..cap alpha.. Ori and ..cap alpha.. Sco, are presented. The Mg II H and K resonance lines are strongly in emission in both stars. The K line is highly asymmetric in both stars but the H line is symmetric. Upper limits for several other resonance lines are given for ..cap alpha.. Ori. The possibility is explored that the K line asymmetry is caused by overlying resonance lines of Mn I and Fe I formed in the cool circumstellar gas shells around these stars. Observations of the Mn I 4030--4033 A lines are used to showmore » that circumstellar shell absorption is too weak to explain the asymmetry. It is suggested that the absorption occurs in a cool turbulent region between the base of the circumstellar shell and the top of the chromosphere. (auth)« less

  1. Low-Temperature Fault Creep: Strong vs. Weak, Steady vs. Episodic

    NASA Astrophysics Data System (ADS)

    Wang, K.; Gao, X.

    2017-12-01

    Unless we understand how faults creep, we do not fully understand how they produce earthquakes. However, most of the physics and geology of low-temperature creep is not known. There are two end-member types of low-temperature creep: weak creep of smooth faults and strong creep of rough faults, with a spectrum of intermediate modes in between. Most conceptual and numerical models deal with weak creep, assuming a very smooth fault with a gouge typically weakened by hydrous minerals (Harris, 2017). Less understood is strong creep. For subduction zones, strong creep appears to be common and is often associated with the subduction of large geometrical irregularities such as seamounts and aseismic ridges (Wang and Bilek, 2014). These irregularities generate fracture systems as they push against the resistance of brittle rocks. The resultant heterogeneous stress and structural environment makes it very difficult to lock the fault. The geodetically observed creep under such conditions is accomplished by the complex deformation of a 3D damage zone. Strong-creeping faults dissipate more heat than faults that produce great earthquakes (Gao and Wang, 2014). Although an integrated frictional strength of the fault is still a useful concept, the creeping mechanism is very different from frictional slip of a velocity-strengthening smooth fault. Cataclasis and pressure-solution creep in the fracture systems must be important processes in strong creep. Strong creep is necessarily non-steady and produces small and medium earthquakes. Strong creep of a megathrust can also promote the occurrence of a very special type of weak creep - episodic slow slip around the mantle wedge corner accompanied with tremor (ETS). An example is Hikurangi, where strong creep causes the frictional-viscous transition along the plate interface to occur much shallower than the mantle wedge corner, a necessary condition for ETS (Gao and Wang, 2017). Gao and Wang (2014), Strength of stick-slip and creeping

  2. Probing small-scale structure in galaxies with strong gravitational lensing

    NASA Astrophysics Data System (ADS)

    Congdon, Arthur Benjamin

    We use gravitational lensing to study the small-scale distribution of matter in galaxies. First, we examine galaxies and their dark matter halos. Roughly half of all observed four-image quasar lenses have image flux ratios that differ from the values predicted by simple lens potentials. We show that smooth departures from elliptical symmetry fail to explain anomalous radio fluxes, strengthening the case for dark matter substructure. Our results have important implications for the "missing satellites'' problem. We then consider how time delays between lensed images can be used to identify lens galaxies containing small-scale structure. We derive an analytic relation for the time delay between the close pair of images in a "fold'' lens, and perform Monte Carlo simulations to investigate the utility of time delays for probing small- scale structure in realistic lens populations. We compare our numerical predictions with systems that have measured time delays and discover two anomalous lenses. Next, we consider microlensing, where stars in the lens galaxy perturb image magnifications. This is relevant at optical wavelengths, where the size of the lensed source is comparable to the Einstein radius of a typical star. Our simulations of negative-parity images show that raising the fraction of dark matter relative to stars increases image flux variability for small sources, and decreases it for large sources. This suggests that quasar accretion disks and broad-emission-line regions may respond differently to microlensing. We also consider extended sources with a range of ellipticities, which has relevance to a population of inclined accretion disks. Depending on their orientation, more elongated sources lead to more rapid variability, which may complicate the interpretation of microlensing light curves. Finally, we consider prospects for observing strong lensing by the supermassive black hole at the center of the Milky Way, Sgr A*. Assuming a black hole on the million

  3. Constraints on Inner Core Anisotropy Using Array Observations of P'P'

    NASA Astrophysics Data System (ADS)

    Frost, Daniel A.; Romanowicz, Barbara

    2017-11-01

    Recent studies of PKPdf travel times suggest strong anisotropy (4% or more) in the quasi-western inner core hemisphere. However, the availability of paths sampling at low angles to the Earth's rotation axis (the fast axis) is limited. To augment this sampling, we collected a travel time data set for the phase P'P'df (PKPPKPdf), for which at least one inner core leg is quasi-polar, at two high latitude seismic arrays. We find that the inferred anisotropy is weak (on the order of 0.5 to 1.5%), confirming previous results based on a much smaller P'P' data set. While previous models of inner core anisotropy required very strong alignment of anisotropic iron grains, our results are more easily explained by current dynamic models of inner core growth. We observe large travel time anomalies when one leg of P'P'df is along the South Sandwich to Alaska path, consistent with PKPdf observations, and warranting further investigation.

  4. Strong negative terahertz photoconductivity in photoexcited graphene

    NASA Astrophysics Data System (ADS)

    Fu, Maixia; Wang, Xinke; Ye, Jiasheng; Feng, Shengfei; Sun, Wenfeng; Han, Peng; Zhang, Yan

    2018-01-01

    Terahertz (THz) response of a chemical vapor deposited graphene on a quartz substrate has been investigated by using an ultrafast optical-pump THz-probe spectroscopy. Without photoexcitation, the frequency-dependence optical conductivity shows a strong carrier response owing to the intrinsically doped graphene. Upon photoexcitation, an enhancement in THz transmission is observed and the transmission increases nonlinearly with the increase of pump power, which is rooted in a reduction of intrinsic conductivity arising from the strong enhancement of carrier scattering rather than THz emission occurrence. The modulation depth of 18.8% was experimentally achieved, which is more than four times greater than that of the previous reported. The photoinduced response here highlights the variety of response possible in graphene depending on the sample quality, carrier mobility and doping level. The graphene provides promising applications in high-performance THz modulators and THz photoelectric devices.

  5. Cavity Quantum Acoustic Device in the Multimode Strong Coupling Regime.

    PubMed

    Moores, Bradley A; Sletten, Lucas R; Viennot, Jeremie J; Lehnert, K W

    2018-06-01

    We demonstrate an acoustical analog of a circuit quantum electrodynamics system that leverages acoustic properties to enable strong multimode coupling in the dispersive regime while suppressing spontaneous emission to unconfined modes. Specifically, we fabricate and characterize a device that comprises a flux tunable transmon coupled to a 300  μm long surface acoustic wave resonator. For some modes, the qubit-cavity coupling reaches 6.5 MHz, exceeding the cavity loss rate (200 kHz), qubit linewidth (1.1 MHz), and the cavity free spectral range (4.8 MHz), placing the device in both the strong coupling and strong multimode regimes. With the qubit detuned from the confined modes of the cavity, we observe that the qubit linewidth strongly depends on its frequency, as expected for spontaneous emission of phonons, and we identify operating frequencies where this emission rate is suppressed.

  6. On Multiple Reconnection X-lines and Tripolar Perturbations of Strong Guide Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Eriksson, S.; Lapenta, G.; Newman, D. L.; Phan, T. D.; Gosling, J. T.; Lavraud, B.; Khotyaintsev, Yu. V.; Carr, C. M.; Markidis, S.; Goldman, M. V.

    2015-05-01

    We report new multi-spacecraft Cluster observations of tripolar guide magnetic field perturbations at a solar wind reconnection exhaust in the presence of a guide field BM which is almost four times as strong as the reversing field BL. The novel tripolar field consists of two narrow regions of depressed BM, with an observed 7%-14% ΔBM magnitude relative to the external field, which are found adjacent to a wide region of enhanced BM within the exhaust. A stronger reversing field is associated with each BM depression. A kinetic reconnection simulation for realistic solar wind conditions and the observed strong guide field reveals that tripolar magnetic fields preferentially form across current sheets in the presence of multiple X-lines as magnetic islands approach one another and merge into fewer and larger islands. The simulated ΔBM/ΔXN over the normal width ΔXN between a BM minimum and the edge of the external region agree with the normalized values observed by Cluster. We propose that a tripolar guide field perturbation may be used to identify candidate regions containing multiple X-lines and interacting magnetic islands at individual solar wind current sheets with a strong guide field.

  7. On Strong Anticipation

    PubMed Central

    Stepp, N.; Turvey, M. T.

    2009-01-01

    We examine Dubois's (2003) distinction between weak anticipation and strong anticipation. Anticipation is weak if it arises from a model of the system via internal simulations. Anticipation is strong if it arises from the system itself via lawful regularities embedded in the system's ordinary mode of functioning. The assumption of weak anticipation dominates cognitive science and neuroscience and in particular the study of perception and action. The assumption of strong anticipation, however, seems to be required by anticipation's ubiquity. It is, for example, characteristic of homeostatic processes at the level of the organism, organs, and cells. We develop the formal distinction between strong and weak anticipation by elaboration of anticipating synchronization, a phenomenon arising from time delays in appropriately coupled dynamical systems. The elaboration is conducted in respect to (a) strictly physical systems, (b) the defining features of circadian rhythms, often viewed as paradigmatic of biological behavior based in internal models, (c) Pavlovian learning, and (d) forward models in motor control. We identify the common thread of strongly anticipatory systems and argue for its significance in furthering understanding of notions such as “internal”, “model” and “prediction”. PMID:20191086

  8. A temporal discriminability account of children's eyewitness suggestibility.

    PubMed

    Bright-Paul, Alexandra; Jarrold, Christopher

    2009-07-01

    Children's suggestibility is typically measured using a three-stage 'event-misinformation-test' procedure. We examined whether suggestibility is influenced by the time delays imposed between these stages, and in particular whether the temporal discriminability of sources (event and misinformation) predicts performance. In a novel approach, the degree of source discriminability was calculated as the relative magnitude of two intervals (the ratio of event-misinformation and misinformation-test intervals), based on an adaptation of existing 'ratio-rule' accounts of memory. Five-year-olds (n =150) watched an event, and were exposed to misinformation, before memory for source was tested. The absolute event-test delay (12 versus 24 days) and the 'ratio' of event-misinformation/misinformation-test intervals (11:1, 3:1, 1:1, 1:3 and 1:11) were manipulated across participants. The temporal discriminability of sources, measured by the ratio, was indeed a strong predictor of suggestibility. Most importantly, if the ratio was constant (e.g. 18/6 versus 9/3 days), performance was remarkably similar despite variations in absolute delay (e.g. 24 versus 12 days). This intriguing finding not only extends the ratio-rule of distinctiveness to misinformation paradigms, but also serves to illustrate a new empirical means of differentiating between explanations of suggestibility based on interference between sources and disintegration of source information over time.

  9. Strongly correlated fermions after a quantum quench.

    PubMed

    Manmana, S R; Wessel, S; Noack, R M; Muramatsu, A

    2007-05-25

    Using the adaptive time-dependent density-matrix renormalization group method, we study the time evolution of strongly correlated spinless fermions on a one-dimensional lattice after a sudden change of the interaction strength. For certain parameter values, two different initial states (e.g., metallic and insulating) lead to observables which become indistinguishable after relaxation. We find that the resulting quasistationary state is nonthermal. This result holds for both integrable and nonintegrable variants of the system.

  10. MAVEN Observations of Energy-Time Dispersed Electron Signatures in Martian Crustal Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Harada, Y.; Mitchell, D. L.; Halekas, J. S.; McFadden, J. P.; Mazelle, C.; Connerney, J. E. P.; Espley, J.; Brain, D. A.; Larson, D. E.; Lillis, R. J.; hide

    2016-01-01

    Energy-time dispersed electron signatures are observed by the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission in the vicinity of strong Martian crustal magnetic fields. Analysis of pitch angle distributions indicates that these dispersed electrons are typically trapped on closed field lines formed above strong crustal magnetic sources. Most of the dispersed electron signatures are characterized by peak energies decreasing with time rather than increasing peak energies. These properties can be explained by impulsive and local injection of hot electrons into closed field lines and subsequent dispersion by magnetic drift of the trapped electrons. In addition, the dispersed flux enhancements are often bursty and sometimes exhibit clear periodicity, suggesting that the injection and trapping processes are intrinsically time dependent and dynamic. These MAVEN observations demonstrate that common physical processes can operate in both global intrinsic magnetospheres and local crustal magnetic fields.

  11. Testing strong-segregation theory against self-consistent-field theory for block copolymer melts

    NASA Astrophysics Data System (ADS)

    Matsen, M. W.

    2001-06-01

    We introduce a highly efficient self-consistent-field theory (SCFT) method for examining the cylindrical and spherical block copolymer morphologies using a standard unit cell approximation (UCA). The method is used to calculate the classical diblock copolymer phase boundaries deep into the strong-segregation regime, where they can be compared with recent improvements to strong-segregation theory (SST). The comparison suggests a significant discrepancy between the two theories indicating that our understanding of strongly stretched polymer brushes is still incomplete.

  12. Are Strong Zonal Winds in Giant Planets Caused by Density-Stratification?

    NASA Astrophysics Data System (ADS)

    Verhoeven, J.; Stellmach, S.

    2012-12-01

    One of the most striking features of giant planets like Jupiter and Saturn are the zonal wind patterns observed on their surfaces. The mechanism that drives this differential rotation is still not clearly identified and is currently strongly debated in the astro- and geophysics community. Different mechanisms have been proposed over the last decades. Here, a recently discovered mechanism based on background density stratification (Glatzmaier et al., 2009) is investigated. This mechanism has the potential to overcome known difficulties of previous explanations and its efficiency has been demonstrated in 2-d simulations covering equatorial planes. By performing highly resolved numerical simulations in a local Cartesian geometry, we are able to test the efficiency and functionality of this mechanism in turbulent, rotating convection in three spatial dimensions. The choice of a Cartesian model geometry naturally excludes other known mechanisms capable of producing differential rotation, thus allowing us to investigate the role of density stratification in isolation. Typically, the dynamics can be classified into two main regimes: A regime exhibiting strong zonal winds for weak to moderate thermal driving and a regime where zonal winds are largely absent in the case of a strong thermal forcing. Our results indicate that previous 2-d results must be handled with care and can only explain parts of the full 3-d behavior. We show that the density-stratification mechanism tends to operate in a more narrow parameter range in 3-d as compared to 2-d simulations. The dynamics of the regime transition is shown to differ in both cases, which renders scaling laws derived from two-dimensional studies questionable. Based on our results, we provide estimates for the importance of the density-stratification mechanism for giant planets like Jupiter (strong density stratification), for systems like the Earth's core (weak density stratification) and compare its efficiency with other

  13. Strong field gravitational lensing by a charged Galileon black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Shan-Shan; Xie, Yi, E-mail: clefairy035@163.com, E-mail: yixie@nju.edu.cn

    Strong field gravitational lensings are dramatically disparate from those in the weak field by representing relativistic images due to light winds one to infinity loops around a lens before escaping. We study such a lensing caused by a charged Galileon black hole, which is expected to have possibility to evade no-hair theorem. We calculate the angular separations and time delays between different relativistic images of the charged Galileon black hole. All these observables can potentially be used to discriminate a charged Galileon black hole from others. We estimate the magnitudes of these observables for the closest supermassive black hole Sgrmore » A*. The strong field lensing observables of the charged Galileon black hole can be close to those of a tidal Reissner-Nordström black hole or those of a Reissner-Nordström black hole. It will be helpful to distinguish these black holes if we can separate the outermost relativistic images and determine their angular separation, brightness difference and time delay, although it requires techniques beyond the current limit.« less

  14. Strong near-infrared carbon in the Type Ia supernova iPTF13ebh

    DOE PAGES

    Hsiao, E. Y.; Burns, C. R.; Contreras, C.; ...

    2015-05-22

    We present near-infrared (NIR) time-series spectroscopy, as well as complementary ultraviolet (UV), optical, and NIR data, of the Type Ia supernova (SN Ia) iPTF13ebh, which was discovered within two days from the estimated time of explosion. The first NIR spectrum was taken merely 2.3 days after explosion and may be the earliest NIR spectrum yet obtained of a SN Ia. The most striking features in the spectrum are several NIR C I lines, and the C Iλ1.0693 μm line is the strongest ever observed in a SN Ia. Interestingly, no strong optical C II counterparts were found, even though themore » optical spectroscopic time series began early and is densely cadenced. Except at the very early epochs, within a few days from the time of explosion, we show that the strong NIR C I compared to the weaker optical C II appears to be general in SNe Ia. iPTF13ebh is a fast decliner with Δm15(B) = 1.79 ± 0.01, and its absolute magnitude obeys the linear part of the width-luminosity relation. It is therefore categorized as a “transitional” event, on the fast-declining end of normal SNe Ia as opposed to subluminous/91bg-like objects. iPTF13ebh shows NIR spectroscopic properties that are distinct from both the normal and subluminous/91bg-like classes, bridging the observed characteristics of the two classes. These NIR observations suggest that composition and density of the inner core are similar to that of 91bg-like events, and that it has a deep-reaching carbon burning layer that is not observed in more slowly declining SNe Ia. Furthermore, there is also a substantial difference between the explosion times inferred from the early-time light curve and the velocity evolution of the Si II λ0.6355 μm line, implying a long dark phase of ~4 days.« less

  15. UP TO 100,000 RELIABLE STRONG GRAVITATIONAL LENSES IN FUTURE DARK ENERGY EXPERIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serjeant, S.

    2014-09-20

    The Euclid space telescope will observe ∼10{sup 5} strong galaxy-galaxy gravitational lens events in its wide field imaging survey over around half the sky, but identifying the gravitational lenses from their observed morphologies requires solving the difficult problem of reliably separating the lensed sources from contaminant populations, such as tidal tails, as well as presenting challenges for spectroscopic follow-up redshift campaigns. Here I present alternative selection techniques for strong gravitational lenses in both Euclid and the Square Kilometre Array, exploiting the strong magnification bias present in the steep end of the Hα luminosity function and the H I mass function.more » Around 10{sup 3} strong lensing events are detectable with this method in the Euclid wide survey. While only ∼1% of the total haul of Euclid lenses, this sample has ∼100% reliability, known source redshifts, high signal-to-noise, and a magnification-based selection independent of assumptions of lens morphology. With the proposed Square Kilometre Array dark energy survey, the numbers of reliable strong gravitational lenses with source redshifts can reach 10{sup 5}.« less

  16. Strong Purifying Selection at Synonymous Sites in D. melanogaster

    PubMed Central

    Lawrie, David S.; Messer, Philipp W.; Hershberg, Ruth; Petrov, Dmitri A.

    2013-01-01

    Synonymous sites are generally assumed to be subject to weak selective constraint. For this reason, they are often neglected as a possible source of important functional variation. We use site frequency spectra from deep population sequencing data to show that, contrary to this expectation, 22% of four-fold synonymous (4D) sites in Drosophila melanogaster evolve under very strong selective constraint while few, if any, appear to be under weak constraint. Linking polymorphism with divergence data, we further find that the fraction of synonymous sites exposed to strong purifying selection is higher for those positions that show slower evolution on the Drosophila phylogeny. The function underlying the inferred strong constraint appears to be separate from splicing enhancers, nucleosome positioning, and the translational optimization generating canonical codon bias. The fraction of synonymous sites under strong constraint within a gene correlates well with gene expression, particularly in the mid-late embryo, pupae, and adult developmental stages. Genes enriched in strongly constrained synonymous sites tend to be particularly functionally important and are often involved in key developmental pathways. Given that the observed widespread constraint acting on synonymous sites is likely not limited to Drosophila, the role of synonymous sites in genetic disease and adaptation should be reevaluated. PMID:23737754

  17. Observation of the avalanche of runaway electrons in air in a strong electric field.

    PubMed

    Gurevich, A V; Mesyats, G A; Zybin, K P; Yalandin, M I; Reutova, A G; Shpak, V G; Shunailov, S A

    2012-08-24

    The generation of an avalanche of runaway electrons is demonstrated for the first time in a laboratory experiment. Two flows of runaway electrons are formed sequentially in an extended air discharge gap at the stage of delay of a pulsed breakdown. The first, picosecond, runaway electron flow is emitted in the cathode region where the field is enhanced. Being accelerated in the gap, this beam generates electrons due to impact ionization. These secondary electrons form a delayed avalanche of runaway electrons if the field is strong enough. The properties of the avalanche correspond to the existing notions about the runaway breakdown in air. The measured current of the avalanche exceeds up to an order the current of the initiating electron beam.

  18. Observation of the Avalanche of Runaway Electrons in Air in a Strong Electric Field

    NASA Astrophysics Data System (ADS)

    Gurevich, A. V.; Mesyats, G. A.; Zybin, K. P.; Yalandin, M. I.; Reutova, A. G.; Shpak, V. G.; Shunailov, S. A.

    2012-08-01

    The generation of an avalanche of runaway electrons is demonstrated for the first time in a laboratory experiment. Two flows of runaway electrons are formed sequentially in an extended air discharge gap at the stage of delay of a pulsed breakdown. The first, picosecond, runaway electron flow is emitted in the cathode region where the field is enhanced. Being accelerated in the gap, this beam generates electrons due to impact ionization. These secondary electrons form a delayed avalanche of runaway electrons if the field is strong enough. The properties of the avalanche correspond to the existing notions about the runaway breakdown in air. The measured current of the avalanche exceeds up to an order the current of the initiating electron beam.

  19. 77 FR 53212 - Notice of Proposed Information Collection: Comment Request Strong Cities Strong Communities...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-31

    ... Information Collection: Comment Request Strong Cities Strong Communities National Resource Network AGENCY... National Resource Network. OMB Control Number, if applicable: 2528--Pending. Description of the need for... information related to the proposed Strong Cities Strong Communities National Resource Network. The U.S...

  20. ALGORITHMS AND PROGRAMS FOR STRONG GRAVITATIONAL LENSING IN KERR SPACE-TIME INCLUDING POLARIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Bin; Maddumage, Prasad; Kantowski, Ronald

    2015-05-15

    Active galactic nuclei (AGNs) and quasars are important astrophysical objects to understand. Recently, microlensing observations have constrained the size of the quasar X-ray emission region to be of the order of 10 gravitational radii of the central supermassive black hole. For distances within a few gravitational radii, light paths are strongly bent by the strong gravity field of the central black hole. If the central black hole has nonzero angular momentum (spin), then a photon’s polarization plane will be rotated by the gravitational Faraday effect. The observed X-ray flux and polarization will then be influenced significantly by the strong gravitymore » field near the source. Consequently, linear gravitational lensing theory is inadequate for such extreme circumstances. We present simple algorithms computing the strong lensing effects of Kerr black holes, including the effects on polarization. Our algorithms are realized in a program “KERTAP” in two versions: MATLAB and Python. The key ingredients of KERTAP are a graphic user interface, a backward ray-tracing algorithm, a polarization propagator dealing with gravitational Faraday rotation, and algorithms computing observables such as flux magnification and polarization angles. Our algorithms can be easily realized in other programming languages such as FORTRAN, C, and C++. The MATLAB version of KERTAP is parallelized using the MATLAB Parallel Computing Toolbox and the Distributed Computing Server. The Python code was sped up using Cython and supports full implementation of MPI using the “mpi4py” package. As an example, we investigate the inclination angle dependence of the observed polarization and the strong lensing magnification of AGN X-ray emission. We conclude that it is possible to perform complex numerical-relativity related computations using interpreted languages such as MATLAB and Python.« less

  1. Algorithms and Programs for Strong Gravitational Lensing In Kerr Space-time Including Polarization

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Kantowski, Ronald; Dai, Xinyu; Baron, Eddie; Maddumage, Prasad

    2015-05-01

    Active galactic nuclei (AGNs) and quasars are important astrophysical objects to understand. Recently, microlensing observations have constrained the size of the quasar X-ray emission region to be of the order of 10 gravitational radii of the central supermassive black hole. For distances within a few gravitational radii, light paths are strongly bent by the strong gravity field of the central black hole. If the central black hole has nonzero angular momentum (spin), then a photon’s polarization plane will be rotated by the gravitational Faraday effect. The observed X-ray flux and polarization will then be influenced significantly by the strong gravity field near the source. Consequently, linear gravitational lensing theory is inadequate for such extreme circumstances. We present simple algorithms computing the strong lensing effects of Kerr black holes, including the effects on polarization. Our algorithms are realized in a program “KERTAP” in two versions: MATLAB and Python. The key ingredients of KERTAP are a graphic user interface, a backward ray-tracing algorithm, a polarization propagator dealing with gravitational Faraday rotation, and algorithms computing observables such as flux magnification and polarization angles. Our algorithms can be easily realized in other programming languages such as FORTRAN, C, and C++. The MATLAB version of KERTAP is parallelized using the MATLAB Parallel Computing Toolbox and the Distributed Computing Server. The Python code was sped up using Cython and supports full implementation of MPI using the “mpi4py” package. As an example, we investigate the inclination angle dependence of the observed polarization and the strong lensing magnification of AGN X-ray emission. We conclude that it is possible to perform complex numerical-relativity related computations using interpreted languages such as MATLAB and Python.

  2. Zero Pearson coefficient for strongly correlated growing trees

    NASA Astrophysics Data System (ADS)

    Dorogovtsev, S. N.; Ferreira, A. L.; Goltsev, A. V.; Mendes, J. F. F.

    2010-03-01

    We obtained Pearson’s coefficient of strongly correlated recursive networks growing by preferential attachment of every new vertex by m edges. We found that the Pearson coefficient is exactly zero in the infinite network limit for the recursive trees (m=1) . If the number of connections of new vertices exceeds one (m>1) , then the Pearson coefficient in the infinite networks equals zero only when the degree distribution exponent γ does not exceed 4. We calculated the Pearson coefficient for finite networks and observed a slow power-law-like approach to an infinite network limit. Our findings indicate that Pearson’s coefficient strongly depends on size and details of networks, which makes this characteristic virtually useless for quantitative comparison of different networks.

  3. Zero Pearson coefficient for strongly correlated growing trees.

    PubMed

    Dorogovtsev, S N; Ferreira, A L; Goltsev, A V; Mendes, J F F

    2010-03-01

    We obtained Pearson's coefficient of strongly correlated recursive networks growing by preferential attachment of every new vertex by m edges. We found that the Pearson coefficient is exactly zero in the infinite network limit for the recursive trees (m=1). If the number of connections of new vertices exceeds one (m>1), then the Pearson coefficient in the infinite networks equals zero only when the degree distribution exponent gamma does not exceed 4. We calculated the Pearson coefficient for finite networks and observed a slow power-law-like approach to an infinite network limit. Our findings indicate that Pearson's coefficient strongly depends on size and details of networks, which makes this characteristic virtually useless for quantitative comparison of different networks.

  4. Supporting aboriginal knowledge and practice in health care: lessons from a qualitative evaluation of the strong women, strong babies, strong culture program.

    PubMed

    Lowell, Anne; Kildea, Sue; Liddle, Marlene; Cox, Barbara; Paterson, Barbara

    2015-02-05

    The Strong Women, Strong Babies, Strong Culture Program (the Program) evolved from a recognition of the value of Aboriginal knowledge and practice in promoting maternal and child health (MCH) in remote communities of the Northern Territory (NT) of Australia. Commencing in 1993 it continues to operate today. In 2008, the NT Department of Health commissioned an evaluation to identify enabling factors and barriers to successful implementation of the Program, and to identify potential pathways for future development. In this paper we focus on the evaluation findings related specifically to the role of Aborignal cultural knowledge and practice within the Program. A qualitative evaluation utilised purposive sampling to maximise diversity in program history and Aboriginal culture. Semi-structured, in-depth interviews with 76 participants were recorded in their preferred language with a registered Interpreter when required. Thematic analysis of data was verified or modified through further discussions with participants and members of the evaluation team. Although the importance of Aboriginal knowledge and practice as a fundamental component of the Program is widely acknowledged, there has been considerable variation across time and location in the extent to which these cultural dimensions have been included in practice. Factors contributing to this variation are complex and relate to a number of broad themes including: location of control over Program activities; recognition and respect for Aboriginal knowledge and practice as a legitimate component of health care; working in partnership; communication within and beyond the Program; access to transport and working space; and governance and organisational support. We suggest that inclusion of Aboriginal knowledge and practice as a fundamental component of the Program is key to its survival over more than twenty years despite serious challenges. Respect for the legitimacy of Aboriginal knowledge and practice within health

  5. Types of suggestibility: Relationships among compliance, indirect, and direct suggestibility.

    PubMed

    Polczyk, Romuald; Pasek, Tomasz

    2006-10-01

    It is commonly believed that direct suggestibility, referring to overt influence, and indirect suggestibility, in which the intention to influence is hidden, correlate poorly. This study demonstrates that they are substantially related, provided that they tap similar areas of influence. Test results from 103 students, 55 women and 48 men, were entered into regression analyses. Indirect suggestibility, as measured by the Sensory Suggestibility Scale for Groups, and compliance, measured by the Gudjonsson Compliance Scale, were predictors of direct suggestibility, assessed with the Barber Suggestibility Scale. Spectral analyses showed that indirect suggestibility is more related to difficult tasks on the BSS, but compliance is more related to easy tasks on this scale.

  6. Engineering applications of strong ground motion simulation

    NASA Astrophysics Data System (ADS)

    Somerville, Paul

    1993-02-01

    design response spectra for crustal earthquakes at a power plant site in California and for subduction earthquakes in the Seattle-Portland region. We also demonstrate the use of simulation methods for modeling the attenuation of strong ground motion, and show evidence of the effect of critical reflections from the lower crust in causing the observed flattening of the attenuation of strong ground motion from the 1988 Saguenay, Quebec, and 1989 Loma Prieta earthquakes.

  7. Synchronized observations of bright points from the solar photosphere to the corona

    NASA Astrophysics Data System (ADS)

    Tavabi, Ehsan

    2018-05-01

    One of the most important features in the solar atmosphere is the magnetic network and its relationship to the transition region (TR) and coronal brightness. It is important to understand how energy is transported into the corona and how it travels along the magnetic field lines between the deep photosphere and chromosphere through the TR and corona. An excellent proxy for transportation is the Interface Region Imaging Spectrograph (IRIS) raster scans and imaging observations in near-ultraviolet (NUV) and far-ultraviolet (FUV) emission channels, which have high time, spectral and spatial resolutions. In this study, we focus on the quiet Sun as observed with IRIS. The data with a high signal-to-noise ratio in the Si IV, C II and Mg II k lines and with strong emission intensities show a high correlation with TR bright network points. The results of the IRIS intensity maps and dopplergrams are compared with those of the Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) instruments onboard the Solar Dynamical Observatory (SDO). The average network intensity profiles show a strong correlation with AIA coronal channels. Furthermore, we applied simultaneous observations of the magnetic network from HMI and found a strong relationship between the network bright points in all levels of the solar atmosphere. These features in the network elements exhibited regions of high Doppler velocity and strong magnetic signatures. Plenty of corona bright points emission, accompanied by the magnetic origins in the photosphere, suggest that magnetic field concentrations in the network rosettes could help to couple the inner and outer solar atmosphere.

  8. Complete plastid genome sequences suggest strong selection for retention of photosynthetic genes in the parasitic plant genus Cuscuta.

    PubMed

    McNeal, Joel R; Kuehl, Jennifer V; Boore, Jeffrey L; de Pamphilis, Claude W

    2007-10-24

    Plastid genome content and protein sequence are highly conserved across land plants and their closest algal relatives. Parasitic plants, which obtain some or all of their nutrition through an attachment to a host plant, are often a striking exception. Heterotrophy can lead to relaxed constraint on some plastid genes or even total gene loss. We sequenced plastid genomes of two species in the parasitic genus Cuscuta along with a non-parasitic relative, Ipomoea purpurea, to investigate changes in the plastid genome that may result from transition to the parasitic lifestyle. Aside from loss of all ndh genes, Cuscuta exaltata retains photosynthetic and photorespiratory genes that evolve under strong selective constraint. Cuscuta obtusiflora has incurred substantially more change to its plastid genome, including loss of all genes for the plastid-encoded RNA polymerase. Despite extensive change in gene content and greatly increased rate of overall nucleotide substitution, C. obtusiflora also retains all photosynthetic and photorespiratory genes with only one minor exception. Although Epifagus virginiana, the only other parasitic plant with its plastid genome sequenced to date, has lost a largely overlapping set of transfer-RNA and ribosomal genes as Cuscuta, it has lost all genes related to photosynthesis and maintains a set of genes which are among the most divergent in Cuscuta. Analyses demonstrate photosynthetic genes are under the highest constraint of any genes within the plastid genomes of Cuscuta, indicating a function involving RuBisCo and electron transport through photosystems is still the primary reason for retention of the plastid genome in these species.

  9. Complete plastid genome sequences suggest strong selection for retention of photosynthetic genes in the parasitic plant genus Cuscuta

    PubMed Central

    McNeal, Joel R; Kuehl, Jennifer V; Boore, Jeffrey L; de Pamphilis, Claude W

    2007-01-01

    Background Plastid genome content and protein sequence are highly conserved across land plants and their closest algal relatives. Parasitic plants, which obtain some or all of their nutrition through an attachment to a host plant, are often a striking exception. Heterotrophy can lead to relaxed constraint on some plastid genes or even total gene loss. We sequenced plastid genomes of two species in the parasitic genus Cuscuta along with a non-parasitic relative, Ipomoea purpurea, to investigate changes in the plastid genome that may result from transition to the parasitic lifestyle. Results Aside from loss of all ndh genes, Cuscuta exaltata retains photosynthetic and photorespiratory genes that evolve under strong selective constraint. Cuscuta obtusiflora has incurred substantially more change to its plastid genome, including loss of all genes for the plastid-encoded RNA polymerase. Despite extensive change in gene content and greatly increased rate of overall nucleotide substitution, C. obtusiflora also retains all photosynthetic and photorespiratory genes with only one minor exception. Conclusion Although Epifagus virginiana, the only other parasitic plant with its plastid genome sequenced to date, has lost a largely overlapping set of transfer-RNA and ribosomal genes as Cuscuta, it has lost all genes related to photosynthesis and maintains a set of genes which are among the most divergent in Cuscuta. Analyses demonstrate photosynthetic genes are under the highest constraint of any genes within the plastid genomes of Cuscuta, indicating a function involving RuBisCo and electron transport through photosystems is still the primary reason for retention of the plastid genome in these species. PMID:17956636

  10. Application of the Strong Scatter Theory to the Interpretation of Ionospheric Scintillation Measurements along Geostationary Satellite Links at VHF and L-band

    NASA Astrophysics Data System (ADS)

    Carrano, C. S.; Groves, K. M.; Basu, S.; Mackenzie, E.; Sheehan, R. E.

    2013-12-01

    In a previous work, we demonstrated that ionospheric turbulence parameters may be inferred from amplitude scintillations well into in the strong scatter regime [Carrano et al., International Journal of Geophysics, 2012]. This technique, called Iterative Parameter Estimation (IPE), uses the strong scatter theory and numerical inversion to estimate the parameters of an ionospheric phase screen (turbulent intensity, phase spectral index, and irregularity zonal drift) consistent with the observed scintillations. The optimal screen parameters are determined such that the theoretical intensity spectrum on the ground best matches the measured intensity spectrum in a least squares sense. We use this technique to interpret scintillation measurements collected during a campaign at Ascension Island (7.96°S, 14.41°W) in March 2000, led by Santimay Basu and his collaborators from Air Force Research Laboratory. Geostationary satellites broadcasting radio signals at VHF and L-band were monitored along nearly co-linear links, enabling a multi-frequency analysis of scintillations with the same propagation geometry. The VHF data were acquired using antennas spaced in the magnetic east-west direction, which enabled direct measurement of the zonal irregularity drift. We show that IPE analysis of the VHF and L-Band scintillations, which exhibited very different statistics due to the wide frequency separation, yields similar estimates of the phase screen parameters that specify the disturbed ionospheric medium. This agreement provides confidence in our phase screen parameter estimates. It also suggests a technique for extrapolating scintillation measurements to frequencies other than those observed that is valid in the case of strong scatter. We find that IPE estimates of the zonal irregularity drift, made using scintillation observations along single space-to-ground link, are consistent with those measured independently using the spaced antenna technique. This encouraging result

  11. Observations of peculiar sporadic sodium structures and their relation with wind variations

    NASA Astrophysics Data System (ADS)

    Sridharan, S.; Prasanth, P. Vishnu; Kumar, Y. Bhavani; Ramkumar, Geetha; Sathishkumar, S.; Raghunath, K.

    2009-04-01

    Resonance lidar observations of sodium density in the upper mesosphere region over Gadanki (13.5°N, 79.2°E) rarely show complex structures with rapid enhancements of sodium density, completely different from normal sporadic sodium structures. The hourly averaged meteor radar zonal winds over Trivandrum (8.5°N, 76.5°E) show an eastward shear with altitude during the nights, when these events are formed. As suggested by Kane et al. [2001. Joint observations of sodium enhancements and field-aligned ionospheric irregularities. Geophysical Research Letters 28, 1375-1378], our observations show that the complex structures may be formed due to Kelvin-Helmholtz instability, which can occur in the region of strong wind shear.

  12. In vivo Ebola virus infection leads to a strong innate response in circulating immune cells.

    PubMed

    Caballero, Ignacio S; Honko, Anna N; Gire, Stephen K; Winnicki, Sarah M; Melé, Marta; Gerhardinger, Chiara; Lin, Aaron E; Rinn, John L; Sabeti, Pardis C; Hensley, Lisa E; Connor, John H

    2016-09-05

    Ebola virus is the causative agent of a severe syndrome in humans with a fatality rate that can approach 90 %. During infection, the host immune response is thought to become dysregulated, but the mechanisms through which this happens are not entirely understood. In this study, we analyze RNA sequencing data to determine the host response to Ebola virus infection in circulating immune cells. Approximately half of the 100 genes with the strongest early increases in expression were interferon-stimulated genes, such as ISG15, OAS1, IFIT2, HERC5, MX1 and DHX58. Other highly upregulated genes included cytokines CXCL11, CCL7, IL2RA, IL2R1, IL15RA, and CSF2RB, which have not been previously reported to change during Ebola virus infection. Comparing this response in two different models of exposure (intramuscular and aerosol) revealed a similar signature of infection. The strong innate response in the aerosol model was seen not only in circulating cells, but also in primary and secondary target tissues. Conversely, the innate immune response of vaccinated macaques was almost non-existent. This suggests that the innate response is a major aspect of the cellular response to Ebola virus infection in multiple tissues. Ebola virus causes a severe infection in humans that is associated with high mortality. The host immune response to virus infection is thought to be an important aspect leading to severe pathology, but the components of this overactive response are not well characterized. Here, we analyzed how circulating immune cells respond to the virus and found that there is a strong innate response dependent on active virus replication. This finding is in stark contrast to in vitro evidence showing a suppression of innate immune signaling, and it suggests that the strong innate response we observe in infected animals may be an important contributor to pathogenesis.

  13. A nutrition and conditioning intervention for natural bodybuilding contest preparation: observations and suggestions.

    PubMed

    Gentil, Paulo

    2015-01-01

    Bodybuilding is full of myths and practices that are contrary to the scientific literature, which can lead to health problems. Adopting a scientifically designed approach is very important, as it may help bodybuilders to achieve better results while preserving their health. However, I have some criticism regarding some practices adopted in the referred article as ad libitum ingestion of sugar-free cordial and flavored tea and the performance of the exercise in fasted state, as it seems to bring no benefit and have some potential problems. Some suggestion are made in order to preserve FFM, like changing training split and exercise selection; increasing carbohydrate ingestion and decreasing protein intake; changing the resistance training stimuli and reducing the volume of aerobic exercises and increase its intensity.

  14. Strong non-radial propagation of energetic electrons in solar corona

    NASA Astrophysics Data System (ADS)

    Klassen, A.; Dresing, N.; Gómez-Herrero, R.; Heber, B.; Veronig, A.

    2018-06-01

    Analyzing the sequence of solar energetic electron events measured at both STEREO-A (STA) and STEREO-B (STB) spacecraft during 17-21 July 2014, when their orbital separation was 34°, we found evidence of a strong non-radial electron propagation in the solar corona below the solar wind source surface. The impulsive electron events were associated with recurrent flare and jet (hereafter flare/jet) activity at the border of an isolated coronal hole situated close to the solar equator. We have focused our study on the solar energetic particle (SEP) event on 17 July 2014, during which both spacecraft detected a similar impulsive and anisotropic energetic electron event suggesting optimal connection of both spacecraft to the parent particle source, despite the large angular separation between the parent flare and the nominal magnetic footpoints on the source surface of STA and STB of 68° and 90°, respectively. Combining the remote-sensing extreme ultraviolet (EUV) observations, in-situ plasma, magnetic field, and energetic particle data we investigated and discuss here the origin and the propagation trajectory of energetic electrons in the solar corona. We find that the energetic electrons in the energy range of 55-195 keV together with the associated EUV jet were injected from the flare site toward the spacecraft's magnetic footpoints and propagate along a strongly non-radial and inclined magnetic field below the source surface. From stereoscopic (EUV) observations we estimated the inclination angle of the jet trajectory and the respective magnetic field of 63° ± 11° relative to the radial direction. We show how the flare accelerated electrons reach very distant longitudes in the heliosphere, when the spacecraft are nominally not connected to the particle source. This example illustrates how ballistic backmapping can occasionally fail to characterize the magnetic connectivity during SEP events. This finding also provides an additional mechanism (one among others

  15. A high and low noise model for strong motion accelerometers

    NASA Astrophysics Data System (ADS)

    Clinton, J. F.; Cauzzi, C.; Olivieri, M.

    2010-12-01

    We present reference noise models for high-quality strong motion accelerometer installations. We use continuous accelerometer data acquired by the Swiss Seismological Service (SED) since 2006 and other international high-quality accelerometer network data to derive very broadband (50Hz-100s) high and low noise models. The proposed noise models are compared to the Peterson (1993) low and high noise models designed for broadband seismometers; the datalogger self-noise; background noise levels at existing Swiss strong motion stations; and typical earthquake signals recorded in Switzerland and worldwide. The standard strong motion station operated by the SED consists of a Kinemetrics Episensor (2g clip level; flat acceleration response from 200 Hz to DC; <155dB dynamic range) coupled with a 24-bit Nanometrics Taurus datalogger. The proposed noise models are based on power spectral density (PSD) noise levels for each strong motion station computed via PQLX (McNamara and Buland, 2004) from several years of continuous recording. The 'Accelerometer Low Noise Model', ALNM, is dominated by instrument noise from the sensor and datalogger. The 'Accelerometer High Noise Model', AHNM, reflects 1) at high frequencies the acceptable site noise in urban areas, 2) at mid-periods the peak microseismal energy, as determined by the Peterson High Noise Model and 3) at long periods the maximum noise observed from well insulated sensor / datalogger systems placed in vault quality sites. At all frequencies, there is at least one order of magnitude between the ALNM and the AHNM; at high frequencies (> 1Hz) this extends to 2 orders of magnitude. This study provides remarkable confirmation of the capability of modern strong motion accelerometers to record low-amplitude ground motions with seismic observation quality. In particular, an accelerometric station operating at the ALNM is capable of recording the full spectrum of near source earthquakes, out to 100 km, down to M2. Of particular

  16. Pedunculated Pulmonary Artery Sarcoma Suggested by Transthoracic Echocardiography.

    PubMed

    Wang, Xiaobing; Ren, Weidong; Yang, Jun

    2016-04-01

    Pulmonary artery sarcoma (PAS) is an extremely rare malignancy. It is usually found after it grows large enough to occupy almost the entire lumen of the pulmonary artery and causes serious clinical symptoms. Thus, it is usually difficult to distinguish PAS from pulmonary thromboembolism based on imaging examinations. Few case reports had shown the attachment of PAS to pulmonary artery, a key characteristic for diagnosis, and differential diagnosis of PAS. In this case, we found a PAS, which did not cause local obstruction and some tumor emboli, which obstructed the branches of the pulmonary arteries and caused pulmonary hypertension and clinical symptoms. Transthoracic echocardiography (TTE) revealed a part of the tumor attached to the intima of the main pulmonary artery with a peduncle and had obvious mobility, which was suggestive of PAS and differentiated it from the pulmonary thromboembolism. To our knowledge, this is the first case report of a pedunculated PAS suggested by TTE. Combined with pulmonary artery computed tomography angiography, the diagnosis of PAS is strongly suggested before the operation. This case indicates that TTE could reveal the attachment and mobility of PAS in the main pulmonary and may provide useful information for the diagnosis and differential diagnosis of PAS, especially a pedunculated PAS. © 2015, Wiley Periodicals, Inc.

  17. Copernicus observations of the Ap star Epsilon Ursae Majoris

    NASA Technical Reports Server (NTRS)

    Mallama, A. D.; Molnar, M. R.

    1977-01-01

    Spectral scans of the Ap star Epsilon UMa made with the Copernicus satellite show strong line blanketing from profuse Cr II and Fe II lines. In the spectral region covering 1900 to 3000 A, about 500 lines are present which suppress the apparent continuum by at least 15-30%. An accurate line-identification list is compiled showing Eu II present in addition to Mn II and Ni II. The identification of Eu II, however, rests on very stringent identification limits for Fe II. If these are relaxed, the existence of Eu II is dubious. There are no broad features in this spectral region which would suggest strong photoionization discontinuities by metals, but one feature near 2137 A might contain the photoionization edge due to Cr I 5S lying 0.94 eV above the ground level. However, a significant correlation between the line-blanketing strength and the amplitude of the OAO-2 ultraviolet light curves was found such that both monotonically increase in the same proportion toward shorter wavelengths. This gives additional strength to the suggestion that variations in the metal line-blanketing cause the observed photometric variations.

  18. Strong-coupling superconductivity induced by calcium intercalation in bilayer transition-metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Szczȩśniak, R.; Durajski, A. P.; Jarosik, M. W.

    2018-04-01

    We theoretically investigate the possibility of achieving a superconducting state in transition-metal dichalcogenide bilayers through intercalation, a process previously and widely used to achieve metallization and superconducting states in novel superconductors. For the Ca-intercalated bilayers MoS2 and WS2, we find that the superconducting state is characterized by an electron-phonon coupling constant larger than 1.0 and a superconducting critical temperature of 13.3 and 9.3 K, respectively. These results are superior to other predicted or experimentally observed two-dimensional conventional superconductors and suggest that the investigated materials may be good candidates for nanoscale superconductors. More interestingly, we proved that the obtained thermodynamic properties go beyond the predictions of the mean-field Bardeen-Cooper-Schrieffer approximation and that the calculations conducted within the framework of the strong-coupling Eliashberg theory should be treated as those that yield quantitative results.

  19. Nanoscale Electronic Transport Studies of Novel Strongly Correlated Materials

    NASA Astrophysics Data System (ADS)

    Hardy, Will J.

    Strongly correlated materials are those in which the electron-electron and electron-lattice interactions play pivotal roles in determining many aspects of observable physical behavior, including the electronic and magnetic properties. In this thesis, I describe electronic transport studies of novel strongly correlated materials at the nanoscale. After introducing some basic concepts, briefly reviewing historical development of the field, and discussing the process of making measurements on small length scales, I detail experimental results from studies of four specific materials: two transition metal oxide systems, and two layered transition metal dichalcogenides with intercalated magnetic moments. The first system is a modified version of a classic strongly correlated material, vanadium dioxide (VO2), which here is doped with hydrogen to suppress its metal-insulator transition and stabilize a poorly metallic phase down to liquid helium temperatures. Doped VO2 nanowires, micron flakes, and thin films display magnetoresistance (MR) consistent with weak localization physics, along with mesoscopic resistance fluctuations over short distances, raising questions about how to model transport in bad-metal correlated systems. A second transition metal oxide system is considered next: Quantum wells in SrTiO3 sandwiched between layers of SmTiO3, in which anomalous voltage fluctuation behavior is observed in etched nanostructures at low temperatures. After well-understood alternative origins are ruled out, an explanation is proposed involving a time-varying thermopower due to two-level fluctuations of etching-induced defects. Next, I shift to the topic of layered itinerant magnetic materials with intercalated moments, starting with Fe0.28TaS 2, a hard ferromagnet (FM) with strong spin-orbit coupling. Here, a surprisingly large MR of nearly 70% is observed, an especially striking feature given that the closely related compounds at Fe intercalation fractions of 1/4 or 1/3 have

  20. RXTE Observations of Cas A

    NASA Technical Reports Server (NTRS)

    Rothschild, R. E.; Lingenfelter, R. E.; Heindl, W. A.; Blanco, P. R.; Pelling, M. R.; Gruber, D. E.; Allen, G. E.; Jahoda, K.; Swank, J. H.; Woosley, S. E.; hide

    1997-01-01

    The exciting detection by the COMPTEL instrument of the 1157 keV Ti-44 line from the supernova remnant Cas A sets important new constraints on supernova dynamics and nucleosynthesis. The Ti-44 decay also produces x-ray lines at 68 and 78 keV, whose flux should be essentially the same as that of the gamma ray line. The revised COMPTEL flux of 4 x l0(exp -5) cm(exp -2)s(exp -1) is very near the sensitivity limit for line detection by the HEXTE instrument on RXTE. We report on the results from two RXTE observations - 20 ks during In Orbit Checkout in January 1996 and 200 ks in April 1996. We also find a strong continuum emission suggesting cosmic ray electron acceleration in the remnant.

  1. Optical observations of MAXI J1820+070 suggest it is a black hole X-ray binary

    NASA Astrophysics Data System (ADS)

    Baglio, M. Cristina; Russell, Dave M.; Lewis, Fraser

    2018-03-01

    We report on optical observations of the newly discovered transient MAXI J1820+070 (ATel #11399, #11400, #11403, #11404, #11406). We performed optical (g', i') observations of the field with the Las Cumbres Observatory (LCO) 1-m robotic telescope located at Cerro Tololo Inter-American Observatory, Chile, on March 13th, 2018 (MJD 58190.38) obtaining one 200-second integration image of the field for each filter.

  2. Generation of VLF saucer emissions observed by the Viking satellite

    NASA Astrophysics Data System (ADS)

    Lonnqvist, H.; Andre, M.; Matson, L.; Bahnsen, A.; Blomberg, L. G.; Erlandson, R. E.

    1993-08-01

    Simultaneous observations by the Viking satellite of electric and magnetic fields as well as charged particles have been used to investigate V-shaped wave phenomena. The intensity of these VLF and ELF emissions is V-shaped when shown in a frequency versus time plot. Simultaneous observations of V-shaped so-called VLF saucer emissions, particles and field-aligned currents strongly suggest, for the first time, that upgoing electrons with energies less than a few hundred electron volts can generate these waves. Broadband waves observed inside the saucer generation region, from frequencies much less than the ion cyclotron frequency up to the plasma frequency, may also be generated by these electrons. Viking observations of VLF saucers at altitudes between 4000 km and 13,500 km show that these emissions occur at higher altitudes than discussed in previous reports. The generation regions seem to be more extended at these higher altitudes than what has been reported at lower altitudes by other observers.

  3. Strong Navajo Marriages

    ERIC Educational Resources Information Center

    Skogrand, Linda; Mueller, Mary Lou; Arrington, Rachel; LeBlanc, Heidi; Spotted Elk, Davina; Dayzie, Irene; Rosenbrand, Reva

    2008-01-01

    The purpose of this qualitative study, conducted in two Navajo Nation chapters, was to learn what makes Navajo marriages strong because no research has been done on this topic. Twenty-one Navajo couples (42 individuals) who felt they had strong marriages volunteered to participate in the study. Couples identified the following marital strengths:…

  4. Simultaneous Multiwavelength Observations of V404 Cygni during its 2015 June Outburst Decay Strengthen the Case for an Extremely Energetic Jet-base

    NASA Astrophysics Data System (ADS)

    Maitra, Dipankar; Scarpaci, John F.; Grinberg, Victoria; Reynolds, Mark T.; Markoff, Sera; Maccarone, Thomas J.; Hynes, Robert I.

    2017-12-01

    We present results of multiband optical photometry of the black hole X-ray binary system V404 Cyg obtained using Wheaton College Observatory’s 0.3 m telescope, along with strictly simultaneous INTEGRAL and Swift observations during 2015 June 25.15–26.33 UT, and 2015 June 27.10–27.34 UT. These observations were made during the 2015 June outburst of the source when it was going through an epoch of violent activity in all wavelengths ranging from radio to γ-rays. The multiwavelength variability timescale favors a compact emission region, most likely originating in a jet outflow, for both observing epochs presented in this work. The simultaneous INTEGRAL/Imager on Board the Integral Satellite (IBIS) 20–40 keV light curve obtained during the June 27 observing run correlates very strongly with the optical light curve, with no detectable delay between the optical bands as well as between the optical and hard X-rays. The average slope of the dereddened spectral energy distribution was roughly flat between the {I}C- and V-bands during the June 27 run, even though the optical and X-ray flux varied by >25× during the run, ruling out an irradiation origin for the optical and suggesting that the optically thick to optically thin jet synchrotron break during the observations was at a frequency larger than that of V-band, which is quite extreme for X-ray binaries. These observations suggest that the optical emission originated very close to the base of the jet. A strong {{H}}α emission line, probably originating in a quasi-spherical nebula around the source, also contributes significantly in the R C -band. Our data, in conjunction with contemporaneous data at other wavelengths presented by other groups, strongly suggest that the jet-base was extremely compact and energetic during this phase of the outburst.

  5. Enhancing business intelligence by means of suggestive reviews.

    PubMed

    Qazi, Atika; Raj, Ram Gopal; Tahir, Muhammad; Cambria, Erik; Syed, Karim Bux Shah

    2014-01-01

    Appropriate identification and classification of online reviews to satisfy the needs of current and potential users pose a critical challenge for the business environment. This paper focuses on a specific kind of reviews: the suggestive type. Suggestions have a significant influence on both consumers' choices and designers' understanding and, hence, they are key for tasks such as brand positioning and social media marketing. The proposed approach consists of three main steps: (1) classify comparative and suggestive sentences; (2) categorize suggestive sentences into different types, either explicit or implicit locutions; (3) perform sentiment analysis on the classified reviews. A range of supervised machine learning approaches and feature sets are evaluated to tackle the problem of suggestive opinion mining. Experimental results for all three tasks are obtained on a dataset of mobile phone reviews and demonstrate that extending a bag-of-words representation with suggestive and comparative patterns is ideal for distinguishing suggestive sentences. In particular, it is observed that classifying suggestive sentences into implicit and explicit locutions works best when using a mixed sequential rule feature representation. Sentiment analysis achieves maximum performance when employing additional preprocessing in the form of negation handling and target masking, combined with sentiment lexicons.

  6. High variation and strong phylogeographic pattern among cpDNA haplotypes in Taxus wallichiana (Taxaceae) in China and North Vietnam.

    PubMed

    Gao, L M; Möller, M; Zhang, X-M; Hollingsworth, M L; Liu, J; Mill, R R; Gibby, M; Li, D-Z

    2007-11-01

    We studied the phylogeography of Chinese yew (Taxus wallichiana), a tree species distributed over most of southern China and adjacent regions. A total of 1235 individuals from 50 populations from China and North Vietnam were analysed for chloroplast DNA variation using polymerase chain reaction-restriction fragment length polymorphism of the trnL-F intron-spacer region. A total of 19 different haplotypes were distinguished. We found a very high level of population differentiation and a strong phylogeographic pattern, suggesting low levels of recurrent gene flow among populations. Haplotype differentiation was most marked along the boundary between the Sino-Himalayan and Sino-Japanese Forest floristic subkingdoms, with only one haplotype being shared among these two subkingdoms. The Malesian and Sino-Himalayan Forest subkingdoms had five and 10 haplotypes, respectively, while the relatively large Sino-Japanese Forest subkingdom had only eight. The strong geography-haplotype correlation persisted at the regional floristic level, with most regions possessing a unique set of haplotypes, except for the central China region. Strong landscape effects were observed in the Hengduan and Dabashan mountains, where steep mountains and valleys might have been natural dispersal barriers. The molecular phylogenetic data, together with the geographic distribution of the haplotypes, suggest the existence of several localized refugia during the last glaciation from which the present-day distribution may be derived. The pattern of haplotype distribution across China and North Vietnam corresponded well with the current taxonomic delineation of the three intraspecific varieties of T. wallichiana.

  7. Room-temperature cavity quantum electrodynamics with strongly coupled Dicke states

    NASA Astrophysics Data System (ADS)

    Breeze, Jonathan D.; Salvadori, Enrico; Sathian, Juna; Alford, Neil McN.; Kay, Christopher W. M.

    2017-09-01

    The strong coupling regime is essential for efficient transfer of excitations between states in different quantum systems on timescales shorter than their lifetimes. The coupling of single spins to microwave photons is very weak but can be enhanced by increasing the local density of states by reducing the magnetic mode volume of the cavity. In practice, it is difficult to achieve both small cavity mode volume and low cavity decay rate, so superconducting metals are often employed at cryogenic temperatures. For an ensembles of N spins, the spin-photon coupling can be enhanced by √{N } through collective spin excitations known as Dicke states. For sufficiently large N the collective spin-photon coupling can exceed both the spin decoherence and cavity decay rates, making the strong-coupling regime accessible. Here we demonstrate strong coupling and cavity quantum electrodynamics in a solid-state system at room-temperature. We generate an inverted spin-ensemble with N 1015 by photo-exciting pentacene molecules into spin-triplet states with spin dephasing time T2* 3 μs. When coupled to a 1.45 GHz TE01δ mode supported by a high Purcell factor strontium titanate dielectric cavity (Vm 0.25 cm3, Q 8,500), we observe Rabi oscillations in the microwave emission from collective Dicke states and a 1.8 MHz normal-mode splitting of the resultant collective spin-photon polariton. We also observe a cavity protection effect at the onset of the strong-coupling regime which decreases the polariton decay rate as the collective coupling increases.

  8. Cluster observations of Shear-mode surface waves diverging from Geomagnetic Tail reconnection

    NASA Astrophysics Data System (ADS)

    Dai, L.; Wygant, J. R.; Dombeck, J. P.; Cattell, C. A.; Thaller, S. A.; Mouikis, C.; Balogh, A.; Reme, H.

    2010-12-01

    We present the first Cluster spacecraft study of the intense (δB/B~0.5, δE/VAB~0.5) equatorial plane surface waves diverging from magnetic reconnection in the geomagnetic tail at ~17 Re. Using phase lag analysis with multi-spacecraft measurements, we quantitatively determine the wavelength and phase velocity of the waves with spacecraft frame frequencies from 0.03 Hz to 1 Hz and wavelengths from much larger (4Re) than to comparable to the H+ gyroradius (~300km). The phase velocities track the strong variations in the equatorial plane projection of the reconnection outflow velocity perpendicular to the magnetic field. The propagation direction and wavelength of the observed surface waves resemble those of flapping waves of the magnetotail current sheet, suggesting a same origin shared by both of these waves. The observed waves appear ubiquitous in the outflows near magnetotail reconnection. Evidence is found that the observed waves are associated with velocity shear in reconnection outflows. Analysis shows that observed waves are associated with strong field-aligned Alfvenic Poynting flux directed away from the reconnection region toward Earth. These observations present a scenario in which the observed surface waves are driven and convected through a velocity-shear type instability by high-speed (~1000km) reconnection outflows tending to slow down due to power dissipation through Poynting flux. The mapped Poynting flux (100ergs/cm2s) and longitudinal scales (10-100 km) to 100km altitude suggest that the observed waves and their motions are an important boundary condition for night-side aurora. Figure: a) The BX-GSM in the geomagnetic tail current sheet. b) The phase difference wavelet spectrum between Bz_GSM from SC2 and SC3, used to determine the wave phase velocity, is correlated with the reconnection outflow velocity (represented by H+ VX-GSM) c) The spacecraft trajectory through magnetotail reconnection. d) The observed equatorial plane surface wave

  9. One-loop QCD thermodynamics in a strong homogeneous and static magnetic field

    NASA Astrophysics Data System (ADS)

    Rath, Shubhalaxmi; Patra, Binoy Krishna

    2017-12-01

    We have studied how the equation of state of thermal QCD with two light flavors is modified in a strong magnetic field. We calculate the thermodynamic observables of hot QCD matter up to one-loop, where the magnetic field affects mainly the quark contribution and the gluon part is largely unaffected except for the softening of the screening mass. We have first calculated the pressure of a thermal QCD medium in a strong magnetic field, where the pressure at fixed temperature increases with the magnetic field faster than the increase with the temperature at constant magnetic field. This can be understood from the dominant scale of thermal medium in the strong magnetic field, being the magnetic field, in the same way that the temperature dominates in a thermal medium in the absence of magnetic field. Thus although the presence of a strong magnetic field makes the pressure of hot QCD medium larger, the dependence of pressure on the temperature becomes less steep. Consistent with the above observations, the entropy density is found to decrease with the temperature in the presence of a strong magnetic field which is again consistent with the fact that the strong magnetic field restricts the dynamics of quarks to two dimensions, hence the phase space becomes squeezed resulting in the reduction of number of microstates. Moreover the energy density is seen to decrease and the speed of sound of thermal QCD medium increases in the presence of a strong magnetic field. These findings could have phenomenological implications in heavy ion collisions because the expansion dynamics of the medium produced in non-central ultra-relativistic heavy ion collisions is effectively controlled by both the energy density and the speed of sound.

  10. The Tropopause Inversion Layer: New Observations, New Theories

    NASA Astrophysics Data System (ADS)

    Tandon, N.; Randel, W. J.; Pan, L.; Son, S.; Polvani, L. M.

    2009-12-01

    There is now great interest in the tropopause inversion inversion layer (TIL), a 1-2 km region just above the tropopause where there is a spike in static stability. Radio occultation data from the COSMIC GPS mission are providing an unprecedented level of spatial and temporal resolution with which to analyze the TIL. We start by showing the agreement between GPS data and radiosondes. We then examine the causes and consequences of the TIL. Observations from the ACE satellite and fixed dynamical heating calculations suggest strong roles for water vapor and ozone in the formation and modulation of the TIL. This agrees with observations showing a large TIL in the polar winter, where water vapor levels are persistently high. It is also clear that TIL strength is related to vorticity, but observations and models have important differences that need to be reconciled. These dynamical considerations dovetail with observations showing high TIL variability in the storm-track regions. Finally there is evidence from ozonesonde data that the TIL may be coupled to transport across the tropopause.

  11. Eyes are on us, but nobody cares: are eye cues relevant for strong reciprocity?

    PubMed Central

    Fehr, Ernst; Schneider, Frédéric

    2010-01-01

    Strong reciprocity is characterized by the willingness to altruistically reward cooperative acts and to altruistically punish norm-violating, defecting behaviours. Recent evidence suggests that subtle reputation cues, such as eyes staring at subjects during their choices, may enhance prosocial behaviour. Thus, in principle, strong reciprocity could also be affected by eye cues. We investigate the impact of eye cues on trustees' altruistic behaviour in a trust game and find zero effect. Neither the subjects who are classified as prosocial nor the subjects who are classified as selfish respond to these cues. In sharp contrast to the irrelevance of subtle reputation cues for strong reciprocity, we find a large effect of explicit, pecuniary reputation incentives on the trustees' prosociality. Trustees who can acquire a good reputation that benefits them in future interactions honour trust much more than trustees who cannot build a good reputation. These results cast doubt on hypotheses suggesting that strong reciprocity is easily malleable by implicit reputation cues not backed by explicit reputation incentives. PMID:20031986

  12. Modelling dust polarization observations of molecular clouds through MHD simulations

    NASA Astrophysics Data System (ADS)

    King, Patrick K.; Fissel, Laura M.; Chen, Che-Yu; Li, Zhi-Yun

    2018-03-01

    The BLASTPol observations of Vela C have provided the most detailed characterization of the polarization fraction p and dispersion in polarization angles S for a molecular cloud. We compare the observed distributions of p and S with those obtained in synthetic observations of simulations of molecular clouds, assuming homogeneous grain alignment. We find that the orientation of the mean magnetic field relative to the observer has a significant effect on the p and S distributions. These distributions for Vela C are most consistent with synthetic observations where the mean magnetic field is close to the line of sight. Our results point to apparent magnetic disorder in the Vela C molecular cloud, although it can be due to either an inclination effect (i.e. observing close to the mean field direction) or significant field tangling from strong turbulence/low magnetization. The joint correlations of p with column density and of S with column density for the synthetic observations generally agree poorly with the Vela C joint correlations, suggesting that understanding these correlations requires a more sophisticated treatment of grain alignment physics.

  13. First and second sound in a strongly interacting Fermi gas

    NASA Astrophysics Data System (ADS)

    Taylor, E.; Hu, H.; Liu, X.-J.; Pitaevskii, L. P.; Griffin, A.; Stringari, S.

    2009-11-01

    Using a variational approach, we solve the equations of two-fluid hydrodynamics for a uniform and trapped Fermi gas at unitarity. In the uniform case, we find that the first and second sound modes are remarkably similar to those in superfluid helium, a consequence of strong interactions. In the presence of harmonic trapping, first and second sound become degenerate at certain temperatures. At these points, second sound hybridizes with first sound and is strongly coupled with density fluctuations, giving a promising way of observing second sound. We also discuss the possibility of exciting second sound by generating local heat perturbations.

  14. Relationship between strong-motion array parameters and the accuracy of source inversion and physical waves

    USGS Publications Warehouse

    Iida, M.; Miyatake, T.; Shimazaki, K.

    1990-01-01

    We develop general rules for a strong-motion array layout on the basis of our method of applying a prediction analysis to a source inversion scheme. A systematic analysis is done to obtain a relationship between fault-array parameters and the accuracy of a source inversion. Our study of the effects of various physical waves indicates that surface waves at distant stations contribute significantly to the inversion accuracy for the inclined fault plane, whereas only far-field body waves at both small and large distances contribute to the inversion accuracy for the vertical fault, which produces more phase interference. These observations imply the adequacy of the half-space approximation used throughout our present study and suggest rules for actual array designs. -from Authors

  15. Mechanisms of eyewitness suggestibility: tests of the explanatory role hypothesis.

    PubMed

    Rindal, Eric J; Chrobak, Quin M; Zaragoza, Maria S; Weihing, Caitlin A

    2017-10-01

    In a recent paper, Chrobak and Zaragoza (Journal of Experimental Psychology: General, 142(3), 827-844, 2013) proposed the explanatory role hypothesis, which posits that the likelihood of developing false memories for post-event suggestions is a function of the explanatory function the suggestion serves. In support of this hypothesis, they provided evidence that participant-witnesses were especially likely to develop false memories for their forced fabrications when their fabrications helped to explain outcomes they had witnessed. In three experiments, we test the generality of the explanatory role hypothesis as a mechanism of eyewitness suggestibility by assessing whether this hypothesis can predict suggestibility errors in (a) situations where the post-event suggestions are provided by the experimenter (as opposed to fabricated by the participant), and (b) across a variety of memory measures and measures of recollective experience. In support of the explanatory role hypothesis, participants were more likely to subsequently freely report (E1) and recollect the suggestions as part of the witnessed event (E2, source test) when the post-event suggestion helped to provide a causal explanation for a witnessed outcome than when it did not serve this explanatory role. Participants were also less likely to recollect the suggestions as part of the witnessed event (on measures of subjective experience) when their explanatory strength had been reduced by the presence of an alternative explanation that could explain the same outcome (E3, source test + warning). Collectively, the results provide strong evidence that the search for explanatory coherence influences people's tendency to misremember witnessing events that were only suggested to them.

  16. Secular Evolution in Barred Galaxies: Observations

    NASA Astrophysics Data System (ADS)

    Merrifield, M.

    2002-12-01

    This paper describes a framework for studying galaxy morphology, particularly bar strength, in a quantitative manner, and presents applications of this approach that reveal observational evidence for secular evolution in bar morphology. The distribution of bar strength in galaxies is quite strongly bimodal, suggesting that barred and unbarred systems are distinct entities, and that any evolution between these two states must occur on a relatively rapid timescale. Bars' strengths appear to be correlated with their pattern speeds, implying that these structures weaken as they start to slow, and disappear entirely before the bars have slowed significantly. There is also tantalizing evidence that bars are rare beyond a redshift of z ~ 0.7, indicating that galaxies have only recently evolved to a point where bars can readily form.

  17. Low-energy plasma observations at synchronous orbit

    NASA Technical Reports Server (NTRS)

    Lennartsson, W.; Reasoner, D. L.

    1978-01-01

    The University of California at San Diego Auroral Particles Experiment on the ATS 6 satellite in synchronous orbit has detected a low-energy plasma population which is separate and distinct from both the ring current and the plasma sheet populations. The density and temperature of this low-energy population are highly variable, with temperatures in the range kT = 1-30 eV and densities ranging from less than 1 per cu cm to more than 10 per cu cm. The occurrence of a dense low-energy plasma is most likely in the afternoon and dusk local time sectors, whereas n greater than 1 per cu cm is seen in the local night sector only during magnetically quiet periods. These observations suggest that this plasma is the outer zone of the plasmasphere. During magnetically active periods this low-energy plasma is often observed flowing sunward. In the dusk sector, strong sunward plasma flow is often observed for 1-2 hours prior to the onset of a substorm-associated particle injection.

  18. Anomalous interlayer vibrations in strongly coupled layered PdSe 2

    DOE PAGES

    Puretzky, Alexander A.; Oyedele, Akinola D.; Xiao, Kai; ...

    2018-05-04

    In this work, we show unusual effects of strong interlayer coupling on low-frequency (LF) Raman scattering in exfoliated PdSe 2 crystals with different number of layers. Unlike many other layered materials, it is found that the measured frequencies of the breathing modes cannot be simply described by a conventional linear chain model (LCM) that treats each layer as a single rigid object. By using first-principles calculations, we show that strong deviations from layer rigidity can occur for the LF breathing vibrations of PdSe 2, which accounts for the observed disagreement with the conventional LCM. The layer non-rigidity and strong interlayermore » coupling could also explain the unusual strong intensities of the LF breathing modes that are comparable with those of the high-frequency Raman modes. These strong intensities allowed us to use a set of the measured LF Raman lines as unique fingerprints for a precise assignment of the layer numbers. The assignment of the layer numbers was further confirmed using second harmonic generation that appeared only in the noncentrosymmetric even-layer PdSe 2 crystals. In conclusion, this work thus demonstrates a simple and fast approach for the determination of the number of layers in 2D materials with strong interlayer coupling and non-rigid interlayer vibrations.« less

  19. Anomalous interlayer vibrations in strongly coupled layered PdSe 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puretzky, Alexander A.; Oyedele, Akinola D.; Xiao, Kai

    In this work, we show unusual effects of strong interlayer coupling on low-frequency (LF) Raman scattering in exfoliated PdSe 2 crystals with different number of layers. Unlike many other layered materials, it is found that the measured frequencies of the breathing modes cannot be simply described by a conventional linear chain model (LCM) that treats each layer as a single rigid object. By using first-principles calculations, we show that strong deviations from layer rigidity can occur for the LF breathing vibrations of PdSe 2, which accounts for the observed disagreement with the conventional LCM. The layer non-rigidity and strong interlayermore » coupling could also explain the unusual strong intensities of the LF breathing modes that are comparable with those of the high-frequency Raman modes. These strong intensities allowed us to use a set of the measured LF Raman lines as unique fingerprints for a precise assignment of the layer numbers. The assignment of the layer numbers was further confirmed using second harmonic generation that appeared only in the noncentrosymmetric even-layer PdSe 2 crystals. In conclusion, this work thus demonstrates a simple and fast approach for the determination of the number of layers in 2D materials with strong interlayer coupling and non-rigid interlayer vibrations.« less

  20. Inclination Angles of Black Hole X-Ray Binaries Manifest Strong Gravity around Black Holes

    NASA Technical Reports Server (NTRS)

    Zhang, S. N.; Zhang, Xiao-Ling; Yao, Yangsen

    2002-01-01

    System inclination angles have been determined for about 15 X-ray binaries, in which stellar mass black holes are considered to exist. These inclination angles range between 25 degrees and 80 degrees, but peaked between 60-70 degrees. This peak is not explained in the frame work of Newtonian gravity. However, this peak is reproduced naturally if we model the observed X-ray radiations as being produced in the accretion disks very close to the black hole horizons, where the extremely strong general and special relativistic effects, caused by the extremely strong gravity near the black hole horizons, modify the local radiation significantly as the X-rays propagate to the remote observer. Therefore the peak of the inclination angle distribution provides evidence or strong gravity around stellar mass black holes.

  1. Perceptual Sensitivity and Response to Strong Stimuli Are Related

    PubMed Central

    Bolders, Anna C.; Tops, Mattie; Band, Guido P. H.; Stallen, Pieter Jan M.

    2017-01-01

    To shed new light on the long-standing debate about the (in)dependence of sensitivity to weak stimuli and overreactivity to strong stimuli, we examined the relation between these tendencies within the neurobehavioral framework of the Predictive and Reactive Control Systems (PARCS) theory (Tops et al., 2010, 2014). Whereas previous studies only considered overreactivity in terms of the individual tendency to experience unpleasant affect (punishment reactivity) resulting from strong sensory stimulation, we also took the individual tendency to experience pleasant affect (reward reactivity) resulting from strong sensory stimulation into account. According to PARCS theory, these temperamental tendencies overlap in terms of high reactivity toward stimulation, but oppose each other in terms of the response orientation (approach or avoid). PARCS theory predicts that both types of reactivity to strong stimuli relate to sensitivity to weak stimuli, but that these relationships are suppressed due to the opposing relationship between reward and punishment reactivity. We measured punishment and reward reactivity to strong stimuli and sensitivity to weak stimuli using scales from the Adult Temperament Questionnaire (Evans and Rothbart, 2007). Sensitivity was also measured more objectively using the masked auditory threshold. We found that sensitivity to weak stimuli (both self-reported and objectively assessed) was positively associated with self-reported punishment and reward reactivity to strong stimuli, but only when these reactivity measures were controlled for each other, implicating a mutual suppression effect. These results are in line with PARCS theory and suggest that sensitivity to weak stimuli and overreactivity are dependent, but this dependency is likely to be obscured if punishment and reward reactivity are not both taken into account. PMID:29018377

  2. Strong radial electric field shear and reduced fluctuations in a reversed-field pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, B.E.; Chiang, C.S.; Prager, S.C.

    1997-05-01

    A strongly sheared radial electric field is observed in enhanced confinement discharges in the MST reversed-field pinch. The strong shear develops in a narrow region in the plasma edge. Electrostatic fluctuations are reduced over the entire plasma edge with an extra reduction in the shear region. Magnetic fluctuations, resonant in the plasma core but global in extent, are also reduced. The reduction of fluctuations in the shear region is presumably due to the strong shear, but the causes of the reductions outside this region have not been established.

  3. Dielectric loss property of strong acids doped polyaniline (PANi)

    NASA Astrophysics Data System (ADS)

    Amalia, Rianti; Hafizah, Mas Ayu Elita; Andreas, Manaf, Azwar

    2018-04-01

    In this study, strong acid doped polyaniline (PANi) has been successfully fabricated through the chemical oxidative polymerization process with various polymerization times. Nonconducting PANi resulting from the polymerization process at various polymerization times were then doped by a strong acid HClO4 to generate dielectric properties. Ammonium Persulfate (APS) as an initiator was used during Polymerization process to develop dark green precipitates which then called Emeraldine Base Polyaniline (PANi-EB). The PANi-EB was successively doped by strong acid HClO4 with dopant and PANi ratio 10:1 to enhance the electrical conductivity. The conductivity of doped PANi was evaluated by Four Point Probe. Results of evaluation showed that the conductivity values of HClO4 doped PANi were in the range 337-363 mS/cm. The dielectric properties of doped PANi were evaluated by Vector Network Analyzer (VNA) which suggested that an increase in the permittivity value in the conducting PANi. It is concluded that PANi could be a potential candidate for electromagnetic waves absorbing materials.

  4. Unified Time and Frequency Picture of Ultrafast Atomic Excitation in Strong Laser Fields

    NASA Astrophysics Data System (ADS)

    Zimmermann, H.; Patchkovskii, S.; Ivanov, M.; Eichmann, U.

    2017-01-01

    Excitation and ionization in strong laser fields lies at the heart of such diverse research directions as high-harmonic generation and spectroscopy, laser-induced diffraction imaging, emission of femtosecond electron bunches from nanotips, self-guiding, filamentation and mirrorless lasing during propagation of light in atmospheres. While extensive quantum mechanical and semiclassical calculations on strong-field ionization are well backed by sophisticated experiments, the existing scattered theoretical work aiming at a full quantitative understanding of strong-field excitation lacks experimental confirmation. Here we present experiments on strong-field excitation in both the tunneling and multiphoton regimes and their rigorous interpretation by time dependent Schrödinger equation calculations, which finally consolidates the seemingly opposing strong-field regimes with their complementary pictures. Most strikingly, we observe an unprecedented enhancement of excitation yields, which opens new possibilities in ultrafast strong-field control of Rydberg wave packet excitation and laser intensity characterization.

  5. Theories of Suggestion.

    PubMed

    Brown, W

    1928-02-01

    The word "suggestion" has been used in educational, scientific and medical literature in slightly different senses. In psychological medicine the use of suggestion has developed out of the earlier use of hypnotic influence.Charcot defined hypnosis as an artificial hysteria, Bernheim as an artificially increased suggestibility. The two definitions need to be combined to give an adequate account of hypnosis. Moreover, due allowance should be made for the factors of dissociation and of rapport in hypnotic phenomena.The relationships between dissociation, suggestibility, and hypnotizability.Theories of suggestion propounded by Pierre Janet, Freud, McDougall, Pawlow and others. Ernest Jones's theory of the nature of auto-suggestion. Janet explains suggestion in terms of ideo-motor action in which the suggested idea, because of the inactivity of competing ideas, produces its maximum effect. Freud explains rapport in terms of the sex instinct "inhibited in its aim" (transference) and brings in his distinction of "ego" and "ego-ideal" (or "super-ego") to supplement the theory. Jones explains auto-suggestion in terms of narcissism. McDougall explains hypnotic suggestion in terms of the instinct of self-abasement. But different instincts may supply the driving power to produce suggestion-effects in different circumstances. Such instincts as those of self-preservation (fear) and gregariousness may play their part. Auto-suggestion as a therapeutic factor is badly named. It supplements, but does not supplant the will, and makes complete volition possible.

  6. Strong Communities for Children: Results of a multi-year community-based initiative to protect children from harm.

    PubMed

    McDonell, James R; Ben-Arieh, Asher; Melton, Gary B

    2015-03-01

    This article reports the evaluation results from Strong Communities for Children, a multi-year comprehensive community-based initiative to prevent child maltreatment and improve children's safety. The outcome study consisted of a survey of a random sample of caregivers of children under age 10 in the Strong Communities service area and a set of comparison communities matched at the block group level on demography. Survey data were collected in two waves 4 years apart. Data were collected on (a) perceptions of the neighborhood and neighbors (e.g., neighboring, collective efficacy), (b) perceptions of neighbors' parenting practices, (c) parental attitudes and beliefs (e.g., parental stress; parental efficacy), and (d) self-reported parenting practices. The survey data were supplemented by data on substantiated reported rates of child abuse and neglect per 1,000 children and ICD-9 coded child injuries suggesting child abuse and neglect per 1,000 children. Compared to the non-intervention sample across time, the Strong Communities samples showed significant changes in the expected direction for social support, collective efficacy, child safety in the home, observed parenting practices, parental stress, parental efficacy, self-reported parenting practices, rates of officially substantiated child maltreatment, and rates of ICD-9 coded child injuries suggesting child maltreatment. These promising results, obtained through multiple methods of evaluation, confirm that a community mobilization strategy can shift norms of parents' care for their children and neighbors' support for one another, so that young children are safer at home and in the community. Replications should be undertaken and evaluated in other communities under diverse auspices. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Spontaneous parity violation and SUSY strong gauge theory

    NASA Astrophysics Data System (ADS)

    Haba, Naoyuki; Ohki, Hiroshi

    2012-07-01

    We suggest simple models of spontaneous parity violation in supersymmetric strong gauge theory. We focus on left-right symmetric model and investigate vacuum with spontaneous parity violation. Non-perturbative effects are calculable in supersymmetric gauge theory, and we suggest new models. Our models show confinement, so that we try to understand them by using a dual description of the theory. The left-right symmetry breaking and electroweak symmetry breaking are simultaneously occurred with the suitable energy scale hierarchy. This structure has several advantages compared to the MSSM. The scale of the Higgs mass (left-right breaking scale) and that of VEVs are different, so the SUSY little hierarchy problems are absent. The second model also induces spontaneous supersymmetry breaking [1].

  8. Enhancing Business Intelligence by Means of Suggestive Reviews

    PubMed Central

    Qazi, Atika

    2014-01-01

    Appropriate identification and classification of online reviews to satisfy the needs of current and potential users pose a critical challenge for the business environment. This paper focuses on a specific kind of reviews: the suggestive type. Suggestions have a significant influence on both consumers' choices and designers' understanding and, hence, they are key for tasks such as brand positioning and social media marketing. The proposed approach consists of three main steps: (1) classify comparative and suggestive sentences; (2) categorize suggestive sentences into different types, either explicit or implicit locutions; (3) perform sentiment analysis on the classified reviews. A range of supervised machine learning approaches and feature sets are evaluated to tackle the problem of suggestive opinion mining. Experimental results for all three tasks are obtained on a dataset of mobile phone reviews and demonstrate that extending a bag-of-words representation with suggestive and comparative patterns is ideal for distinguishing suggestive sentences. In particular, it is observed that classifying suggestive sentences into implicit and explicit locutions works best when using a mixed sequential rule feature representation. Sentiment analysis achieves maximum performance when employing additional preprocessing in the form of negation handling and target masking, combined with sentiment lexicons. PMID:25054188

  9. ON MULTIPLE RECONNECTION X-LINES AND TRIPOLAR PERTURBATIONS OF STRONG GUIDE MAGNETIC FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eriksson, S.; Gosling, J. T.; Lapenta, G.

    We report new multi-spacecraft Cluster observations of tripolar guide magnetic field perturbations at a solar wind reconnection exhaust in the presence of a guide field B{sub M} {sub  }which is almost four times as strong as the reversing field B{sub L}. The novel tripolar field consists of two narrow regions of depressed B{sub M}, with an observed 7%–14% ΔB{sub M} magnitude relative to the external field, which are found adjacent to a wide region of enhanced B{sub M} within the exhaust. A stronger reversing field is associated with each B{sub M} depression. A kinetic reconnection simulation for realistic solar windmore » conditions and the observed strong guide field reveals that tripolar magnetic fields preferentially form across current sheets in the presence of multiple X-lines as magnetic islands approach one another and merge into fewer and larger islands. The simulated ΔB{sub M}/ΔX{sub N} over the normal width ΔX{sub N} between a B{sub M} minimum and the edge of the external region agree with the normalized values observed by Cluster. We propose that a tripolar guide field perturbation may be used to identify candidate regions containing multiple X-lines and interacting magnetic islands at individual solar wind current sheets with a strong guide field.« less

  10. Strong Ground Motion Generation during the 2011 Tohoku-Oki Earthquake

    NASA Astrophysics Data System (ADS)

    Asano, K.; Iwata, T.

    2011-12-01

    Strong ground motions during the 2011 Tohoku-Oki earthquake (Mw9.0) were densely observed by the strong motion observation networks all over Japan. Seeing the acceleration and velocity waveforms observed at strong stations in northeast Japan along the source region, those ground motions are characterized by plural wave packets with duration of about twenty seconds. Particularly, two wave packets separated by about fifty seconds could be found on the records in the northern part of the damaged area, whereas only one significant wave packets could be recognized on the records in the southern part of the damaged area. The record section shows four isolated wave packets propagating from different locations to north and south, and it gives us a hint of the strong motion generation process on the source fault which is related to the heterogeneous rupture process in the scale of tens of kilometers. In order to solve it, we assume that each isolated wave packet is contributed by the corresponding strong motion generation area (SMGA). It is a source patch whose slip velocity is larger than off the area (Miyake et al., 2003). That is, the source model of the 2011 Tohoku-Oki earthquake consists of four SMGAs. The SMGA source model has succeeded in reproducing broadband strong ground motions for past subduction-zone events (e.g., Suzuki and Iwata, 2007). The target frequency range is set to be 0.1-10 Hz in this study as this range is significantly related to seismic damage generation to general man-made structures. First, we identified the rupture starting points of each SMGA by picking up the onset of individual packets. The source fault plane is set following the GCMT solution. The first two SMGAs were located approximately 70 km and 30 km west of the hypocenter. The third and forth SMGAs were located approximately 160 km and 230 km southwest of the hypocenter. Then, the model parameters (size, rise time, stress drop, rupture velocity, rupture propagation pattern) of these

  11. Effect of strong-column weak-beam design provision on the seismic fragility of RC frame buildings

    NASA Astrophysics Data System (ADS)

    Surana, Mitesh; Singh, Yogendra; Lang, Dominik H.

    2018-04-01

    Incremental dynamic analyses are conducted for a suite of low- and mid-rise reinforced-concrete special moment-resisting frame buildings. Buildings non-conforming and conforming to the strong-column weak-beam (SCWB) design criterion are considered. These buildings are designed for the two most severe seismic zones in India (i.e., zone IV and zone V) following the provisions of Indian Standards. It is observed that buildings non-conforming to the SCWB design criterion lead to an undesirable column failure collapse mechanism. Although yielding of columns cannot be avoided, even for buildings conforming to a SCWB ratio of 1.4, the observed collapse mechanism changes to a beam failure mechanism. This change in collapse mechanism leads to a significant increase in the building's global ductility capacity, and thereby in collapse capacity. The fragility analysis study of the considered buildings suggests that considering the SCWB design criterion leads to a significant reduction in collapse probability, particularly in the case of mid-rise buildings.

  12. Strongly interacting Sarma superfluid near orbital Feshbach resonances

    NASA Astrophysics Data System (ADS)

    Zou, Peng; He, Lianyi; Liu, Xia-Ji; Hu, Hui

    2018-04-01

    We investigate the nature of superfluid pairing in a strongly interacting Fermi gas near orbital Feshbach resonances with spin-population imbalance in three dimensions, which can be well described by a two-band or two-channel model. We show that a Sarma superfluid with gapless single-particle excitations is favored in the closed channel at large imbalance. It is thermodynamically stable against the formation of an inhomogeneous Fulde-Ferrell-Larkin-Ovchinnikov superfluid and features a well-defined Goldstone-Anderson-Bogoliubov phonon mode and a massive Leggett mode as collective excitations at low momentum. At large momentum, the Leggett mode disappears and the phonon mode becomes damped at zero temperature, due to the coupling to the particle-hole excitations. We discuss possible experimental observation of a strongly interacting Sarma superfluid with ultracold alkaline-earth-metal Fermi gases.

  13. Topics in physics beyond the standard model with strong interactions

    NASA Astrophysics Data System (ADS)

    Gomez Sanchez, Catalina

    In this thesis we study a few complementary topics related to some of the open questions in the Standard Model (SM). We first consider the scalar spectrum of gauge theories with walking dynamics. The question of whether or not a light pseudo-Nambu-Goldstone boson associated with the spontaneous breaking of approximate dilatation symmetry appears in these theories has been long withstanding. We derive an effective action for the scalars, including new terms not previously considered in the literature, and obtain solutions for the lightest scalar's momentum-dependent form factor that determines the value of its pole mass. Our results for the lowest-lying state suggest that this scalar is never expected to be light, but it can have some properties that closely resemble the SM Higgs boson. We then propose a new leptonic charge-asymmetry observable well suited for the study of some Beyond the SM (BSM) physics objects at the LHC. New resonances decaying to one or many leptons could constitute the first signs of BSM physics that we observe at the LHC; if these new objects carry QCD charge they may have an associated charge asymmetry in their daughter leptons. Our observable can be used in events with single or multiple leptons in the final state. We discuss this measurement in the context of coloured scalar diquarks, as well as that of top-antitop pairs. We argue that, although a fainter signal is expected relative to other charge asymmetry observables, the low systematic uncertainties keep this particular observable relevant, especially in cases where reconstruction of the parent particle is not a viable strategy. Finally, we propose a simple dark-sector extension to the SM that communicates with ordinary quarks and leptons only through a small kinetic mixing of the dark photon and the photon. The dark sector is assumed to undergo a series of phase transitions such that monopoles and strings arise. These objects form long-lived states that eventually decay and can

  14. Magnetospheric Multiscale observations of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the magnetopause

    NASA Astrophysics Data System (ADS)

    Ergun, R. E.; Holmes, J. C.; Goodrich, K. A.; Wilder, F. D.; Stawarz, J. E.; Eriksson, S.; Newman, D. L.; Schwartz, S. J.; Goldman, M. V.; Sturner, A. P.; Malaspina, D. M.; Usanova, M. E.; Torbert, R. B.; Argall, M.; Lindqvist, P.-A.; Khotyaintsev, Y.; Burch, J. L.; Strangeway, R. J.; Russell, C. T.; Pollock, C. J.; Giles, B. L.; Dorelli, J. J. C.; Avanov, L.; Hesse, M.; Chen, L. J.; Lavraud, B.; Le Contel, O.; Retino, A.; Phan, T. D.; Eastwood, J. P.; Oieroset, M.; Drake, J.; Shay, M. A.; Cassak, P. A.; Nakamura, R.; Zhou, M.; Ashour-Abdalla, M.; André, M.

    2016-06-01

    We report observations from the Magnetospheric Multiscale satellites of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the Earth's magnetopause. The observed waves have parallel electric fields (E||) with amplitudes on the order of 100 mV/m and display nonlinear characteristics that suggest a possible net E||. These waves are observed within the ion diffusion region and adjacent to (within several electron skin depths) the electron diffusion region. They are in or near the magnetosphere side current layer. Simulation results support that the strong electrostatic linear and nonlinear wave activities appear to be driven by a two stream instability, which is a consequence of mixing cold (<10 eV) plasma in the magnetosphere with warm (~100 eV) plasma from the magnetosheath on a freshly reconnected magnetic field line. The frequent observation of these waves suggests that cold plasma is often present near the magnetopause.

  15. The Hidden Fortress: structure and substructure of the complex strong lensing cluster SDSS J1029+2623

    NASA Astrophysics Data System (ADS)

    Oguri, Masamune; Schrabback, Tim; Jullo, Eric; Ota, Naomi; Kochanek, Christopher S.; Dai, Xinyu; Ofek, Eran O.; Richards, Gordon T.; Blandford, Roger D.; Falco, Emilio E.; Fohlmeister, Janine

    2013-02-01

    We present Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) and Wide Field Camera 3 (WFC3) observations of SDSS J1029+2623, a three-image quasar lens system produced by a foreground cluster at z = 0.584. Our strong lensing analysis reveals six additional multiply imaged galaxies in addition to the multiply imaged quasar. We confirm the complex nature of the mass distribution of the lensing cluster, with a bimodal dark matter distribution which deviates from the Chandra X-ray surface brightness distribution. The Einstein radius of the lensing cluster is estimated to be θE = 15.2 ± 0.5 arcsec for the quasar redshift of z = 2.197. We derive a radial mass distribution from the combination of strong lensing, HST/ACS weak lensing and Subaru/Suprime-cam weak lensing analysis results, finding a best-fitting virial mass of Mvir = 1.55+ 0.40- 0.35 × 1014 h- 1 M⊙ and a concentration parameter of cvir = 25.7+ 14.1- 7.5. The lensing mass estimate at the outer radius is smaller than the X-ray mass estimate by a factor of ˜2. We ascribe this large mass discrepancy to shock heating of the intracluster gas during a merger, which is also suggested by the complex mass and gas distributions and the high value of the concentration parameter. In the HST image, we also identify a probable galaxy, GX, in the vicinity of the faintest quasar image C. In strong lens models, the inclusion of GX explains the anomalous flux ratios between the quasar images. The morphology of the highly elongated quasar host galaxy is also well reproduced. The best-fitting model suggests large total magnifications of 30 for the quasar and 35 for the quasar host galaxy, and has an AB time delay consistent with the measured value.

  16. Strong genetic structure corresponds to small-scale geographic breaks in the Australian alpine grasshopper Kosciuscola tristis.

    PubMed

    Slatyer, Rachel A; Nash, Michael A; Miller, Adam D; Endo, Yoshinori; Umbers, Kate D L; Hoffmann, Ary A

    2014-10-02

    Mountain landscapes are topographically complex, creating discontinuous 'islands' of alpine and sub-alpine habitat with a dynamic history. Changing climatic conditions drive their expansion and contraction, leaving signatures on the genetic structure of their flora and fauna. Australia's high country covers a small, highly fragmented area. Although the area is thought to have experienced periods of relative continuity during Pleistocene glacial periods, small-scale studies suggest deep lineage divergence across low-elevation gaps. Using both DNA sequence data and microsatellite markers, we tested the hypothesis that genetic partitioning reflects observable geographic structuring across Australia's mainland high country, in the widespread alpine grasshopper Kosciuscola tristis (Sjösted). We found broadly congruent patterns of regional structure between the DNA sequence and microsatellite datasets, corresponding to strong divergence among isolated mountain regions. Small and isolated mountains in the south of the range were particularly distinct, with well-supported divergence corresponding to climate cycles during the late Pliocene and Pleistocene. We found mixed support, however, for divergence among other mountain regions. Interestingly, within areas of largely contiguous alpine and sub-alpine habitat around Mt Kosciuszko, microsatellite data suggested significant population structure, accompanied by a strong signature of isolation-by-distance. Consistent patterns of strong lineage divergence among different molecular datasets indicate genetic breaks between populations inhabiting geographically distinct mountain regions. Three primary phylogeographic groups were evident in the highly fragmented Victorian high country, while within-region structure detected with microsatellites may reflect more recent population isolation. Despite the small area of Australia's alpine and sub-alpine habitats, their low topographic relief and lack of extensive glaciation

  17. Analysis of magnetic data of ground station network during strong magnetic storms

    NASA Astrophysics Data System (ADS)

    Mandrikova, Oksana; Solovev, Igor; Khomutov, Sergey; Baishev, Dmitry; Chandrasekhar, Phani

    2017-10-01

    The paper suggests a new technique for magnetic data analysis to detect and to estimate short-time anomalous increases in geomagnetic disturbance intensity. Based on the technique and applying the data of meridionally arranged stations in the north-east of Russia («Kotel'nyi» KTN, «Tixi» TIX, «Chokurdakh» CHD, «Zyryanka» ZYK, «Mys Shmidta» CPS, «Yakutsk» YAK, «Magadan» MGD, «Paratunka» PET, «Khabarovsk» KHB) and the near equatorial Indian stations ("Hyderabad" HYB and "Choutuppal" CPL), we analyzed the geomagnetic field variations during strong magnetic storms. This approach allowed us to detect simultaneously occurring local increases in geomagnetic activity observed a few hours before events and during the main phases of magnetic storms. The development of the method was supported by RSF Grant No.14-11-00194. Experimental investigations were supported by RFBR Grant No. 16-55-45007.

  18. Strong-Field Control of Laser Filamentation Mechanisms

    NASA Astrophysics Data System (ADS)

    Levis, Robert; Romanov, Dmitri; Filin, Aleskey; Compton, Ryan

    2008-05-01

    The propagation of short strong-file laser pulses in gas and solution phases often result in formation of filaments. This phenomenon involves many nonlinear processes including Kerr lensing, group velocity dispersion, multi-photon ionization, plasma defocusing, intensity clamping, and self-steepening. Of these, formation and dynamics of pencil-shape plasma areas plays a crucial role. The fundamental understanding of these laser-induced plasmas requires additional effort, because the process is highly nonlinear and complex. We studied the ultrafast laser-generated plasma dynamics both experimentally and theoretically. Ultrafast plasma dynamics was probed using Coherent Anti-Stokes Raman Scattering. The measurements were made in a room temperature gas maintained at 1 atm in a flowing cell. The time dependent scattering was measured by delaying the CARS probe with respect to the intense laser excitation pulse. A general trend is observed between the spacing of the ground state and the first allowed excited state with the rise time for the noble gas series and the molecular gases. This trend is consistent with our theoretical model, which considers the ultrafast dynamics of the strong field generated plasma as a three-step process; (i) strong-field ionization followed by the electron gaining considerable kinetic energy during the pulse; (ii) immediate post-pulse dynamics: fast thermalization, impact-ionization-driven electron multiplication and cooling; (iii) ensuing relaxation: evolution to electron-ion equilibrium and eventual recombination.

  19. Probing periodic potential of crystals via strong-field re-scattering

    NASA Astrophysics Data System (ADS)

    You, Yong Sing; Cunningham, Eric; Reis, David A.; Ghimire, Shambhu

    2018-06-01

    Strong-field ionization and re-scattering phenomena have been used to image angstrom-scale structures of isolated molecules in the gas phase. These methods typically make use of the anisotropic response of the participating molecular orbital. Recently, an anisotropic strong-field response has also been observed in high-order harmonic generation (HHG) from bulk crystals (2016 Nat. Phys. 13 345). In a (100) cut magnesium oxide crystal, extreme ultraviolet high-harmonics are found to depend strongly on the crystal structure and inter-atomic bonding. Here, we extend these measurements to other two important crystal orientations: (111) and (110). We find that HHG from these orientations is also strongly anisotropic. The underlying dynamics is understood using a real-space picture, where high-harmonics are produced via coherent collision of strong-field driven electrons from the atomic sites, including from the nearest neighbor atoms. We find that harmonic efficiency is enhanced when semi-classical electron trajectories connect to the concentrated valence charge distribution regions around the atomic cores. Similarly, the efficiency is suppressed when the trajectories miss the atomic cores. These results further support the real-space picture of HHG with implications for retrieving the periodic potential of the crystal, if not the wavefunctions in three-dimensions.

  20. Observational evidence of the complementary relationship in regional evaporation lends strong support for Bouchet's hypothesis

    Treesearch

    Jorge A. Ramirez; Michael T. Hobbins; Thomas C. Brown

    2005-01-01

    Using independent observations of actual and potential evapotranspiration at a wide range of spatial scales, we provide direct observational evidence of the complementary relationship in regional evapotranspiration hypothesized by Bouchet in 1963. Bouchet proposed that, for large homogeneous surfaces with minimal advection of heat and moisture, potential and actual...

  1. Seismically induced rock slope failures resulting from topographic amplification of strong ground motions: The case of Pacoima Canyon, California

    USGS Publications Warehouse

    Sepulveda, S.A.; Murphy, W.; Jibson, R.W.; Petley, D.N.

    2005-01-01

    The 1994 Northridge earthquake (Mw = 6.7) triggered extensive rock slope failures in Pacoima Canyon, immediately north of Los Angeles, California. Pacoima Canyon is a narrow and steep canyon incised in gneissic and granitic rocks. Peak accelerations of nearly 1.6 g were recorded at a ridge that forms the left abutment of Pacoima Dam; peak accelerations at the bottom of the canyon were less than 0.5 g, suggesting the occurrence of topographic amplification. Topographic effects have been previously suggested to explain similarly high ground motions at the site during the 1971 (Mw = 6.7) San Fernando earthquake. Furthermore, high landslide concentrations observed in the area have been attributed to unusually strong ground motions rather than higher susceptibility to sliding compared with nearby zones. We conducted field investigations and slope stability back-analyses to confirm the impact of topographic amplification on the triggering of landslides during the 1994 earthquake. Our results suggest that the observed extensive rock sliding and falling would have not been possible under unamplified seismic conditions, which would have generated a significantly lower number of areas affected by landslides. In contrast, modelling slope stability using amplified ground shaking predicts slope failure distributions matching what occurred in 1994. This observation confirms a significant role for topographic amplification on the triggering of landslides at the site, and emphasises the need to select carefully the inputs for seismic slope stability analyses. ?? 2005 Elsevier B.V. All rights reserved.

  2. Improved Bounds on Violation of the Strong Equivalence Principle

    NASA Technical Reports Server (NTRS)

    Arzoumanian, Z.

    2002-01-01

    I describe a unique, 20-year-long timing program for the binary pulsar B0655+64, the stalwart control experiment for measurements of gravitational radiation damping in relativistic neutron-star binaries. Observed limits on evolution of the B0655+64 orbit provide new bounds on the existence of dipolar gravitational radiation, and hence on violation of the Strong Equivalence Principle.

  3. Observation of flow processes in the vadose zone using ERT on different space and time scales: results, obstacles, and suggestions

    NASA Astrophysics Data System (ADS)

    Noell, Ursula; Ganz, Christina; Lamparter, Axel; Duijnisveld, Wilhelmus; Bachmann, Jörg

    2013-04-01

    deteriorates with depth. The resolution depends on the electrode distances and the depth resolution can be increased by using borehole electrodes. However, if one ha of land is to be observed with a reasonable number of electrodes (some 100) the resolution will be some 10 m. The structures, however, that influence the infiltration process, might be much smaller. Therefore, it is suggested to use ERT as the tool to observe and quantify the infiltration process with regard to time and space on a scale of some meters. For independent proof local TDR devices should be inserted within the investigated area for calibration. These results should then be used to establish a physical soil model that grasps the observed process correctly in time and space. The next step would then be to repeat these local measurements at different locations where the similarity of the processes is at doubt. Only when this is confirmed or discarded, further upscaling steps can be done reliably.

  4. Theories of Suggestion

    PubMed Central

    Brown, William

    1928-01-01

    The word “suggestion” has been used in educational, scientific and medical literature in slightly different senses. In psychological medicine the use of suggestion has developed out of the earlier use of hypnotic influence. Charcot defined hypnosis as an artificial hysteria, Bernheim as an artificially increased suggestibility. The two definitions need to be combined to give an adequate account of hypnosis. Moreover, due allowance should be made for the factors of dissociation and of rapport in hypnotic phenomena. The relationships between dissociation, suggestibility, and hypnotizability. Theories of suggestion propounded by Pierre Janet, Freud, McDougall, Pawlow and others. Ernest Jones's theory of the nature of auto-suggestion. Janet explains suggestion in terms of ideo-motor action in which the suggested idea, because of the inactivity of competing ideas, produces its maximum effect. Freud explains rapport in terms of the sex instinct “inhibited in its aim” (transference) and brings in his distinction of “ego” and “ego-ideal” (or “super-ego”) to supplement the theory. Jones explains auto-suggestion in terms of narcissism. McDougall explains hypnotic suggestion in terms of the instinct of self-abasement. But different instincts may supply the driving power to produce suggestion-effects in different circumstances. Such instincts as those of self-preservation (fear) and gregariousness may play their part. Auto-suggestion as a therapeutic factor is badly named. It supplements, but does not supplant the will, and makes complete volition possible. PMID:19986306

  5. On numerical instabilities of Godunov-type schemes for strong shocks

    NASA Astrophysics Data System (ADS)

    Xie, Wenjia; Li, Wei; Li, Hua; Tian, Zhengyu; Pan, Sha

    2017-12-01

    It is well known that low diffusion Riemann solvers with minimal smearing on contact and shear waves are vulnerable to shock instability problems, including the carbuncle phenomenon. In the present study, we concentrate on exploring where the instability grows out and how the dissipation inherent in Riemann solvers affects the unstable behaviors. With the help of numerical experiments and a linearized analysis method, it has been found that the shock instability is strongly related to the unstable modes of intermediate states inside the shock structure. The consistency of mass flux across the normal shock is needed for a Riemann solver to capture strong shocks stably. The famous carbuncle phenomenon is interpreted as the consequence of the inconsistency of mass flux across the normal shock for a low diffusion Riemann solver. Based on the results of numerical experiments and the linearized analysis, a robust Godunov-type scheme with a simple cure for the shock instability is suggested. With only the dissipation corresponding to shear waves introduced in the vicinity of strong shocks, the instability problem is circumvented. Numerical results of several carefully chosen strong shock wave problems are investigated to demonstrate the robustness of the proposed scheme.

  6. Reflective Amplification without Population Inversion from a Strongly Driven Superconducting Qubit

    NASA Astrophysics Data System (ADS)

    Wen, P. Y.; Kockum, A. F.; Ian, H.; Chen, J. C.; Nori, F.; Hoi, I.-C.

    2018-02-01

    Amplification of optical or microwave fields is often achieved by strongly driving a medium to induce population inversion such that a weak probe can be amplified through stimulated emission. Here we strongly couple a superconducting qubit, an artificial atom, to the field in a semi-infinite waveguide. When driving the qubit strongly on resonance such that a Mollow triplet appears, we observe a 7% amplitude gain for a weak probe at frequencies in between the triplet. This amplification is not due to population inversion, neither in the bare qubit basis nor in the dressed-state basis, but instead results from a four-photon process that converts energy from the strong drive to the weak probe. We find excellent agreement between the experimental results and numerical simulations without any free fitting parameters. Since our device consists of a single two-level artificial atom, the simplest possible quantum system, it can be viewed as the most fundamental version of a four-wave-mixing parametric amplifier.

  7. Observations and Numerical Models of Solar Coronal Heating Associated with Spicules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pontieu, B. De; Martinez-Sykora, J.; Moortel, I. De

    Spicules have been proposed as significant contributors to the mass and energy balance of the corona. While previous observations have provided a glimpse of short-lived transient brightenings in the corona that are associated with spicules, these observations have been contested and are the subject of a vigorous debate both on the modeling and the observational side. Therefore, it remains unclear whether plasma is heated to coronal temperatures in association with spicules. We use high-resolution observations of the chromosphere and transition region (TR) with the Interface Region Imaging Spectrograph and of the corona with the Atmospheric Imaging Assembly on board themore » Solar Dynamics Observatory to show evidence of the formation of coronal structures associated with spicular mass ejections and heating of plasma to TR and coronal temperatures. Our observations suggest that a significant fraction of the highly dynamic loop fan environment associated with plage regions may be the result of the formation of such new coronal strands, a process that previously had been interpreted as the propagation of transient propagating coronal disturbances. Our observations are supported by 2.5D radiative MHD simulations that show heating to coronal temperatures in association with spicules. Our results suggest that heating and strong flows play an important role in maintaining the substructure of loop fans, in addition to the waves that permeate this low coronal environment.« less

  8. Modulation of ENSO evolution by strong tropical volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Guo, Dong; Gao, Yongqi; Wang, Huijun; Zheng, Fei; Zhu, Yali; Miao, Jiapeng; Hu, Yongyun

    2017-11-01

    The simulated responses of the El Niño-Southern Oscillation (ENSO) to volcanic forcings are controversial, and some mechanisms of these responses are not clear. We investigate the impacts of volcanic forcing on the ENSO using a long-term simulation covering 1400-1999 as simulated by the Bergen Climate Model (BCM) and a group of simulations performed with the Community Atmosphere Model version 4.0 (CAM4) and the BCM's ocean component Miami Isopycanic Coordinated Ocean Model (MICOM). The analysis of the long-term BCM simulation indicates that ENSO has a negative-positive-negative response to strong tropical volcanic eruptions (SVEs), which corresponds to the different stages of volcanic forcing. In the initial forcing stage, a brief and weak La Niña-like response is caused by the cooling along the west coast of the South American continent and associated enhancement of the trade winds. In the peak forcing stage, westerly wind anomalies are excited by both reduced east-west sea level pressure gradients and weakened and equatorward shifted tropical convergence zones. These westerly wind anomalies extend to the equatorial eastern Pacific, leading to an El Niño-like response. At the same time, easterly wind anomalies west of 120°E and strong cooling effects can promote a discharged thermocline state and excite an upwelling Kelvin wave in the western Pacific. In the declining forcing stage, forced by the recovered trade winds, the upwelling Kelvin wave propagates eastward and reaches the equatorial eastern Pacific. Through the Bjerknes feedback, a strong and temporally extended La Niña-like response forms. Additional CAM4 simulations suggest a more important role of the surface cooling over the Maritime Continent and surrounding ocean in shaping the westerly wind anomalies over the equatorial central-eastern Pacific and the easterly wind anomalies west of 120° E, which are key to causing the El Niño-like responses and subsequent La Niña-like responses

  9. Tiny Stars, Strong Fields: Exploring the Origin of Intense Magnetism in M Stars

    NASA Astrophysics Data System (ADS)

    Toomre, Juri

    . We bring to this our prior experience with studying dynamo processes in the outer convective envelopes of G- (the Sun) and Ftype stars, briefly of M dwarfs, and in full convective cores within more massive A- and B-type stars. Our previous work suggests that M dwarfs could display a broad range of dynamo behavior, from cyclic reversals to more chaotic variations, and further to both weak and strong dynamo states. We will focus on the latter, exploring how superequipartition magnetic fields could be achieved by dynamo action in M dwarfs, as are likely needed to energize super-flares and huge active regions, and what limits the peak field strengths. M-type stars are distinctive in becoming fully convective with decreasing mass at about M3.5 in spectral type (or about 0.35 solar masses). At this transition, a steep rise in the fraction of magnetically active stars is observed that is accompanied by an increasing rotational velocity. Clearly how mass-loss and spin-down can lead to this is of interest in itself. However, here we propose to study the manner in which dynamos operating in fully convective M dwarf interiors beyond the transition may be able to achieve very strong magnetic fields, and how field strengths and apparent magnetic activity increases with rotation rate as suggested by observations. We believe that global connectivity of flows and fields across the core center will admit new classes of strong behavior, as revealed by our B star core dynamos, not realized when a convective envelope is bounded below by a tachocline. These ideas need to be tested in a self-consistent manner with global ASH simulations to gain theoretical insights into what is the origin of the fierce magnetic activity in some of M dwarfs that may be potential hosts to Earth-like planets. Such 3-D MHD simulations, though challenging, are now feasible and would complement the intensive observational searches under way.

  10. The First in situ Observation of Kelvin-Helmholtz Waves at High-Latitude Magnetopause during Strongly Dawnward Interplanetary Magnetic Field Conditions

    NASA Technical Reports Server (NTRS)

    Hwang, K.-J.; Goldstein, M. L.; Kuznetsova, M. M.; Wang, Y.; Vinas, A. F.; Sibeck, D. G.

    2012-01-01

    We report the first in situ observation of high-latitude magnetopause (near the northern duskward cusp) Kelvin-Helmholtz waves (KHW) by Cluster on January 12, 2003, under strongly dawnward interplanetary magnetic field (IMF) conditions. The fluctuations unstable to Kelvin-Helmholtz instability (KHI) are found to propagate mostly tailward, i.e., along the direction almost 90 deg. to both the magnetosheath and geomagnetic fields, which lowers the threshold of the KHI. The magnetic configuration across the boundary layer near the northern duskward cusp region during dawnward IMF is similar to that in the low-latitude boundary layer under northward IMF, in that (1) both magnetosheath and magnetospheric fields across the local boundary layer constitute the lowest magnetic shear and (2) the tailward propagation of the KHW is perpendicular to both fields. Approximately 3-hour-long periods of the KHW during dawnward IMF are followed by the rapid expansion of the dayside magnetosphere associated with the passage of an IMF discontinuity that characterizes an abrupt change in IMF cone angle, Phi = acos (B(sub x) / absolute value of Beta), from approx. 90 to approx. 10. Cluster, which was on its outbound trajectory, continued observing the boundary waves at the northern evening-side magnetopause during sunward IMF conditions following the passage of the IMF discontinuity. By comparing the signatures of boundary fluctuations before and after the IMF discontinuity, we report that the frequencies of the most unstable KH modes increased after the discontinuity passed. This result demonstrates that differences in IMF orientations (especially in f) are associated with the properties of KHW at the high-latitude magnetopause due to variations in thickness of the boundary layer, and/or width of the KH-unstable band on the surface of the dayside magnetopause.

  11. Open to Suggestion.

    ERIC Educational Resources Information Center

    Journal of Reading, 1987

    1987-01-01

    Offers (1) suggestions for improving college students' study skills; (2) a system for keeping track of parent, teacher, and community contacts; (3) suggestions for motivating students using tic tac toe; (4) suggestions for using etymology to improve word retention; (5) a word search grid; and (6) suggestions for using postcards in remedial reading…

  12. The Sloan Lens ACS Survey. XIII. Discovery of 40 New Galaxy-scale Strong Lenses

    NASA Astrophysics Data System (ADS)

    Shu, Yiping; Brownstein, Joel R.; Bolton, Adam S.; Koopmans, Léon V. E.; Treu, Tommaso; Montero-Dorta, Antonio D.; Auger, Matthew W.; Czoske, Oliver; Gavazzi, Raphaël; Marshall, Philip J.; Moustakas, Leonidas A.

    2017-12-01

    We present the full sample of 118 galaxy-scale strong-lens candidates in the Sloan Lens ACS (SLACS) Survey for the Masses (S4TM) Survey, which are spectroscopically selected from the final data release of the Sloan Digital Sky Survey. Follow-up Hubble Space Telescope (HST) imaging observations confirm that 40 candidates are definite strong lenses with multiple lensed images. The foreground-lens galaxies are found to be early-type galaxies (ETGs) at redshifts 0.06–0.44, and background sources are emission-line galaxies at redshifts 0.22–1.29. As an extension of the SLACS Survey, the S4TM Survey is the first attempt to preferentially search for strong-lens systems with relatively lower lens masses than those in the pre-existing strong-lens samples. By fitting HST data with a singular isothermal ellipsoid model, we find that the total projected mass within the Einstein radius of the S4TM strong-lens sample ranges from 3 × 1010 M ⊙ to 2 × 1011 M ⊙. In Shu et al., we have derived the total stellar mass of the S4TM lenses to be 5 × 1010 M ⊙ to 1 × 1012 M ⊙. Both the total enclosed mass and stellar mass of the S4TM lenses are on average almost a factor of 2 smaller than those of the SLACS lenses, which also represent the typical mass scales of the current strong-lens samples. The extended mass coverage provided by the S4TM sample can enable a direct test, with the aid of strong lensing, for transitions in scaling relations, kinematic properties, mass structure, and dark-matter content trends of ETGs at intermediate-mass scales as noted in previous studies. Based on observations made with the NASA/ESA Hubble Space Telescope (HST), obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555. These observations are associated with HST program #12210.

  13. Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates

    PubMed Central

    Zengin, Gülis; Johansson, Göran; Johansson, Peter; Antosiewicz, Tomasz J.; Käll, Mikael; Shegai, Timur

    2013-01-01

    We studied scattering and extinction of individual silver nanorods coupled to the J-aggregate form of the cyanine dye TDBC as a function of plasmon – exciton detuning. The measured single particle spectra exhibited a strongly suppressed scattering and extinction rate at wavelengths corresponding to the J-aggregate absorption band, signaling strong interaction between the localized surface plasmon of the metal core and the exciton of the surrounding molecular shell. In the context of strong coupling theory, the observed “transparency dips” correspond to an average vacuum Rabi splitting of the order of 100 meV, which approaches the plasmon dephasing rate and, thereby, the strong coupling limit for the smallest investigated particles. These findings could pave the way towards ultra-strong light-matter interaction on the nanoscale and active plasmonic devices operating at room temperature. PMID:24166360

  14. Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime.

    PubMed

    Press, David; Götzinger, Stephan; Reitzenstein, Stephan; Hofmann, Carolin; Löffler, Andreas; Kamp, Martin; Forchel, Alfred; Yamamoto, Yoshihisa

    2007-03-16

    We observe antibunching in the photons emitted from a strongly coupled single quantum dot and pillar microcavity in resonance. When the quantum dot was spectrally detuned from the cavity mode, the cavity emission remained antibunched, and also anticorrelated from the quantum dot emission. Resonant pumping of the selected quantum dot via an excited state enabled these observations by eliminating the background emitters that are usually coupled to the cavity. This device demonstrates an on-demand single-photon source operating in the strong coupling regime, with a Purcell factor of 61+/-7 and quantum efficiency of 97%.

  15. Unconventional superconductivity in the strong-coupling limit for the heavy fermion system CeCoIn5

    NASA Astrophysics Data System (ADS)

    Fasano, Y.; Szabó, P.; Kačmarčík, J.; Pribulová, Z.; Pedrazzini, P.; Samuely, P.; Correa, V. F.

    2018-05-01

    We present scanning tunneling spectroscopy measurements of the local quasiparticles' excitation spectra of the heavy fermion CeCoIn5 between 440 mK and 3 K in samples with a bulk Tc = 2.25 K . The spectral shape of our low-temperature tunneling data, quite textbook nodal- Δ conductance, allow us to confidently fit the spectra with a d-wave density of states considering also a shortening of quasiparticles' lifetime term Γ. The Δ (0) value obtained from the fits yields a BCS ratio 2 Δ /kTc = 7.73 suggesting that CeCoIn5 is an unconventional superconductor in the strong coupling limit. The fits also reveal that the height of coherence peaks in CeCoIn5 is reduced with respect to a pure BCS spectra and therefore the coupling of quasiparticles with spin excitations should play a relevant role. The tunneling conductance shows a depletion at energies smaller than Δ for temperatures larger than the bulk Tc, giving further support to the existence of a pseudogap phase that in our samples span up to T* ∼ 1.2Tc . The phenomenological scaling of the pseudogap temperature observed in various families of cuprates, 2 Δ /kT* ∼ 4.3 , is not fulfilled in our measurements. This suggests that in CeCoIn5 the strong magnetic fluctuations might conspire to close the local superconducting gap at a smaller pesudogap temperature-scale than in cuprates.

  16. Comparison of North and South American biomes from AVHRR observations

    NASA Technical Reports Server (NTRS)

    Goward, Samuel N.; Dye, Dennis; Kerber, Arlene; Kalb, Virginia

    1987-01-01

    Previous analysis of the North American continent with AVHRR-derived vegetation index measurements showed a strong relation between known patterns of vegetation seasonality, productivity and the spectral vegetation index measurements. This study extends that analysis to South America to evaluate the degree to which these findings extend to tropical regions. The results show that the spectral vegetation index measurements provide a general indicator of vegetation activity across the major biomes of the Western Hemisphere of the earth, including tropical regions. The satellite-observed patterns are strongly related to the known climatology of the continents and may offer a means to improve understanding of global bioclimatology. For example, South America is shown to have a longer growing season with much earlier spring green-up than North America. The time integral of the measurements, computed from 12 composited monthly values, produces a value that is related to published net primary productivity data. However, limited net primary production data does not allow complete evaluation of satellite-observed contrasts between North and South American biomes. These results suggest that satellite-derived spectral vegetation index measurements are of great potential value in improving knowledge of the earth's biosphere.

  17. The Chandra Strong Lens Sample: Revealing Baryonic Physics In Strong Lensing Selected Clusters

    NASA Astrophysics Data System (ADS)

    Bayliss, Matthew

    2017-08-01

    We propose for Chandra imaging of the hot intra-cluster gas in a unique new sample of 29 galaxy clusters selected purely on their strong gravitational lensing signatures. This will be the first program targeting a purely strong lensing selected cluster sample, enabling new comparisons between the ICM properties and scaling relations of strong lensing and mass/ICM selected cluster samples. Chandra imaging, combined with high precision strong lens models, ensures powerful constraints on the distribution and state of matter in the cluster cores. This represents a novel angle from which we can address the role played by baryonic physics |*| the infamous |*|gastrophysics|*| in shaping the cores of massive clusters, and opens up an exciting new galaxy cluster discovery space with Chandra.

  18. The Chandra Strong Lens Sample: Revealing Baryonic Physics In Strong Lensing Selected Clusters

    NASA Astrophysics Data System (ADS)

    Bayliss, Matthew

    2017-09-01

    We propose for Chandra imaging of the hot intra-cluster gas in a unique new sample of 29 galaxy clusters selected purely on their strong gravitational lensing signatures. This will be the first program targeting a purely strong lensing selected cluster sample, enabling new comparisons between the ICM properties and scaling relations of strong lensing and mass/ICM selected cluster samples. Chandra imaging, combined with high precision strong lens models, ensures powerful constraints on the distribution and state of matter in the cluster cores. This represents a novel angle from which we can address the role played by baryonic physics -- the infamous ``gastrophysics''-- in shaping the cores of massive clusters, and opens up an exciting new galaxy cluster discovery space with Chandra.

  19. Negative mobility of a Brownian particle: Strong damping regime

    NASA Astrophysics Data System (ADS)

    Słapik, A.; Łuczka, J.; Spiechowicz, J.

    2018-02-01

    We study impact of inertia on directed transport of a Brownian particle under non-equilibrium conditions: the particle moves in a one-dimensional periodic and symmetric potential, is driven by both an unbiased time-periodic force and a constant force, and is coupled to a thermostat of temperature T. Within selected parameter regimes this system exhibits negative mobility, which means that the particle moves in the direction opposite to the direction of the constant force. It is known that in such a setup the inertial term is essential for the emergence of negative mobility and it cannot be detected in the limiting case of overdamped dynamics. We analyse inertial effects and show that negative mobility can be observed even in the strong damping regime. We determine the optimal dimensionless mass for the presence of negative mobility and reveal three mechanisms standing behind this anomaly: deterministic chaotic, thermal noise induced and deterministic non-chaotic. The last origin has never been reported. It may provide guidance to the possibility of observation of negative mobility for strongly damped dynamics which is of fundamental importance from the point of view of biological systems, all of which in situ operate in fluctuating environments.

  20. Results of Sustained Observations from SABSOON

    NASA Astrophysics Data System (ADS)

    Seim, H.; Nelson, J.

    2001-12-01

    A variety of meteorological and oceanographic data being collected on the continental shelf off Georgia by the South Atlantic Bight Synoptic Offshore Observational Network (SABSOON) permit an examination of episodic and seasonal phenomena operative on the shelf. Data are collected at offshore platforms and transmitted to shore in near-real time and made available on the project website. Examples of data collected since 1999 are presented that illustrate some of processes being addressed using the network. Maximum winds occur during remarkably energetic downbursts observed in spring and summer, associated with the passage of squalls over the coastal ocean. Peak wind speed at 50 m height exceed 40 ms and air temperature drops by 4 oC or more in less than 6 minutes, often accompanied by large changes in humidity and heavy rainfall, suggesting down draft of air from aloft. These events may play an important role in the offshore transport of continentally-derived material. Continuous ADCP measurements are being used to examine the seasonality of cross-shelf exchange and its relationship to the cross-shelf density gradient. The low-frequency cross-shelf circulation changes sign when the cross-shelf density gradient changes sign. Vertical stratification is surprisingly episodic, and maximum stratification has occurred in the winter and spring associated with appearance of long-salinity surface lens and may be associated with baroclinic instabilities. Strong stratification has also been observed in summer during Gulf Stream-derived intrusions onto the shelf, during which time the upper and lower layers become largely decoupled. Continuous optical measurements of above-water and in-water irradiance (PAR) show the mid-shelf surface sediments are often in the euphotic zone. Chlorophyll fluorescence (stimulated) shows strong light-dependent diurnal variability in near-surface waters and evidence of resuspension of benthic diatoms during storm events, particularly in the early

  1. Suggested posthypnotic amnesia in psychiatric patients and normals.

    PubMed

    Frischholz, Edward J; Lipman, Laurie S; Braun, Bennett G; Sachs, Roberta

    2015-01-01

    The present study examined both quantitative and qualitative hypnotizability differences among four psychiatric patient groups (dissociative disorder (n = 17), schizophrenic (n = 13), mood disorder (n = 14), and anxiety disorder (n = 14) patients), and normals (college students (n = 63)). Dissociative disorder patients earned significantly higher corrected total scores on the Stanford Hypnotic Susceptibility Scale, Form C (mean = 7.94), than all other groups. Likewise, dissociative disorder patients initially recalled significantly fewer items when the posthypnotic amnesia suggestion was in effect (mean = .41) and reversed significantly more items when the suggestion was canceled (mean = 3.82) than all other groups. In contrast, schizophrenic patients recalled significantly fewer items when the amnesia suggestion was in effect (mean = 1.85) and reversed significantly fewer items when it was canceled (mean = .77) than the remaining groups. This qualitative difference between schizophrenic patients and the other groups on the suggested posthypnotic amnesia item was observed even though there were no significant quantitative differences between groups in overall hypnotic responsivity.

  2. Anomaly-Induced Dynamical Refringence in Strong-Field QED

    NASA Astrophysics Data System (ADS)

    Mueller, N.; Hebenstreit, F.; Berges, J.

    2016-08-01

    We investigate the impact of the Adler-Bell-Jackiw anomaly on the nonequilibrium evolution of strong-field quantum electrodynamics (QED) using real-time lattice gauge theory techniques. For field strengths exceeding the Schwinger limit for pair production, we encounter a highly absorptive medium with anomaly induced dynamical refractive properties. In contrast to earlier expectations based on equilibrium properties, where net anomalous effects vanish because of the trivial vacuum structure, we find that out-of-equilibrium conditions can have dramatic consequences for the presence of quantum currents with distinctive macroscopic signatures. We observe an intriguing tracking behavior, where the system spends longest times near collinear field configurations with maximum anomalous current. Apart from the potential relevance of our findings for future laser experiments, similar phenomena related to the chiral magnetic effect are expected to play an important role for strong QED fields during initial stages of heavy-ion collision experiments.

  3. Punishment as a means of competition: implications for strong reciprocity theory.

    PubMed

    Paál, Tünde; Bereczkei, Tamás

    2015-01-01

    Strong negative reciprocity, that is, sanctions imposed on norm violators at the punisher's own expense, has powerful cooperation-enhancing effects in both real-life and experimental game situations. However, it is plausible that punishment may obtain alternative roles depending on social context and the personality characteristics of participants. We examined the occurrence of punishing behavior among 80 subjects in a strongly competitive Public Goods game setting. Despite the punishment condition, the amount of the contributions decreased steadily during the game. The amount of contributions had no significant effect on received and imposed punishments. The results indicate that certain social contexts (in this case, intensive competition) exert modifying effects on the role that punishment takes on. Subjects punished each other in order to achieve a higher rank and a financially better outcome. Punishment primarily functioned as a means of rivalry, instead of as a way of second-order cooperation, as strong reciprocity suggests. These results indicate the need for the possible modification of the social conditions of punishment mechanisms described by the strong reciprocity theory as an evolutionary explanation of human cooperation.

  4. Ultra-heavy cosmic rays: Theoretical implications of recent observations

    NASA Technical Reports Server (NTRS)

    Blake, J. B.; Hainebach, K. L.; Schramm, D. N.; Anglin, J. D.

    1977-01-01

    Extreme ultraheavy cosmic ray observations (Z greater or equal 70) are compared with r-process models. A detailed cosmic ray propagation calculation is used to transform the calculated source distributions to those observed at the earth. The r-process production abundances are calculated using different mass formulae and beta-rate formulae; an empirical estimate based on the observed solar system abundances is used also. There is the continued strong indication of an r-process dominance in the extreme ultra-heavy cosmic rays. However it is shown that the observed high actinide/Pt ratio in the cosmic rays cannot be fit with the same r-process calculation which also fits the solar system material. This result suggests that the cosmic rays probably undergo some preferential acceleration in addition to the apparent general enrichment in heavy (r-process) material. As estimate also is made of the expected relative abundance of superheavy elements in the cosmic rays if the anomalous heavy xenon in carbonaceous chondrites is due to a fissioning superheavy element.

  5. Dissociative tendencies and individual differences in high hypnotic suggestibility.

    PubMed

    Terhune, Devin Blair; Cardeña, Etzel; Lindgren, Magnus

    2011-03-01

    Inconsistencies in the relationship between dissociation and hypnosis may result from heterogeneity among highly suggestible individuals, in particular the existence of distinct highly suggestible subtypes that are of relevance to models of psychopathology and the consequences of trauma. This study contrasted highly suggestible subtypes high or low in dissociation on measures of hypnotic responding, cognitive functioning, and psychopathology. Twenty-one low suggestible (LS), 19 low dissociative highly suggestible (LDHS), and 11 high dissociative highly suggestible (HDHS) participants were administered hypnotic suggestibility scales and completed measures of free recall, working memory capacity, imagery, fantasy-proneness, psychopathology, and exposure to stressful life events. HDHS participants were more responsive to positive and negative hallucination suggestions and experienced greater involuntariness during hypnotic responding. They also exhibited impaired working memory capacity, elevated pathological fantasy and dissociative symptomatology, and a greater incidence of exposure to stressful life events. In contrast, LDHS participants displayed superior object visual imagery. These results provide further evidence for two highly suggestible subtypes: a dissociative subtype characterised by deficits in executive functioning and a predisposition to psychopathology, and a subtype that exhibits superior imagery and no observable deficits in functioning.

  6. 78 FR 27249 - Announcement of Funding Awards for Fiscal Year 2012/2013; Strong Cities, Strong Communities...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-09

    ... Awards for Fiscal Year 2012/2013; Strong Cities, Strong Communities National Resource Network AGENCY... 2012/2013 Strong Cities, Strong Communities National Resource Network (SC2 Network). The purpose of... SC2 Network is a capacity building program targeted to assisting the nation's most distressed...

  7. Strongly correlated surface states

    NASA Astrophysics Data System (ADS)

    Alexandrov, Victor A.

    Everything has an edge. However trivial, this phrase has dominated theoretical condensed matter in the past half a decade. Prior to that, questions involving the edge considered to be more of an engineering problem rather than a one of fundamental science: it seemed self-evident that every edge is different. However, recent advances proved that many surface properties enjoy a certain universality, and moreover, are 'topologically' protected. In this thesis I discuss a selected range of problems that bring together topological properties of surface states and strong interactions. Strong interactions alone can lead to a wide spectrum of emergent phenomena: from high temperature superconductivity to unconventional magnetic ordering; interactions can change the properties of particles, from heavy electrons to fractional charges. It is a unique challenge to bring these two topics together. The thesis begins by describing a family of methods and models with interactions so high that electrons effectively disappear as particles and new bound states arise. By invoking the AdS/CFT correspondence we can mimic the physical systems of interest as living on the surface of a higher dimensional universe with a black hole. In a specific example we investigate the properties of the surface states and find helical spin structure of emerged particles. The thesis proceeds from helical particles on the surface of black hole to a surface of samarium hexaboride: an f-electron material with localized magnetic moments at every site. Interactions between electrons in the bulk lead to insulating behavior, but the surfaces found to be conducting. This observation motivated an extensive research: weather the origin of conduction is of a topological nature. Among our main results, we confirm theoretically the topological properties of SmB6; introduce a new framework to address similar questions for this type of insulators, called Kondo insulators. Most notably we introduce the idea of Kondo

  8. Chandra Observations of Magnetic White Dwarfs and their Theoretical Implications

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.; Noble, M.; Porter, J. G.; Winget, D. E.

    2003-01-01

    Observations of cool DA and DB white dwarfs have not yet been successful in detecting coronal X-ray emission, but observations of late-type dwarfs and giants show that coronae are common for these stars. To produce coronal X-rays, a star must have dynamo-generated surface magnetic fields and a well-developed convection zone. There is some observational evidence that the DA star LHS 1038 and the DB star GD 358 have weak and variable surface magnetic fields. It has been suggested that such fields can be generated by dynamo action, and since both stars have well-developed convection zones, theory predicts detectable levels of coronal X-rays from these white dwarfs. However, we present analysis of Chandra observations of both stars showing no detectable X-ray emission. The derived upper limits for the X-ray fluxes provide strong constraints on theories of formation of coronae around magnetic white dwarfs. Another important implication of our negative Chandra observations is the possibility that the magnetic fields of LHS 1038 and GD 358 are fossil fields.

  9. Magnetospheric Multiscale Observations of Large-Amplitude Parallel, Electrostatic Waves Associated with Magnetic Reconnection at the Magnetopause

    NASA Technical Reports Server (NTRS)

    Ergun, R. E.; Holmes, J. C.; Goodrich, K. A.; Wilder, F. D.; Stawarz, J. E.; Eriksson, S.; Newman, D. L.; Schwartz, S. J.; Goldman, M. V.; Sturner, A. P.; hide

    2016-01-01

    We report observations from the Magnetospheric Multiscale satellites of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the Earth's magnetopause. The observed waves have parallel electric fields (E(sub parallel)) with amplitudes on the order of 100 mV/m and display nonlinear characteristics that suggest a possible net E(sub parallel). These waves are observed within the ion diffusion region and adjacent to (within several electron skin depths) the electron diffusion region. They are in or near the magnetosphere side current layer. Simulation results support that the strong electrostatic linear and nonlinear wave activities appear to be driven by a two stream instability, which is a consequence of mixing cold (less than 10eV) plasma in the magnetosphere with warm (approximately 100eV) plasma from the magnetosheath on a freshly reconnected magnetic field line. The frequent observation of these waves suggests that cold plasma is often present near the magnetopause.

  10. Observations of M87 and Hydra A at 90 GHz

    NASA Technical Reports Server (NTRS)

    Cotton, W. D.; Mason, B. S.; Dicker, S.; Korngut, P.; Devlin, M. J.; Aquirre, J.; Benford, D.; Moseley, H.; Staguhn, J.; Irwin, K.; hide

    2009-01-01

    This paper presents new observations of the AGNs M87 and Hydra A at 90 GHz made with the MUSTANG bolometer array on the Green Bank Telescope at 8.5" resolution. A spectral analysis is performed combining this new data and archival VLA data or1 these objects at longer wavelengths. This analysis can detect variations in spectral index and curvature expected from energy losses in the radiating particles. L187 shows only weak evidence for steepening of the spectrum along the jet suggesting either re-acceleration of the relativistic particles in the jet or insufficient losesto affect the spectrum at 90 GHz The jets in Hydra A show strong steepening as they move from the nucleus suggesting unbalanced losses of the higher energy relativistic particles The difference between these two sources may be accounted for by the different lengths over which the jets are observable, 2 kpc for 5187 and 45 kpc for Hydra A. Subject headings: galaxies: jets, galaxies: active, radio continuum, galaxies: individual (M87. Hydra A),

  11. Some observations on colocated and closely spaced strong ground-motion records of the 1999 Chi-Chi, Taiwan, earthquake

    USGS Publications Warehouse

    Wang, G.-Q.; Boore, D.M.; Igel, H.; Zhou, X.-Y.

    2003-01-01

    The digital accelerograph network installed in Taiwan produced a rich set of records from the 20 September 1999 Chi-Chi, Taiwan earthquake (Mw 7.6). Teledyne Geotech model A-800 and A-900A* digital accelerographs were colocated at 22 stations that recorded this event. Comparisons of the amplitudes, frequency content, and baseline offsets show that records from several of the A-800 accelerographs are considerably different than those from the colocated A-900A accelerographs. On this basis, and in view of the more thorough predeployment testing of the newer A-900A instruments, we recommend that the records from the A-800 instruments be used with caution in analyses of the mainshock and aftershocks. At the Hualien seismic station two A-900A and one A-800 instruments were colocated, along with a Global Positioning System instrument. Although the records from the two A-900A instruments are much more similar than those from a colocated A-800 instrument, both three-component records contain unpredictable baseline offsets, which produced completely unrealistic ground displacements derived from the accelerations by double integration, as do many of the strong-motion data from this event; the details of the baseline offsets differ considerably on the two three-component records. There are probably numerous sources of the baseline offsets, including sources external to the instruments, such as tilting or rotation of the ground, and sources internal to the instruments, such as electrical or mechanical hysteresis in the sensors. For the two colocated A-900A records at the Hualien seismic station, however, the differences in the baseline offsets suggest that the principal source is some transient disturbance within the instrument. The baseline offsets generally manifest themselves in the acceleration time series as pulses or steps, either singly or in combination. We find a 0.015-Hz low-cut filter can almost completely eliminate the effects of the baseline offsets, but then

  12. Strongly exchange-coupled triplet pairs in an organic semiconductor

    NASA Astrophysics Data System (ADS)

    Weiss, Leah R.; Bayliss, Sam L.; Kraffert, Felix; Thorley, Karl J.; Anthony, John E.; Bittl, Robert; Friend, Richard H.; Rao, Akshay; Greenham, Neil C.; Behrends, Jan

    2017-02-01

    From biological complexes to devices based on organic semiconductors, spin interactions play a key role in the function of molecular systems. For instance, triplet-pair reactions impact operation of organic light-emitting diodes as well as photovoltaic devices. Conventional models for triplet pairs assume they interact only weakly. Here, using electron spin resonance, we observe long-lived, strongly interacting triplet pairs in an organic semiconductor, generated via singlet fission. Using coherent spin manipulation of these two-triplet states, we identify exchange-coupled (spin-2) quintet complexes coexisting with weakly coupled (spin-1) triplets. We measure strongly coupled pairs with a lifetime approaching 3 μs and a spin coherence time approaching 1 μs, at 10 K. Our results pave the way for the utilization of high-spin systems in organic semiconductors.

  13. Distinct effects of anthropogenic aerosols on the East Asian summer monsoon between multidecadal strong and weak monsoon stages

    DOE PAGES

    Xie, Xiaoning; Wang, Hongli; Liu, Xiaodong; ...

    2016-06-18

    Industrial emissions of anthropogenic aerosols over East Asia have greatly increased in recent decades, and so the interactions between atmospheric aerosols and the East Asian summer monsoon (EASM) have attracted enormous attention. In order to further understand the aerosol-EASM interaction, we investigate the impacts of anthropogenic aerosols on the EASM during the multidecadal strong (1950–1977) and weak (1978–2000) EASM stages using the Community Atmospheric Model 5.1. Numerical experiments are conducted for the whole period, including the two different EASM stages, with present day (PD, year 2000) and preindustrial (PI, year 1850) aerosol emissions, as well as the observed time-varying aerosolmore » emissions. A comparison of the results from PD and PI shows that, with the increase in anthropogenic aerosols, the large-scale EASM intensity is weakened to a greater degree (-9.8%) during the weak EASM stage compared with the strong EASM stage (-4.4%). The increased anthropogenic aerosols also result in a significant reduction in precipitation over North China during the weak EASM stage, as opposed to a statistically insignificant change during the strong EASM stage. Because of greater aerosol loading and the larger sensitivity of the climate system during weak EASM stages, the aerosol effects are more significant during these EASM stages. Moreover, these results suggest that anthropogenic aerosols from the same aerosol emissions have distinct effects on the EASM and the associated precipitation between the multidecadal weak and strong EASM stages.« less

  14. Strong self-limitation promotes the persistence of rare species.

    PubMed

    Yenni, Glenda; Adler, Peter B; Ernest, S K Morgan

    2012-03-01

    Theory has recognized a combination of niche and neutral processes each contributing, with varying importance, to species coexistence. However, long-term persistence of rare species has been difficult to produce in trait-based models of coexistence that incorporate stochastic dynamics, raising questions about how rare species persist despite such variability. Following recent evidence that rare species may experience significantly different population dynamics than dominant species, we use a plant community model to simulate the effect of disproportionately strong negative frequency dependence on the long-term persistence of the rare species in a simulated community. This strong self-limitation produces long persistence times for the rare competitors, which otherwise succumb quickly to stochastic extinction. The results suggest that the mechanism causing species to be rare in this case is the same mechanism allowing those species to persist.

  15. Strong Interlayer Magnon-Magnon Coupling in Magnetic Metal-Insulator Hybrid Nanostructures.

    PubMed

    Chen, Jilei; Liu, Chuanpu; Liu, Tao; Xiao, Yang; Xia, Ke; Bauer, Gerrit E W; Wu, Mingzhong; Yu, Haiming

    2018-05-25

    We observe strong interlayer magnon-magnon coupling in an on-chip nanomagnonic device at room temperature. Ferromagnetic nanowire arrays are integrated on a 20-nm-thick yttrium iron garnet (YIG) thin film strip. Large anticrossing gaps up to 1.58 GHz are observed between the ferromagnetic resonance of the nanowires and the in-plane standing spin waves of the YIG film. Control experiments and simulations reveal that both the interlayer exchange coupling and the dynamical dipolar coupling contribute to the observed anticrossings. The coupling strength is tunable by the magnetic configuration, allowing the coherent control of magnonic devices.

  16. Strong Interlayer Magnon-Magnon Coupling in Magnetic Metal-Insulator Hybrid Nanostructures

    NASA Astrophysics Data System (ADS)

    Chen, Jilei; Liu, Chuanpu; Liu, Tao; Xiao, Yang; Xia, Ke; Bauer, Gerrit E. W.; Wu, Mingzhong; Yu, Haiming

    2018-05-01

    We observe strong interlayer magnon-magnon coupling in an on-chip nanomagnonic device at room temperature. Ferromagnetic nanowire arrays are integrated on a 20-nm-thick yttrium iron garnet (YIG) thin film strip. Large anticrossing gaps up to 1.58 GHz are observed between the ferromagnetic resonance of the nanowires and the in-plane standing spin waves of the YIG film. Control experiments and simulations reveal that both the interlayer exchange coupling and the dynamical dipolar coupling contribute to the observed anticrossings. The coupling strength is tunable by the magnetic configuration, allowing the coherent control of magnonic devices.

  17. Integrating the Desegregated School: Some Observations and Suggestions.

    ERIC Educational Resources Information Center

    Virag, Wayne F.

    The problem of the desegregation process in public schools, beginning with the Supreme Court decision Brown v the Board of Education of Topeka, Kansas, is that it is conceived of as an artificial climate imposed by ratios and busing rather than a learning situation wherein ethnocentricity is developed as a positive attribute. Integration, however,…

  18. Observational studies of regions of massive star formation

    NASA Astrophysics Data System (ADS)

    Cooper, Heather Danielle Blythe

    2013-03-01

    Massive stars have a profound influence on their surroundings. However, relatively little is known about their formation. The study of massive star formation is hindered by a lack of observational evidence, primarily due to difficulties observing massive stars at early stages in their development. The Red MSX Source survey (RMS survey) is a valuable tool with which to address these issues. Near-infrared H- and K-band spectra were taken for 247 candidate massive young stellar objects (MYSOs), selected from the RMS survey. 195 (∼80%) of the targets are YSOs, of which 131 are massive YSOs (LBOL>5E3L⊙, M>8 M⊙). This is the largest spectroscopic study of massive YSOs to date. This study covers minimally obscured objects right through to very red, dusty sources. Almost all YSOs show some evidence for emission lines, though there is a wide variety of observed properties, with HI, H2 Fe II, and CO among the most commonly observed lines. Evidence for disks and outflows was frequently seen. Comparisons of Brγ and H2 emission with low mass YSOs suggest that the emission mechanism for these lines is the same for low-, intermediate-, and high-mass YSOs, i.e. high-mass YSOs appear to resemble scaled-up versions of low-mass YSOs. It was found that the YSOs form an evolutionary sequence, based on their spectra, consistent with the existing theoretical models. Type I YSOs have strong H2 emission, no ionized lines, and are redder than the other two subtypes. As such, these are considered to be the youngest sources. The Type III sources are bluest, and therefore considered to be the oldest subtype. They have strong H I lines and fluorescent Fe II 1.6878 μm emission. They may also have weak H2 emission. Type III sources may even be beginning to form a mini-H II region. XSHOOTER data from 10 Herbig Be stars were analysed. The evidence suggests that winds and disks are common among Herbig stars, as they are among their main sequence classical Be star counterparts. Line

  19. Cyclic stressing and seismicity at strongly coupled subduction zones

    USGS Publications Warehouse

    Taylor, M.A.J.; Zheng, G.; Rice, J.R.; Stuart, W.D.; Dmowska, R.

    1996-01-01

    We use the finite element method to analyze stress variations in and near a strongly coupled subduction zone during an earthquake cycle. Deformation is assumed to be uniform along strike (plane strain on a cross section normal to the trench axis), and periodic earthquake slip is imposed consistent with the long-term rate of plate convergence and degree of coupling. Simulations of stress and displacement rate fields represent periodic fluctuations in time superimposed on an average field. The oceanic plate, descending slab, and continental lithosphere are assumed here to respond elastically to these fluctuations, and the remaining mantle under and between plates is assumed to respond as Maxwell viscoelastic. In the first part of the analysis we find that computed stress fluctuations in space and time are generally consistent with observed earthquake mechanism variations with time since a great thrust event. In particular, trench-normal extensional earthquakes tend to occur early in the earthquake cycle toward the outer rise but occur more abundantly late in the cycle in the subducting slab downdip of the main thrust zone. Compressional earthquakes, when they occur at all, have the opposite pattern. Our results suggest also that the actual timing of extensional outer rise events is controlled by the rheology of the shallow aseismic portion of the thrust interface. The second part of the analysis shows the effects of mantle relaxation on the rate of ground surface deformation during the earthquake cycle. Models without relaxation predict a strong overall compressional strain rate in the continental plate above the main thrust zone, with the strain rate constant between mainshocks. However with significant relaxation present, a localized region of unusually low compressional, or even slightly extensional, strain rate develops along the surface of the continental plate above and somewhat inland from the downdip edge of the locked main thrust zone. The low strain rate

  20. Strongly scale-dependent CMB dipolar asymmetry from super-curvature fluctuations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrnes, Christian; Domènech, Guillem; Sasaki, Misao

    2016-12-01

    We reconsider the observed CMB dipolar asymmetry in the context of open inflation, where a supercurvature mode might survive the bubble nucleation. If such a supercurvature mode modulates the amplitude of the curvature power spectrum, it would easily produce an asymmetry in the power spectrum. We show that current observational data can be accommodated in a three-field model, with simple quadratic potentials and a non-trivial field-space metric. Despite the presence of three fields, we believe this model is so far the simplest that can match current observations. We are able to match the observed strong scale dependence of the dipolarmore » asymmetry, without a fine tuning of initial conditions, breaking slow roll or adding a feature to the evolution of any field.« less

  1. Placebo-suggestion modulates conflict resolution in the Stroop Task.

    PubMed

    Magalhães De Saldanha da Gama, Pedro A; Slama, Hichem; Caspar, Emilie A; Gevers, Wim; Cleeremans, Axel

    2013-01-01

    Here, we ask whether placebo-suggestion (without any form of hypnotic induction) can modulate the resolution of cognitive conflict. Naïve participants performed a Stroop Task while wearing an EEG cap described as a "brain wave" machine. In Experiment 1, participants were made to believe that the EEG cap would either enhance or decrease their color perception and performance on the Stroop task. In Experiment 2, participants were explicitly asked to imagine that their color perception and performance would be enhanced or decreased (non-hypnotic imaginative suggestion). We observed effects of placebo-suggestion on Stroop interference on accuracy: interference was decreased with positive suggestion and increased with negative suggestion compared to baseline. Intra-individual variability was also increased under negative suggestion compared to baseline. Compliance with the instruction to imagine a modulation of performance, on the other hand, did not influence accuracy and only had a negative impact on response latencies and on intra-individual variability, especially in the congruent condition of the Stroop Task. Taken together, these results demonstrate that expectations induced by a placebo-suggestion can modulate our ability to resolve cognitive conflict, either facilitating or impairing response accuracy depending on the suggestion's contents. Our results also demonstrate a dissociation between placebo-suggestion and non-hypnotic imaginative suggestion.

  2. Complex organic molecules in strongly UV-irradiated gas

    NASA Astrophysics Data System (ADS)

    Cuadrado, S.; Goicoechea, J. R.; Cernicharo, J.; Fuente, A.; Pety, J.; Tercero, B.

    2017-07-01

    We investigate the presence of complex organic molecules (COMs) in strongly UV-irradiated interstellar molecular gas. We have carried out a complete millimetre (mm) line survey using the IRAM 30 m telescope towards the edge of the Orion Bar photodissociation region (PDR), close to the H2 dissociation front, a position irradiated by a very intense far-UV (FUV) radiation field. These observations have been complemented with 8.5'' resolution maps of the H2CO JKa,Kc = 51,5 → 41,4 and C18O J = 3 → 2 emission at 0.9 mm. Despite being a harsh environment, we detect more than 250 lines from COMs and related precursors: H2CO, CH3OH, HCO, H2CCO, CH3CHO, H2CS, HCOOH, CH3CN, CH2NH, HNCO, H213CO, and HC3N (in decreasing order of abundance). For each species, the large number of detected lines allowed us to accurately constrain their rotational temperatures (Trot) and column densities (N). Owing to subthermal excitation and intricate spectroscopy of some COMs (symmetric- and asymmetric-top molecules such as CH3CN and H2CO, respectively), a correct determination of N and Trot requires building rotational population diagrams of their rotational ladders separately. The inferred column densities are in the 1011-1013 cm-2 range. We also provide accurate upper limit abundances for chemically related molecules that might have been expected, but are not conclusively detected at the edge of the PDR (HDCO, CH3O, CH3NC, CH3CCH, CH3OCH3, HCOOCH3, CH3CH2OH, CH3CH2CN, and CH2CHCN). A non-thermodynamic equilibrium excitation analysis for molecules with known collisional rate coefficients suggests that some COMs arise from different PDR layers but we cannot resolve them spatially. In particular, H2CO and CH3CN survive in the extended gas directly exposed to the strong FUV flux (Tk = 150-250 K and Td≳ 60 K), whereas CH3OH only arises from denser and cooler gas clumps in the more shielded PDR interior (Tk = 40-50 K). The non-detection of HDCO towards the PDR edge is consistent with the

  3. Strong homing does not predict high site fidelity in juvenile reef fishes

    NASA Astrophysics Data System (ADS)

    Streit, Robert P.; Bellwood, David R.

    2018-03-01

    After being displaced, juvenile reef fishes are able to return home over large distances. This strong homing behaviour is extraordinary and may allow insights into the longer-term spatial ecology of fish communities. For example, it appears intuitive that strong homing behaviour should be indicative of long-term site fidelity. However, this connection has rarely been tested. We quantified the site fidelity of juvenile fishes of four species after returning home following displacement. Two species, parrotfishes and Pomacentrus moluccensis, showed significantly reduced site fidelity after returning home. On average, they disappeared from their home sites almost 3 d earlier than expected. Mortality or competitive exclusion does not seem to be the main reasons for their disappearance. Rather, we suggest an increased propensity to relocate after encountering alternative reef locations while homing. It appears that some juvenile fishes may have a higher innate spatial flexibility than their strict homing drive suggests.

  4. Signatures for strongly coupled Quark-Gluon Plasma

    NASA Astrophysics Data System (ADS)

    Shuryak, Edward

    2006-11-01

    Dramatic changes had occurred with our understanding of Quark-Gluon Plasma, which is now believed to be rather strongly coupled, sQGP for short. Hydrodynamical behavior is seen experimentally, even for rather small systems (rather peripheral collisions). From elliptic flow the interest is shifting to even more sophysticated observable, the conical flow, created by quenched jets. The exact structure of sQGP remains unknown, at the moment the best picture seem to be a liquid made partly of binary bound states. As we discuss at the end, those can be possibly seen in the dilepton spectra, as "new vector mesons" above Tc.

  5. Observations and modeling of northern mid-latitude recurring slope lineae (RSL) suggest recharge by a present-day martian briny aquifer

    NASA Astrophysics Data System (ADS)

    Stillman, David E.; Michaels, Timothy I.; Grimm, Robert E.; Hanley, Jennifer

    2016-02-01

    Recurring slope lineae (RSL) are narrow (0.5-5 m) dark features on Mars that incrementally lengthen down steep slopes, fade in colder seasons, and recur annually. These features have been identified from the northern to southern mid-latitudes. Here, we describe how observations of northern mid-latitude RSL in northern Chryse Planitia and southwestern Acidalia Planitia (CAP) suggest that brines start flowing before northern spring equinox and continue for more than half a Mars-year (490 ± 40 sols, spanning solar longitude 337° ± 11°-224° ± 20°). All CAP RSL are found on the steep slopes of craters and their source zones are at or below the elevation of the surrounding plains. Spacecraft-derived surface temperature observations cannot resolve individual RSL, so thermal modeling was used to determine that CAP RSL have a freezing temperature of 238-252 K, freeze and melt diurnally, and flow only occurs within the top ∼8 cm of the regolith. Furthermore, we calculate that a typical CAP RSL has a water budget of 1.5-5.6 m3/m of headwall. Therefore, such a large water budget makes annual recharge via atmospheric or subsurface diffusion sources unlikely. Alternatively, we hypothesize that the most plausible RSL source is a briny aquifer with a freezing temperature less than or equal to the mean annual CAP surface temperature (220-225 K). The annual cycle is as follows: in late autumn, the shallowest part of the brine feeding the source zone freezes, forming an ice dam. As spring approaches, temperatures rise and the dam is breached. Brine is discharged and the RSL initially lengthens rapidly (>1.86 m/sol), the lengthening rate then slows considerably, to ∼0.25 m/sol. Eventually, the losses equal the discharge rate and the RSL reaches its equilibrium phase. As brine flows in the RSL some of the water is lost to the atmosphere, therefore the freezing temperature of the brine within the RSL is higher (238-252 K) as the brine transitions to a super-eutectic salt

  6. Radio observations of a few selected blazars

    NASA Technical Reports Server (NTRS)

    Saikia, D. J.; Salter, C. J.; Neff, S. G.; Gower, A. C.; Sinha, R. P.

    1987-01-01

    The paper presents total-intensity and linear-polarization observations of four selected blazars, 0716+714, 0752+258, 1156+295 and 1400+162, with the VLA A-array, and MERLIN and EVN observations of 1400+162. The sources 0752+258 and 1400+162 which have nearly constant optical polarization, have well-defined double-lobed radio structure, with relatively weak radio cores, and are likely to be at large viewing angles. In addition, 0752+258 appears to be a twin-jet blazar. The position angle (PA) of the VLBI jet in 1400+162 is close to that of the arcsec-scale jet near the nucleus, as well as the optical and 2-cm core polarization PAs. The blazars 0716+714 and 1156+295, which exhibit strongly variable optical polarization, have a core-dominated radio structure and perhaps have their jet axes close to the line-of-sight. From polarization observations at 20, 18, 6, and 2 cm, it is found that the rotation measure of the radio core in 0716+714 is about -20 rad/sq m. It is suggested that low values of core rotation measure in core-dominated sources could be consistent with the relativistic beaming models.

  7. Observations of magnetospheric ionization enhancements using upper-hybrid resonance noise band data from the RAE-1 satellite

    NASA Technical Reports Server (NTRS)

    Mosier, S. R.

    1975-01-01

    Noise bands associated with the upper-hybrid resonance were used to provide direct evidence for the existence of regions of enhanced density in the equatorial magnetosphere near L = 2. Density enhancements ranging from several percent to as high as 45 percent are observed with radial dimensions of several hundred kilometers. The enhancement characteristics strongly suggest their identification as magnetospheric whistler ducts.

  8. Gamma ray sources observation with the ARGO-YBJ detector

    NASA Astrophysics Data System (ADS)

    Vernetto, S.; ARGO-YBJ Collaboration

    2011-02-01

    In this paper we report on the observations of TeV gamma ray sources performed by the air shower detector ARGO-YBJ. The objects studied in this work are the blazar Markarian 421 and the extended galactic source MGROJ1908+06, monitored during ~2 years of operation. Mrk421 has been detected by ARGO-YBJ with a statistical significance of ~11 standard deviations. The observed TeV emission was highly variable, showing large enhancements of the flux during active periods. The study of the spectral behaviour during flares revealed a positive correlation of the hardness with the flux, as already reported in the past by the Whipple telescope, suggesting that this is a long term property of the source. ARGO-YBJ observed a strong correlation between TeV gamma rays and the X-ray flux measured by RXTM/ASM and SWIFT/BAT during the whole period, with a time lag compatible with zero, supporting the one-zone SSC model to describe the emission mechanism. MGROJ1908+06 has been detected by ARGO-YBJ with ~5 standard deviation of significance. From our data the source appears extended and the measured extension is σext = 0.48° --> σext = 0.48° -0.28+0.26 --> -0.28+0.26, in agreement with a previous HESS observation. The average flux is in marginal agreement with that reported by MILAGRO, but significantly higher than that obtained by HESS, suggesting a possible flux variability.

  9. Mediterranean sea water budget long-term trend inferred from salinity observations

    NASA Astrophysics Data System (ADS)

    Skliris, N.; Zika, J. D.; Herold, L.; Josey, S. A.; Marsh, R.

    2018-01-01

    Changes in the Mediterranean water cycle since 1950 are investigated using salinity and reanalysis based air-sea freshwater flux datasets. Salinity observations indicate a strong basin-scale multi-decadal salinification, particularly in the intermediate and deep layers. Evaporation, precipitation and river runoff variations are all shown to contribute to a very strong increase in net evaporation of order 20-30%. While large temporal uncertainties and discrepancies are found between E-P multi-decadal trend patterns in the reanalysis datasets, a more robust and spatially coherent structure of multi-decadal change is obtained for the salinity field. Salinity change implies an increase in net evaporation of 8 to 12% over 1950-2010, which is considerably lower than that suggested by air-sea freshwater flux products, but still largely exceeding estimates of global water cycle amplification. A new method based on water mass transformation theory is used to link changes in net evaporation over the Mediterranean Sea with changes in the volumetric distribution of salinity. The water mass transformation distribution in salinity coordinates suggests that the Mediterranean basin salinification is driven by changes in the regional water cycle rather than changes in salt transports at the straits.

  10. Systematic Observations of the Slip-pulse Properties of Large Earthquake Ruptures

    NASA Astrophysics Data System (ADS)

    Melgar, D.; Hayes, G. P.

    2017-12-01

    In earthquake dynamics there are two end member models of rupture: propagating cracks and self-healing pulses. These arise due to different properties of ruptures and have implications for seismic hazard; rupture mode controls near-field strong ground motions. Past studies favor the pulse-like mode of rupture, however, due to a variety of limitations, it has proven difficult to systematically establish their kinematic properties. Here we synthesize observations from a database of >150 rupture models of earthquakes spanning M7-M9 processed in a uniform manner and show the magnitude scaling properties (rise time, pulse width, and peak slip rate) of these slip pulses indicates self-similarity. Self similarity suggests a weak form of rupture determinism, where early on in the source process broader, higher amplitude slip pulses will distinguish between events of icnreasing magnitude. Indeed, we find by analyzing the moment rate functions that large and very large events are statistically distinguishable relatively early (at 15 seconds) in the rupture process. This suggests that with dense regional geophysical networks strong ground motions from a large rupture can be identified before their onset across the source region.

  11. Acceleration of electrons in strong beam-plasma interactions

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Bernstein, W.; Kellogg, P. J.; Whalen, B. A.

    1984-01-01

    The effects of strong beam-plasma interactions on the electron population of the upper atmosphere have been investigated in an electron acceleration experiment performed with a sounding rocket. The rocket carried the Several Complex Experiments (SCEX) payload which included an electron accelerator, three disposable 'throwaway' detectors (TADs), and a stepped electron energy analyzer. The payload was launched in an auroral arc over the rocket at altitudes of 157 and 178 km, respectively. The performance characteristics of the instruments are discussed in detail. The data are combined with the results of laboratory measurements and show that electrons with energies of at least two and probably four times the injection energy of 2 keV were observed during strong beam-plasma interaction events. The interaction events occurred at pitch angles of 54 and 126 degrees. On the basis of the data it is proposed that the superenergization of the electrons is correlated with the length of the beam-plasma interaction region.

  12. Interrogative suggestibility: its relationship with assertiveness, social-evaluative anxiety, state anxiety and method of coping.

    PubMed

    Gudjonsson, G H

    1988-05-01

    This paper attempts to investigate empirically in 30 subjects some of the theoretical components related to individual differences that are thought by Gudjonsson & Clark (1986) to mediate interrogative suggestibility as measured by the Gudjonsson Suggestibility Scale (GSS; Gudjonsson, 1984a). The variables studied were: assertiveness, social-evaluative anxiety, state anxiety and the coping methods subjects are able to generate and implement during interrogation. Low assertiveness and high evaluative anxiety were found to correlate moderately with suggestibility, but no significant correlations emerged for 'social avoidance and distress'. State anxiety correlated significantly with suggestibility, particularly after negative feedback had been administered. Coping methods (active-cognitive/behavioural vs. avoidance) significantly predicted suggestibility scores. The findings give strong support to the theoretical model of Gudjonsson & Clark.

  13. Observations of climate change among subsistence-oriented communities around the world

    NASA Astrophysics Data System (ADS)

    Savo, V.; Lepofsky, D.; Benner, J. P.; Kohfeld, K. E.; Bailey, J.; Lertzman, K.

    2016-05-01

    The study of climate change has been based strongly on data collected from instruments, but how local people perceive such changes remains poorly quantified. We conducted a meta-analysis of climatic changes observed by subsistence-oriented communities. Our review of 10,660 observations from 2,230 localities in 137 countries shows that increases in temperature and changes in seasonality and rainfall patterns are widespread (~70% of localities across 122 countries). Observations of increased temperature show patterns consistent with simulated trends in surface air temperature taken from the ensemble average of CMIP5 models, for the period 1955-2005. Secondary impacts of climatic changes on both wild and domesticated plants and animals are extensive and threaten the food security of subsistence-oriented communities. Collectively, our results suggest that climate change is having profound disruptive effects at local levels and that local observations can make an important contribution to understanding the pervasiveness of climate change on ecosystems and societies.

  14. Martian electron foreshock from MAVEN observations

    NASA Astrophysics Data System (ADS)

    Meziane, K.; Mazelle, C. X.; Romanelli, N.; Mitchell, D. L.; Espley, J. R.; Connerney, J. E. P.; Hamza, A. M.; Halekas, J.; McFadden, J. P.; Jakosky, B. M.

    2017-02-01

    Flux enhancements of energetic electrons are always observed when the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft is magnetically connected to the shock. The observations indicate that the foreshock electrons consist of two populations. The most energetic (E≥237 eV) originate from a narrow region at the nearly perpendicular shock. They always appear as spikes, and their flux level reaches a maximum when the angle θBn approaches 90°. The other population emanates from the entire Martian bow shock surface, and the flux level decreases slightly from the quasi-parallel to quasi-perpendicular regions. A detailed examination of the pitch angle distribution shows that the enhanced fluxes are associated with electrons moving sunward. Annulus centered along the interplanetary magnetic field direction is the most stringent feature of the 3-D angular distribution. The gyrotropic character is observed over the whole range of shock geometry. Although such signatures in the electron pitch angle distribution function strongly suggest that the reflection off the shock of a fraction of the solar wind electrons is the main mechanism for the production of Martian foreshock electrons, the decay of the flux of the second population on the other hand has yet to be understood.

  15. Strong exchange and magnetic blocking in N₂³⁻-radical-bridged lanthanide complexes.

    PubMed

    Rinehart, Jeffrey D; Fang, Ming; Evans, William J; Long, Jeffrey R

    2011-05-22

    Single-molecule magnets approach the ultimate size limit for spin-based devices. These complexes can retain spin information over long periods of time at low temperature, suggesting possible applications in high-density information storage, quantum computing and spintronics. Notably, the success of most such applications hinges upon raising the inherent molecular spin-inversion barrier. Although recent advances have shown the viability of lanthanide-containing complexes in generating large barriers, weak or non-existent magnetic exchange coupling allows fast relaxation pathways that mitigate the full potential of these species. Here, we show that the diffuse spin of an N(2)(3-) radical bridge can lead to exceptionally strong magnetic exchange in dinuclear Ln(III) (Ln = Gd, Dy) complexes. The Gd(III) congener exhibits the strongest magnetic coupling yet observed for that ion, while incorporation of the high-anisotropy Dy(III) ion gives rise to a molecule with a record magnetic blocking temperature of 8.3 K at a sweep rate of 0.08 T s(-1).

  16. Placebo-Suggestion Modulates Conflict Resolution in the Stroop Task

    PubMed Central

    Caspar, Emilie A.; Gevers, Wim; Cleeremans, Axel

    2013-01-01

    Here, we ask whether placebo-suggestion (without any form of hypnotic induction) can modulate the resolution of cognitive conflict. Naïve participants performed a Stroop Task while wearing an EEG cap described as a “brain wave” machine. In Experiment 1, participants were made to believe that the EEG cap would either enhance or decrease their color perception and performance on the Stroop task. In Experiment 2, participants were explicitly asked to imagine that their color perception and performance would be enhanced or decreased (non-hypnotic imaginative suggestion). We observed effects of placebo-suggestion on Stroop interference on accuracy: interference was decreased with positive suggestion and increased with negative suggestion compared to baseline. Intra-individual variability was also increased under negative suggestion compared to baseline. Compliance with the instruction to imagine a modulation of performance, on the other hand, did not influence accuracy and only had a negative impact on response latencies and on intra-individual variability, especially in the congruent condition of the Stroop Task. Taken together, these results demonstrate that expectations induced by a placebo-suggestion can modulate our ability to resolve cognitive conflict, either facilitating or impairing response accuracy depending on the suggestion’s contents. Our results also demonstrate a dissociation between placebo-suggestion and non-hypnotic imaginative suggestion. PMID:24130735

  17. Using suggestion to model different types of automatic writing.

    PubMed

    Walsh, E; Mehta, M A; Oakley, D A; Guilmette, D N; Gabay, A; Halligan, P W; Deeley, Q

    2014-05-01

    Our sense of self includes awareness of our thoughts and movements, and our control over them. This feeling can be altered or lost in neuropsychiatric disorders as well as in phenomena such as "automatic writing" whereby writing is attributed to an external source. Here, we employed suggestion in highly hypnotically suggestible participants to model various experiences of automatic writing during a sentence completion task. Results showed that the induction of hypnosis, without additional suggestion, was associated with a small but significant reduction of control, ownership, and awareness for writing. Targeted suggestions produced a double dissociation between thought and movement components of writing, for both feelings of control and ownership, and additionally, reduced awareness of writing. Overall, suggestion produced selective alterations in the control, ownership, and awareness of thought and motor components of writing, thus enabling key aspects of automatic writing, observed across different clinical and cultural settings, to be modelled. Copyright © 2014. Published by Elsevier Inc.

  18. Wind estimation around the shipwreck of Oriental Star based on field damage surveys and radar observations.

    PubMed

    Meng, Zhiyong; Yao, Dan; Bai, Lanqiang; Zheng, Yongguang; Xue, Ming; Zhang, Xiaoling; Zhao, Kun; Tian, Fuyou; Wang, Mingjun

    Based on observational analyses and on-site ground and aerial damage surveys, this work aims to reveal the weather phenomena-especially the wind situation-when Oriental Star capsized in the Yangtze River on June 1, 2015. Results demonstrate that the cruise ship capsized when it encountered strong winds at speeds of at least 31 m s -1 near the apex of a bow echo embedded in a squall line. As suggested by the fallen trees within a 2-km radius around the wreck location, such strong winds were likely caused by microburst straight-line wind and/or embedded small vortices, rather than tornadoes.

  19. Strong-field and attosecond physics in solids

    DOE PAGES

    Ghimire, Shambhu; Ndabashimiye, Georges; DiChiara, Anthony D.; ...

    2014-10-08

    We review the status of strong-field and attosecond processes in bulk transparent solids near the Keldysh tunneling limit. For high enough fields and low-frequency excitations, the optical and electronic properties of dielectrics can be transiently and reversibly modified within the applied pulse. In Ghimire et al (2011 Phys. Rev. Lett. 107 167407) non-parabolic band effects were seen in photon-assisted tunneling experiments in ZnO crystals in a strong mid-infrared field. Using the same ZnO crystals, Ghimire et al (2011 Nat. Phys. 7 138–41) reported the first observation of non-pertubative high harmonics, extending well above the bandgap into the vacuum ultraviolet. Recent experiments by Schubert et al (2014 Nat. Photonics 8 119–23) showed a carrier envelope phase dependence in the harmonic spectrum in strong-field 30 THz driven GaSe crystals which is the most direct evidence yet of the role of sub-cycle electron dynamics in solid-state harmonic generation. The harmonic generation mechanism is different from the gas phase owing to the high density and periodicity of the crystal. For example, this results in a linear dependence of the high-energy cutoff with the applied field in contrast to the quadratic dependence in the gas phase. Sub-100 attosecond pulses could become possible if the harmonic spectrum can be extended into the extreme ultraviolet (XUV). Here we report harmonics generated in bulk MgO crystals, extending tomore » $$\\sim 26$$ eV when driven by ~35 fs, 800 nm pulses focused to a ~1 VÅ$$^{-1}$$ peak field. The fundamental strong-field and attosecond response also leads to Wannier–Stark localization and reversible semimetallization as seen in the sub-optical cycle behavior of XUV absorption and photocurrent experiments on fused silica by Schiffrin et al (2013 Nature 493 70–4) and Schultze et al (2013 Nature 493 75–8). These studies are advancing our understanding of fundamental strong-field and attosecond physics in solids with potential

  20. Sea Surface Wakes Observed by Spaceborne SAR in the Offshore Wind Farms

    NASA Astrophysics Data System (ADS)

    Li, Xiaoming; Lehner, Susanne; Jacobsen, Sven

    2014-11-01

    In the paper, we present some X-band spaceborne synthetic aperture radar (SAR) TerraSAR-X (TS-X) images acquired at the offshore wind farms in the North Sea and the East China Sea. The high spatial resolution SAR images show different sea surface wake patterns downstream of the offshore wind turbines. The analysis suggests that there are major two types of wakes among the observed cases. The wind turbine wakes generated by movement of wind around wind turbines are the most often observed cases. In contrast, due to the strong local tidal currents in the near shore wind farm sites, the tidal current wakes induced by tidal current impinging on the wind turbine piles are also observed in the high spatial resolution TS-X images. The discrimination of the two types of wakes observed in the offshore wind farms is also described in the paper.

  1. Two peculiar fast transients in a strongly lensed host galaxy

    NASA Astrophysics Data System (ADS)

    Rodney, S. A.; Balestra, I.; Bradac, M.; Brammer, G.; Broadhurst, T.; Caminha, G. B.; Chirivı, G.; Diego, J. M.; Filippenko, A. V.; Foley, R. J.; Graur, O.; Grillo, C.; Hemmati, S.; Hjorth, J.; Hoag, A.; Jauzac, M.; Jha, S. W.; Kawamata, R.; Kelly, P. L.; McCully, C.; Mobasher, B.; Molino, A.; Oguri, M.; Richard, J.; Riess, A. G.; Rosati, P.; Schmidt, K. B.; Selsing, J.; Sharon, K.; Strolger, L.-G.; Suyu, S. H.; Treu, T.; Weiner, B. J.; Williams, L. L. R.; Zitrin, A.

    2018-04-01

    A massive galaxy cluster can serve as a magnifying glass for distant stellar populations, as strong gravitational lensing magnifies background galaxies and exposes details that are otherwise undetectable. In time-domain astronomy, imaging programmes with a short cadence are able to detect rapidly evolving transients, previously unseen by surveys designed for slowly evolving supernovae. Here, we describe two unusual transient events discovered in a Hubble Space Telescope programme that combined these techniques with high-cadence imaging on a field with a strong-lensing galaxy cluster. These transients were faster and fainter than any supernovae, but substantially more luminous than a classical nova. We find that they can be explained as separate eruptions of a luminous blue variable star or a recurrent nova, or as an unrelated pair of stellar microlensing events. To distinguish between these hypotheses will require clarification of the cluster lens models, along with more high-cadence imaging of the field that could detect related transient episodes. This discovery suggests that the intersection of strong lensing with high-cadence transient surveys may be a fruitful path for future astrophysical transient studies.

  2. Lunar Electric Fields: Observations and Implications

    NASA Astrophysics Data System (ADS)

    Halekas, J. S.; Delory, G. T.; Stubbs, T. J.; Farrell, W. M.; Vondrak, R. R.

    2006-12-01

    Alhough the Moon is typically thought of as having a relatively dormant environment, it is in fact very electrically active. The lunar surface, not protected by any substantial atmosphere, is directly exposed to solar UV and X-rays as well as solar wind plasma and energetic particles. This creates a complex electrodynamic environment, with the surface typically charging positive in sunlight and negative in shadow, and surface potentials varying over orders of magnitude in response to changing solar illumination and plasma conditions. Observations from the Apollo era and theoretical considerations strongly suggest that surface charging also drives dust electrification and horizontal and vertical dust transport. We present a survey of the lunar electric field environment, utilizing both newly interpreted Lunar Prospector (LP) orbital observations and older Apollo surface observations, and comparing to theoretical predictions. We focus in particular on time periods when the most significant surface charging was observed by LP - namely plasmasheet crossings (when the Moon is in the Earth's magnetosphere) and space weather events. During these time periods, kV-scale potentials are observed, and enhanced surface electric fields can be expected to drive significant horizontal and vertical dust transport. Both dust and electric fields can have serious effects on habitability and operation of machinery, so understanding the coupled dust-plasma-electric field system around the Moon is critically important for planning exploration efforts, in situ resource utilization, and scientific observations on the lunar surface. Furthermore, from a pure science perspective, this represents an excellent opportunity to study fundamental surface-plasma interactions.

  3. Are root cause analyses recommendations effective and sustainable? An observational study.

    PubMed

    Hibbert, Peter D; Thomas, Matthew J W; Deakin, Anita; Runciman, William B; Braithwaite, Jeffrey; Lomax, Stephanie; Prescott, Jonathan; Gorrie, Glenda; Szczygielski, Amy; Surwald, Tanja; Fraser, Catherine

    2018-03-01

    To assess the strength of root cause analysis (RCA) recommendations and their perceived levels of effectiveness and sustainability. All RCAs related to sentinel events (SEs) undertaken between the years 2010 and 2015 in the public health system in Victoria, Australia were analysed. The type and strength of each recommendation in the RCA reports were coded by an expert patient safety classifier using the US Department of Veteran Affairs type and strength criteria. Thirty-six public health services. The proportion of RCA recommendations which were classified as 'strong' (more likely to be effective and sustainable), 'medium' (possibly effective and sustainable) or 'weak' (less likely to be effective and sustainable). There were 227 RCAs in the period of study. In these RCAs, 1137 recommendations were made. Of these 8% were 'strong', 44% 'medium' and 48% were 'weak'. In 31 RCAs, or nearly 15%, only weak recommendations were made. In 24 (11%) RCAs five or more weak recommendations were made. In 165 (72%) RCAs no strong recommendations were made. The most frequent recommendation types were reviewing or enhancing a policy/guideline/documentation, and training and education. Only a small proportion of recommendations arising from RCAs in Victoria are 'strong'. This suggests that insights from the majority of RCAs are not likely to inform practice or process improvements. Suggested improvements include more human factors expertise and independence in investigations, more extensive application of existing tools that assist teams to prioritize recommendations that are likely to be effective, and greater use of observational and simulation techniques to understand the underlying systems factors. Time spent in repeatedly investigating similar incidents may be better spent aggregating and thematically analysing existing sources of information about patient safety.

  4. Population structure and strong divergent selection shape phenotypic diversification in maize landraces.

    PubMed

    Pressoir, G; Berthaud, J

    2004-02-01

    To conserve the long-term selection potential of maize, it is necessary to investigate past and present evolutionary processes that have shaped quantitative trait variation. Understanding the dynamics of quantitative trait evolution is crucial to future crop breeding. We characterized population differentiation of maize landraces from the State of Oaxaca, Mexico for quantitative traits and molecular markers. Qst values were much higher than Fst values obtained for molecular markers. While low values of Fst (0.011 within-village and 0.003 among-villages) suggest that considerable gene flow occurred among the studied populations, high levels of population differentiation for quantitative traits were observed (ie an among-village Qst value of 0.535 for kernel weight). Our results suggest that although quantitative traits appear to be under strong divergent selection, a considerable amount of gene flow occurs among populations. Furthermore, we characterized nonproportional changes in the G matrix structure both within and among villages that are consequences of farmer selection. As a consequence of these differences in the G matrix structure, the response to multivariate selection will be different from one population to another. Large changes in the G matrix structure could indicate that farmers select for genes of major and pleiotropic effect. Farmers' decision and selection strategies have a great impact on phenotypic diversification in maize landraces.

  5. Mismeasurement and the resonance of strong confounders: uncorrelated errors.

    PubMed

    Marshall, J R; Hastrup, J L

    1996-05-15

    Greenland first documented (Am J Epidemiol 1980; 112:564-9) that error in the measurement of a confounder could resonate--that it could bias estimates of other study variables, and that the bias could persist even with statistical adjustment for the confounder as measured. An important question is raised by this finding: can such bias be more than trivial within the bounds of realistic data configurations? The authors examine several situations involving dichotomous and continuous data in which a confounder and a null variable are measured with error, and they assess the extent of resultant bias in estimates of the effect of the null variable. They show that, with continuous variables, measurement error amounting to 40% of observed variance in the confounder could cause the observed impact of the null study variable to appear to alter risk by as much as 30%. Similarly, they show, with dichotomous independent variables, that 15% measurement error in the form of misclassification could lead the null study variable to appear to alter risk by as much as 50%. Such bias would result only from strong confounding. Measurement error would obscure the evidence that strong confounding is a likely problem. These results support the need for every epidemiologic inquiry to include evaluations of measurement error in each variable considered.

  6. Evidence suggesting possible SCA1 gene involvement in schizophrenia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diehl, S.R.; Wange, S.; Sun, C.

    Several findings suggest a possible role for the SCA1 gene on chromosome 6p in some cases of schizophrenia. First, linkage analyses in Irish pedigrees provided LOD scores up to 3.0 for one model tested using microsatellites closely linked to SCA1. Reanalysis of these data using affected sibpair methods yielded a significant result (p = 0.01) for one marker. An attempt to replicate this linkage finding was made using 44 NIMH families (206 individuals, 80 affected) and 12 Utah families (120 individuals, 49 affected). LOD scores were negative in these new families, even allowing for heterogeneity, as were results using affectedmore » sibpair methods. However, one Utah family provided a LOD score of 1.3. We also screened the SCA1 trinucleotide repeat to search for expansions characteristic of this disorder in these families and in 38 additional unrelated schizophrenics. We found 1 schizophrenic with 41 repeats, which is substantially larger than the maximum size of 36 repeats observed in previous studies of several hundred controls. We are now assessing whether the distribution of SCA1 repeats differs significantly in schizophrenia versus controls. Recent reports suggest possible anticipation in schizophrenia (also characteristic of SCA1) and a few cases of psychiatric symptoms suggesting schizophrenia have been observed in the highly related disorder DRPLA (SCA2), which is also based on trinucleotide repeat expansion. These findings suggest that further investigations of this gene and chromosome region may be a priority.« less

  7. Solvent-directed Solgel Assembly of 3-dimensional Graphene-tented Metal Oxides and Strong Synergistic Disparities in Lithium Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Jianchao C.; An, Yonghao H.; Montalvo, Elizabeth

    The graphene/metal oxide (GMO) nanocomposites promise a broad range of utilities for lithium ion batteries (LIBs), pseudocapacitors, catalysts, and sensors. When applied as anodes for LIBs, GMOs often exhibit high capacity, improved rate capability and cycling performance. Numerous studies have attributed these favorable properties to the charisma of graphene in assisting various metal oxides (MOs) to achieve near-theoretical capacities, exploiting the exceptional electronic and mechanical properties of graphene. By comparison, the true lithium storage mechanisms of graphene and their correlations with MOs remain enigmatic. Via a unique two-step liquid-flow-guided solgel process, we have synthesized and investigated the electrochemical performance ofmore » several representative GMOs, namely Fe2O3/graphene, SnO2/graphene, and TiO2/graphene. We observe that MOs play an equally important role in promoting graphene to achieve large reversible lithium storage capacity. Our experiments suggest that the unexpected lithium storage heightening may arise from a unique surface coverage mechanism of MOs. The magnitude of capacity improvement is found to scale crudely with the surface coverage of MOs but depend strongly upon the storage mechanisms of MOs variety. Importantly, synergistic effect is only observed in conversion reaction GMOs (i.e., Fe2O3/graphene and SnO2/graphene) but not in intercalationbased GMOs (i.e., TiO2/graphene). Our first principles calculations suggest an alternative lithium storage sites from resultant interfaces between Li2O and graphene that agree with our experimental observations. This unusually beneficial role of MOs to graphene suggests an effective pathway for reversible lithium storage in graphene and shifts design paradigms for graphene-based electrodes.« less

  8. Solvent-directed Solgel Assembly of 3-dimensional Graphene-tented Metal Oxides and Strong Synergistic Disparities in Lithium Storage

    DOE PAGES

    Ye, Jianchao C.; An, Yonghao H.; Montalvo, Elizabeth; ...

    2016-02-10

    The graphene/metal oxide (GMO) nanocomposites promise a broad range of utilities for lithium ion batteries (LIBs), pseudocapacitors, catalysts, and sensors. When applied as anodes for LIBs, GMOs often exhibit high capacity, improved rate capability and cycling performance. Numerous studies have attributed these favorable properties to the charisma of graphene in assisting various metal oxides (MOs) to achieve near-theoretical capacities, exploiting the exceptional electronic and mechanical properties of graphene. By comparison, the true lithium storage mechanisms of graphene and their correlations with MOs remain enigmatic. Via a unique two-step liquid-flow-guided solgel process, we have synthesized and investigated the electrochemical performance ofmore » several representative GMOs, namely Fe2O3/graphene, SnO2/graphene, and TiO2/graphene. We observe that MOs play an equally important role in promoting graphene to achieve large reversible lithium storage capacity. Our experiments suggest that the unexpected lithium storage heightening may arise from a unique surface coverage mechanism of MOs. The magnitude of capacity improvement is found to scale crudely with the surface coverage of MOs but depend strongly upon the storage mechanisms of MOs variety. Importantly, synergistic effect is only observed in conversion reaction GMOs (i.e., Fe2O3/graphene and SnO2/graphene) but not in intercalationbased GMOs (i.e., TiO2/graphene). Our first principles calculations suggest an alternative lithium storage sites from resultant interfaces between Li2O and graphene that agree with our experimental observations. This unusually beneficial role of MOs to graphene suggests an effective pathway for reversible lithium storage in graphene and shifts design paradigms for graphene-based electrodes.« less

  9. Selective insectivory at Toro-Semliki, Uganda: comparative analyses suggest no 'savanna' chimpanzee pattern.

    PubMed

    Webster, Timothy H; McGrew, William C; Marchant, Linda F; Payne, Charlotte L R; Hunt, Kevin D

    2014-06-01

    Chimpanzee (Pan troglodytes) insectivory across Africa is ubiquitous. Insects provide a significant nutritional payoff and may be important for chimpanzees in dry, open habitats with narrow diets. We tested this hypothesis at Semliki, Uganda, a long-term dry study site. We evaluated prospects for insectivory by measuring insect abundance along de novo transects and trails, monitoring social insect colonies, and surveying available raw materials for elementary technology. We determined the frequency and nature of insectivory through behavioral observation and fecal analysis. We then compared our results with those from 15 other long-term chimpanzee study sites using a cluster analysis. We found that Semliki chimpanzees are one of the most insectivorous populations studied to date in terms of frequency of consumption, but they are very selective in their insectivory, regularly consuming only weaver ants (Oecophylla longinoda) and honey and bees from hives of Apis mellifera. This selectivity obtains despite having a full range of typical prey species available in harvestable quantities. We suggest that Semliki chimpanzees may face ecological time constraints and therefore bias their predation toward prey taxa that can be quickly consumed. Geographical proximity correlated with the results of the cluster analysis, while rainfall, a relatively gross measure of environment, did not. Because broad taxonomic groups of insects were used in analyses, prey availability was unlikely to have a strong effect on this pattern. Instead, we suggest that transmission of cultural knowledge may play a role in determining chimpanzee prey selection across Africa. Further study is needed to test these hypotheses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Strong Field Theories beyond Dipole Approximations in Nonrelativistic Regimes

    NASA Astrophysics Data System (ADS)

    He, Pei-Lun; Lao, Di; He, Feng

    2017-04-01

    The exact nondipole Volkov solutions to the Schrödinger equation and Pauli equation are found, based on which a strong field theory beyond the dipole approximation is built for describing the nondipole effects in nonrelativistic laser driven electron dynamics. This theory is applied to investigate momentum partition laws for multiphoton and tunneling ionization and explicitly shows that the complex interplay of a laser field and Coulomb action may reverse the expected photoelectron momentum along the laser propagation direction. The magnetic-spin coupling does not bring observable effects on the photoelectron momentum distribution and can be neglected. Compared to the strong field approximation within the dipole approximation, this theory works in a much wider range of laser parameters and lays a solid foundation for describing nonrelativistic electron dynamics in both short wavelength and midinfrared regimes where nondipole effects are unavoidable.

  11. Punishment as a Means of Competition: Implications for Strong Reciprocity Theory

    PubMed Central

    Paál, Tünde; Bereczkei, Tamás

    2015-01-01

    Strong negative reciprocity, that is, sanctions imposed on norm violators at the punisher’s own expense, has powerful cooperation-enhancing effects in both real-life and experimental game situations. However, it is plausible that punishment may obtain alternative roles depending on social context and the personality characteristics of participants. We examined the occurrence of punishing behavior among 80 subjects in a strongly competitive Public Goods game setting. Despite the punishment condition, the amount of the contributions decreased steadily during the game. The amount of contributions had no significant effect on received and imposed punishments. The results indicate that certain social contexts (in this case, intensive competition) exert modifying effects on the role that punishment takes on. Subjects punished each other in order to achieve a higher rank and a financially better outcome. Punishment primarily functioned as a means of rivalry, instead of as a way of second-order cooperation, as strong reciprocity suggests. These results indicate the need for the possible modification of the social conditions of punishment mechanisms described by the strong reciprocity theory as an evolutionary explanation of human cooperation. PMID:25811464

  12. Joint statistics of strongly correlated neurons via dimensionality reduction

    NASA Astrophysics Data System (ADS)

    Deniz, Taşkın; Rotter, Stefan

    2017-06-01

    The relative timing of action potentials in neurons recorded from local cortical networks often shows a non-trivial dependence, which is then quantified by cross-correlation functions. Theoretical models emphasize that such spike train correlations are an inevitable consequence of two neurons being part of the same network and sharing some synaptic input. For non-linear neuron models, however, explicit correlation functions are difficult to compute analytically, and perturbative methods work only for weak shared input. In order to treat strong correlations, we suggest here an alternative non-perturbative method. Specifically, we study the case of two leaky integrate-and-fire neurons with strong shared input. Correlation functions derived from simulated spike trains fit our theoretical predictions very accurately. Using our method, we computed the non-linear correlation transfer as well as correlation functions that are asymmetric due to inhomogeneous intrinsic parameters or unequal input.

  13. High-latitude observations of solar wind streams and coronal holes

    NASA Technical Reports Server (NTRS)

    Ricket, B. J.; Sime, D. G.; Crockett, W. R.; Tousey, R.; Sheeley, N. R., Jr.

    1976-01-01

    Interplanetary scintillation observations of the solar wind velocity during 1973 and the first part of 1974 reveal several corotating high-speed streams. These streams, of heliographic latitudes from +40 deg to -60 deg, have been mapped back to the vicinity of the sun and have been compared with coronal holes identified in wide band XUV solar images taken during the manned portions of the Skylab mission. There is some evidence that the high-speed streams are preferentially associated with coronal holes and that they can spread out from the hole boundaries up to about 20 deg in latitude. However, this association is not one to one; streams are observed which do not map back to coronal holes, and holes are observed which do not lie at the base of streams. To the extent that a statistical interpretation is possible the association is not highly significant, but individual consideration of streams and holes suggests that the statistical result is biased somewhat against a strong correlation.

  14. ALMA Observations of Starless Core Substructure in Ophiuchus

    NASA Astrophysics Data System (ADS)

    Kirk, H.; Dunham, M. M.; Di Francesco, J.; Johnstone, D.; Offner, S. S. R.; Sadavoy, S. I.; Tobin, J. J.; Arce, H. G.; Bourke, T. L.; Mairs, S.; Myers, P. C.; Pineda, J. E.; Schnee, S.; Shirley, Y. L.

    2017-04-01

    Compact substructure is expected to arise in a starless core as mass becomes concentrated in the central region likely to form a protostar. Additionally, multiple peaks may form if fragmentation occurs. We present Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 2 observations of 60 starless and protostellar cores in the Ophiuchus molecular cloud. We detect eight compact substructures which are > 15\\prime\\prime from the nearest Spitzer young stellar object. Only one of these has strong evidence for being truly starless after considering ancillary data, e.g., from Herschel and X-ray telescopes. An additional extended emission structure has tentative evidence for starlessness. The number of our detections is consistent with estimates from a combination of synthetic observations of numerical simulations and analytical arguments. This result suggests that a similar ALMA study in the Chamaeleon I cloud, which detected no compact substructure in starless cores, may be due to the peculiar evolutionary state of cores in that cloud.

  15. Simultaneous Chandra X-ray, HST UV, and Ulysses Radio Observations of Jupiter's Aurora

    NASA Technical Reports Server (NTRS)

    R. Elsner; Bhardwaj, A.; Waite, H.; Lugaz, N.; Majeed, T.; Cravens, T.; Gladstone, G.; Ford, P.; Grodent, D.; MacDowell, R.

    2004-01-01

    Observations of Jupiter carried out by the Chandra ACIS-S instrument over 24-26 February, 2003, show that the auroral X-ray spectrum consists of line emission consistent with high-charge states of precipitating ions, and not a continuum as might be expected from remsstrahlung. The part of the spectrum due to oxygen peaks around 650 eV, which indicates a high fraction of fully-stripped oxygen in the precipitating ion flux. The OVIII emission lines at 653 eV and 774 eV, as well as the OVII emission lines at 561 eV and 666 eV, are clearly identified. There is also line emission at lower energies in the spectral region extending from 250 to 350 eV for which sulfur and carbon lines are possible candidates. The Jovian auroral spectra differ significantly from measured cometary X-ray spectra. The charge state distribution of the oxygen ion emission evident in the measured auroral spectra strongly suggests that, independent of the source of the energetic ions (magnetospheric or solar wind) the ions have undergone additional acceleration. For the magnetospheric case, acceleration to energies exceeding 10 MeV is apparently required. The ion acceleration also helps to explain the high intensities of the X-rays observed. The phase space densities of unaccelerated source populations of either solar wind or magnetospheric ions are orders of magnitude too small to explain the observed emissions. The Chandra X-ray observations were executed simultaneously with observations at ultraviolet wavelengths by the Hubble Space Telescope and at radio wavelengths by the Ulysses spacecraft. These additional data sets provide interesting hints as to the location of the source region and the acceleration characteristics of the generation mechanism. The combined observations suggest that the source of the X rays is magnetospheric in origin, and that strong field-aligned electric fields are present which simultaneously create both the several-MeV energetic ion population and the relativistic

  16. Waveform anomaly caused by strong attenuation in the crust and upper mantle in the Okinawa Trough region

    NASA Astrophysics Data System (ADS)

    Padhy, S.; Furumura, T.; Maeda, T.

    2017-12-01

    The Okinawa Trough is a young continental back-arc basin located behind the Ryukyu subduction zone in southwestern Japan, where the Philippine Sea Plate dives beneath the trough, resulting in localized mantle upwelling and crustal thinning of the overriding Eurasian Plate. The attenuation structure of the plates and surrounding mantle in this region associated with such complex tectonic environment are poorly documented. Here we present seismological evidence for these features based on the high-resolution waveform analyses and 3D finite difference method (FDM) simulation. We analyzed regional broadband waveforms recorded by F-net (NIED) of in-slab events (M>4, H>100 km). Using band-passed (0.5-8 Hz), mean-squared envelopes, we parameterized coda-decay in terms of rise-time (time from P-arrival to maximum amplitude in P-coda), decay-time (time from maximum amplitude to theoretical S-arrival), and energy-ratio defined as the ratio of energy in P-coda to that in direct P wave. The following key features are observed. First, there is a striking difference in S-excitation along paths traversing and not traversing the trough: events from SW Japan not crossing the trough show clear S waves, while those occurring in the trough show very weak S waves at a station close to the volcanic front. Second, some trough events exhibit spindle-shaped seismograms with strong P-coda excitation, obscuring the development of S waves, at back-arc stations; these waveforms are characterized by high decay-time (>10s) and high energy-ratio (>>1.0), suggesting strong forward scattering along ray paths. Third, some trough events show weak S-excitation characterized by low decay-time (<5s) and low energy-ratio (<1.0) at fore-arc stations, suggesting high intrinsic absorption. To investigate the mechanism of the observed anomalies, we will conduct FDM simulation for a suite of models comprising the key subduction features like localized mantle-upwelling and crustal thinning expected in the

  17. Phase transition transistors based on strongly-correlated materials

    NASA Astrophysics Data System (ADS)

    Nakano, Masaki

    2013-03-01

    The field-effect transistor (FET) provides electrical switching functions through linear control of the number of charges at a channel surface by external voltage. Controlling electronic phases of condensed matters in a FET geometry has long been a central issue of physical science. In particular, FET based on a strongly correlated material, namely ``Mott transistor,'' has attracted considerable interest, because it potentially provides gigantic and diverse electronic responses due to a strong interplay between charge, spin, orbital and lattice. We have investigated electric-field effects on such materials aiming at novel physical phenomena and electronic functions originating from strong correlation effects. Here we demonstrate electrical switching of bulk state of matter over the first-order metal-insulator transition. We fabricated FETs based on VO2 with use of a recently developed electric-double-layer transistor technique, and found that the electrostatically induced carriers at a channel surface drive all preexisting localized carriers of 1022 cm-3 even inside a bulk to motion, leading to bulk carrier delocalization beyond the electrostatic screening length. This non-local switching of bulk phases is achieved with just around 1 V, and moreover, a novel non-volatile memory like character emerges in a voltage-sweep measurement. These observations are apparently distinct from those of conventional FETs based on band insulators, capturing the essential feature of collective interactions in strongly correlated materials. This work was done in collaboration with K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura. This work was supported by the Japan Society for the Promotion of Science (JSAP) through its ``Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program).''

  18. HAWC Observations Strongly Favor Pulsar Interpretations of the Cosmic-Ray Positron Excess

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooper, Dan; Cholis, Ilias; Linden, Tim

    Recent measurements of the Geminga and B0656+14 pulsars by the gamma-ray telescope HAWC (along with earlier measurements by Milagro) indicate that these objects generate significant fluxes of very high-energy electrons. In this paper, we use the very high-energy gamma-ray intensity and spectrum of these pulsars to calculate and constrain their expected contributions to the local cosmic-ray positron spectrum. Among models that are capable of reproducing the observed characteristics of the gamma-ray emission, we find that pulsars invariably produce a flux of high-energy positrons that is similar in spectrum and magnitude to the positron fraction measured by PAMELA and AMS-02. Inmore » light of this result, we conclude that it is very likely that pulsars provide the dominant contribution to the long perplexing cosmic-ray positron excess.« less

  19. Global isolation by distance despite strong regional phylogeography in a small metazoan

    PubMed Central

    Mills, Scott; Lunt, David H; Gómez, Africa

    2007-01-01

    Background Small vagile eukaryotic organisms, which comprise a large proportion of the Earth's biodiversity, have traditionally been thought to lack the extent of population structuring and geographic speciation observed in larger taxa. Here we investigate the patterns of genetic diversity, amongst populations of the salt lake microscopic metazoan Brachionus plicatilis s. s. (sensu stricto) (Rotifera: Monogononta) on a global scale. We examine the phylogenetic relationships of geographic isolates from four continents using a 603 bp fragment of the mitochondrial COI gene to investigate patterns of phylogeographic subdivision in this species. In addition we investigate the relationship between genetic and geographic distances on a global scale to try and reconcile the paradox between the high vagility of this species and the previously reported patterns of restricted gene flow, even over local spatial scales. Results Analysis of global sequence diversity of B. plicatilis s. s. reveals the presence of four allopatric genetic lineages: North American-Far East Asian, Western Mediterranean, Australian, and an Eastern Mediterranean lineage represented by a single isolate. Geographically orientated substructure is also apparent within the three best sampled lineages. Surprisingly, given this strong phylogeographic structure, B. plicatilis s. s. shows a significant correlation between geographic and genetic distance on a global scale ('isolation by distance' – IBD). Conclusion Despite its cosmopolitan distribution and potential for high gene flow, B. plicatilis s. s. is strongly structured at a global scale. IBD patterns have traditionally been interpreted to indicate migration-drift equilibrium, although in this system equilibrium conditions are incompatible with the observed genetic structure. Instead, we suggest the pattern may have arisen through persistent founder effects, acting in a similar fashion to geographic barriers for larger organisms. Our data indicates

  20. Formation of stable inverse sheath in ion–ion plasma by strong negative ion emission

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Wu, Bang; Yang, Shali; Zhang, Ya; Chen, Dezhi; Fan, Mingwu; Jiang, Wei

    2018-06-01

    The effect of strong charged particle emission on plasma–wall interactions is a classical, yet unresolved question in plasma physics. Previous studies on secondary electron emission have shown that with different emission coefficients, there are classical, space-charge-limited, and inverse sheaths. In this letter, we demonstrate that a stable ion–ion inverse sheath and ion–ion plasma are formed with strong surface emission of negative ions. The continuous space-charge-limited to inverse ion–ion sheath transition is observed, and the plasma near the surface consequently transforms into pure ion–ion plasma. The results may explain the long-puzzled experimental observation that the density of negative ions depends on only charge not mass in negative ion sources.

  1. What Is Strong Correlation?

    ERIC Educational Resources Information Center

    Kozak, Marcin

    2009-01-01

    Interpretation of correlation is often based on rules of thumb in which some boundary values are given to help decide whether correlation is non-important, weak, strong or very strong. This article shows that such rules of thumb may do more harm than good, and instead of supporting interpretation of correlation--which is their aim--they teach a…

  2. Internal Variability and Disequilibrium Confound Estimates of Climate Sensitivity from Observations

    NASA Technical Reports Server (NTRS)

    Marvel, Kate; Pincus, Robert; Schmidt, Gavin A.; Miller, Ron L.

    2018-01-01

    An emerging literature suggests that estimates of equilibrium climate sensitivity (ECS) derived from recent observations and energy balance models are biased low because models project more positive climate feedback in the far future. Here we use simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to show that across models, ECS inferred from the recent historical period (1979-2005) is indeed almost uniformly lower than that inferred from simulations subject to abrupt increases in CO2-radiative forcing. However, ECS inferred from simulations in which sea surface temperatures are prescribed according to observations is lower still. ECS inferred from simulations with prescribed sea surface temperatures is strongly linked to changes to tropical marine low clouds. However, feedbacks from these clouds are a weak constraint on long-term model ECS. One interpretation is that observations of recent climate changes constitute a poor direct proxy for long-term sensitivity.

  3. Internal Variability and Disequilibrium Confound Estimates of Climate Sensitivity From Observations

    NASA Astrophysics Data System (ADS)

    Marvel, Kate; Pincus, Robert; Schmidt, Gavin A.; Miller, Ron L.

    2018-02-01

    An emerging literature suggests that estimates of equilibrium climate sensitivity (ECS) derived from recent observations and energy balance models are biased low because models project more positive climate feedback in the far future. Here we use simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to show that across models, ECS inferred from the recent historical period (1979-2005) is indeed almost uniformly lower than that inferred from simulations subject to abrupt increases in CO2 radiative forcing. However, ECS inferred from simulations in which sea surface temperatures are prescribed according to observations is lower still. ECS inferred from simulations with prescribed sea surface temperatures is strongly linked to changes to tropical marine low clouds. However, feedbacks from these clouds are a weak constraint on long-term model ECS. One interpretation is that observations of recent climate changes constitute a poor direct proxy for long-term sensitivity.

  4. Diagnosing a Strong-Fault Model by Conflict and Consistency

    PubMed Central

    Zhou, Gan; Feng, Wenquan

    2018-01-01

    The diagnosis method for a weak-fault model with only normal behaviors of each component has evolved over decades. However, many systems now demand a strong-fault models, the fault modes of which have specific behaviors as well. It is difficult to diagnose a strong-fault model due to its non-monotonicity. Currently, diagnosis methods usually employ conflicts to isolate possible fault and the process can be expedited when some observed output is consistent with the model’s prediction where the consistency indicates probably normal components. This paper solves the problem of efficiently diagnosing a strong-fault model by proposing a novel Logic-based Truth Maintenance System (LTMS) with two search approaches based on conflict and consistency. At the beginning, the original a strong-fault model is encoded by Boolean variables and converted into Conjunctive Normal Form (CNF). Then the proposed LTMS is employed to reason over CNF and find multiple minimal conflicts and maximal consistencies when there exists fault. The search approaches offer the best candidate efficiency based on the reasoning result until the diagnosis results are obtained. The completeness, coverage, correctness and complexity of the proposals are analyzed theoretically to show their strength and weakness. Finally, the proposed approaches are demonstrated by applying them to a real-world domain—the heat control unit of a spacecraft—where the proposed methods are significantly better than best first and conflict directly with A* search methods. PMID:29596302

  5. A strong pinning model for the coercivity of die-upset Pr-Fe-B magnets

    NASA Astrophysics Data System (ADS)

    Pinkerton, F. E.; fürst, C. D.

    1991-04-01

    We have measured the temperature dependence of the intrinsic coercivity Hci(T) between 5 and 565 K in a die-upset Pr-Fe-B magnet. Over a very wide temperature range up to 477 K, Hci(T) is in excellent agreement with a model for strong domain-wall pinning by a random array of pinning sites proposed by Gaunt [P. Gaunt, Philos. Mag. B 48, 261 (1983)]. The model includes both the temperature dependence of the intrinsic magnetic properties of the Pr2Fe14B phase and the effects of thermal activation of domain walls over the pinning barrier. The pinning sites are modeled as nonmagnetic planar inhomogeneities at the boundaries between platelet-shaped Pr2Fe14B grains. We develop an expression for the maximum pinning force per site, f, and derive the model prediction that (Hci/γHA)1/2 varies linearly with (T/γ)2/3, where HA and γ are the magnetocrystalline anisotropy field and the domain-wall energy per unit area of the Pr2Fe14B phase, respectively. Significant deviations from the model are observed only at high temperature, suggesting that the strong pinning model is no longer valid very close to the Curie temperature (565 K). The present result agrees with the model fit obtained for a die-upset Nd-Fe-B magnet.

  6. Strong exciton-photon coupling in organic single crystal microcavity with high molecular orientation

    NASA Astrophysics Data System (ADS)

    Goto, Kaname; Yamashita, Kenichi; Yanagi, Hisao; Yamao, Takeshi; Hotta, Shu

    2016-08-01

    Strong exciton-photon coupling has been observed in a highly oriented organic single crystal microcavity. This microcavity consists of a thiophene/phenylene co-oligomer (TPCO) single crystal laminated on a high-reflection distributed Bragg reflector. In the TPCO crystal, molecular transition dipole was strongly polarized along a certain horizontal directions with respect to the main crystal plane. This dipole polarization causes significantly large anisotropies in the exciton transition and optical constants. Especially the anisotropic exciton transition was found to provide the strong enhancement in the coupling with the cavity mode, which was demonstrated by a Rabi splitting energy as large as ˜100 meV even in the "half-vertical cavity surface emitting lasing" microcavity structure.

  7. Observation of strong reflection of electron waves exiting a ballistic channel at low energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaz, Canute I.; Campbell, Jason P.; Ryan, Jason T.

    2016-06-15

    Wave scattering by a potential step is a ubiquitous concept. Thus, it is surprising that theoretical treatments of ballistic transport in nanoscale devices, from quantum point contacts to ballistic transistors, assume no reflection even when the potential step is encountered upon exiting the device. Experiments so far seem to support this even if it is not clear why. Here we report clear evidence of coherent reflection when electron wave exits the channel of a nanoscale transistor and when the electron energy is low. The observed behavior is well described by a simple rectangular potential barrier model which the Schrodinger’s equationmore » can be solved exactly. We can explain why reflection is not observed in most situations but cannot be ignored in some important situations. Our experiment also represents a direct measurement of electron injection velocity - a critical quantity in nanoscale transistors that is widely considered not measurable.« less

  8. Dynamic auroral storms on Saturn as observed by the Hubble Space Telescope.

    PubMed

    Nichols, J D; Badman, S V; Baines, K H; Brown, R H; Bunce, E J; Clarke, J T; Cowley, S W H; Crary, F J; Dougherty, M K; Gérard, J-C; Grocott, A; Grodent, D; Kurth, W S; Melin, H; Mitchell, D G; Pryor, W R; Stallard, T S

    2014-05-28

    We present observations of significant dynamics within two UV auroral storms observed on Saturn using the Hubble Space Telescope in April/May 2013. Specifically, we discuss bursts of auroral emission observed at the poleward boundary of a solar wind-induced auroral storm, propagating at ∼330% rigid corotation from near ∼01 h LT toward ∼08 h LT. We suggest that these are indicative of ongoing, bursty reconnection of lobe flux in the magnetotail, providing strong evidence that Saturn's auroral storms are caused by large-scale flux closure. We also discuss the later evolution of a similar storm and show that the emission maps to the trailing region of an energetic neutral atom enhancement. We thus identify the auroral form with the upward field-aligned continuity currents flowing into the associated partial ring current.

  9. Dynamic auroral storms on Saturn as observed by the Hubble Space Telescope

    PubMed Central

    Nichols, J D; Badman, S V; Baines, K H; Brown, R H; Bunce, E J; Clarke, J T; Cowley, S W H; Crary, F J; Dougherty, M K; Gérard, J-C; Grocott, A; Grodent, D; Kurth, W S; Melin, H; Mitchell, D G; Pryor, W R; Stallard, T S

    2014-01-01

    We present observations of significant dynamics within two UV auroral storms observed on Saturn using the Hubble Space Telescope in April/May 2013. Specifically, we discuss bursts of auroral emission observed at the poleward boundary of a solar wind-induced auroral storm, propagating at ∼330% rigid corotation from near ∼01 h LT toward ∼08 h LT. We suggest that these are indicative of ongoing, bursty reconnection of lobe flux in the magnetotail, providing strong evidence that Saturn's auroral storms are caused by large-scale flux closure. We also discuss the later evolution of a similar storm and show that the emission maps to the trailing region of an energetic neutral atom enhancement. We thus identify the auroral form with the upward field-aligned continuity currents flowing into the associated partial ring current. PMID:26074636

  10. Hypnosis, hypnotic suggestibility, memory, and involvement in films.

    PubMed

    Maxwell, Reed; Lynn, Steven Jay; Condon, Liam

    2015-05-01

    Our research extends studies that have examined the relation between hypnotic suggestibility and experiential involvement and the role of an hypnotic induction in enhancing experiential involvement (e.g., absorption) in engaging tasks. Researchers have reported increased involvement in reading (Baum & Lynn, 1981) and music-listening (Snodgrass & Lynn, 1989) tasks during hypnosis. We predicted a similar effect for film viewing: greater experiential involvement in an emotional (The Champ) versus a non-emotional (Scenes of Toronto) film. We tested 121 participants who completed measures of absorption and trait dissociation and the Harvard Group Scale of Hypnotic Susceptibility and then viewed the two films after either an hypnotic induction or a non-hypnotic task (i.e., anagrams). Experiential involvement varied as a function of hypnotic suggestibility and film clip. Highly suggestible participants reported more state depersonalization than less suggestible participants, and depersonalization was associated with negative affect; however, we observed no significant correlation between hypnotic suggestibility and trait dissociation. Although hypnosis had no effect on memory commission or omission errors, contrary to the hypothesis that hypnosis facilitates absorption in emotionally engaging tasks, the emotional film was associated with more commission and omission errors compared with the non-emotional film. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. EDITORIAL: Strongly correlated electron systems Strongly correlated electron systems

    NASA Astrophysics Data System (ADS)

    Ronning, Filip; Batista, Cristian

    2011-03-01

    Strongly correlated electrons is an exciting and diverse field in condensed matter physics. This special issue aims to capture some of that excitement and recent developments in the field. Given that this issue was inspired by the 2010 International Conference on Strongly Correlated Electron Systems (SCES 2010), we briefly give some history in order to place this issue in context. The 2010 International Conference on Strongly Correlated Electron Systems was held in Santa Fe, New Mexico, a reunion of sorts from the 1989 International Conference on the Physics of Highly Correlated Electron Systems that also convened in Santa Fe. SCES 2010—co-chaired by John Sarrao and Joe Thompson—followed the tradition of earlier conferences, in this century, hosted by Buzios (2008), Houston (2007), Vienna (2005), Karlsruhe (2004), Krakow (2002) and Ann Arbor (2001). Every three years since 1997, SCES has joined the International Conference on Magnetism (ICM), held in Recife (2000), Rome (2003), Kyoto (2006) and Karlsruhe (2009). Like its predecessors, SCES 2010 topics included strongly correlated f- and d-electron systems, heavy-fermion behaviors, quantum-phase transitions, non-Fermi liquid phenomena, unconventional superconductivity, and emergent states that arise from electronic correlations. Recent developments from studies of quantum magnetism and cold atoms complemented the traditional subjects and were included in SCES 2010. 2010 celebrated the 400th anniversary of Santa Fe as well as the birth of astronomy. So what's the connection to SCES? The Dutch invention of the first practical telescope and its use by Galileo in 1610 and subsequent years overturned dogma that the sun revolved about the earth. This revolutionary, and at the time heretical, conclusion required innovative combinations of new instrumentation, observation and mathematics. These same combinations are just as important 400 years later and are the foundation of scientific discoveries that were discussed

  12. GBT Observations of the Star-Forming Regions DR21 and MonR2 with the new Argus Instrument

    NASA Astrophysics Data System (ADS)

    Linville, Dylan; Frayer, David; Cunningham, Nichol; Maddalena, Ronald

    2018-01-01

    We present GBT molecular line observations of DR21 and MonR2 with the new 16 element 75--115 GHz Argus instrument. Both molecular cloud complexes are associated with regions of high-mass star formation. We present the results of our 13CO, C18O, and HCO+ observations. Both MonR2 and DR21 show multiple velocity components, and the data suggest that the core of MonR2 is collapsing, while DR21 contains a region with a strong outflow traced by HCO+.

  13. Systematic observations of the slip pulse properties of large earthquake ruptures

    USGS Publications Warehouse

    Melgar, Diego; Hayes, Gavin

    2017-01-01

    In earthquake dynamics there are two end member models of rupture: propagating cracks and self-healing pulses. These arise due to different properties of faults and have implications for seismic hazard; rupture mode controls near-field strong ground motions. Past studies favor the pulse-like mode of rupture; however, due to a variety of limitations, it has proven difficult to systematically establish their kinematic properties. Here we synthesize observations from a database of >150 rupture models of earthquakes spanning M7–M9 processed in a uniform manner and show the magnitude scaling properties of these slip pulses indicates self-similarity. Further, we find that large and very large events are statistically distinguishable relatively early (at ~15 s) in the rupture process. This suggests that with dense regional geophysical networks strong ground motions from a large rupture can be identified before their onset across the source region.

  14. A strong static-magnetic field alters operant responding by rats.

    PubMed

    Nakagawa, M; Matsuda, Y

    1988-01-01

    Forty male rats of the Wistar ST strain were trained and observed for Sidman avoidance (SA) for 7 weeks or for discriminative avoidance (DA) for 14 weeks to determine the effects of exposure to a strong static-magnetic field. Before avoidance conditioning was completed, rats in the SA group were exposed to the static field at 0.6 T, 16 h/day for 4 days during the fifth week, and those in the DA group were exposed for 6 h/day for 4 days during the seventh week. In the SA conditioning, frequency of lever-pressing by exposed rats gradually decreased during 1 week of exposure and stayed low for at least 2 weeks after exposure. Frequencies of electric shocks received by the rats increased dramatically during the second day of exposure and consistently stayed higher than those of control rats. In the DA condition, exposed rats responded at lower rates than did control rats throughout the observation period. They received more shocks during the 2 weeks following exposure. The data indicate that performance of avoidance responses was inhibited by a comparatively long exposure to a strong magnetic field.

  15. Beyond strong and weak: rethinking postdictatorship civil societies.

    PubMed

    Riley, Dylan; Fernández, Juan J

    2014-09-01

    What is the impact of dictatorships on postdictatorial civil societies? Bottom-up theories suggest that totalitarian dictatorships destroy civil society while authoritarian ones allow for its development. Top-down theories of civil society suggest that totalitarianism can create civil societies while authoritarianism is unlikely to. This article argues that both these perspectives suffer from a one-dimensional understanding of civil society that conflates strength and autonomy. Accordingly we distinguish these two dimensions and argue that totalitarian dictatorships tend to create organizationally strong but heteronomous civil societies, while authoritarian ones tend to create relatively autonomous but organizationally weak civil societies. We then test this conceptualization by closely examining the historical connection between dictatorship and civil society development in Italy (a posttotalitarian case) and Spain (a postauthoritarian one). Our article concludes by reflecting on the implications of our argument for democratic theory, civil society theory, and theories of regime variation.

  16. No Sign of Strong Molecular Gas Outflow in an Infrared-bright Dust-obscured Galaxy with Strong Ionized-gas Outflow

    NASA Astrophysics Data System (ADS)

    Toba, Yoshiki; Komugi, Shinya; Nagao, Tohru; Yamashita, Takuji; Wang, Wei-Hao; Imanishi, Masatoshi; Sun, Ai-Lei

    2017-12-01

    We report the discovery of an infrared (IR)-bright dust-obscured galaxy (DOG) that shows a strong ionized-gas outflow but no significant molecular gas outflow. Based on detailed analysis of their optical spectra, we found some peculiar IR-bright DOGs that show strong ionized-gas outflow ([O III] λ5007) from the central active galactic nucleus (AGN). For one of these DOGs (WISE J102905.90+050132.4) at z spec = 0.493, we performed follow-up observations using ALMA to investigate their CO molecular gas properties. As a result, we successfully detected 12CO(J = 2–1) and 12CO(J = 4–3) lines and the continuum of this DOG. The intensity-weighted velocity map of both lines shows a gradient, and the line profile of those CO lines is well-fitted by a single narrow Gaussian, meaning that this DOG has no sign of strong molecular gas outflow. The IR luminosity of this object is log (L IR/L ⊙) = 12.40, which is classified as an ultraluminous IR galaxy (ULIRG). We found that (i) the stellar mass and star formation rate relation and (ii) the CO luminosity and far-IR luminosity relation are consistent with those of typical ULIRGs at similar redshifts. These results indicate that the molecular gas properties of this DOG are normal despite the fact that its optical spectrum shows a powerful AGN outflow. We conclude that a powerful ionized-gas outflow caused by the AGN does not necessarily affect the cold interstellar medium in the host galaxy, at least for this DOG.

  17. Strong pinning regimes explored with large-scale Ginzburg-Landau simulations

    NASA Astrophysics Data System (ADS)

    Willa, Roland; Koshelev, Alexei E.

    Improving the current-carrying capability of superconductors requires a deep understanding of vortex pinning. Within the theory of (3D) strong pinning an ideal vortex lattice is weakly deformed by a low density np of strong defects. In this limit the critical current jc is expected to grow linearly with np and to decrease with the field B according to B-α with α 0 . 5 . In the small-field limit the (1D) strong pinning theory of isolated vortices predicts jc np0 . 5 , independent of B. We explore strong pinning by low defect densities using time-dependent Ginzburg-Landau simulations. Our numerical results suggest the existence of a wide regime, where the lattice order is destroyed and yet interactions between vortices are important. In particular, for large defects we found an extended range of power-law decay of jc (B) with α 0 . 3 , smaller than predicted. This regime requires the development of new analytical models. Exploring the behavior of jc for various defect densities and sizes, we will establish pinning regimes and applicability limits of the conventional theory. This work is supported by the U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division. R. W. acknowledges support from the Swiss National Science Foundation through the SNSF Early Postdoc Mobility Fellowship.

  18. Search for an X-ray identification of a strong gamma-ray source. [sas-3 observations

    NASA Technical Reports Server (NTRS)

    Lamb, R. C.

    1979-01-01

    X-rays from Cygnus X-3 were observed during early 1978 with the detectors of the SAS-3 satellite. These observations in conjunction with earlier UHURU and ANS data indicate that the 4.8 hr period of Cygnus X-3 is increasing at the rate of P/P = (5/1 plus or minus 1.3) x 10 to the minus 6 power/1 yr. The sign and magnitude for this change are incompatible with a rotation model for the period and are in reasonable agreement with model predictions for orbital changes associated with mass loss and transfer in a binary system.

  19. IUE observations of two late-type stars Bx Mon (M + pec) and TV Gem (M1 Iab)

    NASA Technical Reports Server (NTRS)

    Michalitsianos, A. G.; Hobbs, R. W.; Kafatos, M.

    1981-01-01

    The IUE observations of two late type stars BX Mon and TV Gem that reveal the emission properties in the ultraviolet of subluminous companions are discussed. Analysis of the continuum emission observed from BX Mon suggests the companion, is a middle A III star. High excitation emission lines observed between 1200 A and 2000 A that generally do not typify emission observed in either late M type variables or A type stars are also detected. It is suggested that these strong high excitation lines arise in a large volume of gas heated by nonradiation processes that could be the result of tidal interaction and mass exchange in the binary system. In contrast to stars such as BX Mon, the luminous M1 supergiant TV Gem shows unexpected intense UV continuum throughout the sensitivity range of IUE. The UV spectrum of TV Gem is characterized by intense continuum with broad absorption features detected in the short wavelength range. The analysis shows that the companion could be a B9 or A1 III-IV star. Alternate suggestions are presented for explaining the UV continuum in terms of an accretion disk in association with TV Gem.

  20. Tropically driven and externally forced patterns of Antarctic sea ice change: reconciling observed and modeled trends

    NASA Astrophysics Data System (ADS)

    Schneider, David P.; Deser, Clara

    2018-06-01

    Recent work suggests that natural variability has played a significant role in the increase of Antarctic sea ice extent during 1979-2013. The ice extent has responded strongly to atmospheric circulation changes, including a deepened Amundsen Sea Low (ASL), which in part has been driven by tropical variability. Nonetheless, this increase has occurred in the context of externally forced climate change, and it has been difficult to reconcile observed and modeled Antarctic sea ice trends. To understand observed-model disparities, this work defines the internally driven and radiatively forced patterns of Antarctic sea ice change and exposes potential model biases using results from two sets of historical experiments of a coupled climate model compared with observations. One ensemble is constrained only by external factors such as greenhouse gases and stratospheric ozone, while the other explicitly accounts for the influence of tropical variability by specifying observed SST anomalies in the eastern tropical Pacific. The latter experiment reproduces the deepening of the ASL, which drives an increase in regional ice extent due to enhanced ice motion and sea surface cooling. However, the overall sea ice trend in every ensemble member of both experiments is characterized by ice loss and is dominated by the forced pattern, as given by the ensemble-mean of the first experiment. This pervasive ice loss is associated with a strong warming of the ocean mixed layer, suggesting that the ocean model does not locally store or export anomalous heat efficiently enough to maintain a surface environment conducive to sea ice expansion. The pervasive upper-ocean warming, not seen in observations, likely reflects ocean mean-state biases.

  1. Tropically driven and externally forced patterns of Antarctic sea ice change: reconciling observed and modeled trends

    NASA Astrophysics Data System (ADS)

    Schneider, David P.; Deser, Clara

    2017-09-01

    Recent work suggests that natural variability has played a significant role in the increase of Antarctic sea ice extent during 1979-2013. The ice extent has responded strongly to atmospheric circulation changes, including a deepened Amundsen Sea Low (ASL), which in part has been driven by tropical variability. Nonetheless, this increase has occurred in the context of externally forced climate change, and it has been difficult to reconcile observed and modeled Antarctic sea ice trends. To understand observed-model disparities, this work defines the internally driven and radiatively forced patterns of Antarctic sea ice change and exposes potential model biases using results from two sets of historical experiments of a coupled climate model compared with observations. One ensemble is constrained only by external factors such as greenhouse gases and stratospheric ozone, while the other explicitly accounts for the influence of tropical variability by specifying observed SST anomalies in the eastern tropical Pacific. The latter experiment reproduces the deepening of the ASL, which drives an increase in regional ice extent due to enhanced ice motion and sea surface cooling. However, the overall sea ice trend in every ensemble member of both experiments is characterized by ice loss and is dominated by the forced pattern, as given by the ensemble-mean of the first experiment. This pervasive ice loss is associated with a strong warming of the ocean mixed layer, suggesting that the ocean model does not locally store or export anomalous heat efficiently enough to maintain a surface environment conducive to sea ice expansion. The pervasive upper-ocean warming, not seen in observations, likely reflects ocean mean-state biases.

  2. Strong first order EWPT & strong gravitational waves in Z 3-symmetric singlet scalar extension

    NASA Astrophysics Data System (ADS)

    Kang, Zhaofeng; Ko, P.; Matsui, Toshinori

    2018-02-01

    The nature of electroweak (EW) phase transition (PT) is of great importance. It may give a clue to the origin of baryon asymmetry if EWPT is strong first order. Although it is a cross over within the standard model (SM), a great many extensions of the SM are capable of altering the nature. Thus, gravitational wave (GW), which is supposed to be relics of strong first order PT, is a good complementary probe to new physics beyond SM (BSM). We in this paper elaborate the patterns of strong first order EWPT in the next to simplest extension to the SM Higgs sector, by introducing a Z 3-symmetric singlet scalar. We find that, in the Z 3-symmetric limit, the tree level barrier could lead to strong first order EWPT either via three or two-step PT. Moreover, they could produce two sources of GW, despite of the undetectability from the first-step strong first order PT for the near future GW experiments. But the other source with significant supercooling which then gives rise to α ˜ O(0.1) almost can be wholly covered by future space-based GW interferometers such as eLISA, DECIGO and BBO.

  3. Radio and Plasma Wave Observations at Saturn from Cassini's Approach and First Orbit

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Kurth, W. S.; Haspodarsky, G. B.; Persoon, A. M.; Averkamp, T. F.; Cecconi, B.; Lecacheux, A.; Zarka, P.; Canu, P.; Cornilleau-Wehrlin, N.

    2005-01-01

    We report data from the Cassini radio and plasma wave instrument during the approach and first orbit at Saturn. During the approach, radio emissions from Saturn showed that the radio rotation period is now 10 hours 45 minutes 45 k 36 seconds, about 6 minutes longer than measured by Voyager in 1980 to 1981. In addition, many intense impulsive radio signals were detected from Saturn lightning during the approach and first orbit. Some of these have been linked to storm systems observed by the Cassini imaging instrument. Within the magnetosphere, whistler-mode auroral hiss emissions were observed near the rings, suggesting that a strong electrodynamic interaction is occurring in or near the rings.

  4. Strong collective attraction in colloidal clusters on a liquid-air interface.

    PubMed

    Pergamenshchik, V M

    2009-01-01

    It is shown that in a cluster of many colloids, trapped at a liquid-air interface, the well-known vertical-force-induced pairwise logarithmic attraction changes to a strongly enhanced power-law attraction. In large two-dimensional clusters, the attraction energy scales as the inverse square of the distance between colloids. The enhancement is given by the ratio eta = (square of the capillary length) / (interface surface area per colloid) and can be as large as 10;{5} . This explains why a very small vertical force on colloids, which is too weak to bring two of them together, can stabilize many-body structures on a liquid-air interface. The profile of a cluster is shown to consist of a large slow collective envelope modulated by a fast low-amplitude perturbation due to individual colloids. A closed equation for the slow envelope, which incorporates an arbitrary power-law repulsion between colloids, is derived. For example, this equation is solved for a large circular cluster with the hard-core colloid repulsion. It is suggested that the predicted effect is responsible for mysterious stabilization of colloidal structures observed in experiments on a surface of isotropic liquid and nematic liquid crystal.

  5. Strong gravitational lensing: relativity in action

    NASA Astrophysics Data System (ADS)

    Wambsganss, Joachim

    2010-01-01

    Deflection of light by gravity was predicted by Einstein's Theory of General Relativity and observationally confirmed in 1919. In the following decades, various aspects of the gravitational lens effect were explored theoretically, among them measuring the Hubble constant from multiple images of a background source, making use of the magnifying effect as a gravitational telescope, or the possibility of a “relativistic eclipse” as a perfect test of GR. Only in 1979, gravitational lensing became an observational science when the first doubly imaged quasar was discovered. Today lensing is a booming part of astrophysics and cosmology. A whole suite of strong lensing phenomena have been investigated: multiple quasars, giant luminous arcs, Einstein rings, quasar microlensing, and galactic microlensing. The most recent lensing application is the detection of extrasolar planets. Lensing has contributed significant new results in areas as different as the cosmological distance scale, mass determination of galaxy clusters, physics of quasars, searches for dark matter in galaxy halos, structure of the Milky Way, stellar atmospheres and exoplanets. A guided tour through some of these applications will illustrate how gravitational lensing has established itself as a very useful universal astrophysical tool.

  6. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils

    PubMed Central

    Zhang, Li-Mei; Hu, Hang-Wei; Shen, Ju-Pei; He, Ji-Zheng

    2012-01-01

    Increasing evidence demonstrated the involvement of ammonia-oxidizing archaea (AOA) in the global nitrogen cycle, but the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to ammonia oxidation are still in debate. Previous studies suggest that AOA would be more adapted to ammonia-limited oligotrophic conditions, which seems to be favored by protonation of ammonia, turning into ammonium in low-pH environments. Here, we investigated the autotrophic nitrification activity of AOA and AOB in five strongly acidic soils (pH<4.50) during microcosm incubation for 30 days. Significantly positive correlations between nitrate concentration and amoA gene abundance of AOA, but not of AOB, were observed during the active nitrification. 13CO2-DNA-stable isotope probing results showed significant assimilation of 13C-labeled carbon source into the amoA gene of AOA, but not of AOB, in one of the selected soil samples. High levels of thaumarchaeal amoA gene abundance were observed during the active nitrification, coupled with increasing intensity of two denaturing gradient gel electrophoresis bands for specific thaumarchaeal community. Addition of the nitrification inhibitor dicyandiamide (DCD) completely inhibited the nitrification activity and CO2 fixation by AOA, accompanied by decreasing thaumarchaeal amoA gene abundance. Bacterial amoA gene abundance decreased in all microcosms irrespective of DCD addition, and mostly showed no correlation with nitrate concentrations. Phylogenetic analysis of thaumarchaeal amoA gene and 16S rRNA gene revealed active 13CO2-labeled AOA belonged to groups 1.1a-associated and 1.1b. Taken together, these results provided strong evidence that AOA have a more important role than AOB in autotrophic ammonia oxidation in strongly acidic soils. PMID:22134644

  7. Presence of amphibian chytrid fungus (Batrachochytrium dendrobatidis) in rainwater suggests aerial dispersal is possible

    USGS Publications Warehouse

    Kolby, Jonathan E.; Sara D. Ramirez,; Lee Berger,; Griffin, Dale W.; Merlijn Jocque,; Lee F. Skerratt,

    2015-01-01

    Abstract Global spread of the pathogenic amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) may involve dispersal mechanisms not previously explored. Weather systems accompanied by strong wind and rainfall have been known to assist the dispersal of microbes pathogenic to plants and animals, and we considered a similar phenomenon might occur with Bd. We investigated this concept by sampling rainwater from 20 precipitation events for the presence of Bd in Cusuco National Park, Honduras: a site where high Bd prevalence was previously detected in stream-associated amphibians. Quantitative PCR analysis confirmed the presence of Bd in rainwater in one (5 %) of the weather events sampled, although viability cannot be ascertained from molecular presence alone. The source of the Bd and distance that the contaminated rainwater traveled could not be determined; however, this collection site was located approximately 600 m from the nearest observed perennial river by straight-line aerial distance. Although our results suggest atmospheric Bd dispersal is uncommon and unpredictable, even occasional short-distance aerial transport could considerably expand the taxonomic diversity of amphibians vulnerable to exposure and at risk of decline, including terrestrial and arboreal species that are not associated with permanent water bodies.

  8. Seeing Is Not Feeling: Posterior Parietal But Not Somatosensory Cortex Engagement During Touch Observation

    PubMed Central

    Baker, Chris I.

    2015-01-01

    Observing touch has been reported to elicit activation in human primary and secondary somatosensory cortices and is suggested to underlie our ability to interpret other's behavior and potentially empathy. However, despite these reports, there are a large number of inconsistencies in terms of the precise topography of activation, the extent of hemispheric lateralization, and what aspects of the stimulus are necessary to drive responses. To address these issues, we investigated the localization and functional properties of regions responsive to observed touch in a large group of participants (n = 40). Surprisingly, even with a lenient contrast of hand brushing versus brushing alone, we did not find any selective activation for observed touch in the hand regions of somatosensory cortex but rather in superior and inferior portions of neighboring posterior parietal cortex, predominantly in the left hemisphere. These regions in the posterior parietal cortex required the presence of both brush and hand to elicit strong responses and showed some selectivity for the form of the object or agent of touch. Furthermore, the inferior parietal region showed nonspecific tactile and motor responses, suggesting some similarity to area PFG in the monkey. Collectively, our findings challenge the automatic engagement of somatosensory cortex when observing touch, suggest mislocalization in previous studies, and instead highlight the role of posterior parietal cortex. PMID:25632124

  9. [Therapy and suggestion].

    PubMed

    Barrucand, D; Paille, F

    1986-12-01

    Therapy and suggestion are closely related. That is clear for the ancient time: primitive medicine gives a good place to the Word. In plant, animal or mineral remedies, the suggestion is clearly preponderant. Towards the end of the 19th century, the "Ecole de Nancy" sets up a real theory of the suggestion, and Bernheim, its leader, bases hypnosis, then psychotherapy on this concept. Thereafter Coué will bring up the "conscious autosuggestion". Today, despite the progress of scientific medicine, the part of suggestion is still very important in medical therapy (with or without drugs), or in chirurgical therapy; this part is also very important in psychotherapies, whatever has been said in this field. This has to be known and used consciously in the doctor-patient relation, which is always essential in the therapeutic effectiveness.

  10. The Strong Nuclear Force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, Don

    Scientists are aware of four fundamental forces- gravity, electromagnetism, and the strong and weak nuclear forces. Most people have at least some familiarity with gravity and electromagnetism, but not the other two. How is it that scientists are so certain that two additional forces exist? In this video, Fermilab’s Dr. Don Lincoln explains why scientists are so certain that the strong force exists.

  11. The Strong Nuclear Force

    ScienceCinema

    Lincoln, Don

    2018-01-16

    Scientists are aware of four fundamental forces- gravity, electromagnetism, and the strong and weak nuclear forces. Most people have at least some familiarity with gravity and electromagnetism, but not the other two. How is it that scientists are so certain that two additional forces exist? In this video, Fermilab’s Dr. Don Lincoln explains why scientists are so certain that the strong force exists.

  12. Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eberle, Tobias; Centre for Quantum Engineering and Space-Time Research - QUEST, Leibniz Universitaet Hannover, Welfengarten 1, D-30167 Hannover; Haendchen, Vitus

    Einstein-Podolsky-Rosen (EPR) entanglement is a criterion that is more demanding than just certifying entanglement. We theoretically and experimentally analyze the low-resource generation of bipartite continuous-variable entanglement, as realized by mixing a squeezed mode with a vacuum mode at a balanced beam splitter, i.e., the generation of so-called vacuum-class entanglement. We find that in order to observe EPR entanglement the total optical loss must be smaller than 33.3 %. However, arbitrarily strong EPR entanglement is generally possible with this scheme. We realize continuous-wave squeezed light at 1550 nm with up to 9.9 dB of nonclassical noise reduction, which is the highestmore » value at a telecom wavelength so far. Using two phase-controlled balanced homodyne detectors we observe an EPR covariance product of 0.502{+-}0.006<1, where 1 is the critical value. We discuss the feasibility of strong Gaussian entanglement and its application for quantum key distribution in a short-distance fiber network.« less

  13. Angular focusing, squeezing, and rainbow formation in a strongly driven quantum rotor.

    PubMed

    Averbukh, I S; Arvieu, R

    2001-10-15

    Semiclassical catastrophes in the dynamics of a quantum rotor (molecule) driven by a strong time-varying field are considered. We show that for strong enough fields, a sharp peak in the rotor angular distribution can be achieved via a time-domain focusing phenomenon, followed by the formation of rainbowlike angular structures. A strategy leading to the enhanced angular squeezing is proposed that uses a specially designed sequence of pulses. The predicted effects can be observed in many processes, ranging from molecular alignment (orientation) by laser fields to heavy-ion collisions, and the trapping of cold atoms by a standing light wave.

  14. Kelvin Helmholtz Instability at the Equatorial Magnetotail Boundary: MHD Simulation and Comparison with Geotail Observations

    NASA Technical Reports Server (NTRS)

    Fairfield, Donald H.; Otto, A.

    1999-01-01

    On March 24, 1995 the Geotail spacecraft observed large fluctuations of the magnetic field and plasma properties in the Low Latitude Boundary Layer (LLBL) about 15 R(sub E) tailward of the dusk meridian. Although the magnetospheric and the magnetosheath field were strongly northward, the B(sub z) component showed strong short duration fluctuations in which B(sub z) could even reach negative values. We have used two-dimensional magnetohydrodynamic simulations with magnetospheric and magnetosheath input parameters specifically chosen for this. Geotail event to identify the processes which cause the observed boundary properties. It is shown that these fluctuations can be explained by the Kelvin-Helmholtz instability if the k vector of the instability has a component along the magnetic field direction. The simulation results show many of the characteristic properties of the Geotail observations. In particular, the quasi-periodic strong fluctuations are well explained by satellite crossings through the Kelvin-Helmholtz vortices. It is illustrated how the interior structure of the Kelvin-Helmholtz vortices leads to the rapid fluctuations in the Geotail observations. Our results suggest an average Kelvin-Helmholtz wavelength of about 5 R(sub E) with a vortex size of close to 2 R(sub E) for an average repetition time of 2.5 minutes. The growth time for these waves implies a source region of about 10 to 16 R(sub E) upstream from the location of the Geotail spacecraft (i.e., near the dusk meridian). The results also indicate a considerable mass transport of magnetosheath material into the magnetosphere by magnetic reconnection in the Kelvin-Helmholtz vortices.

  15. Site classification for National Strong Motion Observation Network System (NSMONS) stations in China using an empirical H/V spectral ratio method

    NASA Astrophysics Data System (ADS)

    Ji, Kun; Ren, Yefei; Wen, Ruizhi

    2017-10-01

    Reliable site classification of the stations of the China National Strong Motion Observation Network System (NSMONS) has not yet been assigned because of lacking borehole data. This study used an empirical horizontal-to-vertical (H/V) spectral ratio (hereafter, HVSR) site classification method to overcome this problem. First, according to their borehole data, stations selected from KiK-net in Japan were individually assigned a site class (CL-I, CL-II, or CL-III), which is defined in the Chinese seismic code. Then, the mean HVSR curve for each site class was computed using strong motion recordings captured during the period 1996-2012. These curves were compared with those proposed by Zhao et al. (2006a) for four types of site classes (SC-I, SC-II, SC-III, and SC-IV) defined in the Japanese seismic code (JRA, 1980). It was found that an approximate range of the predominant period Tg could be identified by the predominant peak of the HVSR curve for the CL-I and SC-I sites, CL-II and SC-II sites, and CL-III and SC-III + SC-IV sites. Second, an empirical site classification method was proposed based on comprehensive consideration of peak period, amplitude, and shape of the HVSR curve. The selected stations from KiK-net were classified using the proposed method. The results showed that the success rates of the proposed method in identifying CL-I, CL-II, and CL-III sites were 63%, 64%, and 58% respectively. Finally, the HVSRs of 178 NSMONS stations were computed based on recordings from 2007 to 2015 and the sites classified using the proposed method. The mean HVSR curves were re-calculated for three site classes and compared with those from KiK-net data. It was found that both the peak period and the amplitude were similar for the mean HVSR curves derived from NSMONS classification results and KiK-net borehole data, implying the effectiveness of the proposed method in identifying different site classes. The classification results have good agreement with site classes

  16. A Record-High Ocean Bottom Pressure in the South Pacific Observed by GRACE

    NASA Technical Reports Server (NTRS)

    Boening, Carmen; Lee, Tong; Zlotnicki, Victor

    2011-01-01

    In late 2009 to early 2010, the Gravity Recovery and Climate Experiment (GRACE) satellite pair observed a record increase in ocean bottom pressure (OBP) over a large mid-latitude region of the South East Pacific. Its magnitude is substantially larger than other oceanic events in the Southern Hemisphere found in the entire GRACE data records (2003-2010) on multi-month time scales. The OBP data help to understand the nature of a similar signal in sea surface height (SSH) anomaly observed by altimetry: the SSH increase is mainly due to mass convergence. Analysis of the barotropic vorticity equation using scatterometer data, atmospheric reanalysis product, and GRACE and altimeter an atmospheric reanalysis product observations suggests that the observed OBP/SSH signal was primarily caused by wind stress curl associated with a strong and persistent anticyclone in late 2009 in combination with effects of planetary vorticity gradient, bottom topography, and friction

  17. Missing GRB host galaxies in deep mid-infrared observations: implications on the use of GRBs as star formation tracers

    NASA Astrophysics Data System (ADS)

    Le Floc'h, Emeric; Charmandaris, Vassilis; Forrest, Bill; Mirabel, Félix; Armus, Lee; Devost, Daniel

    2006-05-01

    We report on the first mid-infrared observations of 16 GRB host galaxies performed with the Spitzer Space Telescope, and investigate the presence of evolved stellar populations and dust-enshrouded star-forming activity associated with GRBs. Only a very small fraction of our sample is detected by Spitzer, which is not consistent with recent works suggesting the presence of a GRB host population dominated by massive and strongly-starbursting galaxies (SFR >~ 100Msolaryr-1). Should the GRB hosts be representative of star-forming galaxies at high redshift, models of galaxy evolution indicate that >~ 50% of GRB hosts would be easily detected at the depth of our mid-infrared observations. Unless our sample suffers from a strong observational bias which remains to be understood, we infer in this context that the GRBs identified with the current techniques can not be directly used as unbiased probes of the global and integrated star formation history of the Universe.

  18. Responding to hypnotic and nonhypnotic suggestions: performance standards, imaginative suggestibility, and response expectancies.

    PubMed

    Meyer, Eric C; Lynn, Steven Jay

    2011-07-01

    This study examined the relative impact of hypnotic inductions and several other variables on hypnotic and nonhypnotic responsiveness to imaginative suggestions. The authors examined how imaginative suggestibility, response expectancies, motivation to respond to suggestions, and hypnotist-induced performance standards affected participants' responses to both hypnotic and nonhypnotic suggestions and their suggestion-related experiences. Suggestions were administered to 5 groups of participants using a test-retest design: (a) stringent performance standards; (b) lenient performance standards; (c) hypnosis test-retest; (d) no-hypnosis test-retest; and (e) no-hypnosis/hypnosis control. The authors found no support for the influence of a hypnotic induction or performance standards on responding to suggestions but found considerable support for the role of imaginative suggestibility and response expectancies in predicting responses to both hypnotic and nonhypnotic suggestions.

  19. Whistler Waves Driven by Anisotropic Strahl Velocity Distributions: Cluster Observations

    NASA Technical Reports Server (NTRS)

    Vinas, A.F.; Gurgiolo, C.; Nieves-Chinchilla, T.; Gary, S. P.; Goldstein, M. L.

    2010-01-01

    Observed properties of the strahl using high resolution 3D electron velocity distribution data obtained from the Cluster/PEACE experiment are used to investigate its linear stability. An automated method to isolate the strahl is used to allow its moments to be computed independent of the solar wind core+halo. Results show that the strahl can have a high temperature anisotropy (T(perpindicular)/T(parallell) approximately > 2). This anisotropy is shown to be an important free energy source for the excitation of high frequency whistler waves. The analysis suggests that the resultant whistler waves are strong enough to regulate the electron velocity distributions in the solar wind through pitch-angle scattering

  20. Deuterium incorporation experiments from (3R)- and (3S)-[3-2H]leucine into characteristic isoprenoidal lipid-core of halophilic archaea suggests the involvement of isovaleryl-CoA dehydrogenase.

    PubMed

    Yamauchi, Noriaki; Tanoue, Ryo

    2017-11-01

    The stereochemical reaction course for the two C-3 hydrogens of leucine to produce a characteristic isoprenoidal lipid in halophilic archaea was observed using incubation experiments with whole cell Halobacterium salinarum. Deuterium-labeled (3R)- and (3S)-[3- 2 H]leucine were freshly prepared as substrates from 2,3-epoxy-4-methyl-1-pentanol. Incorporation of deuterium from (3S)-[3- 2 H]leucine and loss of deuterium from (3R)-[3- 2 H]leucine in the lipid-core of H. salinarum was observed. Taken together with the results of our previous report, involving the incubation of chiral-labeled [5- 2 H]leucine, these results strongly suggested an involvement of isovaleryl-CoA dehydrogenase in leucine conversion to isoprenoid lipid in halophilic archaea. The stereochemical course of the reaction (anti-elimination) might have been the same as that previously reported for mammalian enzyme reactions. Thus, these results suggested that branched amino acids were metabolized to mevalonate in archaea in a manner similar to other organisms.

  1. The ASCA PV phase observation of FO Aquarii

    NASA Technical Reports Server (NTRS)

    Mukai, Koji; Ishida, Manabu; Osborne, Julian P.

    1994-01-01

    We report on a approximately 1-day Advanced Satellite for Cosmology and Astrophysics (ASCA) observation of the intermediate polar FO Aquarii. We find two distinctive spectral components, one unabsorbed and the other strongly absorbed; the observed 2-10 keV flux severely underestimates the total system luminosity, due to this strong absorption intrinsic to the binary. The absorbed component is dominant in terms of luminosity, and its light curve is simple. The unabsorbed component accounts for approximately 2% of the luminosity, and shows a much more complicated light curve. As the dominant component predominantly shows a sinusoidal modulation at the white dwarf spin period, it provides a strong evidence for a partial accretion disk in the system.

  2. Ultra-strong coupling in a transmon circuit architecture

    NASA Astrophysics Data System (ADS)

    Bosman, Sal; Gely, Mario; Singh, Vibhor; Bruno, Alessandro; Steele, Gary

    New unexplored phenomena are predicted in cQED for the ultra-strong coupling (USC) regime and beyond. Here, we explore two strategies to increase the coupling between a transmon qubit and a microwave resonator. In the first approach, we increase the impedance of the resonator, enhancing it's voltage zero-point fluctuations, and measure a vacuum Rabi splitting of 916 MHz. In a second approach, we create a transmon qubit by making a superconducting island suspended above the center conductor of the resonator and which is shorted to ground by two Josephson junctions. Doing so, we maximize the dipole moment of the qubit and observe a vacuum Rabi splitting of 1.2 GHz with a qubit linewidth of 1 MHz. This first transmon qubit in the USC regime improves the coherence time by a factor of 100 compared to other systems in the USC limit. Finally we predict that by combining both approaches, a coupling of ~ 3 . 6 GHz is possible, reaching close to the deep strong coupling limit. The work was supported by the Dutch science foundation NWO/FOM.

  3. Strong intraday variability in the southern blazar PKS 0537-441 at 1.42 GHz

    NASA Astrophysics Data System (ADS)

    Romero, G. E.; Combi, J. A.; Colomb, F. R.

    1994-08-01

    Results of intraday variability observations with a sampling of ~20 minutes of the southern blazars PKS 0521-365 and PKS 0537-441 at 1.42 GHz are presented. PKS 0521-365 did not display flux density variability whilst PKS 0537-441 showed strong fluctuations with a major outburst towards J.D. 2449011 caracterized by a fluctuation index of ~15%, variability amplitudes of ~45% and time scales of ~10^4^s. After a discussion of possible scenarios for such kind of variability, this extremely violent behaviour is interpreted in terms of strong scattering by compact ionized structures in the interstellar medium. The physical properties of the refractors are estimated from the observed light curves, and a brief discussion about the possible origin of these objects is presented.

  4. Observations by a University Anatomy Teacher and a Suggestion for Curricular Change: Integrative Anatomy for Undergraduates

    ERIC Educational Resources Information Center

    Darda, David M.

    2010-01-01

    The observation that anatomical course offerings have decreased in undergraduate biology curricula is supported by a survey of undergraduate institutions in the state of Washington. This reduction, due partially to increased emphasis in other areas of the biology curriculum, along with the lack of anatomy prerequisites for admission to most…

  5. Isoliquiritigenin, a strong nod gene- and glyceollin resistance-inducing flavonoid from soybean root exudate.

    PubMed

    Kape, R; Parniske, M; Brandt, S; Werner, D

    1992-05-01

    Isoflavonoid signal molecules from soybean (Glycine max (L.) Merr.) seed and root exudate induce the transcription of nodulation (nod) genes in Bradyrhizobium japonicum. In this study, a new compound with symbiotic activity was isolated from soybean root exudate. The isolated 2',4',4-trihydroxychalcone (isoliquiritigenin) is characterized by its strong inducing activity for the nod genes of B. japonicum. These genes are already induced at concentrations 1 order of magnitude below those required of the previously described isoflavonoid inducers genistein and daidzein. Isoliquiritigenin is also a potent inducer of glyceollin resistance in B. japonicum, which renders this bacterium insensitive to potentially bactericidal concentrations of glyceollin, the phytoalexin of G. max. No chemotactic effect of isoliquiritigenin was observed. The highly efficient induction of nod genes and glyceollin resistance by isoliquiritigenin suggests the ecological significance of this compound, although it is not a major flavonoid constituent of the soybean root exudate in quantitative terms.

  6. Circulating anti-Mullerian hormone levels in adult men are under a strong genetic influence.

    PubMed

    Pietiläinen, Kirsi H; Kaprio, Jaakko; Vaaralahti, Kirsi; Rissanen, Aila; Raivio, Taneli

    2012-01-01

    The determinants of serum anti-Müllerian hormone (AMH) levels in adult men remain unclear. The objective of the study was to investigate the genetic and environmental components in determining postpubertal AMH levels in healthy men. Serum AMH levels, body mass index (BMI), and fat mass (dual energy x-ray absorptiometry) were measured in 64 healthy male (23 monozygotic and 41 dizygotic) twin pairs. Postpubertal AMH levels were highly genetically determined (broad sense heritability 0.92, 95% confidence interval 0.83-0.96). AMH correlated negatively with BMI (r = -0.26, P = 0.030) and fat mass (r = -0.23, P = 0.048). As AMH, BMI had a high heritability (0.68, 95% confidence interval 0.39-0.83), but no genetic correlation was observed between them. AMH levels in men after puberty are under a strong genetic influence. Twin modeling suggests that AMH and BMI are influenced by different sets of genes.

  7. Jeans self gravitational instability of strongly coupled quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Prerana, E-mail: preranaiitd@rediffmail.com; Chhajlani, R. K.

    2014-07-15

    The Jeans self-gravitational instability is studied for quantum plasma composed of weakly coupled degenerate electron fluid and non-degenerate strongly coupled ion fluid. The formulation for such system is done on the basis of two fluid theory. The dynamics of weakly coupled degenerate electron fluid is governed by inertialess momentum equation. The quantum forces associated with the quantum diffraction effects and the quantum statistical effects act on the degenerate electron fluid. The strong correlation effects of ion are embedded in generalized viscoelastic momentum equation including the viscoelasticity and shear viscosities of ion fluid. The general dispersion relation is obtained using themore » normal mode analysis technique for the two regimes of propagation, i.e., hydrodynamic and kinetic regimes. The Jeans condition of self-gravitational instability is also obtained for both regimes, in the hydrodynamic regime it is observed to be affected by the ion plasma oscillations and quantum parameter while in the kinetic regime in addition to ion plasma oscillations and quantum parameter, it is also affected by the ion velocity which is modified by the viscosity generated compressional effects. The Jeans critical wave number and corresponding critical mass are also obtained for strongly coupled quantum plasma for both regimes.« less

  8. Room temperature strong light-matter coupling in three dimensional terahertz meta-atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paulillo, B., E-mail: bruno.paulillo@u-psud.fr; Manceau, J.-M., E-mail: jean-michel.manceau@u-psud.fr; Colombelli, R., E-mail: raffaele.colombelli@u-psud.fr

    2016-03-07

    We demonstrate strong light-matter coupling in three dimensional terahertz meta-atoms at room temperature. The intersubband transition of semiconductor quantum wells with a parabolic energy potential is strongly coupled to the confined circuital mode of three-dimensional split-ring metal-semiconductor-metal resonators that have an extreme sub-wavelength volume (λ/10). The frequency of these lumped-element resonators is controlled by the size and shape of the external antenna, while the interaction volume remains constant. This allows the resonance frequency to be swept across the intersubband transition and the anti-crossing characteristic of the strong light-matter coupling regime to be observed. The Rabi splitting, which is twice themore » Rabi frequency (2Ω{sub Rabi}), amounts to 20% of the bare transition at room temperature, and it increases to 28% at low-temperature.« less

  9. Suicidality and interrogative suggestibility.

    PubMed

    Pritchard-Boone, Lea; Range, Lillian M

    2005-01-01

    All people are subject to memory suggestibility, but suicidal individuals may be especially so. The link between suicidality and suggestibility is unclear given mixed findings and methodological weaknesses of past research. To test the link between suicidality and interrogative suggestibility, 149 undergraduates answered questions about suicidal thoughts and reasons for living, and participated in a direct suggestibility procedure. As expected, suggestibility correlated with suicidality but accounted for little overall variance (4%). Mental health professionals might be able to take advantage of client suggestibility by directly telling suicidal persons to refrain from suicidal thoughts or actions.

  10. Strongly Correlated Topological Insulators

    DTIC Science & Technology

    2016-02-03

    Strongly Correlated Topological Insulators In the past year, the grant was used for work in the field of topological phases, with emphasis on finding...surface of topological insulators . In the past 3 years, we have started a new direction, that of fractional topological insulators . These are materials...Strongly Correlated Topological Insulators Report Title In the past year, the grant was used for work in the field of topological phases, with emphasis

  11. Strong exciton-photon coupling in organic single crystal microcavity with high molecular orientation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goto, Kaname; Yamashita, Kenichi, E-mail: yamasita@kit.ac.jp; Yanagi, Hisao

    2016-08-08

    Strong exciton-photon coupling has been observed in a highly oriented organic single crystal microcavity. This microcavity consists of a thiophene/phenylene co-oligomer (TPCO) single crystal laminated on a high-reflection distributed Bragg reflector. In the TPCO crystal, molecular transition dipole was strongly polarized along a certain horizontal directions with respect to the main crystal plane. This dipole polarization causes significantly large anisotropies in the exciton transition and optical constants. Especially the anisotropic exciton transition was found to provide the strong enhancement in the coupling with the cavity mode, which was demonstrated by a Rabi splitting energy as large as ∼100 meV even inmore » the “half-vertical cavity surface emitting lasing” microcavity structure.« less

  12. HST observations of Europa's atmospheric UV emission

    NASA Astrophysics Data System (ADS)

    Saur, J. S.; Feldman, P. D.; Strobel, D. F.; Retherford, K. D.; Roth, L.; McGrath, M. A.; Gerard, J. M.; Grodent, D. C.; Schilling, N.

    2009-12-01

    The Advanced Camera for Surveys on the Hubble Space Telescope observed Europa on June 29, 2008 during five consecutive orbits. Europa was at eastern elongation and crossed the Jovian current sheet during the observing interval. The observations were performed with ACS/SBC with prism PR130L to separate the two prominent FUV oxygen lines OI 1304 A, OI 1356 A and to discriminate reflected solar light from Europa's surface. After addressing the strong red leak contained in the measurements, we find that Europa's atmospheric emission clearly depends on Europa's position in Jupiter's current sheet. We also see that the atmospheric emissions of Europa's leading side do not show pronounced asymmetries with respect to Europa's sub-Jovian and anti-Jovian side. Previous observations of the atmospheric emissions, in contrast, found a strong asymmetry on Europa's trailing side [McGrath et al. 2004].

  13. On the source of the dust extinction in type Ia supernovae and the discovery of anomalously strong Na I absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, M. M.; Morrell, Nidia; Hsiao, E. Y.

    High-dispersion observations of the Na I D λλ5890, 5896 and K I λλ7665, 7699 interstellar lines, and the diffuse interstellar band at 5780 Å in the spectra of 32 Type Ia supernovae are used as an independent means of probing dust extinction. We show that the dust extinction of the objects where the diffuse interstellar band at 5780 Å is detected is consistent with the visual extinction derived from the supernova colors. This strongly suggests that the dust producing the extinction is predominantly located in the interstellar medium of the host galaxies and not in circumstellar material associated with themore » progenitor system. One quarter of the supernovae display anomalously large Na I column densities in comparison to the amount of dust extinction derived from their colors. Remarkably, all of the cases of unusually strong Na I D absorption correspond to 'Blueshifted' profiles in the classification scheme of Sternberg et al. This coincidence suggests that outflowing circumstellar gas is responsible for at least some of the cases of anomalously large Na I column densities. Two supernovae with unusually strong Na I D absorption showed essentially normal K I column densities for the dust extinction implied by their colors, but this does not appear to be a universal characteristic. Overall, we find the most accurate predictor of individual supernova extinction to be the equivalent width of the diffuse interstellar band at 5780 Å, and provide an empirical relation for its use. Finally, we identify ways of producing significant enhancements of the Na abundance of circumstellar material in both the single-degenerate and double-degenerate scenarios for the progenitor system.« less

  14. Magnetic moment and plasma environment of HD 209458b as determined from Lyα observations.

    PubMed

    Kislyakova, Kristina G; Holmström, Mats; Lammer, Helmut; Odert, Petra; Khodachenko, Maxim L

    2014-11-21

    Transit observations of HD 209458b in the stellar Lyman-α(Lyα) line revealed strong absorption in both blue and red wings of the line interpreted as hydrogen atoms escaping from the planet's exosphere at high velocities. The following sources for the absorption were suggested: acceleration by the stellar radiation pressure, natural spectral line broadening, or charge exchange with the stellar wind. We reproduced the observation by means of modeling that includes all aforementioned processes. Our results support a stellar wind with a velocity of ≈400 kilometers per second at the time of the observation and a planetary magnetic moment of ≈1.6 × 10(26) amperes per square meter. Copyright © 2014, American Association for the Advancement of Science.

  15. The Dust Cycle Observed by Pathfinder

    NASA Astrophysics Data System (ADS)

    Smith, P. H.; Lemmon, M. T.; Tomasko, M. G.

    1998-09-01

    The Imager for Mars Pathfinder observed the Sun through special filters nearly every sol throughout the 83 sol mission; a total of 1733 images of the Sun have been obtained. Optical depths at four wavelengths (450, 670, 883, and 989 nm) steadily increased from 0.4 to 0.6 during the mission (Ls 145-185). Comparing observations taken in the morning to those from the afternoon shows a general variability with the morning haze being somewhat thicker by 0.1 optical depths. Typically, the trend is more pronounced in the blue wavelength band; we interpret this to be the influence of a high level haze of water ice crystals that forms in the early morning and evaporates during the day. Small, Rayleigh scattering crystals explains the spectral signature that we measure. It may be that this upper haze layer is associated with the small, ice crystals seen by Mariner 9, the Viking orbiters, and the Phobos orbiter. UV images taken by HST show strong limb brightening that can be explained by this high level ice. Calculations of the haze lifetimes given the sedimentation rates measured from the Rover's solar panels and the magnetic targets, suggest that the haze should completely deposit onto the surface within 120 days. A primary mechanism for replenishing the haze may be the dust devils that were observed during the sol 11 gallery pan.

  16. Simultaneous Chandra X-ray, HST Ultraviolet, and Ulysses Radio Observations of Jupiter's Aurora

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; Lugaz, N.; Waite, J. H., Jr.; Cravens, T. E.; Gladstone, G. R.; Ford, P.; Grodent, D.; Bhardwaj, A.; MacDowall, R. J.

    2004-01-01

    Observations of Jupiter carried out by the Chandra ACIS-S instrument over 24-26 February, 2003, show that the auroral X-ray spectrum consists of line emission consistent with high-charge states of precipitating ions, and not a continuum as might be expected from bremsstrahlung. The part of the spectrum due to oxygen peaks around 650 eV, which indicates a high fraction of fully-stripped oxygen in the precipitating ion flux. A combination of the OVIII emission lines at 653 eV and 774 eV, as well as the OVII emission lines at 561 eV and 666 eV, are evident in the measure auroral spectrum. There is also line emission at lower energies in the spectral region extending from 250 to 350 eV, which could be from sulfur and/or carbon. The Jovian auroral X- ray spectra are significantly different from the X-ray spectra of comets. The charge state distribution of the oxygen ions implied by the measured auroral X-ray spectra strongly suggests that, independent of the source of the energetic ions - magnetospheric or solar wind - the ions have undergone additional acceleration. This spectral evidence for ion acceleration is also consistent with the relatively high intensities of the X-rays compared to the available phase space density of the (unaccelerated) source populations of solar wind or magnetospheric ions at Jupiter, which are orders of magnitude too small to explain the observed emissions. The Chandra X-ray observations were executed simultaneously with observations at ultraviolet wavelengths by the Hubble Space Telescope and at radio wavelengths by the Ulysses spacecraft. These additional data sets suggest that the source of the X-rays is magnetospheric in origin, and that the precipitating particles are accelerated by strong field-aligned electric fields, which simultaneously create both the several-MeV energetic ion population and the relativistic electrons observed in situ by Ulysses that are correlated with approximately 40 minute quasi-periodic radio outbursts.

  17. DEMETER observations of bursty MF emissions and their relation to ground-level auroral MF burst

    NASA Astrophysics Data System (ADS)

    Broughton, M. C.; LaBelle, J.; Parrot, M.

    2014-12-01

    A survey of medium frequency (MF) electric field data from selected orbits of the Detection of Electro-Magnetic Emissions Transmitted from Earthquakes (DEMETER) spacecraft reveals 68 examples of a new type of bursty MF emissions occurring at high latitudes associated with auroral phenomena. These resemble auroral MF burst, a natural radio emission observed at ground level near local substorm onsets. Similar to MF burst, the bursty MF waves observed by DEMETER have broadband, impulsive frequency structure covering 1.5-3.0 MHz, amplitudes of 50-100 μV/m, an overall occurrence rate of ˜0.76% with higher occurrence during active times, and strong correlation with auroral hiss. The magnetic local time distribution of the MF waves observed by DEMETER shows peak occurrence rate near 18 MLT, somewhat earlier than the equivalent peak in the occurrence rate of ground level MF burst, though propagation effects and differences in the latitudes sampled by the two techniques may explain this discrepancy. Analysis of solar wind and SuperMAG data suggests that while the bursty MF waves observed by DEMETER are associated with enhanced auroral activity, their coincidence with substorm onset may not be as exact as that of ground level MF burst. One conjunction occurs in which MF burst is observed at Churchill, Manitoba, within 8 min of MF emissions detected by DEMETER on field lines approximately 1000 km southeast of Churchill. These observations may plausibly be associated with the same auroral event detected by ground level magnetometers at several Canadian observatories. Although it is uncertain, the balance of the evidence suggests that the bursty MF waves observed with DEMETER are the same phenomenon as the ground level MF burst. Hence, theories of MF burst generation in the ionosphere, such as beam-generated Langmuir waves excited over a range of altitudes or strong Langmuir turbulence generating a range of frequencies within a narrow altitude range, need to be revisited to

  18. Periodic collapse and long-time evolution of strong Langmuir turbulence

    NASA Astrophysics Data System (ADS)

    Cheung, P. Y.; Wong, A. Y.

    1985-10-01

    Experimental measurements on the long-time evolution of strong Langmuir turbulence in a beam-plasma system reveal a picture of periodic, short bursts of Langmuir wave collapse instead of the existence of long-lived solitons. The remnants of density cavities from burnout cavitons are observed to curtail wave growth periodically, creating time intervals of low wave activity between successive cycles of wave collapse, and establishing three regimes of wave evolution.

  19. Stable time filtering of strongly unstable spatially extended systems

    PubMed Central

    Grote, Marcus J.; Majda, Andrew J.

    2006-01-01

    Many contemporary problems in science involve making predictions based on partial observation of extremely complicated spatially extended systems with many degrees of freedom and with physical instabilities on both large and small scale. Various new ensemble filtering strategies have been developed recently for these applications, and new mathematical issues arise. Because ensembles are extremely expensive to generate, one such issue is whether it is possible under appropriate circumstances to take long time steps in an explicit difference scheme and violate the classical Courant–Friedrichs–Lewy (CFL)-stability condition yet obtain stable accurate filtering by using the observations. These issues are explored here both through elementary mathematical theory, which provides simple guidelines, and the detailed study of a prototype model. The prototype model involves an unstable finite difference scheme for a convection–diffusion equation, and it is demonstrated below that appropriate observations can result in stable accurate filtering of this strongly unstable spatially extended system. PMID:16682626

  20. Stable time filtering of strongly unstable spatially extended systems.

    PubMed

    Grote, Marcus J; Majda, Andrew J

    2006-05-16

    Many contemporary problems in science involve making predictions based on partial observation of extremely complicated spatially extended systems with many degrees of freedom and with physical instabilities on both large and small scale. Various new ensemble filtering strategies have been developed recently for these applications, and new mathematical issues arise. Because ensembles are extremely expensive to generate, one such issue is whether it is possible under appropriate circumstances to take long time steps in an explicit difference scheme and violate the classical Courant-Friedrichs-Lewy (CFL)-stability condition yet obtain stable accurate filtering by using the observations. These issues are explored here both through elementary mathematical theory, which provides simple guidelines, and the detailed study of a prototype model. The prototype model involves an unstable finite difference scheme for a convection-diffusion equation, and it is demonstrated below that appropriate observations can result in stable accurate filtering of this strongly unstable spatially extended system.